

Enabling arbitrary rotation camera-motion using multi-sprites
with minimum coding cost
Citation for published version (APA):
Farin, D. S., & With, de, P. H. N. (2006). Enabling arbitrary rotation camera-motion using multi-sprites with
minimum coding cost. IEEE Transactions on Circuits and Systems for Video Technology, 16(4), 492-506.
https://doi.org/10.1109/TCSVT.2006.872781

DOI:
10.1109/TCSVT.2006.872781

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1109/TCSVT.2006.872781
https://doi.org/10.1109/TCSVT.2006.872781
https://research.tue.nl/en/publications/f08902ee-3868-48a0-a161-f4d7c6b2f8ef

492 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 4, APRIL 2006

Enabling Arbitrary Rotational Camera Motion Using
Multisprites With Minimum Coding Cost

Dirk Farin, Member, IEEE, and Peter H. N. de With, Senior Member, IEEE

Abstract—Object-oriented coding in the MPEG-4 standard
enables the separate processing of foreground objects and the
scene background (sprite). Since the background sprite only has to
be sent once, transmission bandwidth can be saved. We have found
that the counter-intuitive approach of splitting the background
into several independent parts can reduce the overall amount of
data. Furthermore, we show that in the general case, the synthesis
of a single background sprite is even impossible and that the
scene background must be sent as multiple sprites instead. For
this reason, we propose an algorithm that provides an optimal
partitioning of a video sequence into independent background
sprites (a multisprite), resulting in a significant reduction of the
involved coding cost. Additionally, our sprite-generation algo-
rithm ensures that the sprite resolution is kept high enough to
preserve all details of the input sequence, which is a problem
especially during camera zoom-in operations. Even though our
sprite generation algorithm creates multiple sprites instead of only
a single background sprite, it is fully compatible with the existing
MPEG-4 standard. The algorithm has been evaluated with several
test sequences, including the well-known Table-tennis and Stefan
sequences. The total coding cost for the sprite VOP is reduced by
a factor of about 2.6 or even higher, depending on the sequence.

Index Terms—Image segmentation, motion analysis, motion
compensation, sprite coding, video coding, video signal processing.

I. INTRODUCTION

ONE specific video-encoding tool in the MPEG-4 standard
is the coding of a scene background as a static panoramic

image (sprite). For a moving camera, this background image is
larger than the actual video format since all views of the back-
ground are combined into a single image. The decoder can re-
construct the current background view from the sprite based on
a small set of transmitted camera parameters. Hence, the sprite
itself needs to be transmitted only once, which can result in a
substantial improvement of coding efficiency [1].

Additional to the increased coding efficiency that can be ob-
tained with sprite coding, the transmission of the background
as a panoramic background image enables the adaptation of
the video to properties of the decoder in several ways. For low
bit-rate applications, it may be interesting to reduce the quality
of the background to enhance the quality of foreground objects
with the saved bit rate. An additional possibility is to adapt the
aspect ratio of the recorded video (e.g., 4:3) to the aspect ratio of
the decoder (e.g., 16:9) by filling the extra space with more data

Manuscript received August 21, 2004; revised January 24, 2006. This paper
was recommended by Associate Editor K. Aizawa.

The authors are with the Technische Universiteit Eindhoven, 5600 MB Eind-
hoven, The Netherlands (e-mail: d.s.farin@tue.nl).

Digital Object Identifier 10.1109/TCSVT.2006.872781

from the background sprite. Finally, since the sprite coding in-
volves an estimation of global camera motion, the decoder can
display the video also with a virtually static camera or let the
user control the motion of this virtual camera.

In this paper, we take a closer look at the coding efficiency of
sprites and relate this to the image formation geometry and the
camera motion. We will identify four problems of previously
proposed sprite generation algorithms and propose a new al-
gorithm to solve these problems. Interestingly enough, it will
be shown that transmitting the background in a single sprite is
generally not the most efficient approach and that the amount
of data can be reduced by splitting the background into several
separate sprites. Moreover, we clarify that when using the pro-
jective motion model of MPEG-4, it is only possible to cover at
most 180 field of view in a single sprite, which makes the use
of independent sprites a necessity. We also address the optimal
placement of the reference frame for defining the sprite coordi-
nate system and we consider a possible loss of resolution during
camera zoom-in sequences.

In [2], coding with multiple sprites was proposed to reduce
the distortions in a sprite. However, the distortions that the au-
thors observed are mainly due to using the affine motion-model
for sprite generation, which is an inappropriate model for ro-
tational camera motion. Hence, the multiple sprites can only
reduce the perceived distortion, but cannot achieve a geomet-
rically correct sprite construction. Moreover, the proposed par-
titioning method is a heuristic, which is not theoretically moti-
vated.

If we examine the derivation of the projective motion model
from the image formation equations of a rotating camera, we ob-
serve that the motion model cannot be applied for large camera
rotation angles. But even for small rotation angles, sprite coding
can be inefficient since the perspective deformation increases
rapidly with the rotation angle. We propose to solve this in-
herent problem of the projective motion model by distributing
the background image data over a set of independent sprites in-
stead of trying to code the entire sequence with a single sprite.
Despite the increased overhead of using multiple sprites, the
total amount of data can be considerably smaller than in the
single-sprite case.

A sprite is typically synthesized in the encoder by first ap-
plying a global-motion estimator [3]–[5] to determine camera-
motion. The input frames are then warped into the reference co-
ordinate system of the sprite to get a seamless mosaic. To our
knowledge, optimal selection of the reference coordinate system
has not been discussed earlier, although this has direct implica-
tions for the generated sprite size and resolution. The usual ap-
proach to date is to use the first frame of the input sequence as

1051-8215/$20.00 © 2006 IEEE

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

FARIN AND DE WITH: ENABLING ARBITRARY ROTATIONAL CAMERA MOTION 493

the reference frame. Alternatively, Massey and Bender [6] pro-
pose to use the middle frame of a sequence, which results in
a more symmetric sprite shape if the camera performs a con-
tinuous panning motion. Instead of using a heuristic reference
frame placement, our algorithm also computes the optimal ref-
erence frame to minimize the synthesized sprite size.

A further problem that has not yet been treated in the literature
is the problem of camera zoom-in operations. If the camera per-
forms a zoom-in, the visible part of the scene becomes smaller,
but the relative resolution increases. When the zoomed image is
aligned to the sprite background, the sprite area that is covered
by the image is smaller. If we do not want to lose the increased
resolution of the input, we also have to increase the resolution
of the sprite. Otherwise, the input image would be scaled down
to the coarser sprite resolution and fine detail would be lost. To
prevent this unfavorable loss of resolution, our sprite generation
algorithm can incorporate a constraint that ensures that the input
resolution is never decreased during the warping process. As a
result, sprite coding will not cause any loss of resolution and,
consequently, the quality of the decoder output will increase.

The remainder of the paper is structured as follows. Section II
gives an introduction to the projective camera model used for
MPEG-4 sprite coding. Limitations of the model are revealed
and the concept of multisprites is introduced in Section III. Sec-
tion IV derives a classification method to detect camera con-
figurations for which no appropriate projective transform onto
a sprite plane exists. In Section V, the three idealized exam-
ples of pure camera zoom-out, zoom-in, and camera rotation are
analyzed. It will be shown theoretically that using multisprites
can in fact reduce the total sprite size. Furthermore, the reso-
lution-preservation constraint is derived from the zoom-in ex-
ample. Section VI presents several definitions of sprite coding
cost, differing in accuracy and computation speed. Moreover, it
is shown how to incorporate practical constraints like a limited
sprite buffer size. The multisprite partitioning algorithm is de-
scribed in Section VII, while experimental results are presented
in Section VIII. The paper closes with Section IX, giving an
overview how the algorithm can be integrated into a video-ob-
ject segmentation framework, and conclusions in Section X.

II. BASICS OF SPRITE CONSTRUCTION

Let us first examine the physical image formation process for
a rotation only camera. The restriction to a rotating and zooming
camera is necessary since with translatorial camera motion, ob-
jects at different depths would move with different speeds be-
cause of the parallax effect. This would make it impossible to
align the background images into a seamless mosaic.1

Let us define the three-dimensional (3-D) world coordinate
system as right handed and let the camera be located at its
origin (Fig. 1). The camera captures a number of images with
different rotations and focal lengths . In a rotated local
image coordinate system, where the frontal viewing direction

1In fact, it is also possible to generate sprites for arbitrary camera motion
including translation if the background is planar. In this trivial case, the back-
ground plane can be used directly as the sprite image. However, the limitation
of background planarity is so strict that this case is of little practical use.

is along the positive -axis, the corresponding 3-D position
of each image pixel in the focal plane is .
For simplicity of notation, we assume that the origin of image
coordinates is at the principal point, which can usually be
assumed to be at the center of the image. Now let the virtual
sprite plane be placed orthogonal to the axis of the world
coordinate system at a distance . The projection of the image
point can then be determined by

(1)

where is the position of the principal point on the sprite
plane, and the resulting sprite coordinates are given
in homogeneous coordinates [7]. Multiplying the intrinsic and
extrinsic transformation matrices together, we obtain the com-
bined 3 3 matrix , describing the projection of the homo-
geneous image coordinates onto the sprite plane. The transfor-
mations are unknown and consequently, they have to be esti-
mated from the input sequence. Since the relative placement of
the sprite plane to the input frames is still undefined, the trans-
forms cannot be determined directly. Instead, we can only
estimate the inter-image transforms , which
map pixels from image onto corresponding pixels in image
.

Because homogeneous coordinates are used to describe the
transformation, the parameterization using the matrices is
invariant to scaling and one additional constraint has to be in-
troduced to eliminate the extra degree of freedom. Usually, the
normalization is chosen,2 leading to

(2)

Writing the transform with ordinary Euclidean coordinates, we
obtain the well-known projective motion model

(3)

We compute the camera motion between neighboring
frames with a robust parametric motion-estimation technique
[5]. All other for arbitrary , can be determined using
transitive closure. The inverse of is computed using
matrix inversion. To obtain the image-to-sprite transforms ,

2Note that this normalization fails if h = 0. In the above parameterization,
this is the case if the angle between both image-planes is 90 .

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

494 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 4, APRIL 2006

Fig. 1. Rotating camera is located at the origin of the world coordinate system.
The sprite plane is assumed to be orthogonal to the z-axis. Input images are at a
distance to the origin that is equal to the focal length when the image was taken.
A point (x̂; ŷ) on the image is projected onto the sprite position (x =w ; y =w).

we have to select one of the input images as the reference frame
and place the sprite plane at the same position.3

In the literature, sprite generation is usually carried out by
initializing the sprite with the first frame of the video sequence
and then successively warping the following frames to this ref-
erence. Note that this is in fact a special case of the more general
procedure described above, which is obtained when we assume
that the transform of the first frame is an identity matrix and
consequently . However, this predefined selection of
the sprite plane position is generally not the best decision as will
be shown in the subsequent sections.

Moreover, it is often proposed in the literature (see, e.g., [1],
[2], [8]) to use a simplified motion model for sprite generation.
In most cases, the affine motion model, which is a special case
of the projective model with , is applied. Because
the affine model is linear, less complex motion-estimation algo-
rithms can be applied. However, the affine motion model cannot
accurately describe camera pan or tilt, which is actually the most
frequent camera motion in practice. Consequently, it is gener-
ally not possible to use the affine model without introducing
geometric distortions in the sprite.

III. LIMITATIONS OF THE SINGLE SPRITE APPROACH

MPEG-4 sprite coding is based on the previously de-
scribed projective motion model, which in geometric terms
is a plane-to-plane mapping. Thus, the sprite image can be
envisioned as the projection of the 3-D world onto a plane.
This is illustrated in Fig. 2(a), which shows a top-view of a
camera that rotates around its vertical axis. If the camera rotates
away from the frontal view position, the area on the sprite
that is covered by each image projection becomes larger. For
projection angles that exceed 90 , input image pixels cannot be
projected consistently onto the planar sprite anymore (see, e.g.,
the pixel position).

As a consequence, ordinary MPEG-4 sprites have the direct
limitation that only 180 field of view can be represented in a

3Actually, later we will allow the sprite plane to lie at a different focal
length f .

single sprite image. If this 180 limitation is neglected and a
wide camera pan is still forced into a single background sprite
[9], very strong image distortions are inevitable. In practice, the
usable viewing angle is even smaller since the perspective defor-
mation increases rapidly when the camera rotates away from its
frontal view position. Consequently, the required sprite size also
increases quickly during a camera pan with short focal length.
Unfortunately, even though some input images are projected
onto a larger area in the sprite than their original size, this does
not result in an increased resolution at the decoder output, since
the image will be scaled down to its original resolution again
at the decoder. In this sense, the sprite coding is rather ineffi-
cient, since it uses a high resolution for transmitting the sprite
although this extra resolution is never displayed.

An alternative representation for background images would
be to use spherical or cylindrical image mosaics [10] for the
background image, instead of a planar mapping. However,
this approach has several disadvantages compared to using the
projective motion model. First, generation of spherical/cylin-
drical mosaics requires that the internal camera parameters like
focal length and the principal point of the camera are known.
Even though these values can be estimated from the parameters
of the projective motion model, the estimation is difficult,
since the calculation is numerically sensitive. Furthermore, the
estimation of the transformation parameters for cylindrical and
spherical mosaics requires complicated nonlinear optimization
techniques, and the reconstruction at the decoder is com-
putationally expensive because transcendental functions are
required. Finally, the obtained cylindrical/spherical background
is not compliant with the MPEG-4 video coding standard, since
MPEG-4 only supports the projective transformation model.

In the remainder of this paper, we propose a more efficient
coding technique based on partitioning the video sequence into
several intervals and calculating a separate background sprite
for each interval. Although some parts of the background may
be transmitted twice, the overall sprite area to be coded is re-
duced. This counter-intuitive property results from the fact that
the perspective deformations do not accumulate much in the
multisprite case, so that larger parts of the sprite can be trans-
mitted in a lower resolution. Fig. 2(b) depicts the same scene as
in Fig. 2(a), but using a two-part multisprite instead of only one
single sprite. Two advantages of the multisprite approach can be
observed.

• First, the complete scene can be represented in the mul-
tisprite because additional sprite planes can be placed as
required to cover an arbitrarily large field of view.

• Second, the total projected area becomes smaller, since
the sprite plane onto which the input is projected can be
switched to a different sprite plane, if this results in a
smaller projected area.

Our algorithm for multisprite generation finds the optimal
partitioning of a video sequence into multisprites and also de-
termines for each sprite the optimal placement in 3-D space.
Different sprite cost definitions can be selected to adapt the op-
timization criteria to different application requirements. Finally,
the proposed algorithm also allows to integrate additional con-
straints into its optimization process. These include the spec-
ification of a maximum sprite buffer size at the decoder or a

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

FARIN AND DE WITH: ENABLING ARBITRARY ROTATIONAL CAMERA MOTION 495

Fig. 2. (a) Top view of projecting the input frames onto the background sprite plane. The more the camera rotates away from the frontal view (j�j increases), the
larger the projection area on the sprite plane. For j�j � 90 , the projection ray does not intersect the sprite plane. Hence, only 180 field of view can be covered
with one sprite. (b) Using several sprites reduces the geometric deformation and allows to cover larger viewing angles.

resolution-preservation constraint which prevents loss of detail
during camera zoom-in operations.

IV. DETECTING DEGENERATED TRANSFORMS

As we have seen in Fig. 2(a), the projective transform maps
image points using a central projection through the origin onto
the flat sprite plane. As a consequence, only points in the half-
space in front of the camera should be projected onto the sprite
plane, since points on the back-side would be mapped ambigu-
ously onto the same points. However, when applying the pro-
jective transform without special treatment for objects behind
the camera, these objects are also projected through the op-
tical center onto the sprite plane, where they will appear up-side
down. As an example, the point in Fig. 2(a) lies on the right
side behind the camera and would be mapped onto the left side
of the sprite. In the following, we will call a transformation
which maps some image points from behind the camera onto
the sprite plane as degenerated (see Fig. 3). These transforms
must be avoided in the sprite generation process.

Usually, the camera motion between successive
frames is small and the problem of degenerated transforms
will not be apparent. However, the concatenation of the
frame-to-frame motions to determine the frame-to-sprite trans-
form can lead to this degenerated case which maps points from
behind the camera to the other side. Since the sprite construction
process only knows the camera motion in the formulation of the
eight-parameter motion-model from (3), no direct knowledge
about the 3-D layout is available and an appropriate detection
of a degenerated transform has to be performed using only the
parameters of the eight-parameter motion-model.

To derive an appropriate detection rule, let us consider again
the image-formation (1). According to our assumption that the
viewing direction is along the positive -axis, the degenerated
case occurs if the -coordinate of a pixel after multiplication
with the rotation matrix becomes 0. If ,
the point would be projected to infinity, which we also subsume
into the degenerated case. Since the intrinsic camera-parameters
matrix and the shift of the image onto its focal plane by
the matrix does not modify the sign of this value in the

Fig. 3. Top view onto a horizontal pan setup. Images and include pixels
that are at the backside of the camera; their projection onto the sprite plane
must be avoided. The matrix columns (h ; h ; h) correspond to the basis
vectors of the rotated and scaled coordinate system. Since the basis vector
(h ; h ; h) corresponds to the rotated viewing direction, a negative h

indicates a rotation of more than 90 deg away from the frontal view onto the
sprite. A scaled version of the basis vectors can also be found in the inho-
mogeneous formulation as (a ; a ; p) , (a ; a ; p) , (t ; t ; 1) .
However, because of the normalization process which sets h = 1, these basis
vectors may swap their orientation. This is depicted for the input image . For
image , the matrix entry h is >0 and no swapping occurs.

bottom row, the degenerated case for a specific point can
be detected with the condition

(4)

However, since is scaling invariant and since the motion pa-
rameters are normalized to in the formulation of the
eight-parameter model, the sign of all matrix entries can
change because of the normalization, and the above test condi-
tion would be reversed to its opposite. Therefore, the condition
must be modified to be invariant to the normalization.

To derive a suitable condition for the normalized parameters,
we have to identify when the normalization altered the signs.
Consider the case where prior to the normalization
process. In this case, the normalization process changes the sign

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

496 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 4, APRIL 2006

of all matrix entries. Since each column of the rotation matrix
represents the direction of a rotated basis vector, changing the
signs of all matrix entries will swap the directions of all
of those basis vectors. Because we assumed that the coordinate
system is originally right-handed, each swap of a basis vector
will change the orientation of the coordinate system, so that after
the three basis vector swaps, the basis becomes left-handed. To
detect this, we can observe the sign of the determinant of the
matrix of normalized parameters

(5)

If the determinant , the coordinate system is right-handed
(it is not necessarily equal to unity since the length of the basis
vectors is not unity), otherwise, it is left-handed. Note that the
matrix entry corresponds to the -coordinate of the basis-
vector in direction. Since the camera looks along the -axis, a
negative , or equivalently, , corresponds to a rotation
of more than 90 away from the frontal viewing position, so that
the camera is looking into the opposite direction.

Finally, this lets us derive the condition to decide whether a
point is projected onto the sprite in a nondegenerated
way. For this, we start with (4) using normalized parameters,
obtaining the condition . Combining this
with the sign of leads to the final condition

nondegenerated case
degenerated case.

(6)

To decide if an image as a whole would be mapped nondegener-
ated onto the sprite plane, we examine the four corner points of
the image, which all must be transformed in a nondegenerated
way.

V. EXAMPLES FOR SINGLE-SPRITE INEFFICIENCIES

Let us first describe some idealized examples to clarify why
ordinary MPEG-4 sprites are inefficient in the general case, and
how this problem can be alleviated using multisprites. However,
note that the algorithm described in Section VII is not limited
to these special cases, but finds the optimum solution for any
real-world sequence.

A. Example Case: Camera Zoom-Out

As a first example, we consider the case that the camera is
performing a continuous zoom-out operation. Since each image
covers a larger view than the previous one, the projection area on
the sprite plane is constantly increasing. At first, using a single
sprite is advantageous, because most of the image was already
visible in the previous image. However, when the zoom con-
tinues, the situation will eventually change, so that the increase
of total sprite size outweighs the reuse of the already existing
background content and it would be better to start with a new
sprite (also see the real-world example in Fig. 15).

Fig. 4. Setup for the example case of horizontal camera pan.

If we denote the zoom factor between two successive frames
as and the image size as , the sprite size after
frames will be . Considering the alternative, in which a
two-part multisprite is constructed with each sprite comprising
only half of the frames, the total size of the multisprite is

. Consequently, coding the scene as a two-part
multisprite results in a lower total sprite area iff

(7)

Generalizing this result, it is easy to derive that a -part multi-
sprite gives a smaller sprite area than a -part multisprite,
provided that the sequence length satisfies

(8)

B. Example Case: Horizontal Camera Pan

Alternatively, let us now assume a camera setup where the
camera only performs rotation around the vertical axis (camera
pan, Fig. 4). Input images are assumed to have normalized size

and aspect ratio . Furthermore, we as-
sume that the sprite plane is placed at a distance from the camera
which is equal to the focal length . Hence, if the camera is in
the frontal view position, input images projected onto the sprite
plane remain at the same size. If the camera leaves this frontal
view position, the projection area on the sprite increases. In the
following, we observe the sprite size resulting from a camera
pan with angle . Obviously, the sprite size will be minimal
if the pan is performed symmetrically. This means that when
starting from the frontal view position, we rotate the camera

to the left and an equal amount to the right. Since we
assume that the origin of the input image coordinate system is
positioned at the image center, it is sufficient to consider only

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

FARIN AND DE WITH: ENABLING ARBITRARY ROTATIONAL CAMERA MOTION 497

Fig. 5. Sprite area that is covered by projecting images from a rotating camera onto the sprite plane in the setup of Fig. 4. Regular intervals of camera rotation are
depicted with small vertical marks along the area contour. Note that the projection area increases much faster at larger rotation angles.

Fig. 6. Covered sprite area for horizontal camera pan at two different focal lengths. The reference image size is 1. If the camera rotation exceeds a specific angle,
the area to be coded in the multisprite case is lower than for a single sprite.

one corner of the image, because the other corners can be ob-
tained by mirroring the and coordinates.

Using the abbreviations and , our
camera model in this example is

(9)

Hence, if the camera is rotated by an angle , the top right image
corner (,) projects to (see also Fig. 5)

(10)

Consequently, the area that is covered by image content can
be calculated by

(11)

where the integral covers one of the four symmetric “wings”
of the sprite. Fig. 6 depicts the total covered sprite area for
two different camera setups, one using (wide-angle) and
the other for (tele). For both setups, three alternatives
were examined using (11). The first one is the coding with an
ordinary sprite,4 whereas the other two alternatives are using
multisprites with two or three parts. In the multisprite cases, the
total pan angle was divided into equal parts and a separate sprite
was generated for each part. Hence, the total sprite area that is
required for an -part sprite is . Fig. 6 depicts the

4But including the optimal selection of the reference frame.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

498 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 4, APRIL 2006

Fig. 7. Change of local resolution. The input image (left) is warped to the sprite
coordinate system (right). In general, this transformation will change the size of
a pixel.

sprite area , depending on the total pan angle for the dif-
ferent setups and number of sprites used. For very low pan an-
gles, it is clear that the ordinary sprite construction is more effi-
cient, since the multisprite coding has the overhead of multiple
transmission of mainly the same content. However, because of
the fast increasing geometric distortion in the single-sprite case,
the two-part multisprite becomes more efficient for pan angles
over about 25 . Finally, for angles exceeding approx-
imately 45 , using a three-part sprite gets even more efficient.

C. Example Case: Camera Zoom-In

Another sprite generation problem, which is different from
the above two cases, occurs if the camera performs a zoom-in
after the reference frame. Since the resolution of the input frame
is reduced when the image is mapped into the sprite, the re-
sulting output quality at the decoder degrades because fine de-
tails of the input frames are lost. To prevent this undesirable
property, we introduce a constraint to ensure that the sprite res-
olution is never lower than the corresponding input resolution.

Let us first define a magnification factor that indi-
cates for each pixel in the sprite, by which factor its size has been
magnified with respect to the input image . To prevent quality
loss, should always be 1 (project to the same size or
larger). Obviously, this will not be the case during zoom-in se-
quences, but it can also be violated for rotational motion. Hence,
we will now not concentrate on the pure zoom-in case only, but
indicate the solution for the general case.

Because we want to ensure that for all pixels
of the whole video sequence, we have to determine the min-
imum for the whole sequence and increase the sprite
resolution by the reciprocal value. Since the motion model in-
cludes perspective deformation, the scaling factor is not con-
stant over a single input frame (see Fig. 7). The local scaling
factor can be computed using the Jacobian determinant of the
geometric transformation (3), which maps the input image co-
ordinate system to the sprite coordinate system. Consequently

(12)

Fig. 8. Boundary polygon around the sprite area is computed as the combined
outlines of all transformed quadrilaterals. For simplicity of notation, we double
the last point (x ; y) = (x ; y).

where is thedenominatorof themotionmodel
equations.5 For nondegenerated image projections, is
monotonic in and , and its minimum value over the image
areacanbefoundinoneof the imagecorners.Hence, todetermine
the minimum value over a complete
input image , we only have to compute for the four
image corners and select the minimum value.

We will now consider a sprite which is built from input frame
to . Let be the minimum scaling factor

of all frames between and . To preserve the full input resolution
forall frames thatweremergedinto thesprite, thesprite resolution
has to be scaled up by a factor of . The increase of coding
cost induced by the enlarged sprite area can be integrated into the
definition of coding cost as will be shown in Section VI-D.

VI. SPRITE COST DEFINITIONS

Optimization toward minimum sprite coding cost requires a
formal definition of coding cost. Thus, let be the sprite
which is constructed using input frames to and which uses
frame as its reference coordinate system. The following sec-
tions propose several definitions of costs which differ in
accuracy and computational complexity. Finally, we show how
constraints can be introduced into the optimization process by
combining several cost definitions.

A. Bit-Stream Length

The obvious choice for defining the sprite coding cost is the
bit-stream length itself. However, this definition is not practical,
because of the high computational complexity required. The op-
timization algorithm for determining the optimal sprite arrange-
ment (see Section VII) requires the cost for coding sprites of all
possible frame ranges and reference frames. Calculating these
costs is the most computation intensive part of the algorithm.
For this reason, estimates which are easy to compute have to be
pursued.

B. Coded Sprite Area

As an approximation to the actual bit-stream length, we
can use the sprite area that is covered with image content. In
a real implementation, (11) cannot be used since the covered
area is composed of discrete projections. Instead, we describe
the coded sprite area using a polygon , along the sprite
border (see Fig. 8). Whenever an image is added to the sprite,

5For the affine motion model, which is a special case of the projective trans-
formation, p , p are zero and, hence,D = 1. The pixel scale is then simply the
determinant of the affine matrix fa g and independent of x, y.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

FARIN AND DE WITH: ENABLING ARBITRARY ROTATIONAL CAMERA MOTION 499

Fig. 9. Increase of bit-stream length for rescaled image resolutions. Resizing
the image area by a factor m(x; y) increases the bit-stream size by about
m(x; y) , which is a bit less than a linear increase relative to the image
area.

the quadrilateral of the image border is combined with the
boundary polygon around the sprite to represent the new con-
tour. The polygon area can be calculated rapidly using Green’s
theorem by

(13)

Computing the sprite area for sprites over the same frame range,
but with a different reference frame, can be simplified. Obvi-
ously, the relative placements of the input frame projections stay
the same, regardless of the reference coordinate system. Hence,
the contour polygon only has to be computed once, say, for ref-
erence frame . In order to compute the contour polygon for
another reference frame , we only have to apply to every
point of the contour polygon and recompute the polygon area.

The sprite area criterion assumes that the bit-stream length is
proportional to the number of coded macroblocks. This is only
the case if on the average, the block content does not depend on
the sprite construction process. However, as we have seen previ-
ously, different areas of the sprite are synthesized with differing
local resolution. Since the amount of image detail per block de-
creases when the image is magnified in the projection, the rel-
ative coding cost per block also decreases. This is not reflected
with the sprite area cost definition , which only considers
the sprite area, regardless of the detail that is left. Hence, when
using an area-based cost definition, there will be a small bias to-
ward making magnified areas more costly than when using the
theoretically optimal bit-stream length cost definition of the pre-
vious section.

To determine the relationship between the resolution scaling
factor and the bit-stream length, we scaled images from several
sequences to different sizes and compared the bit-stream length
after coding the scaled images as MPEG-4 sprite images. All the
coding parameters were held constant during the experiment.
The results are depicted in Fig. 9. Even though the input images
have very different content, the relationships between scaling
factor and increase of bit-stream length seem to be comparable.

Small peaks in bit-stream size can be observed at 100%, 150%,
and 50%. Since bilinear interpolation was used for the scaling,
which smoothes the image a little bit, the bit rate decreases.
At integer and other regular scaling factors, the pixels are sam-
pled without effective interpolation, which explains the slightly
higher bit rate. It can be seen that, as assumed, the bit-stream
length does not increase linearly with the image size, but only
with an exponent of 1.6/2. Up to now, we assume a simple linear
relationship, but future work might try to compensate for this
effect by integrating a detail-loss factor. However, we do not
expect a significant difference since for the optimal sprite parti-
tionings, we observed that is close to 1 over large parts
of the sprite.

C. Sprite Buffer Size

A further approximation to the real bit-stream length, pro-
viding a quick computation, is to take the area of the bounding
box (which we will denote by) around the sprite. Also
note that the bounding box size is equal to the required sprite
buffer size at the decoder. Hence, optimizing for the bounding
box size is equivalent to minimizing memory requirements for
sprite storage at the decoder. Except for rare extreme cases, the
result when using the bounding box as an optimization crite-
rion differs not much from using the really covered
sprite area . The explanation is that an optimal multi-
sprite arrangement will have as little perspective deformation as
possible. Hence, the covered sprite area will be almost rectan-
gular and obviously, the bounding box is a good approximation
for almost rectangular shapes.

D. Adding a Resolution Preservation Constraint and Limiting
Sprite Buffer Requirements

A cost definition based only on sprite area gives inappropriate
results if the camera zooms into the scene. Since the algorithm
tries to minimize the total sprite area, it will select the frame
at the beginning of the zoom-in as reference. As we have de-
scribed in Section V-C, this would lead to a poor quality for the
decoded images at the end of the zoom sequence. Hence, we
have to constrain the solution such that the local scale
in the sprite never falls below unity. This is achieved by cal-
culating the magnification factor and multiplying the area
size with . This correction factor reflects the potential reso-
lution increase which is carried out in the final sprite synthesis.
Note that increasing the sprite resolution by the factor cor-
responds to shifting the sprite plane in 3-D closer to the origin

.
A further constraint may be a limited sprite buffer size at

the decoder. For example, the MPEG-4 profile Main@L3
(CCIR-601 resolution) defines a maximum sprite buffer size of
6480 macroblocks. Consequently, the encoder has to consider
this maximum size in its sprite construction process. We can
include this constraint into the cost function by setting the
cost to infinity when the sprite size exceeds the buffer size
limitation. Finally, we also set the cost to infinity if the input
image cannot be projected onto the sprite plane because the
transform would be degenerated. This case is detected using
the test condition derived in Section IV.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

500 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 4, APRIL 2006

Adding the described constraints to the area cost definition
results in the following combined cost definition:

if frame range i;k cannot be
projected onto a single sprite
if exceeds the
maximum sprite buffer size

else.

(14)

It is easy to see that for any sensible definition of sprite coding
cost, the cost is monotone for and the end of the frame range.
More specifically, for a frame range with and ,
it holds that , since a sprite over a range
must also contain at least the same information as the sprite
constructed from every subrange .

We use the combined cost definition in the optimization,
since it is fast to compute and it also ensures that the obtained
sprite fits into the decoder sprite buffer.

VII. MULTISPRITE PARTITIONING ALGORITHM

To find the best multisprite configuration, the algorithm has
to determine the optimal range of input frames for each sprite
image in the multisprite, and additionally, for each sprite the
optimal reference frame.

The multisprite partitioning algorithm comprises two main
steps. In the first step, it computes the cost for coding a sprite

for all possible input frame ranges . Moreover, it de-
termines the best reference coordinate system for each of these
frame ranges by selecting that input frame as a reference, for
which the sprite area for this frame range would be smallest. The
second step partitions the complete input sequence into frame
ranges, such that the total sprite coding cost is minimized.

A. Cost Matrix Calculation and Reference Frame Placement

In this preprocessing step, we prepare all the sprite costs re-
quired in the main optimization step. For each pair of frames
, with , we consider the cost for all refer-

ence frame placements with . Since we can choose
the optimal reference frame for each of the sprite ranges inde-
pendently, we select the placement for which the sprite cost is
lowest. The sprite cost for optimal placement of the reference is
denoted with

(15)

The enumeration of all possible configurations of , , and
may seem computationally complex, but can be calculated

efficiently for most cost definitions (including , ,
and) using a two-step approach. In the following, it is
assumed for simplicity that the cost definition is based on the
sprite bounding box, but the same principle can also be applied
to the area computation.

We begin with computing all bounding boxes for the case that
the first frame in a range is selected as reference frame .
These costs can be computed efficiently for all by starting with
the bounding box of , which has simply the input image size.
Each can now be computed iteratively from its predecessor

by enlarging the predecessor’s bounding box to include

Fig. 10. Sprite for frames 1–7 with frame 4 as the reference frame. In this case,
the bounding-box forS has been computed by combining the bounding boxes
of S and S .

frame . The same process is repeated in the backward direction
to compute all . When both directions are processed, is it
possible to quickly determine the bounding box for by com-
puting the enclosing bounding box of and (see Fig. 10).
Let us denote the computation of the enclosing bounding box
of two sprites and as . The dif-
ference to using the sprite size directly is that this would
require a look-up in a 3-D array of precomputed cost-values. By
splitting the sprite range into two parts, namely, the range pre-
ceding the reference frame and the remaining range after the ref-
erence frame, precomputed sprite costs can be determined with
lower memory requirements, since only two triangular matrices
are stored.

Consequently, when we determine by searching for the
that results in the minimum area bounding box, we do not use

(15) directly, but combine the cost using the two sprite halves as

(16)

The results are stored in an upper triangular data matrix con-
sisting of the values . These values serve as the input
data for the subsequent optimization algorithm. Additionally,
we store the reference frame for each as it was found in
the minimization (16). This value is not needed for the optimiza-
tion, but the final sprite image generation uses the information
for selecting the reference coordinate system.

B. Optimal Sequence Partitioning

In the sequence partitioning step, the input frames are di-
vided into separate ranges, so that the total cost to code the
sprites for all the frame ranges is minimal. More formally, let

be a partitioning
of the video sequence of length into subsequences. The op-
timization problem can then be formulated as determining the
partitioning for which the sum of all sprite costs is minimal

(17)

This minimization problem can actually be viewed as a min-
imum-cost path search in a graph, where the graph nodes corre-
spond to the input frames plus an additional dummy start node,

. The graph is fully connected with directed
edges . Each edge is at-
tributed with edge costs . Every path from the start
node 0 to defines a possible partitioning, where each edge

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

FARIN AND DE WITH: ENABLING ARBITRARY ROTATIONAL CAMERA MOTION 501

Fig. 11. Determining the optimal sequence partitioning. Each state c is assigned the minimum coding cost for a partitioning ending in frame k. Each arrow
represents the cost for the sprite built from the covered frames. For each c with k � 1, the sprite that results in the minimum cost in node c , is marked with a
bold arrow. Tracing back the bold arrows from the last node (c) gives the optimal partitioning with minimum cost.

Fig. 12. Multisprite synthesized from a long zoom-out operation. The sequence is partitioned into three separate sprites of almost the same size. The input image
selected as reference is shown in a darker shade. A single-part sprite generated from the same sequence has a size of 1687 � 1516. (a) Frames 1–51, 603 � 500.
(b) Frames 52–77, 587 � 501. (c) Frames 78–132, 585 � 478.

on the path corresponds to one frame range for which a sprite
is generated. Consequently, the minimum cost path gives the
minimum-cost partitioning . The shortest path search can be
carried out using a standard Dijkstra algorithm or search.

However, because of the regular graph structure, the mini-
mization problem can also be computed with a simple iterative
algorithm (Fig. 11). For each image , we compute the minimum
cost of a partitioning ending in image as

(18)

The index denotes the beginning of the last subsequence in the
partitioning up to frame . For each image, we store the for
which the minimum was obtained. Tracing back these stored
-values, starting at frame , results in the optimal partitioning

with respect to total sprite size.
When searching through the possible values of in (18), a

common case is that the sprite cost will reach when
a cost definition according to (14) is used. As the cost cannot
decrease if the frame range is extended (see Section VI-D), an
efficient way is to carry out the search for backward, starting
with and stopping the search early if is obtained for the
sprite cost .

VIII. EXPERIMENTS AND RESULTS

We have implemented the algorithm with the sprite cost def-
inition of Section VI-D. This section describes the algorithm
results for the three sequences Table-tennis, Rail, and Stefan.
The sequences Table-tennis and Stefan are well-known test se-
quences, whereas the Rail sequence was recorded from a public
DVB broadcast. In Figs. 12–17, we indicate the frame range
which was used to generate each sprite, the bounding-box size,
and the covered sprite area in 1000-pixel units. The obtained
sprite sizes are also summarized in Table I.

From the Table-tennis sequence, the first camera shot con-
sisting of 132 frames has been selected. This camera shot shows
a long zoom-out, starting from a close-up of the player’s hand
to a wide-angle view of the complete player. Our algorithm pre-
vents the sprite from growing too large by splitting the sequence
into a three-part multisprite (Fig. 12). Compared with the size
of an ordinary single-part sprite, the area of the multisprite is
a factor of 2.9 smaller. The resolution-preservation constraint
enforced that the first frame of each part was selected as the ref-
erence frame. Since the first frames appear with the highest res-
olution in the sprites, optimal reconstruction quality is assured.

The Rail sequence (Fig. 13) contains a complicated camera
rotation. It starts with the camera looking downwards and con-
tinues with the camera rotating to the left and around its optical

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

502 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 4, APRIL 2006

Fig. 13. Multisprite for the Rail sequence. The sequence shows a camera rotation around two axes at the same time. At the beginning of the sequence, the camera
is looking down. It turns left and around its optical axis until it looks left in the last frame. Indicated for each sprite is the size of the bounding-box and the covered
sprite area in 1000-pixel units. Reference frames are depicted in a darker shade. (a) 1–45, 541� 445, area: 170 k. (b) 46–82, 479� 446, area: 171 k. (c) 83–140,
455 � 387, area: 152 k.

Fig. 14. .Frames 1–82 integrated into a single background sprite (1264� 592,
area: 427 k). The attempt to integrate the entire Rail sequence into a single back-
ground sprite fails because of the complicated camera motion. The camera per-
forms an approximate 90 rotation around two axes.

axis at the same time. At the end, the camera is looking to the left
side. Integration of the complete sequence into a single sprite
leads to a very strong deformation of the input frames which
makes the conventional approach rather impractical (Fig. 14).
Applying the multisprite algorithm to the sequence results in a
three-part multisprite, where each of the sprites shows only little
perspective deformations.

Since the Rail sequence does not contain foreground objects,
it was possible to measure the quality of the sprite reconstruction
compared to the input sequence. We measured the reconstruction
alone on uncompressed sprites by synthesizing the sprites from
the input sequence and then applying the global-motion com-
pensation on the sprites to reconstruct the input sequence again.
The measurements were carried out using three different types
of sprite construction: multisprite coding with integration of the
scale-factor , without the scale-factor, and a heuristic sprite
partitioning. In the heuristic sprite partitioning, the sprite was
built iteratively until the sprite width exceeded a threshold. The
threshold was chosen such that the first sprite covers frame 1–82
(see Fig. 14), which equals the frame range of the first two sprites
obtained from the multisprite partitioning. Fig. 18 depicts the re-
construction quality of the different approaches. Apart from the
fact that the multisprite reconstruction clearly outperforms the
single-sprite reconstruction by about 1 dB, it can also be seen that

Fig. 15. Super-resolution effect. Since many input frames are integrated in the
background synthesis step based on an accurate motion-model, a high-resolution
image can be derived from a sequence of low-resolution images. (a) Input. (b)
Sprite reconstruction.

the integration of the scaling factor in fact increases the recon-
struction quality in the last part of the sequence.

Since the reconstruction from the sprite is always based on the
static sprite, whereas the input is a moving image sequence, vari-
ations in the image apart from camera motion cannot be recon-
structed from the sprite. Even if there are no perceivably moving
objects in the sequence, the input images can still vary, e.g., be-
cause of motion-blur during a fast camera pan. Moreover, the
camera optic can also deform the image by radial lens distortion,
which cannot be represented in the sprite. Hence, it is clear that
the sprite reconstruction cannot be perfect. On the other hand,
since many input frames are combined when synthesizing the
background sprite, a super-resolution effect occurs, so that the
amount of detail in the sprite is even higher than in the original
video. This can be observed in Fig. 15, which shows a magni-
fication of part of the Fig. 13(a). Since the input was originally
MPEG-2 compressed, it shows some noise, which is not present
in the sprite reconstruction. Furthermore, clearly more detail is
visible in the sprite reconstruction. Consequently, a decrease in
PSNR compared to the input does not necessarily correspond to
a reduction of perceived quality.

For the MPEG-4 sequence Stefan, we first attempted to gen-
erated an ordinary sprite image for the complete 300 frames.
However, because the total viewing angle during the sequence

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

FARIN AND DE WITH: ENABLING ARBITRARY ROTATIONAL CAMERA MOTION 503

Fig. 16. Sprite synthesized from the Stefan sequence. Only the first 255 frames can be used since it is impossible to create the sprite for the complete sequence if
the first frame is selected as reference. Sprite resolution is 2445 � 1026 pixels, area: 1208 k.

Fig. 17. Multisprites synthesized using the described algorithm. The respective reference frames are depicted in a darker shade. Note that the long camera pan is
partitioned into two separate sprites (b) and (c) and that the zoom-in at the end of the sequence is put into a separate sprite (d). (a) 1–240, 926� 339, area: 272 k.
(b) 241–255, 699 � 296, area: 195 k. (c) 256–292, 830 � 318, area: 233 k. (d) 293–300, 431 � 350, area: 141 k

is too large, it is not possible to synthesize a single background
sprite. When adding images after frame 255 (which is approxi-
mately in the middle of the final fast camera pan), the geometric
distortion increases very quickly. Hence, we used only the first
255 frames for building the sprite. The resulting sprite is shown
in Fig. 16. Applying the multisprite algorithm on the complete
sequence resulted in a four-part multisprite, which is shown in
Fig. 17. We have measured that the total required sprite size for
the multiple-sprite approach is a factor of 2.6 smaller than for
the single-sprite case. However, note that the multisprite covers
the complete 300 frames of the sequence, while the ordinary

sprite covers only the first 255 frames. The effect of the resolu-
tion-preservation constraint can be observed in the fourth sprite
[Fig. 17(d)]. Here, the algorithm decided to use the last frame
of the camera zoom-in as a reference to preserve the full resolu-
tion. This also explains why the algorithm separated the last 45
frames (256–300) into two separate sprites. If all frames would
have been combined into a single sprite, all frames would be
scaled up to preserve the resolution of the last frame. However,
by splitting the sequence into two sprites, frames 256–292 can
be coded with a lower resolution, which outweighs the overhead
of an additional sprite.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

504 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 4, APRIL 2006

TABLE I
COMPARISON OF SPRITE SIZES USING SINGLE SPRITES AND THE MULTISPRITE

APPROACH. THE AREA OF THE BOUNDING BOX AND THE COVERED SPRITE

AREA ARE GIVEN IN UNITS OF 1000 PIXELS

Fig. 18. Comparison of sprite reconstruction quality for the Rail sequence (de-
picted in Fig. 16).

IX. INTEGRATION INTO AN OBJECT-ORIENTED

VIDEO CODING SYSTEM

The described multisprite partitioning algorithm can be inte-
grated easily into a framework for video-object segmentation.
An overview of our multisprite based segmentation system
is depicted in Fig. 19. Processing starts with a feature-based
global-motion estimator [5]. This estimator identifies prominent
corner features in each input frame and establishes correspon-
dences between matching features. The parameters of the
projective motion-model are then estimated from the displace-
ments of these features. To differentiate between foreground
and background motion, a robust regression algorithm based
on the RANSAC algorithm [11] is employed. The advantage of
a feature-based estimator is its robustness against fast camera
motion or illumination changes. Its disadvantage, however, is
the insufficient estimation accuracy for building the background
sprite directly from the estimated motion parameters.

The motion parameters from the feature-based estimator are
used in the subsequent multisprite partitioning step to determine
the frame ranges that will be used for each of the background
sprites.

Starting with the reference frames, the next step refines the
motion parameters by carrying out a direct motion estimation
based on a gradient-descent search [12]. Since the input frames
are aligned to the reconstructed mosaic, no accumulation of
estimation errors can occur. Hence, the estimation accuracy is

Fig. 19. Framework of our complete video-object segmentation system
including the multisprite partitioning algorithm.

superior to the feature-based approach in the first step, where
motion was computed between successive frames and where
errors could accumulate in the concatenation of transforms.
Since the multisprite partitioning ensures that no degenerated
transforms occur within a sprite, this long-term prediction is
possible.

The foreground object removal step synthesizes a virtual
background image without the foreground objects using the
algorithm described in [13]. The algorithm is an extension
of pixel-wise temporal median filtering though the stack of
motion-compensated images of the considered frame range.
If foreground objects are located near the boundary of the
sprite area at the beginning or end of the considered frame
range, the background reconstruction algorithm would not be
able to remove the foreground objects, since there is too
little information available for these sprite areas. Therefore,
we extend the frame range, which is used to reconstruct the
background, to include as much information as possible (see
Fig. 20).

The background sprites obtained from the last step can be
used in a standard MPEG-4 encoder. To transmit the multisprite,
two approaches are possible. The sprites can be transmitted se-
quentially, where a new sprite must be sent just in time to show
a continuous video at the decoder. However, this requires a high
peak data-rate to send the new sprite. The second approach is to
compose the individual sprites of the multisprite into a single
sprite image, where the sprites are placed independently be-
neath each other. The motion parameters can be modified such
that the correct sprite image is decoded from the sprite buffer.
The second approach does not require a high peak data-rate, but
needs more decoder memory for the sprite buffer. Future work

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

FARIN AND DE WITH: ENABLING ARBITRARY ROTATIONAL CAMERA MOTION 505

Fig. 20. Determining the frame ranges for background synthesis. The video is depicted as a stack of motion-compensated frames. To obtain an optimal suppression
of foreground objects, the frame range of each sprite is extended to include all frames that overlap with the sprite area.

might combine the multisprite partitioning with optimized de-
coder-buffer management, such that the decoder buffer for ex-
ample always contains two sprites, where one is displayed while
the other is updated.

In our system, foreground objects are obtained using a back-
ground subtraction technique [14], [15]. Objects are detected by
a high difference between the input frame and the motion-com-
pensated background sprite. In this step, the same multisprite
approach is used to cover the entire input sequence with pure
background images.

X. CONCLUSIONS

This paper has shown that partitioning a background sprite into
several independent parts results in clearly reduced coding cost
andbetter imagequalityatthesametime.Ouralgorithmcomputes
the optimal partitioning of a sequence, the reference frame for
each partition, and associated scaling factors. As a consequence,
the proposed algorithm solves the subsequent problems. It re-
moves the limitations of camera motion and enables to use sprite
coding for arbitrary rotational camera motion. It selects optimal
reference frames and defines multisprite partitions to consider-
ablyreducetherequiredamountofdataforcodingthebackground
sprite.Finally, itensures thatnoqualitydegradationoccursduring
camera-zoom operations, thereby increasing the reconstruction
quality of the sprite. All this is achieved while remaining com-
patible to the MPEG-4 standard.

Clearly, the reduction of sprite area depends on the type of
camera motion in the sequence, e.g., for the Stefan sequence, a
reduction by a factor of at least 2.6 has been achieved. More-
over, note that the proposed algorithm can synthesize sprites
for all kinds of camera motion, which cannot be achieved with
previous approaches. This presents a generalization that is not
only important for the coding of background sprites, but also for
other image analysis algorithms like a video-object segmenta-
tion based on background subtraction. These algorithms also re-
quire a complete coverage of the background environment with
a set of background images.

REFERENCES

[1] H. Watanabe and K. Jinzenji, “Sprite coding in object-based video
coding standard: MPEG-4,” in Proc. World Multiconf. SCI 2001, 2001,
vol. XIII, pp. 420–425.

[2] S.-Y. Chien, C.-Y. Chen, Y.-W. Huang, and L.-G. Chen, “Multiple
sprites and frame skipping techniques for sprite generation with high
subjective quality and fast speed,” in Proc. IEEE Int. Conf. Multimedia
and Expo (ICME), 2002, pp. 785–788.

[3] D. Farin, T. Haenselmann, S. Kopf, G. Kühne, and W. Effelsberg,
“Segmentation and classification of moving video objects,” in
Handbook of Video Databases: Design and Applications, B. Furht
and O. Marques, Eds. Boca Raton, FL: CRC, Sep. 2003, pp.
561–591.

[4] A. Smolic and J. Ohm, “Robust global motion estimation using a sim-
plified M-estimator approach,” in Proc. IEEE Int. Conf. Image Process.
(ICIP), 2000, pp. 868–871.

[5] D. Farin and P. H. N. de With, “Evaluation of a feature-based global-
motion estimation system,” SPIE Vis. Commun. Image Process., pp.
1331–1342, Jul. 2005.

[6] M. Massey and W. Bender, “Salient stills: process and practice,” IBM
Syst. J., vol. 35, no. 3 & 4, pp. 557–573, 1996.

[7] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[8] A. Smolic, T. Sikora, and J.-R. Ohm, “Direct estimation of long-term
global motion parameters using affine and higher order polynomial
models,” in Proc. PCS’99, Picture Coding, Symp., Apr. 1999, pp.
239–242.

[9] Y. Lu, W. Gao, and F. Wu, “Efficient background video coding
with static sprite generation and arbitrary-shape spatial prediction
techniques,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 5,
pp. 394–405, May 2003.

[10] R. Szeliski and H.-Y. Shum, “Creating full view panoramic image mo-
saics and environment maps,” Comput. Graph., vol. 31, pp. 251–258,
1997.

[11] M. A. Fischler and R. C. Bolles, “Random sample consensus: a par-
adigm for model fitting with applications to image analysis and auto-
mated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[12] R. Szeliski, Image Mosaicing for Tele-Reality Apllications Digital
Equipment Corp., Cambridge Res. Lab, May 1994, Tech. Rep. CRL
94/2.

[13] D. Farin, P. H. N. de With, and W. Effelsberg, “Robust background es-
timation for complex video sequences,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), 2003, vol. 1, pp. 145–148.

[14] T. Aach and A. Kaup, “Bayesian algorithms for adaptive change detec-
tion in image sequences using markov random fields,” Signal Process.:
Image Commun., vol. 7, pp. 147–160, 1995.

[15] D. Farin and P. H. N. de With, “Misregistration errors in change detec-
tion algorithms and how to avoid them,” in Proc. IEEE Int. Conf. Image
Process., Sep. 2005, vol. 2, pp. 438–441.

[16] M. C. Lee, W. Chen, C. B. Lin, C. Gu, T. Markoc, S. I. Zabinsky, and
R. Szeliski, “A layered video object coding system using sprite and
affine motion model,” IEEE Trans. Circuits Syst. Video Technol., vol.
7, no. 1, pp. 130–145, Feb. 1997.

[17] F. Dufaux and F. Moscheni, “Background mosaicking for low bit rate
video coding,” in Proc. IEEE Int. Conf. Image Process., 1996, vol. 1,
pp. 673–676.

[18] H. Nicolas, “Optimal criterion for dynamic mosaicking,” in Proc. IEEE
Int. Conf. Image Process., Oct. 1999, vol. 4, pp. 133–137.

[19] K. Jinzenji, H. Watanabe, S. Okada, and N. Kobayashi, “MPEG-4 very
low bit-rate video compression using sprite coding,” in Proc. IEEE Int.
Conf. Multimedia Expo, Aug. 2001, pp. 2–5.

[20] P. S. Heckbert, “Fundamentals of texture mapping and image warping,”
M.S. thesis, Dept. Elect. Eng. Comp. Sci., Univ. California, Berkeley,
Jun. 1989.

[21] M. Kourogi, T. Kurata, J. Hoshino, and Y. Muraoka, “Real-time image
mosaicing from a video sequence,” in Proc. IEEE Int. Conf. Image
Process., Oct. 1999, vol. 4, pp. 133–137.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

506 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 4, APRIL 2006

Dirk Farin (M’06) received the Dipl.-Inf. degree in
computer science from the University of Stuttgart,
Stuttgart, Germany, in 1999, and the Ph.D. degree
from the University of Mannheim, Mannheim, Ger-
many, for his work on automatic video-object seg-
mentation and object modeling.

After graduating from the University of Stuttgart,
he was Research Assistant at the Department of
Circuitry and Simulation, University of Mannheim,
where he started his research on video-object seg-
mentation. He joined the Department of Computer

Science IV, University of Mannheim in 2001. Since 2004, he has been with
the Video Coding and Architecture Group, Technical University of Eindhoven,
Eindhoven, The Netherlands. Apart from video-object segmentation, his
research interests include video compression, content analysis, and 3-D recon-
struction. Currently, he is involved in a joint project of Philips and the Technical
University of Eindhoven about the development of video capturing and com-
pression systems for 3-D television. He developed popular open-source and
commercial software including an MPEG-2 decoder, two MPEG-2 encoders,
libraries with computer-vision algorithms, and image-format conversion
software.

Dr. Farin received a Best Student Paper Award at the SPIE Visual Communi-
cations and Image Processing Conference in 2004 for his work on multisprites,
and two Best Student Paper Awards at the Symposium on Information Theory
in the Benelux in 2001 and 2003. In 2005, he organized a special session about
sports-video analysis at the IEEE International Conference on Multimedia and
Expo. He is member of the program committee of the IEEE International Con-
ference on Image Processing and Reviewer for several journals including IEEE
MULTIMEDIA, IEEE IMAGE PROCESSING, and IEEE CIRCUITS AND SYSTEMS FOR

VIDEO TECHNOLOGY.

Peter H. N. de With (M’81–SM’97) received the
M.Sc. degree in electrical engineering from the Uni-
versity of Technology, Eindhoven, The Netherlands,
in 1984 and the Ph.D. degree from the University
of Technology, Delft, The Netherlands, in 1992, for
his work on video bit-rate reduction for recording
applications.

He joined Philips Research Laboratories, Eind-
hoven, The Netherlands, in 1984, where he became
a member of the Magnetic Recording Systems
Department. From 1985 to 1993, he was involved

in several European projects on SDTV and HDTV recording. In this period,
he contributed as a coding expert to the DV standardization. In 1994, he
became a member of the TV Systems group, where he was leading the design
of advanced programmable video architectures. In 1996, he became Senior
TV Systems Architect and in 1997, he was appointed as Full Professor at the
University of Mannheim, Mannheim, Germany, in the faculty of computer
engineering. In 2000, he joined CMG Eindhoven as a principal consultant and
he became professor at the University of Technology Eindhoven, in the faculty
of electrical engineering. He has written numerous papers on video coding,
architectures and their realization. Regularly, he is a Teacher of the Philips
Technical Training Centre and for other post-academic courses.

In 1995 and 2000, Dr. de With co-authored papers that received the IEEE CES
Transactions Paper Award. In 1996, he obtained a company Invention Award. In
1997, Philips received the ITVA Award for its contributions to the DV standard.
He is a program committee member of the IEEE CES and IEEE ICIP, chairman
of the Benelux Working Group on Information Theory, member of the former
scientific board of CMG, ASCI, and various other working groups.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on August 26, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

