
 

Finite antenna arrays : an eigencurrent approach

Citation for published version (APA):
Bekers, D. J. (2004). Finite antenna arrays : an eigencurrent approach. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR582264

DOI:
10.6100/IR582264

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR582264
https://doi.org/10.6100/IR582264
https://research.tue.nl/en/publications/a38bc5ef-e8c6-4199-aa6a-d65961785ff5


Finite Antenna Arrays:

An Eigencurrent Approach

Dave Bekers



This PhD thesis is the result of a project carried out under sponsorship of Thales Nederland, the
Netherlands, and the Stan Ackermans Institute of the Technische Universiteit Eindhoven, the
Netherlands. The project was carried out at Thales Nederland.



Finite Antenna Arrays:

An Eigencurrent Approach

PROEFONTWERP

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr. R.A. van Santen, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op maandag 13 december 2004 om 16.00 uur

door

Dave Johannes Bekers

geboren te Breda



De documentatie van het proefontwerp is goedgekeurd door depromotoren:

prof.dr. A.G. Tijhuis
en
prof.dr.ir. C.J. van Duijn

Copromotor:
dr.ir. S.J.L. van Eijndhoven

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Bekers, Dave Johannes

Finite antenna arrays : an eigencurrent approach / by Dave Johannes Bekers.
Eindhoven : Technische Universiteit Eindhoven, 2004.
Proefontwerp. - ISBN 90-386-1012-2
NUR 919
Subject headings: antenna arrays / antennas / electromagnetic waves / mathematical models
/ mathematical moment problems / eigenvalue problems / numerical simulation / sensitivity
analysis
2000 Mathematics Subject Classification: 35Q60, 78M05, 47N99, 31B10, 00A73, 35B34

Press: Universiteitsdrukkerij, Technische UniversiteitEindhoven

Cover design: Jeroen Willekens
Paul Verspaget & Carin Bruinink, Grafische Vormgeving – Communicatie

Copyright c© 2004 by Dave Johannes Bekers



v

Preface

”Why do we need a(n) (industrial) mathematician?” It is a frequently asked question in indus-
try. Probably the answers are even more numerous: to carry out a specific calculational step, to
develop a(n) (numerical) algorithm, to find an optimal strategy, and to test a hypothesis are only
some examples. A more profound answer is that an abstract look at a certain problem may give a
deeper insight and may establish links with other fields, where a solution to the problem is avail-
able. One of the strongest unifying concepts in mathematicsis the concept of eigenvalue. As
L.N. Trefethen [115] wrote: “They [Eigenvalues] give an operator a personality”. Represented
in the complex plane, eigenvalues are much easier to digest by the human brain than the abstract
notion of an operator that describes a certain process or phenomenon. Moreover, eigenvalues
may provide insight into physical phenomena like resonance, stability, and rate of increase or
decay. More specifically, in mechanics, eigenvalues may determine under which conditions a
bridge will collapse or an music instrument will give a proper sound. In electromagnetism, they
may determine whether a certain signal is propagating. In ecology, they may predict whether
layers of salt become unstable. In heat transfer, they may determine the cooling time of a molded
compact disc or the heating time of a copying machine.

In this thesis an approach based on the concept of eigenvalueis proposed for the analysis of
antenna arrays. Examples revealed that eigenvalues, and the related eigenfunctions or eigencur-
rents, are one-to-one related to the specific array functions like scanning and the technique of
monopulse. Moreover, the excitation of specific, resonant,eigencurrents explains various effects
observed in practice, like variations of element impedances attributed to array surface waves and
modulations of element impedances. The visual power of eigenvalues is exploited as well in the
sense that their distribution in the complex plane may reveal suitable (surface) loading to reduce
resonant behavior.

The preceding paragraph illustrates the strong relation between the concept of eigenvalue
and antenna-array design. Moreover, it illustrates how an abstract look at antenna arrays may
provide practical information for design. In the past four years, these relations were not always
as clear for me as they are now. The hardest part of the projectwas probably to keep believing
that the approach based on eigencurrents was appropriate and to explain why such an approach
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was needed. An additional difficulty was that electrical engineers and mathematicians talk dif-
ferent ‘languages’. Moreover, both ‘languages’ consist ofmany ‘sublanguages’. To write one
thesis for several languages was not an easy task. To put it differently, trying to be mathemati-
cally strict and industrially applied at the same time is fora mathematician like climbing one of
the ridges of a mountain: the danger is to disappear into the deep ravines on either of the sides.
In this respect, joining the program Mathematics for Industry before carrying out a PhD project
was very useful.

Many people have guided or helped me in this project. First ofall, I would like to mention
dr.ir. Stef van Eijndhoven, dr.ir. Fons van de Ven, and prof.dr. Anton Tijhuis. Stef, many, many
thanks, not only for reading this thesis up to the ‘milimeter’, but also for all your suggestions and
advice with respect to the interpretation of the many generated (numerical) results. Moreover,
your mental support encouraged me a lot. Fons, thank you for all your support and advice
over the past years and for always having a listening ear. Anton, I appreciate all your help
and support very much and I would like to thank you especiallyfor the extensive time you
took to read my thesis and to give suggestions for improvement. Through your advice, a lot
of ‘language difficulties’ of the nature mentioned above were resolved, although during our
enthusiastic discussions, we sometimes ran ourselves intosuch a ‘difficulty’. Many thanks go
also to my present and previous supervisors at Thales Nederland: dr.ir. Peter-Paul Borsboom
and ir. Evert Kolk. Peter-Paul, thank you for all your adviceand support in the last three
years, especially for all the effort you took to find application areas for my work, both inside
and outside Thales. Evert, thank you for your guidance in thefirst year and for giving me the
opportunity to continue my final project of Mathematics for Industry as a PhD project.

I would like to express my gratitude to prof.dr.ir. Hans van Duijn and prof.dr.ir. Guy Vanden-
bosch for their comments on the first versions of my thesis. I am also thankful to the members
and several former members of the group JRS-TU antenna at Thales Nederland for their inter-
est and many worthwhile discussions from which I learned a lot. In particular, I would like to
thank Joris Buijnsters, Eddy van Ewijk, and Bertus ter Heijde, Bart Morsink, and Gertjan van
Werkhoven for the discussions about the development of radar systems and the relation with
my work. Moreover, I would like to thank Kiman Velt for the HFSS simulations that could not
be described in this thesis anymore unfortunately. Warm thanks also go to Emiel Stolp, Frank
Leferink, Hans Schurer, Hans Driessen, and Monique Kedde, for the stimulating discussions
about work and my work in particular. Last but not least, I would like to thank Geert Vulink,
Dolf Boompaal, and Rein Eggens for the pleasant atmosphere in our cubical throughout the
years.

From the Laboratoire d’Electromagnétisme et d’Acoustique, I would like to thank prof. Juan
Mosig for giving me the opportunity to work in his group from April till June 2000 and to
present my work in June 2001. Moreover, I would like to thank Michael Mattes for the pleasant
cooperation during my three-months stay and for the warm welcome at my visit in June 2001.
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From the Technische Universiteit Eindhoven, I would like tothank the (former) students
of Mathematics for Industry, the members of the Electromagnetics group of the department of
electrical engineering, and the members of the applied analysis group, nowadays CASA, of the
department of mathematics and computer science. In particular, I would like to thank Friso
Hagman, Martijn van Beurden, Tom Gierstberg, Kamyar Malakpoor, Gertjan Pieters, and Jan
Kroot for their mental support and encouraging discussions.

Finally, I would like to thank all my friends and relatives for their friendship and support. In
particular, I would like to thank Jeroen Willekens for designing the cover. Moreover, I would
like to thank my mother Yvonne, my father Frans, and my brother Colin for their patience,
understanding, and support. Last, but definitely not least,I would like to thank my girlfriend
Shirley for all her love, patience, understanding, support, and of course for drawing several
pictures in this thesis and typing several parts of the text.

Dave Bekers, Eindhoven, 1 november 2004
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Glossary of Notation

General remarks:

• If more equations correspond to the same equation number, they are indicated by super-
script numbers at the equation number. For example, (2.1)2 is the second equation in
Equation (2.1).

• A superscript symbol connected to a word indicates a footnote, e.g., representation∗.

• Except for the time-domain quantities in Section 2.1, vectors and vector functions are
indicated by boldface characters, e.g.,E andw. Matrices and column vectors are denoted
by Roman capitals, e.g.,Z andW . Operators and vector spaces are in general denoted by
calligraphic characters, e.g.,A andZ.

• If a super- or subscript of a mathematical symbol is typeset in the normal Roman font,
the script indicates the abbreviation of a word or word group, e.g.,Nsub. If a super- or
subscript is typeset in the italic Roman font, the script indicates a mathematical symbol (a
variable or a coordinate-axis label), e.g.,ex andunq.

• A dot in an argument of a function or an operator indicates that the corresponding variable
is free. For example, ifg is a function of two variables, thenf = g( · , η) is a function of
one variable, whereg is evaluated with respect to its second argument only. The function
f evaluated atξ equalsg(ξ, η).

• The dB scale is in general defined as10 10log | · |. The definition20 10log | · | is adopted
for (electric) far-field components only.

• The word group ‘absolute value(s) of the ...’ is often abbreviated to ’the absolute ...’, e.g.,
‘absolute eigenvalue’ instead of ‘absolute value of the eigenvalue’.

• The word ‘element’ is used for both elements of sets and elements of an antenna.

• Normalized quantities or variables are denoted by hats, e.g., ξ̂ anÂpq.
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Vector spaces

Throughout this thesis, we identify in the usual way the Euclidean spaceE3 of points and
vectors, and the setR3 of 3-tuples with real components. In other words, points andvectors inE3 are identified with 3-tuples inR3. We interpretR3 as a vector space equipped with the usual
scalar product( . • . ), shortly•, and the usual vector product×. Moreover, we equipR3 with
the standard basisex = (1, 0, 0), ey = (0, 1, 0), andez = (0, 0, 1) with associated Cartesian
coordinate system. A 3-tuple or vector inR3 is written asx = xex + yey + zez, or shortly
(x, y, z), andE = Exex + Eyey + Ezez, or shortly,(Ex, Ey, Ez).

Vector fields inE3 assign to each point inE3 a vector with length and direction. With
the identification above, a vector field inE3 is a vector function fromR3 toR3. In turn, these
vector functions can be interpreted as vector fields inR3. Therefore, we use both the term vector
function and the term vector field. Vector functions fromR3 toC3 are complex-valued vector
fields inR3. Here,C3 is the (complex) vector space of 3-tuples with complex components,
which is equipped with the same scalar product, vector product, and standard basis asR3.

In Section 2.3, we introduce complex-valued vector functions of which the range is a subset
of CN , i.e., the set ofN -tuples with complex components. The components of such a vector
functionw are denoted bywp, p = 1, . . . , N . In Section 2.4, this notation is changed tow( · ; p)

to avoid confusion between the components of vector functions and the indices of vectors in a
set, e.g.,{w1, . . . ,wM}. Analogously, the notation for the components of a vectorα is α(n)

instead ofαn and the notation for the components of a matrixG is G(m,n) instead ofGmn.

The following notations are used in this thesis. Some symbols that appear locally are not listed;
they are defined within the text. Moreover, symbols related to the algebraic concepts employed
in this thesis are defined in Subsection 2.4.1. For details onnotation of function spaces, we refer
to Section 3.1.

Roman symbols

A magnetic vector potential
Apq magnetic vector potential at the surfaceSp induced by the current at

the surfaceSq.
A(Ψ), A(θscan) infinite-array moment matrix
a, aq radius of a ring
b, bq half the width of a strip or ring
bas(W) the set{We1, . . . ,WeN} for a mappingW fromCN to a vector spaceX ,

defined in Subsection 2.4.1
C∞(A)

c speed of light,c = 1/
√

ε0µ0

cq centers of elements in an array
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D generalized derivative
dpq distances between strips in a line array
d distances between elements in a uniform line array
div divergence of a vector field
dom( · ) domain of an operator
E time-independent part of the time-harmonic strength of theelectric field

E , shortly electric field
ES (tangential) excitation field atS (tangential vector field atS)
Eext externally applied electric field (ES = −(Eext)tan)
Ei incident electric field
En set of eigencurrents of an array in which mutual coupling is ignored,

corresponding to the eigencurrentusub
n of the generating subarray,

wheren = 1, . . . , N sub
eig

E union of the setsEn

eξ, eη 1. tangent vectors ofS
2. idem, whereS represents a line array of strips

eζ normal onS corresponding toeξ andeη, eζ = eξ × eη

eext
ξ , eext

η , eext
ζ extension of the tangent vectors ofS and their normal to a global or

locally global coordinate system
en unit vector of the standard basis ofCN

F (A,B) a linear space of functions that map the elements of a setA into a setB
Fpq kernel ofFpq

F̃pq kernel ofF̃pq

f frequency
G Gram matrix
gfree a fundamental solution of the Helmholtz operator:e−jkR/4πR

ĝfree gfree(R) = kĝfree(R̂)

grad gradient of a scalar function
H time-independent part of the time-harmonic strength of themagnetic

field H , shortly magnetic field
Hext externally applied magnetic field
H2,n(A,CN ) subspace ofL2(A,CN ) consisting of all functions on a setA with

nth derivative inL2, denoted byH2,n(A) for N = 1

H2,n,per(A,B) consists of all functions inH2,n(A,B) that are periodic on the
real line with period2π

J time-independent part of the time-harmonic current density J ,
shortly current

JA averaged currentJA = AJ
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j
√
−1

K1i,pq,K2,pq kernels ofK1i,pq,K2,pq

K̃1i,pq, K̃2,pq approximated kernels
k wave number defined byk = ω

√
ε0µ0

L(A,CN ) vector space of linear mappings from a setA to a setB
L2(A,CN ) space of square integrable functions from a setA to the setCN ,

denoted byL2(A) for N = 1

ℓ length of a strip.
Nel number of (antenna) elements or surfacesSq

Nexp,N exp number of expansion functions
Ntest,N test number of test functions
Ncos,N cos number of cosine expansion functions
Nsin,N sin number of sine expansion functions
Nsub number of subarrays
N sub

eig number of eigencurrents of the generating subarray
Nint number of intervals for integration
n normal ofS
O( · ) order symbol
P rad radiated power
P ex complex power
R function defined byR( · ) = | · |, where| · | is the module
r radial coordinate corresponding to the parameter description of rings
ran( · ) range of an operator
rot rotation of a vector field
S smooth oriented surface inR3 that represents the array elements
∂S boundary curve ofS
S± the two sides ofS with normalsn± that point into the areas at the

S±-sides ofS.
Sq surfaces of which the union isS; these surfaces represent the

array elements
Tang(S, (ξ, η)) Tangent plane ofS at the pointxS

t time
un,unq eigenfunctions or eigencurrents with indicesn andnq

Un, Unq Eigenvectors with indicesn andnq, represent the expansion
coefficients ofun,unq

vex,vex centerline component(s) of the width-averaged excitationfield on the
surfaceS,

V ex, V ex(q) voltage of a feed gap (voltage or delta gap, or finite feed gap)
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w,w 1. centerline components of the width-averaged current on the surfacesSq

2. element of an inner-product space in Subsections 2.4.1 and 2.4.2
W (column) vector, consists in general of the expansion coefficients ofw or w

x 3-tuple or vector inR3

xS parameter representation of the surfaceS

xS( · , 0) centerline ofS in caseΠ(S) is given byΠ(S) = Πξ(S) × [−η1, η]

yn,ynq functions in the bi-orthogonal setY with indicesn andnq,
defined in Subsection 5.2.1

Z moment impedance matrix
Z0 characteristic impedance of free space defined byZ0 =

√

µ0/ǫ0
Zinp input impedance

Calligraphic symbols

A averaging operator defined for tangential vector fields onS, where
Π(S) = Πξ(S) × [−η1, η]

B density of the magnetic flux
D density of the electric flux
D differential operator defined byD = −jZ0k(I + (1/k2) grad div )

DS (D · )tan = DS( · |S)

E strength of the electric field
Fpq integral operator corresponding to a line array of strips
F̃pq approximation ofFpq

Gfree free-space kernel ofT , Gfree = gfreeI
Ghalf half-space kernel ofT
GΩ kernel ofT for the domainΩ
H strength of the magnetic field
I identity operator
IX identity operator on the vector spaceX
J current density
K1i,pq,K2,pq integral operators corresponding to an array of rings (i = 1, 2)
K̃1i,pq, K̃2,pq approximations ofK1i,pq,K2,pq

P,Q projections (see Subsection 2.4.1), in generalP = WW− andQ = VV−

T integral operator with kernelGfree, Ghalf , orGΩ

U basis of eigenfunctions or eigencurrents
V,W mappings fromCN to an inner-product space
V−,W− mappings from an inner-product space toCN corresponding to

V,W and defined by (2.111)
X ,Y 1. inner-product spaces in Subsection 2.4.1
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2. domain and range ofZ in Subsection 2.4.2
Xa,Ya domain and range ofZa, both inner-product spaces
Y bi-orthogonal set ofU
Z impedance operatorZ = (DT · )tan, ZJ = ES

Za averaged form ofZ, Zaw = vex

Greek symbols

β, βq ratiosb/a andbq/aq for rings, ratiosb/ℓ andbq/ℓq for strips
∆ Laplace operator
δnm Kronecker symbol defined byδmn = 1 for m = n andδmn = 0 for m 6= n

ε0 permittivity of vacuum
ǫ indicates the ‘width’ of a finite feed gap
λ wavelength
µ0 permeability of vacuum
νn, νnq eigenvalues with indicesn andnq

Π(S) parameter set corresponding toxS

Πξ(S) defined for surfacesS for whichΠ(S) can be written as
Π(S) = Πξ(S) × [−η1, η]

̺ charge density
ρ 1. time-independent part of the time-harmonic charge density ̺

2. spherical radial coordinate
σ conductivity
τ tangent vector of the centerlinexS( · , 0) of S, τ = eξ( · , 0)

τ ∂S piecewise defined tangent vector ofS, if S has a piecewise and oriented
boundary curve∂S

θ, φ spherical angles
θscan, φscan spherical scan angles
θi, φi incident angles of a plane wave
θ1 angle that indicates the position of the main lobe of a line array
ϕ angle that describes the circumference of a ring
Ψ Ψ = kd cos θ1

ψ,ψq orientation angle of the local coordinate systems on rings
Ω a domain inR3 with boundary∂Ω

Ωv eigenvalue of the eigenfunctionv of a Sturm-Liouville problem
Ωcos,n nth eigenvalue related to a cosine eigenfunction
Ωsin,n nth eigenvalue related to a sine eigenfunction
ω radian frequency
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Supper and subscripts

∗ 1. complex conjugate
2. adjoint mapping or operator

∨ f∨(x) := f(−x)
⊥ orthogonal complement
H Hermitian transposed

Other symbolsN set of natural numbersNP set ofP -tuples with components inN (P = 1, 2, . . .)R set of real numbersR3 set of 3-tuples with components inR, interpreted as vector spaceC set of complex numbersCN set ofN -tuples with components inCCM×N set of matrices of sizeM × N

• scalar product onR3 andC3, also denoted as( . • . )

× 1. vector product onR3 andC3

2. matrix size indication, e.g.,N × N andCN×N

3. multiplication in multiple-line expressions
4. indicator of sets such as[a, b] × [c, d]

( · ◦ · )N inner product onCN with whichCN is an inner product space; the inner
product is linear in its second argument

( · )tan trace operator, which restricts a vector function to the surfaceS and then
takes the tangential component

|S restriction to the surfaceS
. ∗ . convolution
〈 · , · 〉 inner product on a vector space, linear in its second argument, i.e.,

〈v, αw〉 = α〈v,w〉 and, hence,〈αv,w〉 = α∗〈v,w〉
‖ · ‖ 1. associated norm of〈 · , · 〉

2. norm onCN×1 orCN

〈 · , · 〉X inner product corresponding to the vector spaceX
⊔ concatenation of two tuples (or row vectors) defined by (2.103)
[ · ] 1. transforms a linear mapping fromCN toCM into a matrix inCM×N ,

also denoted by[ · ]M×N

2. transforms anN -tuple inCN into a column vector inCN×1,
also denoted by[ · ]N
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CHAPTER 1

Introduction

On 30 April 1904, Christian Ḧulsmeyer patented his ‘Telemobiloskop’, which became the first
operational radar system for detecting ships through the transmission and reception of electro-
magnetic waves [51, 111]. Nowadays, radar systems are widely used, for example, to control air
traffic, to measure vehicle speeds, and to detect and track airplanes and ships. Thales Nederland
is one of the companies that specializes in designing and producing radar systems, or more gen-
eral, integrated defense systems. The company is part of theThales group with plants in more
than 30 countries. In Hengelo, the Netherlands, the focus ofthe design and production process
is on highly advanced naval systems. Customers of Thales Nederland are marines of countries
all over the world.

Figure 1.1 An array of single microstrip

antennas on a test tower.

The principle of radar, or ‘radio detection and
ranging’, is based on the phenomenon that metal-
lic objects reflect electromagnetic waves. These
waves are transmitted and received by the antenna
of a radar system. In several systems of Thales
Nederland, the antenna is a large (phased) array
of single antennas. We will refer to these anten-
nas as the (array) elements. A specific example
of an antenna array of Thales Nederland is shown
in Figure 1.1. The array consists of about 1000
elements, positioned on a planar antenna face of
about16 m2, i.e., the black surface in the figure.
Figure 1.2 shows a schematic representation of one
of the array elements, which are rectangular mi-
crostrip loops. The systems are designed for long-range surveillance, i.e., for detecting (metal-
lic) objects in the range of 10 – 400 kilometers. Moreover, the systems scan in elevation by
phase shifts and in azimuth by rotation. Here, azimuth is theangle related to distances around
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dielectric

rectangular loop

twin lead

ground plate

stripline environment

Figure 1.2 A single microstrip antenna or (array) element.

the earth’s horizon, while elevation is the height above theearth’s surface. As an illustration of
the capability of these systems, we mention that the detection of a metallic object of the size of
a tennis ball was demonstrated up to more than 50 kilometers away.

The design and development of antenna arrays is complex and costly [85, 86, 122]. To reduce
design costs and design risks, and to improve the performance of the arrays, Thales Nederland
uses simulations. Simulations should meet a number of criteria: they should be fast executable,
they should show boundary effects and effects of mutual coupling, and they should determine
the antenna performance parameters accurately. Simulations based on the generally applied
infinite-array approach and simulations based on the finite-element method do not satisfy these
criteria. Simulations of the first type do not describe boundary effects, while simulations of the
second type are computationally too expensive. Both types of simulations do not provide direct
insight into the physics relevant to the design. To overcomethese disadvantages, Thales initiated
a sequence of projects to develop simulation tools for arrays [7: pp. 13 – 18]. The first projects
concerned mainly the modeling and analysis of a single element. The step from one element
towards an array could not be taken, because simulation of a single element required too much
computation time. Therefore, the focus remained on local (element) effects. In the middle of the
project described in [6], we decided to shift our research towards the simulation of large (finite)
antenna arrays with the focus on global (array) effects. This research resulted into a top-down
approach in which we analyze an array of simple elements first. By the approach, we aimed
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at finding characteristics of a single element that are essential for describing the array behavior
and, therewith, for the array performance. On basis of thesecharacteristics, we intended to
develop an efficient analysis approach for finite antenna arrays with corresponding simulation
tools.

In this introduction, we present an overview of our research. We describe the design pro-
cess of antenna arrays in Section 1.1 and we explain our contribution to the stages in the design
process. In the next section, we summarize the modeling approaches and simulation tools for
antenna arrays as used by Thales Nederland. Also, recent developments in the literature are
outlined to determine current needs in array modeling. Along with these needs, we describe our
main objectives and modeling approach in Section 1.3. In Chapter 7, we describe the conclu-
sions of our research in relation to these main objectives, while in Section 1.4, we describe the
organization and contents of this thesis.

1.1 Design Aspects of Antenna Arrays
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Figure 1.3 Design proces of an antenna.

Each design process of an antenna, in particular an
antenna array, is unique. The process is flexible, of-
ten influenced by circumstances and pragmatic de-
cisions. For these reasons, the practice of antenna
design is described in many different ways, see for
example [63: p. 137]. We emphasize the main lines
of the design process in the schematic representa-
tion of Figure 1.3.

Formulating the requirements on the antenna
performance parameters is the start of the design
process. The requirements are a quantification of
the two main goals of antenna design: the input en-
ergy should be radiated in a well-defined direction
and the energy loss should be minimized. We divide
the performance parameters into three categories:
beam parameters, mutual coupling parameters, and
visibility parameters. The first category is related to
the first main goal, the second category to the sec-
ond goal. The last category describes the stealthi-
ness of an entire radar system. Table 1.1 contains
a selection of parameters that belong to these cate-
gories. The requirements on the parameters are specified fora certain bandwidth, or, frequency
range, and for a certain scan range.
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Table 1.1 Beam parameters, mutual coupling parameters, and array effects.

Beam parameters Mutual coupling parameters Visibility parameters
Side lobe level (Mutual) Impedance Radar cross section (RCS)
Beam width Scattering parameters
Gain Reflection coefficients
Polarization Scan loss
Axial ratio

In close cooperation with the system engineers, the antennaengineers determine the require-
ments on the antenna performance parameters from the systemrequirements, which need to be
satisfied by the entire radar system. The antenna engineers must take into account RF (Radio
Frequency) performance, mechanical performance, manufacturability, development time, and
costs. The next step in the design process is the selection ofthe antenna geometry including
the selection of the antenna type. Examples of antenna typesare wire antennas, reflector an-
tennas, and antenna arrays. Within the array type, different kinds are distinguished depending
on the element type, e.g., a waveguide and a microstrip patchor loop, and the array composi-
tion, e.g., uniformly spaced and sparse. The selection of the antenna type and a first estimate of
suitable geometry parameters is usually done by antenna engineers with extensive experience.
Subsequently, simulation tools based on array models are used to predict the array or antenna
performance. As long as the requirements are not met, the selection of antenna geometry pa-
rameters is adjusted. Mostly, this process of adjusting parameters is a trial-and-error process,
where the experience of the antenna designers plays an important role. Only in some cases,
optimization routines are available to automate this process. In the next step of the process, a
prototype is constructed and measurements are carried out.An overview of measurement tech-
niques can be found in [55]. The outcome of the measurements determines whether the design
can be finalized. In case of a negative answer, the following questions are posed.

1. Have the measurements been carried out correctly?

2. Is the prototype free of construction errors?

If the answers to both questions are positive, new antenna geometry parameters need to be
chosen. To achieve this, both the accuracy of the numerical simulation and the validity of the
idealizations need to be reconsidered. Moreover, if the rejection of the prototype is due to a
specific performance parameter, this parameter needs to be emphasized more in the simulations.
For instance, the prototype may show a high visibility, in which case the RCS performance
parameter needs to be emphasized.

Having discussed the specifications of antenna design in general, we now focus on the as-
pects that distinguish array design from general antenna design. The main advantage of (phased)
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arrays over other types of antennas is the possibility of electronic beam steering by using phase
shifts between the elements [122]. Contrary to mechanical beam steering, electronic steering is
accomplished without time delay due to mechanical constraints. Therefore, electronic steering
in (phased) arrays facilitates multiple functions, for example, scanning, tracking, and missile
guiding. On the other hand, electronic steering complicates the RF aspects of the design. The
appearance of grating lobes [70: pp. 29 – 34, 81 – 86], the presence of blind scan angles [70:
pp. 339 – 355], beam broadening [70: pp. 22 – 26], and a high impedance variation [53, 82] are
effects that have, in general, an negative influence on the array performance.

chamfered bend T-junction

Figure 1.4 Schematic representa-

tion of a part of a microstrip net-

work.

To excite the elements of an array, a sophisticated
feeding network is required. This network needs to be
designed such that each element is excited with the right
phase and the right amplitude, and such that the energy
loss in the network is minimized. As an example, we
consider the microstrip network in Figure 1.4. At each
bend or junction of such a network, energy is reflected and
the phase of a propagating electromagnetic wave changes.
Both the amount of reflected energy and the phase change
depend on the frequency. To obtain a uniform perfor-
mance, reflection and phase change should be uniform
over a desired frequency band. Therefore, chamfered
bends [44: pp. 205 – 210 and Fig. 2.38] are often used in
networks. The connections of the feeding network to the
elements should have the same properties as the bends.
To minimize the reflected energy, the impedances of the network connections are matched to
the impedances of the elements. For this purpose, impedancetransformers are used in stripline
networks [44: p. 160]. A difficulty in impedance matching is that the impedance depends on
the frequency and the scan angle. Moreover, the element impedance varies over the array due
to the mutual coupling between the elements. Although extensive research on the relations be-
tween mutual coupling and performance parameters is described in the literature, there are no
general rules. In a prototype or a final design, the mutual coupling can be measured by means
of a network analyzer connected to two elements in the array,while the other elements are
characteristically loaded. The scattering parameters indicate the strength of the electromagnetic
coupling between the elements. Strong coupling may have a deteriorating effect on the array
performance, because power radiated from one element to another flows back into the feeding
network.

Our outline of array design is far from complete and shows only a limited number of diffi-
culties that may arise. For a more extensive, recent description, we refer to [85, 86], in which
array designs other than microstrip designs are consideredas well. For reviews of array de-



6 1. INTRODUCTION

sign in the 70s and 80s, we refer to [68, 69, 112]. Our contribution to the design process was
specifically focused on the second and third stages shown in Figure 1.3, i.e., the selection of
the antenna geometry parameters and the use of models and simulation tools. The modeling ap-
proach and the simulation tools we developed belong to the third stage. On basis of simulation
and research results, we wanted to find characteristics thatdescribe the (qualitative) behavior of
antenna arrays. In particular, as mentioned at the beginning of this chapter, we wanted to find
characteristics of a single element, which are essential for the overall array performance. In this
way, we contributed to the second stage of the design process.

1.2 Simulation Tools and Analysis Approaches

We divide the analysis approaches and simulation tools which support the design process in the
antenna department of Thales Nederland into two categories: an RF category and a mechanical
category. The two most important simulation tools in the mechanical category are the commer-
cial software packages Pro Engineer and ANSYS. By Pro Engineer, 3D models of mechanical
designs are created. The predecessor of this package was a 2Ddrawing package, which has
replaced the drawing tables about 20 years ago. ANSYS is usedto carry out computations for
the mechanical design such as computations of mechanical strength and mechanical tolerance.
These computations are not only essential for a reliable mechanical design, but also for the ef-
fectiveness of a radar system as a whole. The relationship between mechanical design and radar
functioning is apparent in scanning by mechanical rotationand in the stabilization of systems
on ships.

The RF category is divided into two subcategories: models and tools for determining the
impact of systems onto other systems, and models and tools for designing (part of) a system.
In the first subcategory, analysis of electromagnetic coupling in entire systems is the main topic
and simulation tools are based on asymptotic techniques [71, 87], on moment methods [76], and
on combinations of mathematical and physical techniques, i.e., hybrid techniques [113]. The
analysis covers the range of a single antenna up to a completeplatform with more antennas, for
example a ship. It is directed to topics as radar cross section, ghosts (structures on a platform
which are considered as targets), blocking (visual field limited by structures on a platform), and
interference. Platform analysis has become more and more important over the years, because
the number of antennas on a ship increased from about 30 in the70s to more than 100 nowadays.
As an example, we mention the following interference problem in platform analysis. When a
side lobe of a certain radar system on a ship is incident on an antenna array on the same ship,
the limiters of the array must be capable of protecting the LNAs (Low Noise Amplifiers [37: pp.
323 – 326]).

In the second subcategory, the main aspect is the design of antennas and their feeding net-
works. For this purpose, Thales has available commercial software packages such as HFSS,
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Momentum, and MDS, and a self-developed simulation tool called Luxaflex. Both HFSS and
Luxaflex are based on the infinite-array approach, in which a periodic array is constructed from
a unit cell. In HFSS, periodic boundary conditions are prescribed on the walls of the unit cell.
The differential equations describing the electromagnetic field in the unit cell are solved by the
finite-element method. In Luxaflex, the electromagnetic field in the unit cell is described by an
integral equation with a kernel represented by a Floquet series. This equation is solved by the
moment method. Both simulation tools are used for the designof arrays and frequency-selective
surfaces (FSS). Like Luxaflex, Momentum is based on an integral equation formulation of the
electromagnetic field; it is used for the design of several types of single antennas and network
components. The software package MDS is a circuit simulator, which is used for the design of
networks. Besides these packages, Thales has available several tools based on physical tech-
niques [87], for example, techniques to predict the influence of diffraction of a (finite) ground
plate on the radiation pattern of antennas. Moreover, Thales has available simulation tools for
arrays of specific types of elements [35, 50, 119]; these tools are based on the infinite-array
approach. Finally, for a general list of simulation tools, we refer to [23].

Most of the available (numerical) simulation tools for arrays are based on the infinite-array
approach, an approach that has been extensively and successfully used for array analysis. Nev-
ertheless, both approach and tools have several limitations.

• In the design of large arrays, often smaller ‘building blocks’ or subarrays are analyzed
both by simulation and by measurement.These blocks are usually too small to be analyzed
by the infinite-array approach.

• The infinite-array approach cannot account for edge effectscaused by the finiteness of the
array and by the boundedness of the ground plane and dielectric layers. With respect to
the finiteness of the array, simulations and measurements show differences in side-lobe
level between finite-array behavior and infinite-array simulations. When mutual coupling
between the elements is strong, there can be a considerable difference between the behav-
ior of the edge elements and their infinite-array behavior. Moreover, a significant number
of elements may be affected by the edge effects. With respectto the boundedness of
the ground plane, results for single elements show that the element pattern for an infinite
ground plane is perturbed by the edge effects of the bounded ground plane [100]. By
physical techniques such as the Uniform Theory of Diffraction (UTD), the perturbation,
i.e., a ripple on the smooth pattern, is predicted.

• Non-periodic arrays, such as sparse arrays, cannot be analyzed by the infinite-array ap-
proach. Moreover, the failure of certain elements cannot beaccounted for.

• Differences between elements cannot be accounted for in theinfinite-array approach.For
example, ideally, the elements of a planar uniform array areall positioned at the same
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height above the ground plane and they are all geometricallythe same. In the practice of
mechanical engineering, it is very difficult to construct a flat ground plane, especially for
a large array with an array face of16m2. Moreover, the elements will show slight dif-
ferences in shape and height. To investigate the influence ofsuch differences and imper-
fections on the array performance, a straightforward implementation of the infinite-array
approach cannot be used.

A further limitation of numerical simulation tools is that they are generally not designed to
provide insight into characteristics of arrays, i.e., relationships between geometry parameters
and performance parameters. In practice, characteristicsare determined by analyzing simulation
and measurement results for various geometries. Consequently, the inventory of characteristics
is fragmentary. In [8], an inventory of characteristics based on 30 articles on antenna arrays and
single antennas is described.Since characteristics serve as guidelines for the antenna designers,
we preferred an analysis approach that provides direct insight into characteristics.

To overcome the limitations, Thales initiated a sequence ofprojects to analyze finite antenna
arrays and to develop simulation tools [3, 49, 118]. An extensive review can be found in [7:
pp. 13-18]. As mentioned in the introduction of this chapter, the projects were mainly concerned
with the analysis of a single element. The challenge was to find suitable functions to describe
the current on the rectangular loop, as schematically depicted in Figure 1.3, while keeping the
computation time short. Despite extensive research, the computation times remained too high
to extend the analysis to arrays. Therefore, in the project described in [7], we started with the
analysis of simpler (loop) geometries. Next, we decided to shift towards the analysis of large
arrays with the focus on global (array) effects. The main motivation for this shift was to find
characteristics of a single element that are essential for the array performance. Based on these
characteristics, we expected to develop an efficient simulation tool. The more complex the
geometry of the element, the more complicated the determination of characteristics. Because
of this, we decided to consider arrays of the analyzed simpleelements first. The following
additional requirements for our analysis were formulated.

1. As in array design, it should be possible to use information obtained from the analysis of
subarrays in the analysis of the entire array. In this respect, it is important to know which
information of a subarray is essential for the description of the array behavior. Once this
question is answered, the step towards a large array composed of subarrays can be made
in an efficient way without the necessity of calculating again the subarray information.

2. Edge effects due to finiteness of the array should be accounted for. In our research, we
did not consider edge effects caused by boundedness of the ground plane. We expect that
these effects can be handled for by available techniques at Thales [13]. Effects due to the
boundedness of the ground plane are discussed in Section 6.4in relation to the analysis
approach we developed in this thesis.



1.2. SIMULATION TOOLS AND ANALYSIS APPROACHES 9

3. The approach should be (array) lattice independent. In other words, the approach should
not be limited by specific lattices on which the building blocks or subarrays are positioned.

4. The approach should be independent of the choice of the specific elements.

Before we describe our approach, we present a list of available array-analysis approaches, es-
pecially adjustments of the infinite-array approach; we describe the benefits and limitations of
these approaches. Literature on analysis of specific types of arrays, on array synthesis, and on
developments in the understanding of array effects is discussed in Section 2.5 and in Chapter 6.
An extensive literature list of articles on antenna arrays and related topics can be found in [8].

1. Small arrays can be analyzed by full-wave simulations of the actual array structure. To
obtain higher computation speeds, iterative methods are used, such as the matrix decom-
position methods described in [15, 90, 121].

2. To account for edge effects in rectangular uniform arrays, i.e., arrays with a rectangular
lattice and with uniform spacing and uniform element shape,a variety of techniques is
available.

2.1 When the elements of the array are minimum scatterers withrespect to impedance,
admittance, or scattering parameters, results obtained bythe infinite-array approach
are corrected by techniques as described in [100]. Element-pattern results in this
article confirm the statement of earlier work that the characteristics of only those el-
ements in a uniform rectangular array that have at least 12 neighbors on each side are
described by the infinite-array approach. Recent research [48] showed that an exper-
imental array needs to be at least5λ×5λ, with λ the wavelength, to approximate the
element characteristics of large broadband arrays. Then, the behavior of the central
elements is described by the infinite array, while the behavior of the edge elements
approximates the edge behavior of large arrays. For narrow-band arrays with0.5λ

spacing, the minimum size is lower than the size suggested in[100] (10× 10 versus
25 × 25) but for wide-band arrays, it is much larger (50 × 50 versus25 × 25).

2.2 The infinite-array approach is adjusted by a windowing technique, which is applied
both for a circuit description [52] and a field description [104, 105] of the array be-
havior. The basic assumption for the field description is that the current distribution
on the array varies slowly from one element to another. The currents on the elements
are determined in the spectral domain (with respect to position) from an electric-field
integral equation, which is defined for each element separately. The kernel of this
equation is a convolution of the spectral infinite-array kernel and the Fourier trans-
form of the excitation taper, or, ‘window’. The main advantage of the method is that
an uncoupled system of equations needs to be solved instead of a coupled. Since
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the computation of the required infinite-array data dominates the computation time
of solving the uncoupled equations, the total computation time is independent of the
array size.

2.3 In the casting technique in [114], the conventional set of coupled integral equations
describing the array behavior is replaced by casting the corresponding moment ma-
trix into a single integral equation for a global generatingfunction. The kernel of the
resulting equation is the product of the active admittance of the infinite array and the
array factor of the uniformly excited finite array. The casting technique reduces the
problem to a matrix equation which is of the same size as the equation for a single
element in the windowing technique mentioned in item 2.2.

2.4 A variety of approaches takes the edge behavior into account explicitly. Based on
the assumption that the edge behavior of an array is independent of the array size,
the edge behavior of a large array is approximated in [77: p. 1611] by the edge
behavior of a small array. More insight in edge phenomena is provided by the trun-
cated Floquet-wave diffraction method [83, 84]. Within this method, an integral
equation is solved for the fringe current, which describes the difference between
the finite-array current and the associated infinite-array current. The fringe current
is expanded into only a few basis functions defined on the entire array. The ba-
sis functions result from solutions of canonical problems,for example, determining
(Green’s) kernels for a planar semi-infinite array [16, 17, 91]. In [32, 31], the method
is applied to rectangular arrays of open-ended waveguides with uniform and non-
uniform amplitude excitation. Independently developed and strongly related to the
truncated Floquet-wave diffraction method is the hybrid method described in [18].
The currents on the elements near the edges and corners of thearray are described
by separate basis functions, while the currents on the interior elements are described
by a few global basis functions. In the three approaches mentioned, the number of
unknowns is much lower than the number of unknowns in the element-by-element
moment method. Moreover, this number is independent of the array size.

2.5 Instead of modeling a rectangular uniform array as beinginfinite in both length and
width direction, the array is modeled as being infinite in onedirection and finite in
the other direction. In that case, only a single row of elements in the finite direction
needs to be considered. The technique was applied to arrays of patches [77], arrays
of dipoles [45, 117], and arrays of single-mode slots on an infinite ground plane
[102] and on a finite-by-infinite ground plane [103]. Recently, the technique has
been applied to arrays with more complex and strongly coupled elements [28, 29].
Here, the infinite and semi-infinite (half-infinite-by-infinite) array solutions are used
to decompose the current on successive elements into a few standard distributions.
The semi-infinite array solution is based on the moment-method solution for the
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currents on a few edge elements and the assumption that the currents on the other
elements equal the infinite-array solution. The decomposition of currents allows for
a very fast and quite accurate approximation of the current,except near the grazing
and grating-lobe scan angles.

2.6 Examples of other, mainly numerical, approaches are thecombinations of the array
decomposition method and the fast multipole method [56, 57], the moment method
and the discrete Fourier transform method [19, 88], and the forward-backward
method and the discrete Fourier transform method [22]. These hybrid approaches
greatly reduce the computational effort of the element-by-element moment method.

3. To apply the approaches of item 2.2 to non-uniform arrays,the integral equation and win-
dowing technique is reformulated in the spatial domain [106] at the cost of losing the
simplicity of the spectral-domain infinite-array formulation. Solving the integral equa-
tion for the current in the space domain requires the evaluation of Sommerfeld integrals,
which replaces the evaluation of Floquet series in the spectral domain. To compute these
integrals rapidly, powerful numerical tools are needed.

4. To reduce the number of unknowns in the element-by-element moment method and to
conserve flexibility with respect to array lattice and element shape, various techniques
were developed to construct other than piecewise basis functions.

4.1 In the expansion wave concept [33, 123], first, the currents on a single array ele-
ment are determined simultaneously for its feed excitations and for waves incident
on the element from different lateral directions. The reflected waves induced by
these currents are determined by describing the complex amplitude by a number of
basis functions. Then, the array behavior is determined from relationships between
the incident and reflected expansion waves and the feed voltages. The number of
unknowns equals the number of elements times the number of expansion waves de-
termined for a single element. In [123], it is demonstrated that only8 expansion
waves are needed on a patch to reach the same accuracy as with100 piecewise func-
tions.

4.2 In the synthetic basis function technique [74, 89], basis functions for array subdo-
mains are constructed by solving on each subdomain (in isolation) an equation for
the current for a number of excitations. Only a few of such functions are needed in
the global array analysis. The characteristic basis function method [125] is based on
the same principle and, therefore, strongly related to thistechnique.

5. In [36], an array mask is introduced to treat arrays of uniform elements of which the
lattices are constructed from a rectangular uniform lattice by removing certain blocks of
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elements. The mask describes which elements of the uniform rectangular array belong to
the original array. To calculate the current, the adaptive integral method is used [12].

6. Examples of other, mainly numerical, approaches are the combination of the precorrected
fast Fourier transform method and the discrete complex image method [126] and the com-
bination of the characteristic basis function method and the finite-difference time-domain
method [78]. Both approaches greatly reduce the computational effort of the element-by-
element moment method and are applicable to a wider range of arrays than rectangular
uniform arrays only.

Except for item 4.2, the approaches described above do not exploit the subarray idea, which
is described in our additional requirement 1 above. Moreover, most of them were specifically
developed for uniform arrays and, therefore, do not meet ouradditional requirement 3. Third,
although most approaches can be applied to more types of elements, only in some cases, a
general description is provided for the application to ‘arbitrary-shaped’ elements. According to
our requirement 4, we should provide such a general description. Finally, few methods provide
the direct insight into characteristics as we mentioned above. Therefore, we decided to develop
an alternative analysis approach.

1.3 Main Objectives and Analysis Approach

The main objectives in the development of our analysis approach were:

I. To find characteristics of a single element that are essential for describing the array be-
havior.

II. To develop an efficient analysis approach for finite antenna arrays on basis of the element
characteristics. The approach should provide insight intoarray characteristics.

III. To find characteristics that describe the behavior of arrays.

IV. Given that the infinite-array approach is most frequently used, to show in what way and
to what extent our approach improves the infinite-array approach.

Within our research to reach the objectives, two phases are distinguished. The first phase was
concerned with the analysis of single simple elements and the shift towards arrays of such ele-
ments. The analysis is described in Chapter 2 and Sections 3.1 – 3.3 of this thesis; results can
be found in [7, 11], and in Section 2.5. The main model considerations of this phase were:

• The arrays are composed of simple elements: rectangular microstrips and ring-shaped
microstrips, shortly strips and rings. Besides finding characteristics, other motivations
played a role as well in the choice of (these) simple elementsin the first phase.
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– To keep the computation time relatively short for large arrays.

– Since the elements used in practice have a loop geometry, seeFigure 1.2, we opted
for the most simple loop geometry to be described mathematically, i.e., the ring
geometry. We note that a ring is not a simple geometry from thepoint of view of the
automatized microstrip production process due to the largenumber of points needed
to describe a ring in a Cartesian reference frame.

• Choosing simple elements is accompanied by choosing simpleexcitations. Another mo-
tivation for simple excitations is that there is some doubt whether modeling the real shape
of the twin lead, see Figure 1.2, makes much sense. First, thevariation of the twin lead
geometry from element to element will be relatively large compared to the variation of
the geometry of the other antenna-element components. Second, the twin lead hardly
contributes to the far-field characteristics of the array, because it hardly radiates.

• A spatial time-harmonic representation of the electromagnetic fields is employed.

• The elements are assumed so thin and well-conducting that they can be modeled as in-
finitely thin and perfectly conducting, see Section 2.2 for details. Then, the elements are
represented by surfaces. In turn, these surfaces are assumed smooth and oriented, and
their boundary curves are assumed piecewise smooth and oriented, see Section 2.3.1 for
details.

• The elements are assumed so narrow, i.e., their width is muchsmaller than all other length
scalers, that the currents on the elements may be averaged with respect to the widths, see
Section 2.3 for details.

In the first phase of our research, analysis of arrays was carried out by application of the moment
method to the integro-differential equations describing the currents on the arrays. Although the
results were promising, computation times for arrays of simple elements were still too large
to make an extension to more complex geometries possible. Moreover, characteristics of a
single element could only be determined by analyzing simulation results for various geometries.
Therefore, a second phase was initiated of which a first introduction is described in [10]. During
the second phase, the following main features of our approach became clear:

• The behavior of arrays is reflected in their ‘eigenstates’, which we call the eigencurrents.
The eigencurrents have array-independent properties. Moreover, only the ‘force’ by which
the eigencurrents are excited depends on the excitation, not the eigencurrents themselves.
For these reasons, the behavior of arrays can be predicted bymeans of their eigencurrents
in an efficient way.

• As in the actual design, an array is decomposed into a hierarchy of subarrays. Then, the
eigencurrents of the total array are constructed from the eigencurrents of the subsequent
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subarrays. The decomposition of the array depends on the positioning of the elements and
on the excitation or feeding network.

To explain the aspect of decomposition further, we consideran example. Figure 1.5 (left) shows
two subarray decompositions of a uniform4×6 array. The upper array is generated from a1×6

Figure 1.5 Left: Two decompositions of a rectangular4 × 6 array with different (generating)

subarrays. Right: Construction of a rectangular4 × 6 array from subsequent (generating) sub-

arrays.

line array, which in turn is generated from a single element.The lower array is generated from a
2× 2 rectangular array, which in turn is generated from a single element. The decomposition in
the upper figure is suitable if the elements of each row are excited with the same amplitude and
phase, while there are amplitude and phase differences between the rows. The decomposition
in the lower figure is suitable if the elements of each2 × 2 block are excited with the same
amplitude and phase, while there are amplitude and phase differences between the blocks.

Instead of decomposing a given array into subsequent (generating) subarrays, we can also
compose an array from subsequent (generating) subarrays asillustrated in Figure 1.5 (right).
The single-element subarray generates the line array and the line subarray generates the rectan-
gular array. This composition also illustrates in what way the eigencurrents of the total array
can be determined. First, the eigencurrents of a single element are determined and, next, the
eigencurrents of a line array as concatenations of linear combinations of single-element eigen-
currents. In other words, each eigencurrent of a line array is described as a linear combination of
single-element eigencurrents. Finally, the same procedure is carried out to go from the line array
to the rectangular array. Essential aspect of this approachis that, in each step, we need to take
into account only those eigencurrents of the generating subarray that contribute to the mutual
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coupling between the subarrays. The other eigencurrents contribute only to the local behavior of
the generating subarray. This strategy saves considerablecomputational effort. As an example,
we consider a uniform rectangular5 × 30 array, which is generated from a1 × 30 uniform line
array. In turn, this line array is generated from a single element. In the element-by-element
moment method, the current on each element is expanded into anumber of expansion functions,
for example, 30 piecewise functions. Then, the moment matrix describing the array behavior is
a (30 · 5 · 30) × (30 · 5 · 30) = 4500 × 4500 matrix. In the proposed approach, which we call
the eigencurrent approach, the eigencurrents of a single element are determined from a30 × 30

matrix. Next, if only two single-element eigencurrents contribute to the mutual coupling in the
line array, its (coupling) array eigencurrents are determined from a60 × 60 matrix. If N ≤ 60

eigencurrents of the line array contribute to the mutual coupling in the rectangular array, its
eigencurrents are determined from a5N × 5N matrix. The matrix sizes in the eigencurrent ap-
proach are thus much smaller than the matrix size of the element-by-element moment method.
Other computational advantages are discussed in the next section and in Chapters 5 and 7.

We end this section with some general remarks on the eigencurrent approach.

• The mutual coupling between the subarrays is quantified by means of a proposed measure,
i.e., the spread of the eigenvalues, see Section 5.1 and Subsection 6.3.1.

• The eigencurrent approach is described in general terms in Chapter 5, but it was developed
on basis of analysis of line arrays. Therefore, the examplesare focussed on line arrays in
particular.

• Although the examples above were uniform line arrays and rectangular arrays, the ap-
proach can be applied in principle to non-uniform arrays as well. More general, the
eigencurrent approach is not lattice dependent, only subarray dependent. For a discus-
sion, we refer to Section 5.4.

• By decomposing an excitation field of a certain array into thearray eigencurrents, it can
be understood which excitation fields are well-supported bythat array. On a single el-
ement, the excitation field is expressed into the eigencurrents of that element. If only a
few eigencurrents determine the behavior of a single element, the exact form of the exci-
tation field is not important, but only its decomposition into these few eigencurrents. This
explains once more why simple excitation fields are used.

• An overview of approaches related to the eigencurrent approach is presented in Subsection
5.1.4.

In Chapter 7, we describe the conclusions of our research andthe analysis approach for finite
antenna arrays that we propose. Moreover, we discuss to whatextent the conclusions and the ap-
proach satisfy the main objectives in this section and the additional requirements in the previous
section, see p. 8.



16 1. INTRODUCTION

1.4 Organization and Contents of the Thesis

We start this thesis with the description of the classical problem of calculating the electromag-
netic field induced by a current distribution in free space, see Figure 1.6. Once the model
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Figure 1.6 Start of the research. We note that ‘Phase 1’ and ‘Phase 2’ indicate thefirst and

second phases of our research, while ‘(Phase 1)’ and ‘(Phase 2)’ indicate the connection of this

scheme with the schemes in Figures 1.7 and 1.8, where the two phases are described.

assumptions for arrays of microstrips have been formulatedin Section 2.2, the solution of the
classical problem is used to describe the electromagnetic field induced by such an array. Ba-
sic relation is the integro-differential equationZJ = ES , also called the electric-field integral
equation. It relates the currentJ on the conducting surfaceS formed by the array elements
to the tangential excitation fieldES by means of the integro-differential operatorZ, which we
will call the impedance operator. The tangential excitation field describes the source of the array,
and is considered in detail in Chapter 4. In Section 2.3.1, anaveraged form of this equation is
deduced for narrow microstrips, i.e., microstrips of whichthe width is much smaller than the
other length scales in the array and the wavelength. Next, this averaged form is elaborated for
line arrays of arbitrary spaced strips with uniform geometry and to planar arrays of arbitrary
positioned rings with arbitrary sizes and orientations. Bydimensional analysis, terms of higher
order due to the narrow-strip assumption are identified and neglected. The analysis differs from
the generally applied wire analysis with reduced kernel [120: pp. 20 – 23, pp. 40 – 45] in that
the scattered field is averaged instead of evaluated at the centerline, and in that the obtained
integral kernels are logarithmically singular instead of continuous.

To describe the calculational aspects of both phases of our research, we introduce the re-
quired algebraic concepts as well as the moment method in Subsections 2.4.1 and 2.4.2. Next,
we describe the first phase as schematically depicted in Figure 1.7. This phase starts in Subsec-
tion 2.4.3 with the general moment-method formulation for arrays. Before the aspects of this
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Figure 1.7 Scheme of the first research phase.

formulation are discussed in detail in Chapters 3 and 4, we present initial results for uniform
and non-uniform arrays in Section 2.5. The results concern the occurrence of large current-
amplitude variations in finite arrays, behavior of exponentially spaced arrays, line-array failure
in rectangular arrays, and a comparison of uniform and perturbed arrays.

Choice of suitable test and expansion functions for the moment method, calculation of the
moment matrix components, numerical computation of these components, and analysis of uni-
form (line) arrays are the aspects we discuss concerning theimpedance operator in the moment-
method formulation. In Sections 3.1 and 3.2, we describe theaspects of test and expansion
functions commonly used in the literature from an operator-theoretical perspective. As a result
of the averaging procedure in Chapter 2, the moment matrix components calculated in Section
3.3 reduce to single integrals for line arrays of strips. Forline arrays of rings, they reduce to
double and single integrals in case of mutual and self coupling, respectively. Two calculation
procedures are explored, one in which the differential partof the averaged impedance operator is
‘equally distributed’ over test and expansion functions asin Green’s theorem, and one in which
this part is transferred to the test functions. In the secondprocedure, the Sturm-Liouville prop-
erties of the differential operator are exploited. In the special topic of uniform (line) arrays, the
infinite-array approach is applied to approximate the current on the elements. The convergence
or divergence of this approach is related to the physical phenomena of grating-lobe appearance
and grazing scan. This relation extends results in the literature in that different types of line ar-
rays are considered. Moreover, a mathematical explanationof the convergence and divergence
aspects is provided based on Toeplitz properties of the impedance operator. Further investigation
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of these properties and their relation to scanning are described in Chapter 5.

In Chapter 4, we discuss the tangential excitation field by which the source of arrays of
strips and rings is modeled. Two types of excitation fields are considered: excitation fields
related to the transmit function, also called local feeds, and excitation fields related to the receive
function of the array. In particular, we investigate the consequences of expressing the tangential
excitation field in terms of a finite set of expansion functions. We show that specific choices of
local feeds, i.e., the delta gap, the finite feed gap, and excitation by a proximity coupled small
ring, are equivalent. They generate the same current distributions up to small perturbations.
Based on this result, we choose finite expansions of the deltagap as tangential excitation fields
for the simulation in Chapter 6. Additionally, we discuss the equivalence of local feeds with
respect to a local performance parameter, i.e., the (complex) power. Within the frame of the
dimensional analysis of Chapter 2, we show that the tangential excitation field and the current
may be replaced by their averaged forms in the computation ofthe (complex) power. Moreover,
we show that the real part of the complex power equals twice the radiated power, as described
in the literature. Finally, to model the receive function, we choose plane waves and we show for
which plane-wave directions the averaging procedure of Chapter 2 is valid. Moreover, we show
that currents induced by local feed gaps and currents induced by plane waves are approximately
the same, which is explained by the reciprocity theorem.

The second phase of our research is described in Chapter 5, see Figure 1.8. In Section 5.1,
the general idea of the approach suggested in this thesis, called the eigencurrent approach, is de-
scribed. The eigencurrent approach consists of two main steps, called the initialization and the
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Figure 1.8 Scheme of the second research phase.

cycle. In the initialization, the eigencurrents of a singleelement, or more general, of the initial-
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izing subarray, are determined. In the cycle, the eigencurrents of the array are determined from
the eigencurrents of subsequent subarrays by an iterative process as outlined in Section 1.3. Cal-
culational details of both steps for eigencurrents of line arrays of strips and rings are discussed
in Sections 5.2 and 5.3. The excited current on line arrays ofstrips and rings is expressed in
terms of these eigencurrents, see Section 5.3.1. In Subsection 5.3.2, we relate the eigencur-
rents to scanning by linear phase tapering and we compare theeigencurrent approach with the
infinite-array approach. Special attention is devoted to the one-to-one correspondence between
eigenvalues and scan angles and to the divergent and convergent behavior of the infinite-array
solution at the grazing and grating-lobe scan angles. The main conclusions of the initialization
and the cycle are summarized in Section 5.4. Moreover, we provide a manual in which the steps
of the application of the eigencurrent approach to arrays ofarbitrary elements are described.

The main items of both our research phases are joined in Chapter 6, see Figure 1.9. In Sec-
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Figure 1.9 Schematic combination of the main items of both research phases.

tion 6.1, we compare results of the eigencurrent approach with results of the element-by-element
moment method for various line-array sizes. Next, in Section 6.2, we show that the eigencurrent
approach can predict the large variations of element-current amplitudes observed in the third
example of Section 2.5. These variations, and corresponding variations of element impedances,
cannot be predicted by the infinite-array approach and may decrease the performance of an ar-
ray considerably. We propose an explanation, alternative to the explanation in [53, 82] based on
array surface waves, for the large variations by showing that they are caused by the excitation of
specific resonant eigencurrents. Moreover, we show that on basis of the behavior of the eigen-
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values, resonances are predicted and suitable loads can be determined to prevent the excitation
of resonant eigencurrents.

In Section 6.3, we first show that the spread of the eigenvalues is a quantitative measure
for mutual coupling and, therewith, for the number of eigencurrent groups needed in the cycle
of the eigencurrent approach. This investigation leads again to the identification of resonances
of arrays. We show that the modulated oscillations of element impedances discussed in [30,
46] are caused by the excitation of specific resonant eigencurrents and, therewith, by the same
mechanism as the variations of element impedances attributed to surface waves. Next, we show
that mutual coupling between distant elements may be neglected, but that special care is needed.
Except near the appearance of a grating lobe, the number of neighbors needed to describe mutual
coupling is well predicted by the variation of the spread as afunction of the number of elements
in small arrays. Finally, we show that by fixing eigencurrents for a chosen set of geometry
parameters, performance parameters for other sets of geometry parameters can be predicted in a
fast and accurate way.

In Section 6.4, we show that the eigencurrent approach is capable of predicting the array
behavior at the grating lobe scan angle. Moreover, we explain how this result supports our idea
that the eigencurrent approach can not only handle arrays positioned in free and half space,
but also arrays on dielectric layers, which may support surface waves. Finally, we present the
conclusion of this chapter in Section 6.5 and we discuss to what extent the objectives of Section
1.3 were reached.

In Chapter 7, we first formulate the main conclusions of our research. Subsequently, we
present the approach proposed in this thesis to analyze finite antenna arrays: the eigencurrent
approach. In Section 7.3, we suggest potential modifications of this approach for a faster com-
putation. Finally, we discuss recommendations both for array design in general and for the
application of the eigencurrent approach.

Computational Details

All computations were carried out with Matlab 5.3 on a HP PC with Windows NT, an Intel
Pentium 4 processor at 1.0 GHz, and 256 Mb of RAM.
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CHAPTER 2

Mathematical Modeling

In this chapter, we describe the start of our research, as described by the scheme in Figure
1.6. First, the classical problem of calculating the electromagnetic field induced by a current
distribution in free space is discussed. Once the model assumptions for arrays of microstrips,
see for example Figure 2.1, have been formulated in Section 2.2, the solution of the classical
problem is used to describe the electromagnetic field induced by such an array. The basic relation

5,8
6 c

m

h

Figure 2.1 A rectangular2 × 2 array of ring-shaped microstrips, shortly rings, above a ground

plane.

is the integro-differential equationZJ = ES , also called the electric-field integral equation
(EFIE). It relates the currentJ on the conducting surfaceS formed by the array elements to the
tangential excitation fieldES by means of the integro-differential operatorZ, which we will call
the impedance operator. The tangential excitation field describes the source of the array, and is
considered in detail in Chapter 4. In Section 2.3.1, an averaged form of this equation is deduced
for narrow microstrips, i.e., microstrips of which the width is much smaller than the other length
scales in the array and the wavelength. Next, this averaged form is elaborated for line arrays of
arbitrary spaced strips with uniform geometry and to planararrays of arbitrary positioned rings
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with arbitrary sizes and orientations. By dimensional analysis, terms of higher order due to the
narrow-strip assumption are identified and neglected. The analysis differs from the generally
applied wire analysis with reduced kernel [120: pp. 20 – 23, pp. 40 – 45] in that the scattered
field is averaged instead of evaluated at the centerline, andin that the obtained integral kernels
are logarithmically singular instead of continuous.

To describe the calculational aspects of both phases of our research, we introduce the re-
quired algebraic concepts as well as the moment method in Subsections 2.4.1 and 2.4.2. Next,
we describe the first phase as schematically depicted in Figure 1.7. This phase starts in Subsec-
tion 2.4.3 with the general moment-method formulation for arrays. Before the aspects of this
formulation are discussed in detail in Chapters 3 and 4, we present initial results for uniform and
non-uniform arrays in Section 2.5. The results concern occurrence of large current-amplitude
variations in finite arrays, behavior of exponentially spaced arrays, line-array failure in rectan-
gular arrays, and comparison of uniform and perturbed arrays.

2.1 A Classical Problem

In this section, we consider the electromagnetic field in free space generated by a time-harmonic
current densityJ with radian frequencyω. The field is governed by Maxwell’s equations

rotE = −∂B

∂t
, rotH =

∂D

∂t
+ J , (2.1)

see [109: p. 2]. Here,E andH are the strengths of the electric and magnetic field,D andB

are the densities of the electric and magnetic flux, andt is the time variable. The conservation
of charge is described by the continuity equation

∂̺

∂t
+ div J = 0, (2.2)

where̺ is the charge density. The constitutive behavior of free space is described by

B = µ0H , D = ε0E , (2.3)

where the permittivityε0 and the permeabilityµ0 of free space are both scalars, their values
being1/36π ·10−9 As/V m and4π ·10−7 V s/Am . The time-harmonic behavior of the current
density is modeled as

J (x, t) = Re
(

J(x) ejωt
)

=
1

2

[

J(x) ejωt + J∗(x) e−jωt
]

, (2.4)

where∗ indicates the complex conjugate and the tuplex ∈ R3 represents the position. Notice
the change of notation between the vector functionJ in the space-time domain and the vector
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function J in the space-frequency domain. We refer toJ as the current. Incorporating the
time-harmonic behavior and the constitutive behavior in Maxwell’s equations and continuity
equation, we arrive at

rotE = −jωµ0H , rotH = jωε0E + J , jωρ + div J = 0 . (2.5)

From (2.5), we finddiv H = 0, i.e.,H is solenoidal, anddiv E = ρ/ε0.
Next, we expressE andH in the currentJ . Sincediv H = 0 and free space is contractible,

H is source free. Thus, there exists a magnetic vector potential A such that

H = rotA . (2.6)

Substituting (2.6) in (2.5)1, we observe that the vector fieldE + jωµ0A is irrotational. We
note that the super index1 of (2.5) denotes the first equation of (2.5). Since free spaceis simply
connected, this field is also conservative and thus there exists a scalar functionψ such that

E + jωµ0A = −gradψ . (2.7)

Substituting this expression forE in (2.5)2, we obtain

rot rotA = ω2ε0µ0A − jωε0 gradψ + J . (2.8)

Finally, applying the vector identityrot rotA = grad div A − ∆A and the Lorentz gauge
−jωε0 ψ = div A , we obtain the well-known Helmholtz equation for the magnetic vector
potentialA,

∆A + k2A = −J , (2.9)

wherek is the wave number defined byk = ω
√

ε0µ0. Moreover, by relation (2.7) and the
Lorentz gauge,E is expressed in terms ofA:

E = DA, D = −jZ0k

(

I +
1

k2
grad div

)

, (2.10)

whereI is the identity operator andZ0 =
√

µ0/ε0 = ωµ0/k is the characteristic impedance of
free space. It is well known that the solution of (2.9), supplemented by the radiation conditions
at infinity, is given by

A = T J , (T J)(x) =

∫R3

Gfree(x;x′)J(x′) dx′, (2.11)

where the kernelGfree is defined byGfree(x;x′) = gfree(|x − x′|)I, gfree being a fundamental
solution of the Helmholtz operator,

gfree(R) =
1

4π

e−jkR

R
, R(x) = |x| , (2.12)
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see [80: Ch. 13, p. 1778], [124: p. 1566], and [127: pp. 496 – 497]. For a deduction of
gfree, we refer to [127: pp. 379 – 382]. In the literature, a fundamental solution of a differential
operator is often called a Green’s function. However, the concepts of fundamental solution and
Green’s function are not the same. The universally accepteddefinition [66: pp. 92, 93, 105]
of a fundamental solution is the definition of L. Schwartz, i.e., a fundamental solution of a
differential operatorL with respect to a pointx′ is defined as any distributionfx′ that satisfies
Lfx′ = δx′ , whereδx′ is the delta distribution corresponding to the pointx′. For a (historical)
review of the theory of distributions, we refer to [66: Ch. 6]. Green’s functions were introduced
by G. Green for determining the electric potential in a vacuum bounded by conductors with
given potentials [66: p. 95]. A Green’s function is a fundamental solution of the Laplace
operator in three dimensions and satisfies (Dirichlet) boundary conditions at the boundary of a
specified domain. Usually, fundamental solutions are called Green’s functions when boundary
conditions are imposed on these solutions, see [66: pp. 92, 93]. For a (historical) review of the
development of the concepts of Green’s function and fundamental solution, we refer to [66: Ch.
4]. We will refer toGfree andgfree as the kernels of the corresponding integral operators.

2.2 Model Assumptions

We consider an array of microstrip elements and describe these elements by volumes in a space
Ω ⊂ R3 with boundary∂Ω. Let V ⊂ Ω be the union of these volumes. As in the classical
problem, the currentJ in V induces an electromagnetic field inΩ, which is governed by
Maxwell’s equations. In this section, we present the assumptions for modeling such an array.
We relate each model assumption to the classical problem of the previous section and show the
impact of the assumption on the formulation.

1. The elements are excited by time-harmonic fields with a single frequencyf = ω/2π only.
The wavelengthλ related tof is in free space given byλ = c/f , wherec = 1/

√
ε0µ0 is

the speed of light. The assumption seems reasonable, if the elements are excited by a field
that is approximately monochromatic. Therefore, we use only one frequency component
and model the electromagnetic field as in the classical problem, see (2.4), with currentJ .
To analyze more frequency components, superposition can beapplied.

2. The elements are modeled as infinitely thin, perfect conductors. In other words,V is
replaced by a perfectly conducting surfaceS. This model assumption is supported by
a dimensional analysis based on the following dimension considerations. First, the skin
depth of the current is much smaller than the other characteristic length scales of the
geometry and the electromagnetic field. The skin depth is defined byδskin =

√

2/µ0ωσ,
whereσ is the conductivity of the elements. Second, the thickness of the elements is much
smaller than the other characteristic length scales of the geometry and the electromagnetic
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field, except for the skin-depthδskin. For example,δskin/2τ . 0.05 for copper elements
with thickness2τ = 40 µm excited at about 1 GHz or more. Examples of dimensional
analyses can be found in [9] and [62: Ch. 7]. The analyses led to the well-known boundary
conditions for infinitely thin, perfect conductors, i.e., the tangential electric field vanishes
at the perfectly conducting surface and the jump of the tangential magnetic field over the
surface equals the (surface) current density. These conditions are denoted asn×E|S = 0

andn × (H|S+ − H|S−) = J s. Here,J s is the surface current density,S± denote the
sides ofS, |S and |S± denote the restrictions toS andS±, andn is the normal onS
pointing into the area at theS+-side of S. Moreover, the vector product× of R3 is
applied to complex vector fields.

As an example of the dimensional analyses mentioned above, we summarize the special
case of a long straight thin strip, see Figure 2.2, as discussed in [9]. The strip is em-

2b

2τ ex

ey

ez

Figure 2.2 A thin strip of width2b and thickness2τ .

bedded in a dielectric medium with permittivityεd. First, a set of differential equations
and boundary conditions for the current in the strip and the electric field in the dielec-
tric medium are deduced from Maxwell’s equations supplemented by Ohm’s law for the
electromagnetic field in the strip. The current is assumed tobe a propagating wave in the
length direction of the strip with prescribed amplitude of the total current through the cross
section of the strip. Reflections at the end sections are ignored. Next, to investigate the
electric field near the strip and the current inside the strip, the equations and conditions are
scaled with respect to the thickness2τ and the width2b of the strip. The scaled equations
incorporate the small parameterǫ = τ/b, which is of the order10−3 for the applications
we consider. This parameter is responsible for boundary layers near the edgesx = ±b,
which are ignored on basis ofǫ = O(10−3). Next, approximate expressions for the elec-
tromagnetic field in the dielectric medium are calculated, where radiation conditions are
prescribed at infinity. In these expressions, terms of the order

√

ωεd/σ (. 10−3), i.e.,
the ratio of the wavelength in the dielectric and the skin depth δskin, are neglected. The
resulting electric field in the strip only exhibits az-component and the corresponding
magnetic field only exhibits anx-component. Moreover, both these fields and the surface
charge density atz = ±b are completely described by the (prescribed) total amplitude
of the current, the permittivity of the dielectric medium, and the permeability of vacuum.
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The current in the strip only exhibits ay-component and the wave number of the current
equals the wave number in the dielectric medium. The corresponding wavelength is much
larger than the width of the strip, which confirms the assumption that the wave propa-
gates iny-direction only. The current decays exponentially from theboundariesz = ±τ

with exponent−2/δskin. Sinceδskin . 0.05, the current is restricted to very thin layers
near the boundaries. When the limitδskin → 0 is taken in distributional sense, the cur-
rent is restricted to the boundariesz = ±τ . In the above, the limits

√

ωεd/σ → 0 and
δskin → 0 were taken, which can be interpreted asσ → ∞, i.e., the strip is a perfect
conductor. Moreover, the strip can be modeled as infinitely thin, because its thickness
is much smaller than all other length scales, and the currentis located at the boundary.
The boundary conditions for the infinitely thin, perfectly conducting strip follow from the
obtained results for the electric and magnetic fields in the dielectric medium evaluated at
z = ±τ . For further details, we refer to [9].

4. The spacesΩ we consider are free space and a half space bounded by a perfectly con-
ducting planeΣ. The electromagnetic field induced by a current in free spaceis given by
(2.10) - (2.12). For a half space, the electromagnetic field is described analogously, but
with a different kernelGhalf defined by

Ghalf(x;x′) =
[

gfree

(

R(x − x′)
)

− gfree

(

R(x −Mx′)
)

]

Itr +

+
[

gfree

(

R(x − x′)
)

+ gfree

(

R(x −Mx′)
)

]

Iax . (2.13)

Here,Itr projects a vector on the transverse plane, i.e., the plane parallel to Σ, whereas
Iax projects a vector on the axis perpendicular to the transverse plane. Moreover,Mx′ is
the mirror image ofx′ with respect to the planeΣ. The expression forGhalf can be found
from (2.9) by the method of imaging and by rewriting the boundary conditionn × E|Σ
to a boundary condition forA, i.e.,n × A|Σ = 0 and(∂A/∂n)|Σ = 0. Notice that if
other spacesΩ are considered, the corresponding kernelGΩ can also be found from (2.9)
together with the boundary conditions at∂Ω, but without the conditions atS. We note that
the boundary conditions at∂Ω incorporate the radiation conditions, ifΩ is unbounded. If
the medium inΩ is described by other constitutive equations than (2.3), they need to be
accounted for in the solution for the electromagnetic field and the kernel.

The classical problem together with the assumptions suggests that the electromagnetic field
generated by the currentJ := J s is given by

H = rotA , E = DA , A = T J , (T J)(x) =

∫

S

GΩ(x;x′)J(x′) dx′ , (2.14)

i.e., (2.6), (2.10), and (2.11) withR3 replaced byS. The fieldsE andH are the scattered
electric and magnetic fields induced by the currentJ . SinceGΩ is constructed such that the
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boundary conditions at∂Ω are satisfied, only the boundary condition forE at S given in as-
sumption 3 still needs to be applied. This condition can be written in the form(E)tan = 0.
Here,( · )tan is a trace operator, which restricts a vector function onΩ to S and then takes the
tangential component, i.e.,

(C)tan = C|S − (n • C|S)n , (2.15)

where the scalar product( . • . ) on R3 is applied to complex vector fields. We note that
(C)tan = −n × n × C|S . The operator( · )tan is only well-defined for vector fields that
are continuous acrossS. For a discontinuous vector field, we need to distinguish between the
restrictions|S+ and|S− . Using the relation betweenE andJ given by (2.14), we obtain

ZJ := (DT J)tan = 0 . (2.16)

The operatorZ = (DT · )tan is called the impedance operator. The electromagnetic fieldin Ω is
now completely described by (2.14) and (2.16). However, ifZ is injective on a suitable chosen
domain forJ , then (2.16) yields the trivial solutionJ = 0. To obtain a non-trivial solution, the
right-hand side of (2.16) is replaced by a non-zero tangential vector fieldES at S, called the
excitation field. Then,

ZJ = ES (2.17)

yields a unique non-trivial solution forJ , if Z is injective andES ∈ ran(Z). Here, ran( · )
denotes the range of an operator, which depends on the domaindom( · ) of this operator. The
excitation field can be interpreted as the tangential electric field atS induced by an externally
applied electric fieldEext. Requiring that the total tangential electric field vanishes atS, we ob-
tain (2.17) withES = −(Eext)tan. An example of an externally applied electric fieldEext

is an incident wave, i.e., a solution(Eext,Hext) of (2.5)1,2 with J = 0. The total field
(Eext + E,Hext + H) satisfies Maxwell’s equations inΩ\S and the boundary condition at
S. Moreover, the total field satisfies the boundary conditionsat ∂Ω only if (Eext,Hext) satis-
fies these conditions. Other examples ofEext are given in Chapter 4.

2.3 Calculational Aspects of the Impedance Operator

In this section, we consider the calculational aspects of the impedance operator and the related
equation (2.17). First, we present a general outline of these aspects. Next, we apply the results
of the outline to line arrays of rectangular microstrips, shortly strips, and to arrays of ring-shaped
microstrips, shortly rings.
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2.3.1 General Outline

We consider first a single microstrip element, which is modeled as a smooth oriented surface
S in the spaceΩ ⊂ R3. We introduce a parameter representation∗ xS ∈ F (Π(S),R3) on S,
whereΠ(S) is the parameter set ofS. Elements ofΠ(S) are tuples(ξ, η). Two tangent vectors

eξ =
∂xS

∂ξ

/

∣

∣

∣

∣

∂xS

∂ξ

∣

∣

∣

∣

, eη =
∂xS

∂η

/

∣

∣

∣

∣

∂xS

∂η

∣

∣

∣

∣

, (2.18)

correspond to the parameter representationxS , see for example Figure 2.3. They span the
complex tangent plane Tang(S, (ξ, η)) at each pointxS(ξ, η), (ξ, η) ∈ Π(S), of the surfaceS,
i.e.,

Tang(S, (ξ, η)) = {αξeξ(ξ, η) + αηeη(ξ, η) | αξ, αη ∈ C } . (2.19)

Here, we extended the usual definition [27: p. 282] of tangentplane from real to complex
combinations ofeξ and eη, because we want to analyze the complex vector fieldJ that is
defined onS and that is tangential toS. Define the tangent bundle Tang(S) of S as the union of
all tangent spaces ofS. Then,J and(LJ)tan are both elements of linear spaces of functions,
F (Π(S), Tang(S)). The operatorsT and( · )tan are linear mappings between linear spaces of
functionsF (Π(S), Tang(S)) andF (Ω,C3).

Another definition of tangent spaces can be found in [26: p. 63], where these spaces are
introduced as function spaces. According to this definition, the tangent space ofS consists
of vector functionsf , which are defined onΠ(S) and for whichf(ξ, η) is an element of
Tang(S, (ξ, η)) in (2.19) for each(ξ, η) ∈ Π(S). This tangent space is a subset of the func-
tion spaceF (Π(S), Tang(S)), becausef ∈ F (Π(S), Tang(S)) requires only thatf(ξ, η) is an
element of the tangent bundle Tang(S) for each(ξ, η) ∈ Π(S). We use the definition of tangent
space in (2.19) and the related definition of tangent bundle.

The normal onS at xS(ξ, η), sayeζ = eξ × eη or eζ = −eξ × eη, is the normal of the
tangent plane atxS(ξ, η). Since the surfaceS is oriented, there exists exactly one way in which
we can obtain a smooth vector fieldeζ choosing the direction of the normal in one point onS

only. Thus, having chosen a right-handed coordinate system{eξ(ξ0, η0),eη(ξ0, η0),eζ(ξ0, η0)}
for a certain tuple(ξ0, η0) ∈ Π(S), we obtain the coordinate system

{eξ(ξ, η),eη(ξ, η),eζ(ξ, η)} , (2.20)

with (ξ, η) ∈ Π(S). This system is attached to each pointxS(ξ, η) of S. Moreover, it
is orthonormal (with respect to the Euclidean inner producton R3) and right-handed for all
(ξ, η) ∈ Π(S). For any vector fieldC in Ω, C|S± can be expanded into this coordinate system,

C|S± = (eξ • C|S±)eξ + (eη • C|S±)eη + (eζ • C|S±)eζ . (2.21)

∗By F (A, B), we denote a linear space of functions, which map the elements of a setA into a setB.
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Assume that the surfaceS has a piecewise smooth and oriented boundary curve∂S. This
curve has a piecewise defined tangent vectorτ ∂S , such that the orientation of∂S induced by
τ ∂S fits to the choice of the normaleζ in the sense of the (right-handed) corkscrew rule related
to Stokes’ theorem. For every point at∂S, there exists a piecewise vectorn∂S ∈ Tang(S)

perpendicular toτ ∂S andeζ , i.e.,n∂S = τ ∂S × eζ |∂S . Then,J obeys the boundary condition

(n∂S • J |∂S) = 0, (2.22)

which means that the current cannot ‘flow’ out ofS.
Using the vector prerequisites introduced above, the action of the integral operatorT is

interpreted onΩ as

A = T J =

∫

Π(S)

G
(

· ;xS(ξ′, η′)
)

J(ξ′, η′) dS(ξ′, η′) , (2.23)

where

dS(ξ′, η′) = Svol(ξ′, η′) dξ′dη′ , Svol =

∣

∣

∣

∣

∂xS

∂ξ
× ∂xS

∂η

∣

∣

∣

∣

. (2.24)

Choosing a coordinate system inΩ and expressingD into this system, we can calculate the
scattered fieldE = DTJ . For an arbitrarily chosen coordinate system, it is difficult to apply the
trace operator( · )tan to this field, simply because the system does not ‘fit’ to the geometry ofS.
This problem can be circumvented by extending the local coordinate system in (2.20) to a global
coordinate system. Then, the differential operatorD can be expressed into this coordinate sys-
tem. However, such a global extension is only possible for specific local coordinate systems, for
example whenxS describes a planar, cylindrical, or spherical surface. In other cases, the local
coordinate system is extended to a locally global coordinate system. This extension is based on
a smooth extensionxext

S of the parameter representationxS with corresponding extensioneext
ζ

of the fieldeζ . A locally global coordinate system can then be obtained from the mapping

x(ξ, η, n) = xext
S (ξ, η) + neext

ζ (ξ, η) . (2.25)

Having constructed a global or locally global coordinate system, we can calculateZJ by

ZJ = (DA − (eext
ζ • DA)eext

ζ )|S , (2.26)

whereA is defined as in (2.23). The differential operator in the right-hand side can be expressed
into the partial derivatives with respect toξ, η, andζ. If this differential operator does not
incorporate the normal derivative, i.e.,∂/∂ζ, we can identify an operatorDS , which incorporates
the partial derivatives with respect toξ andη only and satisfies

(D · )tan = DS( · |S) . (2.27)
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Note thatDS incorporates the projection of( · )tan onS. A sufficient condition for the existence
of DS is thatAζ |S = (T J)ζ |S = 0 in a neighborhood ofS. In other words,GΩ( · ;xS(ξ′, η′))e

has no normal component in this neighborhood for alle ∈ Tang(S) and(ξ′, η′) ∈ Π(S). This
implies thatDS can be found for surfaces in free space or for surfaces parallel to the boundary
of a half space, for example.

To introduce the concept of averaging a tangential vector field on S, we assume that there
exists a setΠξ(S) and a scalarη1 such thatΠ(S) = Πξ(S) × [−η1, η1]. Then,Π(S) has a
well-defined smooth centerlinexS( · , 0) with tangent vectorτ = eξ( · , 0), see Figure 2.3. This

ex

ey

ez

O
eη

eζ

eξ

S

centerlinexS( · , 0)

xS(ξ0, · )

Figure 2.3 Geometry of a surfaceS with a centerline.

tangent vector can differ from the tangent vectorτ ∂S at ∂S, see below (2.21). Letu be a
tangential vector field onS and define the vector fieldAu by

(Au)(ξ, η) = u(ξ) τ (ξ), (ξ, η) ∈ Π(S) , (2.28)

where

u(ξ) =

(∫ η1

−η1

Svol(ξ, η) dη

)−1 ∫ η1

−η1

uξ(ξ, η)Svol(ξ, η) dη . (2.29)

The vector fieldAu is uniform inη and directed along the centerline ofS in each pointxS(ξ, η).
Notice that the operatorA satisfies the basic property of projections, i.e.,A2 = A, see also
Subsection 2.4.1. The differenceu −Au is given by

(u −Au)(ξ, η) =
[

uξ(ξ, η) − u(ξ)
(

eξ(ξ, η) • τ (ξ)
)

]

eξ(ξ, η) +

+
[

uη(ξ, η) − u(ξ)
(

eη(ξ, η) • τ (ξ)
)

]

eη(ξ, η) . (2.30)
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This difference indicates that we can replaceu byAu if

uξ ≈ u, uη/uξ ≈ 0, (eη • τ ) ≈ 0, (2.31)

on Π(S), where ‘≈’ needs still to be interpreted with respect to a functional metric. Such a
metric depends on the antenna parameter under consideration of which examples are given in
Section 1.1. The metric should relate the simulation resultfor a parameter to a certain reference.
This reference can be a measurement result or another simulation result that is not subject to
certain approximations. In Subsection 6.3.1, an example ofa metric based on theL2 norm is
introduced to compare results obtained by two different approaches for the analysis of finite
antenna arrays, i.e., the usual moment method and the eigencurrent approach proposed in this
thesis. Moreover, it is shown that the difference between both results is also described by a
measure based on the eigenvalues obtained in the eigencurrent approach. We will not go into
further detail with respect to the functional metric related to (2.31). In the next sections and
chapters, we only will indicate when the interpretation in terms of this functional metric is
required for a certain approximation.

The first two conditions in (2.31) depend mainly on the vectorfield u, whereas the last
condition depends solely onxS and hence on the geometry ofS. If the conditions (2.31) are
satisfied, we say thatS is narrow with respect to the vector fieldu. If u is replaced byAu,
we say thatu is width-averaged onS and we callAu the width-average ofu. Integrating the
width-averageAu overΠξ(S), we obtain the average ofuξ onS.

The surfaceS is generated by the set of curvesKξ with parameter representationxKξ
(η) =

xS(ξ, η) with η ∈ [−η1, η1]. The length of a curveKξ is
∫

Kξ

ds(η) =

∫ η1

−η1

∣

∣

∣

∣

dxKξ

dη

∣

∣

∣

∣

dη . (2.32)

If the length of all the curvesKξ is small with respect to the wavelength, we assume thatS is
narrow with respect toJ and, hence, that we can replaceJ byAJ in the equation for the current
(2.17). Letw be the centerline component of the width-averaged current,i.e., AJ = w τ .
ReplacingJ in (2.17) byAJ , we solve this equation forw instead ofJ . The width-averaged
currentAJ = w τ satisfies the boundary condition (2.22) ofJ at the boundariesxS( · ,±η1)

in the sense of the functional metric corresponding to (2.31). This can be shown as follows.
The boundary curvesxS( · ,±η1) have tangent vectorseξ( · ,±η1). The vectorseη( · ,±η1) are
perpendicular to these tangent vectors and are elements of Tang(S). Applying the boundary
condition (2.22) atxS( · ,±η1) toAJ , we obtain

0 =
(

eη(ξ,±η1) • (AJ)(ξ,±η1)
)

= w(ξ)
(

eη(ξ,±η1) • τ (ξ)
)

, (2.33)

for all ξ ∈ Πξ(S). This shows thatAJ satisfies the boundary condition ofJ at xS( · ,±η1) in
the sense of the metric mentioned above.
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ReplacingJ by AJ in (2.17), we average in fact the domain of the operatorZ. Averaging
the range ofZ as well, we arrive at

AZAJ = AES , (2.34)

which raises the question whether a solution of (2.34) is an approximate solution of (2.17).
By approximate we mean in the sense of the metric mentioned above. Assume that we have
determined a solution of (2.34), sayJA. Then,JA ∈ ran(A), or JA = AJA, and

ZJA = ES − (I − A)ES + (I − A)ZJA . (2.35)

Hence,JA is an approximate solution of (2.17) under the condition that

(I − A) (ZJA − ES) ≈ 0 . (2.36)

In other words,JA is an approximate solution ifS is narrow with respect toZJA − ES . If S is
narrow with respect toES , so that(I −A)ES ≈ 0, the condition turns into(I −A)ZJA ≈ 0 .
This is satisfied ifS is narrow with respect toZJA. Finally, we notice that the solutions of (2.17)
and (2.34) are approximately equal under the condition (2.36), if they are unique and depend
continuously on the right-hand sides.

The domain and the range ofZ are linear spaces of functionsF (Π(S), Tang(S)). The
range ofAZA is a subset of ran(A), which consists of functions in a linear space of functions
F (Π(S), Tang(S)) with centerline dependence and centerline components only. The domain
can also be regarded as such a space, becauseA is applied to each function in the domain,
which yields the centerline componentw. Then, we can replaceAZA by the operatorZa, which
maps the centerline componentw in ran(A) onto the corresponding centerline componentvex

in ran(AZA). We write

Zaw = vex, (2.37)

wherevex = (τ • AES) andZa is the linear operator between linear spacesF (Πξ(S),C ) that
corresponds toAZA.

Let us now extend the formulation toNel microstrip elements modeled as surfacesSq

(q = 1, . . . , Nel) in the spaceΩ. Let S be the union of these surfaces. There exists a vector
function xS on S, such thatxS |Sq

is the parameter representation ofSq with parameter set
Π(Sq). Moreover, there exist vector functionseξ andeη onS, such thateξ|Sq

andeη|Sq
belong

to F (Π(Sq), Tang(Sq)) and span Tang(Sq, (ξ, η)) in every pointxS |Sq
(ξ, η). Note that|Sq

re-
stricts here a vector function defined onS to Sq, whereas|S± and|S in assumption 3 of Section
2.2 restrict a vector function defined onΩ to S. We writexSq

instead ofxS |Sq
.

Let J be the current onS, J |Sq
being the current onSq. The action ofZ onJ is defined by

(ZJ)|Sp
=

Nel
∑

q=1

(

Z(J |Sq
)
)∣

∣

Sp
. (2.38)
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Here, (Z(J |Sq
))|Sp

is interpreted as the tangential electric scattered field atSp induced by
the current atSq. The action ofT on J is defined as in (2.38) withZ replaced byT , where
(T J |Sq

)|Sp
is interpreted as the magnetic vector potential atSp induced by the current atSq. To

arrive at (2.34), we first need to extend the coordinate systems on eachSq and, then, to identify
the operatorsDSq

(D · )tan|Sq
= DSq

( · |Sq
) , (2.39)

as in (2.27). Analogous to the case of a single element, we assume thatΠ(Sq) = Πξ(Sq) ×
[−ηq, ηq]. We define the average operatorA for tangential vector fieldsu on S by (Au)|Sq

=

A(u|Sq
). Moreover, we callS narrow with respect tou, if eachSq is narrow with respect to

u|Sq
, and we callAu the width average ofu, if (Au)|Sq

is the width average ofu|Sq
. Then,

we can replace (2.17) by (2.34), if the condition (2.36) is satisfied. Letwq be the centerline
component of(AJ)|Sq

andvex
q the centerline component of(AES)|Sq

. If all Πξ(Sq) are the
same setΠξ, or can be scaled to such a set, then we interpretwq andvex

q as components of vector
functionsw andvex in linear spaces of functionsF (Πξ,CNel). Then, analogous to (2.37), we
interpret (2.34) as

Zaw = vex . (2.40)

Here, we use underlined symbols for vector functions inF (Πξ,CNel) to distinguish them from
the vector functions onS andΩ, which are typeset in boldface. Further on, we represent vector
functions inF (Πξ,CNel) also by boldface characters, e.g.,w andvex.

2.3.2 Line Arrays of Strips in Free Space

We consider a planar line array of parallel identical narrowstrips,Sq (q = 1, ..., Nel), in free
space. Let2ℓ be the length of the strips andcq their centers, which are all positioned on the
x-axis such thatcq,x < cq+1,x, see Figure 2.4. The width2b of the strips satisfiesβ := b/ℓ ≪ 1

andbk is of the orderβ. In other words, the width of the strips is of the orderβ with respect
their lengths and with respect to the wavelength under consideration. Moreover, we assume that
b/|cq+1 − cq|, i.e., the ratio of the width of the strips and the distances between the strips, is of
the orderβ. Let the parameter representation of the strip surfaceSq be given by

xSq
(ξ, η) = cq − ηex + ξey , (2.41)

where(ξ, η) is an element of the parameter setΠ = Π(Sq) = { (ξ, η) | − ℓ ≤ ξ ≤ ℓ, −b ≤
η ≤ b }. Then, each parameter representation has tangent vectorseξ = ey andeη = −ex. We
note that the restriction|Sq

becomes redundant, becauseeξ andeη are fixed. Since the tangent
vectors correspond to a Cartesian coordinate system, the parameter representation of each strip
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Figure 2.4 Geometry of two parallel strips.

can be extended straightforwardly to a (global) Cartesian coordinate system witheζ = ez.
Moreover, since the strips are planarly positioned in free space, differential operatorsDSq

as in
(2.39) can be identified. From the Cartesian representationof the operatorD defined by (2.10)2

and the considerations above, it follows that

(Z(J |Sq
))|Sp

= DSp
Apq = −jZ0k

{[(

1 +
1

k2

∂2

∂ξ2

)

Apq,ξ +
1

k2

∂2

∂ξ∂η
Apq,η

]

eξ +

+

[(

1 +
1

k2

∂2

∂η2

)

Apq,η +
1

k2

∂2

∂ξ∂η
Apq,ξ

]

eη

}

, (2.42)

where

Apq =

∫ ℓ

−ℓ

∫ b

−b

gfree

(

R
(

xSp
( · , · ) − xSq

(ξ′, η′)
)

)

J |Sq
(ξ′, η′) dη′dξ′. (2.43)

The vector-valued functionApq = (T (J |Sq
))|Sp

is the magnetic vector potential induced by
J |Sq

evaluated at the surfaceSp. We introduce the normalized kernelĝfree with additional
normalized distance measurêR and the normalized coordinates(ξ̂, η̂) by

ĝfree(R̂) =
1

4π

e−jR̂

R̂
, R̂ = kR , ξ = ℓξ̂, η = bη̂ , (2.44)
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where(ξ, η) ∈ Π and (ξ̂, η̂) ∈ Π̂ = { (ξ̂, η̂) | − 1 ≤ ξ̂, η̂ ≤ l } . Notice thatgfree(R) =

k ĝfree(R̂). To interpret all vector functions defined onS as functions of the normalized coor-
dinates, we need to adjust the definitions of both operators and vector functions. InterpretingJ
andZJ as functions of the normalized coordinates, we write (2.42)as

(Z(J |Sq
))|Sp

= −jZ0k
2ℓb

{[(

1 +
1

k2ℓ2
∂2

∂ξ̂2

)

Âpq,ξ +
1

k2ℓ2β

∂2

∂ξ̂∂η̂
Âpq,η

]

eξ +

+

[(

1 +
1

k2ℓ2β2

∂2

∂η̂2

)

Âpq,η +
1

k2ℓ2β

∂2

∂ξ̂∂η̂
Âpq,ξ

]

eη

}

. (2.45)

The vector fieldÂpq = Apq/ℓbk is given by

Âpq =

∫ 1

−1

∫ 1

−1

ĝfree

(

R̂pq(ξ̂ − ξ̂′, η̂ − η̂′)
)

J |Sq
(ξ̂′, η̂′) dη′dξ′ , (2.46)

where

R̂pq(ξ̂, η̂) = kℓ

√

ξ̂2 +

(

dpq

ℓ
− βη̂

)2

, (2.47)

anddpq = cp,x − cq,x . The relation between the normalized distance measureR̂ = kR and the
distance measurêRpq is

R̂
(

xSp
(ξ, η) − xSq

(ξ′, η′)
)

= R̂pq(ξ̂ − ξ̂′, η̂ − η̂′) . (2.48)

Hence,R̂pq(ξ̂, η̂) is the normalized distance between an observation pointxSp
(ξ, η) on the

surfaceSp and the centercq of the surfaceSq, whereasR̂pq(ξ̂ − ξ̂′, η̂ − η̂′) is the normalized
distance between the former point and the source pointxSq

(ξ′, η′).
Given an excitation fieldES , the currentJ can be calculated from (2.17), whereZ is defined

by (2.45) and where we interpretES as function of the normalized coordinates. Under the
condition (2.36), Equation (2.17) can be replaced by its averaged form (2.34) and its related
form (2.40). Here, we deduce an expression for the operatorZa first. Subsequently, we consider
the question whether the solution of (2.34) is an approximate solution of (2.17).

Let u be a tangential vector field onS and interpretu as a function of the normalized
coordinates. Then, the averaging operatorA is defined by

(Au)|Sq
=

1

2

∫ 1

−1

uξ|Sq
( · , η̂) dη̂ eξ , (2.49)

which follows from the definition ofA for functions of(ξ, η). Here, the tangent vectorτ at
the centerline, given in (2.28), equalseξ. Hence, the condition (2.31)3 for S being narrow with
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respect tou is satisfied exactly. ReplacingJ byAJ in (2.45), we obtain

(ZA(J |Sq
))|Sp

= −jZ0k
2ℓb

[(

1 +
1

k2ℓ2
∂2

∂ξ̂2

)

Âpq,ξeξ +
1

k2ℓ2β

∂2

∂ξ̂∂η̂
Âpq,ξeη

]

, (2.50)

where

Âpq,ξ(ξ̂, η̂) =

∫ 1

−1

wq(ξ̂
′)hpq(ξ̂ − ξ̂′, η̂) dξ̂′ , hpq(ξ̂, η̂) =

∫ 1

−1

ĝfree

(

R̂pq(ξ̂, η̂ − η̂′)
)

dη̂′,

(2.51)

and wherewq is the centerline component ofAJ atSq. Note thatÂpq,η = 0 and thatÂpq is the
vector potential induced by(AJ)|Sq

evaluated atSp. ApplyingA toZA, we obtain

(AZA(J |Sq
))|Sp

= −1

2
jZ0k

2ℓb

∫ 1

−1

(

(

1 +
1

k2ℓ2
∂2

∂ξ̂2

)

Âpq,ξ

)

( · , η̂) dη̂ eξ . (2.52)

We note that theη-component of(ZA(J |Sq
))|Sq

does not only vanish when we applyA, but
also when we only integrate (2.50) from−1 to 1 with respect toη̂, becausehqq is odd in η̂

and, hence,∂Âqq,ξ/∂η̂ is odd inη̂ as well. We rewrite (2.52) by interchanging the integral with
respect tôη′ and the Helmholtz operator. Next, we interchange the integral with respect tôη′

and the integral with respect tôξ′ in Âpq,ξ. Moreover, we interpret the operatorAZA asZa in
(2.40) withw = (w1, . . . , wNel

) ∈ F ([−1, 1],CNel) . Then,

(Zaw)p = −1

2
jZ0k

2ℓb

Nel
∑

q=1

(

1 +
1

k2ℓ2
d2

dξ2

)

Fpqwq, (2.53)

where

(Fpqwq)(ξ) =

∫ 1

−1

wq(ξ
′)Fpq(ξ − ξ′) dξ′, ξ ∈ [−1, 1], (2.54)

and

Fpq(ξ) =

∫ 1

−1

∫ 1

−1

ĝfree

(

R̂pq(ξ, η − η′)
)

dη′dη . (2.55)

In these expressions, the hats on the normalized coordinates are omitted. Moreover,ξ ∈ [−2, 2]

in (2.55). The functionFpq is called the averaged kernel. To reduce the expression for this
kernel to a single integral, we introduce the following definitions. Let the inner product〈 · , · 〉∞
and the convolution. ∗ . be defined by

〈f, g〉∞ =

∫ ∞

−∞

f∗(x) g(x) dx , (f ∗ g)(x) =

∫ ∞

−∞

f(x′) g(x − x′) dx′ , (2.56)
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for functionsf andg with bounded support. We note that the superscript∗ denotes the complex
conjugate as in (2.4). Let the characteristic function1χ for a setχ be defined by1χ(x) =

1 for x ∈ χ and 1χ(x) = 0 for x 6∈ χ. Finally, for a functiong, we define the function
g∨ by g∨(x) = g(−x). Then, interpreting (2.55) as the inner product of the characteristic
function1[−1,1] and the convolution1[−1,1] ∗ ĝfree(R̂pq(ξ, · )) 1[−2,2] and employing the identity
〈f, g ∗ h〉∞ = 〈h∗, f∗ ∗ g∨〉∞, we arrive at

Fpq(ξ) =

∫ 2

−2

(2 − |η|) ĝfree

(

R̂pq(ξ, η)
)

dη , (2.57)

where

ĝfree(R̂pq(ξ, η)) =
1

4π

exp
(

−jkℓ
√

ξ2 + (dpq/ℓ − βη)2
)

kℓ
√

ξ2 + (dpq/ℓ − βη)2
. (2.58)

Forp = q, the integral in (2.57) can be rewritten as

Fqq(ξ) =
1

πkℓβ

[

−1

2
log ξ2 + log

(

2β +
√

4β2 + ξ2
)

]

+
1

2πjk2ℓ2β2

[

− exp(−jkℓ|ξ|) +

+ exp
(

−jkℓ
√

4β2 + ξ2
)

]

+
1

πkℓ

∫ 2

η=0

exp
(

−jkℓ
√

ξ2 + β2η2
)

− 1
√

ξ2 + β2η2
dη , (2.59)

see Appendix A. The expressions (2.57) and (2.59) show thatFpq is continuous forp 6= q,
whereas it has a logarithmic singularity forp = q.

The solutionw of (2.40), withZa given by (2.53), corresponds to the solution of (2.34), say
JA with JA = AJA. To answer the question whetherJA is an approximate solution of (2.17),
we need to verify the condition (2.36). By approximate we mean in the sense of the functional
metric related to (2.31). However, since we have not yet specified the metric, we use here a
dimensional argument to show thatJA is an approximate solution of (2.17) in caseS is narrow
with respect toES . Moreover, we show that this argument cannot be used in caseS is not
narrow with respect toES . We start by considering the term(Z(JA|Sp

))|Sp
in

(ZJA)|Sp
=

(

Z(JA|Sp
)
)

|Sp
+

∑

q 6=p

(

Z(JA|Sq
)
)∣

∣

Sp
. (2.60)

From the definition ofR̂pp, it follows that ∂R̂pp/∂η̂ is of the orderβ2 with respect to
∂R̂pp/∂ξ̂. Then, it follows that∂Âpp,ξ/∂η̂ is of the orderβ2 with respect to∂Âpp,ξ/∂ξ̂.
Hence, theη-component of(Z(JA|Sp

))|Sp
is of the orderβ with respect to itsξ-component, see

(2.50). Moreover,∂(Z(JA|Sp
))|Sp

/∂η̂ is of the orderβ2 with respect to∂(Z(JA|Sp
))|Sp

/∂ξ̂.
Hence, (Z(JA|Sp

))|Sp
satisfies the conditions (2.31) forSp being narrow with respect to
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(Z(JA|Sp
))|Sp

, where ‘≈’ needs to be interpreted as equal up to terms of orderβ. We can-
not apply the same reasoning to show thatSp is narrow with respect to(Z(JA|Sq

))|Sp
for q 6= p

and thereby, thatSp is narrow with respect to(ZJA)|Sp
in (2.60). Since∂R̂pq/∂η̂ is of the

orderβ, and not of the orderβ2, with respect to∂R̂pq/∂ξ̂, it seems that the components of
(Z(JA|Sq

))|Sp
are of the same order. Therefore, we need another argument toshow thatSp

is narrow with respect to(Z(JA|Sq
))|Sp

. By the assumptionb/|dpq| = O(β), it follows that
(Z(JA|Sq

))|Sp
with q 6= p is of orderβ with respect to(Z(JA|Sp

))|Sp
. Combining this result

with the result thatSp is narrow with respect to(Z(JA|Sp
))|Sp

, we find thatSp is narrow with
respect to(ZJA)|Sp

. Then,S is narrow with respect toZJA, and hence(I − A)ZJA ≈ 0.
Notice that this result is independent ofES and that we use the propertyJA = AJA only. The
question whetherJA is an approximate solution of (2.17) can now be answered as follows. Since
(I − A)ZJA ≈ 0, the condition (2.36) is satisfied if(I − A)ES ≈ 0, i.e., if S is narrow with
respect toES . If S is not narrow with respect toES , this condition is in general not satisfied.

The calculation ofFpq from (2.57) is expensive with respect to CPU-time, because of the
evaluation of the integral. To reduce computational effort, we may replaceFpq by an approxi-
mate kernel. As we observed above, replacingZJ = ES byAZAJ = AES means neglecting
terms of orderβ. This suggests to approximate the kernel also by neglectingterms of orderβ.
For p 6= q, we consider the kernel expression (2.57). By the assumption b/|dpq| = O(β), we
obtain the asymptotic expansion

Fpq(ξ) =
1

πkℓ

exp
(

−jkℓ
√

ξ2 + d2
pq/ℓ2

)

√

ξ2 + d2
pq/ℓ2

(

1 + O(β2)
)

, p 6= q . (2.61)

We note that terms of orderβ are annihilated by the double integration in the definition of Fpq.
The term of order1 in the right-hand side of (2.61) equals4 ĝfree(R̂pq(ξ, 0)).

For p = q, we consider the kernel expression (2.59). Forξ = O(1) (asβ ↓ 0), the integral
has the asymptotic expansion

∫ 2

η=0

exp
(

−jkℓ
√

ξ2 + β2η2
)

− 1
√

ξ2 + β2η2
dη =

2 (exp(−jkℓ|ξ|) − 1)

|ξ|
(

1 + O(β2)
)

. (2.62)

This expansion is valid forξ = O(1). For ξ = O(β), the termO(β2) is replaced byO(β),
which follows from the asymptotics of the exponential underthe condition thatkℓ = O(1).
This condition indicates that the asymptotic expansion is valid for strip lengths of the order of
the wavelength and for strip lengths much smaller than the wavelength. We note that the integral
in (2.62) has asymptotic expansion−2jkℓ(1 + O(β)) for ξ = 0, becausebk = O(β).

For the other two terms in (2.59), enclosed by[. . .], asymptotic expansions can be deduced
as well. However, these expansions are not valid over the entire range ofξ. Therefore, we
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choose to approximate the kernelFpq by neglecting terms of orderβ in (2.61) and in the integral
of (2.59) only. We denote the approximate kernel byF̃pq ,

F̃qq(ξ) =
1

πkℓβ

[

−1

2
log ξ2 + log

(

2β +
√

4β2 + ξ2
)

]

+
2

πkℓ

exp(−jkℓ|ξ|) − 1

|ξ| +

+
1

2πjk2ℓ2β2

[

exp
(

−jkℓ
√

4β2 + ξ2
)

− exp(−jkℓ|ξ|)
]

,

F̃pq(ξ) =
1

πkℓ

exp
(

−jkℓ
√

ξ2 + d2
pq/ℓ2

)

√

ξ2 + d2
pq/ℓ2

, p 6= q.

(2.63)

The integral operator that results from replacingFpq by F̃pq in (2.54) is denoted bỹFpq.
Finally, we notice that the equationZJ = ES in (2.17) has been replaced by another

operator equation in two separate steps. The first step, up to(2.59), concerns the deduction of
the averaged operatorZa. The second step concerns the replacement of the averaged kernel
resulting from the first step by an approximate kernel.

2.3.3 Arrays of Rings in Free Space

We consider a planar array of rings,Sq (q = 1, ..., Nel), in free space. Letaq be the radii of
the rings and letcq be their centers in thexy-plane, see Figure 2.5. The widths2bq of the rings
satisfyβq := bq/aq ≪ 1 andbqk = O(β) with β = max(βq). In other words, the widths of
the rings are of the orderβ with respect to their radii and with respect to the wavelength under
consideration. Moreover, we assume that the widths of the rings are of the orderβ with respect
to the distances between the rings, i.e.,bq/(|cp − cq| − ap − aq) = O(β) for p 6= q.

Let the parameter representation of the ring surfaceSq be given by

xSq
(r, ϕ) = cq + r cos(ϕ + ψq)ex + r sin(ϕ + ψq)ey , (2.64)

where(r, ϕ) is an element of the parameter setΠ(Sq) = { (r, ϕ) | aq −bq ≤ r ≤ aq +bq, −π <

ϕ ≤ π } . Let er andeϕ be the corresponding vector fields such thater|Sq
andeϕ|Sq

are the
tangent vectors ofSq. Then,

er|Sq
(ϕ) = cos(ϕ + ψq)ex + sin(ϕ + ψq)ey ,

eϕ|Sq
(ϕ) = − sin(ϕ + ψq)ex + cos(ϕ + ψq)ey .

(2.65)

Interpretingϕ → er|Sq
(ϕ) as a vector-valued function, we can describe the parameter repre-

sentation (2.64) byxSq
= cq + rer|Sq

. Since the tangent vectors correspond to cylindrical
coordinate systems, the parameter representation of each ring can be extended straightforwardly
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Figure 2.5 Geometry of two rings.

to a (global) cylindrical coordinate system. Moreover, since the rings are planarly positioned in
free space, differential operatorsDSq

as in (2.39) can be identified. From the cylindrical coordi-
nate representation of the operatorD defined by (2.10)2 and the considerations above, it follows
that

(Z(J |Sq
))|Sp

= DSp
Apq =

− jZ0k

{[

Apq,r +
1

k2

(

∂

∂r

(

1

r

∂

∂r

)

(rApq,r) +
∂

∂r

(

1

r

∂

∂ϕ

)

Apq,ϕ

)]

er|Sp
+

+

[

Apq,ϕ +
1

k2

(

1

r2

∂2

∂ϕ∂r
(rApq,r) +

1

r2

∂2

∂ϕ2
Apq,ϕ

)]

eϕ|Sp

}

, (2.66)

where

Apq =

∫ π

−π

∫ aq+bq

aq−bq

gfree

(

R
(

xSp
( · , · ) − xSq

(r′, ϕ)
)

)

J |Sq
(r′, ϕ) r′ dr′dϕ . (2.67)

As before,Apq = (T (J |Sq
)|Sp

is the magnetic vector potential induced byJ |Sq
evaluated at

the surfaceSp. We introduce the normalized kernelĝfree with additional normalized distance
measurêR, see (2.44). Moreover, we introduce the normalized coordinater̂ by r = aq(1+βq r̂)

with (r̂, ϕ) ∈ Π̂ = { (r̂, ϕ) | − 1 ≤ r̂ ≤ 1, −π < ϕ ≤ π } . We note that̂r = 0 on
the centerlines of the rings. To interpret all vector functions defined onS as functions of the
normalized coordinates, we need to adjust the definitions ofboth operators and vector functions.
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InterpretingJ andZJ as functions of the normalized coordinates, we write (2.66)as

(Z(J |Sq
))|Sp

= −jZ0k
2aqbq

{[

Âpq,r +
1

k2a2
p

(

1

β2
p

∂

∂r̂

(

1

1 + βpr̂

∂

∂r̂

(

(1 + βpr̂)Âpq,r

)

)

+

+
1

βp

∂

∂r̂

(

1

1 + βpr̂

∂

∂ϕ

)

Âpq,ϕ

)]

er|Sp
+

[

Âpq,ϕ+

+
1

k2a2
p(1 + βpr̂)2

(

1

βp

∂2

∂ϕ∂r̂

(

(1 + βpr̂)Âpq,r

)

+
∂2

∂ϕ2
Âpq,ϕ

)

]

eϕ|Sp

}

. (2.68)

The vector fieldÂpq = Apq/aqbqk is given by

Âpq =

∫ π

−π

∫ 1

−1

ĝfree

(

R̂pq(r̂, r̂
′, ϕ, ϕ′)

)

J |Sq
(r̂′, ϕ) (1 + βpr̂

′) dr̂′dϕ , (2.69)

where

R̂pq(r̂, r̂
′, ϕ, ϕ′) = k

∣

∣

∣
cp + ap(1 + βpr̂)er|Sp

(ϕ)− cq − aq(1 + βq r̂
′)er|Sq

(ϕ′)
∣

∣

∣
. (2.70)

Contrary to the distance measureR̂pq of the strips in (2.46) and (2.47), the distance measure in
(2.69) and (2.70) depends forp 6= q on all four local coordinates of the source and observation
points,xSq

andxSp
respectively, and forp = q on r, r′ andϕ − ϕ′.

As in the previous subsection, we first deduce an expression for Za and then, we construct
approximations for the averaged kernels obtained in the first step. After that, we consider the
question whether the solution of (2.34) is an approximate solution of (2.17). Letu be a tangential
vector field onS and interpretu as a function of the normalized coordinates. Then, the averaging
operatorA is defined by

(Au)|Sq
=

1

2

∫ 1

−1

uϕ|Sq
(r̂, · ) (1 + βq r̂) dr̂ eϕ|Sq

, (2.71)

which follows from its definition as a function(r, ϕ). Notice that the tangent vectorτ at the
centerline, given in (2.28), equalseϕ. Hence, the condition (2.31)3 for S being narrow with
respect tou is satisfied exactly. ReplacingJ byAJ in (2.68), we obtain for(ZA(J |Sq

))|Sp
the

same expression as in (2.68) for(Z(J |Sq
))|Sp

, but with Âpq replaced byÂpq, i.e., Âpq with

J |Sq
replaced by(AJ)|Sq

. The components of̂Apq are given by

Â
pq,

{

r

ϕ

} =

∫ π

−π

hpq(r̂, ϕ, ϕ′)wq(ϕ
′)

{

sin(ϕ − ϕ′ + ψp − ψq)

cos(ϕ − ϕ′ + ψp − ψq)

}

dϕ′ , (2.72)

hpq(r̂, ϕ, ϕ′) =

∫ 1

−1

ĝfree

(

R̂pq(r̂, r̂
′, ϕ, ϕ′)

)

(1 + βq r̂
′) dr̂′ , (2.73)



42 2. MATHEMATICAL MODELING

wherewq is the centerline component ofAJ atSq. ApplyingA toZA, we obtain

(AZA(J |Sq
))|Sp

= −1

2
jZ0k

2aqbq

[

∫ 1

−1

(1 + βpr̂)Âpq,ϕ dr̂+

+
1

k2a2
pβp

d

dϕ

∫ 1

−1

1

1 + βpr̂

∂

∂r̂

(

(1 + βpr̂)Âpq,r

)

dr̂ +
1

k2a2
p

d

dϕ2

∫ 1

−1

Âpq,ϕ

1 + βpr̂
dr̂

]

eϕ|Sp
,

(2.74)

where we interchanged integration with respect tor̂ and differentiation with respect toϕ. We

rewrite the second integral by integration by parts, which yields the boundary term̂Apq,r(1, ϕ)−
Âpq,ϕ(−1, ϕ) and an integral without derivative with respect tor̂. After that, we rewrite the
three remaining integrals in (2.74) by interchanging integrations with respect tôr andϕ, the

latter of which is incorporated in̂Apq. Interpreting the operatorAZA asZa in (2.40) with
w = (w1, . . . , wNel

) ∈ F ([−π, π],CNel) , we arrive at

(Zaw)p = −1

2
jZ0k

2
Nel
∑

q=1

aqbq

[

K11,pq +
1

k2a2
p

(

d 2

dϕ2
K12,pq +

d

dϕ
K2,pq

)]

wq , (2.75)

where

(K1i,pqwq)(ϕ) =

∫ π

−π

K1i,pq(ϕ,ϕ′) cos(ϕ − ϕ′ + ψp − ψq)wq(ϕ
′) dϕ′ ,

(K2,pqwq)(ϕ) =

∫ π

−π

K2,pq(ϕ,ϕ′) sin(ϕ − ϕ′ + ψp − ψq)wq(ϕ
′) dϕ′ .

(2.76)

The kernelsK1i,pq andK2,pq are defined by

K1i,pq(ϕ,ϕ′) =

∫ 1

−1

∫ 1

−1

ĝfree

(

R̂pq(r, r
′, ϕ, ϕ′)

)

(1 + βpr)
ι(i)(1 + βqr

′) dr′dr ,

K2,pq(ϕ,ϕ′) =
1

βp
[hpq(1, ϕ, ϕ′) − hpq(−1, ϕ, ϕ′)] + K12,pq(ϕ,ϕ′) ,

(2.77)

whereι(1) = 1, ι(2) = −1, and where the hat on the normalized radial coordinate is omitted.
Having deduced an expression forZa, we construct approximations for the averaged kernels

K1i,pq andK2,pq in (2.77). As in the analysis of the strips, we will see that replacingZJ = ES

by AZAJ = AES means neglecting terms of orderβ. This suggests to approximate the
kernels by neglecting terms of orderβ as well. We consider the casep = q first. The normalized
distance measurêRqq is written as

R̂qq(r, r
′, ϕ) = kaq

√

β2
q (r − r′)2 + 2

(

1 + βq(r + r′) + β2
qrr′

)

(1 − cos ϕ) . (2.78)
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Here, we use that forp = q, all functions in (2.77) depend onϕ − ϕ′ only and not on bothϕ
andϕ′. Therefore, we writeK1i,qq(ϕ − ϕ′) andK2,qq(ϕ − ϕ′) in (2.76), and we consider all
functions in (2.77) as functions of a single variableϕ only. Neglecting terms of orderβq in the
integrands ofK1i,qq, we arrive for bothi = 1 andi = 2 at the approximate kernel

K̆1,qq(ϕ) =

∫ 1

−1

∫ 1

−1

ĝfree

(

R̃qq(r−r′, ϕ)
)

drdr′ , R̃qq(r, ϕ) = kaq

√

β2
qr2 + 4 sin2(ϕ/2) .

(2.79)

The termβ2
qr2 accounts for the singular behavior of the integrand ofK1i,qq for (r, ϕ) = (r′, ϕ′).

Therefore, this term cannot be neglected. The approximate kernelK̆1,qq equals the averaged
kernel of the strips in the following sense. WriteFqq in (2.57) as a function of its argument
ξ and the parameterskℓ andβ, Fqq(ξ; kℓ, β). Then, K̆1,qq(ϕ) = Fqq(2 sin(ϕ/2); kaq, βq).
ReplacingFqq by the approximate kernel̃Fqq in (2.63), we obtain a second approximate kernel
for K1i,qq :

K̃1,qq(ϕ) = F̃qq

(

2 sin(ϕ/2); kaq, βq

)

. (2.80)

To deduce an approximate kernel forK2,qq, we consider first the differencehqq(1, ϕ) −
hqq(−1, ϕ) in (2.77)2. By (2.73), it follows that

hqq(1, ϕ) − hqq(−1, ϕ) =

∫ 1

−1

{

ĝfree

(

R̂qq(1, r
′, ϕ)

)

− ĝfree

(

R̂qq(−1,−r′, ϕ)
)

+

+βq

[

ĝfree

(

R̂qq(1, r
′, ϕ)

)

+ ĝfree

(

R̂qq(−1,−r′, ϕ)
)

]

r′
}

dr′ . (2.81)

The distance measurêRqq is asymptotically expanded as

R̂qq(r, r
′, ϕ) = R̃qq(r − r′, ϕ)

(

1 + βqΓq(r, r
′, ϕ) + O(β2

q )
)

, (2.82)

where

Γq(r, r
′, ϕ) =

2k2a2
q(r + r′) sin2(ϕ/2)

R̃2
qq(r − r′, ϕ)

=
2(r + r′) sin2(ϕ/2)

β2
q (r − r′)2 + 4 sin2(ϕ/2)

. (2.83)

A necessary condition for this asymptotic expansion to be valid is that 2βq|Γq(r, r
′, ϕ)| < 1,

which is satisfied because|Γq(r, r
′, ϕ)| ≤ |r + r′|/2 ≤ 1 for −1 ≤ r, r′ ≤ 1. Using the derived

expansions

R̂qq(±1,±r′, ϕ) = R̃qq(1 − r′, ϕ)
(

1 ± βqΓq(1, r
′, ϕ) + O(β2

q )
)

, (2.84)
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we deduce from (2.81)

hqq(1, ϕ) − hqq(−1, ϕ) = − βq

2π

∫ 1

−1

exp
(

− jR̃qq(1 − r′, ϕ)
)

R̃qq(1 − r′, ϕ)
×

×
[

Γq(1, r
′, ϕ)

(

1 + jR̃qq(1 − r′, ϕ) + O(βq)
)

− r′
(

1 + O(β2
q )

)]

dr′ . (2.85)

We return to the kernelK2,qq as given in (2.77)2 and neglect terms of orderβq in the integrand of
the kernelK12,qq and in the integrand of (2.85). Then,K12,qq turns into the approximate kernel
(2.79)1, which equalsFqq(2 sin(ϕ/2); kaq, βq) as shown above. RewritingFqq as in (2.57) and
replacing the integration variable in (2.85) byη = 1 − r′, we sum the two terms inK2,qq to
obtain the approximation

K̆2,qq(ϕ) =
1

2π

∫ 2

0

exp(−jR̃qq(η, ϕ))

R̃qq(η, ϕ)
×

×
[

1 −
2k2a2

q(2 − η) sin2(ϕ/2)

R̃2
qq(η, ϕ)

(

1 + jR̃qq(η, ϕ)
)

]

dη . (2.86)

To reduce the computational effort of the evaluation of the kernel K2,qq further, we write
K̆2,qq(ϕ) = K(2 sin(ϕ/2); kaq, βq, 0), whereK is defined by (A.4) in Appendix A with
approximationK̃ given by (A.16). This approximation can be used to approximate K̆2,qq if
kaq = O(1). Then,

K̃2,qq(ϕ) = K̃
(

2 sin(ϕ/2); kaq, βq, 0
)

. (2.87)

Next, we consider the casep 6= q. The squared normalized distance measureR̂2
pq can be

written as

R̂2
pq(r, r

′, ϕ, ϕ′) =

= k2 |dpq(ϕ,ϕ′)|2
[

1 +
2b

|dpq(ϕ,ϕ′)|

(

dpq(ϕ,ϕ′)

|dpq(ϕ,ϕ′)| •
(

b̂prer|Sp
(ϕ) − b̂qr

′er|Sq
(ϕ′)

)

)

+

+
b2

|dpq(ϕ,ϕ′)|2
∣

∣

∣b̂prer|Sp
(ϕ) − b̂qr

′er|Sq
(ϕ′)

∣

∣

∣

2
]

, (2.88)

wheredpq = cp+aper|Sp
−cq−aqer|Sq

, b = max(bp, bq), and̂bi = bi/b. Since|dpq(ϕ,ϕ′)| ≥
|cp − cq| − ap − aq andbq/(|cp − cq| − ap − aq) = O(β), the second term between the braces
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is of orderβ and the third term is of orderβ2. Neglecting terms of orderβ2 in the integrands of
K1i,pq , we arrive at the approximate kernel

K̃1,pq(ϕ,ϕ′) =
1

π

exp
(

− jk |dpq(ϕ,ϕ′)|
)

k |dpq(ϕ,ϕ′)| = 4 ĝfree(k |dpq(ϕ,ϕ′)|) , (2.89)

for bothi = 1 andi = −1. We note that terms of orderβ in the integrands ofK1i,pq are odd in
bothr andr′. Hence, these terms are annihilated by the double integration in the definition of
K1i,pq.

To deduce an approximate kernel forK2,pq, we follow the analysis forK2,qq above. The
differencehpq(1, ϕ)− hpq(−1, ϕ) in (2.77)2 is given by (2.81) withqq replaced bypq andϕ by
ϕ, ϕ′. The distance measurêRpq can be asymptotically expanded as

R̂pq(r, r
′, ϕ, ϕ′) = k |dpq(ϕ,ϕ′)|

(

1 + βΓpq(r, r
′, ϕ, ϕ′) + O(β2)

)

, (2.90)

where

Γpq(r, r
′, ϕ, ϕ′) =

b

β |dpq(ϕ,ϕ′)|

(

dpq(ϕ,ϕ′)

|dpq(ϕ,ϕ′)| •
(

b̂prer|Sp
(ϕ) − b̂qr

′er|Sq
(ϕ′)

)

)

. (2.91)

A necessary condition for this asymptotic expansion to be valid is β|Γpq(r, r
′, ϕ, ϕ′)| < 1,

which is satisfied becauseΓpq(r, r
′, ϕ, ϕ′) = O(1). Using the derived expansions

R̂pq(±1,±r′, ϕ, ϕ′) = k |dpq(ϕ,ϕ′)|
(

1 ± βΓpq(1, r
′, ϕ, ϕ′) + O(β2)

)

, (2.92)

we deduce from (2.81)

hpq(1, ϕ, ϕ′) − hpq(−1, ϕ, ϕ′) = − β

2π

exp
(

− jk |dpq(ϕ,ϕ′)|
)

k |dpq(ϕ,ϕ′)| ×

×
∫ 1

−1

[

Γpq(1, r
′, ϕ, ϕ′)

(

1 + jk |dpq(ϕ,ϕ′)| + O(β)
)

− r′
(

1 + O(β2)
)

]

dr′ . (2.93)

We return to the expression of the kernelK2,pq. Neglecting terms of orderβ in the integrand of
the kernelK12,pq, we obtain the approximate kernelK̃1,pq in (2.89). We neglect also terms of
orderβ in (2.93) and calculate the integral with respect tor′,

∫ 1

−1

(

Γpq(1, r
′, ϕ, ϕ′)

(

1 + jk |dpq(ϕ,ϕ′)|
)

− r′
)

dr′ =

=
2bp (1 + jk |dpq(ϕ,ϕ′)|)

β |dpq(ϕ,ϕ′)|2
(

dpq(ϕ,ϕ′) • er|Sp
(ϕ)

)

. (2.94)
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After that, we sum the two terms inK2,pq, see (2.77)2, by which we obtain an approximate
kernel forK2,pq,

K̃2,pq(ϕ,ϕ′) =
1

π

exp
(

− jk |dpq(ϕ,ϕ′)|
)

k |dpq(ϕ,ϕ′)|

[

1 − apk (1 + jk |dpq(ϕ,ϕ′)|)
k2|dpq(ϕ,ϕ′)|2 ×

×
(

kdpq(ϕ,ϕ′) • er|Sp
(ϕ)

)

]

. (2.95)

From now on, we call̃K1,pq , defined by (2.80) and (2.89), the approximate kernel ofK1i,pq and
we callK̃2,pq , defined by (2.87) and (2.95), the approximate kernel ofK2,pq. The correspond-
ing integral operators follow from (2.76) withK1i,pq andK2,pq replaced byK̃1,pq andK̃2,pq.
Denoting these operators bỹK1,pq andK̃2,pq, we write the action ofZa in (2.75) as

(Zaw)p = −1

2
jZ0k

2
Nel
∑

q=1

aqbq

[(

1 +
1

k2a2
p

d 2

dϕ2

)

K̃1,pq +
1

k2a2
p

d

dϕ
K̃2,pq

]

wq , (2.96)

The solutionw of (2.40), withZa given by (2.96), corresponds to the solution, sayJA,
of (2.34). The question whetherJA is an approximate solution of (2.17) cannot be answered
satisfactorily. This can be explained as follows. As in the analysis of the line array of strips, we
want to show that the condition (2.36) is satisfied by means ofa dimensional argument. We start
by considering the term(Z(JA|Sp

))|Sp
in (2.60), which is given by (2.68) withJ replaced by

JA andÂpq replaced byÂpq. From the definition of̂Rpp in (2.78), it follows that∂R̂pp/∂r̂ is of
the orderβ with respect to∂R̂pp/∂ϕ. Then, it follows that∂(Z(JA|Sp

))|Sp
/∂r̂ is of the order

β with respect to∂(Z(JA|Sp
))|Sp

/∂ϕ, butnot that ther-component of(Z(JA|Sp
))|Sp

is of the
orderβ with respect to itsϕ-component. Hence, the conditions (2.31)1,3 for Sp being narrow
with respect to(Z(JA|Sp

))|Sp
are satisfied, but it is not known whether the condition (2.31)2 is

satisfied. Therefore, it does not follow from the above that(I −A)ZJA ≈ 0, i.e., the condition
(2.36) forJA being an approximate solution ofZJ = ES if S is narrow with respect toES .
Hence, we cannot say whetherJA is an approximate solution ofZJ = ES .

2.3.4 Arrays in a Half Space

We consider line arrays of strips and arrays of rings in a halfspace bounded by a perfectly
conducting planeΣ. The arrays are parallel toΣ and positioned at a heighth aboveΣ, see
Figure 2.1 for example. Let the half spaceΩ be given byΩ = {x ∈ R3 | (x • ez) ≥ 0 }
with boundary planeΣ, i.e., thexy-plane. Then, the centers of the elements are described by
cq +hez, wherecq are the centers of the elements in thexy-plane as in the previous subsections.
We note that for a half space, the origin of the Cartesian coordinate system is located in the plane
Σ, whereas for free space, it is located in the plane of the array. To describe the current on the
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elements by the operator equationZaw = vex, we follow the analysis of the previous two
subsections, where we replace the kernelGfree = gfreeI by the kernelGhalf in (2.13), see [34]
for details. For a line array of strips in a half space, the result for Za is the same as in (2.53), but
with the averaged kernelFpq replaced by the averaged kernelF

[half]
pq of a half space,

F [half]
pq (ξ) = Fpq(ξ) − Fpq(

√

ξ2 + γ2) . (2.97)

Here,γ = 2h/ℓ andFpq is given by (2.55) with related forms (2.57) and (2.59). ReplacingFpq

by F̃pq in (2.63), we obtain an approximate kernelF̃
[half]
pq for the averaged kernel of a half space.

Notice that in the above, we do not put a dimensional restriction onγ.

For an array of rings in a half space, the result forZa is the same as in (2.75), but with
ĝfree(R̂pq( · )) replaced by

ĝhalf(R̂pq( · )) = ĝfree(R̂pq( · )) − ĝfree

(

√

R̂2
pq( · ) + 4k2h2

)

. (2.98)

In (2.96), we have to replace the approximate kernelsK̃1,pq andK̃2,pq, deduced for free space,

by K̃
[half]
1,pq andK̃

[half]
2,pq for a half space,

K̃
[half]
1,qq (ϕ) = F̃ [half]

qq (2 sin(ϕ/2); kaq, βq, γq) ,

K̃
[half]
1,pq (ϕ,ϕ′) = 4 ĝfree(k |dpq(ϕ,ϕ′)|) − 4 ĝfree

(

k
√

|dpq(ϕ,ϕ′)|2 + 4h2

)

,
(2.99)

and

K̃
[half]
2,qq (ϕ) = K̃(2 sin(ϕ/2); kaq, βq, 0) − K̃(2 sin(ϕ/2); kaq, βq, γq) ,

K̃
[half]
2,pq (ϕ,ϕ′) = K̃2,pq(ϕ,ϕ′, k|dpq(ϕ,ϕ′)|) +

− K̃2,pq

(

ϕ,ϕ′, k
√

|dpq(ϕ,ϕ′)|2 + 4h2

)

.

(2.100)

Here,γq = 2h/aq and F̃
[half]
qq is the approximate kernel ofF [half]

qq in (2.97), which is inter-

preted as a function of its argumentξ and the parameterskℓ, β, andγ, i.e.,F [half]
qq (ξ; kℓ, β, γ).

Moreover, K̃ is defined by (A.16) andK̃2,pq in (2.95) is interpreted as function ofϕ,

ϕ′, and k|dpq(ϕ,ϕ′)|. Notice that the second term iñK [half]
2,qq is obtained from (2.86)

with R̃qq(η, ϕ) replaced bykaq

√

βqη2 + ξ2 + γ2
q . The resulting function is identified as

K(2 sin(ϕ/2); kaq, βq, γq) defined by (A.4) and, subsequently,K is replaced byK̃ in (A.16).
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2.4 Method of Solution

To solve the linear operator equation (2.40), i.e.,Zaw = vex, we use a projection method, called
the moment method. This method transforms the operator equation into a matrix equation. Many
different ways of describing the method are employed in the literature, see for instance [47]
and [54: pp. 329 ff.]. We describe the method by means of some algebraic concepts, which we
introduce first.

2.4.1 Algebraic Concepts

Let X andY be inner-product spaces overC with inner products† 〈·, ·〉X and〈·, ·〉Y . These
spaces can be linear spaces of functions, but we do not specify X andY further here. By
L(X ,Y) we denote the vector space of linear mappings fromX into Y. If X = Y, we write
L(X ). Moreover, we denote the identity mapping inL(X ) by IX . LetCN andCM×N be the
vector spaces ofN -tuples andM × N -matrices. Thenth component ofα ∈ CN is denoted
asα(n) and themnth component ofC ∈ CM×N asC(m,n). The spaceCN is a complex
inner-product space with the usual Euclidean inner product( . ◦ . )N , i.e.,

(α1 ◦ α2)N =
N

∑

n=1

α∗
1(n)α2(n) . (2.101)

Distinguish this inner product from the scalar product( . • . ) onR3. For indexing purposes, we
need the spacesNQ, which consist ofQ-tuples with components inN. Analogously toCN , the
qth component ofN ∈ NQ is denoted byN(q).

On the spacesCM×N we introduce the concept of block matrix in the usual way. Let
M ∈ NP , N ∈ NQ, andCpq ∈ CM(p)×N(q). Then, the block matrixC ∈ C |M |×|N | is
defined by

C =







C11 . . . C1Q

...
. ..

...
CP1 . . . CPQ






, (2.102)

where|M | and|N | denote the sums of the components ofM andN . OnCN we introduce
the concept of concatenation as follows. LetN ∈ N2 andαq ∈ CN(q) for q = 1, 2. Define the
concatenationα1 ⊔ α2 by

α1 ⊔ α2 = (α1(1), . . . , α1(N(1)), α2(1), . . . , α2(N(2))) . (2.103)

†We use the convention that an inner product of a complex inner product space is linear in its second argument with
respect to scalar multiplication, i.e.,〈v, αw〉 = α〈v, w〉 and, hence,〈αv, w〉 = α∗〈v, w〉. Here,∗ is the complex
conjugate.
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The generalization to
Q
⊔

q=1
αq is straightforward. The concepts of block matrix and concatenation

are related in the following way. Let[ · ]N be the mapping that transforms a tuple inCN into a
column vector inCN×1. Then,

[α1 ⊔ α2]|N | =

(

[α1]N(1)

[α2]N(2)

)

. (2.104)

The vector spaceCM×N can be related to the vector spaceL(CN ,CM ) by the isomorphism
[ · ]M×N from L(CN ,CM ) toCM×N ,

[C](m,n) = (Cen)(m), (2.105)

whereEN = {e1, . . . ,eN} is the standard basis inCN . Together with[ · ]N we have the calculus

[Cα]M = [C]M×N [α]N , (ζ ◦ Cα)M = [ζ]∗M [C]M×N [α]N , (2.106)

for α ∈ CN andζ ∈ CM . The superscript∗ indicates the adjoint, which is the Hermitian
transposed for complex matrices. ForM = N , C is invertible if and only if[C]N×N is invertible,
and[C−1]N×N = [C]−1

N×N .
We introduce the following algebraic concepts onX andL(X ,Y). Let {w1, . . . ,wN} be a

finite subset ofX . Then, the Gram matrixG({w1, . . . ,wN}) ∈ CN×N , shortlyG, is defined
by

G(m,n) = 〈wm,wn〉X . (2.107)

The Gram matrix is invertible if and only if{w1, . . . ,wN} is independent. Define for a subset
X1 of X the orthogonal complementX⊥

1 by

X⊥
1 = {w ∈ X | 〈w,v〉X = 0 ∀v ∈ X1 } . (2.108)

Then,X⊥
1 is a subspace ofX . Define forC ∈ L(X ,Y) the adjoint mappingC∗ ∈ L(Y,X ) by

〈C∗v,w〉X = 〈v, Cw〉Y , ∀ v ∈ Y ∧ ∀ w ∈ X . (2.109)

Using the previous concepts onL(CN ,CM ), X , andL(X ,Y), we introduce the following
concepts onL(CN ,X ). Let W be an element ofL(CN ,X ) and assume thatW is injective.
SinceW is linear, we can write the action ofW as

Wα =

N
∑

n=1

α(n)Wen , (2.110)
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Figure 2.6 A graphical representation ofw−Wα with respect to the linear span of the vectors

Wen. The linear span is graphically represented by a surface and the vectorsWα, w −Wα,

andw in X by arrows.

whereα ∈ CN . The vectorsWen ∈ X are the images of the unit vectors inCN . We observe
that ran(W) = span({We1, . . . ,WeN}), where span denotes the linear span of a set of vectors.
SinceW is injective, the set{We1, . . . ,WeN} is independent and, hence, a basis in ran(W).
We refer to this basis as bas(W). Vice versa, choosingN independent vectors for bas(W) first,
we can construct the corresponding injective mappingW from (2.110). Examples of mappings
W are given below.

Define the mappingW− ∈ L(X ,CN ) by

W−w = α :⇔ 〈Wen,w −Wα〉X = 0 ∀ n ∈ {1, . . . , N} . (2.111)

The imageα is constructed such thatw−Wα is perpendicular to the vectorsWen in the sense
of the inner product onX . Figure 2.6 shows a graphical representation. From (2.111), it follows
that

W−w = α ⇔ G(bas(W)) [α]N = [ζ]N , (2.112)

whereζ ∈ CN is defined byζ(n) = 〈Wen,w〉X . SinceG is invertible,W− is well-defined,
or, to everyw ∈ X corresponds exactly one imageW−w ∈ CN .

Example 1 If X = C 3 andN = 2, W maps each tuple inC 2 onto a tuple inC 3. If, addition-
ally, the images ofe1 = (1, 0) ande2 = (0, 1) in C 2 are the unit vectors(1, 0, 0) and(0, 1, 0)

in C 3, W maps each tuple(x, y) ∈ C 2 onto (x, y, 0) in C 3. Let X = C 3 be equipped with
the Euclidean inner product. Then,W− maps a tuple(x, y, z) ∈ C 3 onto(x, y) ∈ C 2. Hence,
the compositionP = WW− maps a tuple(x, y, z) ∈ C 3 onto (x, y, 0) ∈ C 3, which shows
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thatP projects a tuple inC 3 onto the complexxy-plane. Moreover, the mappingW−W maps
a tuple(x, y) ∈ C 2 onto(x, y) ∈ C 2, which shows thatW−W = IC 2 . Below, the latter two
properties are described in general.

Example 2 Let X be the linear space of complex valued continuous functions on [0, 1] with
inner product

〈v, w〉X =

∫ 1

0

v∗(x)w(x) dx . (2.113)

LetWen be the monomialsxn−1 for n = 1, . . . , N . Then, ran(W) is the space of polynomials
with complex coefficients of degree≤ N − 1. SolvingWα = w with w ∈ X , we find
the coefficientsα of the polynomial that fits ‘best’ to the functionw with respect to the inner
product (2.113). Here,α(n) is the coefficient ofxn−1 andα = W−w.

The composed operatorW−W satisfies

W−W = ICN . (2.114)

The composed operatorP = WW− is the projection on ran(W) along ran(W)⊥. This means
that:

1. every elementw ∈ X can be written uniquely asw = w1 + w2 with w1 ∈ ran(W) and
w2 ∈ ran(W)⊥,

2. Pw = w for all w ∈ ran(W),

3. Pw = 0 for all w ∈ ran(W)⊥.

Hence, ran(P) = ran(W). Moreover, the projectionP depends only on the choice of the
subspace ran(W) and on the inner product onX . It does not on depend on the specific choices
of the imagesWen. From (2.114), it follows thatP2 = P, which is the basic property of
projections.

Both W− andP have the property that, forw ∈ ran(W), the imagesW−w andPw do
not depend on the inner product onX . In the special caseX = ran(W), or, ran(W)⊥ = 0, the
mappingW is invertible with inverseW−1 = W−. Moreover,P = IX .

The composition ofW∗ andW can be related to the Gram matrixG(bas(W)),

[W∗W] = G(bas(W)) . (2.115)

SinceG(bas(W)) is invertible,W∗W is invertible as well. Multiplying both sides ofICN =

(W∗W)−1(W∗W) by W− at the right and using thatW∗ = W∗WW−, we obtain a relation
betweenW∗ andW−,

W− = (W∗W)−1W∗ . (2.116)
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As on the vector spacesCN , we define on the vector spacesL(CN ,X ) the concept of
concatenation. LetN ∈ N2 andWq ∈ L(CN(q),X ) for q = 1, 2 . Define the concatenation
W1 ⊔W2 ∈ L(C|N |,X ) by

(W1 ⊔W2)(α1 ⊔ α2) = W1α1 + W2α2, (2.117)

whereαq ∈ CN(q) for q = 1, 2. From the definitions of the adjoint and the concatenation, it
follows that(W1 ⊔W2)

∗w = W∗
1w ⊔W∗

2w . Then, using the definition of the concatenation
and the concept of block matrix, we obtain from (2.112) and (2.115)

(W1 ⊔W2)
−w = α1 ⊔α2 ⇔

(

[W∗
1W1] [W∗

1W2]

[W∗
2W1] [W∗

2W2]

) (

[α1]

[α2]

)

=

(

[ζ1]

[ζ2]

)

, (2.118)

whereζq ∈ CN(q) is defined byζq(n) = 〈Wqen,w〉X . If the subspaces ran(W1) and ran(W2)

of X are mutually orthogonal with respect to the inner product onX , it follows thatW−
1 w = α1

andW−
2 w = α2, and hence

(W1 ⊔W2)
−w = W−

1 w ⊔W−
2 w . (2.119)

The generalization to
Q
⊔

q=1
Wq is straightforward. In the following section and chapters,we omit

the subscripts of the bracket operations, the inner products, and the identity mapping, if it is
clear which spaces are meant.

2.4.2 Outline of the Moment Method

We consider the linear operator equation

Zw = v , (2.120)

wherew ∈ X , v ∈ Y, Z ∈ L(X ,Y), andX andY are inner-product spaces with inner products
〈·, ·〉X and〈·, ·〉Y . We note that, in this subsection,Z is not the impedance operator as defined
by (2.16), but it is a certain linear mapping fromX into Y. To solve (2.120), we introduce first
linear injective mappingsW ∈ L(CN ,X ) andV ∈ L(CM ,Y) as in the previous section. Then,
we replace the operator equation by

QZPw = Qv , (2.121)

whereP = WW− ∈ L(X ) andQ = V V− ∈ L(Y). SinceP andQ are projections on
the finite-dimensional subspaces ran(W) and ran(V) of X andY, respectively, the operator
QZP is a finite-rank operator with rankM . If M = N , thenQZP is invertible as element of
L(ran(P), ran(Q)) and the solution of (2.121) is unique. The question whether the solution of
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(2.121) is an approximate solution of (2.120) can be answered in a similar way as the question
whether the solutionJA of (2.34) is an approximate solution of (2.17). Assume that we have
determined the solution of (2.121), saywP . Then,wP ∈ ran(P), or wP = PwP , and

ZwP = v − (I − Q)v + (I − Q)ZwP . (2.122)

Hence,wP is an approximate solution of (2.120) under the condition that

(I − Q)(ZwP − v) ≈ 0 . (2.123)

Here, the approximate sign ‘≈’ needs to be interpreted in the sense of the functional met-
ric related to (2.31). The condition (2.123) resembles the condition (2.36) forJA being an
approximate solution ofZJ = ES . The latter condition means thatS is narrow with re-
spect toZJA − ES , whereas the former condition means thatZwP − v is approximately
finite-dimensional with respect toQ. If (I − Q)v ≈ 0, the condition (2.123) turns into
(I − Q)ZwP ≈ 0 , i.e.,ZwP is approximately finite-dimensional with respect toQ.

SinceV is injective, (2.121) is equivalent to

V−ZWW−w = V−v , (2.124)

This equation is transformed into a matrix equation by the bracket calculus of the previous
section,

[V−ZW][W−w] = [V−v] . (2.125)

Here,[V−ZW] is called the moment matrix. Our definition of this matrix differs from the usual
definition in the literature in the following way. Accordingto the bracket calculus,

[V−ZW](m,n) = (V−ZWen)(m) = (G−1[ζn])(m, 1) ,

[V−v](m, 1) = (G−1[ζ0])(m, 1) ,
(2.126)

whereζn(m) = 〈Vem,ZWen〉Y , ζ0(m) = 〈Vem,v〉Y , andG = G(bas(V)) with respect to
〈·, ·〉Y . The vectorsVem andWen in the inner products are elements of the sets bas(V) and
bas(W). If X andY are linear spaces of functions, the elements of bas(V) are called the test
functions of the moment method and the elements of bas(W) are called the expansion functions.
DefiningZ(m,n) = 〈Vem,ZWen〉Y , V (m, 1) = 〈Vem,v〉Y , andW = [W−w], we write
(2.125) as

G−1ZW = G−1V, (2.127)

which is the usual representation of the moment-matrix equation except for multiplication by
the inverse of the Gram matrixG. The usual definition of the moment matrix isZ, which is
related to our definition by

[V−ZW] = G−1Z . (2.128)
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Hence, our definition and the usual definition yield the same moment matrix, if the Gram matrix
G is the identity matrix. IfY is a linear space of functions, this condition can be phrasedas the
test functions are orthonormal with respect to the inner product onY. The reason to introduce
the definition (2.128) of the moment matrix besides the usualdefinitionZ is given in Subsection
5.2.1, where we show that the definition (2.128) is essentialfor the eigencurrent approach in
Chapter 5.

2.4.3 Application Details

We return to the operator equationZaw = vex in (2.40). To solve this equation by the moment
method, we need:

1. to find suitable inner-product spacesXa = dom(Za) andYa ⊃ ran(Za) with correspond-
ing inner products〈·, ·〉Xa

and〈·, ·〉Ya
,

2. to find suitable mappingsW ∈ L(CN ,Xa) andV ∈ L(CN ,Ya) with corresponding
projectionsP ∈ L(Xa) andQ ∈ L(Ya),

3. to construct[V−ZaW] and[V−vex],

4. to solve (2.125).

After that, the solution of (2.121) is found asW(W−w), where [W−w] is the solution of
(2.125). The column representation of the currentW(W−w) on the array is[W−w]. Instead of
steps 3 and 4, we can also constructZ andV only and solve (2.127) to find[W−w]. With respect
to step 1, we notice thatXa andYa are linear spaces of functions,F (Πξ,CNel), which should be
chosen in accordance with the properties ofZa and such thatvex ∈ Ya. In correspondence with
the notation of the elements ofCN in Subsection 2.4.1, we denote the components of the vector
functionsw ∈ Xaandv ∈ Ya by w( · ; q) andv( · ; q) instead ofwq andvq. Here,q = 1, . . . , Nel

and the dot indicates the function variable inΠξ. The mappingsW andV in step 2 should be
constructed such that they describe the dominant behavior of Za in the sense of (2.123). The
elements of bas(W) and bas(V), i.e.,Ven andWen, are the expansion and test functions on the
array, which are elements of linear spaces of functionsF (Πξ,CNel). We construct the mappings
W andV by choosing these expansion and test functions.

If the test functions are chosen the same as the expansion functions, the mappingsW and
V satisfy bas(W) = bas(V) and, hence, ran(P) = ran(Q). Ordering the functions in bas(W)

and bas(V) in the same way, we obtainV = W. Strictly speaking, the mappingsW− andV−

are not equal, because they have different domains, i.e.,Xa andYa, and they are constructed by
different inner products, i.e.,〈·, ·〉Xa

and〈·, ·〉Ya
. The same is valid for the projectionsP andQ.

We can writeW− instead ofV− andP instead ofQ, if we interpretW− andP according to the
space they act on. In this way, we emphasize that the expansion and test functions are the same.
In Section 3.2, we show that both for arrays of strips and for arrays of rings, there is reason to
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choose the test and expansion functions the same. In that case, the finite-rank operator equation
(2.121) and the moment-matrix equation (2.125) turn into

PZaPw = Pvex , [W−ZaW][W−w] = [W−vex] . (2.129)

Here, the moment matrix[W−ZaW] and the excitation vector[W−vex] are given by

[W−ZaW] = G−1Z, [W−vex] = G−1V , (2.130)

with Z(m,n) = 〈Wem,ZaWen〉Ya
, V (m, 1) = 〈Wem,vex〉Ya

, andG = G(bas(W)) with
respect to the inner product onYa. We should keep in mind thatP andW− acting on the range
of Za are associated with the inner product onYa, while P andW− acting on the domain of
Za are associated with the inner product onXa. However,P andW− are usually associated
with the inner product onYa, because only this inner product is explicitly used in the moment
method.

A common choice for the (test and) expansion functions is functions which are non-zero on
a single element only. This is expressed by means of the algebraic concepts as follows. Let
W = W1 ⊔ . . .⊔WNel

, such that(Wqen)( · ; q′) = 0 for all q′ 6= q andn = 1, . . . , Nexp(q). In
other words, the functionsWqen are vector functions with a non-zeroqth component only. The
functions(Wqen)( · ; q) are the (test and) expansion functions on theqth element and the vector
Nexp of lengthNel represents the numbers of (test and) expansion functions onthe elements.
If we assume that subspaces ran(Wq) of Ya are mutually orthogonal with respect to the inner
product onYa, the mappingW exhibits a generalization of the property (2.119). Using this
property, we rewrite the moment-matrix equation (2.129)2 in the block form







[W−
1 ZaW1] . . . [W−

1 ZaWNel
]

...
. . .

...
[W−

Nel
ZaW1] . . . [W−

Nel
ZaWNel

]













[W−
1 w]
...

[W−
Nel

w]






=







[W−
1 vex]
...

[W−
Nel

vex]






. (2.131)

In Chapters 3 and 4, we consider the four steps above to find thesolution of currentW(W−w),
whereby we constructW as above, i.e., from the (test and) expansion functions defined on each
element separately. In Chapter 5, we constructW from expansion and test functions defined on
the entire array.

2.5 Examples

Before we discuss the calculational details of the moment matrix formulation, we present in this
section a number of results. In [7, 11], we showed that results for the current and the electric
far field of single strips and single rings agree excellentlywith results in the literature for wire
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dipoles and wire rings [4, 20, 47, 92, 108, 118]. Therefore, we restrict ourselves to results for
arrays of rings and line arrays of strips, where we compare quantitatively and qualitatively with
results in the literature. All angles in the examples are spherical elevation angles, which are
defined as usual within thexyz-system, see also Section 3.5, Figure 3.2. In thexz-plane and in
theyz-plane, corresponding spherical azimuth angles of0◦ and90◦ are prescribed, respectively.

The first example is the directivity, as defined in Appendix C,of a uniform line array of
1000 strips of half a wavelength with spacingλ/4. The strips are positioned in a half space with
h = λ/4. Each strip is excited by a voltage gap of 1V in its center, seeSection 4.2 for details, and
on each strip, one expansion function is defined,Wqe1 = cos πξ/2 (q = 1, . . . , 1000). Figure
2.7 (left) shows the normalized directivity in thexz-plane within one degree from broadside
(0◦ ≤ θ ≤ 0.72◦). Figure 2.7 (right) shows the directivity in the same plane, but for−90◦ ≤
θ ≤ −78◦. These results agree excellently with results in [67] for the same line array but with
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Figure 2.7 Directivity of uniform line array of1000 strips of half a wavelength with spacing

λ/4. The strips are positioned in a half space withh = λ/4 and excited by voltage gaps of

1V. Left: normalized directivity (in dB) in thexz-plane for0◦ ≤ θ ≤ 0.72◦; normalization:

maximum directivity in thexz-plane. Right: directivity in thexz-plane for−90◦ ≤ θ ≤ −78◦.

Parameter values:β = b/ℓ = 7/125.

wires instead of strips. In the comparison, we used the rule of thumb found by Kraus [60: p.
238], which states that a thin strip of width2b and a wire of cross-sectional radiusb/2 with the
same length as the strip are equivalent.

The second example is the impedance variation over a uniformline array of201 strips of
half a wavelength in free space with spacingλ/2. Each strip is excited by a voltage gap of 1V
in its center and on each strip, 8 expansion functions are defined,Wqen = cos((2n − 1)πξ/2)

(n = 1, . . . , 8, q = 1, . . . , 201). The strips are positioned on thex-axis and their indices increase
in the positive direction. Figure 2.8 shows the absolute impedances of the strips as a function of
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the strip index for scans at−45◦ and−75◦ in thexz-plane. For details on scanning, we refer
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Figure 2.8 Normalized absolute strip impedances for a uniform line array of201 strips of half

a wavelength in free space with spacingλ/2. The strips are excited by voltage gaps of 1V. Left:

scan at−45◦ in thexz-plane. Right: scan at−75◦ in thexz-plane. Normalization: infinite-

array impedance. Parameter values:β = b/ℓ = 1/25.

to Section 3.5. The impedance is normalized on the infinite-array absolute impedance, which is
the same for all strips. The impedance variation shows clearly the edge effects, which cannot
be described by the infinite-array approach. Up to slight amplitude differences, especially near
the edges, the results agree with results in [45: Figs. 4, 6] for arrays composed of an infinite
number of parallel line arrays, where each line array consists of 201 wires. The use of another
array geometry explains the slight differences. As above, we applied the rule of thumb of Kraus
to compare wires and strips. We note that in [45: Figs. 4, 6], the angles of scan are positive,
because the corresponding azimuth angle is180◦ instead of0◦.

The third example is the current-amplitude variation (in the centers of the strips) over a
uniform line array of25 strips of 15 mm long in free space with spacing 9 mm and excitedat
10 GHz. In terms of the wavelength, the spacing is0.3λ and the strip length is0.5λ, which is
about the resonant strip length. On each strip, 8 expansion functions are defined as above. The
strips are either excited by voltage gaps of 1V in their centers together with a phase taper to scan
at 45◦ in thexz-plane or by a plane wave polarized along they-axis with incident angle−45◦

in thexz-plane. For details about plane waves, we refer to Section 4.3. Figure 2.9 shows that
the amplitudes are very well approximated by the the amplitude obtained by the infinite-array
approach except near the edges. Moreover, the amplitude variation for the plane-wave excitation
is about the same as the amplitude variation for the voltage gaps. The shapes of the curves in
Figure 2.9 agree very well with a result in [82: p. 3, Fig. 1.3(b)] for an array excited by a plane
wave and composed of an infinite number of parallel line arrays, where each line array consists
of 25 parallel wires. As above, slight quantitative differences are explained by the differences in



58 2. MATHEMATICAL MODELING

array geometry.

Figure 2.10 shows how the amplitude variation changes as thefrequency is changed. At
8.6 GHz, the amplitude shows a much higher variation than at 9.0 GHz and 10.0 GHz. The
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Figure 2.9 Current amplitudes (in the centers of the strips) for a uniform line array of 25 strips

in free space with spacing 9 mm and excited at 10 GHz. Amplitudes computedby the element-

by-element moment method (◦) and by the infinite-array approach (+). Left: voltage gaps of

0.01V on the strips; phase taper to scan at45◦ in thexz-plane. Right: plane wave excitation with

incident angle−45◦ in thexz-plane and polarized along they-axis with amplitude10−3Vm−1.

Parameter values:2ℓ = 15 mm, β = b/ℓ = 3/50.
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Figure 2.10 The same array as in Figure 2.9, but excited by the plane wave at 9.0 GHz (left)

and 8.6 GHz (right).

frequency range in which the current shows a high variation coincides with the frequency range
in which the behavior of a single strip changes from radiative to reactive. While the infinite-
array current approximates the currents at 10 GHz, this approximation is highly inaccurate at
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8.6 GHz, see Figure 2.10 (right). This result shows the necessity of finite-array approaches.
Similar results are shown in [82: p. 3, Ch. 4], where an explanation in terms of array surface
waves is proposed. In Section 6.2, we discuss the occurrenceof large amplitude variations in
further detail, see also the last paragraph of this section.

In the fourth example, we consider an exponentially spaced line array of 31 rings. The rings
are positioned on thex-axis with |cq+1 − cq| = λ(1.12)q−1/2 (q = 1, . . . , 31) and they are
excited by voltage gaps of 1V positioned atϕ = π. On each ring, 4 expansion functions are
defined,Wqen = cos nϕ (n = 0, 1, 2, 3). For the Matlab implementation described in Section
3.4 and the platform mentioned in Section 1.4, the CPU time for the construction of the moment
matrix is 4 minutes and 32 seconds, while the CPU time of solving the moment-matrix equation
is 1.5 seconds. As explained in [106], the advantage of exponential spacing is that a very narrow
beamwidth can be obtained for much fewer elements than for a uniform spacing, given that
grating lobes are unacceptable. To increase the beamwidth in uniformly spaced arrays, either
the number of elements is increased or the spacing. If grating lobes are unacceptable for all scan
angles, the spacing is bounded byλ/2. Hence, the number of elements needs to be increased
to decrease the beamwidth, which may lead to prohibitively large numbers of elements. As
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Figure 2.11 Normalized absoluteφ-components (in dB) of the electric far fields in thexz-

plane for an exponentially spaced line array with|cq+1 − cq| = λ(1.12)q−1/2 andcq,y = 0

(solid curve), and for a uniformly spaced line array with spacing1.75λ (dashed curve), both

with 31 rings and positioned in a half space withh = λ/5. The rings are excited by voltage

gaps of 1V positioned atϕ = π. Left: for a scan at0◦. Right: for a scan at45◦ (only

exponential array). Normalization: maximum absoluteφ-component for the uniform array.

Parameter values:ka = π/3, β = 3/100, ψ = 0.

shown in Figure 2.11 (left), the beamwidth of the exponentially spaced array exhibits a grating-
lobe plateau, which is higher than the side-lobe level of theuniformly spaced array, but much
lower than the grating-lobe level at±34.9◦. These effects are shown in [106] for a uniform
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rectangular41×41 array of rectangular patches. Figure 2.11 (right) shows a negative side effect
of the exponential spacing. For a scan at45◦ in thexz-plane, the side lobe level increases to
-6 dB, which is in practice highly unacceptable. Finally, wenote that the exponentially spaced
array is much wider than the uniformly spaced array. At 10 GHz, the exponentially spaced array
is 3.62 m wide, while the uniformly spaced array is only 1.58 mwide.

The fifth example concerns a uniform rectangular20 × 20 array of rings with spacingλ/2

in bothx andy-direction. The rings are excited by voltage gaps of1V positioned atϕ = π. On
each ring, 3 expansion functions are defined,Wqe1 = 1,Wqe2 = cos ϕ, andWqe3 = sin ϕ

(q = 1, . . . , 400). For the Matlab implementation described in Section 3.4 andthe platform
mentioned in Section 1.4, the CPU time for the construction of the moment matrix is 3 hours
and 57 minutes, while the CPU time for solving the moment-matrix equation is 5.6 seconds.
Figure 2.12 shows theφ-component of the electric far field in thexz-plane (H-plane), both
for the array in which mutual coupling is taken into account and for the array in which mutual
coupling is ignored. In case mutual coupling is ignored, themaximum at0◦ is about 7 dB
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Figure 2.12 Normalized absoluteφ-component (in dB) of the electric far field for a uniform

rectangular20 × 20 array of rings excited by voltage gaps of 1V positioned atϕ = π. Left:

in thexz-plane, with (solid curve) and without (dashed curve) mutual coupling.Right: in the

yz-plane, with all rings excited (solid curve) and with the 9th row not excited (dashed curve).

Normalization: maximum absoluteφ-component for the array with mutual coupling. Parameter

values:ka = π/3, β = 3/100, ψ = 0, centers:(mλ/2, nλ/2) (m, n = 0, . . . , 19).

higher than in case mutual coupling is taken into account. Inother words, the energy of the
co-polarization is overestimated by more than a factor of 2.Since the cross-polarization, i.e.,
the θ-component in thexz-plane, is zero, the same is valid for the radiation intensity. These
observations show that mutual coupling must be taken into account.

Figure 2.12 shows theφ-component of the electric far field in theyz-plane (E-plane), both
for the uniformly excited array and for the array in which the9th row is not excited. In the
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Figure 2.13 Normalized absolute ring impedances both for a uniform line array of40 rings (∗)

of half a wavelength in free space with spacingλ/2 at ka = π/3, and for the same line array,

but with a small random perturbation on the radii, widths, and centers (◦). The parameter values

for the random perturbation are shown in Appendix??. The rings are excited by voltage gaps

of 1V at ϕ = π. Left: at ka = π/3. Right: the frequency is changed such thatka = 0.943.

Normalization: for both frequencies, the absolute impedance of the singlering in the uniform

line array. Parameter values:β = b/a = 3/100, ψ = 0, d/a = 3 (d = λ/2 atka = π/3).

second case, the highest side lobes are about 1.5 dB higher and the main lobe is about 0.5 dB
lower than in the first case. Moreover, other side lobes increase as well. This example shows
clearly that in an array that is excited per row by means of suitable feeding networks, the failing
of a row considerably decreases the array performance.

In the previous examples, we considered arrays with uniformelement geometry. In prac-
tice, the element geometry and the spacing are not uniform; small differences result after the
production process. To investigate the effect of such differences, the last example concerns a
uniform line array of 40 rings of which the ring radii, the ring widths, and the ring centers are
perturbed. The perturbations are generated randomly for a chosen tolerance of0.5mm for radii,
widths, and center coordinates. Both line arrays are excited by voltage gaps of 1V atϕ = π.
The frequency is 1 GHz. The uniform line array exhibits a spacing of d/a = 3 (d = λ/2 at
ka = π/3), and the ratio of half the ring width and the radius isβ = b/a = 3/100. On each
ring, 8 expansion functions are defined,Wqen = cos nϕ (n = 0, . . . , 7, q = 1, . . . , 40). For the
perturbed line array, also one sine function is defined to account for the asymmetry with respect
to the line-array axis,W = Wcos

q ⊔ Wsin
q with Wcos

q defined asW for the uniform line array
andWsin

q defined byWsin
q e1 = sin ϕ. Figure 2.13 (left) shows the absolute impedances of the

rings as a function of the ring indices. Both for the uniform array and for the perturbed array, the
impedances vary 5% with respect to their mean value. For the unperturbed array, the absolute
impedances are uniform in the middle of the array, where theyequal the impedance obtained
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by the infinite-array approach. At the edges, oscillations occur. For the perturbed array, the
impedances are not uniform in the middle of the array, but differ at most 3.5% from their mean
value. At the edges, approximately the same oscillations occur as at edges of the unperturbed
array. Figure 2.13 (right) shows the impedances atka = 0.943, where onlyk is changed by
means of the frequency. The geometry parameters of the unperturbed array are not changed.
The pattern of the absolute impedances of the uniform array is the same as the pattern of the
perturbed array. The impedances oscillate and vary about 30% with respect to their mean value.
Moreover, in both cases, the oscillations are modulated. The amplitude of the modulation is
larger at the edges of the array than in the middle of the array, where the impedances vary about
10% with respect to their mean value. The differences between the impedances of the perturbed
and unperturbed array are at most 5% in the middle of the array(with one exception) and run up
to 15% near the edges.

The observations above indicate that the array behavior is reasonably stable for small param-
eter changes. The relatively large modulations reduce the performance of the array considerably.
Therefore, such modulations must be avoided in the design. In this respect, we emphasize that
in the example above the variations of the absolute impedances are larger for the perturbed array
than for the uniform array. Hence, in practice, we may encounter larger variations of the element
impedances than found by simulations of uniform arrays.

Recently, modulated oscillations of the element impedances have been found in arrays of
collinear, orE-plane oriented, wires with spacingλ/2 in a half space withh = λ/4 [46]. These
modulations occur at the frequency for which the elements exhibit a ‘resonant broadside em-
bedded impedance’, i.e., the frequency for which the reactances of the elements are on average
zero. In [46], it is mentioned that the modulations were not observed for arrays of parallel, or
H-plane oriented, wires, neither for arrays in free space. Incontrast, the rings in Figure 6.14 are
positioned in free space and areE-plane oriented, since the voltage gaps are all positioned on
the array axis. Moreover, the spacing is not equal toλ/2, but0.464λ atka = 0.943. In Chapter
6, we will explain the occurrence of modulated oscillationsby showing that they are caused
by the excitation of specific eigencurrents analyzed in Chapter 5. Moreover, we will show that
the variations of the element impedances as shown in Figure 2.10 are explained by the same
mechanism.
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CHAPTER 3

The Impedance Operator

As part of the first phase of our research, see the scheme in Figure 1.7, we discuss in this
chapter the impedance operator, which relates the current on the array elements to the excitation
of the array. The aspects we consider are choice of suitable test and expansion functions for
the moment method, calculation of the moment matrix components, numerical computation of
these components, and analysis of uniform (line) arrays. InSections 3.1 and 3.2, we describe
the aspects of test and expansion functions commonly used inthe literature from an operator-
theoretical perspective. As a result of the averaging procedure in Chapter 2, the moment matrix
components calculated in Section 3.3 reduce to single integrals for line arrays of strips. For line
arrays of rings, they reduce to double and single integrals in case of mutual and self coupling,
respectively. Two calculation procedures are explored, one in which the differential part of the
averaged impedance operator is ‘equally distributed’ overtest and expansion functions as in
Green’s theorem, and one in which this part is transferred tothe test functions such that its
Sturm-Liouville properties can be exploited. In the special topic of uniform (line) arrays, the
infinite-array approach is applied to approximate the current on the elements. The convergence
or divergence of this approach is related to the physical phenomena of grating-lobe appearance
and grazing scan. This relation extends results in the literature in that different types of line
arrays are considered. Moreover, a mathematical explanation of the convergence and divergence
aspects is provided based on Toeplitz properties of the impedance operator. Further investigation
of these properties and their relation to scanning are described in Chapter 5.

3.1 Space Characterization

We consider tangential excitation fieldsES for whichvex is square integrable onΠξ. Here,Πξ

is the range of the parameter describing the centerline of the surfaceS of microstrip elements,
see Subsection 2.3.1. In other words,vex belongs to the (Hilbert) spaceL2

(

Πξ,CNel
)

[98].
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The physical interpretation of this property is that the total electric energy of the excitation field
is finite. Since the current on the elements is given byZaw = vex, we constructXa = dom(Za)

such that ran(Za) ⊂ Ya = L2

(

Πξ,CNel
)

. We show that the latter can be accomplished by
choosing

Xa =
{

w ∈ H2,1

(

[−1, 1],CNel
) ∣

∣ w(1) = w(−1) = 0
}

, (3.1)

for the strips, and

Xa = H2,1,per

(

[−π, π],CNel
)

, (3.2)

for the rings. Here,H2,1

(

[−α, α],CN
)

is the subspace ofL2

(

[−α, α],CN
)

consisting of all
functions with derivative inL2, see [73: pp. 22, 50]. We omitCN in this notation ifN = 1. For
w ∈ H2,1

(

[−α, α],CN
)

, its derivative inL2 is denoted byDw, i.e.,

w(ξ) = w(0) +

∫ ξ

0

(Dw)(ξ′) dξ′ , (3.3)

Notice the difference of notation between the differentialoperatorD introduced in (2.10)2 and
the L2-derivativeD. The reason to introduce theL2-derivative is that functions inH2,1 are
continuous, but they are not necessarily differentiable inthe classical sense. With the inner
product〈 · , · 〉H2,1

defined by

〈v,w〉H2,1
= 〈v,w〉L2

+ 〈Dv,Dw〉L2
, 〈v,w〉L2

=

∫ α

−α

(v(ξ) ◦ w(ξ)) dξ , (3.4)

H2,1

(

[−α, α],CN
)

is a Hilbert space [58: App. A.3, p. 227], whereas with the usual L2

inner product (3.4)2, it is not. We note that( . ◦ . ) is the inner product onCN defined
by (2.101), where we omit the subscriptN . Similarly, H2,2

(

[−α, α],CN
)

consists of all
differentiable functions on[−α, α] for which the derivative belongs toH2,1

(

[−α, α],CN
)

.
The spacesH2,1,per

(

[−π, π],CN
)

and H2,2,per

(

[−π, π],CN
)

consist of all functions in
H2,1

(

[−π, π],CN
)

andH2,2

(

[−π, π],CN
)

, which are periodic on the real line with period
2π. Finally, we introduce the spacesC∞([−α, α]) andC∞([−α, α]2), which consists of all
infinitely differentiable functions on[−α, α] and[−α, α]2 = { (x, y) |x, y ∈ [−α, α] }.

Let us first consider the characterization ofXa for the strips. The operatorsFpq in (2.53) –
(2.55) are Fredholm operators with displacement kernelsFpq. General theory of such opera-
tors is given in Appendix B. Forp 6= q, the kernelFpq belongs toC∞([−2, 2]), and hence
to H2,1([−2, 2]). For p = q, the kernel belongs toL2([−2, 2]), but not toH2,1([−2, 2]), see
(2.59). Therefore,Fqq is decomposed into a logarithmic part,−(log ξ2)/2kℓβ, and a part in
H2,1([−1, 1]). The kernelFpq with p 6= q and both parts of the kernelFqq induce Fredholm
operators fromL2([−1, 1]) to H2,1([−1, 1]), see Lemmas 2 and 3 in Appendix B. Hence, for all
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p, q, Fpqw ∈ H2,1([−1, 1]) wheneverw ∈ L2([−1, 1]). Moreover, ifw ∈ H2,1([−1, 1]), then
Fpqw ∈ H2,2([−1, 1]) for p 6= q andFqqw ∈ H2,2([−1, 1]) if and only if w(1) = w(−1) = 0,
see Corollaries 1 and 2 in Appendix B. From this result and theexpression forZa in (2.53), we
conclude thatZaw ∈ L2

(

[−1, 1],CNel
)

wheneverw ∈ Xa, whereXa is given by (3.1). We
note that the Helmholtz operator in (2.53) should be interpreted inL2-sense, i.e., as1+D

2/k2ℓ2 .
The resultZaw ∈ L2

(

[−1, 1],CNel
)

is also valid when the kernelsFpq are replaced by the ap-
proximate kernels̃Fpq with corresponding Fredholm operatorsF̃pq . The physical interpretation
of the boundary conditionsw(1) = w(−1) = 0 is that the current cannot ‘flow’ out of the
strips. As shown above, these conditions are necessary to obtain ran(Za) ⊂ L2

(

[−1, 1],CNel
)

,
which means that the total electric energy of the tangentialscattered electric field at the strips is
finite. This shows a direct link between the space characterization and the physical properties of
the electromagnetic field.

For the rings, we consider only the expression (2.96) forZa with the approximate
kernels. Let us first consider the integral operatorsK̃1,qq and K̃2,qq. These operators
are Fredholm operators with displacement kernelsK̃1,qq( · ) cos( · ) and K̃2,qq( · ) sin( · ).
The kernelK̃2,qq( · ) sin( · ) belongs toH2,1,per([−2π, 2π]) (period 4π), so thatK̃2,qqw ∈
H2,2,per([−π, π]) whenever w ∈ H2,1,per([−π, π]), see Corollary 3. The kernel
K̃1,qq( · ) cos( · ) belongs toL2([−2π, 2π]), but not toH2,1,per([−2π, 2π]). We could de-
compose this kernel in the same manner asFqq into a part proportional tolog ϕ2 and a
part in H2,1([−2π, 2π]). By doing this, we would loose the periodicity of the kernel.
Therefore, we decompose the kernel into the part− cos ϕ log sin2(ϕ/2) / 2kaqβq and a part
in H2,1,per([−2π, 2π]). The first part leads to a Fredholm operator fromL2([−π, π]) to
H2,1,per([−π, π]), see Lemma 5 in Appendix B. Moreover, ifw ∈ H2,1,per([−π, π]), then
the Fredholm operator transformsw into an element ofH2,2,per([−π, π]). The second part
leads to a Fredholm operator, which is treated in the same manner asK̃2,qq. Summarizing, we
find thatK̃1,qqw, K̃2,qqw ∈ H2,2,per([−π, π]) for w ∈ H2,1,per([−π, π]). The same result holds
for p 6= q, because the kernels̃K1,pq andK̃2,pq belong toC∞([−π, π]2) and are periodic with
period2π in both their arguments. From these results and the expression of Za in (2.53), we
conclude thatZaw ∈ L2

(

[−1, 1],CNel
)

wheneverw ∈ dom(Za) given by (3.2). We note that
he Helmholtz operator and the single derivative in (2.96) should be interpreted inL2-sense, i.e.,
as1 + D

2/k2a2
p andD/k2a2

p .

From the above, an essential difference between the space characterizations for the strips and
the rings is observed. The Fredholm operators for the rings map a function in their domain (3.2)
into H2,2,per([−π, π],CNel), which is a subset of their domain. On the contrary, the Fredholm
operators for the strips map a function in their domain (3.1)into H2,2([−1, 1],CNel), which is
not a subset of their domain. This difference can be explained asfollows. For the rings, the
‘boundary condition’ of periodicity follows from the geometry of the rings, which is satisfied
by both the current and the tangential scattered field on the rings. For the strips, the boundary
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conditionw(1) = w(−1) = 0 is an impressed boundary condition on the current, which is not
necessarily satisfied by the tangential scattered field.

3.2 Choosing Expansion and Test Functions

We choose the expansion and test functions as outlined in Subsection 2.4.3. Let us first consider
the strips. Since the mappingV in the construction of the moment matrix[V−ZaW] should
be chosen in accordance with the properties ofZa, the test functions(Vqen)( · ; q) on theqth
strip should be chosen in accordance with the properties of the operators(1 + D

2/k2ℓ2)Fqq′ in
(2.53) forq′ = 1, . . . , Nel. In other words, these functions should be elements of the ranges of
the Helmholtz operator1+D

2/k2ℓ2 with domains ran(Fqq′). As shown in the previous section,
ran(Fqq′) ⊂ H2,2([−1, 1]). The operator1 + D

2/k2ℓ2 is a Sturm-Liouville operator with the
Sturm Liouville boundary conditionsw(1) = w(−1) = 0. Examples of the application of
Sturm-Liouville theory to problems of mathematical physics can be found in [101: Ch. V, Sec.
2; Ch. IX, Sec. 3] and [127: Sec. 4.3]. The operator-theoretical aspects can be found in [98].
For a direct application of these aspects to Sturm-Liouville problems, we refer to [81: pp. 361
– 369]. According to Sturm-Liouville theory, the operator1 + D

2/k2ℓ2 has a countable set of
eigenfunctions, i.e.,

cos

(

(2n − 1)πξ

2

)

, sin nπξ , (3.5)

with eigenvalues

Ωcos,n = 1 − (2n − 1)2π2

4k2ℓ2
, Ωsin,n = 1 − n2π2

k2ℓ2
. (3.6)

Here,n ∈ N. The eigenfunctions (3.5) establish a total (or complete) orthonormal set [98: p. 67]
in L2([−1, 1]) with respect to theL2 inner product. SinceZa is composed of(1+D

2/k2ℓ2)Fqq′ ,
the most logical choice of the test functions(Wqen)( · ; q) is (3.5).

The mappingW in the construction of the moment matrix[V−ZaW] should be cho-
sen such that the expansion functionsWen are elements ofXa in (3.1). Therefore, the ex-
pansion functions(Wqen)( · ; q) on the qth strip should be chosen in the set of functions
{w ∈ H2,1([−1, 1]) | w(1) = w(−1) = 0 }, which is equipped with theH2,1 inner prod-
uct (3.4) as in Section 3.1. Since the linear span of the eigenfunctions (3.5) is both contained in
this set and dense in this set, and sinceFqq′ assumes the form of a convolution integral for all
values ofq andq′, it is reasonable to choose the expansion functions from (3.5) as well. We note
that the linear span of eigenfunctions is not dense in the whole setH2,1([−1, 1]). Assuming that
we can describe the domain and the range ofZa by the samefinite subset of the countable set
defined by (3.5), we chooseV = W. Then, on each strip, the test and expansion functions are
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the same, or, bas(V) = bas(W). As explained in Subsection 2.4.3, we can replaceV− by W−

andQ by P, if we interpretW− andP according to the space they act on. We specify the (test
and) expansion functions on the array of strips by

W = W1 ⊔ . . . ⊔WNel
, Wq = Wcos

q ⊔Wsin
q , (3.7)

and

(Wcos
q en)(ξ; q) = cos

(

(2n − 1)πξ

2

)

, n = 1, 2, . . . , Ncos(q) ,

(Wsin
q en)(ξ; q) = sinnπξ, n = 1, 2, . . . , Nsin(q) ,

(Wcos
q en)( · ; q′) = (Wsin

q en)( · ; q′) = 0, q′ 6= q .

(3.8)

Here,Nexp = Ncos + Nsin . By (3.7) and (3.8), we specify the (test and) expansion functions
as well as the order in which they appear in the moment matrix[W−ZaW], see also (2.131). By
decomposing eachWq into Wcos

q andWsin
q we distinguish between ‘symmetric’ and ‘antisym-

metric’ currents on the strips. We could have written the eigenfunctions assin(nπ(ξ + 1)/2),
but then, they would be alternately even and odd. The expression for Za in (2.53) reveals that,
if vex is even or odd, the solution toZaw = vex is even or odd as well. Therefore, we choose
Nsin = 0 if vex is even andNcos = 0 if vex is odd. Finally, we note that the functionsWqen

are entire-domain functions with respect to the strip surfaceSq, because they represent functions
that are non-zero onSq except for a subset with measure zero. The functionsWqen are piece-
wise or sub-sectional functions with respect to the surfaceS of the complete array, because they
represent functions onS that are non-zero on a single surfaceSq only. If not stated otherwise,
we call the functionsWqen in (3.8) entire-domain functions.

Instead of using the entire-domain functions for the strip surfacesSq, we can also use
piecewise or sub-sectional functions. WhenV = W as above, the expansion and test func-
tions (Wqen)( · ; q) on theqth strip should be elements ofH2,1([−1, 1]) satisfying the Sturm-
Liouville boundary conditions in order to haveWen ∈ Xa. An obvious choice forW is then

W = W1 ⊔ . . . ⊔WNel
,

(Wqen)(ξ; q) = wtri

(

ξ − ξq(n)

∆exp(q)

)

, wtri(ξ) = (1 − |ξ|) 1[−1,1](ξ) ,

(Wqen)( · ; q′) = 0, q′ 6= q ,

(3.9)

where∆exp(q) = 2/(Nexp(q)+1), ξq(n) = −1+n∆exp(q), andn = 1, 2, . . . , Nexp(q). These
functions describe triangles of height1 on a uniform grid on the interval[−1, 1].

For the rings, we construct only entire-domain expansion functions. The Helmholtz oper-
ators1 + D

2/k2a2
q in (2.96) are Sturm-Liouville operators with the Sturm-Liouville boundary
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conditions of periodicity, i.e.,w(π) = w(−π) and(Dw)(π) = (Dw)(−π). These operators
have countable sets of eigenfunctions, i.e.,

cos nϕ, sin nϕ , (3.10)

both with eigenvalues

Ωq,n = 1 − n2

k2a2
q

. (3.11)

Here,n ∈ N ∪ {0} for the cosine functions andn ∈ N for the sine functions. According to
Sturm-Liouville theory, the eigenfunctions (3.10) are orthogonal, but not normalized, with re-
spect to theL2 inner product and they establish a total set inL2([−π, π]). SinceZa is composed
of (1 + D

2/k2a2
q)K̃1,qq′ andDK̃2,qq′/k2a2

q, the ranges of which are subsets ofL2([−π, π]) and
H2,1,per([−π, π]), it is reasonable to choose the test functions(Vqen)( · ; q) on theqth ring from
the set defined by (3.10). The expansion functions(Wqen)( · ; q) on theqth ring should be
chosen inH2,1,per([−π, π]). Since the linear span of the eigenfunctions (3.10) is contained in
H2,1,per([−π, π]) and dense inH2,1,per([−π, π]), and sinceK̃1,qq′ andK̃2,qq′ assume the form
of convolution integrals for all values ofq andq′, it is reasonable to choose the expansion func-
tions from (3.10) as well. Assuming that we can approximate the domain and the range ofZa

by the samefinite subset of the countable set defined by (3.10), we chooseV = W as in the
analysis for the strips above. We specify the expansion and test functions on the array of rings
by (3.7) and

(Wcos
q en)(ξ; q) = cos(n − 1)ϕ, n = 1, 2, . . . , Ncos(q) ,

(Wsin
q en)(ξ; q) = sinnϕ, n = 1, 2, . . . , Nsin(q) ,

(Wcos
q en)( · ; q′) = (Wsin

q en)( · ; q′) = 0, q′ 6= q .

(3.12)

In Subsection 3.3.2, we will see that these functions are eigenfunctions ofZa, which confirms
our choice of test and expansion functions.

3.3 Calculational Aspects of the Moment-Matrix Compo-
nents

The moment matrix[W−ZaW] is composed of the blocks[W−
p ZaWq] with p, q = 1, . . . , Nel,

see (2.131). From the calculus result (2.130)1, it follows that

[W−
p ZaWq] = G−1

p Zpq . (3.13)
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Here, Zpq(m,n) = 〈Wpem,ZaWqen〉L2
(m = 1, . . . , Nexp(p), n = 1, . . . , Nexp(q)) and

Gp = G(bas(Wp)) with respect to the inner product onYa. Then, the Gram matrixG in (2.130)
is a block-diagonal matrix with the blocksGp on the diagonal. Moreover, the matrixZ in
(2.130)1 is a block matrix with blocksZpq. In this section, we consider the calculation of the
blocksGp andZpq for the expansion and test functions chosen in the previous section.

3.3.1 Line Arrays of Strips

For line arrays of strips, the matricesZpq are defined byZpq(m,n) = 〈Wpem,ZaWqen〉L2
,

whereZa is given by (2.53) and theL2 inner product by (3.4)2 with α = 1. Since the functions
Wpem andWqen have for allm andn a non-zeropth andqth component only, we can interpret
eachZpq as a function of(Wpem)( · ; p) and(Wqen)( · ; q). With this interpretation, eachZpq

is a functional defined by

− 2

jZ0k2ℓb
Zpq(v, w) =

∫ 1

−1

v∗(ξ)

(

(

1 +
1

k2ℓ2
D

2
)

F̃pqw

)

(ξ) dξ =

= 〈v, (1 + D
2/k2ℓ2)F̃pqw〉L2

, (3.14)

for functions v and w in H2,1([−1, 1]) that vanish in1 and −1. We write Zpq(m,n) =

Zpq((Wpem)( · ; p), (Wqen)( · ; q)).
We consider two different approaches to calculateZpq(v, w). In the first approach, we inte-

grate once by parts to transferD to the test functions and we apply Lemma 1 in Appendix B to
interchangeFpq andD. Using the property ofv andw that these functions vanish in1 and−1,
we obtain

− 2

jZ0k2ℓb
Zpq(v, w) = 〈v, F̃pqw〉L2

− 1

k2ℓ2
〈Dv, F̃pqDw〉L2

. (3.15)

In the second approach, we integrate twice by parts to transfer the Helmholtz operator in (3.14)
to the test functions. Using the same property ofv andw as above, we obtain

− 2

jZ0k2ℓb
Zpq(v, w) = 〈(1 + D

2/k2ℓ2)v, F̃pqw〉L2
+

− 1

k2ℓ2

(

(Dv)(1) (F̃pqw)(1) − (Dv)(−1) (F̃pqw)(−1)
)

. (3.16)

In the first approach, we use only thatv, w ∈ H2,1([−1, 1]), but in the second approach, we
need also thatv has a second derivative inL2. Therefore, the first approach can be applied to
both the entire-domain functions and the piecewise functions of the previous section, while the
second approach can be applied to the entire-domain functions. To apply the second approach to
the piecewise functions, a generalized interpretation of the second derivative is required instead
of anL2 interpretation.
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We consider first the entire-domain functions defined by (3.7) and (3.8). Since these func-
tions are orthonormal with respect to theL2 inner product,Gp is the identity matrix and
Zpq = [W−

p ZaWq]. Moreover, the matrices[W−
p ZaWq] are block-diagonal matrices com-

posed of the blocks[(Wcos
p )−ZaWcos

q ] and[(Wsin
p )−ZaWsin

q ]. Therefore, we need to calculate
Zpq(v, w) only if v andw are both cosines or both sines from the set defined by (3.5). The
functions of this set are the eigenfunctions of the Sturm-Liouville operator1 + D

2/k2ℓ2 with
additional Sturm-Liouville boundary conditions. Hence, the term(1 + D

2/k2ℓ2)v in (3.16)
turns intoΩvv, whereΩv is the eigenvalue ofv. The form forZpq(v, w) thus obtained requires
the evaluation of one double integral only. This is the advantage of (3.16) over (3.15), which
requires the evaluation of two double integrals. However, all L2 inner products in (3.15) and
(3.16) can be rewritten as single integrals, because the operator F̃pq is of the convolution type.
Hence, the advantage of (3.16) over (3.15) vanishes here. SinceZpq(v, w) is represented by
two symmetric forms in (3.15), whereas it is represented by two asymmetric forms in (3.16), we
decide to use (3.15) instead of (3.16). Interpreting and rewriting the inner products in (3.15) in
a similar way as the kernelFpq in (2.55)–(2.57), we obtain

− 2

jZ0k2ℓb
Zpq(v, w) = 〈F̃ ∗

pq, v
∗1[−1,1] ∗ w∨1[−1,1]〉L2([−2,2]) +

− 1

k2ℓ2
〈F̃ ∗

pq, (Dv)∗ 1[−1,1] ∗ (Dw)∨ 1[−1,1]〉L2([−2,2]) . (3.17)

Here, the subscriptL2([−2,2]) indicates theL2 inner product on[−2, 2]. Since the convolutions in
the right-hand side are calculated analytically, the two inner products reduce to single integrals
as mentioned above. The final result for the components of theblocks[(Wcos

p )−ZaWcos
q ] is

− 1

jZ0k2ℓb
[(Wcos

p )−ZaWcos
q ](m,n) =

=
(−1)m+n

(m + n − 1)(m − n)π

{

(2m − 1)

(

1 − (2n − 1)2π2

4k2ℓ2

)

T1,pq(2n − 1) +

− (2n − 1)

(

1 − (2m − 1)2π2

4k2ℓ2

)

T1,pq(2m − 1)

}

, (3.18)

for m 6= n, and

− 1

jZ0k2ℓb
[(Wcos

p )−ZaWcos
q ](n, n) = 2

(

1 − (2n − 1)2π2

4k2ℓ2

)

T2,pq(2n − 1)+

+
2

(2n − 1)π

(

1 +
(2n − 1)2π2

4k2ℓ2

)

T1,pq(2n − 1) , (3.19)
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where

T1,pq(n) =

∫ 1

0

F̃pq(2ξ) sin(nπξ) dξ ,

T2,pq(n) =

∫ 1

0

(1 − ξ)F̃pq(2ξ) cos(nπξ) dξ .

(3.20)

The final result for the components of the blocks[(Wsin
p )−ZaWsin

q ] is

− 1

jZ0k2ℓb
[(Wsin

p )−ZaWsin
q ](m,n) =

=
2(−1)m+n

(m + n)(m − n)π

{

m

(

1 − n2π2

k2ℓ2

)

T1,pq(2n) − n

(

1 − m2π2

k2ℓ2

)

T1,pq(2m)

}

, (3.21)

for m 6= n, and

− 1

jZ0k2ℓb
[(Wsin

p )−ZaWsin
q ](n, n) =

= 2

(

1 − n2π2

k2ℓ2

)

T2,pq(2n) +
1

nπ

(

1 +
n2π2

k2ℓ2

)

T1,pq(2n) . (3.22)

Finally, we show that (3.16) links the calculational aspects to both the space characterization
and to the physical properties of the electromagnetic field.If v andw are both cosine or both
sine eigenfunctions of1 + D

2/k2ℓ2 as above, (3.16) turns into

− 2

jZ0k2ℓb
Zpq(v, w) = Ωv〈v, F̃pqw〉L2

− 2

k2ℓ2
(Dv)(1) (F̃pqw)(1) . (3.23)

Physically, the second term in the right-hand side represents scattering of the electric field at
the edges of the strip. Mathematically, it shows that the range of F̃pq is not spanned by the
eigenfunctions of1 + D

2/k2ℓ2. This can be shown as follows. Since the eigenfunctions of
1 + D

2/k2ℓ2, here denoted aswn with n ∈ N, are a total orthonormal set inL2([−1, 1]), we
may expandF̃pqw as

F̃pqw =

∞
∑

n=1

〈wn, F̃pqw〉L2
wn . (3.24)

Next, we substitute this series into the right-hand side of (3.14). If we assume that the eigenfunc-
tionswn span the range of̃Fpq, which is a subset ofH2,2([−1, 1]), we may apply1 + D

2/k2ℓ2

termwise. Employing then the orthonormality of these eigenfunctions with respect to theL2

inner product, we obtain the same expression forZpq(v, w) as in (3.23), but without the second
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term in the right-hand side. Hence, the range ofF̃pq is not spanned by the eigenfunctionswn.
This shows that the second term in the right-hand side of (3.23) is essential both from a physical
and mathematical point of view. Moreover, it shows that the Fredholm operators for the strips
do not map a function in their domain (3.1) into a subset of this domain, see the last paragraph
of Section 3.1.

For the piecewise functions defined by (3.9), we consider thecase of a single strip, i.e.,
Nel = 1. Then,W1 = W and we writeG andZ instead ofG1 andZ11. The piecewise
functions are not orthogonal with respect to theL2 inner product and induce the tridiagonal
Gram matrixG,

G(m,m) =
2∆exp

3
, G(m,m + 1) = G(m + 1,m) =

∆exp

6
,

G(m,n) = 0, |m − n| ≥ 2 .
(3.25)

The components ofZ are given byZ(m,n) = Z(wm, wn), whereZ is interpreted as in (3.14)
andwn(ξ) = wtri((ξ − ξn)/∆exp), see (3.9). To calculate these components, we use (3.15) to
obtain

− 2

jZ0k2ℓb
Z(wm, wn) =

∫ ξm+1

ξm−1

wm(ξ)

∫ ξn+1

ξn−1

F̃11(ξ − ξ′)wn(ξ′) dξ′dξ+

− 1

k2ℓ2

∫ ξm+1

ξm−1

(Dwm)(ξ)

∫ ξn+1

ξn−1

F̃11(ξ − ξ′) (Dwn)(ξ′) dξ′dξ . (3.26)

Introducing the transformation of variablesy = (ξ − ξm)/∆exp andy′ = (ξ − ξn)/∆exp, and
using(Dwn)(ξ) = 1

∆exp
(Dwtri)((ξ − ξm)/∆exp), we rewriteZ(wm, wn) as

− 2

jZ0k2ℓb
Z(wm, wn) = ∆2

exp

∫ 1

−1

wtri(y)

∫ 1

−1

F̃11,m−n(y − y′)wtri(y
′) dy′dy +

− 1

k2ℓ2

∫ 1

−1

(Dwtri)(y)

∫ 1

−1

F̃11,m−n(y − y′) (Dwtri)(y
′) dy′dy , (3.27)

whereF̃11,n is defined byF̃11,n(y) = F̃11(∆expy + n). Interpreting and rewriting the integrals
in a similar way as the kernelFpq in (2.55) – (2.57), we obtain

− 2

jZ0k2ℓb
Z(wm, wn) = ∆2

exp〈F̃ ∗
11,m−n, wtri1[−1,1] ∗ wtri1[−1,1]〉L([−2,2])

+

− 1

k2ℓ2
〈F̃ ∗

11,m−n, (Dwtri)1[−1,1] ∗ (Dwtri)
∨1[−1,1]〉L([−2,2])

. (3.28)

With (3.28), we have obtained a form forZpq, which is similar to its form (3.17) for the
entire-domain functions. The convolutions are calculatedanalytically. The final result for the
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impedance matrixZ is

− 2

jZ0k2ℓb
Z(m,n) = 2

(

∆2
exp

3
− 1

k2ℓ2

)

T1(m − n) +
3

k2ℓ2
T2(m − n)+

+ 2

(

2∆2
exp

3
+

1

k2ℓ2

)

U1(m − n) −
(

2∆2
exp +

1

k2ℓ2

)

U2(m − n)+

+ ∆2
exp

(

−T3(m − n) +
1

2
T4(m − n) + U3(m − n) − 1

6
U4(m − n)

)

, (3.29)

where

Ti(m) =

∫ 1

−1

F̃11,m(ξ) |ξ|i−1dξ, Ui(m) =

(∫ −1

−2

+

∫ 2

1

)

F̃11,m(ξ) |ξ|i−1dξ . (3.30)

3.3.2 Arrays of Rings

For arrays of rings, the matricesZpq are defined byZpq(m,n) = 〈Wpem,ZaWqen〉L2
, where

Za is given by (2.96) and theL2 inner product by (3.4)2 with α = π. In the same manner as in
the previous subsection, we interpret eachZpq as a functional. These functionals are defined by

− 2

jZ0k2aqbq
Zpq(v, w) =

∫ π

−π

v∗(ξ)

((

1 +
1

k2a2
p

D
2

)

K̃1,pqw +
1

k2a2
p

DK̃2,pqw

)

(ξ) dξ =

= 〈v, (1 + D
2/k2a2

p)K̃1,pqw〉L2
+

1

k2a2
p

〈v,DK̃2,pqw〉L2
, (3.31)

for functionsv andw in H2,1,per([−π, π]). As in the previous subsection, we writeZpq(m,n) =

Zpq((Wpem)( · ; p), (Wqen)( · ; q)).
We follow only one approach to calculateZpq(v, w). As in the second approach for the

strips, we integrate twice by parts to transfer the differential operators to the test functions.
Requiring thatv, w ∈ H2,2,per and thatv is an eigenfunction of the Helmholtz operator1 +

D
2/k2a2

p with eigenvalueΩv, we obtain

− 2

jZ0k2aqbq
Zpq(v, w) = Ωv〈v, K̃1,pqw〉L2

− 1

k2a2
p

〈Dv, K̃2,pqw〉L2
. (3.32)

Forp = q, the operators̃K1,pq andK̃2,pq with kernelsK̃1,qq( · ) cos( · ) andK̃2,qq( · ) sin( · ) are
of the convolution type. Hence, the inner products in (3.32)can be rewritten in a similar form
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as in (3.17),

− 2

jZ0k2aqbq
Zqq(v, w) = Ωv 〈K̃∗

1,qq( · ) cos( · ), v∗1[−π,π] ∗ w∨1[−π,π]〉L2([−2π,2π]) +

− 1

k2a2
p

〈K̃∗
2,qq( · ) sin( · ), (Dv)∗1[−π,π] ∗ w∨1[−π,π]〉L2([−2π,2π]) . (3.33)

The entire-domain functions defined by (3.7) and (3.12) are orthogonal, but not normalized
with respect to theL2 inner product. The Gram matrixGp for these functions is a diagonal
matrix of which the components are given by

Gp(1, 1) = 2π , Gp(m,m) = π , m ≥ 2 , Gp(m,n) = 0 , m 6= n . (3.34)

The ordering of the bases bas(Wp) and bas(Wq) decomposes the matrix[W−
p ZaWq] into four

blocks,[(Wc
p)−ZaWd

q ] with c, d = cos, sin. Then,Zpq is decomposed into four blocks,Zc,d
pq

defined byZc,d
pq (m,n) = 〈Wc

pem,ZaWd
q en〉L2

. These blocks can be interpreted in the sense
of (3.31). Let us first consider the casep = q. The integral operators̃K1,qq andK̃2,qq are diag-
onal operators with respect to the eigenfunctions (3.10). This follows from the considerations
with respect to the kernels̃K1,qq andK̃2,qq in Section 3.1 and from Remark 2 in Appendix B.
Consequently, both blocksZcos,sin

qq andZsin,cos
qq are identically zero and both blocksZcos,cos

qq and
Zsin,sin

qq are diagonal matrices. The diagonal components follow from(3.33), where the convo-
lutions are calculated analytically. The final result for the diagonal components ofZcos,cos

qq and
Zsin,sin

qq is

− 2

jZ0k2aqbq
Zcos,cos

qq (1, 1) = 4π T1,q(0),

− 2

jZ0k2aqbq
Zcos,cos

qq (n, n) = 2π

(

Ωq,n−1T1,q(n − 1) +
1

k2a2
q

T2,q(n − 1)

)

, n 6= 1 ,

Zsin,sin
qq (n, n) = Zcos,cos

qq (n + 1, n + 1) ,

(3.35)

whereΩq,n is given by (3.11) and where

T1,q(n) =

∫ π

0

K̃1,qq(ϕ) cos ϕ cos nϕdϕ, T2,q(n) =

∫ π

0

K̃2,qq(ϕ) sin ϕ sin nϕdϕ .

(3.36)

For p 6= q, the components of the blocksZc,d
pq cannot be reduced to linear combinations of

single integrals by means of (3.33). Therefore, we use (3.32) to write the components as linear
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combinations of double integrals. We find

− 2

jZ0k2aqbq
Zcos,cos

pq (m,n) = Ωp,m−1U
cos,cos
1,pq (m − 1, n − 1) +

m − 1

k2a2
p

U sin,cos
2,pq (m − 1, n − 1) ,

− 2

jZ0k2aqbq
Zcos,sin

pq (m,n) = Ωp,m−1U
cos,sin
1,pq (m − 1, n) +

m − 1

k2a2
p

U sin,sin
2,pq (m − 1, n) ,

− 2

jZ0k2aqbq
Zsin,cos

pq (m,n) = Ωp,mU sin,cos
1,pq (m,n − 1) − m

k2a2
p

U cos,cos
2,pq (m,n − 1) ,

− 2

jZ0k2aqbq
Zsin,sin

pq (m,n) = Ωp,mU sin,sin
1,pq (m,n) − m

k2a2
p

U cos,sin
2,pq (m,n) ,

(3.37)

where

U c,d
1,pq(m,n) =

∫ π

−π

∫ π

−π

c(mϕ) d(nϕ′) cos(ϕ − ϕ′ + ψp − ψq) K̃1,pq(ϕ,ϕ′) dϕ′dϕ ,

U c,d
2,pq(m,n) =

∫ π

−π

∫ π

−π

c(mϕ) d(nϕ′) sin(ϕ − ϕ′ + ψp − ψq) K̃2,pq(ϕ,ϕ′) dϕ′dϕ .

(3.38)

with c andd representing the sine and cosine functions corresponding to the ‘values’ of the super
indicesc,d.

3.4 Numerical Aspects

The last step in the construction of the moment matrix concerns the numerical computation of the
integrals introduced in the previous section. To determinethe accuracy by which these integrals
need to be computed, we consider the moment-matrix equation(2.129)2. The solution of this
equation is the projected currentW(W−w). The required accuracy of this current depends on
the functional metric related to (2.31). In their turn, the required accuracies of the integrals
and the moment-matrix inversion depend on the required accuracy of the projected current.
We consider here only the dependence of the accuracy of the integrals on the accuracy of the
projected current. It goes without saying that the total CPUtime of constructing the moment
matrix and solving the moment-matrix equation should be minimized. We will show that the
CPU time needed to construct the moment matrix dominates in general the CPU time of solving
the related equation.

To determine how accurate we need to compute the integrals, we write the moment matrix
[W−ZaW] asD + R . Here,D consists of the diagonal blocks[W−

q ZaWq] of the moment
matrix andR consists of the off-diagonal blocks[W−

p ZaWq] . Then, the moment-matrix equa-
tion (2.129)2 turns into (I + D−1R)W = D−1G−1V , whereI is the identity matrix and



76 3. THE IMPEDANCE OPERATOR

W = [W−w]. Assume thatD andG−1V are determined exactly and thatRcal is the numeri-
cally determined off-diagonal block matrix. LetW be the exact solution of the moment-matrix
equation and letWcal be the solution replacingR by Rcal,

(I + D−1R)W = D−1G−1V , (I + D−1Rcal)Wcal = D−1G−1V . (3.39)

Write δR = Rcal − R andδW = Wcal − W . Then, subtracting the equations (3.39), we obtain

δW = −(I + D−1(Rcal − δR))−1D−1 δR W . (3.40)

Of courseI + D−1Rcal should be invertible. Moreover, we assume thatδR is so small that
‖ (I + D−1Rcal)

−1 ‖ ‖ D−1 δR ‖< 1 , which implies thatI + D−1R is invertible, see [40:
p. 59, Th. 2.3.4]. We note that‖ · ‖ denotes both a norm onCN×1 and its sub-multiplicative
associated matrix norm. Using the assumption and [40: p. 59,Lemma 2.3.3], we arrive at the
estimate

‖ δW ‖
‖ Wcal ‖

≤ C

1 − C
‖ D−1 δR ‖
‖ D−1Rcal ‖

‖ D−1 δR ‖
‖ D−1Rcal ‖

, C = ‖ (I +D−1Rcal)
−1 ‖ ‖ D−1Rcal ‖ .

(3.41)

This means that the relative error‖ δW ‖ / ‖ Wcal ‖ is determined by the relative error
‖ D−1 δR ‖ / ‖ D−1Rcal ‖ and by the constantC. Choosing the latter error≤ ǫ/C(1 + ǫ),
we obtain‖ δW ‖ / ‖ W ‖ ≤ ǫ . If ǫ ≪ 1, then we may replace this choice by‖ D−1 δR ‖
/ ‖ D−1Rcal ‖ . ǫ/C to obtain the same, but approximate, inequality. The approximate
inequality‖ D−1 δR ‖ / ‖ D−1Rcal ‖ . ǫ/C is in general satisfied if each matrix component
is determined with a relative error of at mostǫ provided thatC = O(1). Although it is expected
that the norms‖ (I+D−1Rcal)

−1 ‖ and‖ D−1Rcal ‖ compensate each other,C = O(1) cannot
be shown satisfactorily a priori, only a posteriori. We notehere only that the norm‖ D−1Rcal ‖
will in general increase as a function of the number of microstrip elementsNel. A sufficient
rate of convergence of the components[W−

p ZaWq](m,n) as a function of increasing|cp − cq|
is required to have‖ D−1Rcal ‖ bounded asNel → ∞. This means that the mutual coupling
between the microstrip elements should decrease sufficiently fast as a function of increasing
distance between the elements.

The error estimate (3.41) is particularly useful for the array of rings. In this case,D is a
diagonal matrix of which the diagonal components are singleintegrals, whereasRcal is a dense
matrix of which the off-diagonal blocks are double integrals. Hence, the construction ofRcal

determines the total CPU time. Based on the error estimate, we compute first the components of
D with a relative error much smaller thanǫ. Subsequently, we compute the components ofRcal

with a relative error ofǫ. We choose hereǫ = 10−3. Let us first consider the computation of the
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components ofR. Since tests for the integrals (3.38) showed that the composite 2D Simpson
rule requires less integration points for the same accuracythan the higher-order Newton-Coates
rules, we use this rule. A Matlab implementation is given in [64: p. 191], where equal numbers
of integration points forϕ andϕ′ are chosen, i.e.,2Nint+1 with Nint the number of subintervals
on [−π, π]. We deduce a rule of thumb for the number of integration points required for a
relative error of10−3 as follows. Letmin(Nint) be the minimumNint such that the relative
difference between the matrix components (3.37) and certain reference values is less than10−3

for all Nint ≥ min(Nint). These reference values are obtained by usingNint = 300 on [−π, π].
The minimummin(Nint) depends on the expansion functions and the geometry parameters.
For several parameter settings, we computemin(Nint) as a function of the angular ordern of
the cosine and sine expansion functionscos nϕ and sin nϕ. An example is given in Figure
3.1, where we computemin(Nint) for Zcos,cos

pq (n, n) andZsin,sin
pq (n, n) as a function ofn for

several distances between the rings. Based on these computations, we choose the number of
subintervals forZc,d

pq (m,n) asNint = 15 + 2 max(m,n) for |cp − cq| − ap − aq ≤ 0.5λ

andNint = 8 + 2 max(m,n) otherwise. We tried to reduce these numbers by using different
numbers of subintervals forϕ andϕ′, but we could not find suitable rules of thumb, because the
numbers of subintervals appeared to be strongly dependent on the spacing between the rings.

The integrals of the diagonal components ofD are computed as follows. The integrals
with respect to the logarithmically singular parts of the integrands of (3.36)1 are calculated
analytically with result

− 1

πkaqβq

∫ π

0

log(2 sin(ϕ/2)) cos ϕ cos nϕdϕ =



































1

2kaqβq

n

n2 − 1
, n > 1 ,

1

8kaqβq
, n = 1 ,

1

2kaqβq
, n = 0 .

(3.42)

The integrals over theH2,1,per([−π, π])-parts and the integrals (3.36)2 are computed by the 1D
composite Simpson rule withNint = 100. A description of this rule and a Matlab implementa-
tion are given in [64: p. 167].

For line arrays of strips with entire-domain expansion and test functions, the number of
integration points is related to the relative errorǫ as described above for arrays of rings. Since
all components ofR consist of single integrals only, the CPU time for a line array of strips
will be much lower than for an array of rings with the same number of elements. Therefore,
we compute all integrals ofR by the 1D composite Simpson rule withNint = 100 to obtain
sufficiently accurate results for the solution of the moment-matrix equation. The integrals inD
are computed as follows. The integrals with respect to the logarithmically singular parts of the
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Figure 3.1 Minimum number of subintervalsmin(Nint) for Zcos,cos
pq (n, n) (left) and

Zsin,sin
pq (n, n) (right) as a function ofn for an array of rings in free space. Cross:cq =

(7/15 λ, 0), asterisk:cq = (8/15 λ, 0), plus: cq = (9/15 λ, 0), circle: cq = (2/3 λ, 0).

Other parameter values:ap = aq = λ/5, ψp = ψq = 0, cp = 0.

integrands of (3.20)2 are expressed as sine integrals,

− 1

kℓβ

∫ 1

0

log(2ξ) cos mπξ dξ =
1

kℓβmπ
Si(mπ), Si(ξ) =

∫ ξ

0

sin ξ′

ξ′
dξ′ . (3.43)

For n ≤ 20, the sine integral is tabulated and, for higher numbers ofn, it is calculated asymp-
totically, see [1: p. 231 – 233]. The integrals with respect to theH2,1([−1, 1])-parts and the
integrals (3.36)1 are computed by the 1D composite Simpson rule withNint = 100. Finally,
the integrals for a single strip with piecewise functions are calculated similarly; the logarithmic
singular parts are calculated analytically and theH2,1([−1, 1])-parts are calculated numerically
with 30 integration intervals per interval of length 1.

The CPU times for the moment matrices of several line arrays of rings and strips are given
in the second and third columns of Table 3.1. We have not used symmetry considerations such
as the symmetry of the moment matrices of the strip arrays. Therefore, the large differences
between strip and ring arrays are only due to the differencesbetween the coupling integrals.
Moreover, we observed that only forNel = 50 andNel = 100, the CPU times of the moment-
matrix inversion are higher than one second, 2 seconds and 14seconds to be precise. Here, we
used the standard Matlab inversion module. For very large array sizes, the CPU time of the
inversion will dominate the CPU time of the matrix construction, because the former tends as
N3, whereas the latter tends asN2, whereN = NelNexp is the number of rows and columns,
see [110: p. 455 – 456]. Accuracy checks for the solution of the moment-matrix equation are
given in Chapter 4. For the eigenvalues of the moment matrix,such checks are given in Chapter
5.
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3.5 Uniform Arrays and the Infinite-Array Approach

In the general setup, the arrays need not be uniform. Uniformarrays have uniform inter-element
spacing and uniform element geometry. To compare with the infinite-array approach, we have to
assume that the finite array is uniform. We consider mainly one type of uniform arrays: uniform
line arrays. These arrays can be building blocks of rectangular arrays as explained in Section
1.3. Moreover, they constitute the simplest test case for a comparison between the infinite and
finite-array approaches. For uniform line arrays, the expansion and test functions described by
W can be chosen such that the moment matrices[W−ZaW] are finite (block) Toeplitz matrices.
In this section, we study the relationship between the infinite and finite-array approaches as
being expressed by infinite and finite Toeplitz matrices.

A uniform line array of strips is obtained from the line arrayin Subsection 2.3.2 by setting
the inter-element spacingdq,q+1 in (2.47) equal to a constantd. We index the strips not from
1 to Nel as previously, but from−N or −N + 1 to N , whereNel = 2N + 1 or Nel = 2N .
Without loss of generality, we position the center of the strip with index zero in the origin, i.e.,
c0,x = 0, see Figure 3.2.

ex

ex
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ez

ez

c−2 c−1 c0 c1 c2

θ1

θ

φ

d

Figure 3.2 Geometry of a uniform line array of strips. The angleθ1, i.e., the angle between

thex-axis and a line through the origin atc0, indicates the position of the main lobe. The angles

(θ, φ) are the usual spherical angles.

Uniform line arrays of rings are described in the same way as line arrays of strips. All ring
geometry parameters are independent of the ring indexq, i.e., aq = a, bq = b, andψq = ψ,
see Subsection 2.3.3. The centerscq are positioned on thex-axis with uniform inter-element
spacingd and the rings are indexed like the strips.

Let us first consider a uniform line array of strips for which the impedance operator is given
by

(Zaw)( · ; p) = −1

2
jZ0k

2ℓb
N

∑

q=−N (+1)

(

1 +
1

k2ℓ2
d2

dξ2

)

F̃pqw( · ; q) , (3.44)

see (2.53), where thepth component ofZaw is denoted by( · ; p) instead ofp, as proposed
in Section 2.4.3. The integral operators̃Fpq exhibit symmetry and translation invariance with
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respect top andq, i.e.,F̃pq = F̃qp andF̃pq = F̃0(q−p), and hence,̃Fpq = F̃0|p−q|. We choose
the expansion and test functions as in (3.7) and (3.8). Moreover, we choose the tuplesNcos

andNsin uniform in their components, i.e.,Ncos(q) = Ncos andNsin(q) = Nsin. Then, the
corresponding moment matrix, given by (2.131) with adjusted numbering, is a (block) Toeplitz
matrix. This means that[W−

p ZaWq] = [W−
p+nZaWq+n] for every admissiblen. Hence, we

need to calculate only the first block row and the first block column, i.e., [W−
−NZaWq] and

[W−
q ZaW−N ], to construct the moment matrix. The CPU times for both the complete moment

matrix and the Toeplitz blocks are given in Table 3.1 for several line arrays of strips. Unlike the
results for strip arrays withNel = 50, 100 in the previous section, the CPU time of the Toeplitz
blocks, which tends asNel only, does not dominate the CPU time of the matrix inversion.

Table 3.1 CPU times for the moment-matrix construction of line arrays ofNel rings and strips

in free space, obtained with the Matlab implementation of Section 3.4 and the platform men-

tioned in Section 1.4. Parameter values for the ring array:a = λ/5, β = 1/40, ψ = 0.

Parameter values for the strip array:2ℓ = λ/2, β = 1/40. Common parameters:d = 3λ/5,

Ncos = 6, Nsin = 0.

CPU time (seconds) moment matrix construction
Complete matrix Toeplitz blocks

Nel Ring array Strip array Ring array Strip array
1 0.2 0.2 0.2 0.2
2 2.7 0.4 2.6 0.3
5 14.3 1.0 6.1 0.4
10 57.7 2.7 11.6 0.5
50 1450 48.6 56.9 1.9
100 4973 180 114 3.8

A general theory on Toeplitz matrices can be found in e.g. [14], while applications to arrays
can be found in e.g. [110: p. 455 – 456]. The Toeplitz propertyholds if all elements have
the same expansion functions and if a all elements have the same test functions. For the line
array of strips, the moment matrix is not only Toeplitz, but also symmetric, if the expansion
functions equal the test functions. Therefore, we need onlyto calculate the blocks[W−

−NZaWq]

to construct the corresponding moment matrix.
We follow the usual way to construct the moment-matrix equation for a line array of strips

by the infinite-array approach. We start from the moment-matrix equation for a finite line array
of strips, i.e.,[W−ZaW][W−w] = [W−vex], see also Section 1.2. We write this equation in
the alternative form

N
∑

q=−N (+1)

[W−
p ZaWq][W−

q w] = [W−
p vex] , p = −N (+1), . . . , N − 1, N . (3.45)
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Assuming that the excitation fieldvex has a linear phase progression given byvex( · ; p) =

vex( · ; 0) e−jpkd cos θ1 , we write the right-hand side of (3.45) as[W−
0 vex] e−jpkd cos θ1 . Here,

the angleθ1 indicates the scan direction of the line array, see Figure 3.2. This angle is related to
the scan angle of the array, which is usually expressed in terms of spherical angles(θscan, φscan).
In the xz-plane, the scan angle is given byφscan = 0 andθscan = 90◦ − θ1. The moment-
matrix equation of the infinite-array approach is obtained by letting N → ∞ in (3.45). If the
lowest element index is−N , then the limit is the principal value for arrays with odd numbers of
elements. Otherwise, the limit is the principal value for arrays with even numbers of elements.
We do not consider the question whether these limits are the same. The resulting equation is

∞
∑

q=−∞

[W−
0 ZaWq−p][W−

q w] = [W−
0 vex] e−jpkd cos θ1 , p ∈ Z , (3.46)

where we used that[W−
p ZaWq] = [W−

0 ZaWq−p] for the infinite array. The moment ma-
trix related to (3.46) is a (block) Laurent matrix induced bythe row (Aq)

∞
q=−∞ with Aq =

[W−
0 ZaWq],













. . .
. . .

.. .
. . .

. . .
. . .

. . . A−1 A0 A1 . . . . . .

. . . . . . A−1 A0 A1 . . .
. . .

. . .
.. .

. . .
. . .

. . .













, (3.47)

see [14: Ch. 1, Ch. 6]. The matrix induces an operator betweentwo spaces consisting of
sequencesα : Z → CNexp , whereNexp = Ncos + Nsin. If this operator is injective and the
sequence induced by the right-hand side of (3.46) is an element of its range, then the solution of
the infinite-array approach (3.46) is unique.

By the transformationq′ = q − p, the parameterp in (3.46) is transferred to the second term
in the left-hand side, which yields[W−

q′+pw]. It follows that, if the blocks[W−
p w] have the

same phase progression asvex, then (3.46) turns into

A(Ψ)[W−
0 w] = [W−

0 vex] , A(Ψ) =

∞
∑

q=−∞

Aq e−jqΨ, (3.48)

whereΨ = kd cos θ1. Hence, if the matrix-valued functionA(Ψ) exists and is invertible, then
W−w has the same phase progression. Moreover, (3.48) yields[W−

0 w], i.e., the expansion
coefficients of the current on the strip with index zero. The matrix A(Ψ) is called the infinite-
array moment matrix. The existence and invertibility of this matrix is a basic assumption of the
infinite-array approach.

In the literature, see [21, 95], the infinite-array moment matrix is often deduced from the
impedance operator equation, in this caseZaw = vex. By a similar deduction as above, the
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infinite-array impedance operator

Z∞
a = −1

2
jZ0k

2ℓb

∞
∑

q=−∞

e−jqΨ

(

1 +
1

k2ℓ2
d2

dξ2

)

F̃0q (3.49)

is obtained from (3.44) with the related operator equationZ∞
a w( · ; 0) = vex( · ; 0). This for-

mulation is more general than (3.48) in the sense that it is valid for any choice of expansion and
test functions, but the requirements for its validity are more strict. The infinite sum in (3.49) is
often taken inside the integral operator, by which a new kernel is obtained, in particular, the infi-
nite sum of the kernels̃F0q times the corresponding phase factorse−jqΨ. This formulation was
reported to yield a slower numerical solution than the formulation in which the infinite sum is
extracted from the moment matrix, as in (3.48), see [95: p. 604]. However, transformation of the
new kernel, for example by Poisson’s summation formula, mayimprove the rate of convergence
of both formulations significantly.

We illustrate the convergence and divergence of the series describing the infinite-array mo-
ment matrixA by means of an example. Figure 3.3 (left) shows the(1, 1) component ofA in
the complex plane as a function ofΨ for prescribed parameter values. The arrow indicates the
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Figure 3.3 Left: normalizedA(Ψ; 1, 1) for a line array of strips in free space. Right: normal-

ized Im(A(Ψ; 1, 1)) as a function ofΨ for the same array. The function values are calculated in

the pointsΨ = 2πi/1500, i = 0, 1, . . . , 1500, with q = −999, . . . , 999 in (3.48). The arrow

indicates the pointsA(4π/5; 1, 1) andA(6π/5; 1, 1). Parameter values:2ℓ = λ/2, β = 1/50,

d = 3λ/5, Ncos = 1, Nsin = 0.

pointsA(4π/5; 1, 1) andA(6π/5; 1, 1), which are the same. Near the corresponding values of
Ψ, i.e.,Ψ = 4π/5 andΨ = 6π/5, the functionA( · ; 1, 1) varies rapidly. Together with a too
low number of interpolation points, this explains the angular nature of the curve at the point
indicated by the arrow. Figure 3.3 (right) suggests that theimaginary part ofA( · ; 1, 1) exhibits
logarithmic singularities atΨ = 4π/5 andΨ = 6π/5. This is confirmed by Figure 3.4 (left),
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which shows that the imaginary part ofAq(1, 1) e−4jqπ/5 tends as1/q for q > 0. Although
shown up toq = 50 only, we have verified that this behavior continues up toq = 2000. The
same behavior is observed forΨ = 6π/5, but forq < 0. Hence, the series in (3.48)2 is at most
convergent in principal-value sense forΨ = 4π/5 andΨ = 6π/5, if it converges at all. For
comparison, Figure 3.4 (right) shows the imaginary part ofAq(1, 1) as a function ofq.
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Figure 3.4 Solid curves with crosses: normalized Im(Aq(1, 1) e−jqΨ) as a function ofq for

Ψ = 4π/5 (left) andΨ = 0 (right). Dashed curves:±1/|q|. Parameter values: see Figure 3.3.

Normalization:|A1(1, 1)|.

Numerical tests reveal thatAq(1, 1)e−jqΨ behaves as1/q for q = ±|q| if Ψ = ∓2πd/λ +

2mπ with m ∈ Z. The anglesθ1 corresponding to these values ofΨ follow from

cos θ1 = ∓1 + mλ/d , 0 ≤ θ1 ≤ 2π, m ∈ Z . (3.50)

For nλ/2 ≤ d < (n + 1)λ/2, this equation yields exactly one solution for eachm =

0,±1, . . . ,±n corresponding to the sign choice of∓1 in the right-hand side. For other combi-
nations of sign choice and values ofm, the equation has no real-valued solution. The solutions
for m = 0 are the grazing anglesθ1 = 0◦ andθ1 = 180◦. The solutions form = −1, . . . ,−n

andm = 1, . . . , n correspond to anglesθ1 at which a grating lobe appears or disappears at0◦

and180◦, respectively. Here, appearance or disappearance dependson the direction in which
the interval forθ1 is traversed. In the example of Figures 3.3 and 3.4, a gratinglobe appears
or disappears at0◦ for cos θ1 = −2/3, i.e., θ1 = 131.8◦ andΨ = −4π/5, and at180◦ for
cos θ1 = 2/3, i.e.,θ1 = 48.2◦ andΨ = 4π/5. This result is formulated as follows in terms of
the spherical angles(θ, φ) and the scan angle described by the spherical angles(θscan, φscan). In
thexz-plane, a grating lobe appears or disappears atθ = 90◦ for the scan angleθscan = −41.8◦,
and atθ = −90◦ for the scan angleθscan = 41.8◦.

From the above, we see that the possible divergence of the series (3.48)2 is related to the
physical phenomena of grating-lobe appearance and grazingscan. Mathematically, the possible
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divergence could be explained by the approximate cancelation of the phaseqΨ by the phase
of the kernel̂gfree in the expression forZa for large values ofq, see (2.53). The mathematical
implication of divergence of the series is that the Laurent matrix (3.47) induces an unbounded
operator onl2(Z). This follows from a result in [14: pp. 3, 186], which states that the operator
is bounded if and only if its related Fourier series (3.48)2 generates a bounded function. This
function, i.e., the infinite-array moment matrix, is calledthe symbol of the Laurent matrix (3.47).
In Chapter 5, we show that the behavior of the spectrum of the finite-array moment matrix for
Nel → ∞ is in correspondence with the possible divergence of the Fourier series by relating
these eigenvalues to scan angles of the array.

The singular-like behavior of the functionA appears in each of its components. Moreover,
this behavior appears to be independent of the strip length and width. For spacings smaller than
half a wavelength, which do not induce grating lobes, the singular behavior occurs as well, but
only at grazing scan. Analogous results are obtained for line arrays of rings, where the singular
behavior appears to be independent of ring circumference and width. If the rings or strips are
positioned above a ground plane, the singular behavior disappears.

Divergence of the infinite-array solution is also found in [21: Sec. 6] for line arrays of
collinear wires and for rectangular arrays of parallel wires, both in free space. Here, the di-
vergence appears as a singularity in one or more expansion terms of the infinite-array integral
kernel. This kernel is obtained from the exact wire kernel for the array by applying Poisson’s
summation formula. Condition (3.50) for divergence in freespace follows also from [21: Eq.
(12)] by settingγn = 0. As in our results, the singularities found in [21: Sec. 6] are removed
when the array is positioned in a half space. Moreover, the singularities are linked to the appear-
ance and disappearance of a grating lobe. In a general context, this link is established in [124] as
well. It is shown that the resistance and reactance functions, or their derivatives, of an element
in an infinite array in free space are discontinuous at the grating-lobe scan angle [124: Th. 6].

Finally, we consider briefly uniform rectangular arrays. Also for these arrays, the expansion
and test functions described byW can be chosen such that the moment matrices[W−ZaW] are
block Toeplitz matrices. The interaction between the line arrays of which a rectangular array
is composed is described by a block Toeplitz matrix. These blocks, which represent the self
and mutual coupling of the line arrays, are block Toeplitz matrices as well. In the infinite-array
approach, both the total Toeplitz matrix and its Toeplitz blocks become infinite matrices. In
other words, the infinite array is represented by the Laurentmatrix (3.47) of which the blocks
Aq are infinite block Toeplitz matrices. If a linear phase taperis assumed in both the length and
width direction of the array, the Laurent matrix is reduced to a single block as in (3.48) for line
arrays.
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CHAPTER 4

The Excitation Field

As part of the second phase of our research, see the scheme in Figure 1.7, we discuss in this chap-
ter the tangential excitation field by which the source of arrays of strips and rings is modeled.
Two types of excitation fields are considered: excitation fields related to the transmit function,
also called local feeds, and excitation fields related to thereceive function of the array. In partic-
ular, we investigate the consequences of expressing the tangential excitation field in terms of a
finite set of expansion functions. We show that specific choices of local feeds, i.e., the delta gap,
the finite feed gap, and excitation by a proximity coupled small ring, are equivalent. They gen-
erate the same current distributions up to small perturbations. On basis of this result, we choose
finite expansions of the delta gap as tangential excitation fields for the simulations in Chapter
6. Additionally, we discuss the equivalence of local feeds with respect to a local performance
parameter, i.e., the (complex) power. Within the frame of the dimensional analysis of Chapter
2, we show that the tangential excitation field and the current may be replaced by their averaged
forms in the computation of the (complex) power. Moreover, we show that the real part of the
complex power equals twice the radiated power, as describedin the literature. Finally, to model
the receive function, we choose plane waves and we show for which plane-wave directions the
averaging procedure of Chapter 2 is valid. Moreover, we showthat currents induced by local
feed gaps and currents induced by plane waves are approximately the same, which is explained
by the reciprocity theorem.

4.1 General Aspects

As mentioned in Section 2.2, the excitation fieldES can be interpreted as the tangential compo-
nent of an externally applied electric field,−(Eext)tan, at the surfaceS of the array elements.
This external field may originate from a feed including its connection to the array. The mutual
coupling between the external field and the array is ignored in the modelZJ = ES , or in other
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words, the excitation fieldES is assumed fixed.
The solution ofZJ = ES is determined by the excitation field only, and not by the com-

plete external field. External fieldsEext that induce the same excitation field and, hence, induce
the same solutionJ , are called equivalent. In turn, the (numerical) solution procedure, in which
ZJ = ES is replaced by the moment-matrix equation[W−ZaW][W−w] = [W−vex], gives
rise to equivalent excitation fields. FieldsES that induce the same excitation vector[W−vex]

and, hence, the same solution[W−w], are equivalent. Here,vex represents the averaged center-
line components ofES , see Subsection 2.3.1, and the excitation vector represents the expansion
coefficients ofvex with respect to the finite basis of functions bas(W) and the inner product on
Ya, see Section 2.4. The finite expansion ofvex is square integrable, as required in the space
characterization of Section 3.1, even ifvex itself is not square integrable. In that case, the ex-
pansion coefficients can only be calculated in generalized sense. From a practical point of view,
only the expansion ofvex is important and not its fine structure. How accurate the expansion
of vex needs to be depends on the typical parameter under consideration and, hence, on the
functional metric related to (2.31).

From the above, we observe that the excitation is modeled as afinite number of expansion
coefficients given by the excitation vector[W−vex], which can be regarded as a discretization of
ES . Vice versa, the question arises whether a given excitationvector corresponds to a physically
realizable excitation. The underlying assumption of each of our choices of excitation vectors is
that they somehow approach a physically realizable excitation. In the next sections, we support
the underlying assumptions by certain physical ideas.

4.2 Excitation Fields for Local Feeds

In this section, we first consider examples of excitation fields representing local feeds for strips
and rings. Subsequently, we investigate the equivalence ofthese examples.

4.2.1 Examples

Feed Gaps

As a first example of a local feed, we consider the finite feed gap. The corresponding compo-
nents ofvex are given by

vex(ξ; q) = −V ex(q)

2ǫℓ
1[−ǫ,ǫ](ξ) , (4.1)

for theqth strip, and by

vex(ϕ; q) = −V ex(q)

2ǫπaq
1[π(1−ǫ) , π(1+ǫ)](ϕ mod2π) , (4.2)
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for theqth ring, see Figure 4.1. Here,1[ · , · ] is the characteristic function as introduced below
(2.56) and mod is the modulo function. The gap width is a function of ǫ as indicated in Figure
4.1. Straightforward examples of corresponding excitation fields areES |Sq

= vex( · ; q)eξ and

ex

ex
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ey
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Sq
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2ǫℓ

2ℓ

Figure 4.1 A ring and a strip with finite feed gaps.

ES |Sq
= vex( · ; q)eϕ|Sq

. These excitation fields are regarded as voltage jumps of magnitude
V ex(q) over a finite length on theqth strip or ring. An interpretation of such a jump is that it
represents a voltage difference between the two (fictitious) terminals of a strip or a ring. For the
entire-domain functions on the strips, see (3.7) and (3.8),the excitation vector corresponding to
(4.1) is given by the right-hand side of (2.131), where

[W−
q vex] =

(

[(Wcos
q )−vex]

[(Wsin
q )−vex]

)

(4.3)

and

[(Wcos
q )−vex](n, 1) = −V ex(q)

ℓ
sinc

(

(2n − 1)πǫ

2

)

, [(Wsin
q )−vex](n, 1) = 0 . (4.4)

As in Subsection 3.3.1, we use that the entire-domain functions are orthonormal with respect to
the inner product inL2 and, hence, that the corresponding Gram matrix is the identity matrix.
For the entire functions on the rings, see (3.7) and (3.12), the excitation vector is given by the
right-hand side of (2.131), where

[W−
q vex] = G−1

q

[

ζcos
q ⊔ ζsin

q

]

, (4.5)

and

ζsin
q (n) = 0 , ζcos

q (n) =
(−1)nV ex(q)

aq
sinc

(

(n − 1)πǫ
)

. (4.6)
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The Gram matrixGq is defined by (3.34) and the concatenation⊔ by (2.103). By lettingǫ → 0

in these expressions, we obtain the non-zero components

[(Wcos
q )−vex](n, 1) = −V ex(q)

ℓ
, ζcos

q (n) = (−1)n V ex(q)

aq
, (4.7)

in (4.4) and (4.6), respectively. One of the fieldsvex corresponding to the resulting excitation
vector for the strips, i.e., (4.4)2 and (4.7)1, is obtained as the generalized limit of (4.1). For the
rings, such a field is obtained as the generalized limit of (4.2) for ǫ → 0. In both cases, the
limit results in the well-known delta gap, also called voltage gap, for whichvex is not a square
integrable function.

Excitation by Proximity Coupling

The second example of a local feed is the excitation of a ring by proximity coupling. We consider
a ring with circumference of about a wavelength excited by the electromagnetic field of an
electrically small ring. In turn, this small ring is excitedby a delta gap. Both rings satisfy the
dimension requirements of Subsection 2.3.3, but the distance between the rings is a few times the
width of the large ring and, hence, not much larger than its width, i.e.,bq/(|cp−cq|−ap−aq) =

O(β) for p 6= q, see for example Figure 4.2 (left). Excitation of a ring by the external field of
a proximate ring has been studied by the author in cooperation with A. Kooiker, see [59]. The
objective of this study was to show equivalence between excitation by proximity coupling and
excitation by finite feed gaps. The main results are presented in Subsection 4.2.2. Readers
interested in the calculational details of proximity coupling find them below. The main idea is
that we replace the approximate kernels as deduced in Subsection 2.3.3 by approximate kernels
for electrically small spacings.
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Figure 4.2 Two examples of “arrays” of two rings. The little blocks on the rings, i.e.,¤, indi-

cate the position of a feed gap, if such a gap is present. Length scales aregiven in wavelengths.
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Calculational Steps of Proximity Coupling

To study proximity coupling between two rings, we reconsider the analysis of Subsection 2.3.3.
We assume that the distances between the rings are such that we may still apply the averaging
operatorA, see (2.71). Depending on the distance between two rings andon their sizes, we may
need other approximations for the kernels (2.77) than presented in (2.89) and (2.95) for certain
values ofϕ andϕ′. For these values, we do not approximate the distance measure R̂pq with
p 6= q in (2.73) and (2.77)1. Hence, we need to evaluate the adjusted approximate kernels

K̃1,pq(ϕ,ϕ′) =

∫ 1

−1

∫ 1

−1

ĝfree

(

R̂pq(r, r
′, ϕ, ϕ′)

)

dr′dr ,

K̃2,pq(ϕ,ϕ′) =
1

βp

∫ 1

−1

[

ĝfree

(

R̂pq(1, r
′, ϕ, ϕ′)

)

− ĝfree

(

R̂pq(−1, r′, ϕ, ϕ′)
)

]

dr′+

+ K̃1,pq(ϕ,ϕ′) ,

(4.8)

that replace the approximate kernels (2.89) and (2.95). Here, ĝfree is the (normalized) kernel
defined by (2.44)1 and R̂pq is the (normalized) distance measure defined by (2.70). In (4.8),
we neglect terms of orderβ. We compute both integrals with the composite Simpson rule as
described in Section 3.4 (Nint = 50), although, for small spacings, integration intervals of equal
length are not practical due to the nearly singular behaviorof the integrands. To determine for
which values ofϕ andϕ′ (4.8) should be used, a criterion is proposed in [59: p. 106] based
on the relative difference between the distance measuresR̂pq(r, r

′, ϕ, ϕ′) and|dpq(ϕ,ϕ′)|, see
(2.70) and (2.88). Here, we compute the kernels either completely with the approximations
(4.8) or completely with the approximations (2.89) and (2.95). The coupling integrals (3.37) are
computed as in Section 3.4, but withNint = 50 instead of the proposed rules of thumb.

To compare both approximations, we compute the point-wise relative differences between
the corresponding results for the current for several parameter settings. The first setting concerns
two rings with equal radiia = a1 = a2 = λ/5 and with spacing3a, see Figure 4.2 (right). The
first ring is excited by a delta gap of1V. Figure 4.3 (left) shows the differences for the second
ring. This ring is either excited by the field of the first ring only or also by a delta gap of1V on
itself. Figure 4.3 (right) shows the same differences, but for spacing2a+6b, whereb = b1 = b2

is half the width of the rings. If the second ring is not excited by a delta gap on itself, the relative
differences for the larger spacing are of the same order as the maximum relative error required
in Section 3.4, i.e.,0.1%. Moreover, the maximum relative difference is attained atϕ = −π,
which indicates the position on the second ring with the smallest distance to the first ring. For
the smaller spacing, the relative differences are of the order of 1%. Contrary to the result for
the larger spacing, the maximum relative difference is not attained atϕ = −π, but atϕ = 0.95.
This value ofϕ indicates the position at which the current amplitude attains its minimum.

Since we neglect terms of orderβ = b/a in the deduction of the kernel approximations
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Figure 4.3 Relative differences, as a function of the angleϕ, of the currents obtained by the

approximations (2.89) and (2.95) and by the approximation (4.8) on the second ring of an array

of two rings in free space. Left: spacing3a as in Figure 4.2 (right), wherea = a1 = a2.

Right: spacing:2a + 6b, whereb = b1 = b2. Dashed curve: delta gap on the second ring

with V ex(2) = 1V. Solid curve: no delta gap on the second ring. Parameter values:a = λ/5,

β = b/a = 1/40, ψq = 0, V ex(1) = 1V, Ncos(q) = 8, Nsin(q) = 0.

(2.89) and (2.95), a relative difference of orderβ = 1/40 is expected in the results above.
Hence, for distances between the rings that are much larger than the ring widths, the accuracy of
the current obtained by the kernel approximations (2.89) and (2.95) seems to be of higher order
thanβ. Moreover, for distances of the order of the ring width of thelarge ring, the accuracy
seems to be of the orderβ. In the next subsection, we use the kernel approximations (4.8) to
compute the current.

The percentages above are based on the relative difference for a second ring without delta-
gap excitation. If this ring is excited by a delta gap, the relative difference is much smaller, as
shown in Figure 4.3. This is explained as follows. The self coupling of each ring is predominant
over the mutual coupling between the rings. Hence, if a ring is excited by a local feed, its
current is largely determined by the self coupling. As a result, the relative difference between
the currents on the second ring in Figure 4.3 are much smaller, if this ring is excited by a delta
gap.

For two closely spaced rings as in Figure 4.2 (left), we foundon the second ring relative
differences smaller than1% if this ring is not excited by a delta gap, and smaller than0.1% if
this ring is excited by a delta gap of1V. This corroborates the results above. We investigated
also whether the relative differences found above are significant with respect to the numerical
accuracy of the computation of (4.8) by which these differences are obtained. ForNint = 100

instead ofNint = 50 in this computation, we found a relative difference of10−11. Taking also
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Nint = 100 instead ofNint = 50 in the computation of the coupling integrals (3.37), we found
a relative difference of10−5. Hence, the relative differences found above are significant.

4.2.2 Equivalence

To investigate equivalence of the introduced local feeds, we consider first the coupling between
a small and a large ring as shown in Figure 4.2 (left). The small ring is excited by a delta gap
of 1V, whereas the second ring is not excited. Figure 4.4 shows the normalized amplitude and
phase of the current on the small ring compared to the currenton the same but single ring, where
‘single’ means without any other ring present. As expected,the current on the single ring has a
small real part compared to its imaginary part, which indicates that the ring is strongly reactive.
Moreover, the amplitude is almost constant. The current of the proximity coupled small ring
differs pointwise only0.1% from the current on the single ring. This difference is of thesame
order as the numerical accuracy required in Section 3.4 and,hence, we neglect the coupling
of the large ring onto the small ring. In the moment-matrix equation [W−ZaW][W−w] =

[W−vex], this can be accomplished by setting the block[W−
1 ZaW2] equal to zero. Instead,

we choose to construct a moment-matrix equation for the large ring only and we incorporate
the excitation field induced by the small ring onto the large ring in the corresponding excitation
vector. Physically speaking, we consider the current on thesmall ring as an impressed current
and choose this current equal to the current on the small ringexcited by a delta gap of1V.
The impressed current induces a fixed excitation field on the large ring. This shows a first
correspondence with the feed gaps of which the excitation field is assumed to be fixed as well.

We compare the proximity coupling above with the case of a single large ring excited by a
finite feed gap described byV ex = 4.34 · 10−2V andǫ = 0.127. The length of the feed gap is
0.16λ, while the circumference of the small ring is0.13λ. Figure 4.5 shows that if Gibbs-like
oscillations are discarded, the averaged excitation field for the feed gap is an accurate approx-
imation of the averaged excitation field induced by proximity coupling. In this approximation,
both the real parts and the imaginary parts show the same absolute difference. Figure 4.6 (left)
shows that the two excitations induce currents with the sameamplitudes. The difference be-
tween these excitations results in a phase difference between the corresponding currents, see
Figure 4.6 (right), which is independent of the number of expansion functions. This phase dif-
ference is due to the non-zero imaginary part of the averagedexcitation field of the proximity
coupling as shown in Figure 4.5 (right). Without this part, the phases of the currents become
identical. Moreover, their amplitudes change hardly with respect to the amplitudes in Figure 4.6
(left). Roughly speaking, the phase difference between thetwo currents is−0.2 rad, see Figure
4.6 (right). Hence, the two excitations can be considered equivalent up to the factore−0.2 j .
This factor can be interpreted as follows. The feed is not positioned on the ring, but connected
to the ring by a piece of transmission line of length0.2/k = 0.2λ/2π. For more details on
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transmission-line theory, we refer to [94: pp. 76 ff.].
As a second example of equivalence, we compare the finite feedgap and the delta gap for the

large ring in Figure 4.2 (left). For the finite feed gap, we chooseǫ = 0.05. Figure 4.7 shows that
the currents induced by the finite feed gap and the delta gap have equal phase. Their amplitudes
are equal up to differences of about1% near the gaps centered atϕ = π. Hence, the chosen
excitations can be considered equivalent for the given parameter values. It goes without saying
that all finite feed gaps with0 < ǫ < 0.05 can be considered equivalent for the same parameter
values as well.

In the two examples of equivalence above, we usedNcos(q) = 8 entire-domain expansion
functions on the rings. ForNcos(q) = 4 andNcos = 20, the current amplitudes in Figure 4.6
and Figure 4.7 change only nearϕ = π, i.e., the ‘position’ of the local feed, and nearϕ = 0.
This is observed by comparing the amplitudes in these figureswith the amplitudes in Figure 4.8.
Moreover, comparing Figure 4.6 (left) and Figure 4.8 (upperrow), we observe that, regardless
the number of expansion functions, the current amplitudes induced by the two local feeds of
Figure 4.6 match each other, even nearϕ = 0, i.e., the position of the local feed. The same is
valid for the current amplitudes induced by the two local feeds of Figure 4.7, but the differences
nearϕ = 0 are larger forNcos = 20. The phases of the currents in Figure 4.6 and Figure 4.7
do not change. Thus, forNcos = 4 andNcos = 20, we arrive at the same conclusion, that the
local feeds under consideration can be considered equivalent. Finally, in Figure 4.8 (second row,
second column), the computed current amplitude of a single ring with a delta gap seems to show
instabilities nearφ = π. We computed the amplitude forNcos = 30 andNcos = 40 as well, but
the amplitude remained stable.

The examples above show that specific local feeds can be considered equivalent on basis
of the dominant behavior of the current distributions induced by these feeds. This dominant
behavior is described by a small number of entire-domain expansion functions. Because of the
equivalence, we choose one local feed for the actual computation of typical parameters, namely,
the delta gap described by a finite expansion. The motivationis that this specific local feed does
not distinguish between the expansion functions on a singlestrip or ring in the sense that it ‘hits’
all expansion functions.

Finally, we emphasize that how accurate the expansion ofvex needs to be and whether
certain excitations can be considered equivalent still depends on the performance parameter
under consideration. As an example, we compare the complex power generated by a single ring
with certain local feeds and we relate this power to the inputimpedance of the ring.
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Power and Input Impedance

The complex power induced by an excitation fieldES on a surfaceS is defined by

P ex = −
∫

S

ES • J∗ dS . (4.9)

For surfacesS with parameter setΠ(S) = Πξ(S) × [−η1, η1], we introduced in Subsection
2.3.1 the concepts of narrow surface and width averaged vector field, see (2.28) and further.
Assuming that the surfaceS in (4.9) is narrow with respect toES , or, (I −A)ES ≈ 0, we may
replaceES by its width averageAES . SinceAES is directed along the centerline ofS, only
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the centerline component ofJ contributes to the complex power (4.9). Moreover, sinceAES is
constant with respect to the width ofS, the integral in (4.9) with respect to this width acts only
on the product of the centerline component ofJ and the ‘volume element’Svol of S as defined
by (2.24). Such an integral is recognized in the definition ofthe width average of a vector field,
see (2.29). Hence, the complex power turns into

P ex = −
∫

ξ

(AES)ξ(ξ)(AJ)∗ξ(ξ)

∫ η1

−η1

Svol(ξ, η) dη dξ , or, P ex = −
∫

S

AES•AJ∗ dS .

(4.10)

Here,ξ is the centerline coordinate of the surfaceS, see Figure 2.3. The derivation of (4.10)
shows that if eitherES or J in (4.9) is replaced by its width-average, the other field canbe
replaced by its average as well.

If S consists ofNel disjoint surfacesSq, vex andw areNel-tuples, which represent the
centerline components(AES)ξ and(AJ)ξ on these elements as in (2.40). Sincevex andw are
obtained by the moment method, they are represented by the finite expansionsWW−vex and
WW−w. Then, for an array of rings, the complex power is given by

P ex = −2

Nel
∑

q=1

aqbq〈(WW−vex)( · ; q), (WW−w)( · ; q)〉∗L2
, (4.11)

and for an array of strips by

P ex = −2

Nel
∑

q=1

ℓb 〈(WW−vex)( · ; q), (WW−w)( · ; q)〉∗L2
=

= −2ℓb 〈WW−vex,WW−w〉∗L2
. (4.12)

Here, theL2 inner product is defined by (3.4)2.
Since the arrays of strips and rings are positioned in free space or in a half space, it can be

shown as follows that Re(P ex) = 2P rad, whereP rad is the total radiated power in the far field
as defined by (C.18). In the complex power (4.10)2, we replace the fieldAES byAZAJ due to
the equality (2.34). Then, as shown above, we may replaceAZAJ by ZAJ . Let E andH be
the electric and magnetic field induced byAJ according to (2.14). Then,ZAJ = (E)tan and
AJ is the jump of the tangential magnetic field over the surfaceS. Hence, the complex power
turns into

P ex = −
∫

S

(E)tan •
(

n × (H|S+ − H|S−)∗
)

dS , (4.13)

wheren is the normal onS andS± denote the sides ofS. In this expression, we may replace
(E)tan by its restriction toS, because the jump has only a tangential component. Letn± be
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the normals onS± with n+ = n andn− = −n as in the model assumption 2 on page 25.
Applying the vector identityA • (B × C) = −B • (A × C), we rewrite (4.13) as

P ex = −
∫

S

(

n− • (E|S × H∗|S+)
)

dS −
∫

S

(

n+ • (E|S × H∗|S−)
)

dS . (4.14)

In this expression,n± are regarded as the ‘outward’ normals forH∗|S∓ . For the first integral,
we interpretS as a part of a closed surface, which encloses the volumeΩ+ at theS+ side of
S. For the second integral, we use a similar interpretation, but with + replaced by−. BothΩ+

andΩ− do not incorporate current sources. Then, according to the complex power balance for
time-harmonic fields, see [109: p. 131 – 137], the fluxes of thetime-average Poynting vector
S = Re(E × H∗)/2 over∂Ω+ and∂Ω− equal zero. Hence, (4.14) equals the power flux of
the time-average Poynting vector over the symmetric difference of the surfaces∂Ω+ and∂Ω−.
This symmetric difference is a surface, which enclosesS. Hence, the real part ofP ex equals
twice the flux of the Poynting vector over this surface. This statement is valid for any closed
surface, which incorporatesS. Choosing a sphere in free space and half a sphere together with
the ground plane in a half space, we obtain Re(P ex) = 2Prad, see (C.18). The derivation
above is also valid for the finite expansions ofAES andAJ . Finally, the imaginary part ofP ex

represents the power stored in the near field of the array.
Let us consider a single ring. Then, the complex powerP ex in (4.11) simplifies to

P ex = −2a b 〈WW−vex,WW−w〉∗L2
, (4.15)

where the subindexq is omitted. Using the definition ofW, see (2.110), we rewrite (4.11) as

P ex = −2a b [W−w]H G [W−vex] . (4.16)

Here, [W−w] and [W−vex] are the expansion coefficients of the averaged currentw and the
averaged excitation fieldvex, andG = G(bas(W)), i.e., the Gram matrix of the (test and)
expansion functions in bas(W) with respect to the inner product onYa. As in (2.130)2, we can
write [W−vex] = G−1V with V (n, 1) = 〈Wen, vex〉 . Then,P ex = −2ab [W−w]H V , where
the superscriptH denotes the Hermitian transposed.

Table 4.1 shows the complex powerP ex of a ring in free space for (finite expansions of) the
excitation fields of three feed gaps. Computations of the corresponding radiated powersP rad

showed that the relative differences between Re(P ex) and2P rad are about0.07%. This is an
important validation of the analysis for a single ring in free space. Each number of expansion
(and test) functionsNcos in Table 4.1 yields another finite expansion of the excitation field of a
feed gap. In case we fix such a finite expansion, the result for the current does not change any-
more, if we increase the number of expansion (and test) functionsNcos in the moment method.
This is due to the diagonal form of the moment matrix of a single ring with entire-domain ex-
pansion functions. Then, it is observed from Table 4.1 that the finite expansions of the delta gap
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Table 4.1 The complex powerP ex (10−4W) for (finite expansions of) the excitation fields of

three feed gaps: a delta gap of1V and two finite feed gaps of1V with ǫ = 0.05 andǫ = 0.127.

The ring is positioned in free space and its geometry is the same as the geometry of the large

ring in Figure 4.2. Parameter values:a = λ/5, β = b/a = 1/40.

Delta gap ǫ = 0.05 ǫ = 0.127

Ncos Re(P ex) Im(P ex) Re(P ex) Im(P ex) Re(P ex) Im(P ex)

4 6.867 12.77 6.810 13.02 6.507 14.13
8 6.867 9.234 6.810 10.19 6.507 13.32
12 6.867 7.937 6.810 9.589 6.507 13.30
16 6.867 7.209 6.810 9.461 6.507 13.28
20 6.867 6.722 6.810 9.448 6.507 13.27

with 4, 8, 12, 16, and 20 cosine functions can be considered equivalent with respect to the total
radiated power, but not with respect to the power stored in the near field of the ring. The results
for the finite feed gaps withǫ = 0.05 andǫ = 0.127 show that their finite expansions for larger
numbers of cosine functions can be considered equivalent with respect to the power stored in
the near field. This equivalence of finite expansions is usually interpreted as convergence of the
solution for the current. However, such a type of convergence may not be related to convergence
in the sense of a classical norm as for example theL2 norm. For the delta gap, we may not
expect convergence of Im(P ex) for an increasing number of expansion functions, because its
representation, i.e., the generalized limit of (4.2), is not square integrable and, hence, not an
element of the range ofZa. Finally, which finite expansion of the considered local feeds is most
suitable for a certain realizable excitation is not known.

For a ring in a half space, we find similar results for the threefeed gaps. Moreover, the
relative difference between Re(P ex) and2P rad is small, even for very small heightsh. For
h = λ/100, the difference is0.4%, while the total radiated power is of order10−3 with respect
to the total radiated power in free space.

The input impedance is defined by the complex powerP ex divided by the squared absolute
value of the total current through the terminals of the ring.This total current is unambiguously
defined for the delta gap, with value2b(WW−w)(0), but not for the finite feed gap, because it
can be defined as the average current over the gap, but also otherwise. The input impedance for
the delta gap is given by

Zinp =
P ex

|2b(WW−w)(0)|2 =
V ex

2b(WW−w)(0)
. (4.17)

The second equality follows from (4.16) and the definition ofthe excitation vector[W−vex] in
(4.5), (4.6)1, and (4.7)2. Expression (4.17) is the network definition of the impedance, i.e., the
voltageV ex divided by the total current through the gap.
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4.3 Excitation Fields for Plane Waves

A signal received by an array is usually modeled as a linear combination of plane waves. Such
a wave represents an electromagnetic field in free space, propagating along a certain vectorki

with a polarization perpendicular toki. Here, the upper indexi indicates that the wave is incident
on the array. The field is a solution of the (time-harmonic) Maxwell’s equations for free space,
see (2.5) with free current equal to zero. The electric and magnetic field obey the Helmholtz
equation, see (2.9) withA replaced byE or H and with zero free current. The electric field of
a plane wave is given by

Eplane(x) = Eiej(ki •x) , (4.18)

whereki is given by

ki

k
= eρ(θi, φi) = sin θi cos φi ex + sin θi sin φi ey + cos θi ez , (4.19)

andEi is a constant real vector perpendicular toki, or, (eρ • Ei) = 0. We note thateρ is the
radial unit vector of the standard spherical coordinate system, see (C.4). The spherical angles
(θi, φi), as shown in Figure 3.2, describe the angle of incidence of the plane wave.

As mentioned below (2.17), the excitation fieldES in the equationZJ = ES can be
described byES = −(Eext)tan, whereEext is an externally applied field. For free space, the
current induced by an incident plane wave is described byZJ = −(Eext)tan with Eext =

Eplane. For a half space, the current is described analogously, butwith Eext equal to the sum
of Eplane and the corresponding wave reflected at the boundary plane ofthe half space. In this
way, we assure that the total field(Eext + E,Hext + H) satisfies Maxwell’s equations and the
boundary condition at the boundary plane of the half space, see below (2.17). The total field
does not satisfy the radiation conditions [26: p. 113], because the plane wave does not satisfy
these conditions. Only the scattered field(E,H) satisfies the radiation conditions.

We calculate the excitation vector induced by the plane wave(4.18) for arrays of strips and
rings in free space. In both cases, we use entire-domain expansion functions. For arrays of
strips, we find for the components ofvex,

vex(ξ; q) = −(ey • Ei) ejk(cq,x sin θi cos φi+lξ sin θi sin φi)
sin(kℓβη sin θi cos φi)

kℓβη sin θi cos φi
. (4.20)

The corresponding excitation vector is given by the right-hand side of (2.131). Moreover,
[W−

q vex] is given by (4.3) and[(Wc
q )−vex](n, 1) = 〈Wc

qen,vex〉L2
with the expansion func-

tionsWc
qen as defined in (3.8). As in the derivation of the approximate kernel F̃qq in (2.62) –

(2.63), we assume thatβ ≪ 1 andkℓ = O(1) (asβ ↓ 0). Neglecting terms of orderβ2, we
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obtain

[(Wcos
q )−vex](n, 1) = −(ey • Ei) ejkcq,x sin θi cos φi

(−1)n(2n − 1)π cos κ

κ2 − (2n − 1)2π2/4
,

[(Wsin
q )−vex](n, 1) = −(ey • Ei) ejkcq,x sin θi cos φi

(−1)n2nπj sin κ

κ2 − n2π2
,

(4.21)

whereκ = kℓ sin θi sinφi.
For (ey • Ei) = 0, the excitation vector in (4.21) turns to zero and, hence, the solution

for the current is also zero. Moreover, for(ey • Ei) = 0, the condition that the surfaceS is
narrow with respect toES , or, (I − A)ES ≈ 0, is not satisfied in general. As shown in the
dimensional analysis on p. 38, this condition is necessary to replace the equationZJ = ES

by AZAJ = AES , or, Zaw = vex. Hence, ifEi
y ≈ 0, the solution of the moment-matrix

equation should be handled with care.
The excitation vector for an array of rings is obtained in thesame way as the excitation

vector for an array of strips. Since any choice ofEi is a linear combination of the plane waves
with Ei = eθ(θi, φi) andEi = eφ(θi, φi), we consider only these two choices. We assume
kaq = O(1) (asβq ↓ 0) and we neglect terms of orderβ2

q . Then, the excitation vector for
Ei = eθ(θi, φi) is given by (4.5) – (4.6), where

ζcos
q (n) = −π cos θi e

jk(eρ(θi,φi) • cq) sin((n − 1)(φ − ψq)) jn−2 (Jn−2(κq) + Jn(κq)) ,

ζsin
q (n) = π cos θi e

jk(eρ(θi,φi) • cq) cos(n(φ − ψq)) jn−1 (Jn−1(κq) + Jn+1(κq)) ,
(4.22)

whereκq = kaq sin θi and whereJn is the Bessel function of the first kind with indexn. For
Ei = eφ(θi, φi), the components (4.22) reduce to

ζcos
q (n) = −π ejk(eρ(θi,φi) • cq) cos((n − 1)(φ − ψq)) jn−2 (Jn−2(κq) − Jn(κq)) ,

ζsin
q (n) = π ejk(eρ(θi,φi) • cq) sin(n(φ − ψq)) jn−1 (Jn−1(κq) − Jn+1(κq)) .

(4.23)

Finally, we show that the calculated expressions for the excitation vectors above represent
the electric far-field components of the corresponding arrays in the direction ofEi. Let us
first consider line arrays of strips. The far field of the arrayis a superposition of plane waves
induced by the element currents, which are described by cosines and sines. If we multiply the
expressions in (4.21) byjZ0kℓbe−jkρ/2πρ, these expressions represent the electric far-field
component in the direction ofEi, evaluated at(ρ, θi, φi). This component is generated by the
nth cosine or sine expansion function on theqth strip, which can be seen from (C.13) and (C.14)
in Appendix C. In other words, the far field in the direction(θi, φi) induced by an element
current is proportional to the amplitude of this current, when the array is excited by a plane
wave from the direction(θi, φi). Moreover, the constant of proportionality is independentof the
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mode and the direction. The same conclusion is valid for arrays of rings. The vector components
(4.22) and (4.23) multiplied byjZ0kaqbqe

−jkρ/2πρ represent the electric far-field components
evaluated at(ρ, θi, φi) and generated by a cosine or sine expansion function on theqth ring.
Mathematically, the correspondence between the tangential electric field of an array induced
by a plane wave and the far field of this array is explained from(C.9), in which the integral
represents the inner product of the plane wave and the current on an elementSq. Physically, this
correspondence is explained from the reciprocity theorem,which states that source and observer
can be interchanged. Figure 2.9 in Section 2.5 confirms the correspondence for a line array of
strips. For the dominant expansion functions, the coefficients obtained by a delta-gap excitation
are approximately the same as the coefficients obtained by a plane-wave excitation.
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CHAPTER 5

The Eigencurrent Approach

In this chapter, we consider the second phase of our research, see the scheme in Figure 1.8. In
Section 5.1, the general idea of the approach suggested in this thesis, called the eigencurrent
approach, is described. The eigencurrent approach consists of two main steps, called the ini-
tialization and the cycle. In the initialization, the eigencurrents of a single element, or more
general, of the initializing subarray, are determined. In the cycle, the eigencurrents of the array
are determined from the eigencurrents of subsequent subarrays by an iterative process as out-
lined in Section 1.3. Calculational details of both steps for eigencurrents of line arrays of strips
and rings are discussed in Sections 5.2 and 5.3. The excited current on line arrays of strips and
rings is expressed in terms of these eigencurrents, see Section 5.3.1. In Subsection 5.3.2, we
relate the eigencurrents to scanning by linear phase tapering and we compare the eigencurrent
approach with the infinite-array approach. Special attention is devoted to the one-to-one corre-
spondence between eigenvalues and scan angles and to the divergent and convergent behavior of
the infinite-array solution at the grazing and grating-lobescan angles. The main conclusions of
the initialization and the cycle are summarized in Section 5.4. Moreover, we provide a manual
in which the steps of the application of the eigencurrent approach to arrays of arbitrary elements
are described.

5.1 Description of the Approach

5.1.1 Idea

In the previous chapters, we described the electromagneticbehavior of an array of microstrip
elements by the moment-matrix equation, or by the corresponding operator equation

PZaPw = Pvex . (5.1)
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Here,Za is the averaged impedance operator andP is the projection onto ran(P), i.e., the space
spanned by the expansion functions, see Subsection 2.4.3. Equation (5.1) relates the (expanded)
current on the elements to the (expanded) excitation field bymeans of the operatorPZaP. In the
previous chapters, the solution of this equation was obtained by inverting the operatorPZaP.
In this chapter, we describe the solution by the eigenvaluesand eigenfunctions of the operator.
In [115], several reasons are mentioned why eigenvalues andeigenfunctions are useful in the
analysis of operators. First, since operators are diagonalized by their eigenfunctions, the solu-
tions of various problems are obtained more rapidly. Second, the eigenvalues and eigenfunctions
may provide information about the behavior of the application described by an operator. Finally,
eigenvalues supplement the abstract notion of an operator by a picture in the complex plane and,
therewith, they give an operator a face. Especially this last reason will become apparent from
the analysis of line arrays in Subsection 5.3.2, pp. 165 ff.

Assume that the eigenfunctionsun of the operatorPZaP span ran(P). Then, the operator
is diagonalized by its eigenfunctions. If the eigenvalues are all non-zero, the solution in ran(P)

of (5.1), i.e.,wP , is described by the eigenfunctionsun and the eigenvaluesνn of the operator
PZaP as

wP =

N
∑

n=1

1

νn
〈un,Pvex〉 un . (5.2)

Here,N is the dimension of ran(P) and the inner product〈 · , · 〉 on ran(P) is chosen such that
the eigencurrents are orthonormal. This inner product should not be confused with the inner
products〈·, ·〉Xa

and〈·, ·〉Ya
defined on the spacesXa = dom(Za) andYa ⊃ ran(Za), of which

ran(P) is a subspace. We will see that the eigenfunctions indeed span ran(P). Moreover, the
operatorsPZaP that we consider will turn out almost normal with respect to the inner product
onYa, where normal meansZZ∗ = Z∗Z with the adjointZ∗ of Z defined by (2.109). Hence,
the eigenfunctions are almost orthogonal with respect to this inner product.

The finite expansion (5.2) provides insight into the behavior of the array. The eigenfunc-
tionsun of PZaP are the eigencurrents of the array. The corresponding eigenvalues represent
the characteristic impedances of these eigencurrents. Eigencurrents with larger characteristic
impedances contribute less than those with smaller characteristic impedances. Moreover, if an
eigenvalue is close to zero, the array shows resonant behavior. Finally, eigencurrents that match
well with the (expanded) excitation fieldPvex contribute more than eigencurrents that do not
match well. Herewith, the finite expansion gives a first insight into the relationship between the
excitation field and the current.

From a calculational point of view, it is not efficient to firstconstruct a moment matrix
related toPZaP and, subsequently, determine the eigencurrents. Therefore, we determine the
finite expansion (5.2) by an alternative approach. We base this approach on the following ideas.

Let the array be composed ofNsub identical subarrays. Then, the array is described by the
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position of these subarrays and the geometry of a single subarray. We say that the entire array is
generated from a single subarray, which we refer to as the generating subarray. An example of
such an array is discussed in Section 1.3, Figure 1.5, where auniform rectangular4× 6 array is
generated from a1×6 line array or from a2×2 rectangular array. Both choices of subarrays are
in turn generated from a single element, which is the smallest possible generating subarray. As
explained in Section 1.3, we construct the eigencurrents ofan array as concatenations of linear
combinations of the eigencurrents of its generating subarray. In other words, an eigencurrent of
an array is described as a linear combination of subarray eigencurrents.

Assume that the generating subarray has eigencurrentsusub
n (n = 1, . . . , N sub

eig ) with eigen-
valuesνsub

n . Let us first consider the case that all eigenvalues are different, or in other words,
that the eigenvalues are non-degenerate. The case of degeneracy is considered further on. If
mutual coupling between the subarrays is ignored, the eigenvalues of the complete array are the
eigenvaluesνsub

n , each with multiplicityNsub. The eigencurrents corresponding to an eigen-
valueνsub

n belong to the eigenspace spanned byNsub independent currents, each of which is
zero on all subarrays but one, where it equalsusub

n . The set of these independent currents is
denoted byEn and hence, span(En) is the eigenspace corresponding toνsub

n . Figure 5.1 shows
symbolically the currents ofEn for a line array of four subarrays. We will see that if mutual

Currents ofEn :

(

usub
n , 0, 0, 0)

(0 , usub
n , 0, 0)

(0 , 0, usub
n , 0)

(0 , 0, 0, usub
n

)

r r r r r r r r

- νsub
n ,usub

n

Figure 5.1 A line array of 8 elements generated from a subarray of 2 elements (Nsub = 4).

The elements are indicated by dots, the subarrays by blocks. The currents ofEn are symbolically

denoted by 4-tuples, which indicate the currents on each of the four subarrays.

coupling is not ignored, each eigenvalue of the generating subarray yieldsNsub eigenvaluesνnq

(q = 1, . . . , Nsub) of the formνnq = νsub
n (1 + ǫnq), whereǫnq are complex-valued pertur-

bations, see for example Figure 5.2 (left). Moreover, we will see that each eigencurrentunq

is a linear combination of currents ofEn, called the dominant part of the eigencurrent, plus a
perturbation. The perturbation is a linear combination of the currents of the other setsEn′ . The
perturbations of the eigenvalues and the eigencurrents depend on the strength of the mutual cou-
pling between the eigencurrents on the subarrays. The stronger the mutual coupling is, the larger
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Im

Re0

q
ǫn,6

q
ǫn,4

qǫn,1

q
ǫn,2

q
ǫn,3

Range of{ |ǫnq|}Nsub

q=10

n=1

n=2

n=3

n=4

Figure 5.2 Left: Graphical representation of the (complex-valued) perturbationswith indexn

for an array with 6 subarrays. Right: The ranges of the absolute perturbations of four groups of

eigenvalues are indicated by shades areas. The thick lines indicate the maximum and minimum

absolute perturbations.

the perturbations are. We emphasize that the perturbationsof eigenvalues and eigencurrents do
not necessarily need to be small. Nevertheless, we refer to eachǫnq as the perturbation of the
eigenvalueνnq and we refer to the non-dominant part of each eigencurrentunq as its perturba-
tion. If the perturbations are small, a perturbation technique can be applied as used in Quantum
Mechanics, see item 3 in Subsection 5.1.4.

We observe that both the eigenvalues and the eigencurrents of the complete array are divided
into N sub

eig groups ofNsub elements. For eachn ∈ {1, . . . , N sub
eig }, thenth group of eigenvalues

is {νnq}Nsub
q=1 and the corresponding group of eigencurrents is{unq}Nsub

q=1 . The perturbations

{ǫnq}Nsub
q=1 describe the spread in the complex plane of the eigenvalues of the nth group with

respect to the eigenvalueνsub
n , see for example Figure 5.2 (left). This spread is a measure for

both the mutual coupling among the currents ofEn and the mutual coupling between the currents
of En and the currents of the other setsEn′ . The second type of coupling does not incorporate the
coupling between the currents which are non-zero on the samesubarray. This coupling is the self
coupling of the generating subarray, which is incorporatedin the eigenvalues and eigencurrents
of the subarray itself. In the literature, the self couplingis sometimes referred to as intra-mode
coupling, while the other two types of coupling are referredto as inter-mode coupling. Figure 5.2
(right) shows a graphical representation of the ranges of the absolute perturbations{|ǫnq|}Nsub

q=1

for four groups of eigenvalues. These ranges are an indication of the spread of the eigenvalues.

In the ideas outlined above, the eigenvaluesνsub
n and the eigencurrentsusub

n belong to the
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operatorPsubZa,subPsub of the generating subarray. The range of the projectionPsub is spanned
by the eigencurrentsusub

n . The eigenvaluesνnq and the eigencurrentsunq belong to the operator
PZaP of the array. The range of the projectionP is spanned by the currents in the unionE of
the setsEn.

The eigenvaluesνnq and the eigencurrentsunq can be described by a moment-matrix formu-
lation for the operatorPZaP using the ideas outlined above. Assume that the eigenvaluesνsub

n

and the eigencurrentsusub
n of the generating subarray are known as well as the inner product

〈 · , · 〉sub on ran(Psub) with respect to which these eigencurrents are orthonormal.By defi-
nition, the operatorPsubZa,subPsub is diagonalized by its eigencurrents. If the eigencurrents
are chosen as expansion functions, the moment matrix with respect to〈 · , · 〉sub is a diagonal
matrix with the eigenvaluesνsub

n on the diagonal, see for example Figure 5.3 (A). Recall that
in Subsection 2.4.2, we introduced both the usual definitionand our definition of the moment
matrix, which are related by the Gram matrix of the test functions according to (2.128). Since
the Gram matrix of the set of eigencurrentsusub

n with respect to〈 · , · 〉sub is the identity matrix,
both definitions yield the same moment matrix forPsubZa,subPsub.

Since the eigencurrentsusub
n are orthonormal with respect to〈 · , · 〉sub , the currents ofE are

orthonormal with respect to the composite inner product on ran(P) = span(E) ,

〈 · , · 〉comp =

Nsub
∑

q=1

〈( · )q, ( · )q〉sub . (5.3)

Here, the dots in the inner products indicate currents on thecomplete array and( · )q is a sym-
bolic notation for the corresponding currents on theqth subarray. In case mutual coupling is
ignored, the operatorPZaP is diagonalized by the currents ofE. The corresponding moment
matrix with respect to〈 · , · 〉comp is a diagonal matrix with the eigenvaluesνsub

n on the diago-
nal, each with multiplicityNsub, see for example Figure 5.3 (B). We will see that in case mutual
coupling is not ignored, the operatorPZaP is diagonalized by the currents in the setE up to
a perturbation. As above, the perturbation depends on the mutual coupling between the eigen-
currents on the subarrays. The corresponding moment matrixwith respect to〈 · , · 〉comp is a
block matrix, of which the diagonal blocks equal the moment matrix of the generating subarray,
while the off-diagonal blocks are dense matrices, see for example Figure 5.3 (C). The complete
matrix is diagonally dominant. In Subsection 5.3.1, we willshow that the eigenvalues of the
moment matrix are the eigenvaluesνnq of the operatorPZaP of the array. The eigenvectors of
this matrix are the expansion coefficients of the eigencurrentsunq with respect to the expansion
functions in the setE, i.e., the eigencurrents of the array in which the mutual coupling between
the subarrays is ignored. The composition of the moment matrix suggests the same perturbation
of the eigenvaluesνsub

n and the eigencurrents inE as described above. Moreover, the diagonal
form of the diagonal blocks shows that the self coupling of the generating subarrays does not
contribute to the spread of the groups{νnq}Nsub

q=1 as observed above.
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Figure 5.3 Calculation of the eigenvaluesνnq and the eigencurrentsunq of an array consisting

of two subarrays. The generating subarray has four eigencurrentswith eigenvaluesνsub
n .

The eigenvaluesνnq and the eigencurrentsunq can be computed from the moment matrix
for PZaP. To reduce the computational effort, we employ the ideas regarding the spread of
the eigenvalues. If the spread of a group of eigenvalues, saythenth group, is negligibly small,
its eigenvalues can be set equal toνsub

n . Moreover, the corresponding eigencurrents can be
replaced by the currents ofEn (or, more general, byNsub independent currents of span(En) ).
In that case, the currents ofEn are neither coupled with each other, nor with the currents ofthe
other setsEn′ . Hence, we can set the corresponding entries in the moment matrix equal to zero.
An example is given in Figure 5.3 (D), where the spread of the fourth group of eigenvalues is
negligible. The eigenvalues of the other groups can then be computed from the reduced moment
matrix in Figure 5.3 (E).

The operatorPZaP is diagonalized by its eigencurrentsunq. Once these eigencurrents
have been computed, an inner product〈 · , · 〉 is constructed with respect to which they are or-
thonormal. The calculational details of this constructionare discussed in Subsection 5.3.1. The
corresponding moment matrix is a diagonal matrix with the eigenvaluesνnq on the diagonal. An
example is given in Figure 5.3 (F). Here, the eigenvaluesν4q equalνsub

4 , because the spread of
the fourth group is considered negligible in Figure 5.3 (D) and Figure 5.3 (E). The array of two
subarrays can be viewed as a new subarray with correspondingdiagonal moment matrix. Then,
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a similar procedure as above can be followed to compute the eigenvalues and eigencurrents of
an array generated from this new subarray.

In general, we need to construct the moment matrix only from setsEn that contribute to the
mutual coupling between the subarrays. As in the example, these sets are not known a priori.
We expect that the groups of eigenvalues corresponding to the lowest eigenvaluesνsub

n have
the largest spreads. In other words, we expect that the currents of the setsEn corresponding
to the lowest eigenvaluesνsub

n contribute most to the mutual coupling between the subarrays.
This expectation is based on the expansion (5.2), which shows that the current on the array is
mainly described by the eigencurrents with the lowest eigenvalues, i.e., the eigencurrents with
the lowest characteristic impedances. In the next sections, we will support the expectation by
means of examples. A posteriori, it should be verified that sufficient setsEn have been taken
into account to describe mutual coupling. We will see that ifthe spreads of all the groups cor-
responding to the reduced moment matrix are significant, it may be necessary to take more sets
En into account in this matrix. However, we also will see that itis not necessary to take more
setsEn into account, if the eigenvaluesνsub

n corresponding to the groups with significant spread
are much lower than the eigenvaluesνsub

n corresponding to the groups with negligible spread.
In Subsection 6.3.1, we introduce a definition of the spread that can handle these cases. Both
the a-priori estimate of the setsEn and the a-posteriori verification are based on arguments that
are quantified by means of the eigenvalues. This explains whyeigenvalues and eigencurrents
are suitable for an approach to analyze arrays. Finally, we will observe that the larger eigen-
values correspond to eigencurrents that show a larger number of oscillations per wavelength.
Physically, this observation is explained by the lower radiation from high-frequent currents.

Up to now, we have considered the case that the eigenvalues ofthe generating subarray are all
non-degenerate. In case an eigenvalue is degenerate, i.e.,in case an eigenvalue has multiplicity
larger than one, this eigenvalue corresponds to more than one group of eigencurrents. We will
consider an example of degeneracy and the corresponding consequences for the group division
in Section 5.3.2, p. 163. Moreover, the consequences of degeneracy for the analysis approach
outlined in the next subsection are described in the last paragraph of Subsection 6.3.5.

5.1.2 Approach

The preceding ideas to compute the eigenvalues and eigencurrents of an array from the eigen-
values and eigencurrents of its generating subarray suggest the following general approach.
Assume that the eigenvaluesνsub

n and the eigencurrentsusub
n (n = 1, . . . , N sub

eig ) of a generating
subarray are known with respect to its operatorPsubZa,subPsub. Here,Za,sub is the averaged
impedance operator of the generating subarray andPsub is the projection onto a finite basis
of expansion functions for the subarray. Moreover, assume that the inner product〈 · , · 〉sub on
ran(Psub) is known with respect to which the eigencurrentsusub

n are orthonormal. Determine
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the eigencurrents of the array as follows:

I. Choose a new generating subarray of the complete array. The new subarray is con-
sidered as array generated from the original subarray with corresponding operator
PsubZa,subPsub. LetZa be the averaged impedance operator of the generated array. Let
Nsub be the number of subarrays in this array.

II. Let the setsEn (n = 1, . . . , N sub
eig ) andE be defined as above. In other words, each set

En consists ofNsub independent currents, each of which is zero on all subarraysbut one,
where it equalsusub

n . Moreover,E is the union of these sets. Then,PZaP is the operator
of the array, whereP is the projection onto span(E). Next, ran(P) = span(E) is equipped
with the composite inner product〈 · , · 〉comp as defined by (5.3).

III. Let E
cpl be the union of the setsEn that are expected to contribute to the mutual coupling

between the subarrays. Construct the reduced moment matrixfor PZaP with respect to
the composite inner product〈 · , · 〉comp , where the expansion functions should be taken
from the setEcpl.

IV. Determine the eigenvaluesνnq and the eigenvectorsUnq of this moment matrix. The
eigenvalues are approximations of eigenvalues of the operator PZaP. The eigenvectors
represent the expansion coefficients of the eigencurrentsunq of this operator with respect
to the functions inEcpl. Let Eeig be the set of these eigencurrents.

V. Investigate on basis of the spreads of the groups{νnq}Nsub
q=1 of eigenvalues whether more

setsEn are required to describe mutual coupling. If more sets are required, return to step
III.

VI. Let E
unc be the union of the setsEn that are not taken into account in the (reduced)

moment matrix in step III. Then, the linear span ofE
eig ∪ E

unc equals span(E) = ran(P).
The operatorPZaP is diagonalized by the eigencurrents inE

eig ∪ E
unc. Construct a new

inner product〈 · , · 〉 on ran(P) with respect to which the eigencurrents inE
eig ∪ E

unc are
orthonormal. Then, the corresponding moment matrix is diagonal with the eigenvalues of
these eigencurrents on the diagonal.

VII. Stop if the considered array equals the complete array.Otherwise return to step I, where
the subarray with operatorPsubZa,subPsub is the array just considered. In other words,
Za,sub is replaced by the operatorZa of the array just considered,Psub is replaced by the
projectionP in step II, and the inner product〈 · , · 〉sub is replaced by〈 · , · 〉. Moreover,
the eigencurrentsusub

n and the eigenvaluesνsub
n are replaced by the eigencurrents inE

eig∪
E

unc and their corresponding eigenvalues. Finally,N sub
eig is set equal to the number of

eigencurrents inEeig ∪ E
unc.



112 5. THE EIGENCURRENTAPPROACH

The starting point of the eigencurrent approach sketched above is a subarray with operator
PsubZa,subPsub of which the eigenvalues and eigencurrents are known. To determine the eigen-
values and eigencurrents of a first subarray, we propose the following initialization procedure:

A. Choose a subarray that generates the complete array. We consider this subarray as the
initializing array. LetZa,init be the averaged impedance operator of the initializing array
and〈 · , · 〉init be the inner product onYa,init ⊃ ran(Za,init). In Section 3.1,〈 · , · 〉init is
theL2 inner product.

B. Construct a finite basis of expansion functions for the initializing array with correspond-
ing projectionPinit. The expansion functions can be piecewise functions, for example
rooftops [77: p. 1600] and Rao-Wilson-Glisson (RWG) functions [96], or entire-domain
functions.

C. Construct the moment matrix forZa,init with respect to this finite basis and the inner
product〈 · , · 〉init onYa,init. Here, our definition of the moment matrix, as introduced in
Subsection 2.4.2, must be used, see Subsection 5.2.1 for explanation.

D. Determine the eigenvaluesνinit
n and eigenvectorsU init

n of this moment matrix. The eigen-
values are also the eigenvalues of the operatorPinitZa,initPinit as we will show in Sub-
section 5.2.1. The eigenvectors represent the expansion coefficients of the eigencurrents
uinit

n of this operator.

E. Construct an inner product〈 · , · 〉sub on ran(Pinit) with respect to which these eigencur-
rents are orthonormal (for construction details, see Subsection 5.2.1).

F. LetZa,sub = Za,init, Psub = Pinit, usub
n = uinit

n , andνsub
n = νinit

n . Moreover, letN sub
eig

be the number of eigencurrentsuinit
n .

5.1.3 Application Details

A successful application of the eigencurrent approach depends highly on the initialization for
two reasons. First, if we make a numerical error in the initialization, this error will propagate
throughout the apporach, because in each cycle, the eigenvalues of the generated array are per-
turbations of the eigenvalues of the generating subarray and, hence, of the initializing subarray.
In the next sections, we illustrate that the loss of accuracydue to the numerical error in the ini-
tialization is of the same order as the loss of accuracy due tothe numerical computation of the
moment-matrix components in the usual moment method, as discussed in Section 3.4. There-
fore, we do not lose accuracy with respect to the accuracy of the moment method. Second, the
eigenvalues of the initializing subarray determine, to a large extent, which terms of the finite
expansion (5.2) need to be taken into account. If the eigenvalues of the initializing subarray
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increase rapidly as a function of their index, only a limitednumber of eigencurrents (one or
two for a single-element subarray) will be needed to describe the electromagnetic behavior of
this subarray. Moreover, in each cycle, only the eigenvaluegroups corresponding to this limited
number of initializing eigenvalues need to be considered, which is the second reason.

The most essential aspects of the cycle of the eigencurrent approach are, first, choosing the
subsequent generating subarrays and, second, determiningthe eigencurrents that contribute to
the mutual coupling. We explain these aspects further. By adjusting the inner product in step
VI, we obtain, in step II of the next cycle, a close-to-diagonal moment matrix for the operator
PZaP with respect to the expansion functions inE. To what extent this moment matrix can
be considered as diagonal depends on the mutual coupling between the eigencurrents on the
subarrays with respect to the composite inner product〈 · , · 〉comp given by (5.3) and, hence,
on the choice of the generating subarray. As explained in Section 1.3, the generating subarray
should be chosen in correspondence with the geometry and theexcitation of the generated array.
The more diagonally dominant the resulting moment matrix is, the less computational effort
is needed to determine the eigenvalues and eigencurrents. These observations explain the first
aspect.

The second aspect is the reduction of the computational effort by reducing the size of the
moment matrix in step III. This size depends quadratically on the number of subarray eigen-
currents. On basis of the mutual-coupling information, which is ‘grouped’ by means of the
eigencurrents, we only take subarray eigencurrents into account in the moment matrix of the
array that contribute to the mutual coupling between the subarrays. In Section 1.3, a compar-
ison of the matrix sizes for the eigencurrent approach and for the classical moment method is
described. We note that the required number of subarray eigencurrents not only depends on
the choice of the generating subarray, but also on the required accuracy for the current. This
accuracy depends on the functional metric related to (2.31), see also Section 3.4.

It is not essential for the eigencurrent approach that the eigenvalues and eigencurrents of
the operatorPZaP converge in a certain sense to the eigenvalues and eigencurrents ofZa as
the dimension of ran(P) is increased. This is explained as follows. In the initialization, we
choose expansion functions on the initializing subarray. In the usual moment method, we would
choose the same functions, but defined on all elements of the array. LetP be the corresponding
projection for the array. Then, by the usual moment method, we obtain a solution in the space
ran(P) by solving the moment-matrix equation. In the eigencurrentapproach, we determine the
solution in the same space, but in the efficient way describedabove.

In the next sections, we discuss the calculational details of the initialization A→ F and the
cycle I→ VII of the eigencurrent approach. Moreover, we apply the approach to uniform line
arrays. In these applications, we will answer the followingquestions for the initialization.

• In what way can the eigenvaluesνinit
n and the eigencurrentsuinit

n be determined?
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• How are the eigencurrents described by the set of expansion functions?

• To what extent do the eigenvalues and the eigencurrents depend on the set of expansion
functions?

• How do the eigenvaluesνinit
n , indexed such that|νinit

n | ≤ |νinit
n+1|, behave as function of

their index?

• To what extent are the eigencurrents orthonormal with respect to 〈 · , · 〉init?

• To what extent do the eigencurrents and the eigenvalues depend on the geometry parame-
ters and the frequency?

Moreover, we will answer the following questions for the cycle.

• In what way can the eigenvaluesνnq and the eigencurrentsunq be determined?

• Which setsEn contribute to the mutual coupling between the subarrays?

• What can be said about the spread of the group eigenvalues as a function of the spacing
between the subarrays?

• What can be said about the spread of the group eigenvalues as a function of the number
of elements?

• How are the eigencurrentsunq described by the eigencurrentsusub
n ?

• To what extent does this description depend on the subarray parameters and the spacing
between the subarrays?

• What is the (physical) meaning of this description?

In Section 5.4, we present a summary of the answers and the obtained results. Moreover, we
predict the results of the application of the eigencurrent approach to rectangular and other types
of arrays.

5.1.4 Related Approaches

The eigencurrent approach is related to certain solution techniques and ideas in the literature.
The correspondences and differences with these techniquesand ideas are discussed.

1. The solution technique as in (5.2) is well-established ifZa is a Sturm-Liouville operator
with additional Sturm-Liouville boundary conditions, see[101: Ch. V, Sec. 2; Ch. IX,
Sec. 3], [127: Sec. 4.3], [81: pp. 361 – 369]. In our case,Za is the product of an integral
operator and a differential operator incorporating a Sturm-Liouville operator. We expect
thatZa shows a kind of ‘perturbed’ Sturm-Liouville behavior.
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2. For rectangular and circular waveguides, the eigenfunctions, or, eigenmodes, are known
[25: Ch. 5]. These eigenfunctions are related to the Helmholtz operator. They are often
used to expand the unknown electromagnetic field at waveguide discontinuities to deter-
mine this field by a mode-matching technique [25: Ch. 8].

3. The ideas concerning perturbation of eigenvalues and eigenfunctions appear in Quantum
Mechanics as well. In that case, the operatorZa is the Hamilton operator, the eigenfunc-
tions and eigenvalues of which are the states of a system of particles and the related energy
levels, see [61: p. 591]. The eigenvalues and eigenfunctions for a perturbed system are
expressed as asymptotic expansions with the unperturbed eigenvalues and eigenfunctions
as the dominant terms [39: Ch. 16, Ch. 22], [43: Ch. 6]. The perturbation can for example
be caused by a change of potential or by including or excluding the interaction between
particles. The first case is compared to an antenna element oran array of which certain
geometry parameters are perturbed. The second case is compared to the perturbation, by
mutual coupling, of the eigenvalues and eigencurrents of anarray in which mutual cou-
pling is ignored. A difference with Quantum Mechanics is that the Hamilton operator is
self-adjoint, while in our caseZa is not self-adjoint.

4. Instead of considering the eigenvalue equationZaun = νnun, Harrington and Mautz [79:
Ch. 3] introduced another approach for deriving eigencurrents. Applying their method
in our context, the eigenvalue equation is replaced by the generalized eigenvalue equa-
tion Zaũn = ν̃nRaũn, whereRa = (Za + Z∗

a )/2. This equation is equivalent to
Xaũn = λnRaũn, whereXa = (Za − Z∗

a )/2j andν̃n = 1 + jλn with λn real, because
Ra andXa are both self-adjoint. IfZa is normal, it follows from our eigenvalue equation
together withZ∗

aun = ν∗
nun thatRaun = (Reνn)un andXaun = (Im νn)un . If

Reνn 6= 0, thenXaun = (Im νn / Reνn)Raun. In other words, the ratio Imνn / Reνn

and the eigenfunctionun are a solution of the generalized eigenvalue equation of Harring-
ton and Mautz. This result reveals a weak spot of their approach, if Reνn ≪ Im νn. We
will observe for some specific cases that if the eigenvalues of our eigenvalue equation are
indexed such that|νn| ≪ |νn+1|, their real part decreases rapidly, while their imaginary
part increases rapidly. Moreover, for a single ring,Za is indeed normal. Therefore, we
will not use the generalized eigenvalue equation of Harrington and Mautz. Another rea-
son is that we expect the approach to be inefficient for arrays, because the characteristic
currents are determined from the moment matrix for a complete body. Constructing the
characteristic currents stepwise as in our approach will affect the strongest property of
the approach, namely the orthogonality of the far fields of the characteristic currents with
respect to theL2 inner product over the radiation sphere.

Garbacz and Turpin [38] found the same characteristic currents for wires as Harrington
and Mautz, but by another technique. They computed solutions of the moment-matrix
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equation with minimum phase variation along the wire. In [65], the characteristic currents
of Harrington and Mautz are used for pattern synthesis.

5. As stated in [115], any use of eigenvalues to derive physical predictions relies on an
implicit transformation to eigenvector coordinates. For normal operators, or the almost
normal operators we consider, this transformation is (almost) unitary and corresponds to
a rotation or a reflection. For highly nonnormal operators, the description of the action
of the operator in terms of its eigenfunctions may lead to a superposition of huge eigen-
function components that nearly cancel. To study the actionof nonnormal operators, the
application of the pseudo-spectrum is proposed in [75, 115]. Examples of applications
where such operators are encountered are described in [75],such as the study of self-
induced vibrational motion by a source of energy external toa structure and the study of
parallel shear flows as a mechanism of subcritical transition to turbulence.

6. The ideas concerning the subdivision into subarrays appear in the fast multipole method
as well [24, 42, 99]. The basic idea of this method is that the force exerted on a particle
due to all interaction or coupling in a system of charged particles can be divided into two
components. First, a force due to nearby particles that can be computed directly and, sec-
ond, a force due to the distant particles approximated by their multipole expansions. The
fast multipole method starts by the construction of a hierarchical spatial decomposition to
divide the simulation cell into smaller subcells. Next, forall subcells, (truncated) multi-
pole expansions are calculated. These expansions are combined in a hierarchical way to
describe the behavior of larger and larger groups of particles.

5.2 Initialization

5.2.1 Calculational Details

Having chosen a subarray in step A of the initialization on p.112, we carry out steps B and C as
described in Subsection 2.4.3. For (sub)arrays of strips and rings, explicit choices of expansion
functions, or mappingsW with corresponding projectionsP = WW−, are described in Section
3.2. The calculational and computational aspects of the corresponding moment matrices are
described in Sections 3.3 and 3.4. In this section, we describe steps D and E in more detail. We
omit the superscriptsinit and the subscriptsinit in the notation.

In step D, the eigenvectorsUn (n = 1, . . . , Nexp) of the moment matrix ofZa, i.e.,
[W−ZaW], represent the expansion coefficients of the eigencurrentsun in ran(P) with re-
spect to the expansion functions in bas(W). Here,Nexp is the number of expansion functions,
or, the number of elements of bas(W). The eigenvectors and the corresponding eigenvaluesνn

are determined numerically, see the next subsections for details. Then, the eigencurrents are
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described by

un =

Nexp
∑

p=1

Un(p, 1)Wep . (5.4)

Here,{e1, . . . ,eNexp
} is the standard basis inCNexp as in (2.110) andWep (p = 1, . . . , Nexp)

are the expansion functions in bas(W). We recall that the mappingW− assigns to a functionw
a tuple inCNexp , which represents the expansion coefficients ofw with respect to the expansion
functions in bas(W), see (2.111). Hence,Un = [W−un], where we apply the bracket calculus
of Subsection 2.4.1. Since eachUn is an eigenvector of the moment matrix[W−ZaW] with
eigenvalueνn, it follows that[W−ZaW][W−un] = νn[W−un]. Applying the bracket calculus
to this equation, we obtain

W−ZaWW−un = νnW−un . (5.5)

ApplyingW to both sides of (5.5) leads to

PZaPun = νnPun . (5.6)

SincePun = un, each eigenvalueνn of the moment matrix is also an eigenvalue of the operator
PZaP with eigencurrentun.

In the above, we used our definition of the moment matrix, i.e., [W−ZaW]. As explained
in Subsection 2.4.2, this definition yields only the same moment matrix as the usual definition,
if the Gram matrix of bas(W) with respect to the inner product in step A is the identity matrix.
Hence, the eigenvalues of the moment matrix in the usual moment method are only equal to
the eigenvalues of the operatorPZaP, if the (test and) expansion functions chosen in step B
are orthonormal with respect to the inner product chosen in step A. In general, these expansion
functions are not orthonormal and, hence, the eigenvalues of the moment matrix defined as usual
and the eigenvalues of the operatorPZaP are not the same. This observation reveals why our
definition of the moment matrix differs from the usual definition of this matrix. For example, if
all expansion functions are multiplied by a factor of 2, the eigenvalues of the moment matrix in
the usual moment method are multiplied by a factor of 4. On thecontrary, the eigenvalues of the
moment matrix[W−ZaW] remain the same due to the normalization by the Gram matrix asin
(2.128).

To construct the new inner product in step E, we consider the space ran(P) = ran(W)

with the initializing inner product〈 · , · 〉. Since the set of eigencurrents{u1, . . . ,uNexp
} is

independent in ran(P), there exists a set{y1, . . . ,yNexp
} in ran(P), such that〈um,yn〉 =

δmn. Here, δmn is the Kronecker symbol defined byδmn = 1 for m = n and δmn = 0

for m 6= n. The set{y1, . . . ,yNexp
} is called the bi-orthogonal set of{u1, . . . ,uNexp

} with
respect to the initializing inner product. We calculate theelements of the bi-orthogonal set in
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the next paragraph. Let the mappingsU andY be defined similarly asW. They map tuples
in CNexp onto linear expansions of functionsUen = un andYen = yn as in (2.110). Then,
the mappingYU− maps eachun ontoyn. Hence,〈um,YU−un〉 = δmn. Herewith, we have
constructed an inner product on ran(P) with respect to which the eigencurrents are orthonormal:
〈 · , · 〉sub = 〈 · ,YU− · 〉.

In the cycle of the eigencurrent approach, we will need to calculate inner products of the
form 〈un,w〉sub, wherew ∈ ran(P). SinceYU− is self-adjoint with respect to the initializing
inner product restricted to ran(P), 〈un,w〉sub can be rewritten as

〈un,w〉sub = 〈un,YU−w〉 = 〈YU−un,w〉 = 〈yn,w〉 . (5.7)

If the functionsyn are known, the inner product〈yn,w〉 can be calculated. To calculate these
functions, we express eachyn into the eigencurrentsun,

yn =

Nexp
∑

p=1

C(p, n)up , (5.8)

where the expansion coefficientsC(p, n) are unknown. Substituting this expression in
〈um,yn〉 = δmn, we obtain

Nexp
∑

p=1

GU (m, p) C(p, n) = δmn , (5.9)

whereGU = G(bas(U)) is the Gram matrix of bas(U) = {u1, . . . ,uNexp
} with respect to the

inner product〈 · , · 〉. From this equation, it follows thatC = G−1
U . Hence,

yn =

Nexp
∑

p=1

G−1
U (p, n)up . (5.10)

The expansion coefficients ofyn with respect to the expansion functions in bas(W) are given
by

Yn = [W−yn] =

Nexp
∑

p=1

G−1
U (p, n) [W−up] =

Nexp
∑

p=1

G−1
U (p, n)Up . (5.11)

The Gram matrixGU is obtained from the Gram matrixGW = G(bas(W)) and the eigenvectors
Un. Substituting (5.4) inGU (m,n) = 〈um,un〉, we obtain

GU (m,n) = UH
m GWUn . (5.12)

For the expansion functions for strips and rings as introduced in Section 3.2, the corresponding
Gram matricesGW are given in Section 3.3.
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5.2.2 Single Rings

For a single ring, the eigencurrents are known. In Subsection 3.3.2, we observed that the cosine
and sine expansion functions, as introduced in (3.12), diagonalize the impedance operatorZa

of a single ring. Hence, the eigencurrents of a single ring are these cosine and sine functions.
The eigenvalues are the diagonal components of the moment matrix [W−ZaW] = G−1Z as
determined in Section 3.3, see (3.35). These components arecomputed as described in Sec-
tion 3.4. From (3.35)3, it follows that components corresponding to cosine and sine functions
of the same angular order are equal. Hence, the constant functions establish a 1-dimensional
eigenspace, while all other eigenspaces are 2-dimensionaland consist of a cosine and a sine
function of the same angular order. The eigenvectors of the moment matrix are the unit column
vectors, each of which is zero in all entries but one, where itequals 1.

We observe that the eigencurrents depend only the angle thatdescribes the circumference of
the ring. The eigencurrents are orthogonal with respect to theL2 inner product. To obtain an
orthonormal set, we can either normalize the eigencurrentswith respect to theL2 inner product
or adjust the inner product as described in the previous subsection. In the second case, the bi-
orthogonal set{ y1, . . . , yNexp

} is given byyn = αnun, whereαn = 2π if un is the constant
function andαn = π otherwise. If the eigencurrentsun are indexed in the same way as the ex-
pansion functions, thenα1 = 2π andαn = π for n > 1. However, if we index the eigencurrents
according to|νn| ≤ |νn+1|, the eigencurrents will in general not be indexed in the sameway as
the expansion functions.

Considering the questions on pp. 113 ff., we observe that theremaining relevant questions
concern the behavior of the eigenvalues as a function of their index and their dependence on
the geometry parameters and the frequency. For a ring in freespace, the eigenvalues depend
on the dimensionless parameterska and β, i.e., the ratio of the ring circumference and the
wavelength, and the ratio of the ring width and the ring radius. Moreover, the magnitudes of the
eigenvalues depend on the dimensionless parameterk2ab, see (2.96). For a ring in a half space,
the eigenvalues depend as well on the ratioh/a of the height above the ground plane and the
radius.

Since the sine eigencurrents exhibit the same eigenvalues as the cosine eigencurrents with
angular order larger than zero, we study here the behavior ofthe eigenvalues corresponding
to the cosine eigencurrents. We index these eigenvalues according to |νn| ≤ |νn+1|. Figure
5.4 shows the first 10 (normalized) absolute eigenvalues|νn| as a function of their index for
ka between0.75 and1.25. Here,ka is adjusted by means of the frequency, since the ratioβ

remains fixed. We observe that the absolute eigenvalues increase most rapidly forka ≈ 1.
They increase slower forka ≈ 0.75 andka ≈ 1.25. Hence, in case the ring circumference
equals about a wavelength, less eigencurrents will contribute to the current on the ring than in
case the ring circumference equals about0.75λ and1.25λ. Moreover, atka ≈ 1 the ring shows
resonant behavior. In that case, the cosine and sine functions with angular order 1 match the ring
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Figure 5.4 The first 10 normalized absolute eigenvalues of a single ring in both free space (left)

and a half space withh/a = 6/5 (right). The ratioska of ring circumferences and wavelengths

are0.75 (+), 0.875 (∗), 1 (◦), 1.125 (×), and1.25 (△). Normalization: for each value of

ka, the first absolute eigenvalue. Parameter values:β = b/a = 3/100, ψ = 0, Ncos = 10,

Nsin = 0.

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

Eigenvalue index

N
or

m
al

iz
ed

ab
so

lu
te

ei
ge

nv
al

ue

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

Eigenvalue index

N
or

m
al

iz
ed

ab
so

lu
te

ei
ge

nv
al

ue

Figure 5.5 The first 10 absolute eigenvalues of a single ring in free space. The ratioska of ring

circumferences and wavelengths aren + 0.75 (+), n + 0.875 (∗), n + 1 (◦), n + 1.125 (×),

n + 1.25 (△), wheren = 1 (left) andn = 2 (right). Normalization: for each value ofka, the

first absolute eigenvalue. Parameter values as in Figure 5.4.

circumference. From a mathematical point of view, the resonant behavior is explained by the
vanishing of the corresponding Sturm-Liouville eigenvalue as given by (3.11). Then, the first
term in the right-hand side of (3.32) vanishes as well. Hence, the scattered field contributions
corresponding to the cosine and sine functions with angularorder 1 are entirely described by the
kernelK̃2,pq, which represents the field contributions due to the curvature of the ring.
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Least-square fits of the first 30 eigenvalues revealed that, in all cases, the eigenvalues tend
asn

√
n (n → ∞) , wheren is the eigenvalue index. Figure 5.5 shows similar phenomenafor

ka between1.75 and2.25, and forka between2.75 and3.25. For the values ofka used in
this figure, the absolute eigenvalues show the ‘steepest slope’ in case the circumference equals
2λ and3λ, i.e., ka = 2 andka = 3. As above, these circumferences correspond to resonant
behavior of the ring. Further investigation revealed that both in free space and in a half space,
the ‘steepest slopes’ are attained for values ofka betweenm − 1/10 andm + 1/10 (m ∈ N).
Moreover, the ‘weakest slopes’ are attained between aboutm−1/2 andm−3/10 . Forka ≪ 1,
the slope is very steep, which indicates that only one eigencurrent, i.e., the constant function,
will contribute to the current on the ring. Moreover, all eigenvalues are imaginary valued. These
results are to be expected, because an electrically small ring is strongly reactive and the current
along it is almost constant, see Subsection 4.2.2. Finally,for the values ofka used in Figure 5.5,
the first few absolute eigenvalues do not show then

√
n behavior as in Figure 5.4 forka = 1.

From the above, we observe that the number of eigencurrents needed to describe the current
will increase, if the frequency is increased. This conclusion is in agreement with the remark
in [79: pp. 66, 70] that only a few eigencurrents are needed todescribe the current for (electri-
cally) small and intermediate size bodies. As the results for the ring show, (electrically) larger
bodies support more eigencurrents than (electrically) smaller bodies. Therefore, for larger bod-
ies, the excitation field will have a stronger influence on thecurrent. This is corroborated by
the description (5.2) of the current. In the previous chapter, we showed that certain exterior
fields induce equivalent excitation fields. This equivalence may be affected when the size of the
excited body is enlarged.

The results in Figure 5.4 and Figure 5.5 suggest that the eigenvalues depend strongly on the
geometry parameters and the frequency. This is corroborated by the results in Table 5.1, which
shows the absolute eigenvalues and the corresponding eigencurrents of a single ring for four
values ofka. As expected, the eigencurrents are distributed among the eigenvalues according

Table 5.1 The first 5 absolute eigenvalues (unit: V/A) of a single ring in free space and their

corresponding eigencurrents forka equal to0.7, 1, 1.65, and2. Only the cosine eigencurrents

are considered. Other parameter values as in Figure 5.4.

ka = 0.7 ka = 1 ka = 1.65 ka = 2

n |νn| un |νn| un |νn| un |νn| un

1 11.75 1 3.078 cos ϕ 12.08 cos 2ϕ 4.045 cos 2ϕ

2 12.33 cos ϕ 17.46 1 12.74 cos ϕ 19.35 cos ϕ

3 68.13 cos 2ϕ 41.25 cos 2ϕ 29.66 1 31.91 cos 3ϕ

4 146.9 cos 3ϕ 97.44 cos 3ϕ 47.53 cos 3ϕ 34.79 1

5 244.4 cos 4ϕ 166.3 cos 4ϕ 90.84 cos 4ϕ 68.64 cos 4ϕ
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to these values. For the circumferences corresponding to the resonant behavior of the ring, i.e.,
ka = 1 andka = 2, the dominant eigencurrents are clearlycos ϕ andcos 2ϕ. For the other two
circumferences, i.e.,ka = 0.7 andka = 1.65, there are two dominant eigencurrents. More-
over, the first eigenvalues for these values ofka are larger than forka = 1 andka = 2. This
phenomenon is explained from the need of a higher amount of energy to excite the dominant
eigencurrents for the ring circumferences0.7λ and1.6λ than for the ring circumferences that
correspond to resonant behavior. For a ring circumference close to0.7λ and for a ring circum-
ference close to1.6λ, the first two eigenvalues become the same. In that case, the ring exhibits a
degenerate eigenvalue with an eigenspace of dimension 2 spanned by the first two eigencurrents.

The first eigenvalue depends strongly on the ratioh/a, while the other eigenvalues depend
weakly on this ratio. To illustrate this dependence, Table 5.2 shows the eigenvalues and cor-
responding eigencurrents of a ring in free space and in a halfspace withh/a = 6/5. This

Table 5.2 The first four eigenvalues (unit: V/A) and their corresponding eigencurrents of a

single ring in free space and in a half space withh/a = 6/5 (or, h = λ/5). Only the cosine

eigencurrents are considered. Parameter values:ka = pi/3, β = 3/100, ψ = 0, Ncos = 4,

Nsin = 0.

Free space Half space
n Reνn Im νn |νn| Reνn Im νn |νn| un

1 −2.68 0.49 2.72 −2.88 −1.56 3.27 cos ϕ

2 −1.82 −18.27 18.36 −0.97 −18.34 18.37 1

3 −0.52 38.21 38.22 −0.33 38.30 38.30 cos 2ϕ

4 −0.03 92.06 92.06 −0.01 92.12 92.12 cos 3ϕ

table also shows that the real part of the eigenvalues decreases with their indexn, while their
imaginary part increases in absolute value. Moreover,νn is almost imaginary valued forn ≥ 3.
Since the eigencurrentsun are real valued and the current on the ring is described by thefinite
expansion (5.2), the eigencurrentsun with n ≥ 3 are reactive contributions to the current.

Finally, the eigenvalues (3.11) of the Helmholtz operator differ from the eigenvalues of the
ring in the sense that they are real valued, they tend asn2, and they decrease monotonically for
increasing ring circumference. Since the eigenvalues of the ring tend asn

√
n, the Helmholtz

operator dominates the integral operatorK̃1,pq, with weakly singular kernel, in (2.96).

5.2.3 Single Strips

Determining Eigenvalues and Eigencurrents

In contrast to the eigencurrents of a single ring, the eigencurrents of a single strip need to
be evaluated numerically. We determine numerically the eigencurrents and the correspond-
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ing eigenvalues for two different sets of expansion functions, i.e., the entire-domain functions
defined by (3.7) – (3.8) and the piecewise functions defined by(3.9). For both sets, we compute
the eigenvalues and eigencurrents from the moment matrix[W−ZaW] by the Matlab function
‘eig’. For the entire-domain functions, the moment matrix is a block-diagonal matrix composed
of the blocks[(Wcos)−ZaWcos] and [(Wsin)−ZaWsin], see Subsection 3.3.1. Therefore, we
can compute the eigenvalues and eigencurrents also from these blocks. Moreover, the resulting
eigencurrents are either even or odd.

As mentioned in Subsection 5.1.3, numerical errors in the initialization step will propagate
throughout the whole eigencurrent approach. Therefore, weinvestigate the numerical errors that
occur in the computation of the eigenvalues and eigencurrents. These errors can be divided into
two groups: errors due to the numerical approximation of themoment matrix and errors due to
the numerical computation of the eigenvalues and eigenvectors of the (approximated) moment
matrix. The errors of the first kind are investigated in Section 3.4. Therefore, we consider the
errors of the second kind only. To investigate these errors,we computed the relative errors

‖ ˜[W−ZaW] Ũn − ν̃n Ũn ‖
‖ν̃n Ũn‖

, n = 1, . . . , Nexp , (5.13)

for several strip geometries and several numbers of expansion functions. Here, ˜[W−ZaW] is
thecomputedmoment matrix, and̃νn andŨn are itscomputedeigenvalues and eigenvectors.
Moreover,‖ · ‖ is the norm on the spaceCNexp×1 of column vectors defined by‖U‖2 = UHGU ,
whereG is the Gram matrix of bas(W) with respect to theL2 inner product. The choice of this
norm is such that‖U‖ = ‖u‖L2

for u ∈ ran(W) with [W−u] = U . Table 5.3 shows the maxima
of the relative errors (5.13) for several sets of expansion functions. For each set, the maximum
belongs to the smallest eigenvalue. We observe that the maximum increases with the size of
the moment matrix, but even for 159 piecewise functions, themaximum is smaller than10−10.
For the number of integration points as given in Section 3.4,the components of the moment
matrix are computed up to relative errors of the order10−3. Hence, the numerical accuracy
of the eigenvalues and eigencurrents is only determined by the approximation of the moment
matrix and not by their numerical computation from this matrix. This shows that the current
description by the (computed) moment matrix and the currentdescription by the (computed)
eigenvalues and eigencurrents have the same accuracy.

For the sets of expansion functions in Table 5.3, the CPU timeof the matrix construction is
slightly larger than the CPU time of the eigenvalue and eigenvector computation, but both CPU
times are small. The maximum CPU times are 2.7 seconds and 1.2seconds, respectively, both
for 159 piecewise expansion functions.
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Table 5.3 Maxima of the relative errors (5.13) for several sets of expansion functions. The

mappingW is constructed for 5, 10, 20, 30, and 40 cosine and sine expansion functions as in

(3.7) and for for 9, 19, 39, 79, and 159 piecewise expansion functions as in (3.9). Parameter

values:2ℓ = λ/2, β = b/ℓ = 1/50.

Entire-domain exp. functions Piecewise exp. functions
Ncos, Nsin max. rel. error Nexp max. rel. error

5 7.0 · 10−14 9 5.4 · 10−14

10 3.3 · 10−13 19 2.9 · 10−13

20 9.2 · 10−13 39 1.2 · 10−12

30 1.6 · 10−12 79 4.6 · 10−12

40 3.2 · 10−12 159 1.2 · 10−11

Description of Eigencurrents and Dependence on Expansion Functions

In this part of Subsection 5.2.3, we will show how the eigencurrents are described by both the
piecewise and the entire-domain expansion functions. Moreover, we show to what extent they
depend on the set of expansion functions. Throughout this subsection, we consider a strip of
half a wavelength in free space. At the end of this part, we discuss results for other strip lengths.

Let us start with the entire-domain expansion functions. Figure 5.7 shows the absolute eigen-
vector components for a strip of half a wavelength with 10 entire-domain expansion functions,
i.e., 5 cosine and 5 sine functions, and with 20 entire-domain expansion functions, i.e., 10 cosine
and 10 sine functions. The eigenvectors are indexed such that |νn| ≤ |νn+1|. We recall that the
components of each eigenvector are the expansion coefficients of an eigencurrent with respect to
these functions. The first 5 and 10 coefficients, respectively, correspond to the cosine functions
and the next 5 and 10 coefficients correspond to the sine functions. From the color pattern in
Figure 5.7, we conclude that the eigencurrents equal the cosine and sine expansion functions
up to a perturbation. For each eigencurrent, this perturbation is described by the ‘neighboring’
cosine or sine functions of the corresponding dominant expansion function. The perturbation is
larger for eigencurrents with a dominant cosine or sine function of higher angular order. More-
over, the eigencurrents are alternately even and odd for thegiven strip geometry. As suggested
by Figure 5.7 (left) and Figure 5.7 (right), the eigencurrents corresponding to lower eigenvalues
hardly change when more expansion functions are used. This observation is corroborated by
amplitude and phase plots of the eigencurrents. An example is given in Figure 5.6, which shows
the first two eigencurrents for 5 and 10 cosine and sine expansion functions. The amplitude pat-
terns show the perturbations with respect to the dominant expansion functions, while the phase
patterns show that the eigencurrents have negligible imaginary parts.

For a strip of half a wavelength with piecewise expansion functions, we will show first how
the eigencurrents are described by these functions. As above, the eigencurrents are indexed by
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Figure 5.6 The 1st and 2nd eigencurrent for a strip of half a wavelength in free space. Solid

curve: 5 cosine and 5 sine expansion functions. Dashed curve: 10 cosine and 10 sine expansion

functions (indistinguishable in both figures). The dotted curves in the left figure are the functions

cos(πξ/2) andsin(π|ξ|/2). Eigencurrent normalization: absolute maximum. Parameter values

as in Figure 5.7.

n such that|νn| ≤ |νn+1|. Next, we will show that the amplitudes of the first⌊Nexp/4⌋ eigen-
currents and the phases of the first⌊Nexp/2⌋ eigencurrents correspond to the amplitudes and
phases of the first⌊Nexp/4⌋ and⌊Nexp/2⌋ eigencurrents obtained by the entire-domain expan-
sion functions. This correspondence becomes less obvious for indices larger than⌊Nexp/4⌋ and
⌊Nexp/2⌋.

Figure 5.8 (left) shows the absolute eigenvector components for 15 piecewise expansion
functions. The color pattern is completely different from the patterns for the entire-domain ex-
pansion functions in Figure 5.7. It suggests that the absolute components of thenth eigenvector
generate the same pattern as the absolute components of the(16 − n)th eigenvector. For ex-
ample, the absolute components of the first and last eigenvectors generate cosine-like patterns
of half a period. Moreover, the absolute components of the second eigenvector and the last but
one generate absolute sine-like patterns of one period. These observations are corroborated by
Figure 5.9 (left), which shows that the absolute componentsof the first and 15th eigenvectors
are about the same as well as the absolute components of the second and 14th eigenvectors. The
dotted and dashed curves between the absolute components show the patterns that these compo-
nents generate; they do not have a specific meaning. Also forn = 7, the absolute eigenvector
components of thenth and(16−n)-th eigenvector exhibit the same patterns as shown in Figure
5.9 (right). Since an odd number of expansion functions is used, the 8th eigenvector does not
have a corresponding eigenvector.

The color pattern in Figure 5.8 (left) shows that the absolute components of thenth eigen-
vector have, as a function of the component index,n local maxima ifn ≤ 8 and16 − n local
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Figure 5.7 Color pattern of the absolute eigenvector components (in dB) for a strip ofhalf a

wavelength in free space. Left: 5 cosine and 5 sine expansion functions. Right: 10 cosine and 10

sine expansion functions. Eigenvector normalization: maximum component. Parameter values:

2ℓ = λ/2, β = b/ℓ = 1/50.
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Figure 5.8 Color pattern of the absolute values (left) and the phases (right) of the eigenvector

components for a strip of half a wavelength in free space with 15 piecewiseexpansion functions.

Eigenvector normalization: maximum absolute component. Parameter values as in Figure 5.7.
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Figure 5.9 Left: absolute eigenvector components of the 1st (◦, dashed), 2nd (◦, dotted), 14th

(△, dotted), and 15th (△, dashed) eigenvector for a strip of half a wavelength in free space.

Right: absolute eigenvector components of the 7th (◦) and 9th(△) eigenvector for the same

strip. The indicesm = 1, . . . , 15 of the components are transformed to the interval[−1, 1]

according tom → −1 + 2m/(Nexp + 1), whereNexp = 15. Eigenvector normalization:

maximum absolute component. Parameter values as in Figure 5.7.
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Figure 5.10 Amplitudes (left) and phases (right) of the first (solid curve) and 15th (dashed

curve) eigencurrent for a strip of half a wavelength in free space with 15 piecewise expansion

functions. Eigencurrent normalization: maximum amplitude. Parameter values as in Figure 5.7.
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maxima if n ≥ 8. Moreover, the components of this eigenvector haven − 1 phase reversals
(phase shifts of180◦). Due to the increase of the number of phase reversals with the eigenvector
index, thenth and(16 − n)-th eigencurrent differ, although their absolute eigenvector compo-
nents are almost equal. An example is given in Figure 5.10, which shows the amplitudes of the
first and 15th eigencurrents. The amplitude of the first eigencurrent is the same as the pattern
generated by the corresponding absolute eigenvector components in Figure 5.8 (left), because
all eigenvector components have the same phase. The amplitude of the 15th eigencurrent is not
the same as the pattern generated by the corresponding absolute eigenvector components due to
a linear phase progressionmπ of these components, see the color pattern of the 15th eigenvector
in Figure 5.8 (right). Figure 5.10 shows that the first and the15th eigencurrents have as many
(uniformly spaced) phase reversals as the components of thefirst and 15th eigenvectors. Further
investigation showed that for eachn, thenth eigencurrent hasn amplitude maxima andn − 1

(uniformly spaced) phase reversals. Finally, Figure 5.10 (right) shows that the eigencurrents
obtained by the piecewise expansion functions are real valued.

The color patterns of the absolute eigenvector components for 29 and 79 piecewise functions
in Figure 5.11 show results similar to Figure 5.8. We state the following general conclusions
for the eigenvectors and eigencurrents of a strip of half a wavelength with a fixed number of
piecewise expansion functionsNexp.

1. For eachn = 1, . . . , Nexp, the absolute components of thenth and(Nexp + 1 − n)th
eigenvector show the same patterns.

2. For eachn, the components of thenth eigenvector showmin{n,Nexp + 1 − n} absolute
maxima andn − 1 phase reversals as a function of the component index.

3. For eachn, thenth eigencurrent showsn local amplitude maxima andn − 1 (uniformly
spaced) phase reversals.

Having shown the way the eigencurrents are described by the piecewise expansion functions,
we compare the eigencurrents obtained by piecewise and entire-domain expansion functions. A
first qualitative comparison shows that for both choices of functions, thenth eigencurrent shows
n local amplitude maxima andn−1 (uniformly spaced) phase reversals. For a quantitative com-
parison, we compare four of the first 15 eigencurrents obtained by 15 and 29 piecewise functions
as well as by 20 entire-domain functions, i.e., 10 cosine and10 sine functions. From Figure 5.12,
we observe that the amplitudes of the first and fourth eigencurrents obtained by 15 and 29 piece-
wise functions correspond to the amplitudes obtained by theentire-domain functions. For 15
piecewise functions, the amplitude of the 7th eigencurrentshows discrepancies with the ampli-
tude obtained by the entire-domain functions. Moreover, the amplitude of the 14th eigencurrent
does not correspond at all to the amplitude obtained by the entire-domain functions. For 29
piecewise functions, the amplitude discrepancies of the 7th and 14th eigencurrents are much



5.2. INITIALIZATION 129

5 10 15 20 25

5

10

15

20

25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eigenvector index

R
ow

in
de

x
of

ei
ge

nv
ec

to
r

10 20 30 40 50 60 70

10

20

30

40

50

60

70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eigenvector index

R
ow

in
de

x
of

ei
ge

nv
ec

to
r

Figure 5.11 Color pattern of the absolute values of the eigenvector components for a strip in

free space with 29 (left) and 79 (right) piecewise expansion functions. Eigenvector normaliza-

tion: maximum component. Parameter values as in Figure 5.7.
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Figure 5.12 Amplitudes of the 1st, 4th, 7th, and 14th eigencurrent for a strip in free space with

15 (black dashed curve) and 29 (blue curve) piecewise expansion functions and with 10 cosine

and 10 sine expansion functions (red curve). Eigencurrent normalization: maximum amplitude.

Parameter values as in Figure 5.7.
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Figure 5.13 Left: absolute eigenvector components of theNexpth (dashed curve) and the

(Nexp − 3)th (dotted curve) eigenvector for a strip of half a wavelength in free space with 15

(◦) and 29 (+) piecewise expansion functions. Right: absolute eigenvector components of the

7th eigenvector for the same strip with 15 (◦, dotted curve) and 29 (+, dashed curve) piecewise

functions. The indicesm = 1, . . . , 15 of the components are transformed to the interval[−1, 1]

according tom → −1 + 2m/(Nexp + 1), whereNexp = 15, 29. Eigenvector normalization:

maximum absolute component. Parameter values as in Figure 5.7.

smaller. These results suggest that for a certain numberNexp of piecewise functions, the am-
plitudes of the first⌊Nexp/4⌋ eigencurrents correspond to the amplitudes of the eigencurrents
obtained by the entire-domain functions. For eigencurrents with indices larger than⌊Nexp/4⌋,
this correspondence deteriorates slowly as a function of the index. The deterioration starting
from the index number⌊Nexp/4⌋ can be understood as follows. SinceNexp is the number of
‘sampling points’ and the eigencurrent with index⌊Nexp/4⌋ has⌊Nexp/4⌋ amplitude maxima,
there should be at least 4 ‘sampling points’ per amplitude maximum to obtain a good corre-
spondence between the eigencurrents obtained by the piecewise and entire-domain functions.
Investigation of the phases of the eigencurrents showed that for fixed Nexp, the phases of the
first ⌊Nexp/2⌋ eigencurrents correspond to the phases obtained by the entire-domain functions.

Since the first⌊Nexp/4⌋ eigencurrents show convergence, the absolute components of the
first ⌊Nexp/4⌋ eigenvectors generate the same patterns as the first⌊N ′

exp/4⌋ eigenvectors, where
N ′

exp > Nexp. The same is valid for the last⌊Nexp/4⌋ eigenvectors due to conclusion 1 above.
This result is corroborated by Figure 5.13 (left), which shows the absolute components of the
12th and 15th eigenvectors for a strip with 15 piecewise functions and the absolute components
of the 26th and 29th eigenvectors for a strip with 29 piecewise functions. The indicesm of
the eigenvector components are transformed to the interval[−1, 1] according tom → −1 +

2m/(Nexp + 1), where the number of expansion functionsNexp equals 15 and 29. Figure
5.13 (right) shows that also for other eigenvectors similarpatterns are generated. The absolute
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components of the 7th eigenvector for a strip with 15 piecewise functions are all positioned on
the fictitious curve generated by the absolute components ofthe 7th eigenvector for a strip with
29 piecewise functions.

Above, conclusions were stated for a strip of half a wavelength in free space. We verified
similar results for strip lengths smaller than11/15λ, both in free space and in a half space.
For strip lengths larger than about11/15λ, the order of the eigencurrents, as induced by the
indexing of the eigenvalues, changes in the same way as the order for the ring, see Subsection
5.2.2. An example is given in Figure 5.15 for a strip of one wavelength with 15 piecewise
expansion functions and with 10 entire-domain expansion functions, i.e., 5 cosine and 5 sine
functions. Both color patterns in this figure show that the first two eigenvectors of a strip of
half a wavelength are interchanged. Moreover, these patterns suggest that the eigencurrents are,
up to scaling with respect to the length of the strip, the sameas the eigencurrents for a strip
of half a wavelength. A comparison of eigenvectors and eigencurrents for different geometry
parameters is given further on. The interchange of eigencurrents affects the properties 1 - 3
described on page 128. Moreover, the first⌊Nexp/4⌋ eigencurrents obtained byNexp piecewise
functions correspond only to the eigencurrents obtained bythe entire-domain functions ifNexp

is sufficiently large to describe the dominant eigencurrents.

If we extrapolate the results for a strip to a more general geometry with width-averaged
current, we need4N piecewise expansion functions to determine the firstN eigencurrents. The
numberN is determined by the number of eigencurrents needed to compute a certain typical pa-
rameter. Finally, the results for the piecewise and entire-domain expansion functions show that
the eigencurrents depend only weakly on the set of expansionfunctions. Moreover, these results
suggest that for eachn, the eigencurrentun converges pointwise as the number of expansion
functions increases.

Dependence of Eigenvalues on Expansion Functions

Table 5.4 shows that the computed eigenvaluesν1 andν2 for a strip of half a wavelength depend
only weakly on the number and the type of expansion functions. Moreover, the values seem to

Table 5.4 The first two (computed) eigenvalues (unit: V/A) for a strip of half a wavelength.

The expansion functions are chosen as in Table 5.3.

Ncos,sin Reν1 Im ν1 Reν2 Im ν2

5 -3.005 -1.867 −0.37 38.49

10 -3.014 -1.922 −0.37 38.33

20 -3.018 -1.961 −0.37 38.21

30 -3.020 -1.977 −0.37 38.16

40 -3.021 -1.986 −0.37 38.13

Nexp Reν1 Im ν1 Reν2 Im ν2

9 -2.992 -1.770 −0.36 39.15

19 -3.007 -1.878 −0.37 38.39

39 -3.015 -1.937 −0.37 38.13

79 -3.019 -1.976 −0.37 37.99

159 -3.022 -2.001 −0.37 37.91
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converge forNexp → ∞. We investigated the behavior of the eigenvaluesν1, ν2, andν3 as
a function of the number of expansion functions for several strip geometries. An example is
given in Figure 5.14 for a strip of half a wavelength in free space. This figure shows that for
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the piecewise functions, the imaginary parts of the eigenvalues tend as1/N
5/4
exp . Moreover, the

relative differences between the first estimate of the imaginary part and the limiting value seem
to decrease as a function of the eigenvalue indexn. Tests revealed that the quality of the first
estimate stabilizes asn increases.

For the entire-domain functions, we show the imaginary parts of the first three eigenvalues
obtained by the cosine expansion functions, i.e., from the block [(Wcos)−ZaWcos] of the mo-
ment matrix. As mentioned in the beginning of this subsection, the eigenvalues can be computed
from the blocks[(Wcos)−ZaWcos] and[(Wsin)−ZaWsin] of the moment matrix. We observe
that the imaginary parts tend as1/

√
Ncos , whereNcos is the number of cosine expansion func-

tions. Moreover, the relative differences between the firstestimate of the imaginary part and the
limiting value show the same behavior as above, i.e., they decrease as a function of the eigen-
value indexn. This phenomenon is explained by the increase of the diagonal components of
moment matrix for the entire-domain expansion functions, which is diagonally dominant. We
observed that the imaginary parts of the first three eigenvalues obtained by the sine functions
show similar properties, but they tend as1/N1/4.

Both for the piecewise functions and for the entire-domain functions, the real parts show
more rapid convergence than the imaginary parts. In contrast, the first estimates deteriorate for
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larger eigenvalue indices, which is due to the decrease of the real parts of the eigenvalues with
respect to the imaginary parts for larger absolute eigenvalues. Compare for example the real and
imaginary parts of the first two eigenvalues in Table 5.4.

Similar results were obtained for other strip geometries inboth free space and half space. In
particular, the behavior of the imaginary parts of the eigenvalues as a function of the number of
expansion functions is independent of the geometry parameters.

Behavior of Eigenvalues and Parameter Dependence

For a strip in free space, the eigenvalues depend on the dimensionless parameters2ℓ/λ (= kℓ/π)
andβ, i.e., the ratio of the strip length and the wavelength, and the ratio of the strip width and the
strip length. Moreover, the magnitudes of the eigenvalues depend on the dimensional parameter
k2ℓb, see (2.53). For a strip in a half space, the eigenvalues depend on the ratioh/ℓ of the height
above the ground plane and the strip length as well.

The eigenvalues show a similar behavior as the eigenvalues of a ring. First, they tend as
n
√

n, wheren is the eigenvalue index. Second, the ‘slope’ of the absoluteeigenvalues decreases
non-monotonically for2ℓ/λ & 0.5, and it shows local maxima and minima for2ℓ/λ ≈ m/2 and
2ℓ/λ ≈ (m + 1/2)/2 (m ∈ N). Analogously to the analysis for the ring, each local maximum
with index m is related to resonant behavior of the strip for which the cosine function with
angular order(2m − 1)π/2 matches with the length of the strip. From a mathematical point of
view, the resonant behavior is explained by the vanishing ofthe corresponding Sturm-Liouville
eigenvalue as given by (3.6)1. The first term in the right-hand side of (3.16) vanishes as well.
Hence, the scattered-field contribution corresponding to the cosine function with angular order
(2m − 1)π/2 is entirely described by the second (boundary) term, which represents the field
contributions from the edges of the strip.

For2ℓ/λ ≪ 1, the dependence of the slope of the absolute eigenvalues on2ℓ/λ is negligible.
In other words, the ratiosνn/ν1 can be considered as being independent ofkℓ. In that case, the
eigenvalues are a linear function of1/kℓ, which can be deduced from the definition of the
impedance operator for the strip as well, see (2.53). Moreover, because a small strip is strongly
reactive, they are imaginary.

Orthonormality of Eigencurrents

The eigencurrents are close to an orthonormal set with respect to the naturalL2 inner product
except for the first ones (4 or 6 eigencurrents). For this statement, we considered the Gram
matrices of the eigencurrents for several strip geometries. These Gram matrices are computed
from (5.12). An example of such a Gram matrix is given in Figure 5.16 (left) for a strip of half
a wavelength in free space with 29 piecewise expansion functions. Figure 5.16 (right) shows
the corresponding color pattern of the inner products between the even eigencurrents. The same
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patterns are obtained for the entire-domain expansion functions. Figure 5.16 (right) shows that
only two or three even eigencurrents are not orthogonal. Hence, the Gram matrix of the even
eigencurrents can be approximated by the first2 × 2 or 3 × 3 block and the remaining diagonal
components. This approximation saves considerable computational time and data storage for
the Gram matrix. Thus, it facilitates a faster computation of the new inner product〈 · , · 〉sub.
Moreover, for both the even and odd eigencurrents, the first three functions of the bi-orthogonal
set{ y1, . . . , yNexp

} in (5.10) equal the first three even eigencurrents up to a perturbation. The
other functionsyn are proportional toun. The constant of proportionality equals 1, if the eigen-
currents are normalized. Finally, a similar reasoning is valid for the odd eigencurrents.

Parameter Dependence of Eigenvectors and Eigencurrents

For a specified set of expansion functions, the corresponding eigenvectors and eigencurrents
do not depend on the dimensionless parameters2ℓ/λ andh/a for 2ℓ/λ . 1 andh/a & 0.1,
respectively. This statement is not only valid for the ‘converged’ eigencurrents, but for all eigen-
currents obtained by the specified set. We verified the statement for sets of 15 and 29 piecewise
expansion functions and for a set of 5 cosine and 5 sine expansion functions.

The eigenvectors and eigencurrents depend weakly on the dimensionless parameterβ =

b/ℓ for 1/50 ≤ β ≤ 1/10. This weak dependence is apparent from Figure 5.17, where the
amplitudes of the first two eigencurrents forβ = 1/50 and β = 1/10 are shown together
with the amplitude of the first cosine expansion function. The results for the dimensionless
parameters show that the dependence of the eigencurrents onthe frequencyf is negligible for
f . c/2ℓ. In that case, the strip length is smaller than or approximately equal to the wavelength.
The eigencurrents depend only weakly on the length scalesℓ andb. For changes ofℓ or b for
whichβ changes at most a factor of 2, the eigencurrents are independent ofℓ.

The independence mentioned above has computational advantages. Having calculated the
eigenvalues and eigencurrents for an initial set of geometry parameters from the corresponding
moment matrix, we do not need to compute the moment matrix fora new set of geometry
parameters to determine the eigenvalues. Instead, we compute the Rayleigh-Ritz quotients

νn =
〈un,Zaun〉L2

‖ un ‖2
L2

. (5.14)

Since the new set of geometry parameters differs from the initial set, the impedance operatorZa

in these ratios differs from the impedance operator by whichthe moment matrix for the initial
set of expansion functions is calculated. The norms‖ un ‖L2

are known, since we determine
the Gram matrix for the eigencurrents with respect to theL2 inner product. The inner product
〈un,Zaun〉L2

is calculated as described in Section 3.3.1, see (3.14) - (3.17). The eigencurrents
un are described by expansions with respect to the prescribed expansion functions, see (5.4).
It would not be efficient to substitute these expansions in〈un,Zaun〉L2

and to calculate all the
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Figure 5.15 Color pattern of the absolute values of the eigenvector components for a strip of

half a wavelength in free space. Left: 15 piecewise expansion functions. Right: 5 cosine and 5

sine expansion functions. Eigenvector normalization: maximum component. Parameter values:

2ℓ = λ, β = b/ℓ = 1/50.
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inner products〈Wes,ZaWes′〉L2
. In that case, the computation of the eigenvalues requires

as much computational effort as the computation of the moment matrix of Za with respect to
the expansion functionsWes. Therefore, we first sample the eigencurrents and then compute
the inner products〈un,Zaun〉L2

. Due to the singular behavior of the kernelF of Za, these
sampled eigencurrents may provide erroneous results for the eigenvalues. To prevent such er-
rors, we decompose the kernelF into its logarithmically singular part and its regular partas in
Section 3.1. We splitZa accordingly, i.e.,Za = Za,sing + Za,reg. The singular part is, up to a
factor, independent of the geometry parameters. Therefore, we can compute the inner product
〈un,Za,singun〉L2

by writing un in terms of the expansion functions as mentioned above. The
results for the inner products〈Wes,Za,singWes′〉L2

follow from the moment matrix ofZa,sing

for the initial set of geometry parameters. Moreover, we cancompute〈un,Za,regun〉L2
from

the sampled eigencurrents. Finally, the preceding outlineto compute the eigenvalues can also be
used for more complicated element structures, if the eigencurrents do not change for a certain
parameter change and if the kernel is split into a singular, geometry independent, part and a
regular part.

5.3 Cycle

5.3.1 Calculational Details

Having chosen a generating subarray in step I on p. 111, we describe the setsEn in step II
as follows. LetW be the mapping that describes the expansion functions. We construct this
mapping in the same way as in Subsection 2.4.3. LetW = W1 ⊔ . . . ⊔WNsub

and defineWq
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by (Wqen)( · ; q) = usub
n and(Wqen)( · ; q′) = 0 for q 6= q′ (n = 1, . . . , N sub

eig ). Then, each
functionWqen is an eigencurrent of the array in which mutual coupling is ignored. Moreover,
this eigencurrent is zero on all subarrays except on theqth subarray, where it equalsusub

n . Hence,
the setsEn are defined by

En = {Wqen | q = 1, . . . , Nsub } . (5.15)

The setE is the union of these sets andWW− is the projection onto ran(P) = span(E). Let the
eigenvaluesνsub

n corresponding to the setsEn be indexed such that|νsub
n | ≤ |νsub

n+1|.
To describe the next steps, we assume first that allN sub

eig eigencurrents of the generating
subarray contribute to the mutual coupling between the subarrays. This simplifies steps III and
VI. Moreover, step V becomes redundant. Then, the moment matrix of PZaP turns into the
same form as in (2.131),

[W−PZaPW] =







[W−
1 PZaPW1] . . . [W−

1 PZaPWNsub
]

...
. ..

...
[W−

Nsub
PZaPW1] . . . [W−

Nsub
PZaPWNsub

]






. (5.16)

Each block[W−
p PZaPWq] is defined by[W−

p PZaPWq] = G−1
p Zpq. Here,Gp is the Gram

matrix of bas(Wp) with respect to the composite inner product〈 · , · 〉comp given by (5.3) and

Zpq(m,n) = 〈Wpem,PZaPWqen〉comp , (5.17)

with m,n = 1, . . . , Neig. Since the functions in bas(Wp) are orthonormal with respect to the
inner product〈 · , · 〉comp , Gp is the identity matrix for eachp. Since the complete Gram matrix
GW = G(bas(W)) is a block-diagonal matrix with the blocksGp on the diagonal, this Gram
matrix is the identity matrix as well. Hence, we do not need tocalculate the Gram matrix in the
cycle of the eigencurrent approach, only in the initialization. Moreover, in the cycle, the usual
definition and our definition of the moment matrix yield the same result for the moment matrix
of PZaP with respect to the inner product〈 · , · 〉comp and the expansion functions inE.

To calculate the matricesZpq, we deduce first

Zpq(m,n) = 〈Wpem,PZaPWqen〉comp =

Nsub
∑

q′=1

〈(Wpem)( · ; q′), (PZaWqen)( · ; q′)〉sub =

= 〈usub
m , (PZaWqen)( · ; p)〉sub. (5.18)

Next, we interpretZa as composed of the operatorsZa,pq such that the operatorsZa,qq describe
the coupling of the generating subarray onto itself, i.e.,Za,qq = Za,sub, and the operatorsZa,pq

(p 6= q) describe the coupling between the subarrays. Then, we rewrite (5.18) as

Zpq(m,n) = 〈usub
m ,PsubZa,pq((Wqen)( · ; q))〉sub = 〈usub

m ,PsubZa,pqu
sub
n 〉sub . (5.19)
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SincePsubusub
n = usub

n andusub
n is an eigenfunction ofPsubZa,qqPsub with eigenvalueνsub

n ,
we obtain

Zqq(m,n) = νsub
n δmn. (5.20)

Hence, the blocksZqq = [W−
q PZaPWq] in (5.16) are diagonal matrices with the eigen-

values ofZa,sub on the diagonal. Forp 6= q, we need to calculate the inner products
〈usub

m ,PsubZa,pqu
sub
n 〉sub. In the first cycle after the initialization of the eigencurrent approach,

this inner product can be calculated as in (5.7), where〈 · , · 〉 is the initializing inner product.
In step IV, the eigenvectorsUm (m = 1, . . . , N sub

eig Nsub) and the eigenvaluesνm are deter-
mined numerically, see the next sections for details. We write the indexm instead of the index

nq, because the group division of the eigenvalues and eigenvectors is unknown. The eigenvec-
torsUm represent the expansion coefficients of the eigencurrents with respect to the expansion
functions inE = bas(W). As explained in Section 5.1, each eigencurrent will be a linear com-
bination of currents in a certain setEn plus a perturbation. For each eigencurrent, this set is
indicated by the index of the largest absolute component of the corresponding eigenvector, be-
cause this component will correspond to a certain current inEn. Therefore, we determine the
groups of eigenvalues and eigencurrents by grouping the eigenvectorsUm according to their
largest absolute components. Having determined the groupsof eigenvectors{Unq}Nsub

q=1 , we
group the eigenvalues accordingly. Since we know to which set En each eigenvalue group
{νnq}Nsub

q=1 corresponds, we know also to which eigenvalueνsub
n each group corresponds. Fi-

nally, in Subsection 5.3.2, p. 163, we discuss a case in whichthe index of the largest absolute
eigenvector component is not well-defined and we explain howthis case is tackled.

The eigencurrentsunq are defined as in Section 5.2.1 byUnq = [W−unq] and unq ∈
ran(P). Then, span(Eeig) = ran(P), whereE

eig is the set of eigencurrents,

E
eig = {unq |n = 1, . . . , N sub

eig ; q = 1, . . . , Nsub} . (5.21)

Each eigencurrentunq is described by

unq =

Nsub
eig Nsub
∑

p=1

Unq(p, 1)Wep =

Nsub
∑

q′=1

Nsub
eig

∑

n′=1

[W−
q′unq](n

′, 1)Wq′en′ , (5.22)

where the second equality follows fromW−unq = W−
1 unq⊔. . .⊔W−

Nsub
unq . This description

can be read in two ways. First,unq is a linear expansion of currents, or, expansion functions,
in E. Second, on each subarray, the eigencurrentunq is a linear expansion of the eigencurrents
usub

n′ (n′ = 1, . . . , N sub
eig ), the expansion coefficients being[W−

q′unq](n
′, 1) on theq′ subarray.

Analogously to the derivation corresponding to (5.5) and (5.6), it can be shown that each
eigenvalueνnq of the moment matrix is an eigenvalue of the operatorPZaP as well. The new
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inner product〈 · , · 〉 in step VI is constructed analogously to the new inner product in step E
of the initialization as described in Subsection 5.2.1. Forthis construction, we describe the set
E

eig by the mappingU defined byU = U1 ⊔ . . . ⊔ UNsub
eig

andUneq = unq (q = 1, . . . , Nsub).

Then,Eeig = bas(U). From (2.115) and the definitions of the concatenation and the adjoint,
it follows that the Gram matrixGU = G(bas(U)) is composed of the blocks[U∗

mUn], where
m,n = 1, . . . , N sub

eig . The components of these blocks are given by

[U∗
mUn](p, q) = 〈ump,unq〉comp = UH

mpUnq , (5.23)

p, q = 1, . . . , Nsub, where the second equality follows from the conclusion above that the Gram
matrixGW is the identity matrix. Notice thatGU has blocks of sizeN sub

eig ×N sub
eig , whileGW has

blocks of sizeNsub×Nsub. The functionsynq in the bi-orthogonal set are described analogously
to (5.10). Moreover, their expansion coefficients with respect to the set bas(W) are described
analogously to (5.11),

Ynq = [W−ynq] =

Nsub
eig

∑

n′=1

Nsub
∑

q′=1

G−1
U

(

(n′ − 1)N sub
eig + q′, (n − 1)N sub

eig + q
)

Un′q′ . (5.24)

Then,ynq is described by (5.22) withunq andUnq replaced byynq andYnq. Analogously to
(5.7), the relation between the new inner product〈 · , · 〉 and the composite inner product is given
by

〈unq,w〉 = 〈ynq,w〉comp . (5.25)

At the beginning of this section, we assumed that allN sub
eig eigencurrents contribute to

the mutual coupling between the subarrays. If not all eigencurrents contribute, the (re-
duced) moment matrix is constructed from a selection of the setsEn. Assume that the sets
E1, . . . ,ENsub

cpl
, with unionE

cpl, contribute to the mutual coupling and that the contribution of
the setsENsub

cpl +1, . . . ,ENsub
eig

, with unionE
unc, to the mutual coupling is negligible. Then, we

can define the corresponding mappingsWcpl andWunc in the same way as we definedW above.
These mappings satisfyW = Wcpl ⊔Wunc. Since the currents inEunc do not contribute to the
mutual coupling, the complete moment matrix ofPZaP turns into the block form

[W−PZaPW] =

(

[(Wcpl)−PZaPWcpl] 0

0 [(Wunc)−PZaPWunc]

)

. (5.26)

Here,[(Wunc)−PZaPWunc] is a diagonal matrix with the eigenvaluesνsub
n corresponding to

E
unc on the diagonal. Moreover,[(Wcpl)−PZaPWcpl] is the reduced moment matrix, which is

given by (5.16) withW replaced byWcpl andWq by Wcpl
q . As above, but withW replaced by

Wcpl, we can determine the set of eigencurrentsE
eig and the corresponding eigenvalues of this
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matrix as well as the inner product〈 · , · 〉eig on span(Eeig) = span(Ecpl) with respect to which
the eigencurrents are orthonormal. As in step VI, we extend the setEeig to E

eig ∪ E
unc, the

linear span of which equals span(E) = ran(P). Each current in this linear span can be written
uniquely as a linear combination of currentsw1 ∈ span(Eeig) andw2 ∈ span(Eunc). Then, we
can define a new inner product〈 · , · 〉 on ran(P) by

〈v,w〉 = 〈v1,w1〉eig + 〈v2,w2〉comp. (5.27)

Here,v = v1 + v2 andw = w1 + w2, wherev1,w1 ∈ span(Eeig) andv2,w2 ∈ span(Eunc).
The eigencurrents inEeig∪E

unc are orthonormal with respect to this new inner product. Finally,
the procedure outlined above can be used as well, if another selection of setsEn than the first
N sub

cpl contributes to the mutual coupling between the subarrays. In that case, we re-index the
eigenvaluesνsub

n such thatE1, . . . ,ENsub
cpl

are the sets that contribute to the mutual coupling and
such thatENsub

cpl +1, . . . ,ENsub
eig

are the sets that do not contribute to the mutual coupling.

Calculation of the Current

Having constructed the eigencurrents of an array and the corresponding new inner product, we
calculate the current by the finite expansion (5.2). Here, weexplain how the current can be
calculated after one cycle of the eigencurrent approach. The calculational details will be used in
the next chapter to generate results for line arrays.

To calculate the current, the finite expansion (5.2) is written as

wP =

Nsub
eig

∑

n=1

Nsub
∑

q=1

1

νnq
〈unq,Pvex〉 unq . (5.28)

In this expression,νnq andunq are the eigenvalues and eigencurrents of the array and〈 · , · 〉 is
the inner product by which the eigencurrents are diagonalized. We consider here the line arrays
of the previous sections, for which the eigenvaluesνnq are perturbations of the eigenvaluesνsub

n

of the generating element, i.e., a strip or a ring. As above, we assume that only the firstN sub
cpl

groups of eigencurrents contribute to the mutual coupling in the array. By this assumption, the
eigenvaluesνnq = νsub

n for n > N sub
cpl . Moreover, the eigencurrents of the groups{unq}Nsub

q=1

with indexn > N sub
cpl are replaced byNsub independent eigencurrents of the decoupled array,

i.e., the currents in the setsEn. As a result,unq is non-zero on theqth element only, where
it equalsusub

n , i.e., thenth eigencurrent of the generating element. Then, the finite expansion
(5.28) is decomposed into

wP =

Nsub
cpl

∑

n=1

Nsub
∑

q=1

1

νnq
〈unq,Pvex〉 unq +

Nsub
eig

∑

n=Nsub
cpl +1

1

νsub
n

Nsub
∑

q=1

〈unq,Pvex〉 unq . (5.29)



5.3. CYCLE 141

Due to the decomposition, the eigencurrentsunq in the first inner product are elements of
span(Eeig) and the eigencurrentsunq in the second inner product are elements of span(Eunc).
To compute the inner products in the finite sums of (5.29), we need to writePvex as a linear
combination of elements of these two linear spans. In the usual moment method, the projected
excitation fieldPvex is written as

Pvex =

Nsub
∑

q′=1

Nexp
∑

n′=1

[W−
q′v

ex](n′, 1)Wq′en′ , (5.30)

where the mappingW is defined as in Subsection 2.4.3 withWq′en′ being the expansion func-
tions on the array. Such an expansion function is non-zero ontheq′th element only. Hence, the
pth component ofPvex is given by

(Pvex)( · ; p) =

Nexp
∑

n′=1

[W−
p vex](n′, 1) (Wpen′)( · ; p) . (5.31)

The functions(Wpen′)( · ; p) are the expansion functions on thepth element, which are chosen
as expansion functions in the initialization of the eigencurrent approach as well. By the relation
(5.4) between these functions and the eigencurrentsusub

n of the generating element, we replace
(5.31) by

(Pvex)( · ; p) =

Nsub
eig

∑

n′=1

(U−1[W−
p vex])(n′, 1)usub

n′ , (5.32)

where the matrixU is defined byU(s, n) = U sub
n (s, 1) with U sub

n the eigenvectors correspond-
ing to usub

n , andNexp = N sub
eig . We denote the sum of the firstN sub

cpl terms of this series by
(Pvex)eig( · ; p) and the sum of the other terms by(Pvex)unc( · ; p). These sums are elements
of span(Eeig) and span(Eunc), respectively. We substitute the decomposition ofPvex in the
inner products of (5.29). Using the definition (5.27) of the inner product〈 · , · 〉, the relation
(5.25) between this inner product and the composite inner product, and the definition (5.3) of
the composite inner product, we deduce for1 ≤ n ≤ N sub

cpl

〈unq,Pvex〉 = 〈unq, (Pvex)eig〉eig = 〈ynq, (Pvex)eig〉comp =

=

Nsub
∑

p=1

〈ynq( · ; p), (Pvex)eig( · ; p)〉sub . (5.33)

Here, the functionsynq form the bi-orthogonal set corresponding to the eigencurrents unq.
These functions are described by (5.22) withunq andUnq replaced byynq andYnq, where
Ynq is computed by (5.24). Moreover, since only the firstN sub

cpl eigencurrents of the generating
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element contribute to the mutual coupling,N sub
eig is replaced byN sub

cpl . The mappingW in (5.22)
is not defined as in the excitation vector, but as in the cycle of the eigencurrent approach above.
In other words,W describesN sub

eig Nsub independent eigencurrents of the decoupled array. To
distinguish this mapping from the mappingW above, we writeWcyc instead ofW. Taking the
pth component ofynq, we obtain

ynq( · ; p) =

Nsub
cpl

∑

n′=1

[(Wcyc
p )−ynq](n

′, 1)usub
n′ . (5.34)

The column[(Wcyc
p )−ynq] consists of the components ofYnq with indices((p−1)N sub

cpl +n′, 1),
wheren′ = 1, . . . , N sub

cpl . Substituting (5.34) and (5.31) in (5.33) and using the orthonormality
relation〈usub

m , usub
n 〉sub = δmn, we arrive at

〈unq,Pvex〉 =

Nsub
∑

p=1

Nsub
cpl

∑

n′=1

[(Wcyc
p )−ynq]

∗(n′, 1) (U−1[W−
p vex])(n′, 1) . (5.35)

The components of[W−
p vex] are given in Chapter 4, while the components ofU and

[(Wcyc
p )−ynq] are computed as in the initialization and the cycle of the eigencurrent approach

in Chapter 5. ForN sub
cpl + 1 ≤ n ≤ N sub

eig , we deduce

〈unq,Pvex〉 = 〈unq, (Pvex)unc〉comp =

Nsub
∑

p=1

〈unq( · ; p), (Pvex)unc( · ; p)〉sub . (5.36)

By unq( · ; p) = δpqu
sub
n for N sub

cpl + 1 ≤ n ≤ N sub
eig and〈usub

m , usub
n 〉sub = δmn, we obtain

〈unq,Pvex〉 = 〈usub
n , (Pvex)unc( · ; p)〉sub =

=

Nsub
eig

∑

n′=Nsub
cpl +1

(U−1[W−
p vex])(n′, 1) 〈usub

n , usub
n′ 〉sub = (U−1[W−

p vex])(n, 1) . (5.37)

Having computed the inner products (5.35) and (5.37) for1 ≤ n ≤ N sub
cpl andN sub

cpl + 1 ≤ n ≤
N sub

eig , respectively, we can evaluate the series (5.29). We express the eigencurrentsunq into
the eigencurrentsusub

n of the generating element by (5.22) and, then, we express theeigencur-
rentsusub

n into the initializing expansion functions by (5.4). In thisway, we find the expansion
coefficients of the currents on the elements with respect to the initializing expansion functions.

5.3.2 Uniform Line Arrays of Rings

In this section, we consider one cycle of the eigencurrent approach for uniform line arrays of
rings. These line arrays are described in Section 3.5. Choosing a single ring as the generating
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subarray, we know the corresponding eigencurrents and, hence, we do not need to carry out
the initialization of this approach. Since we proceed from asingle ring to the entire line array,
the number of subarraysNsub equals the number of ringsNel. Moreover, since we index the
eigenvalues and eigencurrents of a generating subarray such that|νsub

n | ≤ |νsub
n+1|, the moment

matrix of the eigencurrent approach is, up to a row and columnpermutation, the same as the
moment matrix constructed in Subsection 3.3.2. We compute the eigenvalues and eigenvectors
of this moment matrix in the same way as in the initializationfor a single ring. Table 5.5 shows
the maxima of the relative errors (5.13) for several line arrays of rings. For each number of

Table 5.5 Maximum relative errors (5.13) for line arrays generated from a single ring in free

space. Parameter values of the generating ring:ka = π/3, β = 3/100, ψ = 0, Ncos = 4,

Nsin = 0. Spacing of the line array:d = λ/2.

Nsub Size moment matrix Max. rel. error
5 20 1.2 · 10−14

10 40 1.7 · 10−14

20 80 1.8 · 10−14

40 160 2.4 · 10−14

80 320 3.7 · 10−14

160 640 5.2 · 10−14

Nsub, these maxima are attained for the lowest (absolute) eigenvalues. Moreover, the maxima
increase more slowly with the moment matrix size than the maxima for the strip in Table 5.3.
This observation is explained as follows. The moment matrixof a strip with piecewise functions
is less (block-)diagonally dominant than the moment matrixof a line array of rings. Moreover,
both the moment matrix of a strip with entire-domain functions and the moment matrix of a line
array of rings is diagonally dominant, except for the diagonal component corresponding to the
self coupling ofcos ϕ.

Throughout this section, we will use only two generating ring geometries, except for a part in
which we investigate the dependence of the (array) eigencurrents on the generating ring eigen-
currents. These geometries are the ring geometry of Table 5.5 and the same ring geometry but
in a half space withh/a = 6/5. The corresponding eigenvalues and eigencurrents are given in
Table 5.2.

Like the centers of the strips in Figure 3.2, the centers of the rings are positioned on thex-
axis. In other words, the line-array axis coincides with thex-axis. Moreover, the orientation of
the local coordinate systems on the rings is described byψ = 0, see Figure 2.5. Then, the cosine
and sine eigencurrents of the generating ring are symmetricand anti-symmetric, respectively,
with respect to the line-array axis. Since a symmetric current does not couple with an anti-
symmetric current, the cosine eigencurrents generate symmetric array eigencurrents with respect
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to the line-array axis, while the sine eigencurrents generate anti-symmetric array eigencurrents.
We will consider the anti-symmetric eigencurrents, as wellas other choices ofψ, in the part
about the dependence of the (array) eigencurrents only.

Spread of Eigenvalue Groups in Relation to Mutual Coupling Aspects

We determine the groups of eigenvalues{νnq}Nsub
q=1 and the corresponding eigencurrents as de-

scribed in Subsection 5.3.1. To determine which groups contribute to the mutual coupling in
a line array, we compute for each group, with indexn, the maximum and minimum of the ab-
solute perturbations{|ǫnq|}Nsub

q=1 , whereνnq = νsub
n (1 + ǫnq), as introduced in Section 5.1, p.

106. These maxima and minima are an indication of the spread of the eigenvalues in the groups.
Figure 5.18 shows that for line arrays with spacingsd = λ/2 andd = 3λ/5, both in free space
and in a half space, the spread of the eigenvalues decreases with the group indexn. We expect
that only the spreads of the first two groups are significant. This expectation is not only based
on the decrease of the spread with the indexn, but also on the increase of the eigenvaluesνsub

n

of the generating ring. Due to the second property, the eigenvalues of groups with larger indices
not only contribute less to the current on the line array, thespreads of these groups are also less
significant than the spreads of the groups with smaller indices. Based on this expectation, we
can determine the eigenvalues of the first two groups from a reduced moment matrix with only
the first two eigencurrents of a single ring in free space or ina half space, see also step V of the
eigencurrent approach, p. 111. The eigenvalues of the thirdand fourth groups can be set equal to
the corresponding eigenvalues of the generating ring. Thisreduces the CPU time considerably,
see Section 6.1 for details.

Let us consider the first two groups. Figure 5.18 (upper figures) shows that the maxima of
the absolute perturbations increase with the number of elements, while the minima decrease. For
all 4 line array geometries, the minima become approximately constant forNsub ≥ 10, but none
of the corresponding constants is zero. For the first group, these constants vary between 0.023
and 0.126 and for the second group, they vary between 0.007 and 0.026. Hence, the eigenvalues
of the first and second groups differ all from the eigenvaluesνsub

n (n = 1, 2). In a half space,
the maxima become constant for aboutNsub ≥ 20. In free space, the maxima do not show this
property, but ford = 3λ/5 they increase slowly. These results suggest that rings separated more
than 10 or 20 timesd do not show mutual coupling in the first and/or second eigencurrent(s)
of the generating ring for specific line array geometries. Hence, we do not need to compute
the moment-matrix components that describe the corresponding mutual coupling. We can use
this observation in the eigencurrent approach as follows. The behavior of the eigenvalues of
smaller line arrays, say with 10 or 20 elements, indicates for which groups the maximum and
minimum of the absolute perturbations become constant as a function of the number of elements.
In this way, the analysis of smaller (line) arrays provides information about the moment-matrix
components to be computed for larger (line) arrays, see Subsection 6.3.3 for details.
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Figure 5.18 Maxima and minima of the absolute perturbations{|ǫnq|}Nsub
q=1 of the first four

groups of eigenvalues as a function ofNsub, i.e., the number of rings, for 4 different line array

geometries. From upper left to lower right: groupn = 1 to groupn = 4. The spacingd is

eitherλ/2 (+, ◦) or 3λ/5 (∗, △). The generating ring is either in free space (+, ∗) or in a half

space withh/a = 6/5 (◦, △). Parameter values:N sub
cpl = 4, ka = π/3, β = 3/100, ψ = 0,

Ncos = 4, Nsin = 0.

To investigate the spread of the eigenvalues as a function ofthe spacing, we compute the
maximum and minimum of the absolute perturbations{|ǫnq|}Nsub

q=1 for each group as a function
of the spacing. Figure 5.19 (left) shows that for the first groups of line arrays of 5, 10, 20,
and 40 rings in free space, these maxima and minima behave similarly. They decrease non-
monotonically. Moreover, the maxima show local ‘curve maxima’ and ’curve minima’ in the
pointsqλ/2 (q = 1, 2, 3, 4) and(q + 1/2)λ/2 (q = 1, 2, 3), while for the minima, these points
are interchanged. Figure 5.19 (right) shows that in a half space, the ‘curve maxima’ are much
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Figure 5.19 Maxima and minima of the absolute perturbations{|ǫ1q|}Nsub
q=1 of the 1st group of

eigenvalues as a function of the spacing for line arrays of 5 (dotted curve), 10 (dashed-dotted

curve), 20 (dashed curve), and 40 (solid curve) rings. Left: freespace. Right: half space with

h/a = 6/5. Parameter values:N sub
cpl = 4, ka = π/3, β = 3/100, ψ = 0, Ncos = 4, Nsin = 0.

less pronounced and the decrease is much sharper. Both in free space and in a half space,
the maxima and minima of the other three groups show similar behavior, but the magnitudes
are lower. The ‘curve maxima’ and ‘curve minima’ of the maximum and minimum absolute
perturbations, respectively, are related to constructiveinterference of the electromagnetic fields
generated by the rings. In contrast, the ‘curve maxima’ and ‘curve minima’ of the minimum
and maximum absolute perturbations, respectively, are related to destructive interference of the
electromagnetic fields generated by the rings.

Description of Eigencurrents

To illustrate how the eigencurrents of line arrays of rings are described, we consider line arrays
of 15 and 29 rings with half a wavelength spacing generated from a ring in free space. In the
construction of the moment matrix, we take only the first two eigencurrents of the generating
ring into account, i.e.,usub

1 (ϕ) = cos ϕ and usub
2 (ϕ) = 1. Figure 5.20 shows the curves

generated by the eigenvalues of the first and second groups inthe complex plane, both for 15
and 29 rings. We conclude that each group has one curve in the complex plane, independently
of the number of rings. This statement is not only valid for the first and second groups, but it
is valid for each group. Near the eigenvalueνn1, the ‘density’ of the eigenvalues is the highest.
We will discuss the behavior of the eigenvalues in detail later on. We index the eigenvalues of
each group along the curve they generate in the complex planeby means of a nearest neighbor
search starting at the ends indicated by the number 1. At the end of this subsection, we explain
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Figure 5.20 Normalized eigenvalues of the 1st (left) and 2nd group (right) of line arrays of 15

(◦) and 29 (+) rings in free space and the corresponding normalized eigenvalues (N) of a single

ring, i.e.,νsub
n (n = 1, 2). The numbers 1 indicate the first eigenvalues of the curves, i.e.,νn1.

Normalization:|νsub
n |. Parameter values:d = λ/2, N sub

cpl = 2, ka = π/3, β = 3/100, ψ = 0,

Ncos = 2, Nsin = 0.

how these ends are determined.

Figure 5.23 (left) shows the absolute values of the eigenvector components for a line array
of 15 rings. The first 15 columns of the color pattern belong tothe eigenvectors{U1q}15

q=1 of the
first group and the last 15 columns belong to the eigenvectors{U2q}15

q=1 of the second group.
The pattern confirms the conjecture in Section 5.1, p. 105, that the eigencurrents of{unq}15

q=1

of thenth group (n = 1, 2) are a linear combination of currents inEn plus a perturbation. This is
observed as follows. The eigenvector components(2q′−1, 1) (q′ = 1, . . . , 15) are the expansion
coefficients of the eigencurrents with respect to the currents in E1, while the eigenvector com-
ponents(2q′, 1) are the expansion coefficients of the eigencurrents with respect to the currents
in E2. The figure shows that in the first group, the eigenvector components corresponding to the
currents inE1 are much larger than the eigenvector components corresponding to the currents
in E2. The second group exhibits the same property withE1 andE2 interchanged. These results
confirm the conjecture.

Instead of considering the eigenvectors as the expansion coefficients of the (array) currents
in E1 andE2, we can also interpret the eigenvectors per ring. On each of the 15 rings, an eigen-
currentunq is a linear combination of the eigencurrentsusub

1 andusub
2 of a single ring. The

coefficients ofusub
1 andusub

2 on theq′-th ring are the eigenvector components(2q′ − 1, 1) and
(2q′, 1). Figure 5.23 (right) shows the absolute coefficient ofusub

1 on each ring for the eigen-
currents{u1q}15

q=1 of the first group. In other words, the figure shows the absolute eigenvector
components(2q′−1, 1) (q′ = 1, . . . , 15) for the first 15 eigenvectors in Figure 5.23 (left). Com-
paring Figure 5.23 (right) with Figure 5.8, which shows the pattern of the absolute components
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of the eigenvectors of a single strip with 15 piecewise expansion functions, we come to the sur-
prising observation that the generated patterns are almostthe same. In general, we observed
that the coefficients of the dominant single-ring eigencurrent in thenth group of eigencurrents,
i.e.,usub

n , exhibit the same patterns as the eigenvectors of a strip with piecewise expansion func-
tions. Figure 5.21 clarifies this result in the following way. The eigenvectors of a single strip
with piecewise expansion functions represent the expansion coefficients of the eigencurrents
of a strip with respect to these functions. The expansion coefficients are one-to-one related to
heights of the, triangular-shaped, piecewise functions. Figure 5.21 shows the pattern of these
functions for the first eigencurrent of the first group. The height of each triangle corresponds to
a coefficient ofusub

n in thenth group of (array) eigencurrents, as indicated in the figure.

m m m m m m m m m m m m m m mp p p p p p p p p p p p p p p

usub
n usub

n ... ... ... ... ... ... ... ... ... ... ... ... usub
n

r
r

r r r r r r r r r r r
r

r. ............. . ............. . ............. . ............. ....... ................... . ....... .............. ...... .......................


Figure 5.21 Schematic representation of the correspondence between the absolute coefficients

of usub
n in the eigencurrents of thenth group of a line array of rings and the expansion coeffi-

cients of the eigencurrents of a single strip with piecewise expansion functions.

To go into more detail, Figure 5.22 (left) shows a comparisonof

• the absolute coefficient ofusub
1 on each ring for the first and second eigencurrents of the

first group,

• the absolute coefficient ofusub
2 on each ring for the first and second eigencurrents of the

second group,

• the absolute expansion coefficients of the first and second eigencurrents of a single strip
with 15 piecewise functions.

In the first two cases, the ring indices are transformed to theinterval [−1, 1] according to
q′ → 2q′/(Nsub + 1), whereNsub is the number of rings. In the third case, the indicesm

of the expansion coefficients (or, eigenvector components)are transformed as in Figure 5.13.
As in Figure 5.9, the dashed and dotted lines in Figure 5.22 are only meant for visualization
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of the patterns. Figure 5.22 (right) shows a similar comparison, but the first and second eigen-
currents are replaced by the 15th and 14th eigencurrents. The figures confirm that the absolute
coefficients ofusub

n in the eigencurrents of thenth group show the same behavior as the abso-
lute expansion coefficients of the eigencurrents of a singlestrip withNsub piecewise functions.
Quantitatively speaking the differences are larger for eigencurrents with larger indices in a group
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Figure 5.22 Left: for n = 1 (+) andn = 2 (∗), the absolute coefficients ofusub
n in the 1st

(dashed) and 2nd (dotted) eigencurrent of thenth group for a line array of 15 rings. Moreover,

the absolute expansion coefficients of the 1st (◦, dashed) and 2nd (◦, dotted) eigencurrent of a

strip with 15 piecewise expansion functions. Right: as left, but for the 15th (dashed) and the

14th (dotted) eigencurrent (symbol◦ replaced by△). Eigencurrent normalization: maximum

coefficient. Parameter values of the line array of rings as in Figure 5.20. Parameter values of the

strip: 2ℓ = λ/2, β = b/ℓ = 1/50.

than for eigencurrents with smaller indices in that group. The same results are obtained for 29
rings. The color pattern in Figure 5.24 (left) for the absolute coefficients ofusub

1 in the eigen-
currents of the first group, i.e.,{u1q}29

q=1, is almost the same as the color pattern in Figure 5.11
(left), which shows the absolute expansion coefficients of the eigencurrents of a single strip with
29 piecewise expansion functions.

For a line array of 15 rings, the coefficients ofusub
n in the eigencurrents of thenth group

show also the same phase behavior as the expansion coefficients of the eigencurrents on a strip
with 15 piecewise functions shown in Figure 5.8 (right). In other words, the coefficients ofusub

n

in theqth eigencurrent of thenth group, i.e.,unq, showq−1 phase reversals as a function of the
ring index. As a result, each eigencurrent can be multipliedby a complex factor such that these
coefficients have a negligible imaginary part. Then, the dominant part of each eigencurrent is
real valued, while its complex nature is incorporated in theperturbation. An example is given at
the end of this subsection.

Based on the preceding results, we state similar general conclusions as the general conclu-
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Figure 5.23 Left: color pattern of the absolute eigenvector components for a line array of 15

rings with two eigencurrents of the generating ring. Right: color pattern of the absolute coef-

ficients ofusub
1 on the rings for the eigencurrents of the 1st group. Eigenvector normalization:

maximum component. Parameter values as in Figure 5.20.
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Figure 5.24 Left: color pattern of the absolute coefficients ofusub
1 in the eigencurrents of the

1st group for a line array of 29 rings. Right: color pattern of the absolutecoefficients ofusub
2

in the eigencurrents of the 1st group for a line array of 15 rings. Eigencurrent normalization:

maximum coefficient. Parameter values as in Figure 5.20.

sions on p. 128 for the eigenvectors of a single strip. Consider thenth group{unq}Nsub
q=1 of

eigencurrents, wheren = 1, . . . , N sub
cpl .

1. For eachq = 1, . . . , Nsub, the absolute coefficients ofusub
n in the eigencurrentunq and

the absolute coefficients ofusub
n in the eigencurrentun(Nsub+1−q) show the same patterns.

2. For eachq, the coefficients ofusub
n in the eigencurrentunq showmin{q,Nsub + 1 − q}

absolute maxima andq − 1 phase reversals.
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Summarizing, we showed that the coefficients of the dominantsingle-ring eigencurrent in
each group of eigencurrents of a line array of rings and the expansion coefficients of the eigen-
currents of a single strip with piecewise functions generate the same patterns. There is no doubt
that a strip is an entire object. Discretization of the stripby piecewise functions does not affect
this statement, because in Section 5.2.3, we showed that theeigencurrents obtained by piece-
wise and entire functions are the same. Then, line arrays andstrips generating the same patterns
clearly indicate that arrays are entire objects, not collections of separate elements.

Let us return to the line array of 15 rings. Up to now, we have considered the dominant
behavior of the eigencurrents in the groups. As mentioned above, the perturbations of the first
group are described by the expansion coefficients of the eigencurrents with respect to the cur-
rents inE2, while the perturbations of the second group are described by the expansion coeffi-
cients of the eigencurrents with respect to the currents inE1. If the perturbations are interpreted
per ring, the perturbations of the first group are described by the coefficients ofusub

2 in the eigen-
currents{u1q}15

q=1, while the perturbations of the second group are described by the coefficients
of usub

1 in the eigencurrents{u2q}15
q=1. Figure 5.24 (right) shows the absolute coefficients of

usub
2 in the eigencurrents of the first group, or, in other words, itshows the absolute eigenvector

components(2q′, 1) (q′ = 1, . . . , 15) of the first 15 eigenvectors in Figure 5.23 (left). We ob-
serve that the perturbation increases with the eigencurrent indexq up to 0.1. A similar pattern
is obtained for the absolute coefficients ofusub

1 in the eigencurrents of the second group with a
maximum absolute coefficient of 0.2 instead of 0.1.

To go into more detail, Figure 5.25 shows the absolute valuesand the phases of the coeffi-
cients ofusub

1 andusub
2 in the first, second, fifth, and 15th eigencurrent of the first group. For all

4 eigencurrents, we observe that not only the coefficients ofthe dominant single-ring eigencur-
rentusub

1 generate patterns, but as well the coefficients ofusub
2 , which describe the perturbations.

The absolute coefficients ofusub
2 have maxima and minima at rings, where the coefficients of

usub
1 have minima and maxima, respectively. For the first, second,and fifth eigencurrent, the

phases of the coefficients ofusub
2 show one phase reversal more than the coefficients ofusub

1 ,
while for the 15th eigencurrent, they show one phase reversal less. Further investigation revealed
that the coefficients ofusub

2 showq phase reversals forq ≤ 10 andq − 2 phase reversals for
11 ≤ q ≤ 15. More general, the coefficients ofusub

2 in the eigencurrentu1q showq phase re-
versals forq ≈ ⌊2Nsub/3⌋ andq− 2 phase reversals for larger values ofq. In the second group,
we observe the same behavior as above for the coefficients that describe the perturbations in this
group, i.e., the coefficients ofusub

1 .

Figure 5.26 describes a situation in which more single-ringeigencurrents are taken into
account,N sub

cpl = 6 to be precise. In this case, the figure shows that the absolutecoefficients
of all non-dominant single-ring eigencurrents in the first eigencurrent of the first and second
groups generate either the same pattern as the dominant single-ring eigencurrent or the same
pattern as the coefficients ofusub

2 in the preceding results. Further investigation revealed that the



152 5. THE EIGENCURRENTAPPROACH

0 5 10 15
−30

−25

−20

−15

−10

−5

0

A
bs

ol
ut

e
co

ef
fic

ie
nt

(d
B

)

Ring index
0 5 10 15

−30

−25

−20

−15

−10

−5

0

A
bs

ol
ut

e
co

ef
fic

ie
nt

(d
B

)

Ring index

0 5 10 15
−3

−2

−1

0

1

2

3

P
ha

se
of

co
ef

fic
ie

nt
(r

ad
)

Ring index
0 5 10 15

−3

−2

−1

0

1

2

3

P
ha

se
of

co
ef

fic
ie

nt
(r

ad
)

Ring index

−90 −60 −30 0 30 60 90
−50

−40

−30

−20

−10

0

N
or

m
al

iz
ed

fa
r-

fie
ld

co
m

p.
(d

B
)

θ (deg)
−90 −60 −30 0 30 60 90

−50

−40

−30

−20

−10

0

N
or

m
al

iz
ed

fa
r-

fie
ld

co
m

p.
(d

B
)

θ (deg)

Figure 5.25 Left: absolute values (in dB) and phases of the coefficients ofusub
1 (+) andusub

2

(∗) in the 1st (dashed curves) and 2nd eigencurrent (dotted curves) of the 1st group for a line ar-

ray of 15 rings, and the corresponding normalized absoluteφ-components (in dB) of the electric

far field in the planeφ = 0 (dashed→ solid and dotted→ dashed-dotted). Right: as left, but

for the 5th and 15th eigencurrents. Eigencurrent normalization: maximum coefficient. Far-field

normalization: maximum absoluteφ-component of the 1st eigencurrent. Parameter values as in

Figure 5.20.
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Figure 5.26 Absolute coefficients (in dB) of the single-ring eigencurrentsusub
1 (+), usub

2 (∗),

usub
3 (◦), usub

4 (△), usub
5 (×), andusub

6 (¤) in the 1st eigencurrent of the 1st group (u11, left)

and in the 1st eigencurrent of the 2nd group (u21, right). Eigencurrent normalization: maximum

coefficient. Parameter values as in Figure 5.20, but withNcos = 6.

absolute coefficients ofusub
m andusub

m′ in a certain eigencurrentunq generate the same pattern,
if the eigencurrentsusub

m andusub
m′ have the same even or odd symmetry with respect to the line

parallel to they-axis through the center of the ring. We note that the rings are all positioned on
thex-axis.

The two figures in the last row of Figure 5.25 show the electricfar fields in thexz-plane
in Figure 3.2, i.e., the planeφ = 0, for the first, second, fifth, and 15th eigencurrent of the
first group. These far fields are determined by the far-field expressions for arrays of rings in
Appendix C. The spherical angles(θ, φ) are defined by (C.4), whereθ is the angle with respect
to thez-axis. The first eigencurrent induces a broadside beam with amaximum side-lobe level
of about -23 dB. This low sidelobe level is due to the cosine-like pattern of the corresponding
absolute coefficients of the dominant single-ring eigencurrentusub

1 , see Figure 5.25 (first row,
first column, dashed curve). The pattern can be interpreted as an amplitude taper on the line
array. The corresponding uniform phase distribution can beinterpreted as a phase taper on the
line array. The second eigencurrent induces two main lobes,which are symmetrically positioned
around0◦. In contrast to the first eigencurrent, the corresponding phase distribution of the
dominant single-ring eigencurrent exhibits one phase reversal half way the line array, see Figure
5.25 (second row, first column, dashed curve). The last 7 elements exhibit an opposite phase with
respect to the first 7 elements and no current is induced on thecenter ring. In the literature, the
electric far field of the first eigencurrent is referred to as the sum pattern of the array, while the
electric far field of the second eigencurrent is referred to as the difference pattern or monopulse
of the array. Both phase distributions are used in practice.The sum pattern is used to detect
objects, while the difference pattern is used to track objects [85]. Both patterns are eigenstates
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of the array, which explains why the techniques of broadsidescan and monopulse work so well.
The electric far fields of the fifth and 15th eigencurrent in Figure 5.25 (third row, second

column) each show two main lobes, which are positioned atθ = ±18◦ andθ = ±90◦, re-
spectively. Moreover, these far fields have 3 and 13 side lobes between their main lobes. This
observation suggests how the far fields of the eigencurrentsevolve. Forq > 1, theqth eigen-
current has 2 main lobes withq − 2 side lobes in between. This statement is not only true in
this particular case, but it is true in general for the group with dominant single-ring eigencurrent
cos ϕ. Although the coefficients of the dominant single-ring eigencurrents of the other groups
are about the same as the coefficients ofcos ϕ in this group, the far fields of the other groups
may differ. These differences are explained by the differences between the element patterns, or
electric far fields, of the single-ring eigencurrents. For example, Figure 5.27 (left) shows that
the electric far field of the first eigencurrent of the second group is not a broadside beam as in
the first group, but a monopulse beam. Moreover, the electricfar field of the 15th eigencurrent
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Figure 5.27 Left: normalized absoluteφ-component (in dB) of the electric far field in the plane

φ = 0 for the 1st (solid curve) and 15th (dashed-dotted curve) eigencurrent of the 2nd group

of a line array of 15 rings. Right: the same component, but for the ‘exact’ (solid curve) and

‘approximated’ (dashed-dotted curve) 15th eigencurrent of the 1stgroup. Eigencurrent normal-

ization: maximum coefficient. Normalization each far field: maximum absolute φ-component

of the 1st eigencurrent in the 1st group. Parameter values as in Figure5.20.

of the second group has 14 instead of 13 side lobes between itstwo main lobes. In general,
for q ≥ 1, theqth eigencurrent of the second group hasq − 1 side lobes between its two main
lobes. The differences between the first group and the secondgroup are due to the differences
between the radiation intensities induced byusub

1 = cos ϕ andusub
2 = 1. The radiation intensity

of the constant eigencurrent has a null atθ = 0◦, while the radiation intensity of the cosine
eigencurrent has a maximum atθ = 0◦, see [7: Fig. 2.27] and [60: pp. 163 ff.]. The maxima
of the element pattern of the constant eigencurrent at endfire, i.e.,θ = ±90◦, explain the large
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intensity differences between the main lobes of the first and15th eigencurrents in Figure 5.27
(left).

These observations show that each eigencurrent and, therewith, each eigenvalue, is related
to certain main lobes in the far field. The corresponding positions, or angles, of these main lobes
seem to correspond to scan angles of the line array. Moreover, the main lobes of the far field
of the 15th eigencurrent seem to be the scan lobe atθ = ±90◦ together with the corresponding
grating lobe atθ = ∓90◦. We will discuss these observations in detail in a separate part about
scanning and the infinite-array approach on pp. 165 ff.

To investigate the contribution of the perturbations of theeigencurrents to their far fields,
Figure 5.27 (right) shows the far fields of both the ‘exact’ 15th eigencurrent and the ‘approxi-
mated’ 15th eigencurrent of the first group. Here, ‘exact’ means that the contributions of both
single-ring eigencurrents, i.e.,usub

1 andusub
2 , are taken into account. ‘Approximated’ means

that only the contribution of the dominant single-ring eigencurrent of the first group, i.e.,usub
1 ,

is taken into account. The figure shows that the contributionof the perturbations is negligi-
bly small up to about -32 dB with respect to the magnitudes of the main lobes. Since the
perturbations increase with the indexq of the eigencurrentsunq, the match between ‘exact’
and ‘approximated’ is even better for the other eigencurrents in the first group. As observed
above, the perturbations in the second group are slightly larger than in the first group. On the
other hand, the eigencurrents in the second group correspond to a larger single-ring eigenvalue
and, hence, their far fields will contribute less to the totalfar field of the line array. Thus, we
conclude that the contribution of the perturbations of the eigencurrents to their far fields is neg-
ligible. In Chapter 6, we investigate whether the perturbation is negligible for mutual-coupling
performance parameters as well.

As in the initialization of the strip, we investigate the level of orthogonality of the eigen-
currents. Figure 5.30 shows the Gram matrices of the eigencurrents of line arrays of 15 and 29
rings with respect to the composite inner product. The blocks of these matrices are computed by
(5.23), i.e., the Euclidean inner products of the eigenvectors. The matrices consist of 4 blocks
with sizes15 × 15 and29 × 29, respectively, which represent the self and mutual coupling of
the 2 groups. Both kinds of coupling are described by band matrices. The self coupling of the
first group is described by the diagonal and the two second co-diagonals, while the self coupling
of the second group is somewhat more pronounced and described by the second, fourth, and 6th
co-diagonal. Moreover, the odd-indexed co-diagonals are negligibly small. Hence, the coupling
between eigencurrents with even and odd numbers of phase reversals in their coefficients of the
dominant single-ring eigencurrent is negligibly small. InFigure 5.22, we visualized the behav-
ior of the coefficients of the dominant single-ring eigencurrent in the first and second groups of
eigencurrents versus the behavior of the expansion coefficients of a single strip with piecewise
functions. Here, we compare the self-coupling blocks for a line array with 29 rings in Figure
5.30 (right) with the Gram matrix for a strip with 29 piecewise functions in Figure 5.16 (left).
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We observe that the self-coupling blocks for the line array are less diagonally dominant than
the Gram matrix for the strip. Moreover, for the strip, the coupling is restricted to the first few
eigencurrents.

Contrary to the self-coupling blocks, the mutual-couplingblocks have negligibly small even-
indexed co-diagonals, while the odd-indexed co-diagonalsvary from0.001 to 0.2. Hence, the
coupling between eigencurrents with both an even or odd number of phase reversals in their co-
efficients of the dominant single-ring eigencurrent is negligibly small. In contrast, the coupling
between eigencurrents with even and odd numbers of phase reversals in these coefficients are
not negligible. This difference with the self-coupling blocks is explained as follows. In the inner
products of the mutual-coupling blocks, the coefficients ofthe dominant single-ring eigencur-
rent in an eigencurrent of the first group are multiplied by the coefficients of the perturbation
in an eigencurrent of the second group and vice versa. In eacheigencurrent, the coefficients
of the perturbations exhibit either one phase reversal moreor one phase reversal less than the
coefficients of the dominant single-ring eigencurrent. These observations explain the difference
between the self and mutual-coupling blocks, because the eigencurrents of different groups show
mutual coupling if their coefficients of corresponding single-ring eigencurrents have either both
an even or both an odd number of phase reversals. As illustrated by the color pattern in Figure
5.30, the mutual coupling becomes stronger for eigencurrents with more phase reversals in the
coefficients of their dominant single-ring eigencurrent. This is explained by the increase of the
perturbation with the indexq of the eigencurrentsunq.

To complete this section, we explain first how the starting points of the eigenvalue curves are
determined. Next, we consider the conjecture on p. 149 that each eigencurrent can be multiplied
by a complex factor such that the coefficients of its dominantsingle-ring eigencurrent have neg-
ligible imaginary parts. We recall that the coefficients of the dominant single-ring eigencurrent
of theqth eigencurrent in each group haveq − 1 phase reversals. Since the eigenvalues of each
group are indexed along the curve they generate in the complex plane, see Figure 5.20, the num-
ber of phase reversals increases along this curve. Hence, the starting point of each eigenvalue
curve is the eigenvalue corresponding to the eigencurrent without phase variance in the coeffi-
cients of the dominant single-ring eigencurrent. In Figure5.25, we multiplied each computed
eigencurrent bye−jα, whereα is the mean phase of the coefficients of its dominant single-ring
eigencurrent. Instead of this value ofα, we may also choose another value. For example, Fig-
ure 5.25 (first row, first column) shows that the coefficients of usub

1 in the first eigencurrent of
the first group exhibit a maximum at the 8th ring. We multiplied the complete eigencurrent by
e−jα with α being the phase of the coefficient ofusub

1 at the 8th ring. The resulting real and
imaginary parts of the coefficients ofusub

1 andusub
2 are shown in Figure 5.28 (left). The figure

shows that the imaginary parts of the coefficients ofusub
1 are small (< 10−2) with respect their

real parts. Moreover, the real parts of the coefficients ofusub
2 are small with respect to their

imaginary parts. Hence, in this case, the dominant part of each eigencurrent is real, while its
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Figure 5.28 Real (dashed curves) and imaginary (dotted curves) coefficients (indB) of the

single-ring eigencurrentsusub
1 (+) andusub

2 (∗) in the 1st (left) and 5th (right) eigencurrent of

the 1st group. Eigencurrent normalization: maximum coefficient. Parameter values as in Figure

5.20.

perturbation is imaginary. The same observations are validfor the real and imaginary parts of
the coefficients ofusub

1 andusub
2 in the fifth eigencurrent, see Figure 5.28 (right), where we

multiplied this eigencurrent bye−jα with α being the phase of the coefficient ofusub
1 at the 8th

ring. These two examples confirm the conjecture on p. 149.

Parameter Dependence of Eigencurrents

Having described the array eigencurrents, we investigate their dependence on the geometry pa-
rameters and the frequency. In Subsection 5.2.3, we carriedout such an investigation for the
eigencurrents of a single strip. We showed that the dependence of the single-strip eigencurrents
on the geometry parameters and the frequency is negligible.Since the eigencurrents of a single
strip with piecewise functions correspond to the array eigencurrents in the way explained above,
we may expect that the dependence of the dominant coefficients of the array eigencurrents on
the geometry parameters and the frequency is negligible as well. Since we considered only a
single strip geometry to show the correspondence, we consider first the comparison between the
single-strip eigencurrents and the array eigencurrents inmore detail.

With respect to this comparison we have two comments. First,it is not clear which choices
of strip parameters fit best to certain choices of array parameters. Second, the comparison of the
results for 15 and 29 rings in Figure 5.23 (right) and Figure 5.24 (left), and the results for 15
and 29 piecewise functions in Figure 5.8 (left) and Figure 5.11 (left) is not completely justified.
This second comment is explained as follows. The parametersof line arrays of rings and the
parameters of strips can be related as in Table 5.6. The arraysize is defined such that the ratio
array size versus spacing equals the ratio striplength versus interval length ifNexp = Nsub.
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Table 5.6 Parameters of a line array of rings related to parameters of a strip with piecewise

functions. Both kind of parameters are normalized with respect to the wavelength.

Number of rings Nsub Nexp Number of
piecewise functions

Array size (Nsub + 1) d/λ 2 ℓ/λ Strip length

Spacing d/λ 2 ℓ/(Nexp + 1)λ Distance between two
triangle center points

Ring circumference ka(= 2πa/λ) 2 ℓ/(Nexp + 1)λ Half the triangle base

The ring radius and half the triangle base are separated fromthe other parameters, because
these two parameters describe the geometry of a single microstrip element, while the other
parameters describe the geometry of the entire array or strip. Here, we imagine the piecewise
functions as currents on overlapping microstrips. For the strips,Nexp is varied and2ℓ (λ/2) is
constant, while for the line arrays,Nsub is varied andd (λ/2) is constant. In Subsection 5.2.3,
we showed that the eigenvectors of a strip do not depend on thestrip length. This observation
justifies the comparison mentioned above only if the eigencurrents are independent of (half)
the triangle base, because both the distance between two triangle center points and (half) the
triangle base vary (linearly) with the strip length. Due to the formulation for a single strip with
piecewise functions, we cannot vary the length without varying both the distance between two
triangle maxima and (half) the triangle base. The base of every triangle overlaps half the base
of each of its neighbors. For a one-to-one comparison of strips and line arrays of rings, we
would need to introduce an independent parameter∆width, which describes half the normalized
triangle base asℓ∆width/λ. Then, the normalized distance between two triangle centerpoints
is 2ℓ(1 − ∆width)/(Nexp − 1)λ. Moreover, the normalized strip length needs to be replacedby
2ℓ(1 − ∆width)/λ.

The observations above show that a one-to-one comparison between the eigencurrents of
single strips with piecewise functions and the eigencurrents of line arrays of rings is not pos-
sible due to our formulation for the strip. In the remainder of this section, we investigate the
dependence of the eigencurrent coefficients of line arrays on the number of rings, the spacing,
and the generating-ring parameters. We compare the resultsfor line arrays of rings with the
results for strips according to Table 5.6.

Number of Rings

Increasing of the number of rings extends each group by eigencurrents with more rapidly varying
absolute coefficients, see Figure 5.23 (right) and Figure 5.24 (left). An example of an eigencur-
rent with rapidly varying absolute coefficients is given in Figure 5.29 for a line array of 60 rings.
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Both the absolute coefficients ofusub
1 and the coefficients ofusub

2 show modulated oscillations
as a function of the ring index. Moreover, the absolute coefficients ofusub

1 show the same be-
havior as the absolute expansion coefficients of the 21st eigencurrent of a strip with 60 piecewise
functions, which confirms the correspondence between line arrays and strips.

−1 −0.5 0 0.5 1
−30

−25

−20

−15

−10

−5

0

A
bs

ol
ut

e
co

ef
fic

ie
nt

(d
B

)

Transformed index
−1 −0.5 0 0.5 1

−3

−2

−1

0

1

2

3

P
ha

se
of

co
ef

fic
ie

nt
(r

ad
)

Transformed index

Figure 5.29 Absolute values (in dB) and phases of the coefficients ofusub
1 (+) andusub

2 (∗) in

the 21st eigencurrent of the 1st group for a line array of 60 rings. Absolute values and phases

of the expansion coefficients of the 21st eigencurrent of a strip with 60 piecewise functions (◦).

Indices are transformed as in Figure 5.22. Eigencurrent normalization: maximum coefficient.

Parameter values as in Figure 5.20.

The absolute coefficients of the dominant single-ring eigencurrentusub
n of the nth group

show the same patterns for different numbers of rings as illustrated by Figure 5.31. Moreover,
for a given array geometry, the absolute coefficients are positioned on a fictitious curve, inde-
pendently of the number of rings. The same phenomenon has been observed for a strip with
piecewise functions, see Figure 5.13. Figure 5.31 shows that this phenomenon occurs also for
the coefficients ofusub

2 , which describe the perturbation of the second last eigencurrent. The
coefficients ofusub

2 , which describe the perturbation of the third eigencurrent, show the same
patterns, but the fictitious curves do not coincide. Instead, the coefficients decrease with the
number of rings and, consequently, the perturbation decreases.

Finally, the pattern of the Gram matrix does not change in case the number of rings is in-
creased, which is observed by comparing Figure 5.30 (left) and 5.30 (right).

Spacing

The absolute coefficients of the dominant single-ring eigencurrentusub
n in the eigencurrents of

the nth group show the same global behavior for different spacings as illustrated by Figure
5.32. For eigencurrentsunq with lower indexq, these coefficients are totally independent of
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Figure 5.30 Color pattern of the absolute Gram matrix, with inner product〈 · , · 〉comp, of the

eigencurrents for line arrays with 15 and 29 rings in free space (in dB).Eigencurrent normaliza-

tion: associated norm of〈 · , · 〉comp. Parameter values as in Figure 5.20.
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Figure 5.31 Absolute coefficients (in dB) ofusub
1 (+) andusub

2 (∗) in the 3rd (left) and(Nsub−
2)th eigencurrent of the 1st group for line arrays ofNsub = 10 (black), 20 (blue), 40 (red), and

100 (purple) rings. Eigencurrent normalization: maximum coefficient.Parameter values as in

Figure 5.20.

the spacing, while for eigencurrents with higher index, their actual values depend weakly on the
spacing. In particular, Figure 5.32 (lower right) shows that for d = λ/2, the coefficients of the
dominant single-ring eigencurrentusub

1 in the last eigencurrent of the first group are larger at
the boundaries of the line array than for the other spacings.Similar differences were observed
in the comparison between a strip of half a wavelength with 15piecewise expansion functions
and a line array of 15 rings withd = λ/2, see Figure 5.22 (dashed curves). This suggests that
a better comparison between line arrays of rings and strips with piecewise functions is obtained
for other cases than the spacing ofλ/2, which was considered in Figure 5.22.

Figure 5.32 confirms that ford = λ/2, the perturbation of the eigencurrents, described by
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the coefficients ofusub
2 , increases with the indexq of the eigencurrentsunq. For the other

spacings, the perturbation increases for lower values ofq and decreases for higher values ofq.
Further investigation revealed that the perturbation increases up to aboutq = 32 for d = 2λ/5

andd = 3λ/5, and up to aboutq = 24 for d = 7λ/10. For d = 3λ/5, the valueq = 32

is clearly observed from Figure 5.33 (left), which shows thecolor pattern of the absolute co-
efficients ofusub

2 in the eigencurrents of the first group. Ford = 2λ/5, a similar pattern is
obtained. Comparing Figure 5.33 (left) with Figure 5.24 (right), we clearly observe the differ-
ences between the perturbations ford = 3λ/5 and ford = λ/2. Moreover, comparing Figure
5.33 (right) and Figure 5.30, we observe that ford = 3λ/5, the self coupling of the eigencurrent
groups with respect to the inner product〈 · , · 〉comp is higher than ford = λ/2.

Figure 5.34 shows that the phases corresponding to the absolute coefficients ofusub
1 in the

9th and 40th eigencurrents shown in Figure 5.32 are the same.This illustrates that the phases
of the dominant single-ring eigencurrentusub

n in the eigencurrents of thenth group are the same
for different spacings. Phase differences occur only for relatively small absolute coefficients.

Because of the weak dependence of the eigencurrents on the spacing, we can choose a certain
spacing and compute the eigencurrents. Then, for other spacings, the eigenvalues are approxi-
mated by the Rayleigh Ritz quotient,

νnq =
〈unq,Zaunq〉comp

‖ unq ‖2
comp

. (5.38)

Here,unq is an eigencurrent of the chosen spacing,Za is the impedance operator for the new
spacing, and‖ · ‖comp is the associated norm of the composite inner product.

Generating-Ring Parameters

As observed in Subsection 5.2.2, the eigencurrents of a single ring are a function of the angle
that describes the circumference; their dependence on the ratiosβ = b/a andh/a is negligible.
Moreover, in free space, the eigenvalues depend strongly onka (2πa/λ) and weakly onβ; in
a half space, they also depend strongly onh/a. Since the off-diagonal blocks of the moment
matrix of a line array of rings are independent ofβ and the diagonal blocks are diagonal matrices
with the single-ring eigenvalues on the diagonal, the eigenvectors of a line array of rings depend
weakly onβ. Hence, the same is valid for the coefficients of the single-ring eigencurrents
in the array eigencurrents. Numerically, we found that the dependence of the coefficients of
the dominant single-ring eigencurrent onka andh/a is negligible. Moreover, the coefficients
describing the perturbation depend weakly on these parameters with differences of the order
of 1 dB at -10 dB or less. Fixing the coefficients of the array eigencurrents as obtained for
certain generating-ring eigencurrents, we can compute theeigenvalues for other generating-ring
eigencurrents by (5.38).

For a single ring, the choice of the orientation angleψ is arbitrary. For a line array, this
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Figure 5.32 Absolute coefficients (in dB) ofusub
1 (+) and usub

2 (∗) in the 1st (upper left),

9th (upper right), 32nd (lower left), and 40th (lower right) eigencurrent of the 1st group for

line arrays of 40 rings with spacings2λ/5 (red), λ/2 (blue), 3λ/5 (black), 7λ/10 (purple).

Eigencurrent normalization: maximum coefficient. Parameter values ofthe generating ring as

in Figure 5.20.
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Figure 5.33 Left: color pattern of the absolute coefficients ofusub
2 in the eigencurrents of the

1st group for a line array of 40 rings in free space (in dB). Right: colorpattern of the absolute

Gram matrix, with inner product〈 · , · 〉comp, of the eigencurrents of the same line array (in

dB). Eigencurrent normalization: maximum coefficient (left) and associated norm of〈 · , · 〉comp

(right). Parameter values of the generating ring as in Figure 5.20, but with d = 3λ/5 instead of

d = λ/2.



5.3. CYCLE 163

0 10 20 30 40
−3

−2

−1

0

1

2

3

Ring index

P
ha

se
of

co
ef

fic
ie

nt
(r

ad
)

0 10 20 30 40
−3

−2

−1

0

1

2

3

Ring index

P
ha

se
of

co
ef

fic
ie

nt
(r

ad
)

Figure 5.34 The phases corresponding to the absolute coefficients ofusub
1 in the 9th and 40th

eigencurrents as shown in Figure 5.32 (upper right and lower right) for the spacings2λ/5 (×),

λ/2 (◦), 3λ/5 (△), 7λ/10 (¤).

angle describes the position of the local feeds, as introduced in Section 4.2, with respect to the
line-array axis. Therefore,ψ is a line-array parameter, although it is prescribed for a single
ring. The choice ofψ determines which cosine and sine single-ring eigencurrents are symmetric
and anti-symmetric with respect to the line-array axis. Up to now, we have considered the
symmetric single-ring eigencurrents, which are describedby the cosines forψ = 0 and which
generate symmetric array eigencurrents (with respect to the line-array axis). As mentioned in
the introduction of this section, the anti-symmetric arrayeigencurrents are described by the
sines. These eigencurrents do not couple with the symmetriceigencurrents and can therefore
be calculated independently. The coefficients describing the anti-symmetric array eigencurrents
show the same patterns and have the same properties as the symmetric array eigencurrents.
An example is given in Figure 5.35 (left), which shows the absolute coefficients of the 18th
eigencurrent both for the first group of the symmetric array eigencurrents and for the first group
of the anti-symmetric array eigencurrents. Here,usub

1 (ϕ) = cos ϕ andusub
2 (ϕ) = 1 for the

symmetric eigencurrents andusub
1 (ϕ) = sin ϕ andusub

2 (ϕ) = sin 2ϕ for the anti-symmetric
eigencurrents. Figure 5.35 (right) shows the spread of the first group of eigenvalues for the
anti-symmetric eigencurrents of the 4 different line arraygeometries considered in Figure 5.18.
This spread is of the same order as the spread of the first groupof eigenvalues for the symmetric
eigencurrents as shown in Figure 5.18 (upper left). We observed that the spread of the second
group of eigenvalues for the anti-symmetric eigencurrentsis of the same order as the spread of
the third group of eigenvalues for the symmetric eigencurrents. Since this third group is not
taken into account to describe the mutual coupling in line arrays of rings, only one group of
anti-symmetric eigencurrents needs to be taken into account to describe the mutual coupling.

We also investigated the caseψ = π/4 for which the single-ring eigencurrentscos ϕ and
sin ϕ are neither symmetric nor anti-symmetric with respect to the line-array axis. As mentioned
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Figure 5.35 Left: absolute coefficients ofusub
1 andusub

2 in the 18th eigencurrent of the 1st

group for a line array of 40 rings (d = λ/2) in free space generated from single rings with

Ncos = 2 andNsin = 0 (usub
1 : +, usub

2 : ∗) and withNcos = 0 andNsin = 2 (usub
1 : ◦, usub

2 :

△). Right: maximum and minimum of the absolute perturbations of 1st group of eigenvalues as

a function ofNsub for the 4 different line array geometries specified in Figure 5.18. Parameter

values of the generating ring:ka = π/3, β = 3/100, ψ = 0.

in Section 5.2.2, these eigencurrents span a 2-dimensionaleigenspace, because they have the
same eigenvalues. In the line-array analysis, the dominantsingle-ring eigencurrents of the first
and second groups appear to becos ϕ ± sin ϕ = cos(ϕ ± π/4) instead ofcos ϕ and sinϕ,
which are prescribed. These eigencurrents are symmetric and anti-symmetric with respect to
the line-array axis. Hence, despite the prescription of non-symmetric single-ring eigencurrents,
the array eigencurrents are symmetric and anti-symmetric with respect to the line array axis,
i.e., the symmetry line of the array. This observation is in correspondence with physical views,
because the symmetry of a single ring is determined by its excitation, while a line array of rings
is symmetric with respect to the line-array axis. Hence, theobservation is a validation of the
eigencurrent approach. The consequence of prescribing thecosine and sine functions instead of
cos(ϕ ± π/4) is that the two corresponding groups will not be identified correctly, because the
coefficients ofcos φ andsinφ in the array eigencurrents are on each ring of equal magnitude.
Therefore, these groups are joined together at the cost of computational efficiency. In general,
groups corresponding to a degenerate single-element eigenvalue are joined together, if no a
priori information is available about the excitation field.Otherwise, such information should be
used to choose the single-element eigencurrents corresponding to a degenerate eigenvalue.

Finally, by varying the frequency, we vary both the single-ring parameters and the spacing.
Therefore, the array eigencurrents will show both types of behavior described above. In Section
6.2, we will show an example in which the dominant eigencurrent behavior at the frequency for
which the elements of an array exhibit a ‘resonant broadsideembedded impedance’ is the same
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as the dominant eigencurrent behavior at frequencies 15% and 19% below this frequency. We
recall that the elements exhibit a ‘resonant broadside embedded impedance’, if their reactances
are on average zero.

Scanning

Supported by Figure 5.25, we stated that each eigencurrent and, consequently, each eigenvalue,
is related to certain main lobes in the far field. In this subsection, we will show in detail how
the main lobes correspond to specific scan angles of the line array. Figures 5.36 – 5.38 show
results for line arrays of 40 rings with spacings3λ/5 and2λ/5. The single-ring parameters
are chosen as in the description of the eigencurrents above.We first discuss the results for the
spacing3λ/5. The eigenvalue curve of the first group is shown in Figure 5.36 (left), where the
first, 32nd, 36th, 39th, and 40th eigenvalue are indicated bytheir index. Figure 5.37 (left) shows
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Figure 5.36 Normalized eigenvalues of the 1st group for two line arrays of 40 rings infree

space and the corresponding normalized eigenvalues (N) of a single ring, i.e.,νsub
1 . Normaliza-

tion: |νsub
1 |. Left: d = 3λ/5. Right: d = 2λ/5. Parameter values:N sub

cpl = 2, ka = π/3,

β = 3/100, ψ = 0, Ncos = 2, Nsin = 0.

that the electric far field of the 32nd eigencurrent exhibits4 main lobes in thexz-plane, to be
precise, main lobes atθ = ±41.8◦ andθ = ±90.0◦. As described in Section 3.5, for the spacing
3λ/5, the angles±41.8◦ are scan angles for which a grating lobe appears at∓90.0◦. Hence, the
main lobes in Figure 5.37 (left) represent the scan lobes at±41.8◦ and the corresponding grating
lobes at∓90◦. Similar phenomena are observed for the 36th and 39th eigencurrents. In the far
field of the 36th eigencurrent shown in Figure 5.37 (left, dashed curve), the two main lobes at
±68.9◦ are the grating lobes for the scan angles∓47.3◦, which are exactly the positions of the
other two main lobes in the pattern. In the far field of the 39theigencurrent shown in Figure
5.37 (right, dashed curve), the angles corresponding to thegrating lobes and the scan directions
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Figure 5.37 Normalized absoluteφ-components (in dB) of the electric far fields in thexz-

plane for the 32nd (solid curve, left), 36th (dashed curve, left), 39th (dashed curve, right), and

40th (solid curve, right) eigencurrent of a line array of 40 rings in freespace. Normalization:

maximum absoluteφ-component of the 1st eigencurrent. Parameter values as in Figure 5.36.

are±60.1◦ and∓53.1◦, respectively. The far field of the 40th eigencurrent shows only two
main lobes positioned at±56.2◦, because scanning at these angles results into grating lobes at
∓56.2◦. For scanning at angles larger than56.2◦, the grating lobes in the electric far fields of
the eigencurrents 32 – 40 become the scan lobes and vice versa.

For the line array considered in Figure 5.37, the main lobes at ±90◦ appear in the 32nd
eigencurrent. For the spacings7λ/10 and4λ/5, instead of3λ/5, we found these main lobes
in the 24th and 16th eigencurrents, respectively. These observations raise the question whether
there is a relation between the spacing and the index of the eigencurrent that induces main lobes
at±90◦. Numerically, we found ford ≥ λ/2 that the eigencurrent with index

index =

⌈

(

1 − d mod(λ/2)

λ/2

)

Nsub

⌉

(5.39)

induces these main lobes lobes. As in the example of Figure 5.37, the main lobes of the far-field
patterns with index larger or equal to (5.39) represent bothmain lobes and grating lobes. For a
line array with 15 rings and spacingλ/2, as in Figure 5.25, the grating lobes appear in the 15th
eigencurrent, which is in correspondence with (5.39).

To show how the far fields of the eigencurrents evolve for indices just below (5.39), we
consider the far fields of the 30th and 31st eigencurrents of the line array of 40 rings with
spacing3λ/5. Figure 5.38 (left) shows that these far fields have side lobes at±90◦, which are
17.5 dB and 12.2 dB lower than the corresponding main lobes. The lobes±90◦ of the far field
of the 32nd eigencurrent are only 5.2 dB lower than the lobes at 41.8◦.

For a line array of 40 rings with spacing2λ/5, Figure 5.36 (right) shows the eigenvalue
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curve. Since the spacing in the array is smaller than half thewavelength, we do not expect
grating lobes. Numerically we verified that the first 32 eigencurrents have only two main lobes
in their far fields, with the exception of the first eigencurrent, which has one main lobe. The
far field of the 33rd eigencurrent in Figure 5.38 (right) shows 2 main lobes at±90◦, which are
the grazing scan angles of the array. Although the spacing issmaller thanλ/2, we observe that
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Figure 5.38 Normalized absoluteφ-components of the electric far fields in thexz-plane for the

30th (solid curve) and 31st (dashed curve) eigencurrent of the line array in Figure 5.36 (left).

Right: idem, but for the 32nd and 36th eigencurrent of the line array in Figure 5.36 (right).

the index 33 follows from (5.39) with a difference of only 1. Further investigation showed that
for spacings smaller than half a wavelength, (5.39) indicates the eigencurrent, which generates
the grazing scan angles. Since we observed that main lobes are both scan lobes and grating
lobes for indices larger than or equal to (5.39), we do not expect grating lobes for indices larger
than33 in the line array of Figure 5.38 (right). This is confirmed by the numerical results. The
figure shows that the 36th eigencurrent does not have a clear main lobe. Moreover, the radiation
intensity is 20 dB lower than the main lobe of the first eigencurrent.

The results discussed above confirm that each eigencurrent corresponds to a scan angle. If
a grating lobe is present at such a scan angle, the electric far field of the corresponding eigen-
current shows both the scan lobe and the grating lobe. Given ascan angle, there exist an eigen-
current such that the difference between the angle of one of its main-lobes and the scan angle
is minimal. We expect that if the array is scanned at this scanangle, the resulting scan lobe
is composed of that main lobe and main lobes of one or two neighboring eigencurrents. This
expectation is based on the following reasoning.

Ideally, if the selected scan lobe corresponds to the eigencurrentsu1,q1
, . . . ,u1,qk

(1 ≤
q1, . . . , qk ≤ Nsub) of the first group, the excitation should be chosen as a linear combination
of these eigencurrents. In practice, an array is scanned at acertain scan angle by means of
a linear phase taper. To link the eigencurrent approach to practice, we search a relationship
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between choices of linear phase tapers and choices of excited eigencurrents. As observed in the
description of the eigencurrents, the coefficients ofusub

1 in an eigencurrentu1q showq−1 phase
reversals as a function of the ring index. The total phase difference equals(q − 1)π. Therefore,
if the total phase difference of the linear phase taper equals (q − 1)π, the eigencurrentu1q is
excited. To show the validity of this statement, we considera line array of 15 rings in free space
with spacingλ/2. Table 5.7 shows the main lobe positions of the eigencurrents of the first group.
Corresponding electric far fields are depicted in Figure 5.25 for the of the first, second, fifth, and
15th eigencurrent. Also, the table shows the scan angles obtained by the linear phase tapers with

Table 5.7 Main lobe positions of the eigencurrents of the first group of a line array of 15

rings in free space. The scan angles of the same line arrays for prescribed phase progressions

kd sin θscan. Parameter values as in Figure 5.36.

Index 1 2 3 4 5 6 7
Main lobe eigenc. 0◦ ±6.3◦ ±10.3◦ ±14.0◦ ±18.0◦ ±22.1◦ ±26.1◦

Phase progression 0 ±π/14 ±2π/14 ±3π/14 ±4π/14 ±5π/14 ±6π/14

Scan angle 0◦ ±4.1◦ ±8.2◦ ±12.4◦ ±16.6◦ ±20.9◦ ±25.4◦

8 9 10 11 12 13 14 15
±30.1◦ ±34.7◦ ±39.5◦ ±44.5◦ ±49.8◦ ±56.1◦ ±63.9◦ ±90◦

±7π/14 ±8π/14 ±9π/14 ±10π/14 ±11π/14 ±12π/14 ±13π/14 ±π

±30.0◦ ±34.8◦ ±40.0◦ ±45.6◦ ±51.8◦ ±59.0◦ ±68.2◦ ±90◦

total phase differences(q − 1)π and−(q − 1)π. The corresponding scan angles are defined by
(q − 1)π/14 = kd sin θscan. For the first 12 eigencurrents, the differences between thescan
angles and the main lobe positions are smaller than2.2◦. For the 13th and 14th eigencurrents,
the differences are2.9◦ and4.3◦. The beam width of the main lobe of the 15th eigencurrent is
large and, hence, the scan angle is not well determined. Considering the differences between the
linear phase tapers and the eigencurrents, we conclude thatthe total phase difference of a phase
taper that ‘fits to’ theqth eigencurrent is not exactly±(q − 1)π. This phenomenon is explained
by the averaging effect of the linear phase progression on the eigencurrents, as illustrated by
Figure 5.39 for the phase distribution of the coeffients ofusub

1 in the third eigencurrent. A single
eigencurrent cannot be excited by a linear phase progression.

Except for the first eigencurrent, the electric far field of each eigencurrent has two main lobes
if there are no grating lobes. A linear phase taper induces only one main lobe. For example,
the third eigencurrent of a line array of 15 rings in free space with d = λ/2 has two main
lobes at±10.3◦, see Figure 5.7. If a linear phase taper withθscan = 10.3◦ is applied, only the
corresponding main lobe is excited. In Section 6.2, we illustrate this by an example.
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Figure 5.39 Phase distribution (◦) of the coefficients ofusub
1 in the 3rd eigencurrent of the 1st

group for a line array of 15 rings and the phase distribution on the array for the linear phase

progressions withθscan = 8.2◦ (△) andθscan = −8.2◦ (∗).

Comparison with the Infinite-Array Approach

In the infinite-array approach, a fixed linear phase taper on the array is assumed, see (3.46). The
eigencurrents of the array exhibit the same phase distribution as the phase taper. In contrast, the
eigencurrents of the finite array have a block-like phase distribution as in Figure 5.39. This is
a first indication that a finite array will never show the same behavior as the infinite array, no
matter the size of the finite array.

For the infinite-array approach, the eigencurrents are determined from the infinite-array mo-
ment matrixA(θscan), see (3.48) withΨ = kd sin θscan. Since the matrix depends on the scan
angle, the eigenvalues and eigencurrents depend in generalon the scan angle as well. Each
eigenvalue of the single ring corresponds to an eigenvalueνn(θscan) of the matrixA(θscan). For
the finite-array approach, each ring eigenvalueνn corresponds to a finite and discrete group of
eigenvalues{νnq}Nsub

q=1 . Analogously, for the infinite-array approach, each eigenvalueνn corre-
sponds to a continuum group of eigenvalues parameterized byθscan. In both approaches, each
eigenvalue in a group is related to one scan angle. Of course,the question arises whether in the
limit for a finite array the discrete groups tend to the continuum groups of the corresponding
infinite array. To investigate this, we consider two examples.

First, we consider two line arrays of 15 and 40 rings with spacing λ/2. Figure 5.40 (left)
shows that the eigenvalues of the first group of the finite-array moment matrices all coincide
with certain eigenvalues of the first group of the infinite-array moment matrix. To compute the
spectrum of the infinite-array moment matrix, we have to truncate the Fourier series (3.48)2

that describesA(θscan). Therefore, the curve for the infinite-array spectrum is suggestive. For
larger truncation numbers than in Figure 5.40, we observed that the curve is stretched down-
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Figure 5.40 Left: normalized eigenvalues of the 1st group for line arrays of 15 (◦) and 40 (∗)

rings in free space, and the normalized eigenvalues of the 1st group for the same line array, but

computed by the infinite-array approach (solid curve:q = −100, . . . , 100 in the series (3.48)2).

Right: as left, but only the eigenvalues for 15 rings and the eigenvalues obtained by the infinite-

array approach for the positive-valued main-lobe positions in Table 5.7(2nd row) are shown

(×). Normalization:|νsub
1 |. Parameter values as in Figure 5.36, but withd = λ/2.

wards. Figure 5.40 (right) shows that the eigenvalues{ν1q}15
q=1 of the line array of 15 rings

are very well approximated by the infinite-array eigenvalues {ν1(θq)}15
q=1 obtained for the scan

angles{θq}15
q=1 that correspond to the positive-valued main-lobe positions of the finite-array

eigencurrents in Table 5.7, except for the last eigenvalue.The same is valid for the negative
valued main-lobe positions. This observation indicates once more that there is a one-to-one
correspondence between the finite-array eigenvalues and a discrete set of scan angles.

Second, we consider line arrays of 40, 100, 200, and 400 ringsin free space with spacing
3λ/5. The geometry parameters are the same as in Figure 5.36 (left). Figure 5.41 (left) shows
that the curve of the infinite-array eigenvalues is stretched downward if more terms in the Fourier
series describingA(θscan) are taken into account. As a result, not all eigenvalues of the finite
arrays coincide with infinite-array eigenvalues. Moreover, if an eigenvalue of a finite array
differs from the infinite-array eigenvalues, it differs from the eigenvalues of the other finite
arrays as well. For example, for the line array of 40 rings, the 32nd and 33rd eigenvalue differ
significantly from both the infinite-array eigenvalues and the eigenvalues of the other arrays.
Figure 5.41 (right) shows that at the 26th eigenvalue, the eigenvalues{ν1q}40

q=1 of the finite-
array moment matrix start to deviate from the eigenvalues{ν1(θq)}40

q=1 of the infinite-array
moment matrix obtained for the positive-valued main-lobe positions{θq}40

q=1 of the finite-array
eigencurrents. We note thatθ26 = 32.4◦, θ28 = 35.1◦, θ30 = 38.1◦, andθ32 = 41.8◦. The
observed differences are explained as follows. In Section 3.5, we found that the infinite-array
moment matrix for line arrays in free space is possibly divergent at the grazing scan angles
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Figure 5.41 Left: normalized eigenvalues of the 1st group for line arrays of 40 (◦), 100 (△),

200 (∗), and 400 (×) rings in free space and the corresponding infinite-array eigenvalues(solid

curve:q = −100, . . . , 100 in the series (3.48)2; dotted curve:q = −200, . . . , 200). Right: as

left, but only the eigenvalues for the finite array of 40 rings and the eigenvalues obtained by the

infinite-array approach for the main-lobe positions of the finite-array eigencurrents (× for scan

angles≤ 56.2◦ and+ otherwise). Normalization:|νsub
1 |. Parameter values as in Figure 5.36

with d = 3λ/5.

±90◦ and at the grating-lobe scan angles, i.e., the scan angles for which a grating lobe appears
or disappears at±90◦. In other words, the Fourier series (3.48)2 describing this matrix does
not converge. The differences occur, because the 32nd eigenvalue corresponds to the grazing
and grating-lobe scan angles. A similar phenomenon is observed in Figure 5.40 of the previous
example, where the 15th eigenvalue corresponds to the grazing (and grating-lobe) scan angles.

The two examples suggest that, for an increasing number of rings, the sequence of eigenval-
ues corresponding to the grazing and grating-lobe scan angles tends to infinity. Mathematically,
this observation could be explained as follows. As mentioned in Section 3.5, the infinite-array
moment matrix is called the symbol of the Laurent matrix (3.47). Both the Laurent matrix and
any related finite-array moment matrix are generated by the symbol A(θscan) expanded into a
Fourier series as in (3.48)2. The finite-array moment matrix is a truncated Laurent matrix. Then,
according to the extension of [14: Th. 4.13] stated on [14: p.197], the largest singular value
of the finite-array moment matrix tends to infinity as the number of rings tends to infinity, if
the symbol is unbounded. In Section 3.5, numerical results for the range of the symbol, sup-
ported by analytical explanations, suggest that the symbolis indeed unbounded. At the grazing
and grating-lobe scan angles, the symbol seems to exhibit logarithmic singularities. Since the
finite-array moment matrix is almost normal, the absolute eigenvalues approximate the singular
values. The largest eigenvalue of the finite-array moment matrix corresponds to the index given
by (5.39) and, herewith, to the grazing and grating-lobe scan angles. Hence, the sequence of
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eigenvalues corresponding to the grazing and grating-lobescan angles tends to infinity. The
observation explains why the spreads of the first groups of eigenvalues in Figure 5.19 increase
with the number of rings.

Numerical results showed that the curve of the infinite-array eigenvalues in Figure 5.41 (left)
equals the range of the symbol for any choice of the truncation number. In [14: Th. 1.2], such a
result is generally given for bounded symbols. According toTheorem 5.5 in [116], the singular
values of the finite-array moment matrix follow the absoluterange of the symbol, if the symbol
is a square integrable function and if only one expansion function per element is used. We
observed numerically that all eigenvalues of the finite-array moment matrix follow the range,
except the eigenvalues with indices equal or close to (5.39), i.e., those corresponding to the
grazing and grating-lobe scan angles.

We recall two statements of Section 3.5 in the context of thissection. First, for spacings
smaller than half a wavelength, the divergence of the Fourier series describing the infinite-array
moment matrix appears only at grazing scan. For the line array in Figure 5.36 (right) with
spacing2λ/5, the grazing scan is described by the 33rd eigencurrent, which is shown in the
figure. The eigenvalue curve suggests the same divergent behavior of the eigenvalues as the
behavior for the spacing3λ/5 in Figures 5.36 (left) and 5.41. Second, in a half space, the Fourier
series describing the infinite-array moment matrix converges at the grazing and grating-lobe scan
angles. This is confirmed by Figure 5.42 (left), which shows the normalized eigenvalues for the
line arrays of 40 and 100 rings withd = 3λ/5 and the corresponding infinite-array eigenvalues.
The eigenvalue curves are totally different from the eigenvalue curves for free space as shown
in Figure 5.41. In free space, the largest eigenvalue of the first group corresponds to the grazing
and grating lobe scan angles. In a half space, the largest eigenvalue is the first eigenvalue, which
is fixed for increasing numbers of elements and which corresponds to the broadside scan angle.
In contrast to free space, the eigenvalues of finite arrays ina half space coincide all with infinite-
array eigenvalues. Moreover, the curve describing the infinite-array eigenvalues converges with
the truncation number of the corresponding Fourier series.As a result, the eigenvalues for larger
numbers of rings can be estimated from the distribution of eigenvalues on this curve for lower
numbers of rings.

Figure 5.42 (right) shows that the eigenvalues{ν1q}40
q=1 of the line array of 40 rings are

the same as the eigenvalues{ν1(θq)}40
q=1 of the infinite-array moment matrix obtained for the

positive-valued main-lobe positions{θq}40
q=1 of the finite-array eigencurrents. At the 32nd

eigenvalue, the eigenvalue curve shows a bend, which is alsopresent in the eigenvalue curve
of the infinite-array moment matrix. In free space, this eigenvalue corresponds to the grazing
and grating-lobe scan angles and its index is described by the general relation (5.39). In a half
space, the 32nd eigencurrent does not generate main lobes at±90◦ as observed from Figure
5.43 (left). The 33rd eigencurrent generates two main lobesat ±42.3◦ and two main lobes
of low intensity at±79.4◦. The positions of the second two main lobes differ4.3◦ from the
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Figure 5.42 Left: normalized eigenvalues of the 1st group for line arrays of 40 (◦) and 100 (∗)

rings in a half space withh = 6/5, the corresponding normalized eigenvalueνsub
1 (N) of a single

ring, and the corresponding infinite-array eigenvalues (solid curve: both q = −100, . . . , 100

andq = −400, . . . , 400 in the series (3.48)2). Right: as left, but only the eigenvalues for the

array of 40 rings and the eigenvalues obtained by the infinite-array approach for the positive-

valued main-lobe positions of the finite-array eigencurrents (△ for scan angles≤ 56.2◦ and∗
otherwise). Normalization:|νsub

1 |. Parameter values as in Figure 5.36 withd = 3λ/5.

−90 −60 −30 0 30 60 90
−50

−40

−30

−20

−10

0

N
or

m
al

iz
ed

fa
r-

fie
ld

co
m

p.
(d

B
)

θ (deg)
−90 −60 −30 0 30 60 90

−50

−40

−30

−20

−10

0

N
or

m
al

iz
ed

fa
r-

fie
ld

co
m

p.
(d

B
)

θ (deg)

Figure 5.43 Normalized absoluteφ-components (in dB) of the electric far fields in thexz-plane

for the 32nd (solid curve, left), 33rd (dashed curve, left), 36th (dashed curve, right), and 40th

(solid curve, right) eigencurrent of a line array of 40 rings in a half space space withh/a = 6/5.

Normalization: maximum absoluteφ-component of the 1st eigencurrent. Parameter values as in

Figure 5.42.
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grating-lobe positions for the scan angles±42.3◦, i.e., ∓83.7◦. For the 36th eigencurrent in
Figure 5.43 (right), the main-lobe positions correspond tothe main-lobe positions obtained for
free space and, hence, the main lobes represent scan lobes and their corresponding grating lobes.
The same behavior is observed for the 40th eigencurrent, which generates only two main lobes
as the 40th eigencurrent in free space.

The absence of main lobes at±90◦ in the far field of the 32nd eigencurrent and the low
intensity of two main lobes of the 33rd eigencurrent are explained by the behavior of the element
patterns, or electric far fields, of the single-ring eigencurrents in a half space. These patterns
exhibit zeros at±90◦ and, hence, the far field of the array must exhibit zeros at±90◦ as well.

5.3.3 Uniform Line Arrays of Strips

In this subsection, we compare the behavior of the eigenvalues of line arrays of strips with the
behavior of the eigenvalues of line arrays of rings. Line arrays of strips are described in Section
3.5. The approach to calculate the eigenvalues is the same asthe approach for line arrays of
rings. Thus, we choose a single strip as the generating subarray and we compute the eigenvalues
and eigencurrents of this strip as in Subsection 5.2.3. Next, we proceed from a single strip to
a whole line array such that the number of subarraysNsub equals the number of elementsNel.
The centers of the strips are positioned on thex-axis as shown in Figure 3.2. The eigencurrents
of a single strip composed of cosine expansion functions aresymmetric with respect to the line-
array axis, while the eigencurrents composed of sine expansion functions are anti-symmetric.
Since a symmetric current does not couple with an anti-symmetric current, the cosine expansion
functions generate symmetric array eigencurrents, while the sine expansion functions generate
anti-symmetric array eigencurrents. These two types of array eigencurrents can be determined
independently.

Calculation of the Moment Matrix

The moment matrix for a (uniform) line array of strips generated from a single strip is a block
matrix, the diagonal blocks being diagonal matrices with the eigenvalues of a single strip on
the diagonal. The off-diagonal blocks are dense matrices described by (5.19), whereusub

n (n =

1, . . . , N sub
cpl ) are the eigencurrents of a single strip that contribute significantly to the mutual

coupling in the line array. To rewrite (5.19), we use the relationship (5.7) between the subarray
inner product and the initializingL2 inner product on the interval[−1, 1]. Then, we obtain

Zpq(m,n) = 〈ysub
m ,Za,pqu

sub
n 〉L2

, (5.40)

where the functionsysub
n form the bi-orthogonal set corresponding to the eigencurrents of a

single strip. The functionsyn are calculated from (5.10) and their expansion coefficientswith
respect to the expansion functions on a single strip by (5.11). The projectionPsub is omitted
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in the inner product (5.40), because the functionsysub
n are elements of ran(Psub) andPsub is

constructed by theL2 inner product.
Like the components of the usual moment matrix in Subsection3.3.1,Zpq can be interpreted

as a function ofysub
m andusub

n . With this interpretation,Zpq is a functional, which is calculated
as in (3.15) withv replaced byysub

m andw replaced byusub
n . The remaining inner products

incorporate the integral operator̃Fpq with kernelF̃pq, which is singular forp = q and regular for
p 6= q. To calculate these inner products, we can substitute in (3.15) the expansions ofysub

m and
usub

n with respect to the expansion functions on a single strip. However, this way of computing
the moment matrix is in general not efficient, because we may need to compute as many inner
products as in the usual moment method. Therefore, we samplethe functionsysub

n , usub
n , and

their derivatives first and, then, we compute the inner products by a 2D composite Simpson rule.
To reduce the computational effort, we sample the kernelF̃pq before calculating the block matrix
Zpq. If this kernel is singular, the sampled eigencurrents might provide erroneous results for
the moment-matrix components. However, sincep 6= q in (5.40), all integrands are regular. As
mentioned above, the components of the block matricesZqq, which exhibit the singular behavior
of the kernelF̃qq, are diagonal matrices with the eigenvalues of a single strip on the diagonal.
In more general terms, the singular behavior of the kernel plays a role in the initialization only.
In the cycle, this behavior is incorporated in the eigenvalues of a single strip.

Comparison with Uniform Line Arrays of Rings

In general, the behavior of the eigenvalues and eigencurrents of line arrays of strips is the same
as described in Subsection 5.3.2 for line arrays of rings. Moreover, relations between scanning,
eigenvalues and eigencurrents, and the infinite-array approach are analogously described. There-
fore, for line arrays of strips, we will specifically focus onthe correspondences and differences
with line arrays of rings.

As in Subsection 5.3.2, we first consider the spreads of the eigenvalues. Figure 5.44 (left)
shows the maxima and minima of the absolute perturbations ofthe second group of eigenvalues
for line arrays of half-wavelength strips with two different spacings, both in free space and in a
half space withh/ℓ = 4/5. Comparing the order of magnitude of the spread, i.e.,10−2, with
the orders of magnitude obtained for line arrays of rings, see Figure 5.18, we observe that this
spread has the same order of magnitude as the spread of the third group of the line arrays of
rings. Since we do not need to take into account this third group, we need not take into account
the second group of line arrays of strips either.

Figure 5.44 (right) shows the maxima and minima of the absolute perturbations of the first
group of eigenvalues as a function of the spacing for line arrays of 5, 10, 20, and 40 strips in a
half space withh/ℓ = 4/5. Since the strips can be positioned closer to each other thanthe rings,
the maxima and minima are depicted for smaller spacings than0.4λ for the line arrays of rings
in Figure 5.19. The spread for line arrays of strips shows thesame behavior as the spread for the
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Figure 5.44 Left: the maximum and minimum absolute perturbation of the eigenvalues of the

2nd group for line arrays of strips as a function of the number of elements Nsub; the strip

geometries corresponding to the different symbols are the same as specified in Figure 5.18.

Right: the maximum and minimum absolute perturbation of the eigenvalues of the 1st group for

line arrays of strips in a half space withh/ℓ = 4/5; the numbers of elements corresponding to

the different curve styles is the same as specified in Figure 5.19. Parameter values:N sub
cpl = 4,

2ℓ = λ/2, β = 1/50, Ncos = 15, Nsin = 0.

line arrays of rings, but the local maxima are more pronounced, especially at half a wavelength.

We consider two different line array settings to compare thecoefficient distributions of the
eigencurrents of line arrays of rings and strips. First, we consider line arrays of rings and strips
in free space with 10 elements and spacingλ/2. In both line arrays, we use the first two (sym-
metric) single-element eigencurrents to describe the mutual coupling. For a ring with a cir-
cumference of about a wavelength (ka = π/3), the eigencurrents areusub

1 (ϕ) = cos ϕ and
usub

2 (ϕ) = 1. For a strip of half a wavelength, Figure 5.6 shows the eigencurrents. Figure 5.45
shows the absolute coefficients ofusub

1 andusub
2 in the first and last eigencurrents of the first

group and the corresponding phases of the coefficients ofusub
1 . Both the absolute values and the

phases of the coefficients ofusub
1 , which describe the dominant behavior of the eigencurrentsfor

the two line arrays, agree very well. The coefficients ofusub
2 , which describe the perturbation,

do not match. The perturbations are larger for the line arrayof rings than for the line array of
strips, because the mutual coupling between the single-element eigencurrentsusub

2 for the rings
is stronger than the mutual coupling for the strips. Moreover, the behavior of the perturbations
differs, which is explained by the same reasoning as described in relation to Figure 5.26. The
absolute coefficients ofusub

m andusub
m′ in a certain eigencurrentunq generate the same patterns,

if the eigencurrentsusub
m andusub

m′ have the same even or odd symmetry with respect to the line
parallel to they-axis through the center of the element. For the line array ofstrips,usub

1 andusub
2

have the same symmetry, but for the line array of rings, they do not have the same symmetry.
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Figure 5.45 Left column: Absolute coefficients (in dB) ofusub
1 (rings: +, strips:◦) andusub

2

(rings: ∗, strips:△) in the 1st (upper left) and 10th (lower left) eigencurrent of the 1st group

for a line array of 10 rings and a line array of 10 strips in free space. Right column: phases

corresponding to the coefficients ofusub
1 . Eigencurrent normalization: maximum coefficient.

Parameter values of the line array of rings:N sub
cpl = 2, d = λ/2, ka = π/3, β = 3/100,

ψ = 0, Ncos = 2, Nsin = 0. Parameter values of the line array of strips:N sub
cpl = 2, d = λ/2,

2ℓ = λ/2, β = b/ℓ = 1/50, Ncos = 15, Nsin = 0.

Therefore, the behavior of the perturbations differs.
Finally, we consider line arrays of rings and strips in a halfspace (h = λ/5) with 40 elements

and spacing3λ/5. As in the first example, we use the first two (symmetric) single-element
eigencurrents to describe the mutual coupling. Figure 5.46shows the absolute coefficients of
usub

1 andusub
2 in the 13th, 19th, and 35th eigencurrents of the first group and the corresponding

phases of the coefficients ofusub
1 . As in Figure 5.45, the coefficients ofusub

1 match very well,
while the coefficients ofusub

2 differ. Thus, we conclude that the eigencurrents of line arrays of
rings and strips have the same dominant coefficient distribution. Based on this conclusion, we
expect that the coefficient distribution of the eigencurrents of (line) arrays is independent of the
element shape.



178 5. THE EIGENCURRENTAPPROACH

0 10 20 30 40
−30

−25

−20

−15

−10

−5

0
A

bs
ol

ut
e

co
ef

fic
ie

nt
(d

B
)

Element index
0 10 20 30 40

−3

−2

−1

0

1

2

3

Element index

P
ha

se
of

co
ef

fic
ie

nt
(r

ad
)

0 10 20 30 40
−30

−25

−20

−15

−10

−5

0

A
bs

ol
ut

e
co

ef
fic

ie
nt

(d
B

)

Element index
0 10 20 30 40

−3

−2

−1

0

1

2

3

Element index

P
ha

se
of

co
ef

fic
ie

nt
(r

ad
)

0 10 20 30 40
−30

−25

−20

−15

−10

−5

0

A
bs

ol
ut

e
co

ef
fic

ie
nt

(d
B

)

Element index
0 10 20 30 40

−3

−2

−1

0

1

2

3

Element index

P
ha

se
of

co
ef

fic
ie

nt
(r

ad
)

Figure 5.46 Left column: absolute coefficients (in dB) ofusub
1 (rings: +, strips:◦), andusub

2

(rings:∗, strips:△) in the 13th (1st row), 19th (2nd row), and 35th (3rd row) eigencurrents of the

1st group for a line array of 40 rings and a line array of 40 strips in a halfspace withh = λ/5.

Right column: phases corresponding to the coefficients ofusub
1 . Eigencurrent normalization:

maximum coefficient. Parameter values as in Figure 5.45, but withd = 3λ/5.
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5.4 Summary of the Conclusions and Discussion

In this section, we summarize point-by-point the main conclusions obtained for a single
ring/strip, and for line arrays of rings/strips. Moreover,based on these conclusions, we ar-
rive at recommendations for the application of the proposedeigencurrent approach to arrays of
arbitrary elements. We describe first the results for a single ring/strip.

1. For ring circumferences and strip lengths up to a few times the wavelength, a low number
(. 10) of eigencurrents is sufficient to describe the current accurately. The exact number
depends on the excitation.

The eigenvaluesνn of rings and strips tend asn
√

n . The slope of the eigenvalue curve
decreases non-monotonically with the ratio of wavelength and ring circumference or strip
length.

2. For a strip, the approximation of the first eigencurrents is independent of the chosen ex-
pansion functions. The eigencurrents of a ring are known in closed form, i.e., cosine and
sine functions, which depend only on the angle that describes the circumference.

The eigencurrents of a strip are evaluated numerically bothfor entire-domain and piece-
wise expansion functions. The entire-domain expansion functions show that the eigencur-
rents are cosine and sines plus a perturbation. The first⌊Nexp/4⌋ eigencurrents obtained
by Nexp piecewise expansion functions equal the first⌊Nexp/4⌋ eigencurrents obtained
by the entire-domain expansion functions.

3. The eigencurrents for a single element depend only weakly onthe geometry parameters, if
they depend at all. As a result, if the eigencurrents for one setting of geometry parameters
are computed, the eigenvalues for other settings can be calculated from the Rayleigh-Ritz
quotient (5.14).

The eigencurrents of a ring do not depend on the geometry parameters. The eigencurrents
of a strip do not depend on the ratio of length and wavelength and the ratio of height
above the ground plane and wavelength. They depend only weakly on the ratio of width
and length.

4. The eigencurrent corresponding to the smallest eigenvalue(in absolute sense) contributes
most to the radiated energy, if this eigencurrent matches well the excitation field.

The current is expanded into the set of (approximated) eigencurrents. In the resulting se-
ries, each eigencurrent is multiplied by its correspondinginverted eigenvalue.

5. The inner product with respect to which the eigencurrents are orthogonal can be evaluated
efficiently. This saves computational effort in the cycle ofthe eigencurrent approach.
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The eigencurrents of a ring are orthogonal with respect to theL2 inner product. Only the
first few eigencurrents of a strip are non-orthogonal.

Next, we describe the results for line arrays of rings/strips.

6. For line arrays of rings, only the first two or three single-ring eigencurrents contribute
to the mutual coupling. For line arrays of strips, only the first one or two single-strip
eigencurrents contribute to the mutual coupling. The othersingle-element eigencurrents
only influence the local behavior of the elements.

For line arrays of strips/rings with symmetric eigencurrents only, the spreads of the second
and third groups, respectively, is of the order10−2. For line arrays of rings with anti-
symmetric eigencurrents only, the spread of the second group is of the order10−2. The
physical explanation of these observations is that the electromagnetic fields induced by
the eigencurrents with larger eigenvalues are much more reactive than the electromagnetic
fields induced by eigencurrents with lower eigenvalues.

7. The eigencurrents of an array are described as concatenations of linear combinations
of the single-element eigencurrents. In this description,the coefficients of the dominant
single-element eigencurrent depend negligibly on the element shape.

Line arrays of strips and line arrays of rings generate the same coefficients for the domi-
nant single-element eigencurrent in each group of array eigencurrents. Moreover, for line
arrays of rings, these coefficients depend negligibly on thering geometry parameters.

8. Arrays are entire objects rather than collections of separate elements.

The coefficients of the dominant single-element eigencurrent in each group of eigencur-
rents of a line array of rings or strips and the expansion coefficients of the eigencurrents
of a single strip with piecewise functions generate the samepatterns. Since a strip is an
entire object, line arrays are entire objects as well.

9. The broadside scan, the monopulse, and the grating lobe are reflected in specific eigen-
currents of the array.

We note first that the eigenvalues of each group are indexed according to the (oriented)
curve they generate in the complex plane. The coefficient distributions of the array eigen-
currents of line arrays of rings and strips are amplitude andphase tapers on the elements.
The electric far field of the first eigencurrent of the first group is an amplitude-tapered
broadside scan beam with side lobes of about -24 dB. The electric far field of the second
eigencurrent is an amplitude-tapered monopulse. The eigencurrent with index given by
(5.39) represents the±90◦ scan for spacings smaller than half a wavelength. For larger
spacings, this eigencurrent generates main lobes at the grating-lobe scan angle with cor-
responding grating lobes at±90◦.
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Figure 5.47 Schematic comparison two arrays. Left: a rectangular array of rings with a line

array as generating subarray. Right: a line array of strips with piecewisefunctions defined on

the strips.

10. All array eigenvalues are related to specific scan angles of the array. These scan angles
are the positions of the main lobes in the far fields of the corresponding eigencurrents.

The linear phase taper corresponding to a specific scan angleaverages the block-like phase
distribution (with phase shifts of180◦) of the eigencurrents of line arrays. The eigencur-
rent with closest total phase shift will be stronger excitedthan the other eigencurrents.
Since each eigencurrent generates an electric far field withcertain main lobes, one of the
main lobes of the excited eigencurrent will be the main lobe of the array.

11. Finite arrays with and without ground plane show the same eigencurrent behavior. The
difference is in the eigenvalues of the moment matrix. The eigenvalue range is bounded
for a half space and tends to become unbounded for free space.

The eigenvalues of a finite array can be grouped, where each group corresponds to an
eigenvalue of a single element. For an infinite array, the same statement is valid. For a
half space, the finite-array groups converge to the infinite-array groups as the number of
elements tends to infinity. Our conjecture is that this is nottrue for free space.

12. The impedance operator of line arrays of rings and strips is almost normal and, hence,
the corresponding eigencurrents are almost orthogonal.

This statement is confirmed numerically by analyzing Gram matrices of eigencurrent sets
of line arrays of rings and strips.

We end this section with recommendations how the proposed eigencurrent approach should be
applied in the determination of eigencurrents of arrays of arbitrary elements. Let us first consider
rectangular arrays of rings and strips. Figure 5.47 (left) shows a rectangular array of elements,
in this case rings, with a line array as generating subarray.The array eigencurrents are then
described as concatenations of linear combinations of the subarray eigencurrents. Based on the
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following observations, we expect that the coefficients of the subarray eigencurrents generate the
same patterns as line arrays of rings and strips. Line arraysof rings and a strip with piecewise
functions generate the same coefficient patterns. Moreover, line arrays of strips generate the
same coefficient patterns as line arrays of rings. Interpreting line arrays of strips as rectangular
arrays of overlapping microstrip pieces, we come to the given expectance for rectangular arrays.

If the element is not a ring or a strip, but a more complex element such as the one used by
Thales shown in Figure 1.2, the analysis is analogous to the one for line arrays of strips/rings.
First, the eigencurrents of a single element are determinedby choosing certain expansion func-
tions, for example piecewise functions such as rooftops [77: p. 600] and Rao-Wilson-Glisson
(RWG) functions [96]. Next, only a few eigencurrents are usedin the array analysis. As in the
analysis of line arrays of strips/rings, the level of mutualcoupling is described by the spread
of the eigenvalues. For elements of which the current cannotbe averaged, the behavior of the
single-element eigenvalues will be more complicated. For example, for a patch, the eigenvalues
are of the form of the eigenvalues of a rectangular membrane.Since the eigenvalues of a rectan-
gular membrane areπ(m2/a2 +n2/b2), wherea andb are the length and width, the eigenvalues
of a patch will exhibit such a form as well.

For other array compositions, the analysis is analogous to the analysis for line arrays of
strips and rings as well. Each subarray decomposition depends on the spacing and the excitation
as explained in Section 1.3. If the space surrounding the elements is changed, for example by
inserting a dielectric layer, the integral kernel is changed as well, but the eigencurrent analysis
will remain the same. Stronger mutual coupling, for exampledue to surface waves in the di-
electric, may increase the number of single-element eigencurrents that contribute to the mutual
coupling in an array. Although not confirmed by our research,we believe that the number of
coupling single-element eigencurrents will not increase in this case. Our reasons are, first, that
the single-element eigencurrents incorporate the main effect of the dielectric layer. Second, the
number of coupling groups is not only dependent on the spread, but also on the behavior of the
single-element eigenvalues. Finally, the stronger mutualcoupling due to, for example, surface
waves may increase the spread in the eigenvalue groups. Thiseffect can be handled by the
eigencurrent approach, because the perturbation of the eigenvalues does not necessarily need to
be small, as mentioned in Section 5.
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CHAPTER 6

Test Cases for the Eigencurrent Approach

In this chapter, the main items of both our research phases, i.e., the phase concerning the
element-by-element moment method and the phase concerningthe eigencurrent approach, are
joined, see the scheme in Figure 1.9. In Section 6.1, we compare results of the eigencurrent
approach with results of the element-by-element moment method for various line-array sizes.
Next, in Section 6.2, we show that the eigencurrent approachcan predict the large variations of
element-current amplitudes observed in the third example of Section 2.5. These variations, and
corresponding variations of element impedances, cannot bepredicted by the infinite-array ap-
proach and may decrease the performance of an array considerably. We propose an explanation,
alternative to the explanation in [53, 82] based on array surface waves, for the large variations
by showing that they are caused by the excitation of specific resonant eigencurrents. Moreover,
we show that on basis of the behavior of the eigenvalues, resonances are predicted and suitable
loads can be determined to prevent the excitation of resonant eigencurrents.

In Section 6.3, we first show that the spread of the eigenvalues is a quantitative measure
for mutual coupling and, therewith, for the number of eigencurrent groups needed in the cycle
of the eigencurrent approach. This investigation leads again to the identification of resonances
of arrays. We show that the modulated oscillations of element impedances discussed in [30,
46] are caused by the excitation of specific resonant eigencurrents and, therewith, by the same
mechanism as the variations of element impedances attributed to surface waves. Next, we show
that mutual coupling between distant elements may be neglected, but that special care is needed.
Except near the appearance of a grating lobe, the number of neighbors needed to describe mutual
coupling is well predicted by the variation of the spread as afunction of the number of elements
in small arrays. Finally, we show that by fixing eigencurrents for a chosen set of geometry
parameters, performance parameters for other sets of geometry parameters can be predicted in a
fast and accurate way.

In Section 6.4, we show that the eigencurrent approach is capable of predicting the array
behavior at the grating lobe scan angle. Moreover, we explain how this result supports our idea
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that the eigencurrent approach can not only handle arrays positioned in free and half space,
but also arrays on dielectric layers, which may support surface waves. Finally, we present the
conclusions of this chapter in Section 6.5.

6.1 Validation

To validate the eigencurrent approach and its implementation, we consider three test cases of
line arrays of strips and rings, for which the element geometry and the spacing are chosen as
in many practical applications. The ring circumference is about wavelength and both the strip
length and the spacing are half a wavelength. Other array geometries are considered extensively
in the next sections. The following three test cases are considered.

• A line array of 40 rings in free space with spacingλ/2. Each ring is excited by a voltage
gap of 1V. Figure 6.1 shows the normalizedφ-component of the electric field for a scan at
0◦ and a scan at45◦ in thexz-plane and the corresponding (normalized) ring impedances.
For details on scanning, see below. The definition of impedance is given in Section 4.2.2
and the electric far field is described in Appendix C.

• A line array of 10 strips of half a wavelength in a half space with h/ℓ = 4/5 and with
spacingλ/2. Each strip is excited by a voltage gap of 1V. Figure 6.2 showsthe nor-
malizedφ-component of the electric far field for a scan at55◦ in the xz-plane and the
corresponding normalized absolute strip impedances.

• Line arrays of100 rings and100 strips with spacingλ/2 in free space and in a half space
with h/ℓ = 4/5, respectively. Each element is excited by a voltage gap of 1V. Figure 6.3
shows the normalized absolute element impedances for scansat70◦ in thexz-plane.

In this chapter, all line arrays are positioned in thexy-plane with centers on thex-axis and their
indices increase in the positivex-direction. The scan angles and the incident angles of plane
waves are spherical elevation angles in thexz-plane, where a corresponding spherical azimuth
angle of0◦ is prescribed, see Section 3.5 for details on scanning and Section 4.3 for details on
plane waves. The voltage gaps of the strips are positioned attheir centers. If not mentioned
otherwise, the voltage gaps of the rings are positioned on the x-axis, to be precise, atϕ = π,
whereψ = 0, see Section 4.2.

In all three test cases, we choose 8 cosine expansion functions on each ring or strip. In the
element-by-element moment method, we construct the momentmatrix with these functions. In
the eigencurrent approach, we compute the eigencurrents ofa single element prescribing these
functions. Next, we calculate the eigencurrents of the linearrays with only one or two single-
element eigencurrents per element, or, with only one or two groups of coupling eigencurrents.
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The electric far-field components, obtained by the eigencurrent approach with one group of
coupling eigencurrents, match the results of the moment method perfectly for the broadside scan
of the line array of 40 rings and for the55◦ scan of the line array of 10 strips. Only close to
endfire slight differences occur. For the45◦ scan of the line array of 40 rings, the main and side
lobes obtained by the eigencurrent approach are about 0.6 dBlower than the main and side lobes
obtained by the moment method. For two coupling eigencurrents, we found a perfect match.

Both for one and two groups of coupling eigencurrents, the curves describing the impedance
variation obtained by the eigencurrent approach show the same shape as the curve obtained by
the (element-by-element) moment method. For the line arrays of 10 and 100 strips, the differ-
ences between the absolute impedances obtained by the moment method and by the eigencurrent
approach are less than1.2% and0.3% for one and two groups of coupling eigencurrents. For
the line array of100 rings, these differences are5.9% and1.9%. The percentages confirm the
statement of the previous chapter that two groups of coupling eigencurrents are needed for line
arrays of rings and only one group of coupling eigencurrentsis needed for line arrays of strips.
For the line array of40 rings, the differences between the absolute impedances obtained by the
moment method and by the eigencurrent approach for both one and two groups of coupling
eigencurrents are smaller than1%. The differences for only one group are somewhat smaller
than the differences for two groups. However, especially for 45◦, the results for two groups
are more accurate than the results for one group, because thephase differences between the
impedances obtained by the moment method and by the eigencurrent approach run up to 0.1 rad
for one group, while they are smaller than 0.01 rad for two groups. For one group, the phase
differences are approximately uniform over the array.

Table 6.1 shows the computation times for line arrays of rings in free space, both for the
moment method and for the eigencurrent approach with one andtwo groups of coupling eigen-
currents. The computations are carried out with a Matlab implementation on the platform men-

Table 6.1 CPU times (seconds) for the current on line arrays of 10, 40, 100, 200, and 400

rings in free space with spacingλ/2 for a Matlab implementation on the platform mentioned in

Section 1.4. Parameter values:ka = π/3, β = 3/100, ψ = 0, Ncos = 8, Nsin = 0.

Number of Moment Eigencurrent Eigencurrent
rings Method approach 1 group approach 2 groups
10 35 〈 1 〈 1
40 118 2 3
100 303 4 15
200 730 19 90
400 – 106 1035
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tioned in Section 1.4. For only one group of coupling eigencurrents, the computation times
for the eigencurrent approach are at least 40 times smaller than the computation times for the
element-by-element moment method. For two groups of coupling eigencurrents, the computa-
tion time for the eigencurrent approach is for 10 rings about70 times lower than the computa-
tion time for the moment method, while for 200 rings, this factor reduces to 7. The reduction
is mainly due to the increase of the time needed to determine the eigencurrents, which is, for a
given matrix size, larger than the matrix inversion time. The problem of efficiency reduction of
the approach can be avoided in two ways. First, since the dominant behavior of the eigencur-
rents depends negligibly on the geometry parameters, see Section 5.4, we need to compute the
eigencurrents only once, while we need to carry out a matrix inversion for each new set of geom-
etry parameters. The computational reduction obtained in the eigencurrent approach by fixing
the eigencurrents is discussed in Section 6.3 in further detail. Second, instead of the standard
Matlab function ‘eig’, which is based on the QR decomposition, other methods and correspond-
ing implementations can be used to compute the eigenvalues and eigencurrents. In [2: Sec.
2.6, Ch. 7], several methods are described for computing theeigenvalues and eigenvectors of
non-hermitian matrices.

An important advantage of the eigencurrent approach over the usual moment method is that
the eigencurrent approach keeps the moment-matrix size relatively small. This advantage is ap-
parent from Table 6.1. The standard Matlab function ‘eig’ calculates the eigencurrents of a line
array of 400 rings both for one and two groups of coupling eigencurrents. Once these eigen-
currents have been computed, the computation of the currents takes only 31 seconds and 64
seconds, respectively. In contrast, the standard Matlab matrix inversion in the moment method
implementation runs out of memory for the same line array of 400 rings with 8 expansion func-
tions per ring. The construction of the moment matrix takes 1482 seconds in this case, which is
more than the total computation time of the implementation of the eigencurrent approach with
two groups of coupling eigencurrents.
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Figure 6.1 First row: the normalized absoluteφ-components (in dB) of the electric far field in

the xz-plane for a line array of 40 rings in free space for a scan at0◦ (left) and for a scan at

45◦ (right), computed by the moment method (solid curve) and by the eigencurrent approach

with one group of coupling eigencurrents (dashed curve). Second and third rows: the corre-

sponding normalized absolute values and phases of the ring impedances(∗ : moment method,

◦ : one group,△ : two groups). Excitation: voltage gaps of 1V on the rings. Normalization

far field: maximum absolute component in thexz-plane. Normalization impedance: single-ring

impedance. Parameter values:d = λ/2, ka = π/3, β = 3/100, ψ = 0, Ncos = 8, Nsin = 0.
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Figure 6.2 Left: normalized absoluteφ-components (in dB) of the electric far field in thexz-

plane for a line array of 10 strips in a half space withh/l = 4/5 for a scan at55◦, computed by

the moment method (solid curve) and by the eigencurrent approach withone group of coupling

eigencurrents (dashed curve (indistinguishable)). Right: the corresponding normalized absolute

impedances computed by the moment method (∗) and by the eigencurrent approach with one

(◦) and two (△) groups of coupling eigencurrents. Normalization and excitation as in Figures

6.1. Parameter values:d = λ/2, 2ℓ = λ/2, β = b/ℓ = 1/50, Ncos = 8, Nsin = 0.
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Figure 6.3 Normalized absolute element impedances for line arrays of 100 rings (left) and

100 strips (right) in free space and in a half space withh/ℓ = 4/5, respectively, computed by

the moment method (∗) and by the eigencurrent approach with one (◦) and two (△) groups of

coupling eigencurrents. Scan angle:70◦. Normalization, excitation, and parameter values as in

Figures 6.1 and 6.2.
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6.2 Impedance Variation, Array Surface Waves, and Design

Strong variation of the current amplitudes over an array and, consequently, strong variation of
element impedances, may decrease the performance of the array considerably. To explain this,
we first mention that, in various types of arrays, certain groups of elements are all matched with
the same impedance to the feeding network of the array. An example is the rectangular array of
rings as discussed in the fifth example of Section 2.5, see Figure 2.12 (right), which is excited
per row by means of suitable feeding networks. The elements of each row are matched with
the same impedance to the feeding network of the row. Next, weconsider the third example of
Section 2.5 (Figures 2.9 and 2.10), which concerns a line array of 25 strips. In this example, the
current amplitudes at 10 GHz are almost uniform, while they show a strong variation at 8.6 GHz.
If all strips are matched with the same impedance to a feedingnetwork, the energy reflection
of the strips is almost uniform at 10 GHz. For the same matching, huge differences in energy
reflection occur at 8.6 GHz. Consequently, the total radiated power decreases and the far field is
distorted.

Recently, the occurrence of (array) surface waves carried by the elements of (finite) arrays
has been studied in detail in [53, 82] to explain the change from a low variation of element-
current amplitudes into a high variation. These waves have amain component that propagates
along the plane of the array. In this section, we show that thehigh variation of element-current
amplitudes and element impedances is caused by the excitation of specific resonant eigencur-
rents. Moreover, we show that the eigencurrent approach is capable of predicting the change. To
this end, we show first that the positions of the main lobes in the far fields of the eigencurrents
of an array are indeed specific scan angles of this array, as stated in Section 5.4.

Let us consider the example of Section 5.3.2 of a line array of15 rings in free space with
spacingλ/2. We recall that the eigencurrents and eigenvalues of an array can be divided into
groups, where each group corresponds to a single-element eigenvalue. In the example, the eigen-
currents of the first group, which corresponds to the lowest single-ring eigenvalue, generate far
fields with main-lobe positions shown in Table 5.7. The main lobes of the first and 7th eigencur-
rents are positioned at0◦ and±26.1◦, respectively. As discussed in Subsection 5.3.2, we expect
that for scans at0◦ and26.1◦, these eigencurrents are excited especially. This is confirmed by
Figure 6.4, which shows, for scans at0◦ and26.1◦, the normalized absolute coefficients in the
finite expansion (5.28) of the current in terms of the eigencurrents. The (expansion) coefficients
are〈unq,Pvex〉/νnq, i.e., the product of the inverted eigenvalues and the innerproducts of the
eigencurrents and the excitation field. Only the coefficients of the first group are shown, i.e.,
n = 1. For the scan at0◦, the coefficient of the first eigencurrent is at least three times larger
than the coefficients of the other eigencurrents. For the scan at26.1◦, the coefficient of the 7th
eigencurrent is at least four times larger than the coefficients of the other eigencurrents, except
for its neighbors. Hence, the scan lobe at26.1◦ is composed of the far fields of the 6th, 7th,
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Figure 6.4 Normalized absolute coefficients in the finite expansion (5.28) of the current for a

uniform line array of 15 rings in free space with spacingλ/2 for a scan at0◦ (◦) and a scan

at 26.1◦ (△). Only the coefficients of the first group of eigencurrents are shown.Excitation:

voltage gaps of 1V on the rings. Normalization: maximum coefficient for each scan angle.

Parameter values: two groups of coupling eigencurrents,ka = π/3, β = b/a = 3/100, ψ = 0,

Ncos = 8, Nsin = 0.

and 8th eigencurrent. The composition is shown in Figure 6.5(left) for theφ-component of the
electric far field in thexz-plane. Figure 6.5 (right) shows the totalφ-component in this plane.
These results confirm the statement of Section 5.4 that the positions of the main lobes in the far
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Figure 6.5 Normalized absoluteφ-component (in dB) of the electric far field in thexz-plane

for the line array of Figure 6.4. Left: only the first 6 (dotted curve), 7 (dashed curve), and 8 (solid

curve) eigencurrents of the first group are taken into account in the finite expansion (5.28) of the

current. Right: all terms are taken into account. Normalization: maximum absolute component

in thexz-plane for all terms.
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fields of the eigencurrents of an array are specific scan angles of this array. Finally, the series
coefficients of the second group show about the same behavioras the series coefficients of the
first group, because the coefficients of the dominant single ring eigencurrents in the first and
second groups exhibit the same behavior as observed in Subsection 5.3.2. The magnitude of the
series coefficients of the second group is about 10 times lower than the magnitude of the series
coefficients of the first group. This is partly explained by the difference of about a factor of 5
between the eigenvalues of the first and second groups.

Next, we consider the third example of Section 2.5, i.e., a line array of 25 strips in free space
with spacing 9 mm. The array is excited by a plane wave with incident angle−45◦ and polarized
along they-axis. As mentioned at the beginning of this section, at 10 GHz, the current amplitude
in the centers of the strips is almost uniform as a function ofthe strip index. In contrast, large
variations of element-current amplitudes occur at 8.6 GHz.Figure 6.6 shows the normalized
absolute coefficients in the finite expansion (5.28) of the current for three frequencies. Only
the coefficients of the first group are shown. At 9 GHz and 10 GHz, the largest coefficients
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Figure 6.6 Normalized absolute coefficients in the finite expansion (5.28) of the current for a

line array of 25 strips in free space with spacing 9 mm and excited at 8.6 GHz (◦), 9 GHz (△),

and 10 GHz (∗) by a plane wave with incident (elevation) angle−45◦ and polarized along the

y-axis with amplitude10−3Vm−1 Coefficients computed by the eigencurrent approach with

two groups of coupling eigencurrents; only the coefficients of the first group are shown. Nor-

malization: maximum coefficient for each frequency. Parameter values: one group of coupling

eigencurrents,2ℓ = 15 mm, β = b/ℓ = 3/50, Ncos = 8, Nsin = 0.

correspond to the 9th and 10th eigencurrents and to the 10th and 11th eigencurrents, respectively.
These eigencurrents induce main lobes at±42.4◦, ±47.5◦, and±55.6◦. At 8.6 GHz, the 9th
and 10th eigencurrents exhibit large coefficients as well, but the coefficients corresponding to
the 17th and 18th eigencurrents are larger. Hence, the 17th and 18th eigencurrents dominate
the behavior of the current. Figure 6.7 shows that the current-amplitude variation observed
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Figure 6.7 Current amplitudes (in the centers of the strips) for the line array of Figure 6.6

excited at 8.6 GHz. Left: only the first 14 (∗) and the first 17 (+) eigencurrents of the first group

are taken into account in the finite expansion (5.28). Right: the first 18 eigencurrents of the first

group (∗), all 25 eigencurrents of the first group (+), and all eigencurrents (◦) are taken into

account.

in the third example of Section 2.5, see Figure 2.10, is to a large extent determined by these
eigencurrents. If only the first 14 eigencurrents are taken into account in the finite expansion of
the current, the large variation is absent, see Figure 6.7 (left). For 18 eigencurrents, the current-
amplitude variation is globally the same as the variation for all 25 eigencurrents of the first
group as well as the variation for all eigencurrents, see Figure 6.7 (right). Further investigation
revealed that the current-amplitude variation is globallydescribed by the 8th – 18th eigencurrent
of the first group. The result for all 25 eigencurrents of the first group and the result for all
eigencurrents match almost perfectly. Differences are less than 1%, which is explained by the
large differences (a factor of 30 or more) between the single-strip eigencurrent corresponding to
the first group and the single-strip eigencurrents corresponding to the other groups. Moreover,
both results differ at most 3% from the moment-method resultin Figure 2.10 (right), which is
explained by the use of only one group of coupling eigencurrents in the eigencurrent approach.
These two observations illustrate why the single-mode approximation frequently applied in the
literature is a good approximation for strips.

One could think that the excitation of the 17th and 18th eigencurrents is due to differences
between the eigencurrents at 8.6 GHz and the eigencurrents at 10 GHz. However, in Section 5.4,
we concluded that the eigencurrents of an array are described as concatenations of linear combi-
nations of single-element eigencurrents, where the coefficients of the dominant single-element
eigencurrents depend negligibly on the element shape and the frequency. This conclusion is
based on numerical results for various geometries. Figure 6.8 shows that the statement is valid
for large variations of frequency as well. Both absolute values and phases of the coefficients
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Figure 6.8 Absolute values (left) and phases (right) of the coefficients of the dominant single-

strip eigencurrents in the 18th (array) eigencurrent of the first groupfor the array in Figure

6.6 with plane-wave excitation at 8.6 GHz (◦), 9 GHz (△), and 10 GHz (∗). Normalization:

maximum coefficient.

of the dominant single-strip eigencurrents in the 18th (array) eigencurrent are at 8.6 GHz the
same as they are at 9 GHz and 10 GHz. Since single-element eigencurrents change negligibly
except for scaling with the size of the element, also the eigencurrents themselves are the same
at 8.6 GHz as at 9 GHz and 10 GHz. Hence, the excitation of the 17th and 18th eigencurrents
at 8.6 GHz is not due to changes of the eigencurrents. Moreover, when in Figure 6.6 the inner
products〈unq,Pvex〉 are plotted instead of the coefficients〈unq,Pvex〉/νnq, the peak at the
17th and 18th eigencurrents disappears completely and the curve at 8.6 GHz becomes about the
same as the one at 10 GHz. Hence, the peak is caused by a change of the eigenvalues.

Figure 6.9 (left) shows the eigenvalues in the complex planefor different frequencies, or,
values ofka. Surprisingly, the eigenvalues of the first group are mainlyshifted by the change of
frequency, where the 25th eigenvalue of the curve remains onthe imaginary axis (see p. 156 for
details on the indexation of the eigenvalues). This suggests that the eigenvalues for different fre-
quencies can be estimated, if the shift as a function of the frequency is somehow described. We
leave the investigation of such an approximation as a topic of further research. Figure 6.9 (right)
shows that at 10 GHz, the absolute eigenvalues are all of order 1, if they are normalized on the
single-strip eigenvalue. In contrast, at 8.6 GHz, the eigenvalue of the 18th eigencurrent becomes
very small, where the normalization is the same as at 10 GHz. Moreover, the neighboring eigen-
values are small as well. Consequently, the inverted eigenvalues become large and, hence, the
corresponding series coefficients become large if the excitation fieldPvex matches sufficiently
well with the eigencurrents. We have to write here ‘sufficiently well’ for the following reason.
The difference between the series coefficients of the 9th and18th eigencurrents is only a factor
of 1.7, but the difference between the corresponding absolute eigenvalues is about a factor of
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Figure 6.9 Normalized eigenvalues of the first group (left) and their absolute values(right) for

the line array of strips in Figure 6.6 with plane-wave excitation at 8.6 GHz (◦), 9 GHz (△), and

10 GHz (∗). Normalization: absolute value of the first single-strip eigenvalue at 10 GHz.

30. Hence, the 18th eigencurrent does not match that well to the excitation field; its excitation
is mainly due to the decrease of its eigenvalue. Physically,this decrease can be interpreted as
an increase of the energy level of the 18th eigencurrent. Thesame interpretation is found in the
Quantum Mechanical description of particle behavior as discussed in Subsection 5.1.4. Finally,
the increase of the series coefficients 15 – 25 at 9 GHz with respect to their values at 10 GHz is
explained analogously.

Do there exist combinations of geometry parameters and frequencies in our model for which
an eigenvalue becomes identically zero? This question is interesting from a mathematical point
of view. In practice, the combination of geometry parameters and frequency will never be ex-
actly the same as the combination for which an eigenvalue becomes zero. Moreover, in that case,
the corresponding eigencurrent exhibits an infinitely highenergy level. Finally, numerically, we
will not find the exact combinations, if they exist, due to numerical approximation. From a prac-
tical point of view, it is more interesting to investigate the array behavior near the ‘resonances’.
The observations above show that large variations of element-current amplitudes and element
impedances occur if one or more eigenvalues are relatively close to zero. Here, we must write
‘relatively’, because only the ratios of the eigenvalue related to the scan angle and all other (ar-
ray) eigenvalues are of importance. In particular, we want to know in which frequency range(s)
the large variations of element-current amplitudes occur.Moreover, we want to know to what
extent these variations depend on the frequency. In this respect, it is important to realize that the
behavior of both eigencurrents and eigenvalues observed above is ‘stable’. The eigencurrents do
not change with the geometry parameters and the frequency, while the eigenvalues are mainly
shifted. Considering the eigenvalue curve in Figure 6.9 (left), we conclude that the large varia-
tions of current-amplitude occur below 9 GHz, at 8.94 GHz to be precise. Then, the normalized
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last eigenvalue is much closer to the origin than the 9th and 10th eigenvalues that correspond to
the scan angle. The variation of element-current amplitudes at 8.94 GHz exhibits an alternating
phase with phase shifts of about180◦, which corresponds specifically to the last eigencurrent.
The number of maxima of the absolute current amplitude equals 8, which is close to the number
of maxima of the 9th and 10th eigencurrents that induce the scan lobe at45◦. If the frequency
decreases, the 24th – 18th eigenvalue pass the origin. Hence, the large variations will occur at
least over the range 8.6 GHz – 9 GHz. Globally the same variations of element impedances as at
8.6 GHz are obtained on the range 8.56 GHz – 8.61 GHz, where theimpedance shows 4 peaks
as in Figure 6.7 at about the same positions, see Figure 6.10.Considering Figure 6.10 in detail,
we observe that the absolute impedances change for frequency changes of 20 MHz, but their
global behavior remains the same. The same is valid for the corresponding phases.
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Figure 6.10 Current amplitudes (in the centers of the strips) and corresponding phases for the

line array of Figure 6.6 excited at 8.6 GHz (+), 8.58 GHz (◦), and 8.56 GHz (△). The ampli-

tudes were obtained by the moment method; for the eigencurrent approach, the same amplitudes

were obtained as in Figure 6.6.

Since the change of current-amplitude variation is caused by the excitation of specific eigen-
currents, the question arises in what way they are related tothe array surface waves studied
in [53, 82]. The following relations are mentioned.

• In [82: p. 132], it is stated that array surface waves exist only on finite arrays, not on
infinite arrays. In Subsection 5.3.2, we observed that the eigencurrents of a finite array
are not the same as the eigencurrents of an infinite array, no matter the size of the finite
array. The eigencurrents of the finite array have a block-like phase distribution, while the
eigencurrents of the infinite array have a linear phase distribution. Moreover, the spectrum
of finite array is discrete, while the spectrum of the infinitearray is continuous, see Section
5.3.2, pp. 169 ff. For a given linear phase taper, only one eigencurrent is excited on the
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infinite array, which corresponds to the direction of scan. In contrast, on the finite array,
all eigencurrents are excited. Since the eigencurrents that cause the change of impedance
variation are not related to the direction of scan, such eigencurrents are not excited on the
infinite array for a given linear phase taper. This confirms the statement in [82: p. 132].

• In [82: p. 133], it is stated that array surface waves (on a finite array) radiate. This is
confirmed by a result in [82: p. 96], which shows that the maximum lobe level of the far
fields induced by the surface-wave currents is about 20 dB lower than the main lobe of
the total far field. A similar result is found for the eigencurrents that cause the change of
impedance variation. In the example above, the 17th and 18theigencurrents do not induce
main lobes. Theφ-components of their far fields attain maxima at±90◦ in thexz-plane,
which at 8.6 GHz are 19 dB lower than the maximum of the first eigencurrent. At 10 GHz,
the shape of the pattern is the same as the one at 8.6 GHz, but the maxima at±90◦ are
only 9 dB lower than the maximum of the first eigencurrent.

• In [82: p. 5], it is stated that array surface waves exist onlyfor spacings smaller than half
a wavelength. Similarly, only for spacings smaller than half a wavelength, eigencurrents
without main lobes exist. In the example above, the spacing is 0.3λ for 10 GHz and
0.26λ for 8.6 GHz. Moreover, in the example of Figure 5.38 (right),where the 33rd –
40th eigencurrent do not show main lobes, the spacing is0.4λ. For spacings larger than
half a wavelength, all eigencurrents show main lobes and possibly also grating lobes, see
Subsection 5.3.2.

• In [82: p. 88], a criterion is given for the occurrence of surface waves. This criterion must
predict the resonant behavior studied above as well. Further research needs to be carried
out on the criterion in relation to the resonant behavior.

• In [82: p. 5], the current is decomposed into Floquet currents, surface-wave currents, and
end currents. The Floquet currents are currents with equal amplitudes on the array and a
phase matching that of an incident plane wave, or in other words, currents that occur on
an infinite array. The end currents are the total currents minus the Floquet and surface-
wave currents. This decomposition depends strongly on the geometry parameters and the
frequency. In contrast, the coefficients of the dominant single-element eigencurrents in the
(array) eigencurrents depend negligibly on the geometry parameters and the frequency, as
observed in Subsection 5.3.2. The global behavior of these coefficients remains the same,
even when the frequency is 19% below the frequency for which the elements exhibit a
‘resonant broadside embedded impedance’, i.e., the reactances of the elements are on
average zero. Only the eigenvalues change. Our decomposition is more physical than a
decomposition into Floquet currents and other types of currents, because, on finite arrays,
eigencurrents exist in contrast to Floquet currents.
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On basis of the observations in this section, we conclude that eigencurrents describe array
surface wave phenomena and related variations of element-current amplitudes and element
impedances.More specifically, surface wave phenomena and the related variations are described
by a limited number of coupling eigencurrents only. The example above illustrates that these
eigencurrents are the eigencurrents of the first group. In this example, the 8th – 11th eigencur-
rent of the first group describe the scan behavior of the array, while the 16 – 18th eigencurrent
describe the surface wave behavior.

We mentioned that the occurrence of a strong impedance variation decreases the perfor-
mance of an array considerably. Therefore, it must be avoided in the design. In the example
above, the impedance variation occurs about 19% below the frequency for which the array ex-
hibits a ‘resonant broadside embedded impedance’. Hence, the variations shown here are in
general not present in a narrow-band design. For designs with a wider frequency band, the
variations must be taken care of. In [82: Sec. 1.4], the application of loads on the elements is
proposed to reduce the variations. As an example of loading,we consider here uniform surface
loading. Contrary to the second model assumption in Section2.2, the elements of an array are
in practice never perfectly conducting. This non-perfectness may prevent resonances from oc-
currence. Moreover, if resonances occur, they can be prevented by the application of materials
that exhibit a lower conductivity for example. To explain this from the point of view of our
model, we consider the relationZJ = ES between the currentJ and the (tangential) excita-
tion field ES . Often, uniform surface loads are modeled by adding an extraterm αI to this
relation: (Z + αI)J = ES . Here, the scalarα indicates the surface load andI is the identity
operator. Then, the eigenvaluesνnq obtained by the eigencurrent approach are shifted in the
complex plane and becomeνnq +α. Considering the representation in the complex plane of the
eigenvalues in Figure 6.9 (left) for example, we observe that a suitable choice ofα will move
the eigenvalues such that no eigenvalue is relatively closeto zero according to our definition.
Then, due to the relationship between the eigenvalues and specific scan angles of the array, we
know that for all scan angles, the resonant behavior is reduced or even annihilated. Finally, we
leave the further investigation of the reduction of resonant behavior by means of surface load-
ing, including the investigation of the relation between material properties and the scalarα, as a
topic of research.
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6.3 Parametric Study

6.3.1 Spread of eigenvalues as Measure of Mutual Coupling

In Chapter 5, we showed that the eigenvalues of an array can bedivided into groups{νnq}Nsub
q=1 ,

where each group corresponds to a single element eigenvalueνsub
n . Here,Nsub is the number

of elements andn is the group index. In this subsection, we investigate whether the spread
of the eigenvalue groups is a qualitative measure for mutualcoupling and, therewith, for the
number of groups of coupling eigencurrents needed in the cycle of the eigencurrent approach.
To this end, we need to define the spread of the eigenvalue groups first. In Chapter 5, we
considered the spread as the maximum and minimum of the absolute perturbations{|ǫnq|}Nsub

q=1

of the group eigenvalues with respect to the corresponding single-element eigenvalue, i.e.,νnq =

νsub
n (1+ ǫnq), see Section 5.1, p. 106. To describe the approximation error of the current due to

neglecting the mutual coupling of a group of eigencurrents,or, due to takingǫnq = 0 for a certain
value ofn, we need to consider the maximum absolute perturbation of the group eigenvalues
relative to the first absolute single-element eigenvalue. In other words, we need to define the
spread as

MRP [Nsub]
n = max{|ǫnq|}Nsub

q=1 · |νsub
1 |/|νsub

n | , (6.1)

which we call the maximum relative perturbation of thenth group. This definition is explained
by the approximation error of the current being of the orderMRP

[Nsub]
n . To compare the currents

obtained by the eigencurrent approach, which describe a part of the mutual coupling, and the
currents obtained by the moment method, which describe all mutual coupling (within the set of
expansion functions), we introduce the maximum relativeL2 difference

MRDL2
= max

q=1,...,Nsub

‖weig( · ; q) − wmom( · ; q)‖L2

‖wmom( · ; q)‖L2

. (6.2)

Here,weig( · ; q) andwmom( · ; q) are the currents on theqth element obtained by the eigencur-
rent approach and the moment method, respectively. For our investigation, we consider two
examples.

The first example concerns a line array of 40 strips of half a wavelength in a half space
with h/ℓ = 4/5. The strips are excited by voltage gaps of 1V. The spacing is varied from
0.1λ to 0.6λ. Figure 6.11 (left) shows thatMRP

[40]
n of the first three groups of eigenvalues

all show the same behavior as a function of the spacing. The maximum relative perturbations
decrease monotonically up to about0.4λ and have local maxima at0.5λ. The perturbations of
the second and third groups are 25 dB – 40 dB and 35 dB – 50 dB lower than the perturbations
of the first group. Figure 6.11 (right) shows thatMRDL2

exhibits about the same behavior as
the maximum absolute perturbations. For a scan at0◦, MRDL2

decreases monotonically both
for one and two groups of coupling eigencurrents, while for ascan at60◦, MRDL2

decreases
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Figure 6.11 Left: MRP
[40]
n (in dB) of the 1st (solid curve), 2nd (dashed curve), and 3rd

(dashed-dotted curve) group of eigenvalues as a function of the spacing in a uniform line ar-

ray of 40 strips of half a wavelength in a half space withh/ℓ = 4/5. Excitation: voltage gaps of

1V. Right: MRDL2 for scans in thexz-plane; solid curve: 2 groups of coupling eigencurrents,

0◦ scan; dashed curve: 2 groups,60◦ scan; dashed-dotted curve: 1 group,0◦ scan; dotted curve:

1 group,60◦ scan. Parameter values:β = b/ℓ = 1/50, Ncos = 8, Nsin = 0.

monotonically up to about0.45λ with local maxima at about0.55λ. For two groups of coupling
eigencurrents,MRDL2

is 10 dB – 12 dB lower than for one group of coupling eigencurrents
both at0◦ and at60◦. Why the curves for60◦ exhibit local maxima and the curves for0◦ do not
exhibit such maxima, is explained after the second example.In case the striplength is changed
from λ/2 to 3λ/5, the absolute perturbations andMRDL2

show the same behavior as well, as
illustrated by Figure 6.12. The results above show that the spread of the eigenvalue groups is
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Figure 6.12 As Figure 6.11, but the strip length is3λ/5 instead ofλ/2.
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a good qualitative measure for the number of groups of coupling eigencurrents needed in the
cycle of the eigencurrent approach.

The second example is a line array of 40 rings in free space with a spacing equal to three
times the ring radius. The rings are excited by voltage gaps of 1V. The frequency is varied such
thatka varies from 0.75 to 1.4. Figure 6.13 (left) shows that the maximum relative perturbation
of the first group increases up toka ≈ 1.04 and then decreases. This value ofka corresponds
to the frequency for which the array exhibits a ‘resonant broadside embedded impedance’, or,
for which the reactances of the rings are on average zero. Theperturbation of the second group
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Figure 6.13 Left: MRP
[40]
n (in dB) of the 1st (solid curve), 2nd (dashed curve), and 3rd

(dashed-dotted curve) group of eigenvalues as a function of the frequency (ka with a fixed)

in a uniform line array of 40 rings in free space excited by voltage gaps of1V. Right: MRDL2

for scans in thexz-plane; solid curve: 2 groups of coupling eigencurrents,0◦ scan; dashed

curve: 2 groups,45◦ scan; dashed-dotted curve: 1 group,0◦ scan; dotted curve: 1 group,45◦

scan. Parameter values:d/a = 3 (d = λ/2 at ka = π/3), β = b/a = 3/100, ψ = 0,

Ncos = 8, Nsin = 0.

decreases monotonically up toka ≈ 1. At ka ≈ 1.06, the perturbation exhibits a local max-
imum. For larger values ofka & 1.1, the perturbation increases up toka ≈ 1.32, where it
suddenly decreases. At the same value ofka, the perturbation of the third group increases sud-
denly. The sudden changes are explained by the interchange of the single-ring eigencurrents that
correspond to these groups. Forka . 1.32, the constant single-ring eigencurrent corresponds to
the second group, while the eigencurrentcos 2ϕ corresponds to the third group. Forka & 1.3,
the eigencurrents are interchanged. Figure 6.13 (right) showsMRDL2

as a function ofka for
four parameter settings. Both for a scan at0◦ and for a scan at45◦, MRDL2

is about 10 dB
smaller for two groups of coupling eigencurrents than for one group of coupling eigencurrents,
except forka & 1.3, which is explained by the interchange of eigencurrents as observed above.
For ka & 1.3, the maximum relative perturbation of the third group is of the same order of
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magnitude as the perturbation of the first group and much larger than the perturbation of the
second group. This indicates that the third group should be taken into account to describe the
coupling and it explains why taking two groups of coupling eigencurrents instead of one does
not improve the solution for the current. These results confirm that the spread of the eigenvalue
groups is an appropriate qualitative measure for the numberof groups of coupling eigencurrents
needed in the cycle of the eigencurrent approach.

We recall that we still need to explain the local maxima ofMRDL2
in Figure 6.11 as well

as the local maxima ofMRDL2
in the other two figures. Partly, these maxima are related to

grating-lobe behavior. For the scan at60◦ in Figures 6.11 (right) and 6.12 (right), the maxima
occur at the spacing for which a grating lobe appears or disappears at−90◦. For the scan at
45◦ in Figure 6.13 (right), the maxima atka ≈ 1.23 occur at the frequency for which a grating
lobe appears or disappears at−90◦. The maxima atka ≈ 0.97 are not related to grating-lobe
behavior, but to resonant behavior, specifically at0◦ of scan, which is explained in detail in the
next subsection.

The slight increase ofMRDL2
near the frequency for which a grating lobe appears or dis-

appears at−90◦ is more pronounced in free space than in a half space, becausein contrast to
free space, the grating lobe is canceled in a half space. Onlya large side lobe near the plane of
the array is present. Consequently, no power is transportedalong the array plane, while in free
space the radiation intensity in the array plane is of the same order as in the scan direction. Both
in free space and in a half space, the power radiated along or nearly along the array plane excites
slightly some higher order eigencurrents, which explains the increase ofMRDL2

.

6.3.2 Modulated Oscillations of Impedance Described by Eigencurrents

As mentioned in Section 6.2, large variations of element impedances across an array reduce
its performance considerably. Recently, modulated oscillations of the element impedances have
been found [46], that occur at the frequency for which the elements exhibit a ‘resonant broadside
embedded impedance’. If the amplitudes of the modulated oscillations are large, they reduce the
performance of an array as well. In [30], the modulations areexplained by the phase velocity of
the waves diffracted by the edges of the array being slightlylarger than the free space velocity
of light. In this subsection, we show that the occurrence of modulated oscillations is caused by
the excitation of specific eigencurrents and, hence, by the same mechanism as the variations of
element impedances studied in Section 6.2. Moreover, we show that the eigencurrent approach
approximates the modulated oscillations very well. To thisend, we start by showing that the
maxima ofMRDL2

at ka ≃ 0.97 for the line array of 40 rings in Figure 6.13 are related to
resonant behavior.

In Figure 6.14, we depict the normalized absolute impedances of the rings for the frequencies
with ka = 0.94 andka = 0.971 for scans at0◦. The valueka = 0.971 corresponds with the
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position of the local maxima in Figure 6.13; the valueka = 0.943 was chosen arbitrarily. The
figures show modulated oscillations of the impedance. Forka = 0.971, these modulations
exhibit a shorter period than forka = 0.943. The absolute impedances vary in both cases about
50% with respect to their mean value. Forka = 0.971, these large variations extend over the
entire array. In contrast, forka = 0.943, they are concentrated at the edges of the array. In
the middle of the array the absolute impedances vary about 10% with respect to their mean
values. We emphasize that the eigencurrent approach with two groups of coupling eigencurrents
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Figure 6.14 Normalized absolute ring impedances (left) and corresponding phases(right) for a

line array of 40 rings in free space excited by voltage gaps of 1V for a scan at0◦. Upper figures:

frequency withka = 0.943. Lower figures: frequency withka = 0.971. Impedances computed

by both the moment method (∗) and by the eigencurrent approach with two groups of coupling

eigencurrents (◦). Figure 6.13 shows the related spreads of eigenvalue groups. Normalization:

for each frequency, the corresponding impedance of a single ring. Parameter values:d/a = 3

(d = λ/2 atka = π/3), β = b/a = 3/100, ψ = 0, Ncos = 8, Nsin = 0.
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is capable of approximating accurately the modulated oscillations of absolute impedances and
corresponding phases.

The same kind of modulated oscillations are discussed in [46] for arrays of collinear, orE-
plane oriented, wires with spacingλ/2 in a half space withh = λ/4. The modulated oscillations
are not observed for arrays of parallel, orH-plane oriented, wires, neither for arrays in free
space. In contrast, the rings in Figure 6.14 are positioned in free space and areH-plane oriented,
since the voltage gaps are all positioned on the array axis. Moreover, the spacing is not equal
to λ/2. As indicated in Figure 6.13, the spacing isλ/2 for the frequency withka = π/3. For
ka = 0.971 andka = 0.943, the spacing is0.464λ and0.450λ, respectively.

To explain the cause of the modulation, Figure 6.15 shows thenormalized absolute expan-
sion coefficients in the finite expansion (5.28) of the current for three values ofka. Only the
coefficients of the eigencurrents of the first group are shown. For ka = 1, the coefficients of
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Figure 6.15 Normalized absolute coefficients in the finite expansion (5.28) of the current on

the line array of 40 rings in Figure 6.14 for the frequencies withka = 0.971 (◦), ka = 0.943

(△), andka = 1 (∗). Only the coefficients of the eigencurrents of the first group are shown.

Normalization: maximum coefficient.

odd eigencurrents, i.e., the coefficients with even indices, are zero, while the coefficients of odd
eigencurrents form a monotonically decreasing sequence. The corresponding ring impedances
behave as the ring impedances in Figure 6.1 forka = π/3. For ka = 0.971 andka = 0.943,
the coefficients show the same behavior as the coefficients for ka = 1, but the 39th and 37th
(array) eigencurrents, respectively, have a much higher coefficient. The coefficients of the dom-
inant single-ring eigencurrents in the 39th and 37th (array) eigencurrents show an alternating
pattern modulated by a sine of one and two periods, respectively. Since these eigencurrents are
especially excited, the impedances in Figure 6.14 show sucha pattern as well.

As described in Section 6.2, large variations and modulations of element impedances occur,
if one or more eigenvalues are relatively close to the origin. The behavior of the eigenvalues in
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the complex plane for varying frequency and the corresponding behavior of their absolute values
is illustrated in Figure 6.16. The minimum absolute eigenvalues forka = 0.943 andka = 0.971

are the 37th and 39th eigenvalues, which correspond to the eigencurrents in Figure 6.15 with the
small peaks at the 37th and 39th eigencurrents, respectively. For ka = 0.943, the 37th eigen-
value is only 6 times lower than the first eigenvalue, which corresponds to the0◦ scan angle.
Hence, although the 37th eigenvalue atka = 0.943 is not relatively close to zero according to
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Figure 6.16 Normalized eigenvalues of the first group (left) and their absolute values(right) for

the line array of 40 rings in Figure 6.14 for the frequencies withka = 0.943 (△), ka = 0.971

(◦), ka = 1 (∗), ka = 1.027 (⋄), andka = π/3. Normalization: for each frequency, the

corresponding absolute single-ring eigenvalue.

our definition, its corresponding eigencurrent generates the modulations in Figure 6.14 (upper
figures). This indicates that there exist large variations and modulations for a wide frequency
range around the ‘resonant’ frequency. Further investigation revealed that the modulations occur
approximately in the range0.93 . ka . 0.99, where the absolute impedances vary from 10%
to more than 100% with respect to their mean value. For a design with ka = 1.047 (≈ π/3)

andd = λ/2 at 1 GHz, the modulated oscillations occur for0.89GHz . f . 0.94GHz. The
frequency for which the elements exhibit a ‘resonant broadside embedded impedance’ is in this
in this case 1.061 GHz. Hence, the modulated impedance oscillations occur between 11% and
16% below this frequency. For frequencies withka outside the range given, the impedance
shows a behavior as in Figure 6.1 forka = π/3 ≈ 1.047, where the absolute impedances vary
only 5%.

The modulations appear also in a half space, where they depend on the height above the
ground plane. Figure 6.17 shows the modulated oscillationsof the absolute impedances for the
same line array of 40 rings as above, but in a half space withh/a = 3/2 and in a half space with
h/a = 6/5. The array is excited with the frequency for whichka = 0.991 as in Figure 6.14
(upper figures). The relatively large difference between the two used values ofh/a indicates that
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Figure 6.17 Normalized absolute ring impedances for a line array of 40 rings in a half space

with h/a = 3/2 (left) and in a half space withh/a = 6/5 (right) (h = λ/4 for ka = π/3),

excited by voltage gaps of 1V for a scan at0◦. The frequency is such thatka = 0.991. The

impedances are computed by the moment method (∗) and by the eigencurrent approach with

two groups of coupling eigencurrents (◦). Normalization: for each frequency, the corresponding

impedance of a single ring. Parameter values:d/a = 3 (d = λ/2 at ka = π/3), β = b/a =

3/100, ψ = 0, Ncos = 8, Nsin = 0.

we may expect moderate to large variations and modulations over a wide range ofh/a. Figure
6.18 shows that the modulations ath/a = 3/2 fade out for a frequency shift of -0.5%, while the
modulations ath/a = 6/5 do not fade out. Forh/a = 3/2 with the frequency shift of -0.5%, the
same pattern of the impedance is obtained as the pattern forh/a = 6/5. Hence, forh/a = 3/2

with frequency0.995f0 and forh/a = 6/5 with frequencyf0, the same eigencurrent is excited
especially. The coefficients of the dominant single-ring eigencurrents in this (array) eigencurrent
form an alternating pattern modulated by a sine of two periods. For a design withka = 1.047,
d = 3a = λ/2, andh = 3a/2 = λ/4 or h = 6a/5 = λ/5 at 10 GHz, the modulations occur at
f0 = 9.46 GHz. The frequency shifts of 0.25% are in that case 24 MHz.

To study the occurrence of (modulated) oscillations of the impedance as a function of the
scan angle, we consider the behavior of the eigenvalues in Figure 6.16 for a line array of 40
rings in free space. In Section 5.3.2, we showed that all eigenvalues are related to specific scan
angles of the array. Forka = 0.943, the first eigenvalue in Figure 6.16 (right) corresponds
to 0◦, while the 30th and 37th eigenvalues correspond to55◦ and90◦, respectively. The last
three eigenvalues correspond to eigencurrents that inducefar fields with maxima at±90◦ in the
xz-plane, which are much lower than the maxima of the far fields of the other eigencurrents.
Since the first 30 eigenvalues are about a factor of 6 larger than the 37th eigenvalue, that causes
the (modulated) oscillations of the impedance at0◦, the oscillations occur over a wide range
of scan angles. Whether the oscillations are modulated depends on the the interaction between
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Figure 6.18 Normalized absolute ring impedances for the line array in Figure 6.17 with

h/a = 3/2 (left) andh/a = 6/5 (right) for the frequenciesf0 (◦), 0.9975f0 (△), and0.995f0

(×), wheref0 corresponds toka = 0.991. Other geometry parameters as in Figure 6.17. The

impedances are computed by the eigencurrent approach with two groups of coupling eigen-

currents and match the impedances obtained by the moment method. Normalization: for each

frequency, the corresponding impedance of a single ring.
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Figure 6.19 Left: normalized absolute ring impedances for the line array of 40 rings inFigure

6.14 (upper figures) with scan angle5.85◦; impedances computed by the eigencurrent approach

with two groups of coupling eigencurrents (◦) and by the moment method (∗). Right: corre-

sponding normalized absolute coefficients of the eigencurrents of the first group in the finite

expansion (5.28) of the current. Normalization impedances: corresponding impedance of a sin-

gle ring. Normalization coefficients: maximum coefficient.
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especially the 37th eigencurrent and the eigencurrents that induce the scan lobe. As an example,
Figure 6.19 (left) shows that the oscillations of the normalized absolute impedances of the same
line array as in Figure 6.14 (upper figures) for a scan at5.85◦ are modulated. Figure 6.19 (right)
shows that, for this scan angle, the scan lobe is composed of the main lobes of the third, fourth,
and fifth eigencurrents. Beside the even (array) eigencurrents, also a number of odd (array)
eigencurrents are excited, because the excitation of the array is not symmetric. If the scan angle
of the array equals one of the scan angles corresponding to the 37th eigenvalue, i.e.,±90◦, the
scan lobe of the array is one of the two main lobes of the far field of the 37th eigencurrent. Since
these main lobes have a large beamwidth, we excite the 37th eigencurrent at lower scan angles
as well. For example, Figure 6.20 (left) shows the normalized absolute impedances for the same
line array as above, but with scan angle80◦. The absolute impedances of the elements are in
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Figure 6.20 As Figure 6.19, but with scan angle80◦.

this case much lower than the corresponding absolute impedance of a single ring. Figure 6.20
(right) shows that especially the 36th and 37th eigencurrents are excited. The eigencurrents 1 –
30 are hardly excited. Finally, the excitation of the 37th eigencurrent generates a large amount
of energy, which can be disastrous for the array due to heating of the array structure.

In [46, 30], it is shown that the period of the modulations in uniform arrays of wires changes
in case the wire radius is changed. In arrays of rings and arrays of strips, the same effects
occur. Moreover, the number of modulations is in correspondence with the eigencurrents that
are excited. For example, Figure 6.21 shows the normalized absolute coefficients in the finite
expansion of the current for two different ring widths; the ring radius is constant. Only the coef-
ficients of the eigencurrents of the first group are shown. Forβ = 3/100, the 95th eigencurrent
is especially excited, while forβ = 1/100, both the 95th and the 93rd eigencurrent are excited.
The coefficients of the dominant single-ring eigencurrentsin the 95th and 93rd eigencurrents
exhibit alternating patterns modulated by a sine with 3 and 4periods, respectively. The patterns
of these eigencurrents are reflected in the modulated impedance oscillations of the array. Fig-
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Figure 6.21 Normalized absolute coefficients in the finite expansion (5.28) of the current for

a line array of 100 rings in a half space withh/a = 1.270 excited by voltage gaps of 1V

at the frequency withka = 0.990 and with scan angle0◦. The ring widths are chosen such

thatβ = 3/100 (∗) andβ = 1/100 (◦). Coefficients computed by the eigencurrent approach

with two groups of coupling eigencurrents; only the coefficients of the first group are shown.

Normalization: maximum absolute coefficient. Parameter values:d/a = 3 (d = λ/2 at ka =

π/3), ψ = 0, Ncos = 8, Nsin = 0.
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Figure 6.22 The normalized absolute ring impedances for the line arrays in Figure 6.21 com-

puted by the eigencurrent approach with. Left:β = 3/100. Right: β = 1/100.

ure 6.22 shows that forβ = 3/100, the impedance oscillations are modulated by a sine with
2.5 periods, while forβ = 1/100, the impedance oscillations are modulated by a sine of 3.5
periods. Simulations showed that the dependence of the modulation on the width does not oc-
cur for all geometry settings. If we increase the height of the array above the ground plane to
h/a = 1.59 ≈ λ/4 in the array of Figure 6.21, we do not observe dependence on the width. In
that case the oscillations raise to the height of the edge oscillations in Figure 6.22, because the
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95th eigencurrent becomes resonant. The oscillations are then clearly modulated by a sine with
3 periods.

The modulations are observed in line arrays of parallel, orH-plane oriented, strips as well.
Figure 6.23 (left) shows the normalized absolute ring impedances for a line array of 40 strips
in a half space withh/ℓ = 1.027, excited by voltage gaps of 1V at the frequency for which
2ℓ/λ = 0.429. The spacing equalsd = 2.053ℓ. The oscillations of the impedance are modulated
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Figure 6.23 Left: normalized absolute ring impedances for a line array of 40 strips in ahalf

space withh/ℓ = 1.027 and with spacingd = 2.053ℓ, excited by voltage gaps of 1V at the fre-

quency for which2ℓ = 0.429λ with scan angle0◦; impedances computed by the eigencurrent

approach with two groups of coupling eigencurrents (◦) and by the moment method (∗). Note

that h = λ/4 andd = λ/2 for 2ℓ = λ/2. Right: corresponding normalized eigenvalues of

the first group. Normalization impedances: corresponding impedanceof a single strip. Normal-

ization eigenvalues: single-strip eigenvalue corresponding to the first group. Parameter values:

β = b/ℓ = 0.0205, Ncos = 8, Nsin = 0.

by sines with 2 and 3 periods. These sines correspond to the 37th and 35th eigencurrents of
which the eigenvalues are relatively close to zero as shown by Figure 6.23 (right). Also the
eigenvalue of the 36th eigencurrent is relatively close to zero, but this eigencurrent is odd and,
therefore, not excited for a scan at0◦.

Up to now, we have only consideredH-plane oriented elements, i.e., rings with voltage gaps
on the line array axis and parallel strips with voltage gaps in their centers. To considerE-plane
oriented elements, we position the voltage gaps of a line array of 40 rings on lines perpendicular
to the line array axis. In other words, we takeψ = π/2 instead ofψ = 0. As observed
in [46, 30], forE-plane oriented elements, modulated oscillations of the element impedances
occur at a frequency that is much closer to the frequency for which the array exhibits a ‘resonant
broadside embedded impedance’ than the frequency at which these oscillations occur for theH-
plane oriented elements considered above. Figure 6.24 (left) shows modulated oscillations of the
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element impedances for a line array of 40 rings excited by voltage gaps of 1V at the frequency
for whichka = 1.038. The line array exhibits a ‘resonant broadside embedded impedance’ for
the frequency withka = 1.011. Hence, the modulated oscillations shown in Figure 6.24 (left)
occur only 2.7% above this frequency. Figure 6.24 (right) shows the corresponding behavior of
the eigenvalues. As in Figure 6.14, the 37th eigencurrent becomes resonant.
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Figure 6.24 Left: normalized absolute ring impedances for a line array of 40 rings in ahalf

space withh/a = 3/2 and with spacingd = 3a = 0.495λ, excited by voltage gaps of 1V at the

frequency for whichka = 1.038 with scan angle0◦; impedances computed by the eigencurrent

approach with two groups of coupling eigencurrents (◦) and by the moment method (∗). Note

that h = λ/4 andd = λ/2 for 2ℓ = λ/2. Right: corresponding normalized eigenvalues of

the first group. Normalization impedances: corresponding impedanceof a single strip. Normal-

ization eigenvalues: single-strip eigenvalue corresponding to the first group. Parameter values:

β = b/ℓ = 0.0205, Ncos = 8, Nsin = 0.

Based on the observations above, we conclude that eigencurrents describe modulated os-
cillations of the element impedances.Specifically, modulated oscillations of the element
impedances are described by a limited number of coupling eigencurrents only. The examples
above reveal that these eigencurrents are the eigencurrents of the first group. The scan behavior
of the array is described by two or three eigencurrents, while the modulated oscillations are due
to the excitation of one or two higher-order eigencurrents.

This conclusion and the conclusion of Section 6.2 shows thatmodulated oscillations of ele-
ment impedances and variations of element impedances attributed to surface waves are caused
by the excitation of specific eigencurrents and, therewith,by the same mechanism. Both these
array effects are due to resonant behavior.There are certain frequency ranges in which the ef-
fects occur. In the examples above of modulated oscillations in uniform line arrays ofH-plane
oriented rings, the frequency ranges from 11% to 16% and from14% to 20%, respectively, be-
low the frequency for which the array exhibits a ‘resonant broadside embedded impedance’. For
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E-plane oriented rings, the modulated oscillations occur 2.7% above this frequency.

In the practice of mechanical engineering, it is very difficult to construct a flat ground plate
or (approximately) uniform element geometries, see also item 4 on p. 7. In Section 2.5, we
showed an example of a randomly perturbed uniform line arraythat is excited at a frequency
for which resonant behavior occurs, see Figure 2.13. Although the modulated oscillations, the
general pattern remains unchanged and the modulations are present. This shows that large vari-
ations and modulated oscillations of element impedances are not merely an artefact of uniform
line arrays. Our idea is that the spectra and the eigencurrents will show a ‘stable’ behavior with
respect to small geometry perturbations, but that the arrayperformance may change consider-
ably as observed in this section. Moreover, (small) differences in element geometry and height
above the groundplane can be dealt with by the proposed eigencurrent approach by allowing
for differences between the single-element eigencurrentsin which the array eigencurrents are
decomposed. For arrays of rings, such an extension is straightforward, because the single-ring
eigencurrents are invariant with respect to the ring geometry and depend only on the angle that
describes the circumference. Moreover, an impedance operator that allows for differences be-
tween ring radii and ring widths, and a corresponding momentmatrix was deduced in Chapter 2
and 3. We mention that whether the resonances studied in thissection occur in practice, depends
on the actual design, in particular the conductivity of the microstrip material used. If they occur,
loading can prevent the large modulated oscillations. As inSection 6.2, the eigenvalues predict
the required uniform surface loads.

6.3.3 Line Array Analysis Using Small Array Information

In Section 5.3.2, we suggested to use information about the spread of the eigenvalues obtained
for relatively small arrays in the analysis of large(r) arrays as follows. First, we analyze the
spread of each group of eigenvalues for some relatively small arrays, say with 4, 8, and 12 ele-
ments. We expect that if the spread of a group of eigenvalues tends to become constant as the
number of elements increases, for the corresponding single-element eigencurrent we need only
the coupling between each element and, e.g., its first 3 or 7 neighbors on both of its sides. Next,
in the eigencurrent approach, we construct the moment matrices of larger arrays by calculating
only the relevant coupling between eigencurrents. If for each group of coupling eigencurrents
only the coupling between each element and its firstM neighbors on both sides, i.e.,2M neigh-
bors in total, need to be taken into account, the number of Toeplitz blocks in the moment matrix
of the eigencurrent approach reduces from2Nsub − 1 to 2M + 1, whereNsub is the number of
elements.

We define the spread of a group of eigenvalues as in Section 6.3.3, namely as the maximum
absolute perturbation. In that section, we wanted to know whether the eigenvalues of a group
are approximately the same as the corresponding single-element eigenvalue. In this section, we
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want to investigate to what extent the spread of the eigenvalues is a measure for the numberM .
Therefore, we are also interested in the finer structure of the spread. Despite this, we think that
it is not necessary to consider, for example, the minimum absolute perturbations of the groups
as well, because in Section 5.3.2, we showed that the minimumtends to become constant more
rapidly than the maximum.

The maximum absolute perturbations of the first and second groups of eigenvalues as a func-
tion of the number of elements in two different line arrays shown in Figure 6.25 are discussed
in detail in Subsection 5.3.2, see Figure 5.18. For the line array in free space, the maximum ab-
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Figure 6.25 Maxima and minima of the absolute perturbations{|ǫnq|}Nsub
q=1 of the first (left)

and the second (right) group of eigenvalues as a function ofNsub, i.e., the number of rings, for

a line array of 40 rings, with spacingλ/2, in free space (+) and in a half space withh/a = 6/5

(◦). Parameter values: four groups of coupling eigencurrents,ka = π/3, β = 3/100, ψ = 0,

Ncos = 4, Nsin = 0.

solute perturbations increase monotonically, which is discussed on pp. 169 ff. in relation to the
divergence of the infinite-array solution at the grating-lobe scan angle. In contrast, the maxima
for the line array in half space withh/a = 6/5 (h = λ/5) become constant for line arrays of
20 elements or more. Based on these observations and our theoryon the number of neighbors
needed, we would say that for the line array in half space, we need the first20 neighbors to
describe mutual coupling, while for the line array in free space we cannot neglect any mutual
coupling between the single-element eigencurrents of the first and the second group. That this
estimation is too pessimistic is shown by Figures 6.26 and 6.27. For the line array in half space,
M = 5 is sufficient to obtain an accurate impedance approximationfor a scan at45◦. A rough
approximation is obtained withM = 1. For the line array in free space,M = 5 provides an
accurate approximation of the absolute impedances, but notof their phases. The approxima-
tion of the phases is much more accurate forM = 10, but the approximation of the absolute
values deteriorates slightly. Further investigation revealed that a perfect match is obtained with
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Figure 6.26 Normalized absolute values (left) and phases (right) of the ring impedances for a

line array of 40 rings in a half space space withh/a = 6/5 and with spacingλ/2 (d = 3a). The

rings are excited by voltage gaps of 1V for a scan at45◦. The impedances are computed by the

moment method (∗), by the eigencurrent approach (◦), and by the eigencurrent approach with

M = 1 (△) andM = 5 (¤). Normalization: Absolute impedance of a single ring. Parameter

values: two groups of coupling eigencurrents,ka = π/3, β = 3/100, ψ = 0, Ncos = 8,

Nsin = 0.

M = 20. Finally, we found similar results for0◦.
The pessimistic estimate of the number of neighbors for the line array in free space is ex-

plained as follows. In that case, the maximum absolute perturbation of a group belongs to
the eigenvalue corresponding to the grating lobe scan angle. On pp. 169 ff., we showed that
this eigenvalue tends to become infinite as the number of elements increases. Therefore, the
maximum absolute perturbation will not become constant. For line arrays in a half space, we
illustrated that the eigenvalues of each group are bounded,which explains why the estimate of
the number of neighbors provides accurate results.

To obtain a better estimate forM , we first define the quantity

∆[Nsub]
n =

|MRP
[Nsub+1]
n − MRP

[Nsub−1]
n | |νsub

n |2
2 |νsub

1 |2 , (6.3)

whereMRP
[Nsub]
n is the spread of thenth eigenvalue group as defined in Section 6.3.1. This

quantity is a measure for the slopes of the curves described by the spreads of the groups as a
function of the number of elementsNsub. Examples of such curves are shown in Figure 6.25.
The factor|νsub

n |2/|νsub
1 |2 is meant to account for the differences in the absolute perturbations

of different groups. We call (6.3) the relative variation ofthe spread. For the line array in free
space, the relative variation of the spread of the first and second groups for 20 elements are
∆

[21]
1 = 0.028 and∆

[21]
2 = 0.031, while for the line array in half space, the relative variations
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Figure 6.27 As Figure 6.26, but the line array is in free space. Moreover, the values of M are

M = 5 (△) andM = 10 (¤). Only the impedances for a scan at45◦ are shown.

are∆
[6]
1 = 0.035 and∆

[6]
2 = 0.027. The differences are due to the rapid changes of the relative

variation nearNsub = 6, by which the values for the line array in half space vary strongly, if
Nsub is varied. These results indicate that a fixed tolerance may exist for the groups. The relative
variation of the spread∆[Nsub]

n should be smaller than about 0.03 to takeM = Nsub − 1.
To investigate whether the relative variation is indeed a good measure forM , we consider

the same line arrays as above, but with spacing3λ/5. The maximum and minimum absolute
perturbations as a function of the number of rings are shown in Figure 5.18. For the line array
in free space, the relative variations of the first and secondgroups are∆[6]

1 = 0.026 and∆
[6]
2 =

0.041 and for the line array in half space, they are∆
[5]
1 = 0.028 and∆

[5]
2 = 0.028. These values

of the relative variations are approximately the same as above for the spacingλ/2. Therefore,
we expect that the approximations of the impedances have thesame accuracy as above. For
the line array in half space, we obtained a good match betweenthe solution obtained by the
eigencurrent approach withM = 4 and the solution obtained by the moment method, even near
the grating-lobe scan angle41.8◦. For the line array in free space, we obtained a good match for
M = 5 between both solutions for scans up to10◦. For larger scan angles, the approximation
with M = 5 slowly deteriorates. At20◦, the impedance variation is approximated accurately
with M = 10, while Figure 6.28 shows that the impedance variation at30◦ is approximated
accurately withM = 20 instead ofM = 5.

The increase ofM in free space for scan angles larger than10◦ can be explained as fol-
lows. First, in Subsection 6.3.1, we observed that the appearance of a grating lobe increases the
maximum relative difference inL2 sense between the element currents obtained by the moment
method solution and by the eigencurrent approach. This effect, which influences the approxima-
tion of the impedance, is more pronounced for arrays in free space than for arrays in half space.
Second,MRP

[Nsub]
1 andMRP

[Nsub]
2 increase slowly but monotonically withNsub for the line
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Figure 6.28 As Figure 6.26, but the line array is in free space with spacing3λ/5 and the scan

angle is30◦. Moreover,M = 5 (△) andM = 20 (¤).

array in free space, while they become constant for the line array in half space, see Figure 5.18.
These observations indicate that we need to be careful with neglecting mutual coupling between
elements near the appearance of a grating lobe in free space.The examples show that for scan
angles within25◦ from grating-lobe appearance, about 5 – 10 more neighbors should be taken
into account than predicted by∆[Nsub]

n . 0.03.

Near resonant behavior, the estimate ofM by means of the relative variation of the spread
provides reasonably accurate results, but smaller values of M do in general not show the mod-
ulation observed in the previous subsection. For example, Figure 6.29 shows that if we take
M = 6 atka = 0.943, we obtain a totally incorrect impedance pattern. Instead of being modu-
lated, it resembles a common broadside impedance pattern asshown in Figure 6.1. Hence, the
modulation is the result of mutual coupling between elements that are relatively far away from
each other. The relative variation with tolerance 0.03 as above provides the estimateM = 8,
because∆[8]

1 = 0.032 and∆
[9]
1 = 0.023. This value ofM is too low. Figure 6.29 (right) shows

that for M = 10, the modulation is predicted, but the amplitude is too small. For M = 20,
the amplitude of the modulation obtained by the eigencurrent approach is about the same as the
amplitude obtained by the moment method.

The difference between the predicted valueM = 8 and the required valueM = 20 is not due
to the resonant behavior. As observed above,MRP

[Nsub]
1 increases slowly but monotonically in

free space and, therefore, the relative variation does not give a correct indication ofM for the
tolerance 0.03. For line arrays in half space with resonant behavior, the numberM is much better
estimated by the relative variation. For example, by analyzing impedance patterns, we found
that the resonant behavior of the line array of 40 rings shownin Figure 6.17 is well-described
by the choiceM = 7 for bothka = 0.972 andka = 0.943. In both cases,∆[8]

1 ≈ 0.023 and
∆

[8]
2 ≈ 0.014. These values are smaller than the fixed tolerance 0.03 chosen above and, hence,
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Figure 6.29 Normalized absolute impedances of the line array of Figure 6.26, but theline array

is positioned in free space and excited at the frequency withka = 0.943; scan angle is0◦. Left:

the impedances are computed by the eigencurrent approach withM = 6. Right: the impedances

are computed by the moment method (∗) and by the eigencurrent approach withM = 10 (△)

andM = 20 (¤). Normalization: absolute impedance of a single ring.

the relative variation provides the correct estimate ofM .

Incorrect impedance patterns for smallM , both for resonant behavior and non-resonant be-
havior, are due to incorrect eigenvalues and eigencurrents. In the example of resonant behavior,
the eigenvalues forM = 6 andM = 10 are perturbed with respect to the eigenvalues for the
case in which all coupling in the first two groups is taken intoaccount, i.e.,M = 39, as shown
in Figure 6.30. In Subsection 6.3.2, we observed that the modulations atka = 0.943 in this
example are caused by the excitation of the 37th eigencurrent. ForM = 39 andM = 10, the
37th eigenvalue is about 1.7 and 1.1 times smaller than the 40th eigenvalue, respectively. In
contrast, forM = 6, the 37th eigenvalue is about 1.7 times larger than the 40th eigenvalue.
Therefore, the 37th eigencurrent is not excited ifM = 6 is used, while it is excited ifM = 10

or M = 39 is used. The differences between the eigenvalues for different values ofM are ac-
companied by differences in eigencurrents. For smaller values ofM , the dominant behavior of
the eigencurrents is too much perturbed. In other words, thecoefficients of the dominant single-
element eigencurrents in the array eigencurrents of a groupare too much perturbed. Since these
coefficients depend negligibly on the geometry parameters and the frequency, negative side ef-
fects of choosing a small value ofM can be prevented by computing the eigencurrents first for
a frequency, or more general, for a parameter setting, for which no resonant behavior occurs.
Subsequently, the eigenvalues are computed by means of the Rayleigh-Ritz quotient as will be
explained in the next subsection.

The results above show that we may neglect mutual coupling, but that we need to be care-
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Figure 6.30 The eigenvalues of the first group corresponding to the casesM = 6 (△) and

M = 10 (¤) in Figure 6.29 together with the eigenvalues for the case in which all elements

couple (M = 39, ◦). Normalization: absolute single-ring eigenvalue.

ful. Except near the appearance of a grating lobe, the numberof neighbors needed to describe
mutual coupling is well predicted by the variation of the spread as a function of the number of
elements in small arrays. Empirically we deduced that if∆

[Nsub]
n νsub

1 /νsub
n is smaller than 0.03,

only the coupling of each element with its firstNsub − 1 neighbors needs to be considered for
the single-element eigencurrent corresponding to thenth group of eigencurrents. In half space,
the estimate of the number of neighbors provides accurate results. In free space, the estimate
may be a few elements too small due to the monotonic, but possibly slow increase of the spread.
To relate the tolerance on the relative variation to a certain maximum error of the impedance,
further investigation is needed. In this respect, we shouldkeep in mind that by evaluating the
impedance of the elements, we point-evaluate the currents.The results of these point evalu-
ations are sensitive to parameter variations. Therefore, we recommend relating the tolerance
to the maximum relativeL2 differenceMRDL2

introduced in Subsection 6.3 instead of to the
impedance.

Regarding the computation times in Table 6.1, we note that the computation times for 100,
200, and 400 rings reduce about 20% ifM = 10. This reduction is not so large, because
for increasing numbers of elements, the computation time ofthe eigencurrents and eigenvalues
dominates the computation time of the (reduced) moment matrix from which the eigencurrents
and eigenvalues are determined. Moreover, the CPU time of moment matrices for uniform
line arrays tends asNsub in contrast to the CPU time for non-uniform arrays, which tends as
N2

sub. To avoid eigenvalue computation from (reduced) moment matrices, we discuss in the next
section the computation of eigenvalues and performance parameters by choosing a fixed set of
eigencurrents for various parameter settings.



218 6. TEST CASES FOR THEEIGENCURRENTAPPROACH

6.3.4 Line Array Analysis Using a Fixed Set of Eigencurrents

In Subsection 5.3.2, we proposed to approximate the (coupling) array eigencurrents for a certain
parameter setting as follows: their expansion coefficientswith respect to the single-element
eigencurrents are approximated by the expansion coefficients obtained for another parameter
setting. This approximation is based on the weak dependenceof the coefficients on the geometry
parameters and the frequency as demonstrated in Subsection5.3.2. In this subsection, we show
some examples of this approximation.

The first example concerns a line array of 40 rings in free space with spacingλ/2. The
rings are excited by voltage gaps of1V. Only one group of coupling eigencurrents is used. The
expansion coefficients of these eigencurrents are approximated by the expansion coefficients
obtained for the spacing3λ/5. Next, the eigenvalues are approximated by the Rayleigh-Ritz
quotient (5.38). Figure 6.31 shows the absolute values and the phases of the ring impedances
for a scan at45◦. Both absolute values and phases show the same curve shapes as the absolute
values and phases obtained by the eigencurrent approach andthe moment method. For the
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Figure 6.31 Normalized absolute values (left) and phases (right) of the ring impedances for a

line array of 40 rings in free space with spacingλ/2. The rings are excited with voltage gaps

of 1V for a scan at30◦. The impedances are computed by the moment method (∗), by the

eigencurrent approach with one group of coupling eigencurrents (◦), and by the eigencurrent

approach with eigencurrents obtained for the spacing3λ/5 (△). Normalization: single-ring

impedance. Parameter values:ka = π/3, β = 3/100, ψ = 0, Ncos = 8, Nsin = 0.

middle 20 rings, absolute values and phases match perfectly the absolute values and phases
obtained by the eigencurrent approach. Near the edges, the differences in absolute value and
phase run up to 3% and 0.05 rad, respectively. As observed in Section 6.1, the phase difference
between the impedances obtained by the moment method and by the eigencurrent approach with
only one group of coupling eigencurrents is almost uniform with value 0.05 rad. If two groups
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are taken into account, this difference almost vanishes.

The second example concerns the same line array. We denote the frequency at which the
array is excited byf0 and the corresponding wavelength byλ0. The spacing isλ0/2. The
expansion coefficients of the eigencurrents are approximated by the expansion coefficients ob-
tained for the frequency1.1f0. For a scan at45◦, Figure 6.32 shows that the normalized ab-
solute impedances thus obtained match very well the normalized absolute impedances obtained
by the eigencurrent approach (without the described eigencurrent approximation) and the mo-
ment method, if one group of coupling eigencurrents is used.The phases of the impedances
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Figure 6.32 Normalized absolute values (left) and phases (right) of the ring impedances for a

line array of 40 rings in free space with spacingλ0/2. The rings are excited with voltage gaps of

1V at the frequencyf0 for a scan at45◦. The impedances are computed by the moment method

(∗), by the eigencurrent approach (◦), and by the eigencurrent approach with eigencurrents com-

puted at the frequency1.1f0 (△). Upper figures: one group of coupling eigencurrents. Lower

figures: two groups of coupling eigencurrents. Normalization: single-ring impedance (atf0).

Parameter values:k0a = π/3, β = 3/100, ψ = 0, Ncos = 8, Nsin = 0.
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match very well the phases obtained by the eigencurrent approach. The phase difference with
the impedances obtained by the moment method is about 0.1 rad. For two groups of coupling
eigencurrents, the phase approximation improves considerably and mimics the phases obtained
by the eigencurrent approach and the moment method quite well. The approximation of the
absolute impedance is slightly worse than for one group of coupling eigencurrents. We note
that for two groups of coupling eigencurrents, the phases obtained by the eigencurrent approach
(without the described eigencurrent approximation) matchthe phases obtained by the moment
method perfectly.

One could think that the differences between the impedancesobtained by the eigencurrent
approaches with and without approximated eigencurrents are not only small because of the
weak dependence of the eigencurrents on the geometry parameters and the frequency, but also,
because of small differences between the impedances at the frequenciesf0 and1.1f0. However,
at 1.1f0, the impedances differ considerably from the the impedances atf0. This follows from
a comparison of Figure 6.32 with Figure 6.33, which shows theimpedances of the same array
as in Figure 6.32, but excited at1.1f0 instead off0. The eigencurrents are determined atf0

instead of1.1f0. Contrary to Figure 6.32, the phases obtained by the approximation match
the phases obtained by the eigencurrent approach and the moment method reasonably well for
one group of coupling eigencurrents. The absolute values differ about 8% from the absolute
values obtained by the moment method, while they match the absolute values obtained by the
eigencurrent approach approximately. For two groups of coupling eigencurrents, the absolute
impedances and the corresponding phases obtained by the approximation match the absolute
values and phases obtained by the moment method, except nearthe left edge of the array.

Up to now, we have not applied the matrix-reduction suggested in the previous subsection.
We consider the last example of the previous subsection, i.e., a line array of 40 rings in free
space excited at the frequency withka = 0.943. At this frequency, the line array exhibits
resonant behavior. First, we compute the eigencurrents forthe same line array, but excited at
the frequency withka = 1.026. Next, we apply the Rayleigh-Ritz quotient to the computed
eigencurrents to approximate the eigenvalues atka = 0.943. Both in the eigencurrent approach
and in the Rayleigh-Ritz quotient, we neglect mutual coupling by takingM = 6 andM = 20,
whereM is number of neighbors that couple with an element. As observed in the previous
subsection, forM = 6, we obtain an impedance pattern without modulation. The eigenvalues
of the first group are incorrect and the impedance pattern does not show the modulations, see
Figure 6.34. ForM = 20, the modulations are well predicted. This number ofM corresponds
with the estimate forM found in the previous subsection, see Figure 6.29. We conclude that
even at the resonant frequency, we may neglect mutual coupling between elements according to
the rule of thumb proposed in the previous subsection.

Regarding the quantitative differences observed in the results of this subsection, we should
keep in mind that differences between impedances obtained by the moment method and the
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Figure 6.33 As Figure 6.32, but the array is excited at the frequency1.1f0, while the eigencur-

rents to obtain the third curve (△) are computed at the frequencyf0. The normalization is the

single-ring impedance at1.0f0 as in Figure 6.32.

eigencurrent approach may be larger than the differences obtained for the maximum relative
L2 difference introduced in Subsection 6.3.1, see also Section 6.3.3. Moreover, differences be-
tween impedance results do not necessarily mean that other performance parameters show large
differences as well. For the electric far fields of the scans at 30◦ and45◦, perfect matches were
obtained except near the grazing angles±90◦. Thus, we conclude that, for large parameter vari-
ations, both the element impedances and the far-field performance parameters are approximated
accurately for a fixed set of eigencurrent coefficients.

This conclusion can be used in computations of the array perfomance parameters for a given
excitation as follows. First, for a given parameter setting, we compute the eigenvalues and
eigencurrents. Next, we fix the computed eigencurrents. Fora new parameter setting, we ap-
proximate the eigenvalues by the Rayleigh-Ritz quotient applied to the fixed eigencurrents. Both
in the computation of the eigencurrents in the first step and in the computation of the eigenvalues
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Figure 6.34 Left: normalized absolute ring impedances for a line array of 40 rings in free space

excited at the frequency withka = 0.943 by voltage gaps of 1V for a scan at0◦. Impedances

computed by the eigencurrent approach with two groups of coupling eigencurrents (∗) and by

the eigencurrent approach with eigencurrents computed at the frequency with ka = 1.206,

both forM = 6 (△) andM = 20 (¤). Normalization: corresponding impedance of a single

ring. Right: eigenvalues of the first group forM = 6 (△), M = 20 (¤), andM = 39

(∗). Normalization: absolute single-ring eigenvalue. Parameter values:d/a = 3 (d = λ/2 at

ka = π/3), β = b/a = 3/100, ψ = 0, Ncos = 8, Nsin = 0.

in the second step, we restrict mutual coupling on basis of calculations of the relative variation
∆

[Nsub]
n for small arrays as explained in the previous subsection.

6.3.5 Line Array Analysis Using Single Strip Eigencurrents

In addition to the approximation of (coupling) array eigencurrents as discussed in the previous
subsection, we proposed in Subsection 5.3.2 to approximatethe array eigencurrents and eigen-
values as follows. First, compute the expansion coefficients of the eigencurrents of a single strip
obtained by piecewise linear expansion functions. Next, consider these expansion coefficients
as the coefficients of the dominant single-element eigencurrents in the array eigencurrents. In
this way, approximated array eigencurrents are obtained. Finally, compute the eigenvalues of
the line array by applying the Rayleigh Ritz quotient to the approximated (array) eigencurrents.
The approximation is based on the correspondence between the coefficient distributions of the
eigencurrents of a single strip and the coefficient distributions of line arrays of strips and rings,
as discussed in Subsection 5.3.2.

For a line array of 40 rings excited by voltage gaps of 1V to scan at45◦, Figure 6.35 shows
a comparison of the moment method, the eigencurrent approach with one group of coupling
eigencurrents, and the eigencurrent approach with approximated eigencurrents. The eigencur-
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Figure 6.35 Normalized absolute values (left) and phases (right) of the ring impedances for a

line array of 40 rings in free space with spacingλ/2. The rings are excited with voltage gaps

of 1V for a scan at45◦. The impedances are computed by the moment method (∗), by the

eigencurrent approach (◦), and by the eigencurrent approach with eigencurrents obtained from

the eigencurrents of a single strip in free space with 40 piecewise expansion functions (△). One

group of coupling eigencurrents is used. Parameter values of the rings: ka = π/3, β = 3/100,

ψ = 0, Ncos = 8, Nsin = 0. Parameter values of the single strip:2ℓ = λ/2, β = 1/50,

Ncos = 8, Nsin = 0.

rent coefficients of the approximation are obtained form a strip of half a wavelength with 40
piecewise functions. The absolute impedances obtained by the approximation match the ab-
solute impedances obtained by the eigencurrent approach (without the described eigencurrent
approximation) and the moment method reasonably well. The phase difference with the phases
obtained by the moment method is about 0.1 rad, which is aboutthe same as the difference
between the phases obtained by the eigencurrent approach and the moment method. Contrary
to the eigencurrent approach, the phases of the approximation mimic the pattern of the phases
obtained by the moment method less well.

Taking two groups of coupling eigencurrents instead of one,we do not obtain a much bet-
ter result for the phases obtained by the approximation as inthe previous subsection. This is
explained as follows. Only the dominant behavior of the eigencurrents of the first and second
groups of eigencurrents can be described by the eigencurrent coefficients of the strip, not their
perturbations. These perturbations are discussed in Subsection 5.3.2, see for example Figure
5.25 and the related paragraphs. They are described by the coefficients of the non-dominant
single-element eigencurrents in each group. Since the magnitudes of the perturbations are be-
tween -10 dB and -20 dB with respect to the dominant behavior of the eigencurrents, the per-
turbations contribute to the local performance parametersof the elements. Especially the per-
turbations in the first and second groups that are of the order-10 dB may contribute more to
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these parameters than the dominant part of eigencurrents inthe third or fourth group, because
the groups with higher index correspond to higher single-element eigenvalues.

The eigencurrent approach itself can handle large perturbations or perturbations that vary
with the parameter setting, because it computes the eigenvalues and eigencurrents for each set-
ting separately. The approximations of Subsections 6.3.4 and 6.3.5 are applicable if either the
perturbations depend negligibly on the geometry parameters and the frequency, or if the per-
turbations are of second order with respect to the dominant behavior of the eigencurrents. The
eigencurrents of the arrays we considered exhibit the second property. The perturbations of
eigencurrents may become large if there is a degenerate eigenvalue. In that case, there is an
eigenspace of more than one independent single-element eigencurrent. We encountered such a
case in Subsection 5.3.2, p. 163, for a line array of rings with both cosine and sine eigencurrents
prescribed on the elements. These eigencurrents exhibit the same eigenvalue and span together
an eigenspace. Moreover, they are orthogonal with respect to the initializingL2 inner product.
In the general case, it is not essential that the eigencurrents obtained from the moment matrix
of a single element are orthogonal with respect to the initializing inner product. It is only es-
sential that they are independent. In this respect, it is important to note that independency does
not depend on the inner product. Having computed the eigencurrents of a single element, we
construct the new inner product in step E of the initialization of the eigencurrent approach, see
Subsection 5.1.2. The eigencurrents corresponding to a degenerate eigenvalue are orthonormal
by the definition of this inner product.

6.4 Array Surface Waves versus Surface Waves in
Dielectric Layers

Up to now, we have considered arrays in free and half space. Inpractice, the elements are
positioned on a dielectric layer on the ground plane. Such a layer can carry surface waves. If
such a wave occurs, most of the power is carried along the array surface instead of radiated into
space. Consequently, the array becomes ‘blind’. In the literature, blindness is considered by
many authors, see for example [107, 95, 93]. In this section,from an eigencurrent point of view,
we discuss the correspondences between array surface wavesand surface waves in dielectric
layers. Moreover, we discuss whether the eigencurrent approach with only a limited number of
groups of coupling eigencurrents can treat arrays positioned on grounded dielectric layers. To
this end, we consider first the application of the infinite-array approach to arrays in free space.

To compute the currents on the elements of an array by the infinite-array approach, the
‘infinite-array series’ is truncated. We showed that the infinite-array approach does not provide
a convergent solution at the grating-lobe scan angle, see Section 3.5. Hence, if the current at this
scan angle is evaluated by the infinite-array approach with atruncated series, the result depends



6.4. ARRAY SURFACE WAVES VERSUSSURFACE WAVES IN

DIELECTRIC LAYERS 225

on the truncation number. To evaluate the current accurately, the finite array must be considered.

In the practice of the moment, the array is not scanned up to the grating-lobe scan angle.
Therefore, evaluation of the impedance at this angle is hardly considered. However, for us, it is
important for the following reason. If a grating lobe appears in the plane of the array, a large
amount of energy is radiated along the surface of the array. The same phenomenon occurs if the
elements are positioned on a dielectric layer, which carries a surface wave. We show that the
eigencurrent approach with only three groups of coupling eigencurrents computes the currents
on the elements and related performance parameters sufficiently accurate at the grating-lobe
scan angle. Thus, we are strengthened in our idea expressed in Section 5.4 that the eigencurrent
approach can treat not only arrays in free and half space, butalso arrays positioned on a grounded
dielectric layer.

Figure 6.36 (upper figures) shows the impedances for a line array of 40 rings in free space
excited by voltage gaps of 1V at the frequency for whichka = 1.23 to scan at45.3◦. Since the
spacing isd = 3a = 0.587λ, a grating lobe occurs at−90◦ for this scan angle. Both for one
and two groups of coupling eigencurrents, the absolute impedances obtained by the eigencurrent
approach differ at most 2.5% from the absolute impedances obtained by the moment method.
The phase differences are approximately uniform over the array, being 0.07 rad and 0.05 rad
for one and two groups of coupling eigencurrents. Figure 6.36 (lower figures) shows that phase
differences are slightly larger if the number of elements isincreased to 201. Finally, the behavior
of the absolute impedances and the corresponding phases at the grating-lobe scan angle for a line
array of 201H-plane oriented rings is in general the same as the behavior of arrays composed
of an infinite number of parallel line arrays, where each linearray consists of 201 parallel wires
of about half a wavelength, see [46: Figs. 6, 7].

The phase differences observed above are not specifically due to the appearance of a grating
lobe. Figure 6.37 shows that if the frequency is changed suchthat ka = 1.047, the phases
obtained by the eigencurrent approach with two groups of coupling eigencurrents differ less
than 0.02 rad from the phases obtained by the moment method. Why this phase difference
is much smaller than the phase difference atka = 1.23 is explained as follows. In Section
6.3.1, we investigated for the line array of 40 rings the spreads of the eigenvalue groups as a
function of the frequency and we related the behavior of the spreads to the maximum relativeL2

difference between the solutions obtained by the moment method and the eigencurrent approach.
At ka = 1.23, theL2 difference becomes indeed larger due to the appearance of the grating
lobe, but it is still below 2%. More important is the conclusion in Section 6.3.1 that on basis
of the behavior of the spreads of the eigenvalue groups, the third group is needed to describe
mutual coupling forka near 1.3. At this value ofka, the single-ring eigenvalues corresponding
to the second and third groups become approximately the same. Consequently, the second and
third single-ring eigencurrents become equally importantin the description of the current on
a single ring. A test revealed that if the third group of eigencurrents is taken into account,
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Figure 6.36 Normalized absolute values (left) and phases (right) of the ring impedances for line

arrays of 40 and 201 rings in free space. The rings are excited with voltage gaps of 1V at the

frequency withka = 1.23 for a scan at45.3◦. The impedances are computed by the moment

method (∗) and by the eigencurrent approach (◦). Parameter values: one group of coupling

eigencurrents,d = 3a (d = λ/2 at ka = π/3), β = b/a = 3/100, ψ = 0, Ncos = 8,

Nsin = 0.

the phase difference of the impedances in Figure 6.36 reduceto 0.02 rad. Forka ≈ 1, the
single-ring eigenvalue of the third group is much larger than the single-ring eigenvalue of the
second group. Therefore, only two groups of groups of coupling eigencurrents are needed to
describe mutual coupling. These results show that grating lobe behavior is described by only
two or three groups of coupling eigencurrents for ring circumferences of less than 1.5 times
the wavelength. Moreover, the results confirm that the element shape determines which single-
element eigencurrents can be excited; whether they are excited is determined by the excitation
field of the array. Only single-element eigencurrents with small eigenvalues are excited and,
hence, only these eigencurrents need to be taken into account as coupling eigencurrents in the
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Figure 6.37 As Figure 6.36, but the frequency is changed such thatka = 1.047. Only the

impedances of the line array of 40 rings are shown.

cycle of the eigencurrent approach.
Taking three instead of two groups of coupling eigencurrents into account increases the

computation time of the eigencurrent approach. This can be prevented as follows. Since the co-
efficients of the dominant single-element eigencurrent in the array eigencurrents of each group
are the same, see Subsection 5.3.2 and conclusion 7 in Section 5.4, we can approximate the
eigencurrents of the third group by the dominant behavior ofthe eigencurrents of the first group.
Then, we compute the eigenvalues of the third group by the Rayleigh-Ritz quotient. As dis-
cussed in relation to the single-strip eigencurrents in Subsection 6.3.5, by this approximation,
we ignore the perturbation of the eigencurrents of the thirdgroup. This perturbation is of less
importance than the perturbation of the first group, becausethe single-element eigenvalue cor-
responding to the third group is higher than the one corresponding to the first group. Therefore,
the approximation will not affect the result for the currents on the elements and the related
performance parameters.

Finally, we discuss the correspondences and differences between array surface waves, sur-
face waves in dielectric layers, and grating-lobe appearance. The effect of surface waves in
dielectric layers resembles the effect of grating-lobe appearance in the sense that a large amount
of power is transported along the surface of the array. Sincea grating lobe is represented by
a specific eigencurrent, we think that a surface wave in a dielectric layer is represented by a
specific eigencurrent as well. In contrast to the far field of the eigencurrent related to the grating
lobe, the far field of the eigencurrent related to a surface wave will have main lobes at±90◦

only. The eigenvalue corresponding to this eigencurrent will correspond to the blind scan angle
in the same way as the eigenvalue of the ‘grating-lobe’ eigencurrent corresponds to the grating-
lobe scan angle. As shown in Section 6.2, the occurrence of array surface waves corresponds
to resonant behavior of the array. According to our definition, grating-lobe appearance is only
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resonant behavior of the array, if the eigenvalue corresponding to the grating-lobe scan angle
is relatively close to zero. In other words, if the eigencurrent corresponding to the grating-lobe
scan angle exhibits a relatively small eigenvalue, i.e., a relatively low characteristic impedance.
We think that a surface wave in a dielectric layer is only resonant behavior of the array, if the cor-
responding eigenvalue is relatively close to zero according to our definition. Resonant behavior
due to a surface wave can occur both in a dielectric layer of finite extent and in a dielectric layer
of infinite extent. In a dielectric layer of infinite extent, apropagating surface wave becomes a
standing wave for certain sizes of the array, which is positioned in/on the dielectric layer. In a
dielectric layer of finite extent, a propagating surface wave becomes a standing wave both for
certain sizes of the array and for certain sizes of the dielectric layer.

6.5 Summary of the Conclusions

In this section, we first summarize point-by-point the main conclusions of this chapter. Next,
we discuss to what extent our analysis as described in Chapters 5 and 6 meets the four require-
ments formulated in Chapter 1, p. 1.2, and to what extent our analysis provides insight into
characteristics of arrays.

1. Eigencurrents describe array surface wave phenomena and related variations of element-
current amplitudes and element impedances.

Specifically, surface wave phenomena and the related variations are described by only a
limited number of coupling eigencurrents. The examples of this chapter reveal that these
eigencurrents are the eigencurrents of the first group. Foureigencurrents describe the
scan behavior of the array, while three eigencurrents describe the surface-wave behavior.
[Section 6.2]

2. Eigencurrents describe modulated oscillations of the element impedances.

Specifically, modulated oscillations of the element impedances are described by a limited
number of coupling eigencurrents only. Again, the examplesof this chapter reveal that
these eigencurrents are the eigencurrents of the first group. The scan behavior of the array
is described by two or three eigencurrents, while the modulated oscillations are due to the
excitation of one or two higher-order eigencurrents. [Subsection 6.3.2]

3. Variations of element impedances attributed to surface waves and modulated oscillations
of element impedances are caused by the excitation of specific eigencurrents and, there-
with, by the same mechanism. Both these array effects are dueto resonant behavior.

There are certain frequency ranges in which the effects occur. In the examples in this
chapter of modulated oscillations in line arrays ofH-plane oriented rings, the frequency
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ranges from 11% to 16% and from 14% to 20%, respectively, below the frequency for
which the array exhibits a ‘resonant broadside embedded impedance’. In the examples of
variations of element impedances in line arrays ofH-plane oriented strips, the frequency
ranges from 14% to 20% below this frequency. Finally, for line arrays ofE-plane oriented
rings, the modulated oscillations occur about 2.7% above this frequency. In contrast to
the large variations of element impedances in item 1, the modulated oscillations do not
occur over their entire frequency range. [Section 6.2 and Subsection 6.3.2]

4. On basis of the eigenvalue distribution of the first group of (array) eigenvalues, (uniform)
element surface loads required to reduce resonant behaviorcan be determined.[Section
6.2]

5. The spread of the eigenvalue groups is an appropriate qualitative measure to determine
the number of groups of coupling eigencurrents needed to describe mutual coupling.

Here, the spread of an eigenvalue group is defined as the product of the maximum ab-
solute eigenvalue perturbation, i.e.,max{|ǫnq|}Nsub

q=1 , and the ratio of the first absolute
single-element eigenvalue,|νsub

1 |, and the absolute single-element eigenvalue correspond-
ing to this group,|νsub

n |. In formula,max{|ǫnq|}Nsub
q=1 · |νsub

1 |/|νsub
n |. The single-element

eigenvalues are indexed according to increasing absolute value. [Subsection 6.3.2]

6. In the cycle of the eigencurrent approach for uniform line arrays generated from a single
element, mutual coupling between distant elements may be neglected, but special care is
needed. Except near the appearance of a grating lobe, the number of neighbors needed
to describe mutual coupling is well predicted by the relative variation of the spreads for
small arrays. Here, the relative variation of the spreads are defined as in Subsection 6.3.3.

Empirically, we deduced that if the relative variation of the spread∆[M+1]
n is smaller than

0.03, in line arrays of more thanM + 1 elements, only the coupling of each element with
its first M neighbors needs to be considered for the single-element eigencurrent corre-
sponding to thenth group of eigencurrents. Here, the relative variation is defined as in
Subsection 6.3.3. In half space, the estimate of the number of neighbors provides accurate
results, even for resonant behavior. In free space, the estimate may be a few elements too
small due to the monotonic, but possibly slow increase of thespread. [Subsection 6.3.3]

7. For large parameter variations, both the element impedances and the far-field perfor-
mance parameters are approximated accurately for a fixed setof expansion coefficients of
the array eigencurrents with respect to the single-elementeigencurrents.

This conclusion can be used in computations of the array perfomance parameters for a
given excitation as follows. First, for a given parameter setting, we compute the eigen-
values and eigencurrents. Next, we fix the computed eigencurrents. For a new parameter
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setting, we approximate the eigenvalues by the Rayleigh-Ritz quotient applied to the fixed
eigencurrents. Both in the computation of the eigencurrents in the first step and in the
computation of the eigenvalues in the second step, we restrict mutual coupling on basis
of calculations of the relative variation of the spreads forsmall arrays as explained in the
previous conclusion. [Subsection 6.3.4]

8. A first-order approximation of the performance parameters of uniform line arrays is ob-
tained as follows. First, compute the expansion coefficients of the eigencurrents of a
single strip obtained by piecewise linear expansion functions. Next, consider these ex-
pansion coefficients as the coefficients of the dominant single-element eigencurrents in
the array eigencurrents. In this way, approximated array eigencurrents are obtained. Fi-
nally, compute the eigenvalues of the line array by applyingthe Rayleigh Ritz quotient to
the approximated (array) eigencurrents.

In case only one group of coupling (array) eigencurrents needs to be considered, this
approximation is in general more accurate than in case more groups of coupling eigencur-
rents need to be considered. [Subsection 6.3.5]

9. In the eigencurrent approach, grating-lobe behavior is described by at most three groups
of coupling eigencurrents.

For arrays of rings with circumference close to 1.5 times thewavelength, three groups of
coupling eigencurrents are needed, while for rings with circumference close to or less than
the wavelength, only two groups of coupling eigencurrents are needed. This observation
confirms that the element shape determines, which single-element eigencurrents can be
excited; whether they are excited is determined by the excitation field of the array. Only
single-element eigencurrents with small eigenvalues are excited and, hence, only these
eigenvalues need to be taken into account as coupling eigencurrents in the cycle of the
eigencurrent approach. [Section 6.4]

10. In contrast to array surface waves, grating-lobe appearance is non-resonant behavior of
the array, if the eigenvalue corresponding to the grating-lobe scan angle is not relatively
close to zero according to our definition.

The effect of surface waves in dielectric layers resembles the effect of grating-lobe appear-
ance in the sense that a large amount of power is transported along the surface of the array.
Since a grating lobe is represented by a specific eigencurrent, we think that a surface wave
in a dielectric layer is represented by a specific eigencurrent as well. In contrast to the far
field of the eigencurrent related to the grating lobe, the farfield of the eigencurrent related
to a surface wave will have main lobes at±90◦ only. The eigenvalue corresponding to this
eigencurrent will correspond to the blind scan angle in the same way as the eigenvalue of
the ‘grating-lobe’ eigencurrent corresponds to the grating-lobe scan angle. As shown in
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Section 6.2, the occurrence of array surface waves corresponds to resonant behavior of the
array. According to our definition, grating-lobe appearance is only resonant behavior of
the array, if the eigenvalue corresponding to the grating-lobe scan angle is relatively close
to zero. In other words, if the eigencurrent corresponding to the grating-lobe scan angle
exhibits a relatively small eigenvalue, i.e., a relativelylow characteristic impedance. We
think that a surface wave in a dielectric layer is only resonant behavior of the array, if the
corresponding eigenvalue is relatively close to zero according to our definition. Resonant
behavior due to a surface wave can occur both in a dielectric layer of finite extent and in
a dielectric layer of infinite extent. In a dielectric layer of infinite extent, a propagating
surface wave becomes a standing wave for certain sizes of thearray, which is positioned
in/on the dielectric layer. In a dielectric layer of finite extent, a propagating surface wave
becomes a standing wave both for certain sizes of the array and for certain sizes of the
dielectric layer. [Section 6.4]

11. The eigencurrent approach proposed in this thesis describes resonant behavior of finite
arrays accurately. In contrast, resonant behavior cannot be tackled by the infinite-array
approach, no matter the size of the finite array.[Section 6.2 and Subsection 6.3.2]
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CHAPTER 7

Conclusions and Recommendations

The research on analysis and design of antenna arrays discussed in this thesis was assigned by
and carried out at Thales Nederland in Hengelo, the Netherlands, in the period August 2000
to August 2004. The first part of the research, from August 2000 to April 2001 was carried
out as final project of the postgraduate program Mathematicsfor Industry at the Technische
Universiteit Eindhoven. In this chapter, we first summarizethe conclusions of the research.
Second, we outline the new approach proposed in this thesis to analyze antenna arrays, called
the eigencurrent approach. Both for the conclusions and forthe approach, we discuss to what
extent they satisfy the main objectives I – IV in Section 1.3 and the requirements 1 – 4 in Section
1.2, p. 8. Third, we suggest potential modifications of the approach for a faster computation.
Finally, we present recommendations for the future analysis and design of antenna arrays.

7.1 Conclusions

In this section, we discuss first the conclusions of this thesis. Next, we discuss to what extent
they satisfy the objectives and requirements mentioned above.

1. The most important aspect of antenna-array analysis is determining the eigencurrents of a
single element (or a subarray). For single rings and for single strips, we observed that the
eigencurrents depend negligibly on the geomertry parameters.

2. The array eigencurrents are described as concatenationsof linear combinations of the
single-element eigencurrents. In this description, the coefficients of the dominant single-
element eigencurrent depend negligibly on the element shape, as observed for line arrays
of rings and line arrays of strips. Moreover, these coefficients depend negligibly on the
spacing in line arrays.
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3. The eigencurrents and eigenvalues of an array with uniform element geometry can be di-
vided into groups; each group corresponds to an eigencurrent of the single element, i.e.,
the dominant single-element eigencurrent of the group. Thecoefficients of the dominant
single-element eigencurrents are in each group the same. The eigenvalues are perturba-
tions, not necessarily small, of the corresponding single-element eigenvalue. If mutual
coupling is neglected, these perturbations are zero.

4. The spread of a group of eigenvalues, as defined by (6.1), isa quantitative measure for
the mutual coupling both among the eigencurrents of that group and between the eigen-
currents of that group and the eigencurrents of other groups. In an implementation of an
analysis approach based on eigencurrents, an upper bound can be specified for the spread
in order to neglect mutual coupling automatically.

5. The mutual coupling behavior of arrays consisting of elements that are typically designed
to excite only one eigencurrent, or one main mode, can be described by a limited number
of groups, typically one or two, of coupling eigencurrents.

6. Arrays are entire objects rather than collections of separate elements. For, the coefficients
of the dominant single-element eigencurrent in each group of eigencurrents of a line array
of rings or strips and the expansion coefficients of the eigencurrents of a single strip with
piecewise functions generate the same patterns. Since a strip is an entire object, line arrays
are entire objects as well.

7. All array eigenvalues are related to specific scan angles of the array. These scan angles are
the positions of the main lobes in the far fields of the corresponding eigencurrents. The
broadside scan, the monopulse, and the grating lobe are represented by specific eigencur-
rents of the array.

8. The eigencurrents of a finite array describe its characteristic behavior completely. The
corresponding eigenvalues represent their characteristic impedance. The lower the
impedance of an eigencurrent, the less excitation energy isrequired.

9. As a tool to calculate the array eigencurrents, the eigencurrent approach proposed in this
thesis describes the characteristic behavior of finite antenna arrays accurately. In contrast,
the infinite-array approach cannot describe the characteristic behavior of finite antenna
arrays completely, no matter the size of the finite array.

10. The eigencurrents of finite arrays are standing waves. Incontrast, eigencurrents related
to the infinite-array approach are propagating waves. A finite line array can be regarded
as a finite microstrip, or in mechanical terms, a finite string. Applying the infinite-array
approach to finite arrays can be compared to replacing a finitemicrostrip, or a finite string,
by an infinite one.
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11. Characteristic behavior of finite arrays is due to resonance, and resonance is due to the
excitation of specific, resonant, eigencurrents. The eigenvalues, or impedances, of these
resonant eigencurrents are relatively close to zero compared to the eigenvalues of the non-
resonant eigencurrents according to our definition in Section 6.2 and Subsection 6.3.2.

12. Variations of element-current amplitudes and element impedances attributed to array sur-
face waves [82], and modulations of element impedances [46,30] can explained from the
excitation of specific eigencurrents of the array and, therewith, by the same mechanism.

13. On basis of the eigenvalue distribution of the first groupof (array) eigenvalues, uniform
surface loads required to reduce resonant behavior can be straightforwardly determined
for the elements of an array. Uniform loading is equivalent to shifting the eigenvalues.

14. Grating-lobe appearance is resonant behavior of the array, if the eigenvalue corresponding
to the grating-lobe scan angle is relatively close to zero incomparison with the other
eigenvalues.

15. The difference between arrays in free space and arrays inhalf space is reflected in the far
fields of the eigencurrents. In free space, there is a single eigencurrent that excites the
grating lobe in the plane of the array. In half space, the sameeigencurrent exists, but does
not excite the grating lobe.

On basis of these conclusions, we come to the followingfinal conclusionof this thesis:

The design characteristics of antenna arrays are one-to-one related to the excitation of specific
eigencurrents of the array. The eigencurents are one-to-one related to scan lobes, grating lobes,
monopulse lobes, impedance variations, modulated impedance oscillations, et cetera.

By this final conclusion, Objective III in Section 1.3 is satisfied. The eigencurrents are the char-
acteristics that describe the behavior of arrays. Moreover, these characteristics are up to certain
extent independent of the array geometry, see Conclusions 2, 3 and 6. With respect to Objec-
tive I, the characteristics of a single element that are essential for describing the array behavior
are the single-element eigencurrents that contribute to the mutual coupling, see Conclusion 5
and the strongly related conclusions 1 and 4. Objective II isconsidered in the next section.
Finally, the question in Objective IV about how and to what extent our approach improves the
infinite-array approach is answered by the Conclusions 9 and10.

Next, we consider the requirements 1 – 4 in Section 1.2, p. 8. Requirement 1 is satis-
fied, because once the eigencurrents of a single element or a single subarray are determined,
these eigencurrents can be used for all arrays composed of the same elements, see Conclusion
2 and 3. The edge effects mentioned in Requirement 2 are described by the eigencurrents for



236 7. CONCLUSIONS ANDRECOMMENDATIONS

finite arrays. Moreover, the eigencurrents describe the resonant behavior of finite arrays. There-
with, requirement 2 is satisfied. Since the expansion coefficients of the dominant single-element
eigencurrents in the array eigencurrents depend negligibly on the element shape and the spac-
ing, coefficient distributions of eigencurrents can be usedto analyze different array geometries
using the same distributions. Therefore, an analysis approach based on eigencurrents will not
be array-lattice and element-shape dependent, by which Requirements 3 and 4 will be satisfied.
More details with respect to the requirements are discussedin the next section.

7.2 Approach for Analysis of Finite Antenna Arrays

We propose to analyze finite antenna arrays with the eigencurrent approach as described in this
thesis. This proposal is supported by the conclusion of the previous section and, more specifi-
cally, the conclusions in Sections 5.4 and 6.5. We applied the eigencurrent approach successfully
to line arrays of strips and rings, and we discussed the application of the eigencurrent approach
to other types of elements and array geometries in Section 5.4 and Section 6.4. The eigencurrent
approach is suitable for analyzing finite antenna arrays in an efficient way, keeping track of the
characteristic behavior of arrays. It has two main steps, i.e., initialization and cycle. In this
section, we outline the eigencurrent approach for arrays ofuniform element geometry.

Initialization:

1. Choose suitable expansion functions for the single element. If the element has no specific
shape, the choices of rooftop functions and Rao-Wilson-Glisson functions are suggested.

2. Construct the moment matrix for the single element, such that the matrix exhibits the
same eigenvalues as the projected impedance operator. In contrast to the moment matrix
defined as usual, the moment matrix defined as in Section 2.4.2exhibits this property for
all choices of expansion functions.

3. Compute the eigencurrents and eigenvalues from the moment matrix.

4. Construct the inner product with respect to which the eigencurrents are orthonormal.

Cycle:

1. Estimate how many single-element eigencurrents are needed to describe mutual coupling
in the array from the behavior of their eigenvalues. Only single-element eigencurrents
with eigenvalues that are small with respect to the other eigenvalues need to be taken into
account.
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2. Construct the moment matrix of the array for these single-element eigencurrents with
respect to the inner product composed of the new single-element inner products.

3. Compute the eigencurrents and eigenvalues of the array from this moment matrix.

4. Group the (array) eigencurrents according to their corresponding single-element eigen-
current and single-element eigenvalue. Index the groups according to increasing single-
element eigenvalues.

5. Verify that the spread of the eigenvalues of higher-ordergroups is small. If not, repeat
steps 2 and 3 of the cycle with more single-element eigencurrents. Here, the spread of a
group is defined as in Subsection 6.3.1.

6. Construct the inner product with respect to which both thecoupling (array) eigencurrents
and the non-coupling (array) eigencurrents are orthonormal.

Once the eigencurrents of the array have been computed, the current induced by a given excita-
tion is computed by the (finite) expansion of the current withrespect to the (array) eigencurrents.

The eigencurrent approach satisfies Objective II in Section1.3 in the sense that it is efficient,
see Section 6.1, and in the sense that it describes the characteristic behavior of arrays accurately,
see Conclusions 9 and 10 of the previous section. Therewith,all objectives and requirements
are satisfied, except that the application of the eigencurrent approach to other array geometries
than line arrays is required to verify Requirements 3 and 4 more thoroughly. In this respect, we
note that, above, only one cycle of the eigencurrent approach is described. An extension to more
cycles is described in Chapter 5.

7.3 Modifications for Faster Computation

The eigencurrent approach as outlined in the previous section can be adjusted in several ways
for a faster computation of the current. We mention the following four adjustments, which are
investigated in this thesis.

• In the cycle of the eigencurrent approach, we may neglect mutual coupling between dis-
tant elements, but special care is needed. Except near the appearance of a grating lobe,
the number of neighbors required to describe mutual coupling is well predicted by the
relative variation of the spread for small arrays. Here, therelative variation of the spread
is defined as in Subsection 6.3.3. For a given tolerance on therelative variation, such as
the one deduced in Subsection 6.3.3, the number of neighborsrequired can be estimated
automatically. [Conclusion 6, Section 6.5]
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• Fix the eigencurrents computed for a certain parameter setting. Approximate the eigenval-
ues for a new parameter setting by the Rayleigh-Ritz quotient applied to these eigencur-
rents. In this way, the computation of the eigenvalues and eigencurrents from the moment
matrix for each parameter setting is avoided, which saves considerable computation time.
[Conclusion 7, Section 6.5]

• If groups of higher index, say 3 or 4, are needed in the eigencurrent approach, the com-
putation time of the eigencurrents from the moment matrix instep 3 of the cycle may
become large. To avoid this, compute first the eigencurrentsfor the groups of lower in-
dex, say 1 or 2, from the moment matrix in step III. Next, approximate the coefficients of
the dominant single-element eigencurrents of the groups ofhigher index by the the coef-
ficients of the dominant single-element eigencurrents of the first group. In this way, only
the self coupling of the groups of higher index is considered, not the coupling between
the groups of higher index and those of lower index. Approximate the eigenvalues for a
given parameter setting for the array by applying the Rayleigh-Ritz quotient to the thus
obtained eigencurrents of the groups of higher index.

• A first-order approximation of the performance parameters of uniform line arrays is ob-
tained as follows. First, compute the expansion coefficients of the eigencurrents of a
single strip obtained by piecewise linear expansion functions. Next, consider these ex-
pansion coefficients as the coefficients of the dominant single-element eigencurrents in
the array eigencurrents. In this way, approximated array eigencurrents are obtained. Fi-
nally, compute the eigenvalues of the line array by applyingthe Rayleigh Ritz quotient to
the approximated (array) eigencurrents. In this way, the dcomputation of the eigenvalues
and eigencurrents from the moment matrix is not needed at all. [Conclusion 8, Section
6.5]

7.4 Recommendations

On basis of our research on antenna arrays, we come to the following recommendations in
the fields of array design (1), application and validation ofthe eigencurrent approach (2 – 5),
and implementation (6). The second and third recommendations are especially meant to verify
Requirements 3 and 4 of Section 1.2, p. 8. The fourth recommendation is a general validation
of the eigencurrent approach with experiments.

• Separate element design and array design. This recommendation is supported by the
conclusions of the eigencurrent approach, in particular that the eigencurrents show this
separated behavior.
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• Apply the eigencurrent approach to other array geometries,in particular, to rectangular ar-
rays. We suggest to use the multi-cycle approach as suggested in Chapter 5. General ideas
for the application of the eigencurrent approach to other array geometries are described in
Section 5.4.

• Apply the eigencurrent approach to arrays positioned on grounded dielectric layers. In
that case, the kernel of the impedance operator needs to be changed. Kernels for grounded
dielectric layers can be found in the literature, e.g., [5] and [72]. Finally, general ideas for
the application of the eigencurrent approach to arrays positioned on grounded dielectric
layers are described in Sections 5.4 and 6.4.

• Validate the proposed method by an experiments. We suggest the following. First, mea-
sure performance parameters of a uniform line array of existing elements. Next, compute
the eigencurrents of this element by the initialization of the eigencurrent approach. Third,
approximate the coefficients of the single-element eigencurrents in the array eigencur-
rents by the coefficients obtained for line arrays of strips or rings. Fourth, compute the
eigenvalues of the array by applying the Rayleigh-Ritz quotient to the array eigencur-
rents thus obtained. Here, the first modification proposed inthe previous section can be
applied. Next, compute the current and the array performance parameters for some exci-
tation fields. Finally, compare measurement results with simulation results.

• Apply eigencurrents for pattern synthesis, or in other words, apply eigencurrents to con-
struct the specified far field of an antenna array. This recommendation is based on the
conclusion that eigencurrents describe the characteristic behavior of arrays, in particular,
the far field.

• Implement the eigencurrent approach in a programming language more suitable for com-
mercial applications, such as the C programming language and the Fortran programming
language.
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APPENDIX A

Calculation of the Averaged Kernels

A.1 The Averaged KernelFqq

Forp = q, the kernelFpq in (2.57) is split into

Fqq = F1 + F2 + F3, (A.1)

where the functionsF1, F2, andF3 are defined by

F1(ξ) =
1

πkℓ

∫ 2

0

1
√

ξ2 + β2η2
dη, F2(ξ) =

1

πkℓ

∫ 2

0

exp(−jkℓ
√

ξ2 + β2η2) − 1
√

ξ2 + β2η2
dη,

F3(ξ) = − 1

2πkℓ

∫ 2

0

η exp(−jkℓ
√

ξ2 + β2η2)
√

ξ2 + β2η2
dη.

(A.2)

The functionsF2 andF3 are continuous. The integrand ofF1 is continuous as function ofξ
except in the point0, where it exhibits a linear singularity. Therefore,F1 is logarithmic singular
in 0, as can also be seen from

F1(ξ) =
1

πkℓβ

[

−1

2
log ξ2 + log

(

2β +
√

4β2 + ξ2
)

]

. (A.3)

This is the term[. . .]/πkℓβ in (2.59). The functionF3 equals the term[. . .]/2πjk2ℓ2β2 in
(2.59).
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A.2 The Approximate Kernel K̆2,qq

The approximate kernel in (2.86) can be written asK̆2,qq(ϕ) = K(2 sin(ϕ/2); kaq, βq, 0),
whereK is defined by

K(ξ;α, β, γ) =
1

2πα

∫ 2

0

exp
(

−jα
√

β2η2 + ξ2 + γ2
)

√
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1+
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1 + jα
√

β2η2 + ξ2 + γ2
)

}

dη . (A.4)

In this appendix, we deduce an approximation forK. We considerK as function ofξ with
parametersα, β > 0, andγ ≥ 0, which are independent ofξ. We assume thatβ ≪ 1 and
approximateK as follows. First, we decomposeK into two parts,

K(ξ;α, β, γ) = K1(ξ;α, β, γ) + K2(ξ;α, β, γ), (A.5)

where

K2(ξ;α, β, γ) =
ξ2
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K21
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, (A.6)

and

K1(ξ;α, β, γ) =
1
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(A.7)

The functionsK2 andK3 are both continuous as functions ofy. The functionK1 is continuous
as function ofξ except forγ = 0, where it exhibits a logarithmic singularity inξ = 0. Under
the condition thatα = O(1) (asβ ↓ 0), we deduce

K1(ξ;α, β, γ) ≈ 1

2πα
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√

ξ2 + γ2
)
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}

=: K̃1(ξ;α, β, γ) . (A.8)
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This approximation is not appropriate for the imaginary part of K1 if γ = 0. It is observed that
the imaginary part of the approximation withγ = 0 tends to zero asξ → 0, whereas

Im(K1(0;α, β, 0)) = − 1

2πα

∫ 2

0

sin(αβη)

βη
dη , (A.9)

which is in general not zero. Therefore, the imaginary part of K1 is approximated by

Im(K1(ξ;α, β, γ)) ≈ − 1
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This approximation is not only appropriate for the caseγ = 0 andξ → 0, but also otherwise,
provided thatα = O(1) as above.

We rewrite the integralK21 by transforming the integration variable intot = η2 first. Then,
integrating by parts, we obtain

K21(y;α, β) =
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The integralK22 is decomposed into two parts and the integration variable ofone of these parts
is transformed intot = η2,

K22(y;α, β) = 2
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(A.12)

We approximate the integral with respect toη in K22 in the same way as the integralK1. In
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other words, the real part is approximated by

∫ 2

0

cos
(

α
√

β2η2 + y2
)

β2η2 + y2
dη ≈ cos(α|y|)

∫ 2

0

1

β2η2 + y2
dη =

=
cos(α|y|)

β|y| arctan

(

2β

|y|

)

, (A.13)

and the imaginary part by
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SummingK21 andK22 as in (A.6) to obtainK2, we observe that the integrals with respect tot

in K21 andK22 vanish. Hence, the approximation forK2 is given by
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Finally, the integralK is approximated by

K̃ = K̃1 + K̃2 , (A.16)

where the real and imaginary part ofK̃1 are given by (A.8) and (A.10), respectively, andK̃2 is
given by (A.15).
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APPENDIX B

Fredholm Operators with Weakly Singular
Displacement Kernels

In this appendix, we study Fredholm operators with weakly singular displacement kernels. For
k ∈ L2([−2α, 2α]), α > 0, we introduce the Fredholm operatorK by

(Kφ)(x) =

∫ α

−α

k(x − y)φ(y) dy, x ∈ [−α, α] . (B.1)

The Cauchy-Schwarz inequality reveals thatKφ ∈ L2([−α, α]) for φ ∈ L2([−α, α]). Starting
from this result, we formulate several statements below, which we use in the characterization
of the domain and the range of the operatorZa in Chapter 3. With the notation of Section 3.1,
we introduce the Lebesgue spacesL2([−α, α]) andH2,m([−α, α]) and theL2-derivativeD. In
most of the statements, we takeα = 1, but these statements are valid for anyα > 0.

Lemma 1 Let k ∈ L2([−2, 2]) andφ ∈ H2,1([−1, 1]). Then,Kφ ∈ H2,1([−1, 1]) with L2-
derivative

D(Kφ) = K(Dφ) + φ(−1)k(x + 1) − φ(1)k(x − 1) . (B.2)

N Forx ∈ [−1, 1],

(Kφ)(x) =

∫ 1
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−
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0

k(ξ) dξ

}

φ(y) dy =

= φ(−1)

∫ x+1
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k(ξ) dξ − φ(1)

∫ x−1

0

k(ξ) dξ +

∫ 1

−1

{∫ x−y

0

k(ξ) dξ

}

(Dφ)(y) dy ,

(B.3)
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whereDy indicates theL2-derivative with respect toy. Differentiating both sides with respect
to x yields (B.2). Moreover,DKφ ∈ L2([−1, 1]), because the terms in the right-hand side of
(B.2) are all elements ofL2([−1, 1]) . ¥

Lemma 2 Let k ∈ H2,1[−2, 2] andφ ∈ L2([−1, 1]). Then,Kφ ∈ H2,1([−1, 1]) and

(DKφ)(x) =

∫ 1

−1

(Dk)(x − y)φ(y) dy . (B.4)

N By the definition of theL2-derivativek we obtain from (B.1)

(Kφ)(x) = c
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φ(y) dy +

∫ 1

−1

{∫ x−y

0

(Dk)(ξ) dξ

}

φ(y) dy =

= c

∫ 1

−1

φ(y) dy−
∫ 1

−1

∫ y

0

(Dk)(ξ−y) dξ φ(y) dy+

∫ x

0

∫ 1

−1

(Dk)(ξ−y)φ(y) dydξ ,

(B.5)

wherec = k(0). The first two terms in the right-hand side are constant. Differentiating both
sides with respect tox, we obtain (B.4). SinceDk ∈ L2[−2, 2] andφ ∈ L2([−1, 1]), it follows
thatDKφ ∈ L2([−1, 1]). ¥

Corollary 1 Let k ∈ H2,1[−2, 2] andφ ∈ H2,1([−1, 1]). Then,Kφ ∈ H2,2([−1, 1]).

N From Lemma 2, it follows thatKDφ ∈ H2,1([−1, 1]), and henceDKφ ∈ H2,1([−1, 1]) by
Lemma 1. ¥

Lemma 3 Let k be the functionk(ξ) = 1
2 log ξ2 and φ ∈ L2([−1, 1]) . Then, Kφ ∈

H2,1([−1, 1]).

N See [97: p. 37] ¥

Corollary 2 Let φ ∈ H2,1([−1, 1]) in the previous lemma. Then,Kφ ∈ H2,2([−1, 1]) if and
only if φ(1) = φ(−1) = 0. Under this condition,DKφ = KDφ.

N It follows from Lemma 1 and Lemma 3 thatKφ ∈ H2,2([−1, 1]) if and only if φ(−1) log(1+

x) − φ(1) log(1 − x) ∈ H2,1([−1, 1]). The latter is equivalent toφ(−1) = φ(1) = 0, which
impliesDKφ = KDφ by lemma 1. ¥

Remark 1 The previous lemmas and corollaries are valid for allα > 0 .
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Lemma 4 Let the functionsN0, Ncos,n, andNsin,n (n = 1, 2, ...) be defined by

N0 =
1√
2π

, Ncos,n(x) =
1√
π

cos nx , Nsin,n(x) =
1√
π

sinnx . (B.6)

Then,f ∈ H2,m,per[−π, π] if an only if there exista0, an, bn (n = 1, 2, ...), such that

f = a0N0 +

∞
∑

n=1

(anNcos,n + bnNsin,n) ,

∞
∑

n=1

(1 + n2)m(a2
n + b2

n) < ∞ . (B.7)

Lemma 5 Let k be defined byk(ξ) = − 1
2 cos ξ log sin2(ξ/2) . Let φ ∈ L2[−π, π]. Then,

Kφ ∈ H2,1,per[−π, π]. If φ ∈ H2,1,per([−π, π]), thenKφ ∈ H2,2,per([−π, π]) andDKφ =

KDφ .

N From the expansion oflog(2 cos(ξ/2)), −π < ξ < π, see [41: p. 38, Eq. 1.441.4], it follows
that

−1

2
log sin2

(

ξ

2

)

= log 2 +

∞
∑

n=1

cos nξ

n
, −2π < ξ < 2π, ξ 6= 0 . (B.8)

Then,

− cos ξ log sin2

(

ξ

2

)

= 1 + 2

(

log 2 +
1

4

)

cos ξ +

∞
∑

n=2

2n

n2 − 1
cos nξ . (B.9)

By this expression, we write the kernelk(x − y) as

k(x − y) = πN2
0 + π

(

log 2 +
1

4

)

(Ncos,1(x)Ncos,1(y) + Nsin,1(x)Nsin,1(y)) +

+ π

∞
∑

n=2

n

n2 − 1
(Ncos,n(x)Ncos,n(y) + Nsin,n(x)Nsin,n(y)) , (B.10)

where the functionsN0, Ncos,n, andNsin,n (n = 1, 2, ...) are defined as in Lemma 4. These
functions form a total orthonormal set inL2([−π, π]). Then, we may expandφ ∈ L2([−π, π])

into the functions of this set,

φ = a0N0 +

∞
∑

n=1

(anNcos,n + bnNsin,n) ,

∞
∑

n=1

(

a2
n + b2

n

)

< ∞ . (B.11)
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The latter implies the convergence of the series expansion for φ on basis of Banach’s criterion.
Using (B.10) and (B.11), we obtain forKπφ

(Kφ)(x) = πa0N0(x) + π

(

log 2 +
1

4

)

(a1Ncos,1(x) + b1Nsin,1(x)) +

+ π

∞
∑

n=2

n

n2 − 1
(anNcos,n(x) + bnNsin,n(x)) , (B.12)

Then, according to Lemma 4,Kφ ∈ H2,1,per([−π, π]) for φ ∈ L2([−π, π]). Moreover, if
φ ∈ H2,1,per([−π, π]), thenKφ ∈ H2,2,per([−π, π]) andDKφ = KDφ, the latter of which
follows from straightforward calculation. ¥

Corollary 3 Replace the functionk in the previous lemma by a functionk ∈ H2,1,per([−π, π]).
Then, the same conclusions hold as in this lemma.

Remark 2 From (B.12), it follows that the Fredholm operatorK induced by the kernelk in
Lemma 5 is a diagonal operator with respect to the total orthonormal set defined by (B.6) in
L2([−π, π]). The same yields for the kernelsk in Corollary 3.
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APPENDIX C

Far-Field Approximations

In this appendix, we deduce expressions for the electric field far away from an array of strips or
rings. By far away, we mean that the distance to a fixed point onthe array is much larger than
both the characteristic lengthL of the array and the wavelengthλ.

Let us consider an array in free space described by a surfaceS as in Subsection 2.3.1. The
electric field generated by the averaged currentAJ on the surfaceS in free space is given by

E =

Nel
∑

q=1

Eq , Eq = DAq = DT (AJ)|Sq
, (C.1)

where

Aq(x) = T (AJ)|Sq
(x) =

∫

Π(Sq)

gfree

(

R
(

x−xSq
(ξ, η)

)

)

(AJ)|Sq
(ξ, η) dSq(ξ, η) , (C.2)

and

(AJ)|Sq
(ξ, η) = wq(ξ)eξ(ξ, 0), dSq(ξ, η) = Svol

q (ξ, η) dη dξ . (C.3)

We note thatgfree is defined by (2.12),Svol
q by (2.24)2, andD by (2.10). We express the tuple

x ∈ R3 into the standard spherical coordinate system given by

eρ(θ, φ) = sin θ cos φex + sin θ sin φey + cos θ ez,

eθ(θ, φ) = cos θ cos φex + cos θ sin φey − sin θ ez,

eφ(θ, φ) = − sin φex + cos φey.

(C.4)

Then,x(ρ, θ, φ) = ρeρ(θ, φ) and

R
(

x(ρ, θ, φ) − xSq
(ξ, η)

)

=
√

ρ2 − 2ρ (eρ(θ, φ) • xSq
(ξ, η)) + |xSq

(ξ, η)|2 . (C.5)
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Moreover, in spherical coordinates, the action ofD onAq is given by

DAq = −jZ0k

[

Aq +
1

k2

(

eρ
∂

∂ρ
+ eφ

1

ρ sin θ

∂

∂φ
+ eθ

1

ρ

∂

∂θ

)

(

1

ρ2

∂

∂ρ
(ρ2Aq,ρ) +

1

ρ sin θ

∂

∂θ
(Aq,θ sin θ) +

1

ρ sin θ

∂Aq,φ

∂φ

)]

. (C.6)

The componentsAq,ρ, Aq,θ, andAq,φ are obtained by expressingeξ(ξ, 0) into the Cartesian
coordinate system and then by expressing the vectors of thissystem into the spherical coordinate
system. Forρ so large that the sphere with radiusρ containsS, we may reverse the integrals
in these components and the partial derivatives in (C.6). Then, the partial derivatives act on the
kernelgfree(R(x(ρ, θ, φ) − xSq

(ξ, η))) in (C.2). For theρ-derivatives of this kernel, we obtain

∂ngfree

(

R
(

x(ρ, θ, φ) − xSq
(ξ, η)

)

)

∂ρn
=

(−jk)n

ρ
×

× exp

(

− jk
√

ρ2 − 2ρ (eρ(θ, φ) • xSq
(ξ, η)) + |xSq

(ξ, η)|2
)(

1 + O
(L + 1/k

ρ

)

)

,

(C.7)

whereL is the characteristic length scale of the surfaceS andn = 0, 1, 2 . As mentioned above,
we assume thatL/ρ ≪ 1 and1/kρ ≪ 1. Moreover, the parameter descriptionsxSq

are chosen
such that|xSq

(ξ, η)|/ρ ≪ 1. It follows from (C.6) and (C.7) that the dominant terms of(DAq)ρ

areAq,ρ and∂2Aq,ρ/∂2ρ2. The other terms in(DAq)ρ are ofO((L + 1/k)/ρ) with respect
to these terms. Hence, it seems that the dominant term of(DAq)ρ is Aq,ρ + ∂2Aq,ρ / k2 ∂2ρ2.
However, it follows from (C.7) that this term vanishes up to terms ofO((L + 1/k)/ρ). This
implies that(DAq)ρ is of O((L + 1/k)/ρ) with respect to(DAq)θ and(DAq)φ. From (C.6)
and (C.7), it follows also thatAq,θ andAq,φ are the dominant terms of(DAq)θ and(DAq)φ.
The other terms are ofO((L + 1/k)/ρ). Then, neglecting terms ofO(L2/ρ2) in the phase term
of (C.7) withn = 0, and neglecting terms ofO((L + 1/k)/ρ) in the other terms of the electric
field Eq, we find that

Eq = −jZ0k (Aq,θeθ + Aq,φeφ) , (C.8)

where the componentsAq,θ andAq,φ follow from

Aq(ρ, θ, φ) =
e−jkρ

4πρ

∫

Π(Sq)

ejk
(

eρ(θ,φ) •xSq (ξ,η)
)

wq(ξ)eξ|Sq
(ξ, 0)Svol

q (ξ, η) dη dξ . (C.9)

The magnetic fieldHq corresponding toEq follows from (2.14)1, i.e., Hq = rotAq. By a
similar dimensional analysis as above, it is shown that theρ-component of this field vanishes
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and that theθ andφ-components are given byHq,θ = −∂Aq,φ/∂ρ andHq,φ = ∂Aq,θ/∂ρ.
From (C.7) we obtain two equivalent expressions forHq,

Hq = jk (Aq,φeθ + Aq,θeφ) , Hq = eρ × Eq /Z0 , (C.10)

whereEq is given by (C.8). The expressions (C.8) and (C.10)2 are the well-known far-field
expressions, see for example [110: pp. 31 – 32].

Let us now consider an array of strips in free space as described in Subsection 2.3.2. For
the parameter descriptionxSq

given by (2.41), the origin of the spherical coordinate system is
located in the plane of the array. The vectoreξ|Sq

in (C.2) equalsey andSvol
q = 1. Using

ey = sin θ sinφeρ + cos θ sin φeθ + cos φeφ, we obtain from (C.9)

A
q,

{

θ

φ

} (ρ, θ, φ) =

{

cos θ sin φ

cos φ

}

Aq(ρ, θ, φ) , (C.11)

whereAq is given by

Aq(ρ, θ, φ) =
ℓb

4π

e−jkρ

ρ
ejkcq,x sin θ cos φ

∫ 1

−1

ejkℓξ sin θ sin φwq(ξ) dξ

∫ 1

−1

e−jkℓβη sin θ cos φ dη .

(C.12)

In these expressions, we normalized the integration variables with respect toℓ andb, and that
we interpretedwq as a function of the normalized coordinateξ. As in the deduction of the
approximate kernel̃Fqq in (2.62), we assume thatβ ≪ 1 andkℓ = O(1) (asβ ↓ 0). Neglecting
terms of orderβ2, we approximate the integral with respect toη by 2. To calculate the integral
with respect toξ, we need to specifywq. For the entire-domain expansion functions (3.8),
wq is a linear combination of the expansion functions(Wcos

q en)( · ; q), n = 1, 2, . . . , Ncos(q),
and(Wsin

q en)( · ; q), n = 1, 2, . . . , Nsin(q). The expansion coefficients corresponding to these
functions are[(Wcos

q )−w](n, 1) and[(Wsin
q )−w](n, 1), which follow from the solution of the

moment-matrix equation[W−ZaW][W−w] = [W−vex]. Having calculated the integral with
respect toξ for each expansion function in (3.8), we construct the electric field from (C.1)1,
(C.8), (C.11), and (C.12). We obtain

E(ρ, θ, φ) = −jZ0k (cos θ sin φeθ + cos φeφ)

Nel
∑

q=1

Aq(ρ, θ, φ) , (C.13)
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where

Aq(ρ, θ, φ) =
ℓb

2π

e−jkρ

ρ
ejkcq,x sin θ cos φ





Ncos(q)
∑

n=1

[(Wcos
q )−w](n, 1)

(−1)n(2n − 1)π cos κ

κ2 − (2n − 1)2π2/4
+

+

Nsin(q)
∑

n=1

[(Wsin
q )−w](n, 1)

(−1)n2nπj sin κ

κ2 − n2π2



 , (C.14)

andκ = kℓ sin θ sinφ .
Let us consider an array of rings as described in Subsection 2.3.3. As above, the origin of

the spherical coordinate system is located in the plane of the array for the parameter description
xSq

given by (2.64). The vectoreξ|Sq
in (C.2) is given byeθ|Sq

in (2.65)2 andSvol
q is given by

Svol
q (r, ϕ) = r. Usingex = sin θ cos φeρ +cos θ cos φeθ−sin φeφ , andey = sin θ sin φeρ +

cos θ sin φeθ + cos φeφ, we obtain from (C.9)

A{

θ

φ

} (ρ, θ, φ) =

{

cos θ

1

}

aqbq

4π

e−jkρ

ρ
ejk(cq,x sin θ cos φ + cq,y sin θ sin φ)×

×
∫ π

−π

exp
(

jkaq sin θ cos(φ − ϕ − ψq)
)

wq(ϕ)

{

sin(φ − ϕ − ψq)

cos(φ − ϕ − ψq)

}

×

×
∫ 1

−1

exp
(

jkaqβqr sin θ cos(φ − ϕ − ψq)
)

(1 + βqr) dr dϕ. (C.15)

As the integral with respect toη above, we approximate the integral with respect tor by 2, where
we assume thatβq ≪ 1 andkaq = O(1) (asβ ↓ 0). To calculate the integral with respect toϕ,
we specifywq as above for the strips, where the entire-domain expansion functions are given by
(3.12). Then, we obtain

E{

θ

φ

} (ρ, θ, φ) = −jZ0k

{

cos θ

1

}

e−jkρ

2ρ

Nel
∑

q=1

aqbqe
jk(cq,x sin θ cos φ + cq,y sin θ sin φ) ×

×





Ncos(q)
∑

n=1

[(Wcos
q )−w](n, 1)

{

sin(n − 1)(φ − ψq)

cos(n − 1)(φ − ψq)

}

jn−2
(

Jn−2(κq) ± Jn(κq)
)

+

+

Nsin(q)
∑

n=1

[(Wsin
q )−w](n, 1)

{

− cos n(φ − ψq)

sinn(φ − ψq)

}

jn−1
(

Jn−1(κq) ± Jn+1(κq)
)



 , (C.16)

whereκq = kaq sin θ.
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For arrays of strips or rings in a half space, the deduction ofthe electromagnetic far fields
runs analogously. Due to the description of the centers of the elements in Subsection 2.3.4, the
origin of the spherical coordinate system is not in the planeof the array as above, but in the
boundary plane of the half space. The components of the corresponding electric far fields are
given by (C.13) and (C.16), both multiplied2j sin(hk cos θ), see [34] for details. Here,h is the
height above the ground plane and the spherical coordinatescorrespond to the new origin. The
factor2j sin(hk cos θ) is the same as the factor for an infinitesimal dipole in a half space, see [4:
Eq. (4-116)].

We compare the far field (C.16) of the rings with results for a single wire ring as described
in the literature. ForNel = 1, Nsin(1) = 0, c1,x = c1,y = 0, andψ1 = 0, we can rewrite (C.16)
as

E{

θ

φ

} (ρ, θ, φ) =
ωµ0a1e

−jkρ

4jρ

{

− cos θ

j

}

×

×
Ncos(1)−1

∑

n=−Ncos(1)+1

αnjnejnφ
(

Jn+1(κ1) ± Jn−1(κ1)
)

, (C.17)

whereα0 = 2b1 [(Wcos
1 )−w](1, 1) andαn = α−n = b1 [(Wcos

1 )−w](n + 1, 1) for n > 0.
These expressions for the electric far-field components arethe same as the expressions (5-49)
and (5-50) in [47: p. 92] for a wire ring, if we identifyαn andVs/Znn in [47: p. 92]. Moreover,
putting alsoNcos(1) = 1 in (C.16), we find the same far-field components as in [4: p. 219]
for a wire ring with constant current. Here, we identify the total current2b1 [(Wcos

q )−w](1, 1)

through the strip and the total currentI0 through the wire in [4: p. 219].
For the strips, it can be shown that the far-field expression (C.13) yields the same result as

in [4: p. 162], but then we need to align thez-axis along the strip. This is accomplished by the
permutation(x, y, z) → (z, x, y) in (C.4).

Finally, we calculate the total radiated power in the far field. The time-average Poynting
vectorS defined byS = Re(E × H∗)/2 represents the radiation power density averaged with
respect to time, see [109: p. 137]. By (C.10)2, the Poynting vector in the far field can be written
asS = (E • E∗)eρ/2Z0. The total radiated power of an array in free space is the total flux of
S over a sphere with radiusρ,

P rad =

∫ 2π

0

∫ π

0

(S • n) ρ2 sin θ dθ dφ =

∫ 2π

0

∫ π

0

U(θ, φ) sin θ dθ dφ . (C.18)

whereU(θ, φ) = (E • E∗)ρ2/2Z0 is the radiation intensity. For a half space, the range ofθ

reduces to the interval[0, π/2]. The integrand in (C.18) is independent ofρ as can be seen from
the far-field expressions in this appendix. The quantity4πU(θ, φ)/P rad is the directivity of the
array.
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Samenvatting

Radar, voluit ‘radio detection and ranging’, wordt gebruikt voor velerlei doeleinden, zoals het
regelen van luchtverkeer, het doen van snelheidsmetingen in het verkeer, en het lokaliseren en
volgen van schepen en vliegtuigen. Het principe van radar isgebaseerd op het fenomeen dat met-
alen objecten radiogolven reflecteren. De radiogolven worden uitgezonden en ontvangen door
de antenne van een radarsysteem. Het ontwerp van een dergelijke antenne kent twee hoofddoe-
len: de energie die in de antenne in de vorm van electromagnetische straling opgewekt wordt,
moet in een specifieke richting worden uitgestraald en de energie-overdracht van bron naar elek-
tromagnetische straling moet optimaal zijn. Voorbeelden van antenne types zijn draadantennes,
paraboolantennes, en antenne-arrays.

Antenne-arrays bestaan uit separate antennes, die elementen worden genoemd. Het aantal
elementen varieert van een tiental tot vele honderden. In veel gevallen hebben de elementen
dezelfde vorm en zijn geordend in een regelmatige geometrie. Antenne-arrays hebben als groot
voordeel boven andere antenne-types dat zij de gebruiker demogelijkheid bieden de bundel van
elektromagnetische straling te besturen door middel van faseverschillen tussen de elementen.
Deze bundel is vergelijkbaar met een lichtbundel bij toneelvoorstellingen, maar is onzichtbaar
voor het menselijk oog. De elektronische besturing kan vrijwel instantaan worden bewerkstel-
ligd, dit in tegenstelling tot mechanische besturing van debundel. Aan elektronische bestur-
ing danken antenne-arrays hun multifunctionaliteit die onder meer bestaat uit scannen van het
luchtruim, volgen van doelen, en leiden van raketten naar een doel.

Het ontwerp en de ontwikkeling van radarsystemen is complexen kostbaar. Om de kosten
en risico’s bij het ontwerp te verkleinen, en om de prestatievan systemen te verbeteren, gebruikt
men simulaties. Simulaties moeten voldoen aan een aantal criteria: ze moeten snel uitvoerbaar
zijn, ze moeten randeffecten tonen alsmede effecten van mutuele elektromagnetische koppel-
ing tussen de elementen, en ze moeten in grote nauwkeurigheid de prestatieparameters bepalen.
Simulaties gebaseerd op de oneindige array aanpak en simulaties gebaseerd op de eindige ele-
menten methode voldoen niet aan deze criteria. Eerstgenoemde beschrijven geen randeffecten
en laatstgenoemde leiden tot trage berekeningen. Geen van deze simulaties geeft direct inzicht
in de fysica die relevant is voor het ontwerp. In dit proefontwerp stellen we een aanpak voor die
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voldoet aan bovengenoemde criteria en bovendien inzicht verschaft in de fysica. Deze aanpak
kan de nadelige en desastreuze invloed van staande golven opde prestatie van eindige arrays
voorspellen en geeft aan hoe dit gedrag kan worden voorkomenvoor het hele scanbereik van het
array. De aanpak van dit proefontwerp is getest op lijnarrays met regelmatige geometrie, waar-
bij de elementen rechthoekige microstrips of ringvormige microstrips zijn. In beide gevallen
zijn de arrays gepositioneerd in de vrije ruimte of boven eengeleidend oppervlak. In tegen-
stelling tot de lengte en omtrek van de microstrips is hun breedte klein ten opzichte van de
golflengte. Richtlijnen voor het toepassen van de aanpak op andere array-geometrieën met an-
dere element-geometrieën en op arrays waarbij kleine verschillen tussen de elementen bestaan,
worden uitvoerig beschreven.

In de voorgestelde aanpak wordt het gedrag van een eindig array beschreven door zijn eigen-
trillingen of eigenstromen. Deze eigenstromen zijn de eigenfuncties van de impedantie-operator
die de stromen op de elementen relateert aan hun excitatievelden, afkomstig van bijvoorbeeld
een invallende golf of van lokale bronnen. Uit fysisch oogpunt zijn de eigenstromen staande gol-
ven van het array. De bijbehorende eigenwaarden representeren de karakteristieke impedanties
van de eigenstromen. Hoe groter de karakteristieke impedantie van een eigenstroom, des te min-
der zal deze eigenstroom bijdragen aan de stroom op de elementen bij een gegeven excitatieveld.
Het concept eigenstroom blijkt uitermate geschikt voor hetontwerpen van arrays, omdat de
ontwerp-karakteristieken waarnaar men ontwerptéén-op-́eén gerelateerd zijn aan de excitatie
van specifieke eigenstromen. Uit dit proefontwerp blijkt dat eigenstromen en hun bijbehordende
eigenwaardeńeén-op-́eén gerelateerd zijn aan scanbundels, aan monopulsbundels,aan grating-
bundels, aan gemoduleerde impedantie-oscillaties, aan impedantievariaties toegeschreven aan
oppervlaktegolven van de arraystructuur, en aan veel andere eigenschappen van het array. Be-
houdens een fysische interpretatie blijkt de aanpak met eigenstromen te leiden tot snel uit te
voeren simulaties; immers, hoewel de prestatieparametersvan een array veranderen als func-
tie van de geometrieparameters en de frequentie, veranderen de eigenstromen nauwelijks. In
feite veranderen alleen de eigenwaarden, zij het regelmatig, als functie van geometrieparame-
ters en de frequentie. Derhalve kunnen de eigenstromen verkregen voor een zekere keuze van
parameters vastgelegd worden om ze vervolgens te gebruikenvoor simulaties bij andere pa-
rameterwaarden. De bijbehorende eigenwaarden worden benaderd middels het Rayleigh-Ritz
quotient.

Uitgangspunt van de voorgestelde aanpak is het bepalen van de eigenstromen van een ele-
ment en de bijbehorende eigenwaarden. De eigenstromen en eigenwaarden worden berekend
uit een ‘genormaliseerde’ momentenmatrix gerelateerd aangekozen ontwikkelfuncties voor de
stroom op het element. Vervolgens wordt een inproduct bepaald ten opzichte waarvan deze
element-eigenstromen orthonormaal zijn. De bijbehorendemomenten matrix in termen van
deze eigenstromen is een diagonaal matrix ten opzichte van het nieuwe inproduct. In de tweede
stap wordt een gereduceerde momenten matrix berekend ten opzichte van de samenstelling van
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de nieuwe element-inproducten, waarbij de ontwikkelfuncties de eigenstromen per element zijn.
Alleen eigenstromen die bijdragen aan de mutuele koppelingin het array worden in rekening
gebracht. Omdat deze eigenstromen a priori niet bekend zijn, wordt eerst het aantal koppe-
lende element-eigenstromen geschat aan de hand van het gedrag van de element-eigenwaarden.
Element-eigenstromen met grote eigenwaarden, zullen nietof nauwelijks bijdragen aan de
mutuele koppeling. Het resultaat van de tweede stap zijn de array-eigenstromen die beschreven
zijn als concatenaties van lineaire combinaties van koppelende element-eigenstromen. De array-
eigenstromen en hun bijbehorende eigenwaarden zijn verdeeld in groepen, waarbij elke groep
correspondeert metéén element-eigenstroom, de zogenoemde dominante element-eigenstroom
van de groep. De eigenwaarden in een groep zijn perturbatiesvan de eigenwaarde van de domi-
nante element-eigenstroom. Deze perturbaties zijn niet noodzakelijk klein. Hun spreiding blijkt
een kwantitatieve maat te zijn voor de mutuele koppeling in het array. Als de spreiding van
een groep klein is, hoeft de koppeling van deze groep met zichzelf en met andere groepen
niet in rekening te worden gebracht. A posteriori kan dus aande hand van de spreidingen
bepaald worden of voldoende element-eigenstromen in rekening zijn gebracht voor het beschri-
jven van mutuele koppeling. Numerieke simulaties laten zien dat metéén of twee groepen
van koppelende eigenstromen de mutuele koppeling in arrays, opgebouwd uit elementen die
typisch ontworpen zijn voor de excitatie vanéén specifieke eigenstroom, beschreven kan wor-
den. Door het verwaarlozen van mutuele koppeling worden tijdwinsten van een factor 10 tot
een factor 50 geboekt ten opzichte van de conventionele momenten methode. De spreiding is
tevens een kwantitatieve maat om het aantal buren van een element te bepalen dat moet wor-
den meegenomen om mutuele koppeling te beschrijven. Het verwaarlozen van koppeling tussen
buren leidt tot een verdere reductie van de rekentijd.

Nadere bestudering van de eigenstromen van lijnarrays bestaande uit ringen en strips heeft
tot een tweetal belangrijke observaties geleid. Ten eerstehangen de cöefficiënten van de domi-
nante element-eigenstroom in elke groep niet of nauwelijksaf van de elementvorm. Op grond
van deze observatie blijkt dat een eerste orde schatting vanhet gedrag van lijnarrays met com-
plexe elementen wordt beschreven door de coëfficiëntverdelingen van de eigenstromen van li-
jnarrays met eenvoudiger elementen. Ten tweede vertonen decoëfficiënten van de dominante
element-eigenstroom dezelfde patronen als de coëfficiënten van de eigenstromen vanéén strip
verkregen met stuksgewijs lineaire functies. Op grond van deze observatie blijkt een eerste orde
schatting van het gedrag van lijnarrays met complexe elementen te worden beschreven door de
coëfficiëntverdelingen van de eigenstromen vanéén strip met stuksgewijze functies. Verwacht
wordt dat de cöefficiëntverdelingen van de eigenstromen van een rechthoekige patch kunnen
worden gebruikt voor een eerste orde schatting van het gedrag van een rechthoekig array. Uit
de tweede observatie leiden we af dat een arrayéén geheel is en niet een verzameling van losse
elementen.

Het mag beslist niet onvermeld blijven dat het karakteristieke gedrag van arrays wordt
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veroorzaakt door resonant gedrag en dat resonant gedrag wordt veroorzaakt door de excitatie
van specifieke eigenstromen. De eigenwaarden, of karakteristieke impedanties, van deze eigen-
stromen zijn klein in vergelijking met de eigenwaarde die hoort bij de scanbundel. Zowel
gemoduleerde impedantie-oscillaties als variaties van elementimpedanties toegeschreven aan
oppervlaktegolven van de arraystructuur worden veroorzaakt door de excitatie van eigenstromen
met relatief kleine eigenwaarden. De verdeling in de groep met de laagste eigenwaarden voor-
spelt welke belasting van het systeem nodig is om resonant gedrag te vermijden. Tot besluit
vermelden we dat de relevantie van het concept eigenstroom in dit proefontwerp aangetoond
wordt aan de hand van een aantal specifieke fysische effectendie in de praktijk van het antenne-
ontwerp zijn waargenomen.
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