

Case studies in symmetric key cryptography

Citation for published version (APA):
Contini, S. P. (2005). Case studies in symmetric key cryptography. [Phd Thesis 2 (Research NOT TU/e /
Graduation TU/e), Eindhoven University of Technology, Mathematics and Computer Science, Macquarie
University]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR594891

DOI:
10.6100/IR594891

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR594891
https://doi.org/10.6100/IR594891
https://research.tue.nl/en/publications/ff8b22ca-eacf-4317-809f-c513fb7f6f61

Case Studies in

Symmetric Key Cryptography

proefschrift

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr.ir. J.C. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op donderdag 8 september 2005 om 16.00 uur

door

Scott Patrick Contini

geboren te Grosse Pointe, Verenigde Staten

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. A.K. Lenstra
en
prof.dr.ir. H.C.A. van Tilborg

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Contini, Scott

Case Studies in Symmetric Key Cryptography / by Scott Contini
– Eindhoven : Technische Universiteit Eindhoven, 2003.
Proefschrift. – ISBN 90-386-0782-2
NUR 919
Subject headings : cryptology / block cipher / hash function / differential crypt-
analysis
2000 Mathematics Subject Classification : 94A60, 94C10, 94A55, 62P99, 11T71

Printed by Eindhoven University Press
Cover by JWL Producties

iii

Preface

This thesis is about two symmetric key cryptographic functions of real-world signif-
icance – the RC6 block cipher and the SecurID hash function. RC6 was a widely
acclaimed finalist candidate for the Advanced Encryption Standard. It is owned
and promoted by RSA Security, and therefore is likely to be used within millions
of products worldwide. SecurID is an authentication hardware token also owned by
RSA Security. It is known to be used by over 13 million people in over 80 countries
throughout the world.

Our work focuses on the security of RC6 and the lack of security of SecurID.
The RC6 block cipher was designed by cryptographic experts and supported by
extensive public security analysis, part of which is the subject of the second chapter
of this work. More specifically, we demonstrate the resistance of RC6 to differential
cryptanalysis, which is a major portion of the complete security analysis of RC6.
In contrast, the SecurID hash function was designed in secret and kept secret for
many years. After the device was reverse engineered and source code was published
on the web, security weaknesses soon began to appear. Our third chapter explains
our results on practical attacks which can defeat the security of SecurID.

iv

Contents

Contents v

1 Introduction 1
1.1 Our Research . 3
1.2 Block Ciphers and RC6 . 4
1.3 Keyed Hash Functions and SecurID 5

2 Differential Cryptanalysis Applied to RC6 9
2.1 RC5 and Differential Cryptanalysis 10

2.1.1 Introduction to Differential Cryptanalysis 13
2.1.2 Differential Cryptanalysis Attacks on RC5 14

2.2 RC6 . 18
2.3 Differential Properties of Data-Dependent Rotations 19

2.3.1 Distribution of the Output Difference 21
2.3.2 Characteristics . 23
2.3.3 Differentials with Small Hamming Weights 24

2.4 Differential Cryptanalysis of RC6 . 25
2.4.1 Differential Cryptanalysis of RC6-I-NFR 25
2.4.2 Differential Cryptanalysis of RC6-I 29
2.4.3 The Quadratic Function . 29
2.4.4 Differential Cryptanalysis of RC6-NFR 37
2.4.5 Differential Cryptanalysis of RC6 39
2.4.6 Addendum: Non-Random Behavior of RC6-I-NFR and RC6-

NFR . 45
2.5 Diffusion Properties of RC6 . 51

2.5.1 Definitions and Assumptions 52
2.5.2 Diffusive Properties of the Basic Operations 52
2.5.3 Diffusion Properties of the Quadratic Function 54
2.5.4 Concluding Remarks . 57

3 Cryptanalysis of the SecurID Hash Function 59
3.1 The SecurID Hash Function . 61

3.1.1 Time Expansion . 61

v

vi Contents

3.1.2 Key-Dependent Permutation 61
3.1.3 Key-Dependent Rounds . 64

3.2 Vanishing Differentials . 66
3.3 A First Attack on the Hash Function 66
3.4 The Attack of Biryukov, Lano, and Preneel 68

3.4.1 Assumptions . 70
3.5 Analysis of the Biryukov, Lano, and Preneel Attack 71

3.5.1 Analysis of Final Number of Candidates 71
3.5.2 Run Time Analysis of Phase 2, Step 1 72
3.5.3 Combined Analysis . 73
3.5.4 Remark on Table Size Growth 74

3.6 Faster Filtering . 74
3.7 The Speed of Other Steps . 76
3.8 Software Implementation . 79
3.9 Vanishing Differentials with ≥ 4-bit Differences 79
3.10 Multiple Vanishing Differentials . 80

3.10.1 Multiple Vanishing Differentials with the Same Difference . . 81
3.10.2 Multiple Vanishing Differentials with Different Differences . . 82

3.11 Using Non-Vanishing Differentials with a Vanishing Differential . . . 84
3.12 Concluding Remarks . 85

Bibliography 87

Appendix 90

Key Expansion Algorithm for RC5 and RC6 91

Analyzing Precomputation Tables in SecurID 93

Magma Code for Computing Non-Vanishing Differentiali Probabili-
ties 95

Index 97

Acknowledgements 99

Samenvatting 101

Curriculum Vitae 103

Chapter 1

Introduction

As we begin the 21st century, we find secure communication a necessary part of our
everyday lives. A few examples include ecommerce, stock trading from handheld
devices, phone calls or facsimiles involving private or proprietary information, and
secure money transfers or withdrawals throughout the world. This has all become
possible because of the astonishing evolution of cryptography over the past couple
of decades.

Originally cryptography dealt with the science of secret writing, whence its name
is derived. It is well known to have been used for thousands of years, but only
since the age of the digital computer has it really been embraced by the scientific
community. Today, researchers like to describe it as “communication in the presence
of an adversary,” to reflect the fact that the field now involves much more than just
encryption.

The first major step in the development of modern cryptography was Shannon’s
concept of perfect secrecy based upon an information theoretic model [39]. Un-
fortunately, this model is not suitable for most real world applications: to attain
perfect secrecy one must have a secret encryption key that is as long as the mes-
sage to be encrypted. Thus, in order to gain any headway for the common use of
cryptography, it was necessary to relax the security requirements. Naturally, this
led to a complexity theoretic model of security: the use of functions that are easy
to compute but hard to invert, unless a secret piece of “trapdoor” information is
known (the key). But even if we could construct such functions, we cannot have
secure communication unless both parties had a copy of the secret key. This seemed
paradoxical at first: if the parties had a way to securely exchange a secret key, then
why do they need cryptography in the first place? They should simply exchange the
message in the same way that they could exchange the secret key. Fortunately, it is
not a paradox. In 1976, Whit Diffie and Martin Hellman provided a mathematical
solution in their paper “New Directions in Cryptography” [13], which is widely ac-
cepted as the most important paper in the history of the field. They also introduced
the concept of public key cryptography: a system where every user would have a
public key for encryption and a private key for decryption. Each user’s public key

1

2 Introduction

would be made known to everybody, so anybody could use it for encrypting a secret
message to that person. Yet only he who owns the corresponding private key would
be able to decrypt it. For this to work, it must be the case that nobody can derive
the private key from the public, except the person who created the key pair in the
first place. Furthermore, by reversing the roles of the public key and the private,
a user could create a “digital signature” on a digital document. Digital signatures
essentially provide a mechanism for digital contracts.

Shortly after Diffie and Hellman’s publication, Ronald Rivest, Adi Shamir, and
Len Adleman introduced the RSA public key cryptosystem [36]. RSA is an elegant
solution based upon the difficulty of factoring large integers. Their cryptosystem
rightfully received an enormous amount of attention, having a huge impact on the
field. For instance, Rivest started a company known as RSA Data Security which
was very successful. RSA Data Security was able to convince numerous corporations
of the value of their ideas, especially the potential for expanding their businesses
on the world wide web. Hence, the RSA brand name became widely known, even
to people without technical expertise. At the same time, the RSA cryptosystem
attracted a lot of attention from top mathematicians, especially number theorists.
They found that some rather advanced mathematical ideas had real-world value, and
therefore they were able to get increased funding for doing mathematical research
that had cryptographic implications.

As RSA became more and more widely used, many new cryptographic research
concepts arose. For example, even though RSA is based upon the difficulty of
factoring, it is not provably as strong. In fact, the ordinary textbook description of
RSA is breakable in several attack scenarios, such as existential forgeries for digital
signatures as well as many other little tricks. To prevent such attacks, “padding”
strategies were developed. Originally the padding methods were heuristic methods
of defeating known attacks, but later provable security reductions came about. At
the same time, other public key cryptosystems with provable security properties
were being invented.

Today, public key cryptography with provable properties is widely used. How-
ever, public key cryptography by itself is not the solution to all secure communica-
tion needs. The main problem is that it tends to be very slow, so one does not want
to encrypt (or sign) an enormous amount of data using it alone. Instead, public key
methods are generally used in combination with traditional, symmetric key methods
since they are much faster. A common scenario is that the public key method will
be used to secretly exchange a random value, and the random value will be used as
the secret key for a symmetric encryption method.

The style of research in symmetric key cryptography has lagged behind that of
public key cryptography, the reason being the performance requirements. Nobody
has found an efficient way of doing symmetric key cryptography (in the complexity
theoretic model) which is provably as secure as some assumed hard mathematical
problem. For this reason, the best we can do is design heuristic methods that are
secure against all types of attacks that have been discovered in the history of the
subject. The rule of thumb is that a symmetric key method can begin to be trusted

1.1 Our Research 3

after a lot of experts have studied it and gained confidence in it. For now, this seems
to be working, and we can also say that the converse is true: systems which have
not been widely studied by the experts are almost always insecure. But, it should
be evident that the discovery of an efficient, provably secure symmetric key method
will result in a great breakthrough in modern cryptography. We hope to see such a
discovery in the near future.

1.1 Our Research

Two of the most important primitives in symmetric key cryptography are block
ciphers and hash functions. Informally, block ciphers break messages into fixed
length “blocks” and encrypt them one at a time in a way that depends upon a
secret key. Their primary purpose is to provide secrecy of data, assuming that the
secret key is available only to the intended parties. Hash functions are functions
that map an arbitrary length input to a fixed length output. Hash functions may
be used for many purposes, but here we shall be concerned with only keyed hash
functions for the application of authentication. This thesis is about the security
analysis of the block cipher RC6 [34] and the keyed hash function used in the
SecurID authentication device. Both of these are of real-world significance. RC6
was a widely acclaimed finalist candidate for the Advanced Encryption Standard
(AES) and SecurID is the most popular authentication device of its type in the
world – used by over 13 million people.

In our research, we wear two different faces. First, in the security analysis of
RC6, we worked with the designers of the ciphers. Our goal is therefore to give
arguments justifying the security. In the analysis of SecurID, we take the role of
the attacker who is trying to demonstrate security weaknesses. The two different
scenarios lead to two different styles of analysis. For one who wants to promote
a security algorithm, he must give very convincing arguments that even the most
powerful adversaries should not be able to break it. In this situation, one must
consider the most general attacks possible, since the cryptanalyst will always seek
a new approach that the designer had failed to consider. On the other hand, the
publisher of a cryptanalysis weakness has a narrower task. He only needs to show
one specific weakness that the designer had failed to recognize. Often times the
weakness is very small and may have no real-world implication. Regardless, such a
result is welcomed and celebrated in the cryptographic community, since the nature
of the science demands skepticism.

In the following two subsections, we give brief, formal treatment of block ciphers
and keyed hash functions. We also talk at a very high-level about our results on
RC6 and SecurID.

4 Introduction

1.2 Block Ciphers and RC6

Formally, a block cipher is a family of bijective functions that map from a fixed size
message space (plaintext space) M to a ciphertext space C of the same size. The
functions are parameterized by a key from a fixed size key space K. Without loss of
generality, we will assume the sizes are measured in bits: an n−bit message space
and an h−bit key space. In this case, we say the cipher has a block size of n. Given
a key k ∈ K and an n−bit message m ∈ M , the encryption is denoted c = Ek(m).
Similarly, the decryption is denoted m = Dk(c), where Dk = E−1

k .
The adversary (attacker) has the goal of trying to decipher the ciphertext without

legitimately being given the cryptographic key k. Ideally, he would like to determine
k so he can read any ciphertext that is sent. On the other hand, it is often sufficient
for the attacker to attain less lofty goals, such as finding a relationship between the
plaintext and the ciphertext. For example, if the attacker knows beforehand that
the plaintext is one of a small set of values, like “yes” or “no”, then finding such
a relation may allow him to determine which value was sent without knowing the
secret key. Therefore, a good cipher should leak no information about the message.

There are a few models in which the attacker may operate. We assume that all
plaintext-ciphertext pairs are derived from a fixed key.

• A ciphertext only attack is when the attacker tries to decrypt a set of cipher-
texts without knowing any of the corresponding plaintexts beforehand.

• A known plaintext attack is when the attacker knows some of the plaintexts
corresponding to the set of ciphertexts, and tries to use this extra information
to decrypt the remaining ciphertext.

• A chosen plaintext attack is when the attacker is able to find the encryptions
of plaintexts of his choice in order to aid him in decrypting a set of ciphertexts
that he is given beforehand.

• A chosen ciphertext attack is when the attacker is able to decrypt an arbitrary
set of ciphertexts of his choice, and will later use this information to decrypt
other ciphertexts.

Chosen plaintext and chosen ciphertext attacks are sometimes grouped together as
chosen text attacks. They are the most powerful attacks an adversary can mount.

The strength of a cipher against chosen text attacks is in fact very important.
There are at least two reasons. The first is these type of attacks can usually be
converted into other types of attacks under weaker models such as known text
attacks [4]. The second is that in some cases, these type of attacks are indeed
realistic. For example, consider cable set-top box security, where every user has a
set-top box with a secret key embedded inside. If the user pays their bills, their
set-top box is enabled to decrypt the programs that are constantly sent over the
network. A dishonest user could disconnect his box from the network and then send
in his own pseudo ciphertexts into the box, thus getting the corresponding plaintexts.

1.3 Keyed Hash Functions and SecurID 5

So he is performing a real chosen ciphertext attack. If this process allows him to
derive the key, he could manufacture pirate hardware decoders which bypass the
security mechanisms installed by the manufacturer. Anybody who purchases the
pirate decoder from the dishonest user would then be able to watch cable programs
for free indefinitely.

Note that with the various models, there are several ways we can measure the
complexity of an attack: in terms of time, memory, and known plaintext or chosen
text requirements. We generally consider the most dominant of these values when
assessing its feasibility.

For a cipher with an h−bit key space, key recovery can be done by exhaustive
search which takes 2h encryption/decryption operations in the worst case, or 2h−1

on average. If an attack exists which is faster than that while not requiring excessive
other resources, then the cipher is considered to be broken at least in a theoretical
sense. In some situations, it may be easier to attack the cipher when certain keys are
used but not others. If a portion of w keys have the property that the corresponding
encryptions can be attacked more than w times faster than exhaustive search, then
we say the cipher has weak keys. Weak keys are also considered a theoretical break
of the cipher.

For a cipher with n−bit block length, one can always find the encryption of all
2n possible input blocks and store the result. Then, all future encryptions can be
found by simply doing a table lookup. Thus, this type of attack does not require
knowing the secret key. Its storage requirements are 2n plaintext-ciphertext pairs.
If an attack is found which requires less storage (while not requiring excessive other
resources), then again the cipher is considered broken.

Chosen text attacks tend to require all three types of resources: storage, com-
putation time, and of course chosen texts. Often, the number of chosen texts is the
dominant resource. We will see examples of this in our research.

The complete security analysis of RC6 considered many different types of attacks
in different attack models. The research reported in this thesis only includes the
information which the author of this document actively participated in: the resis-
tance to differential cryptanalysis. Differential cryptanalysis is the most powerful
chosen text attack known to date. A brief overview of differential cryptanalysis is
given in Section 2.1.1. Our security analysis is given in Chapter 2. The very detailed
analysis ultimately argues that differential attacks of up to 16 (out of 20) rounds are
far out of reach due to the number of chosen text requirements. There have been
no improvements upon our differential analysis to date.

1.3 Keyed Hash Functions and SecurID

Hash functions map an input of arbitrary length to a fixed length output. They
may or may not involve a cryptographic key. In our case, we are interested in
keyed hash functions, or more specifically message authentication codes (MACs).
The primary purpose of a MAC is to authenticate the origin and the integrity of

6 Introduction

a message. Formally, a MAC is defined as a family of functions hk parameterized
by a key k that map an input x to a fixed size output. The output is known as
the MAC-value. The main security property it should provide is, for any set of
inputs and their corresponding MAC-values (x1, hk(x1)), . . . , (x`, hk(x`)), it should
be computationally infeasible to find (x̃, hk(x̃)) for any x̃ 6= xi (1 ≤ i ≤ `) assuming
the key k is not known beforehand [28]. Similar to block ciphers, we may consider
known text or chosen text attack models (see Section 1.2). Moreover, we may also
measure the attacks complexity in terms of time, memory, and known plaintext or
chosen text requirements.

The SecurID authentication device1 actually uses a MAC that maps a 64-bit
input to a pair of 6- or 8-digit numbers via a 64-bit key. Technically, this falls a
bit short of the definition of MAC or hash function, since the input size is fixed.
However, it is trivial to extend any such function to a proper definition by using the
Merkle-Damg̊ard construction. The construction involves iterating a compression
function enough times to cover the length of the message, as well as including
message padding. The SecurID function (to be described in Section 3.1) would
serve as the compression function. For exact details on the construction, which are
not relevant to our present research, we refer the reader to [28]. Despite the fact
that the SecurID function falls a bit short of the proper definitions, it is commonly
referred to as the SecurID hash function. We shall also use this misnomer hereafter.

The SecurID hash function was developed within a corporation known as Security
Dynamics. For many years, the algorithm had been kept secret. Security Dynamics
insisted that the security of the algorithm did not depend upon its secrecy, and
that the algorithm had been analyzed extensively by customers, including many
cryptographic experts [26]. They justified keeping their algorithm secret by insisting
that their early customers would only buy it under this condition. Towards the end
of 2001, the SecurID was reverse-engineered and a software implementation was
posted on the web [40]. Once the cryptographic community studied it, security
weaknesses were readily published [5, 7, 11].

The known weaknesses exploit the fact that collisions happen far too often.
Here, a collision means two inputs x1 and x2 such that hk(x1) = hk(x2) where hk

is the SecurID hash function using fixed key k. Since the block size is only 64-bits,
one would expect collisions to happen after about 232 operations according to the
birthday paradox. But the SecurID has collisions in an expected ≈ 219 operations
[5].

Unlike our analysis of RC6 where we try to show resistance against the most
powerful types of attacks, our analysis of SecurID will be restricted to attacks on
the way the device is used in practice. Thus, we acknowledge that the function was
not intended to be a general MAC which can be used for numerous applications.
Instead, the MAC is used to hash only consecutive time values (after the time is
expanded to a 64-bit value in a way described in Section 3.1.1), and only at a rate
of about one per minute. So, for this application chosen text attacks do not seem

1A description of the hardware device and how it is used in practice is given in Chapter 3.

1.3 Keyed Hash Functions and SecurID 7

to be possible2.
We note that SecurID devices are only intended to be used for a few years,

partly due to limited battery lifetime. However, at the pace of one hash per minute,
collisions are expected to happen in about one year. A decent portion of devices
will have collisions much sooner.

After a collision happens, the device is vulnerable to an off-line key search. For
a device with a 64-bit secret key, finding the key can be done in 264 hash (MAC)
operations, which is impractical today except for an extremely powerful adversary.
However, using knowledge of the collision, the attack can be sped up to about 245

operations in most cases by the techniques of [5] and our improvements. Moreover,
using additional information that an attacker would likely have, the search can be
sped up even more. We demonstrate how this can be done, and estimate that an
attacker would probably be able to find the key in about 240 operations. This makes
the attack quite practical to a typical adversary.

Only recently has the company, now known as RSA Security3 acknowledged the
problems [27]. In fact, they claim that they became aware of some of the problems
a few years earlier and began to phase out the devices with the old hash algorithm.
The newer devices use a function based upon the AES, which has been widely
analyzed by expert cryptographers.

Our cryptanalysis results are given in Chapter 3.

2The only way a chosen text attack would be possible is to open it and replace the clock with a
circuit that feeds in inputs of the attacker’s choice. However, the devices are tamper-resistant: if
one attempts to open it, it will zero-out the secret key and hence will no longer be able to perform
its function of authentication.

3Security Dynamics bought out the company RSA Data Security 1996, and later changed their
name to RSA Security.

8 Introduction

Chapter 2

Differential Cryptanalysis Applied
to RC6

In this chapter, we describe the security analysis of the block cipher RC6 [34] with
respect to differential cryptanalysis. The work summarized here is part of a more
comprehensive analysis, published in [8, 9, 10]. The topics which are not included
from the referenced publications are those which the author of this document had lit-
tle to no involvement with during the research phase. Of those topics, the resistance
of RC6 to linear cryptanalysis is the most significant and substantial.

There is a long history that motivates the RC6 block cipher and its analysis,
so we start from the beginning. In 1976, the National Institute of Standards and
Technology (NIST) made a call to the public for an encryption algorithm to protect
sensitive but unclassified electronic data. A submission from IBM was adopted by
NIST, which became known as the Data Encryption Standard (DES) [31]. DES is
a Feistel cipher with 64-bit block size and a 56-bit key. From the beginning, the
key size of DES was suspected of being small enough so that an organization with
enough funding and resources could exhaustively search the key space and break it
[14]. As time progressed, it became increasingly apparent that such an attack was
indeed realistic, and the effect of Moore’s law was reducing the funding and resource
requirements necessary to carry it out.

In 1993, NIST added a statement to the DES specification foreshadowing the
possibility of a new algorithm within the not too distant future. Consequently, many
people began designing new block ciphers to accomplish this purpose. Among the
designs that appeared was Ron Rivest’s simple and elegant RC5 [33] block cipher,
which was put into products by RSA Data Security, and before long it became
widely used. It also became the subject of much security analysis.

In January of 1997, NIST made the official announcement for the development of
a new encryption algorithm, to be called the Advanced Encryption Standard (AES),
for the protection of sensitive government information well into the 21st century [32].
As in the case of DES, the public was invited to submit designs for that cipher. The
announcement came approximately one year and a half before the insecurity of DES

9

10 Differential Cryptanalysis Applied to RC6

was proven beyond all doubt: A team of privacy advocates and cryptographers spent
approximately US$250,000 to build a real DES cracker machine [15]. The machine
was used to solve an RSA secret key DES challenge, which it succeeded in doing in
56 hours.

The RC5 cipher was not ideally suited for submission to NIST as a possible AES
candidate. It did not perfectly match NIST’s requirements, and there was room for
improvement of the security based upon what had been learned from public analysis.
Hence, the cipher RC6 was born, which became the submission of RSA Laboratories.
A total of twenty one algorithms were submitted, but six were discarded immediately
because they were incomplete. The fifteen complete submissions were eventually
narrowed down to five finalists which were: MARS, RC6, Rijndael, Serpent, and
Twofish. After more analysis and much public feedback, Rijndael emerged as the
winner.

All of the finalists and some of the other candidates that did not make the
list of finalists are widely believed to provide adequate security. What made the
difference was other factors such as speed, hardware requirements, adequacy for
very constrained environments, simplicity of design, etc.... RC6 was criticized for
its adequacy in extremely constrained environments and its gate count in hardware.
Whether these criticisms are justified is a subject of debate [35] which we do not
intend to argue here. But, we will mention that it is commonly agreed that RC6
had the best performance on the target platform (Pentium Pro) and many other
modern platforms, that it had the most in-depth and accurate security analysis1,
and that it had the most elegant and simple design.

Since the design and analysis of RC6 was based upon what was learned from
RC5, it is only appropriate to first talk about RC5. In doing so, we also summarize
the strategy of differential cryptanalysis.

2.1 RC5 and Differential Cryptanalysis

RC5 is a parameterized algorithm allowing variable word size w, a variable num-
ber of rounds r, and a variable number of bytes b for the secret key. It encrypts
2w−bit plaintexts into 2w−bit ciphertexts. A specific choice of parameters for RC5
is designated by RC5-w/r/b. The permissible values for w, r, and b are as follows:

w The word size may be 16, 32, or 64-bits.
r The number of rounds may be any value between 0 and 255 inclusive.
b The number of bytes in the secret key may be any value between 0 and

255 inclusive.

Obviously, some of choices for parameters do not provide much security, such
as a small number of rounds or a small key size. However, the flexibility in choices
facilitates security analysis, especially in terms of being able to experiment with

1At the time of writing, it is the only AES finalist for which nobody improved upon the analysis
given by the original authors.

2.1 RC5 and Differential Cryptanalysis 11

Encryption with RC5-w/r/b

Input: Plaintext stored in two w−bit input registers A,B.
Number of rounds r.
Subkeys S[0], . . . , S[2r + 1], each w−bits.

Output: Ciphertext stored in A,B.

Procedure: A = A + S[0]
B = B + S[1]
for i = 1 to r do

A = ((A⊕B)<<<B) + S[2i]
B = ((B ⊕A)<<<A) + S[2i + 1]

Table 2.1: RC5 Encryption

smaller versions of the design. For real world applications, a proposed choice of
paramaters is w = 32, r = 12, and b = 16 [33].

The first step in RC5 is a one-time key expansion algorithm that takes the user
entered b−byte key and expands it into a sequence of 2(r + 1) subkeys of w bits
each, denoted S[i] for 0 ≤ i < 2(r + 1). The key expansion algorithm is given in
Appendix 3.12. The exact details are not so important for our analysis, especially
since no weaknesses have ever been found with this algorithm.

The RC5 encryption function is shown in Table 2.1. It uses three operations:

a + b Integer addition modulo 2w.
a⊕ b Bitwise exclusive-or.
a<<<b Left rotation of the w−bit word a by the amount given in the least

significant lg(w) bits of b.

The notation ‘lg’ means log2 . The decryption algorithm is easily derived from
the encryption. It uses integer subtraction in place of integer addition, and right
rotations in place of left rotations.

The use of the data-dependent rotates is intended to provide the most critical
security component of RC5. As we shall see, differential cryptanalysis attempts have
focused on maintaining invariant rotates for a pair of inputs that pass through the
function. We shall give some analytic justification for this in Section 2.3.

Note that the second line in the inner loop of RC5 is the same as the first, except
with A and B swapped. Thus, an alternate description of RC5 uses 2r rounds, where
the inner loops consists of A = ((A ⊕ B)<<<B) + S[i] followed by a swap of A and
B. According to this description, the inner loop is called a half-round. A diagram
of RC5 in this form is shown in Figure 2.1.

12 Differential Cryptanalysis Applied to RC6

<<<

A B

S[i]

Figure 2.1: Diagram of an RC5 half-round.

2.1 RC5 and Differential Cryptanalysis 13

2.1.1 Introduction to Differential Cryptanalysis

Differential Cryptanalysis is a chosen text attack that was first published in 1991
by Biham and Shamir [2]. There is considerable evidence that the designers of DES
knew of it beforehand, but were not able to reveal information about it, as requested
by the NSA (see [12] for evidence). For example, the choices of S-boxes in DES have
made it immune to being practically threatened by the attack, whereas many other
block ciphers were not so fortunate.

Differential cryptanalysis has probably been the single most influential discovery
that has effected the design of modern block ciphers. The one other potential rival
discovery is linear cryptanalysis [25], which has been more effective against DES,
but less effective against most other block ciphers. No new block cipher proposal
is taken seriously until considerable evidence has been given that it is resistant to
both types of attacks.

Let P1 and P2 be two closely related plaintexts, and define their difference P ′

with respect to some cipher operation. Usually the difference is defined with respect
to exclusive-or, i.e. P ′ = P1⊕P2, but other differences should be considered as well.
The strategy of differential cryptanalysis is based upon the evolution of differences
as the two plaintexts pass through the cipher. If certain differences are more likely to
happen than is expected from a random permutation, then a key recovery algorithm
may be possible.

Let X1 and X2 denote the two texts at the beginning of any round of the cipher,
and X ′ their difference. Accordingly, we denote Y1, Y2, and Y ′ the outputs of the
round. Depending upon the round function, certain difference pairs (X ′, Y ′) may
be more likely than others, when evaluated over all possible X1, Y1, X2, Y2, and
subkeys. For each such pair, we associate a probability which can be computed
or approximated by analytical or numerical means. By stringing these difference
pairs together from round to round, we get a characteristic that has an associated
probability p. Each characteristic requires that the output difference from one round
is the input difference to the next. Assuming the probabities across rounds can be
modelled as independent events, the probability p is expected to be the product
of the difference probabilities from round to round. In general, this assumption
may not be true, but if the cipher is well designed, we expect that it accurately
approximates the real probability. As we will later see (Section 2.4.6), it is very
important to verify these probabilities via computer experiments.

Consider a characteristic that is defined from the input of the cipher to the
penultimate round of a block cipher. We will refer to the output difference of
the penultimate round as the characteristic’s final difference. If the probability
p of the characteristic is sufficiently large, then we may be able to recover the
final round subkey using the algorithm sketched below. By iteratively applying the
same algorithm, we should be able to recover all previous subkeys as well, which is
effectively as good as knowing the original user chosen key. The subkey recovery
algorithm works as follows:

1. Encrypt a large number of plaintext pairs having the same input difference of

14 Differential Cryptanalysis Applied to RC6

the characteristic.

2. For each resulting ciphertext pair, determine the final round subkey(s) (if
any) that will transform the characteristic’s final difference into the ciphertext
difference that was observed. Keep a counter for each subkey possibility that
occurs.

3. After enough inputs, the correct subkey is expected to have a significantly
higher count than all others, and therefore the attacker can identify it. In
some cases, the attacker may only be able to narrow down the possibilities for
the actual subkey to a small group of candidates.

A pair of plaintexts and the corresponding final differences that match the char-
acteristic exactly is called a right pair. Each right pair increases the count of the
correct subkey by 1. On the other hand, the procedure often increments counters of
wrong candidate subkeys. The wrong candidates are expected to be approximately
uniformly distributed, whereas the right candidate should have a much higher count,
assuming the characteristic has relatively high probability. So, the occurrence of
right pairs is used to hopefully distinguish the correct subkey from wrong guesses.

The number of plaintext pairs needed before one can accurately identify the right
subkey is typically a small multiple of 1/p. The exact value depends upon the signal
to noise ratio, which is the ratio of the number of right pairs to the average count.
If the signal to noise ratio is very high, then the procedure will be complete after
only a few right pairs. If it is low, then the number of right pairs required will be
much higher.

In general, there are typically many characteristics having the same input and
final differences. The specific path of how a characteristic gets from its input differ-
ence to its final difference is of lesser importance, so we use the broader concept of
a differential which does not specify the intermediate rounds [20]. The probability
of a differential is the sum of the probabilities of all characteristics having the same
input and final differences as the differential.

For more information on differential cryptanalysis, see [2] for an excellent very
detailed description or [20] for a short technical description.

2.1.2 Differential Cryptanalysis Attacks on RC5

The state of the art of attacks on RC5 is beautifully summarized in [18]. The most
threatening attacks against RC5 are differential attacks. Below, we touch upon the
details that will be the most relevant for our analysis of RC6.

All differential attacks published so far against RC5 have been based on the
Kaliski-Yin approach from [17]. The attacks use exclusive-or as the difference op-
eration. Consider the pairs X1 = (A1, B1) and X2 = (A2, B2) with difference
∆ = (A′, B′). The first step in the RC5 half-round function is to exclusive-or
B1 onto A1. Thus, the difference of A1 := A1 ⊕ B1 with A2 := A2 ⊕ B2 is
(A1 ⊕B1)⊕ (A2 ⊕B2) = A′ ⊕B′, which holds with probability 1.

2.1 RC5 and Differential Cryptanalysis 15

The next operation is a left rotate of A1 by the least significant lg w bits of B1.
With probability 1/w the least significant lg w bits of B1 will be the same as the
least significant bits of B2. In this case, the difference between A1 := A1<<<B1 and
A2 := A2<<<B2 is A′ := (A1<<<B1)⊕ (A2<<<B1) = (A1 ⊕ A2)<<<B1 = A′<<<B1. On
the other hand, if the least significant lg w bits of B1 are not the same as those
from B2, then the new difference will be (A1<<<B1)⊕ (A2<<<B2). The difference in
the rotate amounts causes different bits of A1 to line up with different bits of A2,
making the outcome somewhat unpredictable. Let us look at an example of this
phenomenom where A1 and A2 have a 1-bit difference (w = 32):

A1 = 10100011010111111101111011000001

A2 = 10100011010111111111111011000001

A′ = 00000000000000000010000000000000

If we left rotate both words by 6, we get:

A1<<<6 = 11010111111101111011000001101000

A2<<<6 = 11010111111111111011000001101000

(A1<<<6)⊕ (A2<<<6) = 00000000000010000000000000000000

Clearly, the difference has been rotated left by 6. Now we will put a difference in
the least significant bit of the rotates: we left rotate A1 by 6 but A2 by 7.

A1<<<6 = 11010111111101111011000001101000

A2<<<7 = 10101111111111110110000011010001

(A1<<<6)⊕ (A2<<<7) = 01111000000010001101000010111001

So when there is a difference in the rotate amounts, there seems to be no simple
way of classifying the output difference in terms of the input difference without
taking into consideration the actual values of the inputs A1 and A2. Intuitively, one
would expect the output differences to appear random. For this reason all existing
differential attacks have been based upon the assumption that no differences occur in
the rotation amounts, i.e. B′ mod w = 0. We shall give some analytical justification
for this in Section 2.3.

The final operation in the half-round function is adding on subkey S[i]. So,
we are interested in the difference (A1 + S[i]) ⊕ (A2 + S[i]). For now, let us only
consider simple cases where the inputs differ in one bit. Specifically, we introduce
the notation A′ = es = 2s for some 0 ≤ s < w which will be used throughout the
chapter. The following lemma will be used many times:

Lemma 2.1 Let A1⊕A2 = es. Then the probability that (A1+S[i])⊕(A2+S[i]) = es

when averaging over all w-bit word pairs A1, S[i] is 1
2 when s < w − 1 and 1 when

s = w − 1.

16 Differential Cryptanalysis Applied to RC6

Proof: The case of s = w − 1 is trivial, since there can be no carry propagating
forward from bit w − 1. We proceed assuming s < w − 1.

We first note that the sum of the bits prior to s (i.e. lesser significant bits) is the
same for both (A1 +S[i]) and (A2 +S[i]) and the sum of the bits after it will be the
same if and only if the carry coming out from bit #s is the same. The carry out will
be the same if and only if the carry in is equal to bit #s of S[i]. Thus, if the bit #s
of S[i] is 0 and the carry in to the bit #s is 0 or if the bit #s of S[i] is 1 and the carry
in to the bit #s is 1, then we are guaranteed to have (A1 + S[i])⊕ (A2 + S[i]) = es.

We proceed by counting. We will use the notation x mod n to mean the least non-
negative representative of the congruence class. First suppose bit #s of S[i] is 1. Let
j be S[i] mod 2s (i.e. the least significant s bits of S[i]). Then the carry in to bit s is
1 if and only if A1 mod 2s = A2 mod 2s is any of the values 2s−j, 2s−j+1, . . . , 2s−1.
There are j such values. So the total number of values where bit #s of S[i] is 1 and
the carry in to bit #s is 1 is

2s−1∑

j=0

j =
(2s − 1)2s

2
.

Similarly, the total number of values where bit #s of S[i] is 0 and the carry in to
bit #s is 0 is

2s−1∑

j=0

2s − j = 22s − (2s − 1)2s

2
.

Thus, in total there are (2s−1)2s

2 +22s− (2s−1)2s

2 = 22s combinations that guarantee
an output difference of es. On the other hand, there are a total of 22s+1 combinations
for the least significant s + 1 bits of S[i] and the least significant s bits of A1 (=
least significant bits of A2). So, when s < w−1, we have shown that the probability
is 22s

22s+1 = 1
2 . ¤

The reader may become suspicious at this point, and rightfully so. In Lemma
2.1, we averaged over all subkeys to compute a probability, when in reality the
subkey is a single, fixed value. The actual probability differs according to the values
of the least significant s + 1 bits of S[i] (it is j/2s when bit #s is 1 and 1 −
j/2s when bit #s is 0). So why are we averaging over all possibilities when the
subkey is fixed? We alluded to the answer of this question in Section 2.1.1. When
we string differences and probabilities together to form characteristics, we will be
representing many probabilities by the average case. The real probability for a
specific characteristic may be more or less than the average case, but we expect
that when we sum the average case probabilities for numerous characteristics, we
get a good approximation to the real differential probability. Such assumptions need
to be tested experimentally, which they have been with RC5, and we shall later see a
case of a simplified variant of RC6 where a seemingly reasonable assumption turned
out to be false. Note that although this type of assumption/approximation is typical
in differential cryptanalysis, it does leave open the possibility of weak keys. For the

2.1 RC5 and Differential Cryptanalysis 17

time being, we shall ignore this issue, but we will return to the subject when we do
our full analysis of RC6 in Section 2.4.5.

Let us now consider some half-round characteristics from [17, 18]. Let ∆ =
(0, es) where s ≥ lg(w). After B1 is exclusive-or’ed onto A1, the difference is ∆ =
(es, es). The next step is a left rotate, where the rotates are the same since s ≥ lg w.
With probability 1/w, that rotate amount will be 0, hence keeping ∆ the same.
Finally, the subkey addition keeps ∆ the same with probability at least 1

2 . Thus,
the difference X ′ = (0, es) with s ≥ lg w becomes Y ′ = (es, es) with probability
≥ 1

w · 1
2 . This characteristic is denoted Ω1.

Now take X ′ = (es, es) again with s ≥ lg(w). It is easily seen that Y ′ = (es, 0)
holds with probability 1. This characteristic is denoted Ω2. Finally, consider X ′ =
(es, 0) with s ≥ lg(w), and let t be any integer satisfying lg w ≤ t < w. Then X ′

will become Y ′ = (0, et) with probability ≥ 1
w · 1

2 . This characteristic is denoted Ω3.
Define Ω as the stringing together of Ω1 with Ω2 and then Ω3. This is a charac-

teristic that holds with probability ≥ 1
4 · 1

w2 . We can string as many Ω’s together
with each other as long as the output t from one is equal to the input s from the
next. Such a characteristic is called an iterative characteristic.

More generally, we can consider differentials of this form. There are a total of
w−lg w allowable values of the output t. So, iterating the Ω characteristic m−1 times
and allowing all legal values of t, we get a probability of at least (w−lg w

(2w)2)m−1. The
research of [17] then shows how an additional 3 more half-rounds can be obtained
for roughly the cost of 1. First, they start out with the difference (0, ew−1) which
will go through the first half-round with probability 1. Then, they choose the last
two half-rounds to use larger Hamming weight differences in a way that assures that
they have an efficient algorithm to derive the last subkey. The probability of their
differential for 3m half-rounds is ≥ w−lg w−1

w · (w−lg w
(2w)2)m−1. Similar characteristics

exist for 3m + 1 and 3m + 2 half-rounds [17].
In general, the Kaliski-Yin approach uses iterative characteristics for about r−2

half-rounds when an r half-round characteristic is needed, and then finds a way to
get 2 additional half-rounds almost for free. When we later get around to analyzing
RC6 and its simplified variants, we shall make the assumption that an iterative
characteristic can always be extended an additional 2 rounds for free. Note that
these types of assumptions are safe to make when trying to establish security defenses
since, if they turn out to be false, then it implies that the cipher is stronger than
the analysis suggests.

See [17, 18] for efficient algorithms for deriving the subkey once enough plaintext
pairs are sent in, and for more specific details on the attack. For the purpose of the
research to be presented, these details do not need to be replicated here, since we
intend to argue that high probability differentials do not exist for the full RC6. We
remark that Kaliski and Yin have also implemented the attack on reduced round
variants of RC5, and found the results to match the theoretical analysis reasonably
well.

There have been two major improvements to the original attack presented by
Kaliski and Yin. The first, due to Knudsen and Meier [19], shows how the attacks

18 Differential Cryptanalysis Applied to RC6

can be improved by identifying plaintexts that cause no rotates in the first few half-
rounds. The second, due to Biryukov and Kushilevitz [3], allows differences to have
greater than Hamming weight 1 throughout the cipher, so long as the difference
follows some “controlled” pattern. The Biryukov and Kushilevitz result is the most
general and powerful attack known against RC5 at the time of writing. We shall
talk a bit more about both attacks after we describe our best attacks against RC6.

2.2 RC6

RC6 was first presented in [34]. Like RC5, RC6 is fully specified by a word size w, a
number of rounds r, and the number of bytes b in the key. The allowable values for
the parameters are the same as for RC5 (see Section 2.1.2), and a specific choice of
parameters for RC6 is denoted by RC6-w/r/b. For the AES candidate submission
to NIST, the parameters w = 32, r = 20, and b = 16, 24, and 32 were the proposed
values. The shorthand notation RC6 is used to mean w = 32 and r = 20.

The first step in RC6 is a one-time key expansion algorithm that takes the user
entered b−byte key and expands it into a sequence of 2r+4 subkeys of w−bits each,
denoted S[i] for 0 ≤ i < 2r +3. The key expansion algorithm is exactly the same as
in RC5, and is given in Appendix 3.12. As before, the details are not so important
for our analysis.

The RC6 encryption function is shown in Table 2.2. Note that it uses four w-bit
words, thus encrypting a 4w-bit plaintext into a 4w−bit ciphertext. The notation
(A,B, C, D) = (B,C, D,A) means a parallel copying of B into A, C into B, etc....
See Figure 2.2 for a diagram of the round function. The following operations are
used in encryption and/or decryption:

X + Y Integer addition modulo 2w.
X − Y Integer subtraction modulo 2w.
X ⊕ Y Bitwise exclusive-or.
X × Y Integer multiplication modulo 2w.
X<<<Y Left rotation of the w−bit word X by the amount given in the least

significant lg(w) bits of Y .
X>>>Y Right rotation of the w−bit word X by the amount given in the least

significant lg(w) bits of Y .

RC6 bears several similarities to RC5. The register A in a round of RC6 follows
the same path as the register A in a half-round of RC5. However, the registers
that affect it are different. In particular, the exclusive-or comes from f(B)<<<(lg w)
where f(X) = X(2X + 1), and the data-dependent rotate is determined by the
amount of (f(D)<<<(lg w)) mod w. We shall refer to the function f as the quadratic
function and the left rotate by 5 as the fixed rotate. Both the quadratic function and
the fixed rotate are used to make RC6 more resistant to differential cryptanalysis
than RC5. In RC5, the data-dependent rotation amount is determined by only the
5 least significant bits of B: none of the other bits have any effect. In contrast, the
combination of the quadratic function and the fixed rotate make the data-dependent

2.3 Differential Properties of Data-Dependent Rotations 19

Encryption with RC6-w/r/b

Input: Plaintext stored in four w−bit input registers A, B,C, D.
Number of rounds r.
Subkeys S[0], . . . , S[2r + 3], each w−bits.

Output: Ciphertext stored in A,B,C, D.

Procedure: B = B + S[0]
D = D + S[1]
for i = 1 to r do

t = (B × (2B + 1))<<< lg w
u = (D × (2D + 1))<<< lg w
A = ((A⊕ t)<<<u) + S[2i]
C = ((C ⊕ u)<<<t) + S[2i + 1]
(A,B, C, D) = (B,C, D,A)

A = A + S[2r + 2]
C = C + S[2r + 3]

Table 2.2: RC6 Encryption

rotation amount a function of all bits of the input register. The quadratic function
also plays an important role in the avalanche effect of the cipher. We also remark
that RC6 uses four input registers instead of two since AES was required to have
128-bit block size, and the only way to do that with the RC5 design was to use 64-bit
words which is inefficient on 32-bit processors. Hence, using four 32-bit registers
seemed to be the better design.

2.3 Differential Properties of Data-Dependent Rotations

Before going into a detailed analysis of RC6, we first want to study the differential
properties of data-dependent rotations. All published differential analyses on ciphers
that use data-dependent rotations (RC5, RC6, and MARS) always have assumed
that a difference never occurs in a rotation amount. This seems to be quite a
natural assumption, since a difference in a rotation amount would seem to produce
a random looking output difference.

In this section, we provide an analytical proof that justifies the above heuristic
argument. Our main result is a complete characterization of all possible output
differences that may occur when a difference is in the rotation amount. This allows
us to compute precisely the probability of any characteristic for the data-dependent
rotations. In particular, when the difference occurs in the rotation amounts, all

20 Differential Cryptanalysis Applied to RC6

<<<

<<<

<<< f

S[2i+1]

<<<

B D

 f

A

S[2i]

C

lg w lg w

Figure 2.2: Diagram of a single round of RC6. Here, f(X) = X(2X + 1) and ¢ is
integer addition mod2w.

2.3 Differential Properties of Data-Dependent Rotations 21

possible characteristics for the data-dependent rotations hold with very small prob-
ability. Consequently, all differentials with small Hamming weight hold with very
small probability. So these results quantify the effectiveness of data-dependent ro-
tations in preventing differential attacks.

The results in this section were published in [10]. A preliminary version of the
main theorem was given in [17].

2.3.1 Distribution of the Output Difference

Given a pair of inputs (X1, R1) and (X2, R2) where Xi is a word being rotated
by the value Ri, we are interested in understanding the output difference in terms
of the input differences. We call the input differences X ′ and R′ and the output
difference Y ′. This is summarized in the following equations.

Y1 = X1<<<R1,

Y2 = X2<<<R2,

X ′ = X1 ⊕X2,

R′ = R1 ⊕R2,

Y ′ = Y1 ⊕ Y2.

We also introduce the variable

r′ = (R2 −R1) mod w.

As we will show in the analysis, the variable r′ is directly related to the probability
of the characteristics for data-dependent rotations. Note that “no difference in the
rotation amount” is equivalent to r′ = 0 or R′ mod w = 0.

For a fixed input difference X ′, consider the possible output differences Y ′. Since
Y ′ appears to depend on the two rotation amounts R1 and R2, this motivates us to
define the function

fX′,R1,R2(X1) = (X1<<<R1)⊕ ((X1 ⊕X ′)<<<R2)
= (X1<<<R1)⊕ (X1<<<R2)⊕ (X ′<<<R2)

which, for fixed X ′, R1, and R2, expresses the output difference in terms of the
input X1. We also define

IX′,R1,R2 = {Y ′ : Y ′ = fX′,R1,R2(X1) for some X1},
PX′,R1,R2(Y

′) = {X1 : fX′,R1,R2(X1) = Y ′}.
That is, IX′,R1,R2 (the image) is the set of output differences Y ′ when X1 ranges
over all possible values and PX′,R1,R2(Y

′) (the pre-image) is the set of inputs X1

which yield output difference Y ′.

Theorem 2.2 (1) |IX′,R1,R2 | = 2w−gcd(w,r′).
(2) For any Y ′ ∈ IX′,R1,R2 , the size of the set PX′,R1,R2(Y

′) is 2gcd(w,r′).

22 Differential Cryptanalysis Applied to RC6

Before proving the theorem, we first discuss some of its implications by contrast-
ing the case where r′ = 0 with the case where r′ 6= 0:

1. r′ = 0. The difference is not in the rotation amount.

In this case, gcd(w, r′) = w and |IX′,R1,R2 | = 1, meaning that there is only
one possible output difference Y ′. All the characteristics used in existing
differential attacks on RC5, RC6 and MARS belong to this category.

2. r′ 6= 0. The difference is in the rotation amount.

In this case, gcd(w, r′) is a power of 2 between 1 and w/2. Hence, |IX′,R1,R2 |
ranges between 2

w
2 and 2w−1, and each possible output difference occurs ex-

actly the same number of times. In other words, the output difference Y ′ is
uniformly distributed in a set of size at least 2

w
2 when the pair of inputs with

a fixed difference ranges over all possible values.

From the above comparison, we can see that a difference in the rotation amount
is spread out in the output difference in a drastic way.

Let us now move on to the proof of Theorem 2.2. We use some facts from group
theory to simplify our understanding of the set of output differences IX′,R1,R2 . The
set of w−bit words form a group isomorphic to Zw

2 under the operation of exclusive-
or. For a fixed integer r, the function h(X) = X<<<r is a homomorphism: it has
the property that h(X ⊕ Y) = h(X) ⊕ h(Y). The function p(X) = parity(X) is a
homomorphism from Zw

2 to Z2, and the kernel of p is the subgroup of even parity
words, isomorphic to Zw−1

2 . Exclusive-oring any odd parity word to this subgroup
yields the coset of odd parity words.

Proof of Theorem 2.2: We have IX′,R1,R2 = {(X1<<<R1)⊕ (X1<<<R2)⊕ (X ′<<<R2)}.
By replacing X1 with the same value rotated right by R1, we get a more convenient
definition of the set:

IX′,R1,R2 = {X1 ⊕ (X1<<<r′)⊕ (X ′<<<R2)}.

Since (X ′<<<R2) is a constant for fixed X ′ and R2, the structure of IX′,R1,R2 is
determined by

g(X1) = X1 ⊕ (X1<<<r′). (2.1)

Let
S = {g(X1) : X1 is a w-bit word}.

It is easy to verify that g is a homomorphism from the group of w−bit words (a
group isomorphic to Zw

2) to S, and S is a subgroup.
First, consider the special case where r′ is odd. We claim that in this case S is

isomorphic to Zw−1
2 . To prove this, we only need to show that the kernel of g has

exactly two elements. The kernel consists of the X1’s satisfying

X1 = X1<<<r′.

2.3 Differential Properties of Data-Dependent Rotations 23

This property implies conditions on the bits of X1: bit 0 must be the same as bit r′,
bit 1 must be the same as bit r′ + 1 mod w, and so on. Since r′ is relatively prime
to w, we have that all bits must be the same, showing that the kernel is the two
elements containing all 0’s and all 1’s.

Therefore, S is a subgroup isomorphic to Zw−1
2 . In particular, it is the subgroup

of even parity words, and IX′,R1,R2 is the coset of words having the same parity
as X ′. Hence |IX′,R1,R2 | = 2w−1 = 2w−gcd(w,r′). The second part of the theorem
follows from elementary group theory: the pre-image is the same size as the kernel.

For the general case, we write r′ = 2er where r is odd, so 2gcd(w,r′) = 22e

. A
similar argument to the above shows that the kernel of g consists of elements of the
form a|a| . . . |a where a is any of the 22e

values for a 2e−bit vector (there are w/2e

a’s concatenated). Hence, the size of the kernel is 22e

, and the proof of the theorem
follows immediately. ¤

Sean Murphy has suggested an alternate approach to proving the above theorem.
His observation is that fX′,R1,R2 is a linear transformation of a w−dimensional
vector space given by

X1 7→ RR1(I + Rr′)X1 + RR2X ′

where R is the linear transformation of rotation by one place. Theorem 2.2 corre-
sponds to the Rank-Nullity theorem applied to this transformation. The rank of the
transformation is given by the rank of I + Rr′ . Murphy claims this can be easily
evaluated by a simple analysis of the eigenvalues of Rr′ [30].

2.3.2 Characteristics

Based on Theorem 2.2, we can easily compute the probability of any characteristic
for the data-dependent rotations when the difference is in the rotation. For a binary
vector X, we will use wH(X) to denote the Hamming weight of X.

Corollary 2.3 For i = 1, 2, let Yi = Xi<<<Ri. Let r′ = (R2 − R1) mod w. Then
each characteristic holds with either probability 0 or probability 2gcd(w,r′)−w.

Note that for w = 32, the above theorem implies that the probability of any
characteristic is at most 2−w/2 = 2−16 when the difference occurs in the rotation
amount.

Corollary 2.4 For i = 1, 2, let Yi = Xi<<<Ri. Let r′ = (R2 − R1) mod w. If
wH(X ′) = 0, then the probability that wH(Y ′) = 0 is 2gcd(w,r′)−w.

The following two corollaries follow from the proof of Theorem 2.2, since the
parity of Y ′ must be the same as the parity of X ′.

Corollary 2.5 For i = 1, 2, let Yi = Xi<<<Ri. Let r′ = (R2 − R1) mod w. If
wH(X ′) = 0, then the probability that wH(Y ′) = 1 is 0.

24 Differential Cryptanalysis Applied to RC6

Corollary 2.6 For i = 1, 2, let Yi = Xi<<<Ri. Let r′ = (R2 − R1) mod w. If
wH(X ′) = 1, then the probability that wH(Y ′) = 0 is 0.

2.3.3 Differentials with Small Hamming Weights

From Theorem 2.3, we know that when the difference is in the rotation amount, all
possible characteristics for data-dependent rotations hold with equal and very small
probability. We now turn our attention towards differentials for the data-dependent
rotations. This section will focus on differentials of Hamming weight one. The
analysis can be extended to more general differentials.

Theorem 2.7 For i = 1, 2, let Yi = Xi<<<Ri. Let r′ = (R2 − R1) mod w be
nonzero and write r′ = 2er where r is odd. For a given input difference X ′ such
that wH(X ′) = 1, the probability that wH(Y ′) = 1 is p = 2−(w−lg(w)−2e+e).

Proof: The probability of the differential is

p =
|{Y ′ : Y ′ ∈ IX′,R1,R2 | and wH(Y ′) = 1}|

|IX′,R1,R2 |
. (2.2)

Note that we are counting outputs here rather than inputs, but this is allowed since,
as we showed earlier, each pre-image has the same size.

To evaluate the numerator, we rewrite Y ′ using the definition of g(X1) given in
Equation 2.1.

Y ′ = g(X1)⊕ (X ′<<<R2).

Since wH(X ′) = 1, there are only two possibilities for wH(g(X1)) in order to have
wH(Y ′) = 1. That is, (1) wH(g(X1)) = 0, and (2) wH(g(X1)) = 2, and one of the
two 1-bits in g(X1) lines up with the 1-bit in X ′.

We claim that the set of values of g(X1) with Hamming weight 2 are those
words in which the two 1-bits are a multiple of 2e positions apart from each other.
To prove this, we first show that 20 ⊕ 2e is in the set S of all outputs of g(X1).
Since g(20) = 20 ⊕ 2r′ and g(2r′) = 2r′ ⊕ 22r′ , using the homomorphism property
of g we can construct a new Hamming weight 2 output by g(20 ⊕ 2r′) = 20 ⊕ 22r′ ,
where the exponents are taken modulo w. Continuing in this way, we see that
g(20⊕ 2r′ ⊕ . . .⊕ 2(j−1)r′) = 20⊕ 2e, where j = r−1 mod w

2e . Thus, we have 20⊕ 2e,
and by considering the left rotations of this word by i positions for i = 0 to w−2e−1,
we get a set of w − 2e linearly independent Hamming weight 2 elements in S. The
linear combinations of these elements generate a subgroup of size 2w−2e

, i.e. the
entire set S. It is easy to see that any Hamming weight 2 word having the 1-bits
separated by a multiple of 2e positions from each other can be constructed from
these basis words. g(X1) cannot contain a Hamming weight 2 word where the 1’s
are a distance 2e−1 apart (for example), since that would cause it to generate a
subgroup of size 2w−2e−1

which is larger than the subgroup under consideration.
So, the size of the set {g(X1) : wH(g(X1)) = 2 and wH(Y ′) = 1} is w

2e − 1,
since one of the 1-bits in g(X1) lines up with the 1-bit in X ′ and there are exactly

2.4 Differential Cryptanalysis of RC6 25

w
2e − 1 positions for the other 1-bit. Adding on the one case where g(X1) = 0, the
numerator of Equation 2.2 becomes w

2e and hence the probability is 2−(w−lg(w)−2e+e).
¤

Corollary 2.8 Let the word size w = 32. If wH(X ′) = 1 and there is a difference
in the rotate amounts, then the probability that wH(Y ′) = 1 is ≤ 2−15.

Similar analysis shows that, for data-dependent rotations, all differentials with
small Hamming weight hold with very small probability if there is a difference in
the rotation amount. Therefore, it seems very unlikely that such differentials could
be useful in attacking RC6.

2.4 Differential Cryptanalysis of RC6

We are now ready to begin the study of differential attacks on RC6. In order
to understand how the new components, i.e. the quadratic function and the fixed
rotate, contribute to the security, we shall start by analyzing some simplified variants
of RC6. This analysis will be the building blocks for studying the full function.

The simplified variants are obtained by replacing the quadratic function with
the identity function and/or removing the fixed rotate. The most basic variant,
denoted RC6-I-NFR applies both of these changes. The “I” stands for identity
and the “NFR” for no fixed rotate. Closer approximations to the real RC6 are
obtained by only applying one of these changes: hence we have RC6-I and RC6-
NFR. Graphically, we can view how well these variants approximate the security
of RC6 as in Figure 2.3.

The purpose of studying the simplified variants is to get an idea on how to
attack the full function. For this reason, we will not spend too much effort trying to
optimize the attacks. There will be several trivial and not so trivial improvements,
in particular ideas similar to [3]. Such ideas will be taken into consideration when
we get to the full RC6.

The approach for attacking the simplified variants will be quite similar to how we
described attacking RC5 in Section 2.1.2. The ideas follow the root work approach
of Kaliski and Yin’s security analysis of RC5 [17]. In contrast to RC5, when we
consider the variants that use the quadratic function, we will find that subtraction
is a better measure of difference than exclusive-or.

The analysis to be presented was published in [8].

2.4.1 Differential Cryptanalysis of RC6-I-NFR

RC6-I-NFR is the simplest variant of RC6 that we will look at. It eliminates both
the quadratic function and the fixed rotate. Pseudo code is given in Table 2.3.

As we showed in Section 2.3, we want to avoid differences in the rotation amounts
since such characteristics occur with very small probability. In order to do so, we
must keep the avalanche effect under control. Let ∆ be a generic difference in a

26 Differential Cryptanalysis Applied to RC6

RC6−I−NFR

RC6−I

RC6

RC6−NFR

Increasingly accurate

of RC6.

approximations to the security

Figure 2.3: Simplified variants approximating the security of RC6.

Encryption with RC6-I-NFR (w/r/b)

Input: Plaintext stored in four w−bit input registers A,B,C, D.
Number of rounds r.
Subkeys S[0], . . . , S[2r + 3], each w−bits.

Output: Ciphertext stored in A,B, C, D.

Procedure: B = B + S[0]
D = D + S[1]
for i = 1 to r do

t = B
u = D
A = ((A⊕ t)<<<u) + S[2i]
C = ((C ⊕ u)<<<t) + S[2i + 1]
(A,B, C,D) = (B,C, D,A)

A = A + S[2r + 2]
C = C + S[2r + 3]

Table 2.3: RC6-I-NFR Encryption

2.4 Differential Cryptanalysis of RC6 27

(a) (b) (c)
∆ ∆ 0 0 0 0 ∆ ∆ ∆ ∆ ∆ ∆

↓ ↓ ↓
∆ 0 0 0 0 0 ∆ 0 ∆ 0 ∆ 0

↓ ↓ ↓
0 0 0 ∆ 0 ∆ 0 0 0 ∆ 0 ∆

↓ ↓ ↓
0 ∆ ∆ 0 ∆ 0 0 ∆ ∆ ∆ ∆ ∆

↓ ↓
∆ ∆ 0 ∆ 0 ∆ ∆ ∆

↓ ↓
∆ ∆ ∆ 0 ∆ 0 ∆ ∆

↓ ↓
∆ ∆ 0 0 0 0 ∆ ∆

α6
∆ρ6

∆ α6
∆ρ6

∆ α4
∆ρ4

∆

Table 2.4: The three iterative characteristics for RC6-I-NFR, and their probabilities.

w−bit word, where ∆ ≡ 0 mod w. We consider possible characteristics that have
the difference in each word as either 0 or ∆. Such characteristics are advantageous
since they allow differences to cancel with each other.

Let ρ∆ denote the probability that the difference ∆ remains unchanged after
a data-dependent rotation, and let α∆ denote the probability that it remains un-
changed after the subkey addition. Since there are 4 words which may or may not
have a difference, and since we assume some difference exists, there are 24 − 1 pos-
sible difference patterns. We can follow each such pattern from one round to the
next assuming that when two differences meet, they will cancel. The result is one of
three possible iterative characteristics . These characteristics and their correspond-
ing probabilities are shown in Table 2.4. Observe that characteristic (b) is the same
as characteristic (a) except with registers (A,B) are swapped with (C,D). Also,
characteristic (c) has lower probability than characteristics (a) and (b) if we were to
extend it to the same number of rounds. Therefore, characteristic (a) or (b) seems
to be the most useful in designing a differential attack.

Assume w = 32, i.e. the word size used for RSA Data Security’s submission as
an AES candidate. By setting ∆ = e31 = 231, we have α∆ = 1, and hence the
characteristic is expected to hold with probabity ρ6

∆ = 2−30. This seems to be the
best characteristic. Surprisingly, RC6-I-NFR has some hidden inter-dependencies
which make this characteristic hold either with probability 0 or probability 2−20,
depending upon certain key bits. We will describe this phenomenom more in Section
2.4.6.

More generally, we consider characteristics where the main restrictions are that
differences cannot occur in the rotation amounts and differences are lined-up so
that they will cancel. Table 2.5 gives a general characteristic, where we assume

28 Differential Cryptanalysis Applied to RC6

general
characteristic

es es 0 0
↓

es 0 0 0
↓

0 0 0 et

↓
0 eu et 0

↓
eu eu 0 ev

↓
eu eu ev 0

↓
eu eu 0 0

Table 2.5: A general 6-round characteristic for RC6-I-NFR.

all of s, t, u, and v are between 5 and 31. For any given choice of s, t, u, and v,
the characteristic has expected probability of about (1

2)6 × (1
32)6 = 2−36. Again,

we emphasize that some of these characteristics will hold with higher probability
(especially those that have the difference of e31) and some with lower, but the
average probability is expected to be close to 2−36. For a specific choice of starting
difference s, we can sum over all 273 choices for the intermediate differences, giving
an expected differential probability of about 273 × 2−36 ≈ 2−22.

By iterating the above differential, we can attack an arbitrary number of rounds
of RC6-I-NFR. Recall from Section 2.1.2 that if we want to attack r−rounds, we
shall assume that we only need an iterative differential that lasts r − 2 rounds,
since generally an extension of 2-rounds can be obtained for free (as explained in
Section 2.1.2). Thus, to attack 20-rounds, we need differentials that last 18-rounds,
which can be attained by chaining the above differential with itself 3 times. Hence,
the probability of the differential for 18-rounds is about (2−22)3 = 2−66, which
translates into needing on the order of 266 chosen plaintexts to break 20-round
RC6-I-NFR.

Table 2.6 summarizes the number of chosen plaintexts required for this attack
for various numbers of rounds. The differential for 8-rounds has been verified ex-
perimentally. Note that there are obvious improvements to this attack, but we shall
not consider such improvements until we get to the full RC6. Our goal here is just
to outline the approach, which will be the basis for our more detailed analysis of
RC6.

2.4 Differential Cryptanalysis of RC6 29

Differential Cryptanalysis of RC6-I-NFR
Number of rounds 8 12 16 20 24

Number of
chosen plaintexts

222 232 245 266 276

Table 2.6: Estimated number of chosen plaintexts required to attack RC6-I-NFR
via the differential method described in this section.

2.4.2 Differential Cryptanalysis of RC6-I

The difference between RC6-I and RC6-I-NFR is the fixed rotate by lg w bits.
Pseudo code for RC6-I is given in Table 2.7.

We can take the same approach for attacking it as we did for RC6-I-NFR: we
use exclusive-or for difference, and concentrate on the cycle (a) from Table 2.4.
However, we now have the added difficulty of lining up the difference bits. Table
2.8 gives the corresponding general characteristic for RC6-I. The exact restrictions
are 0 ≤ s, t, v ≤ 26 and 15 ≤ u ≤ 26 so that differences do not occur in the rotation
amounts. As in RC6-I-NFR, the general characteristic for 6-rounds holds with
probability (1

2)6 × (1
32)6 = 2−36. Setting u = s + 15 gives an iterative characteristic

with this probability.
Taking into consideration the effect of differentials, for a particular starting value

s, there are 27 allowable values for each of t and v, and 12 for u. So, a 6-round
differential for RC6-I holds with probability

2−36 × 272 × 12 ≈ 2−23.

Table 2.9 gives the expected number of chosen plaintexts required for attacking
RC6-I for various choices of rounds, again under the assumption that we can get
a differential to pass through an additional 2-rounds for free. It is evident that
the extra fixed rotate does not add much security over RC6-I-NFR. However, we
shall later see that the fixed rotate has a much more central security role when the
quadratic function is put back in.

2.4.3 The Quadratic Function

In order to study RC6-NFR and RC6, we will need to understand some important
differential properties of the quadratic function f(X) = X(2X + 1). Unlike the
simplified variants already analyzed, it is not clear that exclusive-or is the best
measure of difference. In fact, given that the quadratic function uses both addition
and multiplication, it seems more likely that subtraction is a better measure. So we
start by analyzing subtraction, but we shall consider exclusive-or as well.

We first prove that the quadratic function is a permutation, which is a corollary
of the following more general lemma.

30 Differential Cryptanalysis Applied to RC6

Encryption with RC6-I (w/r/b)

Input: Plaintext stored in four w−bit input registers A,B,C, D.
Number of rounds r.
Subkeys S[0], . . . , S[2r + 3], each w−bits.

Output: Ciphertext stored in A,B, C, D.

Procedure: B = B + S[0]
D = D + S[1]
for i = 1 to r do

t = B<<< lg w
u = D<<< lg w
A = ((A⊕ t)<<<u) + S[2i]
C = ((C ⊕ u)<<<t) + S[2i + 1]
(A,B, C,D) = (B,C, D,A)

A = A + S[2r + 2]
C = C + S[2r + 3]

Table 2.7: RC6-I Encryption

general
characteristic

es+5 es 0 0
↓

es 0 0 0
↓

0 0 0 et

↓
0 eu et 0

↓
eu eu−5 0 ev

↓
eu−5 eu−10 ev 0

↓
eu−10 eu−15 0 0

Table 2.8: A general 6-round characteristic for RC6-I.

2.4 Differential Cryptanalysis of RC6 31

Differential Cryptanalysis of RC6-I
Number of rounds 8 12 16 20 24

Number of
chosen plaintexts

223 234 247 269 280

Table 2.9: Estimated number of chosen plaintexts required to attack RC6-I via the
differential method described in this section.

Lemma 2.9 Let f̃(X) = X(aX + b) mod 2w where a is even and b is odd. Then f̃
is a one-to-one mapping from {0, 1}w to {0, 1}w.

Proof: Suppose f̃(X1) ≡ f̃(X2) mod 2w. Then, aX2
1 + bX1 − aX2

2 − bX2 ≡
0 mod 2w, which implies

(X1 −X2)[a(X1 + X2) + b] ≡ 0 mod 2w.

Since a is even and b is odd, the term [a(X1 +X2)+b] must be odd. But this implies
(X1 − X2) ≡ 0 mod 2w, so we have X1 ≡ X2 mod 2w. Hence, the inputs must be
the same. ¤

Let us now determine some basic differential properties of f(X) = X(2X +
1) mod 2w using subtraction as a measure of difference. We fix the following nota-
tion:

Y1 = f(X1)
Y2 = f(X2)
δX = X2 −X1 (input difference)
δY = Y2 − Y1 (output difference)

Substituting X2 = δX + X1, we get

δY = (4X1δX + δX + 2δ2
X) mod 2w. (2.3)

The following result is a trivial consequence of Equation 2.3, but is important enough
to state as a lemma.

Lemma 2.10 δY = δX if and only if (4X1δX + 2δ2
X) ≡ 0 mod 2w.

¤
We shall hereafter restrict our analysis to the case w = 32, the word size in RSA

Laboratories candidate submission for the AES. This restriction is only because
certain results had to be verified experimentally. However, most of our analysis
easily extends to other word sizes.

32 Differential Cryptanalysis Applied to RC6

Using Integer Subtraction as a Measure of Difference

We begin the analysis of subtraction as measure of difference by studying differences
of the form δY = δX for the quadratic function. We call such differences static
differences. Static differences are particularly useful to begin our analysis since
they easily chain together.

The next two lemmas characterize all static differences of the quadratic function.

Lemma 2.11 If δX is odd then the characteristic δY = δX holds with probability
zero.

Proof: Applying Lemma 2.10 modulo 4, we have δY = δX if and only if 2δ2
X ≡

0 mod 4. Since δ2
X ≡ 1 mod 4, the left hand side is 2 mod 4 and therefore the

congruence cannot be satisfied. ¤

Lemma 2.12 If δX = v2i where v is odd and 1 ≤ i ≤ 30, then the characteristic
δX = δY holds with probability 2i−30. If δX = 231, then the characteristic δY = δX

holds with probability one.

Proof: By Lemma 2.10, we have δY = δX if and only if 4X1v2i + 2(v2i) ≡
0 mod 232. This is equivalent to X1 ≡ −2i−1v mod 230−i for i ≤ i ≤ 30. Note
that if i ≥ 16, the −2i−1v term is 0 modulo 230−i. In either case, we see that the
relations holds with exactly probability 2i−30, since the least significant 30−i bits of
X1 are completely determined and the remaining bits can be anything. The Lemma
is trivially true when δX = 231. ¤

Our initial analysis of RC6-NFR and RC6 shall use differences of Hamming
weight 1. For such differences, we emphasize that the probability that δX = δY

is negligibly small when the least significant difference bit i is small. This further
justifies the use of the quadratic function as a tool to resist differential cryptanalysis:
especially the way it is used in RC6.

Using Exclusive-Or as a Measure of Difference

We begin the analysis of exclusive-or as a measure of difference by proving a lemma
analogous to Lemmas 2.11 and 2.12. The notion of difference with respect to
exclusive-or is defined to be:

δ⊕X = X2 ⊕X1, and
δ⊕Y = Y2 ⊕ Y1.

Lemma 2.13 Let pi denote the probability of the characteristic δ⊕Y = δ⊕X = 2i.
Then

pi =

1 for i = 31
2i−30 for 15 ≤ i ≤ 20

0 for 0 ≤ i ≤ 14

and pi ≈ 2i−31 for 21 ≤ i ≤ 30.

2.4 Differential Cryptanalysis of RC6 33

Proof: Assume δ⊕X = 2i. Then either X2 = X1+2i with X1[i] = 0 or X1 = X2+2i

with X2[i] = 0. Since these cases are symmetric with equal probabilities, we may
assume X2 = X1 +2i with X1[i] = 0 without loss of generality. We divide the proof
into cases according to i.

Case 16 ≤ i ≤ 30: By Equation 2.3, we have

Y2 − Y1 ≡ 2i+2X1 + 2i + 22i+1 mod 232

≡ 2i+2X1 + 2i mod 232 (since i ≥ 16)

We have that δ⊕Y = 2i implies Y2 − Y1 ≡ 2i mod 232 or Y1 − Y2 ≡ 2i mod 232. It
is easy to verify that the latter can never happen, so δ⊕Y = 2i if and only if both of
these events hold:

Event A 2i+2X1 ≡ 0 mod 232,

Event B Y1[i] = 0.

Similar to the proof of Lemma 2.12, we see that prob(A) = 2i−30. So, the
characteristic holds with probability

pi = prob(A)× prob(B|A) = 2i−30 × prob(B|A).

Event A implies the lower 30−i bits of X1 are 0. Hence, the lower 2(30−i)+1 =
61 − 2i bits of 2X2

1 are 0, and the higher order bits are “approximately random.”
When 16 ≤ i ≤ 20, this implies that bit i of 2X2

1 is 0, and since Y1 = 2X2
1 + X1, we

have Y1[i] = X1[i]. Since X1[i] = 0, prob(B|A) = 1 for 16 ≤ i ≤ 20 and therefore
pi = 2i−30.

When 21 ≤ i ≤ 30, bit i of 2X2
1 is “approximately random”, and therefore Y1[i] =

0 approximately 1
2 of the time, so that pi ≈ 2i−31. The “approximately random”

is due to the fact that each bit of X2 is not necessarily uniformly distributed, even
when X is chosen uniformly at random. The exact probabilities, determined by
exhaustive computation, are given in the following table.

i 231−i 1/pi

21 1024 819.200000
22 512 455.111111
23 256 248.242424
24 128 126.025089
25 64 63.750731
26 32 31.938838
27 16 15.992672
28 8 7.998251
29 4 3.999823
30 2 1.999954

Case i = 15: This is similar to the previous case, but the details are slightly
different. Setting δX = 215 in Equation 2.3, we get

Y2 − Y1 ≡ 217X1 + 215 + 231 mod 232.

34 Differential Cryptanalysis Applied to RC6

bit position i probability δY = δX = 2i δ⊕Y = δ⊕X = 2i

31 1 1
21 ≤ i ≤ 30 2i−30 ≈ 2i−31

15 ≤ i ≤ 20 2i−30 2i−30

1 ≤ i ≤ 14 2i−30 0
0 0 0

Table 2.10: Probabilities for single-bit, static differences of the quadratic function
using both subtraction and exclusive-or as measure of difference.

So δ⊕Y = 215 if and only if both of these events hold:

Event A 217X1 ≡ 231 mod 232,

Event B Y1[15] = 0.

Following arguments similar to ones previously made, we have prob(A) = 2−15.
Therefore, the probability of the characteristic δ⊕Y = δ⊕X = 215 is

p15 = 2−15 × prob(B|A).

Note that Event A implies the lower 14 bits of X1 are 0 and that bit 15 is 1.
Hence, the lower (2× 14)+1 = 29 bits of 2X2

1 are 0. Since Y1 = 2X2
1 +X1, we have

Y1[15] = X1[15] = 0. Therefore, p15 = 2−15 = 2i−30.
Case 1 ≤ i ≤ 14: We have δ⊕Y = 2i if and only if

2i ≡ 2i+2X1 + 2i + 22i+1 mod 232,

which implies X1 ≡ −2i−1 mod 230−i. This condition tells us that bits i−1 through
29 − i must be 1, which contradicts the assumption that bit i is 0. Hence, pi = 0
for 1 ≤ i ≤ 14.

Case i = 0 and i = 31: The case i = 0 follows from Lemma 2.11. For i = 31,
we get Y2 − Y1 = 231 by substituting i = 31 in Equation 2.3. ¤

Comparing Exclusive-Or to Integer Subtraction

Using Lemmas 2.12 and 2.13, we can now compare integer subtraction to exclusive-or
for static differences over the quadratic function. The probabilities are summarized
in Table 2.10. In all cases, we have subtraction at least as good of a measure as
exclusive-or. Furthermore, we see that exclusive-or is a particularly bad measure
for 1 ≤ i ≤ 14, since the probabilities are always 0.

This seems to suggest that subtraction is the better measure of difference. How-
ever, we should take one more factor into account: the exclusive-or that hap-
pens right after the quadratic function. This operation has no effect when we use
exclusive-or as measure of difference, but it does for integer subtraction. Thus, we

2.4 Differential Cryptanalysis of RC6 35

need to examine the probabilities over both operations when integer subtraction is
used.

Let W = Z ⊕ f(X). The analysis of this function using subtraction turns out to
be more complicated than one might expect. In particular, one runs into the problem
that the exclusive-or operation does not distribute over addition/subtraction. Thus,
our analysis below involves computer enumeration, but in an intelligent way. After
our results were published in [8], other researchers discovered efficient algorithms
[23] [24] for closely related differential probabilities, however their algorithms cannot
be directly applied to our problem. The research of [23] has the role of exclusive-or
and subtraction the opposite of our problem. The research of [24] is almost what we
are interested in, except their results do not apply due to properties of the quadratic
function. More specifically, their result can only be directly applied when a function
g is used such that g(X1 + δX)− g(X1) is a constant. The quadratic function does
not work since Equation 2.3 is not a constant – it depends upon X1.

For two sets of inputs X1, Z1 and X2, Z2, we define W1 = Z1⊕ f(X1) and W2 =
Z2 ⊕ f(X2). The differences are δX = X2 −X1, δZ = Z2 −Z1, and δW = W2 −W1.

Lemma 2.14 Let pi be the probability of the characteristic (δX , δZ) → δW where
(δX , δZ) = (2i, 0) and δW = 2i. Similarly, let qi be the probability of the character-
istic (δX , δZ) = (2i, 2i) and δW = 0. Then we have

pi = qi = 2i−31 for 15 ≤ i ≤ 31,
pi = qi ∈ [2i−35, 2i−30] for 0 ≤ i ≤ 14.

Proof: Consider pi first. We determined the probabilities by computer enumer-
ation which works as follows. For each value of i between 0 and 31, we count the
number of times that δW = 2i given that (δX , δZ) = (2i, 0). In total, there are 264

possibilities for the X1, Z1 (which, combined with δX , δZ , determine the X2, Z2). A
näıve search of this form would be infeasible, but the following observations make
it doable on a single PC:

1. For integers a and b, we have a− b ≡ 2i mod 232 only if a⊕ b contains exactly
one block of consecutive 1-bits. This block will always begin at bit i and
end at some bit k ≥ i, so the length of the block is (k − i + 1) bits. Taking
a = Z ⊕ f(X2) and b = Z ⊕ f(X1) (i.e. Z = Z1 = Z2) gives a necessary
condition on f(X2)⊕ f(X1) for δW to be 2i.

2. Given f(X1) and f(X2) satisfying the first condition, the number of words for
which δW = 2i is

232−(k−i+1) if k < 31 and
232−(k−i) if k = 31.

More precisely, the value of Z for the bits between indices i and k must be
so that the corresponding bits in W2 are equal to 2k and the corresponding
bits in W1 are equal to 2k − 2i when k < 31. The other bits of Z are free

36 Differential Cryptanalysis Applied to RC6

to be anything. When k = 31, there is one extra choice of Z that works:
the choice where the bits between indices i and 31 in W2 are all 0’s, and the
corresponding bits in W1 all 1’s.

The full search showed that pi is exactly 2i−31 for 15 ≤ i ≤ 31. For smaller
values of i the results are given in the following table.

i 231−i 1/pi i 231−i 1/pi

0 231 230.10 8 223 225.92

1 230 229.15 9 222 225.44

2 229 228.57 10 221 224.98

3 228 228.17 11 220 223.09

4 227 227.71 12 219 219.58

5 226 227.21 13 218 218.10

6 225 226.89 14 217 217.01

7 224 226.42

Finally, we note that pi = qi because there is a 1-to-1 correspondence between the
solutions, simply by swapping the W values with the Z values. ¤

Observe that pi decreases monotonically as i decreases, but not at a constant
rate. For example, there is a big drop in the probabilities going from p12 to p11.

Comparing Lemma 2.14 to Table 2.10 shows that W = Z ⊕ f(X) has integer
subtraction at least as good of a difference measure as exclusive-or for all values of
i except 15 ≤ i ≤ 20. For this exceptional range, exclusive-or is twice as good as
integer subtraction. However, once we take into consideration the addition of sub-
keys, the probability using exclusive-or will drop by a factor of 2 and the probability
using integer subtraction will remain the same. So in the big picture, we see that
integer subtraction is always at least as good as exclusive-or for difference measure
in RC6-NFR and RC6. We also emphasize that half of the values of i have probabil-
ity zero for exclusive-or. In summary, all analysis indicates that integer subtraction
is the best measure.

Other Characteristics for the Quadratic Function

One can further consider characteristics that have more than one difference bit in
the quadratic function, i.e. non-static characteristics. In fact, our Lemmas 2.11 and
2.12 were written general enough to allow for arbitrary differences. However, they
do not tell the probability of these differences returning to a single bit difference.
The following lemma fills in the gap:

Lemma 2.15 Let mi be the probability of the characteristic δX → δY where δX =
2iv for odd integer v and δY = 2i. Then,

mi =

2i−30 for 29 ≥ i ≥ 1 and v ≡ 1 mod 4,
0 for i = 0 and v ≡ 1 mod 4,
0 for 30 ≥ i ≥ 1 and v ≡ 3 mod 4,

2i−30 for i = 0 and v ≡ 3 mod 4.

2.4 Differential Cryptanalysis of RC6 37

Proof: By Equation 2.3,

δY ≡ 2i+2X1v + 2iv + 22i+1v2 mod 232.

This is 2i if and only if

2i+2X1v + 2i(v − 1) + 22i+1v2 ≡ 0 mod 232.

We separate the cases according to v mod 4.
Case v ≡ 1 mod 4: If i = 0, then the term 22i+1v2 is 2 mod 4 while the other

terms are 0 mod 4. Therefore, there is no solution. If i ≥ 1, then all terms are
divisible by 2i+2. Dividing out the 2i+2, we have:

X1v +
(v − 1)

4
+ 2i−1v2 ≡ 0 mod 230−i.

Basic modular arithmetic shows that there is a unique solution for X1 modulo 230−i.
This implies mi = 2i−30.

Case v ≡ 3 mod 4: If i = 0, then v−1 is 2 mod 4 and 22i+1v2 = 2v2 is 2 mod 4,
so the sum is 0 mod 4. Dividing out by 4, we have:

X1v +
(v − 1) + 2v2

4
≡ 0 mod 230.

There is a unique solution modulo 230, so we get mi = 2−30. If i ≥ 1, then divide
out by 2i to get:

4X1v + (v − 1) + 2i+1v2 ≡ 0 mod 230−i.

The term v−1 is 2 mod 4 while the other terms are 0 mod 4, so there is no solution.
¤

Observe that this lemma tells us that a non-static difference gets transformed
into a single-bit difference by the quadratic function with the same probability that a
single-bit difference remains a single-bit difference. Although the computations have
not been performed, it is assumed we have the same probabilities for an analogue
of Lemma 2.14. By this, we mean the cases where there is a non-static input to the
quadratic function and either a single-bit input to the exclusive-or, or a single-bit
output from the exclusive-or.

2.4.4 Differential Cryptanalysis of RC6-NFR

In the preceding section, we developed the tools needed to study the resistance of
both RC6-NFR and RC6 to differential cryptanalysis. We saw that subtraction is
the better measure of difference, so we shall only consider subtraction hereafter. We
begin with RC6-NFR, for which pseudo code is given in Table 2.11.

Similar to our analysis of RC6-I-NFR, we start with the characteristic from Table
2.5. The probability of this 6-round characteristic is

ρ6 × qs × pt × pu × qu × pv × qu.

38 Differential Cryptanalysis Applied to RC6

Encryption with RC6-NFR (w/r/b)

Input: Plaintext stored in four w−bit input registers A,B,C, D.
Number of rounds r.
Subkeys S[0], . . . , S[2r + 3], each w−bits.

Output: Ciphertext stored in A,B, C, D.

Procedure: B = B + S[0]
D = D + S[1]
for i = 1 to r do

t = B × (2B + 1)
u = D × (2D + 1)
A = ((A⊕ t)<<<u) + S[2i]
C = ((C ⊕ u)<<<t) + S[2i + 1]
(A,B, C,D) = (B,C, D,A)

A = A + S[2r + 2]
C = C + S[2r + 3]

Table 2.11: RC6-NFR Encryption

Note that since we are using subtraction as difference, we are able to cross the
integer subkey addition with probability one. The parmaters s, t, u, and v may take
any value between 5 and 31. The probability is highest when they are all 31, since
p31 = q31 = 1. Thus, we get a characteristic of probability ρ6 = 2−30. This may at
first seem a bit disconcerting, since the probability is the same as the corresponding
characteristic for RC6-I-NFR. However, the benefit becomes clear in the analysis of
differentials.

To get an iterative differential with maximum probability, we fix s = u = 31
and allow t and v to take any value between 5 and 31.2 The probability is then

ρ6 ×
31∑

t=5

pt ×
31∑

v=5

pv ≈ 2−28.

Note that this is only 4 times better than the best characteristic probability. Com-
pare that to RC6-NFR, where the differential was ≈ 28 times better than the char-
acteristic probability. The difference is that in RC6-I-NFR, each characteristic has
approximately equal probability, whereas in RC6-NFR, only differences in the most

2In order to chain the differentials together, the output u must be equal to the input s. For
smaller values of u and s, the probabilities drop significantly. Even if one does sum over all values
of u, the probability comes out about the same as when we fix u = 31.

2.4 Differential Cryptanalysis of RC6 39

Differential Cryptanalysis of RC6-NFR
Number of rounds 8 12 16 20 24

Number of
chosen plaintexts

228 247 261 284 2103

Table 2.12: Estimated number of chosen plaintexts required to attack RC6-NFR via
the differential method described in this section.

significant bits have any effect on the overall summation. The quadratic function
makes characteristics with differences in low order bits negligible in the big picture.

Table 2.12 summarizes the plaintext requirements to attack RC6-NFR with var-
ious numbers of rounds. We see that RC6-NFR provides moderate resistance to
differential cryptanalysis, but not enough to meet the requirements of the AES.

2.4.5 Differential Cryptanalysis of RC6

Pseudo code for RC6 encryption is given in Table 2.2 and a diagram of the round
function is in Figure 2.2.

We begin the differential cryptanalysis of RC6 by trying to adapt the attacks
used against RC6-I to the full RC6. The left hand side of Table 2.13 shows a
general characteristic which can be used to attack RC6. Similar to the computation
in Section 2.4.4, its probability is

ρ6 × qs × pt × pu × qu−5 × pv × qu−10.

The allowable values for the parameters are 0 ≤ s, t, v ≤ 26 and 15 ≤ u ≤ 26.
To make it iterative, we require s + 5 = u − 10. To maximise the probability, we
choose the parameters as high as possible (see Lemma 2.14) subject to the above
constraints. Thus, we take s = 11 and t = u = v = 26 (See right hand side of Table
2.13). The probability is ≈ 2−93.

For the iterative differential probability, we fix s = 11, u = 26 and allow t and v
to vary over the 26 possibilities. The probability is

ρ6 × q11 ×
26∑

t=0

pt × p26 × q21 ×
26∑

v=0

pv × q16 ≈ 2−91.

Similar to RC6-NFR, the iterative differential probability is only 4 times better than
the best characteristic probability. We call this iterative differential I6.

Other Static Iterative Differentials to Consider

In order to be sure that the differential I6 is the static differential of maximum
probability, we have also computed the probability of a cycle type (c) applied to
RC6 (recall Table 2.4). Table 2.14 gives such a general iterative characteristic lasting

40 Differential Cryptanalysis Applied to RC6

general a specific
characteristic choice

es+5 es 0 0 e16 e11 0 0
↓ ↓

es 0 0 0 e11 0 0 0
↓ ↓

0 0 0 et 0 0 0 e26

↓ ↓
0 eu et 0 0 e26 e26 0

↓ ↓
eu eu−5 0 ev e26 e21 0 e26

↓ ↓
eu−5 eu−10 ev 0 e21 e16 e26 0

↓ ↓
eu−10 eu−15 0 0 e16 e11 0 0

Table 2.13: A general 6-round iterative characteristic for attacking RC6, and a spe-
cific choice of parameters giving maximum probability of 2−93. The corresponding
iterative differential known as I6 has probability 2−91.

6-rounds, which has probability

ρ8 × q2
s × q2

t−5 × p2
t × p2

u.

Setting s = 21 and t = u = 26 gives a probability of 2−100. In this differential,
only the variable t can be free, which results in a probability of 2−99. Hence, the
differential is a factor of 28 times worse than I6.

The Possibility of Multi-bit Differentials

It is tempting to try multi-bit (i.e. non-static) differentials in hope of finding a better
iterative result than I6. We have so far been unsuccessful in doing so. It is worth
saying a few words about why it does not seem to work very well.

Similar to static differentials, there are bounds on where the difference bits can
be in the multi-bit case. For example, if in the static case we have 0 ≤ s ≤ 26, then
the corresponding multi-bit bound would be differences where the least significant
difference bit is at least 0 and the most significant is no more than 26. In the static
case, we get the maximum probability by putting the difference bit in the most
significant postion possible, because lower positions have much lower probabilities.
But in the multi-bit case, often what decides the probability is where the least
significant difference bit is: See Lemmas 2.12 and 2.15. So, to make the probability
as high as possible in the multi-bit case, we want to put the least significant difference
bit in the most significant position possible. This effectively suggests that we want
to use static characteristics.

2.4 Differential Cryptanalysis of RC6 41

general a specific
characteristic choice

es+5 es es+5 es e26 e21 e26 e21

↓ ↓
es 0 es 0 e26 0 e26 0

↓ ↓
0 et 0 et 0 e26 0 e26

↓ ↓
et et−5 et et−5 e26 e21 e26 e21

↓ ↓
et−5 0 et−5 0 e26 0 e26 0

↓ ↓
0 eu 0 eu 0 e26 0 e26

↓ ↓
eu eu−5 eu eu−5 e26 e21 e26 e21

Table 2.14: A general 6-round iterative characteristic for attacking RC6, and a spe-
cific choice of parameters giving maximum probability of 2−100. The corresponding
iterative differential has probability 2−99, and therefore this differential is not as
effective as I6.

An alternate approach one may try is to not have differences cancel. This quickly
results in differences in all four registers. Each time such a difference goes through
the quadratic function, we cannot have a resulting difference in the most significant
5-bits, assuming we are to avoid differences in the data-dependent rotates. Since
there are two quadratic functions per round, we immediately get a probability of
about 2−10 of having allowable rotate values. Let us write a difference as v2i, where
v is odd (i.e. i represents the least significant difference bit). We may attempt
to keep the differences small, for example, v is no more than 5-bits, or we may
allow differences to be large. With the small difference approach, we get additional
restrictions that need to be satisfied: a difference in one register must be rotated
an amount so that it approximately lines up with a difference in another register,
and each rotation value has probability 2−5. This suggests a probability of about
2−20 per round, which is far below what we accomplish in the static case. Although
sometimes the probability can be a little better, there are additional restrictions
such as the quadratic function not causing more than a small difference. With the
large difference approach, the problem seems to be that the difference paths are no
longer distinguishable from random noise. Indeed, differential cryptanalysis is only
effective if we can control the propagation of differences.

42 Differential Cryptanalysis Applied to RC6

general a specific
characteristic choice

es+5 es 0 0 e31 e26 0 0
↓ ↓

es 0 0 0 e26 0 0 0
↓ ↓

0 0 0 et 0 0 0 e26

↓ ↓
0 eu et 0 0 e26 e26 0

↓ ↓
eu eu−5 0 ev e26 e21 0 e26

↓ ↓
eu−5 ew ev 0 e21 e26 e26 0

↓ ↓
ew ex 0

eu−5+y+
e26 e31 0

e21+
ew+5+y e31

Table 2.15: The left hand side is a general customized characteristic for attacking
RC6. By choosing s = 11, we can get a differential E6 that holds with probability
2−74 and can be appended to I6. The right hand side contains a specific choice of
parameters that make the characteristic hold with maximum probability. Although
this specific choice cannot be appended to I6, it is still useful for attacking 8-rounds
of RC6. The corresponding differential holds with probability 2−56.

Non-iterative Customized Differentials for RC6

Clearly we can attack an arbitrary number of rounds of RC6 by repeatingly using
I6. However, unlike the simplified variants of RC6, we now want to consider special
optimizations that do not necessarily use iterative differentials, in order to attack
RC6 as efficiently as possible. We call such non-iterative differentials customized
differentials. We will specifically be seeking customized differentials that can be
appended or prepended to I6.

We begin with a 6-round customized characteristic that can be appended to
I6. Table 2.15 displays such a characteristic. As one can see, the first four rounds
are the same as I6, but the last two differ. Specifically, rather than enforcing that
the eu−5 disappears between the fifth and sixth rounds, we have instead allowed a
difference to be added onto it. The probability of this characteristic is

ρ7 × qs × pt × pu × qu−5 × pv × pw.

By taking s = 11 and t = u = v = w = 26, we get a characteristic that holds with
probability

≈ 2−35 × 2−23 × 2−5 × 2−5 × 2−10 × 2−5 × 2−5 = 2−88.

2.4 Differential Cryptanalysis of RC6 43

general
characteristic

es+5 es 0 0
↓

es 0 0 0
↓

0 0 0 et

Table 2.16: The characteristic E2 which can be appended to I6 by choosing s = 11.
In this case the corresponding differential probability is 2−23.

general
characteristic

es+5 es 0 0
↓

es 0 0 0
↓

0 0 0 et

↓
0 eu et 0

↓
eu ew 0 ev

Table 2.17: The characteristic E4 which can be appened to I6. The corresponding
differential probability is 2−41.

In the differential, we allow t, u, v, and w to take on any value between 0 and 26
which increases the probability by a factor of 24, and x and y to be any value
between 0 and 31 which increases the probability by a factor of 210 (i.e. all rotates
are allowed). Thus, the differential probability is about 2−88× 24× 210 = 2−74. We
call this differential E6.

Furthermore, if we wanted to attack only 8-rounds of RC6, then we can use a
differential similar to E6, but further improving it by starting with s = 26. This
increases the probability by a factor of about 218, giving an 8-round differential
attack on RC6 with complexity θ(256). We shall refer to this differential as E′

6.
Depending upon the number of rounds we are attacking, we will also be interested

in appending a 2-round or a 4-round differential to I6. Table 2.16 shows a 2-round
characteristic that holds with probability ρ × qs. For it to be appended to I6, we
must have s = 11. In the differential which we call E2, t is allowed to take on any
value, so the probability is q11 = 2−23. Table 2.17 shows a 4-round characteristic
that holds with probability ρ4 × qs × pt × pu. Again, we require s = 11 to append
it to I6. In the differential which we call E4, w and v can take on any value and t

44 Differential Cryptanalysis Applied to RC6

Differential Cryptanalysis of RC6
Number of rounds 8 12 16 20 24

Number of
chosen plaintexts

256 297 2190 2238 2299

Differential E′
6 B6 − E4 B6 − I6 B6 − I6 B6 − I6

method −E2 −E6 −I6 − E4

Table 2.18: The estimated number of chosen plaintexts required to attack RC6,
and the corresponding differential paths that give that attack. According to these
estimates, RC6 is invulnerable to differential cryptanalysis as soon as the number of
rounds is at least 16 because the number of required plaintexts is more than 2128.

and u range between 0 and 26. This gives a probability of 2−41.
Finally, we use a 6-round non-iterative differential which can be prepended to I6.

The differential is the same as I6 (Table 2.15) except we start with s = 26, which
improves the probability to 2−76. We call this differential B6.

By puzzling together these various differentials, we get estimates of the attack
complexities for attacking various numbers of rounds of RC6, as show in Table 2.18.
These are the best differential attacks so far published against RC6. Note that when
the complexity (i.e. number of chosen plaintexts required) becomes more than 2128,
the attacks are infeasible since there are only 2128 plaintexts available. Therefore,
it would require huge improvements to our attacks in order to cryptanalyze as few
as 16-rounds of RC6.

On the Possibility of Weak Keys

When we analyzed RC5, we used the average probability of a static difference over
subkey addition in our analysis, which is 1

2 (see Lemma 2.1). However, we remarked
that the real probability depends upon the least significant bits of the subkey, and
can be anywhere between 0 and 1. For a particularly unlucky choice of subkeys,
a characteristic or differential probability may in fact be substantially higher than
our analysis suggests, potentially resulting in weak keys.

Such weak keys are unlikely to exist for RC6. If integer subtraction is fixed
as the measure of difference, the subkey addition holds with probability 1, so our
analysis is not affected. We also note that the best iterative differential we found, I6

(Table 2.13), cannot hold for exclusive-or as measure of difference, since it requires
the difference e11 to pass over the quadratic function. We proved in Lemma 2.13
that this cannot happen.

Statement on the Applicability of the Biryukov and Kushilevitz Attack

The Biryukov and Kushilevitz attack on RC5 [3] improves upon [17] by allowing
more general but carefully controlled difference patterns. Rather than having dif-
ferences always cancel, they allow differences to add onto each other, as long as the

2.4 Differential Cryptanalysis of RC6 45

number of difference bits does not get too large. This restriction is necessary so that
expected output still occurs more likely than random noise.

Biryukov and Kushilevitz take advantage of the way differences propagate through-
out RC5. Consider what happens when starting with a 1-bit difference and assuming
that differences do not get in the rotate amounts, differences do not cancel with each
other, and differences do not propagate from the subkey addition. The 1-bit differ-
ence becomes a 2-bit difference, then a 3-bit difference, then 5-bit, then 8-bit, and
so on. The Hamming weight difference pattern is that of a Fibonacci sequence. Of
course, this cannot continue forever.

Whenever a rotate amount is 0, a step back is taken in the Fibonacci sequence.
For example, if a current difference has Hamming weight 5 (which comes from one
register having Hamming weight 3 difference and the other having Hamming weight
2), then the result of the current half-round will be a Hamming weight 3 difference.
Taking into consideration these backward steps, they define a corrected Fibonacci
sequence with up to k corrections as a Fibonacci sequence having at most k backward
steps. Thus, in their attack, any characteristic that follows the corrected Fibonacci
sequence is the signal which allows them to uncover key bits after enough chosen
plaintexts.

The same idea seemingly could apply to RC6. In order to do so, we would require
that the quadratic function does not “disrupt” the difference in an unpredictable
way. For instance, we would require that differences always remain the same after the
quadratic function (Lemma 2.12) so that the corrected Fibonacci sequence remains
intact. At first, this may seem to improve the attacks already presented in this
chapter since there are more signals to look for. But on the other hand, remember
that this quickly results in differences in all four registers which greatly reduces the
probability of each characteristic because there are more ρ’s and more applications
of Lemma 2.12 that show up. It is our expectation that this negative aspect would
make the Biryukov and Kushilevitz idea not very helpful in improving our attacks,
with possible exception to when we only allow the differences to not cancel in the
last few rounds. If this is indeed the case, then only small improvements could
be made to the attacks we have presented. We leave the investigation to future
researchers.

2.4.6 Addendum: Non-Random Behavior of RC6-I-NFR and RC6-NFR

In the analyses that we have done so far, we have made the preliminary assumptions
that all probabilities are independent. It is prudent to verify that these probabilities
do agree with experimental results. In doing so, we found that RC6-I-NFR and
RC6-NFR had some hidden inter-dependencies from round to round. It turns out
that the values of certain subkeys have a direct effect on whether or not certain
characteristics can hold. A similar phenomenom was observed by Knudsen and
Meier in [19]. In this section, we explain those inter-dependencies and argue that
they do not seem to hold in the version that involve a fixed rotate. Experimental
evidence supports this conclusion.

46 Differential Cryptanalysis Applied to RC6

i Ai Bi Ci Di

1 e31 e31 0 0
↓

2 e31 0 0 0
↓

3 0 0 0 e31

↓
4 0 e31 e31 0

↓
5 e31 e31 0 e31

↓
6 e31 e31 e31 0

↓
7 e31 e31 0 0

Table 2.19: A characteristic for RC6-I-NFR and RC6-NFR.

The results in this section were published in [9].

Refining the Analysis of RC6-I-NFR and RC6-NFR

Consider the characteristic for RC6-I-NFR and RC6-NFR given in Table 2.19. We
are using the notation Ai (respectively Bi, Ci and Di) to denote the values of
registers A (respectively B, C, and D) at the beginning of round i. As an example,
A1, B1, C1, and D1 contain the plaintext input after pre-whitening (i.e. after adding
on S[0] and S[1]) and for the six-round variants of the cipher, A7, B7, C7 and D7

contain the output prior to post-whitening.
In both variants, our analysis indicated that this characteristic should occur with

probability 2−30 (Sections 2.4.1 and 2.4.4). Here, we show that it can only occur
if certain subkey conditions are met. Further, once these subkey conditions hold,
then the characteristic occurs with probability 2−20. This is much higher than the
initial estimate of 2−30 that was obtained by averaging over all subkeys.

In the analysis that follows we will concentrate on RC6-NFR. The same argu-
ments and results can be applied to RC6-I-NFR by replacing f(X) = X × (2X + 1)
with the identity function f(X) = X. We will use the fact that X mod 2i uniquely
determines (X × (2X + 1)) mod 2i (see Lemma 2.9).

Lemma 2.16 If the characteristic given in Table 2.19 holds for RC6-NFR, then
the following two conditions on the subkeys must hold:

f(−S[9]) ≡ −S[7], mod 32
f(S[8]) ≡ −S[11] mod 32

Proof: First we observe that if the characteristic is to hold, then certain rotation
amounts derived from the B and D registers must be zero. Note that we always

2.4 Differential Cryptanalysis of RC6 47

have that Bi = Ai+1 and that Di = Ci+1. As a consequence, for the characteristic
to hold we must have

D2 ≡ C3 ≡ 0 mod 32, B3 ≡ A4 ≡ 0 mod 32,
B4 ≡ A5 ≡ 0 mod 32, D4 ≡ C5 ≡ 0 mod 32,
B5 ≡ A6 ≡ 0 mod 32, B6 ≡ A7 ≡ 0 mod 32.

Using the fact that the rotation amounts are 0, we get the following two equations
from rounds three and four and rounds four and five.

B4 = (C3 ⊕ f(D3)) + S[7], (2.4)
B5 = (C4 ⊕ f(D4)) + S[9]. (2.5)

Since B4 ≡ 0 mod 32, C3 ≡ 0 mod 32, B5 ≡ 0 mod 32 and D4 ≡ 0 mod 32, we have
S[7] ≡ −f(D3) mod 32 and C4 ≡ −S[9] mod 32. Since C4 = D3, we obtain the first
condition on subkeys S[7] ≡ −f(−S[9]) mod 32.

Similarly, looking at the computation from rounds four and five and rounds five
and six, we get the following two equations.

D5 = A4 ⊕ f(B4) + S[8], (2.6)
B6 = C5 ⊕ f(D5) + S[11]. (2.7)

Since A4 ≡ 0 mod 32, B4 ≡ 0 mod 32, B6 ≡ 0 mod 32 and C5 ≡ 0 mod 32, we have
D5 ≡ S[8] mod 32 and S[11] ≡ −f(D5) mod 32, and so S[11] ≡ −f(S[8]) mod 32.
¤

The subkey dependencies in Lemma 2.16 were obtained using only four equations
(those for B4, B5, D5 and B6). In total, one could write down 12 equations of the
form Bi+1 = ((Ci⊕f(Di))<<<f(Bi))+S[2i+1] and Di+1 = ((Ai⊕f(Bi))<<<f(Di))+
S[2i] for this characteristic. Although there might be dependencies involving other
equations, the four given above will be the focus of the rest of this section. Es-
sentially, each equation involves four variables and the aim is to combine equations
to obtain two expressions with a single variable. If the two expressions involve the
same variable then we can obtain conditions on the subkeys involved.

It is worth noting that given such conditions on the subkeys involved, not only
does the characteristic hold, but it does so with a higher probability than the ex-
pected value given in Section 2.4.4.

Lemma 2.17 Assume that the characteristic given in Table 2.19 holds up to round
five. Furthermore suppose that f(−S[9]) ≡ −S[7] mod 32 and f(S[8]) ≡ −S[11] mod
32. Then B5 ≡ 0 mod 32 and B6 ≡ 0 mod 32.

Proof: From Lemma 2.16, we have that S[7] ≡ −f(D3) mod 32. This is equivalent
to −S[7] ≡ f(C4) mod 32. Also, we have that B5 ≡ C4 + S[9] mod 32. So, if
−S[7] ≡ f(−S[9]) mod 32 then f(C4) ≡ f(−S[9]) mod 32 which implies that C4 ≡
−S[9] mod 32 and so B5 ≡ 0 mod 32. A similar argument can be used to show that
B6 ≡ 0 mod 32. ¤

48 Differential Cryptanalysis Applied to RC6

Lemma 2.17 shows that when the subkey conditions hold, B5 ≡ 0 mod 32 and
B6 ≡ 0 mod 32. In this case the probability of the characteristic will be 2−30 ×
25 × 25 = 2−20, since two of the rotation amounts are always zero. Recall that
the estimated probability for the characteristic when averaged over all keys is 2−30.
Here we have shown (Lemmas 2.16 and 2.17) that there is some irregularity in the
distribution of the probability: For a fraction of 2−10 keys the probability is 2−20,
and for the rest of the keys the probability is much smaller than 2−30. In fact, this
set meets the definition of weak keys. In [19], Knudsen and Meier demonstrated
that a similar irregularity of distribution that holds for RC5 can be exploited to
improve differential attacks. We would expect the same to apply here. Similar
subkey dependencies can be observed for some of the other characteristics for RC6-
I-NFR and RC6-NFR. However in some cases the characteristic must be iterated
more than once before dependencies exist.

Note that the behavior of the differential associated with some characteristic
is typically of more importance in a differential attack. For RC6-I-NFR, while
the characteristic displays the irregular behavior already described, the associated
differential has been experimentally verified to hold with the expected probability.
However the associated differential for RC6-NFR appears to have the same irregular
behavior as the characteristic. Why is there this discrepancy? In Section 2.4.4 it is
shown how the introduction of the quadratic function helps to reduce the additional
effect of differentials. In short, for RC6-I-NFR there are many equally viable paths
that match the beginning and end-points of the characteristic. If the characteristic
fails to hold because of some choice of subkey values, other characteristics hold
instead thereby maintaining the probability of the differential. However, with RC6-
NFR we introduce the quadratic function and this typically reduces differentials to
being dominated by the action of a single characteristic. Irregular behavior in the
characteristic will therefore manifest itself as irregular behavior in the differential.

Differential Characteristics in RC6-I and RC6

Let us now consider the role of the fixed rotation that was omitted in RC6-I-NFR
and RC6-NFR. We will find that this single operation removes the kind of subkey
dependencies that occurred in these two variants.

We will focus on RC6-I in the analysis for simplicity, and the same arguments
also apply to the full RC6. We will need to make some heuristic assumptions to
make headway with our analysis. Nevertheless our experimental results confirm that
the differential behavior of RC6-I closely matches the behavior described in 2.4.2.

The characteristic which seems to be the most useful for attacking RC6-I is
shown again in Table 2.20. We first argue that there are no subkey dependencies of
the form we described in Section 2.4.6 for this characteristic and we then broaden
our discussion to include other, more general, characteristics.

At this stage we need some new notation: the exponent n will be used to denote
when some quantity has been rotated to the left by n bit positions. For example,
D5

2 ≡ 15 mod 32 means that when D2 is rotated five bits to the left, then the decimal

2.4 Differential Cryptanalysis of RC6 49

i Ai Bi Ci Di

1 e16 e11 0 0
↓

2 e11 0 0 0
↓

3 0 0 0 e26

↓
4 0 e26 e26 0

↓
5 e26 e21 0 e26

↓
6 e21 e16 e26 0

↓
7 e16 e11 0 0

Table 2.20: A useful characteristic for RC6-I.

value of the least significant five bits is 15. Of course, this is the same as saying that
the most significant five bits of D2 take the value 15. For simplicity, we will assume
that (X + Y)j = Xj + Y j where j denotes a rotation amount. This is actually true
if and only if there is no carry-out when adding the top j bits and no carry-out
when adding the bottom 32− j bits. However, for the sake of our analysis, we make
this assumption, since it should facilitate the construction of any potential subkey
dependencies.

Following the arguments in Lemma 2.16, for the characteristic in Table 2.20 to
hold the following rotation amounts must take the values indicated:

D5
2 ≡ C5

3 ≡ 15 mod 32, B5
3 ≡ A5

4 ≡ 27 mod 32,
B5

4 ≡ A5
5 ≡ 27 mod 32, D5

4 ≡ C5
5 ≡ 27 mod 32,

B5
5 ≡ A5

6 ≡ 17 mod 32, B5
6 ≡ A5

7 ≡ 17 mod 32.

We wish to write down four equations similar to Equations (2.4), (2.5), (2.6)
and (2.7) which cause subkey dependencies in RC6-NFR. From round three to four,
the difference e26 is copied from register D3, is changed to e31 by the action of the
fixed rotation, and then exclusive-or’ed into the C strand. For it to become the e26

that appears in B4, the data dependent rotation B5
3 must have the value 27. Hence,

we must have B5
3 ≡ 27 mod 32 and B4 = (C3 ⊕D5

3)
27 + S[7] = C27

3 ⊕D3 + S[7]. In
a similar way other equations can be derived:

B4 = C27
3 ⊕D3 + S[7], (2.8)

B5 = C27
4 ⊕D4 + S[9], (2.9)

D5 = A27
4 ⊕B4 + S[8], (2.10)

B6 = C17
5 ⊕D22

5 + S[11]. (2.11)

50 Differential Cryptanalysis Applied to RC6

i Ai Bi Ci Di

1 et+5 et 0 0
↓

2 et 0 0 0
↓

3 0 0 0 es

↓
4 0 eu es 0

↓
5 eu eu−5 0 ev

↓
6 eu−5 eu−10 ev 0

↓
7 eu−10 eu−15 0 0

Table 2.21: A generalized characteristic for RC6-I.

In Lemma 2.16 we observed a subkey dependency by combining the analogous
equations to (2.8) and (2.9), and another dependency from combining the analogous
equations to (2.10) and (2.11). In the case of RC6-I we can demonstrate that neither
approach now works.

We first consider Equations (2.8) and (2.9). For Equation (2.9) we know that
the values of B5

5 mod 32, D5
4 mod 32, and S[9]5 mod 32 are fixed. This implies a

condition on the least significant five bits of C4. Since C4 is the same as D3, we
have a condition on D3 mod 32. We now have conditions on all the registers in
Equation (2.8), namely, B5

4 mod 32, C5
3 mod 32, and D3 mod 32. However, the bits

from different words involved in this equation are from different positions. They do
not lead to any constraints on S[9], and there appear to be no subkey dependencies
as a result.

Similar arguments also apply to Equations (2.10) and (2.11). One may also try
to combine Equations (2.8) and (2.10), since they have the quantity B4 in common,
or Equations (2.9) and (2.11), since they have C5 = D4 in common. However, these
combinations also fail to give any subkey dependencies.

We performed experiments on RC6-I to assess the probability of the charac-
teristics given in Table 2.20. These results confirmed that the distribution of the
characteristic probability was as expected, and there was no indication of any subkey
dependencies for the characteristic.

More generally, we might consider characteristics of the form given in Table 2.21.
The values which we need to fix if the characteristic is going to hold are

D5
2 ≡ C5

3 ≡ s− t mod 32, B5
3 ≡ A5

4 ≡ u− 5− s mod 32,

B5
4 ≡ A5

5 ≡ u− 5− s mod 32, D5
4 ≡ C5

5 ≡ v − u− 5 mod 32,

B5
5 ≡ A5

6 ≡ u− 15− v mod 32, B5
6 ≡ A5

7 ≡ u− 15− v mod 32.

2.5 Diffusion Properties of RC6 51

Let r1 = u−5−s, r2 = v−u−5, and r3 = u−15−v. Then the subkey dependencies
we observed would be produced by the following equations:

B4 = Cr1
3 ⊕D5+r1

3 + S[7],
B5 = Cr1

4 ⊕D5+r1
4 + S[9],

D5 = Ar2
4 ⊕B5+r2

4 + S[8],
B6 = Cr3

5 ⊕D5+r3
5 + S[11].

Following similar arguments to those presented earlier, it can be verified that
there is no choice for r1, r2, and r3 that makes the characteristic depend upon the
values of the subkeys. In particular, the most promising values to try are r1 = 0;
r1 = 27; r3 = 0 and r2 = 22; and r3 = 0, r2 = 27, and r1 = 27.

The fixed rotation is an important component of RC6. Not only does it help to
hinder the construction of good differentials and linear approximations [8], but it
helps to disturb the build-up of any inter-round dependencies. Here the fixed rota-
tion ensures that equations can simultaneously hold without forcing any restriction
on the values of the quantities involved.

2.5 Diffusion Properties of RC6

Recall, in Section 2.1.2, we discussed Kaliski and Yin’s differential cryptanalysis of
RC5. At the end of the section, we made the remark about the two improvements
to their attack: the work of Knudsen and Meier [19] and the work of Biryukov and
Kushilevitz [3]. Both of these attacks rely on the fact that RC5 has a relatively slow
avalanche of change from one round to the next, assuming no difference in the data-
dependent rotation amounts. To further justify (in addition to what was said in
Section 2.4.5) the lack of applicability of these attacks to RC6, we shall analyze the
avalanche properties of RC6 in this section. Since both the mentioned results used
exclusive-or as measure of difference, we will do the same. Thus, we are interested
in the distribution of the Hamming weights of output differences given an input
difference of a certain form.

Even for a simple operation it can be difficult to fully characterize these proba-
bility distributions. We will study the problem by analyzing the expected Hamming
weight of the output differences. This approach provides good insight into the roles
of the different operations in RC6.

Our analysis shows that the quadratic function drastically increases the Ham-
ming weight of the expected difference, especially when the Hamming weight of
the input difference is small. This illustrates a nice effect whereby the use of the
quadratic function complements that of the data-dependent rotation. As we have
mentioned, the data-dependent rotation becomes an effective agent of change only
when there is a difference in the rotation amount. With a small Hamming weight
difference, it is less likely that non-zero difference bits appear in positions that affect
a rotation amount. However, the quadratic function helps to drastically increase the
avalanche of change so that the full benefit of the data-dependent rotations can be

52 Differential Cryptanalysis Applied to RC6

gained as soon as possible.

2.5.1 Definitions and Assumptions

We will be interested in diffusion properties of RC6 with word size w = 32, but much
of our analysis is general enough for arbitrary w. We only consider exclusive-or as
measure of difference. Let X ′ = X1 ⊕X2, Y ′ = Y1 ⊕ Y2, and Z ′ = Z1 ⊕ Z2 and let
x, y, z denote the Hamming weight of the differences X ′, Y ′, Z ′, respectively.

Consider the following two conditions that may be imposed on some difference
that has Hamming weight x:

A: There is a single block of consecutive 1-bits of length x, and the block is dis-
tributed randomly at some position in the input difference. We do not assume
words wrap-around.

B: There are t > 1 blocks of consecutive 1-bits of length x1, x2, ..., xt such that
x1 + x2 + · · ·+ xt = x. In addition, each block is distributed randomly across
the input difference.

Condition B is actually a good characterization for the differences in the intermediate
rounds of RC6 and its variants. In each round (of RC6 or its variants) any difference
in the A and C strands are rotated by a random amount due to the data-dependent
rotations. Hence each block of 1-bits within the differences is distributed randomly.
Condition A is a special case of Condition B. In the next two sections when we
examine the diffusive properties of individual operations, we will first consider the
special case Condition A and then generalize the results to Condition B.

2.5.2 Diffusive Properties of the Basic Operations

Here we analyze the basic operations of exclusive-or, addition, and rotation. The
more complicated quadratic function will be considered in the next section.

Lemma 2.18 (exclusive-or) For i = 1, 2 let Zi = Xi ⊕ Yi. If X ′ and Y ′ satisfy
Condition A, then the expected value of z is bounded by E(z) ≤ x + y − 2xy

w .

Proof: The number of possible positions for each block of 1-bits is w − x + 1
and w − y + 1 respectively. We upperbound these values by w. Since the blocks
of 1-bits are both distributed randomly, a 1-bit in X ′ has probability of ≥ 1

w of
overlapping with a 1-bit in Y ′. So the expected number of bits that overlap is ≥ xy

w .
Since each overlap cancels two bits, the expected Hamming weight of the output is
≤ x + y − 2xy

w . ¤

Corollary 2.19 (exclusive-or) For i = 1, 2 let Zi = Xi⊕Yi. If X ′ and Y ′ satisfy
Condition B then E(z) ≤ x + y − 2xy

w .

Proof: The same proof from Lemma 2.18 applies here. ¤

2.5 Diffusion Properties of RC6 53

Lemma 2.20 (addition) For i = 1, 2 let Zi = Xi + S, where S is the subkey. If
X ′ satisfies Condition A then averaging over all possible X1, X2, and S one has that
E(z) = c + x+1

2 where c ∈ [0, 1] and depends on X ′.

Proof: First consider the special case where x = w, that is, X1 and X2 differ in
all bits. We first prove that when averaging over all possible X1, S,

prob(X1 + S < 2w and X2 + S ≥ 2w) =
1
4
. (2.12)

Given any X1 ∈ {0, 1}w, we define

d(X1) = |{S : S ∈ {0, 1}w, s.t. X1 + S < 2w and X2 + S ≥ 2w}|.

If X1 ≥ 2w−1, then there are no solutions (d(X1) = 0), so we only need to consider
the case X1 < 2w−1. Since X2 = 2w −X1− 1 (the 1’s complement), we see that the
valid solutions for S are X1 + 1 ≤ S < 2w −X1. Hence d(X1) = 2w − 1− 2X1, and

prob(X1 + S < 2w and X2 + S ≥ 2w) =

2w−1−1∑
X1=0

d(X1)

2w × 2w

=

2w−1−1∑
X1=0

2w − 1− 2X1

22w
=

2w−1(2w − 1)− (2w−1 − 1)(2w−1)
22w

=
1
4
.

Note that Equation 2.12 holds for any value of w > 0. So we can consider
the least significant j bits of X1, X2, S. More precisely, for 1 ≤ j ≤ w, define
X1(j) = X1 mod 2j , X2(j) = X2 mod 2j , S(j) = S mod 2j . Then,

prob(X1(j) + S(j) < 2j and X2(j) + S(j) ≥ 2j) =
1
4
. (2.13)

By symmetry,

prob(X1(j) + S(j) ≥ 2j and X2(j) + S(j) < 2j) =
1
4
. (2.14)

From Equations 2.13 and 2.14, we know that with probability 1
2 , exactly one of

the two addition operations (X1 + S and X2 + S) produces a carry into bit j. Z1

and Z2 will be the same in bit j if and only if this carry happens. Therefore, with
probability 1

2 , the jth bit (j ≥ 1) of Z ′ = Z1 ⊕ Z2 is 1. Since bit 0 of Z ′ is always
1, the expected Hamming weight of Z ′ is w−1

2 + 1 = w+1
2 = c + w+1

2 for c = 0. We
have proved the Lemma for the special case where x = w.

For the general case where 1 ≤ x ≤ w, we can apply the same type of argument.
Let v be the index of the most significant 1 in X ′. So X1 and X2 are the same

54 Differential Cryptanalysis Applied to RC6

in bits v + 1 through w − 1. There are x+1
2 expected difference bits in Z ′ when

considering up to bit index v. With probability 1
2 , a carry will propagate into the

v+1st bit of exactly one of the words. This carry could propagate further, resulting
in more difference bits. The expected number of difference bits coming from the
v + 1st to w − 1st indices is

∑w−v−1
i=1 (1

2)i. Since this is a number c between 0 and
1, the expected Hamming weight of the output difference is c + x+1

2 . ¤

Corollary 2.21 (addition) For i = 1, 2 let Zi = Xi + S, where S is the subkey.
Suppose that X ′ satisfies Condition B and there are t blocks of 1’s in X ′. Then,
averaging over all possible keys S, E(z) ≤ t + x+t

2 .

Proof: Follows from Lemma 2.20. ¤
The fixed rotation Z = X<<< lg w always preserves the Hamming weight of the

input difference in the output difference. For data-dependent rotations, it is straight-
forward to see that provided the input difference does not affect the rotation amount,
then the Hamming weight of the difference is preserved. We can state this simple
fact in the following lemma.

Lemma 2.22 (data-dependent rotation) For i = 1, 2 let Zi = Xi<<<Yi. If
Y ′ ≡ 0 mod w, then z = x.

¤
Recall that the analysis of the case where Y ′ 6≡ 0 mod w was treated in Section

2.3, where it was shown that except in very rare special cases, the Hamming weight
is increased by a large amount. The probability of this occurring is given by the
following lemma.

Lemma 2.23 Let y = wH(Y ′) and let p be the probability that Y ′ 6≡ 0 mod w. If
Y ′ satisfies Condition A, then p = min

(
y+lg w−1

w , 1
)
.

¤
For the more general case when Y ′ satisfies Condition B, it is not so simple to

derive a precise formula similar to the one given above. However, it is clearly the
case that the higher the Hamming weight of Y ′, the larger the probability that some
part of the non-zero input difference will have an effect on the rotation amount.

2.5.3 Diffusion Properties of the Quadratic Function

We begin this section with a lemma that gives some analytical justification for the
use of the higher order bits of the quadratic function as a rotation amount in the
full RC6. It tells us that changing a single bit of an input will likely change at least
one of the high order bits. Thus, the quadratic function provides good avalanche
properties.

2.5 Diffusion Properties of RC6 55

Lemma 2.24 Suppose input X1 is chosen uniformly at random from {0, 1}32. Let
gi,j denote the probability that flipping bit i of X1 will flip bit j of Y1 = f(X1). Then

gi,j =

0 for j < i,
1 for j = i,
1 for j = 1 and i = 0, and

gi,j ∈ [1/4, 3/4] for j > i ≥ 1 or j ≥ 2 and i = 0.

For the last case, gi,j is close to 3/4 if j = 2i + 2, and for most of the other i, j
pairs, gi,j is close to 1/2.

Proof: Let X2 = X1 ⊕ 2i and Y2 = f(X2). Without loss of generality, we may
assume X1[i] = 0 so that δX = 2i. By Lemma 2.10, we have:

δY = Y2 − Y1 = 2i+2X1 + 2i + 22i+1 mod 232 . (2.15)

Case j < i: By Equation 2.15, it is clear that bits of δY below index i are all
zero. Therefore bits of f(X2) below index i are the same as those in f(X1).

Case j = i: By Equation 2.15, we see that bit i of δY is one and all lower order
bits are zero. So Y2[i] will necessarily be the opposite of Y1[i].

Case j = 1 and i = 0: By Equation 2.15, δY = 4X1 + 1 + 2. Since X1[0] = 0,
Y1[0] = 0 which implies that there is no carry from bit 0 into bit index 1 in the
computation of Y2 = Y1 + δY . Thus, Y2[1] = Y1[1]⊕ 1.

Case j > i ≥ 1 or j ≥ 2, i = 0: An exhaustive computation of the probabilities
reveals that gi,j always ranges between 1

4 and 3
4 , but most of the probabilities are

very close to 1
2 , especially when i ≥ 16. ¤

The cases j > i ≥ 1 and j ≥ 2, i = 0 are of course unsatisfying due to not having
a terse, mathematical proof. We therefore provide the following heuristic argument
as further justification:

Heuristic 2.25 Suppose input X1 is chosen uniformly at random from {0, 1}32.
Let gi,j denote the probability that flipping bit i of X1 will flip bit j of Y1 = f(X1).
Then

gi,j ∈ [1/4, 3/4] for j > i ≥ 1 or j ≥ 2 and i = 0.

Proof: By Equation 2.15, we see that

δY ≈ 2i+2X1 + 22i+1 mod 232 (2.16)
≈ 2i+2X1 mod 232 . (2.17)

We first consider the case where j = i + 1. By Equation 2.15, bit j + 1 of δY is
always zero and bit j is always one. When computing Y2 = Y1 + δY , there is a carry
coming into bit i + 1 with probability ≈ 1

2 (whenever Y1[i] = 1), implying that bit
i of Y2 will be different than bit i of Y1 with probability ≈ 1

2 .

56 Differential Cryptanalysis Applied to RC6

Next consider j = 2i + 2. We analyze the carry effect when computing Y2 =
Y1 + δY where δY is given by approximation 2.16. Since X1[i] = 0, bit 2i + 2 of
2i+2X1 is zero. Thus, Y2[2i + 2] = Y1[2i + 2] only if the incoming carry bit is zero.
However, the incoming carry bit is one when X1[i − 1] = 1 due to the 22i+1 in
approximation 2.16, and when X1[i − 1] = 0, the incoming carry bit is one with
probability ≈ 1

2 . Thus, we get gi,2i+2 ≈ 3
4 .

Finally, consider the case where j ≥ i + 2 and j 6= 2i + 2. Using approximation
2.17, we see that δY [j] is usually the same as X1[j − (i + 2)]. The exceptional cases
are when there is a carry coming in due to the 2i and 22i+1 terms in Equation
2.15. However, bits at indices i and 2i + 1 are at least 2 positions away from the
index j, so this carry effect is typically with probability ≤ 1

4 . Thus, the probability
is approximately 1

2 that Y2[j] will be the same as Y1[j], where the approximation
becomes more accurate the farther j is from indices i and 2i + 1. ¤

Experimental evidence suggests a similar result to Lemma 2.24 holds true for
the more general case where multiple input bits are flipped. If we let j be the index
of the least significant 1-bit of X ′, we clearly will have no difference in Y ′ for bits 0
through j − 1, and a difference for bit j. For most of the other bits, we expect to
have a difference with probability close to 1

2 . Since we are unable to prove this or
complete an exhaustive search, we state it as an assumption:

Assumption 2.26 For i = 1, 2 let Yi = f(Xi). Suppose X ′ satisfies Condition B
and let j be the bit position of its least significant 1. Then most bits from positions
j + 1 through w − 1 of Y ′ are 1 with probability close to 1

2 .

We now get the following, perhaps surprising, result.

Lemma 2.27 (quadratic function) For i = 1, 2 let Yi = f(Xi). Let x = wH(X ′)
and y = wH(Y ′). If X ′ satisfies Condition B then E(y) ≈ 1 + x+w−2

4 .

Proof: Let i be the index of the least significant 1 in X ′. For a fixed i, the
expected value of y is roughly 1+(w−1− i)/2 according to Assumption 2.26. If X ′

satisfies Condition A then i is uniformly distributed between 0 and (w− x). Hence,

E(y) ≈ 1
(w − x) + 1

w−x∑

i=0

(
1 +

w − 1− i

2

)
= 1 +

x + w − 2
4

.

¤
Lemma 2.27 shows that even when the difference in some input to the quadratic

function has Hamming weight 1, the average Hamming weight of the difference in the
output is 8.75. This is a very important result. All the other basic operations in RC6,
as well as those used in RC5, generally provide little or no additional change to the
output difference when the Hamming weight of the input difference is very low. But
Lemma 2.27 assures us that in this case, the expected change due to the quadratic
function is quite large. Thus, the quadratic function provides excellent avalanche
properties, and low Hamming weight characteristics seem difficult to attain.

2.5 Diffusion Properties of RC6 57

We can illustrate this benefit in the following way. We experimentally measure
the probability that the rotation amounts3 at the end of a given number of rounds
are unaffected by a single bit change in the first word of the input to the cipher. We
consider rotation amounts in this exercise because current differential-style attacks
on RC5 and RC6 require any difference propagating through the cipher to leave
the rotation amounts unchanged. We use “-” to indicate that experimentally the
probability is approximately (2−20), which is indistinguishable from random noise.

Rounds RC6-I-NFR RC6-I RC6-NFR RC6
2 2−0.54 2−0.64 2−1.32 2−10.27

4 2−2.15 2−2.45 2−6.27 -
6 2−6.14 2−7.04 2−14.30 -
8 2−12.76 2−14.97 - -
10 2−19.07 - - -

For an increased number of rounds, the probability of unchanged rotation amounts
gives a good illustration of the relative diffusive effect of RC6 and its weakened vari-
ants. It also illustrates the role of the quadratic function in the security of RC6.

2.5.4 Concluding Remarks

Basic differential-style attacks attempt to predict and control the change from one
round to the next during encryption [17]. Improved attacks on RC5 [3, 19] do not
attempt to predict the difference quite so closely. Instead, they rely on the relatively
slow diffusive effect of RC5 to ensure that any change propagating through the cipher
remains manageable and to some extent predictable. Even though single-bit starting
differences might be used, differentials with an ending difference of Hamming weight
15, for example, can still be useful [3, 19].

The quadratic function was added to RC6 to address this particular shortcoming
of RC5. In this section we have shown that the quadratic function tends to have
a much higher diffusion property than the other operations, particularly when the
input difference has small Hamming weight. This makes it quite difficult to find
differentials following some controlled pattern with non-negligible probability. In
general, we expect that the quadratic function will strongly hinder differential and
other attacks that rely on a modest avalanche of change from one round to the next.

3By “rotation amounts” we mean the low five bits of the registers for RC6-I-NFR and RC6-
NFR, the high five bits of the registers for RC6-I, and the high five bits of the output of f(x) for
RC6.

58 Differential Cryptanalysis Applied to RC6

Chapter 3

Cryptanalysis of the SecurID Hash
Function

The SecurID, developed by RSA Security, is a hardware token used for strengthening
authentication when logging in to remote systems, since passwords by themselves
tend to be easily guessable and subject to dictionary attacks. The SecurID adds
an “extra factor” of authentication: one must not only prove themselves by getting
their password correct, but also by demonstrating that they have the SecurID token
assigned to them. The latter is done by entering the 6- or 8-digit code that is being
displayed on the token at the time of login.

Each token has within it a 64-bit secret key and an internal clock. Every minute,
or every half-minute in some tokens, the secret key and the current time are sent
through a cryptographic hash function. The output of the hash function determines
the next two authenticator codes, which are displayed on the LCD screen display.
The secret key is also held within the “ACE/server”, so that the same authenticator
can independently be computed and verified at the remote end.

If ever a user loses their token, they must report it so that the current token can
be deactivated and replaced with a new one. Thus, the user bears some responsibility
in maintaining the security of the system. On the other hand, if the user were to
temporarily leave his token in a place where it could be observed by others and then
later recover it, then it should not be the case that the security of the device could
be entirely breached, assuming the device is well-designed.

The scenario just described was considered in a recent publication by Biryukov,
Lano, and Preneel [5], where they showed that the hash function that is alleged to
be used by SecurID [40] (ASHF) has weak properties that could allow one to find the
key much faster than exhaustive search. The attack they describe involves recording
many outputs of the SecurID using a PC camera with OCR software, and then later
searching the outputs for indication of a vanishing differential – two closely related
input times that collide in the function, resulting in the same output hash. If one
is discovered, the attacker then has a good chance of finding the internal secret key
using a search algorithm that they estimated to be equivalent to 248 hash function

59

60 Cryptanalysis of the SecurID Hash Function

operations. On a 2.4 GHz PC, 248 hash operations take about 111 years1. It would
require over 1300 of these PC’s to find the key in a month.

In this chapter, we go through a deeper analysis of the [5] algorithm, giving
further justification of their conjectured running time of 248. We then present three
techniques to speed up the filtering step, which is the bottleneck of their attack. Our
theoretical analysis and implementation experiments show that the time complexity
can be reduced to about 245 hash operations when using only a single vanishing
differential. When the vanishing differential involves ≥ 4-bits, which happens about
one third of the time, it appears that the running time should be faster.

We also investigate into the use of extra information that an attacker would
ordinarily have, in order to speed up the attack further. This information consists
of either multiple vanishing differentials, or knowledge that no other vanishing dif-
ferentials occur in a nearby time period of the observed one. In either case, the
running time can be reduced significantly. From our analysis we expect that after
a vanishing differential is observed, the attacker would nearly always be able to
perform the key search algorithm in 240 hash operations or less. On a typical PC,
this can be done in about 5 months, making the computing power requirements for
the search attainable by almost any individual.

The success probability of all attacks (including [5]) depends upon how long the
attacker must wait for a vanishing differential to occur – the longer the period is,
the higher the chance that a token will have a vanishing differential. For example,
simulations have shown that in any one-week period, about 1% of the SecurID cards
will have a vanishing differential; in any one-year period, about 35% of the tokens
will have a vanishing differential.

We should note, however, that the longer the device is out of a user’s control,
the more likely that the user will recognize it and have it deactivated. So, we
consider two realistic scenarios in which the token could be compromised. In the
first scenario, a user may be on vacation for one week and left his token behind
in a place where others could observe it, in which case there is a 1% chance that
a collision would happen. This probability is small, but definitely non-negligible,
especially considering that a single large corporation may have many thousands of
SecurID users. In the second scenario, the success is much more likely. Since the
cost of SecurID tokens is very high, tokens are often reassigned to new users when
a previous owner leaves a company [41]. This is a very bad idea, since the original
user would have a high chance of being able to find the internal key, assuming he
recorded many of the outputs while it was in his possession. See [5] for a diagram
showing how the probability of a vanishing differential increases with time. In light
of our new results, the token reassignment scenario becomes a serious risk.

1Requires some optimisations to the code from [40], such as re-ordering bytes to eliminate
bswaps.

3.1 The SecurID Hash Function 61

3.1 The SecurID Hash Function

We provide a high level description of the alleged SecurID hash function, following
the same notation as in [5] wherever possible. More detailed descriptions can be
found in [5, 40].

The function can be modeled as a keyed hash function y = H(k, t), where k is a
64-bit secret key stored on the SecurID token, t is a 24-bit time obtained from the
clock every time unit of 30 or 60 seconds, and y is two 6- or 8-digit codes. The two
codes are output in consecutive time units. The function consists of the following
steps:

• an expansion function that expands t into a 64-bit “plaintext”,

• an initial key-dependent permutation,

• four key-dependent rounds, each of which has 64 subrounds,

• an exclusive-or of the output of each round onto the key (thus the four rounds
each differ according to the changing of the key),

• a final key-dependent permutation (same algorithm as the initial one), and

• a key-dependent conversion from hexadecimal to decimal.

A diagram of the hash function is shown in Figure 3.1.
Throughout the chapter, we use the following notation to represent bits, nibbles,

and bytes in a word: a 64-bit word b, consisting of bytes B0, ..., B7, nibbles B0, ..., B15,
and bits b0b1...b63. The nibble B0 corresponds to the most significant nibble of byte
0 and the bit b0 corresponds to the most significant bit. The other values are as one
would expect.

The known weaknesses of the hash function only depend upon the time expan-
sion, key-dependent permutation, and the key-dependent rounds. In the next three
sections, we will describe them in more detail.

3.1.1 Time Expansion

The time t is a 24-bit number representing twice the number of minutes since Jan-
uary 1, 1986 GMT. So the least significant bit is always 0, and if the token outputs
codes every minute, then the expansion function will clear the 2nd least significant
bit as well. Let the result be represented by the bytes T0T1T2 where T0 is the most
significant. The expansion is of the form T0T1T2T2T0T1T2T2. Note that the least
significant byte is replicated 4 times, and the other two bytes are replicated 2 times
each.

3.1.2 Key-Dependent Permutation

The C code given by Wiener [40] (obtained by reverse-engineering the ACE/server
code) of the key-dependent permutation is quite cryptic. It requires very careful

62 Cryptanalysis of the SecurID Hash Function

Expansion

Permutation

Round 1

Round 3

Round 4

Permutation

Conversion

Round 2

64−bit key

time

Two authenticator
codes

Figure 3.1: Diagram of the SecurID hash function.

3.1 The SecurID Hash Function 63

study to see that it is really doing a permutation. In [7], Contini gave a different,
more insightful description that produced an equivalent output. This description
was one that was easy to understand if done with pencil and paper, but awkward
to implement. Later, A.K. Lenstra came up with another description which is more
natural for implemention purposes and uses no pointers. Here we include both the
Contini and the Lenstra descriptions, since each has its merits.

Contini Description

The key-dependent permutation uses the key nibbles K0 . . . K15 in order to select bits
of the data for output into a permuted data array. The data bits will be taken 4
at a time, copied to the permuted data array from right to left (i.e. higher indexes
are filled in first), and then removed from the original data array. Every time 4-bits
are removed from the original data array, the size shrinks by 4. Indexes within that
array are always modulo the number of bits remaining.

A pointer m is first initialized to the index K0. The first 4-bits that are taken
are those right before the index of m. For example, if K0 is 0x2, then bits 62, 63, 0,
and 1 are taken. As these bits are removed from the array, the index m is adjusted
accordingly so that it continues to point at the same bit it pointed to before the
4-bits were removed. The pointer m is then increased by a value of K1, and the
4-bits prior to this are taken, as before. The process is repeated until all bits have
been taken.

A small, 16-bit example may be helpful. Suppose we have the binary data
0110101110101001 and the hexadecimal key of 0x5ad3. Processing the first key
nibble, we move the pointer m up 5 places: 01101 0 1110101001. Then, the 4-bits
1101 are moved to the permuted data array, and the original data array becomes
0 0 1110101001. Next, we move the pointer up 10 places (= 0xa): 00111010100 1 .
Removing the 4-prior bits, we now have the permuted data array containing 01001101
and the original array containing 0011101 1 . After completing the last two key nib-
bles, the permuted data array ends up as 1101001101001101.

Lenstra Description

In the Lenstra description, we use a single 64-bit array. The array is divided into
two parts: the left hand side which has the original data, and the right hand side
which will contain the permuted data. Initially, all 64-bits are considered to be on
the left hand side. After each iteration, the left hand side shrinks by 4-bits and
permuted data grows by 4-bits.

In the first iteration, we rotate left the left hand side of the array by K0 positions.
The 4-bits that end up at the end (the far right hand side) then become the first
nibble of the permuted data array, while the other 60-bits remain on the left hand
side. In the second iteration, the 60-bits on the left hand side are left rotated by
K1 positions. Again, the 4-bits at the end become the next nibble of permuted data
and the other 56-bits remain on the left hand side. The process continues in this
way until all sixteen key nibbles are used.

64 Cryptanalysis of the SecurID Hash Function

We illustrate with the small, 16-bit example given above. The original binary
data is 0110101110101001 and the key is 0x5ad3. Left rotating the array by the
first key nibble of 5, we get 011101010010|1101 where the ‘|’ symbol divides the left
hand side from the permuted data. After processing the second key nibble, we have:
10011101|01001101. In the third and fourth steps we get 1011|001101001101 and
1101001101001101 respectively.

3.1.3 Key-Dependent Rounds

Each of the four key-dependent rounds takes as inputs a 64-bit key k and a 64-bit
value b0, and outputs a 64-bit value b64. The key k is then exclusive-ored with the
output b64 to produce the new key to be used in the next round.

One round consists of 64 subrounds. For i = 1, ..., 64, subround i transforms
bi−1 into bi using a single key bit ki−1. The subround involves a function f which
does one of two different operations according to whether the key ki−1 is equal to
bi−1
0 . See Figure 3.2. The exact details of these operations are not so important for

our results, with the exception of two properties:

1. The function f involves only bytes B0 and B4 of bi. These two bytes are
modified, while the other six bytes remain the same.

2. The way f is used causes the hash function to have easy-to-find collisions after
a small number of subrounds within the first round.

At the end of each subround, all the bits are rotated one bit position to the left.
So, up to subround N < 25 of the first round, only 2N + 14 data bits have been
involved in the computation, as shown in Figure 3.3. This property is used in the
Biryukov, Lano, and Preneel attack.

Subround Function

For completeness, we include a description of the actual f function. This explanation
is only here for the curious reader: we shall not be concerned with the specifics later.

As mentioned above, the f computation depends upon whether key bit ki−1 is
the same or not as data bit bi−1

0 . If it is the same, then f does:

Bi
0 = ((((Bi−1

0 >>>1)− 1)>>>1)− 1)⊕Bi−1
4 ,

Bi
4 = Bi−1

4 .

Otherwise, the computation is:

Bi
0 = Bi−1

4 ,

Bi
4 = 100−Bi−1

0 .

Note that the “100” is given in decimal. See [5] for information on how collisions
occur from f . We also have an abbreviated explanation in the Appendix.

3.1 The SecurID Hash Function 65

B[3]B[1] B[2] B[4] B[5] B[6] B[7]B[0]

B[1] B[2] B[3]
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

B[7]B[6]B[5]

key bit f

1−bit left rotate entire word

Figure 3.2: Diagram of the subround function. The function f does one of two
operations, depending upon whether the key bit is equal to bit b0. Only bytes B0

and B4 are modified in the subround function.

starting at
bits7+N

bit 0.
starting at

bits7+N

bit 32.

{ {

Figure 3.3: For subround N < 25 of the first round, only 2N + 14 data bits are
involved in the computation.

66 Cryptanalysis of the SecurID Hash Function

3.2 Vanishing Differentials

A vanishing differential is a collision that comes from two closely related inputs. In
the case of SecurID, these collisions happen from two 24-bit times t and t′ that differ
only in a few bits (most often 1-bit) in the most significant two bytes, according to
simulation experiments.

Since the output from the hash function is two 6- or 8-digit codes, a necessary
condition for a collision is that a pair of two consecutive output codes must match
another pair. But how do we distinguish a real collision from a fake one? In other
words, since we are not given the full 64-bit output, it may be possible that a pair
of consecutive output codes match another pair, but there was not a real collision.

Let us consider the probability of this happening over one year’s output from a
SecurID that outputs 6-digit codes every minute. For simplicity, we will restrict to
vanishing differentials that occur from a 1-bit time difference. If this time difference
is in the least significant byte, we consider the collision to be a fake since no such
collision has ever been witnessed after numerous simulations.

In one year of data, about 218 hashes are computed which can be grouped ac-
cording to their least significant byte T2. Since the least significant 2-bits of T2 are
0, there are 26 such groups each containing 212 elements. Among the 212 elements of
a group, there are 12×212/2 ≈ 214.6 pairs that differ in exactly 1-bit. Since a pair of
output codes is approximately 40-bits of information, the probability of a collision
amongst a group is ≤ p :=

(
214.6

2

)
/240 ≈ 2−11.8. Looking at all 26 groups, we see

that the probability of a fake collision of this form is ≤ 1− (1− p)64 ≈ 0.017. This
is significantly lower than our observed probabilities of real collisions (see chapter
introduction), so we see that almost always, matching consecutive pairs of outputs
of the required form are real collisions.

3.3 A First Attack on the Hash Function

Before describing the Biryukov, Lano, and Preneel attack, we shall first describe
a weakness that we found independently of [5], and publicized on the sci.crypt
newsgroup [7]. The attack takes advantage of “redundancy” in the key-dependent
permutation. Our attack was being developed at the same time as the attack of
Biryukov, Lano, and Preneel, but their result turned out to be better than the idea
presented here. Regardless, the two ideas are combined to some extent in [5].

Let t and t′ be two input times that differ in a single bit. After the expansion and
permutation, they have become two 64-bit words b and b′ that differ in either two
or four bits. For simplicity, assume 2-bit differences. We refer to the bits that differ
between the two words as the difference bits. The difference bits will be rotated left
from one subround to the next until at least one of them gets rotated into either byte
B0 or byte B4. When this happens, usually the difference will propagate, causing
two very different words. However, sometimes it will be the case that all difference
bits are in B0 and/or B4, and the difference bits cancel by the f function. Thus,

3.3 A First Attack on the Hash Function 67

we have a collision (vanishing differential). If this collision has happened in the
first round, then it will result in identitical pairs of authenticators. Conversely, if
the pairs of authenticators are the same, it is most likely that there was a collision
in the first round [5].

We remark that any collision that happens after the first round does not neces-
sarily produce identical authenticators. This is because if there was a difference at
the end of the first round, then it gets mixed into the key (as shown in Figure 3.1).
If the keys have a difference, then the round functions evolve differently.

The first observation we make is that almost always the internal collision will
happen within 32 subrounds of the first round. If the collision happens after 32
subrounds, this means that each difference bit has passed through either B0 or B4

without disappearing. It will then be at least 24 more subrounds before the difference
bits return to bytes B0 and B4 in order to have another chance to disappear. Note
that this second chance for a collision is extremely unlikely to happen unless the
differences follow a carefully controlled pattern the first time they enter B0/B4

(for example, difference bits ought not to propagate too much or to separate from
each other by too much). While a technical analysis may be desirable, we were
satisfied with simulations to confirm this heuristic. In 405 occurrences of vanishing
differentials from randomly chosen keys, only 11 had the collision happen after the
32nd subround. So it appears that we can say that collisions happen within the first
32 subrounds 97% of the time.

We now illustrate how one can find the key faster than exhaustive search assum-
ing a collision happened within 32 subrounds. The search involves testing keys to
see if a vanishing differential occurs within 32 subrounds for a given pair of times t
and t′. If it does, we do further testing to see if the key is the right one. Otherwise,
we advance to the next candidate. Since we only have to try 32 subrounds, this is
eight times faster than the full ASHF. On the other hand, we have to do it for two
plaintexts, so each trial is four times faster than the full ASHF.

Note that in 32 subrounds, only the first 32 key bits come into play. We take ad-
vantage of this in our attack, which works as follows. Guess the first six bytes of the
key. There are 248 possibilities. For each guess, we perform the keyed permutation
only for those first six bytes. After this step, we have six bytes in the permuted data
array and two bytes remaining. Although there are 216 possible keys remaining, this
is far more than we need to try since many of the resulting permutations of the re-
maining two bytes of data overlap. Thus, rather than guessing the last two key
bytes, we try all possible permutations that could have come from some key. There
are at most 16× 12× 8× 4 ≈ 212.58 permutations (see Section 3.1.2) remaining. If
the collision does indeed happen, all possibilities for the remaining two key bytes
are explored with the full ASHF to see if any is the right key. The probability
of a collision is about 2−19 (see [5]), so the time for this second step is 245 which
is negligible compared to the first. Thus, the algorithm as stated gives at least a
reduction factor of 23.41 work in terms of total number of keys studied. Taking into
consideration that each step is four times faster than ASHF, the speed-up is at least
25.41 over exhaustive key search.

68 Cryptanalysis of the SecurID Hash Function

In actuality, we often can get away with less than the 212.58 permutation trials
since many of them overlap. For instance, if both difference bits have been placed
in the six bytes already determined by the guessed part of the key (which happens
heuristically with probability about

(
48
2

)
/
(
64
2

) ≈ .56), and if the Hamming weight of
the remaining two bytes is zero, then there is only one possibility for the last two
bytes. According to an exhaustive search, if both differential bits have already been
placed, then the average number of possibilities for the last two bytes is about 211.3.
If we assume 56% of the time we can get away with this shortened search and the
other 44% of the time we do the full search of 212.58 work (which is not optimal),
then the expected work for the last two bytes is 212.0. Hence, the modified key
search is 26.0 times faster than full key search. The reader can independently verify
that the most number of trials for the last two bytes when there is no difference is
4670, which comes from any bit rotation of the word 0x09bd.

We should also emphasize that we can traverse the unique permutations trials
efficiently. The most obvious way to do it is to precompute a table that has a list of
all unique permutations for each possible value of the last two bytes. Another way
which requires less storage was given in [7].

So, we see that we can recover the key in 258 operations more than 97% of the
time a collision has occurred. This is possible because the keyed permutation has
redundancy built into it: many keys lead to the same permutation. In total, [5]
observed that there are 12-bits of redundancy on average, and we are only taking
advantage of 4 of them. So we should be able to further speed up the search by
guessing less than six bytes in the initial part of the search, but it would come at
the penalty of using more RAM.

Although we will discuss better attacks in the following sections, they will only
be successful about 50% of the time. Thus, the attack here is still relevant since it
almost always succeeds and is significantly faster than exhaustive search.

3.4 The Attack of Biryukov, Lano, and Preneel

The attack of Biryukov, Lano, and Preneel [5] can determine the full 64-bit secret
key when given a single collision of the hash function. Is assumes that the two input
times t and t′ are known exactly, i.e. a known plaintext attack. Generally this will
be true or very close to true. If the internal clock of the SecurID has drifted by x
minutes, then the running time of their attack will be multiplied by a factor of x.

Suppose that input times t and t′ are expanded and permuted to become 64-bit
words b and b′, and the two words collide in subround N of the first round. In
their key recovery attack, the attacker first guesses the subround N , and then uses
a filtering algorithm for each N to search the set of candidate keys that make such
a vanishing differential possible. According to their simulations, one only needs to
do up to N = 12 to have a 50% chance of finding the key.2 For larger values of N ,

2Our own simulations suggest that one needs to search up to N = 16. The discrepancy is due
to differences in the way the attack is viewed, which we elaborate on in Section 3.10.1.

3.4 The Attack of Biryukov, Lano, and Preneel 69

the cost of the precomputation stage is likely to become prohibitive. A summary
of their description for N = 1 is given below. For simplicity, assume that a 2-bit
vanishing differential is used, though this need not be the case.

A one-time cost precomputation table is needed before the filtering starts. The
table contains entries the form

(k0, B0, B4, B
′
0, B

′
4).

where k0 represents a key bit, (B0, B4) represent data bytes of b after the initial
keyed permutation, and (B′

0, B
′
4) represent data bytes of b′ after the permutation.

The exact entries in the table are those where (B0, B4) differs from (B′
0, B

′
4) in

exactly 2-bits known as the “difference bits,” and for which a vanishing differential
occurs during the first subround. Since none of the other key bits or data bytes are
involved in the first subround, whether a vanishing differential can happen or not
for N = 1 is completely characterized by this table.

For each entry in the table, the filtering proceeds in two phases, each of which
contains two steps.

• First Phase. (process the first half of the key bits)

– First Step. Guess key bits k1, ..., k27. Together with k0, 28 key bits are
set, which determines 28-bits of b and b′ after the initial key-dependent
permutation. Since these bits overlap with the entries in the table in
nibbles B9 and B′9, a key value that does not produce the correct nibbles
for both b and b′ is filtered out.

– Second Step. Continue to guess key bits k28, ..., k31. Filtering is done
using overlaps in nibbles B8 and B′8.

• Second Phase. (process the second half of the key bits)

– First Step. Continue to guess key bits k32, ..., k59. Filtering is done using
overlaps in nibbles B1 and B′1.

– Second Step. Continue to guess key bits k60, ..., k63. Filtering is done
using overlaps in nibbles B0 and B′0.

Finally, each candidate key that passes the filtering is tested by performing a full
hash function to see if it is the correct key.

Note that Biryukov, Lano, and Preneel designed their attack to be practical:
only one table entry needs to be in RAM at a time. An alternative algorithm would
keep all table entries in RAM at the same time. In this case, rather than guessing
key bits for each table entry, the algorithm would guess key bits only once and
then do a table lookup to see if the result matches any entries. As we will see, this
alternative algorithm is not so practical because the precomputed tables are too
large to fit in RAM. They are not too large to fit on a modern hard-drive, however.

70 Cryptanalysis of the SecurID Hash Function

3.4.1 Assumptions

Many details about the Biryukov, Lano, and Preneel attack were omitted from their
publication due to space limitations. In this section, we give assumptions about how
their attack works for larger values of N , as well as some other subtle details. Under
these reasonable assumptions, our analysis agrees very much with their experimental
results.

For a general value of N , the precomputed table consists of entries of the follow-
ing form:

• valid values for the key bits in indices 0, . . . , N − 1,

• valid values for the plaintext pairs after the initial permutation in bit indices
32, 33, . . . , 38+N which we label as (W4,W

′
4) (we use the subscript 4 because

the words begins at byte B4), and

• valid values for the plaintext pairs after the initial permutation in bit indices
0, 1, . . . , 6 + N which we label as (W0,W

′
0) (the word begins at byte B0).

By “valid values” we mean that the combination of plaintext bits after the initial
permutation and key bits will cause the difference to vanish in subround N . The
words W0,W

′
0,W4, W

′
4 each consist of 7 + N bits (again, see Figure 3.3) and the

number of key bits is N .
In general, we assume there are two phases of filtering, but the number of steps

per phase depends upon N . Filtering can be done based upon each nibble that
overlaps with the words W0,W

′
0,W4,W

′
4. Thus, we have a total of d 7+N

4 e steps per
phase. The first step in phase 2 is particularly important in the analysis. The exact
number of key bits guessed in this step is 4×b 29−N

4 c (i.e. guessing just enough bits
so that the resulting permuted data array begins to overlap with W0 and W ′

0).
With exception to the last step, only part of the precomputed table is used in

the filtering. For example, the last filtering step of the first phase uses only k0,W4,
and W ′

4 but not W0, W ′
0. Because of this, there may be multiple precomputation

table entries that are the same in the bits that are involved in the filter. It is a waste
of time to deal with the repeated items separately. Instead, we assume the table is
sorted and that the precomputed entries that are the same in the “active” filtering
bits are grouped together as one until a later filtering step requires separating them.
Since the separation task can be done very efficiently3, we assume that the overhead
time here is negligible. This optimization is actually quite a critical assumption
in our analysis: without it, the Biryukov, Lano, and Preneel attack is much less
efficient. The reader will recognize where this factors into our analysis when we
specify certain unique parts of precomputed table entries.

3Simply by doing j comparisons where j is the number of overlaps. We will see in Section 3.7
that j is typically small, so this is much faster than doing j separate permutations and then j
comparisons.

3.5 Analysis of the Biryukov, Lano, and Preneel Attack 71

3.5 Analysis of the Biryukov, Lano, and Preneel Attack

Biryukov, Lano, and Preneel estimated the time complexity of their attack through
simulation. They provided results for N = 1: step 1 of phase 1 reduced the number
of possibilities to 227, step 2 of phase 1 further reduced the count to to 225, step
1 of phase 2 increased the count to 245, and step 2 of phase 2 resulted in 241 true
candidates. For larger values of N , they expect that the complexity of the attack
would be lower due to stronger filtering.

Here we analyze their algorithm, giving some mathematical justification for the
simulation results they observed and also showing that their conjecture of the fil-
tering improving for larger N appears to be correct. In our analysis, we sometimes
treat probabilities as if they are independent, which is not always true, but it is
assumed that it provides a reasonable approximation. For instance, in the formula
P (A ∩ B) = P (A|B) × P (B), if the event B is expected to have little effect on
the event A, then we may simply take P (A ∩ B) ≈ P (A) × P (B). Other similar
approximations are used as well. In Section 3.8, we show that our estimates agree
with real implementation experiments.

Before we begin, we mention a restriction on the precomputed table that was
overlooked in [5]: the values of the two bits in b (or b′) where the differences are
located must be the same, due to the way the time expansion works. This reduces
the number of precomputed table entries and results in a speed-up to the filtering.
Although this is one of our three main filtering speed-ups, we apply it to the analysis
of the original [5] algorithm in order to keep things as clean as possible.

3.5.1 Analysis of Final Number of Candidates

Analyzing the final step is equivalent to determining the true number of candidates
that need to be tested with the full SecurID hash function. The expected number
of true candidates can easily be determined since anything that matches an entry
in the precomputed table will result in a vanishing differential. In other words, the
entries in the table are not only a necessary set of cases for a vanishing differential
to occur, but also sufficient.

For each entry in the precomputed table, we have:

• Only a portion of about 1/
(
64
2

)
of the 264 keys will permute the two difference

bits into the locations corresponding to what is in that table entry.

• With probability 1
2 , the value of the two difference bits will match those in

the table (recall, the 2-bits in b must be the same, and the corresponding bits
in b′ are the complement).

• With probability 1
22N+12 , the remaining permuted data bits will match the

table entry.

• With probability 1
2N the guessed key bits will match the entry of the table.

72 Cryptanalysis of the SecurID Hash Function

Hence, the expected number of final candidates is:

table size× 264 × 1(
64
2

) × 1
2
× 1

22N+12
× 1

2N
. (3.1)

Some discussion is necessary about our analysis, in particular, it must be emphasized
that these are approximations which measure probabilities as if bits are random and
independent. For example, randomly chosen permutations would have each possible(
64
2

)
locations of the difference bits with equal probability, but it is not clear whether

the SecurID permutation has the same property. Similarly, the 1
22N+12 probability

is an approximation that assumes we can match each bit with probability 1
2 . This

is generally a reasonably close approximation to the true probability, but the exact
probability will depend upon the particular inputs. Indeed, [5] noted that simulation
results varied according to inputs. Thus, the reader should keep in mind that our
approximations may not hold in extreme cases, however we expect them to be close
most of the time.

3.5.2 Run Time Analysis of Phase 2, Step 1

Biryukov, Lano, and Preneel suggested that phase 2, step 1 was the most costly
step in their attack. For now, we will assume this is true. Later, in section 3.7, the
claim will be justified.

To analyze step 1 of phase 2, we must first determine the number of candidates
passing phase 1. Define C0 to be the number of unique table entries of the form
(k0, . . . , kN−1,W4,W

′
4) where W4 = W ′

4, define C1 similarly except W4⊕W ′
4 having

Hamming weight 1, and define C2 similarly except W4⊕W ′
4 having Hamming weight

2.
Among the 232 key bits considered in phase 1, a fraction of

(
57−N

2

)
/
(
64
2

)
will put

no difference in the tuple (W4, W
′
4). Of those, only a fraction of C0

27+N will match
one of the C0 unique entries in the table for W4 (which is the same as W ′

4). With
probability 1

2N , the guessed key bits will match those in the table as well. Thus,
the expected number of 32-bit keys resulting in no difference in (W4,W

′
4) that pass

phase 1 is:

232 ×
(
57−N

2

)
(
64
2

) × C0

27+N
× 1

2N
= 219−2N × 3192− 113N + N2

63
× C0 .

For 1-bit differences, we have a fraction of
(
57−N

1

)(
7+N

1

)
/
(
64
2

)
keys that will put

exactly one difference bit inside of (W4,W
′
4) and one outside. For the one bit inside,

the probability that it is in the right place to match a particular table entry is
1/(7 + N). The probability that this difference bit has the right value is 1

2 (i.e. the
bit is either a 1 in W4 or a 0). The probability that the other non-difference bits
inside (W4,W

′
4) match the table entry is 2−6−N , and the probability that the key

bits match the table entry is 2−N . Hence, the expected number is:

232 ×
(
57−N

1

)
(
64
2

) × 1
2
× C1

26+N
× 1

2N
= 220−2N × 57−N

63
× C1 .

3.5 Analysis of the Biryukov, Lano, and Preneel Attack 73

N Table C0 C1 C2 T Time for Time for Total
size phase 2, testing final time

step 1 candidates
1 12 5 2 0 225.0 247.0 240.6 247.0

2 152 11 64 44 224.3 243.2 241.3 243.5

3 1130 64 362 128 224.8 243.6 241.2 243.9

4 7292 453 1750 712 225.5 244.3 240.9 244.4

5 48212 2775 10614 3864 226.0 244.9 240.6 244.9

6 276788 15076 52716 19520 226.4 241.4 240.1 241.9

Table 3.1: Computing the running time estimates of algorithm [5] for N = 1..6.

For 2-bit differences, the equation is

232 × 1(
64
2

) × 1
2
× C2

25+N
× 1

2N
= 221−2N × C2

63
.

The 1
2 in this last equation accounts for whether the two difference bits in the first

plaintext match the table entry (the bits must be the same). Thus, the expected
number of candidates to pass phase 1 is

T =
219−2N

63
× [

(3192− 113N + N2)C0 + (114− 2N)C1 + 4C2

]
. (3.2)

The first step in phase 2 involves guessing 4 × b 29−N
4 c key bits. Under the

assumption that the permutation is 5% of the time required to do the full SecurID
hash [5], the running time is equivalent to

T × 24×b 29−N
4 c × 4× b 29−N

4 c
64

× 2× 0.05× s (3.3)

full hash operations, where s is the speed-up factor that can be obtained by taking
advantage of the redundancy in the key with respect to the permutation. The value
of s is 96

256 for N = 1, 12
16 for N = 2..5, and 1 for all other values.

3.5.3 Combined Analysis

Assuming that other filtering steps are negligible (to be discussed in Section 3.7),
the running time of algorithm [5] for a particular value of N is expected to be
approximately the sum of Equations 3.3 and 3.1. For N = 1..6, these running times
are given in Table 3.1. Again, we reiterate that the table sizes are different from [5]
because of an extra condition due to the time expansion, which also gives a small
improvement in the running time. The analysis for N = 1 is very close to the
simulated results from [5].

Even though the number of candidates T after the first phase is approximately
the same as N goes from 1 to 2 and also from 5 to 6, the running times of the

74 Cryptanalysis of the SecurID Hash Function

phase 2, step 1 drop significantly. This is because one less nibble of the key is being
guessed, and an extra filtering step is being added. In general, we see the pattern
that larger values of N are contributing less and less to the sum of the running
times, which agrees with the conjecture from [5]. The total running time for N = 1
to 6 is 247.7 and larger values of N would appear to add minimally to this total.

3.5.4 Remark on Table Size Growth

It has been observed experimentally that 2-bit vanishing differentials happen with
probability 2−19, and that the distribution of which subround that collision happens
in is not far from uniform for N ∈ [1..32]. Thus, we would expect about 264×2−19×
2−5 = 240 final candidates for each such value of N . This agrees with Table 3.1.

We can use this observation to predict table growth for other values of N . The
probability of a collision in subround N is approximately given by Equation 3.1
divided by 264, and we expect this to be about 2−19 × 2−5 = 2−24. Therefore, we
get the following estimation for the table size:

table size ≈ 2−24 ×
(

64
2

)
× 23N+13 . (3.4)

The estimates given by Equation 3.4 are reasonably close to the values given in
Table 3.1. They are within a factor of 2, except for N = 2 and N = 3, where the
error is slightly larger. For N up to 6, the estimate from Equation 3.4 is smaller
than the actual value. However, Equation 3.4 grows by a factor of 8 as N increments
whereas the actual table sizes seem to be growing less. Coupling this observation
with the fact that the estimate is very close for N = 6, it seems reasonable to assume
that Equation 3.4 may be slightly pessimistic for large values of N .

We have not found a way of estimating C0, C1, and C2.

3.6 Faster Filtering

Table 3.1 illustrates that the trick to speeding up the key recovery attack in [5] is
faster filtering. We have found three ways in which their third filtering can be sped
up:

1. Only include entries in the precomputed table that actually can be derived
from the time expansion. In particular, the values of the two bits in b (or b′)
where the differences are located must be the same.

2. In the original filter, a separate permutation is computed for each trial key.
This is inefficient, since most of the permuted bits from one particular permu-
tation will overlap with those from many other permutations. Thus, we can
amortize the cost of the permutation computations.

3. We can detect ahead of time when a large portion of keys will result in “bad”

3.6 Faster Filtering 75

permutations in steps 1 of both phase 1 and phase 2, and the filtering process
can skip past chunks of these bad permutations.

The first technique was already applied to the analyses in the previous section.
Without this improvement, the running time would have been about 50% worse.

The second technique is aimed at reducing the numerator of the factor 4×b 29−N
4 c

64 =
b 29−N

4 c
16 in Equation 3.3. To do this, we view the key as a 64-bit counter, where k0 is

the most significant bit and k63 is the least. In phase 2, step 1 of the filter, the bits
k0, . . . , k31 are fixed and so are some of the least significant bits (the exact number
depends upon N), so we can exclude these for now. The keys are tried in order via
a recursive procedure that handles one key nibble at a time. At the jth recursive
branch, each of the possibilities for nibble K7+j is tried. The part of the permutation
for that nibble is computed, and then the j + 1st recursive branch is taken. The
level of recursion stops when key nibble K7+b 29−N

4 c is reached. Thus, the b 29−N
4 c

from Equation 3.3 gets replaced with the average cost per permutation trial, which

is
∑b 29−N

4 c−1
i=0 2−4i ≈ 1.07. Observe that when N = 1, this results in a factor of

7
1.07 ≈ 6.5 speed-up. This trick alone knocks more than 2 bits off the running time.

The third speed-up is dependent upon the second. It will apply in both phases of
the filtering. During the process of trying a permutation, there will be large chunks
of bad trial keys that can be identified immediately and skipped. In particular,
whenever a difference bit is placed outside of words (W0,W

′
0) and (W4,W

′
4), the

key can be skipped because the difference is not in a valid position. Moreover, any
other key with the same most significant bits (up to the key nibble that placed the
difference bit) will also result in invalid values, implying that the entire recursive
branch can be skipped. Heuristically, one would expect that the number of keys that
get tested for filtering in phase 2, step 1 to be about a fraction of about

(
14+2N

2

)
/
(
64
2

)
of the number for the attack in [5]. However, this oversimplifies the analysis. We
briefly summarize a more proper analysis in the next paragraph.

Let U be the number of key possibilities through step 1 of phase 2. That is,
U = 260 for N = 1, U = 256 for N = 2..5, and U = 252 for N = 6. Then the number
of candidate keys up to this point that have both differences in W0,W

′
0 is about

x = U ×
(
7+N

2

)
(
64
2

) × C0

27+N
× 1

2N
.

The number of candidates with a 1-bit difference in W0,W
′
0 (the other difference bit

is in W4,W
′
4) is about

y = U ×
(
7+N

1

)
(
64
2

) × C1

26+N
× 1

2
× 1

2N
.

and the number of candidates with no differences in W0,W
′
0 (both differences are

in W4,W
′
4) is about

z = U × 1(
64
2

) × C2

25+N
× 1

2
× 1

2N
.

76 Cryptanalysis of the SecurID Hash Function

N Time for Time for Total
phase 2, testing final time
step 1 candidates

1 238.7 240.6 240.9

2 236.4 241.3 241.3

3 237.1 241.2 241.3

4 237.9 240.9 241.1

5 238.6 240.6 240.9

6 235.7 240.1 240.2

Table 3.2: Running times using our improved filter, for N = 1..6.

Hence the expected run time of phase 2, step 1 is

(x + y + z)× 4× 1.07
64

× 2× 0.05× s .

The three filtering speed-ups give the run times in Table 3.2. In all cases, phase
2, step 1 has become faster than the time for testing the final candidates. The
running time for N = 1..6 is 243.6, so we conjecture that the run time for N up
to 12 is no more than 12/6 × 243.6 ≈ 244.6. This assumes that the speed of other
filtering steps is negligible, which we analyze in section 3.7.

Although it appears that we cannot do much better using only a single 2-bit
vanishing differential, we can improve the situation if we use other information
that an attacker would have. In later sections we will show that we can improve
the time greatly if we take advantage of multiple vanishing differentials, or if we
take advantage of knowledge that no other vanishing differentials occur within a
small time period of the observed one. We will also show that ≥ 4-bit vanishing
differentials appear to be to the advantage of the attacker.

3.7 The Speed of Other Steps

We have so far assumed that phase 2, step 1 is the most time consuming step of the
Biryukov, Lano, and Preneel filter. Biryukov, Lano, and Preneel suggested the same
thing in their publication [5]. In fact, it is not completely clear that this is true.
Here we give some justification to this belief. Unfortunately, we must emphasize the
word belief, since a full analysis remains an open problem.

Due to our filtering speed-ups, the running time of each step is roughly a constant
times the number of candidates considered in that step. Thus, we want to argue
that the number of candidates is maximum in step 1 of phase 2. In fact, sometimes
step 2 of phase 2 will be comparable to step 1 due to the fact that step 1 does
not always filter based upon a full nibble, but step 2 should add only a fractional
amount to the run time. We expect that one of these two steps is the dominant
filtering cost, and that filtering cost is always significantly less than the testing of

3.7 The Speed of Other Steps 77

beginning beginning beginning end
of step 1 of step 2 of step 3 of step 3

c0 15076 29792 52034 75038
c1 52716 57100 98358 142918
c2 19520 21984 41176 58832

Table 3.3: The blow-up factor for N = 6.

final candidates.
It would be ideal if we could argue that the number of candidates generally gets

whittled down in every step. Working against this claim is a “blow-up” factor due
to the assumption that entries which are the same in the active filtering bits can be
grouped together and treated as one (see Section 3.4.1). Eventually, these grouped
elements must be separated, resulting in an increase in candidates.

Here is an example of the blow-up for N = 1. The precomputed table en-
tries are derived in the Appendix. The two entries of the form (k0, B0, B4, B

′
0, B

′
4)

(0x0, 0x06, 0x9e, 0xc6, 0x9e) and (0x0, 0xc6, 0x9e, 0x06, 0x9e) will
be grouped together until the last filtering step, since they only differ in nibbles
(B0, B′0). Any candidate matching this entry up until the last step will be separated
into two candidates before processing that last step.

Since we have no analytical means for predicting the blow-up factor, we are
cornered into using empirical evidence to understand the effect. Let c0, c1, and c2

be the analagous variables to C0, C1, and C2 except taking into considerating the
blow-up factor at various steps in phase 2. Thus, at the first step in phase 2, we
have c0 = C0, c1 = C1, and c2 = C2, but in later steps the values of c0, c1, and c2

become larger until eventually c0 + c1 + c2 = table size. We have computed these
values for N = [1..6] and found that blow-up factor per step is almost always within
a factor of 2. The values for N = 6 are given in Table 3.3.

Let us first consider phase 1. The number of starting candidates for step 1 of
phase 1 is equal to the number of key bits guessed times the number of precomputed
table entries that are unique in the key bits and rightmost nibble (or partial nibble)
of (W4,W

′
4). Since the table size increases the fastest, this is largest for highest

values of N . The Biryukov, Lano, and Preneel attack was specified only up to N =
12 because of precomputation and storage requirements, so the most threatening
case is N = 12. For N = 12, we guess 16 key-bits. According to Equation 3.4,
the full table size is about 239. For simplicity of analysis, we will begin by over-
estimating the cost of phase 1 by analyzing the case where all table entries are used
– in other words, we do the less efficient algorithm that has no blow-up factor. In
this case, the number of initial candidates is 216×239 = 245. Note that this is much
smaller than the number of candidates that currently dominates the filtering time
(when N = 1, step 1 of phase 2 has an estimated 253 candidates). We can conclude
that step 1 of phase 1 is certainly much faster than the most costly steps of phase
2, and therefore it can be considered negligible.

78 Cryptanalysis of the SecurID Hash Function

It is easy to see that other steps in phase 1 will have less candidates than the
245 over-estimate for step 1 with N = 12. For each surviving candidate, we guess
another key nibble. Thus, we have 24 new candidates for each previous candidate.
On the other hand, the probability of the candidate surviving is less than 2−4.
This is because the new data nibbles that are computed from the permutation must
match that of the precomputed table entry for that candidate. There are two data
nibbles that must match: one for W4 and one for W ′

4. Due to the difference bits,
the two nibbles may not be the same. For example, if the precomputed table entry
has a difference in the active nibble, then most candidates will be dropped because
they will likely not have the difference bit – and if they do, it needs to be in the
right place. Also, if the table has no difference in the active nibble, then the current
candidate could be filtered out if it incorrectly places a difference there. So, the
probability of a candidate surviving is definitely less than 2−4, implying that other
steps in phase 1 are also negligible.

Unfortunately, the over-estimate just provided is not sufficient for showing that
step 1 of phase 2 is negligible for values of N > 6. We need to take into consideration
the savings from combining similar table entries as well as the expected reduction
in the number of candidates through filtering to get an accurate estimate of the
number of candidates starting phase 2 (i.e. the variable T). This remains an open
problem. But if Table 3.1 is any indication, we would expect T to be on the order
of 226 for nearby4 values of N – or perhaps less due to our third filtering speed-up.
Under this assumption, the first step of phase 2 will generally become less costly as
N increases, consistent with our observations in Section 3.5.3. So, the number of
candidates going through step 1 is expected to be about 226+4×b 29−N

4 c. Note that
for larger values of N , the number of candidates decreases. This is countered by an
increased blow-up factor per step.

By plugging in some numbers, it appears that the number of candidates is small
enough so that the blow-up factor will not have much of an impact. If this turns
out to be false, the following extra filtering trick can be added to eliminate a large
portion of false candidates:

• For each surviving candidate, check that the Hamming weight of the remaining
(not yet permuted) data bits matches that of the corresponding table entries.
Reject the candidate if it does not.

If there are x nibbles remaining, this trick will eliminate at least a fraction of
(
4x
2x

)
/24x

of the false candidates. For example, a fraction of 2−1.87 of the false candidates are
eliminated when x = 2 and a fraction of 2−2.15 are eliminated when x = 3.

It is also worth noting that the redundancy of the key with respect to the permu-
tation also mitigates the cost of other steps. Taking everything into consideration,
it seems quite likely that other filtering steps will have little impact on the overall
run time.

4It certainly cannot remain at 226 forever. Nevertheless, the growth appears to be very slow.

3.8 Software Implementation 79

3.8 Software Implementation

The attack of Biryukov, Lano, and Preneel was specially designed to keep RAM
usage low – only one of the precomputed table entries needs to be in program
memory at a time. We tested our ideas only for N = 1 and 2-bit differences, and
since the table size is small, we took the freedom of implementing a slight variant
of their attack which kept the whole precomputed table in memory at once.

We programmed all filtering steps of both phases and the three main filtering
speed-ups. In addition, we programmed an extra “table lookup” speed-up that
would improve the running time by a factor of 8 for N = 1. The extra speed-up is
only applicable for small values of N due to the memory requirements. Thus, the
running time is expected to be 8 times faster than the 238.7 listed in Table 3.2. On
our 2.4 GHz PC, this translates to about 8 days of effort.

Our code did the search in numerical order, when the key is viewed as a counter
as described in Section 3.6. The only thing we did not do was testing the final
candidates using the real function. Instead, we just stopped when we arrived at
the target key. So our implementation was designed to test and time the filtering
only, in order to confirm that filtering is significantly faster than testing of the final
candidates.

We have not done the full key search. However, we have done a search that
starts out knowing the correct first nibble of the key. The key we were searching for
is 356b48b3ae15c271 which yields a vanishing differential when times t =0x1c3ba8
and t′ =0x1c3aa8 are sent in. We were able to find the key in 13.8 hours. If we
pessimistically assume that the full search will take at most 24 times longer, the full
running time would be 9.2 days, which is on target of expectations.

To understand why we believe this is pessimistic, observe that the first difference
is at bit index 15. So, whenever the first two key nibbles add up to a value between
16 and 19, the entire recursive branch corresponding to the second key nibble is
skipped, according to our second filtering speed-up. Since our search fixed the first
key nibble at 3 and the second nibble went through values from 0 to 5, none of these
big skips have happened yet. Thus, the second filtering speed-up will become more
effective during a full search.

3.9 Vanishing Differentials with ≥ 4-bit Differences

According to our simulations, about 25% of the first collisions (first occurrence of
a vanishing differential for a given key) are actually from a 4-bit difference, and
about 7% from larger differences. We would expect that our filtering algorithm still
performs quite well in these circumstances. Here, we give a first analysis assuming
4-bit differences.

When N = 1, we would expect our third filtering speed-up to skip all except a
fraction of

(
16
4

)
/
(
64
4

) ≈ 2−8.4 of the incorrect keys between phase 1 and the first step
of phase 2. Without going through the analysis, it seems reasonable to assume that

80 Cryptanalysis of the SecurID Hash Function

N Table size Run time
1 90 237.2

2 1234 238.0

3 5904 237.3

4 32458 236.7

Table 3.4: Expected cost of the final step using a 4-bit differential for N = 1..4,
where difference bits in b are all 1’s or all 0’s.

the testing of final candidates is still the bottleneck. The formula for the number
of final candidate keys for 4-bit differences is derived similarly to that of Equation
3.1, except we have to distinguish between the type of differences. If the difference
bits in b are all the same, then the formula is:

table size× 264 × 1(
64
4

) × 1
2
× 1

22N+10
× 1

2N
.

Table 3.9 shows the expected running times in this case, for N = 1..4. When two
difference bits in b are 1 and the other two are 0, then the formula is:

table size× 264 × 1(
64
2

) × 1(
62
2

) × 1
22N+10

× 1
2N

.

Table 3.9 gives the running times for N = 1..4 for this case.
Joe Lano pointed out to us [21] that the assumptions about independence of

permuted difference bits may make some of these running time estimates inaccurate.
Neither he nor we have seen any cases where the 4-difference bits have come from
a 1-bit difference in the time (see Section 3.2). Instead, they all seem to be coming
from 2-bit differences in the time, where the differences are in bytes T0 and T1 (see
Section 3.1.1). Consequently, the difference bits occasionally tend to be grouped
together, and in the cases that they are, that grouping is often preserved after the
key-dependent permutation because of the way it works (i.e. taking four consecutive
bits at a time). So in summary, Tables 3.9 and 3.9 may not represent the actual run
time for all cases where a 4-bit difference occurs, but it should be somewhat accurate
for most cases. We conjecture that finding the key for ≥ 4-bit vanishing differentials
is generally much faster than for 2-bit vanishing differentials. The downside is that
the memory and time for the precomputation is larger.

3.10 Multiple Vanishing Differentials

There are two scenarios for multiple vanishing differentials: when they have the
same difference and when they have different differences. The former is more likely
to occur, but in either case we can speed up the attack.

3.10 Multiple Vanishing Differentials 81

N Table size Run time
1 344 237.6

2 3364 237.9

3 22176 237.6

4 119112 237.0

Table 3.5: Expected cost of the final step using a 4-bit differential for N = 1..4,
where difference bits in b consist of two 1’s and two 0’s.

3.10.1 Multiple Vanishing Differentials with the Same Difference

According to computer simulations, about 45% of the keys that had a collision
over a two month period will actually have at least 2 collisions. There is a simple
explanation for this, and a way to use the observation to speed up the key search
even more.

Consider a vanishing differential which comes from times t = T0T1T2 and t′ =
T ′0T

′
1T

′
2. As we saw earlier, the only bits that determine whether the vanishing

differential will occur at a particular subround are those that get permuted into
words W0,W

′
0,W4, and W ′

4. Suppose we flip one of the bits in T2 and T ′2 (the same
bit in each). This bit will be replicated four times in the time expansion. If, after
the permutation, none of those bits end up in W0,W

′
0, W4, or W ′

4, then we will
witness another vanishing differential. The new vanishing differential will follow the
same difference path and disappear in the same subround. Thus, new information
is learned that can be used to speed up the key search, which we explain below.
In the case that another vanishing differential does not occur, information is also
learned which can improve the search, which is detailed in Section 3.11.

Following the above thought process, it is evident that:

• Flipping time bits in T1, T
′
1 or T0, T

′
0 will only replicate the flipped bit twice

in the expansion. Since there are only two bits that are not allowed to be in
W0,W

′
0, W4, and W ′

4, the collision is more likely to occur. On the other hand,
the time between the collisions is increased, since these are more significant
time bits.

• Multiple vanishing differentials are more likely to occur when the first colli-
sion happened in a small number of subrounds. This is because the words
W0,W

′
0, W4, and W ′

4 are smaller, giving more places where the flipped bits
can land without interfering with the collision.5

5This is the reason for the apparent discrepancy between our research claiming that one needs
to precompute up to N = 16 in order to have a ≥ 50% chance of finding the key and [5] claiming 12.
In our view, the attacker has a single token and will perform a key search once a single vanishing
differential has occurred. In their view, the attacker has several tokens for a fixed period of time,
and the attacker selects a vanishing differential randomly among all vanishing differentials that
have occurred [21]. Since their view includes multiple vanishing differentials, the expected number
of subrounds is less.

82 Cryptanalysis of the SecurID Hash Function

N Number of final Number of final Number of final Number of final
cands using cands with cands with cands with

single collision z = 2 z = 4 z = 8
1 240.6 239.8 238.9 237.0

2 241.3 240.3 239.3 237.2

3 241.2 240.1 239.0 236.6

4 240.9 239.7 238.4 235.7

5 240.6 239.2 237.8 234.8

6 240.1 238.6 237.0 233.6

Table 3.6: Number of final candidates assuming the attacker became aware of z-bits
that do not get permuted into words W0,W

′
0, W4, or W ′

4.

• The converse of these observations is that when multiple vanishing differentials
occur, it is most often the case that the collisions all happened in the same
subround and followed the same difference path. Moreover, the collisions
usually happen within a few subrounds.

By simply inspecting the time data that caused the multiple vanishing differen-
tials, one can determine with high accuracy whether this situation has happened.
The signs of it are: 1) Same input difference for all vanishing differentials, 2) All
input times differ in only a few bits, and 3) It is the same bits that differ in all cases.
An example is given below.

The attacker learns z ≥ 2 bits which cannot be permuted into words W0, W
′
0,W4,

or W ′
4. This new knowledge can be combined with our third filtering speed-up to

skip past more bad keys. The expected number of final key candidates to be tested
becomes a fraction of

(
50−2N

z

)
/
(
64
z

)
of the values given in Table 3.2. See Table 3.6

for a summary of these figures when z = 2, z = 4, and z = 8. The times can be
further reduced using information about where certain related plaintexts did not
cause a vanishing differential: see Section 3.11.

Example of Multiple Vanishing Differentials

Table 3.7 is an example where sixteen vanishing differentials happened within 1.3
days. All had the same difference path, which collided at N = 2. One can see that
only the four least significant bits of time byte T1 differ. Since each of these bits are
replicated twice in the time expansion, the expected running time of the last steps
is given by z = 8 in Table 3.6. Taking into consideration N = 2, the total time is
expected to be on the order of 238 operations.

3.10.2 Multiple Vanishing Differentials with Different Differences

Given two vanishing differentials with different differences, the number of candidate
keys can be reduced significantly by constructing more effective filters in each step.
Denote the two pairs of vanishing differentials V1 and V2, and their N values N1

3.10 Multiple Vanishing Differentials 83

First plaintext Second plaintext
1e 80 8c 8c 1e 80 8c 8c 1e 90 8c 8c 1e 90 8c 8c
1e 81 8c 8c 1e 81 8c 8c 1e 91 8c 8c 1e 91 8c 8c
1e 82 8c 8c 1e 82 8c 8c 1e 92 8c 8c 1e 92 8c 8c
1e 83 8c 8c 1e 83 8c 8c 1e 93 8c 8c 1e 93 8c 8c
1e 84 8c 8c 1e 84 8c 8c 1e 94 8c 8c 1e 94 8c 8c
1e 85 8c 8c 1e 85 8c 8c 1e 95 8c 8c 1e 95 8c 8c
1e 86 8c 8c 1e 86 8c 8c 1e 96 8c 8c 1e 96 8c 8c
1e 87 8c 8c 1e 87 8c 8c 1e 97 8c 8c 1e 97 8c 8c
1e 88 8c 8c 1e 88 8c 8c 1e 98 8c 8c 1e 98 8c 8c
1e 89 8c 8c 1e 89 8c 8c 1e 99 8c 8c 1e 99 8c 8c
1e 8a 8c 8c 1e 8a 8c 8c 1e 9a 8c 8c 1e 9a 8c 8c
1e 8b 8c 8c 1e 8b 8c 8c 1e 9b 8c 8c 1e 9b 8c 8c
1e 8c 8c 8c 1e 8c 8c 8c 1e 9c 8c 8c 1e 9c 8c 8c
1e 8d 8c 8c 1e 8d 8c 8c 1e 9d 8c 8c 1e 9d 8c 8c
1e 8e 8c 8c 1e 8e 8c 8c 1e 9e 8c 8c 1e 9e 8c 8c
1e 8f 8c 8c 1e 8f 8c 8c 1e 9f 8c 8c 1e 9f 8c 8c

Table 3.7: Example of 16 vanishing differentials that happened within 1.3 days,
using key b5 a9 f4 8c 16 23 a6 1a.

and N2.
We first make a guess of (N1, N2). The number of guesses will be quadratic in

the number of subrounds tested up to. The following is a simplified sketch for the
new filtering algorithm.

• First Phase. Take V1 and guess the first 32-bits of the key. For each 32-bit
key that produces a valid (W4,W

′
4), test it against V2 to see if it also produces

a valid (W4,W
′
4).

• Second Phase. For 32-bit keys that pass phase 1, do the same thing to guess
the second 32 bits of the key.

The main idea here is to do double filtering within each stage so that the number
of candidate keys is further reduced in comparison to when only a single vanishing
differential is used.

When N1 = N2 = 1, the probability that a 32-bit key passes phase 1 (see Table
3.1) is 225.0/232 = 2−7.0 (assuming using the original filter of [5] – it is even more
reduced using our improved filter), and the probability that a 64-bit key passes
both phases is 240.6/264 = 2−23.4. If the two vanishing differentials are indeed
independent, we would expect the number of keys to pass the first phase to be

232 × 2−7.0 × 2−7.0 = 218

and the number of keys to pass both phases to be

264 × 2−23.4 × 2−23.4 = 217.2.

84 Cryptanalysis of the SecurID Hash Function

Experimentation should be done to determine whether these figures are attainable
in practice, but even if they are not, a big speed up is still expected. The situation
should be better in the cases where differences with Hamming weights ≥ 4 are
involved.

We should mention the caveat that the chances of success using the above tech-
nique are lower, since we need both difference pairs to disappear within sixteen
subrounds. On the other hand, the cost of trying this algorithm for two difference
pairs is expected to be substantially lower than trying the previous algorithms for
only one. Therefore, the double filtering should add negligible overhead to the search
in the cases that it fails, and would greatly speed up the search when it is successful.

3.11 Using Non-Vanishing Differentials with a Vanishing Dif-
ferential

In Section 3.10.1, we argued that even if only a single vanishing differential occurs
over some time period, the search can still be sped up if one takes advantage of
knowing where related differentials do not vanish. Here, we give the details.

Assume a vanishing differential occurred at times t and t′, but no vanishing
differential occurred among the time pairs (t⊕ 2i, t′ ⊕ 2i) for i = 2, . . . , j. We start
with i ≥ 2 because in the most typical case, where authenticators are displayed
every minute, the least two significant bits of the time are 0 (see Section 3.1.1). For
the values 2 ≤ i ≤ 7, the difference is replicated 4 times in the time expansion, and
for i ≥ 8, it is replicated twice.

For each value of i, we learn a set of 2 or 4 bits for which at least one in each
set must be permuted into the words W0,W

′
0,W4, or W ′

4. Let us label these sets
as U2, . . . , Uj . For simplicity, we will take j = 13, which corresponds to no other
vanishing differential within a window of 2.8 days before or after the observed one.
So, we are interested in the probability of at least one bit in each of these sets getting
permuted into words W0, W

′
0,W4, or W ′

4.
We say a set Ui is represented with ci ≥ 1 bits if exactly ci bits from Ui get

permuted into W0,W
′
0,W4, or W ′

4. The number of ways 2N +14 bits can be selected
to end up in W0, W

′
0,W4, or W ′

4 is
(

64
2N+14

)
. The number of ways that exactly ci

bits are represented in the selection for 2 ≤ i ≤ 13 is
7∏

i=2

(
4
ci

)
×

13∏

i=8

(
2
ci

)
×

(
28

2N + 14−∑13
i=2 ci

)
.

The first product tells the number of ways of selecting ci bits from each set that has
4 bits, the second product is the same except for among sets with 2 bits, and the
third product is the number of ways of selecting the remaining bits from the 28 bits
that are not among any of the Ui. Thus, our desired probability is:

∑

all valid (c2, . . . , c13)

∏7
i=2

(
4
ci

)×∏13
i=8

(
2
ci

)× (
28

2N+14−∑13
i=2 ci

)
(

64
2N+14

) (3.5)

3.12 Concluding Remarks 85

N Fraction of keys Time for testing
having property final candidates

1 2−14.3 226.3

2 2−11.7 229.6

3 2−9.7 231.5

4 2−8.1 232.8

5 2−6.7 233.9

6 2−5.7 234.4

Table 3.8: Assuming no more vanishing differentials occur within 2.8 days before or
after of a given vanishing differential, the final testing of candidates can be improved
by the amounts given in this table.

where valid (c2, . . . , c13) means that each value is at least 1, but the sum of all values
is no more than 2N + 14.

We have computed these probabilities using the Magma [42] computer algebra
package. The probabilities, and corresponding running time for the testing of final
candidates are given in Table 3.8. Monte Carlo experiments have been done to
double-check the accuracy of these results. The fact that the probabilities are so
small for low values of N is consistent with the argument in Section 3.10.1 that
when a collision happens early, other collisions are likely to follow soon after.

One should not assume that the times for the testing the final candidates given
in Table 3.8 are the dominant cost in applying this strategy. Unlike the filtering
speed-ups given in Sections 3.6 and 3.10.1, the use of non-vanishing differentials
seem to require more overhead in checking the conditions. So although we do not
have an exact running time, we confidently surmise that the use of non-vanishing
differentials will reduce the time down below 240 hash operations.

3.12 Concluding Remarks

The design of the alleged SecurID hash function appears to have several problems.
The most serious appears to be collisions that happen far too frequently and very
early within the computation. The involvement of only a small fraction of bits in
the subrounds exacerbates the problem. Moreover, the redundancy of the key with
respect to the initial permutation adds an extra avenue of attack. Altogether, ASHF
is substantially weaker than one would expect from a modern day hash function.

Our research has shown that the key recovery attack in [5] can be sped up by
more than a factor of 8, giving an improved attack with time complexity about 245

hash operations. In practice, the attacker can actually obtain more information than
just a single collision. We have shown evidence that with this extra information,
the time complexity can be further reduced to about 240 hash operations, making
the attack doable by anyone with a modern PC.

86 Cryptanalysis of the SecurID Hash Function

Bibliography

[1] E. Biham and A. Shamir. Differential cryptanalysis of the Data Encryption
Standard. Springer-Verlag, New York, 1993.

[2] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems.
Journal of Cryptology, volume 4, no. 1. pages 3–72, 1991.

[3] A. Biryukov and E. Kushilevitz. Improved cryptanalysis of RC5. In K. Nyberg,
editor, Advances in Cryptology — Eurocrypt ’98, volume 1403 of Lecture Notes
in Computer Science, pages 85–9 9, 1998. Springer Verlag.

[4] A. Biryukov and E. Kushilevitz. From differential cryptanalysis to ciphertext-
only attacks. In H. Krawczyk, editor, Advances in Cryptology — Crypto ’98,
volume 1462 of Lecture Notes in Computer Science, pages 72–88. Springer Ver-
lag.

[5] A. Biryukov, J. Lano, B. Preneel. Cryptanalysis of the alleged SecurID
hash function. In M. Matsui and R.J. Zuccerato, editors, Proceedings of
SAC 2003, volume 3006 of Lecture Notes in Computer Science, pages 130–
144. Springer Verlag. A longer version of this paper is available online from
http://eprint.iacr.org/2003/162.

[6] C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi, C. Jutla,
S. Matyas Jr., L. O’Connor, M. Peyravian, D. Safford, and N. Zuric. MARS -
a candidate cipher for AES. IBM Corporation, June 10, 1998.

[7] S. Contini, The effect of a single vanishing dif-
ferential in ASHF. sci.crypt post, 6 Sep, 2003.
http://groups.google.com.au/groups?selm=6f35025c.0309061607.26d110a6
%40posting.google.com.

[8] S. Contini, R.L. Rivest, M.J.B. Robshaw and Y.L. Yin. The secu-
rity of the RC6 block cipher. v1.0, August 20, 1998. Available at
http://www.rsa.com/rsalabs/aes/.

[9] S. Contini, R.L. Rivest, M.J.B. Robshaw and Y.L. Yin. Improved analysis of
some simplified variants of RC6. In Fast Software Encryption, volume 1636 of
Lecture Notes in Computer Science, pages 1–15, 1999. Springer Verlag.

87

88 BIBLIOGRAPHY

[10] S. Contini and Y.L. Yin. On differential properties of data-dependent rotations
and their use in MARS and RC6. Second AES Conference, 2000.

[11] S. Contini and Y.L. Yin. Fast software-based attacks on SecurID. In B. Roy
and W. Meier, editors, Fast Software Encryption, volume 3017 of Lecture Notes
in Computer Science, pages 454–471, 2004. Springer Verlag.

[12] D. Coppersmith. The Data Encryption Standard and its
strength against attacks. In IBM Journal of Research
and Development, 38(3), pages 243–250. Available at
http://www.research.ibm.com/journal/rd/383/coppersmith.pdf

[13] W. Diffie and M. E. Hellman. New directions in cryptography. In IEEE Trans-
actions on Information Theory, IT-22, pages 644–654, November 1976.

[14] W. Diffie and M. E. Hellman. Exhaustive cryptanalysis of the NBS Data En-
cryption Standard. In Computer, volume 10, no. 6, pages 74–84, June 1977.

[15] Electronic Frontier Foundation. Cracking DES, Secrets of Encryption Research,
Wiretap Politics & Chip Design. O’Reilly & Associates, Sebastopol, 1998.

[16] M.H. Heys. Linearly weak keys of RC5. IEE Electronic Letters, Vol. 33, pages
836–838, 1997.

[17] B.S. Kaliski and Y.L. Yin. On differential and linear cryptanalysis of the RC5
encryption algorithm. In D. Coppersmith, editor, Advances in Cryptology —
Crypto ’95, volume 963 of Lecture Notes in Computer Science, pages 171–184,
1995. Springer Verlag.

[18] B.S. Kaliski and Y.L. Yin. On the security of the RC5 encryption algorithm.
RSA Laboratories Technical Report TR-602. Available at
http://www.rsa.com/rsalabs/aes/.

[19] L.R. Knudsen and W. Meier. Improved differential attacks on RC5. In
N. Koblitz, editor, Advances in Cryptology — Crypto ’96, volume 1109 of Lec-
ture Notes in Computer Science, pages 216–228, 1996. Springer Verlag.

[20] X. Lai, J. L. Massey, and S. Murphy. Markov ciphers and differential crypt-
analysis. In D. W. Davies, editior, Advances in Cryptology — Eurocrypt ’91,
volume 547 of Lecture Notes in Computer Science, pages 17–38, 1991. Springer
Verlag.

[21] J. Lano, private communication, 28 Oct, 2003.

[22] A.K. Lenstra, private communication, 29 Sep, 2004.

[23] H. Lipmaa and S. Moriai. Efficient algorithms for computing differential prop-
erties of addition. In M. Matsui, editor, Fast Software Encryption, volume 2355
of Lecture Notes in Computer Science, pages 336–350, 2002. Springer Verlag.

BIBLIOGRAPHY 89

[24] H. Lipmaa, J. Wallén, and P. Dumas. On the additive differential probabil-
ity of exclusive-or. In B. Roy and W. Meier, editors, Fast Software Encryp-
tion, volume 3017 of Lecture Notes in Computer Science, pages 317–331, 2004.
Springer-Verlag.

[25] M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth,
editor Advances in Cryptology — Eurocrypt ’93, volume 765 of Lecture Notes
in Computer Science, pages 386–397, 1994. Springer Verlag.

[26] V. McLellan. SecurID crypto. sci.crypt post, 10 July, 2000.

[27] V. McLellan. Newsgroup post, 10 August, 2004.
http://www.webservertalk.com/archive268-2004-8-310475.html.

[28] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied
Cryptography CRC Press, 1996.

[29] S. Moriai, K. Aoki, and K. Ohta. Key-dependency of linear probability of RC5.
March 1996.

[30] S. Murphy. Comments on Case Studies in Symmetric Key Cryptography. June
2005.

[31] National Bureau of Standards. Data Encryption Standard US Department of
Commerce, FIPS pub 46, January 1977.

[32] National Institute of Standards and Technology Announc-
ing development of a federal information processing stan-
dard for advanced encryption standard. Available at
http://csrc.nist.gov/CryptoToolkit/aes/pre-round1/aes 9701.txt.

[33] R.L. Rivest. The RC5 encryption algorithm. In B. Preneel, editor, Fast Software
Encryption, volume 1008 of Lecture Notes in Computer Science, pages 86–96,
1995. Springer Verlag.

[34] R.L. Rivest, M.J.B. Robshaw, R. Sidney and Y.L. Yin. The RC6 block cipher.
v1.1, August 20, 1998. Available at http://www.rsa.com/rsalabs/aes/.

[35] R.L. Rivest, M.J.B. Robshaw, and Y.L. Yin.
The case for RC6 as the AES. Available at
http://csrc.nist.gov/CryptoToolkit/aes/round2/comments/.

[36] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public key cryptosystems. volume 21 of Communications of the
ACM, pages 120–126, 1978.

[37] SecurID product description. Available at
http://www.rsasecurity.com/node.asp?id=1156 .

90 BIBLIOGRAPHY

[38] A.A. Selcuk. New results in linear cryptanalysis of RC5. In S. Vaudenay, editor,
Fast Software Encryption, volume 1372 of Lecture Notes in Computer Science,
pages 1–16, 1998. Springer Verlag.

[39] C.E. Shannon. Communication theory of secret systems. volume 28 of Bell
Systems Technical Journal, pages 656–715, 1949.

[40] I.C. Wiener. Sample SecurID token emulator with to-
ken secret import. post to BugTraq, 21 Dec, 2000.
http://archives.neohapsis.com/archives/bugtraq/2000-12/0428.html.

[41] Tips on reassigning SecurID cards and requesting new securID
cards, AMS Newsletter, March 2002, Issue No. 117. Available at
http://www.utoronto.ca/ams/news/117/html/117-5.htm.

[42] The Magma Computer Algebra Package. Information available at
http://magma.maths.usyd.edu.au/magma/.

Key Expansion Algorithm for RC5
and RC6

RC5 and RC6 both have the same key expansion algorithm. The algorithm uses
two constants

Pw = Odd((e− 2)2w)
Qw = Odd((φ− 1)2w)

where e is the base for natural logarithms and φ = 1+
√

5
2 is the golden ratio. The

function Odd(x) rounds x to the nearest odd integer. Pseudo code for the key
expansion is given in Table 9.

91

92 Key Expansion Algorithm for RC5 and RC6

Key expansion for RC5 and RC6 (w/r/b)

Input: b−byte key stored in array K.
Number of rounds subkeys required, t
(t = 2r + 2 for RC5 and t = 2r + 4 for RC6).

Output: w−bit subkeys stored in S[0, . . . , t− 1].

Procedure: u = w/8
c = db/ue

/* load user key into c−word array L */
for i = 0 to c− 1 do

L[i] = 0
for i = b− 1 downto 0 do

L[i/u] = (L[i/u]<<<8) + K[i]

/* initialize t−word array S */
S[0] = Pw

for i = 1 to t− 1 do
S[i] = S[i− 1] + Qw

/* mix S with L */
i = j = 0
A = B = 0
do 3 ∗max(t, c) times

A = S[i] = (S[i] + A + B)<<<3
B = L[j] = (L[j] + A + B)<<<(A + B)
i = (i + 1) mod t
j = (j + 1) mod c

Table 9: Key expansion for RC5 and RC6.

Analyzing Precomputation Tables
in SecurID

Using computer experiments, we were able to exhaustively search for valid entries
in the precomputed table up to N = 6 for 2-bit vanishing differentials (Table 3.1)
and up to N = 4 for 4-bit differentials (Tables 3.9 and 3.9 in Section 3.9). It was
predicted in [5] that the size of the table gets larger by a factor of 8 as N grows
and it may take up to 244 steps and 500GB memory to precompute the table for
N = 12.

Here we make an attempt to derive the entries in the table analytically when
N = 1. If we could extend the method to N > 1, we may be able to enumerate the
entries analytically without expensive precomputation and storage.

Recall from Section 3.1.3 the details of the subround function. To find a condition
for a collision, we will require constraints for the values in the subround i−1. So for
simplicity, we will omit the superscript i−1 from now on. Using the definition of f ,
one can derive the exact conditions for a collision which appeared as Equation (6)
in [5]:

B′
4 = ((((B0>>>1)− 1)>>>1)− 1)⊕B4, (6)

B′
0 = 100−B4 . (7)

We first note that B0 and B′
0 have to be different in the first bit since a collision

can only happen if each plaintext undergoes a different transformation. Therefore,
there is at least one bit difference in (B0, B

′
0). The other bit difference can be placed

either in the remaining 7 bits of (B0, B
′
0) or any of the 8 bits in (B4, B

′
4).

Rewriting Equation 6, we have

B0 = (((B4 ⊕B′
4) + 1)<<<1) + 1)<<<1.

Since there is at most one bit difference in (B4, B
′
4), it can only take on 9 possible

values: 0 (for no bit difference) or 2i (for one bit difference in bit i). Below, for each
possible value of (B4, B

′
4), we enumerate the possible values of (B0, B

′
0). During the

enumeration, we also take into consideration the additional requirement that the
two bits in b where the differences occur must be the same (See Section 3.5).

• If B4 ⊕ B′
4 = 0, then B0 =0x06. Since there is no bit difference in (B4, B

′
4),

93

94 Analyzing Precomputation Tables in SecurID

we know that B0 and B′
0 differ in two bits – one of them must be the first bit,

and the other can be any of the remaining 7 bits.

B4 ⊕B′
4 B0 B′

0 k0

0x00 0x06 0x87, 84, 82, 8e, 96, a6, c6 0

The exact value of B4 = B′
4 is then determined by Equation 7. The additional

requirement rules out two possible values of B′
0 (0x84, 0x82), leaving 5 possible

combinations.

• If B4 ⊕B′
4 = 2i, then there is only one bit difference in (B0, B

′
0), which is the

first bit. In this case, there is only one choice for B′
0 for each B0.

B4 ⊕B′
4 B0 B′

0 k0

0x01 0x0a 0x8a 0
0x02 0x0e 0x8e 0
0x04 0x16 0x96 0
0x08 0x26 0xa6 0
0x10 0x46 0xc6 0
0x20 0x86 0x06 1
0x40 0x07 0x87 0
0x80 0x08 0x88 0

The additional requirement rules out every combination above except the first
one (B0 =0x0a and B′

0 =0x8a).

Combining the above two cases, we have 5 + 1 = 6 pairs of (B0, B
′
0), each of

which giving a valid tuple (k0, B0, B4, B
′
0, B

′
4), where k0 is the first bit of B0.

Finally, note that if (k0, a, b, c, d) is a valid tuple, than (k0, c, d, a, b) is also a
valid tuple. For example, if (0, 0x06, 0xdd, 0x87, 0xdd) is valid, then (0,
0x87, 0xdd, 0x06, 0xdd) is also valid. Therefore, the table consists of a total of
2× 6 = 12 entries. These entries match the results from our simulation.

So far, we have been unable to extend this analysis for higher values of N .

Magma Code for Computing
Non-Vanishing Differentiali

Probabilities

Below is the Magma code that was used to compute the probabilities from Section
3.11 above.

/* this code assumes j >= 7 */
j := 13;
cardinality_sets := 24 + (j-7)*2;
for N in [1..6] do

w0w4size := 2*N + 14;
c := [1: i in [2..j]];
sum := 0.0;
done := false;
while not done do

bits_taken := &+c;
if bits_taken le w0w4size then

prod1 := &*[Binomial(4, c[i]) : i in [1..6]];
if j gt 7 then

prod2 := &*[Binomial(2, c[i]) : i in [7..j-1]];
else

prod2 := 1;
end if;
prod3 := Binomial(64 - cardinality_sets, w0w4size - bits_taken);
sum +:= prod1*prod2*prod3;

end if;
index := 1;
c[index] +:= 1;
while ((index le 6 and c[index] eq 5) or

(index ge 7 and c[index] eq 3)) do
/* there is a ’carry’ in the counter */
c[index] := 1;
index +:= 1;

95

96Magma Code for Computing Non-Vanishing Differentiali Probabilities

if index ge j then
done := true;
break;

end if;
c[index] +:= 1;

end while;
end while;

prob := sum/Binomial(64, w0w4size);
print "Probability is 2^",Log(prob)/Log(2), "for N = ",N;

end for;

Index

es notation, 15

AES, 3, 7, 9, 10

block cipher, 3, 4

characteristic, 13
iterative, 17, 27, 29, 39–41

chosen ciphertext attack, 4
chosen plaintext attack, 4
chosen text attack, 4–6, 13, 28, 29, 31,

39, 44, 45
ciphertext only attack, 4
collision, 6, 7, 60, 64, 66–68, 74, 79,

81, 85, 93
fake, 66

DES, 9
difference

in rotate amount, 15, 19–25, 45
multi-bit, 40–41
static, 32, 34, 39–41, 44

difference bits, 66–69, 71–73, 75, 78,
80

differential, 14
customized, 42
iterative, 28, 38–40, 42
non-vanishing, 84
vanishing, 59, 66, 67

differential cryptanalysis, 5, 9, 10, 13–
18

exhaustive search, 5

filtering, 68, 69
fixed rotate, 18, 25, 29

half-round, 11
hash function, 3, 5

known plaintext attack, 4, 68
known text attack, 4, 6

lg, 11

MARS, 10, 19, 22
message authentication code, 5–6

non-vanishing differential, 84

quadratic function, 18, 25, 29, 35, 41,
45, 48, 51, 52, 54, 57

RC5, 9, 10, 14, 18, 19, 22, 25, 44, 48,
51, 56, 57

RC6, 3, 5, 6, 9, 10, 14, 17–19, 22, 25,
26, 28, 32, 39, 51, 57

RC6-I, 25, 26, 29, 48
RC6-I-NFR, 25, 26, 29, 37–39, 45, 57
RC6-NFR, 25, 26, 29, 32, 36, 37, 39,

45
right pair, 14
Rijndael, 10

SecurID, 3, 6–7, 59–85
Serpent, 10
signal to noise ratio, 14

Twofish, 10

vanishing differential, 59, 66, 67

weak keys, 5, 16, 44, 48

97

98 INDEX

Acknowledgements

I would first like to thank my coauthors, Ron Rivest, Matt Robshaw, and Yiqun
Lisa Yin, for allowing me to include work that I did jointly with them.

I owe a special thanks to Igor Shparlinski, for allowing me to work on this thesis
while being employed under him.

I am very grateful to my PhD core committee of Andries Brouwer, Arjen Lenstra,
Sean Murphy, Henk van Tilborg, and Yiqun Lisa Yin. Not only did they provide
extremely valuable comments that improved the overall quality of this work, but
they did so in a very timely manner. In fact, although I was confident about
my original submission, I had some ideas in the back of my mind of a few subtle
issues that may deserve a bit more attention. To my surprise, the committee also
recognized these issues, as well as a few others. Thanks to their feedback, I feel
much more assured about the final version of this work.

Of the people mentioned, two people deserve special recognition: Arjen Lenstra
and Yiqun Lisa Yin. My career as a cryptography researcher never would have
taken off had I not had the opportunity to work with Arjen Lenstra in the summers
of 1994 and 1995. Since then, he has provided much support, and in fact, he has
made this PhD possible. I am similarly indebted to Yiqun Lisa Yin. Everything
from this thesis has been joint work with her. I must emphasize that Yiqun was the
lead on differential cryptanalysis of RC6: my involvement was proving lemmas and
theorems that were used to evaluate the differential and characteristic probabilities,
as well as some other contributions at a higher level. Thus, this thesis contains
many of her ideas and contributions.

Anita Klooster’s invaluable assistance with filling out forms and, most impor-
tantly, the printing process of this thesis, is gratefully acknowledged.

Finally, I dedicate this thesis to my parents, for pointing me the right direction
in life, putting up with me (especially my anti-Republican political viewpoints), and
providing years of support.

99

100

Samenvatting

Deze thesis gaat over twee symmetrische cryptografische functies die allebei van
groot praktisch belang zijn – het RC6 blokcijfer en de SecurID hashfunctie. RC6
was een van de uiteindelijke 5 kandidaten voor de Geavanceerde Encryptie Stan-
daard (AES). Het werd ontwikkeld door het bedrijf RSA Security, en zal waarschijn-
lijk wereldwijd worden gebruikt in talloze producten. SecurID is een apparaatje
waarmee eenmalige passwords worden gegenereerd voor authentificatie doeleinden.
Het wordt door RSA Security geproduceerd en gebruikt door meer dan 13 miljoen
mensen in meer dan 80 landen.

Dit proefschrift concentreert zich op de veiligheidsanalyse van RC6 en het gebrek
aan veiligheid van SecurID. Het RC6 blokcijfer werd ontworpen door cryptografische
deskundigen en ondersteund door een uitgebreide openbare veiligheidsanalyse. Een
deel van die analyse wordt gepresenteerd in het tweede hoofdstuk van dit proef-
schrift. Er wordt aangetoond dat RC6 voldoende weerstand biedt tegen differentiële
cryptanalyse, wat een belangrijk onderdeel is van de volledige veiligheidsanalyse van
RC6. In tegenstelling tot de manier waarop RC6 werd ontwikkeld, werd de SecurID
hashfunctie in het geheim ontworpen, en de resulterende methode werd nooit open-
baar gemaakt. Het apparaat werd evenwel met succes ‘reverse engineered’, waarna
een nauwkeurige beschrijving van de methode op het Internet werd gepubliceerd.
Zwakheden in het ontwerp werden toen spoedig aangetoond. Het derde hoofdstuk
van dit proefschrift beschrijft nieuwe resultaten die de veiligheid van SecurID op een
praktisch realiseerbare manier aantasten.

101

102

Curriculum Vitae

Scott Contini completed his Bachelor degree in Computer Science and Mathematics
at Purdue University, a Master’s degree in Computer Science at the University of
Wisconsin-Milwaukee, and a Master’s degree in Mathematics at the University of
Georgia. Since then, he has worked at RSA Data Security, the University of Sydney,
Motorola, and now the Macquarie University. His research emphasis is on applied
mathematics to solve real world engineering problems, especially in cryptology. He
also enjoys research in number theory, discrete mathematics, and algorithms.

103

	Preface
	Contents
	1. Introduction
	2. Differential cryptanalysis applied to RC6
	3. Cryptanalysis of the securID hash function
	Bibliography
	Key expansion algorithm for RC5 and RC6
	Analyzing precomputation tables in securID
	Magma code for computing non-vanishing differentiali probabilities
	Index
	Acknowledgements
	Samenvatting
	Curriculum vitae

