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Sensitive optimality in stationary Markovian decision problems on a

general state space.

J. Wijngaard

INTRODUCTION

In considering Markovian decision problems with DO discounting the first

interest is in general in the average costs. But if there are more average

optimal strategies one can distinguish between these by considering the

bias, the limit of the difference of the n-period costs and n times the

average costs. An average optimal strategy which, among all average op

timal strategies, minimizes the bias, is called sensitive optimal. Sen

sitive optimality is equivalent with I-optimality (Blackwell [2]).

Sensitive optimality and extensions are considered by Veinott [10], [II],

Miller and Veinott [8J for a finite state space and by Hordijk and Sladky

[7] for a countable state space.

In this paper we consider the existence of sensitive optimal strategies

for problems on a general state space. Compactness of the space of stra

tegies and continuity of the transition probability and the one-period

costs on the space of strategies are used to derive sufficient conditions

for the existence of sensitive optimal strategies.

I. Prel iminaries

Let (V,I) be a measurable space. The linear space B(V,I) is defined as

the space of all complex valued bounded measurable functions on V. Let

Ilfll:= sup If(u) I for all fE~(V,I), then 11.11 is a norm on B(V,I)and
UEV

with this norm B(V, I) in a Banach space.

A Markov process on (V,I) with transition probability P defines a bounded

linear operator in B(V,I) by

(Pf)(u) = f f(v)P(u, dv), f~ B(V,I)

V

The norm of this operator in B(V,I) is denoted by I Ipi I and its spectrum

by cr(P). Since P is a Markov process, l€cr(P) and cr(P) contains no points

outside the unit circle
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For A f L the sub-Markov process PA is defined by

PA(u, E):= P(u, AnE) ,ui:V,Fc-.L

Let A ( L, B = V\A and let Q be the embedded sub-Markov process of

P on A, then

00

Q(u, E) = , U E V, EE L

If lim (P~ IV) (u) = 0 for all u E V then Q is a Markov process.
n-t<><>

A stationary Markovian decision problem (SMD) is a set of Markov pro

cesses with costs {(P , c )}, a EA. The elements a E A are called
a a

strategies. It is clear that if in a Markovian decision process only stationary

policies are allowed, it can be interpreted as an SMD. An important proper-

ty of an SMD is the Eroduct property.

An SMD satisfies the product property if for each 0.
1
,0.

2
E A and for each

F (" L there exists an a E A such that

P (u, E) =
a

P (u, E)
a

P (u, E) and c (u) =
at a

= P (u, E) and c (u) =
0.

2
a

for u E' F

for u E V\F

This product property is always satisfied in Markovian decision processes,

the actions in the different states may be chosen independently of each

other.
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If the product property holds it is possible to prove that for two

arbitrary strategies, aI' aZ E A there exists a third strategy aEA

which is better than both. This is worked out in the next lemma.

Lemma I. Let {(P , c)}, a ( A be an SMD with P quasi-compact and
a a a

c bounded on V, uniform in a. Assume that the product property is
u

satisfied. Let a I' (lZ '" A and gil ' g", and v , v the corresponding
) '-'z a) aZ

average costs and bias. Then

i there exists a strategy aO E A such that

g (u)
aO

for all u E V

ii if aI' aZ are both average optimal then there exists a

strategy aO E A such that

~ min {v (u), v (u)}
a) aZ

for all u E V

the

on G.

aI' aZ be two average optimal strategies, ga = gaz = g.

{ulv (u) <: V (u)} and G:= V\F. I
a

l
a 2

be the embedded sub-Markov process of P on F and Q
aZ a

l

Let F:=

Let Qa Zembedded sub-Markov process of P
a)

The strategy aO is chosen such that

Proof. For the proof of the first part we refer to [IZJ, section 4.1.3.

Now let

P (u, E) =
aO

P (u, E), c (u) =
a l aO

for u E F

P Cu, E) =
aO

P Cu, E), c (u) =
aZ a O

c (u)
aZ

for u E G

The product property implies that there is such a strategy aO in A.

Let R be the entry process of P on F, that means that R is the
aO aO aO

sub-Markov process which describes the state of the system each time

the setF is entered,

R (u, E) =
aO

Q (u, E)
aZ

R (u, E) =
aO

(Q Q )(u, E), u E F
a l aZ
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as the bias of the (non-stationary) strategy which applies

. d th . h hF ~s entere for the n t~me and from t en on t e

Define va
l
na

2
0.0 until the set

strategy 0. 1'

Consider first the case that 0.0 has only one invariant probability ~ •
ad

If ~ (F) > 0 and ~ (G) > 0 then Q and Q are Markov processes and
0.

0
0.0 0.

2
0.

1

00

Lpn (c --g) (u) + (Q v ) (u)
n=O a 2G 0.2 0.2 0. 1

, U E G

00

and for n = 2, 3, 4,

v (u) =
a

j
na 2

00

v (u) =a lna
2

n
L P F(ca - g) (u) + (Qa va no. ) (u)

n=O 0. 1 I I I 2
, U E F

00

no the sum L Po. G (c - g) (u) in these expressions has to be
n=O 2 ('t 2

00

+ Q'v ,where E eGis a maximal in
E 0.2

and Q' is the embedded Markov process of

n
replaced by LPG' (c - g) (u)

n=O 0.2 0.2
variant set of P ,G':= G\E

0.
2

P on F u E. Notice that Q' =
0.2 F

00

If ~ (G)
0.0

same way.

= 0 the sum L p
n (c - g) (u) has to be replaced in the

n=O alF 0. 1

But in each of these cases (~ (F) > 0, ~ (G) > 0; ~ (F)
0.0 0.0 0.0

~ . (F) = I, ~ (G) = 0) it is easy to verify that.
ad eto

0, ~ (G) = I;
0.0

m~n (*)

c - g + P v we get, for the case that ~ (F) > 0, ~ (G) > 0,
0.

0
0.

0
0.0 0.

0
0.

0
0.

0

Let g be the average costs of the strategy 0.0 ,
0.

0
Using v =

au
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00

v (u) = >: p n (c - g ) (u) + (Q v )(u) , U E G
(1

0 n=O aZG (lZ
(1

0 (1Z aD

l1<J

v (u) = 1: P n (c - g )(u) + (Q v ) (u) , U E F
0.0 n=O atF a j 0.0 at 0.0

Ifg n
a ) and if 0" > then= g then v = v + R (v - v g

0.0 atnaZ aO aD at °a
0 0

v + 00 for n :.} 00, but this is impossible by (*) sincea
t
na2 -+

- v ). This
a
O

'Ii (G) = I.
aO

and v
alnaZ

11 (G) = 0
a O

ga = g
o

1T (F)'= I,
aD

- v ) ~ O. Hence
at

for the cases

n
1: R (v

R.=t aO aZ
holds also

Therefore
n

min{v (u), v (u)} - v (u)- R n(v - v )(u) ~ 1:
at a2 aO aO at aO R.=t

- v )(u) in n implies the con
a O

But since v > v everywhere
a Z at

is absorbing, that means

and

nThe boundedness of the sequence R (v
00 . R. aO at

vergence of the sum 1: R (v - v ) (u).
1 a O a 2 at

on F this implies that the entry process .R
aO

11 (F) = 0 or 1T (G) = O.
a O aO

Hence R n(v - v )(u) -+ 0
aO at aO

$ ml.n
00

1: RR. (v - v )(u)
t=t aO (X2 a l

This completes the proof of ii for the case that P has only one ergodic set.
aO

If P has more disjoint ergo~ic sets the proof can be given in the same way(X
b O·d· hY consl. erl.ng t e process on each of these sets.

2. Existence of average optimal and sensitive optimal strategies

In this section an SMD {(p , c )}, a E A is considered such that
a a

i p is quasi-compact for all (X E A
n

1.1. c 1.8 bounded on V, uniform in a
(t

iii A is a metric space, metric P, such that
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lip - p II + 0 for all aO lO A
a aU

lim II c - c II + 0 for all a
O

lO A
) a a

p(a,aO + 0 0

Let g , v be the average costs and the bias of (P , c ). The strategya a a a
a

O
lO A is called sensitive optimal if a

O
is average optimal and if

v (u) ~ v (u) for all u lO V and all average optimal strategies a.a
O

a
We will derive conditions for the existence of sensitive optimal strategies

P has n dis
a

g and v on
a a

I .15 in [12]

following lemma the continuity of

A and the continuity of P and c •
a a

as the set of all a lO A such that

A is stated. The proof is analogous to the proof of lemma
n

and uses operator valued functions and perturbation theory of linear

using the compactness of

Define A , n = I, 2, •.•
n

joint ergodic sets. In the

operators (see Dunford-Schwartz [ 3 ], VII)

Lemma 2. Let {ail be a sequence in An converging to a
O

lOAn. Then

1im II g - g II = 0 and lim II v - v 11= 0
.~ aO a. . a a.
1~ 1 1-+00 a 1

The following example shows that the continuity of v does not hold ona
the whole space A.

Example: Let {(P , c )}, a lO A be a problem with two states given by
a a

P = (I~a :1a

Then g = (~) for
a

v = f~)a

and vo = (~)

ca -- (- o~) , A = {ala ~ a ~ ~}

all a lO [0, D,

for a > a

Hence v (I) has a discontinuity in a • O. This discontinuity is
('(

due to the fact that for a > a there is only one ergodic set and

for a = 0 two.
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where v£ isgA be the 'projection of c -
£ 0.£

index of A£ as eigenvalue ofthe

If in general {a£} is a sequence in A 1 converging to 0.
0

E An then

1n each neighbourhood of I (in the complex plane) there are eigen

values of P for £ large enough. Assume that the spectrum of the
0.£

operators P is of the following structure, o(P ) = I u{A£}u o£
a.~ 0.£
1 for II,-)'XJ and o£ is for all £ a set within a circle with

1 (p independent of £).

where A -)
£

radius p <

Let

lim (v I
go. ) and lim(gA + g )--- = v = go.

0.£ I-A 0.0 0.££-+00 £ £ £-+00 £ 0

In the example gA = - Ia A = I - 0.£
£

£' £

Remark. The average costs g have as function of a the same sort of
a

discontinuities, but it is possible to define a rather general class

of problems (communicating systems) where the se~ of all strategies

A is dominated by the set of all strategies with a unique invariant

probability. The communicativeness is introduced by Bather [ 1 ] for

a finite state space and used by Hordijk [ 5 ] for a countable state

space and Wijngaard [12J for a general state space.

To investigate the exi$tence of sensitive optimal strategies we have

to consider first the existence of average optimal strategies~

This is done in the next theorem.

Theorem 3. Let A be compact, A closed in A for all n = I, 2,3, ••.
n

and the number of ergodic sets of P bounded in a. Assume that the product
a.

property is satisfied. Then an average optimal strategy exists.

Proof. From lemma 2 and the assumption it follows immediately that

for each u ~ V there is a strategy a E A such that g (u) ~ g (u) for
u . a a.

all u E V and all a E A (the strategy a is u-optimalY. Since A is
u

00

a compact metric space it is separable. Let {an}1 be a countable subset

of A which is dense in A. Then inf g (u) = g (u) for all u E V. Let
a a

n n u
the strategies y , n = I, 2, .•. be such that g = g and g s min {gy ,go.}

n y 1 0. 1 Yn n- 1 n
for all n = 2, 3, 4, The existence of such strategies gy is guaranteed

n
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by lemma 1. The sequence g (u) is then monotonically non-increasing for
Yn

each u E V and g (u) ~ g (u). Hence lim g (u) = g (u), U E V. The
Yn an n+oo Yn au

boundedness of the number of ergodic sets, the compactness of A and the

closedness of A. for each n implies the existence of an integer JI, and an -
subsequence {Yn } in A~ converging to some Y in A~.This strategy y is average

optimal.

A condition for closedness of A for all n = 1, 2,3, ••• is given in the
n

next lemma. For the proof we refer to [12J.

Lemma 4. If there is a p, 0 < p < I such that for all a E A the spectrum

of P has no points A with p < IAI < I, then A is closed in A for all
a n

n=I,2,3,

If the conditions of theorem 3 are satisfied the existence of a sensitive

optimal strategy can be proved in the same way as the existence of an

average optimal strategy. The continuity of g in a implies the closedness
a

and hence compactness of the set of all average optimal strategies. We have

the following result.

o

Theorem 5. If the conditions of theorem 3 are satisfied, a sensitive optimal

strategy exists.

If aO is a sensitive optimal strategy, it is easy to prove that

, where A' is the set of all a such that P g = g. But even in the finite state
a

space the converse is not true (see Blackwell [2J). That means that the sen-

sitive optimal strategy cannot be approximated in general by policy improvement.

If successive approximations can be applied depends on the question if

V - ng converges to v (V are the minimal expected n-period costs). For an a
O

n
treatment of this problem, see for instance Hordijk, Schweitzer, Tijms [6],

Tijms [9J and Federgruen, Schweitzer [4J.

../
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