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Abstract

Mean value analysis is an elegant tool for determining mean performance measures
in queueing models. We use the technique to analyze the M/G/1 retrial queue with
exponential retrial times. We also show how the relations can be adapted to obtain
mean performance measures in more advanced M/G/1-type retrial queues.
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1 Introduction

Most papers on retrial queues deal with the steady-state distribution of the system
state. In this context, the expected number of customers in orbit (or in the system)
is typically obtained by differentiating the corresponding generating function. The
use of this method implies the knowledge of the generating function (which can
be calculated by using embedded Markov chains, supplementary variables, Markov
renewal theory, etc.) and some algebraic manipulations (differentiation, L’Hôpital
rule, etc.).

The goal of the mean value analysis technique is to provide an elegant alternative
for obtaining the expected number of customers in orbit (and the expected waiting
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hoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, e-mail address:
j.a.c.resing@tue.nl

1



time) by avoiding the use of generating functions. This significantly reduces the alge-
bra. The mean value analysis technique is known as a powerful tool for determining
mean performance measures in all kind of queueing models (see, e.g., Winands et
al. [7] for a recent example of the use of the technique in the analysis of polling
systems). However, as far as the authors know, it has not been applied to retrial
queueing systems before.

The rest of the paper is organized as follows. In Section 2 we use mean value
analysis to determine mean performance measures in the main M/G/1 retrial queue.
Next, in Section 3 we show how the mean value relations can be adapted to obtain
mean performance measures in more advanced M/G/1-type retrial queues studied in
the literature.

2 The main M/G/1 retrial queue

In the main M/G/1 retrial queue, customers arrive according to a Poisson process
with rate λ. Service times are generally distributed with mean E(B) and mean
residual service time E(R) = E(B2)/(2E(B)). The retrial queue is characterized by
the requirement that customers finding the server busy must leave the service area
and join a group of unsatisfied customers called orbit. Customers in orbit retry after
an exponentially distributed time with parameter µ. To ensure stability, we assume
that ρ = λE(B) < 1. With W we denote the steady-state waiting time of customers
and with L we denote the steady-state orbit size.

The mean value relations for the system are given by

E(W ) = E(L)E(B) + ρ

(
E(R) +

1
µ

)
, (1)

E(L) = λE(W ). (2)

Combination of the two relations gives the expression for the mean waiting time

E(W ) =
ρ

1− ρ

(
E(R) +

1
µ

)
. (3)

The key relation is (1). Of course, (2) is just Little’s law. The main ideas to obtain
(1) are the following:

1. The steady-state waiting time W can be written as the sum of the idle time of
the server during the waiting time, W0, and the busy time of the server during
the waiting time, W1, i.e.,

W = W0 + W1. (4)

2. The idle time of the server during the waiting time of a customer, given that
the customer goes in orbit, is exponentially distributed with parameter µ. This
fact follows from the memoryless property of the exponential distribution of
the retrial times. The waiting time of a tagged customer going in orbit consists
of successive busy and idle times of the server. The transitions from busy to
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idle times are caused by service completions, the transitions from idle to busy
times are caused by arrivals of other customers (external arrivals or retrials).
These are external factors, they have nothing to do with the retrial times of our
tagged customer. Now, cutting away the busy times of the server and glueing
together the idle times of the server, a tagged customer going in orbit just sees
one big idle time, where in each small interval of length ∆, he retries with
probability µ∆. Hence, we have that the total idle time of the server during
the waiting time of the tagged customer, given that the customer goes in orbit,
is exponentially distributed with parameter µ.
Because, due to the PASTA property, the blocking probability, Pb, that an
arbitrary customer goes into orbit equals the fraction of time, ρ, that the server
is busy, we obtain

E(W0) =
ρ

µ
. (5)

Remark that the assumption of exponential retrial times is essential here.

3. Mean waiting times are the same for systems with random order of service
(ROS) and systems with first come first served (FCFS) service discipline. The
same holds for mean idle times and mean busy times of the server during these
waiting times. In our retrial model, we mean the following with FCFS service
discipline. On one hand, there is a FCFS discipline for the customers in orbit.
Given that the number of customers in orbit is j, the retrial rate is jµ. If a
retrial occurs, the customer at the head of the orbit occupies the server. In
addition, we assume that fresh arrivals finding the server free go to the orbit
and, at that moment, the customer at the head of the orbit occupies the server.
In the sequel we will call this the strict FCFS service discipline.

In the retrial system with strict FCFS service discipline, it is immediately clear
that the total expected busy time of the server during the waiting time of a tagged
customer is given by E(L)E(B) + ρE(R). Hence, we obtain

E(W1) = E(L)E(B) + ρE(R). (6)

Now, (1) follows from a combination of (4), (5) and (6).

Remark: (Alternative proof of E(W0) = ρ/µ)
Introduce E(L0) =

∑∞
j=0 jP0j where P0j is the steady-state probability that there

are j customers in orbit and the server is idle. An alternative proof of E(W0) = ρ/µ
is given by combining Little’s law E(L0) = λE(W0) with the relation µE(L0) =
λPb, which equals the rate at which customers leave the orbit to the rate at which
customers enter the orbit.

Remark: (Alternative proof based on stochastic decomposition)
Since the M/G/1 retrial queue is a vacation model satisfying the classical assumptions
given by Fuhrman and Cooper [5], we have

E(L) = E(L∞) +
E(L0)
1− ρ

,
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where E(L∞) represents the mean number of customer in queue (excluding the pos-
sible customer receiving service) in the standard M/G/1 queue.

From Little’s law we have the equivalent expression

E(W ) = E(W∞) +
E(W0)
1− ρ

. (7)

Since the mean value analysis for the standard M/G/1 queue gives

E(W∞) =
ρ

1− ρ
E(R), (8)

we find, combining (5), (7) and (8), that E(W ) is given by (3).

Remark: (Proof of exponentiality of (W0|W0 > 0))
Above, we heuristically argued that (W0|W0 > 0) is exponential with parameter µ.
A more formal proof of this fact is given below. Introduce the following notation:

ϕW0
(s) : the Laplace-Stieltjes transform (LST) of W0,

ϕj(s) : the LST of the residual W0 at departure epochs given that the number of
customers in orbit is j (including the tagged customer),

kx
i : the probability that i primary customers arrive during a residual service time

given that the elapsed service time is x,

ki : the probability that i primary customers arrive during a service time,
P1j(x)dx : the steady-state probability that the server is busy, there are j cus-

tomers in orbit and the elapsed service time of the customer in service ∈ (x, x + dx).

We first notice that

ϕW0
(s) =

∞∑
j=0

∫ ∞
0

P1j(x)
∞∑
i=0

kx
i ϕj+1+i(s)dx + 1− ρ. (9)

The following equations govern the dynamics of the LST ϕj(s):

ϕj+1+i(s) =
µ

λ + (j + 1 + i)µ + s
+

λ

λ + (j + 1 + i)µ + s

∞∑
m=0

kmϕj+1+i+m(s)

+
(j + i)µ

λ + (j + 1 + i)µ + s

∞∑
m=0

kmϕj+i+m(s), for j ≥ 0, i ≥ 0. (10)

Equation (10) describes the motion between two successive service completion epochs.
For example, the term µ/(λ + (j + 1 + i)µ + s) indicates that the next service time
corresponds to the tagged customer. Then, we cut away the server busy times and
use the memoryless property of the exponential law.
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Inserting the constant (it does not depend on the orbit state) transform µ(µ+s)−1

in the above equation, we automatically verify that it satisfies (10). Then, from (9)
the desired result follows

ϕW0
(s) = ρ

µ

µ + s
+ 1− ρ.

3 Other advanced M/G/1-type retrial queues

The mean value analysis technique also leads to the expected values for the waiting
times and orbit sizes in more advanced M/G/1-type retrial queues. This fact is
illustrated in the sequel for a variety of systems including batch arrivals, priorities,
impatience, network blocking, etc.

3.1 The model with batch arrivals

Consider the batch arrival M/G/1 retrial queue with exponential retrial times as
discussed in Section 3.1 of Falin and Templeton [4]. The batch size of the arrivals is
given by the random variable X with probability distribution

xk = P (X = k), k ≥ 1.

The mean value relations for the system are now given by

E(W ) =

(
E(L) +

∞∑
k=1

rk(k − 1)

)
E(B) + ρE(R) +

1− r1(1− ρ)
µ

, (11)

E(L) = λE(X)E(W ),

where the server utilization ρ is given by

ρ = λE(X)E(B),

and rk is the probability that an arbitrary customer is the k−th customer served
in his batch. The first two terms in the right-hand side of (11) correspond to the
busy time of the server and the third term to the idle time of the server during the
waiting time. Remark that the probability an arbitrary customer is going into orbit
now equals 1− r1(1− ρ).

The probabilities rk follow from standard renewal-type arguments and are given
by (see, e.g., Adan and Resing [1], Section 10.4)

rk =
1

E(X)

∞∑
n=k

xn,

and hence it immediately follows that r1 = 1/E(X) and

∞∑
k=1

rk(k − 1) =
E(X2)− E(X)

2E(X)
.
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Substituting these two results in (11), we obtain the expressions for E(W ) and E(L).
In particular, we have

E(W ) =
1

1− ρ

(
E(X2)− E(X)

2E(X)
E(B) + ρE(R)

)
+

E(X)− 1 + ρ

(1− ρ)µE(X)
.

3.2 The model with priority subscribers

We now deal with the model with priority subscribers as discussed in Section 3.2 of
Falin and Templeton [4]. In this model, high priority customers form a queue (like in
the standard M/G/1 queue) while low priority customers retry after an exponential
time (like in the standard M/G/1 retrial queue). In this subsection the subscript 1
is associated with the high priority customers and the subscript 2 is associated with
the low priority customers. The stability condition is given by ρ1 + ρ2 < 1, where
ρi = λiE(Bi), for i = 1, 2.

The mean value relations for the high priority customers are now given by

E(W1) = E(L1)E(B1) +
2∑

i=1

ρiE(Ri),

E(L1) = λ1E(W1),

leading to

E(W1) =
∑2

i=1 ρiE(Ri)
1− ρ1

,

and the mean value relations for the low priority customers are given by

E(W2) =
2∑

i=1

E(Li)E(Bi) +
2∑

i=1

ρiE(Ri) + ρ1E(W2) +
ρ1 + ρ2

µ
, (12)

E(L2) = λ2E(W2),

leading to

E(W2) =
∑2

i=1 ρiE(Ri)
(1− ρ1)(1− ρ1 − ρ2)

+
ρ1 + ρ2

(1− ρ1 − ρ2)µ
.

The last term in (12) corresponds to the total expected idle time of the server during
the waiting time of a low priority customer. Remark that a low priority customer goes
in orbit with probability ρ1 +ρ2. The first three terms in (12) correspond to the total
expected busy time of the server during the waiting time of a low priority customer.
To obtain these three terms, we assume the strict FCFS policy for low priority cus-
tomers, but we continue assuming that high priority customers have non-preemptive
priority over low priority customers. The first two terms are the contribution due to
the amount of work that a low priority customer finds upon arrival. The third term
is the contribution of those forthcoming high priority customers arriving during W2

and receiving service before the tagged customer.
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3.3 The model with impatient subscribers

Consider the model with impatient subscribers as discussed in Section 3.3.2 of Falin
and Templeton [4]. In this model, the probability that a customer retries after the
first attempt equals H1. On the other hand, the probability that a customer retries
after the i-th attempt equals 1, for i ≥ 2. The system is stable when ρH1 < 1.
Observe that the blocking probability Pb in this model is the solution of the equation

λ(1− Pb(1−H1))E(B) = Pb,

and hence given by

Pb =
ρ

1 + ρ(1−H1)
.

This follows from the PASTA property and the fact that 1 − Pb(1 − H1) is the
probability an arbitrary customer is eventually served.

The mean value relations are now given by

E(W0) =
H1Pb

µ
, (13)

E(W1) = E(L0)E(B) + H1E(L1)E(B) + H1PbE(R), (14)
E(L0) = λE(W0), (15)
E(L1) = λE(W1), (16)

where E(Li) =
∑∞

j=0 jPij , with P0j (resp. P1j) the steady-state probability that
there are j customers in orbit and the server is idle (resp. busy). Together these four
relations determine the four unknowns E(W0), E(W1), E(L0) and E(L1).

Combining formulas (13)-(16), we get

E(W ) =
H1ρ

1−H1ρ

(
E(R)

1 + ρ(1−H1)
+

1
µ

)
.

3.4 The model with general retrial times and only retrial
of head of the orbit

In Gómez-Corral [6] a model with general retrial times is considered. Special features
of the model are that those customers who find the server busy are queued in orbit
and only the customer at the head of the orbit is allowed to conduct retrials. Besides,
a new retrial time begins at a service completion epoch instead of at the moment of
a service attempt failure.

Denote with the random variable A a retrial time and with α(s) its LST. The
minimum between A and the exponential law with rate λ is denoted as ξλ

A. Then,
the mean value relations are given by

E(W0) = (E(L) + ρ)E(ξλ
A), (17)

E(W1) = E(L)E(B) + ρE(R),
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leading to

E(W ) =
ρ(E(R) + E(ξλ

A))
1− ρ− λE(ξλ

A)
.

In order to obtain (17) we now also use the strict FCFS service discipline to calculate
the total expected idle time of the server during the waiting time. Now, using the
fact that

E(ξλ
A) =

1− α(λ)
λ

,

we obtain

E(W ) =
ρ

α(λ)− ρ

(
E(R) +

1− α(λ)
λ

)
.

3.5 The model with two-phase service

We now consider the model with two-phase service studied in Artalejo and Choudhury
[2]. In this model, the server provides an essential service B1 (with residual service
time R1) to all customers. Some customers are provided with a second optional
service B2 (with residual service time R2) , with probability p. Thus, we have

B =
{

B1 + B2, with prob. p,
B1, with prob. 1− p.

Note that E(B) = E(B1)+pE(B2) and E(B2) = E(B2
1)+pE(B2

2)+2pE(B1)E(B2).
Furthermore, we denote ρ1 = λE(B1), ρ2 = λpE(B2) and ρ = ρ1 + ρ2 = λE(B).

As before, Pij denotes the steady-state probabilities of the system state. More
concretely, i denotes the state of the server taking the values 0 (server idle), 1 (server
busy with an essential service) and 2 (service busy with an optional service), while
j denotes the number of customers in orbit. Furthermore, E(Li) =

∑∞
j=0 jPij , for

i = 1, 2, 3.
Finally, let us introduce the following notation:

W0 : the server idle time during the waiting time of an arbitrary tagged customer,

W 1
1 : the busy time of the server providing essential service during the waiting

time of the tagged customer,

W 2
1 : the busy time of the server providing optional service during the waiting

time of the tagged customer.

Because the model is a special case of the main M/G/1 retrial queue, we obtain,
as in Section 2,

E(W0) =
ρ

µ
.

Now we assume the strict FCFS discipline and consider mean value analysis for
E(W i

1), for i = 1, 2, which yields
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E(W 1
1 ) = E(L)E(B1) + ρ1E(R1),

E(W 2
1 ) = pE(L)E(B2) + ρ1pE(B2) + ρ2E(R2).

Obviously, E(Li) = λE(W i
1), for i = 0, 1, 2. From the above formulas, we obtain

E(W 1
1 ) =

ρ1ρ

1− ρ

(
E(R) +

1
µ

)
+ ρ1E(R1),

E(W 2
1 ) =

ρ2ρ

1− ρ

(
E(R) +

1
µ

)
+ ρ2E(R2) +

ρ1ρ2

λ
.

3.6 The model with network blocking

In this model, described in Falin [3], those incoming customers (primary arrivals
and orbit customers) who find a free server can receive an engaged signal (due to
dialing error, breakdown, wrong connection, etc.) with probability p. In that case,
the customer will join the orbit. With probability q = 1 − p customers who find a
free server really enter the service station. As usual those customers who find the
server busy also join the orbit.

The probability an arbitrary customer goes in orbit now equals ρ+p(1−ρ) = p+qρ.
The idle time of the server during the waiting time of a customer, given that the
customer goes in orbit, now consists of a geometric number of exponential periods.
After each exponential period with parameter µ, the idle time ends with probability
q and continues with probability p. Hence, (W0 |W0 > 0) is exponentially distributed
with parameter µq. So, we conclude

E(W0) =
p + qρ

µq
.

Remark: (Alternative proof of E(W0) = (p + qρ)/(µq))
The level crossing argument for the orbit now gives µqE(L0) = λ(p + qρ), which in
combination with E(L0) = λE(W0) also yields E(W0) = (p + qρ)/(µq).

As in the main M/G/1 retrial queue, the mean value equation for the busy time
of the server during the waiting time is given by

E(W1) = E(L)E(B) + ρE(R).

Now it is easy to get, using Little’s law,

E(W1) =
ρ

1− ρ
E(R) +

ρ(p + qρ)
µq(1− ρ)

,

E(W ) =
ρ

1− ρ
E(R) +

p + qρ

µq(1− ρ)
.
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3.7 The model of two-way communication

In this model, we have two types of calls namely ingoing calls (i.e., calls made by reg-
ular customers as in the main M/G/1 retrial queue) and outgoing calls the behavior
of which is as follows. An outgoing call is produced with rate α only when the server
is idle (a possible motivation comes from the situation arising when the server is a
telephone attended by a person who is also able to make his/her own calls). Here,
we generalize the model described in [3] by assuming that ingoing calls and outgoing
calls receive different service times. In the sequel B1 represents the service time of
an ingoing call (with residual service time R1) and B2 represents the service time of
an outgoing call (with residual service time R2).

Let us further introduce the following notation:

ρ = λE(B1), σ = αE(B2),

W 0
1 : the total idle time of the server during the waiting time in orbit of an ingoing

call,

W 1
1 : the total busy time of the server providing service to an ingoing call during

the waiting time in orbit of an ingoing call,

W 2
1 : the total busy time of the server providing service to an outgoing call during

the waiting time in orbit of an ingoing call.

The system is stable when ρ < 1. Once more, Pij denotes the steady-state proba-
bilities of the system state. More concretely, i denotes the state of the server taking
the values 0 (server idle), 1 (server providing service to an ingoing call) and 2 (server
providing service to an outgoing call), while j denotes the number of customers in
orbit. We also consider the partial expectations, E(Li) =

∑∞
j=0 jPij , for i = 0, 1, 2.

Now it is straightforward to show (e.g., by applying Little’s formula to the server)
that the fraction of time the server is occupied by ingoing calls equals ρ, the fraction
of time the server is occupied by outgoing calls equals ((1 − ρ)σ)/(1 + σ) and the
fraction of time the server is idle equals (1− ρ)/(1 + σ).

Hence, the probability an ingoing call enters the orbit equals ρ + ((1− ρ)σ)/(1 +
σ) = (ρ + σ)/(1 + σ). So, we conclude

E(W 0
1 ) =

ρ + σ

(1 + σ)µ
.

The mean value equations for E(W 1
1 ) and E(W 2

1 ) are as follows:

E(W 1
1 ) = E(L)E(B1) + ρE(R1),

E(W 2
1 ) =

σ(1− ρ)
1 + σ

E(R2) + σE(W 0
1 ).

Here, we assume that ingoing calls follow the strict FCFS service discipline. Out-
going calls may directly occupy the server. Using again Little’s formula and the
above mean value equations, we obtain
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E(W ) =
ρ

1− ρ
E(R1) +

σ

1 + σ
E(R2) +

ρ + σ

(1− ρ)µ
.
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