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12th AIAA/CEAS Aeroa
ousti
s Conferen
e, 8-10 May 2006, Boston, MA, USAMode Mat
hing in Engine Du
ts with Vorti
al FlowsGregory Vilenski∗Eindhoven University of Te
hnology, 5600 MB Eindhoven, The Netherlands.The triple-plane pressure mat
hing method used to re
over a
ousti
 data in the regionof noise generation from the CFD results is extended to the 
ase of swirling vorti
al �ows.Unsteady perturbations to the mean �ow are taken in the modal form. They are de-termined from the numeri
al solution of the related eigenvalue problem for the pressuremode amplitude. After the set of modal eigenfun
tions has been obtained, the triple-planemat
hing method is used to �nd the approximation of the unsteady pressure �eld in orderto determine the 
oe�
ients of the 
orresponding modal expansion.The a

ura
y of the method is 
he
ked against the test 
ase based on the realisti
 enginegeometry and the CFD data supplied by Rolls-Roy
e and originally 
onsidered in the paperby Ovenden & Rienstra (2004).Pra
ti
al re
ommendations for numeri
al implementation of the triple-plane mat
hingmethod for vorti
al �ows are given.Nomen
lature
t, x, r, θ time, axial, radial and 
ir
umferential 
oordinates
u, v, w proje
tions of the velo
ity ve
tor on the 
oordinate axes x, r and θ
ρ, p density and pressure
s hub-to-tip ratio
h dimensional inner du
t radius
d dimensional outer du
t radius
ω dimensional frequen
y
m 
ir
umferential wavenumber
k dimensional lateral wavenumber
M Ma
h number
˜ upper-
ase symbol denoting nondimensional values
c0 sound speed in the �ow without swirl
a sound speed in swirling �ow
n eigenmode number I. Introdu
tionThe present work extends the triple-plane pressure mat
hing (TPPM) method originally proposed byOvenden & Rienstra (2004) for potential a
ousti
 �ows to the 
ase of swirling vorti
al �ows. The obje
tiveof the method is to extra
t a
ousti
 information in the region of noise generation from the data obtained bymeans of dire
t CFD 
omputation.The main idea of the method is to use a set of 
losely spa
ed 
ontrol surfa
es in the CFD region, in orderto approximate the unsteady part of the pressure by an eigenseries of the linearized Euler equations. Inthe potential �ow 
ase these eigenfun
tions form a dense orthogonal set in an appropriate fun
tional spa
e,
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and the partial sum of their Fourier series has the property of the best approximation in the relevant norm.As a result, the triple-plane pressure mat
hing method proves to produ
e a very a

urate and 
onsistentapproximation of the a
ousti
 pressure �eld that 
an be subsequently used as an input information for thesolution of the noise propagation problem.In the 
ase of a nonuniform mean �ow the emergen
e of hydrodynami
 (
onve
ted) modes and, possibly,instability waves interferes with the des
ribed pro
edure. Unlike the potential �ow 
ase, the stru
ture ofthe spe
trum is in general unknown, and the related spe
tral problem has to be solved numeri
ally. Theapproximation properties of the set of eigensolutions are not known either.As a result, there arisies the problem as to how the obtained eigensolutions of the linearized Eulerequations should be used in order to get an a

urate and 
omputationally robust approximation of the CFDdata. This is the main issue studied in the present work. The paper also extends the triple-plane mat
hingalgorithm to the 
ase of a nonuniform mean �ow and illustrates its use with the pra
ti
al example originallyprovided in Ovenden & Rienstra (2004). The main �nding here is that the triple-plane mat
hing methodgives fairly a

urate results for the 
ase of mean �ows with shear as well. If the vis
ous boundary-layer �owe�e
ts near the du
t walls are dis
arded in the mean �ow pro�le and it is approximated by an appropriateslip-stream pro�le, the a

ura
y of the approximation of the unsteady part of the pressure 
an be furtherimproved in 
omparison with the standard TPPM method by allowing two near-wall hydrodynami
 modesin the eigenseries expansion. Modelling of vis
ous �ow e�e
ts near the du
t walls results in emergen
e of,presumably, 
ontinuous hydrodynami
 spe
trum in the problem. In
lusion of su
h modes into the triple-plane mat
hing pro
edure, in general, may make it numeri
ally unstable and should be done with great 
are.Possible approa
h to this problem and 
omparison of the obtained results with the approximation based onthe slip-stream mean �ow pro�le are also dis
ussed in the paper.II. Mode mat
hing pro
edureConsider an invis
id non-heat-
ondu
ting 
ompressible perfe
t gas �ow inside an in�nitely long straightannular du
t of inner radius h and outer radius d as in Figure 1. Let x, r and θ be the axial, the radialand the 
ir
umferential 
oordinates, u, v and w the proje
tions of the velo
ity ve
tor on the 
oordinate axes
x, r and θ respe
tively, ρ and p the density and the pressure. The dimensional equations for 
onservation ofmass, radial, 
ir
umferential, lateral 
omponents of momentum and energy are

r = 1

r = s

M(r)

Figure 1. Flow geometry
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= 0. (5)Here t is time, γ = cp/cv is the ratio of spe
i�
 heat 
apa
ities at 
onstant pressure and 
onstant volume,respe
tively. The pressure, the density and the absolute temperature T satisfy the equation of state p = RρT ,

R = cp − cv.Assume that the total �ow �eld 
an be de
omposed into the sum of a mean base �ow and small-amplitudeunsteady perturbations
(u, v, w, ρ, p) = (u, v, w, ρ, p) + (ũ, ṽ, w̃, ρ̃, p̃) . (6)with the mean �ow given by the formulae (see Tam & Auriault (1998) for details)

u = u(r), v = 0, w = w(r), ρ = ρ(r), p = pd −

∫ d

r

ρ(ξ)
w2(ξ)

ξ
dξ (7)In the 
ontext of the triple plane mat
hing approa
h (see Ovenden & Rienstra (2004)), whi
h obje
tiveis to extra
t a
ousti
 information in the region of noise generation from the CFD solution, the mean �ow(7) 
an be in pra
ti
e obtained by means of 
ir
umferential and time averaging of the CFD data.The variable part of the �ow 
an be Fourier de
omposed in the ex
itation frequen
y ω̃ and 
ir
umferentialorder m:

(ũ, ṽ, w̃, ρ̃, p̃) (x, r, θ, t) =
∑

n

∑

m

(unm, vnm, wnm, ρnm, pnm) exp(−iω̃nt + imθ). (8)The 
omponents (unm, vnm, wnm, ρnm, pnm) are the known fun
tions of the radial 
oordinate r for a given setof 
losely spa
ed 
ontrol surfa
es x = xl, l = 0, 1, 2, . . . in the CFD region. Normally, they 
an be providedby the Fourier transform of the CFD data
(unm, vnm, wnm, ρnm, pnm) =

ω̃

4π2

∫ 2π/eω

0

∫ 2π

0

(ũ, ṽ, w̃, ρ̃, p̃) exp(iω̃nt − imθ)dθdt. (9)In order to obtain the representation of the unsteady part of the pressure �eld 
onsistent with the Eulerequations linearized on the mean �ow (7), we approximate the perturbation pressure pnm(r, x) by the seriesexpansion based on the eigenfun
tions of the related linearized Euler equations, i.e.,
pnm(r, x) =

∑

(µ)

AµPµ(r) exp(ikµx). (10)Here the 
omplex numbers Aµ are the unknown modal amplitudes, Pµ(r) are the modal eigenfun
tionsand kµ are the 
orresponding lateral wave numbers. Pµ(r) and kµ satisfy the modal equation (11)
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Pµ = 0, (11)and the slip-stream boundary 
onditions on the inner and outer wall of the du
t, respe
tively,
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For zero mean 
ir
umferential velo
ity w = 0 and 
onstant mean �ow density ρ the problem (11,12)redu
es to the Pridmore-Brown equation (13)
P ′′

µ + β(r)P ′

µ + γ(r)Pµ = 0, (13)where
β(r) =

(
1

r
+

2ku′

ω − ku

)
, γ(r) =

(
(ω − ku)2

c2
0

− k2 −
m2

r2

) and c2
0 =

γpd

ρ
.with the boundary 
onditions

P ′

µ = 0 on r = h, d. (14)As is well known (see for instan
e, Eversman (1991), Tam & Auriault (1998), Golubev & Atassi (1998),Nijboer (2001), Cooper & Peake (2005)), the spe
trum of the problem (11,12), and similarly (13,14), 
onsistsof the a
ousti
 modes whi
h propagate with the speed of sound and hydrodynami
 modes whi
h are 
onve
tedwith the lo
al �ow speed. At least theoreti
ally, in the expansion (10) summation over both a
ousti
and hydrodynami
 modes must be 
onsidered. For 
onvenien
e of notation we divide all modes into thefollowing three subsets: µ− = {µ : Im(kµ) < 0} - the modes with negative imaginary part of the axialwave number, µ0 = {µ : Im(kµ) = 0} - the modes with zero imaginary part of the axial wave numberand µ+ = {µ : Im(kµ) > 0} - the modes with positive imaginary part of the axial wave number. Werethe spe
trum purely a
ousti
, say, in the absen
e of mean �ow, the sets µ− and µ+ would 
orrespond tothe de
aying left and right running modes, respe
tively, while µ0 would 
onsist of propagating modes. Inthe more general 
ase of equation (11), owing to the appearan
e of hydrodynami
 spe
trum and possibly
onve
tive �ow instabilities, the sets µ−, µ+ and µ0 may also 
ontain hydrodynami
 modes.Following the triple-plane mat
hing method of Ovenden & Rienstra (2004), we 
ollo
ate the equation(10) at the three 
losely spa
ed 
ontrol surfa
es x = xl, l = 0, 1, 2:
P0(r) =

∑

µ∈µ0∪µ+∪µ
−

AµPµ(r) exp(ikµx0),

P1(r) =
∑

µ∈µ0∪µ+∪µ
−

AµPµ(r) exp(ikµx1),

P2(r) =
∑

µ∈µ0∪µ+∪µ
−

AµPµ(r) exp(ikµx2).

(15)Here Pl(r) = pnm(r, xl), l = 0, 1, 2, and the sums are taken over all modes. In order to pro
eed numeri-
ally, the in�nite sums appearing on the right-hand sides of the above equations must be approximated byappropriate partial sums. This is not a straightforward pro
edure if part of the hydrodynami
 spe
trumis 
ontinuous or even 
ountable. The reason for this is that now it 
annot be guaranteed that for a givensmooth fun
tion pnm(r, x) whi
h satis�es boundary 
onditions (14,) the Fourier expansion (10) in the eigen-fun
tions of the problem (11-14) is 
onvergent. Neither is it known that any two eigenfun
tions asso
iated todi�erent eigenvalues are orthogonal to ea
h other with any weight fun
tion. These 
ir
umstan
es make the
hoi
e of hydrodynami
 eigenfun
tions to be used in the 
onstru
tion of the numeri
al approximation basedof the eigenseries (10) a di�
ult problem. Thus, in what follows we pro
eed guided by the analogy with thepotential �ow 
ase, where hydrodynami
 modes are absent, and then gradually broaden the mathemati
almodel to the 
ase of a �nite number of hydrodynami
 modes, in order to study their in�uen
e on the qualityof the approximation. If the number of hydrodynami
 modes is in�nite, we 
an still try to a

ount for theirin�uen
e by taking a su�
iently large number of su
h modes. However, as it will be 
lear from what follows,mu
h 
aution is needed in the 
ase when part of the problem's spe
trum is 
ontinuous.Let M0 denote the total number of propagating a
ousti
 modes plus, possibly, the hydrodynami
 modesfrom the set µ0. Similarly, let M+ and M− denote the number of modes from the sets µ+ and µ−, respe
tively,whose lateral wave numbers kµ belong to the disk in the 
omplex plane kµ of su�
iently large radius R. Ifthe number of hydrodynami
 modes is �nite, all of them are assumed to be taken into a

ount either bymaking R su�
iently large or dire
tly in M0, if their Im(kµ) = 0. Substituting the in�nite sums in the
4 of 12Ameri
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system (15) by the 
orresponding partial sums we get the following set of equations:
P0(r) =

M0+M+−1∑

j=0

BjPj(r) +

M0+M++M
−
−1∑

j=M0+M+

BjPj(r)e
−ikj(x2−x0),

P1(r) =

M0+M+−1∑

j=M0

BjPj(r)e
ikj (x1−x0) +

M0+M++M
−
−1∑

j=M0+M+

BjPj(r)e
−ikj (x2−x1),

P2(r) =

M0+M+−1∑

j=M0

BjPj(r)e
ikj (x2−x0) +

M0+M++M
−
−1∑

j=M0+M+

BjPj(r).

(16)
Here the modes 
orresponding to j = 0, 1, 2, 3, . . . , M0−1 belong to the set µ0, the modes 
orresponding to j =
M0, . . . , M0+M+−1 belong to the set µ+ and the modes 
orresponding to j = M0+M+, . . . , M0+M++M−−1belong to the set µ−. A new set of independent variables Bj was introdu
ed in (16) instead of Aj a

ordingto the following formula

Bj = Aj

{
eikjx0 , if j = 0, 1, . . . , M0 + M+ − 1

eikjx2 , if j = M0 + M+, . . . , M0 + M+ + M− − 1.
(17)System (16) is overdetermined and 
annot be solved exa
tly for Bj . Instead, the unknown 
oe�
ients

Bj 
an be found by means of quadrati
 error minimisation for the system (16) as proposed in Ovenden& Rienstra (2004). Res
aling of the unknown Fourier 
oe�
ients a

ording to formula (17) proposed bythe above authors makes the system (16) numeri
ally advantageous over the 
orresponding original systemwritten in terms of Aj . It insures that none of the sums in the set of equations (16) 
ontains pathologi
allylarge exponential terms whi
h result in numeri
al instabilities asso
iated with evanes
ent a
ousti
 modes inthe original system for Aj . If we now let
ξj(r) = Pj(r)

{
1, if 0 ≤ j < M0 + M+

e−ikj(x2−x0), if M0 + M+ ≤ j < M0 + M+ + M−,

ςj(r) = Pj(r)

{
eikj(x1−x0), if 0 ≤ j < M0 + M+

e−ikj(x2−x1), if M0 + M+ ≤ j < M0 + M+ + M−,

χj(r) = Pj(r)

{
eikj(x2−x0), if 0 ≤ j < M0 + M+

1, if M0 + M+ ≤ j < M0 + M+ + M−,multiply the �rst equation of the system (16) by ξl(r)r, the se
ond equation by ςl(r)r and the third oneby χl(r)r, where the bar denotes 
omplex 
onjugation, and integrate the resulting equations from r = h to
r = d, we get the following system for the unknown 
oe�
ients Bj :





M0−1∑

j=0

MljBj +

M0+M+−1∑

j=M0

MljBj +

M0+M++M
−
−1∑

j=M0+M+

MljBj = pl
0,

M0−1∑

j=0

NljBj +

M0+M+−1∑

j=M0

NljBj +

M0+M++M
−
−1∑

j=M0+M+

NljBj = pl
1,

M0−1∑

j=0

QljBj +

M0+M+−1∑

j=M0

QljBj +

M0+M++M
−
−1∑

j=M0+M+

QljBj = pl
2.

(18)
Here l, j = 0, 1, 2, 3 . . .M0 + M+ + M− − 1,

Mlj =

∫ d

h

ξjξl(r)rdr, Nlj =

∫ d

h

ςjςl(r)rdr, Qlj =

∫ d

h

χjχl(r)rdr, (19)
pl
0 =

∫ d

h

P0(r)ξl(r)rdr, pl
1 =

∫ d

h

P1(r)ςl(r)rdr, pl
2 =

∫ d

h

P2(r)χl(r)rdr. (20)5 of 12Ameri
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s and Astronauti
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Next, we apply the least-squares algorithm in order to minimize the obje
tive fun
tion
‖MB − p0‖

2
+ ‖NB − p1‖

2
+ ‖QB − p2‖

2
,where B =

(
B0, B1, . . . , BM0+M++M

−
−1

) is the ve
tor of unknown 
oe�
ients. Matri
es M , N , Q andve
tors p0, p1, p2 are given by the relationships (19) and (20). In view of the Hermitian stru
ture of thematri
es M , N and Q, this leads to the following algebrai
 system (see Ovenden & Rienstra (2004) fordetails) (
M2 + N2 + Q2

)
B = Mp0 + Np1 + Qp2 (21)whi
h is solved numeri
ally for B. The 
oe�
ients Aj are then re
overed from formula (17).
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ase results for nonuniform mean �ow without swirlIn this se
tion we 
he
k the a

ura
y of the method against the test 
ase 
onsidered in detail by Ovenden& Rienstra (2004) within the framework of potential �ow theory. It is based on a realisti
 engine 
on�gurationand CFD data supplied by Rolls-Roy
e (RR) for the region downstream of the bypass outlet guide vanes,where the du
t walls are almost parallel, h = 2.7m and d = 4.15m. Detailed des
ription of the overallengine geometry 
an be found in the 
ited paper and is omitted here. The Fourier transform of the unsteadyCFD data and the 
ir
umferentially averaged mean �ow is available for 11 equally spa
ed axial planesbetween x = 0.32m and x = 0.36m. Of these we use 3 axial positions x = 0.32, 0.34 and 0.36m. Unsteadyperturbation data 
orresponds to the Helmholtz number equal to 40.9, 
ir
umferential wavenumberm = −13,hub-to-tip ratio equal to 0.65, and the mean �ow Ma
h number equal to 0.43.We 
onsider three test 
ases shown in �gure 2. They 
orrespond to the approximation of the axialmean �ow velo
ity by a uniform pro�le used in Ovenden & Rienstra (2004), linear approximation of theaxial mean �ow pro�le, and the pro�le whi
h mimi
s the original Rolls-Roy
e velo
ity distribution in
ludingvis
ous boundary layer behaviour near the inner and outer wall. For brevity, the latter approximation is
alled boundary-layer pro�le in what follows. Careful analysis of the original mean �ow pro�le reveals theexisten
e of at least three in�e
tion points, where u′′(r) = 0. One of these points lies near the inner wall at6 of 12Ameri
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r
.
= 0.694, with u

.
= 0.446. The other two in�e
tion points are lo
ated near the outer wall at r

.
= 0.97 and

r
.
= 0.984, the 
orresponded mean �ow velo
ities being u

.
= 0.37 and u

.
= 0.354, respe
tively.The analysis of the problem based on the generi
 model (11,14) whi
h allows for radial non-uniformities indensity and azimuthal velo
ity distributions and the analysis based on Pridmore-Brown equation (13) whi
hallows only for axial �ow non-uniformity shows good agreement between the 
orresponding eigensolutions.Final approximations of the unsteady pressure 
omponent resulting from these two models are also 
lose toea
h other. For this reason the in�uen
e of the mean �ow swirl and density non-uniformity is believed to benegligible for this engine and is dis
arded in what follows.

-150

-100

-50

 0

 50

 100

 150

-100 -80 -60 -40 -20  0  20

Im
ag

in
ar

y 
P

ar
t o

f t
he

 L
at

er
al

 w
av

en
um

be
, I

m
(k

)

Real Part of the lateral wavenumber, Re(k)Figure 3. A
ousti
 part of the spe
trum: + - 
onstant mean �ow pro�le ,⊙ - linear mean �ow pro�le ⊡ - mean�ow pro�le with boundary-layer e�e
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orresponding to the three approximations of the mean �ow shown in�gure 2 are presented in �gures 3 and 4. They show the distribution of eigenvalues in the 
omplex planeof the spe
tral parameter kµ. The a
ousti
 part of the spe
trum for all these mean �ow approximations isdepi
ted in �gure 3. It 
an be seen from this �gure that the eigenvalues 
orresponding to di�erent mean�ow approximations are lo
ated fairly 
lose to ea
h other, suggesting that refra
tion of a
ousti
 waves dueto the mean �ow non-uniformity is relatively unimportant for the present engine.However, provision for mean �ow non-uniformity in the model results in the appearan
e of hydrodynami
spe
trum shown in �gure 4. It 
onsists of only two smooth 
onve
ted modes for the linear mean �ow pro�lewith kh
.
= 88.6 and kd

.
= 108.9. The �rst of these modes is lo
alised near the hub, the se
ond - near the outerwall. Apart from these smooth modes, it is possible to 
onstru
t a 
ontinuous spe
trum of hydrodynami
modes with a dis
ontinuity in the third derivative of the pressure amplitude. These modes are not shown inthe �gure.For the boundary-layer pro�le hydrodynami
 modes are also believed to form a 
ontinuous spe
trum.Several su
h modes obtained for 5000 grid points used to dis
retize Pridmore-Brown equation are shownin �gure 4. Their axial wave numbers satisfy the equation ki = ω/u(ri), where ri are the points of the
omputational mesh whi
h are lo
ated in the boundary-layer region near the inner wall r = h and the outerwall r = d. For the present mean �ow pro�le the boundary layer thi
kness near ea
h wall is estimated to beabout 16 per 
ent of the 
hannel width. If the number of mesh points is in
reased, so does the number ofthese hydrodynami
 modes. Unfortunately, their smoothness was di�
ult to 
he
k numeri
ally.7 of 12Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2006-2584
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Real Part of the lateral wavenumber, Re(k)Figure 4. Hydrodynami
 part of the spe
trum: + - mean �ow pro�le with boundary-layer e�e
ts near theinner and the outer wall, ⊡ - linear mean �ow pro�leThe mode with kµ
.
= 110 is generated by the in�e
tion point at r

.
= 0.97, and its phase speed is equalto the lo
al mean �ow velo
ity u

.
= 0.37. Interestingly enough, this mode would be always found by thenumeri
al 
ode, if the number of mesh points ex
eeded a 
ertain threshold limit, as opposed to the in�e
tionpoint r

.
= 0.694, where no smooth eigenmodes were found. The three modes 
lustering near the point

kµ
.
= 122 are generated by the mesh points whi
h are lo
alised in the vi
inity of the point r

.
= 0.984 whereboth u′ and u′′ are 
lose to zero. This 
lustering is due to the fa
t that we use the uniform grid with respe
tto r in our 
omputation. As a result, ki = ω/u(ri) lie 
lose to ea
h other, where u′(r) is small, and far apart,where it is large (hen
e the gap in the wave number range between kµ

.
= 122, kµ

.
= 134 and kµ

.
= 144). Thewave number kµ

.
= 151.4 is the double eigenvalue. It 
orresponds to one eigenfun
tion lo
ated near the huband the other one near the outer wall.It should be noted that the 
lustering hydrodynami
 modes, espe
ially in the regions of low mean �owvelo
ity gradient u′(r), have very similar shapes and are almost linearity dependent. This is demonstratedin �gure 5, where hydrodynami
 modes are depi
ted. Owing to a very high mean �ow velo
ity gradient nearthe inner wall, the mode on the left is the only mode found in the boundary-layer region near the hub. Toobtain more modes in this region, the number of mesh points must be in
reased further. The negative-valuedmode shown in a thi
k line 
orresponds to the in�e
tion point r

.
= 0.97.If fed in the mode mat
hing algorithm, 
onve
tive modes trigger numeri
al instability of the algorithm,whi
h in turn, results in the dramati
 loss of a

ura
y in the regions of 
lustering. An alternative is, forexample, to use only a limited number of hydrodynami
 modes in the mode mat
hing pro
edure 
hosen insu
h a way as to insure that the value of the norm of the di�eren
e between the approximated fun
tion andthe approximation, say, in the 
entral 
ontrol plane x = 0.34m

εN =
1

N

N−1∑

i=0

∣∣∣∣∣∣
P1(ri) −

∑

µ∈µ0∪µ+∪µ
−

AµPµ(ri) exp(ikµx1)

∣∣∣∣∣∣is the lowest. Here r = ri, i = 0, 1, 2 . . .N − 1 are the nodes of the uniform 
omputational grid used tointegrate the modal equation. 8 of 12Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2006-2584
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Nondimensional Radius, rFigure 5. Hydrodynami
 modes versus r. The modes lo
alised near r
.
= 1 are due to the boundary-layer �ownear the outer wall. Noti
e the similarity of their shape and the 
lustering e�e
t.This approa
h shows that if all hydrodynami
 modes depi
ted in �gure 5 are used in the approximationpro
edure, the approximation error εN rea
hes the highest value equal to 0.947 · 10−4. However this error
an be de
reased to only 0.14 · 10−4 by removal of any two of the three 
lustering modes near the value of

kµ
.
= 122 in �gure 4. Further dramati
 de
rease in the approximation error 
an be a
hieved by removal ofall hydrodynami
 modes with the ex
eption of the two modes whi
h are the 
losest to the walls of the du
t,the mode generated by the in�e
tion point at r

.
= 0.97 and the mode 
losest to the other in�e
tion point

r
.
= 0.984. In this 
ase εN = 0.0395 · 10−4. Subsequent removal of the mode 
orresponding to the in�e
tionpoint r

.
= 0.984 whi
h lies well in the outer wall boundary layer results in a slight further improvementin a

ura
y, with εN = 0.0393 · 10−4. This value is the absolute minimum of the approximation error forthe 
hosen set of modes. If the remaining in�e
tion point mode whi
h lies near the outer boundary of theboundary-layer �ow (shown by the thi
k line in �gure 5) is also removed, the error grows to εN = 0.0413·10−4.If all hydrodynami
 modes are removed and only a
ousti
 spe
trum is used εN = 0.0469 · 10−4%.The undertaken analysis of the approximation error suggests that in pra
ti
e it may be su�
ient to retainonly two hydrodynami
 modes whi
h are the 
losest to the walls and the modes indu
ed by the in�e
tionpoints of the mean �ow pro�le. Interestingly, it is only the in�e
tion point that lies su�
iently far from thewall that needs to be taken into a

ount. We hasten to note, though, that these results have been obtainedfor a sheared �ow with no swirl. In general, swirling �ows are known to generate 
ontinuous hydrodynami
spe
trum whi
h is of a di�erent physi
al nature than the spe
trum we 
onsider here. Hen
e, the present�ndings may not be dire
tly appli
able to swirling �ows.The approximation errors for the linear and uniform velo
ity pro�les shown in �gure 2 are εlin

N = 0.0369 ·
10−4 and εuni

N = 0.0468 · 10−4, respe
tively. The latter error is almost identi
al to the value of εN = 0.0469 ·
10−4 obtained for the purely a
ousti
 approximation based on the boundary-layer velo
ity pro�le. Hen
e,a

urate modelling of refra
tion e�e
ts does not seem to be important for the 
urrent engine. Comparisonof εuni

N to the best �t error for the boundary-layer mean �ow pro�le εbl
N = 0.0393 · 10−4 shows that, asexpe
ted, in
lusion of the hydrodynami
 modes gives per
eptible improvement over the purely a
ousti
uniform �ow approximation. However, the fa
t that εlin

N is smaller than εbl
N suggests that te
hni
ally it is9 of 12Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2006-2584
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Nondimensional Radius, rFigure 6. Triple plane pressure mat
hing results for the real part of pressure versus radial 
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more advantageous to use the two hydrodynami
 modes whi
h result from the extrapolation of the 
ore ofthe sheared mean �ow pro�le into the boundary-layer regions, than the modes found by dire
t modellingof the boundary-layer pro�le. Presumably, the reason for this is that in the numeri
al 
omputation only a�nite subset of the 
ontinuous spe
trum is available, while the majority of the modes are inevitably missed,and to insure proper mode sampling one has to work with a very �ne grid to minimize εbl
N . Hen
e the use ofan invis
id, but sheared, pro�le seems to be an attra
tive pra
ti
al option.Figures 6 and 7 illustrate the quality of pressure approximations for uniform, linear and boundary-layermean �ow pro�les 
orresponding to the above values of εuni

N , εlin
N and εbl

N , respe
tively. The values of thepressure amplitude and radial 
oordinate r are nondimensionalised with ρ(d)c2(d) and the outer radius d,respe
tively. It 
an be seen from these �gures that all the approximations are rather a

urate and giveidenti
al results in the main part of the du
t, where the mean �ow is invis
id. In the boundary-layer regionsin
lusion of hydrodynami
 modes either in the 
ase of the linear pro�le of the boundary-layer pro�le improvesthe quality of the approximation over the purely a
ousti
 
ase. The use of two hydrodynami
 modes nearthe outer wall - one 
orresponding to the in�e
tion point r
.
= 0.97 and the other 
orresponding to the modewith the largest available kµ for the boundary-layer pro�le - gives a slightly better approximation than theapproximation based on the linear pro�le with only one hydrodynami
 mode near the outer wall. However,the di�eren
es between the two approximations are very small.
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Nondimensional Radius, rFigure 7. Triple plane pressure mat
hing results for the imaginary part of pressure versus radial 
oordinate
r in the 
ontrol plane x = 0.34m: asterisk - original RR data, dash-doted line - approximation based on theuniform mean �ow pro�le; dashed line - approximation based on the linear mean �ow pro�le; solid line -approximation based on the boundary-layer pro�le.IV. Con
lusionsThe triple plane mat
hing method re
ently used by Ovenden & Rienstra (2004) to de
ouple the problemsof noise generation and propagation for turboma
hinery appli
ations has been extended here to nonuniformdu
ted �ows.The modal approximations based on nonuniform slip-stream mean �ow pro�les give a

urate results whilein
lusion of hydrodynami
 modes allows for further improvement over purely a
ousti
 modal expansion near11 of 12Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2006-2584



the du
t walls. Although theoreti
ally possible, modelling of the subtle �ow stru
ture in the boundary-layer regions near the du
t walls based on modal expansions whi
h in
lude 
onve
ted modes is found to be
omputationally rather expensive and not ne
essarily advantageous. Sin
e the slip-stream approximation isalready rather a

urate and mu
h easier to obtain numeri
ally, it is suggested that in pra
ti
al 
omputationsthe modes asso
iated with mean �ow features due to the boundary-layer should be dis
arded.V. A
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