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12th AIAA/CEAS Aeroaoustis Conferene, 8-10 May 2006, Boston, MA, USAMode Mathing in Engine Duts with Vortial FlowsGregory Vilenski∗Eindhoven University of Tehnology, 5600 MB Eindhoven, The Netherlands.The triple-plane pressure mathing method used to reover aousti data in the regionof noise generation from the CFD results is extended to the ase of swirling vortial �ows.Unsteady perturbations to the mean �ow are taken in the modal form. They are de-termined from the numerial solution of the related eigenvalue problem for the pressuremode amplitude. After the set of modal eigenfuntions has been obtained, the triple-planemathing method is used to �nd the approximation of the unsteady pressure �eld in orderto determine the oe�ients of the orresponding modal expansion.The auray of the method is heked against the test ase based on the realisti enginegeometry and the CFD data supplied by Rolls-Roye and originally onsidered in the paperby Ovenden & Rienstra (2004).Pratial reommendations for numerial implementation of the triple-plane mathingmethod for vortial �ows are given.Nomenlature
t, x, r, θ time, axial, radial and irumferential oordinates
u, v, w projetions of the veloity vetor on the oordinate axes x, r and θ
ρ, p density and pressure
s hub-to-tip ratio
h dimensional inner dut radius
d dimensional outer dut radius
ω dimensional frequeny
m irumferential wavenumber
k dimensional lateral wavenumber
M Mah number
˜ upper-ase symbol denoting nondimensional values
c0 sound speed in the �ow without swirl
a sound speed in swirling �ow
n eigenmode number I. IntrodutionThe present work extends the triple-plane pressure mathing (TPPM) method originally proposed byOvenden & Rienstra (2004) for potential aousti �ows to the ase of swirling vortial �ows. The objetiveof the method is to extrat aousti information in the region of noise generation from the data obtained bymeans of diret CFD omputation.The main idea of the method is to use a set of losely spaed ontrol surfaes in the CFD region, in orderto approximate the unsteady part of the pressure by an eigenseries of the linearized Euler equations. Inthe potential �ow ase these eigenfuntions form a dense orthogonal set in an appropriate funtional spae,
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and the partial sum of their Fourier series has the property of the best approximation in the relevant norm.As a result, the triple-plane pressure mathing method proves to produe a very aurate and onsistentapproximation of the aousti pressure �eld that an be subsequently used as an input information for thesolution of the noise propagation problem.In the ase of a nonuniform mean �ow the emergene of hydrodynami (onveted) modes and, possibly,instability waves interferes with the desribed proedure. Unlike the potential �ow ase, the struture ofthe spetrum is in general unknown, and the related spetral problem has to be solved numerially. Theapproximation properties of the set of eigensolutions are not known either.As a result, there arisies the problem as to how the obtained eigensolutions of the linearized Eulerequations should be used in order to get an aurate and omputationally robust approximation of the CFDdata. This is the main issue studied in the present work. The paper also extends the triple-plane mathingalgorithm to the ase of a nonuniform mean �ow and illustrates its use with the pratial example originallyprovided in Ovenden & Rienstra (2004). The main �nding here is that the triple-plane mathing methodgives fairly aurate results for the ase of mean �ows with shear as well. If the visous boundary-layer �owe�ets near the dut walls are disarded in the mean �ow pro�le and it is approximated by an appropriateslip-stream pro�le, the auray of the approximation of the unsteady part of the pressure an be furtherimproved in omparison with the standard TPPM method by allowing two near-wall hydrodynami modesin the eigenseries expansion. Modelling of visous �ow e�ets near the dut walls results in emergene of,presumably, ontinuous hydrodynami spetrum in the problem. Inlusion of suh modes into the triple-plane mathing proedure, in general, may make it numerially unstable and should be done with great are.Possible approah to this problem and omparison of the obtained results with the approximation based onthe slip-stream mean �ow pro�le are also disussed in the paper.II. Mode mathing proedureConsider an invisid non-heat-onduting ompressible perfet gas �ow inside an in�nitely long straightannular dut of inner radius h and outer radius d as in Figure 1. Let x, r and θ be the axial, the radialand the irumferential oordinates, u, v and w the projetions of the veloity vetor on the oordinate axes
x, r and θ respetively, ρ and p the density and the pressure. The dimensional equations for onservation ofmass, radial, irumferential, lateral omponents of momentum and energy are
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Figure 1. Flow geometry
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= 0. (5)Here t is time, γ = cp/cv is the ratio of spei� heat apaities at onstant pressure and onstant volume,respetively. The pressure, the density and the absolute temperature T satisfy the equation of state p = RρT ,

R = cp − cv.Assume that the total �ow �eld an be deomposed into the sum of a mean base �ow and small-amplitudeunsteady perturbations
(u, v, w, ρ, p) = (u, v, w, ρ, p) + (ũ, ṽ, w̃, ρ̃, p̃) . (6)with the mean �ow given by the formulae (see Tam & Auriault (1998) for details)

u = u(r), v = 0, w = w(r), ρ = ρ(r), p = pd −

∫ d

r

ρ(ξ)
w2(ξ)

ξ
dξ (7)In the ontext of the triple plane mathing approah (see Ovenden & Rienstra (2004)), whih objetiveis to extrat aousti information in the region of noise generation from the CFD solution, the mean �ow(7) an be in pratie obtained by means of irumferential and time averaging of the CFD data.The variable part of the �ow an be Fourier deomposed in the exitation frequeny ω̃ and irumferentialorder m:
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(unm, vnm, wnm, ρnm, pnm) exp(−iω̃nt + imθ). (8)The omponents (unm, vnm, wnm, ρnm, pnm) are the known funtions of the radial oordinate r for a given setof losely spaed ontrol surfaes x = xl, l = 0, 1, 2, . . . in the CFD region. Normally, they an be providedby the Fourier transform of the CFD data
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For zero mean irumferential veloity w = 0 and onstant mean �ow density ρ the problem (11,12)redues to the Pridmore-Brown equation (13)
P ′′
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µ + γ(r)Pµ = 0, (13)where
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P ′

µ = 0 on r = h, d. (14)As is well known (see for instane, Eversman (1991), Tam & Auriault (1998), Golubev & Atassi (1998),Nijboer (2001), Cooper & Peake (2005)), the spetrum of the problem (11,12), and similarly (13,14), onsistsof the aousti modes whih propagate with the speed of sound and hydrodynami modes whih are onvetedwith the loal �ow speed. At least theoretially, in the expansion (10) summation over both aoustiand hydrodynami modes must be onsidered. For onveniene of notation we divide all modes into thefollowing three subsets: µ− = {µ : Im(kµ) < 0} - the modes with negative imaginary part of the axialwave number, µ0 = {µ : Im(kµ) = 0} - the modes with zero imaginary part of the axial wave numberand µ+ = {µ : Im(kµ) > 0} - the modes with positive imaginary part of the axial wave number. Werethe spetrum purely aousti, say, in the absene of mean �ow, the sets µ− and µ+ would orrespond tothe deaying left and right running modes, respetively, while µ0 would onsist of propagating modes. Inthe more general ase of equation (11), owing to the appearane of hydrodynami spetrum and possiblyonvetive �ow instabilities, the sets µ−, µ+ and µ0 may also ontain hydrodynami modes.Following the triple-plane mathing method of Ovenden & Rienstra (2004), we olloate the equation(10) at the three losely spaed ontrol surfaes x = xl, l = 0, 1, 2:
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(15)Here Pl(r) = pnm(r, xl), l = 0, 1, 2, and the sums are taken over all modes. In order to proeed numeri-ally, the in�nite sums appearing on the right-hand sides of the above equations must be approximated byappropriate partial sums. This is not a straightforward proedure if part of the hydrodynami spetrumis ontinuous or even ountable. The reason for this is that now it annot be guaranteed that for a givensmooth funtion pnm(r, x) whih satis�es boundary onditions (14,) the Fourier expansion (10) in the eigen-funtions of the problem (11-14) is onvergent. Neither is it known that any two eigenfuntions assoiated todi�erent eigenvalues are orthogonal to eah other with any weight funtion. These irumstanes make thehoie of hydrodynami eigenfuntions to be used in the onstrution of the numerial approximation basedof the eigenseries (10) a di�ult problem. Thus, in what follows we proeed guided by the analogy with thepotential �ow ase, where hydrodynami modes are absent, and then gradually broaden the mathematialmodel to the ase of a �nite number of hydrodynami modes, in order to study their in�uene on the qualityof the approximation. If the number of hydrodynami modes is in�nite, we an still try to aount for theirin�uene by taking a su�iently large number of suh modes. However, as it will be lear from what follows,muh aution is needed in the ase when part of the problem's spetrum is ontinuous.Let M0 denote the total number of propagating aousti modes plus, possibly, the hydrodynami modesfrom the set µ0. Similarly, let M+ and M− denote the number of modes from the sets µ+ and µ−, respetively,whose lateral wave numbers kµ belong to the disk in the omplex plane kµ of su�iently large radius R. Ifthe number of hydrodynami modes is �nite, all of them are assumed to be taken into aount either bymaking R su�iently large or diretly in M0, if their Im(kµ) = 0. Substituting the in�nite sums in the
4 of 12Amerian Institute of Aeronautis and Astronautis Paper 2006-2584



system (15) by the orresponding partial sums we get the following set of equations:
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Here the modes orresponding to j = 0, 1, 2, 3, . . . , M0−1 belong to the set µ0, the modes orresponding to j =
M0, . . . , M0+M+−1 belong to the set µ+ and the modes orresponding to j = M0+M+, . . . , M0+M++M−−1belong to the set µ−. A new set of independent variables Bj was introdued in (16) instead of Aj aordingto the following formula

Bj = Aj

{
eikjx0 , if j = 0, 1, . . . , M0 + M+ − 1

eikjx2 , if j = M0 + M+, . . . , M0 + M+ + M− − 1.
(17)System (16) is overdetermined and annot be solved exatly for Bj . Instead, the unknown oe�ients

Bj an be found by means of quadrati error minimisation for the system (16) as proposed in Ovenden& Rienstra (2004). Resaling of the unknown Fourier oe�ients aording to formula (17) proposed bythe above authors makes the system (16) numerially advantageous over the orresponding original systemwritten in terms of Aj . It insures that none of the sums in the set of equations (16) ontains pathologiallylarge exponential terms whih result in numerial instabilities assoiated with evanesent aousti modes inthe original system for Aj . If we now let
ξj(r) = Pj(r)

{
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1, if M0 + M+ ≤ j < M0 + M+ + M−,multiply the �rst equation of the system (16) by ξl(r)r, the seond equation by ςl(r)r and the third oneby χl(r)r, where the bar denotes omplex onjugation, and integrate the resulting equations from r = h to
r = d, we get the following system for the unknown oe�ients Bj :
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Here l, j = 0, 1, 2, 3 . . .M0 + M+ + M− − 1,
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Next, we apply the least-squares algorithm in order to minimize the objetive funtion
‖MB − p0‖

2
+ ‖NB − p1‖

2
+ ‖QB − p2‖

2
,where B =

(
B0, B1, . . . , BM0+M++M

−
−1

) is the vetor of unknown oe�ients. Matries M , N , Q andvetors p0, p1, p2 are given by the relationships (19) and (20). In view of the Hermitian struture of thematries M , N and Q, this leads to the following algebrai system (see Ovenden & Rienstra (2004) fordetails) (
M2 + N2 + Q2

)
B = Mp0 + Np1 + Qp2 (21)whih is solved numerially for B. The oe�ients Aj are then reovered from formula (17).
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r
.
= 0.694, with u

.
= 0.446. The other two in�etion points are loated near the outer wall at r

.
= 0.97 and

r
.
= 0.984, the orresponded mean �ow veloities being u

.
= 0.37 and u

.
= 0.354, respetively.The analysis of the problem based on the generi model (11,14) whih allows for radial non-uniformities indensity and azimuthal veloity distributions and the analysis based on Pridmore-Brown equation (13) whihallows only for axial �ow non-uniformity shows good agreement between the orresponding eigensolutions.Final approximations of the unsteady pressure omponent resulting from these two models are also lose toeah other. For this reason the in�uene of the mean �ow swirl and density non-uniformity is believed to benegligible for this engine and is disarded in what follows.
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= 88.6 and kd
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Real Part of the lateral wavenumber, Re(k)Figure 4. Hydrodynami part of the spetrum: + - mean �ow pro�le with boundary-layer e�ets near theinner and the outer wall, ⊡ - linear mean �ow pro�leThe mode with kµ
.
= 110 is generated by the in�etion point at r

.
= 0.97, and its phase speed is equalto the loal mean �ow veloity u

.
= 0.37. Interestingly enough, this mode would be always found by thenumerial ode, if the number of mesh points exeeded a ertain threshold limit, as opposed to the in�etionpoint r

.
= 0.694, where no smooth eigenmodes were found. The three modes lustering near the point

kµ
.
= 122 are generated by the mesh points whih are loalised in the viinity of the point r

.
= 0.984 whereboth u′ and u′′ are lose to zero. This lustering is due to the fat that we use the uniform grid with respetto r in our omputation. As a result, ki = ω/u(ri) lie lose to eah other, where u′(r) is small, and far apart,where it is large (hene the gap in the wave number range between kµ

.
= 122, kµ

.
= 134 and kµ

.
= 144). Thewave number kµ

.
= 151.4 is the double eigenvalue. It orresponds to one eigenfuntion loated near the huband the other one near the outer wall.It should be noted that the lustering hydrodynami modes, espeially in the regions of low mean �owveloity gradient u′(r), have very similar shapes and are almost linearity dependent. This is demonstratedin �gure 5, where hydrodynami modes are depited. Owing to a very high mean �ow veloity gradient nearthe inner wall, the mode on the left is the only mode found in the boundary-layer region near the hub. Toobtain more modes in this region, the number of mesh points must be inreased further. The negative-valuedmode shown in a thik line orresponds to the in�etion point r

.
= 0.97.If fed in the mode mathing algorithm, onvetive modes trigger numerial instability of the algorithm,whih in turn, results in the dramati loss of auray in the regions of lustering. An alternative is, forexample, to use only a limited number of hydrodynami modes in the mode mathing proedure hosen insuh a way as to insure that the value of the norm of the di�erene between the approximated funtion andthe approximation, say, in the entral ontrol plane x = 0.34m

εN =
1

N

N−1∑

i=0

∣∣∣∣∣∣
P1(ri) −

∑

µ∈µ0∪µ+∪µ
−

AµPµ(ri) exp(ikµx1)

∣∣∣∣∣∣is the lowest. Here r = ri, i = 0, 1, 2 . . .N − 1 are the nodes of the uniform omputational grid used tointegrate the modal equation. 8 of 12Amerian Institute of Aeronautis and Astronautis Paper 2006-2584
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Nondimensional Radius, rFigure 5. Hydrodynami modes versus r. The modes loalised near r
.
= 1 are due to the boundary-layer �ownear the outer wall. Notie the similarity of their shape and the lustering e�et.This approah shows that if all hydrodynami modes depited in �gure 5 are used in the approximationproedure, the approximation error εN reahes the highest value equal to 0.947 · 10−4. However this erroran be dereased to only 0.14 · 10−4 by removal of any two of the three lustering modes near the value of

kµ
.
= 122 in �gure 4. Further dramati derease in the approximation error an be ahieved by removal ofall hydrodynami modes with the exeption of the two modes whih are the losest to the walls of the dut,the mode generated by the in�etion point at r

.
= 0.97 and the mode losest to the other in�etion point

r
.
= 0.984. In this ase εN = 0.0395 · 10−4. Subsequent removal of the mode orresponding to the in�etionpoint r

.
= 0.984 whih lies well in the outer wall boundary layer results in a slight further improvementin auray, with εN = 0.0393 · 10−4. This value is the absolute minimum of the approximation error forthe hosen set of modes. If the remaining in�etion point mode whih lies near the outer boundary of theboundary-layer �ow (shown by the thik line in �gure 5) is also removed, the error grows to εN = 0.0413·10−4.If all hydrodynami modes are removed and only aousti spetrum is used εN = 0.0469 · 10−4%.The undertaken analysis of the approximation error suggests that in pratie it may be su�ient to retainonly two hydrodynami modes whih are the losest to the walls and the modes indued by the in�etionpoints of the mean �ow pro�le. Interestingly, it is only the in�etion point that lies su�iently far from thewall that needs to be taken into aount. We hasten to note, though, that these results have been obtainedfor a sheared �ow with no swirl. In general, swirling �ows are known to generate ontinuous hydrodynamispetrum whih is of a di�erent physial nature than the spetrum we onsider here. Hene, the present�ndings may not be diretly appliable to swirling �ows.The approximation errors for the linear and uniform veloity pro�les shown in �gure 2 are εlin

N = 0.0369 ·
10−4 and εuni

N = 0.0468 · 10−4, respetively. The latter error is almost idential to the value of εN = 0.0469 ·
10−4 obtained for the purely aousti approximation based on the boundary-layer veloity pro�le. Hene,aurate modelling of refration e�ets does not seem to be important for the urrent engine. Comparisonof εuni

N to the best �t error for the boundary-layer mean �ow pro�le εbl
N = 0.0393 · 10−4 shows that, asexpeted, inlusion of the hydrodynami modes gives pereptible improvement over the purely aoustiuniform �ow approximation. However, the fat that εlin

N is smaller than εbl
N suggests that tehnially it is9 of 12Amerian Institute of Aeronautis and Astronautis Paper 2006-2584
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Nondimensional Radius, rFigure 6. Triple plane pressure mathing results for the real part of pressure versus radial oordinate r in theontrol plane x = 0.34m: asterisk - original RR data, dash-doted line - approximation based on the uniformmean �ow pro�le; dashed line - approximation based on the linear mean �ow pro�le; solid line - approximationbased on the boundary-layer pro�le.
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more advantageous to use the two hydrodynami modes whih result from the extrapolation of the ore ofthe sheared mean �ow pro�le into the boundary-layer regions, than the modes found by diret modellingof the boundary-layer pro�le. Presumably, the reason for this is that in the numerial omputation only a�nite subset of the ontinuous spetrum is available, while the majority of the modes are inevitably missed,and to insure proper mode sampling one has to work with a very �ne grid to minimize εbl
N . Hene the use ofan invisid, but sheared, pro�le seems to be an attrative pratial option.Figures 6 and 7 illustrate the quality of pressure approximations for uniform, linear and boundary-layermean �ow pro�les orresponding to the above values of εuni

N , εlin
N and εbl

N , respetively. The values of thepressure amplitude and radial oordinate r are nondimensionalised with ρ(d)c2(d) and the outer radius d,respetively. It an be seen from these �gures that all the approximations are rather aurate and giveidential results in the main part of the dut, where the mean �ow is invisid. In the boundary-layer regionsinlusion of hydrodynami modes either in the ase of the linear pro�le of the boundary-layer pro�le improvesthe quality of the approximation over the purely aousti ase. The use of two hydrodynami modes nearthe outer wall - one orresponding to the in�etion point r
.
= 0.97 and the other orresponding to the modewith the largest available kµ for the boundary-layer pro�le - gives a slightly better approximation than theapproximation based on the linear pro�le with only one hydrodynami mode near the outer wall. However,the di�erenes between the two approximations are very small.
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Nondimensional Radius, rFigure 7. Triple plane pressure mathing results for the imaginary part of pressure versus radial oordinate
r in the ontrol plane x = 0.34m: asterisk - original RR data, dash-doted line - approximation based on theuniform mean �ow pro�le; dashed line - approximation based on the linear mean �ow pro�le; solid line -approximation based on the boundary-layer pro�le.IV. ConlusionsThe triple plane mathing method reently used by Ovenden & Rienstra (2004) to deouple the problemsof noise generation and propagation for turbomahinery appliations has been extended here to nonuniformduted �ows.The modal approximations based on nonuniform slip-stream mean �ow pro�les give aurate results whileinlusion of hydrodynami modes allows for further improvement over purely aousti modal expansion near11 of 12Amerian Institute of Aeronautis and Astronautis Paper 2006-2584



the dut walls. Although theoretially possible, modelling of the subtle �ow struture in the boundary-layer regions near the dut walls based on modal expansions whih inlude onveted modes is found to beomputationally rather expensive and not neessarily advantageous. Sine the slip-stream approximation isalready rather aurate and muh easier to obtain numerially, it is suggested that in pratial omputationsthe modes assoiated with mean �ow features due to the boundary-layer should be disarded.V. AknowledgementsThe author is grateful to Dr. S.W. Rienstra for helpful omments and disussions during the author'svisit to The Netherlands whih was supported by the "Messiaen" European ollaborative projet 'Methodsfot the e�ient simulation of airraft engine noise' (EU Tehnial O�er Dietrih Knörzer and CoordinatorJean-Louis Migeot, Free Field Tehnologies). Referenes
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