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1 Introduction

The attitude of physicists towards semiconductor valence bands has always been
somewhat ambivalent. On the one hand, to probe the complexity of the valence bands
experimentally and to improve existing calculations of the valence band structure has
challenged physicists throughout the years. In general, band structures are key elements
in the understanding of almost all experiments on semiconductors. On the other hand,
neglecting valence band complexities can strongly enlighten the interpretation of
experiments in which valence bands are somehow involved. The reason is that most
physical effects that are found for simple, parabolic bands, are also found in more
complex bands, and vice versa. In such cases, the inclusion of valence band complexity
can only obscure the physical picture. Furthermore, inclusion of realistic valence bands
in actual calculations always complicates them, and often makes them impossible. It will,
however, become clear that a simplified view can easily become a simple-minded view.

Also more practical arguments have forced physicists to consider the peculiarities
of semiconductor valence bands. The characteristics of semiconductor optical devices
like  waveguides, (de-)multiplexers, light emitting diodes and lasers are always
determined by the joint action of conduction and valence bands. For example, in the
operation of a semiconductor quantum well laser, electrons and holes are injected in the
active region, relax to their energetic minimum where population inversion has to be
reached, and then recombine under the emission of light. In these subsequent steps
various parameters like transport mobilities, phonon coupling, density of states, band
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gaps and wave functions are import for both electrons and holes. Particularly with the
advent of ternary and quaternary semiconducting materials, it has become possible to
control many of these parameters independently. However, as the number of degrees of
freedom is almost infinite in a modern heterostructure, a solid knowledge of the physics
of these novel systems, both theoretical and experimental,is required in the device design
process.

In the next paragraph semiconductor heterostructures will briefly be discussed.
The following paragraphs deal with a very brief overview of earlier experiments on hole
and electron systems, and with the aim and main results of the work described in this
thesis. This chapter will end with a brief outlook.

1.1 Two-dimensional semiconductor structures

With modern growth facilities like Molecular Beam Epitaxy (MBE), Metal-
Organic MBE (MOMBE) or Chemical Beam Epitaxy (CBE) it is possible to grow
semiconducting materials atomic layer by atomic layer'. By growing different
semiconductors on top of eachother' it is possible to create structures with an artificial
potential in one dimension. These structures are generally referred to as heterostructures.
When the width of the one-dimensional potential becomes of the same length scale as the
electron wavelength, quantization effects occur. As the motion is restricted in the
quantization direction, but still free in the other two directions, such structures are
commonly referred to as (quasi) two-dimensional (2D). Chapter 2 will be dedicated to
the calculation of the energy levels in these structures. For now we will restrict ourselves
to introducing the four heterostructures which will be used throughout this thesis, see
Fig. 1.1. Since this thesis focusses on the valence band states, hole energy is counted
positive throughout this thesis, and the valence bands are plotted above the conduction
bands. '

The structures that will be discussed below are grown in the gallium-
arsenide/aluminum-gallium-arsenide (GaAs/Al,Ga, ,As) material system. Since
Al,Ga, As has a larger-band gap than GaAs, the former is used as barrier material. The
single quantum well (QW), see Fig. 1.1(a), is in many respects the most simple
heterostructure. Its active region consists of a thin well layer of GaAs, sandwiched

Here, we shall assume that both materials have the same lattice constants. The
effects of lattice mismatch are discussed in paragraph 2.3.
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Fig. 1.1. Valence and conduction band potentials for (a) a single, empty, quantum well,
(b) an empty asymmetric double quantum well, (c) a single heterojunction and (d) a center-delta
doped quantum well. The thin solid, dashed and dash-dotted lines denote heavy hole, light hole
and electron wave functions calculated using k p theory, the thick solid lines denote the total
confining electrostatic potential. The low and high band gap materials are GaAs and Al Ga, As,
respectively. ’

between two AL Ga, ,As (x=0.45) barrier layers. The asymmetric double quantum well
(ADQW), plotted in Fig. 1.1(b), consists of two single quantum wells of different width,
separated by a tunnel barrier, i.e. a layer which is thin enough to allow electrons and
holes to tunnel through. The absence of inversion symmetry in this structure, i.e. the
absence of a x-y plane with respect to which the potential is mirror symmetric, has
remarkable effects on the properties of confined holes. The 2-D carrier confinement in
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the single heterojunction (HJ) of Fig. 1.1(c) is due to the combined action of a band gap
difference between the two constituent layers and the band bending arising from
negatively charged acceptors and positively charged holes. As can be seen in the figure,
the free carriers are spatially separated from their parent impurities. Due to this
modulation doping technique, the scattering of the free carriers by the jonized impurities
is strongly suppressed, as compared to the case where the spacer layer is absent.
Obviously, the modulation doping technique is not restricted to single heterojunctions.
Finally, it should be noted that also the HJ potential lacks inversion symmetry. The last
structure to be introduced here is the center-delta-doped quantum well (3-doped QW),
see panel (d) of Fig. 1. In contrast to the common procedure in modulation doping, a
sheet of beryllium (Be) dopant atoms is placed in the center of the QW. The potential
resulting from the ionization of the Be atoms and the mobile holes is strongly attractive
for holes, but repulsive for electrons. Consequently, the holes are confined by the
resulting cusp-shaped potential, whereas the confining potential for electrons is formed
by the QW. For transport experiments on these structures, the latter confinement is not
necessary, but for optical experiments it is essential, in order to have sufficient overlap
between holes and photo-generated electrons.

1.2 Holes versus electrons

In most 2D heterostructures, the lowest conduction band states are relatively well
described by a single effective mass m”~ which certainly is not the case for the highest
valence band states. Moreover, electrons generally have a much higher mobility than
holes. These two properties make electron systems an ideal model system for low-
dimensional physics. It is therefore not surprising that, amongst others the Integer and

Fractional Quantum-Hall effects®*, ballistic and phase-coherent transport*’

and many-
particle effects®” were all first studied in 2D electron systems, both experimentally and
theoretically. Most of these effects have, at a later time, also been demonstrated in

valence band systems 310112

which strengthened of course the experimental evidence
for the universal character of these effects, but seldom gave rise to new insights.
However, many of the effects mentioned above have been used as tools for studying
valence band structure.

It is mainly for the reasons mentioned above that most research on valence bands
has closely been related to the band structure, as was also mentioned in the beginning of

this chapter. A large amount of 2D valence band structure calculations has appeared in
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the literature both for zero' and non-zero magnetic fields'*. The recent interest in
strained layer materials'® and growth on high-index planes, i.e. on non-(001) planes like
(011), (111) and (311), has inspired theoreticians to extend their band structure
calculations to these cases. Also the electron-hole interaction, giving rise to exciton
formation, has been incorporated in calculations'®. It is worthwhile to point out that
almost all the aforementioned calculations are based on the model derived by Luttinger?,
using k-p theory. Although the Luttinger model was derived to calculate impurity states
in bulk semiconductors, the flexible way in which it treats the perturbing potential makes
it extremely suited for calculating states in 2D systems as well. In fact, also 1D and 0D
structures can be well described within the Luttinger model. In chapter 2 the Luttinger
model will be discussed in some detail.

A large number of techniques has been used in experimental studies on the 2D
valence band properties. In early work mainly Shubnikov-de Haas and cyclotron
resonance measurements were performed for valence band characterization. Both
measurements have the disadvantage that only states at the Fermi level are probed. The
former method has also the disadvantage that many-particle interactions strongly affect
the obtained hole masses, as will be shown in chapter 6. These effects can easily lead to
an overestimation of the single particle hole mass by a factor of two. However, one of
the most important properties of holes, namely the lifting of the spin degeneracy at finite
wave numbers in non-inversion symmetric potentials, was first demonstrated by
Eisenstein ez al.' in a Shubnikov-de Haas experiment. In more recent work larger parts
of the valence band structure were probed, using resonant magneto-tunneling'® and hot-
electron recombination®. The valence band anisotropy was probed by Brosh et al.' using
the longitudinal magnetic commensurability oscillations and by Heremans et al.'® using
transverse magnetic focussing. Finally, Molenkamp er al.?? used the photo-luminescence
spectra of quantum wells grown on substrates of different orientations to determine the
Luttinger parameters and the valence band anisotropy of GaAs.

1.3 Many-body effects

In general, calculations on semiconductor structures can significantly be
simplified by ignoring interactions between the free electrons or holes, i.e. by ignoring
electron-electron, hole-hole and electron-hole interactions. This procedure is known as
the single-particle approximation, and often forms a good first-order approximation.
Before discussing the breakdown of this single-particle model, a distinction has to be
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made between few-particle interactions and many-particle interactions.

Due to the attractive Coulomb interaction between a single electron and a single
hole, a hydrogen-like bound state can be formed, which is known as an exciton. This is
in principle a two-particle interaction, but in a similar way complexes of one hole and
two electrons, or vice versa, can be formed. These complexes are known as trions and
have been observed in very high-quality heterostructures. As the formation of excitons
and trions requires the presence of both electrons and holes, these few-particle effects are
usually only important in optical experiments.

The many-body effects discussed in this thesis become important when a large
number of carriers, in the case of this thesis holes, are present in the structure of interest.
In this context, a large number means that the average inter-particle distance is
comparable in magnitude to the Bohr radius of the carrier (see paragraph 2.4.2 for the
definition of the Bohr radius of a single particle). For the GaAs/Al,Ga, As
heterostructures this means that these effects become important for densities above a few
times 10" cm™. All intentionally doped samples described in this thesis have a 2D
density in the order of 10" or 10'* cm™. The remark in the opening paragraph of this
chapter about neglecting the complications associated with the valence band complexities
in calculations is particularly true for many-body effects. Only a very limited number of
papers on this subject include these complexities, and often holes are treated as electrons
with a different mass. It will be shown in chapters 6 and 7 that an extension of results
obtained for electron-systems to hole-systems is far from trivial.

In paragraphs 4 and 5 of chapter 2 an introductory discussion of the many-body
effects that will be studied throughout this thesis will be given, together with the most
important formulas.

1.4 This thesis

The common denominator of all experiments was the applied analysis method.
Shubnikov-de Haas (SdH), Hall and magneto-photo luminescence (PL) and -excitation
(PLE) measurements were performed, and we very carefully related the experimental
findings to the valence band structure. It always turned out that the bare band structures
could not describe the experimental results. Moreover, we often found that earlier
interpretations, based on electron-like models, at least had to be modified or even were
proven to be wrong. Examples of the latter kind are the second-order van Hove
singularity, that was previously associated with an exciton line (chapter 4), and the
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masses determined from temperature dependent SdH, that were proven to be dominated
by exchange interactions (chapter 6), but previously were regarded as a good measure for
the single-particle hole mass. The limitations of the existing theory were found in the
magneto-PLE experiments described in chapter 5, which gave a very strong indication
that the 2D random-phase approximation (RPA) screening theory overestimates the
Coulomb screening of excited subbands. The optical experiments on 6-doped QWs
(chapter 7) prove the necessity of a consistent inclusion of the valence band mixing in
calculating the band gap renormalization in p-type heterostructures. As mentioned
before, one should be extremely careful in regarding holes as ‘complicated electrons’, in
the sense that interpretations valid for electrons can directly be applied to holes.

When we had developped a state-of-the-art band structure calculation program,
it was a logical step to apply it in a numerical/theoretical study on one of the peculiar
effects of the breaking of inversion symmetry on hole levels. This effect, macroscopic
‘spin’ separation, is discussed in chapter 3 and has no electronic counterpart.

The first three paragraphs of chapter 2 discuss band structure calculations in some
detail. The next two paragraphs of chapter 2 deal with the theoretical description of
many-particle interactions.

1.5 Outlook

All experiments discussed in this thesis are qualitatively well understood. On the
other hand, the theoretical framework in which the experiments are interpreted often
relies on severe approximations, especially where the many-body part of the calculations
is concerned. It is, however, questionable if, in general, a further refinement of the many-
body theory is worth the effort. For example, inclusion of the z-dependence, heavy-light
hole coupling and magnetic field in the calculations on screened excitons (chapter 5), is
not likely to yield new insight. The same is likely to hold for the effect of exchange on
the hole g-factor discussed in chapter 6, and the Fermi-edge singularity that is briefly
discussed in chapter 7.

In chapters 2 and 7 band gap renormalization in p-type heterostructures is
discussed in some detail, and the introduced theory, in which valence band coupling is
included, describes our experiments very well. At least two questions are nevertheless
still open, and are worth further study. First, the derived theory employs the local density
approximation (LDA), and therefore is only valid in the high-density regime. A theory
beyond LDA however is still absent. In particular in systems where the mixing between
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heavy and light holes is small, it is conceivable that such a theory might predict different
renormalizations for heavy and light holes, in contrast to the theory discussed in this
thesis. Second, our experiments on p-doped heterostructures show that occupied and
unoccupied subbands renormalize almost equally, in marked contrast with several
experiments” on highly excited intrinsic quantum wells. To my knowledge, this
difference has not fully been understood, and is certainly worth further attention.
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2 Hole and electron levels in 2D
semiconductor structures

This chapter is intended to serve as a theoretical introduction to the following
chapters. It should be stressed that we do not try to give a state-of-the-art overview of
semiconductor theory, but rather present the theoretical framework in which our
experimental results are interpreted. The vast majority of its content is compiled from
textbooks, review and regular articles, to which we will try to refer where appropriate.
The presented theory is, in general, commonly applied in semiconductor physics. Where
this is not the case, particulary in paragraphs 2.4.2 and 2.5.3, we refer to chapters where
a further discussion can be found.

The chapter starts with the calculation of electron and hole states in lattice
matched heterostructures at zero magnetic field. Interactions with other electrons or holes
are neglected (single-particle approximation). The effects of lattice mismatch, magnetic
fields, many-body interactions and exciton (un)binding will be discussed in paragraphs
2.2 through 2.5, respectively. In paragraph 2.6 miscellaneous topics related to the
numerical solution of the hole and electron eigenvalue equations will shortly be
discussed.

Hole energy is counted positive throughout this thesis. Therefore, the valence
band lays above the conduction band in all plots.
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2.1 One particle states in 2D structures
2.1.1 The Schrodinger equation in semiconductor bulk materials

The starting point for the calculation of the valence and conduction band states
is the bulk Schrodinger equation':

2
Py y(r) D (oxVV)p|¥()=[H, +H, o TE () =T (r) @.1)
m 4m,c

where m;, is the free electron mass and V(r) the electrostatic crystal potential. p and o are
the momentum and Pauli spin operators, respectively. The first and second terms on the
left-hand side are the kinetic and potential contributions, the third term describes the
spin-orbit interaction. This partially relativistic expression can qualitatively be
understood as follows®. Consider an electron that is moving with respect to a nearby
fixed charge. In the electron rest frame, however, the ‘fixed’ charge is moving, so there
is a current present, and the electron experiences a magnetic field. If the relative motion
were rectilinear, the magnetic field, as seen by the electron, would be vxE/c. This
magnetic field interacts with the spin, or more precisely, with the magnetic moment of
the electron. In this case, one would expect an interaction of the form

Hy,=-M-B=2y,S-B--5-SB
mc

(4
=-—_SvxE
mc
e

mi?

L 2S xV(ed)p

m-=c:

) (2.2)

SpxV

where i is the Bohr magneton and S the spin operator (S=%2%0). In the last step use has
been made of the relations A (BxC) = (AxB)-C and (AXB) = -(BxA). Actually, the
above is not correct. It turns out that relativistic effects associated with the fact that the
electron does not move in a straight line (the Thomas precession effect) add a factor 2
to the denominator of Eq. (2.2). For a spherically symmetric potential [i.e. ®(r)=®(r)],
Eq. (2.2) can be written as
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-1 13(ed(r)
H, . = - S-L
B ombOr  or

2.3)

with L the angular momentum of the moving electron. From (2.3) it can be seen that for
electrons, that originate from s-like orbitals (L=0), the spin-orbit interaction will, in zero-
th order, be small or even negligible. For electrons in GaAs and Al Ga, As this is a
reasonable approach, for narrow-gap materials as InAs, it is not. For holes, that originate
from p-like orbitals (L=1), Hy, can never be neglected.

In crystalline semiconductors, the electrostatic potential V(r) has the same
periodicity as the crystal. Taking a, (i=1,2,3) for the basis vectors of the crystal, we then
can write:

v(r{”j n}g}) -V(r) 2.4

which is valid for any r and all integers #,. Therefore one can look for solutions of Eq.
(2.1) that are also eigenfunctions of the translation operator T, where d :Z na.

T ¥ (r)=F(r+d)=exp(ik-d)¥ () 2.5

Equivalently, the solutions of Egs. (2.1) and (2.5) can be written in the well-known
Bloch form:

¥ 1) =N r)exp(ikd) 2.6)

where N is a normalization constant, u,, a function with the periodicity of the crystal
lattice and n and k are the band index and crystal wave vector, respectively.

For future purposes is useful to mention that it can easily be shown that the u,;
can be expanded in the cell-periodic functions at the zone center k,, u,,4:

™ €Y, @7

Before switching to two dimensional semiconductor structures it is worthwhile
to go a little deeper in the bulk solutions of (2.1). A k+p analysis of Eq. (2.1), using
second order perturbation theory' yields dispersion relations that are quadratic in k for
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all band edges. This analysis is only valid in the vicinity of the I" point. As the extension
of the perturbative calculation to higher orders of k is very cumbersome, other methods
have to be applied. A very successful approach was introduced by Kane®. Since the
Luttinger formalism, which will be used to calculate the valence band states in 2D, uses
the same basis' as was derived by Kane, we will briefly discuss Kane’s analysis.

The essential assumption of the Kane model is that, in most semiconductors, the
lowest conduction band edge and the highest valence band edge are relatively well
separated from all other band edges around the I point. Kane therefore diagonalized the
Hamiltonian [H,+Hj,] exactly within this limited set of band edges and included
coupling with other I" band edges afterwards, using second order perturbation theory. In
order to diagonalize this Hamiltonian, we need a basis in which both H, and H; , are
diagonal at k=0. In the following we will outline the construction of such a basis.

In the absence of spin-orbit interaction, the lowest conduction band edge is
twofold degenerate. Its band edge Bloch functions can be denoted as |S1), |S1), having
the same properties as molecular S orbitals. The highest valence band then is sixfold
degenerate, with Bloch functions |X1), |[Y1), |Z1), |X1), | Y1), |Z!), having the same
symmetry properties as molecular P orbitals. The S and P functions are already

eigenfunctions of L’ and S°, with L and S the orbital angular momentum and spin
operators, respectively. However, L and S cannot characterize the valence band states
uniquely, so another commuting observable needs to be introduced. We choose this to
be the projection of L along the z-axes, m;=-1, 0, 1. By taking linear combinations of the
Bloch functions mentioned above, new Bloch functions can be constructed that are
eigenfunctions of both L? and L,. One finds*:

1 ,
[1,+1)=—(X+iY)
7

11,00=Z 2.8)
Py
[1,-1)=—(X-iY)
2

where each |L,m,) state can have both spin up and down.
The spin-orbit interaction now couples the orbital and spin momenta, see Eq.

(2.3). Since the total angular momentum J satisfies

In fact the Luttinger model reduces to the Kane model when applied to bulk.
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Fig. 2.1. Schematic illustration of the effect of

spin-orbit coupling on the lowest conduction band
edge and the highest valence band edge. (a) No spin-
orbit interaction.(b) With spin-orbit interaction.

eigenfunctions of Hy,. Again, J can
not characterize the eigenstates of J*
uniquely and the projection of J
along the z-axis is chosen as second
observable. Addition of L=0 to
S=1/2 only gives J=1/2 (m=x1/2).
Addition of L=1 to S=1/2 gives a
quadruplet with J=3/2 (m=x3/2,
+1/2) and a doublet with J=1/2

(m=%1/2). This is illustrated in Fig. 2.1. E, and A, are the band-gap and spin-orbit
splitting, respectively. The edges of the J=3/2 with m, = +3/2, +1/2 are named the heavy
and light holes, respectively, the J=1/2 doublet edges are the split-off band. The
construction of eigenfunctions of J* and J, out of those of L and S is beyond the scope

of this chapter, but can be found in standard textbooks on quantum mechanics, see e.g.

Ref. [2]. The final result is given in (2.10) with the states labeled as

1, 1\ .
IE,+;>~1S1
2

3 ,3\_ 1 .
i av=asl

—2'7

3, 1\_ 1 ——
;ﬁ;)——\/g[(XﬂY)l 27Z1]
3 _I\_ 1 g stas

?—;)-——-‘/g[ (X-iV)1-2Z1]

3 3\_ 1 s
33 &
1 1

27 2

I 1\_.
Iz,";)—lSl

3= lintez1]

Lyt v
1 ﬂ[ (X-iV)1+Z1]

Jm,).

(2.10)

To recapitulate, Eq. (2.10) is the basis on which the total Hamiltonian [H+H ]
is diagonal at k=0. At non-zero wave vectors off-diagonal elements arise due to k-p

terms, resulting from the kinetic term in Eq. (2.1), and interactions with higher bands. We

will come back to these terms in the discussion of the Luttinger Hamiltonian.
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2.1.2 The envelope formalism

To solve Eq. (2.1) in two-dimensional semiconductor structures, further
approximations have to be made. As most experimental properties of semiconductor
heterostructures are determined by states near one of the high symmetry points, i.e. the
I', X or L point, of the host materials, the envelope formalism is extremely suited for a
theoretical interpretation of experiments. The main advantages of this model are its
relative mathematical simplicity and the physical transparency of the obtained results.

Two key assumptions are made in the envelope formalism. Firstly, inside each
material layer, the wave function is expanded on the periodic parts of the Bloch functions
of the edges m under consideration. Secondly, the periodic parts of the Bloch functions
are assumed to be equal in each heterostructure layer. Under these assumptions the wave
function can be written as

(=Y ¢, () (2.11)

The possible k dependence of ¥(r) and the envelope functions ¢,,(r) has been dropped
for simplicity. Eq. (2.11) is obtained from Eq. (2.7) when the constants c,, are made
position dependent. As we will only consider lattice matched and elastically strained
structures, the in-plane lattice constant is the same in each layer. The total heterostructure
will therefore be translationally invariant in the layer plane, and the in-plane motion of
the particles can be described by plane waves:

LCDY %exp(ikﬂ‘r")cm(Z)um 20 2.12)

where § denotes the sample area, k, the in-plane wave vector and (,(z) the envelope
function of edge m in the z direction. The interfacial plane is taken perpendicular to the
Z axis.

2.1.3 Electron states in 2D semiconductors
In GaAs and In,Ga, ,As with x<0.25 the lowest conduction band is relatively well

separated from all other bands. Therefore the admixture of other band-edge states to the
conduction band wave function is very small in the vicinity of the I" point. For the
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conduction band states, the basis Eq. (2.10) can then be reduced to iST and iS! and the
summation in Eq. (2.12) only runs over these states. Under these conditions it can be
shown' that the slowly varying envelope functions {,,(z) are given by the equation

21.2

k
L +U ()|, (2)=E;(k)F,(2) (2.13)
2m*(2) 82> 2m’(2) '

where m" is the layer dependent electron effective mass, U/(2) the bottom of the
conduction band and E; and F, the energy and envelope wave function of the i-th
subband. For eigenfunctions of Eq. (2.13) the subband index i is a good quantum number
that equals the number of nodes in the envelope function F(z). In the following, we will
use the term eigenstate to refer to the combination of the eigenvalue E; and eigenfunction
F,, and EQ, E1 etc. will be used to abbreviate the electronic groundstate and first excited
state in a 2D heterostructure. Similarly, we will use Hi and Li to denote the i-th eigenstate
of the heavy and light holes, respectively. As Eq. (2.13) is independent of spin, each level
is twice degenerate (Kramers degeneracy).

Eq. (2.13) is a good approximation for the lowest conduction band states in not
too narrow quantum wells (1,> 100 A). For higher subbands the error in Eq. (2.13) caused
by admixture of other I edges becomes significant. From fourth-order k-p theory it was
derived® that the admixture of highest valence band edges (J=3/2 and 1/2) leads to a
correction on E(k)) of the form

. .| K, .
E/(k”,kz)=e(k“,kz) 1+1—516(k“,kz) 2.14)
8
with
k- m* 2Eg 3E, +40 ;424 o/,
my, (Eg+AS.0)(3Eg+2AS.0) 2.15)
L Wk ()
elhpk,)=————
2m”

where E, and Ay, are the band gap and spin-orbit splitting of the material, respectively.
It is easy to show that, at k=0, for square wells with infinite barriers € equals the
confinement energy, i.e. the distance between the bottom of the well and E(0). For
parabolic wells € equals half the confinement energy, again at k =0.
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2.1.4 Hole states in 2D semiconductors

In bulk and in most 2D heterostructures, the energetic separation between the
highest valence band edges (J=3/2, m=+3/2, £1/2) is very small. Consequently, they
interact very strongly at non-zero k and an equation like Eq. (2.13) is not applicable for
a proper description of their in-plane dispersions, even when interactions with the lowest
conduction band and the split-off band are weak and can be neglected. The simplest
realistic model for the valence band edges therefore requires at least the J=3/2 quadruplet
as basis. In GaAs and low indium-content In/Ga, ,As the conduction and split-off bands
=152 eV and A;,=0.34 eV at
4.2 K for GaAs) and can be ignored in most cases'*. The highest valence band states are
then described by the Luttinger Hamiltonian H,,,’. When we choose {|3/2,+3/2), |3/2,-
1/2), |3/2,+1/2), |3/2,-3/2)} as our basis, the Luttinger Hamiltonian becomes:

are indeed well separated from the /=3/2 quadruplet (E,

H ¢ -b 0

%zc*H,Ob

i (2.16)
2mo|-b" 0 H, ¢

H (k. k)=

FLut XY

|0 b" " H,

The elements H,;, b and c are, with the quantization direction along the z-axes, given by

Hy=(k+k DY, +Y,) +h (Y, -2Y,)

Hy=(ky +k) (Y, ~¥) +k (Y, +2Y,)
b=2y/3vy,(k,~ik )k, ,
c=~y3lv,0k; -k)) 20y k]

_ Y2+Y3 N2 Y3"Y2 N2
d 2 )"‘*"”‘9 dTJ("”"‘”

The t denotes the Hermitian conjugation. The material parameters v, v, and vy, are the
Luttinger parameters. Together with Eqs. (2.16) and (2.17) they describe both the
coupling between the edges within the J=3/2 quadruplet and the coupling of the J=3/2

217)

quadruplet edges with all other I"-edges, including the conduction band, but excluding
the split-off band. For most III/V binary compounds they are relatively well known®,
although even for such intensively studied materials like GaAs, there is some debate on
which set of ;s is the most suited®.
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(a) (b) (©

E E E
J=1/2 / J=1/2 J=1/2
J=3/2 \ k J=3/2 k J=3/2 k
Fig. 2.2. Illustration of the effect of the 2D confinement and the off-diagonal elements in

the Luttinger Hamiltonian. (a) Bulk semiconductor.(b) 2D confinement in diagonal
approximation. (c) 2D confinement with full 4*4 Luttinger Hamiltonian.

Since Eq. (2.16) takes only the periodic (bulk) part of the electrostatic potential
V(r) in Eq. (2.1) into account, the confining potential still has to be added to obtain the
total hole eigenvalue equation. In the envelope formalism it is usually tacitly assumed
that the interface potential does not mix the various band edges, but only shifts them,
which is plausible due to the very different symmetries of the conduction and valence
bands'®. Under this condition the electrostatic potential term only adds to the diagonal
of Eq. (2.16). When we choose to align the confining potential with the z-axis, this
becomes our quantization axis and the total hole eigenvalue equation reads

~ Lut

H (kx,ky,%a—i)+g(z) Gk, 2)=E,G (k ok ) (2.18)

with U(z) a 4*4 matrix with on its diagonal the elements U, ,(z), U, (2), U, (z) and U, ,(2),
respectively, and zeros on all other positions. U, ,(z) and U, (z) are the electrostatic
potentials, without the cell periodic part, for heavy and light holes, respectively. In the
absence of strain effects these are the same. The E; and G, are the eigenvalue and
envelope function spinor of the i-th subband, respectively. Note that k, had to be replaced
by its operator form.

Of course it is possible to choose another quantization axis than the z axis. Our
choice has the advantage that heavy (m,=+3/2) and light (m,=+1/2) hole states decouple
at k =0. Other choices can be advantageous from a numerical point of view'".
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The last part of this
paragraph is spent with the
interpretation of the Luttinger
Hamiltonian and the hole
eigenvalue Eq. (2.18). At k=0 all
non-diagonal elements in Eq. (2.16)

E [meV]

vanish and four uncoupled one-
dimensional Schrédinger equations
remain. By comparison with Eq.
(2.13) one finds that the heavy and
light holes have a band- or

transverse-effective mass of

k [107 m-1] 1/(y;-2y,)  and 1/(y,+2Y,),

) respectively. Usually, all vy, are
Fig. 2.3. Calculated dispersions of the lowest

hole subbands in a 90 A GaAs/Aly Gay s QW with POSIUVe and v, >2Y, so the heavy
p=5*10" m?. The solid lines result from the full holes indeed have a higher binding

calculation, dashed lines from the diagonal mass then the light holes This is
;ppro.ximation. The dash-dotted line indicates the illustrated in Fig. 2.2(a) and (b).
ermi level. .
When k0, but all off-diagonal
elements are still neglected (diagonal approximation), comparison with Eq. (2.13) gives
heavy and light hole in-plane or longitudinal masses of 1/(y,+y,) and 1/(y,-v,),
respectively. Now the heavy and light holes have reversed their character in the sense that
the heavy holes have an in-plane mass that is smaller than the light hole in-plane mass.
Due to this mass reversal effect, the heavy and light hole energies would cross at a
certain value of k,, see Fig. 2.2(b). However, due to interactions between the heavy and
light holes, which are accounted for by the off-diagonal elements in the Luttinger
Hamiltonian, the crossing is avoided and anti-crossing gaps open. This is illustrated in
Fig. 2.2(c).

This anti-crossing can also be understood in terms of the Pauli principle, by
considering the quantum numbers that still exist at finite £, Due to the off-diagonal
elements in the Luttinger Hamiltonian, states of different m, are mixed at non-zero k, so
m, ceases to be a good quantum number. Also the subband index i is no longef a good
quantum number at finite k, This is due to the d/dz operator in element b of the
Hamiltonian Eq. (2.16), which couples states with subband index i to states with index
i+]. Therefore, the only remaining quantum numbers are J, k, and k,. At a crossing they
would be the same for both heavy and light holes, which is forbidden by the Pauli
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principle. Therefore the levels must anti-cross.

Fig. 2.3 displays the dispersion relations of a p-type GaAs/Al, ,;Ga, ssAs quantum
well of 90 A width and density p=5*10'" m? Both the results of the diagonal
approximation and the full Luttinger Hamiltonian are shown. The electron-like mass of
L0 at small £ is due to the repulsive interaction between LO and H1. This interaction is
expressed by the element b in the Luttinger Hamiltonian, as stated above.

2.2 Band alignment and the effects of lattice mismatch

The alignment of the band edges of two different semiconductors are grown on
top of eachother has been the subject of intense debate. In our calculations we have
mainly employed band edge discontinuities, or band offstets, that follow from the model-
solid theory of van de Walle'”. This theory predicts band alignments of both valence and
conduction bands for many heterojunctions in II/V, II/VI and group IV semiconductors.
Furthermore, the effects of strain can be incorporated as simply as in bulk
semiconductors, which subject will be discussed below. Most importantly, the agreement
with experiments seems to be rather good. The principal feature of the model-solid

theory'? is that it gives the average valence band energy E,,, defined as

E, . =(E,+E,+Es)/3, for each bulk semiconductor on an absolute energy scale. Band
edge discontinuities at any hetero interface can then be calculated by simply subtracting
the respective E,,,’s. The conduction band edge of a semiconductor is obtained by
adding the experimental value of the band-gap to the (unstrained) heavy hole, or
+(1/3)A; o+E,.

From the calcultation procedure following from the model-solid theory, band edge

equivalently light hole, edge: E =E, ,,
discontinuities appear to be uniquely determined by bulk properties and should therefore
have the transitivity property. However, the band alignment is directly related to the
electrostatic potential lineup'>', defined as the the difference between the average
electrostatic potential on the two sides of the interface, which arises from the electron
density distribution at the interface. In general, this electron density distribution depends

!5 and composition'®, and on the orientation of

on the interfacial atomic configuration
the substrate'”, and therefore the band alignment also depends on these factors. However,
for lattice matched interfaces, it has theoretically been shown that, within the numerical
accuracy, both the transiﬁvity rule is satisfied'® and the dependences on interface
orientation, atomic configuration and composition are absent'>'*'¥, Our reason to employ

the model solid theory also for the strained In,Ga, ,As/Al Ga, ,As system is its proven
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Fig. 24. Schematic illustration of pseudomorphic (left and right panels) and lattice

matched (central panel) growth. The squares denote the crystal unit cells.

good agreement with experiments in similar material systems and its mathematical
simplicity'2.

The envelope formalism that was discussed in the previous paragraph can easily
be extended to take the effects of lattice mismatch into account. Consider a
semiconducting layer, with equilibrium lattice constant a,, that is grown on a (001)

substrate with lattice constant a,,, see Fig. 2.4. As long as the thickness of the top layer

sub>
does not exceed a certain critical value, the top layer will accommodate its lattice
constant such that its in-plane lattice constant equals a,,. When the critical layer
thickness % is exceeded, defects in the crystal lattice arise. Below this critical layer
thickness, the growth is called pseudomorphic or commensurate and the resulting biaxial

strain in the plane of the interface is then given by:

- asub _aO
a

(2.19)

0
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From elasticity theory one knows that the relation between an elastic deformation dr/r
and the applied pressure P is P=C-dr/r with C the elasticity tensor. For crystals with
cubic symmetry, like most semiconductors, all diagonal elements are equal, with value
C;;, and all off-diagonal elements are equal, with value C,,. In equilibrium all forces
balance and P=0. Applying this condition to the toplayer-vacuum interface we find for
the uniaxial strain perpendicular to the interfacial plane

C
€ 7€, —2—6” (2.20)

All non-diagonal strain tensor elements are zero for (001) growth. A more extensive
treatment of strain effects for growth along non-(001) directions in relation to the
Luttinger formalism is beyond the scope of this chapter®’.

The hydrostatical component of the strain, (€.t€,+€,,), causes a shift of the

average valence band edge energy E, ,,**'?

11

C
AEv,av=av<€m+€yy+€u)=2av[ 1 C—”] €, (2.21)

Similarly, for the conduction band energy one has

Cp,
AEC=aC(exx+eyy+ezz):2ac I-—e€, . (2.22)

11

Here, a, and a, are the hydrostatic deformation potentials of the valence and conduction
band, respectively.

The shear component of the strain, (2€,-€,-€,), couples to the spin-orbit
interaction. This leads to an additional splitting of the valence band energies. With
respect to E, ,, and for (001) growth, the following shifts are calculated®':

1 1 s

AEv,h: ;AS.O~;6E h
L
AE, = —%A s 0+%6E sh +% A o +Ag SE™ +§(6E “”)ZF (2.23)

AE, s =<, +%5E " _%{Ag.o +Ag OE™ *%(5E sh)ZJE

v5.0~ g

In these equations E™ is given by
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2C

12+1€

11

SE*h =b(2e,-€, € )=-2b (2.24)

1

with b the shear deformation potential.

So far, strain effects on bulk band edges have been discussed. In the hole and
electron eigenvalue equations, the strain shifted band edges are accounted for by adding
the various AE’s to the respective electrostatic potentials U, ,. Figs. 2.5(a-c) illustrate the
effects of the hydrostatic and shear components of the strain, for both compressive
(ap>a,,) and tensile (a ga ) strain. The example deals with the lowest conduction,
heavy and light hole bands in an In,Ga, ,As quantum well embedded between InP barrier
layers, grown on an InP substrate. For clarity, only the diagonal elements in the hole
eigenvalue equation (2.18) are considered. Furthermore, alloy effects on the Luttinger
parameters, electron effective mass and spin-orbit splitting have been neglected. From
the figure it is evident that the strain modifies the relative heavy and light hole positions
and hence their interaction when the non-diagonal elements in the Luttinger Hamiltonian
are taken into account. By choosing the appropriate In fraction y, the heavy-light hole
interaction can be lessened (y<0.53), generally resulting in an enhancement of their
parabolicity, or enhanced (y>0.53). The latter case can, in extreme situations lead to a
reversal of the heavy-light hole order, i.e E(LO)<E(HO). It will be clear that the
application of strain in semiconductor heterostructures opens huge possibilities for what
is called ‘band engineering’. In particular the use of quaternary materials as InAlGaAs
or InGaAsP, that allow for an independent adjustment of the band gap and the lattice
constant, is useful for device applications. For a more extensive discussion of this subject

24,25,26

the reader is referred to other publications and references therein.

2.3 Effects of a perpendicular magnetic field

The application of an arbitrarily directed magnetic field B to a two-dimensional
electron or hole gas, leads, via the Lorentz force, generally to a coupling of the motions
in the x, y and z directions. Consequently, a separation like Eq. (2.12) is no longer
possible and, even when parabolic bands are assumed, no general solution to the
Schrodinger equation is found. However, in the limits of extremely low or high magnetic
field of arbitrary direction, the field or the confinement can be treated as a perturbation,
and the Schrodinger equation can be solved. For arbitrary fields, exact solutions of the
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(@) (b) (c)

Fig. 2.5. Effect of strain on the in-plane dispersions of an InGa, As/InP QW. (a)
Compressive strain (ay;>a,, x>0.53), (b) Lattice matched (a,=a,,,, x=0.53) and (c) tensile strain
(a,<ay,, x<0.53).

Schrddinger equation can be found only when the field is applied either in the plane of
the interfaces” or perpendicular to it. In this thesis we will only consider perpendicular
magnetic fields. '

The solution of the electron Schrodinger equation in a perpendicular magnetic
field B yields the famous Landau levels as solutions. The usual' procedure starts by
making the substitution

10 e
k = —— _A b = 2y
T og 7 @ {x.y.2} (2.25)

in Eq. (2.13) and adding the Zeeman term g'u,0'B. The A, are the components of the
magnetic vector potential A (B=VxA) for which the Landau gauge A=(-By,0,0) is chosen.
The spin and spatial coordinates do not couple and the spin and spatial Hamiltonians can
be separated. The eigenvalues of the spin part are simply” +%2g"u,B. The spatial part
forms a harmonic oscillator problem with eigenvalues (N-V2)hw,. Note that the lowest
Landau level has N=1. The total electron energies in a perpendicular magnetic field are
thus given by
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By <N-Lho,x1g "y B (2.26)

Where the plus (minus) sign corresponds to spin up (down) and g" and p are the g-factor
and the Bohr magneton, respectively. The cyclotron frequency w, is given by w,=eB/m,”,
with m_” the cyclotron effective mass. Corrections for electron non-parabolicity can easily
be applied using Eq. (2.14) where e(k ,k,) is replaced by
C o R
€Bnk)=Ey + z 2.27)
2m*

The inclusion of a magnetic field in the Luttinger Hamiltonian Eq. (2.16) is
somewhat more complicated®®***°. The first step of the procedure is the same as for the
electronic Hamiltonian, i.e. the numbers k, and k, are replaced by their operator forms Eq.
(2.25). Now we introduce the ladder operators a and a':

L . .
a=—(kx+tky)

N

; (2.28)
a'=—<(k i)
2

%

where [, is the magnetic length, [’=%/eB. The operators a and a' do not commute,
(a,a"=1, and have the properties

a T”N:\/N””Nn
au]\,:\,/]T/uMI (2.29)

to
a'au,y=Nu,

where the u, are the harmonic oscillator eigenfunctions that vanish for negative N, u,=0
if N<0. For the properties Eq. (2.29) a and a' are also called the annihilation and creation
operator, respectively. When we now express &, and , in the Luttinger Hamiltonian in
terms of the operators a and a', and let the resulting matrix work on the spinor
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N

we find that Gy, is an eigenvector of H,,, when the axial approximation is applied, i.e.
Y,=Y;. For GaAs v,=2.1 and y,=2.9 so the neglect of the valence band anisotropy (or
warping) is a reasonable approximation. Formally the total hole Hamiltonian in a
magnetic field can therefore be written as

Py A t
ﬂLm(a»a :kz) _I—iu(N’kZ) +ﬁw(a’a ) (2-31)
with
+ - 2, « ~
nr Zy?_”; 3. : Yo —iz—j—y N-TIN ~¢y3\/]\l_—1kz 0
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where y=(y,+Y,)/2. Since uy=0 for N<0, the corresponding elements in Eq. (2.32) should
be set to zero, and Eq. (2.32) is reduced to 3*3, 2*2, 1*1 for N=1, 0, -1 respectively. The
warping Hamiltonian is given by

[0 ¢, 0 0]
t
2{C,, 0O 0 0 -
s cey Bty pY ke (2.33)
wmg0 0 0 ¢, 2 2
0 0¢c o

The warping Hamiltonian H,, couples solutions ¥, to ¥,,.,. Therefore, an exact
solution of the hole eigenvalue equation requires that an infinite number of hole Landau
levels is taken into account. As this is not very attractive with respect to the processor
time required for the solution of the corresponding eigenvalue equation, a different
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approach is followed. First, the exact solutions of the unwarped problem are calculated.
These eigenfunctions are then used as a basis in which the solutions of the total
Hamiltonian are expanded, using perturbation theory.

The total hole eigenvalue equation that has to be solved in the first, exact, step is
given by
LR e
4 m()

H +
Tax

G =EjG}, (2.34)

The suffixes N and j label the Landau level number and the band, respectively. The
second term in Eq. (2.34), in which xis the hole g-factor, describes the Zeeman splitting
of the holes. M, is a 4*4 matrix with zeros at all positions but the diagonal elements,
which equal m,, i.e. 3/2, -1/2, 1/2, -3/2, respectively. Note that the lowest Landau level
of a band does not necessarily have N=1, e.g. the heavy holes down have N=-1 as lowest
Landau level.

The Schrédinger equation to solve in the second step can, using the definitions
given above, be written as

(I;I'ax +gw)X§4:E;MX’;4 (2.35)

where H’,, denotes the total expression between square brackets in Eq. (2.34). Since we
have

H G;=EiG; (2.36)

and

(GJIGL)=8,.8,, 2.37)

we can use the eigenfunctions of Eq. (2.34) as an orthonormal basis for the
eigenfunctions of Eq. (2.35):

X=X ciGj (2.38)

N
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Fig. 2.6. Calculated Landau levels of the lowest hole subbands in a 90 A
GaAs/Aly sGa, s;As QW with p=5*10" m*. (a) Diagonal approximation. (b) Axial approximation
(i.e. warping neglected). (c) Full calculation. The solid (dashed) lines denote ‘spin’ up (down)
subbands.

Substitution of Eq. (2.38) in Eq. (2.35) and taking the inner product with G;,/, gives, with
the use of Egs. (2.36) and (2.37),

o . ./ : x v
E,{,/C,j\,ﬁjEN v GylH |Gi)=E, e}, (2.39)

This is the new eigenvalue problem to solve. Since H,, does not contain any operators
after it has been applied to spinor Eq. (2.30), the solution of Eq. (2.39) requires a simple
scalar matrix to be diagonalized. This matrix has in principle still an infinite number of
rows and columns, but as it only couples states with index N to states with index N+4,
a limited calculation that includes L Landau levels of each band will yield reliable results
for the lowest L-4 or L-8 Landau levels. Typically, we have used L=24.

We end this paragraph with a few notes on the interpretation of the eigenvalue
equations (2.34) and (2.39). At the limit B=0 all off-diagonal elements in Egs. (2.32) and
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(2.33) vanish’ and two points should be noted. Firstly, the warping Hamiltonian vanishes.
Secondly, the decoupled Schrodinger equations are just the same as at k=0 in (2.18),
which of course should be the case. When the magnetic field is made non-zero, but the
off-diagonal elements are still neglected, linear Landau levels are found, with a field
dependence that is characterized by the in-plane effective mass 1/(y,xy,). The off-
diagonal elements of Eq. (2.32) again couple states of different m, but, as Eq. (2.30) is
an eigenvector, N is still a good quantum number of the axial problem. Therefore Landau
levels with different NV are allowed to cross and only levels with the same N must anti-
cross. The warping Hamiltonian Eq. (2.33) mixes states with quantum number N to states
with N+4, so N is no longer a good quantum number. In fact four groups of Landau
levels are formed in which the levels do interact with other levels in the group, but that
do not interact with levels of different groups. In the chapter on magneto-transport
(chapter 6) it will be shown that the warping interaction is of key importance in the
calculation of realistic effective hole masses. Fig. 2.6 illustrates the above for the p-type
GaAs/Aly,sGay ssAs quantum well of 90 A width and density p=5*10"> m”. Note that the
lowest heavy hole down Landau level {(N=-1) is the same in all three panels of Fig. 2.6,
due to the absence of interactions with other levels. Comparison of panels (b) and (c)
shows that the warping ‘compresses’ the LO and HO Landau fans, which can be
expressed as a reduction of the effective hole mass. In chapter 6 we will come back to
this point.

2.4 Many-body interactions

In the derivation of the Hamiltonians discussed in the previous paragraphs,
interactions between particles have been neglected. For empty or almost empty, say n,
ps5%10" m™, heterostructures this is a valid approximation. At higher carrier densities
significant deviations from this one-particle approximation arise. In the following we
briefly discuss three corrections to this approximation, namely the Hartree term, the Fock
or exchange term and the correlation correction. As the latter two contributions lead to
a reduction of the hole and electron eigenenergies, their combined effect is also known

'In fact, they vanish for finite N. In order to describe states at energies above the
k =0 energy in this formalism, N should approach infinity as B approaches zero. In this
case the off-diagonal elements do not vanish, and the zero-field Hamiltonian Eq. (2.16)
is retrieved.
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as band-gap renormalization (BGR).

2.4.1 The Hartree term: the Poisson equation

The Hartree term accounts for the classical electron-electron (or hole-hole)
Coulomb interaction. It amounts to replacing the exact many-electrons potential by an
average one. For a system that is completely homogeneous in the x-y plane, cf. Eq.
(2.12), the Hartree contribution V}, to the electrostatic potential U, is given by the one
dimensional Poisson equation

2
% HD=——p(@ (2.40)

Z 0~r

with e the (positive) proton charge. The charge density p(z) includes, apart from the
occupied electron or hole states, also the distribution of ionized impurities, either due to
background or doping. Furthermore, for 2D hole gases, the hole wave function is k
dependent. The total charge density is then given by

p(Z) =i€z fdkH ‘ Hi(k|| ,Z) | Zf(Ei (k||) _Ep) * eNda,,(z) - eNac(_-(Z) (2_41)

where the plus (minus) sign in the first term on the right hand side refers to a 2D hole
(electron) gas and fis the Fermi-Dirac distribution function. H, is the envelope function
of the i-th subband of either the conduction or the valence band [cf. F, in Eq. (2.13) and
G, in Eq. (2.18)]. For 2D electron gases the envelope functions are k -independent, cf.
Eq. (2.13), and the integration in Eq. (2.41) can be replaced by n,|H, (k,,2)|* with n, the
subband occupancy. It turns out that a similar replacement yields good results for hole
gases in most structures as well. An exception to this rule are the center-delta-doped
quantum wells that are discussed in chapter 7.

It should be pointed out that, in contrast to the exchange and correlation potentials
that are discussed below, the Hartree potential is equal for electrons and holes.

2.4.2 Band gap renormalization: exchange and correlation

In the Poisson equation (2.40), the fermion character of the holes or electrons has
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been neglected. Inclusion of the fermion character leads to the exchange interaction.
Furthermore, the distribution of carriers in the x-y plane was assumed to be
homogeneous. However, due to inter-particle Coulomb repulsion, the carriers are
generally spatially cortrelated, which can lower their total energy. This process is
generally referred to as the correlation interaction.

It is assumed that both interactions can be accounted for by an effective potential
that is a scalar function of the local density in the heterostructure p(z). This method is
known as the local density approximation or LDA. In the local density approximation,
the exchange and correlation potentials are related to the exchange and correlation
energies €, and €, per particle of a homogeneous 3D hole or electron gas of density p by

v, 0=-Lipe, (0)1(0)= ¢, (@) -p)-Lle, ()] (2.42)
dp dp

Although the applicability of the LDA to (quasi) two dimensional structures still is,
subject of discussion, it yields results that agree well with experiments. According to
Langreth and Meh!”', the use of the LDA for an electron gas in a quantum well is
justified as long as ra,«5d, with d the width of the quantum well. The effective Bohr
radius a, and dimensionless Wigner-Seitz radius r, are defined by

4me € h*
ay=——— (2.43)
mhe
1
Kl (4%)1/3(10‘)1/3 (2-44)

with p the three-dimensional carrier density in the quantum well. For future purposes we
now also define the effective Rydberg Ry
%2
Ry= (2.45)

2
2m,a,

Qualitatively, the criterium of Langreth and Mehl is expected to hold for holes as well.
In the samples considered in this thesis we have r,<5, 4,11 A and d=50 - 100 A, so this
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condition is indeed satisfied.

The origin of the exchange interaction will be illustrated with an example.
Consider a two-particle system, where the two particles can be either electrons or holes.
Their single-particle wave functions, i.e. the wave functions of the non-interacting
particles, are ¥, (ry) and P, (r,), respectively. In the lowest approximation, the total two-
particle wave function is simply their product, F=¥,(r,)-¥,(r,). However, the Fermion
character of the particles requires that the total wave function is anti-symmetric under the
interchange of the spatial coordinates of two particles. Such an anti-symmetric wave
function can be constructed from single particle wave functions by means of a Slater
determinant®. For our two-particle system we have

¥ ) ¥, (r,)
¥, r) P,r)

1
F(rprz):_

/i

T](rl)lyz(rz) "IP](TZ)IPZ(I'I)] (2.46)

|
V2
When we now wish to calculate the expectation value of the Coulomb interaction, (V)
=(F|V|F), we find

1

r,-r

(V)= e’ fa’rldr2

4n€r€0 ‘ |:|LPl(rl) ‘ 2 ‘ ‘Pz(rz) | 2“lP1*(rl)‘P](rz)lP;(rz)le(rl)jI (2.47)

2

The second term between square brackets in Eq. (2.47) is the exchange contribution and
would not have been found when a simple product wave function was taken for F. The
first term is the Hartree contribution that, in 2D, is accounted for by the Hartree potential
Vy, calculated from the Poisson equation (2.40).

The correlation potential reflects the fact that charged particles of equal charging
tend to avoid one another. By doing so they can reduce the total energy of the ensemble.
At extremely low temperatures this leads to the famous Wigner solid.

Unfortunately, the actual calculation of exchange and correlation energies is rather
complicated, particularly for holes when the complications arising from the coupling of
the valence bands are included®”. Therefore only the parametrized results of Bobbert et
al.”> will be given here. These describe the hole exchange and correlation energies in a
homogeneous 3D hole gas. Various authors have already studied these energies for
homogeneous electron gases™. It should be pointed out that the calculations for electron
systems can not straightforwardly be extended to hole systems, see Ref [32] and the
discussion below and in chapter 7.

The results are all given in effective Rydbergs, see Eq. (2.45). For the exchange
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energy per hole Bobbert ef al. find

13
] 2| L
€.=-{ow) 2[ 4n2) R 2.48)

which equals the exchange energy of an electron gas at the same density, apart from the
numerical function {(w):

Cw)=27 B+ (1-w) w Haw +b) +c(4w 3 +3w 2+2w +1)] (2.49)

where w is the ratio between the light and heavy hole Fermi wave vectors in bulk:

k m
w=—Fis | L (2.50)
kew Ny,
The hole effective masses m, and m, are here defined as
m
m,= 0___ , m, = m()
Yy +2Y Y2y
— (2.51)
?Z 2’Y2+3Y3
5

The parameters a, b and ¢ in Eq. (2.49) are a=0.679, b=-0.0686 and c=1/4+31/64-2""~
-0.0811. For w=0 and w=1 the function {{w) equals ¢{0)~0.7126 and ¢{1)=0.7937. The
fact that the exchange energy is smaller for holes than for electrons, {(w) is smaller than
unity for all w, reflects the fact that the J=3/2 quadruplet has four internal degrees of
freedom, where the electron doublet /=1/2 only has two. Consequently, it is easier to
fulfil the Pauli exclusion principle, which reduces the exchange interaction. Furthermore,
for the hypothetical case w=0 the exchange energy is lower than for an electron gas at the
same density although there is only one type of holes present.

The correlation energy per hole can, within one milli-effective Rydberg, be
parametrized as>*: .

€ (w,r)=aw)fib(w)r)Ry (2.52)

The function f{x) is
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)= -0.1358-0.0179x+0.0752Inx+0.0024xInx  (x<1), 2.53)
= 1/(-2.2568-3.5742,/x-0.7017x) (x>1) ’
and the fitting polynomials for a(w) and b(w) are
a(w)=1+0.960(w-0.5)-0.112(w-0.5)*-0.454(w-0.5)* +2.106(w-0.5)* (2.54)

b(w)=1+0.364(w-0.5)-1.056(w~-0.5)*-1.667(w-0.5)* +1.865(w-0.5)*

In order to calculate the total band gap renormalization of a p-type heterostructure,
the electron-hole correlation potential, which accounts for the correlation between the
valence band holes and a single conduction band electron, is also required. For GaAs and
r, around 5, this potential can be written as®

e 1
V. (rs)z - Ry
c \[rz[l N Ar;/4+ Brslls] (2.55)

with A=4.526, B=1.956 and C=0.273. Note that Eq. (2.55) describes a correction to the
conduction band potential.

As an illustration of the above, Fig. 2.7 displays the total valence band potential
of the p-type GaAs/Al, 4sGa, ssAs quantum well of 90 A width and density p=5*10" m?,
together with the Hartree and exchange-correlation potentials. The electron-hole
correlation potential, affecting the total electron potential, is also shown. Note that the
Poisson potential does not alter the band gap, as it is felt by both the electrons and holes,
whereas all other potentials do reduce the band-gap, which is why their combined action
is often labeled band-gap renormalization.

Below, two peculiarities of the exchange and correlation interactions in a hole gas,
as expressed by the formulas presented above, will be discussed. First, the exchange-
correlation potential for the valence band states is equal for ‘heavy’ and ‘light’ hole
subbands, which may appear surprising at first sight. However, this is a direct
consequence of the LDA formalism, which treats the 2D system locally as bulk. To be
consistent, one therefore has to use the bulk dispersion relations for calculating the local
fractions of heavy and light holes. Using this procedure, it is obviously no longer
important wether a 2D subband is labeled ‘heavy’ or ‘light’, and the only important
parameter becomes the total local hole density. This local density is then used to
calculate the valence band exchange-correlation potential, that is equal for ‘heavy’ and
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220 pr——— ‘light’ holes for the following
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Fig. 2.7. Many-particle potentials for a 90 A

GaAs/Al,  Gay s As OW with p=5*10" m2. The solid direction of J, is fully arbitrary, and
line is the total valence band potential. The dashed any superposition of hole basis
line denotes the Hartree potential, the dash-dotted and  gtates can be constructed for an
dash-double-dotted lines denote the hole exchange-
correlation potential and the electron-hole correlation
potential, respectively. The kinks at z=0 and z=140 A Coulomb interaction is non-diagonal
in the Hartree potential are due to the modulation with respect to hole character. In
doping planes at these positions.

individual hole. Furthermore, the

other words, any scattering process,
either scattering by an impurity or by
another hole, will in general change the character of the individual hole. Since the
exchange and correlation interactions are nothing but inter-particle scattering processes,
they must necessarily affect all valence band states. It should be stressed that no direct
analogy can be made between hole character (m,) and spin, since spin is conserved under
Coulomb scattering, and hole character is not.

Second, occupied and unoccupied subbands experience the same exchange-
correlation potential, which holds for both n- and p-type systems. For the correlation part
of this potential this notion is more or less trivial, since the correlation is only driven by
the Coulomb interaction. The equality of the exchange potentials for occupied and
unoccupied subbands is less trivial, since the exchange interaction is only present
between particles with an equal set of quantum numbers, which seems to exclude inter-
subband exchange. However, although the subband index may be a good quantum
number’, the Coulomb interaction is non-diagonal with respect to this number. As an
illustrative example, one may consider the exchange interaction between a particle in the

i The subband index is a good quantum number for parabolic particles. For holes,
this is only the case for k=0, as discussed in paragraph 2.1.4.
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heavy hole groundstate (HO) and one in the first excited heavy hole state (H1) of a
symmetric QW. Using Eq. (2.47), where the HO and H1 wave functions at k=0 are taken .
for ¥, and ¥,, will yield a non-zero result, although the direct inner product (¥, |¥,) is
zero. The above is in marked contrast with several experiments on highly excited
undoped quantum wells, in which it was shown that unoccupied subbands display far less
renormalization than occupied subbands™. On the other hand, in chapter 7 we find
convincing evidence that, in p-doped quantum wells, occupied and unocupied subbands
experience the same exchange and correlation potential. Very likely, this difference is
related to the fact that in the high-excitation experiments an equal number of electrons
and holes is present in the structure, which situation electron-hole pairing can strongly
alter the systems properties***. It was shown by Bauer’® that the occupied states in such
a system can form an electron-hole condensate, that shows a far stonger renormalisation
of the effective band gap than the unoccupied states. A further discussion of the model
presented above and a comparison with other models for calculating the hole exchange-
correlation potential and experiments, can be found in chapter 7.

2.5 Exciton (un)binding

Apart from electron-electron and hole-hole interactions that were discussed in the
previous paragraph, also electron-hole interactions can strongly affect the physical
properties of semiconductors, both in bulk and in systems of reduced dimensionality.
This paragraph deals with the formation of excitons (bound electron-hole pairs) and their
unbinding due to interactions with free carriers. Also the magnetic field dependence of
the excitonic energy levels is briefly discussed. The excitons will assumed to be free, i.e.
not bound to impuﬁties.

2.5.1 Free excitons in undoped heterostructures

Particularly in bulk semiconductors, a lot of insight can be gained by considering
an exciton as a scaled hydrogen atom with an effective Rydberg Ry” and an effective
Bohr radius a,” that are scaled by the dielectric constant of the semiconductor € and the
reduced effective mass u=(1/m,+1/m,)":
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Ry*:L—%Ry , Ry=13.6 eV
My e,

(2.56)

* my, o
ag=€,—ay , a,=0.529 A

For GaAs one has €,~12.8, m,~0.4 m, and m,~0.067 m, which gives Ry’=4.7 meV and
az =118 A.Fora perfectly two dimensional exciton Ry” is enhanced by a factor 4 with
respect to its bulk value, forming an upper bound for the exciton binding energy in a
(quasi) 2D heterostructure. Two important conclusions can be drawn from these
numbers. Firstly, the excitons under discussion here are large with respect to the GaAs
lattice constant, so the envelope formalism is applicable. Secondly, the exciton binding
energies are generally much smaller than the confinement energies of the lowest
conduction and valence band states in e.g. quantum wells. Therefore the Coulomb
interaction can, to a good approximation, be treated as a perturbation that does not alter
the single particle wave functions. Under this assumption the total wave function of the
exciton groundstate (1s) can in 2D be written as®’

F,(rp,2)=Fy(z)Gyz)® () (2.57)

with the radial part given by

& )= ELeXp D (2.58)
el nkex A'e)c

where r, is the in-plane spatial coordinate. The two-dimensional exciton radius A,, is
determined variationally to minimize the exciton binding energy E,

1

3h2 e 2
(F KX\E!FEQ (2.59)

+

E,(A)=-
b( ex) zp*lzx 47‘cer€0

with p=[r/+(z,-z,)’]'"*. In Egs. (2.57-59) both holes and electrons were assumed to be
characterized by a single effective mass. It is known that valence band non-parabolicity
can strongly enhance the exciton binding energy with respect to its value in the parabolic
approximation®®. This effect is particularly strong for the light hole ground state exciton
in GaAs quantum wells, due to the negative light hole mass around the I' point.
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Fig. 2.8. Absorption spectrum of a 2D

absorption spectrum. Fig. 2.8 illustrates
semiconductor. The hatched region is the free P P &

band-band absorption, the gray regions indicate this schematically. Most pronounced are
excitonic effects. the 1s absorption peak and the

enhancement of - absorption over the
excitonless value due to the Sommerfeld factor. This Sommerfeld enhancement is due
to the continuum wave functions of the exciton, which represents the effect of electron-
hole correlation in unbound states. In very high quality materials also the 2s and 3s peaks
can be observed. With a schematic picture like Fig. 2.8 in mind, peaks in experimental
absorption spectra are generally interpreted as being indicative for the presence of
excitons. In chapters 4 and 5 it will be shown that this can be misleading.

2.5.2 Exciton bleaching by interactions with free carriers

When excitons coexist with other particles, either free electrons, free holes or
other excitons, interactions with these other particles lead to a reduction of the exciton
binding energy. This effect is generally referred to as exciton bleaching or exciton
screening. In the following we will restrict the term ‘screening’ to a particular mechanism
of exciton unbinding. In all experiments described in this thesis the exciton density is
kept low, so exciton bleaching by interactions with other excitons can be neglected.
Therefore, this will not be discussed here and only bleaching by free particles will,
qualitatively, be discussed. Generally, three bleaching mechanisms are discerned: phase-
space filling, exchange and Coulomb screening.

Phase-space filling is due to the fermion character of electrons and holes.
Formally, one can think of an exciton as being built up out of products of free electron
and hole states, cf. Eq. (2.57). When a state in the phase-space is occupied by a free
particle, it can no longer be used in the formation of an exciton which leads to a
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Fig. 2.9. Calculation of exciton binding energies in a p-doped GaAs/Al, ,;Ga,,As quantum
well of 100 A width with variable hole concentrations, taken from G. D. Sanders and Y. C.
Chang, Phys. Rev. B 35, 4274 (1987). Note that the labeling differs from what is used throughout
this thesis, e.g. HHI is HO in our notation, CB1 is EO etc.

reduction of the exciton binding energy. A useful rule of thumb for estimating the density
at which excitons are unbound by this mechanism is a, '~ 1/k;*

Exchange interaction is also due to the fermion character of the electrons and
holes. As this interaction was discussed in some detail in paragraph 2.4.2, it will not be
further discussed here. Its bleaching effectiveness is about the same as that of the phase-
space filling mechanism®®,

Coulomb screening is, unlike the two mechanisms discussed above, not restricted
to excitons of occupied subbands. Qualitatively, Coulomb screening can be thought of
as a rearrangement of free carriers in the presence of a disturbing electrostatic potential,
e.g. of a photo-created electron or hole, which compensates the disturbing potential. It
is usually accounted for by a dielectric constant e(q) that modifies the electron-hole
interaction'. It can be shown* that for purely two-dimensional systems Coulomb
screening cannot fully unbind the exciton, in the sense that at least one bound state (1s)
always remains although its binding energy can be infinitesimally small. The two other
bleaching mechanisms can totally unbind the exciton.

Fig. 2.9 illustrates the effects of phase-space filling and Coulomb screening in a
100 A GaAs / Al,,sGa,,sAs quantum well. Clearly, the exciton of the occupied subband,
represented by the dashed line, is totally unbound at a finite density. All other excitons
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approach zero binding energy asymptotically, characteristic of Coulomb screening in 2D.
The limits of the 2D approach to exciton screening will be discussed further in chapter
5. The enhancement of absorption strength, sketched in Fig. 2.8, vanishes, more or less
parallel, with decreasing exciton binding energy.

2.5.3 Excitons in a magnetic field

The calculation of the energy levels of a quasi 2D exciton subjected to a
perpendicular magnetic field is a far from trivial task. Even when hole and electron non-
parabolicity are neglected, analytical expressions can only be derived in the high and low
field limit. In all other situations, one has to rely on numerical solutions of the exciton
Hamiltonian. Formally, one can write the exciton Hamiltonian as

H, =T Bk )+T,(BK)+U(2)+U)+V, (r,-r,) (2.60)

where T, is the kinetic energy of the electron (hole), U, the confining conduction
(valence) band potential and V,, the electron hole interaction. Taking the 4*4 Luttinger
Hamiltonian for 7}, Bauer and Ando*' and Yang and Sham* have solved , but their
discussion is beyond the scope of this chapter(2.60). As this procedure is extremely
laborious, we will follow another approach that yields an approximate solution of Eq.
(2.60). For a full discussion of the strengths and weaknesses of this method, the reader
is referred to chapter 5. We solve the electron and hole Hamiltonians in a magnetic field
separately and correct for the exciton binding energy afterwards. The field-dependent
exciton binding energy is assumed to be the same as for the scaled 2D hydrogen atom,
that is discussed by MacDonald and Ritchie*. Our procedure is that we replace the linear
contributions of the electron and hole, ~hw **(N-1/2), to the energy of the N-s state of the
scaled hydrogen atom by more realistic Landau levels from Egs. (2.26), (2.14) and
(2.34). The exciton binding energy at zero field, 4Ry", is used as a free parameter. In the
following, the magnetic field dependency of the energy levels of the scaled two-
dimensional hydrogen atom will be discussed, in which we will follow MacDonald and
Ritchie™.

In discussing excitonic levels, it is convenient to characterize the Coulombic and
magnetic energy scales in terms of the effective Rydberg, see (2.56), and the cyclotron
energy hw, with w,'=eB/u", respectively. Furthermore, it is convenient to define their
ratio y:
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y=— (2.61)

In the low magnetic field regime, i.e. y«1, the magnetic field may be treated as a
perturbation to the zero-field hydrogenic levels. For the energy of the N-s (L=0) excitonic
level one then finds*

1 Y

E, (N.BRy")=|-————+
(N-1/2)

Ry’ (2.62)

The coefficients cy are for the lowest four s-states ¢;=3/8, ¢,=14 5/8, ¢,=103 1/8 and
¢,=385 7/8. The first term between brackets can be interpreted as the zero field binding
energy of an N-s hydrogenic state, the second can be interpreted as its diamagnetic shift.

In the high field limit, i.e. y»1, the Coulomb interaction can be treated as a
perturbation on the free electron and hole Landau levels. The excitonic energy levels for
the N-s states are then given by*

E_(N.B.Ry ‘)—[2Y(N—%) -d, 2nv]Ry‘ (2.63)

The dimensionless coefficients d,, are, for the lowest four excitonic Landau levels d,=1,
d,=3/4, d;=41/64 and d,=147/256. The first term between brackets describes the field
dependence of the unperturbed Landau level with index N, the second term is a
correction term that is proportional to B'2.

For intermediate fields, MacDonald and Ritchie** have constructed an
interpolation scheme that reproduces the high and low field results Eqs. (2.62) and (2.63)
and interpolates between them. This interpolation scheme shows accurate agreement with
a numerical solution of the two-dimensional hydrogen Hamiltonian®’. As the use of this
interpolation scheme is much faster than the numerical solution of the aforementioned
Hamiltonian, we apply the former method to calculate excitonic energies at arbitrary
fields.
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2.6 The Broido-Sham transformation, interface conditions and
numerical solutions

In this paragraph miscellaneous topics that are related to the numerical solution
of the eigenvalue problems introduced in the preceding paragraphs, will be discussed.

2.6.1 The Broido-Sham transformation

The hole eigenvalue equation (2.18) describes a set of four coupled complex
second order differential equations which forms a rather unfriendly system to solve.
Using a unitary transformation U it is possible to block-diagonalize the Luttinger
Hamiltonian®, i.e. H,,, =UH,,U" is block diagonal. The transformation matrix U is

e 0 0 -e'
110 e™ —em 0
ﬁ 0 e™ e 0
e™® 0 0 e

(2.64)

This transformation is generally referred to as the Broido-Sham transformation. It mixes
‘spin’ up and down components but the heavy and light characters are conserved in the
new basis. The angles ¢ and ) are given by* '

) 0,+0, T

0,6, (2.65)

o
o~

where ©, and ©, are the phase angles of the elements b and c¢ in the Luttinger
Hamiltonian, see Eq. (2.17). The transformed Luttinger Hamiltonian is

H, ¢ 0 0]
. _a2|@ H 00
H (kkk)=—"—o , &=lc|-i|b| (2.66)
L TS oml0 0 H, €

0 0 & H,
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The symbols have the same meaning as in Eq. (2.16). Note also that the Hamiltonian Eq.
(2.66) is real. The eigenvalue equation (2.18) remains unaltered, apart from the

replacement of H,,, by H,,,.

2.6.2 Interface conditions

In semiconductor heterostructures the material parameters, m" and the v,’s, are
usually different in each material layer. Consequently they become a function of z and
do no longer commute with 9/0z and 6%0z* at the interfaces. The usual cure for this
problem is to replace all products of material constants and operators by their anti-
commutator {a,b} = (ab+ba). One obtains the following substitutions
* 9.0

Yo e

MR A
Yox 2] 7 ox

and similarly for m*. With this transformation, the electron and hole Hamiltonians still

(2.67)

contain elements of the form 6/0z y; which is numerically undesirable since v; is usually
assumed to be a step-like function of z. An elegant way around this numerical problem
exists in the real-space approach that is used to solve the eigenvalue problems''.
Moreover, this method automatically fulfills the usual flux conserving interface
conditions® and will be discussed in the next section.

2.6.3 Real-space numerical solution

The solutions of the electron and hole eigenvalue problems are obtained using a
numerical routine that solves a system of N coupled first order differential equations of
the shape

) .
a_Zyi:f‘i(x’yl’yz,.“’yN) ’ l:1,...,N (2.68)

The second order differential equations in Eq. (2.18) are transformed to the shape Eq.
(2.68) by collecting, in each second order equation, the terms containing detivatives of
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Y, to the left hand side. The terms under the derivative on the left hand side are then
defined as new dependent variable of which continuity is required. The continuity of
these new variables fulfils the flux conserving interface conditions. As the eigenenergy
E; is also unknown, it is also regarded as a dependent variable y, which satisfies the
differential equation 0/0z E = 0. The whole procedure sketched above is discussed in full
detail by Goldoni and Fasolino®’. A comparative discussion of other methods used to
solve the hole eigenvalue problem and our method can be found in chapter 3.
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3 Enhancement of spin-dependent hole
delocalization in degenerate asymmetric
double quantum wells

(published in Phys. Rev. B 53, 10000 (1996) and Superlatt. Microstruct. 21, 217
(1997))

3.1 Introduction

In the past decades the energy bands of low-dimensional semiconductor structures
have been intensively studied, both by experimental and theoretical means. For the J=1/2
electron states, originating from S-type molecular orbitals, an almost parabolic behavior
was found. Only for large wavenumbers and high magnetic fields, the deviations from
parabolicity are significant. The valence band, in contrast, is strongly non-parabolic.
Since the hole states are formed from P-type molecular orbitals (L=1), the spin-orbit
interaction becomes important and splits the hole states in a spin-orbit split-off doublet
with J=1/2 and a heavy hole-light hole quadruplet with J=3/2. The interactions between
these bands result in strongly non-parabolic dispersion relations. Due to this complexity,
it has only recently been recognized that structures can be developed that take advantage
of the physical properties of the valence band, both to explore new physics and to
improve device performance’.
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One of the aforementioned
structures that has been intensively
studied in the past few years is the
Asymmetric Double Quantum Well
(ADQW)#1 consisting of two
(single) QW’s of different width,
separated by a tunnel-barrier, see

Energy [eV]

Fig. 3.1. As a device application,

such structures can, e.g., be used as

bias-voltage tuneable infrared

detectors”®> or as  velocity

z [A]

modulation  transistors®. More

Fig. 3.1 Envelope functions of the first hole and  {Wndamentally, ADQWs can show
electron levels in a self-consistent potential at zero in- Strong tunneling dependent level
plane wavevector. The wavefunctions are offset by broadening when the scattering
their energy at k=0. The hole density is 1.5%10*"° m™.
Hole levels, solid line, HO; dotted line, HI, dashed
line, LO; dash-dotted line, L1. Electron levels, top to 81 different’. One of the most
bottom: EO, E1. interesting features is the different

intensities in the left and right wells

leakage of hole wave functions of
different magnetic moment, leading to a macroscopic separation of ‘spin’ up and ‘spin’
down (m=x3/2 or *1/2) states. This effect was coined 'Spin-Dependent Hole
Delocalization' (SDHD) by Goldoni and Fasolino®’. Due to the asymmetry of the
potential, the degeneracy of the pseudo-spin my of the hole-levels is lifted, leading to spin
dependent hole delocalization, even when there is no resonance between levels in the left
and right well. )

In most theoretical works dealing with ADQWSs>?® the effects of bandfilling on the
hole states are not taken into account. These are essential to explain most experimental
results quantitatively and as we point out, even qualitatively. In this chapter we will show
the extreme sensitivity of the hole energy levels and optical oscillator strengths to the
presence of a degenerate hole gas. Furthermore, we will show that the SDHD is strongly
enhanced when the bandbending resulting from the presence of holes is included.

This chapter will be organized as follows: In paragraph 3.2 the theoretical
framework in which the numerically exact solutions of both the Schrodinger and Poisson
equations- are obtained will be presented. In paragraph 3.3 numerical results will be
presented which will be compared with experiments in paragraph 3.4. A summary will
be given in paragraph 3.5.
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3.2 Theory

In this paragraph we will outline our approach to solve the Luttinger Hamiltonian.
We have used a commercially available routine to obtain exact eigenvalues and
eigenfunctions from a set of coupled first-order differential equations. The used routine
solves a two-point boundary-value problem, described by a set of coupled first-order
differential equations, using a deferred correction technique and Newton iteration’. Since
this method is not limited by a (finite) basis set of functions to expand the eigenstates in,
it is numerically exact, i.e. within a user-specified tolerance, typically 10°. This is similar
to expanding the eigenfunctions in an infinite basis-set.

In most theoretical studies'®!"1%!314

on valence bands which appeared in the past
decades, the hole eigenstates are expanded in a limited set of basisfunctions and are
calculated by matrix diagonalization. This method is known to give rise to significant
deviations for larger wavenumbers, unless the number of basis functions is drastically

increased'’. Other, exact, methods'¢"

are only applicable to highly symmetric
structures, such as empty single quantum wells. The method presented here is suited for
any given potential, under the limitation that a good starting solution can be generated.
Also the effects of strain or a magnetic field can easily be included"?, and an easy access
to wave functions and their derivatives is provided. However, in this chapter we will only
be concerned with the asymmetric double quantum well in zero magnetic field. To
calculate the hole energy levels we used the Luttinger Hamiltonian'®, with inclusion of
warping, in the spin-orbit basis with m,=(3/2,-1/2,1/2,-3/2). The confining potential U
is assumed to be parallel to the z-axes, and hole-energy is counted positive. The split-off
band components of the lowest hole levels of the J=3/2 multiplet are known to be
negligible'®, which reduces the Luttinger Hamiltonian to 4*4. Furthermore we will
neglect linear k terms, arising from the lack of inversion symmetry of the GaAs crystal,

since they only give rise to small energy splittings' .

H,+Uz ¢ -b 0

Y ¢t HAUR 0 b
R S 3.0

0 bt ¢t HAUQ)

where
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H, = (k)Y +1,)+RY, =21,)
Hy= (k] k), =Y,) +ko(Y, +27,)

b= 2\/§y3(kx—iky)kz (3.2)
¢ =3Iy, k) -2iy3k k]

g =19
tjoz

In order to reduce the numerical effort we have applied the Broido-Sham
transformation'"”!, making Eq. (3.1) block-diagonal. The remaining set of coupled
second-order differential equations is then transformed into first-order, giving two sets
of six equations, when equations for normalization and energy continuity are included.
Standard boundary conditions are applied at the outer boundaries of the calculation
interval.

The choice between flux conservation or wave function continuity imposing
interface conditions (IC), i.e. keeping (1/m*)(d¥/dz) or (d¥/dz) continuous at the
interfaces’?®, can be made by simply taking the Luttinger parameters of the barrier
material (Al,Ga,  As) different or the same as those of the well material (GaAs),
respectively. However, when flux-conserving IC are chosen, the Luttinger parameters ¥,
become z-dependent and do no longer commute with the operators k, and k,”. Therefore

empty structure p=1.5%10"" m?

Level 1 o¥ oY 1 3% ¥

m* 9z 3z m* 9z oz
HO 16.62 16.86 10.69 10.95
H1 27.10 27.58 12.62 12.56
LO 39.97 41.84 32.38 3422
L1 63.81 68.37 48.32 52.52
EO 60.89 65.93 66.76 71.74
El 93.55 104.21 107.81 118.49

Table 3.1 Energies in meV of the first two heavy, light and electron levels in a filled or
empty ADQW (59.4 A and 42.4 A wells, 33.9 A barrier) with 40% Al barriers for two different
interface conditions, as indicated by the collumnheadings. See text for further explanation.
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expressions of the type Yk, and yk,” have to be replaced by their respective anti-
commutators®, Since we will assume low Al-content (25%) barriers, and focus on the
lowest subbands, which penetrate only a few atomic layers into the barriers, the
difference between the two approaches will be small, and will generally fall below
experimental resolution. For the standard structure of paragraph 3.3 we have listed the
first heavy, light and electron levels in Table 3.1, for both interface conditions. In the
remainder of this paper we have applied the wave function continuity imposing IC’s,
unless stated otherwise. The parameters used in the calculations are y,= 6.85, y,= 2.1 and
¥,= 2.9 for GaAs and y,= 3.45, y,= 0.68 and v,= 1.29 for AlAs®. Intermediate values
are calculated using linear interpolation.

The actual calculation is split in two parts, a part for k<=0 in which self-consistency
is obtained, and one for finite k. The k=0 calculation starts with solving Eq. (3.1) for a
flatband potential, taking advantage of the fact that Eq. (3.1) decouples into four
Schrodinger-type equations, which are easily solvable. The starting solutions for this
procedure are generated as even and odd combinations of half or whole-period sinuses,
localized entirely in the separate wells. For the lowest subbands (a half period-sinus in
each well) the even combinations correspond to the lowest energy, see Fig. 3.1.

The wave functions obtained in this way are used to calculate the charge
distribution p(z) in the system. Poisson's equation is then solved by numerical integration
of p(z) and the charged acceptor distribution.

2
o W
a 2

7z €€,

p(2) 3.3)

The charge present in the wells is distributed over the k=0 wave functions assuming
parabolic bands with effective masses given by m,/(y,+y,) and m,/(y,-v,) for heavy and
light bound bands, respectively, where m, is the electron rest mass. The doping is
assumed to be distributed over two &-layers on the left- and right-hand sides of the
structure, in such a way that no net voltage drop is present over the structure. In practice
this means that the doping is almost equally distributed. A weighted average of the new
and old potentials is then used to calculate the next iteration. This procedure is iterated
until the potential is stable within a pre-defined limit (107°). The final potential is then
used for the calculation of all hole levels at finite k from Eq. (3.1).

For highly degenerate systems the parabolic approximation for charge distribution
over the k=0 wave functions, implicitly assuming that the wave functions are
independent of k, will induce an error in p(z), but this effect was checked to be small.
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The lowest hole levels (HO,1; L0,1) calculated exactly were within 0.5 meV of those
calculated in the parabolic approximation of p(z), for densities up to 1.5%¥10*'% m?.
Because of the enormous difference in computational effort, we will use the latter

method.

3.3 Numerical results

There are three relevant dimensions in any ADQW (the width of both wells and
their separating barrier) which determine the effects of charging on the energy levels and
on the SDHD. In the first place the lowest hole states need to be well bound for all
reasonable densities, yielding a minimum well-width of about 30 A. Secondly, the lowest
k=0 solutions are to be mainly localized in one of the wells, but need to have amplitude
in both wells. This means that the width of the central barrier should be of the order of
a few times the penetration length of the heavy hole wave function (=25-60 A).
Furthermore, one wants to avoid the complexity and ambiguity of many, hardly
separated, bound states, occurring in wide wells(>100 A). Within these limits, every
ADQW behaves qualitatively the same, which allows us to consider one typical structure
as general. The structure under consideration in this paragraph consists of a 59.4 A (21
monolayers GaAs) and a 42.4 A (15 ML) well, separated by a 33.9 A (12 ML) barrier,
with an Al content of 25%. In order to enhance the confinement of the bound states, the
outer barriers have an Al content of 40%. The spacer layer between the doping and the
nearest GaAs/AlGaAs interface is taken 33.9 A. The thickness of the confining barriers
is chosen such that no significant change of observables occurs upon a further increase.

3.3.1 Zero in-plane wavevector

In Fig. 3.1 the wave functions of the first two light and heavy-hole levels are
depicted, together with the first two electron levels, for a sheet density of 1.5%10*'® m,
As can be expected, the groundstates of the heavy, light and electron levels are
predominantly localized in the wide well and have a even character with respect to the
middle of the central barrier, whereas the first excited states are odd-character functions,
localized mainly in the narrow well.
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More remarkable is the density

60 | dependence of the energy separation

between the first and second heavy-
hole levels (HO and H1), see Fig.
3.2. Upon the first introduction of
charge, the H1 level rapidly shifts

down to a few meV above the HO
level at p~0.2*10*'® m™. For higher
0.0 0.3 0.6 0.9 1.2 1.5 sheet concentrations the HO-HI1

p [1016 m2] , separation remains independent of

charge density. This behavior is a
Fig. 3.2 Energies of L1, L0, HI and HO levels  {jrect consequence  of  the
and Fermi energy as a function of doping

concentration for the standard structure (see Fig. 3.1). electrostatic - effect of the space

charge.

For very low carrier concentrations, all charge will condense in the lowest level,
HO. Since HO is mainly localized in the wide well, the narrow well will be shifted down
with respect to the wide well by the resulting electrostatic potential. Consequently, the
H1 level, having its maximum amplitude in the narrow well, shifts down towards the HO
level. Fig. 3.1 illustrates this. A crossing of the HO and H1 levels is avoided by the fact
that the density of states (DOS) is almost the same for both levels: as soon as H1 drops
below the Fermi level, all extra charge is equally distributed over both wells, resulting
in a status-quo for the relative positions of HO and H1. This point is indicated by the
arrow in Fig. 3.2.

The density at which the HO and H1 levels would become degenerate can be
obtained by a simple back-of-the-envelope calculation of the electrostatic potential of a
single charged plate, V=ped/2¢€,. Taking d as the distance between the centers of both
wells and V the potential difference between HO and H1 in the p=0 situation, we find
p=0.16*10""® m*, in reasonable agreement with the exact result. It is worthwhile to note
that the above described alignment effect is not restricted to hole gasses, nor to the
specific dimensioning of the ADQW.

3.3.2 Non-zero in-plane wavevector
The effect of self-consistency on the dispersion relations of an ADQW is depicted

in Fig. 3.3. Clearly visible is the downward shift of the first exited heavy and light hole
bands in the degenerate system [Fig. 3.3(b)], compared to the empty system [Fig. 3.3(a)],
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| (b) ADQW
p=1.5*1016 m2//." !
40
S
[4}]
E
>
2
[0}
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k [108 m-1] k [106 m-1]
Fig. 3.3 (a) Dispersion relation of an empty 59.4-33.9-42.4 A ADWQ. (b) as (a), for a

density of 1.5*%10%'° m”. Solid lines, ‘spin’ up, (10Mirection; dotted lines, ‘spin’ down, 10/
dashed lines, ‘spin’ up, (11} dash-dotted lines, ‘spin’ down, (11)

due to the charge-induced bandbending. Note also the very similar dispersion curves for
HO and H1, implying the equality of their DOS. The spin-dependent hole delocalization
for the empty and filled structures is represented in Fig. 3.4. Plotted is the expectation
value of the z-operator, (z) = [ G"z'G dz with G the corresponding envelope function, for
both spin directions of HO, LO and H1 versus || in the (10) direction. The zero of the
z-axis is chosen at the left 6-doping layer. Note that the presence of charge does not
affect (z) for HO and H1 at k=0, but does so for the LO. This is a result of the smaller
penetration length of the heavy-bound states, effectively localizing HO and H1 almost
completely in the separate wells, thus making (z) independent of their relative energy
positions. The results for the empty ADQW confirm the observation by Goldoni and
Fasolino® that the HO state, in contrast to the H1 and LO states, does not show any
appreciable spin dependent tunneling, i.e. the *spin’ up and ‘spin’ down states are not
macroscopically separated. However, the spatial separation of ‘spin’ up and down states
at k=0 is clearly enhanced for the filled system, resulting in almost equal splittings for HO
and H1. -
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Fig. 3.4 (a). &/versus [k/[for the ADQW of Fig. 3.3(a) in the (10)direction. (b) Idem, for
Fig. 3.3(b) Solid lines, heavy, ‘spin’ up; dotted lines, heavy, ‘spin’ down; dashed lines, light,
‘spin‘ up; dash-dotted lines, light, ‘spin’ down. The shaded areas indicate the AlGaAs barriers.

In Fig. 3.5 the light and heavy components of the envelope functions are shown
at maximum spin splitting (k=2.6*10"* m™). Only the components that are shifted
towards the barrier obtain significant amplitude in the opposite well and will therefore
'feel' the potential-asymmetry, and become delocalized. Quite remarkable is the change
of parity of the HO and H1 wave functions with respect to the k=0 case: HO has one node
and H1 none. This is due to the fact that the HO and H1 have already anticrossed at the
present wavenumber [Fig. 3.3(b)], resulting in an exchange of the number of nodes.

The spin-dependent hole delocalization of the filled ADQW is augmented with
respect to the empty system by two effects: first, by the extra asymmetry resulting from
the bandbending and second, and most important, by the stronger mixing between the HO
and H1 bands at finite k, due to their small energy separation. To strengthen our
argument about the general character of the SDHD enhancement, and to prove that this
enhancement is mainly due to an increase of the coupling between HO and H1 levels, we
calculated (z)(k) traces for different densities. The results are depicted in Fig. 3.6. The
main graph shows (z)(k) traces for an empty well, for p=0.20%10"' m (just before H1
becomes populated) and for p=0.30*¥10""° m™ (just after H1 is populated). Note the
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strong increase of spin-splitting of
the HO state at the density the H1
band becomes populated. This is

also visible in the insert, where the
maximum 'macroscopic’ splitting
({2 yp~(2)youm|) between “spin’ up
and down branches is shown for
both HO and H1. It is important to
note the stability of the spin

g. [arb. units]

splitting for densities above
p=0.30%¥10*"? cm?, showing the
relative unimportance of the
increasing asymmetry of the

. T structure.
1.0 : . Again, it should be stressed
z[100 Al that the enhancement of the SDHD
by charging effects is not restricted
Fig. 3.5 Envelope function of wave function to  the particular  structure

components at k=2.6*10** m™ in the (10)direction for
the 59.4- 33 9-424 A ADQW with a density of _ )
1.5%10*"% m”. Solid lines, heavy component dashed both responsible mechanisms,

lines, light component. Increasing asymmetry due to band

discussed above. The reason is that

bending and stronger mixing of
HO and H1 states due to their decreased separation in energy, are inherent to any ADQW,
as was shown in 3.3.1. However, the exact behavior of any structure is a function of its
particular dispersion relation and wave functions, and is therefore dependent on sample
dimensions.

Two more notes have to be made on the enhancement of spin-dependent hole
delocalization by charging effects. First, the SDHD is, for both systems, induced by
different couplings with other hole levels for ‘spin’ up and down states at nonzero
wavevector® and does not require resonance of levels. Second, the HO-H1 hybridization
is not a result of a direct coupling, since (3.1) does not contain direct coupling terms
between states with the same |m,|. Consequently, the HO-H1 mixing must take place
through interaction with light hole bands. It must be stated that the SDHD of the HO and
H1 wave functions can not arise from a direct hybridization with LO and L1 wave
functions, respectively, since this would result in a shift away from the central barrier at
k=2.6%10"* m' [Fig. 3.4(b)].
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Fig. 3.6 &/versus [k [for the 59.4-33.9-42.4 A ADQW for p=0 (solid lines), p=0.20%10*'6

m? (dashed) and p=0.30%10*° m? (dotted). The shaded area indicates the central AlGaAs
barrier. Insert: maximum macroscopic spin-splitting versus density. Circles, HO; triangles, HI.

The importance of well-bound light hole states for the enhancement of SDHD is
illustrated in Fig. 3.7 where the maximum spin-splitting of HO and H1 is depicted as a
function of Al concentration in the confining barriers. The Al content of the central
barrier is kept at 25%. Increasing this barrier only reduces the SDHD, since it weakens
the coupling between the two wells. The SDHD is strongly enhanced when the Al
concentration in the confining barriers is more then 30%. This coincides with a
significant increase of the localization of the lowest light hole states (right y-axis),
whereas the localization of the lowest heavy hole states is not significantly modified for
x>20%. Both the maximum spin splitting and the confinement of the light hole states,
as deduced from the flattening of the light hole energy curves, become saturated for
x>50%. It is interesting to note that, although the maximum spin splitting is strongly
modified by the Al concentration x, the wavenumber at which this occurs does not
significantly shift with x.
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Fig. 3.7 Left axis: Maximum macroscopic spin-

splitting versus Al concentration in the confining barriers of
the standard structure. Circles, HO; Triangles, HI. Right
axis: energies of the lowest light and heavy states, together
with the L1 'effective binding energy' {.

So far, it has been
shown that the spin dependent
delocalization of hole levels is
strongly dependent on the
interactions between heavy
and light hole bands. Due to
the warped nature of the
valence bands, also a direction
dependence of SDHD is to be
expected. Since the extrema in
the dispersion surface due to
warping occur along the (10)
and (11) directions, we also
calculated (z) in these
directions, see Fig. 3.8. The
spin dependent delocalization
is clearly the most pronounced

in the (10) direction, which confirms our argument that the spatial separation of heavy

hole ‘spin’ up and down states arises from interactions with light hole bands. The
dispersion relations of HO and H1 in both directions are rather similar [Fig. 3.3(b)] but
the (11) direction shows far less anticrossing behavior between heavy and light holes

then the (10) direction. This results from a weaker interaction between light and heavy

bands in the (11) direction.

3.4 Experimental results

In order to check our calculations, the sample described in paragraph 3.3 was

grown, using 25% Al barriers. The doping concentration was chosen such that the Fermi-

vector would lay approximately at maximum spin splitting, i.e. k,=2.3*10*® m" [Fig.

4(b)]. The aimed sheet density was 1.5%10*'¢ m?,

3.4.1 Transport experiments

The 'alignment'-effect described in paragraph 3.3.1 is confirmed by Shubnikov-de
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distinct periodicities, with slopes

related as 1:2:4. This is interpreted

‘ s as follows: In the high field limit the
b / o // Landau levels are non-degenerate,

so each p,, minimum corresponds to
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a filling-factor change of unity. In

0 5'_ ] other words, Landau levels pass

through the Fermi level one-by-one.

f/ ; ] Therefore the low- and inter-
/ mediate-field  regimes must
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four and two Landau levels pass
through the Fermi level at the same

Fig. 3.8 &) versus [k(for the ADQW of Fig. time, respectively, and the filling
3.3(b) in the (10)and (11)directions. Solid lines, ‘spin’
up, (10} dotted lines, ‘spin’ down, (10} dashed lines
‘spin’ up, (11} dash-dotted lines, ‘spin’ down, (11) ~ two at each p, minimum. The

values and positions of the Hall

factor changes in steps of four and

plateaux give further evidence for this view. From both Shubnikov-de Haas and Hall
measurements we found a sheet density of 1.5*%10"'® m?. From Fig. 3.2 it becomes clear
that a Landau level broadening of about one meV, which is quite reasonable, will prevent
the HO and H1 Landau levels from being resolved in the low field regime. Since spin up
and down states are also degenerate at low fields, Landau levels will appear four-fold
degenerate. Upon increasing the magnetic field, both the HO-H1 'degeneracy’ and the
spin degeneracy are lifted. Since this will most likely occur at different field strengths the
described Shubnikov-de Haas behavior will result.
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light from a Ti:sapphire laser.
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3.4.2 Optical experiments

The necessity of solving
the Poisson and Schrodinger
equations simultaniously for
these samples is shown by the
simulation of photolumines-
cence excitation (PLE) spectra.
The top-panel of Fig. 3.10
displays an experimental
spectrum of the same structure
as the one on which the SdH
measurements were performed,
accompanied by the PL lines.
The PL and PLE experiments
were performed at 4.2 K, using
normally incident, unpolarized

When we only take direct optical transitions into account, the PLE intensity is
proportional to the product of the square of the matrix element and the joint density of

states, integrated over the full k-space:

I(E) = [k, M(k))*S(E (k)~E) = fak,
E

where the matrix element M is given by

Mk)=(¥ |p-e|¥,)
Mik) =0

M(k")2 »
VE(k,) (34)
if E>EL
if E,<E, 35

Here E=E,+E+E,, with E, (E,) the energy of the involved hole (electron) level, with
respect to the top (bottom) of the valence (conduction) band, E, is the bandgap of GaAs
and E, the Fermi energy. ¥, and W, are the total hole and electron wavefunctions,
respectively, including the cell-periodic functions u;. The Fermi energy was obtained by
integration over the calculated dispersion surface. The Moss-Burstein shift (at 7=0) is
accounted for by M(k), i.e. only empty states contribute to the PLE spectrum.
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Fig. 3.10 Top panel: Experimental PL (dotted around 11.5 meV for the
lines) and PLE (solid lines) spectra at 4.2 K. Bottom
panel: calculated PLE spectra. The arrows denote the
calculated PL onsets. Solid line: self-consistent, wave-
Junction-continuity interface conditions; dotted line, Clearly visible in Fig. 3.10, there is
idem, flux-conserving IC’s; dashed lines, not-self- excellent agreement between the
consistent, wave function-continuity IC’s; dash-dotted )
line, idem, flux-conserving IC’s.

'continuous-wave function' calcu-
lations, which seems reasonable®®,

experimental curve and the self-
consistent simulations, whereas the
non-self-consistent simulations deviate significantly from the experimental curve. The
choice of interface conditions seems a rather arbitrary one for these calculations and it
would be unwise to draw any conclusions from the minor deviations present. We will
focus on the 'flux conserving' simulation in our last remark concerning Fig. 3.10.

A more detailed comparison of self-consistent and non-self-consistent calculated
traces shows the need of calculating the exact matrix elements in order to obtain the
correct intensities in the PLE spectrum. E.g., for both calculations the onsets of the first
PLE step (EO-HO at ~1.59 eV) and of the second step (E1-H1 at ~1.63 eV) lay on
approximately the right energy positions, when the Moss-Burstein shift is properly taken
into account. The significant differences between both calculations around these points
arise mainly as a result of different matrix elements since the DOS of each band is almost
independent of the inclusion of the effects of the charge distribution.
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12— By using normal incident
C (unpolarized) -
1ol ‘N ] circular polarized light in excitation
L and detection, it is possible to
£osf separate the heavy and light hole
3 . . .
g 06 I contributions to the total absorption
= spectrum®’. Fig. 3.11 shows the
B 04f experimental traces in  cross
£ polarization (+-), reflecting the light
021 hole contributions, and in parallel
0.0 4 L T polarization (++), reflecting the
1560 1600 1640 1680 heavy hole contributions. By
Laser energy [meV] . . .
incorporating the  appropriate
Fig.3.11  PI(E) spectra at 4.2 K of the same SClcction rules in (3.5), numerical

sample as Fig. 3.10, using normal incident, circular Simulations of these experimental
polarized light in both excitation and detection. Solid spectra can be obtained. The dashed
lines, experiment; dashed lines, calculation using flux-

conserving IC’s, after convolution with a 3 meV . ) ]
Gaussian. a calculation, using flux conserving

lines in 3.11 show the result of such

_ IC’s. The numerical curves are
convoluted with a 3 meV Gaussian to account for inhomogeous spectral broadening and
to reduce the numerical discretization noise. Again, the correspondence with the
experimental traces is excellent. The same holds for the calculation with the other
interface condition. In either case, the agreement with the experiment shows that also
light and heavy hole components are calculated correctly within our model, which is, as
we have shown, crucial for a proper calculation of the spin-dependent hole
delocalization.

3.5 Summary

We have presented an exact and self-consistent method for solving the coupled
Poisson equation and the 4*4 Luttinger Hamiltonian, with inclusion of anisotropy. The
need for the inclusion of Coulombic effects on an asymmetric double quantum well has
been investigated and shown to be of great importance for a meaningful comparison with
transport experiments, as well as with optical experiments. In the same structure, the
spin-dependent hole delocalization becomes strongly enhanced by the self-consistency
due to a decrease of the energy separation between the first and second heavy hole
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subbands and an increase in the asymmetry of the confining potential. The importance
of confined light hole states for the SDHD was shown by variation of the height of the
confining barriers. Furthermore, the influence of the interface conditions on the
dispersion relations and wave function was inspected and found to be of minor
importance for the structures under consideration.
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3

4 The effect of strain on a second-order van
Hove singularity in AL Ga, ,As/In/Ga, As
quantum wells

(published in Phys. Rev. B 54, 10644 (1996))
4.1 Introduction

It is well known since the early 50's that analytic singularities in the frequency
distribution g(v) of crystal vibrations necessarily occur in infinite crystals due to the
periodicity of the lattice'. These so-called van Hove singularities occur whenever the
condition V, v(¢g)=0 is met, and can be categorized by the signs of the second derivatives
of the dispersion function v(g) to all coordinates q and the dimensionality of the crystal’.
It was realized that the same applies for the joint density of states J(E) in semiconductors,
leading to singularities in the optical constants of both 2D and 3D bulk semiconductors?.
More recently, van Hove singularities have attracted attention in structures with artificial
periodicity, such as transverse (normal) superlattices®*”, lateral superlattices®’” and bi-
layered systems®.

Since the lowest light hole state (LO) in GaAs/Al,Ga, ,As quantum wells (QW's)
has a negative effective mass for small in-plane wavenumbers, almost of the same
magnitude as the electron mass, the joint density of states J(E) can be expected to show
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singular behavior around the LO-EO transition. This singularity will be of a much
stronger nature than the ordinary van Hove singularity, since this only requires the
equality of the first derivatives, V,E (k)-V,E (k)=0. The equality of effective masses
fulfills the much stronger condition AE (k)-A.E (k)=0, with E.(k) and E (k) the
conduction and valance band dispersions, respectively, and A the Laplace operator.
Although the negative LO mass has been well established for a long time, both from
theoretical’ and experimental'® studies, we are not aware of any experimental
identification of this second-order van Hove singularity. Only recently Winkler'
predicted a logarithmic van Hove singularity in the free electron-hole absorption
spectrum of Al,Ga, ,As/GaAs quantum wells.

* In this chapter we will show clear experimental evidence for this second-order van
Hove singularity in the Photo-Luminescence Excitation (PLE) spectrum of a highly
degenerate, p-type, GaAs quantum well. The high doping concentration is necessary to
suppress excitonic effects that dominate the singularity in empty systems''. The doping
has to be of p-type, instead of the more commonly used n-type, in order not to make the
corresponding LO-EO transitions forbidden due to k-space filling and momentum
conservation. Furthermore, we will show how strain, resulting from the incorporation of
indium in the well, increases the band parabolicity and isotropy and suppresses the van
Hove singularity.

In paragraph 4.2 our experimental results will be presented and discussed. Results
of both a numerical and an analytical analysis will be shown in paragraph 4.3. Paragraph
4.4 will summarize our conclusions.

4.2 Experiments

4.2.1 Sample description and experimental setup

In this study we will present results from two Al,Ga, As/In,Ga, As quantum
wells, with nominal indium concentrations of 0 and 10%. Both samples were grown by
conventional MBE techniques on (100) oriented GaAs substrates and consisted of a
single quantum well, separated by a thin bufferlayer from a short period superlattice.
Both wells are nominally 95 A wide, and symmetrically doped with Be 8-layers, which
are separated from the well by 250 A spacer layers. The GaAs well is confined by
AlgsGagssAs barriers and grown at 690 °C. The In,,(GaggAs well is confined by
Aly,5Gag;5As barriers and grown at 500 °C to avoid indium diffusion. The indium
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Fig. 4.1 (a) PL and PLE spectra of the GaAs QW. The dashed (dotted) lines indicate

parallel (crossed) polarization. The solid lines indicate unpolarized measurements. Arrows
indicate PLE onsets. The feature marked L0 is identified as a second order van Hove singularity.
(b) Same as (a) for the InGaAs QW. The arrows indicate the PLE onsets. Note the absence of a
van Hove singularity in the LO-EO transition. The peak marked HI-El is due to excitonic
enhancement. All PLE spectra are normalized on the height of the first step in the unpolarized
spectrum. The 47.2 K spectrum is offset by thermal background. The intensity drop above 1630
meV is due to laser fall-off.

concentration is confirmed by X-ray diffraction measurements. Both samples are capped
by a 170 A GaAs layer. The carrier densities, as obtained by transport measurements at
1.4 K, are (9.0+0.1)*10""° and (6.0£0.1)*10""> m™ for the GaAs and InGaAs sample,
respectively. Transport mobilities for both samples are typically around 10 m*Vs.

The photoluminescence and -excitation (PL, PLE) spectra at 1.4 K were taken in
a CryoVac *He bath cryostat in which magnetic fields up to 7 Tesla can be generated by
means of a superconducting split-pair magnet. Measurements at 4.2 K and higher
temperatures were performed in a CryoVac flow-cryostat. The samples were excited
using normal incident light from a tunable Ti:sapphire laser, pumped by a 10 W argon
laser. Typically, the output power of the Ti:sapphire laser was below 5 mW, with a spot
size on the sample of approximately 3 mm? In order to make sure that the optical spectra
were not influenced by carrier heating effects, care was taken that no change in the
spectra occurred upon a decrease of excitation power. The luminescence signal was
focussed on the entrance slit of a Spex 0.75 m double monochromator and detected using
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a cooled Hamamatsu photomultiplier connected to a Keithley dc electrometer. All
experiments were performed in the Faraday configuration, using circular polarized light
in excitation as well as in detection, unless stated otherwise.

4.2.2 Results

In Figs. 4.1(a) and (b) the PL and PLE spectra of both the GaAs and InGaAs
quantum wells are depicted. The PL traces were taken using exciting light from the
Ti:sapphire laser at 1598 meV. The traces denoted 0* and 6** are polarization sensitive
measurements, using circular (o) polarized light. The indices « and (8 denote left or right
oriented polarization, with o#f. The first index denotes the polarization of the exciting
light, the second of the detected polarization. The polarized light is used to separate light-
and heavy-hole contributions to PL(E) spectra, where the cross (6°%) polarization is light
hole sensitive, and the parallel (0“*) polarization is heavy hole sensitive'. Due to the
inversion symmetry of the quantum well potential, ‘spin’ up and down states are
degenerate®, which implies the equivalence of 0% (6**) and o ().

We believe that the main luminescence line of both samples, marked A in Fig. 4.1
(GaAs:1550.5+0.1 meV, InGaAs: 1426.8+0.2 meV), results from a nearly free HO-EQ
transition. Both PL lines show a broadened shoulder, marked B (GaAs:1546.5+0.2 meV,
InGaAs: 142442 meV), on the low energy side. We will come back to the assignment of
features A and B in the next part of this section. The luminescence intensity in the cross
polarization is reduced by almost a factor of two with respect to the parallel polarization.
This is a clear signature of the spin-memory effect'*, commonly encountered in empty
and n-type QW's. To our knowledge this effect has not been observed before in p-doped
structures. The main luminescence lines of the GaAs and InGaAs samples have a Full-
Width-Half-Maximum (FWHM) of 2.4 and 4.8 meV, respectively, showing the good
quality of our samples.

The PLE traces in Fig. 4.1 show an apparent Moss-Burstein shift in the o traces,
corresponding to heavy hole transitions, reflecting the occupation of the HO band. Going
from GaAs to In Ga,_As as well material, the total PLE spectrum can seen to be red-
shifted by some 100 meV. This is the net result of the well-known redshift due to the
smaller bandgap of InGaAs and the blueshift due to the compressive hydrostatic strain
in the InGaAs structure. Furthermore, the energy gap between heavy- and light-hole
ground states is enhanced in the In Ga, ,As QW with respect to the GaAs QW, due to the
shear strain. We will discuss these points in more detail in paragraph 4.3 where numerical



The effect of strain on a second-order... 79

1882 Fr——— " 1570 simulations will be presented.
[ : : : ] However, the most remarkable
L o ; : : - feature in Fig. 1(a) is the peak
__ 1550 _ _ 1568 marked LO. We believe that

and that it is not a result of

3 [ Lo 2 L :
Lt . 2
£ ; L) [] ] [] [] E & this peak is the result of a
3 | : _ _ N % second-order van Hove
L% 1548 _ .............. .............. .............. ........... ‘;.’.g._ 1566 % singularity, resulting from the
N . B N - [ | fo— .
[ E : L negative 1.0 mass around k=0,
. . = e o4
, .-
g

1546 Lo o

N S S 1564 excitonic effects. Since our

0.0 05 10 15 2.0 interpretation strongly differs
Magnetic Field [T] .

from the common inter-
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(right y-axis) versus magnetic field for the GaAs QW. The structures near the edge of an
dashed and dashed-dotted lines are fits with (4.1) in the un-populated band, we will
range 0 to 1 T. The solid line is the result of a more
sophisticated analysis along the lines of Ref.16, using an ) )
exciton binding energy of (0.8+0.1) meV. Errorbars on A Why we do not attribute this
and B are of the size of the markers. peak to excitonic enhancement

use paragraph 4.2.3 to argue

of transition probability.
More-over, in paragraph 4.3 we will demonstrate that this peak can be modelled without
the inclusion of any coulombic interaction between holes and electrons.

4.2.3 Excitonic effects

On qualitative grounds it can be expected that the binding energy of the HO-EQ
and LO-EO excitons will be rather low in our structures and that free band-band
transitions will dominate the optical spectra of these transitions. In the first place, both
samples have a high 2D carrier concentration, which will screen the Coulomb interaction
between the sea of (heavy) holes and the photo-generated electrons. Furthermore, phase-
space filling and exchange interaction will block exciton formation in occupied
subbands. The first argument will apply for all subbands, whereas the second is restricted
to the occupied-ground state heavy holes. However, the overlap between the light and
heavy hole ground states is very strong, resulting in an efficient screening of the L0O-EO
exciton, see also chapter 5 of this thesis. These arguments can be illustrated by the PLE
spectrum of the InGaAs QW, see Fig. 4.1(b). It is obvious that both the HO and L0 to EO
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transitions do not show significant excitonic enhancement of the PLE intensity, whereas
the H1-E1 transition shows a clear excitonic peak at 1570 meV, which we will discuss
in more detail below. Applying this reasoning to the GaAs sample leads to the conclusion
that the large feature marked LO cannot purely be of excitonic nature.

In order to quantify our arguments about the weakness of the exciton binding
energy in our samples, we performed PL(E) measurements as a function of
(perpendicular) magnetic field and temperature. In Fig. 4.2 the energetic positions of
features A, B and LO of the GaAs sample are depicted as a function of magnetic field.
The energies of A and B are obtained from a phenomenological lineshape analysis, using
a double Gaussian fit to the PL spectrum. It is known from QW bandstructure
calculations for free carriers that, for low magnetic fields, the lowest HO Landau level is
linearly dependent on magnetic field, as is the lowest EO Landau level®. In contrast to
what is thus to be expected for a purely free HO-EO transition, the main PL line (A)
shows a prominent quadratic field dependence in the low field regime. This, of course,
is the expected behavior of an exciton in a weak magnetic field. In a 2-dimensional
system the exciton binding energy is given by'®:

2
—4_+§.Y_

N I

Ry™, y=—= 4.1
2Ry

where Ry" is the effective Rydberg and w, the cyclotron frequency eB/u”, with
p'=(1/m,+1/m,’y" the effective exciton mass. Fitting the energy of feature A with 4.1)
in the range O to 1 T yields an exciton binding energy of (0.33+0.04) meV, when we take
m,'=0.067-m, and m,"=0.4-m, for the effective free electron and hole masses,
respectively. As can be seen from the dashed line in Fig. 4.2, significant deviations arise
at higher magnetic fields. Since (4.1) is only valid in the low-field regime (y<1) and y=3
at 1 T, the observed behavior can be more appropriately modeled with the Padé
approximants of Ref. 16. These functions interpolate between the well-known analytic
expressions for the exciton energy in low- and high-field regimes and are valid for all
values of y. The result of such an analysis is also shown in Fig 4.2 by the solid line. The
used input parameters are the same as above. The best fit to the experimental data was
obtained for an exciton binding energy of (0.8+0.1) meV. This shows once more the
relative unimportance of excitons at the HO-EO transition in the GaAs sample under
consideration. Note that this has to be compared to similar empty QW's where binding
energies around 10 meV are found. It should here be pointed out that the excitonic
oscillator strength is ussually less affected by screening than the exciton binding energy'”.
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Fig. 4.3 Main graph: Temperature-dependent
PLE spectra of the HI-El transition of the InGaAs i
sample. The spectra are offset for clarity and teflects the non-parabolic nature of

normalized on the height of the high-energy side the lowest light hole band", since a

plateau. Upper insert: Relative amplitude of the peak L0 band that is characterized by a
in the PLE spectra versus inverse thermal energy. The o ] y
(positive) effective mass, would

solid line is a linear fit corresponding to an activation
energy of 2.5 meV. Lower insert: Schematic show a far stronger field
representation of the spectra in the main graph. dependence As a result, it is
impossible to estimate the exciton
binding energy as above. However, from the lack of field dependence of the feature we
can conclude that 1/m,-1/m,=0. This implies the equality of the electron and light-hole
masses, what should be the case at a singularity in their joint density of states.
Convincing evidence for the irrelevance of excitonic effects to the L0 feature can
be found in temperature dependent PLE measurements. If the LO peak would be
(partially) due to excitonic effects, a decrease in intensity would be expected when the
thermal energy becomes of the same magnitude as the exciton binding energy, resulting
from thermal dissociation of the exciton. In Fig. 4.1(a) the unpolarized PLE spectra are
shown at 4.2 and 47.2 K. The spectra are normalized on the height of L0, measured from
the low-energy foot of the peak to the top of the peak. The offset in the 47.2 K trace is
 due to the increased background of substrate luminescence. The observed broadening of
some meV is in good agreement with the thermal energy k,T, being 4.1 meV at 47.2 K.
For higher temperatures the total PLE spectrum became unobservable, due to the
increasing substrate luminescence background and, probably, due to the thermal opening
of non-radiative recombination channels. As can be seen from the figure, no significant
change in the relative amplitude of L0 occurs up to 50 K. This behavior can be the
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explained in terms of a free band-band transition, of which the van Hove singularity is
a special case, or in terms of a very strongly bound exciton, which would be the common
interpretation'. The latter interpretation implies an exciton binding energy that exceeds
the thermal energy by at least a factor 2, giving a lower bound of about 8 meV to the
binding energy. The LO-EO exciton binding energy, found experimentally in high-quality -
empty GaAs/AlGaAs wells of comparable width, is around 10 meV®. It seems very
unlikely to us that the binding energy in our highly degenerate sample would be almost
the same as in an empty well, for reasons explained above. Therefore, we believe that the
described (lack of) temperature dependence of the LO feature strengthens our
interpretation in terms of free band-band transitions.

To enlighten the contrast between the LO-feature and features of excitonic nature,
the HI-E1 peak at 1570 meV in the InGaAs PLE spectrum was also studied as a function
of temperature. The PLE spectra at temperatures ranging from 6.3 K up to 103.4 K are
displayed in Fig. 4.3. The spectra are normalized on the height of the plateau on the high-
energy side, marked B in the lower insert. Unlike the GaAs sample, the InGaAs sample
showed no temperature dependent background, due to the larger separation in energy
between substrate- and well-luminescence lines. As is obvious from the spectra, the
relative amplitude of the peaked structure, marked P in the lower insert, is strongly
decreasing with increasing temperature. This is made quantitative in the upper insert of
Fig. 3, in which the relative amplitude, defined as (P-B)/(B-A), of the H1-El peak is
plotted logarithmically versus the inverse thermal energy. The solid line is a linear fit
corresponding to an activation energy of 2.5+0.1 meV. When we define the relative
amplitude as (P-A)/(B-A) we find a binding energy of 1.0+0.1 meV. The first definition
corresponds to the assumption that the excitonic peak is placed on top of the free band-
band continuum, whereas the second reflects an excitonic structure that is placed in front
of the continuum. Since the exciton binding energy is comparable to the spectral
broadening, the correct value of the binding energy will be in between. Both results are
in agreement with our interpretation of the structure in terms of excitonic enhancement
of absorption intensity. The relatively low value of the obtained exciton binding energy
is far below the H1-E1 binding energy in empty wells®', showing the importance of
Coulomb screening for unoccupied subbands. However, the present result shows that the
screening of the H1-E1 exciton by the free ground state heavy-holes is less efficient than
the screening of the LO-EO exciton. We relate this to differences in wavefunction overlap
between HO, LO and H1, which subject is discussed further in chapter 5. It is important
to note that the LO feature in the GaAs spectrum at 47.2 K shows an increased relative
amplitude with respect to the 4.2 K trace, independent of the exact definition of relative
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amplitude. Due to the temperature and energy dependent background, it is impossible to
make this statement more quantitative.

4.3 Simulations

In the first two sub-paragraphs of this paragraph we will present the results of
our numerical calculations on the bandstructure of the GaAs and In,,,Ga, ¢,As
quantum wells. Since our model has been described in detail in chapter 2 and in an
earlier publication®, we will only give a brief outline of the model. In the last sub-
paragraph an analytical expression for the second-order van Hove singularity will be
presented and compared with both the numerical and the experimental results.

4.3.1 Numerical formalism

We calculated the light and heavy hole states, within the envelope function
approximation, as exact eigenfunctions and eigenvalues of the full 4*4 Luttinger
Hamiltonian®. Standard flux-conserving interface conditions?* were applied at the
interfaces. The wavefunctions and the Coulomb potential were calculated self-
consistently by iteration. The Al Ga,  As bandgap is calculated using®
E (x)=1519.2+1360x+220x> and we use the common 35:65 rule for the band-offset
distribution. Strain and band-offsets for the GaAs/InGaAs system are incorporated
according to the model-solid theory of Van de Walle®® by addition of the appropriate
terms on the diagonal of the Hamiltonian matrix. We used the formula of Goetz?’ et al.
for the bandgap of InGa, As: E(y)=1519.2-1583.7y+475y>. Electron energies and
wavefunctions were calculated in the effective mass approximation, using linear
interpolation between the effective electron masses in GaAs (0.067-m,) and InAs
(0.023my).

The PLE simulations are obtained by defining a fine 2-dimensional mesh in k-
space, with a typical grid size of 5%10° m™, and two 1-dimensional meshes in energy-
space, 0**(E) and 0**(E), reflecting the polarized PLE spectra, with an energy-step of 0.5
meV. On every k-meshpoint the optical matrix elements M(k) of the H;-E; and LE;
(i,j=0,1) transitions are calculated'® and added to the appropriate element of one of the
arrays 0“*(E) or 0”*(E). Here, E=E+E,.(K)+E,(Kk), with E, the bandgap in the well and
E,..> Eq, the hole and electron energies. As a result of this definition, only momentum-
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Fig. 4.4 Calculated dispersion relations of a 95 A Al, ;sGa, ;As/GaAs OW, filled with

9.0%10*" m* holes (a) and a 95 A Al,,;Ga, 5sAs/In, ,,Gay,sAs QW, filled with 6.0%10' ni? holes
(b). Solid (dashed) lines indicate the (10)((11)) direction. The InGaAs H2 level is just below LO
at k=0.

conserving transitions are taken into account. The Moss-Burstein shift, reflecting the HO
bandfilling, is accounted for by taking the optical matrix element equal to zero when
E, (k) is smaller than the Fermi energy. The calculated spectra are slightly smoothed to
reduce discretization noise. The advantage of the PLE-spectrum calculation described
above over the mathematically more elegant method of Ref. 21 is its insensitivity to
singularities in the joint density of states. These were found to occur for the LO-EQ
transition in the GaAs well. The obtained numerical resolution is beyond experimental
resolution. Strictly spoken, the calculated spectrum is an absorption spectrum. However,
the PLE spectrum is known to resemble the absorption spectrum closely, due to the
efficient relaxation of photo-excited carriers to I' point, where the radiative
recombination takes place.
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Fig. 4.5 Simulated PLE spectra of the GaAs (a) and InGaAs QW (b) of Fig. 4.4. Notation

is the same as in Fig. 4.1. The Jat arrows denote the position of the main PL line.

4.3.2 Numerical results and discussion

The calculated dispersion relations of the 95A GaAs well, shown in Fig. 4.4(a),
clearly exhibit the negative light hole ground state mass described earlier for small
wavenumbers. A quantitative analyses revealed that the 1.0 and EQ effective masses are
nominally the same for k-vectors up to about 1*¥10** m™, resulting in a second-order van
Hove singularity in the joint density of states, as explained in the introduction. The
extreme non—parabd]jcity of the light hole ground state is absent in the strained InGaAs
QW [Fig. 4.4(b)] as a result of the weaker heavy-light hole interaction, which, in turn,
is due to their increased separation. The InGaAs simulations are performed for an indium
concentration of 11%, instead of 10%, although the latter was found in the X-ray
diffraction measurements. This was chosen in order to lessen the difference between
calculated and observed transition energies. For lower indium concentrations the
energetic ordering of the H2 and LO bands is reversed, resulting in a sharp anticrossing
near the zone center.

The PLE spectra corresponding to the dispersion curves in Fig. 4.4 are displayed
in Fig. 4.5. Tt is obvious from a comparison with the experimental spectra in Fig. 4.1 that
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our simulations account for all features present in the ground state transitions, including
the second-order van Hove singularity at 1565 meV. This, again, confirms our claim that
both heavy and light hole ground state transitions can be treated as free band-to-band
transitions in the heavily doped samples under consideration. In contrast, the simulated
HI-E1 transition in the InGaAs spectrum lacks the structure which is present in the -
experimental spectrum, and which thus must be attributed to excitonic effects.

It is worthwhile to note that not only the parabolicity of the valence bands is
increased due to strain, but also the isotropy of the heavy-hole ground state, as can be
deduced from the intersection of the HO dispersion curves in the (10) and (11) directions
with the Fermi-energy, see Fig. 4.4. This anisotropy is reflected by the steepness of the
Moss-Burstein-shifted onset of HO-EO transitions in the PLE spectra (the traces marked
0" in Figs. 4.1 and 4.5) by the following mechanism. In general the photon energy of a
k-conserving transition is given by E(k)=E+E,,,(k)+E,(k). Since the PLE onset is due
to transitions at k-vectors on the Fermi contour, the Moss-Burstein-shifted HO-EO onset
energy becomes Ep(ky)=E +E.+E;,(k;). Because the onset in the PLE spectrum reflects
an average over all k directions, the onset will only be sharp when Ej is the same in all
directions of kj. This requires a constant magnitude of k. in all directions, since the
conduction band is isotropic. This condition can only be fulfilled for an isotropic HO
band. In simulation as well as in experiment, the GaAs well displays a far more rounded
HO-EO onset then the InGaAs well, indicating the enhanced isotropy in the strained
sample.

Another interesting feature in the 6**-PLE spectrum of the In,Ga, ,As QW is the
'foot' below the LO-EO onset at 1485 meV. This is a result of admixture of light-hole
character in the heavy-hole ground state at non-zero wavenumber. This foot is also
present in the experimental spectrum.

The spectra depicted in Fig. 4.5 are slightly red-shifted in order to obtain the
correct PL energy, indicated by the arrows. This shift is commonly encountered in
heavily doped systems and known as bandgap renormalization, and usually described in
terms of exchange- and correlation effects. The applied values for the GaAs and InGaAs
simulations are 14.5 and 11.0 meV, respectively. i

It can be noted that the predicted Moss-Burstein shift overestimates the
experimentally observed shift, for both the GaAs and In,Ga, ,As QW's. A deviation of
this kind was also observed in a similar simulation of a p-doped asymmetric double
quantum well*". In Table 4.1 we have summarized the observed and predicted Moss-
Burstein shifts. The Moss-Burstein shifts are calculated in two limiting situations, which
will briefly be discussed in the following. The first calculation is based on full k-
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conservation, as are the PLE simulations in Fig. 4.5. This method has yielded good
results for similar n-type QW's?®. Assuming k-conservation, the observed deviations in
the Moss-Burstein shift have to be caused by incorrectness of the calculated dispersion
relations. This is unlikely since the over-all similarity of observed and calculated PLE
spectra does not suggest significant errors in the calculated bandstructure. Moreover, the
overestimation would have to result mainly from a severe incorrectness in the calculation
of the very well understood electron band, since the difference between the HO energies
at k=0 and k=kyis less then the observed overestimation. The second calculation is based
on full k-relaxation, in which case the Moss-Burstein shift equals Ex-E,(k=0). The k-
conservation selection rule could, e.g., be lifted by strong electron localization. Good
results in the simulation of PL spectra of bulk semiconductors have been obtained by
calculations based on this assumption®. Since full k-relaxation strongly underestimates
the Moss-Burstein shift, a partial relaxation is more likely. However, to account for the
observed deviation of 10 meV, still a strong relaxation is required. As a consequence,
PLE onsets and PL lines will become broadened on a similar energy scale. This is
obviously not supported by the experiments. Other effects to explain the discrepancy
between the calculated and observed Moss-Burstein shifts, such as non-parabolicity of
the electron bands or thermal effects, are far too small to explain the deviation. Exciton
effects can be ruled out since they only increase the separation between PL and PLE
spectra. '

It is interesting to note that a similar effect in the Moss-Burstein shift has been

observed by Deppe et al.*

in highly doped bulk In, 5;Ga, 4,As layers. For p-type doping
no appreciatable Moss-Burstein shift was found, while in n-type layers a significant shift

was observed. No explanation for this effect is given by the authors. To conclude the

Calculation Experiment
sample k-cons. [meV] k-relax.[meV] [meV]
GaAs 254 5.9 14.0
InGaAs 329 10.9 21.5

Table 4.1 Calculated and observed Moss-Burstein shifts. The models used for the
calculations are discussed in the text. The Moss-Burstein shifts are measured from the main PL-
line to the half-height of the HO-EQ PLE onset, in the parallel polarization. The typical error is
1 meV.
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considerations on the Moss-Burstein-shift, we are unable to find a sensible explication
for the overestimation, but we believe that the observed deviation is caused by a non-
trivial effect. A more systematic study is, however, required to resolve this problem.

4.3.3 Analytical results

In Ref. 2 analytical expressions are derived for the various types of Van Hove
singularities under the usual condition of equality of the first derivatives of the electron
and hole dispersions. Below we will derive an expression for an isotropic system, in
which also the second derivatives of the valance and conduction band dispersion
relations are equal. As we will mainly follow the lines of Ref. 2, only a brief outline of
the derivation will be given.

We start from the well known expression for the joint density of states in a two
dimensional system,

2
JE) = oy f dk dk 8(E (k k) - E,(k k) - E) 4.2)

where the integral runs over the full Brillouin zone and E, and E, are conduction and
valance band dispersion relations, respectively. Under the conditions mentioned above,
we can, for an isotropic system, expand E-E, around the singular point at energy E, as
Wk
Elko,) =B, (kok,) = Ey*=-—+O0(k) 4.3)

with k=(k,*+k,*)""*. The cubic and higher odd-power contributions are zero since the
dispersion relations are invariant under the transformation k~-k because of the inversion
symmetry of the potential. Substitution in (4.2), transformation to polar coordinates and
using the property of the delta function

b -1
[axsdguy = Taepl L (xy - 0 44
yields
JE) = A(E-E) *+B  if E > E, 45)

JE) = B if E<E,
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Fig. 4.6 Solid line: experimental PLE spectrum agreement between the numerical
(normalized) of the GaAs QW in cross polarization.
Dashed line: unsmoothed numerical PLE simulation . ) )
(normalized). Dashed-dotted line: joint density of Aare the experimental PLE signal in
states J(E) of LO-EO transition, calculated from (4.5) cross-polarization and J(E),
with E0=1565.3 meV and A and B used as adjustable
parameters. Dotted line: idem, but convoluted with a
2.9 meV wide Gaussian profile and normalized.

and analytical curves. Also shown

convoluted with a 2.9 meV wide
Gaussian profile. Again, the
similarity is striking, justifying our
interpretation.

44 Summary

In this chapter we have reported the first experimental identification of a second-
order van Hove singularity in the photo-luminescence excitation spectrum of an Al Ga,.
«As/GaAs quantum well. We have shown the relative unimportance of excitonic effects
in the light and heavy hole ground states, in both samples. We believe this is due to the
efficient screening of the unpopulated LO state by the sea of free heavy holes. The
observed spectra are in agreement with the theoretical predictions of Winkler'! in the
sense that a singularity is found in the free electron-hole absorption spectrum. Although
Winkler identified this singularity as a logarithmic van Hove singularity, fulfilling the
usual condition V,E,(k)-V,E,(k)=0, we have shown that it fulfills the far more restrictive
condition AE (k)-A.E,(k)=0, which gives rise to a 1/Vx, with x~0, divergence. The
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derived analytical expression was found to be in excellent agreement with both the
numerical and the experimental results.

It is interesting to note that Gravier et al.** observed a similar structure in the
cross-polarization PLE spectrum of a 80 A p-type QW. These authors atiribute this peak
to excitonic effects. Although the carrier density in their sample is a factor three lower
than in ours, we still feel that this feature can also be a second order van Hove
singularity.

Furthermore, it was experimentally shown how the strain in an AlGaAs/InGaAs
QW increases the band parabolicity, which translates into the elimination of the second-
order van Hove singularity. From the steepness of the Moss-Burstein-shifted onsets of
the HO-EO transitions in PLE it was deduced that the severe warping of the heavy-hole
ground state in the GaAs well is strongly reduced in the InGaAs well. Experimental
results were found to be in good agreement with numerically obtained dispersion
relations and PLE spectra. Although most numerical details were quantitatively covered
by the experiments, the predicted Moss-Burstein-shift exceeded the observed shift
significantly. No consistent interpretation of this effect was found.
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5 Magneto-optical study on exciton
screening in p-type Al Ga, As/In Ga, As
quantum wells

(published in Phys. Rev. B 56, 4853 (1997) and Phys. Stat. Sol. (a) 164, 73 (1997))
5.1 Introduction

The unbinding or bleaching of excitons in semiconductor heterostructures has
been subject of numerous investigations during the past decade. Theoretically, exciton
unbinding by interaction with either a sea of a single type of free carriers'*, or photo-
created carriers or excitons™ has been considered. Usually, a distinction is made between
Coulomb screening and bleaching mechanisms that are related to the Pauli exclusion
principle, i.e. phase-space filling and exchange. Qualitatively, Coulomb screening can
be thought of as a rearrangement of free carriers in the presence of a disturbing
electrostatic potential, e.g. of a photo-created electron or hole, which compensates the
disturbing potential. Bleaching mechanisms that are due to the exclusion principle are
based on the fermion character of electrons and holes: once a state is occupied by a
particle, free or bound, it cannot be used to form an exciton. This mechanism is usually
referred to as phase-space filling. Furthermore, the presence of other electrons or holes
leads to a modification of the electron-hole interaction, which results in an enhancement
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of the exciton radius and hence a reduction of its binding energy. This mechanism is
generally referred to as exchange. It is important to note that Coulomb screening affects
excitons of all subbands, whereas the other mechanisms are restricted to occupied
subbands. A more extensive discussion of exciton bleaching mechanisms can be found
in chapter 2, paragraph 5. ‘

In experiments on exciton bleaching by photo-created free-carriers or excitons
contradictory results have been obtained regarding the relative importance of Coulomb
screening and effects related to the Pauli exclusion principle’"!. Furthermore, the
bleaching effectiveness of various states of the photo-generated carriers, i.e. hot or cold
plasma or excitons, seems to be a source of disagreement between theory and
experiment'®*, The study of exciton bleaching by a single type of carriers circumvents
the latter problem, whereas the former question concerning the relative importance of
Coulomb screening and Pauli effects can be addressed by using p-type doping, since it
allows to discriminate unambiguously between them, as will be shown below. Most
authors dealing experimentally with exciton unbinding in doped systems have only
studied these effects qualitatively'>'S. In particular, peaks in optical absorption spectra
are usually taken as an indication for the presence of excitons. This method can be
misleading due to the presence of Van Hove singularities”’, see also chapter 4, or due to
carrier-induced broadening of absorption peaks'®.

In this chapter, we will quantify the effects of a sea of free heavy holes on the
exciton binding energy of various subbands in GaAs and InGaAs QWs. We will show
that excitons of occupied subbands are fully unbound at hole densities in the range
(6-9)*10"° m™. Excitons of unoccupied subbands, in contrast, will be shown to have a
finite binding energy at these densities. However, its value is far below what is found in
an undoped well. Furthermore, it seems likely that, in p-doped wells, the excitons of
excited subbands are less efficiently screened than those of the light-hole groundstate,
due to the lesser overlap of the screening groundstate heavy-holes with the excited
subbands than with the groundstate light holes.

The remainder of this chapter will be organized as follows. In paragraph 5.2 we
will outline the model that was used to interpret the magneto-absorption spectra that are
presented in paragraph 5.3. The data will be discussed in paragraph 5.4. Paragraph 5.5
will summarize our conclusions.
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5.2 Theory

The total Hamiltonian describing the relative motion of an electron-hole pair in
a confining electrostatic potential can in general be written as H,=T,+T +U, ,+U +U..
The first two terms on the right hand side describe the kinetic energy of the hole and
electron, respectively. The third term describes the screened Coulomb interaction and the
last two terms describe the confining potentials of the valence- and conduction band,
respectively. The corresponding eigenvalue problem has been solved by Bauer and
Ando' and Yang and Sham®® for a quantum well potential in a perpendicular magnetic
field. This is, however, an extremely laborious and far from trivial task. Therefore we
simplify the problem by solving the hole and electron Hamiltonians, with inclusion of

their respective electrostatic potentials U, , separately, as a function of magnetic field,

and correct for the exciton binding energy afterwards. A posteriori exciton corrections
to free Landau-levels have already successfully been used in the high-field limit*"**. The
price paid for this simplification consists mainly of the fact that anti-crossings between
excitonic states that are coupled by the Coulomb interaction cannot be reproduced.
Despite this hiatus, the calculated exciton energies will be shown to match experimental
data closely, except in the vicinity of apparent anti-crossings.

The hole Landau levels are calculated from the 4*4 Luttinger Hamiltonian on the
basis m; = (3/2, -1/2, 1/2, -3/2). The magnetic field B is assumed to be parallel to the
quantization axis z, i. e. perpendicular to the plane of the QW. Starting from the matrix
expression for B=0***, we follow the usual procedure® of replacing k, and k, by their
operator expressions, written in terms of the standard raising and lowering operators.

Making the eigenvector ansatz®

Gy = oh @ity 88 @ty @ty 0 @ty (5.1)

where the u, are the harmonic oscillator eigenfunctions, we arrive at the following
Hamiltonian:
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where [, is the classical cyclotron orbit (h/eB)”

. We have neglected the bandwarping by
taking y;-y, =0 and y = (y,+Y,)/2. Since u, =0 for i<0, the corresponding elements in Eq.
(5.2) should be set to zero, and Eq. (5.2) is reduced to 3*3, 2*2, 1*1 for N=1, 0, -1
respectively. The total eigenvalue equation for the holes now becomes

h2K

2

Iim

H +—=M +UQ)|Gi=EiGy (5.3)

M, and U are 4*4 diagonal matrices, with on the diagonal m; and the strain dependent
valence band potential, respectively. The second term in Eq. (5.3), in which « is the hole
g-factor, describes the Zeeman splitting of the holes.

Eq. (5.3) is solved numerically, by the method outlined in chapter 2 and Ref. 24.
This method is numerically exact but requires that Eq. (5.3) is transformed into a set of
coupled first order real differential equations®. Since Eq.(5.3) is second order and
complex, this would yield 16 equations, plus two for normalization and energy
continuity. We found by observation that Gy can be decoupled in two independent
spinors, that both contain the same information as G,. The two spinors are:

Im(gn' (D)., Re(gy' () uy
iIm(gy (2))u Re(gy (2))u

Gy = TN e TN GGG (5.4)
Re(gjv (Z)).MNJ l'Im(gN (Z))'MN_l )
Re(gy (D)) uy,, i-Im(gy () iy,

Re() an Im() denote the real and imaginary parts of the expression between brackets,
respectively. Since any linear combination of these two spinors is a solution to Eq. (5.3),
we can set one of these to zero, without changing the eigenvalue. By doing so, the
number of first order differential equations is reduced to 10. This set of equations is
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solved together with the Poisson equation to ensure self-consistency of the
wavefunctions and electrostatic potentials. The parameters used in the calculations are
listed in Table 5.1.

Electron eigenvalues and -functions are calculated from the standard one-
dimensional Schrédinger equation, and corrected for non-parabolicity”’ by the expression
E\=E(N.B.k)(1+(K,/JE)*E(N,B/k,)), where E(N,B,k) is the expectation value of the
kinetic energy of the electron. The non-parabolicity parameter K, is calculated with the
expression derived by Lindemann et al.?®. For GaAs and In,,;Ga,,,As one obtains
K,=-0.83 and -0.81, respectively, using the parameters given in Table 5.1.

The strain dependent potentials U, , and U,, in Eq. (5.3) are calculated within the
framework of the model-solid theory of van de Walle*. Deformation potentials and
elastic moduli are also taken from Ref. 29. For the band offset ratio of unstrained
GaAs/Al,Ga, As, for which material system reliable experimental data are available, we
used the commonly accepted value of 0.7/0.3.

The exciton binding energy, E,, was modeled using a modified version of the 2D
hydrogen model described by MacDonald and Ritchie®:

Eex(n,Y) =E2D_H(nam :O’Y) _Y(Zn + I)Ryxmle (5.5)

In Eq. (5.5), y=hw /2Ry, ,,, With Ry, . the exciton effective Rydberg, that is used as a
scaling parameter, and w.=eB/p". u" is the effective exciton mass, (1/m,+1/m,")", with
m,” and m,” the effective in-plane electron and hole masses, respectively. E,p, , (n,m=0,y)
is the energy of a two-dimensional n-s exciton with a zero-field binding energy of
4Ry, .- In Ref. 30 Ry, is equal to the bulk Rydberg, Ry". In the high-field regime (y»1)
Eq. (5.5) reduces, for the 1s exciton (n=0), to '

1
E_(B.Ry nRymleﬁ}i (5.6)
u

scale) ="

The effects of dimensionality and screening are accounted for by using Ry, as a free
parameter. This scaling is essentially different from the one used in Refs. 21 and 22,
where the high-field 2D result from Akimoto and Hasegawa’, is scaled with a
dimensionality parameter D,, with D=1 (*4) for 2D (3D):

heB ]3 (5.7)

E, (n,B,Ry")=-3DRy"|————
2(2n+ 1)U Ry”
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The zero field binding energy becomes 4D,Ry". It is obvious that Egs. (5.6) and (5.7) are
mathematically equivalent, apart from a constant factor. As a result, different exciton
binding energies will be found when experimental data are fitted with either Eq. (5.6) or
(5.7). We will come back to this in paragraph 5.3.

The question remains how Eq. (5.5) should be scaled in arbitrary magnetic fields,
i.e. whether a dimensionality pre-factor, as in Eq. (5.7), should be used, or if the effective
Rydberg should be scaled, as in Eq. (5.6). Belle** has shown that the exact 2D result is
a very close approximation to the adiabatic® 3D result. A prerequisite for this equality
is that, in both limits, the magnetic field and energies are scaled as hw /Ry, (=27) and
E/RY,.,., respectively. Ry, ,, should be taken Ry” in the 3D limit and 4Ry" in the 2D limit.
As a Consequence, the proper way to scale Eq. (5.5) is to scale the effective Rydberg
RY cater

It is worthwhile to point out that the basic assumption of our model is the
following. Although it is known that the valence band non-parabolicity strongly effects
the size of the exciton binding energy®*, the effect of non-parabolicity on its field
dependence will probably be much smaller. The former effect can simply be
compensated by adopting the appropriate value of Ry, .. which is the only free parameter
in our description of the field dependence of energy levels.

In the above we have proposed that the dimensionality of the exciton can be

GaAs AlAs InAs

Yi 6.85 345 20.4

v, 2.1 0.68 8.3

Y3 2.9 1.29 9.1

K 1.2 0.12 7.68

€, 12.79 10.00 15.15

m,’ 0.067 0.150 0.0239
Ago [meV] 340 280 380

Eg(Al,Ga, As) 1519.2 + 1360 x + 220 x> [meV]
Eg(In,Ga, As) 1519.2-1583.7y+ 475 y* [meV]

Table 5.1 Parameters used in the numerical calculations. Where possible low-temperature
(4.2K) values are taken. For ternary compounds linear interpolation is used. The parameters are
taken from Ref. 46, bandgaps from Refs. 47 and 48.
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accounted for by scaling the effective Rydberg. It is, however, not obvious that the
effects of screening and bandfilling on the exciton energy and its field dependence can
be caught by such a simple scaling. For example, Henriques ez al. have shown that the
Coulomb screening of an exciton in an unoccupied subband is strongly reduced in high
magnetic fields due to the shrinkage of the exciton wavefunction®. In paragraph 5.3 we
will show experimentally that also screened excitons can be described by this 'scaled
hydrogen model'.

5.3 Experiments
5.3.1 Samples and setup

In this study we will present results from two series of samples. The first consists
of two p-doped Al,Ga, As/In,Ga, As single quantum wells (SQW), with nominal
indium concentrations of 0% and 10% and one undoped GaAs/Al Ga, As 10-period
multi-quantum well (MQW) structure. The second series consists of three p-doped
Asymmetric Double Quantum Wells (ADQW). All samples were grown by conventional
MBE techniques on (100) oriented GaAs substrates. The p-doped samples of the first
series consist of a single quantum well, separated by a thin buffer layer from a short
period superlattice. Both wells are nominally 95 A wide, and symmetrically doped with
Be 8-layers, which are separated from the well by 250 A spacer layers. The GaAs well
is confined by Al ,sGa,ssAs barriers and grown at 690 °C. The In, ;,Ga, g As well is
confined by Al ,sGa,,sAs barriers and grown at 500 °C to avoid indium diffusion. The
MQW sample consists, nominally, of ten periods of a 100 A GaAs SQW, confined by
500 A Al,,,Ga,,As barriers. Each period was separated from its neighbors by 100 A
AlAs layers. The whole MQW was grown at 800 °C, on top of a short-period
superlattice. The ADQW samples were also grown at 690 °C, and were separated by a
0.35 um spacer layer from a short-period GaAs/AlAs superlattice. The Al-content of the
Al,Ga, ,As barriers was 40 percent. The Be-doping was distributed symmetrically over
two 8-doping layer on either side of the single ADQW, that were separated by 150 A
spacer layers from the active layers. All samples are capped by a 170 A GaAs layer. Fig.
5.1 shows the self-consistent valence band profiles and wavefunctions of a SQW and a
ADQW sample. The MQW sample was characterized by high-resolution rontgen
diffraction measurements. The well width was found to be 802 A and the Al content of
the confining barriers was found to be 36+1 %. X-ray diffraction spectra of the single
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Fig. 5.1 Self-consistent potential and hole probability densities for the GaAs doped QW

(left) and the ADQW with p=11.6*10" m?. The lines have the following meaning: solid HO,
dashed L0, dotted H1, dash-dotted L1, dash-double dotted E;..

QW samples turned out to be hardly affected by the actual parameters of the single well.
This is due to the relative narrowness of the single well, compared to the thickness of the
total structure. The carrier densities, as obtained by transport measurements at 1.4 K, are
(9.0+0.1)*10*" and (6.0+0.1)*10*"" m? for the GaAs and InGaAs SQW samples,
respectively. Transport mobilities for both samples are typically around 10 m?*/Vs.

The magneto-photoluminescence and -excitation (PL, PLE) spectra were
measured at 4.2 K. The samples were excited using normal incident light from a tunable
Ti:Sapphire laser, pumped by an Argon ion laser. In order to assure that the optical
spectra were not influenced by heating effects, care was taken that no change in the
spectra occurred upon a decrease of excitation power. All experiments were performed
in the Faraday configuration, using circular polarized light in excitation as well as in
detection. This allows to separate the light and heavy hole components to the total
absorption by using either cross (6" or 6™) or parallel (¢** or 67) polarizations®®.

Part of the zero and low field measurements were performed in a different setup,
which was described in an earlier publication'’. Some PL(E) results on the single QW
samples were also presented in this publication.

In the remainder of this chapter we will mainly focus on the flI‘St series of samples
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Fig. 5.2. Low-temperature (4.2 K) PL and PLE spectra at 0 and 16 Tesla for the undoped

GaAs MQW (a) and the doped InGaAs SOW (b). Solid (dash-dotted) lines denote PLE spectra
in o (0") polarization. The dotted lines are PL spectra.

(SQWs) since the ADQW samples show spectra that are qualitatively very similar to
those of the SQW samples.

5.3.2 Results

In Fig. 5.2(a) raw PLE spectra of the undoped GaAs MQW sample are shown for
zero and high magnetic field. In the zero field traces the strong absorption peaks of the
HO-EO and LO-EQ excitons, at 1.57 and 1.59 eV, are clearly visible. (In our notation Hi
(Li) stands for a heavy (light) hole state with quantum number i. E.g. , HO is the heavy
hole groundstate, and H1 the first excited heavy level.) Their relatively large full width
at half maximum (FWHM) is the result of well width variations in the 10-period MQW
structure. This also explains the absence of sharp absorption peaks for the H1-E1 (at
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Fig. 5.3 Magnetic field dependence of PLE maxima of the undoped GaAs MQW, observed

in 0" (a) and 0" (b) polarization. The size of the dots is indicative for the absorption strength.
The lines are calculations, using the model outlined in the text. Solid (dotted) lines denote H 1
(H!)to E7 (E!) transitions. Dashed (dash-dotted) lines denote L (L./) to E ! (E /) transitions.
For clarity, in the groundstates only those transitions are depicted that, at k=0 and B=0, can be
excited by the incoming light, according to the selection rules for circular polarized light.

1.72 eV) and H2-EO (at 1.66 eV) excitons. Since the binding energies of these excited
subbands are more sensitive to well width fluctuations than those of the ground states,
the exciton absorption peak is also much stronger smeared out for these higher subbands.
In the following we will show that these transitions still are of excitonic nature, although
the corresponding enhancement of oscillator strength is blurred. The 16 Tesla PLE traces
in Fig. 5.2(a) show pronounced, but again broadened, Landau levels.

The zero field PLE spectra of both doped SQWs qualitatively differ from the ones
of the undoped MQW. In Fig. 5.2(b) this is illustrated by the spectra of the InGaAs
SQW. Both the HO-EO and LO-EO absorption onsets lack the excitonic enhancement that
is present in the spectra of Fig. 5.2(a), whereas the H1-E1 onset still shows excitonic
effects. This already suggests that the Coulomb screening by the see of free (HO) holes
is more efficient for the LO-EO exciton then for the H1-El exciton. Note that the
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Fig. 5.4 Same as Fig. 5.3, for the doped GaAs SQW. The open symbols are taken from PL

maxima instead of PLE.

enhancement of the H1-E1 absorption onset cannot be due to a second order van Hove
singularity, since the H1 mass differs significantly from the electron mass'”.

The summary of all magneto-PL(E) measurements in two polarization
configurations is displayed by the dots in Figs. 5.3, 5.4 and 5.5. The size of the dots is
indicative of the strength of the absorption. Errorbars are typically of the size of the
'smallest dots (1-2 fneV), except for the H2-EO and H1-E1 transitions in the undoped
GaAs MQW and for the H1-E1 transition in the doped GaAs SQW, where the errorbar
is approximately of the size of the intermediate dot (4 meV). The lowest lines of the
doped QWs are taken from emission (PL) spectra, since absorption (PLE) is prohibited
by the occupation of the lowest Landau levels. Being due to emission, the detected PL
line is selected by the detection polarization, in contrast with the PLE lines, which are
selected by the excitation polarization.

The lines in Figs. 5.3-5 are calculated using the model outlined in the previous
section. The parameters used in the calculations are listed in Table 5.1. In the numerical
calculations, the well width and, for the doped samples, the band gap renormalization
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PL maxima instead of PLE.

(BGR) were used as free parameters. The BGR was incorporated as a rigid shift of all
bands. Recent LDA calculations, in which the complications due to the coexistence of
both heavy and light holes were taken into account, proved this assumption to be justified
within a few meV?". Therefore, the well width was fully determined by the energetic
separation between the HO-EO, LO-E0O and H1-E1 transition onsets, which were corrected
for their respective exciton binding energies. These exciton binding energies, in turn,
were obtained by minimizing the difference in magnetic field dependence of the
calculated and measured transition energies. The total procedure is, of course, a sort of
self-consistency problem, which was solved by iteration. Fortunately, the calculated free
Landau levels hardly depend on small changes in well width, which effectively makes
the exciton binding energy the only free parameter in describing the field dependence of
the various levels. For the MQW, the well dimensions could also be obtained from high
resolution X-ray diffraction measurements. The value found was 80+2 A for both
methods. The BGR that was found for the GaAs SQW was 17+2 meV, were the
calculations®’ gave 20 meV.
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The effective hole mass, needed in Eq. (5.5) for the calculation of the field
dependence of the exciton binding energy, was taken as the average mass of the lowest
calculated Landau level, in the field range from zero to 20 Tesla, m”, = Y2she AB/AE. The
used values are given in Table 5.2. These masses are only meant to characterize the
lowest LL of each subband and should not be confused with the effective mass at the
Fermi level, which is obtained by e.g. temperature dependent Shubnikov-de Haas
measurements. It should be noted that the field dependence of the exciton binding energy
is hardly dependent on the hole mass used in Eq. (5.5). For a zero field 1s binding energy
of 10 meV and an electron mass of 0.067 m, the binding energy at 20 T is 22.6 meV for
a hole mass of 0.3 m; and 21.8 meV for a hole mass of 0.6 m,. For higher excitons the
difference is even smaller.

5.4 Discussion
5.4.1 Spectral features

The general agreement between the observed and calculated magneto-optical fan
charts, as depicted in Figs. 5.3-5, is apparent. Several features, however, are worth some
further discussion.

First, as was indicated in paragraph 5.2.1, our model does not account for
anticrossings that result from the Coulomb interaction between different excitons. In
situations where the anticrossing is abrupt, i. e. has a small anticrossing gap, this is not
troublesome for the present purposes. This can, for example, be illustrated by the level
marked A in Fig. 5.3(b), which is the LO!-EO1 1s exciton. Although Bauer and Ando'”
have shown that this state (I,(1s) in their notation) experiences a sharp anticrossing -with
h,;(3d)- in the low field region, the state that is optically active follows the field
dependence of the non-anticrossing LO!-EO1 1s exciton. Only in very narrow QWs,
where this anticrossing gap is much larger, the actual anti-crossing can be resolved®. A

_situation in which our model fails can be found in Fig. 5.3(a), at the level marked B. Here
an anticrossing with, probably, a H1-EO state is observed. This anticrossing was also

1.7, Such a 'missed anticrossing' might also explain the deviation

observed by Rogers et a
between calculation and experiment at A in Fig. 5.3(a). In this polarization (c°) the low-
field anticrossing between 1,(1s) and h,(3d) is far less abrupt then in ¢* polarization'®.
This enhances the magnetic field region where the anticrossing levels deviate from the

non-anticrossing ones, which could cause the deviation of our model from the
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experimental points. For the degenerate samples, 'missed anticrossings' are irrelevant
since the Coulomb interactions involved are much smaller due to the screening by the
free holes.

Secondly, in the doped SQWs only Landau levels that are above or at the Fermi
energy are visible in absorption. As an example, the filling factor of the InGaAs SQW
is6at4.1 T and 4 at 6.2 T, which corresponds quite closely to the visibility onsets of the
corresponding HO-EO absorption lines in Fig. 5.5(a). The lowest HO-EO transition is, due
to the phase space filling, only visible in PL. At the highest magnetic fields a small,
additional peak arises in the PLE spectra, a few meV above the PL line, see Fig. 5.4(a)
and (b)*. We attribute this to absorption in the high-energy tail of the lowest HO, 1 and
|, Landau levels. Therefore, these points should lay above the calculated transition
energies. The PL energies are red-shifted with respect to the calculated energies due to
the Stokes shift, which results from local variations in the QW properties.

binding energy [meV] Hole masses
sample HO-EO LO-EO HI1-El1 Width HO LO H1
[A]
GaAs MQW 8+l 9+1 8+2 80+£2 1:0.46 1:0.063 1:0.045
undoped 1:0.19 1:-0.19  1:0.19
GaAs SQW 0 1+1 2+1 89+2 1:043 1:0.061 1:0.042
p=9*10" m? 1:0.19 {:-0.19 1:0.19
InGaAs SQW 0 1+1 2+1 83+2 1:0.10 1:0.083 1:0.15
p=6*10"" m? 1:0.19 1:0.14 1:0.19
GaAs ADQW 3zl 71 12+2  90/28 1:045 1:0.067 1:0.074
p=1.4%¥10"m? 1:0.19 1:-0.93  1:0.19
GaAs ADQW 0 3«1 8+1 90/28 1:045 1:0.073 1:0.154
p=6.5%10"m"™ 1:0.19° 129 1:0.19
GaAs ADQW 0 1+1 5+1 90/28 1:0.41 1:0.10 1:0.19
p=1.2%10"m™ 1:0.19  1:0.10  1:0.19
Table 5.2 Exciton binding energies, well widths and hole effective masses used in the

calculations for Figs. 3, 4 and 5 (See text), and for the ADQW amples. The width values of the
ADQW samples denote the nominal values of the wide and narrow well, respectively. The
estimated uncertainty in the shown values is 3 A.
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Thirdly, the experimental Landau fans show several transitions that are forbidden
by either parity or polarization, when the hole levels are considered parabolic, i.e. when
the non-diagonal terms in Eq. (5.2) are neglected. These transitions can, however, be
easily explained. by non-parabolicity effects. Ancilotto et al.*! have discussed these
effects extensively for an empty SQW, so we will limit ourselves to two illustrative
examples. The visibility of the H1-EO transition in Figs. 5.4 and 5.5may seem surprising,
but is a direct consequence of admixture in non-zero fields of states with quantum
number O to the H1 state. This change of parity is due to k, operators in non-diagonal
elements of Eq. (5.2). Admixture of states with the same parity as the original state can
explain the observation of transitions that are forbidden by the polarization selection
rules. This is the case in Fig. 5.5(b), were HOT-EO1 is observed in ¢* polarization, due
to admixture of LO! to HOT. We would like to point out that, although the strain in
InGaAs/GaAs QWs enhances the parabolicity of the hole states in the sense that the
effective mass remains constant over a wider range of fields and energies, the
bandmixing cannot be neglected in In Ga, ,As QWs.

5.4.2 Exciton screening

The HO-EO transitions in the doped SQWs can be accurately described by setting
the exciton binding energy to zero, i.e. setting Ry, ,, to zero in our model, see also Table
5.2. This is in agreement with both theoretical? calculations and other experimental
work®. It could be suggested that the increase with field of the energetic separation
between the PL line and the calculated lowest Landau level is an indication that a finite
binding energy still exists for the HO-EO exciton. There are, however, several arguments
against this hypothesis. Firstly, all higher Landau levels, that are observed in absorption
instead of emission, seem to lay at the correct energies. Secondly, the small absorption
peaks just above the PL lines are in accordance with the calculations, as argued above.
Furthermore, Gravier et al.*' experimentally observe, for a similar p-doped SQW, that
the difference between the Stokes shifted PL line and the lowest PLE line, increases with
magnetic field. Since PLE lines are generally regarded as a correct measure for the 'true'
transition energy, the observation by Gravier et al. supports our argument.

For the LO-EO and H1-El transitions, the correspondence between measurement
and calculation is significantly better when a finite exciton binding energy is used, than
when it is omitted. This shows that a finite exciton binding energy remains present up to
very high free carrier concentrations when the screening is purely of Coulombic nature.
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This is a very strong confirmation of various theoretical works in which it was argued
that 2D Coulomb screening cannot fully destroy the exciton binding energy, and one
bound state remains at all densities'**. However, the conclusion of Ref. 9 that
'intersubband effects via Coulomb screening are negligible' in modulation doped QWs,
seems unjustified. The fact that, in the doped wells, a smaller binding energy is found for
the LO-EO exciton than for the H1-EO exciton, is in good qualitative agreement with the
zero-field absorption spectra. As can been seen from Fig. 5.2(b), an excitonic
enhancement of the LO-EO absorption is fully absent, whereas it is clearly present for
H1-E1l.

The extremely small binding energy that is obtained for the LO-EO excitons
(1£1 meV) is in good agreement with the results of Refs. 1 and 3 who find 0.2 and
0.5 meV, respectively. In contrast, the H1-E1 binding energy seems to be underestimated
in the calculations of Ref. 3 by almost its full value: we find 2+1 meV, versus (almost)
zero in Ref. 3. This discrepancy is probably due to the purely 2D model in which the
screening was calculated. Although the finite extent of the screening subband, HO, in the
z-direction is taken into account by a formfactor, only the average electrostatic potentials
of the screened excitons and the average density of the screening subband are used, as
was pointed out by Henriques®. This leads to a dielectric constant e(g) that is independent
of z. Due to the fact that the HO subband and the H1-E1 exciton have their maximum
charge densities (~|G(z)|*) at different z values, this procedure results in an
overestimation of the screening efficiency and hence an underestimation of the exciton
binding energy. For the LO-EO exciton this effect is of minor importance due to the
similarity of the HO, LO and EO wavefunctions. It is important to note that the InGaAs
H1-E1 exciton binding energy found in this work, 2+1 meV, is consistent with the result
from temperature dependent absorption strength measurements on the same sample,
which yielded an E, between 1.0 and 2.5 meV".

The absence of exciton binding for HO-EOQ, and its presence for L0O-EQ, shows the
effects of occupation, by phase-space filling and exchange, on the exciton bleaching.
Since the HO and LO wavefunctions are almost equal, the effect of Coulomb screening
will be almost the same for the HO-EO and LO-EO excitons, as discussed above.
Differences in exciton bleaching between these two subbands therefore necessarily arise
from the difference in occupation. Our results do therefore also confirm the theoretical
claim that no excitonic bound state exists for highly degenerate subbands.

In order to verify our hypothesis on the importance of subband overlap for
Coulomb screening, we performed similar measurements on a series of ADQWs with
various hole densities. As the overlap effect in these samples is much more pronounced
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than in the single quantum wells (the groundstates are mainly localized in the wide well,
whereas the first excited states are dominant in the narrow well, see Fig. 5.1), the
differences in binding energy between the LO-EO and H1-E1 excitons should also be
much larger than for the single wells. It can directly be seen in table 5.2 that this indeed
is the case. Again, even at the highest densities the LO-EO exciton preserves a finite
binding energy. As both HO and L0 are groundstates, their wavefunctions are rather
similar and the Coulomb screening of the LO-EO exciton by the HO holes still is
approximately as efficient as in the single QW. The spatial separation of the HO and H1
states is much larger in the ADQW structures than in the single QWs, which leads to a
strongly reduced screening efficiency of the H1-E1 exciton.

5.4.3 Comparison with other models

When we compare the exciton binding energies for the undoped MQW (Table
5.2) with those found by other authors for similar QWs -see e.g. Fig. 5 in Ref. 43 for a
summary of various experimental results- it appears that our values for the HO and LO
excitons are about 2 meV below the average for 80 A QWs. The HO binding energy is

however still somewhat above the value reported by Ossau et al.*

, who determined E,
from the diamagnetic shift of the HO exciton. A comparison with the results of Rogers
et al.”, who determined the exciton binding energy of HO-EO both from extrapolation of
low field data and from fitting high-field data can easily be made. The high-field model
used in Ref. 22 assumed linear Landau levels, that were corrected for electron non-
parabolicity, and for excitonic effects. The latter correction was made using Eq. (5.7).
Since the full expression Eq. (5.5) for E, reduces to Eq. (5.6) in high fields, we can
convert our E,'s to the binding energies that fitting with Eq. (5.7) would yield by
demanding equality of Egs. (5.6) and (5.7). Table 5.3 summarizes all relevant binding
energies. It is obvious that our full results compare more favorable with the binding
energies obtained by low-field extrapolation, whereas our results using Eq. (5.7) agree

~with the corresponding high-field values found by Rogers. Although the latter values are
somewhat closer to the values reported in Ref. 43, we stick to our original values since
we doubt the scaling used in Eq. (5.7), for reasons pointed out in paragraph 5.2. The
H1-E1 binding energy of 8 meV seems to be in reasonable agreement with the theoretical
results of Refs. 34 and 3 who report 9.2 meV for a 150 A well with Al ,,Ga, ¢,As barriers
and 6.5 meV for a 100 A well with Al,,.Ga,sAs barriers, respectively.

As was discussed in the introduction, various authors have used a model in which
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the electron-hole pairs are described in terms of a scaled 2D hydrogen model®**#4°, In
our model, this comes down to replacing the exact hole Landau levels by their linear
counterparts, and neglecting the electron non-parabolicity. When we fit to our
experimental fan charts with this model, we find, for the undoped GaAs MQW,
E,=8 meV and my;;=0.6 m, for the HO-EO exciton, and E,=9 meV and m,,=-0.6 m, for the
LO-EO exciton. Considering the extreme non-linearity of the LO Landau levels it may
seem surprising that the LO-EO binding energy is found to be the same as when the
Luttinger model is used to calculate the hole energies. However, this correspondence
reflects the fact that, in undoped QWs, the Coulomb energy fully dominates over the
nonlinearities in the light and heavy hole Landau levels. Since the lowest HO Landau
levels are almost linear, the agreement between the simple and the full model is less
surprising in this case. Large deviations are found when the fan charts of the doped GaAs
QW are fitted in the 2D hydrogenic model. Here, the exciton binding energy no longer
dominates over the Landau level nonlinearities, which makes the approximation of the
exact Landau levels by their linear counterparts no longer valid. For the HO we find an
effective mass of 0.6. The LO-EO could best be fitted with a LO mass of -1.0, and a
binding energy in the range of 4 to 7 meV. This, of coarse, is in flagrant contradiction
with theoretical predictions, the result of the Luttinger model, and earlier work on the
same sample'’. It should be pointed out that the agreement with the experimental points
is, in all aforementioned cases, far better for our model than for the 2D hydrogen model,
particularly for the LO-EO transition in the doped GaAs SQW. Due to the strain-enhanced
linearity of the hole Landau levels in the InGaAs system, the 2D hydrogen model works
satisfactory for the InGaAs SQW.

This work Rogers et al. (Ref. 22)
full high field low field high field fit
width 80 A 80 A 75 A 100 A 75 A 100 A
HO-EO0 8+1 10+1 10 8 12+1 9.5+£.5
LO-EO 9+1 14+1 11 9 - -

Table 5.3 Comparison between exciton binding energies in an undoped GaAs QW, found
in the current work and those found by Rogers et al. (Ref. 22). All values are in meV. See text for
further explanation.



Magneto-optical study on exciton screening... 111
100

_(a) Al‘4§Ga.55As/GaAs
89A QW
[Al_Ga_As/in_Ga_As _
~ 1 e s 10 .90 b
0 83 A Qw
= [ p=6.0*1015 m-2
2 . “
3 4 F L i
w | H1
| Hogee 7
1 " 1 1 1 1 1 1 2 L 1 1
0 5 10 15 20 0 5 10 15 20
Magnetic field [Tesla] Magnetic Field [Tesla]
Fig. 5.6 Valence band Landau diagramsb for (a) an unstrained 89 A GaAs well, with

Al ;sGa ssAs barriers and a hole concentration of 9.0%¥10° m? and (b) a strained 83 A
In 10Ga gAs well between Al ,5Ga, ;sAs barriers, with a hole concentration of 6.0%10" m. For
clarity, only Landau levels with N<4 are shown. The solid (dotted) lines are H (H !) Landau
levels, the dashed (dash-dotted) lines denote L/ (L /) levels.

5.4.4 Numerical results

The hole Landau levels that are used for the generation of the lines in Figs. 5.3-5
are shown in Fig. 5.6. Fig. 5.6(a) displays the fan diagram for the unstrained 80 A GaAs
well, embedded between two Al ,Ga,ssAs barriers, with a hole concentration of
9.0*10" m™. Fig. 5.6(b) shows the same for the strained 83 A In,,;Ga, ,,As well between
Aly,5Gay;5As barriers, with a hole concentration of 6.0%¥10'° m?. The doping was
assumed to be symmetrically distributed over two delta-layers on the left and right-hand
side of the sample. Due to the axial component of the compressive strain in the InGaAs
QW, the light hole levels are shifted upward with respect to the heavy hole levels. The
two most striking effects of this shift are the disappearance of the negative L0 mass and
the decreased HO mass for higher Landau levels. Since the negative L0 mass in the GaAs
QW is the result of a strong repulsive interaction between H1 and LO?, it changes sign
as soon as the H1 level drops below LO. As this repulsive interaction is still present in the
InGaAs QW, the H1 mass is strongly increased compared to the H1 mass in the GaAs
SQW. The kink in the LO Landau levels at 87 meV, see Fig. 5.6(b), is due to an
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anticrossing with the H2 state. The disappearance of the negative LHO mass is confirmed
by the change in field dependence of the lowest LO-EO transition in Figs. 5.4(b) and
5.5(b). The decrease of the HO mass, going from GaAs to InGaAs, is also a consequence
of the shift in the position of the LO level. Since the extreme bending of the HO Landau
levels and its high effective mass are, in the GaAs QW, mainly caused by the anti-
crossing with the LO level; the 'removal' of the L0 level in the InGaAs SQW results in
a smaller effective mass and a larger range in which the HO Landau levels can be
considered as linear.

The hole masses listed in Table 5.2 are, on first sight, remarkably constant for the
heavy holes with 'spin' down (m,=-3/2). For the GaAs wells, this can be understood by
reahzmg that the masses listed are those of the lowest Landau level of each state. For the

“heavy hole down state, the lowest Landau level has N=-1 and the Hamiltonian Eq. (5.2)
is reduced from 4*4 to 1*1. In other words, heavy hole down states do not interact with
other states and, consequently, their effective mass only depends on the Luttinger
parameters. The constancy of the heavy hole down mass in going from GaAs to InGaAs
is due to a cancellation of a decreasmg in-plane mass [<1/(y,+Y,)] and an increasing
Zeeman energy® [=(-x) for ' spin' down states].

5.5 Conclusion

We have shown that in degenerate p-type samples, both the LO-EO and H1-E1
excitons, which are only screened by the Coulomb interaction with the free groundstate
heavy holes, are strongly screened. However, a finite binding energy remains present up
to very high free carrier densities (6-9*10"° m?), in agreement with 2D screening theory.
The HO-EQ exciton, in contrast, is totally unbound at these densities, due to the combined
effects of Coulomb screening and occupation related bleaching. Furthermore, we have
experimentally proven that the usual 2D RPA screening theory overestimates the
screening strength for excited subbands. This is due to neglecting the z-dependence in
the charge density of various subbands. Due to the similarity of HO and LO
wavefunctions, the screening of the LO-EQ exciton is, for the studied QWs, predicted
correctly by standard 2D screening theory.

We have successfully used a simplified model to describe the excitonic transitions
in IMI/V heterostructures, which is based upon a separation of the full Hamiltonian into
parts, that are solved separately. The extreme non-linearity of the HO and LO Landau
levels can be reduced by incorporating compressive strain in the QW material, as was



Magneto-optical study on exciton screening... 113

found from both the experimental and the numerical results. However, for high fields and
high Landau indices bandmixing remains important, as was confirmed by experimental
observations on an In;,,Ga, 5,As QW.
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6 Exchange interaction in p-type
GaAs/Al,Ga,  As heterostructures studied
by magneto transport

(accepted for publication in Phys. Rev. B)
6.1 Introduction

In the past decades there has been considerable interest in the magnetic field
dependence of the electronic g-factor, g*. An enhancement of the electron g-factor owing
to exchange interactions was first proposed by Janak' to explain experiments by Fang
and Stiles®. Later it was shown by Ando and Uemura® that g* should be an oscillatory
function of the magnetic field with maxima at odd filling factors, i.e. when the Fermi
level is in between the spin up and down states of a Landau level, and minima at even
filling factors. The physical idea behind this periodic g-factor enhancement is the
following: At large magnetic fields the spin up and down states of a Landau level near
the Fermi energy have different occupations and therefore experience different exchange
energies, leading to an enhanced gap between the two spin states. This enhanced splitting
is usually described in terms of an enhanced g-factor. At odd filling factors, with E, in
between, say, N/ and N /, the occupation difference between the up and down levels is
at a maximum, resulting in a maximum in g". From a similar reasoning the minimum in
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g ateven filling factors can be understood. At even filling factors the same effect should
lead to an increase of the Landau level splitting hw,. This effect is usually neglected as
for electronic LL, in most III/V semiconductors, the energy associated with this exchange
interaction is much smaller than the LL spacing.

Experimentally, the exchange enhancement of g* has been studied in various
donor doped semiconductor heterostructures and in some of them oscillatory behavior
has been reported**®. To our knowledge no experimental evidence has been reported for
such effects in acceptor doped heterostructures.

In this work we report on magneto-transport experiments on a acceptor doped
GaAs/ALGa, As quantum well. We find direct evidence that, in this structure, exchange
effects are important at odd and even filling factors. Furthermore, we find from
numerical simulations that exchange effects are extremely important at magnetic fields
as low as 1.5 T. As a result, the effective mass that is determined from temperature
dependent Shubnikov-de Haas measurements should be treated with extreme care and
can often be regarded as meaningless.

The remainder of this chapter is organized as follows. In paragraph 6.2 the
experimental setup and results are discussed. In paragraph 6.3 we outline the model used
for the numerical simulations that are presented and discussed in paragraph 6.4. Our
conclusions are summarized in paragraph 6.5.

6.2 Experiments

The experiments were performed on a single 89 A GaAs/Al, ,sGa, sAs quantum
well (QW). The sample is p-modulation doped with Be and grown by standard MBE
techniques on a (001) GaAs substrate. The carrier density, as obtained from Hall and
SdH measurements, is 9.55*10*"* m?. The sample was wet-etched to a standard Hall-bar
geometry and contacted with Au/Zn or Au/Sn in-diffused contacts.

Measurements in the temperature range of 60 to about 900 mK were performed
with the sample mounted on the cold finger of a dilution refrigerator. For the temperature
range of 1.2 to 4.2 K a pumped bath cryostat was used. Magnetic fields up to 11 T were
generated by means of a superconducting coil. To exclude undesired carrier heating the
measurement current was kept more then an order of magnitude below the value at which
heating effects became observable. Typical values for the channel current and sheet
resistance were around 25 nA and 500 Qm?, respectively. Furthermore, all wiring of the
dilution refrigerator was equipped with low-pass filters to prevent heating by RF noise.
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Fig. 6.1 Shubnikov-de Haas trace at 60 mK for center of the Hall plateaus. The
the single quantum well. observed periodicity doubling is

obviously due to a lifting of the
heavy hole ‘spin’ (m=%3/2) degeneracy at 4 T. The ratio of high- and low field
perodicities deviates from the expected value of 2, which is assigned to exchange effects,
that will be discussed in paragraph 6.4.

In studying thermal activation of resistance minima three magnetic field regimes
can be identified. In the low magnetic field regime the densities-of-(extended)states
(DOS) of many Landau levels overlap at the Fermi level. Only in this regime the
Lifshitz-Kosevich'® formula applies and effective masses can be extracted from the
temperature dependence of the oscillation amplitude. The high magnetic field regime, on
the other hand, is characterized by the existence of mobility gaps. These are regions in
between well separated Landau levels in which only localized states exist, and that, at
low temperatures, give rise to plateaus in the Hall resistance and plateaus of zero
conductance in the SdH traces. As long as k7T is much smaller than this mobility gap, the
temperature dependence of conduction minima will show linearly activated behavior due
to the thermal activation of carriers into the extended states'!. In the intermediate field
regime the mobility gap is small or absent, and only the DOS of neighboring LL overlap.
Here, activation measurements on conductance minima will only yield information about
the shape of the DOS tails.

In order to analyze thermal activation of SdH minima in the high and intermediate
magnetic field regimes one should, in principle, invert the longitudinal resistance R, to
longitudinal conductance S,,, using the well known tensor relation on:pn/(pxxz+pxy2).
Here, 0,,, p,, and p,, respectively denote the longitudinal conductivity, the longitudinal

s Yxxo
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Fig. 6.2 (a) Temperature dependence of the resistance minima at v=4, 5 and 6 for the

quantum well sample. The solid lines are linear least-squares fits, the dashed line is a fit with
A*exp[-(B/T)]. (b) as panel (a), but for v=10,..,16. Here, the solid lines guide the eye.

resistivity and the transverse or Hall resistivity. In our experiments p,, is always at least
one order of magnitude smaller than p,, for magnetic fields above 1.5 T, so we may
safely assume proportionality between p,, and o,,. We therefore analyze the temperature
dependence, at constant magnetic field, of R, being the raw measurement data.

In Fig. 6.2 (a) we have plotted the high-field minima at v=4, 5 and 6 versus 1/7,
with 1.4<7<3 K. Obviously there is a marked difference between the filling factors 4 and
6 on one hand and 5 on the other. The linearly activated behavior (v=4, 6) of resistance
minima is what is to be expected in the absense of exchange effects, i.e. from the single
particle picture sketched above. In the presence of exchange effects the same activation
is at work, but then the separation between the two successive extended Landau levels,
usually the spin up and down states of one single LL, is -partially- due to the exchange
and hence a function of their occupancy. As the temperature is raised the occupation
difference between these states is decreased and consequently their separation is
decreased. Since the exchange splitting is, in first order, linearly proportional to the
occupation difference?, the total activation behavior will be quadratic in 7. The dashed
line through the data points of v=>5 is a fit to A*exp[-(B/T)*], validating the importance
of exchange splitting for this conduction minimum. The behavior described for the p-
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/I//

type QW is the same as what is to
be expected for n-type systems or
any system in which the Landau

,,,,,, splitting is much bigger than the
Zeeman energy.
Interesting information can

also be obtained from the thermal

activation of filling factor minima in
the intermediate field regime. In
Fig. 6.2 (b) the SAdH minima at
v=10,..,16 are depicted for
temperatures below 1 K. Here, the
solid lines are guides to the eye. The

most remarkable feature of Fig. 6.2

(b) is the nearly constant value of
Magnetic Field [T] the resistance minima of v=14 and
16 at the lowest temperatures. We

Fig. 6.3 Landau level diagram for the quantum  find that the observed behavior can
well sample. Hole anisotropy has been included. Solid
(dashed) lines indicate ‘spin’ up (down) levels. For the
meaning of the numbers see text. The fat line denotes
the Fermi level. described in terms of the Lifshitz-

not be explained in terms of simple,
linear thermal activation nor be

Kosevich formula. The latter would
predict a far stronger temperature dependence in the low temperature regime when
applied to the current minima. It is tempting to relate this non-linear behavior to
exchange effects, like for v=5 in Fig. 6.2 (b). In paragraph 6.4 we will show that this
indeed is the case.

6.3 Model

The numerical calculation of SdH traces consists of two parts. In the first part hole
Landau levels are calculated that are used as input for the second part that calculates the
actual R,, traces. Exchange effects on the ‘spin’ splitting are included in the second part.
Both steps will be outlined below in somewhat more detail.

The Landau level energies E were calculated from the 4*4 Luttinger Hamiltonian
according to a method outlined elsewhere'>'*. Valence band anisotropy'*!>!¢ (warping)
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was included using standard perturbation theory in which we used the unwarped LL as
basis functions for the final, warped, levels. At zero magnetic field B, the energy levels
and the electrostatic potential were calculated self-consistently. In this zero-magnetic
field calculation, exchange-correlation potentials that account for the complications in
the valence bands, were included"’. The resulting fan chart for the quantum well structure
is shown in Fig. 6.3. The numbers in the figure follow the Broido/Sham'® convention for
hole Landau level indexing. From the small Landau level spacings at the Fermi level, one
may draw the conclusion that, in the absence of exchange effects, the QW sample will
show a very strong temperature dependence («larger effective mass) of the SdH
oscillation amplitude. One should bear in mind that the meaning of the effective mass
that can be extracted from this temperature dependence is rather limited, considering the
extremely non-linear nature of the Landau levels.

The calculation of the Shubnikov-de Haas traces follows in principle the work of
Ando and Uemura'. According to Ref. 19 o, is given by

E-E .\2
exp[ —2[ - N”)
N,

where f(E) is the Fermi-Dirac distribution and the sum runs over all occupied subbands

dE (6.1

i and Landau levels N. From the original Ando-formulas' the following analytical
expressions were derived™:

6.2)

T. 2(a2+1)2N+2

The quantity ¢=d/! relates the magnetic length I (’=h/eB) to the range of the scatterers
d. I'; is usually given by the Born approximation for delta-shaped scatterers in low
magnetic fields:

2 i

Zhw —|? 6.3)
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In this work we used the value of I'; at B=1 T, ijm 11> as a free parameter for each ‘spin’
up resp. down subband, of which we only assumed proportionality to B'2. The reason for
this is that Eq. (6.3) is no longer valid when the effective mass m" becomes a function of
the magnetic field B. Furthermore, it was shown in Ref. 21 that, even when the effective
mass is independent of B, T'; is no longer proportional to B'? in high magnetic fields. The
latter effect turned out to be unimportant in the range of fields in which we used our
model. '

In Eq. (6.1) we assumed a Gaussian profile of the LL instead of the semi-elliptic
profile that was calculated by Ando and Uemura'® and Xu and Vasilopoulos®'. The
reason was that it turned out to be impossible to produce Shubnikov-de Haas traces that
resembled the experimental ones even slightly when semi-elliptic profiles were used.
This is in accordance with other experimental observations**? and recent calculations
based on a Gaussian random potential with long-range spatial correlations*?.

A fraction € of the carriers in each Landau level was assumed to be localized due
to strong localization. The localized states were also assumed to have Gaussian-shaped
profiles, with a width I‘;OTC’T ;1 at B=1T, that are centered at the Landau energy E,. In
simulating experimental SdH traces it turned out that the best simulations were obtained
when the width of the localized states was made so large that, effectively, a constant
background of localized states arose. This, again, is in agreement with earlier
experimental work®>23,

The longitudinal conductance g,, calculated from (6.1) was transformed to the
longitudinal resistance p,, using the standard tensor relations and the classical
approximation for the Hall conductivity o, =ne/B, with n the total 2D carrier density.
Shubnikov-de Haas effective masses in the low magnetic field regime were determined
by calculating p,, as a function of temperature and analyzing the resulting traces with
standard Fourier filtering techniques and the well-known formula

sX
sinh(sX)

Ao (B) ¢ omsEpE)

%wc

COS

6.4)

po s=1

where X=21k,T/h ..

In order to validate our model we calculated SdH masses by the procedure
outlined above, but using linear LL as input, i.e. assuming parabolic bands. We found
that the resulting masses were, at least up to two decimal places, the same as those used
for the calculation of the LL. This agreement was totally independent of the used
parameter set, as long as the minima in p, did not reach zero. Using semi-elliptic
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broadening profiles instead of Gaussian profiles did not alter this agreement.

The effects of exchange on the splitting between ‘spin’ up and down LL were
included a posteriori. We used a simplified version of the model proposed by Ando and
Uemura’, which was derived for, and successfully applied to, electron systems “*¢. The
exchange energy of a Landau level N is written as

Ep=Ep (! -nl) (6.5)

0 . .
where Eg, is a constant for which we assume®*

Eg=E B2 (6.6)

where E,\] is the maximum exchange splitting at 1 T which is used as a free parameter and
n,N and n," are the relative occupations of the two spin states of the N-th Landau level.
For hole LL the question remains which N should be assigned to the various hole Landau
levels. The only consistent way to do this is by assigning the lowest ‘spin’ up and down
Landau levels (2" and -1 in Fig. 6.3) to the up and down states of the N=0 Landau level,
and by assigning subsequent up and down hole LL to N=1, 2....

Several objections can be made against the application of Eq. (6.5) to a 2D hole
gas. Bobbert et al.' have shown that the change from a spin doublet (s=+1/2) for
electrons to a ‘spin’ quadruplet (m,=+3/2, +1/2) for holes strongly affects the exchange
interaction. Furthermore, in the derivation of Eq. (6.5) pure spin states were assumed.
Due to the strong bandmixing ‘spin’ is a poorly defined quantity in hole systems. Since
there seems to be no theory on exchange in the Landau level regime that includes these
features, we will use Eq. (6.5) as an ‘educated guess’. In the next paragraph we will show
that most experimental features can be explained qualitatively within the model outlined
above.

Finally, it should be pointed out that the Fermi energy and the Ej). are mutually
dependent, and therefore form a self-consistency problem that is solved by iteration.

When linear Landau levels are used as input and exchange effects are excluded,
the model outlined above is very well suited to study the intricacies of the SdH
periodicity in systems in which not all carriers have the same mass. Examples are the
‘spin’ up and down branches of hole states in III/V’s at nonzero B fields and electrons
quantized in different X-valleys in AL Ga, ,As heterostructures® or Si inversion layers?’.
As a demonstration we show in Fig. 6.4 calculated SdH traces for a -simplified- p-type
heterojunction in which only the ground state heavy holes are occupied. The hole masses
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Fig. 6.4 Simulated Shubnikov-de Haas traces for a hypothetical heterojunction with m",

=04 andm’, = 0.2 and a carrier density of 3.56*10"" m?. T',},  andT.,  are 0.2 and 0.8 meV
in (a) and 0.8 and 0.8 meV in (b).

were taken 0.4-m, and 0.2-m, for the m,=+3/2, or ‘spin’ up, and m,=-3/2, or ‘spin’ down,
states, respectively. The total hole density p was taken 3.56*10*"* m™”. In Fig. 6.4 (a), the
widths of the extended states at 1 T, I‘;XTM and I‘Zm , were taken 0.8 and 0.2 meV, for up
and down states respectively, and 0.8 and 0.8 meV in Fig. 6.4 (b). For simplicity, the
fraction of localized states was assumed zero. As is apparent from the R traces, the
change from F:;l = 0.2 meV in Fig. 6.4 (a) to I‘;XT,'l = 0.8 meV in Fig. 6.4 (b) causes a
profound change in the SdH periodicity at higher fields. This is even clearer in the
inserts, where the extremum index, not to be confused with the filling factor, is plotted
versus 1/B. In both situations, the low field oscillations are dominated by the ‘spin’ down
holes, since the ‘spin’ down holes have the largest mobility. In Fig. 6.4 (a) the high field
regime displays a periodicity that corresponds to the total density, p+p*, whereas the high
field regime in Fig. 6.4 (b) is dominated by the periodicity of the ‘spin’ up holes, p*. The
essential difference between situations (a) and (b) is the fact that in the high field regime
of (a) the broadening of the ‘spin’ down LL is small compared to the spacing of the
‘spin’ up LL and that in (b) the reverse holds. In situation (b), as a result, the oscillations
of the ‘spin’ up holes are superimposed on the slowly varying background of the ‘spin’
down holes, where the latter period consequently becomes dominated. It is worthwhile
to point out that both situations have been observed in p-doped heterostructures.

Situation (a), i.e. p” in the low-field regime and p+p* in the high-field regime, is
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generally observed in single heterojunctions, see Refs. 7, 8 and 9. Situation (b), i.e. p and
p” in the low- and high-field regimes respectively, has been reported for an asymmetric
50 A quantum well.

6.4 Numerical results and discussion

The model outlined in the previous paragraph has been used to simulate the
Shubnikov-de Haas traces of Fig. 6.1. The results for the quantum well are plotted in Fig. '
6.5. The Landau levels that are displayed in Fig. 6.3 are used as input for the simulations;
other parameters used are given in Table 6.1. It turned out to be impossible to simulate
both the high and low field regions of the experiment without including exchange

interactions, see the upper two

curves of Fig. 6.5. When we use the
density from the high field SdH
periodicity, 9.55%10%"° m?, the low
field oscillations are exactly out of
phase with the experiment. Using
the low field density, 9.0¥10*" m?,
solves this deviation but introduces
large deviations in the high field
regime. Only when we include

[arb. units]

exchange interactions in our model

XX

R

and use the high field density,
satisfying agreement with the
experiment can be obtained in the
whole magnetic field range. It
should be pointed out that when the
low-field density is used in the

simulations with exchange, the

Magnetic Field [T] agreement with the experimental

curve is very poor. From a

Fig. 6.5 Experimental and simulated Shubnikov-

de Haas traces of the single quantum well. Curve I:

p=9.50*%10*" m*, no exchange, curve II: p=9.55*10*" p=9.55*%10*"* m? with and without

m?, no exchange,, curve IlI: p=9.55*10"" m? with exchange (middle two curves of

exchange. Further parameters used in the simulations
are given in Table 6.1.

comparison of the curves with

Fig. 6.5) we can conclude that the
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Fig. 6.6 Experimental and calculated effective

masses versus magnetic field. The solid circles are
experimental points, all other large symbols are
calculated masses; +: no warping, no exchange; x:
with warping, no exchange; *: with warping and
exchange. The + and - lines are calculated cyclotron
masses of the HO ‘up’ and ‘down’ bands, respectively,
for Landau levels without warping and exchange. Only
Jor LLwith Ey ,, < Ep < Ey,, ,,, the cyclotron mass is
plotted.

low field resistance minima occur at
even instead of odd filling factors
due to an exchange driven
rearrangement of Landau levels.
This implies that exchange interactions
are important at magnetic fields as
low as 2 T. Furthermore, we
observe that the exchange indeed
enhances the ‘spin’ splitting at v=5,
in agreement with our interpretation
of the activation measurements in
Fig. 6.2 (a). At v=8 our simplified
model fails in giving a proper
description of the experiments. The
reason for this is unclear at present.

If, as stated above, exchange
is'important in the low magnetic
field regime, this should also be
observable in the temperature
dependence of the Shubnikov-de
Haas oscillations. In Fig. 6.6 we

plotted experimental and calculated effective masses versus magnetic field. Because of

the non-linear nature of the hole Landau levels and the presence of exchange

interactions, the masses plotted in the figure should only be regarded as a measure of the

calculation
parameter I ILX 11, % +
p [10*"° m?) 9.0 9.55 9.55 9.55
Il [meV]  0.28/0.28 0.25/0.25 0.55/0.55 0.28/0.28
E,' [meV] 0 0 0.35 0
warping yes yes yes no

Table 6.1 Input parameters used in the calculations of Figs. 6.5 and 6.6. The roman
numbers and the symbols refer to the curves in Fig. 6.5 and the symbols in Fig. 6.6, respectively.
For all calculations we took €=0.2, d=250 Aand T\, =1.5 resp. 1.5 meV.



130 Chapter 6

)
e
5
£
S,
IX
R T S S
0.4 0.6 0.8
YT K] 1/T [K1]
Fig. 6.7 (a) Calculated thermal activation of the conduction minima v=4, 5 and 6 of the

quantum well, including exchange.” As in Fig. 6.2(a), the v=5 minimum shows a quadratic
activated behavior, indicative of exchange enhanced ‘spin’ splitting. (b) Calculated activation
of resistance minima in the intermediate magnetic field regime. The density in the quantum well
is taken to be 9.55*10""° m?. The solid squares (circles) correspond to calculations without
(with) exchange. The parameters used are the same as for the middle two curves in Fig. 6.5.

temperature dependence of SdH oscillation amplitudes, i.e. as an indication of the
splitting between the highest occupied and lowest unoccupied Landau level. As from the
simulation of the raw low-temperature SdH traces, we can conclude from the effective
mass calculations that the single particle model, which neglects exchange effects, cannot
explain the experimental observations. Once again it should be stated that the calculated
effective masses do not depend significantly on any model parameter except E,, . The
good agreement between the experimental masses and those of the model calculations
without warping and exchange is due to a cancellation of errors: When the band warping
is included in the calculation of the hole Landau levels, an extra, repulsive, interaction
between the HO and LO states is included'*'®. This results in a ‘compression’ of the HO
Landau fan, which can be expressed in terms of an increased effective mass. This
demonstrates that the inclusion of band warping in hole Landau level calculations is not
only essential for reproducing resistance minima in SdH experiments'*, but also for the
determination of single particle masses. When exchange interactions are included in the
calculations, ‘spin’ up and down splittings at the Fermi level are increased. The thereby
enhanced splitting between the highest occupied and lowest unoccupied Landau level is
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observed as a decrease of the effective mass. For this reason we believe that the effectiver
mass that is extracted from Shubnikov-de Haas measurements is rather meaningless.
Another conclusion to be drawn from Fig. 6.6 is that the Shubnikov-de Haas masses are
not equal to the cyclotron resonance masses, nor follow them in a simple manner, even
when many-particle effects are absent.

A further confirmation of our interpretation of the present experiments can be
obtained from the calculated thermal activation of resistance minima in the high and
intermediate field regimes. In the discussion of Fig. 6.2 (a) the non-linear activation of
the v=5 minimum was taken as an indication for an exchange-driven enhancement of a
‘spin’ splitting. Our simulations reproduce the observed behavior qualitatively: The v=4
and 6 minima exhibit linear activated behavior, whereas the v=5 minimum indeed shows
a pronounced quadratic activation, see Fig. 6.7 (a). To produce a good local fit around
v=>5, including the broad plateau of zero resistance at 60 mK, we-used I‘iXTL, , I’lXTN =0.25
meV instead of 0.55 meV, giving the best over-all simulation, which is used in the
simulations of Figs. 6.5 and 6.6. It should be pointed out that also an increase of the
exchange parameter E,, can be used to reproduce the zero-resistance plateau, but also
in this case a quadratic temperature dependence is found. Since neither E, nor ngm and
P;T,,L have a quantitative meaning in our model, and only the qualitative results of our
model are important, this freedom in parameter choise is not troublesome.

In paragraph 6.2 the activation of resistance minima in the intermediate field
regime of the quantum well SdH trace were discussed, and the claim was made that the
extremely non-linear activation of the v=14 and 16 minima [see Fig. 6.2 (b)] is related
to effects of exchange enhanced ‘spin’ splitting. In Fig. 6.7 (b) the activation behavior
of various minima in the same magnetic field regime of calculated SdH traces are shown.
The same parameters have been used as in the calculation of curves II and III in Fig. 6.5.
Note that for the calculation without exchange resistance minima occur at odd filling
factors, in contrast to the calculation with exchange and the experiment. Apart from this,
additional support for our claim can be extracted from a comparison of Fig. 6.7 (b) with
Fig. 6.2 (b). It is clear that the saturation at low temperatures of the experimental SAH
resistance minima at v=14 and 16 is qualitatively far better reproduced by the model
calculations that include exchange. As in the intermediate field regime no mobility gaps
are present, the observed activation behavior is far more complicated than the simple 1/T
or 1/T? that is found in the high field regime. We found that at the lowest temperatures,
the observed (lack of) temperature dependence predominantly reflects the shape of the
tails of the LL density of states. The essential parameter determining this 7 dependence

is therefore T'}/,. In the calculations with and without exchange T\ equals 0.55 and 0.25

ext*
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meV, respectively, giving rise to the lesser temperature dependence at low temperatures
in the former case. The importance of exchange interaction lays in the fact that it
enhances the Landau level splitting at the Fermi level so that resistance oscillations are
still observable, notwithstanding the fact that the Landau level broadening is larger than
the splitting in the single-particle calculation, see Fig. 6.3.

There are two last questions that we want to address with respect to these
simulations. The first concerns the magnetic field in which exchange effects become
important. Our observations indicate that rearrangement of Landau levels due to
exchange interactions is essential for a proper description of the transport experiments
on p-type heterostructures at all magnetic fields. This is in marked contrast with the
situation for n-type heterostructures, for which exchange effects become only significant
at much higher magnetic fields’. The reason for this contrast is that the hole ‘spin’
splitting is not only due to the Zeeman effect, but also due to the different interactions
with other bands for ‘up’ and ‘down’” hole levels. As a result, the total ‘spin’ splitting at
the Fermi level is already much larger than the Landau level splitting for magnetic fields
as low as 1 7, as can be seen in Fig. 6.3.

The second question concerns the generality of our results. In the above we have
shown that for one particular GaAs/AlLGa, ,As QW exchange dominates the SdH
resistance and the effective masses derived from its temperature dependence. It is
however well known that, qualitatively, the dispersion relations and Landau levels of
most GaAs/Al,Ga,,As heterostructures are the same. This also holds for the valence
bands of most III/V-based heterostructures, in the sense that the hole g-factor and the
interactions with other hole subbands lead to a much stronger ‘spin” splitting than in the
corresponding electron bands. Consequently, it is very likely that the exchange
interaction is important in magneto-transport experiments on these structures. We feel
that one should therefore be extremely carefull in using temperature dependent SdH
measurements as a tool to obtain the single particle hole mass.

6.5 Conclusions

We have performed magneto-transport measurements on a p-type quantum well.
From the thermal activation behavior of Shubnikov-de Haas conduction minima we
concluded that exchange enhancement of ‘spin’ splittings can be important at both odd
and even filling factors. Numerical simulations of Shubnikov-de Haas traces, based on
realistic Landau levels and a simplified model for the exchange interaction confirmed
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these observations. Furthermore, simulations showed that exchange interactions lead to
a drastic rearrangement of hole Landau levels around the Fermi level at all magnetic
fields, which is reflected in the observed Shubnikov-de Haas traces. This conclusion is
strengthened by. the observed temperature dependence of the Shubnikov-de Haas
oscillation amplitude in the low magnetic field regime. We found that the observed
behavior can not be described within the single particle model in which the Landau
levels are calculated. Inclusion of exchange effects in the model did greatly improve the
agreement of the calculations with the experimental data. These findings, in combination
with the extremely non-linear nature of hole Landau levels, lead us to the conclusion that
hole effective masses, deduced from temperature dependent SdH measurements, should
be treated with extreme care and often can be regarded as totally meaningless.

Although the simplified model that we applied to take the effects of exchange on
the hole Landau levels into account seems to give a qualitatively correct description of
our experimental findings, a more extensive theoretical model could greatly improve on
the understanding of many-body effects in p-type heterostructures.
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7 Many-particle effects in Be-delta-doped
GaAs/Al Ga,  As quantum wells

(submitted to Phys. Rev. B)
7.1 Introduction

The collective behavior of mobile carriers in a semiconductor lattice has attracted
a lot of attention ever since the early days of semiconductor physics. With the advent of
(quast) two-dimensional (2D) systems, most of the many-body effects that had previously
been studied in bulk semiconductors or metals, became subject of intense research in
these new structures. Among these are such well-known effects as screening, the Fermi-
edge singularity (FES) or Mahan exciton, exchange and correlation, etc. Since exchange
and correlation effects lead to a reduction of the effective band gap in degenerate
systems, their effect is often denoted as band gap renormalization or BGR. Although the
basic concepts are not very new, all of these effects are still of great current interest">**,
Both experimental and theoretical studies on many-particle effects have predominantly
focussed on n-type systems, mainly to avoid the complications arising from the valence
band coupling. However, due to the very different characteristics of the valence bands
as compared to those of the conduction band, i.e. the co-existence of heavy and light hole
groundstates, the high effective masses and the strong non-parabolicity, the study of p-
type systems can greatly enhance the general understanding of many-body
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physics
In this paper we will report on photo-luminescence (PL) and photo-luminescence
excitation (PLE) measurements on GaAs/Al, ,,Ga, 5, As quantum wells (QWSs) with a Be
delta (8)-doping spike placed in the center of the well. These structures are ideal to study
band gap renormalization because of the high carrier densities that can be achieved, and
the occupation of multiple subbands. We will compare our results with the results of self-
consistent field calculations, in which the effects of exchange and correlation have been
incorporated by means of the local-density approximation (LDA). In particular, we will
compare various models for the hole exchange-correlation potential with our experiments
and with calculations without these many-body corrections. We find that the inclusion
of exchange and correlation effects in self-consistent calculations is essential for a
meaningful comparison with experiments, and that the model that has recently been
developed by Bobbert ez al.' consistently describes our experimental findings.

In a recent series of papers Wagner ef al. '"1>'

report the observation of a FES in
the luminescence spectra of structures that are very similar to the ones discussed here.
From a theoretical point of view this observation is very remarkable*'*!*. Both the small
effective mass of the minority carriers and the large energetic separation between the
highest occupied state and the lowest unoccupied state in the valence band, reported in
Refs. 12 and 13, make the occurrence of a FES surprising. In our experiments we do not
observe any indication for a Fermi-edge singularity. In paragraph 7.5 we will briefly
discuss this negative result in the light of recent theoretical work on this subject, and we
will compare our results to those of Wagner et al.

This chapter is organized as follows. In paragraph 7.2 we will describe the
samples used in this work. Experimental results will be reported in paragraph 7.3 and
discussed in paragraph 7.5. The numerical model used in the interpretation of our data
is presented in paragraph 7.4, along with a comparison of measured and calculated
transition energies. Paragraph 7.6 will summarize our conclusions.

7.2 Samples

The structures investigated were grown on semi-insulating GaAs substrates by
conventional molecular-beam epitaxy techniques. On top of the substrate a 100-period
GaAs/AlAs superlattice was grown, followed by a 200 A Al ,GaggoAs barrier layer.
Both the superlattice and the Al,,,Ga, g As barrier were grown at 690 °C. Subsequently,
the growth temperature was lowered to 480 °C to avoid Be diffusion during the growth
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Fig. 7.1 Valence band self-consistent confining potential and wavefunctions of samples

1(a), 3 (b)and 5 (c), calculated using the model outlined in the text. The thick solid line denotes
the confining potential, the thin solid and dashed lines denote the heavy and light hole envelope
functions, respectively. The dash-dotted line indicates the position of the Fermi level Ep.

of the active layers. The active layers consist of ten periods of the following structure:
an undoped GaAs layer of width w/2, a Be 8-doping spike with a Be surface
concentration p, deposited during a growth interrupt, another undoped GaAs layer of
width w/2 and a 75 A Al ,GaggAs barrier. The total structure was terminated with
another 125 A of Aly,,Gayg,As and a 100 A GaAs cap layer. In addition, a bulk Be-doped
reference sample was grown. This structure consists of a single, 2 um thick, bulk GaAs
layer that had an aimed doping concentration of 2*10'® cm™. Tt was grown at 630 °C,
directly on top of a semi-insulating GaAs substrate.

The motivation for growing a multiple quantum well structure, instead of a single
QW, which is expected to show less broadened optical spectra, is threefold. Apart from
the obvious increase in signal strength, two points are worth some further discussion.
First, the two outer 6-doped wells will screen possible depletion fields, arising from mid-
gap pinning of the Fermi level at the surface and in the substrate'®. Therefore, the larger
central part of the total structure will be unaffected by these uncontrollable fields, and
thus will have a symmetric potential profile. This symmetry is essential in calculating the
self-consistent solution of the coupled Poisson and Schroedinger equations. Furthermore,
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it has been shown by Rodriguez and

Sample No.  well width d?zp ing_z Tejedor* that the symmetry of the
A] [10 " cm] confining potential can strongly

1 150 8 affect the appearance of Fermi-edge

2 300 8 singularities. Also for this reason,

3 600 3 uncontro?lable and possib?y
illumination-dependent  electric

4 1200 8 fields are undesirable. Second, since

5 600 2 the surroundings of the active layers

6 600 4 are screened by the two outer wells,

the Fermi level in the central eight

7 600 12 wells is solely determined by the
reference” 2um  2%¥10"% cm? doping in the 8-layers. The small (p-
type) background doping concen-

Table 7.1 Growth parameters of the investigated ~tration in the order of a few times

samples. The Be-d-doping spike is placed in the center 104 cm?, resulting from conta-
of the GaAs well region. The confining Al,,Ga,As

o i th ¢ .
barriers are 75 A thick. minations in the MBE system, is

fully negligible with respect to the
amount of doping in the -layers. This also facilitates numerical simulations, as it allows
for a restriction of the calculation interval to the active layers. Furthermore, as 8-doped
samples are not expected to show very sharp optical lines, some broadening due to
fluctuations over the ten periods of active layers is acceptable.

Two series of 8-doped samples were grown. One with a variable doping
concentration p, ranging from 2 to 12%¥10'2 cm?, at a fixed well width w=600 A, and one
with a variable well width, in between 150 and 1200 A, at a doping level of
p=8%10" cm™. In Table 7.1 the relevant growth parameters are listed. In Fig. 7.1 (a~c)
self-consistent potentials and wavefunctions of three representative structures are
displayed. The model used for the calculations is described in paragraph 7.4.

7.3 Experimental results

The experiments described in this paper are performed with the sample mounted
in a continuous-flow He cryostat, in which temperatures from 4 to 300 K can be reached.
Unless stated otherwise, all reported data are taken at 5 K. The samples were excited
using either a tunable Ti:Sapphire laser, or the yellow 594 nm (2.087 eV) line from a He-
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Fig. 7.2 Polarization-resolved photo-luminescence spectra of sample 1, excited at 1530
meV (in the Moss-Burstein gap, panel a) and at 1560 meV (above the Moss-Burstein gap, panel
b). The solid and dashed lines are taken in parallel (6**) and cross (a*') polarization
configuration, respectively. The identification of peaks A, B and C is discussed in the text.

Ne laser. The former source excites below the band-gap of the 20% Al Ga,_ As barriers
(1800 meV), the latter above. Both the excitation and detection beams were aligned
perpendicular to the sample surface (back-scattering configuration). Using polarization
selective excitation and detection, i.e. using left (0°) or right (¢*) circularly polarized
light, heavy and light hole contributions to the optical spectra of the 2D structures could
be separated. The excitation densities were approximately 1 and 0.15 Wem? for PL and
PLE, respectively. The luminescence signal was dispersed by a double 0.75 m Spex
monochromator and detected using a cooled GaAs photo multiplier, connected to a DC-
electrometer.

At the high-energy side of the PL spectra of all 8-doped samples, structure appears
that seems to be independent of the well width and doping concentration. Also the PLE
spectra of these samples show a 2D-structure independent background signal, that is
sensitive to the detection wavelength. We will first identify these structure independent
features in the PL(E) spectra of the 6-doped samples as being due to bulk GaAs. Then,
the 2D-related PL(E) spectra will be discussed.
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Fig. 7.3 Photo-luminescence excitation spectra of sample 1, detected at 1480 meV (a) and

at 1495 meV (b). The solid and dashed lines are taken in parallel (6**) and cross (o %)
polarization configuration, respectively. The identification of features D, E and F is discussed
in the text. The units of the vertical axis of the (a) and (b) panels are identical.

7.3.1 Substrate-related PL(E)

Fig. 7.2 displays the polarized luminescence spectra of sample 1 (w=150 A,
p=8+%10"? cm™), taken with the exciting laser at 1530 meV (a) and 1560 meV (b). Both
spectra exhibit the features labeled A, B and C (at 1491, 1494 and 1513 meV,
respectively), that, from their energetic position, can be identified as donor-acceptor
(D,A), band-acceptor (e,A) and acceptor-bound exciton (A,X) recombinations in bulk
GaAs, respectively. The identification of these features as being related to 3D (bulk)
transitions in the substrate is confirmed by the following observations. First, as stated
above, the lack of dependence on (2D) structural parameters. If one of the features were
due to an enhancement of emission intensity at the Fermi level, or any other 2D-related
transition, its position should definitely depend on the well width and doping
concentration. Second, when exciting in the Moss-Burstein gap, i.e. at 1530 meV, see
also Fig. 7.3, absorption in the 2D structure is forbidden due to the phase-space filling
in the valence bands. No luminescence from the structure is therefore to be expected at
this excitation energy. Third, the absence of polarization when the excitation is in the
Moss-Burstein gap of the 2D structure is characteristic for 3D PL. When the PL signal
of the wells is superimposed on the bulk lines, a polarized signal is to be expected, as is
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Fig. 74 PL and PLE spectra of samples 1 (a), 3 (b) and 5 (c). The PLE spectra are
detected below the bulk PL signal. Solid and dashed lines denote o** and o polarizations,
respectively. The dash-dotted line is the polarization curve, i.e. the difference between the
polarized PL spectra.

shown in Fig. 7.2(b). Fourth, Ferreira et al. demonstrated that for 150 A wells with
doping concentrations above p=6*10'" cm?, the 3D and 2D PL signals start to overlap®.

The excitation spectra of sample 1, detected either near the maximum of the bulk
luminescence (1495 meV) or below the bulk PL (1480 meV), are shown in Fig. 7.3 (a)
and (b), respectively. Clearly, when the detection coincides with the bulk PL lines, three
dominant lines are added to the excitation spectrum. The total disappearance of these
lines when the detection is below the bulk PL indicates that, indeed, the emission-
features A, B and C originate from a different region in the sample then the remainder
of the luminescence. If this were not the case, carriers excited at any of the features D,
E or F, should be able to recombine at energies below feature A, i.e. in the quantum well
layers. Peaks E (1512 meV) and F (1516 meV) can now be identified as the absorption
peaks of the acceptor bound and free excitons in bulk GaAs, respectively. The origin of
structure D is not fully clear at present. From measurements with other detection energies
we found that it is extended to, at least, 1485 meV, and that it is always of the same
intensity as the E peak. It should be stressed that also the features D, E and F are equally
present in all samples. '
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7.3.2 2D-related PL(E)

Polarization resolved PL and PLE spectra for samples 1, 3 and 5 are shown in Fig.
7.4 (a-c). The spectra of the other samples are fully consistent with the ones shown. The
PL spectra are all taken using the Ti:Sapphire laser as excitation source. It is worthwhile
to point out that none of the PL spectra showed significant changes when the wavelength
of the exciting light was changed, nor when the He-Ne laser was used for excitation,
apart from an obvious scaling of the PL spectrum. This is in marked contrast with the
observations in Refs. 11,12 and 13 where the appearance of a FES in the PL spectrum
of similar structures is reported, once the photon energy of the exciting laser is above the
band gap of the confining barriers. In paragraph 7.5 we will come back to this point.

From a comparison of the PL spectra of Fig. 7.4 (a) and (b) it can be seen that the
main effect of the increasing well width is a redshift of the 2D-related spectrum, being
due to the decreased confinement energy of the groundstate electron level EQ. As the
lowest light and heavy hole levels (LO and HO) are solely confined by the notch potential
of the &-doping layer, see Fig. 7.1, their confinement energy is not expected to change
significantly with increasing well width. This is reflected by the almost constant
separation between the HO-EO and L.0-EO luminescence lines, assumed to equal the
separation between the positive and negative extrema in the polarization curve (dotted
line). For the same reason, also the width of the PL line, reflecting the separation
between HO and the Fermi energy E, remains constant with increasing well width.
Obviously, this is not the case when, at constant well width, the carrier density is
decreased, as shown in Figs. 7.4 (b) and (c). Here, the experiments indicate that the LO
subband is not significantly occupied, since the negative extremum in the polarization
curve (0"*-0™) has disappeared, in agreement with our calculations (we calculate
E-L0=0.6 meV). The apparent blue shift with decreasing carrier density is due to the
decreasing depth of the 3-potential and the reduction of the strength of the exchange-
correlation potentials with decreasing doping concentration, again in accordance with the
calculations depicted in Fig. 7.1.

The broad tail on the low—enérgy side of the PL spectra is assigned to transitions
from background acceptor states to the lowest confined conduction band level". Since
the energy gap between the acceptor level and the EO level is dependent on the position
of the acceptor in the well, the length of the low-energy tail is expected to correlate with
the depth of the d-potential, i.e. with the doping concentration. Our measurements indeed
show a monotonic increase of the tail length with increasing doping concentration, c.f.
Fig. 7.4 (b) and (c). It is, however, extremely hard to quantify this effect, although the



Many-particle effects in Be-delta-doped... 145

S r—m—m—m— 77— 77— T
| #5 T 1 L / 'AI v 1 T 1 T I
w=600 A os A A
p=2*1012 cm-2 g. ol 1
[ © E_ =1.5+-02meV |
° act
2+ £ -
- |
.".C'.' O'O 1 1 1 1l 1 1 1 1 1 L 1
3 0.0 0.2 04 0.6 0.8 1.0 1.2
O -
5 1/kBT [meV-1]
= P
2 2
2 %
E1F < _
€ B
A .
rel. amp. = (P-A)/(B-A)
0 NS S e i T N PP TP T~ S
1490 1500 1510 1520 1530 1540 1550 1560 1570
E [meV]
Fig. 7.5 (a) Main panel: The PLE onset of sample 5.in 0** polarization at 20, 40, 60, 80

and 100 K. Upper insert: Activation plot of the normalized peak height. The activation energy
of the exciton unbinding is 1.5+0.2 meV. Lower insert: Schematic representation of the spectra
plotted in the main panel and definition of the normalized peak height, used in the upper insert.

order of magnitude of the tail length compares favorably with the calculated potential
profiles in Fig. 7.1.

The PLE spectra of our structures are hardly dependent on the doping
concentration, as can be seen from a comparison of Figs. 7.4 (b) and (c). This can easily
be understood by realizing that the PLE spectrum is determined by the higher,
unoccupied, hole levels and the empty electron levels. Since these states ‘feel’ relatively
little of the O-potential, they are hardly affected by an increase in the doping
concentration, which only changes the central region of the notch potential. Although the
L0 level seems unoccupied at a doping level of 2*¥10'* cm?, L0-EO is not observable in
the PLE spectrum, due to either the small matrix element for LO-EQ transitions (from
calculations, the step at 1517 meV is expected to be a factor of three higher than the LO-
EO absorption) or a small Moss-Burstein shift, resulting from a slight occupation of the
L0 subband. Increasing, at constant doping concentration, the well width from 150 A to



146 Chapter 7

I 1 1l 1 _' T 1 T T
| #5
T=80 K .
)
e
S
£
8,
> A SOUUURURN UUPRTRPRR Y J0O
‘D
c
L A A S Y N N e R
2 :
1460 1480 1500 1520 1540 1460 1480 1500 1520 1540
E [meV] E [meV]
Fig. 7.6 PL spectra and PLE onsets at 5 K and 80 K for sample 5. Note the strong line in

the 80 K PL spectrum associated with H2-EQ recombination, which is visible due to the thermal
population of the H2 subband. The thick vertical lines are calculated PL energies, the meaning
of all other lines is the same as in Fig. 7.4.

600 A, the steps at 1545 and 1565 meV [Fig 7.4(a)] shift to lower energy, loose intensity
and seem to merge at 1518 meV [Fig. 7.4(b)]. Since these steps are due to H2-E0 and
HI-EI1 absorption, respectively, this behavior can be understood from two points. Firstly,
the obvious shifts of the hole and electrons with well-width, which causes a strong
reduction of the separation between these transitions. Secondly, the increasing well width
causes a dramatic reduction of the H1-E1 matrix element, effectively removing the H1-
E1 absorption step from the PLE spectrum. The step at 1527 meV in Fig. 7.4(b) is
assigned to H2-E2 absorption.

Apart from the 150 A and 300 A samples (no. 1 and 2), all samples show a sharp
peak at the absorption onset. Based on its position and its small width (2.5 meV for
sample 3), we assign this to a H2-EO exciton. In order to validate this assignment,
temperature dependent PLE measurements were performed, see Fig. 7.5. The upper insert
shows the activation plot of the height'® of the excitonic PLE signal, normalized on the
band-to-band PLE signal, as illustrated in the lower insert. The latter correction is needed
to account for the temperature dependence of non-radiative losses, that affect the PLE
signal strength. Clearly visible is the activated behavior, with an activation energy of
1.5+0.2 meV. Taking the large density of mobile carriers that screen the Coulomb
interaction into account, this value seems reasonable'*®. In paragraph 7.5 this feature will
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be discussed in more detail.

Further confirmation of the assignment of the peak at the absorption onset to an
excitonic transition of an unoccupied subband comes from the temperature dependence
of the PL signal, that is shown in Fig. 7.6. Clearly visible is, apart from the redshift due
to the shrinkage of the band gap with temperature, the luminescence arising from one or
more thermally occupied subbands. From our band structure calculations we find for the
HI-E,, H2-E, and EO-E1 separations respectively 9.7, 14.1 and 3.9 meV. Comparing this
to k;7=7 meV at 80 K, the assignment of this line to either H1-E1 or H2-EO
recombination is possible, since they have calculated transition energies of 1517 and
1518 meV, respectively. Since the matrix element for the H2-EOQ transition is a factor two
larger than for the H1-E1 transition, the former transition is expected to dominate. The
coincidence of the PL maximum with the half-height point of the peak at the PLE onset
shows that both peaks share the same origin.

7.4 Numerical calculations
7.4.1 Model

The model used to obtain the self-consistent wave functions and confinement
potentials of electrons and holes has been described in detail in an earlier publication®,
so only a brief outline will be given here. Additions that were made to the model
described in Ref. 20, and that are essential for a proper calculation of the 8-potential
solutions, will be discussed in more detail.

Hole wavefunctions and energies were obtained as numerically exact solutions of
the 4*4 Luttinger Hamiltonian, including the valence band anisotropy. The used
Luttinger parameters are y,=6.85, y,=2.1 and y,=2.9 for GaAs and y,=3.45, vy,=0.68 and
¥5=1.29 for AlAs”, the used electron masses in GaAs and AlAs are 0.067 m, and 0.15
m,. The parameters for Al Ga  As were calculated using the virtual crystal
approximation. The band gap of AlLGa, As was calculated as
E,(x)=15 19.2+1360x+220x*> meV, where the common 40:60 rule was used for the
distribution of the band gap discontinuity over the valence and conduction bands at the
GaAs/Al,Ga,  As interfaces. The Hartree potential was calculated by solving the Poisson
equation numerically. Only the ionized beryllium atoms and the occupied valence band
states are contributing to this potential, for reasons explained in paragraph 7.2. The
degree of ionization of the Be acceptors is assumed to be 100 percent®. The broadening
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of the Be 3-layer is assumed to be rectangular, with a width of 25 A'>?*, For the present
densities neither the exact broadening profile nor its width are of significant influence
on the final solutions'®. In contrast to our experiences with barrier-doped p-type single
and double QWs, it turned out that assuming parabolic valence bands in calculating the
charge distribution gives erroneous results in these center-6-doped wells. We therefore
used the actual hole dispersions from the Luttinger Hamiltonian to calculate the Fermi
level, and calculated the charge distribution by summing all (k-dependent) hole
wavefunctions up to the Fermi level. The DOS was used as weight function in the latter
procedure. In order to expedite the calculations, the axial approximation was applied in
this part of the calculation. Absorption spectra are calculated as indicated in Ref. 19.

For the structural parameters needed in the self-consistent calculations, i.e. the
well-width w and acceptor concentration p, the nominal values of the growth menu are
taken. For the dopant concentration, the error made by this procedure can be estimated
from the characterization data of the reference sample. This sample had a nominal Be
concentration of 2*10' c¢cm® per um GaAs, characterization with van de Pauw
measurements showed an actual doping level between 2.0 and 1.95%10'* cm? per um.
The error in the subband calculations, caused by an error of this size in the dopant
concentration, is fully negligible with respect to the experimental resolution. Deviations
from the nominal value of the well width are usually a few percent. For 150 A wide wells
this may cause measurable deviations in the calculations, for wider wells this will not be
a problem. It is important to note that no adjustable fitting parameters have been used in
our model. »

7.4.2 Exchange and correlation

Inclusion of many-particle corrections in the subband calculations beyond the
direct Coulomb interaction or Hartree term turned out to be essential. In recent literature,
various attempts have been made to capture the complications arising from the
coexistence of light and heavy holes in calculations of the BGR in p-type systems**?*!.
Because of the high hole density and the occupation of multiple subbands, the present
samples are extremely suited as a test system for various hole-BGR models. In this work,
calculations based on the models proposed by Reboredo and Proetto (Ref. 24) and
Bobbert er al. (Ref. 1) will be compared with calculations without exchange and
correlation corrections, and with calculations based on the one-component plasma model
of Hedin and Lundquist®. The model proposed by Sipahi ez al.” is only applicable to
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homogeneous systems, and can therefore not be applied to the present samples. However,
as far as k=0 energies are concerned, this model is similar to the one proposed by
Reboredo and Proetto, in the sense that holes with |m,|=3/2 and |m,|=1/2 experience
different exchange-correlation corrections. For details concerning the various BGR
models, the reader is referred to the original publications. However, for the sake of self-
containedness, the basic assumptions of the models by Hedin and Lundquist, Reboredo
and Proetto and Bobbert et al. will be briefly outlined below.

All three models apply the Local Density Approximation (LDA) for extending
results obtained for a homogeneous bulk system to a quasi-2D system, by calculating an
effective exchange-correlation potential V.. that only depends on the local carrier density,
ie. V, (p(z)). The Hedin and Lundquist model was originally derived for n-type systems.
It therefore assumes that the carrier plasma consists of one type of (parabolic) carriers
only. By applying this model directly to a hole gas, characterized by the effective heavy
hole mass m,", one indirectly assumes that all holes are heavy holes. The validity of this
assumption is further discussed in paragraph 7.5. Although this assumption totally
ignores the actual valence band structure, favorable comparisons with experiments have
been reported for BGR calculations that treat the valence bands as a single, parabolic
band***. Since the Hedin/Lundquist model is only used for comparison with more
sophisticated models, there is no particular reason for choosing this model instead of any
other parametrized model available in the literature for calculating the BGR in n-type

systems®®!

, apart from the fact that the Hedin/Lundquist model appears to be the most
popular. The model proposed by Reboredo and Proetto™ is based on an analogy with the
spin-density functional formalism. The exchange-correlation potential is made dependent
Im J[

on |myl, V,

’ xc

(p*4(2), p'*(2)) . By ignoring exchange and correlation between light holes
and heavy holes, the final exchange-correlation potential becomes only dependent on the
local density of particles with |m,|=3/2 or 1/2, Vxlcm ! ‘(p ™(2)) . The quantity p™!(z) is
defined as the density in the heavy (|m,|=3/2) or light (|m,|=1/2) hole subbands. For the
functions Vx‘cm 1 a parametrized expression, derived for a one-component plasma, is used,
where the carrier mass is chosen equal to an effective heavy or light hole mass,

“depending on |m,|. To summarize, the most important feature of this model is that heavy
and light holes experience different exchange-correlation potentials. In paragraph 7.5.1
we will discuss the inconsistency and omissions of this model. The model derived by
Bobbert et al. does not assign a particular character (heavy or light) or mass to individual
subbands, as Ref. 24, or to particular spinor components, as Ref. 25, of the 2D structure.
Rather, it is based on the notice that, within the LDA formalism, the quasi-2D structure
locally is treated as bulk and that therefore the bulk dispersion relations must be used to
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3"" determine the local amount of
: : heavy and light holes. Based on this
idea, Bobbert er al. calculate the
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shown are obtained using the model of Bobbert et al. for V,_(z).

To arrive at the total band gap renormalization, also the correlation of the photo-
generated electron with the sea of holes must be taken into account. Independent of the
model used for the hole exchange-correlation potential, we use the parametrized
expression of Ref. 1 for the electron correlation potential V,(z), again using the LDA.

7.4.3 Numerical results
Because of the strong overlap of the electron and hole wave functions with the

ionized acceptors, a relaxation of the k-selection rules could easily occur as a result of
localization or strong scattering. Before a meaningful comparison of experiments and
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35 calculations can be performed, it is

30 i therefore essential to determine
_ o5 - whether or not the measured optical
° transitions are direct in k-space. To
'5 20 E do so, an experimental PL and PLE ‘
T 15F spectrum will be compared with
m

numerical simulations, see Fig. 7.7.
The numerical spectra (PLE) and
energies (PL) are calculated with

-
(@]
T

(¢}

p [1072 cm-2] ‘ full k-conservation. The excellent

agreement between measured and

Fig. 7.8 Experimentally  and  numerically qalculated PLE spectra, both in
determined separation between the ground state heavy
hole energy at k=0 and the Fermi energy versus )
doping concentration for w=600 A. The large (small) shows that the relaxation of k-

squares denote experimental (numerical) points, the conservation selection rules indeed
thin line connects the numerical points.

position and- steepness of onsets,

is negligible, as far as absorption is
concerned. In emission this is
definitely not the case, which is illustrated in Fig. 7.8, where the experimental and
calculated HO-E - separations are plotted versus carrier density. Experimentally, the HO-
Ey separation is determined by taking the energy at the maximum in the polarization
curve as the transition energy associated with HO(k=0) to EO(k=0) recombination, and
the half-maximum point at the high-energy side of the emission spectrum as due to
HO(k=k/) or LO(k=ky) to EO(k=0) recombination. The very favorable comparison with
calculated values shows that this assignment is correct, and that transitions in emission
can either be direct or indirect in k. However, the maximum emission intensity still seems
to arise from direct transitions, and positive and negative extrema in the polarization
curve will in the following be assumed to indicate HO(k=0) to E0(k=0) and LO(k=0) to
EO(k=0) transitions, respectively. It is worthwhile to point out that the onset of absorption
does not correspond to HO(k=ky) or LO(k=k;) to EO(k=k,) transitions, as in most
modulation-doped heterostructures, but to H1-E1 or H2-EO transitions at the zone center.
This is due to the large hole densities in the present samples, which cause extremely large
Moss-Burstein shifts.

As a typical example, Fig. 7.9 shows the dispersion relation for the same sample
as shown in Fig. 7.7 (no. 2), together with the calculated Fermi energy E,. The well-
known non-parabolicity of the valence band states is apparently visible.
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L A A LA R AL N B B HOWGVGI', extreme non-para-

20 _#:’ZI' ...... __-—-—-"”L1‘:‘ L. s
L w=300A : R : ] bolicities as negative masses, that
[P=8710" omZ- o7 H2]  are generally found for the LO band

in heterostructures based on the
AL Ga, As system'’, are absent.
Nevertheless, the remaining non-
parabolicities still strongly affect the
optical spectra, which is manifested

mainly in the non-step like behavior
of the absorption spectra, see Fig.

7.7.
0 ' '10' = '20' — '30' - '40 The summary of our experi-
K [106 m-1] mental and numerical data is shown
in Figs. 7.10 and 7.11, where
Fig. 7.9 Dispersion relations of the lowest measured and calculated transition

subbands of sample 2. The solid and dashed lines
denote heavy and light hole dispersions, respectively. ) ] v
The dash-dotted line indicates the Fermi level E,, - Width (Fig. 7.10) and the dopant

concentration (Fig. 7.11). Com-

energies are plotted versus the well

paring the measured energies with the ones calculated without exchange and correlation
corrections directly shows the need for these corrections, in contrast with the claim in
Ref. 12. Furthermore, it shows that in these 8-doping layers the BGR can not be
accounted for by a rigid shift of all valence bands, like in, for instance, single quantum
wells. Clear differences can also be found between the results obtained with the BGR
models by Bobbert et al. and by Reboredo and Proetto, that both aim to account for the
coexistence of light and heavy holes. These differences are most pronounced in the light
hole subbands, particularly at low doping concentrations and narrow well widths, c.f. the
upper-right and lower-left panels of Figs. 7.10 and 7.11. Both the energies of the LO-EO
and L1-E1 transitions calculated with the Reboredo-Proetto model are far more than the
experimental error of about 2 meV above the experimentally found values. Moreover,
the Reboredo-Proetto model incorrectly predicts one occupied subband for a hole density
of p=4*10"* cm”. A surprisingly good correspondence with experimental data is found
when the one-particle model of Hedin and Lundquist is used in the calculations.
Comparing with the model by Bobbert ez al. with “fitting to the experimental data’ as
criterium for success, the Bobbert-model seems to prevail for all samples, except those
with the lowest density and most narrow well width, for which the Hedin-Lundquist
model seems to prevail. The differences are however quite small. On physical grounds,
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Fig. 7.10 Measured and calculated transition energies, using various models for the hole
exchange and correlation interactions, versus the well width. The large symbols denote
experimental points, the small symbols denote calculations. The lines connect the calculated
energies. The experimental error is usually less then 2 meV. The meaning of the symbols is as
Jollows: solid squares: HO-EO; solid circles: LO-EO; open squares: H2-EQ; open circles: HI-El;
open up triangle: L1-El; open down triangle: H2-E2.

the success of the model by Hedin and Lundquist for p-type systems is accidental and
based on a cancellation of errors!, to which we will come back in the next section.
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Fig. 7.11 As Fig. 7.10, but as a function of the total dopant concentration.

7.5 Discussion

7.5.1 Exchange and correlation

In the previous section we have shown that the BGR model by Reboredo and
Proetto systematically underestimates the renormalization of the light hole-related
transitions. These deviations are directly due to the fact that this model uses different
exchange-correlation potentials for heavy and light holes, and that these potentials are
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only a function of the local density in the heavy or light hole subbands. The analogy with
the spin-density functional formalism, on which this model is based, is tempting but
invalid. The local ‘heavy’ and ‘light’ hole densities, obtained by Reboredo and Proetto
from the envelope functions of the |m,|=3/2 and |m,|=1/2 spinor components, are easily
shown to be dependent on the direction of the quantization axis, which, of course, should
not be the case. Furthefmore, the exchange and correlation interactions between ‘light’
and ‘heavy’ holes are, by definition, ignored in this model. Even in the hypothetical case
of an infinitesimally small light hole mass, when no states with |m,|=1/2 are occupied,
these interactions can not be ignored due to the non-diagonal character of the Coulomb
interaction with respect to the hole character’.

The surprisingly good correspondence between experimentally determined
energies, and those calculated with the Hedin-Lundquist model for exchange and
correlation is, as stated above, due to a cancellation of errors. To be more precise, the
implicit assumption that all holes are ‘heavy’, made by applying an ‘electron gas’ model
to a hole gas, leads to an overestimation of the exchange energy and an underestimation
of the correlation energy. The qualitative reason why the exchange energy for the hole
gas is smaller in magnitude than that for the electron gas is the fact that, besides the
spatial degrees of freedom, there are four instead of two internal degrees of freedom
(m=#3/2, £1/2 for a hole gas, and only m =+1/2 for an electron gas). Consequently, it
is easier to fulfil the Pauli exclusion principle, which reduces the exchange interaction.
The underestimation of the hole correlation energy, when applying the Hedin/Lundquist
model to a hole gas is also related to the number of internal degrees of freedom. Due to
the coexistence of light and heavy holes, the number of possible excitations at the Fermi
level is increased, leading to a higher dielectric constant for a hole gas than for an
electron gas of the same density. A high dielectric constant means that the system reacts
efficiently on a perturbation (strong screening), which implies a strong correlation with
the perturbation. In this specific case the perturbation is just the Coulomb potential of
any hole in the system. Therefore, the correlation energy of a system with four internal
degrees of freedom is higher than that of system with two internal degrees of freedom.

The only method of defining local heavy and light hole fractions that is consistent
with the LDA formalism is employed in the model by Bobbert ez al. It states that, since
LDA treats the quasi-2D charge distribution locally as a bulk density, also the bulk
dispersion relations have to be used in determining the local heavy and light hole
fractions. The success of the Bobbert model for the present samples therefore mainly
shows the validity of the local density approximation in the calculation of the effects of
hole exchange and correlation in quasi-2D systems of high degeneracy.
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7.5.2 Exciton screening

The observation of strong excitonic features in the present, highly degenerate
samples may appear surprising at first sight. Although it is well known that the efficiency
of Coulomb screening in 2D systems is strongly reduced as compared to that in 3D
systems, straightforward extrapolation of available theoretical suggests that only an
infinitesimally small binding energy should remain®****, However, as was pointed out in

89 standard 2D screening theory ignores the differences in

a few earlier publications
probability distributions of various subbands along the growth direction. To be more
specific, the relatively strong confinement of the occupied groundstates (HO and L0),
leads to a poor screening of excitons formed by more extended states like H2 and EQ***°.
Furthermore, it has been suggested® that the presence of ionized impurities inside the
quantum well makes the screening of excitons less efficient, which will facilitate the
survival of excitons up to the current doping concentrations. The overlap argument is in
full agreement with the observation that no significant excitonic absorption enhancement
is visible for the 150 and 300 A wells. Due to the confinement by the Alj,,Ga,4As
barriers, the extension of the H2 and EQ wave functions along the growth direction is not
much larger than that of the HO and LO wave functions, causing a relatively efficient
screening of the H2-EO exciton.

There are two points that we would like to stress, concerning the screening of
excitons in these samples. The first is that it has been shown that peaked structures in
absorption spectra are generally spoken an unreliable indicator for the presence or
absence of excitons'®. See e.g. the peaks at 1540 and 1565 meV in the PLE spectra of
the 300 and 150 A wells, respectively [Figs. 7.7 and 7.4(a)], that can fully be accounted
for by the valence bandstructure only. The absence of a peak in the absorption spectrum,
on the other hand, does not imply the total bleaching of the exciton®. The second point,
that is strongly related to this, is that we do not claim that all excitons, excepte the H2-EO
exciton, are unbound. The apparent dominance of the H2-EO exciton in the spectra of
wide wells is due to the subtle interplay between the exciton binding strength and the
optical matrix element. The latter is extremely large for the H2-EQ transition in wide
wells, as can directly be concluded from a comparison of the strengths of the HO-EQ and
H2-EO PL lines at 80 K, see Fig 7.6. As an example, the HI-E1 subbands are also
expected to form an exciton of significant binding energy for wide wells (w>600 A), but
at these well widths, the optical matrix element of H1-E1 transitions is much smaller than
that of the H2-EO exciton, which prevents the exciton from being identifiable in PLE.
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7.5.3 The absence of a Fermi-edge singularity

In contrast to what is reported by Wagner and Richards'"'*"* for samples that are
very similar to the ones discussed here, we do not find any indication for a Fermi-edge
singularity in the PL spectra of our samples. It has been shown that such a FES can arise

from either strong localization of the minority carriers’!*353637:38

Or a near-resonance
condition between states at the Fermi level and those of a nearby excitonic level>*3404!,
Due to the small electron mass in GaAs, the former condition is not very likely to be
fulfilled, as was also noticed in Ref. 12. Furthermore, the small effective mass of the
unlocalized electron will inhibit the observation of any FES-like features in emission
spectra, due to the large recoil of the scattered electron®'*". The latter condition requires
an excitonic level which is almost at resonance with the Fermi level. For all samples but
the one with p=2%10"? cm? the separation between Ey and the lowest occupied hole level
is at least 13 meV, which seems to far for causing any significant coupling®**%*?,
Moreover, it was shown by Rodriguez and Tejedor* that no such coupling at all can occur
in symmetric potentials. Summarizing the above, the absence of a FES in the PL spectra
of our samples appears to be in good agreement with most earlier work on the FES in
emission spectra.

There are two significant differences between the present samples and the ones
used by Wagner and Richards. The first is the density range, which runs from 3*10'? to
4*10" cm? in Refs 12 and 13. However, the separations between E, and the lowest
unoccupied subband reported for these samples are of the same size as in our samples.
The second, and probably most significant, difference concerns the fact that Wagner and
Richards employ samples with a single 6-doped well. As was pointed out by Wagner'?,
this might easily lead to a breaking of the symmetry of the confining potential, which can
strongly enhance the formation of a FES*.

It is interesting to mention the observation of a FES in a highly disordered system
of Be 6-doped bulk GaAs by Fritze er al”In these samples, the extremely high Be
coverage in the 6-layer (up to 0.35 monolyayer (ML) or p=2.1¥10"* cm?) caused the
formation of Be clusters. The resulting high disorder leads to the localization of the
minority carriers (electrons), despite their low effective mass. The Be coverages used in
our samples, maximally 0.02 ML, are far below the density at which the so-called surface
phase transition occurs, and Be clusters start to form.
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7.6 Conclusions

Summarizing, we have studied many-body interactions in Be-8-doped quantum
wells, by means of a careful comparison between PL(E) experiments and self-consistent
field calculations. Different LDA-models for the exchange and correlation potentials of
an interacting hole gas have been compared with experiments. It is found that the model
that was recently derived by Bobbert et al.' consistently describes the experimental band
gap renormalization, both for empty and filled subbands. Furthermore, our results
indicate that ‘heavy’ and ‘light’ hole subbands experience the same exchange-correlation
potential, which is consistent with the assumptions of the LDA formalism. For well
widths above 600 A a sharp peak dominates the absorption spectra of our samples, which
is attributed to a H2-EO exciton. The dominance of this exciton is explained in terms of
a strong optical matrix element and a reduced screening efficiency of higher subbands,
due to a small overlap with the screening particles. In contrast to earlier work on similar
samples, no indication for a Fermi-edge singularity in PL was found, which is discussed
and understood in the framework of other theoretical and experimental work on this
singularity.
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Summary

Iin contrast to the conduction bands, the theoretical description of the valence
bands of II/V semiconductors is rather complicated. This is due to the coexistence of
three ‘types’ of holes, which interact with eachother: the heavy and light hole bands, and
the spin-orbit split-off band. In (quasi) two-dimensional structures this interaction
generally leads to highly non-parabolic and anisotropic valence band dispersion relations.
It has been the predominant aim of this Ph.D. work to relate numerically calculated
valence band structures to experimental observations.

The inclusion of valence band coupling in the calculation of many-body effects
like screening, exchange, correlation and Fermi edge singularities is usually very
cumbersome, and can easily obscure the underlying physical phenomena. Mainly for
these reasons, most calculations of many-body effects have discussed systems in which
the carriers are characterized by a parabolic dispersion, i.e. the carriers are assumed to be
electron-like. In regarding holes as ‘complicated electrons’, it is often tacitly assumed
that the description of effects that have been observed and understood for electrons, can
straightforwardly be transferred to holes. In this thesis we examine in detail many-
particle effects in hole-systems. Without exception, it turns out that a proper
interpretation of our experiments requires more than a simple replacement of electrons
by holes in the usual interpretation for electron-systems.

During the project, we employed both optical and electrical experimental
techniques. The vast majority of our experiments is performed in the temperature range
from 100 mK to 4.2 K. We used (magneto) Photo-Luminescence (PL) and -Excitation
(PLE) spectroscopy, Shubnikov-de Haas (SdH) and Hall measurements. All investigated
samples were grown in-house by MBE and consisted of Al Ga, As/InGa, As
heterostructures, grown on GaAs (100) substrates.

Using the asymmetry of two coupled quantum wells of different width, in
combination with the coupling between heavy and light holes, it is possible to generate
a macroscopic separation between holes of opposite ‘spin’ (m,). This effect was coined
spin-dependent hole delocalization. Further theoretical study revealed that band bending,
resulting from the presence of free holes and ionized acceptors, can greatly enhance this
effect. This is the subject of chapter 3.

The aforementioned heavy-light hole coupling leads to a negative effective mass
of the lowest light hole subband in many of GaAs/Al Ga, ,As heterostructures. Since the
absolute value of this mass almost equals the mass of the electron, a singularity arises in
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the joint density of states. In chapter 4 we show experimentally, numerically and
analytically that this second-order van Hove singularity can be observed in the PLE
spectrum of a 90 A, p-doped GaAs/Al Ga, ,As quantum well. In earlier experimental
work, this peak has also been observed, but was incorrectly interpreted as an excitonic
feature.

The coexistence of a heavy and a light hole groundstate allows one to separate
experimentally the contributions to the unbinding of excitons of Coulomb screening on
the one hand, and Pauli principle-related screening on the other. This subject is discussed
in chapter 5. A prerequisite is that the doping used is p-type, and that either the light or
the heavy hole groundstate is unoccupied. A detailed analysis of magneto-PLE spectra
then shows that the RPA approach, in which the Coulomb screening of excitons is
usually calculated, fails for excited subbands. The reason for this failure is that the RPA
approach neglects differences in spatial extent of particles in various subbands.

In chapter 6 a detailed comparison between magneto-transport (SdH) experiments
and model calculations is presented. It is shown that, for all magnetic fields, Shubnikov-
de Haas spectra of p-type heterostructures are very strongly affected by exchange
interactions between holes in various Landau levels. This is in contrast with n-type
systems where these interactions are only important in the high-magnetic field regime.
As a consequence, the effective hole masses that are extracted from the temperature
dependence of SdH oscillations are to be treated with extreme care and can often be
regarded as meaningless.

Quantum wells with a beryllium delta-doping in the middle of the well are
extremely suited to study exchange and correlation effects or, equivalently, band gap
renormalization (BGR). This is due to the high hole densities that can be achieved in this
way. In chapter 7 we compare experimentally determined PLE transition energies with
the results of self-consistent field calculations, in which the BGR was calculated along
the lines of various models available in the literature. We conclude that the model which
was recently developed by Bobbert et al. is the only model that consistently describes the
experiments.
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Samenvatting

Met moderne technieken is het mogelijk om halfgeleidermaterialen atoomlaag
voor atoomlaag te ‘groeien’, waarbij de samenstelling per atoomlaag gevarieerd kan
worden. Door gebruik te maken van het feit dat vrije ladingdragers, elektronen of gaten,
zich liever in het ene materiaal dan in het andere bevinden, is het mogelijk deze
ladingdragers op te sluiten in een extreem dunne laag halfgeleidermateriaal. Door
bijvoorbeeld een dunne (+10 nm) laag galliumarsenide (GaAs) tussen twee dikke
aluminium-galliumarsenide (Al,Ga, ,As) lagen te groeien, ontstaat een structuur waarin
vrije lading opgesloten wordt in de GaAs laag. Omdat deze lading nog maar in twee
richtingen vrij kan bewegen worden dergelijke structuren (quasi) twee-dimensionaal
(2D) genoemd.

Het is algemeen bekend dat elektronen de stroom voerende deeltjes zijn in
geleidende materialen. Hoe dit te rijmen is met de ‘gaten’ in bepaalde halfgeleiders zal
aan de hand van onderstaande vergelijking geillustreerd worden. Stel een halfgeleider
voor als twee boven elkaar liggende, bijna oneindig grote, damborden, waarbij op elk
vakje maximaal één steen (elektron) mag liggen. Het bovenste bord noemen we de
conductie- of elektronenband, de onderste de valentie- of gatenband. In een volkomen
zuivere, ofwel intrinsieke halfgeleider is elk vakje op het onderste bord bezet met een
steen, en is het hele bovenste bord leeg. Wanneer we nu stroom willen sturen door deze
halfgeleider (stenen willen verplaatsen), hebben we een probleem: in de conductieband
zijn geen elektronen (stenen) om te verplaatsen, en in de valentieband kunnen we geen
elektron verplaatsen omdat elk vakje al bezet is. Het systeem is dus isolerend. Wanneer
we echter één, of een aantal elektronen in de conductieband brengen, is er wel geleiding
mogelijk. Een dergelijke halfgeleider is van het n-type. Ook wanneer elektronen
verwijderd worden uit de valentieband is geleiding mogelijk in de zo ontstane p-type
halfgeleider. De wiskundige beschrijving van geleiding in een n-type halfgeleider is
relatief simpel omdat alleen het gedrag van de paar extra elektronen in de conductieband
beschreven hoeft te worden. Het bijhouden van het gedrag van alle elektronen bij
geleiding in de valentieband is echter een exercitie van gigantische omvang. Het
dambord is immers vrijwel oneindig groot en bijna alle vakjes zijn bezet. Veel efficiénter
is het om niet alle aanwezige maar de paar gfwezige elektronen te beschrijven. Door zo’n
afwezig elektron een gat te noemen en fe doen alsof het een gewoon deeltje is, ontstaat
een situatie die wiskundig precies gelijk is aan de situatie in een n-type halfgeleider: een
paar deeltjes op een voor de rest leeg dambord. Wanneer, onder invloed van een
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elektrisch veld, een elektron in de valentieband naar links beweegt, beweegt het gat naar
rechts. Het quasi-deeltje ‘gat’ heeft dus een lading die tegengesteld is aan die van het
elektron, namelijk positief.

De oorsprong van de extra elektronen of gaten in n- of p-type halfgeleiders
verdient nog enige uitleg. Bepaalde atomen hebben, waneer ze in het kristalrooster van
de halfgeleider zijn ingebouwd, een elektron ‘te veel’, in het geval van een donor, of een
elektron ‘te weinig’, in het geval van een acceptor. De in een halfgeleider aanwezige
donoren en acceptoren worden samen de dotering genoemd. Het extra elektron van een
donor, meestal Si in GaAs komt terecht in de geleidingsband, aangezien de valentieband
al helemaal vol zit. Op deze wijze ontstaat een n-type materiaal. Door opname van een
elektron uit de valentieband door een acceptoratoom, meestal beryllium (Be) in GaAs,
wordt een gat gevormd in de valentieband en ontstaat een p-type materiaal. Een andere
manier om elektronen en gaten te vormen in een intrinsieke halfgeleider is het
zogenaamde fotoexcitatie of -absorptie proces, waarbij een halfgeleider met licht van een
bepaalde golflengte bestraald wordt. Als de energie van het inkomende licht groter is dan
de afstand tussen valentie- en conductieband, kan een lichtdeeltje geabsorbeerd worden
door een elektron van de valentieband naar de geleidingsband te verplaatsen (exciteren).
Hierbij worden dus gelijktijdig een vrij elektron en een vrij gat gecregerd. Als dit
elektron terugvalt naar de valentieband, het recombinatie- of emissieproces, komt weer
licht vrij, met een energie die precies overeenkomt met de afstand tussen de valentie- en
conductieband.

Als de zojuist geintroduceerde gaten zich in een twee-dimensionale structuur net
zo simpel zouden gedragen als biljartballen op een biljarttafel, in feite ook een 2D
systeem, was dit proefschrift niet geschreven. Biljartballen, en elektronen, hebben de
eigenschap dat als hun snelheid v, of eigenlijk hun impuls p=mv, verdubbeld wordt, hun
kinetische energie E vier keer zo groot wordt, overeenkomstig de bekende formule
E=Yamv* of E=Yp’/m. Voor gaten is het verband tussen energie en impuls, de
zogenaamde dispersierelatie, niet zuiver kwadratisch. Deze afwijking van een
parabolische dispersierelatie wordt in de regel geinterpreteerd in termen van een gaten-
massa die afthankelijk is van de impuls! De berekening van deze gaten-dispersierelaties
is tamelijk gecompliceerd, en het relateren van deze dispersierelaties aan experimentele
resultaten is verre van triviaal. Dit laatste was een van de hoofddoelen van dit
promotieonderzoek. v

In het bovenstaande is alleen gesproken over afzonderlijke deeltjes, die geen
wisselwerking met elkaar hebben. Deze een-deeltjes benadering is in veel gevallen niet
correct omdat geladen deeltjes elkaar in de regel wel degelijk voelen. De eenvoudigste
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uitbreiding van dit model is de interactie tussen een elektron en een gat, een twee-deeltjes
interactie. Een vrij elektron en een vrij gat trekken elkaar aan, en kunnen zodoende een
exciton vormen. Dit is een waterstof-achtige verbinding, waarbij de plaats van de
positieve waterstofkern is ingenomen door het eveneens positieve gat, waar, klassiek
gezien, het negatieve elektron omheen cirkelt.

Wanneer een exciton in een omgeving geplaatst wordt waarin zich zeer veel vrije
gaten (of elektronen) bevinden, zal het met toenemende gaten- of elektronendichtheid
ontbinden. Voor een exciton in een omgeving met veel vrije gaten, dus in een p-type
halfgeleider, is dit als volgt te begrijpen. Een exciton kan bestaan, zoals gezegd, doordat
een elektron aangetrokken wordt door het elektrisch veld van een gat. Andere gaten
voelen dit veld echter ook, maar dan als afstotend, want gelijke ladingen stoten elkaar
af. Hierdoor zullen de vrije gaten zich herrangschikken, en wel zodanig dat het veld van
het gat dat het exciton vormt zo goed mogelijk afgeschermd wordt. Het elektron voelt
nu slechts het afgeschermde veld, en wordt dus minder sterk gebonden. Dit ontbindings-
of afschermingsproces wordt aangeduid als exciton-screening of -bleaching, en is een
typisch voorbeeld van een veel-deeltjeseffect. In dit proefschrift wordt exciton-screenin g
onder invloed van vrije gaten uitvoerig bestudeerd.

Afgezien van de boven besproken exciton-screening blijken ook andere veel-
deeltjes effecten van belang te zijn in gedoteerde halfgeleiders. Twee effecten zijn in het
bijzonder bestudeerd in dit promotieonderzoek, namelijk exchange en correlatie.
Correlatie is zeer sterk gerelateerd aan screening, en wordt veroorzaakt doordat deeltjes
van gelijke lading elkaar afstoten. Door deze afstoting zullen de onderlinge afstanden
tussen de deeltjes zo groot mogelijk worden en ontstaat in het ideale geval een perfect
geordend systeem. Dit geordende, of gecorreleerde, systeem heeft een lagere energie dan
een willekeurig verdeeld systeem. Deze energieverlaging kan, zij het indirect, gemeten
worden. Het effect van exchange is vergelijkbaar met dat van correlatie, maar de
drijvende kracht achter exchange, het zogenaamde Pauli-verbod, is van puur
quantummechanische oorsprong en zal hier niet verder besproken worden.
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Stellingen

behorende bij het proefschrift

Many-body effects in the valence bands of two-dimensional

1y

2)

3)

4)

5)

heterostructures based on III/V semiconductors

Het lichte gaten absorptiespectrum van p-gedoteerde GaAs/AlGaAs quantum
putten vertoont geen logaritmische van Hove singulariteit, zoals geclaimd door
Winkler, maar een tweede-orde van Hove singulariteit.

- R. Winkler, Phys. Rev. B 51, 14395 (1995)

- dit proefschrift, hoofdstuk 4

Verschillen in de ruimtelijke uitgebreidheid van de envelopefuncties van
verschillende subbanden in twee-dimensionale heterostructuren zijn essentieel
voor een goed begrip van exciton screening.

- dit proefschrift, hoofdstuk 5

Temperatuur-afhankelijke Shubnikov-de Haas metingen zijn ongeschikt voor het
bepalen van de effectieve massa van gaten.
- dit proefschrift, hoofdstuk 6

De door Enderlein et al. geformuleerde dichtheidsfunctionaaltheorie voor een
wisselwerkend gatengas is inconsistent daar de som van de hierin gedefinieerde
locale zware en lichte gaten dichtheden niet gelijk is aan de totale locale
dichtheid.

- R. Enderlein, G. M. Sipahi, L. M. R. Scolfaro, and J. R. Leite, Phys. Rev. Lett.
79,3712 (1997)

Electron transport door zeer smalle halfgeleiderkanalen vertoont sterke
overeenkomsten met gasdynamica.
- L. W. Molenkamp and M. J. M. de Jong, Phys. Rev. B 49, 5038 (1994)



6) Halfgeleiderfysici tellen beroepsmatig net als kleine kinderen: één, twee, veel.
- eigen observatie gedurende vier jaar promotie

7 Het bezuinigen op door de overheid gefinancieerd fundamenteel wetenschappelijk
onderzoek is in strijd met de toenemende mate waarin industri€le patenten leunen
op dit onderzoek.

- NRC Handelsblad 31 mei 1997, bijlage W&O, pag. 2

8) Uit fair-trade oogpunt (een eerlijke prijs voor producten uit de derde wereld) is
het gebruik van cocaine beter te rechtvaardigen dan de consumptie van koffie

zonder Max Havelaar keurmerk.

9) De praktijk dat bedrijven en burgers financieel gecompenseerd worden voor
stijgende milieu-belastingen, reduceert het nut van deze belastingen.

10)  Veel ‘Bekende Nederlanders’ hebben met gaten gemeen dat ze omhoog vallen.

Eindhoven, 4 maart 1998 Martijn Kemerink
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