

Extensions of SystemC^FL for mixed-signal systems and
formal verification
Citation for published version (APA):
Man, K. L. (2004). Extensions of SystemC^FL for mixed-signal systems and formal verification. In Proceedings
5th PROGRESS Symposium on Embedded Systems (Nieuwegein, The Netherlands, October 20, 2004) (pp.
103-107). STW Technology Foundation.

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/91da22e0-e952-4d3d-9f8f-6aa469b07aff

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

Extensions of
���������
	 � ��

for Mixed-Signal Systems and
Formal Verification

K.L. Man
Formal Methods Group, Department of Mathematics and Computer Science

Eindhoven University of Technology, P.O.Box 513, 5600 MB Eindhoven, The Netherlands
Phone: +31 (0)40 2472993, Fax: +31 (0)40 2475361

E-mail: kman@win.tue.nl

Abstract—The formal language ����������������� is the formal-
ization of SystemC. The language semantics of ������������� ���
was formally defined in a standard structured opera-
tional semantics (SOS) style. In this paper, we first pro-
vide an overview of the current status of the formal lan-
guage ��� �������
� ��� and show some practical applications of
������������� ��� . Then, we give an outline for the latest devel-
opments of �����������
� ��� . These developments include exten-
sions of �����!�����
� ��� for modeling mixed-signal systems and
formal verification.

Keywords— SystemC, ��� �������
� ��� , Hardware/software,
Process Algebra, Structured Operational Semantics (SOS),
System Level Design Modeling, Mixed-signal Systems, For-
mal Verification

I. INTRODUCTION

SystemC [1] is a modeling and simulation language
(without formal semantics defined) based on C++ for hard-
ware and system level design modeling. Recently, Sys-
temC has received an extreme increase in industrial accep-
tance for system specification and simulation.

The goal of developing a formal semantics is to provide
a complete and unambiguous specification of the language.
It also contributes significantly to the sharing, portability
and integration of various applications in simulation, syn-
thesis and formal verification.

Due to the above-mentioned motivations, we developed
the formal language "$#&%('*),+.-0/21 [2] (a portable subset) of
SystemC. Since processes are the basic units of execution
within SystemC that are used to simulate the behavior of a
device or a system, Process Algebra [8] was chosen as the
mathematical framework for "3#4%('*),+.-5/21 . Process alge-
bra was used, because it provides an elegant notation for
transition, and allows for axiomatic reasoning. The main
goal of "$#&%,'�)6+.-7/!1 is to provide the formal reasoning of
SystemC designs and the formal analysis about the behav-
ior of SystemC processes.

Based on the informal semantics presented in [1], the
language semantics of "3#4%('*),+.- /21 was formally defined
in a standard structured operational semantics (SOS) style

[9]. Furthermore, a strong state based bisimulation on
"3#4%('*),+.- /21 processes was defined in [2] and shown to
be a congruence. Moreover, a set of useful axioms was
also introduced in [2]. Recently in [6], we extended the
formal language "$#&%,'�)6+.-0/21 to deal with concurrency
and interaction. The newly developed communication se-
mantics of "3#4%('*),+.- /21 was also formally defined in SOS
style. The proposed semantics can incorporate both point-
to-point communication and multi-party communication.

A. Related Works

The simulation semantics (including watching state-
ment, signal assignment, and wait statement) of SystemC
in the form of distributed Abstract State Machine (ASM)
specifications and the Denotational Semantics for a syn-
chronous subset of SystemC were studied by [11] and [12]
respectively.

It is general believed that the SOS style semantics is
more intuitive [10], and the methods of ASM specifi-
cations and denotational semantics appear to be difficult
to apply to describe the dynamic behavior of processes.
Therefore, the language semantics of "$#&%,'�)6+.- /21 was
formally defined in a standard structured operational se-
mantics (SOS) style.

It should be noted that the fundamental mechanisms
used to model processes in "$#4%('�)6+.-5/21 were inspired by
similar constructs in the formal specification Chi language
[7] for hybrid systems and the Algebra of Communicating
Processes (ACP) [8].

B. Organization

The remainder of this paper is organized as fol-
lows. The next section introduces the formal language of
"3#4%('*),+.- /21 . Section III and IV present some practical
applications of "3#4%('*),+.-0/21 . Various possible extensions
for "$#&%('*),+.- /!1 are shown in Section V. Section VI con-
tains our conclusions.

103

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

II. "$#&%,'�)6+.- /21 LANGUAGE

In this section, we introduce the formal language
"$#&%,'�)6+.- /21 . For the syntax and the formal semantics of
"$#&%,'�)6+.- /21 , we also refer to [2] and [6].

A. "$#4%('�)6+.- /21 Data Types

In order to define the semantics of "$#&%,'�)6+.- /21 pro-
cesses, we need to make some assumptions about the data
types. Let ����� denote the set of all variables ���	��
����
������ ,
and ��������� denote the set all possible values ��� �
�����
�� � �
that contains at least � (booleans) and � (reals). A val-
uation is a partial function from variables to values (e.g.
����� !���). The set of all valuations is denoted by " . The
set #%$ of all channels and the set & of all sensitivity lists
with clocks may be used in "$#&%,'�)6+.- /21 processes that are
assumed. Notice that the above proposed data types are the
fundamental ones. Several extensions of data types (e.g.
“sc bit” and “sc logic”) were already introduced in [3].

B. Syntax of the "$#&%,'�)6+.- /21 Language

A process term ' in "$#4%('�)6+.- /21 is built from atomic
process terms (*) . "$#&%,'�)6+.- /21 consists of various oper-
ators that operate on process terms. The formal language
"$#&%,'�)6+.- /21 is defined according to the following gram-
mar:

+-,/.0.21 3/4-576�8�9:4<;=.21?>@4BAC>EDF4HG
I .�.J1 +-,K4L,/MONQPR,K4SN-T@,K4L,VUXWY,Z4L,R[\,Z4I^]_I 4 IQ`bacI 4_d I 4 I 4 4 I 4 I 4 4 e I 4IOfgI 4-h�iCj IQk 4<lEm�j IQk
The operators are listed in descending order of their bind-
ing strength as follows : n�op
�qr
�sV
�t_
�uSvS
wnyx{z{
�|p
�} }J
r} } ~

��=vS
�n��	
��v . The operators inside the braces have equal
binding strength. In addition, operators of equal binding
strength associate to the left, and parentheses may be used
to group expressions. Below is an introduction of the for-
mal language "$#&%,'�)6+.-0/21 .

A constant called deadlock � is introduced, which rep-
resents no behavior. The �c����� process term performs the
internal action � . The assignment process term �/�0�) ,
which assigns the value of expression) to � (modeling
a SystemC “assignment” statement). The delay process
term �)�� , which is able to delay the value of numerical ex-
pression)�� . The unbounded delay process term � (mod-
eling a SystemC “wait” statement) may delay for arbitrary
long duration of time or perform the internal action � .

Complex process terms are constructed using several
operators. The conditional composition operator ��xR�-z��
operates as a SystemC “then if else” statement, where �
denotes a boolean expression and ��
����@' . The watch-
ing operator �BoR� is used to model a SystemC “watching”

statement. The timeout process term �Vs���� (modeling
a SystemC “time out” construct) behaves as � if � per-
forms a time transition before a duration of time �H�@�
������� . Otherwise, it behaves as � . The sequential com-
position �XqC� models the process term that behaves as � ,
and upon termination of � , continues to behave as process
term � . The alternative composition �b|�� models a non-
deterministic choice between process terms � and � . The
watchdog process term � t � � behaves as � during a dura-
tion of time less than � . At time � , � takes over the ex-
ecution from � in � t � � . If � performs an internal cancel¡ action, then the delay is canceled, and the subsequent
behavior is that of � after ¡ is executed. A repetition uE�
(modeling a SystemC “loop” construct) executes � zero or
more times. The parallel composition } } , the left-parallel
composition } } ~ and the communication composition � are
used to express parallelism. The encapsulation of actions
is allowed using ��¢£�0� � , where ¤ represents the set of all
actions to be blocked in � . The abstraction ��¥S�0� � behaves
as the process term � , except that all actions names in ¦ are
renamed to the internal action � . Notice that we always
assume that the execution of action transitions has priority
over time transitions (i.e. the maximal progress operator is
not defined).

C. Semantics of the "$#&%('*),+.- /21 Language

Definition 1: A "3#4%('*),+.- /21 process is a quintuple§ 'Q
"*
"*
,"Y
�#%$�¨ 1. We use the convention
§ ��
�©	ª«
�©
�%y
!+�¨

to write a "3#4%('*),+.- /21 process, where � is a process term;
©
�© ª are valuations; % is a set of sensitivity lists with
clocks; + is a channel.

Definition 2: The set of all actions ¬� is defined as fol-
lows: ¬*C�®n�¯�¯����%
��°�c
2%r� +��c
�±�� +��c
³²�´ +g� +��c
 ¡
���v , where
¯�¯ ����
E��� is the assignment action (i.e. the value of � is as-
signed to �), %r� +�� is the parameterized send action, ±�� +��
is the parameterized receive action, ²�´ +g� +�� is the param-
eterized communication action between %�� +�� and ±�� +�� , ¡
is the internal cancel action and � is the internal action.

Definition 3: A formal semantics for "$#4%('�)6+.- /21 pro-
cesses is given in terms of a Labelled Transition Sys-
tem (LTS). We define the following transition relations on
"3#4%('*),+.- /21 processes:µ an action transition

§ ��
³©	ª�
³©
2%y
 +�¨H¶ § ��ª·
³©
³© ª ª�
2%y
*+�¨ is
that the process

§ ��
¸© ª
¸©
!%S
�+�¨ executes the action ¯¹�º¬�
starting with the current valuation © (at the moment of the
transition taking place) and by this execution � evolves into
� ª , where © ª represents the previous accompanying valua-
tion of the process, and ©	ª ª represents the accompanying
»
The definition of ¼°½�¾À¿·Á¸Â�ÃYÄ³Å process used here is an enriched di-

alect of the definition of ¼°½�¾À¿ÆÁ³Â�Ã%Ä³Å process presented in [2]. The
component Ç�È is added into the tuple.

104

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

valuation of the process after the action ¯ is executed,µ a termination transition
§ �%
 ©	ª·
 ©
 %S
 +�¨ ¶ § �
 ©
 © ª ª·
 %S
 +�¨

is that the process executes the action ¯ followed by termi-
nation, where

�
is used to indicate a successful termina-

tion, and
�

is not a process term,
µ a time transition (so-called delay)

§ ��
�© ª
�©
 %S
 +�¨ ��§ � ª
�©
�© ª ª
 %y
,+�¨ is that the process
§ ��
�© ª
�©
 %y
,+�¨ may

idle for a duration of time � and then behaves like§ � ª
¸©
¸© ª ª
!%S
�+�¨ .
D. Deduction Rules

The above transition relations are defined through de-
duction rules (SOS style). These rules (of the form�����	��
�����
��������� ����
������) have two parts: on the top of the bar we put
premises of the rule, and below it the conclusions. If the
premises hold, then we infer that the conclusions hold as
well. Giving the deduction rules for all atomic process
terms and other operators of "3#4%('*),+.- /21 is far beyond the
scope of this paper, we refer those rules to [2] and [6]

III. MODELING WITH "$#4%('�)6+.- /!1
The formal language "$#&%('*),+.- /21 can be reasonably ef-

ficiently used to model software, hardware and concur-
rency [3]. In this section, we apply "3#4%('*),+.- /!1 to model
two nontrivial case studies. All two case studies are taken
from [1], rather than devised by us.

Synchronous D Flip Flop

D flip flops are one of the most basic building blocks
of RTL designs. Below is a SystemC implementation that
implements a synchronous D flip flop.

// dff.h
include ’’systemc.h’’
SC_MODULE(dff) {
sc_in<bool> din;
sc_in<bool> clock;
sc_out<int> dout;

void doit() {
dout = din

};

SC_CTOR(dff) {
SC_METHOD(doit);
sensitive_pos << clock;

}
};

A formal "$#&%,'�)6+.-0/21 specification of the above syn-
chronous D flip flop is given as follows:

§ #���� � ��� ����! �·© ª
À©
¸����o:��� ���#" �0�$�
� �c
 © ª
À©
¸�w
&% ¨ , for some
© ª·
¸©
!%y
�+ .

#���� � ��� ����! is a function that returns '�(&)+* if a positive edge
occurs on port clock. The formal "$#4%('�)6+.- /!1 specification
of the above synchronous D flip flop has a clock input
(,��-��,�), a data input (�
�), and a data output (� ���#"). When
a positive edge occurs on the clock input (which means
the function #���� � ��� ����! returns true), the input port data
(�
�) is assigned to the output port � ����" . Notice that
,��-��,��
��
�
�� �.�#" �0/2143��·© ª �c
./2143��·©�� , and only ,��-��,��X�?� .
Remote Procedure Call (RPC) Protocol

With RPC, a process in a module can call a func-
tion in another module, which is called the slave pro-
cess. This is very similar to RPC semantics in Unix.
The two processes must be connected through specialized
ports to a specialized communication link. Below shows a
"3#4%('*),+.- /21 implementation of RPC communication.

SC_MODULE(producer) {
sc_outmaster<int> out1;
sc_in<bool> start;

void generate_data () {
for (int i = 0; i < 10; i++) {

out1 = i;
}

}

SC_CTOR(producer) {
SC_METHOD(generate_data);
sensitive << start;

}
};

SC_MODULE(consumer) {
sc_inslave<int> in1;
int sum;

void accumulate() {
sum += in1;
cout <<’’Sum = ’’<< sum << endl;

}

SC_CTOR(consumer) {
SC_SLAVE(accumulate, in1);
sum = 0;
}

};

105

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

SC_MODULE(top) {
producer *A1;
consumer *B1;

sc_link_mp<int> link;

SC_CTOR(top) {
A1 = new producer(’’A1’’);
A1.out1(link1);
B1 = new consumer(’’B1’’);
B1.in1(link1);

}
};

A formal "$#&%,'�)6+.-7/!1 specification of the above RPC
communication is given as follows:

§ �·��������� �	��
� �Æ��������� ����
�� � ��� ����
�� �³�#�� � ���·© ª
¸©
�nw��� �����v��
o ���������+,c��r� } } ,&�����c� %¹���y�³�c
�© ª
	©
\�w
 %X¨ for some
© ª·
³©
�%y
*+?
³� ¶
2%�� �·� ¶ �c
�±����·� ¶ �c
³²����·� ¶ � , where the process
���������+,c������! #"%$ o �����&��'{�0�:�)(��\�0�®�+*," � and the pro-
cess ,&�����c� %¹���-� ��� % �0����� %.*@� �+' respectively. Notice
that n�/<� �°
!%�0 + � ��vp��© , and ��� ����� �R� .
We model the formal "$#&%('*),+.-0/21 specification of the
above RPC communication slightly different from the Sys-
temC implementation, because we would like to show how
to model communication between processes through chan-
nel (rather than multi-point link) using "$#&%,'�)6+.- /21 . In
the above formal "3#4%('*),+.- /21 specification, the process
���������+,c�� (sensitive to ��� �����) produces a set of numbers
that each number invokes the process ,&�����c� %¹��� , which
accumulates the numbers. These two processes execute
concurrently (modeled by the } } operator) and communi-
cate over channel + . We write %1�=�·� ¶ �c
Æ±����·� ¶ � and ²��p�·� ¶ �for the action of sending datum � ¶ through channel + , the
action of receiving datum � ¶ through channel + , and the
action of communicating datum � ¶ through channel + .
Intuitively, the process ���������+,���� sends the value of ´10 '�2
through channel + , and the process ,&� ���c� %¹��� receives the
value of /�3!2 through channel + . The action ²��p�·� ¶ � is the
action that is left when %1�=�·� ¶ � and ±��=�·� ¶ � are performed
synchronously (i.e. the process ���������+,c�� and the process
,&�����c� %¹��� communicate over channel + and ´40 '�2C�5/�362
necessarily). The encapsulation operator (�) and the ab-
straction operator (�) are needed to enforce the process
���������+,c�� and the process ,#� ���c� %¹��� to communicate, and
to make the communication action ²��p�·� ¶ � internal.

IV. VERIFICATION OF "$#4%('�)6+.- /21 DESIGNS

In this section, we briefly describe how "$#&%,'�)6+.- /!1 de-
sign properties (e.g. safety property) can be verified using
various formal methods.

A. Analyzing "$#4%('�)6+.- /21 Designs Using Timed Au-
tomata

A formal translation was defined in [4] from
"3#4%('*),+.- /21 to a variant (with very general settings)
of timed automata [13]. The practical benefit of this
translation is to enable verification of properties of
"3#4%('*),+.- /21 designs using existing verification tools for
timed automata, such as Uppaal [17].

However, specifications of timed automata are not al-
ways trivial and intuitive for users not having a computer
science background. In addition, variants of timed au-
tomata are used for different verification tools for timed
automata. Users are required to adapt manually the set-
tings of the variant of timed automata proposed in [4] for
various verification tools.

B. Formal Verification of "$#&%,'�)6+.- /21 Designs Using the
SPIN Model Checker

In [5], an approach was introduced to use the SPIN
model checker ([14] and [15]) as a verification engine for
"3#4%('*),+.- /21 designs, by translating "$#4%('�)6+.-5/21 designs
to PROMELA [16] that is the input language of SPIN.

Among various formal verification tools, the SPIN
model checker was chosen, because it is one of the most
successful software tools that can be used for the formal
verification of distributed software systems.

Furthermore, the input language of the SPIN model
checker is PROMELA that is a popular language for build-
ing verification models. It is widely used in industrial and
academic fields. Moreover, PROMELA is similar to the
language C. This makes PROMELA easy to understand
by verification engineers, researchers and even students.

V. EXTENSIONS FOR "$#&%,'�)6+.- /!1
This section describes our on-going research works to

develop mixed-signal system extension and to get a formal
verification framework using existing verification tools.

A. Mixed-Signal Systems

A number of research works (e.g. [20] and [21]) has al-
ready been done to develop SystemC extensions for mod-
eling and simulating mixed-signal systems. To our best
understanding, there is still no formal semantics defined
for those extensions. We are now defining the formal se-
mantics (also in SOS style) in "$#&%,'�)6+.-5/!1 for modeling

106

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

mixed-signal systems. This semantics intends to support
the development of system-level analog and mixed-signal
specifications, and will be a conservative extension to the
existing "$#&%,'�)6+.-0/21 .

B. Formal Verification of "3#4%('*),+.-0/!1 Designs Using the
SMV/NuSMV Model Checker

Nowadays, formal verification of hardware plays an
very important role in electronic industry. The formal ver-
ification approach proposed in subsection IV-B was not
specifically used to verify hardware designs, because SPIN
is a verification tool for software systems.

The SMV[18] and NuSMV[19] are well-known model
checkers. They can be reliably used for the verification
of industrial designs. Various successful applications of
SMV and NuSMV to verify hardware designs can be eas-
ily found in the literature. We are currently defining the
formal translation from "$#&%,'�)6+.- /21 to the SMV language
[18] that is the input language of SMV and NuSMV model
checkers. This approach enables verification of properties
of "$#&%('*),+.- /21 designs using SMV and NuSMV model
checkers.

VI. CONCLUSIONS

We gave the main aspects of the current status of the
formal language "$#4%('�)6+.-0/21 , and showed some practical
applications of "$#&%,'�)6+.- /!1 . We also presented some pos-
sible extensions of "$#4%('�)6+.- /21 . These extensions can be
used for modeling mixed-signal systems and formal veri-
fication of hardware designs written in "$#&%,'�)6+.- /!1 .

ACKNOWLEDGMENTS

The author would like to thank D.A. van Beek, P.J.L.
Cuijpers, M. Mousavi, M.A. Reniers, and R.R.H. Schif-
felers for many stimulating and helpful discussions. The
author is grateful to J.C.M. Baeten for his support and en-
couragement.

REFERENCES

[1] “SystemC User’s Guide and SystemC Language Reference Manual
(version 2.0) ”.

[2] K.L. Man. “ ¼°½�¾�¿·Á³Â�Ã Ä³Å : Formalization of SystemC,” in IEEE
Proceedings of the 12th Mediterranean Electrotechnical Conference
- MELECON 2004, Dubrovnik, Croatia, Vol. 1, pp. 201-204, May,
2004.

[3] K.L. Man. “Modeling with the Formal Language of SystemC :
Case Studies,” in Proceedings of the 11th International Conference
Mixed Design of Integrated Circuits and Systems (IEEE) - MIXDES
2004, Szczecin, Poland, pp. 407-411, June, 2004.

[4] K.L. Man. “Analyzing ¼�½�¾À¿ÆÁ³Â�ÃYÄ³Å Designs Using Timed Au-
tomata,” to appear in INSPEC/IEE Proceedings of the 9th Baltic
Electronics Conference - BEC 2004, Tallinn, Estonia, October,
2004.

[5] K.L. Man. “ Formal Verification of ¼°½�¾À¿·Á¸Â�Ã Ä³Å Designs Using the
SPIN Model Checker,” submitted paper in ASP-DAC, 2005.

[6] K.L. Man. “Formal Communication Semantics of ¼°½�¾À¿·Á¸Â�ÃYÄ³Å ,”
submitted paper in DATE, 2005.

[7] R.R.H. Schiffelers, D.A. van Beek, K.L. Man, M.A. Reniers and
J. E. Rooda. “Formal Semantics of Hybrid Chi,” in Lecture Notes in
Computer Science 2791, pp. 151 - 165. Springer-Verlag Heidelberg,
2004.

[8] J.C.M. Baeten, W.P. Weijland. “Process Algebra”. Number 18
in Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1990.

[9] Gordon D. Plotkin. “A Structural Approach to Operational Seman-
tics”. Report DAIMI FN-19, Computer Science Department, Aarhus
University, 1981.

[10] Luca Aceto, Wan Fokkink, Chris Verhoef. “Structural Operational
Semantics,” in Bergstra et al. BPS01, pp. 197-292, 1999.

[11] W. Mueller, J.Ruf, D. Hofmann, J. Gerlach, T. Kropf,
W.Rosenstiehl. “The Simulation Semantics of SystemC,” in Pro-
ceedings of DATE, 2001.

[12] Ashraf Salem. “Formal Semantics of Synchronous SystemC,” in
Proceedings of DATE, 2003.

[13] R. Alur, D.L. Dill. “A Theory of Timed Automata,” in Theoretical
Computer Science. Vol. 126, No. 2, pp. 183-236, 1994.

[14] G. J. Holzmann, “The Model Checker SPIN,” in IEEE Transac-
tions on Software Engineering, Vol. 23, no. 5, pp. 279-295, May,
1987.

[15] G. J. Holzmann, The SPIN Model Checker, Addison-Wesley,
2003.

[16] G. J. Holzmann, Design and Validation of Computer Protocols,
Prentice Hall Software Series, Prentice Hall, 1991.

[17] Kim G. Larsen, Paul Pettersson, Wang Yi. “UPPAAL in a Nut-
shell, ” in Journal of Software Tools for Technology Transfer (STTT).
Vol 1, No. 1-2, pp. 134–152, 1997.

[18] The SMV model checker is available at http://www-
2.cs.cmu.edu/ modelcheck/.

[19] The NuSMV model checker is available at http://nusmv.irst.itc.it/.
[20] Karsten Einwich, Christoph Clauss, Gerhard Noessing, Peter

Schwarz, Herbert Zojer. “SystemC Extensions for Mixed-Signal
System Design,” in Proceedings of FDL, 2001.

[21] Karsten Einwich, Peter Schwarz, Christoph Grimm, Klaus Wald-
schmidt. “Mixed-Signal Extensions for SystemC,” in Proceedings of
FDL, 2002.

107

