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Production and Operations Management Group 
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ABSTRACT 

In this paper, a stochastic model of the operation of a carousel system is developed. 
Such systems are widely used in automated warehousing to store small to medium 
sized products with a moderate demand rate. Important performance indicators for 
a carousel system are its throughput rate and the mean response time. Approximate 
analytic expressions are derived for the distribution of the time needed to pick one · 
complete order, consisting of a number of different items. Based on these expressions. 
the carousel can be treated as an M/G/l queueing system, permitting the derivation 
of various queueing characteristics such as the mean response time and the waiting 
time when orders arrive randomly. Comparisons of analytic and simulation results 
are also provided. 

1 INTRODUCTION 

A carousel is a computer controlled warehousing system that is used for storage and 
order picking of small to medium sized products. Such a system may hold many 
different products stored to bins that rotate in a closed loop. The system is operated 
by an order picker (either human or robotic) which occupies a fixed position in front 
of the carousel. To retrieve a product, the carousel system automatically rotates the 
bin with the requested product to the position of the order picker. Accordingly, it is 
referred to as a product-ta-picker system. The order picker may effectively use the 
rotation time of the carrousel for activities such as sorting, packaging or labeling of 
the retrieved fOOds. 

Two types of carousel systems are used in practice: the horizontal carousel and the 
vertical carousel. The horizontal carousel consists of a large number of carriers driven 
by a powered chain that can rotate around a narrow closed loop. Each carrier consists 
of multiple bin positions. The vertical carousel or paternoster consists of a number 
of shelves connected at the ends t.o powered chains that rotate vertically. Each shelf 
carries multiple bins. Most vertical carousels are contained in a closed metal cage 
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v,'ith only one opening at the position of the order picker. This alio\\'s for protectior: 
of the stored products. }'lost human-operated horizontal carousels are not high c: 
than two meters. The length of a carousel can be much longer. up to 50 meters. sa.:. 

The design process of any ir.tegrated warehousing system may be viewed as a three 
stage program (cf. Medeiros [3;). In the first stage. several design alternati\'es for 
warehousing subsystems are generated based on product and order characteristics. 
In a. second stage, the designs for the subsystems are linked together and evaluated 
by means of analytic studies. Finally, in the third stage. the selected overall design 
may be evaluated with the aid of computer simulation. Several attempts have been 
made to implement the first and second stage into a decision support system. The 
model we present in this paper may be used in the second stage . 

A. carou.sel system is used for order picking. An order lists the items that must be 
picked together. e.g. for the same customer. An order contains multiple lme orders. 
each defining the number of items requested of a particular product. \\"e may enher 
pIck the orders one after the other (smgle order picking ) or pick multiple orders 
in parallel (batch picking) . For batch picking we may distinguish the sort-while-pick 
strategy and the pick-and-sort strategy. Under the sort-while-pick strategy the picker 
is pro\"ided with several totes for storing the orders separately. Under the pick-and­
sort strategy the orders are picked together and sorted afterwards. 

Carousel systems have received considerable attention in the literature. Bartoldi 
and Platzman [1] and Stern [8] consider the single order pick sequencing problem. 
They assume that the time to move between bins within the same carrier or shelf is 
negligible. Accordingly, they reduce the problem to finding the shortest Hamiltonian 
path on a circle. They present a linear time algorithm that finds an optimal solution . 
The algorithm selects the shortest route from 2n candidate routes, when n is the 
number of pick locations that have to be visited for one order . 

. Van den Berg ~2 ] and Ghosh and \Vells :4] present dynamic programming algorithms 
that find an optimum sequence of the picks when multiple orders are give'n that have 
to be processed in a specified sequence, e.g., first come first served. Bartoldi and 
Platzman [1] and Van den Berg ~2] also consider the pick sequencing problem for 
multiple orders , when orders may be processed in any arbitrary sequence. Sharp et 
al. ~7j derive a formula for the minimum order pick time of a carousel system when 
this system only considers two specific routes of the 2n candidates in Bartoldi and 
Platzman ) 1 and Stern [8] . 

In this paper, the carousel is modeled as a single server in an MIGII queueing system. 
with the orders as the customers to be served. The special feature is that the service 
time. i . e. the order pick time, depends on the order pick strategy chosen for a 
particular order, Clearly. for an order consisting of n line orders (for which n locations 
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have to be visited) 2n routes are in principle possible. It follows immediately from 
Pollaczek-Khintchine·s formula that the average response time (waiting plus sen·ice 
time) of the system is minimized if for each order a service strategy is chosen t na 1 

minimizes the first and second moment of the order pick time of that order. Therefore. 
the essential part of the analysis presented in this paper consists of deri\·ing the 
distribution and corresponding moments of the order pick time for an arbitrary order . 

In section ~, we introduce a model for the carousel system. Section 3 is devoted to 

an approximation of the distribution of the order pick time. Based on the results 
in this section, standard results from M/G/1 queueing systems are next applied to 
determine the minimum response time experienced by an order. Section 5 concludes 
the paper. 

2 MODELLING THE CAROUSEL SYSTEM 

In this section we first list some assumptions, after which ~\"e model the carousel 
system as an M/ G/1 queueing system. Next, we define the order pick strategies 
which provide the basis for the approximate order pick time distri butions. 

2"1 Assumptions 

The time that is required to pick an order consists of several elements. First, time 
is needed to let the carousel rotate the positions from which products have to be 
retrieved. the pick locations, in front of the picker. Next, some time is required to 
search for the product, to retrieve the product and to count the items. Finally, time 
may be needed to sort and document the retrieved product. The length o-f the path 
that the carousel rotates is called the rotation d2stance, which may be reduced by 
finding an effective sequence for visiting the pick locations. 

\Ve consider a bi-directional horizontal or vertical carousel with one order picker. \\"e 
make the following assumptions. 

1 Vv"e do not consider the replenishment of the carousel. 

2 Orders arrive according to a Poisson process. 

3 The orders are picked one by one (single order picking) and according to a First 
Come First Served routine. 

4 The number of line orders per order is random. 
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\) The time needed by the order picker to move between bins within the same 
rarrier or shelf is negligible. 

6 If a product is stored at multiple locations, then the oldest bin in storage is 
selected for order picking. l.e., products are picked according to the first in first 
out rule. 

7 The time for extracting items is equally' distributed for all products . 

8 The pick locations form a continuous circle, instead of a discrete set of locations. 

9 For each line order. the pick location is uniformly distributed over the carousel. 

10 The carousel rotates at a constant speed. The acceleration/deceleration time 
can be included in the extraction time. 

11 An order is picked along the shortest route. 

12 The time for putting away items after picking is negligible. 

2.2 A single server queueing system 

As mentioned in the introduction, the carousel system is naturally modeled as an 
~f /G/l queueing system with a controllable service rate. due to different order pick 
strategies. Orders are assumed to arrive according to a Poisson process with an 
intensity A. For all orders, the number of line orders is random and equally distributed 
among the possible locations. The random variable N denotes the number of line 
orders of an arbitrary order. the index set leN denotes the value that can be taken 
by 1'1, and for each n C I the probability that N = n is given by Pn. The carousel 
represents a single server and it serves the orders in a FCFS service discipline. The 
time needed to serve one order is called the order . pick time: this time depends on 
the number and locations of the line order items and on the sequence in which these 
locations are rotated to the order picker. Some reflection shows that the analysis will 
not change if we describe one complete order pick cycle by an order picker visiting n 
locations in a non-rotating circular storage system, instead of by a carousel rotating 
these n locations to a static order picker. Accordingly, a pick sequence for items in 
one order is often referred to as a route. The next subsection shows that in principle 
2n routes have to be considered to pick n line orders belonging to one order. In 

. order to minimize the mean order pick time and hence the mean response time of the 
system, we should find the shortest route for each particular order. Therefore, the 
main emphasis of this paper is on deriving exact or approximate distributions for the 
minimal service time, i. e. the order pick time corresponding to the shortest route. 
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2.3 Routing Strategies. 

\-1 

• picker position 
• pick location 

n+l 

Figure 1. P2cklocations m a carousel. 

'We model the carousel as a circle with nodes representing the locations to be \'isited 
for one order. Vv'e define the length of one complete rotation to be equal to 1. Consider 
one order with n line orders (n E 1) . Vv'e introduce one node on the circle representing 
the starting position and assign number 0 or n + 1 to this node. Furthermore. we 
introduce n nodes representing the pick locations corresponding to the order . \\'e 
number these nodes 1 . .. .. n as we encounter them when traveling counter-clockwise 
along the circle starting from node O. 

A strategy defines a route along all nodes. The optimal strategy is among 2n diffe­
rent strategies (see also Bartoldi and Platzman [1] and Stern [8]) . \Ve denote these 
strategies as follows: 

• Strategy 1: Travel in the clockwise direction until all nodes have been visited . 

• Strategy 2: Travel in the counter-clockwise direction until all nodes have been 
visited. This strategy is symmetric to strategy 1. 

• Strategy 2i + L for i = 1. .. .. n - 1: Travel counter-clockwise to node i and then 
travel clockwise to node i -+- 1. 

• Strategy 2i + 2, for i = 1 ..... n - 1: Travel clockwise to node n + 1 - i and then 
travel counter-clockwise to node n- i. This strategy is symmetric to strategy 
2i + 1. 
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,., 
• picker posilion 
• pick localion 

Fzgure 2. The routes defined by the strategies 1-4. 

for each strategy i , the corresponding rotation distance is denoted by the random 
variable D~ . furthermore we define for i = 1, ... , 2n the strategy i o. This strategy 
represents the strategy among strategies 1. .. i, that defines the shortest route. The 
resulting rotation distance is defined as D~. By definition, strategy (2n)O is the 
optimal route . The resulting rotation distance is denoted by D~n·, or simply Dn. 
\Ve define the functions F~(x) and F~ (x) that represent the cumulative density 
function (cdf) of D~ and D~, respectively. The probability density functions (pdf's) 
are denoted by f~(x) and f~· (x), respectively. The functions F~2n ) · (x) and f~2n)· (x) 
are also denoted as F n (x) and f n (x), respectively. 

In the next section we derive approximations for the distribution and the first three 
moments of the rotation distance Dn. 

3 ANALYSIS OF THE ORDER PICK TIJ\.IE 

In this section we present tight upper bounds for the order pick time required for an 
order with a given number of line orders. The tightest upper bound will be exploited 
in the next section to approximate the first three moments of the order pick time of 
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an arbitrary order, which are needed to determine the response time of an arbitran· 

order. 

Consider an order with n ~ 1 line orders and let its order pick time be denoted b~· 
Sn . This time Sn consists of n extraction times and the time to travel along the 
n pick locations. Let the random variable Text represent the time required for one 
extraction. then the total extraction time is equal to L~l T exu· where Text! . .. .. Ter:n 
have the same distribution as Text and are mutually independent. The second part of 
Sn is equal to the length Dn of the shortest path along the n pick locations multiplied 
by the (deterministic) time trot that is needed for one full rotation. 

Hence we find for n ~ 1: 

n 

Sn = L T ext .i + trot ' Dn. 
,= 1 

(1 ) 

;-iote that this relation is based on the assumptions 1,5, 7, 10 and 12 in the pre\-ious 
section. 

From (1). we immediately find 

n2:l, (2 ) 

while similar expressions are obtained for the higher moments of Sn' For the analysis 
in the next section , we need the first three moments of Sn for all relevant n ~ 
1, and hence we need the first three moments of Text and Dn. The distribution 
function of Text is assumed to be known (e.g. based on historical data) . The rotation 
distances D n , n 2: I, require special attention. Below, we present upper bounds for the 
(distribution and) moments of these distances. Obviously, from (2) the corresponding 
upper bounds for the mean order pick times lESn are obtained, and similarly for ES~ 
and lES~. 

The remaining part of this section consists of four subsections . The first three sub­
sections discuss the upper bounds . In the fourth subsection, the tightness of the 
upper bounds is investigated by comparing these bounds to simulation results for the 
rotation distances Dn. 
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3.1 Upper Bound 1 

For an order with n 2: 1 line orders, Dn represents the length of the shortest route 
along the n positions where products have to be picked. This shortest route is selected 
from the set of routes defined by the strategies 1, ... , 2n. Strategy 2* selects the best 
route defined by the strategies 1 and 2, and may have a length already close to the 
length of the shortest route. Hence, we are interested in the length D~" of the route 
chosen by this strategy 2*. 

Obviously, D~" constitutes an upper bound for Dn. Mathematically. this means 
that D~" is stochastically larger than Dn, i. e. F;" (I) ~ Fn (I) for all I 2: O. The 
latter relation implies that lE( D~")k 2: lE( Dn)k for all k 2: 1. \Vb.enever we write 
upper bounci in the sequel. we mean" stochastically larger" when random variables 
are concerned. Contrary to the distribution function Fn(x) of Dn, the distribution 
function F;" (x) of D;" can be determined rather easily. 

Lemma 1 

Proof. v..'e present the proof for the case n 2: 2. The proof for the case n = 1 is easy 
and therefore left to the reader . 

Hence. let n 2: 2 and let X k denote the distance between node k - 1 and k (k = 
1, .. , n + 1) . Consider the circle with the n + 1 nodes as depicted in Figure 1. The 
length of the route defined by strategy 1 is equal to 1 - XI' Similarly, the length of 
the route defined by strategy 2 is equal to 1 - X n + 1 . So, we find that 

(3) 

To obtain the distribution function of D;" , we first derive preliminary results for X I 
and for Xn+l conditioned to XI. Node 0 may be considered as a fixed point on the 
cirCle, while each of the other n nodes constitutes an arbitrarily chosen point on the 
circle. Hence, 

P(XI 2: I) = (1 - It, 0 ~ I ~ 1 (4) 

(the circle is equivalent to an interval [0,1]' and Xl 2: X if and only if each of the 
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n nodes, representing the n line orders. is lying in [x, 1]). The distribution function 
FXj(x) and the probability density function Ix1 (x) are thus equal to: 

l-(l-xt, O~x~l, 

n(l - xt- l
, 0 ~ x ~ 1. 

Because of the symmetry, Xl and Xn+l are equally distributed. and therefore F'<. : (x ) 
and IXJ (x) are also the distribution function and probability density function for 
X n - l . Similar to (4). we find that for each 0 ~ y ~ 1, 

P· (\' , '\' ) ( 1 - Y - x )n-l 
J n-l 2: X I·/\'l = Y = 1 ' 0 ~ x ~ 1 - y. 

-y 

Of course. this expression also holds with Xl and Xn+l interchanged. 

\Ve now can determine the distribution function F;' (x) of D~". using (3 ). 

F;"(x) P(D~" ~ x) = P(I- Xl ~ xU 1- Xn+l ~ x) 
P(XI 2: 1 - x U Xn+l 2: 1 - x) 

- P(XI 2: 1 - x) + P(Xn+l 2: 1 - x) 
-P(XI 2: l-XnXn+l 2: I-x ). 0 ~ x ~ l. 

, ( ,) ) 

(6) 

~ext. we distinguish two cases. For 0 ~ x < ~, it holds that 1 - x > ~ and the third 
probability in (6) is equal to O. So, in that case 

For 1 ~ x ~ 1, we find (use (,) )) 

F~" (x) 2xn - (1 P(Xn+l 2: 1 - xlXl = y) 'Ixl (y)dy Jl-x 

1
x 1 - y - (1 - x) 

2xn - ( r- 1 . n(l - yr-ldy 
I-x 1 - Y 

2xn - (X n(x _ yr-1dy 
Jl-x 

- 2xn - (2x - 1 r. 
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This completes the proof. 

from the distribution function F;" II). we find the following moments: 

n- 1 __ 2 

n + I' 
n- 1 

2 

(n + l)(n + 2)' 
4n 3 + 6n2 

- 3n - 3 
4(n, 3)(n -i- 2)(n", 1) ' 

From now on . the upper bound D~" for Dn: will be referred to by D~ppl . Finally. it 
is noted that D~VPl coincides with Dn fo'r n = 1 (strategy 2" is optimal in that case ). 

3.2 Upper Bound 2 

An improved upper bound D~pp2 for Dn is obtained by the length D~' of the route 
defined by strategy 4'. for n = 1, this strategy does not exist , and hence D~pp2 is 
kept equal to D~ppl = D~' for this case. So, 

D~pp2 = {' DDnn~: ~ff n = 1, 
• n 2 2. 

Expressions for the distribution function and moments of D~' can be obtained by an 
analysis that is more extensive, but in essence similar to the analysis performed for 
D~·. Here. it suffices to present the main results; for the proofs of these results, see 
Rouwenhorst [6]. For n = 2, strategy 4· is optimal, and we find 

~SIS~1 
"2<xS4"' 

and JEDf = JED2 = 152.lE(Df)2 = JE(D2)2 = ~~, JE(Df)3 = JE(D2)3 = /i8' For n 2 3, 
we have 

Lemma 2 
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and 

3xn , 

3xn 
- 2(2x - It, 

3xn - 2(2x - l )n - (3x - 2t, 
3xn 

- ~(2x - It - (3x - 2t + 1(4x - 3t , 
3xn 

- ! (2x - It - (3x - 2t + ~ ( 4X - 3t - i (6x - s ;n, 

WD 4" 
~ n 

n -.!.. __ 8 

n+l 
144n2 - 108n - 97 

144(n + 2 )(n + 1) , 

192713 + 72n 2 
- S08n - 103 

192(n + 3)(n + 2)(n + 1) . 

3.3 Upper Bound 3 

A further improved upper bound for Dn is given by 

{ 

D2" if n = 1· n , 

D~pp3 = D~" if 2 ~ n ~ 4; 
D~" if n 2: 5, . 

This upper bound is kept equal to D~pp2 for n = 1 and n = 2, since strategy 6· does 
not exist for these cases , and also for n = 3 and n = 4, smce strategy 6' has not been 
analyzed for these cases (up to now) . For n 2: 5, it holds that 

Lemma 3 

4480n - 4S93 n - 1.025 

4480(n+1 ) 

n 2 - 1.0571 - 0.68 

(n+2)(n+l) , 

n+1 

n 3 
- 0 .0757n2 - 3.12n - 0.247 

(n + 3)(n + 2)(n + 1) 
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.-\ proof of these results can be found in Rouwenhorst :6:. 

3.4 On the Tightness of the Upper Bounds 

In Table 1. 2 and 3 we have listed the first three moments produced by the upper 
bounds D~PPl \ D~pp2 and D~pp3 and the first three moments of Dn. for different values 
of n. The results for Dn have been obtained by simulation (with 30.000 orders for 
each n, which appeared to be sufficient to obtain accurate results). In Figure 3 the 
first moments are depicted graphically. 

Table 1. The First Moment of the Rotatwn Distance. 

n Duppl 
n 

DllPP~ 
n 

Dllpp3 
n Dn 

1 0.250 0.250 0.250 0.251 

2 0.500 0.417 0.417 0.417 

3 0.625 0.531 0.531 0.526 

4 0.700 0.625 0.625 0.603 

5 0.750 0.688 0.663 0.659 

6 0.786 0.732 0.713 0.703 
10 0.864 0.830 0.816 0.805 

20 0.929 0.911 0.904 0.897 

Table 2. The Second Moment of the Rotation Distance. 

n Dllppl 
n 

DUPP'2 
n 

Dllpp3 
n Dn 

1 0.083 0.083 0.083 0.084 

2 0.198 0.198 0:198 0.198 
3 0.425 0.304 0.304 f).298 

4 0.517 0.411 0.411 0.382 
.) 0.583 0.490 0.454 0 .450 

6 0.634 0.550 0.518 0.506 

10 0.754 0.690 0.673 0 .655 

20 0.865 0.832 0.819 0.807 
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Table 3. The Third Moment of the Rotation Distance . 

n Duppl 
n 

DUPP1. 
n 

DUppJ 
n Dn 

1 0.031 0.031 0.031 0.031 
2 0.102 0.102 0.102 0.101 
3 0.306 0.183 0.183 0.178 
4 0.396 0.280 0.280 0.250 
;) 0.467 0.359 0.319 0.315 
6 0.522 0.423 0.386 0.372 

10 0.664 0.589 0.560 0.538 
20 0.807 0.762 0.744 0.728 

First Moment 

2 3 4 5 6 10 20 

n 

,_Upp1 

,_upp2 

,oupp3 

' 0 sirrulatlon 

Figure 3. Graphical representation of the first moment of the upper bounds D~PPl, 
D~pp2 and D~pp3, and for Dn itself, for dlfferent values of n. 

For n = 1, the results for the upper bounds and for Dn should coincide. For n = 2. 
t.he results for D~pp2 and D~pp3 on the one hand and for Dn on the other hand should 
also coincide. The small differences that still are observed in Table 1 are caused by 
a small inaccuracy in the simulation results for Dn. 
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The results show that the upper bound D~ppl is only tight for n = 1 and larger \·a:ues 
of n. The upper bound D~pp2 is tight for all values of n. ~e\·ertheless. the upper 
bound D~pp3 still gives a significant improvement. The upper bound D~pp3 is \·e ry 
tight for all values of n. Hence, we may conclude that D~pp3 is very appropriate to 

serve as an approximation for Dn. 

4. MODEL ANALYSIS 

The previous section has been devoted to the order pick time of an order with a given 
number of line orders. In this section. first the order p.ick time of an arbitrary order 
is determined. This will complete the description of the M/ G/ l queueing system . a5 

introduced in Section 2. After that, the maximum throughput and response times 
are considered. 

The order pick time and the rotation distance of an arbitrary order are represented 
by the random variables Sand D, respectively. Then S = Sn with probability 
Pn, n E J, and iESk = LnEl(Pn . lES~) for all kEN. Similarly, D = Dn with 
probability Pn, n E J,and iEDk = LnEI(Pn · lED~) for all kEN. Using (2), we find 

nEI 
(7) 

Here S represents the number of line orders for an arbitrary order; hence, lENk = 
LnEl(n k 

. Pn ) for all kEN. Explicit expressions for the higher moments of S can be 
derived in a similar way as for the first moment . For the second and third moment, 
we obtain 

lES2 = lES2 (lEText )2 + lE.'\" · :lET!:rt - (lET ext)2]-i- 2trot lET ext L PnnlEDn + t;otED2, (8) 
nEl 

lES3 lEN3 (lEText ) 3 + 3lEN2lEText [lET!:rt - (lEText ) 2] 

+lEN[lET!t - 3lEText lET;"t + 2(lEText )3] 

+3trot(llETe2xt - (lEText )2] L PnnlEDn + (lETexd 2 L Pnn 2lEDn) 
nEl nEl 

+3t;otlEText L PnnlED~ + t;ot lED3 . 
nEI 
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J';ote that. in the (8) and (9 ). the numerical evaluation of the sums O\'er n c J is 
straightforward if the index set J is finite. If I is infinite, then the probabilities pn are 
forced to become very small for large values of n and an efficient numerica~ e\'al uat ion 
of these sums is still possible. 

The first moment of the order pick time S is sufficient to determine the ma.ximum 

throughput Amax, 

( 10 ) 

The first three moments of 5 are sufficient to determine the first two moments of the 
respor.se time T of an arbitrary order. This time T is equal to the sum of the waiting 
time ~r of an arbitrarv order and the order pick time S. The first two moments of 
\V are given by Pollaczek-Khintchine's formula (see e.g. Kleinrock ~ 5 ] . page 200 ): 

IEn' = AlES
2 

2(1 - p) 

where p represents the work load. i. e. p = AlES . 

for T, we find 

1ST = lEH' + rES. 

(11 ) 

( 12) 

(13) 

(14 ) 

f\;ote that the first two moments of the response time of an order with n E I line 
orders may be obtained by substituting Sn for S on the right-hand sides of (13) and 
(14) (but not in (11) and (12)). 

Formulas (7)-(14) are exact. However, an exact computation ofthe maximum through­
put Amax and the first two moments of the response time is not possible, since we 
do not have exact formulae for the rotation 'distances Dn. Nevertheless, accurate 
approximations can be obtained. Vie approximate the rotation distances by the tight 
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upper bound D~pp3 as described in Subsection 3.3. This results in a tight lower bound 
for Amax and tight upper bounds for lET and ET2 

The tight upper bounds for lET and JET2 can be further exploited to obtain also good 
approximations for excess probabilities of the response time T. These approximations 
can be obtained by fitting a mixture of Erlang distributions on the first two moments 
of T. Appropriate mixtures are the Ek-1,k distribution and the hyper-exponentia~ 
distribution (cf. Tijms [9]). 

5. CONCLUSIONS AND FURTHER RESEARCH 

In this paper a model for the performance analysis of a carousel system is presented. 
Csing a stochastic framework, highly accurate estimates for the maximum throughput 
of the system and the minimum response time for an arbitrary order are obtained. 

Further research will concentrate on the consequences of relaxing some of the as­
sumptions listed in Section 2.l. as well as the analysis of systems in which several 
carousels are linked to a single order picker. Also, the influence of different (class 
based) storage policies on the system throughput will be investigated . 
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