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Preface

"Why do we need a(n) (industrial) mathematician?” It is a trently asked question in indus-
try. Probably the answers are even more numerous: to cary specific calculational step, to
develop a(n) (numerical) algorithm, to find an optimal ®ggt and to test a hypothesis are only
some examples. A more profound answer is that an abstrdcat@ocertain problem may give a
deeper insight and may establish links with other fields,r@laesolution to the problem is avail-
able. One of the strongest unifying concepts in mathemétittse concept of eigenvalue. As
L.N. Trefethen [115] wrote: “They [Eigenvalues] give an ogter a personality”. Represented
in the complex plane, eigenvalues are much easier to digekethuman brain than the abstract
notion of an operator that describes a certain process argohenon. Moreover, eigenvalues
may provide insight into physical phenomena like resonastability, and rate of increase or
decay. More specifically, in mechanics, eigenvalues magroene under which conditions a
bridge will collapse or an music instrument will give a propeund. In electromagnetism, they
may determine whether a certain signal is propagating. ¢togg, they may predict whether
layers of salt become unstable. In heat transfer, they miayrdane the cooling time of a molded
compact disc or the heating time of a copying machine.

In this thesis an approach based on the concept of eigerigghueposed for the analysis of
antenna arrays. Examples revealed that eigenvalues, amel#tted eigenfunctions or eigencur-
rents, are one-to-one related to the specific array funetike scanning and the technique of
monopulse. Moreover, the excitation of specific, resorgigencurrents explains various effects
observed in practice, like variations of element impedarmdtibuted to array surface waves and
modulations of element impedances. The visual power oheaes is exploited as well in the
sense that their distribution in the complex plane may resgtable (surface) loading to reduce
resonant behavior.

The preceding paragraph illustrates the strong relatiawdsn the concept of eigenvalue
and antenna-array design. Moreover, it illustrates howlastract look at antenna arrays may
provide practical information for design. In the past foeays, these relations were not always
as clear for me as they are now. The hardest part of the ppecprobably to keep believing
that the approach based on eigencurrents was approprihte arplain why such an approach
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was needed. An additional difficulty was that electricaliaegrs and mathematicians talk dif-
ferent ‘languages’. Moreover, both ‘languages’ consisiaiy ‘sublanguages’. To write one
thesis for several languages was not an easy task. To pifeitatitly, trying to be mathemati-
cally strict and industrially applied at the same time isdanathematician like climbing one of
the ridges of a mountain: the danger is to disappear intog¢leg davines on either of the sides.
In this respect, joining the program Mathematics for Indubtfore carrying out a PhD project
was very useful.

Many people have guided or helped me in this project. Firstllof would like to mention
dr.ir. Stef van Eijndhoven, dr.ir. Fons van de Ven, and pirofAnton Tijhuis. Stef, many, many
thanks, not only for reading this thesis up to the ‘milimgtent also for all your suggestions and
advice with respect to the interpretation of the many gdaedrénumerical) results. Moreover,
your mental support encouraged me a lot. Fons, thank youllfgoar support and advice
over the past years and for always having a listening ear.omnt appreciate all your help
and support very much and | would like to thank you especifalythe extensive time you
took to read my thesis and to give suggestions for improvém&hrough your advice, a lot
of ‘language difficulties’ of the nature mentioned above evegsolved, although during our
enthusiastic discussions, we sometimes ran ourselvesieto a ‘difficulty’. Many thanks go
also to my present and previous supervisors at Thales Nedkrdr.ir. Peter-Paul Borsboom
and ir. Evert Kolk. Peter-Paul, thank you for all your adviemed support in the last three
years, especially for all the effort you took to find applioatareas for my work, both inside
and outside Thales. Evert, thank you for your guidance irfiteeyear and for giving me the
opportunity to continue my final project of Mathematics foduistry as a PhD project.

| would like to express my gratitude to prof.dr.ir. Hans vauijb and prof.dr.ir. Guy Vanden-
bosch for their comments on the first versions of my thesisn béso thankful to the members
and several former members of the group JRS-TU antenna &sTNaderland for their inter-
est and many worthwhile discussions from which | learned.altoparticular, | would like to
thank Joris Buijnsters, Eddy van Ewijk, and Bertus ter Hgijart Morsink, and Gertjan van
Werkhoven for the discussions about the development ofr regiems and the relation with
my work. Moreover, | would like to thank Kiman Velt for the HESimulations that could not
be described in this thesis anymore unfortunately. Warmkfialso go to Emiel Stolp, Frank
Leferink, Hans Schurer, Hans Driessen, and Monique Kedmtethe stimulating discussions
about work and my work in particular. Last but not least, | ¥aolike to thank Geert Vulink,
Dolf Boompaal, and Rein Eggens for the pleasant atmospheoaii cubical throughout the
years.

From the Laboratoire d’Electromagiisme et d’Acoustique, | would like to thank prof. Juan
Mosig for giving me the opportunity to work in his group fronpAl till June 2000 and to
present my work in June 2001. Moreover, | would like to thankidel Mattes for the pleasant
cooperation during my three-months stay and for the warngeveé at my visit in June 2001.
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From the Technische Universiteit Eindhoven, | would likethank the (former) students
of Mathematics for Industry, the members of the Electronegiga group of the department of
electrical engineering, and the members of the applied/aisagroup, nowadays CASA, of the
department of mathematics and computer science. In pentiduwould like to thank Friso
Hagman, Martijn van Beurden, Tom Gierstberg, Kamyar MatakpGertjan Pieters, and Jan
Kroot for their mental support and encouraging discussions

Finally, | would like to thank all my friends and relatives fineir friendship and support. In
particular, | would like to thank Jeroen Willekens for desity the cover. Moreover, | would
like to thank my mother Yvonne, my father Frans, and my brotelin for their patience,
understanding, and support. Last, but definitely not Idasquld like to thank my girlfriend
Shirley for all her love, patience, understanding, suppand of course for drawing several
pictures in this thesis and typing several parts of the text.

Dave Bekers, Eindhoven, 1 november 2004






Glossary of Notation

General remarks:

If more equations correspond to the same equation numlgsraite indicated by super-
script numbers at the equation number. For example, {2slthe second equation in
Equation (2.1).

A superscript symbol connected to a word indicates a foetreg., representativn

Except for the time-domain quantities in Section 2.1, vectind vector functions are
indicated by boldface characters, e §.andw. Matrices and column vectors are denoted
by Roman capitals, e.gZ andW. Operators and vector spaces are in general denoted by
calligraphic characters, e.g4, and Z.

If a super- or subscript of a mathematical symbol is typese¢hé normal Roman font,
the script indicates the abbreviation of a word or word graig., N1, If @ super- or
subscript is typeset in the italic Roman font, the scriptéates a mathematical symbol (a
variable or a coordinate-axis label), e @,,andw,,,.

A dotin an argument of a function or an operator indicatesttfecorresponding variable
is free. For example, if is a function of two variables, thefi= ¢( -, 7) is a function of
one variable, whereg is evaluated with respect to its second argument only. Thetilon

f evaluated af equalsg (&, 7).

The dB scale is in general definedlds'log | - |. The definition20 °log | - | is adopted
for (electric) far-field components only.

The word group ‘absolute value(s) of the ...’ is often ablatd to 'the absolute ..., e.g.,
‘absolute eigenvalue’ instead of ‘absolute value of theriglue’.

The word ‘element’ is used for both elements of sets and el an antenna.

Normalized quantities or variables are denoted by hats,{éagp/lpq.
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Vector spaces

Throughout this thesis, we identify in the usual way the Elgen spacéE?® of points and
vectors, and the s®?> of 3-tuples with real components. In other words, points ators in
IE3 are identified with 3-tuples ilR3. We interprefR? as a vector space equipped with the usual
scalar product. e .), shortlye, and the usual vector produgt Moreover, we equifR?® with
the standard basis, = (1,0,0), e, = (0,1,0), ande. = (0,0, 1) with associated Cartesian
coordinate system. A 3-tuple or vectorR? is written asz = xe, + ye, + ze., or shortly
(z,y,2),andE = E e, + E e, + E.e., or shortly,(E,, E,, E.).

Vector fields inE® assign to each point ift? a vector with length and direction. With
the identification above, a vector field i is a vector function froniR3 to R3. In turn, these
vector functions can be interpreted as vector fieldRin Therefore, we use both the term vector
function and the term vector field. Vector functions fr@n to C3 are complex-valued vector
fields inIR3. Here,C? is the (complex) vector space of 3-tuples with complex conemts,
which is equipped with the same scalar product, vector prpdund standard basis &s’.

In Section 2.3, we introduce complex-valued vector fumgiof which the range is a subset
of CV, i.e., the set ofV-tuples with complex components. The components of suctcve
functionw are denoted by, p =1,..., N. In Section 2.4, this notation is changedd6- ; p)
to avoid confusion between the components of vector funstand the indices of vectors in a
set, e.g.{w1,...,wy }. Analogously, the notation for the components of a veetds «(n)
instead of,, and the notation for the components of a maf¥iss G(m, n) instead ofG,,,, .

The following notations are used in this thesis. Some sysht appear locally are not listed;
they are defined within the text. Moreover, symbols relatetih¢ algebraic concepts employed
in this thesis are defined in Subsection 2.4.1. For detaitsotation of function spaces, we refer
to Section 3.1.

Roman symbols

A magnetic vector potential

Ay, magnetic vector potential at the surfagginduced by the current at
the surfaces,,.

A(U), A(fscan)  infinite-array moment matrix

a,aq radius of a ring

b, b, half the width of a strip or ring

bagw) the set{Wey, ..., Wex} for a mapping/V from C¥ to a vector spac#’,
defined in Subsection 2.4.1

C>(4)

c speed of lighte = 1/, /g0 10

cq centers of elements in an array
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85, 677

€¢

ext ext ext
€ 1€y &
e’ll
F(A,B)
q
q

Q =

Gfree

g free
grad
H

Hext
H2,n(A> (DN)

H2,n,per(Aa B)
J

Ja

generalized derivative

distances between strips in a line array

distances between elements in a uniform line array

divergence of a vector field

domain of an operator

time-independent part of the time-harmonic strength oftketric field
&, shortly electric field

(tangential) excitation field &f (tangential vector field a¥)
externally applied electric fieldRs = —(E™").,)

incident electric field

set of eigencurrents of an array in which mutual couplingjiored,
corresponding to the eigencurrari*® of the generating subarray,
wheren =1,..., N3P

union of the setg,,

1. tangent vectors of

2. idem, where5 represents a line array of strips

normal onS corresponding te; ande,, e; = e¢ x e,

extension of the tangent vectors®fand their normal to a global or
locally global coordinate system

unit vector of the standard basis Gf"

a linear space of functions that map the elements of 2 seto a setB
kernel of 7,

kernel of 7,

frequency

Gram matrix

a fundamental solution of the Helmholtz operater?*% /4r R

gfree(R) = kgfree(R)

gradient of a scalar function

time-independent part of the time-harmonic strength oftlagnetic
field »#, shortly magnetic field

externally applied magnetic field

subspace of.5(A, CV) consisting of all functions on a set with
nth derivative inL,, denoted by, ,,(A) for N =1

consists of all functions i, ,,(A, B) that are periodic on the
real line with perio®n

time-independent part of the time-harmonic current dgngtt,
shortly current

averaged currenl 4 = AJ



Xii GLOSSARY OFNOTATION

J V-1

Kiipg, Kapq kernels offCy; 4, IC2,pq

K pgs Ko pg approximated kernels

k wave number defined by = w, /€0

L(A,CN) vector space of linear mappings from a deto a setB

Lo(A, CN) space of square integrable functions from a4ét the setC?,
denoted byl.5(A) for N =1

4 length of a strip.

Ny number of (antenna) elements or surfasgs

Nexps Nexp number of expansion functions

Niests IV test number of test functions

Neos, Neos number of cosine expansion functions

Ngin, Ngin number of sine expansion functions

Neub number of subarrays

N;iugb number of eigencurrents of the generating subarray

Nint number of intervals for integration

n normal ofS

o(+) order symbol

prad radiated power

pPex complex power

R function defined byR(-) =| - |, where| - | is the module

r radial coordinate corresponding to the parameter degmmipf rings

ran(-) range of an operator

rot rotation of a vector field

S smooth oriented surface IR? that represents the array elements

oS boundary curve of

S+ the two sides o with normalsn® that point into the areas at the
S*-sides ofS.

Sy surfaces of which the union i5; these surfaces represent the

Tang(S; (€,7))
t

Unp , Ung

U, 5 Unq

ex ex

v v

Vex, Vex (q)

array elements

Tangent plane of at the pointr g

time

eigenfunctions or eigencurrents with indigeand,,,

Eigenvectors with indices and,,,, represent the expansion
coefficients ofu,,, un,

centerline component(s) of the width-averaged excitdtad on the
surfaces,

voltage of a feed gap (voltage or delta gap, or finite feed gap)
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yn? ynq

VA
A
Zinp

1. centerline components of the width-averaged currenhestirfaces,
2. element of an inner-product space in Subsections 2.4 2 @n2
(column) vector, consists in general of the expansion adeffis ofw or w
3-tuple or vector ifR?

parameter representation of the surface

centerline ofS in casell(.S) is given byII(S) = II¢(S) x [—n1, 7]
functions in the bi-orthogonal sgt with indices,, and,,,,
defined in Subsection 5.2.1

moment impedance matrix

characteristic impedance of free space definedby= /10/¢€0
input impedance

Calligraphic symbols

A

’glimqv I§27pq
’Cli,pqv ’C2,pq
P,Q

T

u

1Z294%

V-, W~

X,

averaging operator defined for tangential vector field$ pwhere
I(S) = e (S) x [~ 7]

density of the magnetic flux

density of the electric flux

differential operator defined ) = —;j Zok(Z + (1/k?) grad div )
(D )tan = Ds(-|s)

strength of the electric field

integral operator corresponding to a line array of strips
approximation otF,,

free-space kernel &f, Giee = gtreel

half-space kernel of”

kernel of 7 for the domair)

strength of the magnetic field

identity operator

identity operator on the vector spage

current density

integral operators corresponding to an array of ririgs (, 2)
approximations ofCy; .4, Kz g

projections (see Subsection 2.4.1), in gen@rat WW~ andQ = VYV~
integral operator with kern@cc, Guait, OF Go

basis of eigenfunctions or eigencurrents

mappings fromC? to an inner-product space

mappings from an inner-product spacetd corresponding to
VY, W and defined by (2.111)

1. inner-product spaces in Subsection 2.4.1

Xiii
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2. domain and range & in Subsection 2.4.2

Xa, Va domain and range of,, both inner-product spaces
y bi-orthogonal set aff

Z impedance operate® = (D7 - )ian, Z2J = Eg

Z, averaged form of, Z,w = v

Greek symbols

B, Bq ratiosb/a andb, /a, for rings, ratiosh/¢ andb, /¢, for strips

A Laplace operator

Onm Kronecker symbol defined by,,,, = 1 for m = n andd,,,, = 0 form #n

€0 permittivity of vacuum

€ indicates the ‘width’ of a finite feed gap

A wavelength

140 permeability of vacuum

Un, Vng eigenvalues with indices and,,,

I(S) parameter set correspondingat

I (S) defined for surfaceS§ for whichII(S) can be written as
11(S) = e (S) X [~n1,7]

0 charge density

P 1. time-independent part of the time-harmonic charge densi
2. spherical radial coordinate

o conductivity

T tangent vector of the centerlings(-,0) of S, T = e¢(-,0)

Tos piecewise defined tangent vector&fif S has a piecewise and oriented
boundary curvé)S

0,¢ spherical angles

Oscan, Pscan  SPherical scan angles

0;, & incident angles of a plane wave

01 angle that indicates the position of the main lobe of a limayar

© angle that describes the circumference of a ring

v U = kdcosb;

Y, 1q orientation angle of the local coordinate systems on rings

Q a domain inR? with boundarydQ

Q. eigenvalue of the eigenfunctianof a Sturm-Liouville problem

Qeosn nth eigenvalue related to a cosine eigenfunction

Qgin,n nth eigenvalue related to a sine eigenfunction

w radian frequency
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Supper and subscripts

*

\

1. complex conjugate
2. adjoint mapping or operator

(@) = f(==)

+ orthogonal complement

H Hermitian transposed

Other symbols

N set of natural numbers

NP set of P-tuples with components iV (P = 1,2,...)

R set of real numbers

R3 set of 3-tuples with components ), interpreted as vector space

C set of complex numbers

cN set of N-tuples with components ifv

CMxN set of matrices of siz&/ x N

. scalar product ofk® andC?, also denoted as. o .)

X 1. vector product ofR?® andC?
2. matrix size indication, e.gy x N andC~N*N
3. multiplication in multiple-line expressions
4. indicator of sets such as, b] x [c, d]

(-0 )N inner product orlC" with which C¥ is an inner product space; the inner
product is linear in its second argument

(*)tan trace operator, which restricts a vector function to théaS and then
takes the tangential component

ls restriction to the surfacg

Ck convolution

(-, ) inner product on a vector space, linear in its second argyrmen
(v, aw) = av, w) and, hence(av, w) = a* (v, w)

Il 1. associated norm df , -)
2. norm onCV>1 or ¢V

(-, Hx inner product corresponding to the vector spatce

U concatenation of two tuples (or row vectors) defined by (2)10

1. transforms a linear mapping frofY" to CM into a matrix inC™*V,
also denoted by |arx v

2. transforms aV-tuple inC" into a column vector ifCV > 1,
also denoted by- |
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CHAPTER1

Introduction

On 30 April 1904, Christian Hismeyer patented his ‘Telemobiloskop’, which became tts¢ fi
operational radar system for detecting ships through restission and reception of electro-
magnetic waves [51, 111]. Nowadays, radar systems areyided, for example, to control air
traffic, to measure vehicle speeds, and to detect and trgukmaés and ships. Thales Nederland
is one of the companies that specializes in designing ardlipiog radar systems, or more gen-
eral, integrated defense systems. The company is part dftthkes group with plants in more
than 30 countries. In Hengelo, the Netherlands, the foctiseoflesign and production process
is on highly advanced naval systems. Customers of ThaleerNedi are marines of countries
all over the world.

The principle of radar, or ‘radio detection and
ranging’, is based on the phenomenon that metal-
lic objects reflect electromagnetic waves. These
waves are transmitted and received by the antenna
of a radar system. In several systems of Thales
Nederland, the antenna is a large (phased) array
of single antennas. We will refer to these anten-
nas as the (array) elements. A specific example
of an antenna array of Thales Nederland is shown
in Figure 1.1. The array consists of about 1000
elements, positioned on a planar antenna face of
about16 m?, i.e., the black surface in the figure. Figure 1.1 An array of single microstrip
Figure 1.2 shows a schematic representation of ong ;...\« on a test tower.
of the array elements, which are rectangular mi-
crostrip loops. The systems are designed for long-range#lance, i.e., for detecting (metal-
lic) objects in the range of 10 — 400 kilometers. Moreoveg $lgstems scan in elevation by
phase shifts and in azimuth by rotation. Here, azimuth isatigde related to distances around
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% 4>| rectangular loop
PN\ twinlead
ground plate

stripline environment

Figure 1.2 A single microstrip antenna or (array) element.

the earth’s horizon, while elevation is the height abovedhth’s surface. As an illustration of
the capability of these systems, we mention that the detecti a metallic object of the size of
a tennis ball was demonstrated up to more than 50 kilometeay.a

The design and development of antenna arrays is complexoatigt {85, 86, 122]. To reduce
design costs and design risks, and to improve the perforenehthe arrays, Thales Nederland
uses simulations. Simulations should meet a number ofieritdhey should be fast executable,
they should show boundary effects and effects of mutual laogipand they should determine
the antenna performance parameters accurately. Sirmsaliased on the generally applied
infinite-array approach and simulations based on the felgéeient method do not satisfy these
criteria. Simulations of the first type do not describe bamckffects, while simulations of the
second type are computationally too expensive. Both typssrulations do not provide direct
insight into the physics relevant to the design. To overctirese disadvantages, Thales initiated
a sequence of projects to develop simulation tools for arfaypp. 13 — 18]. The first projects
concerned mainly the modeling and analysis of a single aieniehe step from one element
towards an array could not be taken, because simulationiofjfeslement required too much
computation time. Therefore, the focus remained on lodangent) effects. In the middle of the
project described in [6], we decided to shift our researgfatds the simulation of large (finite)
antenna arrays with the focus on global (array) effectss Tésearch resulted into a top-down
approach in which we analyze an array of simple elements fdgtthe approach, we aimed
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at finding characteristics of a single element that are éisééor describing the array behavior
and, therewith, for the array performance. On basis of tlvlseacteristics, we intended to
develop an efficient analysis approach for finite antennayarwith corresponding simulation
tools.

In this introduction, we present an overview of our reseaMle describe the design pro-
cess of antenna arrays in Section 1.1 and we explain ourilbotitm to the stages in the design
process. In the next section, we summarize the modelingpappes and simulation tools for
antenna arrays as used by Thales Nederland. Also, recealogewents in the literature are
outlined to determine current needs in array modeling. §baith these needs, we describe our
main objectives and modeling approach in Section 1.3. Inp@hmn&/, we describe the conclu-
sions of our research in relation to these main objectivédevin Section 1.4, we describe the
organization and contents of this thesis.

1.1 Design Aspects of Antenna Arrays

Each design process of an antenna, in particular an

antenna array, is unique. The process is flexible, of s

ten influenced by circumstances and pragmatic de-o7m, asormety
cisions. For these reasons, the practice of antennameters parameters
design is described in many different ways, see for l
example [63: p. 137]. We emphasize the main lines Models and
of the design process in the schematic representa- tools
tion of Figure 1.3. !

Formulating the requirements on the antenna e
performance parameters is the start of the design mj‘iES VES
process. The requirements are a quantification of o
the two main goals of antenna design: the input en- Protope 1 Prolotype
ergy should be radiated in a well-defined direction ]
and the energy loss should be minimized. We divide
the performance parameters into three categories: Measurements
beam parameters, mutual coupling parameters, and
visibility parameters. The first category is related to VES AL NO

requirements
met ?

the first main goal, the second category to the secy il desien
ond goal. The last category describes the stealthi-
ness of an entire radar system. Table 1.1 contaiRigure 1.3 Design proces of an antenna.
a selection of parameters that belong to these cate-

gories. The requirements on the parameters are specifiedcfntain bandwidth, or, frequency
range, and for a certain scan range.
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Table 1.1 Beam parameters, mutual coupling parameters, and arest&ff

Beam parameters Mutual coupling parameters Visibility parameters

Side lobe level | (Mutual) Impedance Radar cross section (RC$)
Beam width Scattering parameters

Gain Reflection coefficients

Polarization Scan loss

Axial ratio

In close cooperation with the system engineers, the antemgiaeers determine the require-
ments on the antenna performance parameters from the systimements, which need to be
satisfied by the entire radar system. The antenna enginagistake into account RF (Radio
Frequency) performance, mechanical performance, matouédnility, development time, and
costs. The next step in the design process is the selectitreaintenna geometry including
the selection of the antenna type. Examples of antenna Bigewire antennas, reflector an-
tennas, and antenna arrays. Within the array type, diffddeds are distinguished depending
on the element type, e.g., a waveguide and a microstrip mattdop, and the array composi-
tion, e.g., uniformly spaced and sparse. The selectioneshititenna type and a first estimate of
suitable geometry parameters is usually done by antenrinemrg with extensive experience.
Subsequently, simulation tools based on array models & tospredict the array or antenna
performance. As long as the requirements are not met, teets®i of antenna geometry pa-
rameters is adjusted. Mostly, this process of adjustingrpaters is a trial-and-error process,
where the experience of the antenna designers plays antanpaoole. Only in some cases,
optimization routines are available to automate this pgscén the next step of the process, a
prototype is constructed and measurements are carriednuwiverview of measurement tech-
nigues can be found in [55]. The outcome of the measuremetgsrdines whether the design
can be finalized. In case of a negative answer, the followirgstions are posed.

1. Have the measurements been carried out correctly?
2. Is the prototype free of construction errors?

If the answers to both questions are positive, new antenoengiey parameters need to be
chosen. To achieve this, both the accuracy of the numeiiicallation and the validity of the
idealizations need to be reconsidered. Moreover, if thectijn of the prototype is due to a
specific performance parameter, this parameter needs tojleesized more in the simulations.
For instance, the prototype may show a high visibility, iniebhcase the RCS performance
parameter needs to be emphasized.

Having discussed the specifications of antenna design iargemwe now focus on the as-
pects that distinguish array design from general antensigideThe main advantage of (phased)



1.1. DESIGNASPECTS OFANTENNA ARRAYS 5

arrays over other types of antennas is the possibility aftedaic beam steering by using phase
shifts between the elements [122]. Contrary to mechanigaibsteering, electronic steering is
accomplished without time delay due to mechanical comggaiTherefore, electronic steering
in (phased) arrays facilitates multiple functions, for myde, scanning, tracking, and missile
guiding. On the other hand, electronic steering complg#te RF aspects of the design. The
appearance of grating lobes [70: pp. 29 — 34, 81 — 86], theepoesof blind scan angles [70:
pp. 339 — 355], beam broadening [70: pp. 22 — 26], and a higledapce variation [53, 82] are
effects that have, in general, an negative influence on tlag aerformance.

To excite the elements of an array, a sophisticated
feeding network is required. This network needs to he
designed such that each element is excited with the right
phase and the right amplitude, and such that the energy
loss in the network is minimized. As an example, w
consider the microstrip network in Figure 1.4. At eac
bend or junction of such a network, energy is reflected a
the phase of a propagating electromagnetic wave chanies.
Both the amount of reflected energy and the phase cha 19
depend on the frequency. To obtain a uniform perfor-
mance, reflection and phase change should be uniform
over a desired frequency band. Therefore, chamferegdgure 1.4 Schematic representa-
bends [44: pp. 205 — 210 and Fig. 2.38] are often used ition of a part of a microstrip net-
networks. The connections of the feeding network to thavork.
elements should have the same properties as the bends.

To minimize the reflected energy, the impedances of the mktamnnections are matched to
the impedances of the elements. For this purpose, impedsamsformers are used in stripline
networks [44: p. 160]. A difficulty in impedance matching &t the impedance depends on
the frequency and the scan angle. Moreover, the elementiamge varies over the array due
to the mutual coupling between the elements. Although skterresearch on the relations be-
tween mutual coupling and performance parameters is destcin the literature, there are no
general rules. In a prototype or a final design, the mutuaplog can be measured by means
of a network analyzer connected to two elements in the awhile the other elements are
characteristically loaded. The scattering parameteiisane the strength of the electromagnetic
coupling between the elements. Strong coupling may haveeaioeating effect on the array
performance, because power radiated from one element thaarftows back into the feeding
network.

gmfered bend T-junction

T

Our outline of array design is far from complete and showy animited number of diffi-
culties that may arise. For a more extensive, recent degrjpve refer to [85, 86], in which
array designs other than microstrip designs are consideseslell. For reviews of array de-



6 1. INTRODUCTION

sign in the 70s and 80s, we refer to [68, 69, 112]. Our contidbuo the design process was
specifically focused on the second and third stages showigimd-1.3, i.e., the selection of
the antenna geometry parameters and the use of models amdtsim tools. The modeling ap-
proach and the simulation tools we developed belong to tiné $kage. On basis of simulation
and research results, we wanted to find characteristicsléfsaribe the (qualitative) behavior of
antenna arrays. In particular, as mentioned at the begjrofithis chapter, we wanted to find
characteristics of a single element, which are essentighéoverall array performance. In this
way, we contributed to the second stage of the design process

1.2 Simulation Tools and Analysis Approaches

We divide the analysis approaches and simulation toolswgupport the design process in the
antenna department of Thales Nederland into two categaieRF category and a mechanical
category. The two most important simulation tools in the nagical category are the commer-
cial software packages Pro Engineer and ANSYS. By Pro Ergii3® models of mechanical
designs are created. The predecessor of this package waglea®ihg package, which has
replaced the drawing tables about 20 years ago. ANSYS istosesiry out computations for
the mechanical design such as computations of mechaniealgsh and mechanical tolerance.
These computations are not only essential for a reliablehar@cal design, but also for the ef-
fectiveness of a radar system as a whole. The relationshigke mechanical design and radar
functioning is apparent in scanning by mechanical rotatind in the stabilization of systems
on ships.

The RF category is divided into two subcategories: modetstanls for determining the
impact of systems onto other systems, and models and taotefigning (part of) a system.
In the first subcategory, analysis of electromagnetic dagph entire systems is the main topic
and simulation tools are based on asymptotic technique8[4lon moment methods [76], and
on combinations of mathematical and physical techniques, hybrid techniques [113]. The
analysis covers the range of a single antenna up to a congdétferm with more antennas, for
example a ship. It is directed to topics as radar cross sedtwosts (structures on a platform
which are considered as targets), blocking (visual fieldtéchby structures on a platform), and
interference. Platform analysis has become more and maqeriemt over the years, because
the number of antennas on a ship increased from about 30 #O&#® more than 100 nowadays.
As an example, we mention the following interference probla platform analysis. When a
side lobe of a certain radar system on a ship is incident omsenaa array on the same ship,
the limiters of the array must be capable of protecting th&&Low Noise Amplifiers [37: pp.
323 — 326)).

In the second subcategory, the main aspect is the desigrtefras and their feeding net-
works. For this purpose, Thales has available commercfalvare packages such as HFSS,
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Momentum, and MDS, and a self-developed simulation todeddluxaflex. Both HFSS and
Luxaflex are based on the infinite-array approach, in whicaréogic array is constructed from
a unit cell. In HFSS, periodic boundary conditions are piibed on the walls of the unit cell.
The differential equations describing the electromagrfétid in the unit cell are solved by the
finite-element method. In Luxaflex, the electromagnetidfirlthe unit cell is described by an
integral equation with a kernel represented by a Floquétserhis equation is solved by the
moment method. Both simulation tools are used for the desfigrrays and frequency-selective
surfaces (FSS). Like Luxaflex, Momentum is based on an iateguation formulation of the
electromagnetic field; it is used for the design of sevenaésyof single antennas and network
components. The software package MDS is a circuit simylatoich is used for the design of
networks. Besides these packages, Thales has availalgleak®ols based on physical tech-
niques [87], for example, technigques to predict the infleeofcdiffraction of a (finite) ground
plate on the radiation pattern of antennas. Moreover, Bhades available simulation tools for
arrays of specific types of elements [35, 50, 119]; thesestame based on the infinite-array
approach. Finally, for a general list of simulation toolg kefer to [23].

Most of the available (numerical) simulation tools for ggare based on the infinite-array
approach, an approach that has been extensively and siutlgassed for array analysis. Nev-
ertheless, both approach and tools have several limitation

¢ In the design of large arrays, often smaller ‘building blgickr subarrays are analyzed
both by simulation and by measuremeriiese blocks are usually too small to be analyzed
by the infinite-array approach.

e The infinite-array approach cannot account for edge effeatssed by the finiteness of the
array and by the boundedness of the ground plane and di@datrers. With respect to
the finiteness of the array, simulations and measurements dliferences in side-lobe
level between finite-array behavior and infinite-array datians. When mutual coupling
between the elements is strong, there can be a consideitibtertce between the behav-
ior of the edge elements and their infinite-array behaviasrddver, a significant number
of elements may be affected by the edge effects. With redpettte boundedness of
the ground plane, results for single elements show thatlément pattern for an infinite
ground plane is perturbed by the edge effects of the boundmehd plane [100]. By
physical techniques such as the Uniform Theory of Diff@et{UTD), the perturbation,
i.e., a ripple on the smooth pattern, is predicted.

e Non-periodic arrays, such as sparse arrays, cannot be aea\oy the infinite-array ap-
proach. Moreover, the failure of certain elements cannoabeounted for.

o Differences between elements cannot be accounted for infthie-array approachFor
example, ideally, the elements of a planar uniform arrayadlreositioned at the same
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height above the ground plane and they are all geometritalgame. In the practice of
mechanical engineering, it is very difficult to constructa firound plane, especially for
a large array with an array face ®6m?2. Moreover, the elements will show slight dif-
ferences in shape and height. To investigate the influensaaif differences and imper-
fections on the array performance, a straightforward imgletation of the infinite-array
approach cannot be used.

A further limitation of numerical simulation tools is thaidy are generally not designed to
provide insight into characteristics of arrays, i.e., tielaships between geometry parameters
and performance parameters. In practice, characters@todetermined by analyzing simulation
and measurement results for various geometries. Consiyjuba inventory of characteristics
is fragmentary. In [8], an inventory of characteristicsdzhen 30 articles on antenna arrays and
single antennas is describe®ince characteristics serve as guidelines for the antems#ders,
we preferred an analysis approach that provides directghsinto characteristics.

To overcome the limitations, Thales initiated a sequengeajects to analyze finite antenna
arrays and to develop simulation tools [3, 49, 118]. An esi@nreview can be found in [7:
pp. 13-18]. As mentioned in the introduction of this chapttee projects were mainly concerned
with the analysis of a single element. The challenge was tbdintable functions to describe
the current on the rectangular loop, as schematically tegia Figure 1.3, while keeping the
computation time short. Despite extensive research, thguatation times remained too high
to extend the analysis to arrays. Therefore, in the projestidbed in [7], we started with the
analysis of simpler (loop) geometries. Next, we decidedhiti towards the analysis of large
arrays with the focus on global (array) effects. The mainivatibn for this shift was to find
characteristics of a single element that are essentiah@oatray performance. Based on these
characteristics, we expected to develop an efficient sitialaool. The more complex the
geometry of the element, the more complicated the detetimimaf characteristics. Because
of this, we decided to consider arrays of the analyzed siraf@ments first. The following
additional requirements for our analysis were formulated.

1. Asin array design, it should be possible to use infornmatibtained from the analysis of
subarrays in the analysis of the entire array. In this rasjids important to know which
information of a subarray is essential for the descriptibthe array behavior. Once this
question is answered, the step towards a large array coohpbdseibarrays can be made
in an efficient way without the necessity of calculating aghie subarray information.

2. Edge effects due to finiteness of the array should be ateddaor. In our research, we
did not consider edge effects caused by boundedness ofdbadjplane. We expect that
these effects can be handled for by available techniquekaed3 [13]. Effects due to the
boundedness of the ground plane are discussed in Sectidm &kation to the analysis
approach we developed in this thesis.
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3. The approach should be (array) lattice independent.Heratords, the approach should
not be limited by specific lattices on which the building lHeor subarrays are positioned.

4. The approach should be independent of the choice of thidfispelements.

Before we describe our approach, we present a list of aVaikatray-analysis approaches, es-
pecially adjustments of the infinite-array approach; wecdbe the benefits and limitations of
these approaches. Literature on analysis of specific typasays, on array synthesis, and on
developments in the understanding of array effects is dislin Section 2.5 and in Chapter 6.
An extensive literature list of articles on antenna arrays r@lated topics can be found in [8].

1. Small arrays can be analyzed by full-wave simulationdhefactual array structure. To
obtain higher computation speeds, iterative methods a#, ssich as the matrix decom-
position methods described in [15, 90, 121].

2. To account for edge effects in rectangular uniform arrags, arrays with a rectangular
lattice and with uniform spacing and uniform element shapeariety of techniques is
available.

2.1

2.2

When the elements of the array are minimum scatterersresfect to impedance,
admittance, or scattering parameters, results obtaindldebiynfinite-array approach
are corrected by techniques as described in [100]. Elempettern results in this
article confirm the statement of earlier work that the chizrdstics of only those el-
ements in a uniform rectangular array that have at leastigghbers on each side are
described by the infinite-array approach. Recent resedBjtshowed that an exper-
imental array needs to be at le&atx 5\, with \ the wavelength, to approximate the
element characteristics of large broadband arrays. Therbehavior of the central
elements is described by the infinite array, while the bairanfi the edge elements
approximates the edge behavior of large arrays. For napaove arrays with).5\
spacing, the minimum size is lower than the size suggestgdd] (10 x 10 versus
25 x 25) but for wide-band arrays, it is much largé0(x 50 versus25 x 25).

The infinite-array approach is adjusted by a windowigtégue, which is applied
both for a circuit description [52] and a field descriptio®4] 105] of the array be-
havior. The basic assumption for the field description is tha current distribution
on the array varies slowly from one element to another. Thee=ats on the elements
are determined in the spectral domain (with respect toipogitrom an electric-field
integral equation, which is defined for each element seplgrathe kernel of this
equation is a convolution of the spectral infinite-arraynietrand the Fourier trans-
form of the excitation taper, or, ‘window’. The main advaggaf the method is that
an uncoupled system of equations needs to be solved insteadoupled. Since
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the computation of the required infinite-array data don@sdhe computation time
of solving the uncoupled equations, the total computafioe is independent of the
array size.

2.3 In the casting technique in [114], the conventional $ebapled integral equations

2.4

2.5

describing the array behavior is replaced by casting theesponding moment ma-
trix into a single integral equation for a global generafiungction. The kernel of the
resulting equation is the product of the active admittari¢beinfinite array and the
array factor of the uniformly excited finite array. The cagttechnique reduces the
problem to a matrix equation which is of the same size as tbhatemn for a single
element in the windowing technique mentioned in item 2.2.

A variety of approaches takes the edge behavior intousxt@xplicitly. Based on
the assumption that the edge behavior of an array is indep¢rd the array size,
the edge behavior of a large array is approximated in [77: @l1]Lby the edge
behavior of a small array. More insight in edge phenomenaagiged by the trun-
cated Floquet-wave diffraction method [83, 84]. Withinstimethod, an integral
equation is solved for the fringe current, which descriles difference between
the finite-array current and the associated infinite-artayent. The fringe current
is expanded into only a few basis functions defined on theesatiray. The ba-
sis functions result from solutions of canonical problefosgxample, determining
(Green’s) kernels for a planar semi-infinite array [16, 11, ¥ [32, 31], the method
is applied to rectangular arrays of open-ended waveguidsumiform and non-
uniform amplitude excitation. Independently developed smongly related to the
truncated Floguet-wave diffraction method is the hybridhod described in [18].
The currents on the elements near the edges and cornersafélyeare described
by separate basis functions, while the currents on theiimtelements are described
by a few global basis functions. In the three approachesiored, the number of
unknowns is much lower than the number of unknowns in the etghy-element
moment method. Moreover, this number is independent ofrifasy size.

Instead of modeling a rectangular uniform array as bigifiigite in both length and
width direction, the array is modeled as being infinite in direction and finite in
the other direction. In that case, only a single row of eleiménthe finite direction
needs to be considered. The technique was applied to arrggdolmes [77], arrays
of dipoles [45, 117], and arrays of single-mode slots on dimite ground plane
[102] and on a finite-by-infinite ground plane [103]. Recgnthe technique has
been applied to arrays with more complex and strongly cauplements [28, 29].
Here, the infinite and semi-infinite (half-infinite-by-inifi@) array solutions are used
to decompose the current on successive elements into adewast! distributions.
The semi-infinite array solution is based on the moment-ote#olution for the
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currents on a few edge elements and the assumption that itetsuon the other
elements equal the infinite-array solution. The decomjmwsdf currents allows for

a very fast and quite accurate approximation of the curexept near the grazing
and grating-lobe scan angles.

2.6 Examples of other, mainly numerical, approaches aredhwinations of the array
decomposition method and the fast multipole method [56, thé] moment method
and the discrete Fourier transform method [19, 88], and thevdrd-backward
method and the discrete Fourier transform method [22]. &Hbrid approaches
greatly reduce the computational effort of the elementlgyment moment method.

3. To apply the approaches of item 2.2 to non-uniform arrénesintegral equation and win-
dowing technique is reformulated in the spatial domain [1&6the cost of losing the
simplicity of the spectral-domain infinite-array formutat. Solving the integral equa-
tion for the current in the space domain requires the evalnatf Sommerfeld integrals,
which replaces the evaluation of Floquet series in the saledddmain. To compute these
integrals rapidly, powerful numerical tools are needed.

4. To reduce the number of unknowns in the element-by-elemement method and to
conserve flexibility with respect to array lattice and elemghape, various techniques
were developed to construct other than piecewise basisifunsc

4.1 In the expansion wave concept [33, 123], first, the ctsren a single array ele-
ment are determined simultaneously for its feed excitatimd for waves incident
on the element from different lateral directions. The re#idowaves induced by
these currents are determined by describing the complektangby a number of
basis functions. Then, the array behavior is determinem figlationships between
the incident and reflected expansion waves and the feedgesltaThe number of
unknowns equals the number of elements times the numbepahsion waves de-
termined for a single element. In [123], it is demonstrateat bnly 8 expansion
waves are needed on a patch to reach the same accuracy asiiilecewise func-
tions.

4.2 In the synthetic basis function technique [74, 89], basnctions for array subdo-
mains are constructed by solving on each subdomain (intisnjaan equation for
the current for a number of excitations. Only a few of suclcfioms are needed in
the global array analysis. The characteristic basis fanatiethod [125] is based on
the same principle and, therefore, strongly related totdaknique.

5. In [36], an array mask is introduced to treat arrays of amif elements of which the
lattices are constructed from a rectangular uniform latbg removing certain blocks of



12 1. INTRODUCTION

elements. The mask describes which elements of the unifectamgular array belong to
the original array. To calculate the current, the adaptitegral method is used [12].

6. Examples of other, mainly numerical, approaches aredgh#wmation of the precorrected
fast Fourier transform method and the discrete complex émagthod [126] and the com-
bination of the characteristic basis function method asedittite-difference time-domain
method [78]. Both approaches greatly reduce the computteffort of the element-by-
element moment method and are applicable to a wider ranggafsathan rectangular
uniform arrays only.

Except for item 4.2, the approaches described above do phviekhe subarray idea, which
is described in our additional requirement 1 above. Moreavest of them were specifically
developed for uniform arrays and, therefore, do not meetdditional requirement 3. Third,
although most approaches can be applied to more types oeetsmonly in some cases, a
general description is provided for the application to fadsy-shaped’ elements. According to
our requirement 4, we should provide such a general desmrigtinally, few methods provide
the direct insight into characteristics as we mentioned/@b®herefore, we decided to develop
an alternative analysis approach.

1.3 Main Objectives and Analysis Approach

The main objectives in the development of our analysis aggrevere:

I. To find characteristics of a single element that are e&sddot describing the array be-
havior.

Il. To develop an efficient analysis approach for finite antearrays on basis of the element
characteristics. The approach should provide insightantay characteristics.

Ill. To find characteristics that describe the behavior ohys.

IV. Given that the infinite-array approach is most frequentied, to show in what way and
to what extent our approach improves the infinite-array aggh.

Within our research to reach the objectives, two phasesiatiaglished. The first phase was
concerned with the analysis of single simple elements amdhift towards arrays of such ele-
ments. The analysis is described in Chapter 2 and Secti@éns 3.3 of this thesis; results can
be found in [7, 11], and in Section 2.5. The main model consitfens of this phase were:

e The arrays are composed of simple elements: rectangulapstips and ring-shaped
microstrips, shortly strips and rings. Besides finding ahbtaristics, other motivations
played a role as well in the choice of (these) simple elemiarttse first phase.
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— To keep the computation time relatively short for large ysra

— Since the elements used in practice have a loop geometrizigee 1.2, we opted
for the most simple loop geometry to be described mathealbtid.e., the ring
geometry. We note that a ring is not a simple geometry fronpttiet of view of the
automatized microstrip production process due to the langeber of points needed
to describe a ring in a Cartesian reference frame.

e Choosing simple elements is accompanied by choosing siexgiéations. Another mo-
tivation for simple excitations is that there is some doubéther modeling the real shape
of the twin lead, see Figure 1.2, makes much sense. Firstattigion of the twin lead
geometry from element to element will be relatively largenpared to the variation of
the geometry of the other antenna-element components. n8etite twin lead hardly
contributes to the far-field characteristics of the arr@gause it hardly radiates.

e A spatial time-harmonic representation of the electrone#igrields is employed.

e The elements are assumed so thin and well-conducting thatcdéin be modeled as in-
finitely thin and perfectly conducting, see Section 2.2 fetails. Then, the elements are
represented by surfaces. In turn, these surfaces are assumuooth and oriented, and
their boundary curves are assumed piecewise smooth andetjesee Section 2.3.1 for
details.

e The elements are assumed so narrow, i.e., their width is smelier than all other length
scalers, that the currents on the elements may be averagedespect to the widths, see
Section 2.3 for details.

In the first phase of our research, analysis of arrays waiedarut by application of the moment
method to the integro-differential equations describimg¢urrents on the arrays. Although the
results were promising, computation times for arrays ofpsimelements were still too large
to make an extension to more complex geometries possibletedver, characteristics of a
single element could only be determined by analyzing sitrariaesults for various geometries.
Therefore, a second phase was initiated of which a firstduiction is described in [10]. During
the second phase, the following main features of our apprbacame clear:

e The behavior of arrays is reflected in their ‘eigenstateficiv we call the eigencurrents.
The eigencurrents have array-independent propertieseder, only the ‘force’ by which
the eigencurrents are excited depends on the excitatibth@eigencurrents themselves.
For these reasons, the behavior of arrays can be predicteegays of their eigencurrents
in an efficient way.

e As in the actual design, an array is decomposed into a higyartsubarrays. Then, the
eigencurrents of the total array are constructed from thermiurrents of the subsequent
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subarrays. The decomposition of the array depends on thigopdasy of the elements and
on the excitation or feeding network.

To explain the aspect of decomposition further, we consadezxample. Figure 1.5 (left) shows
two subarray decompositions of a unifodnx 6 array. The upper array is generated frofna6

[J— [] [ [T ] [ [

. o o . o . —.‘. . . . . .

[o] . . . . .

Figure 1.5 Left: Two decompositions of a rectangukarx 6 array with different (generating)
subarrays. Right: Construction of a rectangulat 6 array from subsequent (generating) sub-
arrays.

line array, which in turn is generated from a single elem&he lower array is generated from a
2 x 2 rectangular array, which in turn is generated from a sinifment. The decomposition in
the upper figure is suitable if the elements of each row argezkwith the same amplitude and
phase, while there are amplitude and phase differencesbatthe rows. The decomposition
in the lower figure is suitable if the elements of eacl 2 block are excited with the same
amplitude and phase, while there are amplitude and phaseeti€es between the blocks.
Instead of decomposing a given array into subsequent (gtngy subarrays, we can also
compose an array from subsequent (generating) subarrajfasasited in Figure 1.5 (right).
The single-element subarray generates the line array arththsubarray generates the rectan-
gular array. This composition also illustrates in what wag eigencurrents of the total array
can be determined. First, the eigencurrents of a singleegleare determined and, next, the
eigencurrents of a line array as concatenations of linesubawations of single-element eigen-
currents. In other words, each eigencurrent of a line agdgscribed as a linear combination of
single-element eigencurrents. Finally, the same proesdwarried out to go from the line array
to the rectangular array. Essential aspect of this apprisatiat, in each step, we need to take
into account only those eigencurrents of the generatingrsay that contribute to the mutual



1.3. MAIN OBJECTIVES ANDANALYSIS APPROACH 15

coupling between the subarrays. The other eigencurrentsizate only to the local behavior of
the generating subarray. This strategy saves considerabyiputational effort. As an example,
we consider a uniform rectangular< 30 array, which is generated fromlax 30 uniform line
array. In turn, this line array is generated from a singlenelet. In the element-by-element
moment method, the current on each element is expanded mbmber of expansion functions,
for example, 30 piecewise functions. Then, the moment mdgscribing the array behavior is
a(30-5-30) x (30-5-30) = 4500 x 4500 matrix. In the proposed approach, which we call
the eigencurrent approach, the eigencurrents of a singieezit are determined from3a x 30
matrix. Next, if only two single-element eigencurrents trittute to the mutual coupling in the
line array, its (coupling) array eigencurrents are deteetiifrom a60 x 60 matrix. If N < 60
eigencurrents of the line array contribute to the mutualpdiag in the rectangular array, its
eigencurrents are determined frori/s x 5N matrix. The matrix sizes in the eigencurrent ap-
proach are thus much smaller than the matrix size of the elelmeelement moment method.
Other computational advantages are discussed in the retidrsand in Chapters 5 and 7.

We end this section with some general remarks on the eigentuapproach.

e The mutual coupling between the subarrays is quantified lansef a proposed measure,
i.e., the spread of the eigenvalues, see Section 5.1 aneé&idrs6.3.1.

e The eigencurrent approach is described in general termisapter 5, but it was developed
on basis of analysis of line arrays. Therefore, the examgrie$ocussed on line arrays in
particular.

e Although the examples above were uniform line arrays anthngular arrays, the ap-
proach can be applied in principle to non-uniform arrays afi. wMore general, the
eigencurrent approach is not lattice dependent, only sapalependent. For a discus-
sion, we refer to Section 5.4.

e By decomposing an excitation field of a certain array intoahray eigencurrents, it can
be understood which excitation fields are well-supportedHhay array. On a single el-
ement, the excitation field is expressed into the eigenntgref that element. If only a
few eigencurrents determine the behavior of a single elgntemexact form of the exci-
tation field is not important, but only its decompositioroitihese few eigencurrents. This
explains once more why simple excitation fields are used.

e Anoverview of approaches related to the eigencurrent &mbrs presented in Subsection
5.1.4.

In Chapter 7, we describe the conclusions of our researchiendnalysis approach for finite

antenna arrays that we propose. Moreover, we discuss toaxtaatt the conclusions and the ap-
proach satisfy the main objectives in this section and tlitiadial requirements in the previous

section, see p. 8.
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1.4 Organization and Contents of the Thesis

We start this thesis with the description of the classicabpgm of calculating the electromag-
netic field induced by a current distribution in free spaa® Figure 1.6. Once the model

Examples
(Sec. 2.5)
Moment
Method — (Phase 1
Start Phase 1 formulation ( )
(Sec.2.4.3)
%
. Calculational -
Classical Model apects impedance Algebraic General aspects
Problem assumptions operator aspects [ Moment Method
(Sec. 2.1) (Sec.2.2) (Sec. 2.3.1) (Sec.2.4.1)| |(Sec.2.4.2)
Line arrays Arrays of Eigencurrent
of strips rings Phase 2 approach —» (Phase 2)
(Sec.5.1)

Figure 1.6 Start of the research. We note that ‘Phase 1’ and ‘Phase 2’ indicafeshand
second phases of our research, while ‘(Phase 1)’ and ‘(PhaselZpte the connection of this
scheme with the schemes in Figures 1.7 and 1.8, where the two phaskssaribed.

assumptions for arrays of microstrips have been formulatekection 2.2, the solution of the
classical problem is used to describe the electromagnetitifiduced by such an array. Ba-
sic relation is the integro-differential equatidh/ = E'g, also called the electric-field integral
equation. It relates the curredt on the conducting surfacg formed by the array elements
to the tangential excitation fielff s by means of the integro-differential operatér which we
will call the impedance operator. The tangential excitafield describes the source of the array,
and is considered in detail in Chapter 4. In Section 2.3.1gvemaged form of this equation is
deduced for narrow microstrips, i.e., microstrips of whibk width is much smaller than the
other length scales in the array and the wavelength. Negtatreraged form is elaborated for
line arrays of arbitrary spaced strips with uniform geometnd to planar arrays of arbitrary
positioned rings with arbitrary sizes and orientations.dByiensional analysis, terms of higher
order due to the narrow-strip assumption are identified aglected. The analysis differs from
the generally applied wire analysis with reduced kerneD[1&p. 20 — 23, pp. 40 — 45] in that
the scattered field is averaged instead of evaluated at titertiee, and in that the obtained
integral kernels are logarithmically singular instead afittnuous.

To describe the calculational aspects of both phases ofem#arch, we introduce the re-
quired algebraic concepts as well as the moment method igeBtibns 2.4.1 and 2.4.2. Next,
we describe the first phase as schematically depicted ind-igid. This phase starts in Subsec-
tion 2.4.3 with the general moment-method formulation foags. Before the aspects of this
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Line arrays Arrays of
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Figure 1.7 Scheme of the first research phase.

formulation are discussed in detail in Chapters 3 and 4, weaut initial results for uniform
and non-uniform arrays in Section 2.5. The results condeenoccurrence of large current-
amplitude variations in finite arrays, behavior of exporadiyt spaced arrays, line-array failure
in rectangular arrays, and a comparison of uniform and pegtharrays.

Choice of suitable test and expansion functions for the nmimmethod, calculation of the
moment matrix components, numerical computation of theseponents, and analysis of uni-
form (line) arrays are the aspects we discuss concerningipedance operator in the moment-
method formulation. In Sections 3.1 and 3.2, we describeatipects of test and expansion
functions commonly used in the literature from an oper#teoretical perspective. As a result
of the averaging procedure in Chapter 2, the moment matrixpoments calculated in Section
3.3 reduce to single integrals for line arrays of strips. ko arrays of rings, they reduce to
double and single integrals in case of mutual and self cogpliespectively. Two calculation
procedures are explored, one in which the differential pittie averaged impedance operator is
‘equally distributed’ over test and expansion functiongaSreen’s theorem, and one in which
this part is transferred to the test functions. In the seqondedure, the Sturm-Liouville prop-
erties of the differential operator are exploited. In thedgl topic of uniform (line) arrays, the
infinite-array approach is applied to approximate the curoa the elements. The convergence
or divergence of this approach is related to the physicahpimena of grating-lobe appearance
and grazing scan. This relation extends results in theatitee in that different types of line ar-
rays are considered. Moreover, a mathematical explanafitme convergence and divergence
aspects is provided based on Toeplitz properties of thedianpee operator. Further investigation
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of these properties and their relation to scanning are destin Chapter 5.

In Chapter 4, we discuss the tangential excitation field bycwithe source of arrays of
strips and rings is modeled. Two types of excitation fields ewnsidered: excitation fields
related to the transmit function, also called local feedsd, @xcitation fields related to the receive
function of the array. In particular, we investigate the ssouences of expressing the tangential
excitation field in terms of a finite set of expansion functiokVe show that specific choices of
local feeds, i.e., the delta gap, the finite feed gap, andatiam by a proximity coupled small
ring, are equivalent. They generate the same currentlalisitns up to small perturbations.
Based on this result, we choose finite expansions of the dafias tangential excitation fields
for the simulation in Chapter 6. Additionally, we discuss #quivalence of local feeds with
respect to a local performance parameter, i.e., the (cotnplaver. Within the frame of the
dimensional analysis of Chapter 2, we show that the tangjeztitation field and the current
may be replaced by their averaged forms in the computatitimeofcomplex) power. Moreover,
we show that the real part of the complex power equals twiegdliated power, as described
in the literature. Finally, to model the receive functiorg shoose plane waves and we show for
which plane-wave directions the averaging procedure oph is valid. Moreover, we show
that currents induced by local feed gaps and currents intlog@lane waves are approximately
the same, which is explained by the reciprocity theorem.

The second phase of our research is described in Chaptez bjg#re 1.8. In Section 5.1,
the general idea of the approach suggested in this theBes] tae eigencurrent approach, is de-
scribed. The eigencurrent approach consists of two maps stalled the initialization and the

Phase 2 (Phase 1)
ase T
(Phase 1) Infinite
T array approach—» (Combination)
General aspects Line arrays ~ Line arrays (Sec3.5)
- »| Moment Method Sinele rine  Sinele stri of rings of strips ¢
. (See242) Secg2) (gesas) O GRAID gSaming | onbination)
(Start) WA ~_" Sec.5.3.2)
: Eigencurrent Initialization Cyc‘le Current
“a| approach >|(Sec.5.2) > (See53) & computation—» (Combination)
(Sec.5.1) f T (Sec.5.3.1)
Calculation Calculation Manual
details details Conclusions other arrays
(Sec.5.2.1) (Sec.5.3.1) (Sec.5.4) ™! and elements
(Sec.5.4)
(Combination)

Figure 1.8 Scheme of the second research phase.

cycle. In the initialization, the eigencurrents of a singlement, or more general, of the initial-
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izing subarray, are determined. In the cycle, the eigeratsrof the array are determined from
the eigencurrents of subsequent subarrays by an iteratiee$s as outlined in Section 1.3. Cal-
culational details of both steps for eigencurrents of limays of strips and rings are discussed
in Sections 5.2 and 5.3. The excited current on line arraysrgds and rings is expressed in
terms of these eigencurrents, see Section 5.3.1. In SulsdcB.2, we relate the eigencur-
rents to scanning by linear phase tapering and we compasmbghacurrent approach with the
infinite-array approach. Special attention is devoted ¢odie-to-one correspondence between
eigenvalues and scan angles and to the divergent and cenvédrghavior of the infinite-array
solution at the grazing and grating-lobe scan angles. The awaclusions of the initialization
and the cycle are summarized in Section 5.4. Moreover, wage@ manual in which the steps
of the application of the eigencurrent approach to arraystatrary elements are described.
The main items of both our research phases are joined in €hépsee Figure 1.9. In Sec-

Combination
Uniform (line) - Validation (Sec. 6.1)
arrays of - Array surface waves (Sec. 6.2)
(Phase 1) —» strips and - Spread of eigenvalues
rings as measure of mutual coupling
(Sec. 3.5) (Sec. 6.3.1)
- Modulated impedance _ Conclusions
Infinite oscillations (Sec. 6.3.2) - Approach for

(Phase 1/2) —» array approach - Array analysis using analyzing finite

(Sec.3.5) \ small array data (Sec. 6.3.3) | amays
L : /v\rray e‘malysw using - Recommendations
fixed eigencurrents (Sec. 6.3.4)
Scanning - (Line) Array analysis
(Phase2) —» (Sec.5.3.2) using)singlcystrip Y
eigencurrents (Sec. 6.3.5)
Current - Array surface waves
(Phase 2) —»| computation versus surface waves in
(Sec.5.3.1) ; - - -1 - dielectric layers (Sec. 6.4)
Manual
(Phase 2) —» Conclusions other arrays
Sec.5.4) and elements
(Sec.5.4)

Figure 1.9 Schematic combination of the main items of both researchgma

tion 6.1, we compare results of the eigencurrent approatthresults of the element-by-element
moment method for various line-array sizes. Next, in Seddi@, we show that the eigencurrent
approach can predict the large variations of element-otiamplitudes observed in the third
example of Section 2.5. These variations, and correspgndinations of element impedances,
cannot be predicted by the infinite-array approach and mesedse the performance of an ar-
ray considerably. We propose an explanation, alternatitieet explanation in [53, 82] based on
array surface waves, for the large variations by showingttiey are caused by the excitation of
specific resonant eigencurrents. Moreover, we show thateis lof the behavior of the eigen-
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values, resonances are predicted and suitable loads catdyenthed to prevent the excitation
of resonant eigencurrents.

In Section 6.3, we first show that the spread of the eigensalki@ quantitative measure
for mutual coupling and, therewith, for the number of eigement groups needed in the cycle
of the eigencurrent approach. This investigation leadsagahe identification of resonances
of arrays. We show that the modulated oscillations of elénmapedances discussed in [30,
46] are caused by the excitation of specific resonant eigesrtts and, therewith, by the same
mechanism as the variations of element impedances a#@dhatsurface waves. Next, we show
that mutual coupling between distant elements may be neglglout that special care is needed.
Except near the appearance of a grating lobe, the numbeighthwrs needed to describe mutual
coupling is well predicted by the variation of the spread asation of the number of elements
in small arrays. Finally, we show that by fixing eigencurgefdr a chosen set of geometry
parameters, performance parameters for other sets of ggopaeameters can be predicted in a
fast and accurate way.

In Section 6.4, we show that the eigencurrent approach ishtamf predicting the array
behavior at the grating lobe scan angle. Moreover, we explaiv this result supports our idea
that the eigencurrent approach can not only handle arragisiggeed in free and half space,
but also arrays on dielectric layers, which may supportasgrfvaves. Finally, we present the
conclusion of this chapter in Section 6.5 and we discuss &t ektent the objectives of Section
1.3 were reached.

In Chapter 7, we first formulate the main conclusions of ogeatch. Subsequently, we
present the approach proposed in this thesis to analyze éinienna arrays: the eigencurrent
approach. In Section 7.3, we suggest potential modificatisithis approach for a faster com-
putation. Finally, we discuss recommendations both foayadesign in general and for the
application of the eigencurrent approach.

Computational Details

All computations were carried out with Matlab 5.3 on a HP PGhwhindows NT, an Intel
Pentium 4 processor at 1.0 GHz, and 256 Mb of RAM.
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CHAPTER 2

Mathematical Modeling

In this chapter, we describe the start of our research, azided by the scheme in Figure
1.6. First, the classical problem of calculating the etatiagnetic field induced by a current
distribution in free space is discussed. Once the modehgstsons for arrays of microstrips,
see for example Figure 2.1, have been formulated in Sect@ntl?e solution of the classical
problem is used to describe the electromagnetic field indlbgesuch an array. The basic relation

Figure 2.1 Arectangular x 2 array of ring-shaped microstrips, shortly rings, above a ground
plane.

is the integro-differential equatiofJ = Eg, also called the electric-field integral equation
(EFIE). It relates the currenf on the conducting surfaceformed by the array elements to the
tangential excitation fiel® ¢ by means of the integro-differential operatrwhich we will call
the impedance operator. The tangential excitation fielgdritess the source of the array, and is
considered in detail in Chapter 4. In Section 2.3.1, an @extdorm of this equation is deduced
for narrow microstrips, i.e., microstrips of which the wids much smaller than the other length
scales in the array and the wavelength. Next, this averagedit elaborated for line arrays of
arbitrary spaced strips with uniform geometry and to plaveays of arbitrary positioned rings
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with arbitrary sizes and orientations. By dimensional gsial terms of higher order due to the
narrow-strip assumption are identified and neglected. Tiadyais differs from the generally
applied wire analysis with reduced kernel [120: pp. 20 — 28,40 — 45] in that the scattered
field is averaged instead of evaluated at the centerlinejratiht the obtained integral kernels
are logarithmically singular instead of continuous.

To describe the calculational aspects of both phases ofemsarch, we introduce the re-
quired algebraic concepts as well as the moment method igestibns 2.4.1 and 2.4.2. Next,
we describe the first phase as schematically depicted irdé-igid. This phase starts in Subsec-
tion 2.4.3 with the general moment-method formulation foags. Before the aspects of this
formulation are discussed in detail in Chapters 3 and 4, wsqmt initial results for uniform and
non-uniform arrays in Section 2.5. The results concern weage of large current-amplitude
variations in finite arrays, behavior of exponentially sgsharrays, line-array failure in rectan-
gular arrays, and comparison of uniform and perturbed array

2.1 A Classical Problem

In this section, we consider the electromagnetic field i fpace generated by a time-harmonic
current density 7 with radian frequencyw. The field is governed by Maxwell’s equations
X 02

rot(g@:—ﬁ, rot%za—f—/, (2.1)

see [109: p. 2]. Heres and.sZ are the strengths of the electric and magnetic fieldhand &
are the densities of the electric and magnetic flux, @iscthe time variable. The conservation
of charge is described by the continuity equation

do | .
ET +div 7 =0, (2.2)

whereyp is the charge density. The constitutive behavior of freespsdescribed by
B = MO%, 9 = 80(53, (23)

where the permittivitysy and the permeability.y of free space are both scalars, their values
being1l/367-107? As/V mand4r-10~7 Vs/A m. The time-harmonic behavior of the current
density is modeled as

[J(z) " + J* (@) e 7], (2.4)

N =

J(z,t) =Re(J(z) ") =

wherex indicates the complex conjugate and the tuple IR3 represents the position. Notice
the change of notation between the vector functjénin the space-time domain and the vector
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function J in the space-frequency domain. We referJoas the current. Incorporating the
time-harmonic behavior and the constitutive behavior inxiMall's equations and continuity
equation, we arrive at

rot B = —jwuoH | rot H = jwegE + J , jwp+divd =0. (2.5)

From (2.5), we findliv H = 0, i.e., H is solenoidal, andiv E = p/ey.
Next, we expres#& andH in the current]. Sincediv H = 0 and free space is contractible,
H is source free. Thus, there exists a magnetic vector pateditsuch that

H =rotA. (2.6)

Substituting (2.6) in (2.8) we observe that the vector fiel + jwugA is irrotational. We
note that the super indéxof (2.5) denotes the first equation of (2.5). Since free sgasenply
connected, this field is also conservative and thus thestsexiscalar functiott such that

E + jwpgA = —grad . 2.7)
Substituting this expression fd in (2.5), we obtain
rotrot A = w?eguoA — jweg grad ) + J . (2.8)

Finally, applying the vector identityot rot A = graddivA — AA and the Lorentz gauge
—jwegyp = div A, we obtain the well-known Helmholtz equation for the magneector
potential A,

AA+K2A=—-T, (2.9)

wherek is the wave number defined By = w,/egp0. Moreover, by relation (2.7) and the
Lorentz gaugeF is expressed in terms of:
1

E=DA, D=—jZk <I+ 3

grad div ) , (2.10)

whereZ is the identity operator andy = \/0/e0 = wpo/k is the characteristic impedance of
free space. It is well known that the solution of (2.9), seppénted by the radiation conditions
at infinity, is given by
A=TJ, (TJ)(x) = Gtroe(m; ') J (2) d’ (2.11)
R3

where the kernels,.. is defined byGree(; ') = grree(|T — @|)Z, giee being a fundamental
solution of the Helmholtz operator,

1e—ij
T 47 R

Jtree(R) R(x) = ||, (2.12)



24 2. MATHEMATICAL MODELING

see [80: Ch. 13, p. 1778], [124: p. 1566], and [127: pp. 496 A.4%or a deduction of
Jrree, W refer to [127: pp. 379 — 382]. In the literature, a fundataksolution of a differential
operator is often called a Green’s function. However, thecepts of fundamental solution and
Green'’s function are not the same. The universally accegedidition [66: pp. 92, 93, 105]
of a fundamental solution is the definition of L. Schwarte.,i.a fundamental solution of a
differential operatorZ with respect to a point’ is defined as any distributiofi,, that satisfies
Lf. = 6., whered, is the delta distribution corresponding to the paiht For a (historical)
review of the theory of distributions, we refer to [66: Ch. 6Jreen’s functions were introduced
by G. Green for determining the electric potential in a vanuaounded by conductors with
given potentials [66: p. 95]. A Green's function is a fundauad solution of the Laplace
operator in three dimensions and satisfies (Dirichlet) ldamy conditions at the boundary of a
specified domain. Usually, fundamental solutions are daiesen’s functions when boundary
conditions are imposed on these solutions, see [66: pp.3)2F8r a (historical) review of the
development of the concepts of Green’s function and fundaahsolution, we refer to [66: Ch.
4]. We will refer toGy.. andgr.c. as the kernels of the corresponding integral operators.

2.2 Model Assumptions

We consider an array of microstrip elements and descritsetikements by volumes in a space
Q c R? with boundarydoQ. LetV C Q be the union of these volumes. As in the classical
problem, the currentZ in V' induces an electromagnetic field & which is governed by
Maxwell's equations. In this section, we present the ass$iamg for modeling such an array.
We relate each model assumption to the classical problehegbievious section and show the
impact of the assumption on the formulation.

1. The elements are excited by time-harmonic fields with glsifiequencyf = w/2m only.
The wavelength\ related tof is in free space given by = ¢/ f, wherec = 1/, /g0 is
the speed of light. The assumption seems reasonable, ifeimepts are excited by a field
that is approximately monochromatic. Therefore, we usg onk frequency component
and model the electromagnetic field as in the classical propsee (2.4), with curreok.
To analyze more frequency components, superposition capjeed.

2. The elements are modeled as infinitely thin, perfect cotmts. In other words}y is
replaced by a perfectly conducting surfage This model assumption is supported by
a dimensional analysis based on the following dimensiorsidenations. First, the skin
depth of the current is much smaller than the other chaiatitetength scales of the
geometry and the electromagnetic field. The skin depth is@efyd., = /2/unowo,
whereo is the conductivity of the elements. Second, the thicknésecelements is much
smaller than the other characteristic length scales of¢lbengtry and the electromagnetic
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field, except for the skin-depify.,. For exampledqy, /27 < 0.05 for copper elements
with thicknes2r = 40 pm excited at about 1 GHz or more. Examples of dimensional
analyses can be found in [9] and [62: Ch. 7]. The analyse®l#dtwell-known boundary
conditions for infinitely thin, perfect conductors, i.eettangential electric field vanishes
at the perfectly conducting surface and the jump of the tatiglemagnetic field over the
surface equals the (surface) current density. These ¢onsliare denoted asx E|s = 0
andn x (H|g+ — H|s-) = J,. Here,J is the surface current density;" denote the
sides ofS, |s and|g+ denote the restrictions t8 and S*, andn is the normal onS
pointing into the area at th6*-side of S. Moreover, the vector product of R? is
applied to complex vector fields.

As an example of the dimensional analyses mentioned aba/summarize the special
case of a long straight thin strip, see Figure 2.2, as disclss[9]. The strip is em-

€y

€y
2r ] TA e

2b
Figure 2.2 A thin strip of width2b and thicknes&r.

bedded in a dielectric medium with permittivity;. First, a set of differential equations
and boundary conditions for the current in the strip and thetec field in the dielec-
tric medium are deduced from Maxwell's equations supplaettby Ohm'’s law for the
electromagnetic field in the strip. The current is assumdgbta propagating wave in the
length direction of the strip with prescribed amplitudetd total current through the cross
section of the strip. Reflections at the end sections areréghd\ext, to investigate the
electric field near the strip and the current inside the sting equations and conditions are
scaled with respect to the thicknesand the width2b of the strip. The scaled equations
incorporate the small parameter= 7/b, which is of the ordei 0~ for the applications
we consider. This parameter is responsible for boundamgrtagear the edges= +b,
which are ignored on basis ef= O(10~2). Next, approximate expressions for the elec-
tromagnetic field in the dielectric medium are calculatelexre radiation conditions are
prescribed at infinity. In these expressions, terms of thieoy/we, /0 (S 1073), i.e.,
the ratio of the wavelength in the dielectric and the skintdeép,;,, are neglected. The
resulting electric field in the strip only exhibits zacomponent and the corresponding
magnetic field only exhibits am-component. Moreover, both these fields and the surface
charge density at = +b are completely described by the (prescribed) total angsitu
of the current, the permittivity of the dielectric mediunmdathe permeability of vacuum.
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The current in the strip only exhibitsigcomponent and the wave number of the current
equals the wave number in the dielectric medium. The cooradipg wavelength is much
larger than the width of the strip, which confirms the assuompthat the wave propa-
gates iny-direction only. The current decays exponentially from boeindaries = +7
with exponent—2/d.in. Sincedsn < 0.05, the current is restricted to very thin layers
near the boundaries. When the limit;,, — 0 is taken in distributional sense, the cur-
rent is restricted to the boundaries= +7. In the above, the limits/we;/0 — 0 and
dskin — 0 were taken, which can be interpretedaas— oo, i.e., the strip is a perfect
conductor. Moreover, the strip can be modeled as infinitieily, tbecause its thickness
is much smaller than all other length scales, and the cursdntated at the boundary.
The boundary conditions for the infinitely thin, perfectynucting strip follow from the
obtained results for the electric and magnetic fields in ibkedtric medium evaluated at
z = +7. For further details, we refer to [9].

. The space§) we consider are free space and a half space bounded by atlyecfat-

ducting plane®. The electromagnetic field induced by a current in free spag&en by
(2.10) - (2.12). For a half space, the electromagnetic fieldeiscribed analogously, but
with a different kernefy,.;r defined by

ghalf (.’I}, -’B/) - |:gfree (R(:E - .’B/)) — Gfree (R(CL’ - Mm,))}ztr +
+ [gfree (R(x — ') + gree (R(z — Mac’))}IaX. (2.13)

Here,Z;, projects a vector on the transverse plane, i.e., the plaraiglao >, whereas
Z.. projects a vector on the axis perpendicular to the traneyaene. MoreovetM <z’ is
the mirror image ofe’ with respect to the plang. The expression faf;,,;; can be found
from (2.9) by the method of imaging and by rewriting the baanydconditionn x E|x
to a boundary condition fod, i.e.,n x A|y = 0 and(0A/9n)|s = 0. Notice that if
other space8 are considered, the corresponding keglcan also be found from (2.9)
together with the boundary conditionsa?, but without the conditions &f. We note that
the boundary conditions &2 incorporate the radiation conditions §i¥fis unbounded. If
the medium i) is described by other constitutive equations than (2.8y treed to be
accounted for in the solution for the electromagnetic field the kernel.

The classical problem together with the assumptions stgjdleat the electromagnetic field
generated by the curredt:= J is given by

H=r0tA, E=DA, A=T7J, (TJ)(z)= /Qg(w;w'),](m’)dac', (2.14)
Js

i.e., (2.6), (2.10), and (2.11) witlR? replaced byS. The fieldsE and H are the scattered
electric and magnetic fields induced by the currdntSincedg, is constructed such that the
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boundary conditions al<2 are satisfied, only the boundary condition #rat .S given in as-
sumption 3 still needs to be applied. This condition can bitew in the form(E);., = 0.
Here, (- )tan IS @ trace operator, which restricts a vector functiorfdto S and then takes the
tangential component, i.e.,

(C)tan = C|S - (n L4 C|S) n, (215)

where the scalar produ¢t e .) on R? is applied to complex vector fields. We note that
(C)tan = —m x n x C|g. The operator - )., is only well-defined for vector fields that
are continuous across. For a discontinuous vector field, we need to distinguiskvbenh the
restrictions/ g+ and|s-. Using the relation betweeR andJ given by (2.14), we obtain

ZJ := (DT J)tan = 0. (2.16)

The operato2 = (DT - ):an is called the impedance operator. The electromagneticifigids
now completely described by (2.14) and (2.16). HoweVeg, i§ injective on a suitable chosen
domain forJ, then (2.16) yields the trivial solutiaff = 0. To obtain a non-trivial solution, the
right-hand side of (2.16) is replaced by a non-zero tangkewuéctor fieldEs at S, called the
excitation field. Then,

ZJ = Es (2.17)

yields a unique non-trivial solution fa¥, if Z is injective andEs € ran(Z). Here, raf-)
denotes the range of an operator, which depends on the daloain ) of this operator. The
excitation field can be interpreted as the tangential etefigld at.S induced by an externally
applied electric field2®**. Requiring that the total tangential electric field vansheS, we ob-
tain (2.17) withEs = —(E®*")..,. An example of an externally applied electric figkf*"

is an incident wave, i.e., a solutigiE™*, H®") of (2.5)"% with J = 0. The total field
(E®' + E, H*" + H) satisfies Maxwell's equations i1\S and the boundary condition at
S. Moreover, the total field satisfies the boundary conditian#Q only if (E***, H**") satis-
fies these conditions. Other examplesis5t are given in Chapter 4.

2.3 Calculational Aspects of the Impedance Operator

In this section, we consider the calculational aspectsefrtipedance operator and the related
equation (2.17). First, we present a general outline ofetlaspects. Next, we apply the results
of the outline to line arrays of rectangular microstripgrsly strips, and to arrays of ring-shaped
microstrips, shortly rings.
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2.3.1 General Outline

We consider first a single microstrip element, which is medeis a smooth oriented surface

S in the space2 C R®. We introduce a parameter representatieg € F(II(S),R3) on S,

wherelII(S) is the parameter set ¢f. Elements ofI(S) are tupleg¢, ). Two tangent vectors
. Ooxg oxg 0xzg

o, = O%s /|0Ts|  _ Oms / dzs
CTac/ lacl T an/ an
correspond to the parameter representatign see for example Figure 2.3. They span the

complex tangent plane Ta(®, (£,7)) at each pointcs(&,n), (£,n) € TI(S), of the surfaces,
ie.,

7 (2.18)

Tangsa (5777)) - {aéeé(ﬁﬂl) + O‘nen(fvn) | Qg, Qq € (D} . (2.19)

Here, we extended the usual definition [27: p. 282] of tangéame from real to complex
combinations ofe; ande,, because we want to analyze the complex vector filthat is
defined onS and that is tangential t§. Define the tangent bundle Ta(ff) of S as the union of

all tangent spaces &. Then,J and(LJ )., are both elements of linear spaces of functions,
F(II(S), TangS)). The operatord and( - ):.n are linear mappings between linear spaces of
functionsF(I1(S), Tang S)) and F(2, C3).

Another definition of tangent spaces can be found in [26: d, WBere these spaces are
introduced as function spaces. According to this definjtibve tangent space & consists
of vector functionsf, which are defined oflI(.S) and for which f(¢,7n) is an element of
Tang S, (&,7)) in (2.19) for each¢,n) € II(S). This tangent space is a subset of the func-
tion spacel’(I1(S), TangS)), becausef € F(II(S), Tang.S)) requires only thayf (£, n) is an
element of the tangent bundle Td5g for each(¢, n) € II(S). We use the definition of tangent
space in (2.19) and the related definition of tangent bundle.

The normal onS atxs(&,n), sayec = e¢ X e, Or e = —e¢ X e, is the normal of the
tangent plane ats(&,n). Since the surfac# is oriented, there exists exactly one way in which
we can obtain a smooth vector fiedd choosing the direction of the normal in one point.$n
only. Thus, having chosen a right-handed coordinate sy, 7o), €, (£0, 10), €c (o, 10) }
for a certain tuplé&g, o) € II(S), we obtain the coordinate system

{65(5777)’677(5577)7eC(gvn)} ) (2.20)

with (¢,m) € II(S). This system is attached to each poiyg(¢,n) of S. Moreover, it
is orthonormal (with respect to the Euclidean inner procarciR?) and right-handed for all
(&,n) € TI(S). For any vector field” in Q, C|s+ can be expanded into this coordinate system,

Cls: =(eceClgt)ec + (e,0Clsx) e, + (ec o Clg+) ec. (2.21)

*By F'(A, B), we denote a linear space of functions, which map the eleméatsetA into a setB.
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Assume that the surfacg has a piecewise smooth and oriented boundary cOfzeThis
curve has a piecewise defined tangent veetgy, such that the orientation @fS induced by
T g fits to the choice of the normal- in the sense of the (right-handed) corkscrew rule related
to Stokes’ theorem. For every point &b, there exists a piecewise vectaps € TandS)
perpendicular targs andeg, i.e.,nas = Tas x ec¢|as. Then,J obeys the boundary condition

(nos e Jlas) =0, (2.22)

which means that the current cannot ‘flow’ out$f
Using the vector prerequisites introduced above, the maaifothe integral operato? is
interpreted ornf) as

A=TJ-= /H G msEa) T ) as(e ), (2.23)
where
dS(gl /) _ SVOI(fl /) dé-/d / Svol _ % % % (2 24)
1) = S 5 7] m, = o€ an . .

Choosing a coordinate system dhand expressin@ into this system, we can calculate the
scattered field = D7.J. For an arbitrarily chosen coordinate system, it is difficoilapply the
trace operatof - ):., to this field, simply because the system does not it’ to thengetry ofS.
This problem can be circumvented by extending the localdioate system in (2.20) to a global
coordinate system. Then, the differential operd®ocan be expressed into this coordinate sys-
tem. However, such a global extension is only possible fec#ig local coordinate systems, for
example whencg describes a planar, cylindrical, or spherical surface.theiocases, the local
coordinate system is extended to a locally global coordisgstem. This extension is based on
a smooth extension¢* of the parameter representatiog with corresponding extensioggxt

of the fielde.. A locally global coordinate system can then be obtainedhfitee mapping

x(&n,n) = (&) +nel(&,n). (2.25)
Having constructed a global or locally global coordinatsteyn, we can calculaté.J by
ZJ = (DA — (egXt . DA)eg"t)\S , (2.26)

whereA is defined as in (2.23). The differential operator in the tilghnd side can be expressed
into the partial derivatives with respect £ n, and(. If this differential operator does not
incorporate the normal derivative, i.8,,0¢, we can identify an operat@g, which incorporates
the partial derivatives with respect{andn only and satisfies

(D )tan = Ds(]s)- (2.27)



30 2. MATHEMATICAL MODELING

Note thatDg incorporates the projection ¢f )., on.S. A sufficient condition for the existence
of DgisthatA;|s = (T J)¢|s = 0inaneighborhood of. In other wordsgq (- ;xs(£',7'))e
has no normal component in this neighborhood foeadl Tang.S) and(¢’,n’) € II(.S). This
implies thatDg can be found for surfaces in free space or for surfaces phtalthe boundary
of a half space, for example.

To introduce the concept of averaging a tangential vecttt &ie S, we assume that there
exists a sefl¢(S) and a scalaf; such thaflI(S) = II¢(S) x [-n1,m]. Then,II(S) has a
well-defined smooth centerlines( -, 0) with tangent vectot- = e,( -, 0), see Figure 2.3. This

centerlinexg(-,0)

Figure 2.3 Geometry of a surfacé with a centerline.

tangent vector can differ from the tangent vectgys at 95, see below (2.21). Let be a
tangential vector field o8 and define the vector fieldu by

()&, m) = u(E) 7€), (&n) €TI(S). .29)
where
we = ([ seman) [ utensicnan. 2.29)

The vector field4w is uniform inn and directed along the centerline$fn each pointes (€, n).
Notice that the operatad satisfies the basic property of projections, i.4%2 = A, see also
Subsection 2.4.1. The differenae— Aw is given by

(u — Au)(&,m) = [ue(€,m) — u(€) (ec(&m) 0 7(€) [ ec(&,m) +

+ [un(€m) = w(©) (en(€m) 0« T(©)) |eq(&,m) . (2.30)
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This difference indicates that we can replacby Aw if
ug & u, Uy /ue =0, (e,oT) =0, (2.32)

on II(.S), where &’ needs still to be interpreted with respect to a functionatnc. Such a
metric depends on the antenna parameter under consigeddtiwhich examples are given in
Section 1.1. The metric should relate the simulation rdeukh parameter to a certain reference.
This reference can be a measurement result or another siomutasult that is not subject to
certain approximations. In Subsection 6.3.1, an exampkberoktric based on the; norm is
introduced to compare results obtained by two differentra@gaghes for the analysis of finite
antenna arrays, i.e., the usual moment method and the eigentapproach proposed in this
thesis. Moreover, it is shown that the difference betweeth besults is also described by a
measure based on the eigenvalues obtained in the eigemcapgroach. We will not go into
further detail with respect to the functional metric rethte (2.31). In the next sections and
chapters, we only will indicate when the interpretation énnts of this functional metric is
required for a certain approximation.

The first two conditions in (2.31) depend mainly on the vedteld w, whereas the last
condition depends solely ans and hence on the geometry 6f If the conditions (2.31) are
satisfied, we say thaf is narrow with respect to the vector fietd If u is replaced byAw,
we say that is width-averaged o and we callAw the width-average ofi. Integrating the
width-averageAu overll¢(.S), we obtain the average ot on S.

The surfaces is generated by the set of curvEs with parameter representatian, () =
xg(&,n) with n € [-n1,m]. The length of a curves, is

1
asto) = |
Ke -m

If the length of all the curveg, is small with respect to the wavelength, we assume $hiat
narrow with respect td and, hence, that we can replatdy .AJ in the equation for the current
(2.17). Letw be the centerline component of the width-averaged curient, AJ = w.
ReplacingJ in (2.17) by.AJ, we solve this equation far instead ofJ. The width-averaged
currentAJ = w T satisfies the boundary condition (2.22).bfat the boundariess( -, £n;)

in the sense of the functional metric corresponding to (2.3his can be shown as follows.
The boundary curvess( -, +n;) have tangent vectoks: (-, +7,). The vectors,, (-, £n,) are
perpendicular to these tangent vectors and are elementangfd). Applying the boundary
condition (2.22) ateg( -, ;) to AJ, we obtain

0= (ey(& £m) o (A)(&, £m)) = w(€) (en (&, £m) o 7(€)) , (2.33)

for all £ € TI¢(S). This shows thatdJ satisfies the boundary condition #fatxs(-,£n;) in
the sense of the metric mentioned above.

diBK§
dn

dn. (2.32)
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ReplacingJ by AJ in (2.17), we average in fact the domain of the operafoAveraging
the range of£ as well, we arrive at

AZAJ = AEs, (2.34)

which raises the question whether a solution of (2.34) is gpra&ximate solution of (2.17).
By approximate we mean in the sense of the metric mentionedeabAssume that we have
determined a solution of (2.34), sdy. Then,J4 € ran(A), or Jy = AJy, and

ZIh=Es—(IT—-AEs+(ZT—-A)ZJy. (2.35)
Hence,J, is an approximate solution of (2.17) under the conditiort tha
(T—-A)(ZJ4s—Es)=~0. (2.36)

In other words,J, is an approximate solution § is narrow with respectt&J, — Eg. If S'is
narrow with respect t& s, so thatZ — A) Es = 0, the condition turns intdZ — A)ZJ4 = 0.
This is satisfied ifS is narrow with respect t& J4. Finally, we notice that the solutions of (2.17)
and (2.34) are approximately equal under the condition6)2.i8 they are unique and depend
continuously on the right-hand sides.

The domain and the range & are linear spaces of functions(II(.S), Tang S)). The
range ofAZ A is a subset of rapd), which consists of functions in a linear space of functions
F(I1(S), TangS)) with centerline dependence and centerline components ditlg domain
can also be regarded as such a space, becduseapplied to each function in the domain,
which yields the centerline component Then, we can replacd Z A by the operato£,, which
maps the centerline componantin ran(A) onto the corresponding centerline componefit
inran(AZA). We write

Zw = vex’ (237)

wherev®™ = (1 o AEg) andZ, is the linear operator between linear spa¢H, (.5), C ) that
corresponds tel Z A.

Let us now extend the formulation t.; microstrip elements modeled as surfacgs
(g = 1,..., Nq) in the spacd?. Let S be the union of these surfaces. There exists a vector
function s on S, such thatrs|s, is the parameter representation ®f with parameter set
I1(S,). Moreover, there exist vector functioag ande,, on S, such thak|s, ande,|s, belong
to F(II(S,), Tang S,)) and span Tan@,, (£, 7)) in every pointrs|s, (£,7). Note that/s, re-
stricts here a vector function defined 6ro S,, whereags+ and|s in assumption 3 of Section
2.2 restrict a vector function defined énto S. We writex 5, instead ofrs|s, .

Let J be the current o8, J|s, being the current of§,. The action ofZ onJ is defined by

Nei

s, =2 (Z2U1s,))]s, - (2.38)

q=1

(2J)
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Here, (Z(J|s,))|s, is interpreted as the tangential electric scattered field,ainduced by
the current atS,. The action of7 on J is defined as in (2.38) witlZ replaced byZ, where
(T J|s,)|s, is interpreted as the magnetic vector potentidl ginduced by the current &,. To
arrive at (2.34), we first need to extend the coordinate systen eaclt, and, then, to identify
the operator®g,

(D )tanls, = Ds,(-ls,) (2.39)

as in (2.27). Analogous to the case of a single element, wanasshatlI(S,) = II¢(S,) X
[—nq,14]. We define the average operatérfor tangential vector fields on S by (Au)|s, =
A(uls,). Moreover, we callS narrow with respect ta, if eachS, is narrow with respect to
u|s,, and we callAu the width average ofi, if (Au)|s, is the width average of|s,. Then,
we can replace (2.17) by (2.34), if the condition (2.36) issfi@d. Letw, be the centerline
component of AJ)|s, andvS™ the centerline component ¢fEs)|s,. If all I1¢(S,) are the
same sell¢, or can be scaled to such a set, then we interpyeindvg* as components of vector
functionsw andv®™ in linear spaces of functiong(Il¢, C<'). Then, analogous to (2.37), we
interpret (2.34) as

Zaw = v, (2.40)

Here, we use underlined symbols for vector functions'{itl¢, CV<1) to distinguish them from
the vector functions o' and(?, which are typeset in boldface. Further on, we represenbwec
functions inF'(I1¢, CNe1) also by boldface characters, e@.andv®.

2.3.2 Line Arrays of Strips in Free Space

We consider a planar line array of parallel identical narstiips, .S, (¢ = 1, ..., Ne1), in free
space. Le®/ be the length of the strips ang their centers, which are all positioned on the
x-axis such that, , < c,41,., S€e Figure 2.4. The widttb of the strips satisfies := b// < 1
andbk is of the orders. In other words, the width of the strips is of the orgewith respect
their lengths and with respect to the wavelength under densfion. Moreover, we assume that
b/|cq1 — ¢4, 1.€., the ratio of the width of the strips and the distancstsvben the strips, is of
the orders. Let the parameter representation of the strip surfacee given by

s, (fa 77) =cq —nNey + §6y s (2.41)

where (&, n) is an element of the parameter $et= II(S;) = { ({,n)| — ¢ < < ¢, —b <
n < b}. Then, each parameter representation has tangent vegterse, ande,, = —e,. We
note that the restrictiofy, becomes redundant, becauseande, are fixed. Since the tangent
vectors correspond to a Cartesian coordinate system, thenpter representation of each strip
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S le2b - = 2b
20
ey € e
O e, ey Cq €n | CGq+1
Sq Sq+1

Figure 2.4 Geometry of two parallel strips.

can be extended straightforwardly to a (global) Cartes@ordinate system witle: = e..
Moreover, since the strips are planarly positioned in fygges, differential operato®g, as in
(2.39) can be identified. From the Cartesian representafitive operato defined by (2.10)
and the considerations above, it follows that
, 1 02 1 02
(Z(J|Sq))|3p = DSpqu = —jZok { Kl + E@) pa T ﬁ@ qu,n] e +

1 92 1 02
+ Kl + ﬁa—ng> Apgn + 2 0¢on qu,&} en} , (2.42)

where

L b
Ay = [e[bgfl~ee (R(@s, (- ) = s, (1)) Tls, (€ ) dn'd’ (2.43)

The vector-valued functiod,,, = (7 (J|s,))|s, is the magnetic vector potential induced by
J|s, evaluated at the surfacg,. We introduce the normalized kerngi.. with additional
normalized distance measufeand the normalized coordinatés 7)) by

1 eIt

o (y o L€ _ _ — b 2.44
gfree(R) Ar R ’ R kRv 6 E&a n b777 ( )
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where(¢,7) € T and(£,9) € TT = {(£,7)] —1 < &7 < I}. Notice thatgpe(R) =

k §ree(R). To interpret all vector functions defined dhas functions of the normalized coor-
dinates, we need to adjust the definitions of both operatas/actor functions. Interpreting
andZ.J as functions of the normalized coordinates, we write (2a42)

) 1 0%\ . 1 6% .
(2(J1s,))ls, = —JZOkQ%{ Kl + Wa—g?) Apge + 5 ogon Amm} e¢ +

1 9% . 1 9% .
+ 1+;€252523 2 qum"‘m@z‘lpq,g e, . (2.45)

The vector fieldd,,, = A,,/¢bk is given by

. 1,1 o )

qu = /_1 /_1 gfree (qu(§ - flv 77 - 77/)) J|Sq (f/, ﬁ/) dn/dfl s (2.46)
where

N ~ . d 2

Rpg(&,1) = kﬁ\/ 2+ <% = 577) : (2.47)

andd,, = ¢,.» — ¢, - The relation between the normalized distance meaRusek R and the
distance measuri,, is

R(zs, (& n) — 25, 1) = Rpg(§ =& = 7). (2.48)
Hence, R,, (¢, 7) is the normalized distance between an observatlon peinté,n) on the
surfaceS,, and the centee, of the surfaceS,, whereask,, (¢ — .7 — #') is the normalized

distance between the former point and the source pgint¢’, »’).

Given an excitation fields, the current/ can be calculated from (2.17), wheZas defined
by (2.45) and where we interprdfs as function of the normalized coordinates. Under the
condition (2.36), Equation (2.17) can be replaced by itsayed form (2.34) and its related
form (2.40). Here, we deduce an expression for the opegadirst. Subsequently, we consider
the question whether the solution of (2.34) is an approx@msatution of (2.17).

Let v be a tangential vector field o and interpretu as a function of the normalized
coordinates. Then, the averaging operadds defined by

e o
(Awls, =5 [ ucls, () diec. (2.49)

which follows from the definition of4 for functions of (¢, 7). Here, the tangent vectar at
the centerline, given in (2.28), equals. Hence, the condition (2.31for S being narrow with
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respect tau is satisfied exactly. Replacinf by AJ in (2.45), we obtain

, 1 9*\ = 19
(ZA(JlSq))‘SP = —jZOkZKb |:(1 + W?ﬁ?) qu,£€£ + W%quﬂgen} , (250)

where

— 1

A 1 ~ A ~
qu,&(faﬁ) = /_1 wq(fl) hpq(f _flvﬁ) dfl ) hpq(faﬁ) = /_1 gfree<qu(§a77 - 77/)) dﬁ/a
(2.51)

and wheray, is the centerline component gfJ at.S,. Note that?ipqm =0and thatzpq is the
vector potential induced biyd.J)|s, evaluated af,. Applying A to Z.A, we obtain

1

1.
(AZAUIsls, = 502kt [

((1+i8—2)2 >(~ D) dijec. (2.52)
. k202 o2 Pa,§ »17) a1) €¢ . .

We note that the-component of Z.A(J|s,))|s, does not only vanish when we apph; but
also when we only integrate (2.50) froml to 1 with respect toj, becausé:,, is odd in7
and, hence@fqu,g/aﬁ is odd in7; as well. We rewrite (2.52) by interchanging the integrahwit
respect ta}’ and the Helmholtz operator. Next, we interchange the iategith respect ta)
and the integral with respect in A4, ¢. Moreover, we interpret the operatdiZ A as Z, in
(2.40) withw = (w1, ..., wy,,) € F([-1,1],CNe1). Then,

1, 1
(Zaw)y = =3 jZok > <1 + kQ—EQd—§2> FipgWa, (2.53)
q=1
where
1
Fae)© = [ (€€~ €) A€, § € -1 (2.54)
and
1 1
Fy(€) = [ 1 / e Ry, = 1) i . (2.55)

In these expressions, the hats on the normalized coordinegeomitted. Moreoveg, € [—2, 2]

in (2.55). The functionF,, is called the averaged kernel. To reduce the expressiomhi®r t
kernel to a single integral, we introduce the following digfams. Let the inner produgt: , - ) oo
and the convolution * . be defined by

b= [ T F@e@de,  (Frg)@) = / T @) gle— oy de' . (2.56)
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for functionsf andg with bounded support. We note that the supersérgenotes the complex
conjugate as in (2.4). Let the characteristic functignfor a sety be defined byl, (z) =
1forz € x andl,(z) = 0 for z ¢ x. Finally, for a functiong, we define the function
g¥ by g¥(z) = g(—z). Then, interpreting (2.55) as the inner product of the attaréstic
function1_, ;; and the convolution_; 1} * gfree(}?pq (&, -)) 1{—2,29) and employing the identity
(fyg*h)oo = (R, f* * V)00, We arrive at

Fynl®) = [ 2= 101) e (Roal.) . 2.57)

-2

where

1 exp (—jke/EF (/T B1)?)
N RS
Forp = ¢, the integral in (2.57) can be rewritten as

W {—5 log €% + log (25 + \/Wﬂ

gfree( (5 77)) (258)

Feq(§) = — exp(—jkl[¢]) +

9 jk2g262{
2 exp (—jkﬁwf2 + 62772) -1
+ oxp (k16 +52)} M/ NI

see Appendix A. The expressions (2.57) and (2.59) showApais continuous forp # ¢,
whereas it has a logarithmic singularity for= q.

The solutionw of (2.40), with Z, given by (2.53), corresponds to the solution of (2.34), say
Ja with J4 = AJy. To answer the question whethé&g is an approximate solution of (2.17),
we need to verify the condition (2.36). By approximate we migethe sense of the functional
metric related to (2.31). However, since we have not yetifpdadhe metric, we use here a
dimensional argument to show th#{ is an approximate solution of (2.17) in caSés narrow
with respect toE's. Moreover, we show that this argument cannot be used in Sasenot
narrow with respect td's. We start by considering the ter (J4|s,))|s, in

dy, (2.59)

(2I)ls, = (Z(Juls,))ls, + > (2(Jals,)) (2.60)
qFp

From the definition ofR,,, it follows that dR,,/d7 is of the order3? with respect to
OR,,/d¢. Then, it follows thatdA,, /97 is of the order3® with respect todA,, ¢ /9.
Hence, the)-component of Z(J4|s, ))
(2.50). Moreoverd(Z(Juls,))|s, /01 is of the order3? with respect tad(Z(Jas,))|s, /O¢.

Hence, (Z2(J4ls,))|s, satisfies the conditions (2.31) fdf, being narrow with respect to
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(Z(Jals,))|s,, where =’ needs to be interpreted as equal up to terms of oreWe can-
not apply the same reasoning to show thiats narrow with respect t6Z (Ju|s,))|s, for g # p
and thereby, thaf), is narrow with respect t9ZJy)|s, in (2.60). SincedR,,/01 is of the
order 3, and not of the ordes?, with respect tcﬁ}?pq/aé, it seems that the components of
(Z(Jals,))|s, are of the same order. Therefore, we need another argumehbte thats,
is narrow with respect t0Z(J4|s,))|s,. By the assumption/|d,,| = O(f), it follows that
(Z2(Jdals,))|s, with g # p is of order with respect ta Z(Ja|s, ))|s,. Combining this result
with the result thatS,, is narrow with respect t02(Ju|s,))|s,, we find thatS,, is narrow with
respect to(Z2Jy4)|s, . Then,S is narrow with respect t&.J4, and hencdZ — A)ZJy ~ 0.
Notice that this result is independent Bfs and that we use the properfy = AJ4 only. The
question whethe#, is an approximate solution of (2.17) can now be answeredlas/& Since
(T — A)ZJ4 = 0, the condition (2.36) is satisfied(f — . A)Es ~ 0, i.e., if S is narrow with
respect tas. If S is not narrow with respect t& s, this condition is in general not satisfied.

The calculation off,, from (2.57) is expensive with respect to CPU-time, becadsben
evaluation of the integral. To reduce computational effa¢ may replacé’,, by an approxi-
mate kernel. As we observed above, replach= Es by AZAJ = AEs means neglecting
terms of order3. This suggests to approximate the kernel also by negletgimys of orders.
Forp # ¢, we consider the kernel expression (2.57). By the assumpfij,,| = O(3), we
obtain the asymptotic expansion

1 exp (ke [€ + &2, /2)
Fpq(§) = 7kl /52 + d%q/fg

We note that terms of ordgt are annihilated by the double integration in the definitibg,.
The term of ordet in the right-hand side of (2.61) equaﬂl@free(}?pq(g, 0)).

Forp = ¢, we consider the kernel expression (2.59). £er O(1) (asg | 0), the integral
has the asymptotic expansion

(1 + O(ﬁQ)) , DFEQ. (2.61)

(1+0(8%). (2.62)

/2 exp (~JHVET ) =1 o (exp(—jikele) — 1)
N €

This expansion is valid fof = O(1). For¢ = O(3), the termO(3?) is replaced byO(33),
which follows from the asymptotics of the exponential untte condition that/ = O(1).
This condition indicates that the asymptotic expansioraigivfor strip lengths of the order of
the wavelength and for strip lengths much smaller than theleagth. We note that the integral
in (2.62) has asymptotic expansier2;jk((1 + O(3)) for £ = 0, becausék = O(3).

For the other two terms in (2.59), enclosed|by.], asymptotic expansions can be deduced
as well. However, these expansions are not valid over thiecetainge of¢. Therefore, we
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choose to approximate the kertig), by neglecting terms of ordetin (2.61) and in the integral
of (2.59) only. We denote the approximate kernelfy

3 —jkeg]) -
qu(f):ﬂﬂlfﬂ [—%logf2+log(2,ﬁ+ \/Wﬂ +ﬂik€exp( J|£|§) 1,

1
+ W [exp (_jk/’f\/ 432 + 52) - exp(—jkﬁ|§|)] )

g 1 (—int\fe +az,r)
F 5 = )
P i A4 [e2 4 4z, /2

The integral operator that results from replaciig by F’pq in (2.54) is denoted by;-pq.

Finally, we notice that the equatioBJ = FEg in (2.17) has been replaced by another
operator equation in two separate steps. The first step, (£36), concerns the deduction of
the averaged operatd,. The second step concerns the replacement of the averagsel ke
resulting from the first step by an approximate kernel.

(2.63)

PFq.

2.3.3 Arrays of Rings in Free Space

We consider a planar array of rings, (¢ = 1, ..., No1), in free space. Let, be the radii of
the rings and let, be their centers in they-plane, see Figure 2.5. The width, of the rings
satisfy 3, := by/aq < 1 andb,k = O(3) with § = max(f,). In other words, the widths of
the rings are of the ordet with respect to their radii and with respect to the wavelangtder
consideration. Moreover, we assume that the widths of tigsrare of the ordes with respect
to the distances between the rings, ibg/(|c, — ¢q4| — ap — ay) = O(B) for p # q.

Let the parameter representation of the ring surfacbhe given by

T3, (r,p) = cq + recos(p + ¥g)ex + rsin(p + g ey, (2.64)

where(r, ¢) is an element of the parameter 8B1S,) = { (r, ) |aq — by <7 < ag+by, —7 <
¢ < 7}. Lete, ande, be the corresponding vector fields such tedls, ande,|s, are the
tangent vectors af,. Then,

eT|Sq (¢) = cos(p + wq)ez + sin(p + d)q)ey ) (2.65)

epls, (¢) = —sin(p +1bg)es + cos(p + 1g)ey .

Interpretingy — e,|s, (¢) as a vector-valued function, we can describe the paramepee+
sentation (2.64) bycs, = ¢, + re.|s,. Since the tangent vectors correspond to cylindrical
coordinate systems, the parameter representation of egctan be extended straightforwardly



40 2. MATHEMATICAL MODELING

Figure 2.5 Geometry of two rings.

to a (global) cylindrical coordinate system. Moreovergsithe rings are planarly positioned in

free space, differential operatdPs;, as in (2.39) can be identified. From the cylindrical coordi-
nate representation of the opera®defined by (2.13) and the considerations above, it follows
that

(Z(715,)ls, = Ds, Ay =
, 1 ({0 (10 0 (10
~ ik { Avar T (a (F3) e+ 57 (535 A)] ol

1 /1 &2 1 02
+ {qumo + ﬁ (T_gw(rflpq,r) + T,_Qa—(pg qu,w)} e¢|5p} ) (2-66)
where

T aq+bq
Ay = /_7T /aq_bq Jfree (R(wsp( ) — T, (T’,gp))) J|s,(r', o) r' dr'de. (2.67)
As before,A,, = (7(J|s,)|s, is the magnetic vector potential induced BYs_ evaluated at
the surfaceS,. We introduce the normalized kerngl... with additional normalized distance
measureR, see (2.44). Moreover, we introduce the normalized coatdinby r = aq(14 B47)
with (7,¢0) € T = {(F,¢)| =1 <7 < 1,—7 < ¢ < 7}. We note that* = 0 on
the centerlines of the rings. To interpret all vector fuos defined orf as functions of the
normalized coordinates, we need to adjust the definitioh®tsf operators and vector functions.
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InterpretingJ and ZJ as functions of the normalized coordinates, we write (2a86)
. 1 10 1 0 -
— | ==(—"1((1 P
Apr k?a2 (ﬂ; or (1 + Byt OF <( - 5PT)AP‘”)> *
+i2 ;i A e | +
By 0F \ 1+ B,7 Dp ) P0% || 1%

+ ! 1 ((1+ﬂA)A )+5_2/1 | (2.68)
k2a12,(1 —i—ﬁpf)? ﬁp P pT" ) Apg,r 8902 g, euls, ¢- .

The vector fieldd,,, = A,,/a,b,k is given by

(Z2(J1s,))ls, = —J'ZokQquq{

A

P‘Z#’+

T 1
Ay = / / Gtvee (Bpa (717,00 0)) T, (7, 0) (14 By) di'dip, (2.69)
—mJ—1

where

qu(fa 7, ®, 90/) =k |c, + ap(l =+ ﬂpf) er‘Sp () — Cq— aq(l + ﬁqw) e7-|Sq (‘P/) . (2.70)

Contrary to the distance measu?gq of the strips in (2.46) and (2.47), the distance measure in
(2.69) and (2.70) depends fpr# ¢ on all four local coordinates of the source and observation
points,zs, andx s, respectively, and fop = g onr, " andy — ¢’.

As in the previous subsection, we first deduce an expressiof.fand then, we construct
approximations for the averaged kernels obtained in thediep. After that, we consider the
guestion whether the solution of (2.34) is an approximaligtiem of (2.17). Letu be a tangential
vector field onS and interpret as a function of the normalized coordinates. Then, the girga
operatorA is defined by

1 1
(Au)ls, = 5/ ugls, (7, ) (L4 Bq7) dr eys, » (2.71)
-1

which follows from its definition as a functiofr, ¢). Notice that the tangent vecter at the
centerline, given in (2.28), equads,. Hence, the condition (2.31for S being narrow with
respect tau is satisfied exactly. Replacingby .A.J in (2.68), we obtain fo(Z.A(J|s,))ls, the
same expression as in (2.68) 16 (J|s,))|s,, but with A, replaced byA,,, i.e., A,, with

J|s, replaced byAJ)|s,. The components oipq are given by

A o= ) wy(p) S = H =)
qu.{;} _/_ﬂhpq(hw’(p)wq((p){COS(QD—LPI-F?ZJp—wq)}dSD s (272)

1

hpq (727 ©, ‘Pl) = / gfree (qu(fa 'f‘l, 2 90/)) (1 + ﬂq":/) di’ ) (273)
—1



42 2. MATHEMATICAL MODELING

wherew, is the centerline component gfJ at.S,. Applying A to Z.A, we obtain

L ' N
(AZAU s )ls, = ~5 iZkagby | [ (L4 B, Ay dit

-1

1 d 1 1 0 - 1 d 1 2
- - _ - 1 MNA ) dF PLY_ g0 ’
i kzaz%ﬁp dp ./—1 1+ Bpf Or <( * Bo") Apa ) rE k2a12; dy? /_1 1+ 3,7 r] “els,
(2.74)

where we interchanged integration with respect &nd differentiation with respect to. We
rewrite the second integral by integration by parts, whiedg the boundary tenﬁpw( 1,¢0)—

Apq.»(—1,¢) and an integral without derivative with respectito After that, we rewrite the
three remaining integrals in (2.74) by interchanging irdéigns with respect té and ¢, the
latter of which is incorporated inipq. Interpreting the operatadZ.A4 as Z, in (2.40) with
w = (wy,...,wy,) € F([—m, ], CN1), we arrive at

(Zaw), = 1'Zk2§ by [K11,pq + ! dQIC +dlc (2.75)
aW)p = 2] 0 q:1aq q 11,pq k2a[2) d(,D2 12,pq d(p 2,pq Wy , .

where
(Kripqwg) (@) = [ Kiipg(p,¢") cos(p — @' + 1y — hg) we(') d¢’,
- (2.76)
(K2pqwe) (@) = [ Kapg(p,¢") sin(p — @' + 1, —1bg) wy(¢') dp” .
The kernelsky; ,,, and K, ,,, are defined by
1 1
Ky pq (‘Pv 90,) = / / Jfree (qu (7"7 7"/7 P, (P/)) (1 + ﬁpT)L(Z) (1 =+ /qu/) dr'dr s
—het (2.77)

1
Ko pq(0,¢") = iR [hpg (1,0, 0") = hpg(=1,0,0")] + K12,pg(0,¢")
D

where.(1) = 1, ¢(2) = —1, and where the hat on the normalized radial coordinate igtedni
Having deduced an expression &y, we construct approximations for the averaged kernels

Ky, pqg and Ky 4 in (2.77). As in the analysis of the strips, we will see thaplaeingZJ = Eg

by AZAJ = AEs means neglecting terms of ordgr This suggests to approximate the

kernels by neglecting terms of ordéras well. We consider the cage= ¢ first. The normalized

distance measurg,, is written as

qu(r, @) = kaq\/ﬁg(r —r)2 4+ 2 (1 + By(r +17") + 637“7“’) (1—cosp). (2.78)
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Here, we use that fgy = ¢, all functions in (2.77) depend ap — ¢’ only and not on bothp
andy’. Therefore, we writey; 4,(p — ¢') and K 4,(¢ — ¢’) in (2.76), and we consider all
functions in (2.77) as functions of a single variabl®nly. Neglecting terms of orde#, in the
integrands of<y; 44, We arrive for bothi = 1 andi = 2 at the approximate kernel

1 1
K1 4q(p) = /71 [1 Gvee (Rg(r—7",0)) drdr’, Rgq(r,¢) = kaq\/ﬂgﬂ + 4sin?(p/2).
(2.79)

The termﬁ§r2 accounts for the singular behavior of the integran&ef ,, for (r, ¢) = (v, ¢’).
Therefore, this term cannot be neglected. The approxirrmaek[?’lyqq equals the averaged
kernel of the strips in the following sense. Writg, in (2.57) as a function of its argument
¢ and the parameters/ and 38, F,,(&; kl, 5). Then, K1 ,,(p) = Fuq(2sin(p/2); kay, By).
ReplacingFy,, by the approximate kernéqu in (2.63), we obtain a second approximate kernel
for Kuqu .

f(l,qq(@) = FN‘qq (2 sin(p/2); kag, ﬂq) . (2.80)

To deduce an approximate kernel &k ,,, we consider first the differende,, (1, ») —
hqq(—1,¢) in (2.77). By (2.73), it follows that

1

hqq(lv 90) - hqq(_la QP) = /1 {gfrcc(ﬁiqq(l?TIa ()0)) - gt’rcc(quI(_l, _7,,/7 90)) +

+ ﬁq {gﬁ'ee (qu(lv Tlv 90)) + Jfree (qu(fl’ *Tlv 90))} T/} dr’. (2.81)

The distance measuféqq is asymptotically expanded as

qu(r, ', 0) = Ryq(r — v/, ) (1 + BT (r, 7' @) + O(ﬂg)), (2.82)
where
, B 2k2a3(r + ') sin’(p/2) B 2(r + 1) sin®(¢/2)
B e Iy L e 7 R

A necessary condition for this asymptotic expansion to bielva that 25, (T (r, 7', ¢)| < 1,
which is satisfied becausg, (r,r’, ¢)| < |r+r'|/2 < 1for —1 <’ < 1. Using the derived
expansions

Ryq(£1, %1, 0) = Ryg(1 = 17,0) (1% ByTg(1,77, ) + O(52) ) (2.84)
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we deduce from (2.81)

hqq(la <P) - hqq<_17 ‘P) =

_&/1 exp(jj]:zqq(l ) y
2m J Ryg(1—1",¢)
x [rq(m’, ) (1 +jRy(1— 1, 0) + O(ﬂq)) - r/(l n 0(53))} dr'. (2.85)

We return to the kernek» ., as given in (2.7Aand neglect terms of ordgy, in the integrand of
the kernelK;3 4, and in the integrand of (2.85). TheR; 3 4, turns into the approximate kernel
(2.79), which equalsF,, (2 sin(¢/2); ka,, 3,) as shown above. Rewriting,, as in (2.57) and
replacing the integration variable in (2.85) hy= 1 — r/, we sum the two terms i’ ,, to
obtain the approximation

9 s
K gl) — i/ exp(—jRaq (1. 9))

2m Jo Roq(n, ¢)
- 2k%a2(2 —n) sin?(p/2)

. 1+ jRyq(n, dn. (2.86
7 ) (+J (77@))] n. (2.86)

X

To reduce the computational effort of the evaluation of tleenkl K5 ., further, we write
Ko 4q(9) = K(2sin(p/2); kag, 8,,0), where K is defined by (A.4) in Appendix A with
approximationk given by (A.16). This approximation can be used to approtﬁﬁﬁz,qq if
ka, = O(1). Then,

Ko ,4q(10) = K (25in(¢/2); kag, B,,0) . (2.87)

Next, we consider the case# ¢. The squared normalized distance measlf}lfgg can be
written as

R?)q(ra ’f'/, ®, SOI) =

2 2b dpg(0,¢)
= 12 |dp(i0, )| ( z

1+ o (bpresls, (@) — byr'es]s, (¥) >+
dpq (2, 0")| \|dpq(0, ") (” I )

b . ) ,
o) ’bprerlsp(so) qur’er\sq(go’)‘ ] (2.88)
P\t

whered,, = c,+ape,|s, —c,—aq€;|s, , b = max(b,, b,), andb; = b; /b. Sinceld,, (¢, ¢')| >
lep — ¢4l — ap — aq andby/(|e, — ¢4 — ap — ay) = O(B), the second term between the braces
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is of orderg and the third term is of orde#?. Neglecting terms of orde$? in the integrands of
K1, pq , We arrive at the approximate kernel

lexp ( —Jk |dpq(<Pv LPI)D
m k|dyq (0, ¢")]

Kl,Pq((pv 90/) = = 4gfree(k |dpq((p’ 4,0/)|) ’ (289)
for bothi = 1 andi = —1. We note that terms of ord¢rin the integrands ofy; ,, are odd in
bothr andr’. Hence, these terms are annihilated by the double integratithe definition of
Kli,pq-

To deduce an approximate kernel ik ,,, we follow the analysis foi<, ,, above. The
differenceh,, (1, o) — hpe(—1,¢) in (2.77% is given by (2.81) with,, replaced by,, andy by
v, ¢’. The distance measufépq can be asymptotically expanded as

Ryg(r,7,0,0") = k|dpg (0, )| (1+ BTpg(r, 7, 0,¢") + O(8%)) (2.90)
where
b dpe(0,¢") (5 5 >
Lpg(r,r’ o.¢") = ( 4 o (byre, —b,r'e, ")) . (.91
10 = G o o * (7l () —bar'enls, (1)) @1

A necessary condition for this asymptotic expansion to H&ha G|, (r, 7', ¢, ¢")| < 1,
which is satisfied becaudg, (r, ', ¢, ¢’) = O(1). Using the derived expansions

qu(ila :|:7",, 2 ‘19/) = k ‘dPQ(Qov (P,)‘ (1 + ﬂFPq(lﬂ Tlv 2 (PI) + O(/BZ)) ) (292)
we deduce from (2.81)

_ﬂ €Xp ( —Jjk |dpq(<P7 90/)|)
2m k|dpq (0, ¢")]

hpq(L%‘P/) _hpq(_1v<p790/) = X

1
X /71 |:FP¢1(17T/790330/)(1 + jk |dpg (0, )| + 0(6)) —r'(1+0(B%)|dr'. (2.93)

We return to the expression of the keré] ,,. Neglecting terms of orde# in the integrand of
the kernelK, ,4, We obtain the approximate kernkl, ,,, in (2.89). We neglect also terms of
order/ in (2.93) and calculate the integral with respecto

1
| () (14 bl ) = 1) =

-1
_ 2by (1 + jk |dpg (0, ©)])
B‘dpq(%S@/)P

(dpo(p, ') o erls, (9)) . (2.94)
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After that, we sum the two terms if(5 ,,, see (2.77, by which we obtain an approximate
kernel forKs ,,q,

= 1 —jk|d o 14 ikld /
KQM(%@/):_exp( Jk |dpq (e 90)‘) l_apk( + gk |dpe (0, ")) y
7 T kdpg (0, ") k2|dpg (0, )|

x (kdpq(,¢') @ erls, () | . (2.95)

From now on, we calf(qu , defined by (2.80) and (2.89), the approximate kerné{ of ,, and
we callffg_,pq , defined by (2.87) and (2.95), the approximate kerngkef,,. The correspond-
ing integral operators follow from (2.76) with; ,,, and K ,, replaced byK; ,,, and Ky .
Denoting these operators B ,, andKs ,,, we write the action of, in (2.75) as

Nei 2
1 1 d ~ 1 d -
Za =—=3jZ kz b 1 _ -
(Zaw)p 5 J40 qg:l aqgbg {( + F2a2 dgp2>

The solutionw of (2.40), with Z, given by (2.96), corresponds to the solution, shy
of (2.34). The question whethek, is an approximate solution of (2.17) cannot be answered
satisfactorily. This can be explained as follows. As in thalgsis of the line array of strips, we
want to show that the condition (2.36) is satisfied by mearsdifnensional argument. We start
by considering the terraiZ(Ja|s, ))ls, in (2.60), which is given by (2.68) witll replaced by
JaandA,, replaced byA,,,. From the definition of?,,,, in (2.78), it follows thav R, /7 is of
the order3 with respect td)R,,,,/d,. Then, it follows thad(Z(Juls, ))|s, /O7 is of the order
8 with respect ta)(Z(Jals, ))|s, /v, butnotthat ther-component of Z(J4|s,))|s, is of the
order 3 with respect to itsp-component. Hence, the conditions (2.81for S, being narrow
with respect td Z(J4|s,))|s, are satisfied, but it is not known whether the condition (234
satisfied. Therefore, it does not follow from the above {iat A)ZJ4 = 0, i.e., the condition
(2.36) for J4 being an approximate solution &J = Eg if S is narrow with respect t& s.
Hence, we cannot say wheth&f is an approximate solution &J = Eg.

2.3.4 Arrays in a Half Space

We consider line arrays of strips and arrays of rings in a spifce bounded by a perfectly
conducting plan&. The arrays are parallel t8 and positioned at a heiglit aboveY:, see
Figure 2.1 for example. Let the half spagebe given byQ = {x € R?|(z ee,) > 0}

with boundary plane;, i.e., thexy-plane. Then, the centers of the elements are described by
c,+ he., wherec, are the centers of the elements in theplane as in the previous subsections.
We note that for a half space, the origin of the Cartesiandinate system is located in the plane
33, whereas for free space, it is located in the plane of theyaff@describe the current on the
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elements by the operator equatighw = v**, we follow the analysis of the previous two
subsections, where we replace the kedigl. = grecZ by the kernelGy.ir in (2.13), see [34]
for details. For a line array of strips in a half space, thelltder Z, is the same as in (2.53), but
with the averaged kernél,, replaced by the averaged kerrjébalf] of a half space,

EBA () = Fpy(€) — Fog(VE +77). (2.97)

Here,y = 2h/¢ and F,, is given by (2.55) with related forms (2.57) and (2.59). RepigF),,
by qu in (2.63), we obtain an approximate kem}él}‘“f] for the averaged kernel of a half space.
Notice that in the above, we do not put a dimensional regiriatn-y.

For an array of rings in a half space, the result £y is the same as in (2.75), but with
Giree(Rpq () replaced by

ghalf(]:zpq( ! )) = gfrcc(qu( ! )) - gfrcc <\/ R%q( : ) + 4k2h2> . (298)

In (2.96), we have to replace the approximate kenﬁﬁl% andf(gypq, deduced for free space,

by K1" and K17 for a half space,

~-[half ~lha .
P20 () = Flb10(25in(0/2); kag, By, 7q)

2.99
BP0 (6,6) = 4t |y (2, 9)]) — 405 (k VIl )2 + 4h2> B
and
Kol () = K (25in(p/2); kag, B, 0) — K (2sin(/2); kag, Bg,74)
K20 (0,0') = Ko pq(0, ¢ Kldpg (0, ¢))]) + (2.100)

- KZ,P‘I (907 30/7 k\/|dpq(§0, QD/)|2 + 4h2) .

Here,v, = 2h/a, and 131}2’“‘”] is the approximate kernel df’q“;alf] in (2.97), which is inter-
preted as a function of its argumehand the parametefd, 3, and~, i.e.,Fq[galf] (&KL, B, 7).
Moreover, K is defined by (A.16) andX,,, in (2.95) is interpreted as function a$,

¢', and k|d,,(¢,¢")|. Notice that the second term if?gﬁ!ﬂ is obtained from (2.86)

with R,,(n, ¢) replaced byka,,/B,m2 + &2 +2. The resulting function is identified as
K (2sin(p/2); kay, By, 74) defined by (A.4) and, subsequently,is replaced by in (A.16).
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2.4 Method of Solution

To solve the linear operator equation (2.40), i&w = v**, we use a projection method, called
the moment method. This method transforms the operatotieqtiato a matrix equation. Many
different ways of describing the method are employed in itezdture, see for instance [47]
and [54: pp. 329 ff.]. We describe the method by means of sdgebeaic concepts, which we
introduce first.

2.4.1 Algebraic Concepts

Let X and) be inner-product spaces ov&r with inner products (-,-)» and (-, )y . These
spaces can be linear spaces of functions, but we do not gp&cdnd ) further here. By
L(X,Y) we denote the vector space of linear mappings fAdrmto ). If X = Y, we write
L(X). Moreover, we denote the identity mappingligt) by Zx. Let CY andCM <V pe the
vector spaces oN-tuples and\/ x N-matrices. Theith component obx € CV is denoted
asa(n) and themnth component of2 ¢ CM*N asC(m,n). The spaceC” is a complex
inner-product space with the usual Euclidean inner pro@uet. )y, i.e.,

N
(a1 0az)y = Z aj(n)az(n). (2.101)
n=1

Distinguish this inner product from the scalar prod{ice . ) onIR3. For indexing purposes, we
need the spacés®, which consist ofp-tuples with components iN. Analogously toC, the
qth component ofV € N¥ is denoted byV (q).

On the space€’™ >N we introduce the concept of block matrix in the usual way. Let
M € NP, N € N9, andC,, € CM@E*N@  Then, the block matrixC' € CMXINI js
defined by

Cll . CIQ
c=|: - ], (2.102)
Cp1 ... CPQ

where| M| and|N| denote the sums of the components\df and V. On C" we introduce
the concept of concatenation as follows. Détc N? anda, € CN(@ for ¢ = 1,2. Define the
concatenatiomx; LI ap by

a;Uas = (a1(1),...,a0(N(1)),a(1),...,a2(N(2))). (2.103)

TWe use the convention that an inner product of a complex inrmetyst space is linear in its second argument with
respect to scalar multiplication, i.€, aw) = a(v, w) and, hence{av, w) = o* (v, w). Here,* is the complex
conjugate.
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. Q . . . .
The generalization tmlaq is straightforward. The concepts of block matrix and coacation
a=

are related in the following way. Lét ]y be the mapping that transforms a tuplelf’ into a
column vector inC ¥*1, Then,

[ U cxa)y v = <[al]N(1)> : (2.104)

[042]N(2)

The vector spac&™ * " can be related to the vector spaoeC ™, €M) by the isomorphism
[ Jarxn from L(CY, CM) to CMXN,

[C)(m,n) = (Cen)(m), (2.105)
where€y = {ey, ..., ey} isthe standard basis @" . Together witH - ] y we have the calculus
[Calry = [Clmuxnla]n (CoCa)nr = Kl [Cluxn[edn, (2.106)

fora € CV and¢ € CM. The superscript indicates the adjoint, which is the Hermitian
transposed for complex matrices. Fdr= N, C is invertible if and only if[C] v « v is invertible,
and[C™'|nxn = [Clysn-

We introduce the following algebraic concepts@randL(X,)). Let{ws,...,wy} be a
finite subset oft. Then, the Gram matri&/({w,...,wy}) € CV*V, shortlyG, is defined

by
G(m,n) = (W, wn)x . (2.107)

The Gram matrix is invertible if and only ffw1, ..., wx} is independent. Define for a subset
X, of X the orthogonal compleme#t;- by

X ={weX|(w,v)x=0Vvea}. (2.108)
Then,Xi is a subspace ot. Define forC € L(X,)) the adjoint mapping* € L(), X) by
Cv,w)x = (v,Cw)y, Yve)y AN Vwedl. (2.109)

Using the previous concepts d{C", CM), X, andL(X,)), we introduce the following
concepts on,(CY, X). Let W be an element of.(C¥, X) and assume tha¥ is injective.
SinceWV is linear, we can write the action ®¥ as

N
Wa = Z a(n) We,, , (2.110)
n=1
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ranV) = sparf{We, ..., Wen})

Figure 2.6 A graphical representation af —Wa with respect to the linear span of the vectors
We,,. The linear span is graphically represented by a surface and thes®gtorw — Wa,
andw in X by arrows.

wherea € CV. The vectordVe,, € X are the images of the unit vectors@". We observe
that rarf)V) = sparf{Wes, ..., Wen }), where span denotes the linear span of a set of vectors.
SinceW is injective, the se{We;, ..., Wex} is independent and, hence, a basis in(v&.
We refer to this basis as b@¥). Vice versa, choosing’ independent vectors for ba4/) first,
we can construct the corresponding injective mappwvidrom (2.110). Examples of mappings
W are given below.

Define the mappingV— € L(X,C") by

Ww=a & We,,w—Wa)y=0 Vne{l,...,N}. (2.111)

The imagex is constructed such that — Wa is perpendicular to the vectow¥e,, in the sense
of the inner product oi’. Figure 2.6 shows a graphical representation. From (2, itffb)lows
that

Ww=a <& GbagW))aly =[N, (2.112)

where¢ € CV is defined by((n) = (We,,, w)~. SinceG is invertible, W~ is well-defined,
or, to everyw € X corresponds exactly one imayg~w € CV.

Example 1 If ¥ = C?3 andN = 2, W maps each tuple it 2 onto a tuple inC 3. If, addition-
ally, the images oé; = (1,0) andes = (0,1) in €2 are the unit vectorél, 0,0) and(0, 1,0)

in ©3, W maps each tuplér,y) € C2 onto(x,y,0) in C3. LetxX = C? be equipped with
the Euclidean inner product. Then,~ maps a tupléz, y, ) € C? onto(z,y) € C?2. Hence,
the compositio? = WW~ maps a tupléx,y,2) € €3 onto (x,y,0) € €2, which shows
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that projects a tuple irC ® onto the complex:y-plane. Moreover, the mapping~)V maps
atuple(z,y) € €2 onto(z,y) € €2, which shows thatW~W = Zg=. Below, the latter two
properties are described in general.

Example 2 Let X be the linear space of complex valued continuous function®al] with
inner product

(v,w)x :/0 v*(z) w(z) de . (2.113)

Let We,, be the monomials™~! forn = 1,..., N. Then, raii)V) is the space of polynomials
with complex coefficients of degree N — 1. Solving Wa = w with w € X, we find
the coefficientsx of the polynomial that fits ‘best’ to the functiow with respect to the inner
product (2.113). Herey(n) is the coefficient ofr" ! anda = W~ w.

The composed operatdy— )WV satisfies
W-W = Tox. (2.114)

The composed operat® = WW~™ is the projection on rai¥V) along rarfV)-. This means
that:

1. every elementy € X can be written uniquely a® = w; + w» with w; € ranWW) and
wo S I’ar(W)J',

2. Pw = w for allw € ran W),
3. Pw = 0 forallw € ranW)+.

Hence, rafi?) = ran()V). Moreover, the projectiorP depends only on the choice of the
subspace rgiV) and on the inner product ofi. It does not on depend on the specific choices
of the images/Ve,,. From (2.114), it follows thatP? = P, which is the basic property of
projections.

Both W~ and P have the property that, faw € ran(WV), the imagesV~w andPw do
not depend on the inner product ah In the special cas& = ran(W), or, rar{(V)+ = 0, the
mappingV is invertible with inversé/V~! = W~. Moreover,P = Zx.

The composition oiV* and)V can be related to the Gram matfi(bagV)),

W*W] = G(bagW)). (2.115)

SinceG(bagW)) is invertible, W*W is invertible as well. Multiplying both sides &foy =
(WW)~t(W*W) by W~ at the right and using thav* = W*W)WW~, we obtain a relation
betweenV* andW—,

W™ = (WW)tw*, (2.116)
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As on the vector spaceE”, we define on the vector spacésC?, x) the concept of
concatenation. LelN € N? andW, € L(CN@ X)for ¢ = 1,2. Define the concatenation
WL UW, € L(CINI X) by

(Wl L Wg)(al (] Otg) = Wiai1 + Wshas, (2117)

wherea,, € CN@ for ¢ = 1,2. From the definitions of the adjoint and the concatenation, i
follows that(W; L Wh)*w = Wiw U Ww . Then, using the definition of the concatenation
and the concept of block matrix, we obtain from (2.112) andi3)

WU W) w = o oy ([wal] [WTWQ]> ([aﬂ) _ <[<1])’ (2.118)
Wswil - VsWs] )\ (o] (¢l

where(, € CV(@ is defined by, (n) = (W,e,, w) x. If the subspaces ré; ) and rarf)V;)
of & are mutually orthogonal with respect to the inner produckgit follows thatiWW; w = a3
andW, w = ap, and hence

W UWse)"w =W wlU W, w. (2.119)

The generalization tculwq is straightforward. In the following section and chaptevs,omit
a=

the subscripts of the bracket operations, the inner pradaetd the identity mapping, if it is
clear which spaces are meant.

2.4.2 Outline of the Moment Method

We consider the linear operator equation
Zw=v, (2.120)

wherew € X,v € Y, Z € L(X,Y), andX and) are inner-product spaces with inner products
{(-,-)x and(-, -}y . We note that, in this subsectiof, is not the impedance operator as defined
by (2.16), but it is a certain linear mapping frokhinto )). To solve (2.120), we introduce first
linear injective mapping®V € L(CY, X) andV € L(CM,Y) as in the previous section. Then,
we replace the operator equation by

QZPw = Qu, (2.121)

whereP = WW™ € L(X)andQ = VV~ € L(Y). SinceP andQ are projections on
the finite-dimensional subspaces (&%) and rarf)’) of X and ), respectively, the operator
QZP is afinite-rank operator with rank/. If M = N, thenQZP is invertible as element of
L(ran(P),ran(Q)) and the solution of (2.121) is unique. The question whethersblution of
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(2.121) is an approximate solution of (2.120) can be ansiviera similar way as the question
whether the solutio], of (2.34) is an approximate solution of (2.17). Assume thathave
determined the solution of (2.121), say». Then,wp € ran(P), orwp = Pwp, and

Zwp=v— (T - Qv+ (ZT- Q) Zwp. (2.122)
Hencewyp is an approximate solution of (2.120) under the conditiat th
(T-9)(Zwp —v)=~0. (2.123)

Here, the approximate sign~’' needs to be interpreted in the sense of the functional met-
ric related to (2.31). The condition (2.123) resembles ttediion (2.36) forJ, being an
approximate solution o2J = Eg. The latter condition means th&t is narrow with re-
spect toZ.J4 — Eg, whereas the former condition means tli&i, — v is approximately
finite-dimensional with respect t@. If (Z — Q)v =~ 0, the condition (2.123) turns into
(Z — Q)Zwp =~ 0, i.e., Zwp is approximately finite-dimensional with respect@o

SinceV is injective, (2.121) is equivalent to

VZWW w=V v, (2.124)

This equation is transformed into a matrix equation by thecket calculus of the previous
section,

VZW|W w] =V v]. (2.125)

Here,[V~Z W] is called the moment matrix. Our definition of this matrixfelis from the usual
definition in the literature in the following way. Accordirig the bracket calculus,

VZW](m,n) = (V"ZWen)(m) = (G [¢,])(m, 1),

V=ol(m, 1) = (G o)) (m, 1)

where(,(m) = Venm, ZWe,)y, (o(m) = (Ven,v)y, andG = G(bagV)) with respect to
(-,-)y. The vectorsVe,, andWe,, in the inner products are elements of the setg¥asand
bagW). If X and) are linear spaces of functions, the elements of Basre called the test
functions of the moment method and the elements ofidgsare called the expansion functions.
Defining Z(m,n) = (Venm, ZWe,)y, V(m,1) = Ve, v)y, andW = [W~w], we write
(2.125) as

G lzw =Gy, (2.127)

(2.126)

which is the usual representation of the moment-matrix gguaxcept for multiplication by
the inverse of the Gram matri¥. The usual definition of the moment matrix 4§ which is
related to our definition by

YV ZW =G'Z. (2.128)
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Hence, our definition and the usual definition yield the saroment matrix, if the Gram matrix
G is the identity matrix. If) is a linear space of functions, this condition can be phrasedtie
test functions are orthonormal with respect to the innedpcdbon)’. The reason to introduce
the definition (2.128) of the moment matrix besides the udafhition 7 is given in Subsection
5.2.1, where we show that the definition (2.128) is essefuialhe eigencurrent approach in
Chapter 5.

2.4.3 Application Details

We return to the operator equatidhw = v** in (2.40). To solve this equation by the moment
method, we need:

1. to find suitable inner-product spac&s = dom(Z,) and), D ran(Z,) with correspond-
ing inner products-, -) x, and(-, -)y._,

2. to find suitable mappingsy € L(CV,&,) andV € L(CV,),) with corresponding
projectionsP € L(X,) andQ € L(),),

3. to constructV~— Z, W] and [V~ v,

4. to solve (2.125).

After that, the solution of (2.121) is found & (W~ w), where[W~w] is the solution of
(2.125). The column representation of the curfdi®V~w) on the array i$¥W~w]. Instead of
steps 3 and 4, we can also constrid@ndV” only and solve (2.127) to findV~ w]. With respect
to step 1, we notice thak, and)/, are linear spaces of functions(I1,, CNer), which should be
chosen in accordance with the propertie€gfand such thab** € ),. In correspondence with
the notation of the elements @f" in Subsection 2.4.1, we denote the components of the vector
functionsw € X,andv € YV, by w(-;¢) andv( -; ¢) instead ofw, andv,. Here,g =1,..., Ng
and the dot indicates the function variablella. The mapping$V andV in step 2 should be
constructed such that they describe the dominant behafigg, an the sense of (2.123). The
elements of bg3V) and bas)), i.e.,Ve,, andWe,,, are the expansion and test functions on the
array, which are elements of linear spaces of functio(i, CV<'). We construct the mappings
W andV by choosing these expansion and test functions.

If the test functions are chosen the same as the expansictidng, the mapping®) and
V satisfy bagWW) = bagV) and, hence, rgP) = ran(Q). Ordering the functions in b&g)
and bag)) in the same way, we obtail = W. Strictly speaking, the mapping¥— andV~
are not equal, because they have different domainsi,eand),, and they are constructed by
different inner products, i.e(;, -) x, and(-, -)y. . The same is valid for the projectiofsand Q.
We can write/V~ instead o~ andP instead ofQ, if we interpret’’— andP according to the
space they act on. In this way, we emphasize that the expaasibtest functions are the same.
In Section 3.2, we show that both for arrays of strips and faayes of rings, there is reason to
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choose the test and expansion functions the same. In ttattbadinite-rank operator equation
(2.121) and the moment-matrix equation (2.125) turn into

PZ,Pw = Po™, W™ ZWW w] = W™ v™]. (2.129)
Here, the moment matripV— Z, W] and the excitation vectd¥V~v°*] are given by
W ZW]=G1'Z, W o™ =G 'V, (2.130)

with Z(m,n) = Wen,, ZVen)y, , V(m,1) = Wen,, vy, , andG = G(bagW)) with
respect to the inner product g7. We should keep in mind th& and»W~ acting on the range
of Z, are associated with the inner product Bf while 7 andW~ acting on the domain of
Z, are associated with the inner product &f. However,? and W~ are usually associated
with the inner product 0f/,, because only this inner product is explicitly used in themeat
method.

A common choice for the (test and) expansion functions istions which are non-zero on
a single element only. This is expressed by means of the @igetoncepts as follows. Let
W =W U...UWx,, suchthatW,e,)(-;¢') =0forall¢’ # gandn =1,..., Nexp(q). In
other words, the functiong/,e,, are vector functions with a non-zegth component only. The
functions(W,e,,)( - ; q) are the (test and) expansion functions ongtieelement and the vector
Ny, Of length N represents the numbers of (test and) expansion functiotiseoelements.
If we assume that subspaces (@,) of ), are mutually orthogonal with respect to the inner
product on),, the mapping/V exhibits a generalization of the property (2.119). Usinig th
property, we rewrite the moment-matrix equation (2.228)the block form

VEZWi] e V2] [ IV ) Wi o]
: . : : = : : (2.131)
Wr ZaWi] o W, 2o/ \ Wy, wl] Wi, v

In Chapters 3 and 4, we consider the four steps above to fingbtb&on of currenWw(W~w),
whereby we construdt) as above, i.e., from the (test and) expansion functionsetfim each
element separately. In Chapter 5, we constiicirom expansion and test functions defined on
the entire array.

2.5 Examples
Before we discuss the calculational details of the momemtirfarmulation, we present in this

section a number of results. In [7, 11], we showed that redaltthe current and the electric
far field of single strips and single rings agree excelleniiyr results in the literature for wire
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dipoles and wire rings [4, 20, 47, 92, 108, 118]. Therefore,rastrict ourselves to results for
arrays of rings and line arrays of strips, where we compaaafatively and qualitatively with
results in the literature. All angles in the examples areesphl elevation angles, which are
defined as usual within theyz-system, see also Section 3.5, Figure 3.2. Inithglane and in
theyz-plane, corresponding spherical azimuth angld®@nd90° are prescribed, respectively.
The first example is the directivity, as defined in Appendixo€a uniform line array of
1000 strips of half a wavelength with spacihgd. The strips are positioned in a half space with
h = \/4. Each strip is excited by a voltage gap of 1V in its center Setion 4.2 for details, and
on each strip, one expansion function is defindfle; = cosm€/2 (¢ = 1,...,1000). Figure
2.7 (left) shows the normalized directivity in the:-plane within one degree from broadside
(0° < 6 < 0.72°). Figure 2.7 (right) shows the directivity in the same plamgt for —90° <
0 < —78°. These results agree excellently with results in [67] far shme line array but with

x10"

Normalized directivity (dB)
Directivity

-60

0 0.68 0]16 O.é4 0.52 014 O.‘48 0.56 0]64 0.72 7%0 -88.5 78‘7 785‘.5 78‘4 782‘.5 78‘1 779‘.5 -78
0 (deg) 0 (deg)

Figure 2.7 Directivity of uniform line array ofl000 strips of half a wavelength with spacing

A/4. The strips are positioned in a half space with= A/4 and excited by voltage gaps of

1V. Left: normalized directivity (in dB) in thecz-plane for0° < 6 < 0.72°; normalization:

maximum directivity in thezz-plane. Right: directivity in the:z-plane for—90° < § < —78°.

Parameter valuegi = b/¢ = 7/125.

wires instead of strips. In the comparison, we used the ruthumb found by Kraus [60: p.
238], which states that a thin strip of widdh and a wire of cross-sectional radiy& with the
same length as the strip are equivalent.

The second example is the impedance variation over a unilioerarray of201 strips of
half a wavelength in free space with spaci@®. Each strip is excited by a voltage gap of 1V
in its center and on each strip, 8 expansion functions areetiV,e,, = cos((2n — 1)7&/2)
(n=1,...,8,¢g=1,...,201). The strips are positioned on theaxis and their indices increase
in the positive direction. Figure 2.8 shows the absoluteddamces of the strips as a function of
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the strip index for scans at45° and—75° in the zz-plane. For details on scanning, we refer

1.15¢ 11r

11

0.9
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0.95r 06

Normalized absolute impedance
Normalized absolute impedance

09 50 100 150 200 05 50 100 150 200

Strip index Strip index

Figure 2.8 Normalized absolute strip impedances for a uniform line arra30afstrips of half

a wavelength in free space with spacikn@®. The strips are excited by voltage gaps of 1V. Left:
scan at—45° in the zz-plane. Right: scan at75° in the zz-plane. Normalization: infinite-
array impedance. Parameter valugs= b/¢ = 1/25.

to Section 3.5. The impedance is normalized on the infinitaysabsolute impedance, which is
the same for all strips. The impedance variation shows lgitlae edge effects, which cannot
be described by the infinite-array approach. Up to slightlaoge differences, especially near
the edges, the results agree with results in [45: Figs. 4oGafrays composed of an infinite
number of parallel line arrays, where each line array ctsi6201 wires. The use of another
array geometry explains the slight differences. As aboeeapplied the rule of thumb of Kraus
to compare wires and strips. We note that in [45: Figs. 4,h8,angles of scan are positive,
because the corresponding azimuth anglesis instead of0°.

The third example is the current-amplitude variation (ie ttenters of the strips) over a
uniform line array of25 strips of 15 mm long in free space with spacing 9 mm and exéited
10 GHz. In terms of the wavelength, the spacing.B\ and the strip length 6.5\, which is
about the resonant strip length. On each strip, 8 expansiwetibns are defined as above. The
strips are either excited by voltage gaps of 1V in their certimgether with a phase taper to scan
at45° in the zz-plane or by a plane wave polarized along thaxis with incident angle-45°
in the zz-plane. For details about plane waves, we refer to Secti@nHigure 2.9 shows that
the amplitudes are very well approximated by the the angitobtained by the infinite-array
approach except near the edges. Moreover, the amplitu@gigarfor the plane-wave excitation
is about the same as the amplitude variation for the voltags.gThe shapes of the curves in
Figure 2.9 agree very well with a result in [82: p. 3, Fig. b)3for an array excited by a plane
wave and composed of an infinite number of parallel line arashere each line array consists
of 25 parallel wires. As above, slight quantitative diffieces are explained by the differences in
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array geometry.

Figure 2.10 shows how the amplitude variation changes a$dlj@ency is changed. At
8.6 GHz, the amplitude shows a much higher variation than@t3Hz and 10.0 GHz. The
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Figure 2.9 Current amplitudes (in the centers of the strips) for a uniform line arf&yp strips
in free space with spacing 9 mm and excited at 10 GHz. Amplitudes computin: element-
by-element moment method)(and by the infinite-array approach). Left: voltage gaps of
0.01V on the strips; phase taper to sca#¥idtin thezz-plane. Right: plane wave excitation with
incident angle-45° in thezz-plane and polarized along thyeaxis with amplitudel 03 Vm ™.
Parameter valueg/ = 15 mm, 8 = b/¢ = 3/50.
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Figure 2.10 The same array as in Figure 2.9, but excited by the plane wave at Z(ql&ft)
and 8.6 GHz (right).

frequency range in which the current shows a high variat@nades with the frequency range
in which the behavior of a single strip changes from radéetiv reactive. While the infinite-
array current approximates the currents at 10 GHz, thisajapation is highly inaccurate at
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8.6 GHz, see Figure 2.10 (right). This result shows the rsigesf finite-array approaches.
Similar results are shown in [82: p. 3, Ch. 4], where an exatian in terms of array surface
waves is proposed. In Section 6.2, we discuss the occurierieege amplitude variations in
further detail, see also the last paragraph of this section.

In the fourth example, we consider an exponentially spaioeddrray of 31 rings. The rings
are positioned on the-axis with [c,+1 — ¢,| = A(1.12)971/2 (¢ = 1,...,31) and they are
excited by voltage gaps of 1V positionedeat= 7. On each ring, 4 expansion functions are
defined W,e,, = cosnp (n = 0,1,2,3). For the Matlab implementation described in Section
3.4 and the platform mentioned in Section 1.4, the CPU tim#hi® construction of the moment
matrix is 4 minutes and 32 seconds, while the CPU time of sgltihe moment-matrix equation
is 1.5 seconds. As explained in [106], the advantage of expttad spacing is that a very narrow
beamwidth can be obtained for much fewer elements than farifarm spacing, given that
grating lobes are unacceptable. To increase the beamwidthiformly spaced arrays, either
the number of elements is increased or the spacing. If grédlmes are unacceptable for all scan
angles, the spacing is bounded by2. Hence, the number of elements needs to be increased
to decrease the beamwidth, which may lead to prohibitivalgd numbers of elements. As
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Figure 2.11 Normalized absoluté-components (in dB) of the electric far fields in the-
plane for an exponentially spaced line array with;1 — c,| = A(1.12)¢"'/2 andc,,, = 0
(solid curve), and for a uniformly spaced line array with spadirigh\ (dashed curve), both
with 31 rings and positioned in a half space with= \/5. The rings are excited by voltage
gaps of 1V positioned ap = =. Left: for a scan ab°. Right: for a scan at5° (only
exponential array). Normalization: maximum absolgteomponent for the uniform array.
Parameter valuegia = /3, 8 = 3/100, ¢» = 0.

shown in Figure 2.11 (left), the beamwidth of the expondigtepaced array exhibits a grating-
lobe plateau, which is higher than the side-lobe level ofuhdormly spaced array, but much
lower than the grating-lobe level &t34.9°. These effects are shown in [106] for a uniform
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rectanguladl x 41 array of rectangular patches. Figure 2.11 (right) showsatine side effect
of the exponential spacing. For a scaniat in the xz-plane, the side lobe level increases to
-6 dB, which is in practice highly unacceptable. Finally, mete that the exponentially spaced
array is much wider than the uniformly spaced array. At 10 3R exponentially spaced array
is 3.62 m wide, while the uniformly spaced array is only 1.58&ide.

The fifth example concerns a uniform rectang@@arx 20 array of rings with spacing /2
in bothx andy-direction. The rings are excited by voltage gapdVdfpositioned atp = 7. On
each ring, 3 expansion functions are defindd,e; = 1, Wyes = cosy, andW,e3 = sinp
(¢ = 1,...,400). For the Matlab implementation described in Section 3.4 thedplatform
mentioned in Section 1.4, the CPU time for the constructibthe moment matrix is 3 hours
and 57 minutes, while the CPU time for solving the momentrixatquation is 5.6 seconds.
Figure 2.12 shows thé-component of the electric far field in the:-plane {H-plane), both
for the array in which mutual coupling is taken into accoumd &or the array in which mutual
coupling is ignored. In case mutual coupling is ignored, neximum at0° is about 7 dB

10

o

Normalized far-field comp. (dB)
)
Normalized far-field comp. (dB)

—%0 —f;O —Sb 6 3b 60 90
0 (deg)

Figure 2.12 Normalized absoluté-component (in dB) of the electric far field for a uniform

rectangular0 x 20 array of rings excited by voltage gaps of 1V positionedat =. Left:

in the xz-plane, with (solid curve) and without (dashed curve) mutual couplRight: in the

yz-plane, with all rings excited (solid curve) and with the 9th row not excitesiidd curve).

Normalization: maximum absolute-component for the array with mutual coupling. Parameter

values:ka = 7/3, 8 = 3/100, ¢ = 0, centers(mA/2,n\/2) (m,n =0,...,19).

higher than in case mutual coupling is taken into accountotier words, the energy of the
co-polarization is overestimated by more than a factor oEihce the cross-polarization, i.e.,
the #-component in thexz-plane, is zero, the same is valid for the radiation intgnshthese
observations show that mutual coupling must be taken intowat.

Figure 2.12 shows thé-component of the electric far field in the-plane E-plane), both
for the uniformly excited array and for the array in which ®té row is not excited. In the
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Figure 2.13 Normalized absolute ring impedances both for a uniform line arraly) oings («)

of half a wavelength in free space with spacik@® at ka = 7/3, and for the same line array,
but with a small random perturbation on the radii, widths, and centgr3 fie parameter values
for the random perturbation are shown in Appen@® The rings are excited by voltage gaps
of 1V aty = 7. Left: atka = 7/3. Right: the frequency is changed such that= 0.943.
Normalization: for both frequencies, the absolute impedance of the singlén the uniform
line array. Parameter value8:= b/a = 3/100,v¢ = 0,d/a = 3 (d = A\/2 atka = 7/3).

second case, the highest side lobes are about 1.5 dB higtie¢h@main lobe is about 0.5 dB

lower than in the first case. Moreover, other side lobes as®eas well. This example shows
clearly that in an array that is excited per row by means dbbile feeding networks, the failing

of a row considerably decreases the array performance.

In the previous examples, we considered arrays with unifelement geometry. In prac-
tice, the element geometry and the spacing are not unifonmajl glifferences result after the
production process. To investigate the effect of such iiffees, the last example concerns a
uniform line array of 40 rings of which the ring radii, the ginvidths, and the ring centers are
perturbed. The perturbations are generated randomly fhosen tolerance @f.5mm for radii,
widths, and center coordinates. Both line arrays are extijevoltage gaps of 1V ap = .
The frequency is 1 GHz. The uniform line array exhibits a gggof d/a = 3 (d = A\/2 at
ka = 7/3), and the ratio of half the ring width and the radiussis= b/a = 3/100. On each
ring, 8 expansion functions are definétl,e,, = cosnp (n =0,...,7,¢=1,...,40). Forthe
perturbed line array, also one sine function is defined towttfor the asymmetry with respect
to the line-array axisyy = W¢°* L Ws™ with Wi defined as/ for the uniform line array
andW;™ defined byW;"e, = sing. Figure 2.13 (left) shows the absolute impedances of the
rings as a function of the ring indices. Both for the unifonmagt and for the perturbed array, the
impedances vary 5% with respect to their mean value. Fortipenturbed array, the absolute
impedances are uniform in the middle of the array, where tpyal the impedance obtained
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by the infinite-array approach. At the edges, oscillatioosuo. For the perturbed array, the
impedances are not uniform in the middle of the array, bdiedédt most 3.5% from their mean
value. At the edges, approximately the same oscillatiowsioas at edges of the unperturbed
array. Figure 2.13 (right) shows the impedancesat= 0.943, where onlyk is changed by
means of the frequency. The geometry parameters of the tuniped array are not changed.
The pattern of the absolute impedances of the uniform agdlya same as the pattern of the
perturbed array. The impedances oscillate and vary ab8&at@ith respect to their mean value.
Moreover, in both cases, the oscillations are modulatece &rhplitude of the modulation is
larger at the edges of the array than in the middle of the anhgre the impedances vary about
10% with respect to their mean value. The differences betweimpedances of the perturbed
and unperturbed array are at most 5% in the middle of the &witly one exception) and run up
to 15% near the edges.

The observations above indicate that the array behavieasonably stable for small param-
eter changes. The relatively large modulations reducedternmance of the array considerably.
Therefore, such modulations must be avoided in the desigthis respect, we emphasize that
in the example above the variations of the absolute impextaae larger for the perturbed array
than for the uniform array. Hence, in practice, we may ente&larger variations of the element
impedances than found by simulations of uniform arrays.

Recently, modulated oscillations of the element impedsih@we been found in arrays of
collinear, orE-plane oriented, wires with spacing2 in a half space witth = \/4 [46]. These
modulations occur at the frequency for which the elementsbéxa ‘resonant broadside em-
bedded impedance’, i.e., the frequency for which the remetsof the elements are on average
zero. In [46], it is mentioned that the modulations were nmeyved for arrays of parallel, or
H-plane oriented, wires, neither for arrays in free spaceohrast, the rings in Figure 6.14 are
positioned in free space and afeplane oriented, since the voltage gaps are all positiomed o
the array axis. Moreover, the spacing is not equal A, but0.464\ atka = 0.943. In Chapter
6, we will explain the occurrence of modulated oscillatidnysshowing that they are caused
by the excitation of specific eigencurrents analyzed in @rap Moreover, we will show that
the variations of the element impedances as shown in Figdfe &e explained by the same
mechanism.
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CHAPTER 3

The Impedance Operator

As part of the first phase of our research, see the scheme imeFig7, we discuss in this
chapter the impedance operator, which relates the currethisoarray elements to the excitation
of the array. The aspects we consider are choice of suitebteahd expansion functions for
the moment method, calculation of the moment matrix comptsm@umerical computation of
these components, and analysis of uniform (line) arraysselctions 3.1 and 3.2, we describe
the aspects of test and expansion functions commonly ustetiliterature from an operator-
theoretical perspective. As a result of the averaging mhaeein Chapter 2, the moment matrix
components calculated in Section 3.3 reduce to singleralefpr line arrays of strips. For line
arrays of rings, they reduce to double and single integratase of mutual and self coupling,
respectively. Two calculation procedures are explored,inmwhich the differential part of the
averaged impedance operator is ‘equally distributed’ dget and expansion functions as in
Green's theorem, and one in which this part is transferrethe¢otest functions such that its
Sturm-Liouville properties can be exploited. In the spktoaic of uniform (line) arrays, the
infinite-array approach is applied to approximate the aurom the elements. The convergence
or divergence of this approach is related to the physicahphmeena of grating-lobe appearance
and grazing scan. This relation extends results in theatitee in that different types of line
arrays are considered. Moreover, a mathematical exptanatithe convergence and divergence
aspects is provided based on Toeplitz properties of thedawpee operator. Further investigation
of these properties and their relation to scanning are destin Chapter 5.

3.1 Space Characterization
We consider tangential excitation field for which v** is square integrable dil;. Here, Il

is the range of the parameter describing the centerlineso$tinfaceS of microstrip elements,
see Subsection 2.3.1. In other words? belongs to the (Hilbert) spack; (II¢, CV<') [98].
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The physical interpretation of this property is that thekeiectric energy of the excitation field
is finite. Since the current on the elements is giver£hw = v°*, we construcf, = dom(Z,)
such that rafz,) C Y. = Lo (Il¢, C<). We show that the latter can be accomplished by
choosing

X, ={w e Hyy ([-1,1],CN) |w(1) = w(-1) = 0} , 3.1)
for the strips, and
Xo = H2,1,per ([—7‘[’,7‘(}, (ENel) ) (32)

for the rings. HereHs; ([—a, a], CV) is the subspace df, ([—a, o], CV) consisting of all
functions with derivative irL,, see [73: pp. 22, 50]. We omiit? in this notation ifN = 1. For
w € Ha ([—a, o], CV), its derivative inL, is denoted byDw, i.e.,

3

w(©) = w(0)+ [ (Dw))de" (33)
0

Notice the difference of notation between the differentipératorD introduced in (2.13) and

the Lo-derivativeD. The reason to introduce thi,-derivative is that functions i, ; are

continuous, but they are not necessarily differentiabléhin classical sense. With the inner

product(-, -) g, , defined by

(e

0w, = (v, + (Ov.DW L, (o0l = [ (@@ow@)d. (34
Hs 1 ([~a, o], CY) is a Hilbert space [58: App. A.3, p. 227], whereas with thealisiy
inner product (3.4), it is not. We note that. o .) is the inner product orC" defined
by (2.101), where we omit the subscrigt Similarly, Hs ([~a, ], CV) consists of all
differentiable functions or—«, a] for which the derivative belongs tél; ; ([—a, o], CV).
The spacesHs 1 per ([—, 7], CV) and Ha 2 per ([—7, 7], CV) consist of all functions in
Hs ([-m,7],CY) and Ha  ([-m, x], CV), which are periodic on the real line with period
27. Finally, we introduce the spacé®™([—a, a]) and C*°([—«, a]?), which consists of all
infinitely differentiable functions ofi-«, o] and[—a, a]? = { (z,y) |7,y € [, ] }.

Let us first consider the characterizationjf for the strips. The operatots,, in (2.53) —
(2.55) are Fredholm operators with displacement kerfigls General theory of such opera-
tors is given in Appendix B. Fop # ¢, the kernelF,, belongs toC>([—2,2]), and hence
to H1([—2,2]). Forp = ¢, the kernel belongs td.([—2,2]), but not toH, 1 ([—2,2]), see
(2.59). ThereforeF,, is decomposed into a logarithmic part(log £?)/2k¢3, and a part in
H>1(]-1,1]). The kernelF,, with p # ¢ and both parts of the kernél,, induce Fredholm
operators from»([—1, 1]) to H2 1 ([-1, 1]), see Lemmas 2 and 3 in Appendix B. Hence, for all
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D, q, Fpqw € Ho1([—1,1]) wheneverw € Lo([—1,1]). Moreover, ifw € Hs1([—1,1]), then
Fpqw € Ha2([—1,1]) for p # g andF,,w € Hy 2([—1,1]) if and only if w(1) = w(—1) = 0,
see Corollaries 1 and 2 in Appendix B. From this result anceipression foZ, in (2.53), we
conclude thatZ,w € L, ([-1,1], C"=') wheneverw € X,, whereX, is given by (3.1). We
note that the Helmholtz operator in (2.53) should be intetgat inL,-sense, i.e., as+D? /k2¢% .
The resultZ,w € Lo ([—17 1], @Nel) is also valid when the kernels,, are replaced by the ap-
proximate kernels’,, with corresponding Fredholm operatdfs, . The physical interpretation
of the boundary conditionsy(1) = w(—1) = 0 is that the current cannot ‘flow’ out of the
strips. As shown above, these conditions are necessaryamebr(Z,) C L ([-1,1], C"<),
which means that the total electric energy of the tangestiaitered electric field at the strips is
finite. This shows a direct link between the space charaetion and the physical properties of
the electromagnetic field.

For the rings, we consider only the expression (2.96) fyr with the approximate
kernels. Let us first consider the integral operatig,, and K ,,. These operators
are Fredholm operators with displacement kern&ls,,(-)cos(-) and K g,(-)sin(-).
The kernel Ky 4, (- )sin(-) belongs t0H, 1 pe:([—27,27]) (period 47), so thatKy ,,w €
Hj o per([—m,w]) wheneverw € Hijpe([—m, 7)), see Corollary 3. The kernel
K1 4q(+)cos(-) belongs toLs([—2m,2x]), but not to Hy 1 per([—27,27]). We could de-
compose this kernel in the same manner/s into a part proportional tdog? and a
part in Hy1([—2m,27]). By doing this, we would loose the periodicity of the kernel.
Therefore, we decompose the kernel into the patbs ¢ logsin®(p/2) / 2ka,3, and a part
in Hz 1 per([—2m,27]). The first part leads to a Fredholm operator frdm([—m,7]) to
Hj 1 per([—m,7]), see Lemma 5 in Appendix B. Moreover,df € H 1 per([—, 7)), then
the Fredholm operator transformsinto an element off3 5 e ([—7, 7]). The second part
leads to a Fredholm operator, which is treated in the sameenask, ,,. Summarizing, we
find that/Cy 4w, K2,gqw € Ha 2 per([—7, 7)) fOr w € Ha 1 per([—,7]). The same result holds
for p # g, because the kernels, ,,, and K ,, belong toC* ([, 7]?) and are periodic with
period 27 in both their arguments. From these results and the expres$iz, in (2.53), we
conclude thaZ,w € L, ([-1, 1], C"<') wheneverw € dom(Z,) given by (3.2). We note that
he Helmholtz operator and the single derivative in (2.9®usth be interpreted id.o-sense, i.e.,
asl + D?/k*a2 andD/k?a .

From the above, an essential difference between the spacactérizations for the strips and
the rings is observed. The Fredholm operators for the rirgs &function in their domain (3.2)
into Ha 5 per ([—, 7], CNer), which is a subset of their domain. On the contrary, the Fobdh
operators for the strips map a function in their domain (818 Hs »([—1, 1], CNet), which is
not a subset of their domain. This difference can be explaineilisvs. For the rings, the
‘boundary condition’ of periodicity follows from the geonng of the rings, which is satisfied
by both the current and the tangential scattered field onitigs.r For the strips, the boundary
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conditionw(1) = w(—1) = 0 is an impressed boundary condition on the current, whiclois n
necessarily satisfied by the tangential scattered field.

3.2 Choosing Expansion and Test Functions

We choose the expansion and test functions as outlined ise8tibn 2.4.3. Let us first consider
the strips. Since the mapping in the construction of the moment matrifix— Z,V] should
be chosen in accordance with the properties£of the test functiongV,e,,)( - ; ¢) on theqth
strip should be chosen in accordance with the propertidseobperatorgl + D? /k2¢%)F,, in
(2.53) forqg’ = 1,..., N.. In other words, these functions should be elements of thgesof
the Helmholtz operator + D? /k%¢* with domains raq%,, ). As shown in the previous section,
ran(F,,) C Ha2([—1,1]). The operatoil + D?/k?¢? is a Sturm-Liouville operator with the
Sturm Liouville boundary conditions(1) = w(—1) = 0. Examples of the application of
Sturm-Liouville theory to problems of mathematical phgsian be found in [101: Ch. V, Sec.
2; Ch. IX, Sec. 3] and [127: Sec. 4.3]. The operator-thecattispects can be found in [98].
For a direct application of these aspects to Sturm-Lioenploblems, we refer to [81: pp. 361
—369]. According to Sturm-Liouville theory, the operato# D? /k?¢? has a countable set of
eigenfunctions, i.e.,

o ((2n ~ e

5 ) ,  sinnn, (3.5)

with eigenvalues

(2n — 1)27T2 ) Qsin n = 1 - n27r2 .
120 ’ K202

Here,n € N. The eigenfunctions (3.5) establish a total (or completiomormal set [98: p. 67]
in Ly ([—1, 1]) with respect to thd., inner product. Sinc€,, is composed of1+D?/k%(%)F,,,
the most logical choice of the test functiofi¢/,e,,)(-; q) is (3.5).

The mappingV in the construction of the moment matrj¥~ Z,WW] should be cho-
sen such that the expansion functiong,, are elements oft, in (3.1). Therefore, the ex-
pansion functiongWge,,)(-;¢) on the gth strip should be chosen in the set of functions
{w € Ho1([-1,1])| w(l) = w(-1) = 0}, which is equipped with théd, ; inner prod-
uct (3.4) as in Section 3.1. Since the linear span of the &igetions (3.5) is both contained in
this set and dense in this set, and sitfGgr assumes the form of a convolution integral for all
values ofg and¢/, it is reasonable to choose the expansion functions frof) & well. We note
that the linear span of eigenfunctions is not dense in thdendetH> ; ([—1, 1]). Assuming that
we can describe the domain and the rang€pby the samdinite subset of the countable set
defined by (3.5), we choosé = W. Then, on each strip, the test and expansion functions are

Qcos,n =1- (36)
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the same, or, b&¥) = bagWV). As explained in Subsection 2.4.3, we can repleceby W~
and Q by P, if we interpret¥’— andP according to the space they act on. We specify the (test
and) expansion functions on the array of strips by

W=WilU...UWy,,  Wg=WSuws™, (3.7)

and

(2n — 1)m¢

5 ), n=1,2,...,Nes(q),

(Ws™en)(€; q) = cos (

(W;inen)(f; q) = sinnmwé, n=12,..., Nan(q), (3.8)

WeSen)(3¢) = Witen)(-:¢') =0, ¢ #q.

Here, Noxp = Noos + Nsin - By (3.7) and (3.8), we specify the (test and) expansiontfans

as well as the order in which they appear in the moment mptvix Z,V], see also (2.131). By
decomposing each, into W;** andW;in we distinguish between ‘symmetric’ and ‘antisym-
metric’ currents on the strips. We could have written theeefgnctions asin(nr (¢ + 1)/2),
but then, they would be alternately even and odd. The expressr Z, in (2.53) reveals that,

if v°* is even or odd, the solution t6,w = v°* is even or odd as well. Therefore, we choose
Nsin = 0if v is even and\,,s = 0 if v°* is odd. Finally, we note that the functiol$,e,,
are entire-domain functions with respect to the strip surfs,, because they represent functions
that are non-zero ofi, except for a subset with measure zero. The functidi)g,, are piece-
wise or sub-sectional functions with respect to the surfaoéthe complete array, because they
represent functions ofi that are non-zero on a single surfaggonly. If not stated otherwise,
we call the function3/V,e,, in (3.8) entire-domain functions.

Instead of using the entire-domain functions for the stiipfexessS,, we can also use
piecewise or sub-sectional functions. When= W as above, the expansion and test func-
tions (Wye,,)( - ; ¢) on thegth strip should be elements &f, ; ([—1, 1]) satisfying the Sturm-
Liouville boundary conditions in order to ha¥'e,, € X,. An obvious choice foiV is then

W=WiU...UWy,,

Open)(€i0) = e (S50 ) (€)= (1= €D 1w 6) 39)

(qun)(';q/) 207 q, #Q7

whereAqxp (¢) = 2/ (Nexp(q) +1), {q(n) = —1+nAexp(g), andn = 1,2, ..., Nexp(q). These
functions describe triangles of heighbn a uniform grid on the interval-1, 1].

For the rings, we construct only entire-domain expansiarttions. The Helmholtz oper-
ators1 + D?/k?a? in (2.96) are Sturm-Liouville operators with the Sturm-liidle boundary
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conditions of periodicity, i.e.w(7) = w(—=n) and (Dw)(w) = (Dw)(—=). These operators
have countable sets of eigenfunctions, i.e.,

cos Ny, sinny, (3.10)

both with eigenvalues

TL2

Qq’n:1_k2—a§.

(3.11)
Here,n € IN U {0} for the cosine functions and € NN for the sine functions. According to
Sturm-Liouville theory, the eigenfunctions (3.10) arehogonal, but not normalized, with re-
spect to the., inner product and they establish a total sekii[—, 7]). SinceZ, is composed
of (1 + D?/k%a2)K1,q¢ andDKs,qq /k?a2, the ranges of which are subsetslgf [, 7]) and
Hj 1 per([—7, 7)), itis reasonable to choose the test functibvge,, ) ( - ; ¢) on thegth ring from
the set defined by (3.10). The expansion functiéng,e,,)(-;¢) on thegth ring should be
chosen inH; 1 per([—, 7]). Since the linear span of the eigenfunctions (3.10) is doethin
Hy 1 per([—m, 7]) and dense it 1 per([—7,7]), and sinceC; 4, andky, 4, assume the form
of convolution integrals for all values gfand¢/, it is reasonable to choose the expansion func-
tions from (3.10) as well. Assuming that we can approximaeedomain and the range &%,
by the samdinite subset of the countable set defined by (3.10), we chdbse WV as in the
analysis for the strips above. We specify the expansion estdinctions on the array of rings
by (3.7) and

Wy en)(&;q) = cos(n — 1)y, n=12,...,Nes(q),
Wihen)(&;q) = sinnep, n=12,...,Nsin(q), (3.12)
We%en)(-:¢') = Wien)(-3d) =0, ¢ #q.

In Subsection 3.3.2, we will see that these functions arendimctions ofZ,, which confirms
our choice of test and expansion functions.

3.3 Calculational Aspects of the Moment-Matrix Compo-
nents

The moment matriYV~ Z,V] is composed of the block$V,” Z. W, with p,q = 1,..., Nq,
see (2.131). From the calculus result (2.£3@)follows that

W, ZW,g| = G, Zyg . (3.13)
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Here, Z,,(m,n) = (Wpenm, ZWV,en)r, (m = 1,..., Nexp(D), n = 1,..., Nexp(q)) and
G, = G(bagW,)) with respect to the inner product 8f. Then, the Gram matri& in (2.130)

is a block-diagonal matrix with the blocks,, on the diagonal. Moreover, the matrik in
(2.130} is a block matrix with blocksZ,,. In this section, we consider the calculation of the
blocksG), andZ,,, for the expansion and test functions chosen in the previectos.

3.3.1 Line Arrays of Strips

For line arrays of strips, the matricés,, are defined byz,,,(m,n) = Wyen, ZV,€0) 1,
whereZ, is given by (2.53) and thé, inner product by (3.4 with o = 1. Since the functions
Wypen, andW,e,, have for allm andn a non-zergth andgth component only, we can interpret
eachZ,, as a function ofW,e,,)(-;p) and(Wye,,)( -;¢). With this interpretation, each,,,

is a functional defined by

1
N jZ(j@Eb Zpg(v,w) = [1 v*(§) ((1 + ﬁDﬁ]}pqw) (€)d¢ =
= (v, (1 + D*/K2®) Fpqw), , (3.14)

for functionsv and w in Hs1([—1,1]) that vanish inl and —1. We write Z,,(m,n) =
Zpg(Wpem)(-5p), Ween)(-5q)).

We consider two different approaches to calculgjg(v, w). In the first approach, we inte-
grate once by parts to transferto the test functions and we apply Lemma 1 in Appendix B to
interchangef,, andD. Using the property o andw that these functions vanish inand—1,
we obtain

2
-7
jZok20b =P
In the second approach, we integrate twice by parts to atis¢ Helmholtz operator in (3.14)
to the test functions. Using the same property ahdw as above, we obtain

. 1 .
(U, W) = (v, Fpqw) L, — 142—€2<Dv,]-'quw)L2 . (3.15)

2 ~
= Zozm Zraw) = {1+ D2/k*0%)v, Fpgw) 1, +

— 5 ((DV)(1) (Fg) (1) = (O0)(-1) (Fpyw) (1) . (3.16)
In the first approach, we use only thatw € Hs 1([—1,1]), but in the second approach, we
need also that has a second derivative i,. Therefore, the first approach can be applied to
both the entire-domain functions and the piecewise funstiaf the previous section, while the
second approach can be applied to the entire-domain funsctim apply the second approach to
the piecewise functions, a generalized interpretatioh@second derivative is required instead
of an L, interpretation.
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We consider first the entire-domain functions defined by)(@nd (3.8). Since these func-
tions are orthonormal with respect to tiie inner product,G, is the identity matrix and
Zpg = W, Z.W,]. Moreover, the matrice§V,” Z,W,] are block-diagonal matrices com-
posed of the block§Ws°®)~ Z, W] and[(W3")~ Z,Wi™]. Therefore, we need to calculate
Zpq(v,w) only if v andw are both cosines or both sines from the set defined by (3.5¢. Th
functions of this set are the eigenfunctions of the Sturmulille operatorl + D? /k?¢? with
additional Sturm-Liouville boundary conditions. Hencke tterm(1 + D?/k?¢?)v in (3.16)
turns into(2, v, whereQ, is the eigenvalue of. The form forZ,,(v, w) thus obtained requires
the evaluation of one double integral only. This is the atge of (3.16) over (3.15), which
requires the evaluation of two double integrals. HoweviérLa inner products in (3.15) and
(3.16) can be rewritten as single integrals, because thampei'pq is of the convolution type.
Hence, the advantage of (3.16) over (3.15) vanishes heree3i,,(v, w) is represented by
two symmetric forms in (3.15), whereas it is representedimyasymmetric forms in (3.16), we
decide to use (3.15) instead of (3.16). Interpreting anditieg the inner products in (3.15) in
a similar way as the kernéf,,, in (2.55)—(2.57), we obtain

2 % *
= gzt Zre (v w) = (B v+ w1 1)) L (—22)) +

1 AL] *
= g2 gy (DV) Loy p (Dw)” L1 1) ra-22y - (3.17)

Here, the subscrigt, (2 2)) indicates the., inner product ori—2, 2]. Since the convolutions in
the right-hand side are calculated analytically, the tweemproducts reduce to single integrals
as mentioned above. The final result for the components dfltheks[(W;°°)~ Z,We°] is

1 COS\ — CcoSs _
= sgedy (V) 2N (m.n) =
— (_1)m+n (2n _ 1)271'2
= (m +n— 1)(m — n)ﬂ' {(2m - 1) (1 - W) Tl,pq(2n _ 1) +

_1)\2.-2
— (2n-1) (1 - %) T pg(2m — 1)}, (3.18)

for m # n, and

1 . ‘ 2n — 1)*x?
cos)—Zawgos](n’ n) -9 (1 o ( n4k2£)2 m

— T 2n—1
JZok?tb (V5 > 2pq(2n — 1)+

2 m — 1)272
T n-Dr (1 " %) Tipg(2n—1), (3.19)
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1
T pq(n) = / Foy (26) sin(nmt) de
(3.20)

1
Tapaln) = [ (1= €)Fy(2) cosme) de.
0
The final result for the components of the blo¢ke/s™ )~ 2, W;™"] is

1
]Z()k2€b

_1\m+n 27T2 27T2
_ 2(-1) E {m <1 _ 2%2 ) T py(2n) — (1 — TZQEQ ) lepq(2m)}, (3.22)

(m4+n)(m—mn

(V™)™ 2.5 (m,n) =

for m # n, and

1 sin sin .
]Zoszb [(W ) Zan ](n?n) -

n2n? 1 n2n?
=2 ( ]{j2€2 ) Tz’pq(Zn) + — o (1 + ]{2€2 > T1$pq(2n) (322)

Finally, we show that (3.16) links the calculational aspé¢etboth the space characterization
and to the physical properties of the electromagnetic fidld. andw are both cosine or both
sine eigenfunctions of + D?/k?¢? as above, (3.16) turns into

2

oy Znw) = Qe Fpqui, o (DU)(1) (Fpgu)(1). (3.23)

Physically, the second term in the right-hand side reptessrattering of the electric field at
the edges of the strip. Mathematically, it shows that theyeaof qu is not spanned by the
eigenfunctions oft + D?/k?¢2. This can be shown as follows. Since the eigenfunctions of
1 + D?/k*¢2, here denoted as,, with n € N, are a total orthonormal set i ([—1, 1]), we
may expandF,,w as

Z Wy, FpqW) L, W - (3.24)

Next, we substitute this series into the right-hand sid8df4). If we assume that the eigenfunc-
tionsw,, span the range of,,,, which is a subset ofl, »([-1, 1]), we may applyl + D? /k2¢?
termwise. Employing then the orthonormality of these eigeations with respect to thé,
inner product, we obtain the same expressionZgi(v, w) as in (3.23), but without the second
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term in the right-hand side. Hence, the rangé‘gj is not spanned by the eigenfunctions.
This shows that the second term in the right-hand side o8f3s2essential both from a physical
and mathematical point of view. Moreover, it shows that thedRolm operators for the strips
do not map a function in their domain (3.1) into a subset of timain, see the last paragraph
of Section 3.1.

For the piecewise functions defined by (3.9), we considerctis® of a single strip, i.e.,
Ng = 1. Then,WW; = W and we writeG and Z instead ofG, and Z;;. The piecewise
functions are not orthogonal with respect to the inner product and induce the tridiagonal
Gram matrixG,

2Aexp
3 )
G(m,n) =0, |m—n|>2.

G(m,m) =

Aex
Gm,m+1)=G(m+1,m) = 6p’ (3.25)

The components of are given byZ (m,n) = Z(wm, w, ), whereZ is interpreted as in (3.14)
andw,, (£) = wui((€ — £,)/Aexp), S€€ (3.9). To calculate these components, we use (3.15) to
obtain

) Em+1 En+1
gy Zwmewn) = [ (@) [ Pue - €) (¢ de'der

m—1 n—1

Em+1 En+1
—@/ (Dwm)(é)/ Fii(§—¢) (Dw,)(&) de'de . (3.26)

m—1 n—1

Introducing the transformation of variablgs= (¢ — &,,)/Aexp andy’ = (€ — &,)/Aexp, and
USing (D, ) () = 51— (Dwiss) (€ — &)/ Dex), We TEWHitEZ (w,,, w,) &S

) 1 1 N
-5 Z my Wn :AQ ri F m—n -y i "dy'd
gy Zne0) = 2y [ ws0) [ Fraenly =) wis(s) 'y +

1 1 1 5 ,

~ g | Ou)w) [ Pl =) D)) dy'dy, (327
-1 -1

whereF; ,, is defined byF; ,,(y) = Fi1(Aexpy + n). Interpreting and rewriting the integrals

in a similar way as the kernéf,, in (2.55) — (2.57), we obtain

2 %
— m Z(wm,wn) = Agxp<F117mfn7 wtri]-[—l,l] * wtril[—1,1]>L([72,2])+

1 1k
- k2£2 <F11,m7n7 (Dwtri)]-[—l,l] * (Dwtri)v1[_1,1]>L([7272]) . (328)

With (3.28), we have obtained a form fdf,,, which is similar to its form (3.17) for the
entire-domain functions. The convolutions are calculaedlytically. The final result for the
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impedance matri¥ is

__ % 7 _—
3 Zok20b 3 K22

202, 1 ) 1
+2 3 +W Ui(m—mn)— 2A€XP+W Us(m —n)+

2 AZ, 1 3
(mm)z?( P )Tl(m—n)—&-wﬂ(m—n)-F

+ A2, (—Tg(m — ) + 5 Talm —n) + Us(m — n) — < Us(m n)) . (3.29)
where

Tm) = [ 11 Fun(©letas vim = ([ 21+ / 2) Faum(©) | de . (3.30)

3.3.2 Arrays of Rings

For arrays of rings, the matrices,, are defined byZ,,,(m,n) = (W,en,, Z.W,e,) L,, Where
Z, is given by (2.96) and thé&, inner product by (3.4)with o = 7. In the same manner as in
the previous subsection, we interpret eagh as a functional. These functionals are defined by

2 R A 1 B
T ZoRPagh, Zpg(v,w) —/ v*(€) ((1 + 422 P )’Cl,pqw + a2 D’C2,pqw> (§)d§ =

—r D

= <Uv (1 + DZ/kzaz)’%l,pqw>L2 + v, DKQ,pqw>L2 ) (331)

1
k2a? <

p

for functionsv andw in Ha 1 per ([—7, 7). As in the previous subsection, we writg, (m,n) =
Zpg(Wpem)(-5p), Ween)(-59)).

We follow only one approach to calculat,, (v, w). As in the second approach for the
strips, we integrate twice by parts to transfer the difféedroperators to the test functions.
Requiring thatv, w € Ha 2 per and thatv is an eigenfunction of the Helmholtz operatios-
D?/k?a? with eigenvalug?,,, we obtain

2

1
R S
jZOk/’Qaqbq pa

k2a? {

p

(v,w) = Qv(v,lém,qwﬁQ — Dv,l€27pqw>L2 . (3.32)

Forp = ¢, the operator&; ,, andKs ,,, with kernelsk 4, (- ) cos(-) and Ky (- ) sin( - ) are
of the convolution type. Hence, the inner products in (3&#) be rewritten in a similar form
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asin (3.17),

2 [k *
T jZok%agb, Zaq(v,w) = Q (KT () c08(+ ), 0" Lo # WY L)) Ly (-2 20)) +

1 [ : *
— W <K2)qq( . ) sm( . ), (DU) 1[,71.’71.] * wvl[fﬂ',ﬂ]>L2([72ﬂ',2ﬂ‘]) . (333)
p

The entire-domain functions defined by (3.7) and (3.12) atleogonal, but not normalized
with respect to the., inner product. The Gram matri&,, for these functions is a diagonal
matrix of which the components are given by

Gp(1,1) =27, Gp(m,m)=m, m>2, Gp(m,n) =0, m#n. (3.34)

The ordering of the bases H{a§,,) and bag)V,) decomposes the matrixV,” Z,V,] into four
blocks, [(Wg)~ Z. W] with ¢,d = cos, sin. Then,Z,, is decomposed into four block&c:
defined byZ;;Zd(m,n) = Wyem, Zawjen>L2 . These blocks can be interpreted in the sense
of (3.31). Let us first consider the cage- ¢q. The integral operator§,; ., andK; 4, are diag-
onal operators with respect to the eigenfunctions (3.10js Tollows from the considerations
with respect to the kernels; ,, and K 4, in Section 3.1 and from Remark 2 in Appendix B.
Consequently, both bloclééggsvSin andZ;iq“vCOS are identically zero and both blockg*“>* and
Zg,o% are diagonal matrices. The diagonal components follow f{8183), where the convo-
lutions are calculated analytically. The final result fog tiagonal components & ?*°>* and
Zzsinsin s

2 COs,COoS
~ oy, Fa N (1,1) = 47 T 0),

2 1
_ = pcoscos —9 QO o T _1 T 1 ’ 1’
§Zok%agh, ~ % (n,n) i ( gn-1T1,4(n — 1) + kQag 2.q4(n )) n #

Z;;n,sm(,nq n) — Z{(;(CI)S,COS(n _|_ 1, n + 1) ,
(3.35)

where(), ,, is given by (3.11) and where

T1,q(n):/0 K1 4q(p) cos p cos ng dp, Tqu(n):/o Ky 4q(¢) sinpsinng dep .
(3.36)

For p # ¢, the components of the bloc C;]d cannot be reduced to linear combinations of
single integrals by means of (3.33). Therefore, we use J3@B@rite the components as linear
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combinations of double integrals. We find

2 5,COS CO0S,Cos m—1
- m Z;;mco (m,n) = Q1”7’”*1(71,1711 (m=1n—1)+ k2a2
P

2

U;f;[;os(m -1,n-1),

m —

25 (11 ) = Qe U m— 1) + T U5 oy — 1,

JZok?agby P1 1,pq ka2
— # Zsin,cos(m TL) =0 USiH,COS(m mn— 1) _ m UCOS,COS(m n— 1)
jZokQCquq pq ’ p,m~1,pq ’ kza% 2,pq ) )
2 sin,sin sin,sin m cos,sin
B jZ()k2aqbq qu ’ (m’ n) = Qp’mUlqu (m7 Tl) - k2a12) UQ,pq (ma n) )
(3.37)
where
Ulc:;lq(mv n) = / / c(mep) d(ng') cos(p — @' + by —1bg) Ki_pg(0, @) de'dep,
o (3.38)

Us gy (m,m) = / / c(mep) d(ng') sin(p — ¢’ + b, — 1g) Ko pg(,¢") dy'dip .

with ¢ andd representing the sine and cosine functions correspondithgtvalues’ of the super
indices®.

3.4 Numerical Aspects

The last step in the construction of the moment matrix carsctite numerical computation of the
integrals introduced in the previous section. To deterrttieeaccuracy by which these integrals
need to be computed, we consider the moment-matrix equéi@@9¥. The solution of this
equation is the projected currer{(W~w). The required accuracy of this current depends on
the functional metric related to (2.31). In their turn, tleuired accuracies of the integrals
and the moment-matrix inversion depend on the requiredracgwf the projected current.
We consider here only the dependence of the accuracy of tbgrats on the accuracy of the
projected current. It goes without saying that the total GiPhé& of constructing the moment
matrix and solving the moment-matrix equation should beimized. We will show that the
CPU time needed to construct the moment matrix dominatesriergl the CPU time of solving
the related equation.

To determine how accurate we need to compute the integralsyrite the moment matrix
W~2Z.W]asD + R. Here,D consists of the diagonal block®V,” Z,)V,| of the moment
matrix andR consists of the off-diagonal block®V,” Z,V,] . Then, the moment-matrix equa-
tion (2.129% turns into (I + D~'R)W = D~'G~'V, where[ is the identity matrix and
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W = [W~w]. Assume thatD andG~'V are determined exactly and th&t.; is the numeri-
cally determined off-diagonal block matrix. LBt be the exact solution of the moment-matrix
equation and lell,,; be the solution replacing by R..i,

(I+D'RW =D'G7'V, (I+D 'Rea)We = D'G'V. (3.39)
Write R = R.. — R andéW = W, — W. Then, subtracting the equations (3.39), we obtain
W = —~(I+ D " (Rea —6R)) *D 'R W . (3.40)

Of coursel + D~ 'R.,; should be invertible. Moreover, we assume thtis so small that
| (I + D 'Rea)! |||l D7'6R ||< 1, which implies thatl + D~!R is invertible, see [40:
p. 59, Th. 2.3.4]. We note thdt - || denotes both a norm afi” <! and its sub-multiplicative
associated matrix norm. Using the assumption and [40: pL&®&yma 2.3.3], we arrive at the
estimate

| W || c | D7'oR || S1p -1 1
< — ) C:H(I‘FD Ral) ”HD RalH'
I Wearl = o ID71OR|| || D~ Rear | ‘ ‘
| D~'Rea ||

(3.41)

This means that the relative errpr6W || / || Wear || is determined by the relative error
| D7Y6R || / || D 'Rca || and by the constan. Choosing the latter errox ¢/C(1 + ),
we obtain|| W || / || W || < e. If e < 1, then we may replace this choice pyD ! 6R ||
/|| D7*Real | £ ¢€/C to obtain the same, but approximate, inequality. The apprate
inequality|| D™YR || / || D™ Rca || < €/C isin general satisfied if each matrix component
is determined with a relative error of at megtrovided thatC' = O(1). Although it is expected
thatthe normg§ (/+D~'Rc.)~ ! || and|| D~ R.. || compensate each othét,= O(1) cannot
be shown satisfactorily a priori, only a posteriori. We niaége only that the nort D! R, ||
will in general increase as a function of the number of migipslementsV,;. A sufficient
rate of convergence of the componeptg,” Z,W,](m,n) as a function of increasing,, — c,|

is required to havél D~'R..; || bounded asV., — oc. This means that the mutual coupling
between the microstrip elements should decrease sufficitast as a function of increasing
distance between the elements.

The error estimate (3.41) is particularly useful for theagirof rings. In this caseD is a
diagonal matrix of which the diagonal components are simgégrals, whereag&.,, is a dense
matrix of which the off-diagonal blocks are double integraHence, the construction &f.,,
determines the total CPU time. Based on the error estima&epmpute first the components of
D with a relative error much smaller thanSubsequently, we compute the componentB Qf
with a relative error of. We choose here= 1073. Let us first consider the computation of the



3.4. NUMERICAL ASPECTS 77

components of2. Since tests for the integrals (3.38) showed that the coitgp@dP Simpson
rule requires less integration points for the same accutauythe higher-order Newton-Coates
rules, we use this rule. A Matlab implementation is givenga:[p. 191], where equal numbers
of integration points fop andy’ are chosen, i.e2Ny,; + 1 with N,; the number of subintervals
on [—m,w]. We deduce a rule of thumb for the number of integration goiequired for a
relative error ofl0—2 as follows. Letmin(N;,;) be the minimumV;,; such that the relative
difference between the matrix components (3.37) and certderence values is less thadr 3
for all Ni,, > min(NViy ). These reference values are obtained by using = 300 on [—m, 7).
The minimummin(N;,;) depends on the expansion functions and the geometry paremmnet
For several parameter settings, we compute(V;,¢) as a function of the angular orderof
the cosine and sine expansion functiaasny andsinng. An example is given in Figure
3.1, where we computein(Niy) for Z5o%°5(n, n) and Z5" (n,n) as a function of for
several distances between the rings. Based on these cdiopstave choose the number of
subintervals forZ<4(m,n) as Niny = 15 4 2 max(m,n) for |c, — ¢;| — ap —aq < 0.5
and N;,; = 8 + 2 max(m,n) otherwise. We tried to reduce these numbers by using differe
numbers of subintervals fgr andy’, but we could not find suitable rules of thumb, because the
numbers of subintervals appeared to be strongly dependehtspacing between the rings.
The integrals of the diagonal componentsiofare computed as follows. The integrals
with respect to the logarithmically singular parts of théegrands of (3.36)are calculated
analytically with result

1 n -1
2kayB, n? —1 o ’
& 1
— log(2sin(¢/2)) cos ¢ cosney dy = , n=1, 3.42
T | oxt2siner2) cosp cosmpdp = { g (3.42)
1 =0
2kagB, e

The integrals over théls 1 e ([—, 7])-parts and the integrals (3.363re computed by the 1D
composite Simpson rule witly;,,; = 100. A description of this rule and a Matlab implementa-
tion are given in [64: p. 167].

For line arrays of strips with entire-domain expansion agst functions, the number of
integration points is related to the relative ereas described above for arrays of rings. Since
all components ofk consist of single integrals only, the CPU time for a line arod strips
will be much lower than for an array of rings with the same namtif elements. Therefore,
we compute all integrals ok by the 1D composite Simpson rule wif¥i,,; = 100 to obtain
sufficiently accurate results for the solution of the mormmiatrix equation. The integrals b
are computed as follows. The integrals with respect to tharithmically singular parts of the
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Figure 3.1 Minimum number of subintervalsnin(Ni.) for Z;o>°*(n,n) (left) and
Z;i;‘*s‘“(n,n) (right) as a function ofn for an array of rings in free space. Cross; =
(7/15 X,0), asterisk:c; = (8/15X,0), plus: ¢, = (9/15X,0), circle: ¢, = (2/3,0).
Other parameter values;, = aq = /5, ¥p = g = 0, ¢, = 0.

integrands of (3.26)are expressed as sine integrals,

og(2 de— 1 g Si sing’

3 |, o828 cosmmg de = o simn), - 8i€) = | =5
Forn < 20, the sine integral is tabulated and, for higher numbers, df is calculated asymp-
totically, see [1: p. 231 — 233]. The integrals with respectite H» ; ([—1, 1])-parts and the
integrals (3.36) are computed by the 1D composite Simpson rule With, = 100. Finally,
the integrals for a single strip with piecewise functions ealculated similarly; the logarithmic
singular parts are calculated analytically and Hig, ([—1, 1])-parts are calculated numerically
with 30 integration intervals per interval of length 1.

The CPU times for the moment matrices of several line arrdymgs and strips are given
in the second and third columns of Table 3.1. We have not ugadhetry considerations such
as the symmetry of the moment matrices of the strip arraysréfare, the large differences
between strip and ring arrays are only due to the differebedseen the coupling integrals.
Moreover, we observed that only féf,; = 50 and N, = 100, the CPU times of the moment-
matrix inversion are higher than one second, 2 seconds asdcbhds to be precise. Here, we
used the standard Matlab inversion module. For very larggyasizes, the CPU time of the
inversion will dominate the CPU time of the matrix constiant because the former tends as
N3, whereas the latter tends &%, whereN = Ne1Nexp is the number of rows and columns,
see [110: p. 455 — 456]. Accuracy checks for the solution efrttoment-matrix equation are
given in Chapter 4. For the eigenvalues of the moment matnieh checks are given in Chapter
5.

= d¢'.  (3.43)
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3.5 Uniform Arrays and the Infinite-Array Approach

In the general setup, the arrays need not be uniform. Uniforays have uniform inter-element
spacing and uniform element geometry. To compare with thste-array approach, we have to
assume that the finite array is uniform. We consider maing/tgpe of uniform arrays: uniform
line arrays. These arrays can be building blocks of rectangurays as explained in Section
1.3. Moreover, they constitute the simplest test case famaparison between the infinite and
finite-array approaches. For uniform line arrays, the egjmmand test functions described by
W can be chosen such that the moment matrfiegs Z, W] are finite (block) Toeplitz matrices.
In this section, we study the relationship between the itdiand finite-array approaches as
being expressed by infinite and finite Toeplitz matrices.

A uniform line array of strips is obtained from the line ariaySubsection 2.3.2 by setting
the inter-element spacing, ,+1 in (2.47) equal to a constadt We index the strips not from
1 to N, as previously, but from-N or —N + 1 to N, whereN, = 2N + 1 or N,; = 2N.
Without loss of generality, we position the center of théstvith index zero in the origin, i.e.,
o, = 0, see Figure 3.2.

Figure 3.2 Geometry of a uniform line array of strips. The angle i.e., the angle between
thez-axis and a line through the origin &4, indicates the position of the main lobe. The angles
(0, ¢) are the usual spherical angles.

Uniform line arrays of rings are described in the same waynasdrrays of strips. All ring
geometry parameters are independent of the ring indée., a, = a, b, = b, andy, = P,
see Subsection 2.3.3. The centegsare positioned on the-axis with uniform inter-element
spacingd and the rings are indexed like the strips.

Let us first consider a uniform line array of strips for whitle impedance operator is given
by

N ~

1. 1 a2
(Zaw)(5p) = =5 Z0k°00 > (1 + Wd—g) Fpw(-3a). (3.44)
g=—N (+1)

see (2.53), where thgth component ofZ,w is denoted by( -;p) instead of,, as proposed
in Section 2.4.3. The integral operatdfs, exhibit symmetry and translation invariance with
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respect tg andg, i.e., Fpq = Fyp andFpy = Fo(,_p), and henceF,, = Fyj,_,- We choose
the expansion and test functions as in (3.7) and (3.8). Memave choose the tuple¥,.s
and Ny, uniform in their components, i.eNcos(¢) = Necos @nd Ngin(¢) = Ngin- Then, the
corresponding moment matrix, given by (2.131) with adjdstambering, is a (block) Toeplitz
matrix. This means thgWV, Z.W,| = W, ., Z.W,x] for every admissible.. Hence, we
need to calculate only the first block row and the first blockuom, i.e., V-, Z,W,] and
W, Z2.W_n], to construct the moment matrix. The CPU times for both thragiete moment
matrix and the Toeplitz blocks are given in Table 3.1 for saMiine arrays of strips. Unlike the
results for strip arrays wittV.,; = 50, 100 in the previous section, the CPU time of the Toeplitz
blocks, which tends a¥, only, does not dominate the CPU time of the matrix inversion.

Table 3.1 CPU times for the moment-matrix construction of line array®vef rings and strips
in free space, obtained with the Matlab implementation of Section 3.4 and ttierpianen-
tioned in Section 1.4. Parameter values for the ring ariay= A\/5, 8 = 1/40, v = 0.
Parameter values for the strip arréd¢ = /2, 3 = 1/40. Common parameterst = 3\/5,
Neos = 6, Nsin = 0.

CPU time (seconds) moment matrix constructign

Complete matrix Toeplitz blocks

N. | Ring array| Strip array | Ring array | Strip array
1 0.2 0.2 0.2 0.2
2 2.7 0.4 2.6 0.3
5 14.3 1.0 6.1 0.4
10 57.7 2.7 11.6 0.5
50 1450 48.6 56.9 1.9
100 4973 180 114 3.8

A general theory on Toeplitz matrices can be found in e.g, [#ile applications to arrays
can be found in e.g. [110: p. 455 — 456]. The Toeplitz propérids if all elements have
the same expansion functions and if a all elements have the sast functions. For the line
array of strips, the moment matrix is not only Toeplitz, blgoasymmetric, if the expansion
functions equal the test functions. Therefore, we needtrdglculate the blockBV™ \, Z, W, ]
to construct the corresponding moment matrix.

We follow the usual way to construct the moment-matrix eigumafior a line array of strips
by the infinite-array approach. We start from the momentrimatjuation for a finite line array
of strips, i.e.,[W~Z,W]W~w| = [W~v*], see also Section 1.2. We write this equation in
the alternative form

N

2

g=—N (+1)

W, Z W)WV, w] = Wy v™],  p=—N(+1),...,N—1,N. (3.45)
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Assuming that the excitation field®™ has a linear phase progression givendsy(-;p) =
veX(+;0) e~JPkdeosti e write the right-hand side of (3.45) 84/, v®] e—JPkdcosti - Here,
the angle); indicates the scan direction of the line array, see FiguteThis angle is related to
the scan angle of the array, which is usually expressednmstef spherical angl€9scan, dscan )-

In the zz-plane, the scan angle is given By.., = 0 andfcan = 90° — 6. The moment-
matrix equation of the infinite-array approach is obtaingdditing N — oo in (3.45). If the
lowest element index is IV, then the limit is the principal value for arrays with odd rers of
elements. Otherwise, the limit is the principal value faagis with even numbers of elements.
We do not consider the question whether these limits aredimesThe resulting equation is

o0

D W ZWyopl Wy w] = Wy v ] e /Phdeosth 0 p e, (3.46)
q=—00
where we used thgtV, Z,W,] = [W, Z2.W,-,] for the infinite array. The moment ma-

trix related to (3.46) is a (block) Laurent matrix induced g row (A4,)22 ., with 4, =
Wo ZuWl,

A Ay Ay

Ay Ay A |7 (3.47)

see [14: Ch. 1, Ch. 6]. The matrix induces an operator betw@erspaces consisting of
sequences : Z — CNexr, whereNexp, = Neos + Ngin. If this operator is injective and the
sequence induced by the right-hand side of (3.46) is an eieofi@s range, then the solution of
the infinite-array approach (3.46) is unique.

By the transformation’ = ¢ — p, the parametes in (3.46) is transferred to the second term
in the left-hand side, which yield8V,,, w]. It follows that, if the blocksV, w] have the

q
same phase progressioms#s, then (3.46) turns into

AW Wy w] = Wy v™],  AW)= Y Age (3.48)
gq=—00

where¥ = kdcos6;. Hence, if the matrix-valued functioA() exists and is invertible, then
W~w has the same phase progression. Moreover, (3.48) yiElijsw], i.e., the expansion
coefficients of the current on the strip with index zero. Thetniw A() is called the infinite-
array moment matrix. The existence and invertibility otmatrix is a basic assumption of the
infinite-array approach.

In the literature, see [21, 95], the infinite-array momentriras often deduced from the
impedance operator equation, in this cagav = v®*. By a similar deduction as above, the
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infinite-array impedance operator

> 2
ZX° = —% § Zok20b qzooe—iqw <1 + #5—52) Foq (3.49)

is obtained from (3.44) with the related operator equatigfw( -;0) = v**(-;0). This for-
mulation is more general than (3.48) in the sense that itlid f@ any choice of expansion and
test functions, but the requirements for its validity arerenstrict. The infinite sum in (3.49) is
often taken inside the integral operator, by which a newdldsobtained, in particular, the infi-
nite sum of the kernel@oq times the corresponding phase facteré??. This formulation was
reported to yield a slower numerical solution than the fdatian in which the infinite sum is
extracted from the moment matrix, as in (3.48), see [95: g].88owever, transformation of the
new kernel, for example by Poisson’s summation formula, mggyrove the rate of convergence
of both formulations significantly.

We illustrate the convergence and divergence of the seeigsrithing the infinite-array mo-
ment matrixA by means of an example. Figure 3.3 (left) shows(the ) component of4 in
the complex plane as a function @ffor prescribed parameter values. The arrow indicates the
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Re(A(¥;1,1))/]A0(1, 1)) v

Figure 3.3 Left: normalizedA(¥; 1, 1) for a line array of strips in free space. Right: normal-
ized Im(A(¥; 1, 1)) as a function ofl for the same array. The function values are calculated in
the points¥ = 274/1500,¢ = 0,1,...,1500, with ¢ = —999,...,999 in (3.48). The arrow
indicates the pointsl(4x/5;1,1) and A(67/5; 1, 1). Parameter valuegl = \/2, 8 = 1/50,

d =3)\/5, Neos = 1, Ngin = 0.

points A(4w/5;1,1) and A(67/5; 1, 1), which are the same. Near the corresponding values of
U, i.e.,,¥ = 4rn/5 and¥ = 67/5, the functionA(-;1, 1) varies rapidly. Together with a too
low number of interpolation points, this explains the amaguiature of the curve at the point
indicated by the arrow. Figure 3.3 (right) suggests thatrtteginary part ofA( -; 1, 1) exhibits
logarithmic singularities ab = 4 /5 and¥ = 67/5. This is confirmed by Figure 3.4 (left),
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which shows that the imaginary part df,(1,1) e~*/97/5 tends asl /q for ¢ > 0. Although

shown up tog = 50 only, we have verified that this behavior continues ug te 2000. The

same behavior is observed fér= 67 /5, but forq < 0. Hence, the series in (3.48)s at most
convergent in principal-value sense f&r= 4x/5 and¥ = 6x/5, if it converges at all. For
comparison, Figure 3.4 (right) shows the imaginary pargfl, 1) as a function of.
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Figure 3.4 Solid curves with crosses: normalized(lh, (1,1) ¢~797) as a function ofy for
U = 47 /5 (left) and¥ = 0 (right). Dashed curvest1/|q|. Parameter values: see Figure 3.3.
Normalization:| A1 (1, 1)].

Numerical tests reveal that,(1,1)e /7Y behaves a$/q for ¢ = +|q| if ¥ = F2md/\ +
2mm with m € Z. The angle®, corresponding to these valuesbffollow from

costy = Fl+mA/d, 0<6,<2m, meT. (3.50)

FornA/2 < d < (n + 1)A/2, this equation yields exactly one solution for each =
0,41,...,4n corresponding to the sign choice®f in the right-hand side. For other combi-
nations of sign choice and valuessaf the equation has no real-valued solution. The solutions
for m = 0 are the grazing anglés = 0° and¢; = 180°. The solutions formm = —1,...,—n
andm = 1,...,n correspond to anglegd at which a grating lobe appears or disappea® at
and 180°, respectively. Here, appearance or disappearance deparite direction in which
the interval ford; is traversed. In the example of Figures 3.3 and 3.4, a grdiog appears
or disappears a° for costy, = —2/3, i.e.,6; = 131.8° and¥ = —4x/5, and at180° for
cosf; = 2/3,i.e.,0; = 48.2° and¥ = 47/5. This result is formulated as follows in terms of
the spherical anglg®, ¢) and the scan angle described by the spherical af@les, ¢scan)- In
thexz-plane, a grating lobe appears or disappeafs-ad0° for the scan anglé;..,, = —41.8°,
and at? = —90° for the scan anglé...,, = 41.8°.

From the above, we see that the possible divergence of thesg8t487 is related to the
physical phenomena of grating-lobe appearance and grazarg Mathematically, the possible
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divergence could be explained by the approximate canoalati the phasgW¥ by the phase
of the kerneljg.. in the expression fog, for large values of;, see (2.53). The mathematical
implication of divergence of the series is that the Laureatrir (3.47) induces an unbounded
operator orix(Z). This follows from a result in [14: pp. 3, 186], which statbattthe operator
is bounded if and only if its related Fourier series (3%4@nerates a bounded function. This
function, i.e., the infinite-array moment matrix, is caltbé symbol of the Laurent matrix (3.47).
In Chapter 5, we show that the behavior of the spectrum of thieefarray moment matrix for
N, — oo is in correspondence with the possible divergence of thei€oseries by relating
these eigenvalues to scan angles of the array.

The singular-like behavior of the functiof appears in each of its components. Moreover,
this behavior appears to be independent of the strip lenugtiwédth. For spacings smaller than
half a wavelength, which do not induce grating lobes, thgudar behavior occurs as well, but
only at grazing scan. Analogous results are obtained ferdimays of rings, where the singular
behavior appears to be independent of ring circumferendenddth. If the rings or strips are
positioned above a ground plane, the singular behaviopdéss.

Divergence of the infinite-array solution is also found il [2Sec. 6] for line arrays of
collinear wires and for rectangular arrays of parallel wjrboth in free space. Here, the di-
vergence appears as a singularity in one or more expansios & the infinite-array integral
kernel. This kernel is obtained from the exact wire kerneltf@ array by applying Poisson’s
summation formula. Condition (3.50) for divergence in fepace follows also from [21: Eq.
(12)] by settingy,, = 0. As in our results, the singularities found in [21: Sec. & eemoved
when the array is positioned in a half space. Moreover, tigusarities are linked to the appear-
ance and disappearance of a grating lobe. In a general ¢pthiisXink is established in [124] as
well. It is shown that the resistance and reactance fungtiontheir derivatives, of an element
in an infinite array in free space are discontinuous at théngydobe scan angle [124: Th. 6].

Finally, we consider briefly uniform rectangular arraysséfor these arrays, the expansion
and test functions described by can be chosen such that the moment matiiees Z, W] are
block Toeplitz matrices. The interaction between the limays of which a rectangular array
is composed is described by a block Toeplitz matrix. Thesels, which represent the self
and mutual coupling of the line arrays, are block Toeplitarinas as well. In the infinite-array
approach, both the total Toeplitz matrix and its Toeplitadils become infinite matrices. In
other words, the infinite array is represented by the Laumrattix (3.47) of which the blocks
A, are infinite block Toeplitz matrices. If a linear phase taperssumed in both the length and
width direction of the array, the Laurent matrix is reduced tsingle block as in (3.48) for line
arrays.
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CHAPTER4

The Excitation Field

As part of the second phase of our research, see the scheimetia E.7, we discuss in this chap-
ter the tangential excitation field by which the source o&gsrof strips and rings is modeled.
Two types of excitation fields are considered: excitatiolu§igelated to the transmit function,
also called local feeds, and excitation fields related tadheive function of the array. In partic-
ular, we investigate the consequences of expressing tigerisial excitation field in terms of a
finite set of expansion functions. We show that specific aaf local feeds, i.e., the delta gap,
the finite feed gap, and excitation by a proximity coupled lsnvag, are equivalent. They gen-
erate the same current distributions up to small pertusbatiOn basis of this result, we choose
finite expansions of the delta gap as tangential excitat@ldgfifor the simulations in Chapter
6. Additionally, we discuss the equivalence of local feedh wespect to a local performance
parameter, i.e., the (complex) power. Within the frame efdimensional analysis of Chapter
2, we show that the tangential excitation field and the cumeay be replaced by their averaged
forms in the computation of the (complex) power. Moreoveg, sihow that the real part of the
complex power equals twice the radiated power, as desciikibeé literature. Finally, to model
the receive function, we choose plane waves and we show fichvgane-wave directions the
averaging procedure of Chapter 2 is valid. Moreover, we sti@aw currents induced by local
feed gaps and currents induced by plane waves are apprekjntia¢ same, which is explained
by the reciprocity theorem.

4.1 General Aspects

As mentioned in Section 2.2, the excitation fid#d can be interpreted as the tangential compo-
nent of an externally applied electric field( E“**),.,,, at the surface of the array elements.
This external field may originate from a feed including it;gection to the array. The mutual
coupling between the external field and the array is ignarétdeé modelZJ = Eg, or in other
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words, the excitation fiel#® g is assumed fixed.

The solution ofZJ = Eg is determined by the excitation field only, and not by the com-
plete external field. External field8®*" that induce the same excitation field and, hence, induce
the same solutiod, are called equivalent. In turn, the (numerical) solutiomgedure, in which
ZJ = Eg is replaced by the moment-matrix equatioh~ Z,W][W~w] = [W~v*¥], gives
rise to equivalent excitation fields. Fieldss that induce the same excitation vecty— v
and, hence, the same solutipfy ~w], are equivalent. Here,** represents the averaged center-
line components oF g, see Subsection 2.3.1, and the excitation vector repretanexpansion
coefficients ofv®* with respect to the finite basis of functions beg) and the inner product on
V., see Section 2.4. The finite expansion6t is square integrable, as required in the space
characterization of Section 3.1, evervif* itself is not square integrable. In that case, the ex-
pansion coefficients can only be calculated in generalizedes From a practical point of view,
only the expansion ob* is important and not its fine structure. How accurate the esioa
of v®* needs to be depends on the typical parameter under confdesad, hence, on the
functional metric related to (2.31).

From the above, we observe that the excitation is modelediageanumber of expansion
coefficients given by the excitation vec{o®’ ~v°*], which can be regarded as a discretization of
E 5. Vice versa, the question arises whether a given excitagotor corresponds to a physically
realizable excitation. The underlying assumption of edabuo choices of excitation vectors is
that they somehow approach a physically realizable exmitatn the next sections, we support
the underlying assumptions by certain physical ideas.

4.2 Excitation Fields for Local Feeds

In this section, we first consider examples of excitatiordBekpresenting local feeds for strips
and rings. Subsequently, we investigate the equivalentteesé examples.

4.2.1 Examples
Feed Gaps

As a first example of a local feed, we consider the finite feqa Jde corresponding compo-
nents ofv®* are given by

ex Ve (q)
V(6 0) = — 5 Lea(©). (4.1)
for thegth strip, and by
Vex
,Uex((p; q) = - (q) 1[71'(1—6),71’(1"!‘6)](SD m0d27T) ) (42)

2emayg
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for the gth ring, see Figure 4.1. Here;. . is the characteristic function as introduced below
(2.56) and mod is the modulo function. The gap width is a fismcof ¢ as indicated in Figure
4.1. Straightforward examples of corresponding excitefields areEs|s, = v**(-;q) ec and

—> «qu

20

&
o/ 0

- I26€

-
Ol e; ey

Figure 4.1 Aring and a strip with finite feed gaps.

Es|s, = v**(-;q) e,|s, . These excitation fields are regarded as voltage jumps ohituaig
V*(q) over a finite length on theth strip or ring. An interpretation of such a jump is that it
represents a voltage difference between the two (fictijitareninals of a strip or a ring. For the
entire-domain functions on the strips, see (3.7) and (&h&)excitation vector corresponding to
(4.1) is given by the right-hand side of (2.131), where

WCOS 7,UCX

W, v™] = (K g )_ ]) (4.3)
(W)~ v

and

(v o n 1) = =D sine 2120 (o) 0 =0 @)

As in Subsection 3.3.1, we use that the entire-domain fanstare orthonormal with respect to
the inner product L, and, hence, that the corresponding Gram matrix is the igyemitrix.
For the entire functions on the rings, see (3.7) and (3.h2)ekcitation vector is given by the
right-hand side of (2.131), where

O B [T (4.5)
and

(=D"V=(q)

Qq

C;in(n) =0, (5 (n) = sinc((n - 1)7re) . (4.6)
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The Gram matrbG,, is defined by (3.34) and the concatenatioby (2.103). By letting: — 0
in these expressions, we obtain the non-zero components

i e Cy @.7)

)
4 agq

(V) v (n, 1) =

in (4.4) and (4.6), respectively. One of the field¥ corresponding to the resulting excitation
vector for the strips, i.e., (4.2)nd (4.7}, is obtained as the generalized limit of (4.1). For the
rings, such a field is obtained as the generalized limit &)(for ¢ — 0. In both cases, the
limit results in the well-known delta gap, also called vgkagap, for whichv™* is not a square
integrable function.

Excitation by Proximity Coupling

The second example of a local feed is the excitation of a rgrbximity coupling. We consider
a ring with circumference of about a wavelength excited gy ¢tectromagnetic field of an
electrically small ring. In turn, this small ring is excitég a delta gap. Both rings satisfy the
dimension requirements of Subsection 2.3.3, but the disthatween the rings is a few times the
width of the large ring and, hence, not much larger than itglwii.e. b, /(|c, —cq| —ap —aq) =
O(p) for p # ¢, see for example Figure 4.2 (left). Excitation of a ring bg #xternal field of
a proximate ring has been studied by the author in cooperatith A. Kooiker, see [59]. The
objective of this study was to show equivalence betweentati@n by proximity coupling and
excitation by finite feed gaps. The main results are predeint&Subsection 4.2.2. Readers
interested in the calculational details of proximity caoglfind them below. The main idea is
that we replace the approximate kernels as deduced in Sidrs@c3.3 by approximate kernels
for electrically small spacings.

/5[ ‘ ‘ } 1/5} ‘ ‘ ]
| | | @ @
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Figure 4.2 Two examples of “arrays” of two rings. The little blocks on the rings, L&.indi-
cate the position of a feed gap, if such a gap is present. Length scal@isearén wavelengths.
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Calculational Steps of Proximity Coupling

To study proximity coupling between two rings, we reconsitie analysis of Subsection 2.3.3.
We assume that the distances between the rings are suchahlmaywstill apply the averaging

operatorA, see (2.71). Depending on the distance between two ringeratitkir sizes, we may

need other approximations for the kernels (2.77) than pteddn (2.89) and (2.95) for certain
values ofp and¢’. For these values, we do not approximate the distance meé;grwith

p # qin (2.73) and (2.77). Hence, we need to evaluate the adjusted approximate kernel

1 1
KLPQ(@? 410/) = / / gfree (qu(’/’, ’/‘/, @, @/)) dr’dr R
-1J-1

- 1 [ty . X . 4.8
K pe(p,¢') = ﬁ_/l [gfrcc(qu(lw’wp,so’)) *gﬁ-ec(qu(*l,r’,sow/))} ary @8
)

+ Kl,pq(@, 90/) )

that replace the approximate kernels (2.89) and (2.95)e Hgt. is the (normalized) kernel
defined by (2.44) and qu is the (normalized) distance measure defined by (2.70). .B),(4
we neglect terms of orde?. We compute both integrals with the composite Simpson rsle a
described in Section 3.4\,,; = 50), although, for small spacings, integration intervalsauia
length are not practical due to the nearly singular behafithe integrands. To determine for
which values ofp and’ (4.8) should be used, a criterion is proposed in [59: p. 1@&EHd

on the relative difference between the distance measge:, ', ¢, ¢') and|d,, (, ¢')|, see
(2.70) and (2.88). Here, we compute the kernels either cetelyl with the approximations
(4.8) or completely with the approximations (2.89) and $2.9he coupling integrals (3.37) are
computed as in Section 3.4, but with,; = 50 instead of the proposed rules of thumb.

To compare both approximations, we compute the point-wastive differences between
the corresponding results for the current for several patansettings. The first setting concerns
two rings with equal radit = a1 = a2 = A\/5 and with spacin@a, see Figure 4.2 (right). The
first ring is excited by a delta gap V. Figure 4.3 (left) shows the differences for the second
ring. This ring is either excited by the field of the first ringlp or also by a delta gap dfv on
itself. Figure 4.3 (right) shows the same differences, buspacin@a + 6b, whereb = b; = by
is half the width of the rings. If the second ring is not exdityy a delta gap on itself, the relative
differences for the larger spacing are of the same ordereasittximum relative error required
in Section 3.4, i.e.0.1%. Moreover, the maximum relative difference is attainegpat —,
which indicates the position on the second ring with the &saHistance to the first ring. For
the smaller spacing, the relative differences are of theroofl1%. Contrary to the result for
the larger spacing, the maximum relative difference is tairzed atp = —m, but aty = 0.95.
This value ofy indicates the position at which the current amplitude agtéis minimum.

Since we neglect terms of ordgr = b/a in the deduction of the kernel approximations
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Figure 4.3 Relative differences, as a function of the angleof the currents obtained by the
approximations (2.89) and (2.95) and by the approximation (4.8) ®se¢hond ring of an array
of two rings in free space. Left: spacirdg as in Figure 4.2 (right), where = a1 = ao.
Right: spacing:2a + 6b, whereb = b1 = be. Dashed curve: delta gap on the second ring
with V°*(2) = 1V. Solid curve: no delta gap on the second ring. Parameter vatuesa /5,
B=0b/a=1/40,1, =0, V(1) = 1V, Neos(q) = 8, Nsin(q) = 0.

(2.89) and (2.95), a relative difference of ordér= 1/40 is expected in the results above.
Hence, for distances between the rings that are much ldrgertthe ring widths, the accuracy of
the current obtained by the kernel approximations (2.88)(@rB5) seems to be of higher order
than . Moreover, for distances of the order of the ring width of thrge ring, the accuracy
seems to be of the ordér. In the next subsection, we use the kernel approximatior® {d
compute the current.

The percentages above are based on the relative differeneesecond ring without delta-
gap excitation. If this ring is excited by a delta gap, thatieé difference is much smaller, as
shown in Figure 4.3. This is explained as follows. The selidimg of each ring is predominant
over the mutual coupling between the rings. Hence, if a ringxcited by a local feed, its
current is largely determined by the self coupling. As a ltesie relative difference between
the currents on the second ring in Figure 4.3 are much smiltais ring is excited by a delta
gap.

For two closely spaced rings as in Figure 4.2 (left), we foondhe second ring relative
differences smaller thati% if this ring is not excited by a delta gap, and smaller thai¥; if
this ring is excited by a delta gap ®¥%. This corroborates the results above. We investigated
also whether the relative differences found above are fetgnit with respect to the numerical
accuracy of the computation of (4.8) by which these diffeemnare obtained. F@v;,; = 100
instead ofNV;,, = 50 in this computation, we found a relative differencelof !!. Taking also
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Ny = 100 instead ofN;,,; = 50 in the computation of the coupling integrals (3.37), we fdun
a relative difference of0~5. Hence, the relative differences found above are significan

4.2.2 Equivalence

To investigate equivalence of the introduced local feedsc@ansider first the coupling between
a small and a large ring as shown in Figure 4.2 (left). The brimgg is excited by a delta gap
of 1V, whereas the second ring is not excited. Figure 4.4 shoeadihmalized amplitude and
phase of the current on the small ring compared to the cuoretite same but single ring, where
‘single’ means without any other ring present. As expedteel current on the single ring has a
small real part compared to its imaginary part, which intisahat the ring is strongly reactive.
Moreover, the amplitude is almost constant. The currenhefgroximity coupled small ring
differs pointwise only0.1% from the current on the single ring. This difference is of agne
order as the numerical accuracy required in Section 3.4 lamace, we neglect the coupling
of the large ring onto the small ring. In the moment-matrixigipn DV~ Z,W|[W~w]| =
[W~ o], this can be accomplished by setting the bl¢ek Z,V,] equal to zero. Instead,
we choose to construct a moment-matrix equation for theelairgg only and we incorporate
the excitation field induced by the small ring onto the laigg in the corresponding excitation
vector. Physically speaking, we consider the current orsthall ring as an impressed current
and choose this current equal to the current on the smallaxaifed by a delta gap ofV.
The impressed current induces a fixed excitation field on dingel ring. This shows a first
correspondence with the feed gaps of which the excitatidehiBeassumed to be fixed as well.
We compare the proximity coupling above with the case of glsifarge ring excited by a
finite feed gap described By = 4.34 - 1072V ande = 0.127. The length of the feed gap is
0.16A, while the circumference of the small ring(sl3A. Figure 4.5 shows that if Gibbs-like
oscillations are discarded, the averaged excitation fi@dHe feed gap is an accurate approx-
imation of the averaged excitation field induced by proxyntibupling. In this approximation,
both the real parts and the imaginary parts show the saméuadsifference. Figure 4.6 (left)
shows that the two excitations induce currents with the samplitudes. The difference be-
tween these excitations results in a phase difference ketiwes corresponding currents, see
Figure 4.6 (right), which is independent of the number ofamgion functions. This phase dif-
ference is due to the non-zero imaginary part of the averageidation field of the proximity
coupling as shown in Figure 4.5 (right). Without this pale {phases of the currents become
identical. Moreover, their amplitudes change hardly witbpect to the amplitudes in Figure 4.6
(left). Roughly speaking, the phase difference betweenvibbecurrents is-0.2 rad, see Figure
4.6 (right). Hence, the two excitations can be consideradvatent up to the factoe%27,
This factor can be interpreted as follows. The feed is noitjpogd on the ring, but connected
to the ring by a piece of transmission line of lengtB/k = 0.2 A\/27. For more details on
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Figure 4.4 Normalized amplitude (left) and phase (right) of the current on the simajlin
Figure 4.2 (left) as a function of the angle Solid curve: single small ring with a delta gap of
1V. Dashed curve: no delta gap on the large ring. The rings are positioriezktispace with
parameter values (ring indices as in Figure 42):= 10a; = \/5, 84 = bg/aq = 1/40,
spacingai + b1 + 5b2 + a2, g = 0, Neos(q) = 8, Nsin(¢) = 0. Normalization: maximum

current amplitude of the single ring.
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Figure 4.5 Real and imaginary part of the averaged excitation field at the large riRigjime
4.2 (left) as a function of the angle. Solid curve: field induced by the small ring with a delta
gap of1V. Dashed curve: single large ring with field induced by a finite feed gdBaf10 =2V
with e = 0.127. The rings are positioned in free space with parameter values as in Bigure



4.2. EXCITATION FIELDS FORLOCAL FEEDS 93

transmission-line theory, we refer to [94: pp. 76 ff.].

As a second example of equivalence, we compare the finiteggeend the delta gap for the
large ring in Figure 4.2 (left). For the finite feed gap, wease: = 0.05. Figure 4.7 shows that
the currents induced by the finite feed gap and the delta gapdgual phase. Their amplitudes
are equal up to differences of abok near the gaps centered@t= w. Hence, the chosen
excitations can be considered equivalent for the givenmetar values. It goes without saying
that all finite feed gaps with < € < 0.05 can be considered equivalent for the same parameter
values as well.

In the two examples of equivalence above, we udeg(¢) = 8 entire-domain expansion
functions on the rings. FaWN..s(q) = 4 and N..s = 20, the current amplitudes in Figure 4.6
and Figure 4.7 change only near= m, i.e., the ‘position’ of the local feed, and near= 0.
This is observed by comparing the amplitudes in these figuithgthe amplitudes in Figure 4.8.
Moreover, comparing Figure 4.6 (left) and Figure 4.8 (upjper), we observe that, regardless
the number of expansion functions, the current amplituddsded by the two local feeds of
Figure 4.6 match each other, even near 0, i.e., the position of the local feed. The same is
valid for the current amplitudes induced by the two locatfeef Figure 4.7, but the differences
nearp = 0 are larger forN.,s = 20. The phases of the currents in Figure 4.6 and Figure 4.7
do not change. Thus, fa¥..s = 4 and N..s = 20, we arrive at the same conclusion, that the
local feeds under consideration can be considered eqotvddmally, in Figure 4.8 (second row,
second column), the computed current amplitude of a simgdewith a delta gap seems to show
instabilities near = 7. We computed the amplitude fé¥.,; = 30 and N, = 40 as well, but
the amplitude remained stable.

The examples above show that specific local feeds can bedewadi equivalent on basis
of the dominant behavior of the current distributions inelliby these feeds. This dominant
behavior is described by a small number of entire-domaimesion functions. Because of the
equivalence, we choose one local feed for the actual cortipaiaf typical parameters, namely,
the delta gap described by a finite expansion. The motivagitrat this specific local feed does
not distinguish between the expansion functions on a sstgjeor ring in the sense that it ‘hits’
all expansion functions.

Finally, we emphasize that how accurate the expansion®6fneeds to be and whether
certain excitations can be considered equivalent stilleddp on the performance parameter
under consideration. As an example, we compare the complegipgenerated by a single ring
with certain local feeds and we relate this power to the impedance of the ring.
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Figure 4.6 Normalized amplitude (left) and phase (right) of the current on the langgim
Figure 4.2 (left) as a function of the angle Solid curve: field induced by the small ring
with a delta gap ofl V. Dashed curve: single large ring with field induced by a finite feed gap
of 4.34 - 1072V with ¢ = 0.127. Dashed-dotted curve (right): voltage of single large ring
multiplied by the phase factar—°-27. The rings are positioned in free space with parameter
values as in Figure 4.4. Normalization: maximum current amplitude ofitiggeslarge ring
with a delta gap ol V.
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Figure 4.7 Normalized amplitude (left) and phase (right) of the current on a singig with
the same geometry as the large ring in Figure 4.2 (left), as a function aftllep. Solid curve:
excitation field induced by a delta gap B¥. Dashed curve: excitation field induced by a finite
feed gap ofl V with e = 0.05. The rings are positioned in free space with parameter values as
in Figure 4.4. Normalization: maximum current amplitude of the single largewith a delta
gap of1V.
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Figure 4.8 Upper row: normalized amplitudes of the currents in Figure 4.6 (left)wbth
Neos(q) = 4 (left) and Noos(q) = 20 (right) instead ofN.os(q) = 8. Lower row: normalized
amplitudes of the currents in Figure 4.7 (left), but withos(q) = 4 (left) and Neos(g) = 20
(right) instead ofVeos(¢) = 8. The rings are positioned in free space with parameter values as in
the corresponding figures. Normalization: as in the correspondingefidwith Neos(g) = 8).

Power and Input Impedance

The complex power induced by an excitation fi#@ on a surfaceS is defined by
PCX:—/ESoJ*dS. (4.9
S

For surfacesS with parameter sell(S) = IL:(S) x [—m,m], we introduced in Subsection
2.3.1 the concepts of narrow surface and width averagedwéetd, see (2.28) and further.
Assuming that the surfacgin (4.9) is narrow with respecttB' s, or, (Z — A) Es =~ 0, we may
replaceE s by its width averagedE 5. SinceAEs is directed along the centerline §f only
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the centerline component df contributes to the complex power (4.9). Moreover, sidd8g is
constant with respect to the width 6f the integral in (4.9) with respect to this width acts only
on the product of the centerline component/ofnd the ‘volume element,,; of S as defined
by (2.24). Such an integral is recognized in the definitiothefwidth average of a vector field,
see (2.29). Hence, the complex power turns into

n

== [(AB9©An:©) [ s enands, o P~ — [ ABseAras.
13 S

-

(4.10)

Here,¢ is the centerline coordinate of the surfagesee Figure 2.3. The derivation of (4.10)
shows that if eithetEg or J in (4.9) is replaced by its width-average, the other field ban
replaced by its average as well.

If S consists ofN,; disjoint surfacesS,, v** andw are Nq-tuples, which represent the
centerline componentsAE s), and(AJ)¢ on these elements as in (2.40). Sinc& andw are
obtained by the moment method, they are represented by itedikpansionsgVW—v** and
WW~w. Then, for an array of rings, the complex power is given by

Nei
P = =23 agbg (WW 0™)(-39), WW~w)(-59)), , (4.11)
g=1

and for an array of strips by

Nei
P = =23 b (WW v™)(-59), WW w)(-:q);, =

= 20 (WW v WW-w)s . (4.12)

Here, theL, inner product is defined by (324)

Since the arrays of strips and rings are positioned in freeespr in a half space, it can be
shown as follows that R&*) = 2P, whereP ! is the total radiated power in the far field
as defined by (C.18). In the complex power (421®e replace the fieldl E s by AZ.AJ due to
the equality (2.34). Then, as shown above, we may reple€elJ by Z.AJ. Let E andH be
the electric and magnetic field induced dy/ according to (2.14). Ther€ AJ = (E)., and
AdJ is the jump of the tangential magnetic field over the surféicélence, the complex power
turns into

P = —/(E)tan hd (n X (-PI|S+ - H|S*)*) ds, (413)
S

wheren is the normal onS and S* denote the sides df. In this expression, we may replace
(E):an by its restriction toS, because the jump has only a tangential componentntebe
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the normals or5* with n* = n andn~ = —n as in the model assumption 2 on page 25.
Applying the vector identityd e (B x C) = —B e (A x C), we rewrite (4.13) as

Pe":—/ (n‘o(E|S><H*|S+))dS—/ (n* e (Els x H*|s-))dS.  (4.14)
S S

In this expressionp® are regarded as the ‘outward’ normals fdi|s=. For the first integral,
we interpretS as a part of a closed surface, which encloses the volarnat theS™ side of
S. For the second integral, we use a similar interpretatiahwlith = replaced by~. Both Q™
andQ2~ do not incorporate current sources. Then, according todhgtex power balance for
time-harmonic fields, see [109: p. 131 — 137], the fluxes oftithe-average Poynting vector
S = Re(E x H")/2 overdQ* anddQ~ equal zero. Hence, (4.14) equals the power flux of
the time-average Poynting vector over the symmetric diffee of the surface2Q+ andoQ—.
This symmetric difference is a surface, which encloSedHence, the real part dP** equals
twice the flux of the Poynting vector over this surface. The&tesment is valid for any closed
surface, which incorporates. Choosing a sphere in free space and half a sphere togetther wi
the ground plane in a half space, we obtainf R&) = 2 P,.q, see (C.18). The derivation
above is also valid for the finite expansions4F s and.AJ. Finally, the imaginary part aP*
represents the power stored in the near field of the array.

Let us consider a single ring. Then, the complex poR&rin (4.11) simplifies to

P = =2ab (WW v WW~w)7, , (4.15)
where the subindexis omitted. Using the definition afV, see (2.110), we rewrite (4.11) as
P = —2ab W w]? G W v™]. (4.16)

Here, )W~ w] and [W~v*] are the expansion coefficients of the averaged curteand the
averaged excitation field®™™, andG = G(bagW)), i.e., the Gram matrix of the (test and)
expansion functions in b&8/) with respect to the inner product @7. As in (2.130%, we can
write W~ v™] = G~V with V(n, 1) = (We,,, v°*). Then, P = —2ab[W~w]* V, where
the superscript’ denotes the Hermitian transposed.

Table 4.1 shows the complex powef> of a ring in free space for (finite expansions of) the
excitation fields of three feed gaps. Computations of theesponding radiated powerzad
showed that the relative differences betweeri/R&) and2P ¢ are abou0.07%. This is an
important validation of the analysis for a single ring indrgpace. Each number of expansion
(and test) functiongv,s in Table 4.1 yields another finite expansion of the excitafield of a
feed gap. In case we fix such a finite expansion, the resulbéctirrent does not change any-
more, if we increase the number of expansion (and test) ifumeiV, . in the moment method.
This is due to the diagonal form of the moment matrix of a ®mghg with entire-domain ex-
pansion functions. Then, it is observed from Table 4.1 thafinite expansions of the delta gap
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Table 4.1 The complex poweP** (10~*W) for (finite expansions of) the excitation fields of
three feed gaps: a delta gap1df and two finite feed gaps dfV with e = 0.05 ande = 0.127.
The ring is positioned in free space and its geometry is the same as thetgeofitbe large
ring in Figure 4.2. Parameter values= \/5, 8 = b/a = 1/40.

Delta gap e =0.05 e =0.127
Neos | REP™) | Im(P**) | Re(P®) | Im(P**) | Re(P¥) | Im(P*¥)
4 6.867 12.77 6.810 13.02 6.507 14.13
8 6.867 9.234 6.810 10.19 6.507 13.32
12 6.867 7.937 6.810 9.589 6.507 13.30
16 6.867 7.209 6.810 9.461 6.507 13.28
20 6.867 6.722 6.810 9.448 6.507 13.27

with 4, 8, 12, 16, and 20 cosine functions can be considerenagnt with respect to the total
radiated power, but not with respect to the power storedeémtrar field of the ring. The results
for the finite feed gaps with = 0.05 ande = 0.127 show that their finite expansions for larger
numbers of cosine functions can be considered equivaldghtrespect to the power stored in
the near field. This equivalence of finite expansions is Wgugkrpreted as convergence of the
solution for the current. However, such a type of converganay not be related to convergence
in the sense of a classical norm as for examplelthanorm. For the delta gap, we may not
expect convergence of If?°*) for an increasing number of expansion functions, becasse it
representation, i.e., the generalized limit of (4.2), i$ square integrable and, hence, not an
element of the range &, . Finally, which finite expansion of the considered localfees most
suitable for a certain realizable excitation is not known.

For a ring in a half space, we find similar results for the thiesl gaps. Moreover, the
relative difference between RB°*) and2P** is small, even for very small heights For
h = X/100, the difference i$.4%, while the total radiated power is of ordeb—2 with respect
to the total radiated power in free space.

The input impedance is defined by the complex power divided by the squared absolute
value of the total current through the terminals of the rilgis total current is unambiguously
defined for the delta gap, with val@(WW~w)(0), but not for the finite feed gap, because it
can be defined as the average current over the gap, but alwvisth. The input impedance for
the delta gap is given by

PeX _ Vex
200WW-w)(0)|2  260WW~w)(0)

Zinp = (4.17)
The second equality follows from (4.16) and the definitionhaf excitation vectopV~v**] in

(4.5), (4.6}, and (4.73. Expression (4.17) is the network definition of the impedane., the
voltageV** divided by the total current through the gap.
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4.3 Excitation Fields for Plane Waves

A signal received by an array is usually modeled as a lineanbdoation of plane waves. Such
a wave represents an electromagnetic field in free spaceagating along a certain vectbt
with a polarization perpendicular 6. Here, the upper indévndicates that the wave is incident
on the array. The field is a solution of the (time-harmonicxMaell's equations for free space,
see (2.5) with free current equal to zero. The electric angnatic field obey the Helmholtz
equation, see (2.9) witld replaced byE or H and with zero free current. The electric field of
a plane wave is given by

EP°(z) = Eleik o) , (4.18)

wherek' is given by
— = e,(6;, ¢1) = sinb; cos ¢; e, +sinb; sin ¢; e, + cos i e, (4.19)

andE' is a constant real vector perpendiculaifoor, (e, ¢ E') = 0. We note thak,, is the
radial unit vector of the standard spherical coordinatéesyssee (C.4). The spherical angles
(6;, ¢1), as shown in Figure 3.2, describe the angle of incidenceeopliine wave.

As mentioned below (2.17), the excitation fields in the equationZJ = Eg can be
described byEs = —(E®™");.,, whereE*" is an externally applied field. For free space, the
current induced by an incident plane wave is describe®by = —(E®*"),, with E®" =
EP'a"¢_ For a half space, the current is described analogouslyittE®* equal to the sum
of EP'*"® and the corresponding wave reflected at the boundary plathe dfalf space. In this
way, we assure that the total figlf** + E, H**' 4 H) satisfies Maxwell's equations and the
boundary condition at the boundary plane of the half spase bglow (2.17). The total field
does not satisfy the radiation conditions [26: p. 113], liseahe plane wave does not satisfy
these conditions. Only the scattered fiel, H') satisfies the radiation conditions.

We calculate the excitation vector induced by the plane W) for arrays of strips and
rings in free space. In both cases, we use entire-domaimsipafunctions. For arrays of
strips, we find for the components of*,

ysin(k£3n sin 6; cos ¢;)
k{Bn sin 6; cos ¢;

,Uex(g;q) _ 7(ey . Ei) ejk(c‘“” sin 6; cos ¢;+1€ sin 0; sin ¢; (420)

The corresponding excitation vector is given by the rigamdh side of (2.131). Moreover,
W, v™] is given by (4.3) and(WVg) " v™|(n, 1) = Wjen, v™) L, with the expansion func-
tionsWye,, as defined in (3.8). As in the derivation of the approximaten&er, in (2.62) —
(2.63), we assume that < 1 andkl = O(1) (asfB | 0). Neglecting terms of ordes?, we
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obtain

(=1)™(2n — 1)wcos k
k2 — (2n —1)27w2/4

[(W;OS)_’UQX](TL, 1) _ _(ey ° Ei) 6jkcq’”” sin 6; cos ¢4
(4.21)

(=1)"2n7jsink

2

)

[(W;in)—vex}(rh 1) — _(ey ° El) ejkcq"” sin 6; cos ¢;

K2 —n2m?

wherex = k{sin 6; sin ¢;.

For (e, » E') = 0, the excitation vector in (4.21) turns to zero and, hence,sibiution
for the current is also zero. Moreover, fat, o E') = 0, the condition that the surfacg is
narrow with respect t&g, or, (Z — A)Eg ~ 0, is not satisfied in general. As shown in the
dimensional analysis on p. 38, this condition is necessargplace the equatiofJ = Eg
by AZAJ = AEg, or, Z,w = v**. Hence, ingi! ~ 0, the solution of the moment-matrix
equation should be handled with care.

The excitation vector for an array of rings is obtained in slaene way as the excitation
vector for an array of strips. Since any choiceFfis a linear combination of the plane waves
with E' = eo(6;, ¢;) and E' = es(0i, ¢;), we consider only these two choices. We assume
ka, = O(1) (as@, | 0) and we neglect terms of ord@j Then, the excitation vector for
E' = ey(6;, ¢) is given by (4.5) — (4.6), where

Cgos(”) = —mcosb; eThlep(0i.01) @ cq) sin((n —1)(¢ — wq)) jn_z (Jn72(“q) + Jn(“q)) )
(4.22)
C;in(n) = 7 cos 0; M (e (Od0) o o) cos(n(d — 1)) i (Jn—1(kq) + Jnt1(Kq)) ,

wherex, = ka4 sin 6; and whereJ,, is the Bessel function of the first kind with index For
E' = e4(6;, #1), the components (4.22) reduce to

Csos(n) = —melerlbidi)ecy) cos((n — 1)(¢ — 1)) jn72 (Jn—2(kq) — Jn(Kq))

Csin(n) _ ﬂ.ejk'(ep(‘gi@i)'cq) sm(n((b — Q/Jq))jn_l (Jnfl("iq) — Jn+1("€q)) .

Finally, we show that the calculated expressions for thét&ien vectors above represent
the electric far-field components of the correspondingyartia the direction ofE’. Let us
first consider line arrays of strips. The far field of the arimp superposition of plane waves
induced by the element currents, which are described byessind sines. If we multiply the
expressions in (4.21) byZok(be=7%7 /27p, these expressions represent the electric far-field
component in the direction d&', evaluated afp, 6;, ¢;). This component is generated by the
nth cosine or sine expansion function on thle strip, which can be seen from (C.13) and (C.14)
in Appendix C. In other words, the far field in the directiofy, ¢;) induced by an element
current is proportional to the amplitude of this current,entthe array is excited by a plane
wave from the directiorié;, ¢;). Moreover, the constant of proportionality is independsrihe

' (4.23)
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mode and the direction. The same conclusion is valid foyarofrings. The vector components
(4.22) and (4.23) multiplied byZoka,b,e~7%? /27 p represent the electric far-field components
evaluated atp, 6;, ¢;) and generated by a cosine or sine expansion function ogttheng.
Mathematically, the correspondence between the tandgemietric field of an array induced
by a plane wave and the far field of this array is explained f{@®), in which the integral
represents the inner product of the plane wave and the ¢umeam elemens,,. Physically, this
correspondence is explained from the reciprocity theovelmh states that source and observer
can be interchanged. Figure 2.9 in Section 2.5 confirms thegpondence for a line array of
strips. For the dominant expansion functions, the coefftsiebtained by a delta-gap excitation
are approximately the same as the coefficients obtained lana{wave excitation.
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CHAPTERS

The Eigencurrent Approach

In this chapter, we consider the second phase of our resesetihe scheme in Figure 1.8. In
Section 5.1, the general idea of the approach suggestedsithtsis, called the eigencurrent
approach, is described. The eigencurrent approach cemgistvo main steps, called the ini-

tialization and the cycle. In the initialization, the eigamnrents of a single element, or more
general, of the initializing subarray, are determined.hi¢ycle, the eigencurrents of the array
are determined from the eigencurrents of subsequent syisaloy an iterative process as out-
lined in Section 1.3. Calculational details of both stepseigencurrents of line arrays of strips

and rings are discussed in Sections 5.2 and 5.3. The exciteght on line arrays of strips and

rings is expressed in terms of these eigencurrents, se®mi$&c8.1. In Subsection 5.3.2, we

relate the eigencurrents to scanning by linear phase taparid we compare the eigencurrent
approach with the infinite-array approach. Special atbents devoted to the one-to-one corre-
spondence between eigenvalues and scan angles and todtgedivand convergent behavior of
the infinite-array solution at the grazing and grating-lsban angles. The main conclusions of
the initialization and the cycle are summarized in Sectigh Moreover, we provide a manual

in which the steps of the application of the eigencurrentaggh to arrays of arbitrary elements
are described.

5.1 Description of the Approach

5.1.1 Idea

In the previous chapters, we described the electromaghbeliavior of an array of microstrip
elements by the moment-matrix equation, or by the corredipgroperator equation

PZ,Pw = Pv°™. (5.1)
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Here,Z, is the averaged impedance operator &nd the projection onto rgf®), i.e., the space
spanned by the expansion functions, see Subsection 2 4uatign (5.1) relates the (expanded)
current on the elements to the (expanded) excitation fielddgns of the operat@tZ, P. In the
previous chapters, the solution of this equation was obthby inverting the operatd? Z,P.
In this chapter, we describe the solution by the eigenvadimelseigenfunctions of the operator.
In [115], several reasons are mentioned why eigenvaluesigethfunctions are useful in the
analysis of operators. First, since operators are diagmtaby their eigenfunctions, the solu-
tions of various problems are obtained more rapidly. Secieckeigenvalues and eigenfunctions
may provide information about the behavior of the applmatiescribed by an operator. Finally,
eigenvalues supplement the abstract notion of an opergtmplzture in the complex plane and,
therewith, they give an operator a face. Especially thisrieason will become apparent from
the analysis of line arrays in Subsection 5.3.2, pp. 165 ff.

Assume that the eigenfunctioms, of the operatof® Z,P span rafiP). Then, the operator
is diagonalized by its eigenfunctions. If the eigenvaluesadl non-zero, the solution in réR)
of (5.1), i.e.,wp, is described by the eigenfunctions and the eigenvalues, of the operator
PZ,Pas

wp = Z L (U, PU) uy, (5.2)

n
n=1

Here, N is the dimension of rgfP) and the inner produgt:, - ) on rar(P) is chosen such that
the eigencurrents are orthonormal. This inner product Ishot be confused with the inner
products(-, -) x, and(, -)y, defined on the spacet, = dom(Z,) and), D ran(Z,), of which
ran(P) is a subspace. We will see that the eigenfunctions indeenl IspéP). Moreover, the
operatorsP Z, P that we consider will turn out almost normal with respectite inner product
on),, where normal meang Z* = Z* Z with the adjointZ* of Z defined by (2.109). Hence,
the eigenfunctions are almost orthogonal with respectisatimer product.

The finite expansion (5.2) provides insight into the behawfothe array. The eigenfunc-
tionsu,, of PZ,P are the eigencurrents of the array. The corresponding \eadjezs represent
the characteristic impedances of these eigencurrentenEigrents with larger characteristic
impedances contribute less than those with smaller cleisiat impedances. Moreover, if an
eigenvalue is close to zero, the array shows resonant lh&inally, eigencurrents that match
well with the (expanded) excitation fiel@v** contribute more than eigencurrents that do not
match well. Herewith, the finite expansion gives a first ihsigto the relationship between the
excitation field and the current.

From a calculational point of view, it is not efficient to firsbnstruct a moment matrix
related toP Z,P and, subsequently, determine the eigencurrents. Theref@ determine the
finite expansion (5.2) by an alternative approach. We basafiproach on the following ideas.

Let the array be composed 6f,,;, identical subarrays. Then, the array is described by the
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position of these subarrays and the geometry of a singlayba\Ve say that the entire array is
generated from a single subarray, which we refer to as thergéng subarray. An example of
such an array is discussed in Section 1.3, Figure 1.5, whand@m rectangulad x 6 array is
generated from & x 6 line array or from & x 2 rectangular array. Both choices of subarrays are
in turn generated from a single element, which is the smabessible generating subarray. As
explained in Section 1.3, we construct the eigencurrenta@rray as concatenations of linear
combinations of the eigencurrents of its generating salyatn other words, an eigencurrent of
an array is described as a linear combination of subarraneigrents.

Assume that the generating subarray has eigencuregfits(n = 1, ..., N3i") with eigen-
valuesys'™P. Let us first consider the case that all eigenvalues arerdiftgor in other words,
that the eigenvalues are non-degenerate. The case of daggtie considered further on. If
mutual coupling between the subarrays is ignored, the e#y@es of the complete array are the
eigenvalues/s"P, each with multiplicity N,,. The eigencurrents corresponding to an eigen-
value$"" belong to the eigenspace spannedMy;, independent currents, each of which is
zero on all subarrays but one, where it equajs®. The set of these independent currents is
denoted byE,, and hence, spdh,,) is the eigenspace corresponding/8°. Figure 5.1 shows

symbolically the currents dE,, for a line array of four subarrays. We will see that if mutual

Currents oft,, :

(us®™, 0, 0, 0)
(0, w0, 0)
(0, 0, usb, 0)
(0, 0, 0, ui™)

L' I/sub usub
n Y n
Figure 5.1 A line array of 8 elements generated from a subarray of 2 elemaats (= 4).

The elements are indicated by dots, the subarrays by blocks. Thetsusfg,, are symbolically
denoted by 4-tuples, which indicate the currents on each of the fourrayba

coupling is not ignored, each eigenvalue of the generatibgisay yieldsVg,;, eigenvalues,,,

(¢ = 1,..., Ngu) Of the formuv,,, = v5"°(1 + €,,), Wheree,, are complex-valued pertur-
bations, see for example Figure 5.2 (left). Moreover, we sék that each eigencurrea,,

is a linear combination of currents &f,, called the dominant part of the eigencurrent, plus a
perturbation. The perturbation is a linear combinatiorhef currents of the other sefg.. The
perturbations of the eigenvalues and the eigencurrentndiegn the strength of the mutual cou-
pling between the eigencurrents on the subarrays. Theggtréine mutual coupling is, the larger
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o Range off fen, [}

Im
n=1
€
€n,6 . m.l n=2
0 Re
.En,4 €n,2 n=3
€n,3
n=4

Figure 5.2 Left: Graphical representation of the (complex-valued) perturbatidtisindexn
for an array with 6 subarrays. Right: The ranges of the absolute pations of four groups of
eigenvalues are indicated by shades areas. The thick lines indicate timeumaand minimum
absolute perturbations.

the perturbations are. We emphasize that the perturbatiogigenvalues and eigencurrents do
not necessarily need to be small. Nevertheless, we refeadioeg, as the perturbation of the
eigenvalue/,,, and we refer to the non-dominant part of each eigencuwgpias its perturba-
tion. If the perturbations are small, a perturbation teghaican be applied as used in Quantum
Mechanics, see item 3 in Subsection 5.1.4.

We observe that both the eigenvalues and the eigencurrighis complete array are divided
into N;i‘:o,b groups ofNg,1, elements. Foreach e {1,... ,N:i“gb}, thenth group of eigenvalues
is {vnq}ff;jb and the corresponding group of eigencurrent$d§q}f1v;“f. The perturbations
{enq}f]\’;‘f describe the spread in the complex plane of the eigenvaliute ath group with
respect to the eigenvalué'”, see for example Figure 5.2 (left). This spread is a measure f
both the mutual coupling among the current&pfand the mutual coupling between the currents
of E,, and the currents of the other séts. The second type of coupling does not incorporate the
coupling between the currents which are non-zero on the salyaray. This coupling is the self
coupling of the generating subarray, which is incorporatetie eigenvalues and eigencurrents
of the subarray itself. In the literature, the self couplisgometimes referred to as intra-mode
coupling, while the other two types of coupling are refemieeds inter-mode coupling. Figure 5.2
(right) shows a graphical representation of the rangesepatisolute perturbatiorl[sf,enq\}é\/;ib
for four groups of eigenvalues. These ranges are an inditafithe spread of the eigenvalues.

In the ideas outlined above, the eigenvalug® and the eigencurrents’"" belong to the
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operatorPy,p Za sub Psub Of the generating subarray. The range of the projedtigs is spanned
by the eigencurrentss". The eigenvalues,, and the eigencurrents,, belong to the operator
PZ,P of the array. The range of the projectighis spanned by the currents in the unibiof
the set£,,.

The eigenvalues,,, and the eigencurrents,, can be described by a moment-matrix formu-
lation for the operatoP Z, P using the ideas outlined above. Assume that the eigenvafiés
and the eigencurrents;"> of the generating subarray are known as well as the innerugtod
(-, )sub ON ran{Ps,p) With respect to which these eigencurrents are orthonorBgl.defi-
nition, the operatofPs,, Z, subPsub IS diagonalized by its eigencurrents. If the eigencurrents
are chosen as expansion functions, the moment matrix wsiet to( - , - )51, is a diagonal
matrix with the eigenvaluess"? on the diagonal, see for example Figure 5.3 (A). Recall that
in Subsection 2.4.2, we introduced both the usual defingiod our definition of the moment
matrix, which are related by the Gram matrix of the test fiomg according to (2.128). Since
the Gram matrix of the set of eigencurrents® with respect tq - , - )., is the identity matrix,
both definitions yield the same moment matrix g, Za sub Psub-

Since the eigencurrentg™® are orthonormal with respect {o, - )1 , the currents oE are
orthonormal with respect to the composite inner productas(i?) = spar{E),

Nsub

(5 )ecomp = Z((')qa(')q>sub- (5.3)

g=1

Here, the dots in the inner products indicate currents orconeplete array and. ), is a sym-
bolic notation for the corresponding currents on iftie subarray. In case mutual coupling is
ignored, the operatdP Z,P is diagonalized by the currents Bf The corresponding moment
matrix with respect tq -, - ).omp iS @ diagonal matrix with the eigenvalueg™® on the diago-
nal, each with multiplicityNy,;,, see for example Figure 5.3 (B). We will see that in case ntutua
coupling is not ignored, the operat®¥Z,P is diagonalized by the currents in the &up to

a perturbation. As above, the perturbation depends on theaineoupling between the eigen-
currents on the subarrays. The corresponding moment maitlixrespect to( -, - )comp IS @
block matrix, of which the diagonal blocks equal the momeatrir of the generating subarray,
while the off-diagonal blocks are dense matrices, see famgke Figure 5.3 (C). The complete
matrix is diagonally dominant. In Subsection 5.3.1, we wfilow that the eigenvalues of the
moment matrix are the eigenvalugg, of the operatofP Z, P of the array. The eigenvectors of
this matrix are the expansion coefficients of the eigencisre,,, with respect to the expansion
functions in the sek, i.e., the eigencurrents of the array in which the mutuaptiog between
the subarrays is ignored. The composition of the momentixrgiggests the same perturbation
of the eigenvalues:"> and the eigencurrents b as described above. Moreover, the diagonal
form of the diagonal blocks shows that the self coupling ef generating subarrays does not
contribute to the spread of the grou{)slq}fj;“lb as observed above.
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(A)
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(E) -

v5ub X X x|
vsub X X X
m ’—.’ PZ 7) Comp Z/§Ub X X X
X X X viub
expansion functions « « < ygub
only fromE,, E; andE; « ~ > % A
i.e. (us™®,0) and (0, us™) i i
for (n=1,2,3) oy -
V12
V21

Va
W L] ¢Papy) R

eigencurrents,,,
as expansion functions

V3.2
sub

sub
Vy

Figure 5.3 Calculation of the eigenvalues,, and the eigencurrents,, of an array consisting
of two subarrays. The generating subarray has four eigencumithteigenvalues:"®.

The eigenvalues,,, and the eigencurrents,, can be computed from the moment matrix
for PZ,P. To reduce the computational effort, we employ the ideaardgg the spread of
the eigenvalues. If the spread of a group of eigenvaluesthgayth group, is negligibly small,
its eigenvalues can be set equal®. Moreover, the corresponding eigencurrents can be
replaced by the currents &, (or, more general, by, independent currents of sp&y,) ).

In that case, the currents Bf, are neither coupled with each other, nor with the currentbef
other set€£,,,. Hence, we can set the corresponding entries in the momerikrequal to zero.
An example is given in Figure 5.3 (D), where the spread of theth group of eigenvalues is
negligible. The eigenvalues of the other groups can themtmpated from the reduced moment
matrix in Figure 5.3 (E).

The operatorP Z,P is diagonalized by its eigencurrents,,. Once these eigencurrents
have been computed, an inner prodyct - ) is constructed with respect to which they are or-
thonormal. The calculational details of this constructoe discussed in Subsection 5.3.1. The
corresponding moment matrix is a diagonal matrix with tlyeavalues,, on the diagonal. An
example is given in Figure 5.3 (F). Here, the eigenvaMg$qualyzub, because the spread of
the fourth group is considered negligible in Figure 5.3 (BJl &igure 5.3 (E). The array of two
subarrays can be viewed as a new subarray with correspodidiggnal moment matrix. Then,
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a similar procedure as above can be followed to compute enealues and eigencurrents of
an array generated from this new subarray.

In general, we need to construct the moment matrix only fretaks, that contribute to the
mutual coupling between the subarrays. As in the exampésetisets are not known a priori.
We expect that the groups of eigenvalues correspondingetdothiest eigenvaluess"” have
the largest spreads. In other words, we expect that thertarof the set€,, corresponding
to the lowest eigenvalueg" contribute most to the mutual coupling between the subarray
This expectation is based on the expansion (5.2), which shbat the current on the array is
mainly described by the eigencurrents with the lowest eigleies, i.e., the eigencurrents with
the lowest characteristic impedances. In the next sectisaswill support the expectation by
means of examples. A posteriori, it should be verified th#ficsent setsk,, have been taken
into account to describe mutual coupling. We will see thété spreads of all the groups cor-
responding to the reduced moment matrix are significantait be necessary to take more sets
E,, into account in this matrix. However, we also will see thasihot necessary to take more
setsE,, into account, if the eigenvalue§™® corresponding to the groups with significant spread
are much lower than the eigenvalue$® corresponding to the groups with negligible spread.
In Subsection 6.3.1, we introduce a definition of the spréatl ¢an handle these cases. Both
the a-priori estimate of the seffs, and the a-posteriori verification are based on arguments tha
are quantified by means of the eigenvalues. This explainseigsnvalues and eigencurrents
are suitable for an approach to analyze arrays. Finally, leolserve that the larger eigen-
values correspond to eigencurrents that show a larger nuaflscillations per wavelength.
Physically, this observation is explained by the lowera#dn from high-frequent currents.

Up to now, we have considered the case that the eigenvalties génerating subarray are all
non-degenerate. In case an eigenvalue is degenerat@) case an eigenvalue has multiplicity
larger than one, this eigenvalue corresponds to more thamiaup of eigencurrents. We will
consider an example of degeneracy and the correspondirsggoeances for the group division
in Section 5.3.2, p. 163. Moreover, the consequences ofngegey for the analysis approach
outlined in the next subsection are described in the lastgraph of Subsection 6.3.5.

5.1.2 Approach

The preceding ideas to compute the eigenvalues and eigentaiof an array from the eigen-
values and eigencurrents of its generating subarray stigfgedollowing general approach.
Assume that the eigenvalueg™® and the eigencurrentg"® (n = 1,. .. ,Ngi“gb) of a generating

subarray are known with respect to its operd®or, 2. subPsub. Here,Z, qup is the averaged

impedance operator of the generating subarray7angd is the projection onto a finite basis
of expansion functions for the subarray. Moreover, assuraethe inner product-, - )su, ON

ran(P.,p) is known with respect to which the eigencurrent$® are orthonormal. Determine
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the eigencurrents of the array as follows:

I. Choose a new generating subarray of the complete array nElw subarray is con-
sidered as array generated from the original subarray watliesponding operator
PsubZa,subPsub- Let Z, be the averaged impedance operator of the generated agfy. L
Ngup be the number of subarrays in this array.

Il. Let the setsE, (n = 1,... ,Nes;:gb) andE be defined as above. In other words, each set
E,, consists ofVy,;, independent currents, each of which is zero on all subatratyene,
where it equala:s™®. MoreoverE is the union of these sets. TheAZ, P is the operator
of the array, wher@ is the projection onto spéR). Next, rar{P) = spar{E) is equipped
with the composite inner product, - ).omp as defined by (5.3).

Il. Let E°P! be the union of the sefS, that are expected to contribute to the mutual coupling
between the subarrays. Construct the reduced moment rfatrix=, P with respect to
the composite inner produét, - ).omp ,» Where the expansion functions should be taken
from the seEcP!,

IV. Determine the eigenvalues,, and the eigenvector§,,, of this moment matrix. The
eigenvalues are approximations of eigenvalues of the tgePZ,P. The eigenvectors
represent the expansion coefficients of the eigencureentsf this operator with respect
to the functions irEP!. Let E°!¢ be the set of these eigencurrents.

V. Investigate on basis of the spreads of the groijplg}f;’;jb of eigenvalues whether more
setsE,, are required to describe mutual coupling. If more sets ayeired, return to step
Il

VI. Let E"™° be the union of the seff, that are not taken into account in the (reduced)
moment matrix in step Il. Then, the linear sparEs U E'° equals spafE) = ran(P).
The operatof® Z, P is diagonalized by the eigencurrentsgtie U E'»¢. Construct a new
inner product -, -) on rar(P) with respect to which the eigencurrentsifie U E" ¢ are
orthonormal. Then, the corresponding moment matrix isahiagwith the eigenvalues of
these eigencurrents on the diagonal.

VII. Stop if the considered array equals the complete ar@tirerwise return to step |, where
the subarray with operat®s,, Za subPsub iS the array just considered. In other words,
2, sub IS replaced by the operatd, of the array just considere®s,, is replaced by the
projection? in step Il, and the inner produ¢t , - )., is replaced by -, - ). Moreover,
the eigencurrentas*® and the eigenvalueg"" are replaced by the eigencurrent&fit U
E'"¢ and their corresponding eigenvalues. Finaﬂggi‘éb is set equal to the number of
eigencurrents ¢ U E"C,
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The starting point of the eigencurrent approach sketchewdeais a subarray with operator
PsubZa,sub Psub Of Which the eigenvalues and eigencurrents are known. Evmiéte the eigen-
values and eigencurrents of a first subarray, we proposeliog/ing initialization procedure:

A. Choose a subarray that generates the complete array. kéggdeo this subarray as the
initializing array. LetZ, ;,i; be the averaged impedance operator of the initializingyarra
and(-, - )init be the inner product oY, iniy O ran(Z, init). 1N Section 3.1( -, - Yinit IS
the L, inner product.

B. Construct a finite basis of expansion functions for th&dhzing array with correspond-
ing projectionPy,;;. The expansion functions can be piecewise functions, famgte
rooftops [77: p. 1600] and Rao-Wilson-Glisson (RWG) funatig96], or entire-domain
functions.

C. Construct the moment matrix f&&, ini; With respect to this finite basis and the inner
product( -, - )init ON Va init- Here, our definition of the moment matrix, as introduced in
Subsection 2.4.2, must be used, see Subsection 5.2.1 flanation.

D. Determine the eigenvalue§'t and eigenvector§ "t of this moment matrix. The eigen-
values are also the eigenvalues of the oper&igk Z. init Pinit @S we will show in Sub-
section 5.2.1. The eigenvectors represent the expansefficdents of the eigencurrents
u!Mit of this operator.

E. Construct an inner product, - )su, on ranPiyit) With respect to which these eigencur-
rents are orthonormal (for construction details, see Stiiose5.2.1).

F. LetZ. cub = Zainit, Poub = Pinit, w'® = uli®, andu;" = v Moreover, letNg
be the number of eigencurrent§'*.

5.1.3 Application Details

A successful application of the eigencurrent approach nigpaighly on the initialization for
two reasons. First, if we make a numerical error in the ilitiédion, this error will propagate
throughout the apporach, because in each cycle, the eigesvaf the generated array are per-
turbations of the eigenvalues of the generating subarrdyl@ance, of the initializing subarray.
In the next sections, we illustrate that the loss of accudagyto the numerical error in the ini-
tialization is of the same order as the loss of accuracy deieetmumerical computation of the
moment-matrix components in the usual moment method, assied in Section 3.4. There-
fore, we do not lose accuracy with respect to the accuradgeoftoment method. Second, the
eigenvalues of the initializing subarray determine, torgdaextent, which terms of the finite
expansion (5.2) need to be taken into account. If the eideasaof the initializing subarray
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increase rapidly as a function of their index, only a limitagmber of eigencurrents (one or
two for a single-element subarray) will be needed to deedtile electromagnetic behavior of
this subarray. Moreover, in each cycle, only the eigenvgtoeps corresponding to this limited
number of initializing eigenvalues need to be considerddchvis the second reason.

The most essential aspects of the cycle of the eigencurpgnbach are, first, choosing the
subsequent generating subarrays and, second, deterrtigirgggencurrents that contribute to
the mutual coupling. We explain these aspects further. Bystidg the inner product in step
VI, we obtain, in step Il of the next cycle, a close-to-diagbmoment matrix for the operator
PZ,P with respect to the expansion functionsin To what extent this moment matrix can
be considered as diagonal depends on the mutual couplimgéetthe eigencurrents on the
subarrays with respect to the composite inner product )..m, given by (5.3) and, hence,
on the choice of the generating subarray. As explained itic®et.3, the generating subarray
should be chosen in correspondence with the geometry amxtiitation of the generated array.
The more diagonally dominant the resulting moment matrixhe less computational effort
is needed to determine the eigenvalues and eigencurrehéseTobservations explain the first
aspect.

The second aspect is the reduction of the computationattdfforeducing the size of the
moment matrix in step Ill. This size depends quadraticatiyttte number of subarray eigen-
currents. On basis of the mutual-coupling information, ahhis ‘grouped’ by means of the
eigencurrents, we only take subarray eigencurrents irdowad in the moment matrix of the
array that contribute to the mutual coupling between theasalys. In Section 1.3, a compar-
ison of the matrix sizes for the eigencurrent approach anthi classical moment method is
described. We note that the required number of subarrayeigeents not only depends on
the choice of the generating subarray, but also on the mdj@iccuracy for the current. This
accuracy depends on the functional metric related to (2s&B) also Section 3.4.

It is not essential for the eigencurrent approach that thersialues and eigencurrents of
the operatofP Z,’P converge in a certain sense to the eigenvalues and eigentaiofZ, as
the dimension of rafP) is increased. This is explained as follows. In the initiatian, we
choose expansion functions on the initializing subarnayhé usual moment method, we would
choose the same functions, but defined on all elements ofthg &etP be the corresponding
projection for the array. Then, by the usual moment methadphtain a solution in the space
ran(P) by solving the moment-matrix equation. In the eigencuragproach, we determine the
solution in the same space, but in the efficient way desciribede.

In the next sections, we discuss the calculational detéilseoinitialization A— F and the
cycle | — VII of the eigencurrent approach. Moreover, we apply therapph to uniform line
arrays. In these applications, we will answer the followgugstions for the initialization.

¢ In what way can the eigenvalue§'* and the eigencurrents'* be determined?
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How are the eigencurrents described by the set of expansmmiéns?

To what extent do the eigenvalues and the eigencurrentsidepethe set of expansion
functions?

How do the eigenvalueg™®, indexed such that/*t| < |yl |, behave as function of
their index?

To what extent are the eigencurrents orthonormal with I&gpé - | - )init?

To what extent do the eigencurrents and the eigenvaluesdepethe geometry parame-
ters and the frequency?

Moreover, we will answer the following questions for the leyc

In what way can the eigenvalues, and the eigencurrents,, be determined?
Which setsE,, contribute to the mutual coupling between the subarrays?

What can be said about the spread of the group eigenvaluesuastah of the spacing
between the subarrays?

What can be said about the spread of the group eigenvaluesuastah of the number
of elements?

How are the eigencurrents,, described by the eigencurrent§'>?

To what extent does this description depend on the subaa@neters and the spacing
between the subarrays?

What is the (physical) meaning of this description?

In Section 5.4, we present a summary of the answers and themebtresults. Moreover, we
predict the results of the application of the eigencurr@praach to rectangular and other types
of arrays.

5.1.4 Related Approaches

The eigencurrent approach is related to certain solutiohnigues and ideas in the literature.
The correspondences and differences with these techréoakisleas are discussed.

1.

The solution technique as in (5.2) is well-establishe#l,ifis a Sturm-Liouville operator
with additional Sturm-Liouville boundary conditions, §d®1: Ch. V, Sec. 2; Ch. IX,
Sec. 3], [127: Sec. 4.3], [81: pp. 361 — 369]. In our c&Beis the product of an integral
operator and a differential operator incorporating a Sturauville operator. We expect
that Z, shows a kind of ‘perturbed’ Sturm-Liouville behavior.
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2. For rectangular and circular waveguides, the eigeniomst or, eigenmodes, are known
[25: Ch. 5]. These eigenfunctions are related to the Heltatagerator. They are often
used to expand the unknown electromagnetic field at wavegligtontinuities to deter-
mine this field by a mode-matching technique [25: Ch. 8].

3. The ideas concerning perturbation of eigenvalues areh&igctions appear in Quantum
Mechanics as well. In that case, the operaigris the Hamilton operator, the eigenfunc-
tions and eigenvalues of which are the states of a systenrtiflpa and the related energy
levels, see [61: p. 591]. The eigenvalues and eigenfursfimna perturbed system are
expressed as asymptotic expansions with the unperturgedwglues and eigenfunctions
as the dominant terms [39: Ch. 16, Ch. 22], [43: Ch. 6]. Théupkation can for example
be caused by a change of potential or by including or exctuttie interaction between
particles. The first case is compared to an antenna element amray of which certain
geometry parameters are perturbed. The second case isahpahe perturbation, by
mutual coupling, of the eigenvalues and eigencurrents @reay in which mutual cou-
pling is ignored. A difference with Quantum Mechanics isttthee Hamilton operator is
self-adjoint, while in our casg, is not self-adjoint.

4. Instead of considering the eigenvalue equatign,, = v,,u.,,, Harrington and Mautz [79:
Ch. 3] introduced another approach for deriving eigencusie Applying their method
in our context, the eigenvalue equation is replaced by tmegdized eigenvalue equa-
tion Z,u, = v, R.t,, WhereR, = (2, + 22)/2. This equation is equivalent to
Xaty, = A\ Ratly, WhereX, = (2, — ZF)/25 andp,, = 1 + j\, with A, real, because
R. andX, are both self-adjoint. I£, is normal, it follows from our eigenvalue equation
together withZ}u,, = viu, thatR,u, = (Rev,)wu, and X,u,, = (Imv,)wu, . If
Rev,, # 0, thenX,u, = (Imv, /Rev,) R,u,. In other words, the ratio Im, / Rev,
and the eigenfunction,, are a solution of the generalized eigenvalue equation afittar
ton and Mautz. This result reveals a weak spot of their agproéRer,, < Imv,,. We
will observe for some specific cases that if the eigenvalfiesiioeigenvalue equation are
indexed such thdt,,| < |v,41], their real part decreases rapidly, while their imaginary
part increases rapidly. Moreover, for a single riif, is indeed normal. Therefore, we
will not use the generalized eigenvalue equation of Haton@nd Mautz. Another rea-
son is that we expect the approach to be inefficient for ayiagsause the characteristic
currents are determined from the moment matrix for a corafetly. Constructing the
characteristic currents stepwise as in our approach vécathe strongest property of
the approach, namely the orthogonality of the far fields efaharacteristic currents with
respect to thd., inner product over the radiation sphere.

Garbacz and Turpin [38] found the same characteristic ntsr®r wires as Harrington
and Mautz, but by another technique. They computed solsitidrthe moment-matrix
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equation with minimum phase variation along the wire. In[@% characteristic currents
of Harrington and Mautz are used for pattern synthesis.

5. As stated in [115], any use of eigenvalues to derive playgicedictions relies on an
implicit transformation to eigenvector coordinates. Formal operators, or the almost
normal operators we consider, this transformation is (atjnanitary and corresponds to
a rotation or a reflection. For highly nonnormal operatdns, description of the action
of the operator in terms of its eigenfunctions may lead topegwosition of huge eigen-
function components that nearly cancel. To study the acfaronnormal operators, the
application of the pseudo-spectrum is proposed in [75, . 1Eamples of applications
where such operators are encountered are described inguéj, as the study of self-
induced vibrational motion by a source of energy externa structure and the study of
parallel shear flows as a mechanism of subcritical tramsttdurbulence.

6. The ideas concerning the subdivision into subarraysappehe fast multipole method
as well [24, 42, 99]. The basic idea of this method is that tred exerted on a particle
due to all interaction or coupling in a system of chargediplag can be divided into two
components. First, a force due to nearby particles that eaoimputed directly and, sec-
ond, a force due to the distant particles approximated hy thltipole expansions. The
fast multipole method starts by the construction of a hidraal spatial decomposition to
divide the simulation cell into smaller subcells. Next, &rsubcells, (truncated) multi-
pole expansions are calculated. These expansions arereanbi a hierarchical way to
describe the behavior of larger and larger groups of pasticl

5.2 Initialization

5.2.1 Calculational Details

Having chosen a subarray in step A of the initialization oa ]2, we carry out steps B and C as
described in Subsection 2.4.3. For (sub)arrays of stripggiags, explicit choices of expansion
functions, or mappinggV with corresponding projectior8 = W™, are described in Section
3.2. The calculational and computational aspects of theesponding moment matrices are
described in Sections 3.3 and 3.4. In this section, we dessteps D and E in more detail. We
omit the superscript§it and the subscripts;; in the notation.

In step D, the eigenvectors,, (n = 1,..., Nep) of the moment matrix ofzZ,, i.e.,
W~ Z, W], represent the expansion coefficients of the eigencurrepts ran(P) with re-
spect to the expansion functions in Pag). Here, N, is the number of expansion functions,
or, the number of elements of {3®). The eigenvectors and the corresponding eigenvaljles
are determined numerically, see the next subsections tailgle Then, the eigencurrents are
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described by
Nexp
U, = Y Un(p, 1) We,,. (5.4)
p=1

Here,{e1,...,en,,,} is the standard basis ifiNer asin (2.110) ande, (p =1, ..., Nexp)
are the expansion functions in §&8). We recall that the mapping/— assigns to a functiow
atuple inCNe=» | which represents the expansion coefficientaafith respect to the expansion
functions in baé/V), see (2.111). Hencé],, = DV~ u,], where we apply the bracket calculus
of Subsection 2.4.1. Since eath is an eigenvector of the moment matfi®’~ Z,V| with
eigenvalue,, it follows that)\W~ Z,W]W~u,,| = v, W~ u,]. Applying the bracket calculus

to this equation, we obtain

W™ ZIWW u, = v, W™ u, . (5.5)
Applying W to both sides of (5.5) leads to

PZ,Puy, = v, Pu, . (5.6)

SincePu,, = u,, each eigenvalue, of the moment matrix is also an eigenvalue of the operator
P Z,P with eigencurrents,, .

In the above, we used our definition of the moment matrix, ).~ Z,WW|. As explained
in Subsection 2.4.2, this definition yields only the same moeimatrix as the usual definition,
if the Gram matrix of ba@V) with respect to the inner product in step A is the identity nixat
Hence, the eigenvalues of the moment matrix in the usual mbmethod are only equal to
the eigenvalues of the operatBiZ, P, if the (test and) expansion functions chosen in step B
are orthonormal with respect to the inner product choseteijm A. In general, these expansion
functions are not orthonormal and, hence, the eigenvalitbe onoment matrix defined as usual
and the eigenvalues of the operaRE, P are not the same. This observation reveals why our
definition of the moment matrix differs from the usual deforitof this matrix. For example, if
all expansion functions are multiplied by a factor of 2, tigeevalues of the moment matrix in
the usual moment method are multiplied by a factor of 4. Orctindrary, the eigenvalues of the
moment matrix)V~ Z,)V| remain the same due to the normalization by the Gram matiix as
(2.128).

To construct the new inner product in step E, we consider tleees ra(P) = ran(\)
with the initializing inner product -, -). Since the set of eigencurrenfs,, ..., ux,,, } is
independent in raP), there exists a sefy,,...,yy, } in ran(P), such that{u,,,y,) =
Omn. Here, o, is the Kronecker symbol defined ky,, = 1 form = n andé,,, = 0
for m # n. The set{y,,...,yy,} is called the bi-orthogonal set §fu1, ..., un,,,} with

exp

respect to the initializing inner product. We calculate ¢hements of the bi-orthogonal set in
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the next paragraph. Let the mappirigsand)’ be defined similarly a¥V. They map tuples
in CNer onto linear expansions of functiodke,, = u,, andYe,, = y,, asin (2.110). Then,
the mappingyl/— maps eachs,, ontoy,,. Hence(w,,, YU~ wu,) = 6nn. Herewith, we have
constructed an inner product on (&) with respect to which the eigencurrents are orthonormal:
<'7 '>Sub = <7yu7>

In the cycle of the eigencurrent approach, we will need tewdate inner products of the
form (w,, w)sun, Wherew € ran(P). Since)l{~ is self-adjoint with respect to the initializing
inner product restricted to réR), (u,,, w)s,1, can be rewritten as

<un7 w>sub = <’U,n, yu7w> = <yu7’ll/n, w> = <yn7 ’LU> . (57)
If the functionsy,, are known, the inner produ¢y,,, w) can be calculated. To calculate these
functions, we express eagf), into the eigencurrents,,,

Nexp

Y, = Z C(p, n) Uup , (5.8)
p=1

where the expansion coefficients(p,n) are unknown. Substituting this expression in
<um7yn> = 5mn, we Obtain

Nexp

> Gu(m,p) C(p,n) = by, (5.9)
p=1

whereGy, = G(bagi/)) is the Gram matrix of bd#() = {u,,...,un,,, } With respect to the
inner product -, - ). From this equation, it follows that = G,,'. Hence,

Nexp
Y, = > Gyl (p.n)u,. (5.10)
p=1

The expansion coefficients @f, with respect to the expansion functions in §a43 are given
by

2
=

exp exp

Yn = [Wiyn] = Gﬁl(pa 7’L) [Wiup] = Glzl(pa n>Up . (511)
p=1

S
Il
_

The Gram matrixGy, is obtained from the Gram matrix,y, = G(bag)V)) and the eigenvectors
U,,. Substituting (5.4) irGy (m,n) = (un,, u,), we obtain

Gu(m,n) =UlGWU,. (5.12)

For the expansion functions for strips and rings as intredun Section 3.2, the corresponding
Gram matrices7,y are given in Section 3.3.
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5.2.2 Single Rings

For a single ring, the eigencurrents are known. In Subgeé&ti®.2, we observed that the cosine
and sine expansion functions, as introduced in (3.12),attiaize the impedance operatsy,

of a single ring. Hence, the eigencurrents of a single rimgtaese cosine and sine functions.
The eigenvalues are the diagonal components of the momerik i/~ 2. W] = G~1Z as
determined in Section 3.3, see (3.35). These componenitsoanputed as described in Sec-
tion 3.4. From (3.35), it follows that components corresponding to cosine and Binctions
of the same angular order are equal. Hence, the constantdos@stablish a 1-dimensional
eigenspace, while all other eigenspaces are 2-dimensimhtonsist of a cosine and a sine
function of the same angular order. The eigenvectors of thieemt matrix are the unit column
vectors, each of which is zero in all entries but one, wheegitals 1.

We observe that the eigencurrents depend only the anglddbatibes the circumference of
the ring. The eigencurrents are orthogonal with respedted.t inner product. To obtain an
orthonormal set, we can either normalize the eigencurreitiisrespect to thd., inner product
or adjust the inner product as described in the previousestibs. In the second case, the bi-
orthogonal se{ y1, ..., yn.,, } is given byy, = a,u,, wherea,, = 2 if u, is the constant
function andw,, = 7 otherwise. If the eigencurrents, are indexed in the same way as the ex-
pansion functions, them; = 27 anda,, = 7 forn > 1. However, if we index the eigencurrents
according tdv, | < |v,+1], the eigencurrents will in general not be indexed in the sameas
the expansion functions.

Considering the questions on pp. 113 ff., we observe thateimaining relevant questions
concern the behavior of the eigenvalues as a function of théex and their dependence on
the geometry parameters and the frequency. For a ring insfraee, the eigenvalues depend
on the dimensionless parametéss and 3, i.e., the ratio of the ring circumference and the
wavelength, and the ratio of the ring width and the ring radMoreover, the magnitudes of the
eigenvalues depend on the dimensionless pararh&tér see (2.96). For a ring in a half space,
the eigenvalues depend as well on the ratia of the height above the ground plane and the
radius.

Since the sine eigencurrents exhibit the same eigenvatutieeacosine eigencurrents with
angular order larger than zero, we study here the behavithieotigenvalues corresponding
to the cosine eigencurrents. We index these eigenvaluesdiag to |v,| < |v,4+1|. Figure
5.4 shows the first 10 (normalized) absolute eigenvaluglsas a function of their index for
ka between0.75 and1.25. Here,ka is adjusted by means of the frequency, since the ratio
remains fixed. We observe that the absolute eigenvaluesasermost rapidly foka ~ 1.
They increase slower fdta ~ 0.75 andka = 1.25. Hence, in case the ring circumference
equals about a wavelength, less eigencurrents will cart&ito the current on the ring than in
case the ring circumference equals al@b )\ and1.25\. Moreover, atca = 1 the ring shows
resonant behavior. In that case, the cosine and sine funsotith angular order 1 match the ring
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circumference. From a mathematical point of view, the rasbtehavior is explained by the
vanishing of the corresponding Sturm-Liouville eigeneahs given by (3.11). Then, the first
term in the right-hand side of (3.32) vanishes as well. Hetioe scattered field contributions
corresponding to the cosine and sine functions with anguither 1 are entirely described by the
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Least-square fits of the first 30 eigenvalues revealed thatl] cases, the eigenvalues tend
asny/n (n — o), wheren is the eigenvalue index. Figure 5.5 shows similar phenomana
ka betweenl.75 and2.25, and forka between2.75 and3.25. For the values oka used in
this figure, the absolute eigenvalues show the ‘steepg®t’sio case the circumference equals
2X and3), i.e.,ka = 2 andka = 3. As above, these circumferences correspond to resonant
behavior of the ring. Further investigation revealed tha@hbn free space and in a half space,
the ‘steepest slopes’ are attained for valuesobetweenn — 1/10 andm + 1/10 (m € N).
Moreover, the ‘weakest slopes’ are attained between abeut /2 andm —3/10. Forka < 1,
the slope is very steep, which indicates that only one eigeant, i.e., the constant function,
will contribute to the current on the ring. Moreover, all @ityalues are imaginary valued. These
results are to be expected, because an electrically smgligistrongly reactive and the current
along it is almost constant, see Subsection 4.2.2. Firfaliyhe values oka used in Figure 5.5,
the first few absolute eigenvalues do not showrtké: behavior as in Figure 5.4 fdra = 1.

From the above, we observe that the number of eigencurreetied to describe the current
will increase, if the frequency is increased. This conduoss in agreement with the remark
in [79: pp. 66, 70] that only a few eigencurrents are needatksaribe the current for (electri-
cally) small and intermediate size bodies. As the result$te ring show, (electrically) larger
bodies support more eigencurrents than (electrically)lemiaodies. Therefore, for larger bod-
ies, the excitation field will have a stronger influence onc¢haent. This is corroborated by
the description (5.2) of the current. In the previous chapte showed that certain exterior
fields induce equivalent excitation fields. This equivateny be affected when the size of the
excited body is enlarged.

The results in Figure 5.4 and Figure 5.5 suggest that theveddiges depend strongly on the
geometry parameters and the frequency. This is corrolmbtat¢he results in Table 5.1, which
shows the absolute eigenvalues and the correspondingceigents of a single ring for four
values ofka. As expected, the eigencurrents are distributed amongigieevalues according

Table 5.1 The first 5 absolute eigenvalues (unit: V/A) of a single ring in free spadetlzeir
corresponding eigencurrents fb¢ equal t00.7, 1, 1.65, and2. Only the cosine eigencurrents
are considered. Other parameter values as in Figure 5.4.

ka = 0.7 ka = ka =1.65 ka =
[Vn] Up, |Vn ] Up |n] Up [Vn] Up
11.75 1 3.078 | cosp | 12.08 | cos2¢p | 4.045 | cos2¢p
12.33 | cosp | 17.46 1 12.74 | cosp | 19.35 | cos¢
cos2p | 41.25 | cos2¢p | 29.66 1 31.91 | cos3¢p
146.9 | cos3p | 97.44 | cos3p | 47.53 | cos3¢ | 34.79 1
244.4 | cosdy | 166.3 | cosdp | 90.84 | cosdp | 68.64 | cosdp
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to these values. For the circumferences correspondingetoeonant behavior of the ring, i.e.,
ka = 1 andka = 2, the dominant eigencurrents are cleaidy o andcos 2. For the other two
circumferences, i.eka = 0.7 andka = 1.65, there are two dominant eigencurrents. More-
over, the first eigenvalues for these valuegofare larger than foka = 1 andka = 2. This
phenomenon is explained from the need of a higher amounterfjgrio excite the dominant
eigencurrents for the ring circumferendes A and1.6 A than for the ring circumferences that
correspond to resonant behavior. For a ring circumferetose ¢o0.7 A and for a ring circum-
ference close td.6 A, the first two eigenvalues become the same. In that casanthexhibits a
degenerate eigenvalue with an eigenspace of dimensiom2spéy the first two eigencurrents.
The first eigenvalue depends strongly on the ratia, while the other eigenvalues depend
weakly on this ratio. To illustrate this dependence, Tab&dhows the eigenvalues and cor-
responding eigencurrents of a ring in free space and in aspalée withh/a = 6/5. This

Table 5.2 The first four eigenvalues (unit: V/A) and their corresponding eigeeats of a
single ring in free space and in a half space wita = 6/5 (or, h = A/5). Only the cosine
eigencurrents are considered. Parameter valb@s= pi/3, 8 = 3/100, ¥ = 0, Neos = 4,
Nsin =0.

Free space Half space
Rev, Imuv, lvn| | Revy, Imuv, |Vn | Uy,
—2.68 049 | 272 | —2.88 | —1.56 | 3.27 | cosp
—1.82 | —18.27 | 18.36 | —0.97 | —18.34 | 18.37 1
—0.52 38.21 | 38.22 | —0.33 38.30 | 38.30 | cos2¢p
—0.03 92.06 | 92.06 | —0.01 92.12 | 92.12 | cos3yp

D wWN RS

table also shows that the real part of the eigenvalues dezsaasith their index:, while their
imaginary part increases in absolute value. Moreayers almost imaginary valued fot > 3.
Since the eigencurrents, are real valued and the current on the ring is described bfirthie
expansion (5.2), the eigencurremts with n > 3 are reactive contributions to the current.

Finally, the eigenvalues (3.11) of the Helmholtz operaifiedfrom the eigenvalues of the
ring in the sense that they are real valued, they tend aand they decrease monotonically for
increasing ring circumference. Since the eigenvalues efitig tend asi/n, the Helmholtz
operator dominates the integral operdﬁqrpq, with weakly singular kernel, in (2.96).

5.2.3 Single Strips
Determining Eigenvalues and Eigencurrents

In contrast to the eigencurrents of a single ring, the eigaeats of a single strip need to
be evaluated numerically. We determine numerically thermggrrents and the correspond-



5.2. INITIALIZATION 123

ing eigenvalues for two different sets of expansion funtia.e., the entire-domain functions
defined by (3.7) — (3.8) and the piecewise functions define@!9). For both sets, we compute
the eigenvalues and eigencurrents from the moment ma#/ixz,)V] by the Matlab function
‘eig’. For the entire-domain functions, the moment matsiaiblock-diagonal matrix composed
of the blocks[(W<s)~ Z,Wes] and [(Wsi")~ Z,W1"], see Subsection 3.3.1. Therefore, we
can compute the eigenvalues and eigencurrents also frasa thecks. Moreover, the resulting
eigencurrents are either even or odd.

As mentioned in Subsection 5.1.3, numerical errors in tit@lization step will propagate
throughout the whole eigencurrent approach. Thereforénwvesstigate the numerical errors that
occur in the computation of the eigenvalues and eigencisrr@inese errors can be divided into
two groups: errors due to the numerical approximation ofntleenent matrix and errors due to
the numerical computation of the eigenvalues and eigeakedf the (approximated) moment
matrix. The errors of the first kind are investigated in Set®.4. Therefore, we consider the
errors of the second kind only. To investigate these ermes;omputed the relative errors

. n=1,...,Nexp, (5.13)

for several strip geometries and several numbers of exparfishctions. Here]V—Z, W] is
the computedmoment matrix, and,, andU,, are itscomputedeigenvalues and eigenvectors.
Moreover,|| - || is the norm on the spadg’-=>*! of column vectors defined Gy/||> = UHGU,
whereG is the Gram matrix of bd¥V) with respect to thd., inner product. The choice of this
norm is such thatU|| = ||u||, for u € ran(W) with )W~ u] = U. Table 5.3 shows the maxima
of the relative errors (5.13) for several sets of expansimetions. For each set, the maximum
belongs to the smallest eigenvalue. We observe that thermoaxiincreases with the size of
the moment matrix, but even for 159 piecewise functionsptagimum is smaller tham0—1°.
For the number of integration points as given in Section thd,components of the moment
matrix are computed up to relative errors of the ortier. Hence, the numerical accuracy
of the eigenvalues and eigencurrents is only determinedh@ypproximation of the moment
matrix and not by their numerical computation from this rixatThis shows that the current
description by the (computed) moment matrix and the curdestription by the (computed)
eigenvalues and eigencurrents have the same accuracy.

For the sets of expansion functions in Table 5.3, the CPU tifriee matrix construction is
slightly larger than the CPU time of the eigenvalue and eigetor computation, but both CPU
times are small. The maximum CPU times are 2.7 seconds arsbddahds, respectively, both
for 159 piecewise expansion functions.
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Table 5.3 Maxima of the relative errors (5.13) for several sets of expangioctfons. The
mappingWV is constructed for 5, 10, 20, 30, and 40 cosine and sine expansioticius as in
(3.7) and for for 9, 19, 39, 79, and 159 piecewise expansion fure@s in (3.9). Parameter
values:2¢ = \/2, 8 =b/¢ = 1/50.

Entire-domain exp. functions Piecewise exp. functions
Neos, Ngin | max. rel. error | Neyp max. rel. error
5 7.0-10714 9 5.4-1071
10 3.3-10713 19 2.9-10713
20 9.2.10713 39 1.2-10712
30 1.6-10712 79 4.6 - 10712
40 3.2-10712 159 1.2-1071

Description of Eigencurrents and Dependence on Expansionuactions

In this part of Subsection 5.2.3, we will show how the eigerents are described by both the
piecewise and the entire-domain expansion functions. b@e we show to what extent they
depend on the set of expansion functions. Throughout thisesiion, we consider a strip of
half a wavelength in free space. At the end of this part, wewdis results for other strip lengths.

Let us start with the entire-domain expansion functionguFe 5.7 shows the absolute eigen-
vector components for a strip of half a wavelength with 1Grerdomain expansion functions,
i.e., 5 cosine and 5 sine functions, and with 20 entire-daragpansion functions, i.e., 10 cosine
and 10 sine functions. The eigenvectors are indexed suthha< |v,,+1|. We recall that the
components of each eigenvector are the expansion coeffi@éan eigencurrent with respect to
these functions. The first 5 and 10 coefficients, respegtieelrespond to the cosine functions
and the next 5 and 10 coefficients correspond to the sineifursct From the color pattern in
Figure 5.7, we conclude that the eigencurrents equal theeasd sine expansion functions
up to a perturbation. For each eigencurrent, this pertimbad described by the ‘neighboring’
cosine or sine functions of the corresponding dominantesipa function. The perturbation is
larger for eigencurrents with a dominant cosine or sinetionf higher angular order. More-
over, the eigencurrents are alternately even and odd fagitlee strip geometry. As suggested
by Figure 5.7 (left) and Figure 5.7 (right), the eigencutsezorresponding to lower eigenvalues
hardly change when more expansion functions are used. TBiisreation is corroborated by
amplitude and phase plots of the eigencurrents. An examapgjigén in Figure 5.6, which shows
the first two eigencurrents for 5 and 10 cosine and sine expafisctions. The amplitude pat-
terns show the perturbations with respect to the domingpdresion functions, while the phase
patterns show that the eigencurrents have negligible inaagiparts.

For a strip of half a wavelength with piecewise expansiorcfioms, we will show first how
the eigencurrents are described by these functions. Asalioe eigencurrents are indexed by
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Figure 5.6 The 1st and 2nd eigencurrent for a strip of half a wavelength in fraeespSolid
curve: 5 cosine and 5 sine expansion functions. Dashed curve:sireand 10 sine expansion
functions (indistinguishable in both figures). The dotted curves in thedeifitdiare the functions
cos(m€/2) andsin(r|¢|/2). Eigencurrent normalization: absolute maximum. Parameter values
as in Figure 5.7.

n such thatv,,| < |v,41]. Next, we will show that the amplitudes of the filsV.., /4| eigen-
currents and the phases of the fif3f.x, /2| eigencurrents correspond to the amplitudes and
phases of the firdtiVex, /4| and | Nexp /2] €igencurrents obtained by the entire-domain expan-
sion functions. This correspondence becomes less obvinirsdices larger thahNey, /4] and

[ Nexp/2].

Figure 5.8 (left) shows the absolute eigenvector compaenfmt15 piecewise expansion
functions. The color pattern is completely different frame fpatterns for the entire-domain ex-
pansion functions in Figure 5.7. It suggests that the alsclomponents of theth eigenvector
generate the same pattern as the absolute components (dfthen)th eigenvector. For ex-
ample, the absolute components of the first and last eigtorgegenerate cosine-like patterns
of half a period. Moreover, the absolute components of tierse eigenvector and the last but
one generate absolute sine-like patterns of one periodselbleservations are corroborated by
Figure 5.9 (left), which shows that the absolute componehtke first and 15th eigenvectors
are about the same as well as the absolute components otthradsend 14th eigenvectors. The
dotted and dashed curves between the absolute componemsh&hpatterns that these compo-
nents generate; they do not have a specific meaning. Also fer7, the absolute eigenvector
components of theth and(16 — n)-th eigenvector exhibit the same patterns as shown in Figure
5.9 (right). Since an odd number of expansion functions &luthe 8th eigenvector does not
have a corresponding eigenvector.

The color pattern in Figure 5.8 (left) shows that the absottimponents of theth eigen-
vector have, as a function of the component indelgcal maxima ifn < 8 and16 — n local
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Figure 5.8 Color pattern of the absolute values (left) and the phases (right) of theveicier
components for a strip of half a wavelength in free space with 15 piecewmmnsion functions.
Eigenvector normalization: maximum absolute component. Parameteswadun Figure 5.7.
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according tom — —1 4+ 2m/(Nexp + 1), Where Ney, = 15. Eigenvector normalization:
maximum absolute component. Parameter values as in Figure 5.7.

Figure 5.10 Amplitudes (left) and phases (right) of the first (solid curve) and 15#siidd
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curve) eigencurrent for a strip of half a wavelength in free space veithidcewise expansion
functions. Eigencurrent normalization: maximum amplitude. Paramatees as in Figure 5.7.
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maxima ifn > 8. Moreover, the components of this eigenvector have 1 phase reversals
(phase shifts 0f80°). Due to the increase of the number of phase reversals vétaigenvector
index, thenth and(16 — n)-th eigencurrent differ, although their absolute eigetmecompo-
nents are almost equal. An example is given in Figure 5.1@&;wghows the amplitudes of the
first and 15th eigencurrents. The amplitude of the first aigeent is the same as the pattern
generated by the corresponding absolute eigenvector aoengoin Figure 5.8 (left), because
all eigenvector components have the same phase. The adeptifuhe 15th eigencurrent is not
the same as the pattern generated by the correspondingiggsigienvector components due to
a linear phase progressionr of these components, see the color pattern of the 15th esganv
in Figure 5.8 (right). Figure 5.10 shows that the first andibth eigencurrents have as many
(uniformly spaced) phase reversals as the components fshand 15th eigenvectors. Further
investigation showed that for eaeh the nth eigencurrent has amplitude maxima and — 1
(uniformly spaced) phase reversals. Finally, Figure 5right) shows that the eigencurrents
obtained by the piecewise expansion functions are reaédalu

The color patterns of the absolute eigenvector componeng9fand 79 piecewise functions
in Figure 5.11 show results similar to Figure 5.8. We statefthlowing general conclusions
for the eigenvectors and eigencurrents of a strip of half eeleagth with a fixed number of
piecewise expansion functiofé..p,.

1. For eachn = 1,..., Noyp, the absolute components of théh and (Nexp, + 1 — n)th
eigenvector show the same patterns.

2. For each, the components of theth eigenvector shownin{n, Nex, + 1 — n} absolute
maxima andh — 1 phase reversals as a function of the component index.

3. For each, thenth eigencurrent shows local amplitude maxima and — 1 (uniformly
spaced) phase reversals.

Having shown the way the eigencurrents are described byekewpise expansion functions,
we compare the eigencurrents obtained by piecewise ang-@timain expansion functions. A
first qualitative comparison shows that for both choicesiottions, theath eigencurrent shows
n local amplitude maxima and— 1 (uniformly spaced) phase reversals. For a quantitative com
parison, we compare four of the first 15 eigencurrents obthiry 15 and 29 piecewise functions
as well as by 20 entire-domain functions, i.e., 10 cosinel#gine functions. From Figure 5.12,
we observe that the amplitudes of the first and fourth eigeants obtained by 15 and 29 piece-
wise functions correspond to the amplitudes obtained byettige-domain functions. For 15
piecewise functions, the amplitude of the 7th eigencurséntvs discrepancies with the ampli-
tude obtained by the entire-domain functions. Moreoveraimplitude of the 14th eigencurrent
does not correspond at all to the amplitude obtained by thieeestomain functions. For 29
piecewise functions, the amplitude discrepancies of theafid 14th eigencurrents are much
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Figure 5.11 Color pattern of the absolute values of the eigenvector components fiop &ns
free space with 29 (left) and 79 (right) piecewise expansion functioiggenkector normaliza-
tion: maximum component. Parameter values as in Figure 5.7.
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Parameter values as in Figure 5.7.
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Figure 5.13 Left: absolute eigenvector components of tNe.,th (dashed curve) and the
(Nexp — 3)th (dotted curve) eigenvector for a strip of half a wavelength in freeespath 15
(o) and 29 ¢) piecewise expansion functions. Right: absolute eigenvector comfsookthe
7th eigenvector for the same strip with 15 {lotted curve) and 29, dashed curve) piecewise
functions. The indices = 1, ..., 15 of the components are transformed to the intefvdl, 1]
according tom — —1 4 2m/(Nexp + 1), WhereNe,, = 15,29. Eigenvector normalization:
maximum absolute component. Parameter values as in Figure 5.7.

smaller. These results suggest that for a certain numvbgy of piecewise functions, the am-
plitudes of the firs N, /4] eigencurrents correspond to the amplitudes of the eigestsr
obtained by the entire-domain functions. For eigencusrerith indices larger thafVey,, /4],
this correspondence deteriorates slowly as a functioneirilex. The deterioration starting
from the index numbefN..,/4| can be understood as follows. Sinde,, is the number of
‘sampling points’ and the eigencurrent with indeXexp /4| has| Nexp/4] amplitude maxima,
there should be at least 4 ‘sampling points’ per amplitudgimam to obtain a good corre-
spondence between the eigencurrents obtained by the pécend entire-domain functions.
Investigation of the phases of the eigencurrents showeddhdixed N..,,, the phases of the
first | Nexp/2] eigencurrents correspond to the phases obtained by tire-elatinain functions.

Since the first N, /4| eigencurrents show convergence, the absolute comporietiits o
first | Nex,,/4] €igenvectors generate the same patterns as theffifst /4| eigenvectors, where
Niyp > Nexp. The same is valid for the lagiV.., /4| eigenvectors due to conclusion 1 above.
This result is corroborated by Figure 5.13 (left), whichwhdhe absolute components of the
12th and 15th eigenvectors for a strip with 15 piecewisetions and the absolute components
of the 26th and 29th eigenvectors for a strip with 29 pieceviisictions. The indices of
the eigenvector components are transformed to the inténiall] according tom — —1 +
2m/(Nexp + 1), where the number of expansion functioNs,,, equals 15 and 29. Figure

5.13 (right) shows that also for other eigenvectors sinpktterns are generated. The absolute
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components of the 7th eigenvector for a strip with 15 pieseviinctions are all positioned on
the fictitious curve generated by the absolute componertteofth eigenvector for a strip with
29 piecewise functions.

Above, conclusions were stated for a strip of half a wavelemny free space. We verified
similar results for strip lengths smaller than/15 A, both in free space and in a half space.
For strip lengths larger than abolt/15 A, the order of the eigencurrents, as induced by the
indexing of the eigenvalues, changes in the same way as dee far the ring, see Subsection
5.2.2. An example is given in Figure 5.15 for a strip of one &lemgth with 15 piecewise
expansion functions and with 10 entire-domain expansiowctfans, i.e., 5 cosine and 5 sine
functions. Both color patterns in this figure show that thstfiwo eigenvectors of a strip of
half a wavelength are interchanged. Moreover, these patserggest that the eigencurrents are,
up to scaling with respect to the length of the strip, the sasm¢he eigencurrents for a strip
of half a wavelength. A comparison of eigenvectors and eigeents for different geometry
parameters is given further on. The interchange of eigeants affects the properties 1 - 3
described on page 128. Moreover, the fiidt, /4] eigencurrents obtained Y., piecewise
functions correspond only to the eigencurrents obtainethéwentire-domain functions Wexp
is sufficiently large to describe the dominant eigencugent

If we extrapolate the results for a strip to a more generahgeny with width-averaged
current, we need N piecewise expansion functions to determine the firstigencurrents. The
number is determined by the number of eigencurrents needed to deramertain typical pa-
rameter. Finally, the results for the piecewise and emtoetain expansion functions show that
the eigencurrents depend only weakly on the set of expafisimtions. Moreover, these results
suggest that for each, the eigencurrent,, converges pointwise as the number of expansion
functions increases.

Dependence of Eigenvalues on Expansion Functions

Table 5.4 shows that the computed eigenvalyesndw, for a strip of half a wavelength depend
only weakly on the number and the type of expansion functidf@reover, the values seem to

Table 5.4 The first two (computed) eigenvalues (unit: V/A) for a strip of half a wength.
The expansion functions are chosen as in Table 5.3.

Neossin | Revp Imu, Revs | Imuy Nexp | Rerg Imu,y Revs | Imuy
5 -3.005| -1.867 | —0.37 | 38.49 9 -2.992| -1.770| —0.36 | 39.15
10 -3.014| -1.922| —0.37 | 38.33 19 | -3.007| -1.878 | —0.37 | 38.39
20 -3.018| -1.961| —0.37 | 38.21 39 | -3.015]| -1.937| —0.37 | 38.13
30 -3.020| -1.977| —0.37 | 38.16 79 | -3.019| -1.976 | —0.37 | 37.99
40 -3.021| -1.986| —0.37 | 38.13 159 | -3.022| -2.001| —0.37 | 37.91




132 5. THE EIGENCURRENTAPPROACH

converge forNe, — oo. We investigated the behavior of the eigenvaluesy,, andv; as
a function of the number of expansion functions for sevetrgb geometries. An example is
given in Figure 5.14 for a strip of half a wavelength in freasp. This figure shows that for
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Figure 5.14 Normalized imaginary parts of the first three eigenvaluﬁ\g (+), ugN] (*), and
uéN] (o) as a function of the number of expansion functidvisor a strip of half a wavelength
in free space. Each imaginary part is normalized with respect to its stshater" . Left:
piecewise functionsN = Nexp. Right: cosine functionsN = N..s. Dotted curves: least-
square fits (left1 and1/N>/*, right: 1 and1/v/N. Parameter valuel = \/2, 3 = b/l =

1/50.

the piecewise functions, the imaginary parts of the eigeegtend aS/Né’){é. Moreover, the
relative differences between the first estimate of the imayi part and the limiting value seem
to decrease as a function of the eigenvalue indeXests revealed that the quality of the first
estimate stabilizes asincreases.

For the entire-domain functions, we show the imaginaryspafthe first three eigenvalues
obtained by the cosine expansion functions, i.e., from theky(We°s)~ Z,Wes] of the mo-
ment matrix. As mentioned in the beginning of this subsectiloe eigenvalues can be computed
from the blocks[(We°s)~ Z,W<°5] and[(Wsin) ~ Z,Wsin] of the moment matrix. We observe
that the imaginary parts tend &%,/ N..s , WhereN,, is the number of cosine expansion func-
tions. Moreover, the relative differences between the éistimate of the imaginary part and the
limiting value show the same behavior as above, i.e., theyedse as a function of the eigen-
value indexn. This phenomenon is explained by the increase of the didgmmaponents of
moment matrix for the entire-domain expansion functionicv is diagonally dominant. We
observed that the imaginary parts of the first three eigergbbtained by the sine functions
show similar properties, but they tendig&V?'/4.

Both for the piecewise functions and for the entire-domainctions, the real parts show
more rapid convergence than the imaginary parts. In cantresfirst estimates deteriorate for
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larger eigenvalue indices, which is due to the decreaseeafdhl parts of the eigenvalues with
respect to the imaginary parts for larger absolute eigerglCompare for example the real and
imaginary parts of the first two eigenvalues in Table 5.4.

Similar results were obtained for other strip geometridsdth free space and half space. In
particular, the behavior of the imaginary parts of the eighres as a function of the number of
expansion functions is independent of the geometry paemnet

Behavior of Eigenvalues and Parameter Dependence

For a strip in free space, the eigenvalues depend on the diordess paramete?g/\ (= k¢/r)
andg, i.e., the ratio of the strip length and the wavelength, &edatio of the strip width and the
strip length. Moreover, the magnitudes of the eigenvaleggedd on the dimensional parameter
k2¢b, see (2.53). For a strip in a half space, the eigenvaluesdegrethe ratidh /¢ of the height
above the ground plane and the strip length as well.

The eigenvalues show a similar behavior as the eigenvaluasing. First, they tend as
n~/n, wheren is the eigenvalue index. Second, the ‘slope’ of the abseligienvalues decreases
non-monotonically fo¢/X 2 0.5, and it shows local maxima and minima f#/ A ~ m /2 and
20/\ ~ (m+1/2)/2 (m € N). Analogously to the analysis for the ring, each local maxim
with index m is related to resonant behavior of the strip for which there$unction with
angular ordef2m — 1)7/2 matches with the length of the strip. From a mathematicaitpafi
view, the resonant behavior is explained by the vanishing®torresponding Sturm-Liouville
eigenvalue as given by (316) The first term in the right-hand side of (3.16) vanishes ak we
Hence, the scattered-field contribution correspondindpéocbsine function with angular order
(2m — 1)m/2 is entirely described by the second (boundary) term, whéghiesents the field
contributions from the edges of the strip.

For2¢/\ < 1, the dependence of the slope of the absolute eigenvaluzs aris negligible.

In other words, the ratios, /v, can be considered as being independerit/oin that case, the
eigenvalues are a linear function dfk¢, which can be deduced from the definition of the
impedance operator for the strip as well, see (2.53). Maedecause a small strip is strongly
reactive, they are imaginary.

Orthonormality of Eigencurrents

The eigencurrents are close to an orthonormal set with cé$péhe naturall, inner product
except for the first ones (4 or 6 eigencurrents). For thiestaht, we considered the Gram
matrices of the eigencurrents for several strip geometiibgese Gram matrices are computed
from (5.12). An example of such a Gram matrix is given in Fegrl6 (left) for a strip of half

a wavelength in free space with 29 piecewise expansion ifumgt Figure 5.16 (right) shows
the corresponding color pattern of the inner products betwke even eigencurrents. The same
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patterns are obtained for the entire-domain expansiortifume Figure 5.16 (right) shows that
only two or three even eigencurrents are not orthogonal.celethe Gram matrix of the even
eigencurrents can be approximated by the firgt2 or 3 x 3 block and the remaining diagonal
components. This approximation saves considerable catipoal time and data storage for
the Gram matrix. Thus, it facilitates a faster computatifthe new inner product-, - )sub-
Moreover, for both the even and odd eigencurrents, the firsetfunctions of the bi-orthogonal
set{y1,...,Yn.,, } in (5.10) equal the first three even eigencurrents up to aifEtion. The
other functionsy,, are proportional ta.,,. The constant of proportionality equals 1, if the eigen-
currents are normalized. Finally, a similar reasoning lghfar the odd eigencurrents.

Parameter Dependence of Eigenvectors and Eigencurrents

For a specified set of expansion functions, the correspgneiigenvectors and eigencurrents
do not depend on the dimensionless parameéfa andh/a for 24/A < 1 andh/a 2 0.1,
respectively. This statement is not only valid for the ‘cerged’ eigencurrents, but for all eigen-
currents obtained by the specified set. We verified the statefor sets of 15 and 29 piecewise
expansion functions and for a set of 5 cosine and 5 sine eigrafunctions.

The eigenvectors and eigencurrents depend weakly on thendionless parametér =
b/¢ for 1/50 < B < 1/10. This weak dependence is apparent from Figure 5.17, where th
amplitudes of the first two eigencurrents fér= 1/50 and s = 1/10 are shown together
with the amplitude of the first cosine expansion function.e Thsults for the dimensionless
parameters show that the dependence of the eigencurretiie drequencyf is negligible for
f < ¢/2¢. Inthat case, the strip length is smaller than or approxétyagqual to the wavelength.
The eigencurrents depend only weakly on the length sdadesib. For changes of or b for
which 8 changes at most a factor of 2, the eigencurrents are indepeatt.

The independence mentioned above has computational agesntHaving calculated the
eigenvalues and eigencurrents for an initial set of gegnpatrameters from the corresponding
moment matrix, we do not need to compute the moment matrixafoew set of geometry
parameters to determine the eigenvalues. Instead, we ternifuRayleigh-Ritz quotients

<un7 ZaUn>L2

(5.14)
[ un 17,

Uy =
Since the new set of geometry parameters differs from thialisiet, the impedance operatéy
in these ratios differs from the impedance operator by wkiehmoment matrix for the initial
set of expansion functions is calculated. The nofims, ||z, are known, since we determine
the Gram matrix for the eigencurrents with respect tofihenner product. The inner product
(un, Zaun) L, 1S calculated as described in Section 3.3.1, see (3.14)7)X3The eigencurrents
u, are described by expansions with respect to the prescrixgahsion functions, see (5.4).
It would not be efficient to substitute these expansion&:in Z,u,)r, and to calculate all the
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Figure 5.16 Color pattern of the absolute Gram matrix, with inner product, of the eigen-
currents for a strip of half a wavelength in free space (in dB). The eigeents are generated
with 29 piecewise expansion functions. Left: all inner products. Righteripproducts be-

tween even eigencurrents. Eigencurrent normalizatiegnnorm. Parameter value8t = \/2,
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Figure 5.17 Amplitude (left) and phase (right) of the 1st eigencurrent of a strip fehaave-
length with3 = b/¢ = 1/50 (solid curve) and with3 = 1/10 (dashed curve). Eigencurrent
normalization: maximum amplitude. Dashed-dotted curve: the functisfrré /2).

inner productsWes, Z,Wey )r,. In that case, the computation of the eigenvalues requires
as much computational effort as the computation of the mommetrix of Z, with respect to

the expansion functiongVe,. Therefore, we first sample the eigencurrents and then cempu
the inner productsu,,, Z,u,)r,. Due to the singular behavior of the kernélof Z,, these
sampled eigencurrents may provide erroneous results éogitienvalues. To prevent such er-
rors, we decompose the kernélinto its logarithmically singular part and its regular pastin
Section 3.1. We splig, accordingly, i.e. 2, = 2, sing + Zareg- 1he singular part is, up to a
factor, independent of the geometry parameters. Therefegeean compute the inner product
(Un, ZasingUn) L, DY Writing u,, in terms of the expansion functions as mentioned above. The
results for the inner productVe,, Z, singWe. ) 1., follow from the moment matrix 0E, sing

for the initial set of geometry parameters. Moreover, we CamMPUte(w,,, Za reglin) L, from

the sampled eigencurrents. Finally, the preceding outtimempute the eigenvalues can also be
used for more complicated element structures, if the eigeants do not change for a certain
parameter change and if the kernel is split into a singuleonetry independent, part and a
regular part.

5.3 Cycle

5.3.1 Calculational Details

Having chosen a generating subarray in step | on p. 111, waideshe set€,, in step |l
as follows. LetW be the mapping that describes the expansion functions. Wetrcet this
mapping in the same way as in Subsection 2.4.3. et W; U ... U Wy, and define/V,
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by Wyen)(-5q) = ui™ and(Wye,)(-;¢) = 0forq # ¢/ (n = 1,...,N3i"). Then, each
functionW,e,, is an eigencurrent of the array in which mutual coupling iigd. Moreover,
this eigencurrent is zero on all subarrays except ogtheubarray, where it equalg>. Hence,
the setE,, are defined by

E,={Wenlqg=1,..., N }. (5.15)

The setE is the union of these sets andV~ is the projection onto rgP) = spar{E). Let the
eigenvalues;"" corresponding to the seks, be indexed such thats™?| < [v5P,|.

To describe the next steps, we assume first thaNa‘gb eigencurrents of the generating
subarray contribute to the mutual coupling between thersaps This simplifies steps 11l and
VI. Moreover, step V becomes redundant. Then, the momentixrat P Z,P turns into the
same form as in (2.131),

Wy PZPWi] ... Wy PZ.PWna..
W-PZ,PW] = : : ' 610
Wr. PZPWi] ... Wy PZ.PWa,,]

sub

Each block)W, PZ,PW,]| is defined by\W, PZ,PW,| = G, ' Z,,. Here,G, is the Gram
matrix of bagV,) with respect to the composite inner prodyet - )comp given by (5.3) and

ZPq (ma n) = <Wpem7 PZaPqun>comp ) (517)

with m,n = 1,..., Neg. Since the functions in b&g),) are orthonormal with respect to the
inner product-, -)...,, » Gy is the identity matrix for each. Since the complete Gram matrix
Gy = G(bagW)) is a block-diagonal matrix with the blocks, on the diagonal, this Gram
matrix is the identity matrix as well. Hence, we do not needdlzulate the Gram matrix in the
cycle of the eigencurrent approach, only in the initiali@at Moreover, in the cycle, the usual
definition and our definition of the moment matrix yield thengaresult for the moment matrix
of PZ,P with respect to the inner produ¢t, - >Comp and the expansion functions in
To calculate the matrices,,, we deduce first

Nsub
Zpg(m,n) = Wyem, PZaPWoen) oo = > (Whem)(3¢), (PZaWaen)(+1d)) g, =
q'=1

= (Ui (PZW,e,)( D)) (5.18)

sub”

Next, we interpretZ, as composed of the operatdfs,, such that the operatoss, ,, describe
the coupling of the generating subarray onto itself, 2.,y = Z. sub, @and the operators,, ,,,
(p # q) describe the coupling between the subarrays. Then, wetee{8ril8) as

qu(m,n) = <u%1b7psubza,pq((wqen)( “3q)))sub = <uj;zlbv7)subza,pqu2ub>sub- (5.19)
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SincePapus™ = us™® andus™® is an eigenfunction 0Py, 2, 4, Psub With eigenvaluesst?,
we obtain

Zyq(m,n) = 5" 6 . (5.20)

Hence, the blocksZ,, = [W,PZ.PW,] in (5.16) are diagonal matrices with the eigen-
values of Z, .., on the diagonal. Fop # ¢, we need to calculate the inner products
(S Poup, Za, pqu“‘b)wb. In the first cycle after the initialization of the eigencamt approach,
this inner product can be calculated as in (5.7), wHete ) is the initializing inner product.

In step IV, the eigenvectors,, (m = 1,.. le‘;bNbub) and the eigenvalues,, are deter-
mined numerically, see the next sections for details. Weevthie index,, instead of the index
nq» DeCause the group division of the eigenvalues and eigtargeis unknown. The eigenvec-
torsU,, represent the expansion coefficients of the eigencurreitiisr@spect to the expansion
functions inE = bag)V). As explained in Section 5.1, each eigencurrent will be eaircom-
bination of currents in a certain sBf, plus a perturbation. For each eigencurrent, this set is
indicated by the index of the largest absolute componerti®tbrresponding eigenvector, be-
cause this component will correspond to a certain curreft,inTherefore, we determine the
groups of eigenvalues and eigencurrents by grouping theneégtorsl/,,, according to their
largest absolute components. Having determined the groUpg;envectors{Unq}q =uP, we
group the eigenvalues accordingly. Since we know to whighEgeeach eigenvalue group
{Vng} g °“b corresponds, we know also to which eigenvaiijé® each group corresponds. Fi-
nally, in Subsectlon 5.3.2, p. 163, we discuss a case in whielindex of the largest absolute
eigenvector component is not well-defined and we explain thiswcase is tackled.

The eigencurrents.,,, are defined as in Section 5.2.1 By, = W~ u,,] andu,, €

ran(P). Then, spa(E®®) = ranP), whereE*® is the set of eigencurrents,
B9 = {ung[n=1,... ., N3 ¢=1,..., Now} . (5.21)
Each eigencurreni,,, is described by

N;ub Neub Nsub

eig Ngup HVeig
Ung = Y Ungp, DWep=>_ Y Woang(n',1) Wyen (5.22)
p=1 q¢'=1n'=1

where the second equality follows from =~ w,,, = Wy u,qL SUWN g - This description
can be read in two ways. First,,, is a linear expansion of currents or, expansion functions,
in E. Second, on each subarray, the eigencurtgptis a linear expansion of the eigencurrents
ust (' =1,.. N;l‘éb) the expansion coefficients beifiy,, u,q|(n’, 1) on theq’ subarray.
Analogously to the derivation corresponding to (5.5) ané)(5t can be shown that each

eigenvalue,,, of the moment matrix is an eigenvalue of the operdd, P as well. The new
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inner product( -, -) in step VI is constructed analogously to the new inner produstep E
of the initialization as described in Subsection 5.2.1. thig construction, we describe the set
E°is by the mappind/ defined byl/ = U, LI ... U Uyzue andlneq = tng (¢ =1, Noup).
Then,E®® = bagi/). From (2.115) and the definitions of the concatenation ardatljoint,
it follows that the Gram matrixGy, = G(bagl{)) is composed of the blockg( 4, ], where

mn=1,.. N;‘fgb The components of these blocks are given by

U Un] (P, @) = (Winps Ung) comp = U pUnq s (5.23)

p,q =1,..., Ngup, Where the second equality follows from the conclusion altbat the Gram
matrix Gy is the identity matrix. Notice thaf;, has blocks of siz&Vsi” x N5i”, while Gy has
blocks of sizeNgu1, x Nsub- The functiongy,,, in the bi-orthogonal set are described analogously
to (5.10). Moreover, their expansion coefficients with exgfto the set bd¥V) are described

analogously to (5.11),

meb N

elg sub
=Wyl =D > G (0 = DNGP + ¢ (n— DNGY +q) Uprg . (5.24)
n'=1q'=1
Then,y,,, is described by (5.22) witl,,, andU,, replaced byy,,, andY,,,. Analogously to
(5.7), the relation between the new inner product- ) and the composite inner product is given

by
(Ung, W) = (Yyg> W) comp - (5.25)

At the beginning of this section, we assumed thath[éb eigencurrents contribute to
the mutual coupling between the subarrays. If not all eigeents contribute, the (re-
duced) moment matrix is constructed from a selection of #ig5,. Assume that the sets
Ey,..., EN:;F, with union EP!, contribute to the mutual coupling and that the contributd
the setsEN:&b Ll ENS;“;' with unionE""¢, to the mutual coupling is negligible. Then, we
can define the corresponding mappiigsP! and)V " in the same way as we defingd above.
These mappings satisiy = WeP! L Wuc, Since the currents iB*™ do not contribute to the
mutual coupling, the complete moment matrixRE, P turns into the block form

(5.26)

([(chl)—Pzapwcpl] 0 >
W™ PZ,PW| =

0 [(Wure) =P Z, PYWere]
Here,[(Wune)~ P Z,PW] is a diagonal matrix with the eigenvalug§™ corresponding to
Eun¢ on the diagonal. MoreovefV°P!)~P Z, PWePl] is the reduced moment matrix, which is

given by (5.16) withV replaced by/V°*! and W, by WePl. As above, but with replaced by
wepl we can determine the set of eigencurreift§ and the corresponding eigenvalues of this
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matrix as well as the inner produgt, - )., on spafE®s) = spar{E°P!) with respect to which
the eigencurrents are orthonormal. As in step VI, we extéedsetES'® to E°s U EW°, the
linear span of which equals sp&) = ran(P). Each current in this linear span can be written
uniquely as a linear combination of currents € spar{E®'?) andw, € sparfE""c). Then, we
can define a new inner produgt, - ) on rar(P) by

<v7 w> = <’U1, w1>eig + <'U27 w2>comp- (527)

Here,v = v; + v, andw = w; + wy, Wherev;, w; € spanfE®®) andwv,, wy € sparfE""c).

The eigencurrents iB°'s U E""¢ are orthonormal with respect to this new inner product. IRina
the procedure outlined above can be used as well, if ano#hect®n of set€,, than the first
Ncsglb contributes to the mutual coupling between the subarrayshdt case, we re-index the
eigenvalues:" such tha€y, . . ENbub are the sets that contribute to the mutual coupling and
such thaEnglb TR ENsub are the sets that do not contribute to the mutual coupling.

Calculation of the Current

Having constructed the eigencurrents of an array and thregmonding new inner product, we
calculate the current by the finite expansion (5.2). Here ewgain how the current can be
calculated after one cycle of the eigencurrent approach.c8lculational details will be used in
the next chapter to generate results for line arrays.

To calculate the current, the finite expansion (5.2) is emiths

sub
eig Nsub

wp =Y Z (g, PU) Upg . (5.28)

1Z
n=1 g=1 nq

In this expressiony,,, andu,,, are the eigenvalues and eigencurrents of the array and is

the inner product by which the eigencurrents are diagoaali¥Ve consider here the line arrays
of the previous sections, for which the eigenvalugsare perturbations of the eigenvalues®

of the generating element, i.e., a strip or a ring. As aboweassume that only the fwﬂfgglb
groups of eigencurrents contribute to the mutual couplinthé array. By this assumptlon the
eigenvalues/,, = v5"" for n > NSub Moreover, the eigencurrents of the grOL{palq} sub

with indexn > NSub are replaced quub independent eigencurrents of the decoupled array,
i.e., the currents |n the seks,. As a resultu,, is non-zero on thgth element only, where

it equalsus™®, i.e., thenth eigencurrent of the generating element. Then, the fixpauesion

(5.28) is decomposed into

sub sub
NCPI Nsup Ne‘g Nsup

wp = Z Z unq,”Pv ) Ung + Z V}ub Z (Ung, PU) Upng. (5.29)

n=1 g=1 —=Nsubyqp T

cpl
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Due to the decomposition, the eigencurreats, in the first inner product are elements of
spar{E®’¢) and the eigencurrents,,, in the second inner product are elements of ¢paif).
To compute the inner products in the finite sums of (5.29), eednito writePv* as a linear
combination of elements of these two linear spans. In thalusoment method, the projected
excitation fieldPv* is written as

Nsub CXP

P =3 > v, 1) Wyen, (5.30)

q¢'=1n'=1

where the mappingV is defined as in Subsection 2.4.3 with, e, being the expansion func-
tions on the array. Such an expansion function is non-zetthegth element only. Hence, the
pth component ofPv®* is given by

Nexp
(Po)(-5p) = Y W, v™](n', 1) Wpew)(-:p). (5.31)
n’'=1
The functionsW,e,)(-;p) are the expansion functions on thi element, which are chosen
as expansion functions in the initialization of the eigenent approach as well. By the relation
(5.4) between these functions and the eigencurrejits of the generating element, we replace
(5.31) by

sub
eig

(Po)(-5p) = Y (U W, o™, 1) w3, (5.32)
n’=1

where the matriXU is defined byU (s, n) = U (s, 1) with U the eigenvectors correspond-
ing to 5™, and Nex, = Ngi>. We denote the sum of the firdf3"> terms of this series by
(Pv*™)eig( - ; p) and the sum of the other terms BPv)yunc( - ;p). These sums are elements
of sparfE®¢) and spafE'"c), respectively. We substitute the decompositioriPaf** in the
inner products of (5.29). Using the definition (5.27) of theer product -, - ), the relation
(5.25) between this inner product and the composite innedymt, and the definition (5.3) of
the composite inner product, we deduce ot n < Nj;;f’

<unq7 Pvex> = <unq7 (Pvex)eig>eig = <ynq7 (Pvex)eig>comp =
sub

Z ynq : 7]9 )eig( : ;p)>sub . (533)

Here, the functiongy,,, form the bi-orthogonal set corresponding to the eigencisre,,.
These functions are described by (5.22) with, and U,,, replaced byy, , andY,,, where
Y,.4 is computed by (5.24). Moreover, since only the fﬂi@&b eigencurrents of the generating
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element contribute to the mutual couplid@gi‘;,.b is replaced b g‘glb. The mappingV in (5.22)

is not defined as in the excitation vector, but as in the cyttheeigencurrent approach above.
In other words W describesNeSi‘észub independent eigencurrents of the decoupled array. To
distinguish this mapping from the mappiiyg above, we writéV*¥¢ instead oflV). Taking the

pth component of,,,, we obtain
New
Una(+50) = D IOVY) "y, (0, 1) us®. (5.34)
n’=1

The column(W;¥¢)~y,,, ] consists of the componentsBf,, with indices((p— 1)N§I‘jf’+n’, 1),

wheren’ =1,... ,Ngl‘;f’. Substituting (5.34) and (5.31) in (5.33) and using theartrmality
relation (usUP, uS"P) ., = &, We arrive at

m 7 Un

sub
Nsub Vepl

(Ung, PU™) = D 3 (W) g, (), 1) (U W, v™])(n, 1) . (5.35)
p=1 n'=1
The components ofW, v**] are given in Chapter 4, while the components (6fand
[(W5¥°)~y,,] are computed as in the initialization and the cycle of therdgirrent approach
in Chapter 5. FOIVSiP + 1 < n < N3i°, we deduce

Nsub
<unq7 Pvex> - <unq7 (Pvex)unc>comp - Z <unq( : ;p)7 (Pvex)unc( : ;p)>sub . (536)

p=1

n m

BY tng( -5 p) = dpgusy® for N3iP +1 < n < N> and (ush®, u5™) sub = dmn, We obtain

<unqv Pvex> = <u7slub’ (Pvex)unc( : ;p)>sub =
Nsub
cig

= Z (U1 W5 o)) (0, 1) (us™, usSP) g, = (U WV, 0™])(n,1) . (5.37)

p p
n/=Nub+1

Having computed the inner products (5.35) and (5.37)fern < N3P and NP +1 < n <
Ng;gb, respectively, we can evaluate the series (5.29). We exgheseigencurrents,,, into
the eigencurrentss"? of the generating element by (5.22) and, then, we expressigeacur-
rentsuS"P into the initializing expansion functions by (5.4). In thigy, we find the expansion

coefficients of the currents on the elements with respettdaritializing expansion functions.

5.3.2 Uniform Line Arrays of Rings

In this section, we consider one cycle of the eigencurreptagzh for uniform line arrays of
rings. These line arrays are described in Section 3.5. Qigassingle ring as the generating
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subarray, we know the corresponding eigencurrents and,eheve do not need to carry out
the initialization of this approach. Since we proceed frosingle ring to the entire line array,
the number of subarray¥,,;, equals the number of ring¥,;. Moreover, since we index the
eigenvalues and eigencurrents of a generating subarraytisat};""| < |v5%" |, the moment
matrix of the eigencurrent approach is, up to a row and colpermutation, the same as the
moment matrix constructed in Subsection 3.3.2. We comp@eigenvalues and eigenvectors
of this moment matrix in the same way as in the initializationa single ring. Table 5.5 shows

the maxima of the relative errors (5.13) for several lineysrof rings. For each number of

Table 5.5 Maximum relative errors (5.13) for line arrays generated from alsirigg in free
space. Parameter values of the generating ring= 7/3, 8 = 3/100, ¥ = 0, Neos = 4,
Ngin = 0. Spacing of the line arrayl = \/2.

Ny, | Size moment matri¥ Max. rel. error
5 20 1.2-10714
10 40 1.7-10714
20 80 1.8-10714
40 160 2.4-1071
80 320 3.7-10714
160 640 5.2-10714

Ngup, these maxima are attained for the lowest (absolute) eiees. Moreover, the maxima
increase more slowly with the moment matrix size than theimaxor the strip in Table 5.3.
This observation is explained as follows. The moment matiristrip with piecewise functions
is less (block-)diagonally dominant than the moment matfia line array of rings. Moreover,
both the moment matrix of a strip with entire-domain funci@nd the moment matrix of a line
array of rings is diagonally dominant, except for the disgjaromponent corresponding to the
self coupling ofcos .

Throughout this section, we will use only two generating eometries, except for a partin
which we investigate the dependence of the (array) eigesictea on the generating ring eigen-
currents. These geometries are the ring geometry of Tablarkl the same ring geometry but
in a half space witth /a = 6/5. The corresponding eigenvalues and eigencurrents are gjive
Table 5.2.

Like the centers of the strips in Figure 3.2, the centers efrihgs are positioned on the
axis. In other words, the line-array axis coincides withthaxis. Moreover, the orientation of
the local coordinate systems on the rings is describefl by0, see Figure 2.5. Then, the cosine
and sine eigencurrents of the generating ring are symmetidcanti-symmetric, respectively,
with respect to the line-array axis. Since a symmetric curdmes not couple with an anti-
symmetric current, the cosine eigencurrents generate syricrarray eigencurrents with respect
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to the line-array axis, while the sine eigencurrents geeexati-symmetric array eigencurrents.
We will consider the anti-symmetric eigencurrents, as \asllother choices af, in the part
about the dependence of the (array) eigencurrents only.

Spread of Eigenvalue Groups in Relation to Mutual Coupling Apects

We determine the groups of eigenvalu[@aq}év_j‘ib and the corresponding eigencurrents as de-
scribed in Subsection 5.3.1. To determine which groupsritaré to the mutual coupling in

a line array, we compute for each group, with indexhe maximum and minimum of the ab-
solute perturbati0n$|enq\}f1\[;jb, wherev,,, = v5"P(1 + ¢,,), as introduced in Section 5.1, p.
106. These maxima and minima are an indication of the sprietheé @igenvalues in the groups.
Figure 5.18 shows that for line arrays with spacidgs A\/2 andd = 3)\/5, both in free space
and in a half space, the spread of the eigenvalues decreébdabavgroup index.. We expect
that only the spreads of the first two groups are significahts €xpectation is not only based
on the decrease of the spread with the indekut also on the increase of the eigenvalug®

of the generating ring. Due to the second property, the gaeas of groups with larger indices
not only contribute less to the current on the line arraysiireads of these groups are also less
significant than the spreads of the groups with smaller esli®ased on this expectation, we
can determine the eigenvalues of the first two groups frontlaaged moment matrix with only
the first two eigencurrents of a single ring in free space arlialf space, see also step V of the
eigencurrent approach, p. 111. The eigenvalues of theahudourth groups can be set equal to
the corresponding eigenvalues of the generating ring. fEtigces the CPU time considerably,
see Section 6.1 for details.

Let us consider the first two groups. Figure 5.18 (upper figlusbows that the maxima of
the absolute perturbations increase with the number ofexiésnwhile the minima decrease. For
all 4 line array geometries, the minima become approximatehstant fotVg,, > 10, but none
of the corresponding constants is zero. For the first grdwgse constants vary between 0.023
and 0.126 and for the second group, they vary between 0.@D@.886. Hence, the eigenvalues
of the first and second groups differ all from the eigenvaljgt (n = 1,2). In a half space,
the maxima become constant for abddt,;, > 20. In free space, the maxima do not show this
property, but ford = 3\ /5 they increase slowly. These results suggest that ringsateplanore
than 10 or 20 timeg do not show mutual coupling in the first and/or second eigerat(s)
of the generating ring for specific line array geometries.néée we do not need to compute
the moment-matrix components that describe the correspgmautual coupling. We can use
this observation in the eigencurrent approach as followse Behavior of the eigenvalues of
smaller line arrays, say with 10 or 20 elements, indicatesvfich groups the maximum and
minimum of the absolute perturbations become constantasctién of the number of elements.
In this way, the analysis of smaller (line) arrays providgsimation about the moment-matrix
components to be computed for larger (line) arrays, seeestiba 6.3.3 for details.



5.3. CrCLE 145

25

0.4 T

0.35f !
=
NESy
o
0.3r et

0.25
0.2

0.15

0.1

Max. and min. abs. perturbation
Max. and min. abs. perturbation

0.05

5 .-,A,.A ,.., T ., YA WL RIOR LR 0

0.0351

Max. and min. abs. perturbation
Max. and min. abs. perturbation

Neub Nsub
Figure 5.18 Maxima and minima of the absolute perturbatic{rrlemq|}é\’;3b of the first four
groups of eigenvalues as a function¥f., i.e., the number of rings, for 4 different line array
geometries. From upper left to lower right: group= 1 to groupn = 4. The spacingl is
either\/2 (+, o) or 3A/5 (%, A). The generating ring is either in free spage &) or in a half
space withh/a = 6/5 (o, A). Parameter valuesV:y = 4, ka = «/3, 8 = 3/100, ¢ = 0,
Necos = 4, Ngin = 0.

To investigate the spread of the eigenvalues as a functidheo§pacing, we compute the
maximum and minimum of the absolute perturbatiéhgquév;jb for each group as a function
of the spacing. Figure 5.19 (left) shows that for the firstup® of line arrays of 5, 10, 20,
and 40 rings in free space, these maxima and minima behaveartym They decrease non-
monotonically. Moreover, the maxima show local ‘curve nmaai and 'curve minima’ in the
pointsgA/2 (¢ = 1,2,3,4) and(q + 1/2)\/2 (¢ = 1, 2, 3), while for the minima, these points
are interchanged. Figure 5.19 (right) shows that in a hal€epthe ‘curve maxima’ are much
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Figure 5.19 Maxima and minima of the absolute perturbatiQhaﬂ}ff:{b of the 1st group of

eigenvalues as a function of the spacing for line arrays of 5 (dotte@}utQ (dashed-dotted

curve), 20 (dashed curve), and 40 (solid curve) rings. Left: $pmce. Right: half space with

h/a = 6/5. Parameter valuesVii’ = 4, ka = 7/3, 8 = 3/100,% = 0, Neos = 4, Nsin = 0.

less pronounced and the decrease is much sharper. Botheirsfiece and in a half space,
the maxima and minima of the other three groups show simétabior, but the magnitudes
are lower. The ‘curve maxima’ and ‘curve minima’ of the maxim and minimum absolute
perturbations, respectively, are related to construdtiterference of the electromagnetic fields
generated by the rings. In contrast, the ‘curve maxima’ anavie minima’ of the minimum
and maximum absolute perturbations, respectively, asda@lto destructive interference of the
electromagnetic fields generated by the rings.

Description of Eigencurrents

To illustrate how the eigencurrents of line arrays of ringsdescribed, we consider line arrays
of 15 and 29 rings with half a wavelength spacing generatea fa ring in free space. In the
construction of the moment matrix, we take only the first tdigeacurrents of the generating
ring into account, i.e.u$"?(p) = cosp andui**(p) = 1. Figure 5.20 shows the curves
generated by the eigenvalues of the first and second grouhs icomplex plane, both for 15
and 29 rings. We conclude that each group has one curve irothplex plane, independently
of the number of rings. This statement is not only valid fag flist and second groups, but it
is valid for each group. Near the eigenvalyg, the ‘density’ of the eigenvalues is the highest.
We will discuss the behavior of the eigenvalues in detadrlain. We index the eigenvalues of
each group along the curve they generate in the complex plangeans of a nearest neighbor
search starting at the ends indicated by the number 1. AtrttieEthis subsection, we explain
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Figure 5.20 Normalized eigenvalues of the 1st (left) and 2nd group (right) of linayarof 15
(o) and 29 ¢) rings in free space and the corresponding normalized eigenval)ies & single
ring, i.e.,v5™ (n = 1,2). The numbers 1 indicate the first eigenvalues of the curvesyi.g.,
Normalization:|v;""|. Parameter valuest = \/2, Nio® = 2, ka = 7/3, 3 = 3/100, ¢ = 0,
Necos = 2, Ngin = 0.

how these ends are determined.

Figure 5.23 (left) shows the absolute values of the eiggnv@omponents for a line array
of 15 rings. The first 15 columns of the color pattern belontheoeigenvector§l, } 2, of the
first group and the last 15 columns belong to the eigenvet{ldﬁ};il of the second group.
The pattern confirms the conjecture in Section 5.1, p. 1GH,tte eigencurrents ({funq};";l
of thenth group @ = 1, 2) are a linear combination of currentskr plus a perturbation. This is
observed as follows. The eigenvector componéhs—1,1) (¢’ = 1,...,15) are the expansion
coefficients of the eigencurrents with respect to the ctsramE;, while the eigenvector com-
ponents(2¢’, 1) are the expansion coefficients of the eigencurrents withe@so the currents
in E5. The figure shows that in the first group, the eigenvector @rapts corresponding to the
currents inE; are much larger than the eigenvector components corresmptaithe currents
in E5. The second group exhibits the same property witandE, interchanged. These results
confirm the conjecture.

Instead of considering the eigenvectors as the expanseffigents of the (array) currents
in E; andE,, we can also interpret the eigenvectors per ring. On eadtedt’ rings, an eigen-
currentu,,, is a linear combination of the eigencurrents® and«$"" of a single ring. The
coefficients ofus"? andu$®® on theq’-th ring are the eigenvector componefg’ — 1,1) and
(2¢’,1). Figure 5.23 (right) shows the absolute coefficienupf on each ring for the eigen-
currents{ulq}}f;1 of the first group. In other words, the figure shows the absaigenvector
component$2¢’ —1,1) (¢ =1, ..., 15) for the first 15 eigenvectors in Figure 5.23 (left). Com-
paring Figure 5.23 (right) with Figure 5.8, which shows tlatern of the absolute components
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of the eigenvectors of a single strip with 15 piecewise eganfunctions, we come to the sur-
prising observation that the generated patterns are althestame. In general, we observed
that the coefficients of the dominant single-ring eigenenirin thenth group of eigencurrents,
i.e.,us"P, exhibit the same patterns as the eigenvectors of a striippiétewise expansion func-
tions. Figure 5.21 clarifies this result in the following walhe eigenvectors of a single strip
with piecewise expansion functions represent the expansiefficients of the eigencurrents
of a strip with respect to these functions. The expansiofffic@nts are one-to-one related to
heights of the, triangular-shaped, piecewise functioriguré 5.21 shows the pattern of these
functions for the first eigencurrent of the first group. Thagheof each triangle corresponds to
a coefficient ofu?"® in thenth group of (array) eigencurrents, as indicated in the figure

OCOOOOOOOOOOOOOO

u sub

S u

n

Figure 5.21 Schematic representation of the correspondence between the abselfitients
of «5" in the eigencurrents of theth group of a line array of rings and the expansion coeffi-
cients of the eigencurrents of a single strip with piecewise expansion faactio

To go into more detail, Figure 5.22 (left) shows a comparisbn

o the absolute coefficient af{"> on each ring for the first and second eigencurrents of the
first group,

o the absolute coefficient af§"> on each ring for the first and second eigencurrents of the
second group,

e the absolute expansion coefficients of the first and secayeheurrents of a single strip
with 15 piecewise functions.

In the first two cases, the ring indices are transformed toirterval [—1, 1] according to
¢ — 2¢'/(Nsub + 1), where Ny}, is the number of rings. In the third case, the indices
of the expansion coefficients (or, eigenvector componartskransformed as in Figure 5.13.
As in Figure 5.9, the dashed and dotted lines in Figure 5.820aly meant for visualization
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of the patterns. Figure 5.22 (right) shows a similar conguar; but the first and second eigen-
currents are replaced by the 15th and 14th eigencurrentsfigilires confirm that the absolute
coefficients ofus® in the eigencurrents of theth group show the same behavior as the abso-
lute expansion coefficients of the eigencurrents of a sistgip with Ny,;, piecewise functions.
Quantitatively speaking the differences are larger foeeayrrents with larger indices in a group
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Figure 5.22 Left: for n = 1 (+) andn = 2 (x), the absolute coefficients af"" in the 1st
(dashed) and 2nd (dotted) eigencurrent ofstlie group for a line array of 15 rings. Moreover,
the absolute expansion coefficients of the dstdashed) and 2na( dotted) eigencurrent of a
strip with 15 piecewise expansion functions. Right: as left, but for the Id#bkhed) and the
14th (dotted) eigencurrent (symbolreplaced byA). Eigencurrent normalization: maximum
coefficient. Parameter values of the line array of rings as in Figure Ba@&@meter values of the
strip:2¢ = \/2, 8 =b/¢ = 1/50.

than for eigencurrents with smaller indices in that groupe ame results are obtained for 29
rings. The color pattern in Figure 5.24 (left) for the abselooefficients of5*> in the eigen-
currents of the first group, i.e{ulq}gil, is almost the same as the color pattern in Figure 5.11
(left), which shows the absolute expansion coefficienthefigencurrents of a single strip with
29 piecewise expansion functions.

For a line array of 15 rings, the coefficientsf'® in the eigencurrents of theth group
show also the same phase behavior as the expansion codfficfehe eigencurrents on a strip
with 15 piecewise functions shown in Figure 5.8 (right). ther words, the coefficients af"
in theqth eigencurrent of theth group, i.e.u,,, showg — 1 phase reversals as a function of the
ring index. As a result, each eigencurrent can be multigdigd complex factor such that these
coefficients have a negligible imaginary part. Then, the idamt part of each eigencurrent is
real valued, while its complex nature is incorporated inghgurbation. An example is given at
the end of this subsection.

Based on the preceding results, we state similar generalusions as the general conclu-
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Figure 5.23 Left: color pattern of the absolute eigenvector components for a ling afrd5
rings with two eigencurrents of the generating ring. Right: color patterneoatisolute coef-
ficients ofu$" on the rings for the eigencurrents of the 1st group. Eigenvector fizatian:
maximum component. Parameter values as in Figure 5.20.
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Figure 5.24 Left: color pattern of the absolute coefficientsugF® in the eigencurrents of the
1st group for a line array of 29 rings. Right: color pattern of the abs@oédficients ofus"™”

in the eigencurrents of the 1st group for a line array of 15 rings. Eigeaat normalization:
maximum coefficient. Parameter values as in Figure 5.20.

sions on p. 128 for the eigenvectors of a single strip. Candidenth group{unq}é\’;jb of

eigencurrents, where=1,.. ., sslb.

1. Foreachy = 1,..., Nqu, the absolute coefficients mﬁl“b in the eigencurrent,,, and
the absolute coefficients of ™ in the eigencurrent,,y., +1—,) Show the same patterns.

2. For eachy, the coefficients ofi$"" in the eigencurrent,,, showmin{q, Neup + 1 — ¢}
absolute maxima angl— 1 phase reversals.
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Summarizing, we showed that the coefficients of the domisangle-ring eigencurrent in
each group of eigencurrents of a line array of rings and tipaesion coefficients of the eigen-
currents of a single strip with piecewise functions gereetia¢ same patterns. There is no doubt
that a strip is an entire object. Discretization of the slrijpiecewise functions does not affect
this statement, because in Section 5.2.3, we showed thaigkacurrents obtained by piece-
wise and entire functions are the same. Then, line arraystaipd generating the same patterns
clearly indicate that arrays are entire objects, not ctibes of separate elements.

Let us return to the line array of 15 rings. Up to now, we havesatered the dominant
behavior of the eigencurrents in the groups. As mentionedelthe perturbations of the first
group are described by the expansion coefficients of theneigesnts with respect to the cur-
rents inE,, while the perturbations of the second group are descrigdtidoexpansion coeffi-
cients of the eigencurrents with respect to the currents iff the perturbations are interpreted
per ring, the perturbations of the first group are descrilyettiéd coefficients ofi5*® in the eigen-
currents{ulq};il, while the perturbations of the second group are descriekdxcoefficients
of u§"P in the eigencurrent$u2q}}lil. Figure 5.24 (right) shows the absolute coefficients of
u$"P in the eigencurrents of the first group, or, in other wordshitws the absolute eigenvector
component§2q¢’,1) (¢ = 1,...,15) of the first 15 eigenvectors in Figure 5.23 (left). We ob-
serve that the perturbation increases with the eigencuimdax ¢ up to 0.1. A similar pattern
is obtained for the absolute coefficientsugf® in the eigencurrents of the second group with a
maximum absolute coefficient of 0.2 instead of 0.1.

To go into more detail, Figure 5.25 shows the absolute vanesthe phases of the coeffi-
cients ofui"® andus"™ in the first, second, fifth, and 15th eigencurrent of the firstig. For all
4 eigencurrents, we observe that not only the coefficientseoflominant single-ring eigencur-
rentu$"" generate patterns, but as well the coefficientg;tf, which describe the perturbations.
The absolute coefficients af"> have maxima and minima at rings, where the coefficients of
u§"P have minima and maxima, respectively. For the first, secand,fifth eigencurrent, the
phases of the coefficients of"” show one phase reversal more than the coefficientstf,
while for the 15th eigencurrent, they show one phase reMeisa Further investigation revealed
that the coefficients ofi§"> showq phase reversals far < 10 andg — 2 phase reversals for
11 < ¢ < 15. More general, the coefficients af* in the eigencurrentt;, showq phase re-
versals folg ~ |2N4u1,/3]| andg — 2 phase reversals for larger values;ofn the second group,
we observe the same behavior as above for the coefficiettdeberibe the perturbations in this
group, i.e., the coefficients af®.

Figure 5.26 describes a situation in which more single-Bigencurrents are taken into
account,N:iP = 6 to be precise. In this case, the figure shows that the absubetééicients
of all non-dominant single-ring eigencurrents in the firngte@current of the first and second
groups generate either the same pattern as the dominale-simg eigencurrent or the same

pattern as the coefficients 0§ in the preceding results. Further investigation revediatithe
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Figure 5.25 Left: absolute values (in dB) and phases of the coefficienis 't (+) andus™

(x) in the 1st (dashed curves) and 2nd eigencurrent (dotted curvib bst group for a line ar-

ray of 15 rings, and the corresponding normalized absaglttemponents (in dB) of the electric

far field in the planep = 0 (dashed— solid and dotted— dashed-dotted). Right: as left, but
for the 5th and 15th eigencurrents. Eigencurrent normalization: mawicoefficient. Far-field
normalization: maximum absolugecomponent of the 1st eigencurrent. Parameter values as in
Figure 5.20.
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Figure 5.26 Absolute coefficients (in dB) of the single-ring eigencurremit®’ (+), u$" (x),
u$™ (0), u§"™® (A), uf™ (x), andug™ (O) in the 1st eigencurrent of the 1st group(, left)
and in the 1st eigencurrent of the 2nd group+(, right). Eigencurrent normalization: maximum
coefficient. Parameter values as in Figure 5.20, but with, = 6.

absolute coefficients afs"> andu$UP in a certain eigencurrent,,, generate the same pattern,

if the eigencurrentss'® anduSuP have the same even or odd symmetry with respect to the line
parallel to they-axis through the center of the ring. We note that the ringsadirpositioned on
thez-axis.

The two figures in the last row of Figure 5.25 show the eledticfields in thexz-plane

in Figure 3.2, i.e., the plang = 0, for the first, second, fifth, and 15th eigencurrent of the
first group. These far fields are determined by the far-fiejoressions for arrays of rings in
Appendix C. The spherical anglé®, ¢) are defined by (C.4), whetgis the angle with respect
to the z-axis. The first eigencurrent induces a broadside beam witexamum side-lobe level
of about -23 dB. This low sidelobe level is due to the cosike-pattern of the corresponding
absolute coefficients of the dominant single-ring eigerentrus"?, see Figure 5.25 (first row,
first column, dashed curve). The pattern can be interpreteghaamplitude taper on the line
array. The corresponding uniform phase distribution camtegpreted as a phase taper on the
line array. The second eigencurrent induces two main lodgish are symmetrically positioned
around0°. In contrast to the first eigencurrent, the correspondingspldistribution of the
dominant single-ring eigencurrent exhibits one phasersab@alf way the line array, see Figure
5.25 (second row, first column, dashed curve). The last 7eiesrexhibit an opposite phase with
respect to the first 7 elements and no current is induced ocethier ring. In the literature, the
electric far field of the first eigencurrent is referred tolas sum pattern of the array, while the
electric far field of the second eigencurrent is referrecsttha difference pattern or monopulse
of the array. Both phase distributions are used in pracfidee sum pattern is used to detect
objects, while the difference pattern is used to track dbjg&5]. Both patterns are eigenstates
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of the array, which explains why the techniques of broadsgd®m and monopulse work so well.
The electric far fields of the fifth and 15th eigencurrent igufe 5.25 (third row, second
column) each show two main lobes, which are positione@ at +18° andf = +90°, re-
spectively. Moreover, these far fields have 3 and 13 sideslbleéwveen their main lobes. This
observation suggests how the far fields of the eigencurexmise. Forg > 1, the gth eigen-
current has 2 main lobes with— 2 side lobes in between. This statement is not only true in
this particular case, but it is true in general for the grough\@ominant single-ring eigencurrent
cos . Although the coefficients of the dominant single-ring eigerrents of the other groups
are about the same as the coefficients®fp in this group, the far fields of the other groups
may differ. These differences are explained by the diffeesrbetween the element patterns, or
electric far fields, of the single-ring eigencurrents. Fearaple, Figure 5.27 (left) shows that
the electric far field of the first eigencurrent of the secoralg is not a broadside beam as in
the first group, but a monopulse beam. Moreover, the eldetrifield of the 15th eigencurrent

0

> —10f

—20}

-30fF

Normalized far-field comp. (dB)
5
Normalized far-field comp. (dB)

AuAl N\m | M/\ AT
30 60

% e -0 0 90 =%
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Figure 5.27 Left: normalized absoluté-component (in dB) of the electric far field in the plane
¢ = 0 for the 1st (solid curve) and 15th (dashed-dotted curve) eigemtusfehe 2nd group
of a line array of 15 rings. Right: the same component, but for the texsalid curve) and
‘approximated’ (dashed-dotted curve) 15th eigencurrent of thgrbsip. Eigencurrent normal-
ization: maximum coefficient. Normalization each far field: maximum alte@iecomponent
of the 1st eigencurrent in the 1st group. Parameter values as in E@ire

of the second group has 14 instead of 13 side lobes betweémadtmain lobes. In general,
for ¢ > 1, theqth eigencurrent of the second group las 1 side lobes between its two main
lobes. The differences between the first group and the segraug are due to the differences
between the radiation intensities induced}* = cos ¢ andu$"? = 1. The radiation intensity
of the constant eigencurrent has a nulbat 0°, while the radiation intensity of the cosine
eigencurrent has a maximumét= 0°, see [7: Fig. 2.27] and [60: pp. 163 ff.]. The maxima
of the element pattern of the constant eigencurrent at end#r.,6 = +90°, explain the large
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intensity differences between the main lobes of the first #ttl eigencurrents in Figure 5.27
(left).

These observations show that each eigencurrent and, ttigreach eigenvalue, is related
to certain main lobes in the far field. The correspondingtpmss, or angles, of these main lobes
seem to correspond to scan angles of the line array. Moretheemain lobes of the far field
of the 15th eigencurrent seem to be the scan loe-at+-90° together with the corresponding
grating lobe at) = F90°. We will discuss these observations in detail in a separategbout
scanning and the infinite-array approach on pp. 165 ff.

To investigate the contribution of the perturbations of ¢igencurrents to their far fields,
Figure 5.27 (right) shows the far fields of both the ‘exactttl8igencurrent and the ‘approxi-
mated’ 15th eigencurrent of the first group. Here, ‘exactangethat the contributions of both
single-ring eigencurrents, i.es;" andu$"?, are taken into account. ‘Approximated’ means
that only the contribution of the dominant single-ring eigerrent of the first group, i.eus'?,
is taken into account. The figure shows that the contributibthe perturbations is negligi-
bly small up to about -32 dB with respect to the magnitudeshef main lobes. Since the
perturbations increase with the indeof the eigencurrents,,,, the match between ‘exact’
and ‘approximated’ is even better for the other eigencusr@mthe first group. As observed
above, the perturbations in the second group are slightiefahan in the first group. On the
other hand, the eigencurrents in the second group corrddpamlarger single-ring eigenvalue
and, hence, their far fields will contribute less to the tédalfield of the line array. Thus, we
conclude that the contribution of the perturbations of tigerecurrents to their far fields is neg-
ligible. In Chapter 6, we investigate whether the pertudvais negligible for mutual-coupling
performance parameters as well.

As in the initialization of the strip, we investigate the ééwf orthogonality of the eigen-
currents. Figure 5.30 shows the Gram matrices of the eigesmts of line arrays of 15 and 29
rings with respect to the composite inner product. The ldafkhese matrices are computed by
(5.23), i.e., the Euclidean inner products of the eigerusctThe matrices consist of 4 blocks
with sizesl5 x 15 and29 x 29, respectively, which represent the self and mutual cogpdin
the 2 groups. Both kinds of coupling are described by bandicest The self coupling of the
first group is described by the diagonal and the two secortlagnnals, while the self coupling
of the second group is somewhat more pronounced and dedtyltbe second, fourth, and 6th
co-diagonal. Moreover, the odd-indexed co-diagonals agligibly small. Hence, the coupling
between eigencurrents with even and odd numbers of phasesadw in their coefficients of the
dominant single-ring eigencurrent is negligibly small.Higure 5.22, we visualized the behav-
ior of the coefficients of the dominant single-ring eigemeut in the first and second groups of
eigencurrents versus the behavior of the expansion caeftecof a single strip with piecewise
functions. Here, we compare the self-coupling blocks fana array with 29 rings in Figure
5.30 (right) with the Gram matrix for a strip with 29 piecewiiinctions in Figure 5.16 (left).
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We observe that the self-coupling blocks for the line arragylass diagonally dominant than
the Gram matrix for the strip. Moreover, for the strip, theipling is restricted to the first few
eigencurrents.

Contrary to the self-coupling blocks, the mutual-couplitgcks have negligibly small even-
indexed co-diagonals, while the odd-indexed co-diagowealg from0.001 to 0.2. Hence, the
coupling between eigencurrents with both an even or odd euwiiphase reversals in their co-
efficients of the dominant single-ring eigencurrent is iggigly small. In contrast, the coupling
between eigencurrents with even and odd numbers of phasesaéy in these coefficients are
not negligible. This difference with the self-coupling bks is explained as follows. In the inner
products of the mutual-coupling blocks, the coefficientshef dominant single-ring eigencur-
rent in an eigencurrent of the first group are multiplied by toefficients of the perturbation
in an eigencurrent of the second group and vice versa. In eigemcurrent, the coefficients
of the perturbations exhibit either one phase reversal mpane phase reversal less than the
coefficients of the dominant single-ring eigencurrent. Sehebservations explain the difference
between the self and mutual-coupling blocks, because gemeiirrents of different groups show
mutual coupling if their coefficients of corresponding $&gng eigencurrents have either both
an even or both an odd number of phase reversals. As illastiat the color pattern in Figure
5.30, the mutual coupling becomes stronger for eigenctgeith more phase reversals in the
coefficients of their dominant single-ring eigencurrentislis explained by the increase of the
perturbation with the index of the eigencurrenta,,,,.

To complete this section, we explain first how the startinigiysmf the eigenvalue curves are
determined. Next, we consider the conjecture on p. 149 Hwkt eigencurrent can be multiplied
by a complex factor such that the coefficients of its domisémgle-ring eigencurrent have neg-
ligible imaginary parts. We recall that the coefficientstoé lominant single-ring eigencurrent
of the ¢th eigencurrent in each group haye- 1 phase reversals. Since the eigenvalues of each
group are indexed along the curve they generate in the carpfaee, see Figure 5.20, the num-
ber of phase reversals increases along this curve. Herestdhing point of each eigenvalue
curve is the eigenvalue corresponding to the eigencurréghbut phase variance in the coeffi-
cients of the dominant single-ring eigencurrent. In Figbt25, we multiplied each computed
eigencurrent by =7, wherea is the mean phase of the coefficients of its dominant singlg-r
eigencurrent. Instead of this value @f we may also choose another value. For example, Fig-
ure 5.25 (first row, first column) shows that the coefficierfts® in the first eigencurrent of
the first group exhibit a maximum at the 8th ring. We multigliee complete eigencurrent by
e~J% with o being the phase of the coefficient @f*" at the 8th ring. The resulting real and
imaginary parts of the coefficients af'> andu$"> are shown in Figure 5.28 (left). The figure
shows that the imaginary parts of the coefficientsapf are small & 10~2) with respect their
real parts. Moreover, the real parts of the coefficients P are small with respect to their
imaginary parts. Hence, in this case, the dominant part cifi egencurrent is real, while its
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Figure 5.28 Real (dashed curves) and imaginary (dotted curves) coefficientdB(jirof the
single-ring eigencurrents;"® (+) andu$"™ () in the 1st (left) and 5th (right) eigencurrent of
the 1st group. Eigencurrent normalization: maximum coefficient.rReter values as in Figure
5.20.

perturbation is imaginary. The same observations are Yafithe real and imaginary parts of
the coefficients of.§"> andu5" in the fifth eigencurrent, see Figure 5.28 (right), where we
multiplied this eigencurrent by with o being the phase of the coefficientof" at the 8th
ring. These two examples confirm the conjecture on p. 149.

Parameter Dependence of Eigencurrents

Having described the array eigencurrents, we investidpie dependence on the geometry pa-
rameters and the frequency. In Subsection 5.2.3, we castieduch an investigation for the
eigencurrents of a single strip. We showed that the depeedafithe single-strip eigencurrents
on the geometry parameters and the frequency is negligitihee the eigencurrents of a single
strip with piecewise functions correspond to the arraymigerents in the way explained above,
we may expect that the dependence of the dominant coefictdrihe array eigencurrents on
the geometry parameters and the frequency is negligibleedls ®ince we considered only a
single strip geometry to show the correspondence, we ceniidt the comparison between the
single-strip eigencurrents and the array eigencurrentsoire detail.

With respect to this comparison we have two comments. Hiristnot clear which choices
of strip parameters fit best to certain choices of array patars. Second, the comparison of the
results for 15 and 29 rings in Figure 5.23 (right) and Figué5left), and the results for 15
and 29 piecewise functions in Figure 5.8 (left) and Figufdd Fleft) is not completely justified.
This second comment is explained as follows. The paramefdise arrays of rings and the
parameters of strips can be related as in Table 5.6. The simays defined such that the ratio
array size versus spacing equals the ratio striplengttusdrgerval length ifNex, = Ngyp.
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Table 5.6 Parameters of a line array of rings related to parameters of a strip witbvgzEe
functions. Both kind of parameters are normalized with respect to thelamgth.

Number of rings Ngup Nexp Number of
piecewise functions
Array size (Ngub + 1) d/A 20/ Strip length
Spacing d/\ 20/(Nexp + 1)A | Distance between two

triangle center points

Ring circumference ka(= 2ma/)\) || 2¢/(Nexp + 1)\ | Half the triangle base

The ring radius and half the triangle base are separated thenother parameters, because
these two parameters describe the geometry of a single stiigreelement, while the other
parameters describe the geometry of the entire array @r dtiere, we imagine the piecewise
functions as currents on overlapping microstrips. For thps Ny, is varied and¢ (\/2) is
constant, while for the line array8l,;, is varied andf (\/2) is constant. In Subsection 5.2.3,
we showed that the eigenvectors of a strip do not depend osttipdength. This observation
justifies the comparison mentioned above only if the eigmects are independent of (half)
the triangle base, because both the distance between amglti center points and (half) the
triangle base vary (linearly) with the strip length. Duehe formulation for a single strip with
piecewise functions, we cannot vary the length without weyyoth the distance between two
triangle maxima and (half) the triangle base. The base afydviangle overlaps half the base
of each of its neighbors. For a one-to-one comparison gbsst&ind line arrays of rings, we
would need to introduce an independent param#tgg;,, which describes half the normalized
triangle base aéA;q:n/A. Then, the normalized distance between two triangle cemtets
iS2¢(1 — Ayiatn)/(Nexp — 1)A. Moreover, the normalized strip length needs to be replaged
20(1 — Ayidtn) /A

The observations above show that a one-to-one comparidarede the eigencurrents of
single strips with piecewise functions and the eigencusrefiline arrays of rings is not pos-
sible due to our formulation for the strip. In the remaindéthis section, we investigate the
dependence of the eigencurrent coefficients of line arrayhe number of rings, the spacing,
and the generating-ring parameters. We compare the rdeulie arrays of rings with the
results for strips according to Table 5.6.

Number of Rings

Increasing of the number of rings extends each group by eigeznts with more rapidly varying
absolute coefficients, see Figure 5.23 (right) and Figu2é @eft). An example of an eigencur-
rent with rapidly varying absolute coefficients is given iglire 5.29 for a line array of 60 rings.
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Both the absolute coefficients af*® and the coefficients af§"® show modulated oscillations
as a function of the ring index. Moreover, the absolute coieffits ofu5"” show the same be-
havior as the absolute expansion coefficients of the 21sheigrent of a strip with 60 piecewise
functions, which confirms the correspondence between firzgs.and strips.
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Figure 5.29 Absolute values (in dB) and phases of the coefficientsitt (+) andu$"™ (x) in
the 21st eigencurrent of the 1st group for a line array of 60 ringsoAlbe values and phases
of the expansion coefficients of the 21st eigencurrent of a strip witheég@pwise functionsd).
Indices are transformed as in Figure 5.22. Eigencurrent normalizati@aximum coefficient.
Parameter values as in Figure 5.20.

The absolute coefficients of the dominant single-ring eigerent»"> of the nth group
show the same patterns for different numbers of rings astilited by Figure 5.31. Moreover,
for a given array geometry, the absolute coefficients ar@iponsd on a fictitious curve, inde-
pendently of the number of rings. The same phenomenon hasdiEerved for a strip with
piecewise functions, see Figure 5.13. Figure 5.31 showghigaphenomenon occurs also for
the coefficients ofi5"P, which describe the perturbation of the second last eigeacts The
coefficients ofu$", which describe the perturbation of the third eigencurrenbw the same
patterns, but the fictitious curves do not coincide. Insteld coefficients decrease with the
number of rings and, consequently, the perturbation deesea

Finally, the pattern of the Gram matrix does not change i® ¢hs number of rings is in-
creased, which is observed by comparing Figure 5.30 (latt)=30 (right).

Spacing

The absolute coefficients of the dominant single-ring esgerentu"" in the eigencurrents of
the nth group show the same global behavior for different spaciag illustrated by Figure
5.32. For eigencurrents,,, with lower indexgq, these coefficients are totally independent of
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Index
Index

Figure 5.30 Color pattern of the absolute Gram matrix, with inner product: ) comp, Of the
eigencurrents for line arrays with 15 and 29 rings in free space (inEiBgncurrent normaliza-
tion: associated norm df-, - )comp. Parameter values as in Figure 5.20.
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Figure 5.31 Absolute coefficients (in dB) af5"" (+) andu$™ (x) in the 3rd (left) and Nuu, —
2)th eigencurrent of the 1st group for line arrays\af,, = 10 (black), 20 (blue), 40 (red), and
100 (purple) rings. Eigencurrent normalization: maximum coeffici®atrameter values as in
Figure 5.20.

the spacing, while for eigencurrents with higher indexirthetual values depend weakly on the
spacing. In particular, Figure 5.32 (lower right) showstfloa d = A /2, the coefficients of the
dominant single-ring eigencurrent"? in the last eigencurrent of the first group are larger at
the boundaries of the line array than for the other spaciBgsilar differences were observed
in the comparison between a strip of half a wavelength witlpiegewise expansion functions
and a line array of 15 rings witth = \/2, see Figure 5.22 (dashed curves). This suggests that
a better comparison between line arrays of rings and strighspiecewise functions is obtained
for other cases than the spacing\g®2, which was considered in Figure 5.22.

Figure 5.32 confirms that faf = A\/2, the perturbation of the eigencurrents, described by
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the coefficients ofu5™®, increases with the index of the eigencurrents,,,. For the other
spacings, the perturbation increases for lower valuesansfd decreases for higher valuesjof
Further investigation revealed that the perturbationdases up to aboyt= 32 for d = 2)\/5
andd = 3\/5, and up to abou = 24 for d = 7\/10. Ford = 3\/5, the valueg = 32

is clearly observed from Figure 5.33 (left), which shows tioéor pattern of the absolute co-
efficients ofu$"" in the eigencurrents of the first group. Ror= 2)/5, a similar pattern is
obtained. Comparing Figure 5.33 (left) with Figure 5.24lt), we clearly observe the differ-
ences between the perturbationsdoe 3\ /5 and ford = A\/2. Moreover, comparing Figure
5.33 (right) and Figure 5.30, we observe thatder 3\ /5, the self coupling of the eigencurrent
groups with respect to the inner prodyet - )comp is higher than foel = A\/2.

Figure 5.34 shows that the phases corresponding to theutbswlefficients ofi5'" in the
9th and 40th eigencurrents shown in Figure 5.32 are the sahis.illustrates that the phases
of the dominant single-ring eigencurrarjt® in the eigencurrents of theth group are the same
for different spacings. Phase differences occur only flatireely small absolute coefficients.

Because of the weak dependence of the eigencurrents orditiegpwe can choose a certain
spacing and compute the eigencurrents. Then, for otheirggsthe eigenvalues are approxi-
mated by the Rayleigh Ritz quotient,

<unq> Zaunq>comp

Vng = . (538)

|| unq ||gomp

Here,u,, is an eigencurrent of the chosen spacifig,is the impedance operator for the new
spacing, and - ||comp is the associated norm of the composite inner product.

Generating-Ring Parameters

As observed in Subsection 5.2.2, the eigencurrents of desiimg are a function of the angle
that describes the circumference; their dependence omtios 8 = b/a andh/a is negligible.
Moreover, in free space, the eigenvalues depend strongh:of2wa/)) and weakly ong; in
a half space, they also depend stronglyigia. Since the off-diagonal blocks of the moment
matrix of a line array of rings are independengidind the diagonal blocks are diagonal matrices
with the single-ring eigenvalues on the diagonal, the aigetors of a line array of rings depend
weakly on3. Hence, the same is valid for the coefficients of the singig-eigencurrents
in the array eigencurrents. Numerically, we found that tepeshdence of the coefficients of
the dominant single-ring eigencurrent ba andh/a is negligible. Moreover, the coefficients
describing the perturbation depend weakly on these paemetth differences of the order
of 1 dB at -10 dB or less. Fixing the coefficients of the arrayeeicurrents as obtained for
certain generating-ring eigencurrents, we can computeig@values for other generating-ring
eigencurrents by (5.38).

For a single ring, the choice of the orientation anglés arbitrary. For a line array, this
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Figure 5.32 Absolute coefficients (in dB) ofii®® (4) andu§™ (x) in the 1st (upper left),
9th (upper right), 32nd (lower left), and 40th (lower right) eigencurthe 1st group for
line arrays of 40 rings with spacings\/5 (red), A/2 (blue), 3\/5 (black), 7A/10 (purple).
Eigencurrent normalization: maximum coefficient. Parameter valuéfseafenerating ring as
in Figure 5.20.

Ring index
Index

10 40

Eigencurrent index Index

Figure 5.33 Left: color pattern of the absolute coefficientsugf® in the eigencurrents of the
1st group for a line array of 40 rings in free space (in dB). Right: cpldtern of the absolute
Gram matrix, with inner product-, - }comp, Of the eigencurrents of the same line array (in
dB). Eigencurrent normalization: maximum coefficient (left) and eisged norm of -, - ) comp
(right). Parameter values of the generating ring as in Figure 5.20,ibutiw= 3\ /5 instead of
d=\/2.
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Figure 5.34 The phases corresponding to the absolute coefficient§"6fin the 9th and 40th
eigencurrents as shown in Figure 5.32 (upper right and lower righthéospacingg€\/5 (x),
A/2 (0),30/5 (A), 7TA/10 (O).

angle describes the position of the local feeds, as intredlirt Section 4.2, with respect to the
line-array axis. Therefore) is a line-array parameter, although it is prescribed fornglsi
ring. The choice of) determines which cosine and sine single-ring eigencis iz symmetric
and anti-symmetric with respect to the line-array axis. Omow, we have considered the
symmetric single-ring eigencurrents, which are descripethe cosines for) = 0 and which
generate symmetric array eigencurrents (with respectedinie-array axis). As mentioned in
the introduction of this section, the anti-symmetric areagencurrents are described by the
sines. These eigencurrents do not couple with the symneiggencurrents and can therefore
be calculated independently. The coefficients descrilliegnti-symmetric array eigencurrents
show the same patterns and have the same properties as theesigrarray eigencurrents.
An example is given in Figure 5.35 (left), which shows theddbi® coefficients of the 18th
eigencurrent both for the first group of the symmetric ariiggrecurrents and for the first group
of the anti-symmetric array eigencurrents. Her&(p) = cosp andu$®(p) = 1 for the
symmetric eigencurrents and'”(yp) = sin ¢ andu$®™®(¢) = sin 2¢ for the anti-symmetric
eigencurrents. Figure 5.35 (right) shows the spread of thedroup of eigenvalues for the
anti-symmetric eigencurrents of the 4 different line amapmetries considered in Figure 5.18.
This spread is of the same order as the spread of the first gfaigenvalues for the symmetric
eigencurrents as shown in Figure 5.18 (upper left). We osethat the spread of the second
group of eigenvalues for the anti-symmetric eigencurrents the same order as the spread of
the third group of eigenvalues for the symmetric eigenceusie Since this third group is not
taken into account to describe the mutual coupling in lin@ya of rings, only one group of
anti-symmetric eigencurrents needs to be taken into ac¢owtescribe the mutual coupling.
We also investigated the cage= = /4 for which the single-ring eigencurrentss ¢ and
sin ¢ are neither symmetric nor anti-symmetric with respect &itie-array axis. As mentioned
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Figure 5.35 Left: absolute coefficients af{"” andu$"® in the 18th eigencurrent of the 1st

group for a line array of 40 ringsi(= \/2) in free space generated from single rings with
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A). Right: maximum and minimum of the absolute perturbations of 1st grbajgenvalues as

a function of Ny, for the 4 different line array geometries specified in Figure 5.18. rivetier

values of the generating ringa = 7 /3, 8 = 3/100, ¢ = 0.

in Section 5.2.2, these eigencurrents span a 2-dimenséigahspace, because they have the
same eigenvalues. In the line-array analysis, the domsiagte-ring eigencurrents of the first
and second groups appear tode ¢ £ sinp = cos(p + 7/4) instead ofcos ¢ andsin ¢,
which are prescribed. These eigencurrents are symmetli@ati-symmetric with respect to
the line-array axis. Hence, despite the prescription ofsdmmetric single-ring eigencurrents,
the array eigencurrents are symmetric and anti-symmettltt ngspect to the line array axis,
i.e., the symmetry line of the array. This observation isdarrespondence with physical views,
because the symmetry of a single ring is determined by ittagian, while a line array of rings
is symmetric with respect to the line-array axis. Hence,dbgervation is a validation of the
eigencurrent approach. The consequence of prescribirgpttiee and sine functions instead of
cos(p £ m/4) is that the two corresponding groups will not be identifiedectly, because the
coefficients ofcos ¢ andsin ¢ in the array eigencurrents are on each ring of equal magmnitud
Therefore, these groups are joined together at the costropetational efficiency. In general,
groups corresponding to a degenerate single-elementveilgenare joined together, if no a
priori information is available about the excitation fiel@therwise, such information should be
used to choose the single-element eigencurrents corrésypto a degenerate eigenvalue.

Finally, by varying the frequency, we vary both the singlggrparameters and the spacing.
Therefore, the array eigencurrents will show both typesetifdvior described above. In Section
6.2, we will show an example in which the dominant eigenaurbehavior at the frequency for
which the elements of an array exhibit a ‘resonant broadsileedded impedance’ is the same
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as the dominant eigencurrent behavior at frequencies 154 8% below this frequency. We
recall that the elements exhibit a ‘resonant broadside ddeskimpedance’, if their reactances
are on average zero.

Scanning

Supported by Figure 5.25, we stated that each eigencumentansequently, each eigenvalue,
is related to certain main lobes in the far field. In this sghisa, we will show in detail how
the main lobes correspond to specific scan angles of the liag. aFigures 5.36 — 5.38 show
results for line arrays of 40 rings with spacings/5 and2X/5. The single-ring parameters
are chosen as in the description of the eigencurrents abgdirst discuss the results for the
spacing3A/5. The eigenvalue curve of the first group is shown in Figuré® §l&ft), where the
first, 32nd, 36th, 39th, and 40th eigenvalue are indicatethdy index. Figure 5.37 (left) shows
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Figure 5.36 Normalized eigenvalues of the 1st group for two line arrays of 40 ringsem
space and the corresponding normalized eigenvaligesf(a single ring, i.e.$"®. Normaliza-
tion: |v{""|. Left: d = 3\/5. Right: d = 2)\/5. Parameter valuesNzy = 2, ka = 7/3,
B =3/100,% = 0, Neos = 2, Nsin = 0.

that the electric far field of the 32nd eigencurrent exhibiteain lobes in therz-plane, to be
precise, main lobes @t= +41.8° andf = +90.0°. As described in Section 3.5, for the spacing
3)\/5, the anglest41.8° are scan angles for which a grating lobe appeaxs08t0°. Hence, the
main lobes in Figure 5.37 (left) represent the scan lobeslat8° and the corresponding grating
lobes at+90°. Similar phenomena are observed for the 36th and 39th aigesmts. In the far
field of the 36th eigencurrent shown in Figure 5.37 (left,ldamscurve), the two main lobes at
+68.9° are the grating lobes for the scan angfe&.3°, which are exactly the positions of the
other two main lobes in the pattern. In the far field of the 38tqencurrent shown in Figure
5.37 (right, dashed curve), the angles corresponding tgrditéng lobes and the scan directions



166 5. THE EIGENCURRENTAPPROACH

-10 -10r

-20}

Normalized far-field comp. (dB)
Normalized far-field comp. (dB)

59 -5q

60 920

0 (deg)

Figure 5.37 Normalized absolut@-components (in dB) of the electric far fields in the-
plane for the 32nd (solid curve, left), 36th (dashed curve, left), 3%is{ed curve, right), and
40th (solid curve, right) eigencurrent of a line array of 40 rings in fpace. Normalization:
maximum absolute-component of the 1st eigencurrent. Parameter values as in Figfre 5.

are £60.1° and¥53.1°, respectively. The far field of the 40th eigencurrent showly owo
main lobes positioned at56.2°, because scanning at these angles results into grating &ibe
F56.2°. For scanning at angles larger thah2°, the grating lobes in the electric far fields of
the eigencurrents 32 — 40 become the scan lobes and vice versa

For the line array considered in Figure 5.37, the main loltes9%° appear in the 32nd
eigencurrent. For the spacinga/10 and4\/5, instead of3)\/5, we found these main lobes
in the 24th and 16th eigencurrents, respectively. Thesereasons raise the question whether
there is a relation between the spacing and the index of tfemeurrent that induces main lobes
at+90°. Numerically, we found forl > A/2 that the eigencurrent with index

index = { (1 _ %(;/2» Nsub—‘ (5.39)

induces these main lobes lobes. As in the example of Fig8i& the main lobes of the far-field
patterns with index larger or equal to (5.39) represent bwin lobes and grating lobes. For a
line array with 15 rings and spacing’2, as in Figure 5.25, the grating lobes appear in the 15th
eigencurrent, which is in correspondence with (5.39).

To show how the far fields of the eigencurrents evolve fordadijust below (5.39), we
consider the far fields of the 30th and 31st eigencurrenth@fline array of 40 rings with
spacing3\/5. Figure 5.38 (left) shows that these far fields have sided@te-90°, which are
17.5dB and 12.2 dB lower than the corresponding main lobhs.ldbest90° of the far field
of the 32nd eigencurrent are only 5.2 dB lower than the lobd$.&8°.

For a line array of 40 rings with spaciri\/5, Figure 5.36 (right) shows the eigenvalue
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curve. Since the spacing in the array is smaller than halfntheelength, we do not expect
grating lobes. Numerically we verified that the first 32 eiggments have only two main lobes
in their far fields, with the exception of the first eigencutrewhich has one main lobe. The
far field of the 33rd eigencurrent in Figure 5.38 (right) slsd@main lobes at90°, which are
the grazing scan angles of the array. Although the spaciagaler tham\ /2, we observe that

0 : : : : r 0

-10r -10

-20F

-30f *

Normalized far-field comp. (dB)
Normalized far-field comp. (dB)

-5 59

Figure 5.38 Normalized absoluté-components of the electric far fields in the-plane for the
30th (solid curve) and 31st (dashed curve) eigencurrent of the frag & Figure 5.36 (left).
Right: idem, but for the 32nd and 36th eigencurrent of the line array iar€i§.36 (right).

the index 33 follows from (5.39) with a difference of only lurkher investigation showed that
for spacings smaller than half a wavelength, (5.39) indicdlhe eigencurrent, which generates
the grazing scan angles. Since we observed that main lobdso#n scan lobes and grating
lobes for indices larger than or equal to (5.39), we do noeekpgrating lobes for indices larger
than33 in the line array of Figure 5.38 (right). This is confirmed by thumerical results. The
figure shows that the 36th eigencurrent does not have a clgarlabe. Moreover, the radiation
intensity is 20 dB lower than the main lobe of the first eigeneut.

The results discussed above confirm that each eigencuaeisponds to a scan angle. If
a grating lobe is present at such a scan angle, the eleattielid of the corresponding eigen-
current shows both the scan lobe and the grating lobe. Gigeamangle, there exist an eigen-
current such that the difference between the angle of onts afiain-lobes and the scan angle
is minimal. We expect that if the array is scanned at this stagie, the resulting scan lobe
is composed of that main lobe and main lobes of one or two beighg eigencurrents. This
expectation is based on the following reasoning.

Ideally, if the selected scan lobe corresponds to the eigesrtsu, 4,,..., %14, (1 <
q1,---,qr < Ngup) Of the first group, the excitation should be chosen as adicembination
of these eigencurrents. In practice, an array is scanneccattain scan angle by means of
a linear phase taper. To link the eigencurrent approachaotipe, we search a relationship
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between choices of linear phase tapers and choices of éxagencurrents. As observed in the
description of the eigencurrents, the coefficientapf in an eigencurrent,, showg— 1 phase
reversals as a function of the ring index. The total phaderéifice equal§; — 1)x. Therefore,

if the total phase difference of the linear phase taper adyal- 1)m, the eigencurrentty, is
excited. To show the validity of this statement, we consalkme array of 15 rings in free space
with spacing\ /2. Table 5.7 shows the main lobe positions of the eigencisthe first group.
Corresponding electric far fields are depicted in Figur® 502 the of the first, second, fifth, and
15th eigencurrent. Also, the table shows the scan angleinglok by the linear phase tapers with

Table 5.7 Main lobe positions of the eigencurrents of the first group of a line arfai5o
rings in free space. The scan angles of the same line arrays foripegsphase progressions
kd sin 6scan. Parameter values as in Figure 5.36.

Index 1 2 3 4 5 6 7

Main lobe eigenc.| 0° | £6.3° | £10.3° | £14.0° | £18.0° | +£22.1° | £26.1°
Phase progression 0 | £n/14 | £27/14 | £37/14 | 47 /14 | £57/14 | £67/14

Scan angle 0° | x4.1° +8.2° +12.4° | £16.6° | £20.9° | £25.4°

8 9 10 11 12 13 14 15
£30.1° | £34.7° | £39.5° +44.5° +49.8° +56.1° +63.9° | £90°
+77/14 | +87/14 | +97/14 | £107/14 | £117/14 | £127/14 | £137/14 | =+x
£30.0° | £34.8° | £40.0° +45.6° +51.8° £59.0° £68.2° | £90°

total phase differencdg — 1) and— (¢ — 1)x. The corresponding scan angles are defined by
(¢ — 1)w/14 = kdsinfs..,. For the first 12 eigencurrents, the differences betweersthea
angles and the main lobe positions are smaller than For the 13th and 14th eigencurrents,
the differences ar2.9° and4.3°. The beam width of the main lobe of the 15th eigencurrent is
large and, hence, the scan angle is not well determined.i@iryg the differences between the
linear phase tapers and the eigencurrents, we concludthéhetdtal phase difference of a phase
taper that ‘fits to’ thejth eigencurrent is not exactly(q — 1)7. This phenomenon is explained
by the averaging effect of the linear phase progression ereitpencurrents, as illustrated by
Figure 5.39 for the phase distribution of the coeffientasP in the third eigencurrent. A single
eigencurrent cannot be excited by a linear phase progressio

Except for the first eigencurrent, the electric far field afleaigencurrent has two main lobes
if there are no grating lobes. A linear phase taper inducésame main lobe. For example,
the third eigencurrent of a line array of 15 rings in free gpadth d = \/2 has two main
lobes at+10.3°, see Figure 5.7. If a linear phase taper with,, = 10.3° is applied, only the
corresponding main lobe is excited. In Section 6.2, wetilate this by an example.
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Figure 5.39 Phase distributiond] of the coefficients of.;"® in the 3rd eigencurrent of the 1st
group for a line array of 15 rings and the phase distribution on the aoraghé linear phase
progressions Witllscan = 8.2° (A) andfscan = —8.2° (x).

Comparison with the Infinite-Array Approach

In the infinite-array approach, a fixed linear phase tapeheratray is assumed, see (3.46). The
eigencurrents of the array exhibit the same phase diswibas the phase taper. In contrast, the
eigencurrents of the finite array have a block-like phasgiligion as in Figure 5.39. This is
a first indication that a finite array will never show the samebdvior as the infinite array, no
matter the size of the finite array.

For the infinite-array approach, the eigencurrents aregmdted from the infinite-array mo-
ment matrixA(fscan ), see (3.48) withl = kd sin f,..,. Since the matrix depends on the scan
angle, the eigenvalues and eigencurrents depend in gemetake scan angle as well. Each
eigenvalue of the single ring corresponds to an eigenval(#...,,) of the matrixA(fscan ). For
the finite-array approach, each ring eigenvalyecorresponds to a finite and discrete group of
eigenvalues{unq}f;’;jb. Analogously, for the infinite-array approach, each eigéum,, corre-
sponds to a continuum group of eigenvalues parameterizég.hy In both approaches, each
eigenvalue in a group is related to one scan angle. Of cotlmsejuestion arises whether in the
limit for a finite array the discrete groups tend to the camiim groups of the corresponding
infinite array. To investigate this, we consider two exaraple

First, we consider two line arrays of 15 and 40 rings with §pga /2. Figure 5.40 (left)
shows that the eigenvalues of the first group of the finitayamoment matrices all coincide
with certain eigenvalues of the first group of the infiniteagrmoment matrix. To compute the
spectrum of the infinite-array moment matrix, we have to ¢eie the Fourier series (3.48)
that describesi(0s..n ). Therefore, the curve for the infinite-array spectrum isgasgive. For
larger truncation numbers than in Figure 5.40, we obseriatithe curve is stretched down-
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Figure 5.40 Left: normalized eigenvalues of the 1st group for line arrays ofol}&0d 40 )
rings in free space, and the normalized eigenvalues of the 1st grotigefeame line array, but
computed by the infinite-array approach (solid curye: —100, . . ., 100 in the series (3.48).
Right: as left, but only the eigenvalues for 15 rings and the eigenvaluamel by the infinite-
array approach for the positive-valued main-lobe positions in Tablé2hd row) are shown
(x). Normalization:|5"P|. Parameter values as in Figure 5.36, but wits \/2.

wards. Figure 5.40 (right) shows that the eigenval{m&iﬁ};i1 of the line array of 15 rings
are very well approximated by the infinite-array eigenval{m(Qq)}}f;1 obtained for the scan
angles{eq}}f’:1 that correspond to the positive-valued main-lobe positiohthe finite-array
eigencurrents in Table 5.7, except for the last eigenvalitee same is valid for the negative
valued main-lobe positions. This observation indicateseomore that there is a one-to-one
correspondence between the finite-array eigenvalues aisdret@ set of scan angles.

Second, we consider line arrays of 40, 100, 200, and 400 iinfiee space with spacing
3A/5. The geometry parameters are the same as in Figure 5.36 ffefure 5.41 (left) shows
that the curve of the infinite-array eigenvalues is streda@mvnward if more terms in the Fourier
series describingl(6s.an) are taken into account. As a result, not all eigenvalues efittite
arrays coincide with infinite-array eigenvalues. Morepvkan eigenvalue of a finite array
differs from the infinite-array eigenvalues, it differs rfinothe eigenvalues of the other finite
arrays as well. For example, for the line array of 40 rings,3Bnd and 33rd eigenvalue differ
significantly from both the infinite-array eigenvalues ahd eigenvalues of the other arrays.
Figure 5.41 (right) shows that at the 26th eigenvalue, thersialues{v1,};2, of the finite-
array moment matrix start to deviate from the eigenval(ieg6,)};2, of the infinite-array
moment matrix obtained for the positive-valued main-lobsitions{, 3(]:1 of the finite-array
eigencurrents. We note théis = 32.4°, 6,5 = 35.1°, 039 = 38.1°, andf3, = 41.8°. The
observed differences are explained as follows. In Sectibnvge found that the infinite-array
moment matrix for line arrays in free space is possibly djeet at the grazing scan angles
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Figure 5.41 Left: normalized eigenvalues of the 1st group for line arrays of0100 A),
200 (), and 400 &) rings in free space and the corresponding infinite-array eigenvédogd
curve:q = —100, . ..,100 in the series (3.48) dotted curvey = —200, ..., 200). Right: as
left, but only the eigenvalues for the finite array of 40 rings and the e@lees obtained by the
infinite-array approach for the main-lobe positions of the finite-arragreigrrents x for scan
angles< 56.2° and+ otherwise). Normalizationjv5"?|. Parameter values as in Figure 5.36
with d = 3)\/5.

+90° and at the grating-lobe scan angles, i.e., the scan angleshfoh a grating lobe appears
or disappears at90°. In other words, the Fourier series (3.28)escribing this matrix does
not converge. The differences occur, because the 32ndwailgencorresponds to the grazing
and grating-lobe scan angles. A similar phenomenon is wbden Figure 5.40 of the previous
example, where the 15th eigenvalue corresponds to thengréand grating-lobe) scan angles.
The two examples suggest that, for an increasing numbengsd rthe sequence of eigenval-
ues corresponding to the grazing and grating-lobe scaramghds to infinity. Mathematically,
this observation could be explained as follows. As mentioneSection 3.5, the infinite-array
moment matrix is called the symbol of the Laurent matrix {3.8oth the Laurent matrix and
any related finite-array moment matrix are generated by yhesl A(6;..,,) expanded into a
Fourier series as in (3.48) The finite-array moment matrix is a truncated Laurent mafrhen,
according to the extension of [14: Th. 4.13] stated on [14197], the largest singular value
of the finite-array moment matrix tends to infinity as the nemobf rings tends to infinity, if
the symbol is unbounded. In Section 3.5, numerical resatt$hfe range of the symbol, sup-
ported by analytical explanations, suggest that the syisbioleed unbounded. At the grazing
and grating-lobe scan angles, the symbol seems to exh@atitbmic singularities. Since the
finite-array moment matrix is almost normal, the absolugevalues approximate the singular
values. The largest eigenvalue of the finite-array momemtix@orresponds to the index given
by (5.39) and, herewith, to the grazing and grating-lobensoagles. Hence, the sequence of
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eigenvalues corresponding to the grazing and grating-sgla@ angles tends to infinity. The
observation explains why the spreads of the first groupsgafreialues in Figure 5.19 increase
with the number of rings.

Numerical results showed that the curve of the infiniteyaeigenvalues in Figure 5.41 (left)
equals the range of the symbol for any choice of the trungationber. In [14: Th. 1.2], such a
result is generally given for bounded symbols. Accordingleorem 5.5 in [116], the singular
values of the finite-array moment matrix follow the absohatege of the symbol, if the symbol
is a square integrable function and if only one expansiortfan per element is used. We
observed numerically that all eigenvalues of the finitesatmoment matrix follow the range,
except the eigenvalues with indices equal or close to (5i39) those corresponding to the
grazing and grating-lobe scan angles.

We recall two statements of Section 3.5 in the context of $kistion. First, for spacings
smaller than half a wavelength, the divergence of the Foagges describing the infinite-array
moment matrix appears only at grazing scan. For the lingydrrdigure 5.36 (right) with
spacing2) /5, the grazing scan is described by the 33rd eigencurrenthaitishown in the
figure. The eigenvalue curve suggests the same divergeavibelof the eigenvalues as the
behavior for the spacingp\/5 in Figures 5.36 (left) and 5.41. Second, in a half space, tueiér
series describing the infinite-array moment matrix coneei@t the grazing and grating-lobe scan
angles. This is confirmed by Figure 5.42 (left), which shdwesriormalized eigenvalues for the
line arrays of 40 and 100 rings with= 3\ /5 and the corresponding infinite-array eigenvalues.
The eigenvalue curves are totally different from the eigdun curves for free space as shown
in Figure 5.41. In free space, the largest eigenvalue of teegioup corresponds to the grazing
and grating lobe scan angles. In a half space, the largestlye is the first eigenvalue, which
is fixed for increasing numbers of elements and which coardg to the broadside scan angle.
In contrast to free space, the eigenvalues of finite arragiaf space coincide all with infinite-
array eigenvalues. Moreover, the curve describing theitefarray eigenvalues converges with
the truncation number of the corresponding Fourier sefiss result, the eigenvalues for larger
numbers of rings can be estimated from the distribution gémialues on this curve for lower
numbers of rings.

Figure 5.42 (right) shows that the eigenvalyes, 3&1 of the line array of 40 rings are
the same as the eigenvalus (6,)}72, of the infinite-array moment matrix obtained for the
positive-valued main-lobe positiond, 30:1 of the finite-array eigencurrents. At the 32nd
eigenvalue, the eigenvalue curve shows a bend, which ispaésent in the eigenvalue curve
of the infinite-array moment matrix. In free space, this nigdue corresponds to the grazing
and grating-lobe scan angles and its index is describedébgeheral relation (5.39). In a half
space, the 32nd eigencurrent does not generate main lohe¥)atas observed from Figure
5.43 (left). The 33rd eigencurrent generates two main Il@ies42.3° and two main lobes
of low intensity at+79.4°. The positions of the second two main lobes diffe3° from the
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grating-lobe positions for the scan angled2.3°, i.e., 783.7°. For the 36th eigencurrent in
Figure 5.43 (right), the main-lobe positions correspontheomain-lobe positions obtained for
free space and, hence, the main lobes represent scan labéearcorresponding grating lobes.
The same behavior is observed for the 40th eigencurrenthadenerates only two main lobes
as the 40th eigencurrent in free space.

The absence of main lobes #90° in the far field of the 32nd eigencurrent and the low
intensity of two main lobes of the 33rd eigencurrent are &ixgd by the behavior of the element
patterns, or electric far fields, of the single-ring eiganents in a half space. These patterns
exhibit zeros at-90° and, hence, the far field of the array must exhibit zereBHY° as well.

5.3.3 Uniform Line Arrays of Strips

In this subsection, we compare the behavior of the eigeagabfi line arrays of strips with the
behavior of the eigenvalues of line arrays of rings. Linesrof strips are described in Section
3.5. The approach to calculate the eigenvalues is the sartie @gpproach for line arrays of
rings. Thus, we choose a single strip as the generatingsyband we compute the eigenvalues
and eigencurrents of this strip as in Subsection 5.2.3. Nextproceed from a single strip to
a whole line array such that the number of subarrsyg, equals the number of element;.
The centers of the strips are positioned on:tkexis as shown in Figure 3.2. The eigencurrents
of a single strip composed of cosine expansion functionsyrenetric with respect to the line-
array axis, while the eigencurrents composed of sine exparfignctions are anti-symmetric.
Since a symmetric current does not couple with an anti-sytmerearrent, the cosine expansion
functions generate symmetric array eigencurrents, whéesine expansion functions generate
anti-symmetric array eigencurrents. These two types afyagigencurrents can be determined
independently.

Calculation of the Moment Matrix

The moment matrix for a (uniform) line array of strips genedafrom a single strip is a block
matrix, the diagonal blocks being diagonal matrices with ¢éigenvalues of a single strip on
the diagonal. The off-diagonal blocks are dense matricesrieed by (5.19), where™® (n =
1,... ,Ncsglb) are the eigencurrents of a single strip that contributaiggntly to the mutual
coupling in the line array. To rewrite (5.19), we use thetreteship (5.7) between the subarray

inner product and the initializing- inner product on the intervg+1, 1]. Then, we obtain
Zpq (m,n) = <y7s71;b7 Za,quf«LUb>L2 ) (5.40)

where the functiongs"> form the bi-orthogonal set corresponding to the eigenatsref a

single strip. The functiong,, are calculated from (5.10) and their expansion coefficieuitis
respect to the expansion functions on a single strip by §5.Ihe projectionPy,;, is omitted
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in the inner product (5.40), because the functigft® are elements of rg,,;,) and Py, is
constructed by thé, inner product.

Like the components of the usual moment matrix in Subse&i8rl, Z,,, can be interpreted
as a function of/s"> anduS®. With this interpretationZ,, is a functional, which is calculated
as in (3.15) withv replaced byys'"> andw replaced byus". The remaining inner products
incorporate the integral operaté‘gq with kerneIqu, which is singular fop = ¢ and regular for
p # q. To calculate these inner products, we can substitute I5)3he expansions @f'" and
us"P with respect to the expansion functions on a single stripyéi@r, this way of computing
the moment matrix is in general not efficient, because we negglhio compute as many inner
products as in the usual moment method. Therefore, we satmpleinctionsys"?, «5", and
their derivatives first and, then, we compute the inner petaloy a 2D composite Simpson rule.
To reduce the computational effort, we sample the kefhgbefore calculating the block matrix
Zpq. If this kernel is singular, the sampled eigencurrents mjgbvide erroneous results for
the moment-matrix components. However, sipcg ¢ in (5.40), all integrands are regular. As
mentioned above, the components of the block mattitgswhich exhibit the singular behavior
of the kerneIqu, are diagonal matrices with the eigenvalues of a singlp stithe diagonal.
In more general terms, the singular behavior of the kerraigh role in the initialization only.
In the cycle, this behavior is incorporated in the eigersalof a single strip.

Comparison with Uniform Line Arrays of Rings

In general, the behavior of the eigenvalues and eigendsroftine arrays of strips is the same
as described in Subsection 5.3.2 for line arrays of ringsteldeer, relations between scanning,
eigenvalues and eigencurrents, and the infinite-arrayoagprare analogously described. There-
fore, for line arrays of strips, we will specifically focus tire correspondences and differences
with line arrays of rings.

As in Subsection 5.3.2, we first consider the spreads of thenealues. Figure 5.44 (left)
shows the maxima and minima of the absolute perturbatiotteeasecond group of eigenvalues
for line arrays of half-wavelength strips with two diffetespacings, both in free space and in a
half space withh/¢ = 4/5. Comparing the order of magnitude of the spread, 1@, with
the orders of magnitude obtained for line arrays of rings,Sgure 5.18, we observe that this
spread has the same order of magnitude as the spread of thgitbup of the line arrays of
rings. Since we do not need to take into account this thirdigrave need not take into account
the second group of line arrays of strips either.

Figure 5.44 (right) shows the maxima and minima of the alisgderturbations of the first
group of eigenvalues as a function of the spacing for linayarof 5, 10, 20, and 40 strips in a
half space witth /¢ = 4/5. Since the strips can be positioned closer to each othethieanmgs,
the maxima and minima are depicted for smaller spacings@hianfor the line arrays of rings
in Figure 5.19. The spread for line arrays of strips shows#me behavior as the spread for the
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Figure 5.44 Left: the maximum and minimum absolute perturbation of the eigenvalue® of th

2nd group for line arrays of strips as a function of the number of el&n¥n,s; the strip

geometries corresponding to the different symbols are the same eifieshén Figure 5.18.

Right: the maximum and minimum absolute perturbation of the eigenvalues aktlgroup for

line arrays of strips in a half space with/¢ = 4/5; the numbers of elements corresponding to

the different curve styles is the same as specified in Figure 5.19. Bmlamluesingf) =4,

20 =X/2, 3 =1/50, Neos = 15, Nsin = 0.

line arrays of rings, but the local maxima are more pronodnespecially at half a wavelength.

We consider two different line array settings to comparecthefficient distributions of the
eigencurrents of line arrays of rings and strips. First, westder line arrays of rings and strips
in free space with 10 elements and spackig. In both line arrays, we use the first two (sym-
metric) single-element eigencurrents to describe the ahwtoupling. For a ring with a cir-
cumference of about a wavelengthu(= 7/3), the eigencurrents ang">(¢) = cos ¢ and
u$™(¢) = 1. For a strip of half a wavelength, Figure 5.6 shows the eigaeats. Figure 5.45
shows the absolute coefficients @f*® and 5" in the first and last eigencurrents of the first
group and the corresponding phases of the coefficient$'df Both the absolute values and the
phases of the coefficients of*?, which describe the dominant behavior of the eigencurifents
the two line arrays, agree very well. The coefficients®f, which describe the perturbation,
do not match. The perturbations are larger for the line apfayngs than for the line array of
strips, because the mutual coupling between the singhaegieeigencurrentss for the rings
is stronger than the mutual coupling for the strips. Moreotree behavior of the perturbations
differs, which is explained by the same reasoning as de=tiitorelation to Figure 5.26. The
absolute coefficients ofs"> anduSuP in a certain eigencurrent,,, generate the same patterns,

m m

if the eigencurrentss > anduSUP have the same even or odd symmetry with respect to the line

parallel to they-axis through the center of the element. For the line arrayrafs,u$"> andu$"”
have the same symmetry, but for the line array of rings, treepat have the same symmetry.
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Figure 5.45 Left column: Absolute coefficients (in dB) af{"" (rings: +, strips: o) andu$"™”
(rings: *, strips: A) in the 1st (upper left) and 10th (lower left) eigencurrent of the 1stigro
for a line array of 10 rings and a line array of 10 strips in free spacehtRiglumn: phases
corresponding to the coefficients of*. Eigencurrent normalization: maximum coefficient.
Parameter values of the line array of ringZSfj‘pllb =2,d=X/2,ka = n/3, 8 = 3/100,

1 = 0, Neos = 2, Nsin = 0. Parameter values of the line array of striﬂ@‘g}) =2,d=M)/2,
20=X/2,8="b/0 =1/50, Neos = 15, Nsin = 0.

Therefore, the behavior of the perturbations differs.

Finally, we consider line arrays of rings and strips in a bpHce § = \/5) with 40 elements
and spacing3\/5. As in the first example, we use the first two (symmetric) srglement
eigencurrents to describe the mutual coupling. Figure Shivs the absolute coefficients of
us"? andu$ in the 13th, 19th, and 35th eigencurrents of the first groupthe corresponding
phases of the coefficients of*". As in Figure 5.45, the coefficients of*" match very well,
while the coefficients ofi5* differ. Thus, we conclude that the eigencurrents of line arrays of
rings and strips have the same dominant coefficient digidhu Based on this conclusion, we
expect that the coefficient distribution of the eigencusef (line) arrays is independent of the
element shape.
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5.4 Summary of the Conclusions and Discussion

In this section, we summarize point-by-point the main cosicns obtained for a single
ring/strip, and for line arrays of rings/strips. Moreovbased on these conclusions, we ar-
rive at recommendations for the application of the propasgdncurrent approach to arrays of
arbitrary elements. We describe first the results for a sirnigb/strip.

1. For ring circumferences and strip lengths up to a few timesvtlavelength, a low number
(< 10) of eigencurrents is sufficient to describe the current samly. The exact number
depends on the excitation.

The eigenvalues,, of rings and strips tend as,/n. The slope of the eigenvalue curve
decreases non-monotonically with the ratio of wavelengthring circumference or strip
length.

2. For a strip, the approximation of the first eigencurrentsrnidépendent of the chosen ex-
pansion functions. The eigencurrents of a ring are knowrlosed form, i.e., cosine and
sine functions, which depend only on the angle that desiioe circumference.

The eigencurrents of a strip are evaluated numerically fatkntire-domain and piece-
wise expansion functions. The entire-domain expansioations show that the eigencur-
rents are cosine and sines plus a perturbation. The fist, /4| eigencurrents obtained
by Nex, piecewise expansion functions equal the fitdt«,/4| eigencurrents obtained
by the entire-domain expansion functions.

3. The eigencurrents for a single element depend only weaklyeogeometry parameters, if
they depend at all. As a result, if the eigencurrents for aiireg of geometry parameters
are computed, the eigenvalues for other settings can beleaéd from the Rayleigh-Ritz
quotient (5.14).

The eigencurrents of a ring do not depend on the geometrynedeas. The eigencurrents
of a strip do not depend on the ratio of length and wavelengththe ratio of height
above the ground plane and wavelength. They depend onlylyveakhe ratio of width
and length.

4. The eigencurrent corresponding to the smallest eigenv@hegsolute sense) contributes
most to the radiated energy, if this eigencurrent matchdbthe excitation field.

The current is expanded into the set of (approximated) eigreents. In the resulting se-
ries, each eigencurrent is multiplied by its correspondlingrted eigenvalue.

5. The inner product with respect to which the eigencurrenéscthogonal can be evaluated
efficiently. This saves computational effort in the cyclthefeigencurrent approach.
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The eigencurrents of a ring are orthogonal with respectdd.thinner product. Only the
first few eigencurrents of a strip are non-orthogonal.

Next, we describe the results for line arrays of rings/strip

6. For line arrays of rings, only the first two or three singleig eigencurrents contribute
to the mutual coupling. For line arrays of strips, only thesfione or two single-strip
eigencurrents contribute to the mutual coupling. The o#irgle-element eigencurrents
only influence the local behavior of the elements.

For line arrays of strips/rings with symmetric eigencutsamly, the spreads of the second
and third groups, respectively, is of the ord@€r2. For line arrays of rings with anti-
symmetric eigencurrents only, the spread of the secondpgeoaf the orderl0=2. The
physical explanation of these observations is that therel@agnetic fields induced by
the eigencurrents with larger eigenvalues are much mootiveahan the electromagnetic
fields induced by eigencurrents with lower eigenvalues.

7. The eigencurrents of an array are described as concatenstad linear combinations
of the single-element eigencurrents. In this descripttbe, coefficients of the dominant
single-element eigencurrent depend negligibly on the et¢shape.

Line arrays of strips and line arrays of rings generate theesezoefficients for the domi-
nant single-element eigencurrent in each group of arraneigrrents. Moreover, for line
arrays of rings, these coefficients depend negligibly onrititgegeometry parameters.

8. Arrays are entire objects rather than collections of separiements.

The coefficients of the dominant single-element eigenatiireeach group of eigencur-
rents of a line array of rings or strips and the expansionfimerfits of the eigencurrents
of a single strip with piecewise functions generate the spattrns. Since a strip is an
entire object, line arrays are entire objects as well.

9. The broadside scan, the monopulse, and the grating lobeedlected in specific eigen-
currents of the array.

We note first that the eigenvalues of each group are indexemtding to the (oriented)
curve they generate in the complex plane. The coefficieftriloigions of the array eigen-
currents of line arrays of rings and strips are amplitude@ratse tapers on the elements.
The electric far field of the first eigencurrent of the firstgpas an amplitude-tapered
broadside scan beam with side lobes of about -24 dB. Therieléat field of the second
eigencurrent is an amplitude-tapered monopulse. The eigent with index given by
(5.39) represents th&90° scan for spacings smaller than half a wavelength. For larger
spacings, this eigencurrent generates main lobes at thiagytabe scan angle with cor-
responding grating lobes at90°.
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j

Figure 5.47 Schematic comparison two arrays. Left: a rectangular array of riridgsanine
array as generating subarray. Right: a line array of strips with piecdwistions defined on
the strips.

10. All array eigenvalues are related to specific scan anglehefarray. These scan angles

11.

12.

are the positions of the main lobes in the far fields of theesponding eigencurrents.

The linear phase taper corresponding to a specific scan avglages the block-like phase
distribution (with phase shifts df80°) of the eigencurrents of line arrays. The eigencur-
rent with closest total phase shift will be stronger excitiegin the other eigencurrents.
Since each eigencurrent generates an electric far fieldogitiain main lobes, one of the
main lobes of the excited eigencurrent will be the main lobie array.

Finite arrays with and without ground plane show the samewdgirrent behavior. The
difference is in the eigenvalues of the moment matrix. Tiengalue range is bounded
for a half space and tends to become unbounded for free space.

The eigenvalues of a finite array can be grouped, where eaxlp grorresponds to an
eigenvalue of a single element. For an infinite array, theesstatement is valid. For a
half space, the finite-array groups converge to the infiaitey groups as the number of
elements tends to infinity. Our conjecture is that this istng for free space.

The impedance operator of line arrays of rings and stripslisast normal and, hence,
the corresponding eigencurrents are almost orthogonal.

This statement is confirmed numerically by analyzing Grartriges of eigencurrent sets
of line arrays of rings and strips.

We end this section with recommendations how the propoggzheurrent approach should be

appl

ied in the determination of eigencurrents of arraysiotieary elements. Let us first consider

rectangular arrays of rings and strips. Figure 5.47 (léfoves a rectangular array of elements,

in th

is case rings, with a line array as generating subarfdye array eigencurrents are then

described as concatenations of linear combinations ofuttharsay eigencurrents. Based on the
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following observations, we expect that the coefficientdefsubarray eigencurrents generate the
same patterns as line arrays of rings and strips. Line aofsiags and a strip with piecewise
functions generate the same coefficient patterns. Morgtiwerarrays of strips generate the
same coefficient patterns as line arrays of rings. Intergydine arrays of strips as rectangular
arrays of overlapping microstrip pieces, we come to thergesgectance for rectangular arrays.

If the element is not a ring or a strip, but a more complex etlgmsach as the one used by
Thales shown in Figure 1.2, the analysis is analogous torkear line arrays of strips/rings.
First, the eigencurrents of a single element are deternbigedhoosing certain expansion func-
tions, for example piecewise functions such as rooftops p/7600] and Rao-Wilson-Glisson
(RWG) functions [96]. Next, only a few eigencurrents are useithe array analysis. As in the
analysis of line arrays of strips/rings, the level of mutcalipling is described by the spread
of the eigenvalues. For elements of which the current cabe@veraged, the behavior of the
single-element eigenvalues will be more complicated. Kanle, for a patch, the eigenvalues
are of the form of the eigenvalues of a rectangular membi@imee the eigenvalues of a rectan-
gular membrane are(m?/a® +n?/b*), wherea andb are the length and width, the eigenvalues
of a patch will exhibit such a form as well.

For other array compositions, the analysis is analogoubdaanalysis for line arrays of
strips and rings as well. Each subarray decomposition dipemthe spacing and the excitation
as explained in Section 1.3. If the space surrounding theesits is changed, for example by
inserting a dielectric layer, the integral kernel is chahge well, but the eigencurrent analysis
will remain the same. Stronger mutual coupling, for exanthle to surface waves in the di-
electric, may increase the number of single-element eigeacts that contribute to the mutual
coupling in an array. Although not confirmed by our reseaveh believe that the number of
coupling single-element eigencurrents will not increasthis case. Our reasons are, first, that
the single-element eigencurrents incorporate the maatedif the dielectric layer. Second, the
number of coupling groups is not only dependent on the spieadlso on the behavior of the
single-element eigenvalues. Finally, the stronger mutaapling due to, for example, surface
waves may increase the spread in the eigenvalue groups. effait can be handled by the
eigencurrent approach, because the perturbation of tkevelies does not necessarily need to
be small, as mentioned in Section 5.
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CHAPTER6

Test Cases for the Eigencurrent Approach

In this chapter, the main items of both our research phases,the phase concerning the
element-by-element moment method and the phase conceh@rgjgencurrent approach, are
joined, see the scheme in Figure 1.9. In Section 6.1, we coamesults of the eigencurrent
approach with results of the element-by-element momenhaoaetor various line-array sizes.
Next, in Section 6.2, we show that the eigencurrent approaalpredict the large variations of
element-current amplitudes observed in the third examipBzotion 2.5. These variations, and
corresponding variations of element impedances, cannptddicted by the infinite-array ap-
proach and may decrease the performance of an array caoatsligieVe propose an explanation,
alternative to the explanation in [53, 82] based on arrafaserwaves, for the large variations
by showing that they are caused by the excitation of spe@fiomant eigencurrents. Moreover,
we show that on basis of the behavior of the eigenvaluesheemes are predicted and suitable
loads can be determined to prevent the excitation of res@igancurrents.

In Section 6.3, we first show that the spread of the eigensali@ quantitative measure
for mutual coupling and, therewith, for the number of eigement groups needed in the cycle
of the eigencurrent approach. This investigation leadgnagahe identification of resonances
of arrays. We show that the modulated oscillations of elénmapedances discussed in [30,
46] are caused by the excitation of specific resonant eigesrtts and, therewith, by the same
mechanism as the variations of element impedances a#dhatsurface waves. Next, we show
that mutual coupling between distant elements may be neglglout that special care is needed.
Except near the appearance of a grating lobe, the numbeighthwrs needed to describe mutual
coupling is well predicted by the variation of the spread &sation of the number of elements
in small arrays. Finally, we show that by fixing eigencurgefdr a chosen set of geometry
parameters, performance parameters for other sets of ggopaeameters can be predicted in a
fast and accurate way.

In Section 6.4, we show that the eigencurrent approach iahtamf predicting the array
behavior at the grating lobe scan angle. Moreover, we expiaiv this result supports our idea
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that the eigencurrent approach can not only handle arragiiggeed in free and half space,
but also arrays on dielectric layers, which may supportagerfvaves. Finally, we present the
conclusions of this chapter in Section 6.5.

6.1 Validation

To validate the eigencurrent approach and its implememtative consider three test cases of
line arrays of strips and rings, for which the element geoynahd the spacing are chosen as
in many practical applications. The ring circumferenceliswt wavelength and both the strip
length and the spacing are half a wavelength. Other arrapgii®s are considered extensively
in the next sections. The following three test cases areidersd.

e Aline array of 40 rings in free space with spacih@. Each ring is excited by a voltage
gap of 1V. Figure 6.1 shows the normalizéadomponent of the electric field for a scan at
0° and a scan at5° in the zz-plane and the corresponding (normalized) ring impedances
For details on scanning, see below. The definition of impeda® given in Section 4.2.2
and the electric far field is described in Appendix C.

e Aline array of 10 strips of half a wavelength in a half spacéhwii/¢ = 4/5 and with
spacing\/2. Each strip is excited by a voltage gap of 1V. Figure 6.2 shtivesnor-
malized p-component of the electric far field for a scan5af in the zz-plane and the
corresponding normalized absolute strip impedances.

e Line arrays ofl00 rings andl00 strips with spacing\/2 in free space and in a half space
with h/¢ = 4/5, respectively. Each element is excited by a voltage gap oFidure 6.3
shows the normalized absolute element impedances for at@adsin thexz-plane.

In this chapter, all line arrays are positioned in theplane with centers on the-axis and their
indices increase in the positivedirection. The scan angles and the incident angles of plane
waves are spherical elevation angles intheplane, where a corresponding spherical azimuth
angle of0° is prescribed, see Section 3.5 for details on scanning aciib8et.3 for details on
plane waves. The voltage gaps of the strips are position#teatcenters. If not mentioned
otherwise, the voltage gaps of the rings are positioned en:thxis, to be precise, g = ,
wherey = 0, see Section 4.2.

In all three test cases, we choose 8 cosine expansion fasatio each ring or strip. In the
element-by-element moment method, we construct the momatnix with these functions. In
the eigencurrent approach, we compute the eigencurremtsiofyle element prescribing these
functions. Next, we calculate the eigencurrents of the dimays with only one or two single-
element eigencurrents per element, or, with only one or twas of coupling eigencurrents.
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The electric far-field components, obtained by the eigenecitirapproach with one group of
coupling eigencurrents, match the results of the momerttodgterfectly for the broadside scan
of the line array of 40 rings and for tH&° scan of the line array of 10 strips. Only close to
endfire slight differences occur. For thg° scan of the line array of 40 rings, the main and side
lobes obtained by the eigencurrent approach are about @B than the main and side lobes
obtained by the moment method. For two coupling eigenctsreve found a perfect match.

Both for one and two groups of coupling eigencurrents, threesidescribing the impedance
variation obtained by the eigencurrent approach show thne Sape as the curve obtained by
the (element-by-element) moment method. For the line arcéyl0 and 100 strips, the differ-
ences between the absolute impedances obtained by the mmetiod and by the eigencurrent
approach are less thdr2% and0.3% for one and two groups of coupling eigencurrents. For
the line array ofl00 rings, these differences a5¢9% and1.9%. The percentages confirm the
statement of the previous chapter that two groups of cogm@igencurrents are needed for line
arrays of rings and only one group of coupling eigencurrenteeeded for line arrays of strips.
For the line array ofl0 rings, the differences between the absolute impedancaimeldtby the
moment method and by the eigencurrent approach for both ntdveo groups of coupling
eigencurrents are smaller thaf%. The differences for only one group are somewhat smaller
than the differences for two groups. However, especially4fs?, the results for two groups
are more accurate than the results for one group, becauggh#ise differences between the
impedances obtained by the moment method and by the eigentapproach run up to 0.1 rad
for one group, while they are smaller than 0.01 rad for twaugeo For one group, the phase
differences are approximately uniform over the array.

Table 6.1 shows the computation times for line arrays ofgiimgfree space, both for the
moment method and for the eigencurrent approach with onévemdroups of coupling eigen-
currents. The computations are carried out with a Matladémpntation on the platform men-

Table 6.1 CPU times (seconds) for the current on line arrays of 10, 40, 100, &d 400
rings in free space with spacing'2 for a Matlab implementation on the platform mentioned in
Section 1.4. Parameter valudst = 7/3, 8 = 3/100, ) = 0, Neos = 8, Nsin = 0.

Number of | Moment | Eigencurrent Eigencurrent

rings Method | approach 1 group approach 2 groups
10 35 (1 (1

40 118 2 3

100 303 4 15

200 730 19 90

400 - 106 1035
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tioned in Section 1.4. For only one group of coupling eigerents, the computation times
for the eigencurrent approach are at least 40 times smaberthe computation times for the
element-by-element moment method. For two groups of cogm@igencurrents, the computa-
tion time for the eigencurrent approach is for 10 rings abf@utimes lower than the computa-
tion time for the moment method, while for 200 rings, thistéaaeduces to 7. The reduction
is mainly due to the increase of the time needed to deterrhmeigencurrents, which is, for a
given matrix size, larger than the matrix inversion timeeTmoblem of efficiency reduction of

the approach can be avoided in two ways. First, since therrhbehavior of the eigencur-

rents depends negligibly on the geometry parameters, sem®i$8.4, we need to compute the
eigencurrents only once, while we need to carry out a matversion for each new set of geom-
etry parameters. The computational reduction obtainetléretgencurrent approach by fixing
the eigencurrents is discussed in Section 6.3 in furthailde®econd, instead of the standard
Matlab function ‘eig’, which is based on the QR decompositiather methods and correspond-
ing implementations can be used to compute the eigenvahet®igencurrents. In [2: Sec.

2.6, Ch. 7], several methods are described for computin@itenvalues and eigenvectors of
non-hermitian matrices.

An important advantage of the eigencurrent approach oesustial moment method is that
the eigencurrent approach keeps the moment-matrix siagvedly small. This advantage is ap-
parent from Table 6.1. The standard Matlab function ‘eidcakates the eigencurrents of a line
array of 400 rings both for one and two groups of coupling edgerents. Once these eigen-
currents have been computed, the computation of the csrtekés only 31 seconds and 64
seconds, respectively. In contrast, the standard Matlabx@aversion in the moment method
implementation runs out of memaory for the same line array0éf ings with 8 expansion func-
tions per ring. The construction of the moment matrix také&2lseconds in this case, which is
more than the total computation time of the implementatibthe eigencurrent approach with
two groups of coupling eigencurrents.
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Figure 6.1 First row: the normalized absolutecomponents (in dB) of the electric far field in
the zz-plane for a line array of 40 rings in free space for a scad’&left) and for a scan at
45° (right), computed by the moment method (solid curve) and by the eigemtuapproach
with one group of coupling eigencurrents (dashed curve). Secothdhénd rows: the corre-
sponding normalized absolute values and phases of the ring impedanae®ment method,

o

: one group,A: two groups). Excitation: voltage gaps of 1V on the rings. Normalization

far field: maximum absolute component in the-plane. Normalization impedance: single-ring
impedance. Parameter valués= \/2, ka = 7 /3, 8 = 3/100, ¢ = 0, Ncos = 8, Nsin = 0.
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Figure 6.2 Left: normalized absoluteé-components (in dB) of the electric far field in the-
plane for a line array of 10 strips in a half space witi = 4/5 for a scan ab5°, computed by
the moment method (solid curve) and by the eigencurrent approactométigroup of coupling
eigencurrents (dashed curve (indistinguishable)). Right: the camegpy normalized absolute
impedances computed by the moment methgdagd by the eigencurrent approach with one
(o) and two (\) groups of coupling eigencurrents. Normalization and excitation as irrésgu
6.1. Parameter valued:= \/2,2¢ = \/2, 3 =b/¢ = 1/50, Ncos = 8, Nsin = 0.
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Figure 6.3 Normalized absolute element impedances for line arrays of 100 rinfjs gfed
100 strips (right) in free space and in a half space with = 4/5, respectively, computed by
the moment method«§ and by the eigencurrent approach with ongdnd two (A\) groups of
coupling eigencurrents. Scan angl®”. Normalization, excitation, and parameter values as in
Figures 6.1 and 6.2.



6.2. IMPEDANCE VARIATION, ARRAY SURFACE WAVES, AND DESIGN 189

6.2 Impedance Variation, Array Surface Waves, and Design

Strong variation of the current amplitudes over an array, andsequently, strong variation of
element impedances, may decrease the performance of #yecamsiderably. To explain this,
we first mention that, in various types of arrays, certairugsoof elements are all matched with
the same impedance to the feeding network of the array. Ampbeais the rectangular array of
rings as discussed in the fifth example of Section 2.5, sear&ig.12 (right), which is excited
per row by means of suitable feeding networks. The elemeéngsach row are matched with
the same impedance to the feeding network of the row. Nextomsider the third example of
Section 2.5 (Figures 2.9 and 2.10), which concerns a lirsyarf 25 strips. In this example, the
current amplitudes at 10 GHz are almost uniform, while theysa strong variation at 8.6 GHz.
If all strips are matched with the same impedance to a feedd@tgork, the energy reflection
of the strips is almost uniform at 10 GHz. For the same mafghinge differences in energy
reflection occur at 8.6 GHz. Consequently, the total radiptaver decreases and the far field is
distorted.

Recently, the occurrence of (array) surface waves carnyetid elements of (finite) arrays
has been studied in detail in [53, 82] to explain the changmfa low variation of element-
current amplitudes into a high variation. These waves havaia component that propagates
along the plane of the array. In this section, we show thahible variation of element-current
amplitudes and element impedances is caused by the easitattispecific resonant eigencur-
rents. Moreover, we show that the eigencurrent approacpiste of predicting the change. To
this end, we show first that the positions of the main lobesénfar fields of the eigencurrents
of an array are indeed specific scan angles of this arrayateddsnh Section 5.4.

Let us consider the example of Section 5.3.2 of a line arralbofings in free space with
spacing\/2. We recall that the eigencurrents and eigenvalues of ay aaa be divided into
groups, where each group corresponds to a single-elengamwalue. In the example, the eigen-
currents of the first group, which corresponds to the lowiesfie-ring eigenvalue, generate far
fields with main-lobe positions shown in Table 5.7. The malveks of the first and 7th eigencur-
rents are positioned &f and+26.1°, respectively. As discussed in Subsection 5.3.2, we expect
that for scans ai® and26.1°, these eigencurrents are excited especially. This is coafirby
Figure 6.4, which shows, for scans(&tand26.1°, the normalized absolute coefficients in the
finite expansion (5.28) of the current in terms of the eigerents. The (expansion) coefficients
are(u,q, Pv™) /vy, i.€., the product of the inverted eigenvalues and the ipneducts of the
eigencurrents and the excitation field. Only the coeffigeaftthe first group are shown, i.e.,
n = 1. For the scan at°, the coefficient of the first eigencurrent is at least three=$ larger
than the coefficients of the other eigencurrents. For the at26.1°, the coefficient of the 7th
eigencurrent is at least four times larger than the coeffisief the other eigencurrents, except
for its neighbors. Hence, the scan lobe26tl® is composed of the far fields of the 6th, 7th,
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Figure 6.4 Normalized absolute coefficients in the finite expansion (5.28) of thecufor a
uniform line array of 15 rings in free space with spacix@ for a scan ab® (o) and a scan
at26.1° (A). Only the coefficients of the first group of eigencurrents are shd@xtitation:

voltage gaps of 1V on the rings. Normalization: maximum coefficient fmhescan angle.

Parameter values: two groups of coupling eigencurréntss /3, 5 = b/a = 3/100, ¢ = 0,
Ncos - 8, Nsin =0.

and 8th eigencurrent. The composition is shown in Figure16f§ for the ¢-component of the
electric far field in therz-plane. Figure 6.5 (right) shows the tot&lcomponent in this plane.
These results confirm the statement of Section 5.4 that thiéqgus of the main lobes in the far

Normalized far-field comp. (dB)
Normalized far-field comp. (dB)

a9

-90 —éO —3b 6 3b éO 90
0 (deg)

Figure 6.5 Normalized absoluteé-component (in dB) of the electric far field in the-plane

for the line array of Figure 6.4. Left: only the first 6 (dotted curve)J@shed curve), and 8 (solid

curve) eigencurrents of the first group are taken into account in tite éixpansion (5.28) of the

current. Right: all terms are taken into account. Normalization: maximwulate component
in thexz-plane for all terms.
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fields of the eigencurrents of an array are specific scan amnglthis array. Finally, the series
coefficients of the second group show about the same behawithre series coefficients of the
first group, because the coefficients of the dominant siriglg @igencurrents in the first and
second groups exhibit the same behavior as observed in Sidrsg.3.2. The magnitude of the
series coefficients of the second group is about 10 timesrltvea the magnitude of the series
coefficients of the first group. This is partly explained bg tlifference of about a factor of 5
between the eigenvalues of the first and second groups.

Next, we consider the third example of Section 2.5, i.enadirray of 25 strips in free space
with spacing 9 mm. The array is excited by a plane wave witldemt angle-45° and polarized
along they-axis. As mentioned at the beginning of this section, at 1@ Gke current amplitude
in the centers of the strips is almost uniform as a functiothefstrip index. In contrast, large
variations of element-current amplitudes occur at 8.6 GHgure 6.6 shows the normalized
absolute coefficients in the finite expansion (5.28) of theesu for three frequencies. Only
the coefficients of the first group are shown. At 9 GHz and 10 GHe largest coefficients
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Figure 6.6 Normalized absolute coefficients in the finite expansion (5.28) of thecufor a
line array of 25 strips in free space with spacing 9 mm and excited at 86(&QH9 GHz (&),

and 10 GHz £) by a plane wave with incident (elevation) anglé5° and polarized along the
y-axis with amplitudel0~3Vm~! Coefficients computed by the eigencurrent approach with
two groups of coupling eigencurrents; only the coefficients of the fimtig are shown. Nor-
malization: maximum coefficient for each frequency. Parameter saluge group of coupling
eigencurrent2¢ = 15 mm, 8 = b/€ = 3/50, Neos = 8, Ngin = 0.

correspond to the 9th and 10th eigencurrents and to the @thkh eigencurrents, respectively.
These eigencurrents induce main lobesd®.4°, +£47.5°, and+55.6°. At 8.6 GHz, the 9th

and 10th eigencurrents exhibit large coefficients as wall the coefficients corresponding to
the 17th and 18th eigencurrents are larger. Hence, the hiektli&th eigencurrents dominate
the behavior of the current. Figure 6.7 shows that the ctsaeplitude variation observed
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Figure 6.7 Current amplitudes (in the centers of the strips) for the line array of Ei§us
excited at 8.6 GHz. Left: only the first 14)and the first 17+) eigencurrents of the first group
are taken into account in the finite expansion (5.28). Right: the first Eheigrents of the first
group ¢), all 25 eigencurrents of the first groug-), and all eigencurrents) are taken into
account.

in the third example of Section 2.5, see Figure 2.10, is tagelaxtent determined by these
eigencurrents. If only the first 14 eigencurrents are takemaccount in the finite expansion of
the current, the large variation is absent, see Figure éff).(For 18 eigencurrents, the current-
amplitude variation is globally the same as the variationdib 25 eigencurrents of the first
group as well as the variation for all eigencurrents, sear€i®.7 (right). Further investigation
revealed that the current-amplitude variation is globd#igcribed by the 8th — 18th eigencurrent
of the first group. The result for all 25 eigencurrents of thistfgroup and the result for all
eigencurrents match almost perfectly. Differences are tlesn 1%, which is explained by the
large differences (a factor of 30 or more) between the siaglp eigencurrent corresponding to
the first group and the single-strip eigencurrents cornedipg to the other groups. Moreover,
both results differ at most 3% from the moment-method raaufigure 2.10 (right), which is
explained by the use of only one group of coupling eigencusran the eigencurrent approach.
These two observations illustrate why the single-mode@fppration frequently applied in the
literature is a good approximation for strips.

One could think that the excitation of the 17th and 18th eigerents is due to differences
between the eigencurrents at 8.6 GHz and the eigencurtet@szHz. However, in Section 5.4,
we concluded that the eigencurrents of an array are dedaibeoncatenations of linear combi-
nations of single-element eigencurrents, where the casifie of the dominant single-element
eigencurrents depend negligibly on the element shape anftéhuency. This conclusion is
based on numerical results for various geometries. Fig@rsltows that the statement is valid
for large variations of frequency as well. Both absoluteugaland phases of the coefficients
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Figure 6.8 Absolute values (left) and phases (right) of the coefficients of the darhsiagle-
strip eigencurrents in the 18th (array) eigencurrent of the first gfoughe array in Figure
6.6 with plane-wave excitation at 8.6 GHa)(9 GHz (A), and 10 GHz £). Normalization:
maximum coefficient.

of the dominant single-strip eigencurrents in the 18thagreigencurrent are at 8.6 GHz the
same as they are at 9 GHz and 10 GHz. Since single-elememiceigents change negligibly
except for scaling with the size of the element, also thergigeents themselves are the same
at 8.6 GHz as at 9 GHz and 10 GHz. Hence, the excitation of ttiredd 18th eigencurrents
at 8.6 GHz is not due to changes of the eigencurrents. Moreaten in Figure 6.6 the inner
products(u,,q, Pv*) are plotted instead of the coefficients,,,, Pv°*)/v,q, the peak at the
17th and 18th eigencurrents disappears completely andithie at 8.6 GHz becomes about the
same as the one at 10 GHz. Hence, the peak is caused by a clidngeigenvalues.

Figure 6.9 (left) shows the eigenvalues in the complex pfandifferent frequencies, or,
values ofka. Surprisingly, the eigenvalues of the first group are mashiifted by the change of
frequency, where the 25th eigenvalue of the curve remairlkeimaginary axis (see p. 156 for
details on the indexation of the eigenvalues). This sugghat the eigenvalues for different fre-
guencies can be estimated, if the shift as a function of gguiency is somehow described. We
leave the investigation of such an approximation as a tdfierther research. Figure 6.9 (right)
shows that at 10 GHz, the absolute eigenvalues are all of @rdethey are normalized on the
single-strip eigenvalue. In contrast, at 8.6 GHz, the aigkre of the 18th eigencurrent becomes
very small, where the normalization is the same as at 10 GHzebler, the neighboring eigen-
values are small as well. Consequently, the inverted eajees become large and, hence, the
corresponding series coefficients become large if the atiait fieldPv* matches sufficiently
well with the eigencurrents. We have to write here ‘suffitemell’ for the following reason.
The difference between the series coefficients of the 9thl8tldeigencurrents is only a factor
of 1.7, but the difference between the corresponding abseligenvalues is about a factor of
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Figure 6.9 Normalized eigenvalues of the first group (left) and their absolute vétigtg) for
the line array of strips in Figure 6.6 with plane-wave excitation at 8.6 GHA(GHz (A), and
10 GHz (). Normalization: absolute value of the first single-strip eigenvalue atls. G

30. Hence, the 18th eigencurrent does not match that wdllet@xcitation field; its excitation
is mainly due to the decrease of its eigenvalue. Physiddlly,decrease can be interpreted as
an increase of the energy level of the 18th eigencurrent.séhe interpretation is found in the
Quantum Mechanical description of particle behavior asufised in Subsection 5.1.4. Finally,
the increase of the series coefficients 15 — 25 at 9 GHz wittectgo their values at 10 GHz is
explained analogously.

Do there exist combinations of geometry parameters andémcjes in our model for which
an eigenvalue becomes identically zero? This questioniesasting from a mathematical point
of view. In practice, the combination of geometry paranmseteard frequency will never be ex-
actly the same as the combination for which an eigenvaluerbes zero. Moreover, in that case,
the corresponding eigencurrent exhibits an infinitely hegergy level. Finally, numerically, we
will not find the exact combinations, if they exist, due to raroal approximation. From a prac-
tical point of view, it is more interesting to investigatetarray behavior near the ‘resonances’.
The observations above show that large variations of elemanent amplitudes and element
impedances occur if one or more eigenvalues are relativebedo zero. Here, we must write
‘relatively’, because only the ratios of the eigenvaluatedi to the scan angle and all other (ar-
ray) eigenvalues are of importance. In particular, we wakiiow in which frequency range(s)
the large variations of element-current amplitudes ochMoreover, we want to know to what
extent these variations depend on the frequency. In thigogsit is important to realize that the
behavior of both eigencurrents and eigenvalues obsenmetab ‘stable’. The eigencurrents do
not change with the geometry parameters and the frequernile the eigenvalues are mainly
shifted. Considering the eigenvalue curve in Figure 6.8)(le&e conclude that the large varia-
tions of current-amplitude occur below 9 GHz, at 8.94 GHzeaglecise. Then, the normalized



6.2. IMPEDANCE VARIATION, ARRAY SURFACE WAVES, AND DESIGN 195

last eigenvalue is much closer to the origin than the 9th d@tld digenvalues that correspond to
the scan angle. The variation of element-current amplgedd.94 GHz exhibits an alternating
phase with phase shifts of abol#0°, which corresponds specifically to the last eigencurrent.
The number of maxima of the absolute current amplitude edf®jathich is close to the number
of maxima of the 9th and 10th eigencurrents that induce the Ebe atl5°. If the frequency
decreases, the 24th — 18th eigenvalue pass the origin. Heweckarge variations will occur at
least over the range 8.6 GHz — 9 GHz. Globally the same vaniatf element impedances as at
8.6 GHz are obtained on the range 8.56 GHz — 8.61 GHz, wherientredance shows 4 peaks
as in Figure 6.7 at about the same positions, see Figure 6disidering Figure 6.10 in detail,
we observe that the absolute impedances change for freggbaages of 20 MHz, but their
global behavior remains the same. The same is valid for thegmonding phases.
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Figure 6.10 Current amplitudes (in the centers of the strips) and correspondirsggliar the
line array of Figure 6.6 excited at 8.6 GHz), 8.58 GHz ¢), and 8.56 GHzA{\). The ampli-
tudes were obtained by the moment method; for the eigencurrentaagbpithe same amplitudes
were obtained as in Figure 6.6.

Since the change of current-amplitude variation is caugetidexcitation of specific eigen-
currents, the question arises in what way they are relatedet@rray surface waves studied
in [53, 82]. The following relations are mentioned.

e In [82: p. 132], it is stated that array surface waves exi$y on finite arrays, not on
infinite arrays. In Subsection 5.3.2, we observed that thergiurrents of a finite array
are not the same as the eigencurrents of an infinite array,atenthe size of the finite
array. The eigencurrents of the finite array have a bloaklikase distribution, while the
eigencurrents of the infinite array have a linear phaseiligion. Moreover, the spectrum
of finite array is discrete, while the spectrum of the infiriteay is continuous, see Section
5.3.2, pp. 169 ff. For a given linear phase taper, only onergigrrent is excited on the
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infinite array, which corresponds to the direction of scancdntrast, on the finite array,
all eigencurrents are excited. Since the eigencurrentsthese the change of impedance
variation are not related to the direction of scan, suchreigeents are not excited on the
infinite array for a given linear phase taper. This confirnesstatement in [82: p. 132].

In [82: p. 133], it is stated that array surface waves (on adfiairay) radiate. This is
confirmed by a result in [82: p. 96], which shows that the maximiobe level of the far
fields induced by the surface-wave currents is about 20 ddakan the main lobe of
the total far field. A similar result is found for the eigenamts that cause the change of
impedance variation. In the example above, the 17th andei@éimcurrents do not induce
main lobes. The-components of their far fields attain maximat&t0° in the xz-plane,
which at 8.6 GHz are 19 dB lower than the maximum of the firsteayrrent. At 10 GHz,
the shape of the pattern is the same as the one at 8.6 GHz, ebotatkima at-90° are
only 9 dB lower than the maximum of the first eigencurrent.

In [82: p. 5], it is stated that array surface waves exist dotyspacings smaller than half
a wavelength. Similarly, only for spacings smaller tharf haavelength, eigencurrents
without main lobes exist. In the example above, the spad@rig3i\ for 10 GHz and
0.26\ for 8.6 GHz. Moreover, in the example of Figure 5.38 (righthere the 33rd —
40th eigencurrent do not show main lobes, the spacifiglis. For spacings larger than
half a wavelength, all eigencurrents show main lobes andiplysalso grating lobes, see
Subsection 5.3.2.

In [82: p. 88], a criterion is given for the occurrence of sd waves. This criterion must
predict the resonant behavior studied above as well. Ruréisearch needs to be carried
out on the criterion in relation to the resonant behavior.

In [82: p. 5], the current is decomposed into Floquet cugesurface-wave currents, and
end currents. The Floquet currents are currents with equoplitudes on the array and a
phase matching that of an incident plane wave, or in othedsyaturrents that occur on
an infinite array. The end currents are the total currentaisnihe Floquet and surface-
wave currents. This decomposition depends strongly ongébengtry parameters and the
frequency. In contrast, the coefficients of the dominarglsielement eigencurrents in the
(array) eigencurrents depend negligibly on the geometrgrpaters and the frequency, as
observed in Subsection 5.3.2. The global behavior of thes#icients remains the same,
even when the frequency is 19% below the frequency for whiehalements exhibit a
‘resonant broadside embedded impedance’, i.e., the remsaof the elements are on
average zero. Only the eigenvalues change. Our decongrostimore physical than a
decomposition into Floquet currents and other types oftus; because, on finite arrays,
eigencurrents exist in contrast to Flogquet currents.
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On basis of the observations in this section, we conclude dligencurrents describe array

surface wave phenomena and related variations of elemantéqt amplitudes and element
impedancesMore specifically, surface wave phenomena and the relatéatioms are described

by a limited number of coupling eigencurrents only. The eglnabove illustrates that these
eigencurrents are the eigencurrents of the first group.isnetkample, the 8th — 11th eigencur-
rent of the first group describe the scan behavior of the awhife the 16 — 18th eigencurrent
describe the surface wave behavior.

We mentioned that the occurrence of a strong impedancetiearidecreases the perfor-
mance of an array considerably. Therefore, it must be adoidehe design. In the example
above, the impedance variation occurs about 19% below ¢ugiéncy for which the array ex-
hibits a ‘resonant broadside embedded impedance’. Heheeyariations shown here are in
general not present in a narrow-band design. For desigisawtider frequency band, the
variations must be taken care of. In [82: Sec. 1.4], the apfitin of loads on the elements is
proposed to reduce the variations. As an example of loadieg;onsider here uniform surface
loading. Contrary to the second model assumption in Se@&idnthe elements of an array are
in practice never perfectly conducting. This non-perfessnmay prevent resonances from oc-
currence. Moreover, if resonances occur, they can be presddry the application of materials
that exhibit a lower conductivity for example. To explainstfirom the point of view of our
model, we consider the relatichJ = Es between the currenl and the (tangential) excita-
tion field Eg. Often, uniform surface loads are modeled by adding an é&tra oZ to this
relation: (£ + oZ)J = Es. Here, the scalas indicates the surface load afids the identity
operator. Then, the eigenvalues, obtained by the eigencurrent approach are shifted in the
complex plane and becomg, + «. Considering the representation in the complex plane of the
eigenvalues in Figure 6.9 (left) for example, we observe dhsuitable choice ofi will move
the eigenvalues such that no eigenvalue is relatively dos®ro according to our definition.
Then, due to the relationship between the eigenvalues audfispscan angles of the array, we
know that for all scan angles, the resonant behavior is emioc even annihilated. Finally, we
leave the further investigation of the reduction of resarmahavior by means of surface load-
ing, including the investigation of the relation betweenenial properties and the scalaras a
topic of research.
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6.3 Parametric Study

6.3.1 Spread of eigenvalues as Measure of Mutual Coupling

In Chapter 5, we showed that the eigenvalues of an array cdivided into groups{unq}i\’;jb,

where each group corresponds to a single element eigerwiitieHere, N, is the number
of elements ana: is the group index. In this subsection, we investigate wdrethe spread
of the eigenvalue groups is a qualitative measure for muwtaapling and, therewith, for the
number of groups of coupling eigencurrents needed in thke @fche eigencurrent approach.
To this end, we need to define the spread of the eigenvaluegrinst. In Chapter 5, we
considered the spread as the maximum and minimum of theuilas',]nirturbation$|enq\}fl\[;‘ib

of the group eigenvalues with respect to the correspondnggeselement eigenvalue, i.@,,, =
V5% (1+€,,), See Section 5.1, p. 106. To describe the approximatiom efthe current due to
neglecting the mutual coupling of a group of eigencurresrtsjue to taking,,, = 0 for a certain
value ofn, we need to consider the maximum absolute perturbationeofjitbup eigenvalues
relative to the first absolute single-element eigenvalueother words, we need to define the
spread as

MRP[¥w] = max{leng Yo - 3™/ I3, (6.1)

which we call the maximum relative perturbation of thtl group. This definition is explained
by the approximation error of the current being of the oMé?Pr[LNS“"]. To compare the currents
obtained by the eigencurrent approach, which describetaopéine mutual coupling, and the
currents obtained by the moment method, which describew@ihah coupling (within the set of
expansion functions), we introduce the maximum relafiyalifference

MRDL2 — max HwEig(.;Q) _wmom(';q)”Lz . (62)

q=1,..,Nsup meom('EQ)”Lz

Here,weig (- ; ¢) andwmom( - ; ¢) are the currents on thgh element obtained by the eigencur-
rent approach and the moment method, respectively. Fornwestigation, we consider two
examples.

The first example concerns a line array of 40 strips of half aeleagth in a half space
with h/¢ = 4/5. The strips are excited by voltage gaps of 1V. The spacingiged from
0.1\ to 0.6\. Figure 6.11 (left) shows tthRP,[fO] of the first three groups of eigenvalues
all show the same behavior as a function of the spacing. Thénmuan relative perturbations
decrease monotonically up to ab@wt A and have local maxima &t5\. The perturbations of
the second and third groups are 25 dB — 40 dB and 35 dB — 50 dB thar the perturbations
of the first group. Figure 6.11 (right) shows th&iR Dy, exhibits about the same behavior as
the maximum absolute perturbations. For a scaif al/RD;,, decreases monotonically both
for one and two groups of coupling eigencurrents, while fecan at60°, MRD;,, decreases
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Figure 6.11 Left: MRP (in dB) of the 1st (solid curve), 2nd (dashed curve), and 3rd
(dashed-dotted curve) group of eigenvalues as a function of théngpiaca uniform line ar-
ray of 40 strips of half a wavelength in a half space wiitf = 4/5. Excitation: voltage gaps of
1V. Right: MRDy,, for scans in thecz-plane; solid curve: 2 groups of coupling eigencurrents,
0° scan; dashed curve: 2 group8; scan; dashed-dotted curve: 1 gro0pscan; dotted curve:
1 group,60° scan. Parameter valugd:= b/¢ = 1/50, Neos = 8, Nsin = 0.

monotonically up to abouit.45) with local maxima at about.55\. For two groups of coupling
eigencurrentsMRDy,, is 10 dB — 12 dB lower than for one group of coupling eigenauise
both at0° and at60°. Why the curves fo60° exhibit local maxima and the curves f@ft do not
exhibit such maxima, is explained after the second exanmplease the striplength is changed
from \/2 to 3\ /5, the absolute perturbations andrR D, show the same behavior as well, as
illustrated by Figure 6.12. The results above show that fineaxl of the eigenvalue groups is

10 T T T - -20

—40F

81 02 03 04 05 0.6 681 02 03 04 05 0.6
Spacing(\) Spacing(\)

Figure 6.12 As Figure 6.11, but the strip length33 /5 instead of\/2.
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a good qualitative measure for the number of groups of cogmigencurrents needed in the
cycle of the eigencurrent approach.

The second example is a line array of 40 rings in free spade aviipacing equal to three
times the ring radius. The rings are excited by voltage gafi¥ ol he frequency is varied such
thatka varies from 0.75 to 1.4. Figure 6.13 (left) shows that the imann relative perturbation
of the first group increases up k@ ~ 1.04 and then decreases. This valuekefcorresponds
to the frequency for which the array exhibits a ‘resonantllside embedded impedance’, or,
for which the reactances of the rings are on average zeropé@iterbation of the second group

5 T T T T T T 0

-5t

I
&)
T

—10}

—-15F

MRP (dB)
MRD,, (dB)
8

-20F

250

30 0.8 0.9 1 11 12 13 1.4 0.8 0.9 1 11 12 13 14

ka ka
Figure 6.13 Left: MRP*® (in dB) of the 1st (solid curve), 2nd (dashed curve), and 3rd
(dashed-dotted curve) group of eigenvalues as a function of thaeiney &a with o fixed)
in a uniform line array of 40 rings in free space excited by voltage gap¥adRight: MRD.,
for scans in therz-plane; solid curve: 2 groups of coupling eigencurreffsscan; dashed
curve: 2 groups45° scan; dashed-dotted curve: 1 groQp,scan; dotted curve: 1 groug?°
scan. Parameter valued/a = 3 (d = A\/2 atka = «/3), f = b/a = 3/100, ¢v» = 0,
Necos = 8, Ngin = 0.

decreases monotonically up k@ ~ 1. At ka ~ 1.06, the perturbation exhibits a local max-
imum. For larger values ofa 2> 1.1, the perturbation increases upke ~ 1.32, where it
suddenly decreases. At the same valugégfthe perturbation of the third group increases sud-
denly. The sudden changes are explained by the interchditige gingle-ring eigencurrents that
correspond to these groups. Far < 1.32, the constant single-ring eigencurrent corresponds to
the second group, while the eigencurrestt 20 corresponds to the third group. Fod > 1.3,

the eigencurrents are interchanged. Figure 6.13 (riglovsid/RD;,, as a function ofa for
four parameter settings. Both for a scarDatand for a scan at5°, MRDy, is about 10 dB
smaller for two groups of coupling eigencurrents than fag group of coupling eigencurrents,
except forka 2> 1.3, which is explained by the interchange of eigencurrentdasmwed above.
For ka = 1.3, the maximum relative perturbation of the third group is ledé same order of
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magnitude as the perturbation of the first group and muctetfaitan the perturbation of the

second group. This indicates that the third group shouldakert into account to describe the
coupling and it explains why taking two groups of couplingegicurrents instead of one does
not improve the solution for the current. These results cantihat the spread of the eigenvalue
groups is an appropriate qualitative measure for the nuwftgmoups of coupling eigencurrents

needed in the cycle of the eigencurrent approach.

We recall that we still need to explain the local maxima\éRk D, in Figure 6.11 as well
as the local maxima aMRD;,, in the other two figures. Partly, these maxima are related to
grating-lobe behavior. For the scan6af in Figures 6.11 (right) and 6.12 (right), the maxima
occur at the spacing for which a grating lobe appears or giesas at—90°. For the scan at
45° in Figure 6.13 (right), the maxima &t ~ 1.23 occur at the frequency for which a grating
lobe appears or disappears-a0°. The maxima aka ~ 0.97 are not related to grating-lobe
behavior, but to resonant behavior, specificallpabf scan, which is explained in detail in the
next subsection.

The slight increase ai/RD;,, near the frequency for which a grating lobe appears or dis-
appears at-90° is more pronounced in free space than in a half space, betagsatrast to
free space, the grating lobe is canceled in a half space. ®ialsge side lobe near the plane of
the array is present. Consequently, no power is transpatted) the array plane, while in free
space the radiation intensity in the array plane is of theesamder as in the scan direction. Both
in free space and in a half space, the power radiated alonggolyralong the array plane excites
slightly some higher order eigencurrents, which expldiesincrease oMRDy,, .

6.3.2 Modulated Oscillations of Impedance Described by Eigenirrents

As mentioned in Section 6.2, large variations of elementedgmces across an array reduce
its performance considerably. Recently, modulated @dimlhs of the element impedances have
been found [46], that occur at the frequency for which thenelets exhibit a ‘resonant broadside
embedded impedance’. If the amplitudes of the modulateitlatsens are large, they reduce the
performance of an array as well. In [30], the modulationseaq@ained by the phase velocity of
the waves diffracted by the edges of the array being sligatlyer than the free space velocity
of light. In this subsection, we show that the occurrence oflutated oscillations is caused by
the excitation of specific eigencurrents and, hence, byaheanechanism as the variations of
element impedances studied in Section 6.2. Moreover, we #iet the eigencurrent approach
approximates the modulated oscillations very well. To #nsl, we start by showing that the
maxima of MRDy,, atka ~ 0.97 for the line array of 40 rings in Figure 6.13 are related to
resonant behavior.

In Figure 6.14, we depict the normalized absolute impedaattne rings for the frequencies
with ka = 0.94 andka = 0.971 for scans ab°. The valueka = 0.971 corresponds with the
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position of the local maxima in Figure 6.13; the value = 0.943 was chosen arbitrarily. The
figures show modulated oscillations of the impedance. Heor= 0.971, these modulations
exhibit a shorter period than féu = 0.943. The absolute impedances vary in both cases about
50% with respect to their mean value. Far = 0.971, these large variations extend over the
entire array. In contrast, fota = 0.943, they are concentrated at the edges of the array. In
the middle of the array the absolute impedances vary about Widh respect to their mean
values. We emphasize that the eigencurrent approach witytwups of coupling eigencurrents
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Figure 6.14 Normalized absolute ring impedances (left) and corresponding plrages for a

line array of 40 rings in free space excited by voltage gaps of 1V foaa at)°. Upper figures:
frequency withka = 0.943. Lower figures: frequency witha = 0.971. Impedances computed
by both the moment method)and by the eigencurrent approach with two groups of coupling
eigencurrentsd). Figure 6.13 shows the related spreads of eigenvalue groups.aNpation:

for each frequency, the corresponding impedance of a single remgnfeter valuesi/a = 3
(d=X\/2atka=m7/3),8="b/a=3/100,% = 0, Neos = 8, Ngin = 0.
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is capable of approximating accurately the modulated lasicihs of absolute impedances and
corresponding phases.

The same kind of modulated oscillations are discussed ihfpd@rrays of collinear, oiF-
plane oriented, wires with spacig2 in a half space witth = A\ /4. The modulated oscillations
are not observed for arrays of parallel, Brplane oriented, wires, neither for arrays in free
space. In contrast, the rings in Figure 6.14 are positionéeée space and afé-plane oriented,
since the voltage gaps are all positioned on the array ax@e®er, the spacing is not equal
to A/2. As indicated in Figure 6.13, the spacinghi$2 for the frequency wittka = /3. For
ka = 0.971 andka = 0.943, the spacing i9.464) and0.450\, respectively.

To explain the cause of the modulation, Figure 6.15 showsithmalized absolute expan-
sion coefficients in the finite expansion (5.28) of the curfen three values ofa. Only the
coefficients of the eigencurrents of the first group are shoker ka = 1, the coefficients of

1

0.8 :

0.6r

0.4r

Normalized absolute coefficient

Eigencurrent index

Figure 6.15 Normalized absolute coefficients in the finite expansion (5.28) of thectuon
the line array of 40 rings in Figure 6.14 for the frequencies With= 0.971 (o), ka = 0.943
(A), andka = 1 (x). Only the coefficients of the eigencurrents of the first group are show
Normalization: maximum coefficient.

odd eigencurrents, i.e., the coefficients with even indiaes zero, while the coefficients of odd
eigencurrents form a monotonically decreasing sequenkce.ctrresponding ring impedances
behave as the ring impedances in Figure 6.1kfoe= /3. Forka = 0.971 andka = 0.943,
the coefficients show the same behavior as the coefficientesfe= 1, but the 39th and 37th
(array) eigencurrents, respectively, have a much highefficeent. The coefficients of the dom-
inant single-ring eigencurrents in the 39th and 37th (3reagencurrents show an alternating
pattern modulated by a sine of one and two periods, resgdgcti8ince these eigencurrents are
especially excited, the impedances in Figure 6.14 show ayuzitern as well.

As described in Section 6.2, large variations and moduiataf element impedances occur,
if one or more eigenvalues are relatively close to the origime behavior of the eigenvalues in
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the complex plane for varying frequency and the correspanéehavior of their absolute values
is illustrated in Figure 6.16. The minimum absolute eigémaforka = 0.943 andka = 0.971
are the 37th and 39th eigenvalues, which correspond to gle@eiirrents in Figure 6.15 with the
small peaks at the 37th and 39th eigencurrents, respactivel ka = 0.943, the 37th eigen-
value is only 6 times lower than the first eigenvalue, whiclresponds to th@° scan angle.
Hence, although the 37th eigenvalugiat= 0.943 is not relatively close to zero according to
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Figure 6.16 Normalized eigenvalues of the first group (left) and their absolute vétigis) for
the line array of 40 rings in Figure 6.14 for the frequencies With= 0.943 (A), ka = 0.971
(0), ka = 1 (x), ka = 1.027 (¢), andka = =/3. Normalization: for each frequency, the
corresponding absolute single-ring eigenvalue.

our definition, its corresponding eigencurrent generdtestiodulations in Figure 6.14 (upper
figures). This indicates that there exist large variatiomd modulations for a wide frequency
range around the ‘resonant’ frequency. Further investigatvealed that the modulations occur
approximately in the range 93 < ka < 0.99, where the absolute impedances vary from 10%
to more than 100% with respect to their mean value. For a degith ka = 1.047 (= 7/3)
andd = )\/2 at 1 GHz, the modulated oscillations occur @89 GHz < f < 0.94 GHz. The
frequency for which the elements exhibit a ‘resonant brisedsmbedded impedance’ is in this
in this case 1.061 GHz. Hence, the modulated impedancdatiris occur between 11% and
16% below this frequency. For frequencies with outside the range given, the impedance
shows a behavior as in Figure 6.1 far = 7/3 ~ 1.047, where the absolute impedances vary
only 5%.

The modulations appear also in a half space, where they depethe height above the
ground plane. Figure 6.17 shows the modulated oscillabétise absolute impedances for the
same line array of 40 rings as above, but in a half spaceiyith= 3/2 and in a half space with
h/a = 6/5. The array is excited with the frequency for whigh = 0.991 as in Figure 6.14
(upper figures). The relatively large difference betweerttvo used values df/a indicates that
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Figure 6.17 Normalized absolute ring impedances for a line array of 40 rings in a patfes
with h/a = 3/2 (left) and in a half space with/a = 6/5 (right) (h = \/4 for ka = w/3),
excited by voltage gaps of 1V for a scan0dt The frequency is such thau = 0.991. The
impedances are computed by the moment methdaitd by the eigencurrent approach with
two groups of coupling eigencurrentg ( Normalization: for each frequency, the corresponding
impedance of a single ring. Parameter valué&: = 3 (d = A\/2 atka = 7/3), 8 = b/a =
3/100,% = 0, Neos = 8, Nsin = 0.

we may expect moderate to large variations and modulatieaisaowide range ok /a. Figure
6.18 shows that the modulationsigta = 3/2 fade out for a frequency shift of -0.5%, while the
modulations ak/a = 6/5 do not fade out. Fol/a = 3/2 with the frequency shift of -0.5%, the
same pattern of the impedance is obtained as the pattefrfdo= 6/5. Hence, forh/a = 3/2
with frequency0.995 f, and forh/a = 6/5 with frequencyf,, the same eigencurrent is excited
especially. The coefficients of the dominant single-rirgaicurrents in this (array) eigencurrent
form an alternating pattern modulated by a sine of two petidebr a design wittka = 1.047,

d =3a = X/2,andh = 3a/2 = A/4 or h = 6a/5 = A/5 at 10 GHz, the modulations occur at
fo =9.46 GHz. The frequency shifts of 0.25% are in that case 24 MHz.

To study the occurrence of (modulated) oscillations of thpeédance as a function of the
scan angle, we consider the behavior of the eigenvaluesgur&i6.16 for a line array of 40
rings in free space. In Section 5.3.2, we showed that allhwi@aes are related to specific scan
angles of the array. Fota = 0.943, the first eigenvalue in Figure 6.16 (right) corresponds
to 0°, while the 30th and 37th eigenvalues correspondstband90°, respectively. The last
three eigenvalues correspond to eigencurrents that ifdufields with maxima at-90° in the
xz-plane, which are much lower than the maxima of the far fieldhe other eigencurrents.
Since the first 30 eigenvalues are about a factor of 6 largertie 37th eigenvalue, that causes
the (modulated) oscillations of the impedancdatthe oscillations occur over a wide range
of scan angles. Whether the oscillations are modulated dispemthe the interaction between
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Figure 6.18 Normalized absolute ring impedances for the line array in Figure 6.17 with
h/a = 3/2 (left) andh/a = 6/5 (right) for the frequencieg (o), 0.9975 fo (A), and0.995 fo

(x), wheref, corresponds téa = 0.991. Other geometry parameters as in Figure 6.17. The
impedances are computed by the eigencurrent approach with twosgodugoupling eigen-
currents and match the impedances obtained by the moment methodalidation: for each
frequency, the corresponding impedance of a single ring.
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Figure 6.19 Left: normalized absolute ring impedances for the line array of 40 rin§&giare
6.14 (upper figures) with scan angle85°; impedances computed by the eigencurrent approach
with two groups of coupling eigencurrents) @nd by the moment method)( Right: corre-
sponding normalized absolute coefficients of the eigencurrents of gtegyfoup in the finite
expansion (5.28) of the current. Normalization impedances: camnelipg impedance of a sin-
gle ring. Normalization coefficients: maximum coefficient.
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especially the 37th eigencurrent and the eigencurrentthace the scan lobe. As an example,
Figure 6.19 (left) shows that the oscillations of the noiireal absolute impedances of the same
line array as in Figure 6.14 (upper figures) for a scah&i® are modulated. Figure 6.19 (right)
shows that, for this scan angle, the scan lobe is composé@ ahain lobes of the third, fourth,
and fifth eigencurrents. Beside the even (array) eigenctgrelso a number of odd (array)
eigencurrents are excited, because the excitation of thg &rnot symmetric. If the scan angle
of the array equals one of the scan angles corresponding t7th eigenvalue, i.e490°, the
scan lobe of the array is one of the two main lobes of the fat éthe 37th eigencurrent. Since
these main lobes have a large beamwidth, we excite the 3Jéhn@irrent at lower scan angles
as well. For example, Figure 6.20 (left) shows the normédletesolute impedances for the same
line array as above, but with scan angl¥¥. The absolute impedances of the elements are in
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Figure 6.20 As Figure 6.19, but with scan angte°.

this case much lower than the corresponding absolute inmpedaf a single ring. Figure 6.20
(right) shows that especially the 36th and 37th eigenctsrare excited. The eigencurrents 1 —
30 are hardly excited. Finally, the excitation of the 37tfpegicurrent generates a large amount
of energy, which can be disastrous for the array due to hgafithe array structure.

In [46, 30], it is shown that the period of the modulations fifarm arrays of wires changes
in case the wire radius is changed. In arrays of rings and/sé strips, the same effects
occur. Moreover, the number of modulations is in correspord with the eigencurrents that
are excited. For example, Figure 6.21 shows the normalibsdlate coefficients in the finite
expansion of the current for two different ring widths; tivegrradius is constant. Only the coef-
ficients of the eigencurrents of the first group are shown.#or3/100, the 95th eigencurrent
is especially excited, while fo = 1/100, both the 95th and the 93rd eigencurrent are excited.
The coefficients of the dominant single-ring eigencurrémthe 95th and 93rd eigencurrents
exhibit alternating patterns modulated by a sine with 3 apdrbds, respectively. The patterns
of these eigencurrents are reflected in the modulated inrmgedascillations of the array. Fig-
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Figure 6.21 Normalized absolute coefficients in the finite expansion (5.28) of thewrufor

a line array of 100 rings in a half space wittya = 1.270 excited by voltage gaps of 1V
at the frequency wittka = 0.990 and with scan anglé°®. The ring widths are chosen such
that3 = 3/100 () and3 = 1/100 (o). Coefficients computed by the eigencurrent approach
with two groups of coupling eigencurrents; only the coefficients of thé dirsup are shown.
Normalization: maximum absolute coefficient. Parameter valdgs:= 3 (d = A/2 atka =
7/3), ¥ =0, Neos = 8, Nsin = 0.
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Figure 6.22 The normalized absolute ring impedances for the line arrays in Figutec61-
puted by the eigencurrent approach with. Léft= 3/100. Right: 5 = 1/100.

ure 6.22 shows that fgf = 3/100, the impedance oscillations are modulated by a sine with
2.5 periods, while fo3 = 1/100, the impedance oscillations are modulated by a sine of 3.5
periods. Simulations showed that the dependence of the latamuon the width does not oc-
cur for all geometry settings. If we increase the height efdlhray above the ground plane to
h/a = 1.59 =~ A/4 in the array of Figure 6.21, we do not observe dependenceemwitith. In

that case the oscillations raise to the height of the edgélaigms in Figure 6.22, because the
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95th eigencurrent becomes resonant. The oscillationdhiaredearly modulated by a sine with
3 periods.

The modulations are observed in line arrays of parallel gplane oriented, strips as well.
Figure 6.23 (left) shows the normalized absolute ring ingpeas for a line array of 40 strips
in a half space witth/¢ = 1.027, excited by voltage gaps of 1V at the frequency for which
2¢/)\ = 0.429. The spacing equats= 2.053¢. The oscillations of the impedance are modulated
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Figure 6.23 Left: normalized absolute ring impedances for a line array of 40 stripshialfa
space withh /¢ = 1.027 and with spacingl = 2.053¢, excited by voltage gaps of 1V at the fre-
quency for which2¢ = 0.429)\ with scan anglé®°; impedances computed by the eigencurrent
approach with two groups of coupling eigencurrenfsand by the moment method)( Note
thath = A/4 andd = X\/2 for 2¢ = )\/2. Right: corresponding normalized eigenvalues of
the first group. Normalization impedances: corresponding impedzrecsingle strip. Normal-
ization eigenvalues: single-strip eigenvalue corresponding to the fagpgiParameter values:
B8 =1b/f=0.0205, Neos = 8, Nyin = 0.

by sines with 2 and 3 periods. These sines correspond to tiheaBid 35th eigencurrents of
which the eigenvalues are relatively close to zero as showhigure 6.23 (right). Also the
eigenvalue of the 36th eigencurrent is relatively closeaimzbut this eigencurrent is odd and,
therefore, not excited for a scan(gt

Up to now, we have only consideréfl-plane oriented elements, i.e., rings with voltage gaps
on the line array axis and parallel strips with voltage gaxtheir centers. To considéf-plane
oriented elements, we position the voltage gaps of a lireyart 40 rings on lines perpendicular
to the line array axis. In other words, we take= = /2 instead ofy) = 0. As observed
in [46, 30], for E-plane oriented elements, modulated oscillations of teeneht impedances
occur at a frequency that is much closer to the frequency ficmthe array exhibits a ‘resonant
broadside embedded impedance’ than the frequency at wiesle bscillations occur for thé-
plane oriented elements considered above. Figure 6.2qbefws modulated oscillations of the
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element impedances for a line array of 40 rings excited btagel gaps of 1V at the frequency
for which ka = 1.038. The line array exhibits a ‘resonant broadside embeddeddiapce’ for
the frequency withka = 1.011. Hence, the modulated oscillations shown in Figure 6.24) (le
occur only 2.7% above this frequency. Figure 6.24 (rightvehthe corresponding behavior of
the eigenvalues. As in Figure 6.14, the 37th eigencurrectiibes resonant.
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Figure 6.24 Left: normalized absolute ring impedances for a line array of 40 ringshialia
space withh /a = 3/2 and with spacing = 3a = 0.495), excited by voltage gaps of 1V at the
frequency for whichka = 1.038 with scan angl®°; impedances computed by the eigencurrent
approach with two groups of coupling eigencurrenfsand by the moment method)( Note
thath = A/4 andd = X\/2 for 2¢ = X\/2. Right: corresponding normalized eigenvalues of
the first group. Normalization impedances: corresponding impedzracsingle strip. Normal-
ization eigenvalues: single-strip eigenvalue corresponding to the fagpgiParameter values:
B =0b/¢ =0.0205, Neos = 8, Nsin = 0.

Based on the observations above, we conclude that eigemtardescribe modulated os-
cillations of the element impedancesSpecifically, modulated oscillations of the element
impedances are described by a limited number of couplingneigrrents only. The examples
above reveal that these eigencurrents are the eigencuiokthie first group. The scan behavior
of the array is described by two or three eigencurrents,anthi# modulated oscillations are due
to the excitation of one or two higher-order eigencurrents.

This conclusion and the conclusion of Section 6.2 showsrttwatulated oscillations of ele-
ment impedances and variations of element impedancebugtd to surface waves are caused
by the excitation of specific eigencurrents and, thereviiththe same mechanism. Both these
array effects are due to resonant behavidhere are certain frequency ranges in which the ef-
fects occur. In the examples above of modulated oscillatiouniform line arrays off-plane
oriented rings, the frequency ranges from 11% to 16% and fré% to 20%, respectively, be-
low the frequency for which the array exhibits a ‘resonantliside embedded impedance’. For
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E-plane oriented rings, the modulated oscillations occt®@above this frequency.

In the practice of mechanical engineering, it is very diffi¢a construct a flat ground plate
or (approximately) uniform element geometries, see alsm i on p. 7. In Section 2.5, we
showed an example of a randomly perturbed uniform line atiay is excited at a frequency
for which resonant behavior occurs, see Figure 2.13. Aljhahe modulated oscillations, the
general pattern remains unchanged and the modulationsesen. This shows that large vari-
ations and modulated oscillations of element impedanaeaatrmerely an artefact of uniform
line arrays. Our idea is that the spectra and the eigendsrvéth show a ‘stable’ behavior with
respect to small geometry perturbations, but that the greaformance may change consider-
ably as observed in this section. Moreover, (small) difiees in element geometry and height
above the groundplane can be dealt with by the proposed @igemt approach by allowing
for differences between the single-element eigencurrientghich the array eigencurrents are
decomposed. For arrays of rings, such an extension is Btfaigard, because the single-ring
eigencurrents are invariant with respect to the ring gegmaatd depend only on the angle that
describes the circumference. Moreover, an impedance topehat allows for differences be-
tween ring radii and ring widths, and a corresponding mommttix was deduced in Chapter 2
and 3. We mention that whether the resonances studied isdbi®n occur in practice, depends
on the actual design, in particular the conductivity of therwstrip material used. If they occur,
loading can prevent the large modulated oscillations. ASdntion 6.2, the eigenvalues predict
the required uniform surface loads.

6.3.3 Line Array Analysis Using Small Array Information

In Section 5.3.2, we suggested to use information aboutptead of the eigenvalues obtained
for relatively small arrays in the analysis of large(r) ggas follows. First, we analyze the
spread of each group of eigenvalues for some relativelylsamalys, say with 4, 8, and 12 ele-
ments. We expect that if the spread of a group of eigenvakredstto become constant as the
number of elements increases, for the corresponding seigtaent eigencurrent we need only
the coupling between each element and, e.qg., its first 3 oighbers on both of its sides. Next,
in the eigencurrent approach, we construct the moment eeatdf larger arrays by calculating
only the relevant coupling between eigencurrents. If fahegroup of coupling eigencurrents
only the coupling between each element and its fifsteighbors on both sides, i.4/ neigh-
bors in total, need to be taken into account, the number gblifadlocks in the moment matrix
of the eigencurrent approach reduces fraivy,;, — 1t0 2M + 1, whereNg,;, is the number of
elements.

We define the spread of a group of eigenvalues as in Sectidd, 6&mnely as the maximum
absolute perturbation. In that section, we wanted to knowthér the eigenvalues of a group
are approximately the same as the corresponding singteealecigenvalue. In this section, we
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want to investigate to what extent the spread of the eigapgab a measure for the numbr.
Therefore, we are also interested in the finer structuree§gitead. Despite this, we think that
it is not necessary to consider, for example, the minimunolals perturbations of the groups
as well, because in Section 5.3.2, we showed that the minitends to become constant more
rapidly than the maximum.

The maximum absolute perturbations of the first and secamgpgrof eigenvalues as a func-
tion of the number of elements in two different line arrayswh in Figure 6.25 are discussed
in detail in Subsection 5.3.2, see Figure 5.18. For the lingydn free space, the maximum ab-
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Figure 6.25 Maxima and minima of the absolute perturbati({mslq|}év;“lb of the first (left)
and the second (right) group of eigenvalues as a functia¥s@f, i.e., the number of rings, for
a line array of 40 rings, with spacing/2, in free space+) and in a half space with/a = 6/5
(o). Parameter values: four groups of coupling eigencurrénts+ /3, 3 = 3/100, ¢ = 0,
Neos = 4, Ngin = 0.

solute perturbations increase monotonically, which isulised on pp. 169 ff. in relation to the
divergence of the infinite-array solution at the gratingdscan angle. In contrast, the maxima
for the line array in half space with/a = 6/5 (h = A\/5) become constant for line arrays of
20 elements or more. Based on these observations and our thedhg number of neighbors
needed, we would say that for the line array in half space, @egrithe firsR0 neighbors to
describe mutual coupling, while for the line array in fre@a@p we cannot neglect any mutual
coupling between the single-element eigencurrents of thednd the second group. That this
estimation is too pessimistic is shown by Figures 6.26 aRd.6For the line array in half space,
M = 5 is sufficient to obtain an accurate impedance approximdtioa scan att5°. A rough
approximation is obtained with/ = 1. For the line array in free spac&/ = 5 provides an
accurate approximation of the absolute impedances, bubfrtbieir phases. The approxima-
tion of the phases is much more accurate f6r= 10, but the approximation of the absolute
values deteriorates slightly. Further investigation eded that a perfect match is obtained with
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Figure 6.26 Normalized absolute values (left) and phases (right) of the ring impeddoc a
line array of 40 rings in a half space space witlu = 6/5 and with spacing\/2 (d = 3a). The
rings are excited by voltage gaps of 1V for a scas®t The impedances are computed by the
moment method=), by the eigencurrent approach)(and by the eigencurrent approach with
M =1 (A)andM = 5 (0). Normalization: Absolute impedance of a single ring. Parameter
values: two groups of coupling eigencurrents, = /3, 8 = 3/100, ¢ = 0, Neos = 8,
Ngin = 0.

M = 20. Finally, we found similar results far.

The pessimistic estimate of the number of neighbors foritteedrray in free space is ex-
plained as follows. In that case, the maximum absolute gmation of a group belongs to
the eigenvalue corresponding to the grating lobe scan ar@epp. 169 ff., we showed that
this eigenvalue tends to become infinite as the number ofeitsrincreases. Therefore, the
maximum absolute perturbation will not become constant. liRe arrays in a half space, we
illustrated that the eigenvalues of each group are boundeith explains why the estimate of
the number of neighbors provides accurate results.

To obtain a better estimate farf, we first define the quantity

|MRP7[LNSUb+1] — MRPJLNS“b*l] | IV::Lub|2
2 |V§Ub ‘2 )

ANl = (6.3)

whereMRP,[lNS“‘”] is the spread of thath eigenvalue group as defined in Section 6.3.1. This
quantity is a measure for the slopes of the curves descripalebspreads of the groups as a
function of the number of elements,,;,. Examples of such curves are shown in Figure 6.25.
The factor|v$""|2 /|v5uP|2 is meant to account for the differences in the absolute geations

of different groups. We call (6.3) the relative variationtbé spread. For the line array in free
space, the relative variation of the spread of the first amdrsd groups for 20 elements are
AP = 0,028 and A = 0.031, while for the line array in half space, the relative vanat
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Figure 6.27 As Figure 6.26, but the line array is in free space. Moreover, the salti®/ are
M =5 (A)andM = 10 (O). Only the impedances for a scardat’ are shown.

areA[f] = 0.035 andA[QG] = 0.027. The differences are due to the rapid changes of the relative
variation nearNg,, = 6, by which the values for the line array in half space varyrgtg, if

Ngup is varied. These results indicate that a fixed tolerance migyfer the groups. The relative
variation of the spreaALNﬁ“b] should be smaller than about 0.03 to talke= Ny, — 1.

To investigate whether the relative variation is indeed adgmeasure fod/, we consider
the same line arrays as above, but with spagihgs. The maximum and minimum absolute
perturbations as a function of the number of rings are showkigure 5.18. For the line array
in free space, the relative variations of the first and secpodps are/k[f] = 0.026 andA[26] =
0.041 and for the line array in half space, they axé] =0.028 andA[f] = 0.028. These values
of the relative variations are approximately the same aselw the spacingd\/2. Therefore,
we expect that the approximations of the impedances haveatme accuracy as above. For
the line array in half space, we obtained a good match betweesolution obtained by the
eigencurrent approach with = 4 and the solution obtained by the moment method, even near
the grating-lobe scan anglé.8°. For the line array in free space, we obtained a good match for
M = 5 between both solutions for scans uplfiy. For larger scan angles, the approximation
with M = 5 slowly deteriorates. A20°, the impedance variation is approximated accurately
with M = 10, while Figure 6.28 shows that the impedance variatioB0&tis approximated
accurately with\/ = 20 instead ofM = 5.

The increase of\f in free space for scan angles larger tHéf can be explained as fol-
lows. First, in Subsection 6.3.1, we observed that the appea of a grating lobe increases the
maximum relative difference ifh, sense between the element currents obtained by the moment
method solution and by the eigencurrent approach. Thisteffdnich influences the approxima-
tion of the impedance, is more pronounced for arrays in fpaeas than for arrays in half space.
Second,MRPl[N sub] andMRP%NS“"] increase slowly but monotonically witNy,,, for the line
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Figure 6.28 As Figure 6.26, but the line array is in free space with spag8ixg and the scan
angle is30°. Moreover,M =5 (A) andM = 20 (O).

array in free space, while they become constant for the lireyan half space, see Figure 5.18.
These observations indicate that we need to be careful wglenting mutual coupling between
elements near the appearance of a grating lobe in free spaeeexamples show that for scan
angles within25° from grating-lobe appearance, about 5 — 10 more neighbonddibe taken
into account than predicted byLNS“"] < 0.03.

Near resonant behavior, the estimatel\éfby means of the relative variation of the spread
provides reasonably accurate results, but smaller valué$ do in general not show the mod-
ulation observed in the previous subsection. For examptrir€ 6.29 shows that if we take
M = 6 atka = 0.943, we obtain a totally incorrect impedance pattern. Instddsbing modu-
lated, it resembles a common broadside impedance pattestioas in Figure 6.1. Hence, the
modulation is the result of mutual coupling between eles&mit are relatively far away from
each other. The relative variation with tolerance 0.03 awalprovides the estimatel = 8,
because\l¥! = 0.032 and A’ = 0.023. This value of? is too low. Figure 6.29 (right) shows
that for M = 10, the modulation is predicted, but the amplitude is too smiatir M = 20,
the amplitude of the modulation obtained by the eigenctiapproach is about the same as the
amplitude obtained by the moment method.

The difference between the predicted valde= 8 and the required valuk/ = 20 is not due
to the resonant behavior. As observed abaMRPl[Ns“b] increases slowly but monotonically in
free space and, therefore, the relative variation does imetggcorrect indication o/ for the
tolerance 0.03. For line arrays in half space with resonenéabior, the numbel/ is much better
estimated by the relative variation. For example, by anatympedance patterns, we found
that the resonant behavior of the line array of 40 rings shiowigure 6.17 is well-described
by the choiceM = 7 for bothka = 0.972 andka = 0.943. In both casesA[ls] ~ 0.023 and
A[Qs] ~ 0.014. These values are smaller than the fixed tolerance 0.03 clader/e and, hence,
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Figure 6.29 Normalized absolute impedances of the line array of Figure 6.26, blihtharray
is positioned in free space and excited at the frequencynitk: 0.943; scan angle i8°. Left:
the impedances are computed by the eigencurrent approachivith6. Right: the impedances
are computed by the moment methedl &nd by the eigencurrent approach with = 10 (A)
andM = 20 (O). Normalization: absolute impedance of a single ring.

the relative variation provides the correct estimat@/af

Incorrect impedance patterns for smédl, both for resonant behavior and non-resonant be-
havior, are due to incorrect eigenvalues and eigencurrentke example of resonant behavior,
the eigenvalues fok/ = 6 and M = 10 are perturbed with respect to the eigenvalues for the
case in which all coupling in the first two groups is taken iatcount, i.e.M = 39, as shown
in Figure 6.30. In Subsection 6.3.2, we observed that theutatidns atka = 0.943 in this
example are caused by the excitation of the 37th eigendurfem M/ = 39 and M = 10, the
37th eigenvalue is about 1.7 and 1.1 times smaller than the ei@envalue, respectively. In
contrast, forM = 6, the 37th eigenvalue is about 1.7 times larger than the 4@#nealue.
Therefore, the 37th eigencurrent is not excited/if= 6 is used, while it is excited if/ = 10
or M = 39 is used. The differences between the eigenvalues for diffaralues of\/ are ac-
companied by differences in eigencurrents. For smalleresbf), the dominant behavior of
the eigencurrents is too much perturbed. In other words;dkéicients of the dominant single-
element eigencurrents in the array eigencurrents of a groeifpo much perturbed. Since these
coefficients depend negligibly on the geometry parametaidiae frequency, negative side ef-
fects of choosing a small value af can be prevented by computing the eigencurrents first for
a frequency, or more general, for a parameter setting, factwiho resonant behavior occurs.
Subsequently, the eigenvalues are computed by means ofiHeigh-Ritz quotient as will be
explained in the next subsection.

The results above show that we may neglect mutual couplimgthiat we need to be care-
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Figure 6.30 The eigenvalues of the first group corresponding to the cases 6 (A) and
M = 10 (O) in Figure 6.29 together with the eigenvalues for the case in which all eksmen
couple (M = 39, o). Normalization: absolute single-ring eigenvalue.

ful. Except near the appearance of a grating lobe, the nuofhegighbors needed to describe
mutual coupling is well predicted by the variation of theesgmt as a function of the number of
elements in small arrays. Empirically we deduced thatf=! 5P /usub is smaller than 0.03,
only the coupling of each element with its fist,;, — 1 neighbors needs to be considered for
the single-element eigencurrent corresponding to:ithegroup of eigencurrents. In half space,
the estimate of the number of neighbors provides accuratdtse In free space, the estimate
may be a few elements too small due to the monotonic, butlplgsdow increase of the spread.
To relate the tolerance on the relative variation to a cema@ximum error of the impedance,
further investigation is needed. In this respect, we sh&akp in mind that by evaluating the
impedance of the elements, we point-evaluate the curréftis. results of these point evalu-
ations are sensitive to parameter variations. Therefoeeragommend relating the tolerance
to the maximum relativd., differenceM RD,, introduced in Subsection 6.3 instead of to the
impedance.

Regarding the computation times in Table 6.1, we note trettdmputation times for 100,
200, and 400 rings reduce about 209\f = 10. This reduction is not so large, because
for increasing numbers of elements, the computation tinte@gigencurrents and eigenvalues
dominates the computation time of the (reduced) momentixfabm which the eigencurrents
and eigenvalues are determined. Moreover, the CPU time aofienb matrices for uniform
line arrays tends a&/y,;, in contrast to the CPU time for non-uniform arrays, whichde®ms
N2, . To avoid eigenvalue computation from (reduced) momentioes, we discuss in the next
section the computation of eigenvalues and performana@pters by choosing a fixed set of
eigencurrents for various parameter settings.
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6.3.4 Line Array Analysis Using a Fixed Set of Eigencurrents

In Subsection 5.3.2, we proposed to approximate the (cogipdirray eigencurrents for a certain
parameter setting as follows: their expansion coefficievith respect to the single-element
eigencurrents are approximated by the expansion coefféc@tained for another parameter
setting. This approximation is based on the weak dependstlse coefficients on the geometry
parameters and the frequency as demonstrated in SubsB@i@n In this subsection, we show
some examples of this approximation.

The first example concerns a line array of 40 rings in free spaith spacingh/2. The
rings are excited by voltage gapsidf. Only one group of coupling eigencurrents is used. The
expansion coefficients of these eigencurrents are appadedrby the expansion coefficients
obtained for the spacing\/5. Next, the eigenvalues are approximated by the Rayleigh-Ri
quotient (5.38). Figure 6.31 shows the absolute values lamghases of the ring impedances
for a scan atl5°. Both absolute values and phases show the same curve sisajpesadsolute
values and phases obtained by the eigencurrent approacthnamdoment method. For the
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Figure 6.31 Normalized absolute values (left) and phases (right) of the ring impeddoc a
line array of 40 rings in free space with spacikg2. The rings are excited with voltage gaps
of 1V for a scan aB0°. The impedances are computed by the moment methpdy the
eigencurrent approach with one group of coupling eigencurreptsaafid by the eigencurrent
approach with eigencurrents obtained for the spagikgs (A). Normalization: single-ring
impedance. Parameter valués: = 7/3, 8 = 3/100, ¢ = 0, Ncos = 8, Nsin = 0.

middle 20 rings, absolute values and phases match perfectly thewdbsalues and phases
obtained by the eigencurrent approach. Near the edgesjfteeedces in absolute value and
phase run up to 3% and 0.05 rad, respectively. As observeddtiod 6.1, the phase difference
between the impedances obtained by the moment method ahd bigencurrent approach with
only one group of coupling eigencurrents is almost uniforithwalue 0.05 rad. If two groups
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are taken into account, this difference almost vanishes.

The second example concerns the same line array. We demoteetiuency at which the
array is excited byf, and the corresponding wavelength By. The spacing is\o/2. The
expansion coefficients of the eigencurrents are approrinlay the expansion coefficients ob-
tained for the frequency.1f,. For a scan at5°, Figure 6.32 shows that the normalized ab-
solute impedances thus obtained match very well the naxewkbsolute impedances obtained
by the eigencurrent approach (without the described eigesict approximation) and the mo-
ment method, if one group of coupling eigencurrents is uskte phases of the impedances
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Figure 6.32 Normalized absolute values (left) and phases (right) of the ring impeddnc a
line array of 40 rings in free space with spacixg/2. The rings are excited with voltage gaps of
1V at the frequency, for a scan att5°. The impedances are computed by the moment method
(%), by the eigencurrent approaah) (and by the eigencurrent approach with eigencurrents com-
puted at the frequencly.1f, (A). Upper figures: one group of coupling eigencurrents. Lower
figures: two groups of coupling eigencurrents. Normalization: sinigigimpedance (afo).
Parameter valuegioa = 7/3, 8 = 3/100, ¢ = 0, Neos = 8, Ngin = 0.
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match very well the phases obtained by the eigencurrenbappr The phase difference with
the impedances obtained by the moment method is about 0.FFoadwo groups of coupling
eigencurrents, the phase approximation improves coraitieand mimics the phases obtained
by the eigencurrent approach and the moment method quile Wké approximation of the
absolute impedance is slightly worse than for one group apling eigencurrents. We note
that for two groups of coupling eigencurrents, the phastsiogd by the eigencurrent approach
(without the described eigencurrent approximation) maétehphases obtained by the moment
method perfectly.

One could think that the differences between the impedaobtsned by the eigencurrent
approaches with and without approximated eigencurrergsnat only small because of the
weak dependence of the eigencurrents on the geometry parsnaed the frequency, but also,
because of small differences between the impedances attheshcieg, and1.1f,. However,
at1.1f,, the impedances differ considerably from the the impedaaté,. This follows from
a comparison of Figure 6.32 with Figure 6.33, which showsinffgedances of the same array
as in Figure 6.32, but excited atl f, instead off,. The eigencurrents are determinedfat
instead ofl.1fy. Contrary to Figure 6.32, the phases obtained by the appedidon match
the phases obtained by the eigencurrent approach and themhomethod reasonably well for
one group of coupling eigencurrents. The absolute valuiésr dibout 8% from the absolute
values obtained by the moment method, while they match thelate values obtained by the
eigencurrent approach approximately. For two groups opliog eigencurrents, the absolute
impedances and the corresponding phases obtained by thexapation match the absolute
values and phases obtained by the moment method, excephedaft edge of the array.

Up to now, we have not applied the matrix-reduction suggeistehe previous subsection.
We consider the last example of the previous subsection,a.kne array of 40 rings in free
space excited at the frequency with = 0.943. At this frequency, the line array exhibits
resonant behavior. First, we compute the eigencurrentthéosame line array, but excited at
the frequency withka = 1.026. Next, we apply the Rayleigh-Ritz quotient to the computed
eigencurrents to approximate the eigenvaludsiat 0.943. Both in the eigencurrent approach
and in the Rayleigh-Ritz quotient, we neglect mutual cauply takingh = 6 and M = 20,
where M is number of neighbors that couple with an element. As oleskimr the previous
subsection, fol = 6, we obtain an impedance pattern without modulation. Thereiglues
of the first group are incorrect and the impedance patters doeshow the modulations, see
Figure 6.34. FoM/ = 20, the modulations are well predicted. This numbeidfcorresponds
with the estimate fofl/ found in the previous subsection, see Figure 6.29. We cdadloat
even at the resonant frequency, we may neglect mutual cappétween elements according to
the rule of thumb proposed in the previous subsection.

Regarding the quantitative differences observed in thaltesf this subsection, we should
keep in mind that differences between impedances obtaipetidomoment method and the
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Figure 6.33 As Figure 6.32, but the array is excited at the frequenty,, while the eigencur-
rents to obtain the third curve) are computed at the frequengy. The normalization is the
single-ring impedance at0 f, as in Figure 6.32.

eigencurrent approach may be larger than the differencsnelal for the maximum relative
L, difference introduced in Subsection 6.3.1, see also Se6t®3. Moreover, differences be-
tween impedance results do not necessarily mean that athfermance parameters show large
differences as well. For the electric far fields of the scar®aand45°, perfect matches were
obtained except near the grazing angl€¥°. Thus, we conclude that, for large parameter vari-
ations, both the element impedances and the far-field pedioce parameters are approximated
accurately for a fixed set of eigencurrent coefficients.

This conclusion can be used in computations of the arrapperhce parameters for a given
excitation as follows. First, for a given parameter settimg compute the eigenvalues and
eigencurrents. Next, we fix the computed eigencurrents.afww parameter setting, we ap-
proximate the eigenvalues by the Rayleigh-Ritz quotieptiad to the fixed eigencurrents. Both
in the computation of the eigencurrents in the first step ankd computation of the eigenvalues
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Figure 6.34 Left: normalized absolute ring impedances for a line array of 40 ringeadpace
excited at the frequency witha = 0.943 by voltage gaps of 1V for a scan @t. Impedances
computed by the eigencurrent approach with two groups of coupling@igeents £) and by
the eigencurrent approach with eigencurrents computed at the freguéth ka = 1.206,
both forM = 6 (A) andM = 20 (OJ). Normalization: corresponding impedance of a single
ring. Right: eigenvalues of the first group faf = 6 (A), M = 20 (O), andM = 39

(). Normalization: absolute single-ring eigenvalue. Parameter valijes= 3 (d = \/2 at
ka=m7/3),8=0b/a=3/100,% = 0, Neos = 8, Nsin = 0.

in the second step, we restrict mutual coupling on basis lotitzions of the relative variation
ALNS“"] for small arrays as explained in the previous subsection.

6.3.5 Line Array Analysis Using Single Strip Eigencurrents

In addition to the approximation of (coupling) array eigements as discussed in the previous
subsection, we proposed in Subsection 5.3.2 to approxithatarray eigencurrents and eigen-
values as follows. First, compute the expansion coeffisiehthe eigencurrents of a single strip
obtained by piecewise linear expansion functions. Nextsitter these expansion coefficients
as the coefficients of the dominant single-element eigeants in the array eigencurrents. In
this way, approximated array eigencurrents are obtainé@uhllff compute the eigenvalues of
the line array by applying the Rayleigh Ritz quotient to tppraximated (array) eigencurrents.
The approximation is based on the correspondence betweaoéfficient distributions of the
eigencurrents of a single strip and the coefficient distidins of line arrays of strips and rings,
as discussed in Subsection 5.3.2.

For a line array of 40 rings excited by voltage gaps of 1V tosaial5°, Figure 6.35 shows
a comparison of the moment method, the eigencurrent appnedh one group of coupling
eigencurrents, and the eigencurrent approach with appedrid eigencurrents. The eigencur-
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Figure 6.35 Normalized absolute values (left) and phases (right) of the ring impeddnc a

line array of 40 rings in free space with spacikg2. The rings are excited with voltage gaps
of 1V for a scan att5°. The impedances are computed by the moment methkpdy the
eigencurrent approack), and by the eigencurrent approach with eigencurrents obtained from
the eigencurrents of a single strip in free space with 40 piecewise expdoaittions (\). One
group of coupling eigencurrents is used. Parameter values of the kiags /3, 8 = 3/100,

1 = 0, Neos = 8, Nsin = 0. Parameter values of the single stri. = A\/2, 3 = 1/50,

Neos = 8, Ngin = 0.

rent coefficients of the approximation are obtained formrip sif half a wavelength with 40
piecewise functions. The absolute impedances obtainetiédwypproximation match the ab-
solute impedances obtained by the eigencurrent approatio(wthe described eigencurrent
approximation) and the moment method reasonably well. Has difference with the phases
obtained by the moment method is about 0.1 rad, which is ath@usame as the difference
between the phases obtained by the eigencurrent approddhemoment method. Contrary
to the eigencurrent approach, the phases of the approximatimic the pattern of the phases
obtained by the moment method less well.

Taking two groups of coupling eigencurrents instead of eveedo not obtain a much bet-
ter result for the phases obtained by the approximation #iseirprevious subsection. This is
explained as follows. Only the dominant behavior of the eayerents of the first and second
groups of eigencurrents can be described by the eigentwwefficients of the strip, not their
perturbations. These perturbations are discussed in &itrs&.3.2, see for example Figure
5.25 and the related paragraphs. They are described by #fficEnts of the non-dominant
single-element eigencurrents in each group. Since the iags of the perturbations are be-
tween -10 dB and -20 dB with respect to the dominant behavitheeigencurrents, the per-
turbations contribute to the local performance parametttee elements. Especially the per-
turbations in the first and second groups that are of the eddkdB may contribute more to
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these parameters than the dominant part of eigencurrette ithird or fourth group, because
the groups with higher index correspond to higher singéepeint eigenvalues.

The eigencurrent approach itself can handle large petiorisor perturbations that vary
with the parameter setting, because it computes the eifygrss/and eigencurrents for each set-
ting separately. The approximations of Subsections 6.13d46a3.5 are applicable if either the
perturbations depend negligibly on the geometry parameted the frequency, or if the per-
turbations are of second order with respect to the dominelmaNdor of the eigencurrents. The
eigencurrents of the arrays we considered exhibit the sepooperty. The perturbations of
eigencurrents may become large if there is a degenerataveige. In that case, there is an
eigenspace of more than one independent single-elememaigent. We encountered such a
case in Subsection 5.3.2, p. 163, for a line array of ringh tith cosine and sine eigencurrents
prescribed on the elements. These eigencurrents exhibdiaiime eigenvalue and span together
an eigenspace. Moreover, they are orthogonal with respehbetinitializing L, inner product.

In the general case, it is not essential that the eigendgrabiained from the moment matrix
of a single element are orthogonal with respect to the Ity inner product. It is only es-
sential that they are independent. In this respect, it iitamt to note that independency does
not depend on the inner product. Having computed the eigestais of a single element, we
construct the new inner product in step E of the initializatof the eigencurrent approach, see
Subsection 5.1.2. The eigencurrents corresponding to endegte eigenvalue are orthonormal
by the definition of this inner product.

6.4 Array Surface Waves versus Surface Waves in
Dielectric Layers

Up to now, we have considered arrays in free and half spaceprdctice, the elements are
positioned on a dielectric layer on the ground plane. Sudyerlcan carry surface waves. If
such a wave occurs, most of the power is carried along thg aardace instead of radiated into
space. Consequently, the array becomes ‘blind’. In thealitee, blindness is considered by
many authors, see for example [107, 95, 93]. In this secfiom an eigencurrent point of view,
we discuss the correspondences between array surface aadesirface waves in dielectric
layers. Moreover, we discuss whether the eigencurrenbagprwith only a limited number of
groups of coupling eigencurrents can treat arrays positiam grounded dielectric layers. To
this end, we consider first the application of the infiniteagrapproach to arrays in free space.
To compute the currents on the elements of an array by thdt@finray approach, the
‘infinite-array series’ is truncated. We showed that thenitéi-array approach does not provide
a convergent solution at the grating-lobe scan angle, set@86.5. Hence, if the current at this
scan angle is evaluated by the infinite-array approach withrecated series, the result depends
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on the truncation number. To evaluate the current accyrala finite array must be considered.

In the practice of the moment, the array is not scanned upegthting-lobe scan angle.
Therefore, evaluation of the impedance at this angle islhaahsidered. However, for us, it is
important for the following reason. If a grating lobe apeir the plane of the array, a large
amount of energy is radiated along the surface of the arfag.same phenomenon occurs if the
elements are positioned on a dielectric layer, which camisurface wave. We show that the
eigencurrent approach with only three groups of couplimg®currents computes the currents
on the elements and related performance parameters suffffceccurate at the grating-lobe
scan angle. Thus, we are strengthened in our idea expresSedtion 5.4 that the eigencurrent
approach can treat not only arrays in free and half space)smarrays positioned on a grounded
dielectric layer.

Figure 6.36 (upper figures) shows the impedances for a Irag @f 40 rings in free space
excited by voltage gaps of 1V at the frequency for whieh= 1.23 to scan att5.3°. Since the
spacing isd = 3a = 0.587), a grating lobe occurs at90° for this scan angle. Both for one
and two groups of coupling eigencurrents, the absolute dapees obtained by the eigencurrent
approach differ at most 2.5% from the absolute impedanctsraa by the moment method.
The phase differences are approximately uniform over theeyabeing 0.07 rad and 0.05 rad
for one and two groups of coupling eigencurrents. Figuré @a&ver figures) shows that phase
differences are slightly larger if the number of elementadseased to 201. Finally, the behavior
of the absolute impedances and the corresponding pha$esgating-lobe scan angle for aline
array of 201H -plane oriented rings is in general the same as the behavarays composed
of an infinite number of parallel line arrays, where each imay consists of 201 parallel wires
of about half a wavelength, see [46: Figs. 6, 7].

The phase differences observed above are not specificalyodhe appearance of a grating
lobe. Figure 6.37 shows that if the frequency is changed sahka = 1.047, the phases
obtained by the eigencurrent approach with two groups opliog eigencurrents differ less
than 0.02 rad from the phases obtained by the moment method; tNithphase difference
is much smaller than the phase differencékat= 1.23 is explained as follows. In Section
6.3.1, we investigated for the line array of 40 rings the agseof the eigenvalue groups as a
function of the frequency and we related the behavior of iteals to the maximum relative,
difference between the solutions obtained by the momertodetnd the eigencurrent approach.
At ka = 1.23, the L, difference becomes indeed larger due to the appearance gfréting
lobe, but it is still below 2%. More important is the conclusiin Section 6.3.1 that on basis
of the behavior of the spreads of the eigenvalue groupshihe group is needed to describe
mutual coupling forka near 1.3. At this value ofa, the single-ring eigenvalues corresponding
to the second and third groups become approximately the.s@omesequently, the second and
third single-ring eigencurrents become equally importarthe description of the current on
a single ring. A test revealed that if the third group of eiggaments is taken into account,



226 6. TESTCASES FOR THEEIGENCURRENTAPPROACH

1.8 T T T 1

kg Aﬁﬂﬂﬁ

* E i A

08F %% o o *%*%*%%%%*% A
o OOOOOO *xA

*x
o * ¥ %%*%

Phase of impedance (rad)

0.65-

Normalized absolute impedance

0 10 20 30 40
Ring index

Phase of impedance (rad)

Normalized absolute impedance

. 50 150 200 06 50 100 150 200

. 100 . 10¢
Ring index Ring index

Figure 6.36 Normalized absolute values (left) and phases (right) of the ring impeddacline
arrays of 40 and 201 rings in free space. The rings are excited withgeoffaps of 1V at the
frequency withka = 1.23 for a scan att5.3°. The impedances are computed by the moment
method ) and by the eigencurrent approact).( Parameter values: one group of coupling
eigencurrentsd = 3a (d = A/2 atka = «/3), 8 = b/a = 3/100, ¢ = 0, Neos = 8,
Nsin = 0.

the phase difference of the impedances in Figure 6.36 retu6ed2 rad. Forka ~ 1, the

single-ring eigenvalue of the third group is much largemtki@e single-ring eigenvalue of the
second group. Therefore, only two groups of groups of cogpdiigencurrents are needed to
describe mutual coupling. These results show that gratihg behavior is described by only
two or three groups of coupling eigencurrents for ring ainéerences of less than 1.5 times
the wavelength. Moreover, the results confirm that the eférsieape determines which single-
element eigencurrents can be excited; whether they artedxsidetermined by the excitation
field of the array. Only single-element eigencurrents witiaht eigenvalues are excited and,
hence, only these eigencurrents need to be taken into acaswoupling eigencurrents in the
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Figure 6.37 As Figure 6.36, but the frequency is changed such taat= 1.047. Only the
impedances of the line array of 40 rings are shown.

cycle of the eigencurrent approach.

Taking three instead of two groups of coupling eigencusénto account increases the
computation time of the eigencurrent approach. This carrdeepted as follows. Since the co-
efficients of the dominant single-element eigencurrenhédrray eigencurrents of each group
are the same, see Subsection 5.3.2 and conclusion 7 in ®&ctipwe can approximate the
eigencurrents of the third group by the dominant behavith@kigencurrents of the first group.
Then, we compute the eigenvalues of the third group by thddrRgyRitz quotient. As dis-
cussed in relation to the single-strip eigencurrents ins8ation 6.3.5, by this approximation,
we ignore the perturbation of the eigencurrents of the thiaup. This perturbation is of less
importance than the perturbation of the first group, bectiusesingle-element eigenvalue cor-
responding to the third group is higher than the one cormadipg to the first group. Therefore,
the approximation will not affect the result for the curmn the elements and the related
performance parameters.

Finally, we discuss the correspondences and differendesebe array surface waves, sur-
face waves in dielectric layers, and grating-lobe appesramhe effect of surface waves in
dielectric layers resembles the effect of grating-lobesgpance in the sense that a large amount
of power is transported along the surface of the array. Singeating lobe is represented by
a specific eigencurrent, we think that a surface wave in &ctiet layer is represented by a
specific eigencurrent as well. In contrast to the far fielchefeéigencurrent related to the grating
lobe, the far field of the eigencurrent related to a surfaceewsill have main lobes at-90°
only. The eigenvalue corresponding to this eigencurrethittairespond to the blind scan angle
in the same way as the eigenvalue of the ‘grating-lobe’ @igeent corresponds to the grating-
lobe scan angle. As shown in Section 6.2, the occurrenceray aurface waves corresponds
to resonant behavior of the array. According to our definitigrating-lobe appearance is only
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resonant behavior of the array, if the eigenvalue corredipgnto the grating-lobe scan angle
is relatively close to zero. In other words, if the eigeneatrcorresponding to the grating-lobe
scan angle exhibits a relatively small eigenvalue, i.eelatively low characteristic impedance.
We think that a surface wave in a dielectric layer is only resd behavior of the array, if the cor-
responding eigenvalue is relatively close to zero accgrtbrour definition. Resonant behavior
due to a surface wave can occur both in a dielectric layer té&fextent and in a dielectric layer
of infinite extent. In a dielectric layer of infinite extentpeopagating surface wave becomes a
standing wave for certain sizes of the array, which is pmséd in/on the dielectric layer. In a
dielectric layer of finite extent, a propagating surface avbecomes a standing wave both for
certain sizes of the array and for certain sizes of the dietdayer.

6.5 Summary of the Conclusions

In this section, we first summarize point-by-point the maimausions of this chapter. Next,
we discuss to what extent our analysis as described in Qisapnd 6 meets the four require-
ments formulated in Chapter 1, p. 1.2, and to what extent nalyais provides insight into

characteristics of arrays.

1. Eigencurrents describe array surface wave phenomena datkckvariations of element-
current amplitudes and element impedances.

Specifically, surface wave phenomena and the related iarsaare described by only a
limited number of coupling eigencurrents. The examplesisf¢chapter reveal that these
eigencurrents are the eigencurrents of the first group. Em@ncurrents describe the
scan behavior of the array, while three eigencurrents testite surface-wave behavior.
[Section 6.2]

2. Eigencurrents describe modulated oscillations of the el@nmpedances.

Specifically, modulated oscillations of the element impexds are described by a limited
number of coupling eigencurrents only. Again, the exampfethis chapter reveal that
these eigencurrents are the eigencurrents of the first giichgpscan behavior of the array
is described by two or three eigencurrents, while the maddlascillations are due to the
excitation of one or two higher-order eigencurrents. [®akien 6.3.2]

3. Variations of element impedances attributed to surfaceas@and modulated oscillations
of element impedances are caused by the excitation of speigjéncurrents and, there-
with, by the same mechanism. Both these array effects areodasonant behavior.

There are certain frequency ranges in which the effectsrodouthe examples in this
chapter of modulated oscillations in line arraysifplane oriented rings, the frequency
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ranges from 11% to 16% and from 14% to 20%, respectively,vbehe frequency for
which the array exhibits a ‘resonant broadside embeddeddance’. In the examples of
variations of element impedances in line array¢ieplane oriented strips, the frequency
ranges from 14% to 20% below this frequency. Finally, foelarays off’-plane oriented
rings, the modulated oscillations occur about 2.7% aboigeftAquency. In contrast to
the large variations of element impedances in item 1, theutabed oscillations do not
occur over their entire frequency range. [Section 6.2 arzb&ction 6.3.2]

4. On basis of the eigenvalue distribution of the first groupeofdy) eigenvalues, (uniform)
element surface loads required to reduce resonant behaanhe determinedSection
6.2]

5. The spread of the eigenvalue groups is an appropriate catalé measure to determine
the number of groups of coupling eigencurrents needed teritbesmutual coupling.

Here, the spread of an eigenvalue group is defined as the girofithe maximum ab-
solute eigenvalue perturbation, i.max{\enq|}f1\’;‘ib, and the ratio of the first absolute
single-element eigenvalug;;?|, and the absolute single-element eigenvalue correspond-
ing to this group|v;°|. In formula,max{|enq|} 25 - [15P|/[15M°|. The single-element

eigenvalues are indexed according to increasing absadlite V{Subsection 6.3.2]

6. In the cycle of the eigencurrent approach for uniform linesgnis generated from a single
element, mutual coupling between distant elements maydgbeabed, but special care is
needed. Except near the appearance of a grating lobe, théeuof neighbors needed
to describe mutual coupling is well predicted by the relatiariation of the spreads for
small arrays. Here, the relative variation of the spreads defined as in Subsection 6.3.3.

Empirically, we deduced that if the relative variation oéﬂ;preadSLM“] is smaller than
0.03, in line arrays of more thall + 1 elements, only the coupling of each element with
its first M neighbors needs to be considered for the single-elemeah&igrent corre-
sponding to theath group of eigencurrents. Here, the relative variationgSneéd as in
Subsection 6.3.3. In half space, the estimate of the nunflm&ighbors provides accurate
results, even for resonant behavior. In free space, thmagimay be a few elements too
small due to the monotonic, but possibly slow increase oftiread. [Subsection 6.3.3]

7. For large parameter variations, both the element impedaraed the far-field perfor-
mance parameters are approximated accurately for a fixedfsstpansion coefficients of
the array eigencurrents with respect to the single-elereggegncurrents.

This conclusion can be used in computations of the arrayoperhce parameters for a
given excitation as follows. First, for a given parametdtisg, we compute the eigen-
values and eigencurrents. Next, we fix the computed eigesmatst For a new parameter
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setting, we approximate the eigenvalues by the RayleigheRiotient applied to the fixed

eigencurrents. Both in the computation of the eigencusrénthe first step and in the

computation of the eigenvalues in the second step, we ¢estritual coupling on basis

of calculations of the relative variation of the spreadssimall arrays as explained in the
previous conclusion. [Subsection 6.3.4]

. Afirst-order approximation of the performance parametdrarmdform line arrays is ob-

tained as follows. First, compute the expansion coeffisi@ftthe eigencurrents of a

single strip obtained by piecewise linear expansion flamsi Next, consider these ex-
pansion coefficients as the coefficients of the dominanteselgment eigencurrents in

the array eigencurrents. In this way, approximated arragegicurrents are obtained. Fi-

nally, compute the eigenvalues of the line array by applyfregRayleigh Ritz quotient to

the approximated (array) eigencurrents.

In case only one group of coupling (array) eigencurrentsisde be considered, this
approximation is in general more accurate than in case nrotgg of coupling eigencur-
rents need to be considered. [Subsection 6.3.5]

. In the eigencurrent approach, grating-lobe behavior isa#dsed by at most three groups

of coupling eigencurrents.

For arrays of rings with circumference close to 1.5 timeswhgelength, three groups of
coupling eigencurrents are needed, while for rings witbusinference close to or less than
the wavelength, only two groups of coupling eigencurren¢ésreeeded. This observation
confirms that the element shape determines, which singlaeit eigencurrents can be
excited; whether they are excited is determined by the a&tkait field of the array. Only
single-element eigencurrents with small eigenvalues »céeel and, hence, only these
eigenvalues need to be taken into account as coupling eigemts in the cycle of the
eigencurrent approach. [Section 6.4]

In contrast to array surface waves, grating-lobe appeamaiscnon-resonant behavior of
the array, if the eigenvalue corresponding to the gratiobd scan angle is not relatively
close to zero according to our definition.

The effect of surface waves in dielectric layers resemiblegffect of grating-lobe appear-
ance in the sense that a large amount of power is transpdaotegl the surface of the array.
Since a grating lobe is represented by a specific eigenduwerthink that a surface wave
in a dielectric layer is represented by a specific eigenatias well. In contrast to the far
field of the eigencurrent related to the grating lobe, thdiédd of the eigencurrent related
to a surface wave will have main lobesis®0° only. The eigenvalue corresponding to this
eigencurrent will correspond to the blind scan angle in traesway as the eigenvalue of
the ‘grating-lobe’ eigencurrent corresponds to the ggatobe scan angle. As shown in
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11.

Section 6.2, the occurrence of array surface waves comesgo resonant behavior of the
array. According to our definition, grating-lobe appeagisconly resonant behavior of
the array, if the eigenvalue corresponding to the gratoigplscan angle is relatively close
to zero. In other words, if the eigencurrent correspondinthé grating-lobe scan angle
exhibits a relatively small eigenvalue, i.e., a relativielyw characteristic impedance. We
think that a surface wave in a dielectric layer is only resdiehavior of the array, if the
corresponding eigenvalue is relatively close to zero atingrto our definition. Resonant
behavior due to a surface wave can occur both in a dieleetyerlof finite extent and in
a dielectric layer of infinite extent. In a dielectric laydriofinite extent, a propagating
surface wave becomes a standing wave for certain sizes afthg which is positioned
in/on the dielectric layer. In a dielectric layer of finitetert, a propagating surface wave
becomes a standing wave both for certain sizes of the arryaarcertain sizes of the
dielectric layer. [Section 6.4]

The eigencurrent approach proposed in this thesis desgniésonant behavior of finite
arrays accurately. In contrast, resonant behavior cannetdckled by the infinite-array
approach, no matter the size of the finite arrf§ection 6.2 and Subsection 6.3.2]
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CHAPTER7

Conclusions and Recommendations

The research on analysis and design of antenna arrays skstimsthis thesis was assigned by
and carried out at Thales Nederland in Hengelo, the Neth#slain the period August 2000
to August 2004. The first part of the research, from AugustO2@0April 2001 was carried
out as final project of the postgraduate program Mathemédicéndustry at the Technische
Universiteit Eindhoven. In this chapter, we first summatize conclusions of the research.
Second, we outline the new approach proposed in this thesisalyze antenna arrays, called
the eigencurrent approach. Both for the conclusions anthfoapproach, we discuss to what
extent they satisfy the main objectives | — IV in Section In8 the requirements 1 — 4 in Section
1.2, p. 8. Third, we suggest potential modifications of thprapch for a faster computation.
Finally, we present recommendations for the future analgsd design of antenna arrays.

7.1 Conclusions

In this section, we discuss first the conclusions of thisitheldext, we discuss to what extent
they satisfy the objectives and requirements mentionedeabo

1. The most important aspect of antenna-array analysigésrdaning the eigencurrents of a
single element (or a subarray). For single rings and forlsistgips, we observed that the
eigencurrents depend negligibly on the geomertry parasete

2. The array eigencurrents are described as concatenatidimear combinations of the
single-element eigencurrents. In this description, theffazients of the dominant single-
element eigencurrent depend negligibly on the elementestegobserved for line arrays
of rings and line arrays of strips. Moreover, these coeffiselepend negligibly on the
spacing in line arrays.
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. The eigencurrents and eigenvalues of an array with unifdement geometry can be di-

vided into groups; each group corresponds to an eigendwféhe single element, i.e.,

the dominant single-element eigencurrent of the group. chiedficients of the dominant

single-element eigencurrents are in each group the san®eigknvalues are perturba-
tions, not necessarily small, of the corresponding simfgenent eigenvalue. If mutual

coupling is neglected, these perturbations are zero.

. The spread of a group of eigenvalues, as defined by (6.&)gisantitative measure for

the mutual coupling both among the eigencurrents of thaigend between the eigen-
currents of that group and the eigencurrents of other grolmpan implementation of an
analysis approach based on eigencurrents, an upper bonie cpecified for the spread
in order to neglect mutual coupling automatically.

. The mutual coupling behavior of arrays consisting of eets that are typically designed

to excite only one eigencurrent, or one main mode, can baibdegdy a limited number
of groups, typically one or two, of coupling eigencurrents.

. Arrays are entire objects rather than collections of sgpalements. For, the coefficients

of the dominant single-element eigencurrent in each gréemencurrents of a line array
of rings or strips and the expansion coefficients of the eigments of a single strip with
piecewise functions generate the same patterns. Sindp &stn entire object, line arrays
are entire objects as well.

. All array eigenvalues are related to specific scan angdli®a@rray. These scan angles are

the positions of the main lobes in the far fields of the coroesiing eigencurrents. The
broadside scan, the monopulse, and the grating lobe aresesgied by specific eigencur-
rents of the array.

. The eigencurrents of a finite array describe its charnatitebehavior completely. The

corresponding eigenvalues represent their characteiistpedance. The lower the
impedance of an eigencurrent, the less excitation enenggisred.

. As atool to calculate the array eigencurrents, the eigeet approach proposed in this

thesis describes the characteristic behavior of finiterarat@rrays accurately. In contrast,
the infinite-array approach cannot describe the charatitebiehavior of finite antenna
arrays completely, no matter the size of the finite array.

The eigencurrents of finite arrays are standing wavesomitrast, eigencurrents related
to the infinite-array approach are propagating waves. Aefilinite array can be regarded
as a finite microstrip, or in mechanical terms, a finite striAgplying the infinite-array
approach to finite arrays can be compared to replacing a fimamstrip, or a finite string,
by an infinite one.
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11. Characteristic behavior of finite arrays is due to resoaaand resonance is due to the
excitation of specific, resonant, eigencurrents. The eg@eers, or impedances, of these
resonant eigencurrents are relatively close to zero cozddarthe eigenvalues of the non-
resonant eigencurrents according to our definition in 8adi2 and Subsection 6.3.2.

12. Variations of element-current amplitudes and elenmepeidances attributed to array sur-
face waves [82], and modulations of element impedances3[4&G;an explained from the
excitation of specific eigencurrents of the array and, thi¢ghe by the same mechanism.

13. On basis of the eigenvalue distribution of the first grotifarray) eigenvalues, uniform
surface loads required to reduce resonant behavior carrdighdforwardly determined
for the elements of an array. Uniform loading is equivalerghifting the eigenvalues.

14. Grating-lobe appearance is resonant behavior of thg,afthe eigenvalue corresponding
to the grating-lobe scan angle is relatively close to zeredmparison with the other
eigenvalues.

15. The difference between arrays in free space and arrdafispace is reflected in the far
fields of the eigencurrents. In free space, there is a sirigeneurrent that excites the
grating lobe in the plane of the array. In half space, the ssigencurrent exists, but does
not excite the grating lobe.

On basis of these conclusions, we come to the folloviiimgl conclusionof this thesis:

The design characteristics of antenna arrays are one-te-+etated to the excitation of specific
eigencurrents of the array. The eigencurents are one-®related to scan lobes, grating lobes,
monopulse lobes, impedance variations, modulated imprdascillations, et cetera.

By this final conclusion, Objective Il in Section 1.3 is sfiigd. The eigencurrents are the char-
acteristics that describe the behavior of arrays. Moredkese characteristics are up to certain
extent independent of the array geometry, see ConclusioBsd 6. With respect to Objec-
tive |, the characteristics of a single element that arergsddor describing the array behavior
are the single-element eigencurrents that contributegathtual coupling, see Conclusion 5
and the strongly related conclusions 1 and 4. Objective Hoissidered in the next section.
Finally, the question in Objective IV about how and to whatieex our approach improves the
infinite-array approach is answered by the Conclusions 9&nd

Next, we consider the requirements 1 — 4 in Section 1.2, p. 8quiRement 1 is satis-
fied, because once the eigencurrents of a single elementiogla subarray are determined,
these eigencurrents can be used for all arrays composed shthe elements, see Conclusion
2 and 3. The edge effects mentioned in Requirement 2 areibleddry the eigencurrents for
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finite arrays. Moreover, the eigencurrents describe thenaas behavior of finite arrays. There-
with, requirement 2 is satisfied. Since the expansion caefiis of the dominant single-element
eigencurrents in the array eigencurrents depend negligiblthe element shape and the spac-
ing, coefficient distributions of eigencurrents can be useahalyze different array geometries
using the same distributions. Therefore, an analysis agprbased on eigencurrents will not
be array-lattice and element-shape dependent, by whichiRRewents 3 and 4 will be satisfied.
More details with respect to the requirements are discussin next section.

7.2 Approach for Analysis of Finite Antenna Arrays

We propose to analyze finite antenna arrays with the eigesmuapproach as described in this
thesis. This proposal is supported by the conclusion of teeipus section and, more specifi-
cally, the conclusions in Sections 5.4 and 6.5. We applie@itiencurrent approach successfully
to line arrays of strips and rings, and we discussed theegifan of the eigencurrent approach
to other types of elements and array geometries in Sectbartel Section 6.4. The eigencurrent
approach is suitable for analyzing finite antenna arraysiiefeicient way, keeping track of the
characteristic behavior of arrays. It has two main steps, initialization and cycle. In this
section, we outline the eigencurrent approach for arraymidbrm element geometry.

Initialization:

1. Choose suitable expansion functions for the single ai¢niiethe element has no specific
shape, the choices of rooftop functions and Rao-Wilsosg®l functions are suggested.

2. Construct the moment matrix for the single element, shelt the matrix exhibits the
same eigenvalues as the projected impedance operatomti@soto the moment matrix
defined as usual, the moment matrix defined as in Section @iBits this property for
all choices of expansion functions.

3. Compute the eigencurrents and eigenvalues from the mamerix.

4. Construct the inner product with respect to which therigerents are orthonormal.

Cycle:

1. Estimate how many single-element eigencurrents aresdgedescribe mutual coupling
in the array from the behavior of their eigenvalues. Onlygkgrelement eigencurrents
with eigenvalues that are small with respect to the othesreiglues need to be taken into
account.
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2. Construct the moment matrix of the array for these sieigenent eigencurrents with
respect to the inner product composed of the new singleegiemner products.

3. Compute the eigencurrents and eigenvalues of the amaytflis moment matrix.

4. Group the (array) eigencurrents according to their epwading single-element eigen-
current and single-element eigenvalue. Index the groupasrding to increasing single-
element eigenvalues.

5. Verify that the spread of the eigenvalues of higher-ogteups is small. If not, repeat
steps 2 and 3 of the cycle with more single-element eigeantsr Here, the spread of a
group is defined as in Subsection 6.3.1.

6. Construct the inner product with respect to which bothctingpling (array) eigencurrents
and the non-coupling (array) eigencurrents are orthonlbrma

Once the eigencurrents of the array have been computedyttentinduced by a given excita-
tion is computed by the (finite) expansion of the current wétspect to the (array) eigencurrents.

The eigencurrent approach satisfies Objective Il in Secti@nn the sense that it is efficient,
see Section 6.1, and in the sense that it describes the tdrdgtic behavior of arrays accurately,
see Conclusions 9 and 10 of the previous section. Therealitbpjectives and requirements
are satisfied, except that the application of the eigenntieeproach to other array geometries
than line arrays is required to verify Requirements 3 and dertiworoughly. In this respect, we
note that, above, only one cycle of the eigencurrent apprizadescribed. An extension to more
cycles is described in Chapter 5.

7.3 Moadifications for Faster Computation

The eigencurrent approach as outlined in the previousmsectn be adjusted in several ways
for a faster computation of the current. We mention the filhg four adjustments, which are
investigated in this thesis.

¢ In the cycle of the eigencurrent approach, we may neglectiahgbupling between dis-
tant elements, but special care is needed. Except near peaigmce of a grating lobe,
the number of neighbors required to describe mutual cogpsirwell predicted by the
relative variation of the spread for small arrays. Here réiative variation of the spread
is defined as in Subsection 6.3.3. For a given tolerance orethtive variation, such as
the one deduced in Subsection 6.3.3, the number of neighbguired can be estimated
automatically. [Conclusion 6, Section 6.5]
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e Fix the eigencurrents computed for a certain parameténgetipproximate the eigenval-

ues for a new parameter setting by the Rayleigh-Ritz qubéipplied to these eigencur-
rents. In this way, the computation of the eigenvalues agensiurrents from the moment
matrix for each parameter setting is avoided, which savasiderable computation time.
[Conclusion 7, Section 6.5]

If groups of higher index, say 3 or 4, are needed in the eigeectiapproach, the com-
putation time of the eigencurrents from the moment matristap 3 of the cycle may
become large. To avoid this, compute first the eigencurfentte groups of lower in-

dex, say 1 or 2, from the moment matrix in step Ill. Next, apprate the coefficients of

the dominant single-element eigencurrents of the groupsgbfer index by the the coef-
ficients of the dominant single-element eigencurrents efitist group. In this way, only

the self coupling of the groups of higher index is considerexd the coupling between
the groups of higher index and those of lower index. Appr@tiarthe eigenvalues for a
given parameter setting for the array by applying the Rgplditz quotient to the thus
obtained eigencurrents of the groups of higher index.

A first-order approximation of the performance parameténsniform line arrays is ob-
tained as follows. First, compute the expansion coeffisiaitthe eigencurrents of a
single strip obtained by piecewise linear expansion femsti Next, consider these ex-
pansion coefficients as the coefficients of the dominantisialgment eigencurrents in
the array eigencurrents. In this way, approximated arrggreurrents are obtained. Fi-
nally, compute the eigenvalues of the line array by applyfregRayleigh Ritz quotient to
the approximated (array) eigencurrents. In this way, ttergmutation of the eigenvalues
and eigencurrents from the moment matrix is not needed .af@tinclusion 8, Section
6.5]

7.4 Recommendations

On basis of our research on antenna arrays, we come to tlsviio§ recommendations in

the fields of array design (1), application and validatioritaf eigencurrent approach (2 — 5),
and implementation (6). The second and third recommentiatice especially meant to verify
Requirements 3 and 4 of Section 1.2, p. 8. The fourth recordatem is a general validation

of the eigencurrent approach with experiments.

e Separate element design and array design. This recomnmamdstsupported by the

conclusions of the eigencurrent approach, in particulat the eigencurrents show this
separated behavior.
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e Apply the eigencurrent approach to other array geometrigmrticular, to rectangular ar-
rays. We suggest to use the multi-cycle approach as suggesthapter 5. General ideas
for the application of the eigencurrent approach to othexyageometries are described in
Section 5.4.

o Apply the eigencurrent approach to arrays positioned onrgted dielectric layers. In
that case, the kernel of the impedance operator needs t@abgeth. Kernels for grounded
dielectric layers can be found in the literature, e.qg., i §2]. Finally, general ideas for
the application of the eigencurrent approach to arraygiposd on grounded dielectric
layers are described in Sections 5.4 and 6.4.

¢ Validate the proposed method by an experiments. We sudgebitowing. First, mea-

sure performance parameters of a uniform line array ofiegslements. Next, compute
the eigencurrents of this element by the initializationhaf €igencurrent approach. Third,
approximate the coefficients of the single-element eigerats in the array eigencur-
rents by the coefficients obtained for line arrays of stripsigs. Fourth, compute the
eigenvalues of the array by applying the Rayleigh-Ritz gundtto the array eigencur-
rents thus obtained. Here, the first modification proposdtfiérprevious section can be
applied. Next, compute the current and the array perforamaacameters for some exci-
tation fields. Finally, compare measurement results witiugation results.

e Apply eigencurrents for pattern synthesis, or in other 8pepply eigencurrents to con-
struct the specified far field of an antenna array. This recenttation is based on the
conclusion that eigencurrents describe the charactelistiavior of arrays, in particular,
the far field.

e Implement the eigencurrent approach in a programming kaggmore suitable for com-
mercial applications, such as the C programming languadéehenFortran programming
language.
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APPENDIXA

Calculation of the Averaged Kernels

A.1 The Averaged Kernel F,
Forp = g, the kernelF,, in (2.57) is split into
F, = Fi + Fy + F3, (A1)

where the functiong’;, F», andF3 are defined by

1 1 1 2 exp( jk;(\/§2+ﬁ2

B /neXp —jkl\/E* + B*n?
F(8) = 27kl §2+ﬁ2

(A.2)

The functionsF, and F3 are continuous. The integrand 6% is continuous as function df
except in the poind, where it exhibits a linear singularity. Thereforg, is logarithmic singular
in 0, as can also be seen from

Fi(€) = W [—5 log €2 + log (2/3 /45 1 52)] (A.3)

This is the term[...]/7k¢3 in (2.59). The functionFz equals the terni...]/27jk?¢?3? in
(2.59).
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A.2 The Approximate Kernel K,

The approximate kernel in (2.86) can be writtenfds (o) = K (2sin(p/2); kay, f4,0),
whereK is defined by

L e (<P E )
K(&a,8,7) {1+

(1—1n/2)¢ . \/W
TBRR Lt (1 +JoV P + 88 +y ) dn. (A4)
In this appendix, we deduce an approximation for We considerk as function of¢ with

parametersy, 3 > 0, andy > 0, which are independent g¢f We assume that <« 1 and
approximatek” as follows. First, we decompoge€ into two parts,

K(£7a76ﬂv):K1(§7aaﬂ)7)+K2(§aa757’7)7 (A5)
where
¢ j&
(&0, 3.7) = 7 Ko (V@77 10,8) = 2= Koo (V@ +7750.8) . (A6)
T 47
and
1 e (—ja/FEE T €47 c2
K1(§,Ot,577):%/0 \/W <1ﬁ2772+§2+'72>dn,
2 exp (*ja\/m) n (A7)
Kzl(y;a,ﬁ):/ 55 5 A,
0 VB + y? B*n? +y

Katwin) = [ osp (3o TP T F) i

Pt
The functionsK; and K3 are both continuous as functionsgpfThe functionk; is continuous
as function of¢ except fory = 0, where it exhibits a logarithmic singularity = 0. Under
the condition thaty = O(1) (as/ | 0), we deduce

. 1 : ? B2n* ++°
Kttt n) = g o0 (VBT [ G T e 1

= ﬁ exp (—ja\/m) {% (log <2ﬂ—|— 462 + &2 +72) — log (W)) +

2
- 2 } = Ki(§,6,7). (A8)

@+ AP @
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This approximation is not appropriate for the imaginaryt jphri; if v = 0. It is observed that
the imaginary part of the approximation with= 0 tends to zero aé — 0, whereas

b %W%ﬂm7 (A.9)

Im(K1(0; v, 8,0)) = 21 0 B

which is in general not zero. Therefore, the imaginary paipis approximated by

2 2,.2
MK (€ By )) ~ - SO VE T 7) /ﬂf" +

2o VE + 42 i —|—€2+7

_Lsin(a VEE+?) 9 _ £ arctan i _
N L BVER+72 VE + 2

m(K1 (& a,6,7)) . (A.10)

This approximation is not only appropriate for the case- 0 and¢ — 0, but also otherwise,
provided thaix = O(1) as above.

We rewrite the integrak(,; by transforming the integration variable inte= »? first. Then,
integrating by parts, we obtain

L fren (o)
0

K21(y7aaﬁ):§ (ﬁ2t+y2)% di =
e (—ja\/W) _exp(=jalyD) |
= 32 \/m lyl
ja [iexp (—ja\/m)
473_4 e dt. (A.11)

The integralK,, is decomposed into two parts and the integration variabtmefof these parts
is transformed inte = 7,2,

Ko (y;a, B) = 2/2 - <_ja\/m) dn — 1/04 — (_;jtT)

dt .
0 2% + y? 2

(A.12)

We approximate the integral with respectrtan K5, in the same way as the integral;. In
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other words, the real part is approximated by
2 COS (a\/ﬁ%Q + y2)
dn =~ cos(a / —————dn =
/0 B*n* + y* ! (alu) o B vy

_ cos(alyl) <%
Ayl aretan |y

> , (A.13)
and the imaginary part by
/2 sin (O[\/ 52772 + y2> d sin a‘y| /
0 3202 + y? Tyl \/ﬁQn +y?

SummingK,; and Ky, as in (A.6) to obtainks, we observe that the integrals with respect to
in K5 and Ko, vanish. Hence, the approximation fak, is given by

¢ {exp (~ieVIFETET ) exp (~jaV/E ) }+

K2(§§aa5a7):*47raﬁ2 \/W B \/W
i€ 26
2
_ WEW sin (a\/£2+72) {log‘ £2++2 +

+log (25 VAR + €2 + A2 )} . (A.15)
Finally, the integralX is approximated by
K=K +K,, (A.16)

where the real and imaginary part &% are given by (A.8) and (A.10), respectively, aAd is
given by (A.15).
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APPENDIXB

Fredholm Operators with Weakly Singular
Displacement Kernels

In this appendix, we study Fredholm operators with weaktgslar displacement kernels. For
k € La(]—2a,2a]), a > 0, we introduce the Fredholm operafSrby

ko) - [ k- o) dy,  wel-aal. (B.1)

The Cauchy-Schwarz inequality reveals that € Lo([—a, o) for ¢ € La([—«, o). Starting
from this result, we formulate several statements belowchvive use in the characterization
of the domain and the range of the operafqrin Chapter 3. With the notation of Section 3.1,
we introduce the Lebesgue spadeg|[—a, «]) andHs ,,, ([—«, o) and theL,-derivativeD. In
most of the statements, we take= 1, but these statements are valid for any- 0.

Lemmal Letk € Ly([—2,2]) and¢ € Ha1([—1,1]). Then,K¢ € Hs1([—1,1]) with Ly-
derivative

D(K¢) = K(D¢) + ¢(—1)k(z + 1) — p(1)k(z — 1). (B.2)

A Forz e [-1,1],

(ko)w) = [ "D, {— / "k df} Hy) dy =

-1

—o(-1) [ Uk de - o01) / Tk de + / 11 { / e df} (D&)(y) dy
(B.3)
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whereD,, indicates thel,-derivative with respect tg. Differentiating both sides with respect
to z yields (B.2). MoreoverDK¢ € Ly([—1,1]), because the terms in the right-hand side of
(B.2) are all elements af([—1,1]). |
Lemma 2 Letk € Ho1[—2,2] and¢ € Lo([—1,1]). Then,K¢ € Ho1([-1,1]) and
1
(OK6)() = | (OB - y)otw)dy. (B.4)

-1

A By the definition of thel,-derivativek we obtain from (B.1)

(K¢)(z) = «:/11 o(y) dy + /11 {/OW(Dk)(g) dg} b(y) dy =
= C/_l1 o(v) dy—/_ll /Oy(Dk)(ﬁ—y) d€ ¢(y) dy+/0$ /_ll(Dk)(f—y)ng(y) dyde ,
(B.5)

wherec = k(0). The first two terms in the right-hand side are constant. eDéffitiating both
sides with respect to, we obtain (B.4). Sinc®k € Ls[-2,2] and¢ € Ly([—1,1]), it follows
thatDK¢ € Lo([—1,1]). [ |

Corollary 1 Letk € Hy1[—2,2] and¢ € Hz1([—1,1]). Then, K¢ € Hy 2([—1,1]).

A From Lemma 2, it follows thak’D¢ € Hs 1([—1,1]), and hencd®¢ € Hy1([—1,1]) by
Lemma 1. u

Lemma 3 Let k be the functionk(¢) = Jlogé? and¢ € Ly([—1,1]). Then K¢ €
Hj1([-1,1]).

A See [97: p. 37] |

Corollary 2 Let ¢ € Hs1([—1,1]) in the previous lemma. Thei;¢ € H,([—1,1]) if and
only if ¢(1) = ¢(—1) = 0. Under this conditionDK¢ = KD¢.

A It follows from Lemma 1 and Lemma 3 th&llp € H, »([—1, 1)) ifand only if ¢(—1) log(1+
z) — ¢(1)log(l — ) € Ha1([—1,1]). The latter is equivalent to(—1) = ¢(1) = 0, which
impliesDK¢ = KD¢ by lemma 1. |

Remark 1 The previous lemmas and corollaries are valid fonatt 0.
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Lemma 4 Let the functionsNVy, Neos n, @NdNgin., (n = 1,2, ...) be defined by

1 1 1
Nog = —, Neosn(x) = —=cosnx, Nginn(x) = —=sinnz . B.6
0 \/ﬂ s ( ) \/7—_‘_ s ( ) \/7_'[' ( )
Then,f € Hy p, per|—m, @] if an only if there existy, a,,, b, (n = 1,2,...), such that
f = aoNo + Z (anNcos,n + bnNsin,n) s Z(l + nz)m(ai + bi) < 0. (B?)
n=1 n=1

Lemma5 Let k be defined byk(¢) = —3 cos¢ logsin®(£/2). Let¢ € Lo[—m, 7). Then,
K¢ € Hajper|—m, 7| If ¢ € Ho1 per([—m, 7)), thenK¢ € Hy s per([—m,7]) andDK¢ =
KDé.

A From the expansion dbg(2 cos(£/2)), —m < &€ < m, see [41: p. 38, Eq. 1.441.4], it follows
that

1 o COS
L ogsin? (& =log2+ ) COSE  r << E£0. (B.8)
2 2 = on
Then,
YN 1 = 2n
—cos¢ logsin (§> =1+2 (log2 + Z) cos& + 322 o cosné. (B.9)

By this expression, we write the kerriglz — y) as

1
k(x —y) =aNZ +7 <1og 2+ Z) (Neos,1(®)Neos,1(y) + Ngin,1 () Nein 1 (y)) +

> n
+ ™ Z m (Ncos,n(x)Ncos,n(y) + Nsin,n(x)Nsin,n(y)) 9 (Blo)

n=2

where the functionsVy, Neos,n, and Ngin », (n = 1,2, ...) are defined as in Lemma 4. These
functions form a total orthonormal set iy, ([—, ]). Then, we may expand € Lo([—m, 7))
into the functions of this set,

¢ =aoNo+ D (anNeosn + bnNainn) , Y (aF +b3) < oo. (B.11)

n=1 n=1
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The latter implies the convergence of the series expansiof &6n basis of Banach’s criterion.
Using (B.10) and (B.11), we obtain fé¢, ¢

(Ko)(x) = magNo(z) + 7 <10g2 + i) (a1 Necos,1 () + b1 Ngin 1(2)) +

n
S 1 Ncos.n nNsin n ) B.12
+w;n2_1 (@nNeos,n () + b Nein (), (B.12)
Then, according to Lemma &¢ € Ha 1 per([—m, 7)) for ¢ € Lo([—m,7]). Moreover, if
¢ € Haqper([—m, 7)), thenK¢ € Haz o per([—m,7]) andDK¢ = KD¢, the latter of which
follows from straightforward calculation. |

Corollary 3 Replace the functioh in the previous lemma by a functidne Hs 1 pe, ([—, 7]).
Then, the same conclusions hold as in this lemma.

Remark 2 From (B.12), it follows that the Fredholm operatrinduced by the kernet in
Lemma 5 is a diagonal operator with respect to the total odhmal set defined by (B.6) in
Lo([—m,7]). The same yields for the kerndtsn Corollary 3.
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APPENDIXC

Far-Field Approximations

In this appendix, we deduce expressions for the electrid feglaway from an array of strips or
rings. By far away, we mean that the distance to a fixed poirtherarray is much larger than
both the characteristic lengthof the array and the wavelengih

Let us consider an array in free space described by a suffasein Subsection 2.3.1. The
electric field generated by the averaged currédton the surface' in free space is given by

Nel
E=Y"E,, E,=DA,=DT(AJ)s,, (C.1)
qg=1

where

@) = TADls, @) = [ gue(Rle—s, () ) (ADs, (€) dSy(6.m) . (€2)

H(SQ)
and
(AJ)ls, (&m) = we(€) ec(&,0),  dSy(&m) = S3°'(&, ) dndé. (C.3)

We note thals.. is defined by (2.12)57°! by (2.24F, andD by (2.10). We express the tuple
x € R3 into the standard spherical coordinate system given by

ey(0,¢) =sinfcosgpe, +sinfsinpe, + cosbe,,
eg(f,¢) = cosfcospe, + cosfsinge, —sinbe,, (C.9)
es(0,¢) = —singe, +cosge,.

Thena(p,6, 6) = pe, (6, ¢) and

R(@(p,0,0) — ws,(6,m)) = /02 — 2p (e,(0,0) o ws, (£,m)) + |ws, (Em)E. (C5)
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Moreover, in spherical coordinates, the actiorDobn A, is given by

) 1 0 1 0 10
DAq = —jZOk |:Aq + k—2 <ep8—p + ed)ma—gb + 69;%>

19, 10 _ 1 0444
(p2 8,0(/) Agp) + psinf 39(Aq’9 sin ) + psin®  O¢ )} - (CH)

The components, ,, 4,4, and A, 4 are obtained by expressing (£,0) into the Cartesian
coordinate system and then by expressing the vectors afiteiem into the spherical coordinate
system. Fop so large that the sphere with radipgontainsS, we may reverse the integrals
in these components and the partial derivatives in (C.6&nTthe partial derivatives act on the
kernelggeo(R(x(p, 0, ¢) — xs,(£,7))) in (C.2). For thep-derivatives of this kernel, we obtain

" Gtree (R(x(p, 0,6) —zs, (&n))) (—jk)"

= X
op" p

X exp (—jk\/pQ —2p(e,(0,0) e s, (£,n)) + qu(f,n)P) <1 4 O(L +p1/k)) 7

(C.7)

whereL is the characteristic length scale of the surf@andn = 0,1, 2. As mentioned above,
we assume thal/p < 1 and1/kp < 1. Moreover, the parameter descriptiang, are chosen
suchthatx s, (£,7)|/p < 1. Itfollows from (C.6) and (C.7) that the dominant termgD¥A,, ),
are A, , and9*4, ,/0%p. The other terms ifDA,), are of O((L + 1/k)/p) with respect
to these terms. Hence, it seems that the dominant terf®df,), is A, , + 9*A4,,, / k? 0?p*.
However, it follows from (C.7) that this term vanishes up éoms of O((L + 1/k)/p). This
implies that(DA,), is of O((L + 1/k)/p) with respect td DA, ), and(DA,)s. From (C.6)
and (C.7), it follows also that, y and A, , are the dominant terms ¢DA,)y and(DA,),.
The other terms are @((L + 1/k)/p). Then, neglecting terms 6#(L?/p?) in the phase term
of (C.7) withn = 0, and neglecting terms @ ((L + 1/k)/p) in the other terms of the electric
field E,, we find that

Eq = —jZOk (Aqﬂe@ + Aq,(be(b) R (CB)

where the component$, o and A, , follow from

e—Jkp

Aq(p797 ¢) =

- / oIk (ep(9,¢>) exs, (5,77)) wq(€) €5|Sq (£,0) S;’Ol(f, n) dnd¢. (C.9)
TP J1(s,)

The magnetic fieldd , corresponding tdZ, follows from (2.14}, i.e., H, = rot A,. By a
similar dimensional analysis as above, it is shown thatgtgemponent of this field vanishes
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and that the? and ¢-components are given b§l, 9 = —0A, 4/0p andH, 4 = 0Aq0/0p.
From (C.7) we obtain two equivalent expressionskby,

H, = jk(A,4eq+ Aypeq) H,=e,xE,/Z, (C.10)

where E, is given by (C.8). The expressions (C.8) and (C*1@e the well-known far-field
expressions, see for example [110: pp. 31 - 32].

Let us now consider an array of strips in free space as destitbSubsection 2.3.2. For
the parameter descriptiarns, given by (2.41), the origin of the spherical coordinate eysts
located in the plane of the array. The vecters, in (C.2) equalse, and S;Ol = 1. Using
e, =sinfsin ¢ e, + cosfsin ¢ ey + cos ¢ ey, we obtain from (C.9)

cos 0 sin ¢
cos ¢

Aq,{i}(/),ggﬁb) = { }Aq(p797¢)7 (Cll)

whereA4, is given by

b eijkp jkcg .z sin 6 cos ¢ ! j kL€ sin 0 sin ¢ ! —jk£Bn sin 6 cos ¢
Ag(p,0,0) = LLET ke [ w(©)de [ et an.
—1

dr p “1
(C.12)

In these expressions, we normalized the integration iasalith respect td andb, and that
we interpretedw, as a function of the normalized coordingte As in the deduction of the
approximate kernequ in (2.62), we assume that< 1 andk? = O(1) (asg | 0). Neglecting
terms of order3?, we approximate the integral with respectitby 2. To calculate the integral
with respect tag, we need to specifyv,. For the entire-domain expansion functions (3.8),
w, is a linear combination of the expansion functigh®;**e,,)(-;q), n = 1,2, ..., Neos(q),
and(W;"e,)(-59), n = 1,2,..., Nsin(q). The expansion coefficients corresponding to these
functions arg(Ws**)~w](n, 1) and[(W;™)~w](n, 1), which follow from the solution of the
moment-matrix equatiofpV—Z,W|[W~w] = W~ v**]. Having calculated the integral with
respect tof for each expansion function in (3.8), we construct the eledield from (C.1},
(C.8), (C.11), and (C.12). We obtain

Nei
E(p,0,¢) = —jZok (cosfsinpeg + cospey) D Ag(p,0,9), (C.13)

q=1
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where
. Neos(q)

(b e ke o coss (=1)"(2n — 1)wcosk
Aq(p’e’@:%Te]k o ¢< 2 (v el 2~ (2n— 122/
n=1

Nsin(‘l) ..
i (=1)™2n7jsink
3 V) 1) TS ) ()
n=1

andk = kfsinfsin ¢ .

Let us consider an array of rings as described in Subsect®8.2As above, the origin of
the spherical coordinate system is located in the planeecttay for the parameter description
xg, given by (2.64). The vectaz, |5, in (C.2) is given byey|g, in (2.65) andS(jOl is given by
S;’Ol(r, ¢) =r. Usinge, = sinf cosp e, +cos b cospeg—sinp ey, ande, = sinfsingpe,+
cos 0sin ¢ ey + cos ¢ ey, we obtain from (C.9)

cos ) agb, e kP .~ o
A 0 _ qvq Jjk(cq,x sinfcosp+cq,y smGsm¢)X
{2y 09) {1 } o ¢

X /ﬂ exp (jkaqsin 6 cos(¢p — ¢ — y)) we(p) {

—T

sin(¢ — ¢ — wq) } %
cos(¢ — ¢ — )

1
X / exp (jkaqﬂqr sin @ cos(¢p — p — 1/1q)) (14 B4r)drde. (C.15)
—1

As the integral with respect tpabove, we approximate the integral with respeetly 2, where
we assume that, < 1 andka, = O(1) (asg | 0). To calculate the integral with respecto
we specifyw, as above for the strips, where the entire-domain expansiwstibns are given by
(3.12). Then, we obtain

Nei

cosf) e Ik° A . o
E ’9’ — —iZk ab ejk(cqw sin 0 cos ¢ + cq,y sin 0 sin @) %
{i}(l) ) J4o {1 }—2p q; qYq

cos(n — 1)(¢ — ¢q)

n=1

Neos(q) .
« ( Z [(Wgos)i'w](n, 1) {Sln(n — 1)(¢ - ¢q>}]n2 (Jn—2("3q) 4+ Jn(liq»‘i’

Nsin(q) (o —
p> KW?“>wK”v”{;ﬁ?qsw%;M}j"1<Jn—1<nq>iJn+1<nq>>), (€.16)

wherer, = kag sin 6.
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For arrays of strips or rings in a half space, the deductioefelectromagnetic far fields
runs analogously. Due to the description of the centerseétéments in Subsection 2.3.4, the
origin of the spherical coordinate system is not in the plahthe array as above, but in the
boundary plane of the half space. The components of thespwneling electric far fields are
given by (C.13) and (C.16), both multiplieg sin(hk cos 8), see [34] for details. Heré, is the
height above the ground plane and the spherical coordinatesspond to the new origin. The
factor2j sin(hk cos 6) is the same as the factor for an infinitesimal dipole in a hzdfe, see [4:
Eqg. (4-116)].

We compare the far field (C.16) of the rings with results foimgle wire ring as described
in the literature. FolV, = 1, Ngin(1) =0, ¢1,» = ¢1,4 = 0, andy; = 0, we can rewrite (C.16)
as

wppae ke {— cos 9} y
4jp J
Neow(1)—1

X Z anj"ej"¢ (J»,H_l(lil) + Jn_l(/ﬁll)), (Cl?)
n=—Ngos(1)+1

E{i}(p707¢) =

whereay = 2b; (W)~ w](1,1) anda,, = a—p, = b1 [(W5)~w](n + 1,1) for n > 0.
These expressions for the electric far-field componentshersame as the expressions (5-49)
and (5-50) in [47: p. 92] for a wire ring, if we identify,, andV;/Z,,,, in [47: p. 92]. Moreover,
putting alsoN..s(1) = 1 in (C.16), we find the same far-field components as in [4: p.] 219
for a wire ring with constant current. Here, we identify tioéal current2b; [(WV;**) " w](1,1)
through the strip and the total currefgtthrough the wire in [4: p. 219].

For the strips, it can be shown that the far-field expressiha3) yields the same result as
in [4: p. 162], but then we need to align theaxis along the strip. This is accomplished by the
permutationz, y, z) — (z,z,y) in (C.4).

Finally, we calculate the total radiated power in the fardfieThe time-average Poynting
vectorS defined byS = Re(E x H™)/2 represents the radiation power density averaged with
respect to time, see [109: p. 137]. By (C.A,ahe Poynting vector in the far field can be written
asS = (E e E*)e,/2Z,. The total radiated power of an array in free space is thé flataof
S over a sphere with radiys

2m ™ 2m ™
Prad:/ / (Sen) p2sin9d0d¢=/ / U(6,¢) sinfdf do. (C.18)
0 0 0 0

whereU (0, ¢) = (E o E*)p?/2Z, is the radiation intensity. For a half space, the rangé of
reduces to the intervél), 7 /2]. The integrand in (C.18) is independentxds can be seen from
the far-field expressions in this appendix. The quantity/ (6, ¢) /P is the directivity of the
array.
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Samenvatting

Radar, voluit ‘radio detection and ranging’, wordt gebtuikor velerlei doeleinden, zoals het
regelen van luchtverkeer, het doen van snelheidsmetingkativerkeer, en het lokaliseren en
volgen van schepen en vliegtuigen. Het principe van radgehisseerd op het fenomeen dat met-
alen objecten radiogolven reflecteren. De radiogolven amndtgezonden en ontvangen door
de antenne van een radarsysteem. Het ontwerp van een fkergelienne kent twee hoofddoe-
len: de energie die in de antenne in de vorm van electromiaghetstraling opgewekt wordt,
moet in een specifieke richting worden uitgestraald en degemeverdracht van bron naar elek-
tromagnetische straling moet optimaal zijn. Voorbeeldam antenne types zijn draadantennes,
paraboolantennes, en antenne-arrays.

Antenne-arrays bestaan uit separate antennes, die elmeatden genoemd. Het aantal
elementen varieert van een tiental tot vele honderden. éhgevallen hebben de elementen
dezelfde vorm en zijn geordend in een regelmatige geométrieenne-arrays hebben als groot
voordeel boven andere antenne-types dat zij de gebruikaodelijkheid bieden de bundel van
elektromagnetische straling te besturen door middel vaevrschillen tussen de elementen.
Deze bundel is vergelijkbaar met een lichtbundel bij toneaistellingen, maar is onzichtbaar
voor het menselijk oog. De elektronische besturing kawslijnstantaan worden bewerkstel-
ligd, dit in tegenstelling tot mechanische besturing varbdedel. Aan elektronische bestur-
ing danken antenne-arrays hun multifunctionaliteit did@mmeer bestaat uit scannen van het
luchtruim, volgen van doelen, en leiden van raketten naadeel.

Het ontwerp en de ontwikkeling van radarsystemen is comptekostbaar. Om de kosten
en risico’s bij het ontwerp te verkleinen, en om de prestatiesystemen te verbeteren, gebruikt
men simulaties. Simulaties moeten voldoen aan een aaiitiar ze moeten snel uitvoerbaar
zijn, ze moeten randeffecten tonen alsmede effecten vanateuelektromagnetische koppel-
ing tussen de elementen, en ze moeten in grote nauwkeudigbgirestatieparameters bepalen.
Simulaties gebaseerd op de oneindige array aanpak en sgsuj@baseerd op de eindige ele-
menten methode voldoen niet aan deze criteria. Eerstgaetebeschrijven geen randeffecten
en laatstgenoemde leiden tot trage berekeningen. Geerezars@mulaties geeft direct inzicht
in de fysica die relevant is voor het ontwerp. In dit proefostp stellen we een aanpak voor die
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voldoet aan bovengenoemde criteria en bovendien inziakthaft in de fysica. Deze aanpak
kan de nadelige en desastreuze invloed van staande golvée pestatie van eindige arrays
voorspellen en geeft aan hoe dit gedrag kan worden voorkeoarhet hele scanbereik van het
array. De aanpak van dit proefontwerp is getest op lijnarragt regelmatige geometrie, waar-
bij de elementen rechthoekige microstrips of ringvormigerostrips zijn. In beide gevallen
zZijn de arrays gepositioneerd in de vrije ruimte of boven geleidend oppervlak. In tegen-
stelling tot de lengte en omtrek van de microstrips is huredite klein ten opzichte van de
golflengte. Richtlijnen voor het toepassen van de aanpakdera array-geometéa met an-
dere element-geometéa en op arrays waarbij kleine verschillen tussen de eleandgstaan,
worden uitvoerig beschreven.

In de voorgestelde aanpak wordt het gedrag van een eindig laeschreven door zijn eigen-
trillingen of eigenstromen. Deze eigenstromen zijn derdigrecties van de impedantie-operator
die de stromen op de elementen relateert aan hun excitiaéeyeafkomstig van bijvoorbeeld
een invallende golf of van lokale bronnen. Uit fysisch oagimijn de eigenstromen staande gol-
ven van het array. De bijbehorende eigenwaarden represarde karakteristieke impedanties
van de eigenstromen. Hoe groter de karakteristieke imgiedzan een eigenstroom, des te min-
der zal deze eigenstroom bijdragen aan de stroom op de diemi@peen gegeven excitatieveld.
Het concept eigenstroom blijkt uitermate geschikt voor ¢ratverpen van arrays, omdat de
ontwerp-karakteristieken waarnaar men ontwé&gst-opéén gerelateerd zijn aan de excitatie
van specifieke eigenstromen. Uit dit proefontwerp blijkteigenstromen en hun bijbehordende
eigenwaarde@én-opéén gerelateerd zijn aan scanbundels, aan monopulsbuadalgyrating-
bundels, aan gemoduleerde impedantie-oscillaties, apadantievariaties toegeschreven aan
oppervlaktegolven van de arraystructuur, en aan veel erglgenschappen van het array. Be-
houdens een fysische interpretatie blijkt de aanpak metnsitgomen te leiden tot snel uit te
voeren simulaties; immers, hoewel de prestatieparameder&en array veranderen als func-
tie van de geometrieparameters en de frequentie, verandereigenstromen nauwelijks. In
feite veranderen alleen de eigenwaarden, zij het regedma functie van geometrieparame-
ters en de frequentie. Derhalve kunnen de eigenstromemnegek voor een zekere keuze van
parameters vastgelegd worden om ze vervolgens te gebrud@ansimulaties bij andere pa-
rameterwaarden. De bijbehorende eigenwaarden worderdéeheiddels het Rayleigh-Ritz
quotient.

Uitgangspunt van de voorgestelde aanpak is het bepalenevaigdnstromen van een ele-
ment en de bijbehorende eigenwaarden. De eigenstromemgemwarden worden berekend
uit een ‘genormaliseerde’ momentenmatrix gerelateerdgafinzen ontwikkelfuncties voor de
stroom op het element. Vervolgens wordt een inproduct Bdpea opzichte waarvan deze
element-eigenstromen orthonormaal zijn. De bijbehoreandenenten matrix in termen van
deze eigenstromen is een diagonaal matrix ten opzichteetamduwe inproduct. In de tweede
stap wordt een gereduceerde momenten matrix berekend 2&rhtgpvan de samenstelling van
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de nieuwe element-inproducten, waarbij de ontwikkelfigsotle eigenstromen per element zijn.
Alleen eigenstromen die bijdragen aan de mutuele koppdtifiget array worden in rekening
gebracht. Omdat deze eigenstromen a priori niet bekend wijndt eerst het aantal koppe-
lende element-eigenstromen geschat aan de hand van hagjgealr de element-eigenwaarden.
Element-eigenstromen met grote eigenwaarden, zullenafieauwelijks bijdragen aan de
mutuele koppeling. Het resultaat van de tweede stap zijnrdg-gigenstromen die beschreven
zijn als concatenaties van lineaire combinaties van kapyukd element-eigenstromen. De array-
eigenstromen en hun bijbehorende eigenwaarden zijn vdridegroepen, waarbij elke groep
correspondeert mé&en element-eigenstroom, de zogenoemde dominante elagamistroom
van de groep. De eigenwaarden in een groep zijn perturbatiede eigenwaarde van de domi-
nante element-eigenstroom. Deze perturbaties zijn niedzekelijk klein. Hun spreiding blijkt
een kwantitatieve maat te zijn voor de mutuele koppelingahdrray. Als de spreiding van
een groep klein is, hoeft de koppeling van deze groep meteitlen met andere groepen
niet in rekening te worden gebracht. A posteriori kan dus @arand van de spreidingen
bepaald worden of voldoende element-eigenstromen in edeijn gebracht voor het beschri-
jven van mutuele koppeling. Numerieke simulaties latem zlat metéén of twee groepen
van koppelende eigenstromen de mutuele koppeling in gropgebouwd uit elementen die
typisch ontworpen zijn voor de excitatie vaan specifieke eigenstroom, beschreven kan wor-
den. Door het verwaarlozen van mutuele koppeling wordemiijsten van een factor 10 tot
een factor 50 geboekt ten opzichte van de conventionele memenethode. De spreiding is
tevens een kwantitatieve maat om het aantal buren van eerereide bepalen dat moet wor-
den meegenomen om mutuele koppeling te beschrijven. Hetaglozen van koppeling tussen
buren leidt tot een verdere reductie van de rekentijd.

Nadere bestudering van de eigenstromen van lijnarraysdoesé uit ringen en strips heeft
tot een tweetal belangrijke observaties geleid. Ten ebestgen de défficienten van de domi-
nante element-eigenstroom in elke groep niet of nauwedifkgan de elementvorm. Op grond
van deze observatie blijkt dat een eerste orde schattinp@bgedrag van lijnarrays met com-
plexe elementen wordt beschreven door défficiéntverdelingen van de eigenstromen van li-
jnarrays met eenvoudiger elementen. Ten tweede vertonepédficiénten van de dominante
element-eigenstroom dezelfde patronen als dgfic@enten van de eigenstromen véén strip
verkregen met stuksgewijs lineaire functies. Op grond \ezedbservatie blijkt een eerste orde
schatting van het gedrag van lijnarrays met complexe eltande worden beschreven door de
coefficientverdelingen van de eigenstromen @n strip met stuksgewijze functies. Verwacht
wordt dat de céfficientverdelingen van de eigenstromen van een rechthoekigh kannen
worden gebruikt voor een eerste orde schatting van het ge@m een rechthoekig array. Uit
de tweede observatie leiden we af dat een agemygeheel is en niet een verzameling van losse
elementen.

Het mag beslist niet onvermeld blijven dat het karaktezisti gedrag van arrays wordt
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veroorzaakt door resonant gedrag en dat resonant gedratj vewsporzaakt door de excitatie
van specifieke eigenstromen. De eigenwaarden, of karatigeé impedanties, van deze eigen-
stromen zijn klein in vergelijking met de eigenwaarde di®idij de scanbundel. Zowel
gemoduleerde impedantie-oscillaties als variaties vamehtimpedanties toegeschreven aan
oppervlaktegolven van de arraystructuur worden veroétzi@or de excitatie van eigenstromen
met relatief kleine eigenwaarden. De verdeling in de groepae laagste eigenwaarden voor-
spelt welke belasting van het systeem nodig is om resonaitagde vermijden. Tot besluit
vermelden we dat de relevantie van het concept eigenstroatit proefontwerp aangetoond
wordt aan de hand van een aantal specifieke fysische effdig@mde praktijk van het antenne-
ontwerp zijn waargenomen.
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