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Abstract. In H2 and H ,  optimal control (semi-) stabiliz- 
ing solutions of algebraic Riccati equations play an essential 
role. It is well-known that these solutions might havediscon- 
tinuities as a function of the system parameters. The paper 
shows that these discontinuities are directly linked to non- 
left-invertibility and, in contrast to what one might think, un- 
related to zeros on the imaginary axis. 

1 Introduction 

In most H2 and H, control problems solutions of the alge- 
braic Riccati equation play a crucial role. Note that in gen- 
eral for continuous time systems we have to use quadratic 
matrix inequalities instead of Riccati equations. However, 
these have a 1 - 1  relation to Riccati equations of a lower 
dimension (see [3]). In particular we are interested i n  the 
stabilizing solution of these Riccati equations and quadratic 
matrix inequalities. However, if the system has zeros on 
the imaginary axis (continuous time) or on the unit circle 
(discrete time), we have to study semi-stabilizing solutions. 
These are solutions of the Riccati equation/quadratic matrix 
inequality associated to eigenvalues i n  the closed left-half 
plane (continuous time) or in the closed unit circle (discrete 
time). The standard way to obtain semi-stabilizing solutions 
is a cheap control argument where we perturb the system pa- 
rameters to obtain a system without problems induced by for 
instance the zeros on the boundary of the stability domain. 
A natural question is then whethcr the semi-stabilizing solu- 
tions depend continuously on the system parameters. There 
are simple examples where the solution docs not depend con- 
tinuously on the system parameters (see e.g. [ 2 ] ) .  On the 
other hand, [6] identifies a class of perturbations which guar- 
antee a continuous behaviour. We would like to study this 
question in more dctail. We will clearly idcntify what kind 
of perturbations can yield discontinuous bchaviour and in the 
process show that for a very largc class of systems disconti- 
nuities never occur. We will consider both continuous and 
discrete time systems. 
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Notation in this paper is mostly standard. By Mt we denote 
the Moore-Penrose inverse of M. Due to size limitations the 
proofs have bccn omitted. 

2 Discrete time systems 

2.1 Problem formulation 
Consider the following discrete time Riccati equation: 

B'PA + DTC 

where 

G ( P )  := D : D ; J  + (;:) P ( B  E ) '  

(2.2) 

subject to 

DiD2 + E ' P E  - ( D i D l  + E ' P B )  

x ( D : D l  + B T P B ) ' ( D T D z + B T P E )  < y z I .  (2.3) 

We are interested in real symmetric semi-stabilizing solu- 
tions of this algebraic Riccati equation. These are solutions 
of the algebraic Riccati equation where the zeros of the ma- 
trix pencil 

- B  - E  
B'PA + DTC DTDl + B T P B  DTD2 + BTPE 
E ' P A  + D i C  D ~ D I  + E ' P B  D;D2+ E T P E  - y z I  

(2.4) 
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are inside or on the unit  circle. If the zeros are strictly inside 
the unit  circle we will call P a stabilizing solution of the Ric- 
cati equation. This Riccati equation is associated to the fol- 
lowing system: 

~ : { x ( k +  1) = A x ( k )  + B u ( k )  + E w ( k ) ,  
= C x ( k )  + D l u ( k )  + D p w ( k ) .  ~ ( k )  

(2.5) 

Basically there exists a stabilizing feedback U = Fix + F2w 
such that the closed loop H ,  norm is less than y if and only if 
there exists a positive semi-definite semi-stabilizing solution 
of the above Riccati equation and some additional conditions 

For y = 00 the general Riccati equation (2.1) reduces to the 
H2 Riccati equation: 

(see [4l). 

P =  A T P A + C T C -  ( A T P B + C T D ~ )  

x ( B ' P B + D I D , ) ~ ( B ' P A + D ~ c ) .  (2.6) 

Moreover, the extra condition (2.3) becomes void. Finally, 
the stability requirement is imposed on the following matrix 
pencil: 

The Riccati equation is associated to the system C which is 
parameterized by ( A ,  B ,  E ,  C, D i ,  0 2 ) .  For finite y. we 
define the set 2) to be the class of systems C for which 
( A ,  B ,  C, Dl ) is left-invertible and for which there exists 
matrices FI , F2 such that A + B FI is stable and 

For the H~problem, where y = CXJ the set V consists of 
systems C for which ( A ,  B ,  C, D1) is left-invertible and 
( A ,  B )  is stabilizable. In that case it  is known (see [SI) that 
there exists a unique real symmetric semi-stabilizing solu- 
tion P of the Riccati equation. Moreover, this solution is 
positive semi-definite. 
For the H ,  control problem (finite y )  the semi-stabilizing 
solution need not be unique. However, forelements ofthe set 
2) there exists a semi-stabilizing, positive semi-definite solu- 
tion of the Riccati equation. In this section, we will study the 
smallest, positive semi-definite rank-minimizing solution P 
of the quadratic matrix inequality which always exists and is 
obviously unique. 
In  the  next subsection we study the behaviour of P when we 
vary the system parameters over the set D. We will show that 
P depends continuously on the system parameters both for 
finite y and for y = 00. Since we allow for zeros on the unit 

circle, this continuity is far from obvious. We consider sys- 
tems outside the set V in the subsection 2.3. 
For elements of the set V, the system ( A ,  B ,  C, D1) is left- 
invertible. This implies that the generalized inverses in (2. I), 
(2 .3)  and (2.6) become standard inverses. Moreover for 
semi-stabilizing and stabilizing solutions of the Riccati equa- 
tion we can simply study the eigenvalues of the following 
matrix 

(2.9) 

2.2 Continuity 
We first show that the stabilizing solution of the Riccati equa- 
tion depends continuously on the system parameters if we do 
not have zeros on the unit circle. 

Lemma 2.1 Let Vo be the open subset in V of systems C for 
which ( A ,  B ,  C ,  Dl ) has no zeros on the unit circle. 
For each element of Do, the Riccati equation (2.1) has a 
unique solution P for which the matrix (2.9) is asymptoti- 
cally stable. The function f from Vo to R""" which assigns 
to each system in VO, the associated stabilizing solution of 
the Riccati equation is continuous. 

Our main objective is to show that the extension of this func- 
tion f to the whole set V is also continuous. We will need 
some technical lemmas. First of all a lemma related to the 
classical cheap control argument. 

Lemma 2.2 Let C be an arbitrary element of 2, such that 
Dl is invertible and ( A ,  B ,  C ,  D1) has no zeros outside the 
unit circle. For E # 0 small enough the following Riccati 
equation has a stabilizing solution PE: 

B*P,A + DTC 
ETP,A + DlC 

P, = A' P,A + C'C+ E * I  - 

BTP,A + DYC 
ETP,A + D i C  ' 

x G ( P , ) - '  ( ) 
where C is dejned by (2.2). Moreover PE -+ 0 as E 

(2.10) 

-+ 0. 

The above lemma states the more or less standard continu- 
ity of cheap control for a given minimum-phase system. The 
next lemma extends this result to compact sets of minimum- 
phase systems. 

Lemma 2.3 Let Dl be any compact subset of V such that for 
all sjsterns C in Dl the direct feedthrough matrix Di is in- 
vertible and ( A ,  B ,  C ,  D I  ) has no zeros outside the unit cir- 
cle. There exists E* > 0 such thatfor all E E [0,  E * ]  andfor 
all C E VI, we have a( C ,  E )  in D. For each element in 'Dl 
and E E [0 ,  E * ]  there exists a smallest positive semi-dejnite 
stabilizing solution of the algebraic Riccati equation: 
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assume that the normal ratikof C,(zI - Ae)-' B, + D I , ~  is 
equal to the normal rank of C ( z 1 -  A)-' B + D1 for  all E. 

Then the smallest, positive semi-dejnite semi-stabilizing so- 
lutioti P, of the algebraic Riccati equation associated with 
C, converges to the smallest, positive semi-dejnite semi- 
stabilizing solution P of the algebraic Riccati equation as- 
sociated with C. 

B' PA + 0: C 
E'PA + DiC ( )' P = A' PA + C'C + c21 - 

B'PA + DYC 
ETPA + DYC ' 

x G (  P)-'  ( ) (2.11) 

where G is dejned by (2.2), such that all the zeros of the ma- 
trix pencil (2.9) are in the closed unit disc. Moreover; P de- 
jinesa mapfromV1 x [0 ,  E * ]  to IR""" which is well-dejned 
and continuous. 

Theorem 2.4 Consider the set 2) of systems C for which 
(A, B,  C, D1) is left-invertible and, if y is jtiite, for  which 
there exists Fl , F2 such that A + B F is stable and (2.8) 
is satisfed. The smallest, positive semi-dejnite semi- 
stabilizing solution of the algebraic Riccati equation is a 
continuous function from V to IR""". 

2.3 Non-left-invertible systems 
If a discrete time system is not left-invertible then we can al- 
most always find a perturbation which yields a discontinuous 
jump in the semi-stabilizing solution of the algebraic Riccati 
equation. This is quite natural. After all if the system is not 
left-invertible then one has an input which does not have any 
affect on the to-be-controlled output z.  After a small pertur- 
bation this input will have a (small) affect on the output z. It 
is a very small affect but since this input is not weighted i n  
the performance criterion we can have high-gain feedback. 
The high gain can offset the fact that there is only a small af- 
fect on z and therefore a discontinuous jump. A simple ex- 
ample of this is given by the following system: 

w ( k )  = [ x ( k + ' ) =  z ( k )  
= ~ ( k )  + + E u ( k )  

For E = 0 the control input cannot affect z at all and we will 
have a non-zero cost. On the other hand for E # 0 we can 
choose U = - E - I x  which guarantces z = 0. For this exani- 
ple we have that the solution of the algebraic Riccati equa- 
tion is non-zero for E = 0 and any y and jumps to zero if we 
perturb E away from 0. 
The number of inputs that affect z is measured by the normal 
rank. Hence we might think that if a perturbation is such that 
the normal rank of C ( z 1  - A ) - '  B + D I  does not change 
then this perturbation changes the solution of the algebraic 
Riccati equation in a continuous manner. For a special case 
this property is indeed true: 

Theorem 2.5 Consider the set 'D,,,,, of systems C for  
which (A, B )  is stabilizable, which huve no zeros out- 
side the unit circle and for which, if y is jinite, there ex- 
ists Fl , F2 such that A + B F1 is stuble and (2.8) is satis- 
j e d .  Consider a sequence of systems C, parutneterized by 
(AE, B E ,  C,, D I . ~ ,  D2,,) which converges to C.  Moreover 

The above theorem does not hold without the requirement 
that the system ( A ,  B,  C, DI ) has no unstable zeros. As an 
example consider the following system 

x(k  + 1) = 2 x ( k )  + ( 1  E ) u ( ~ )  + ~ ( k )  
z ( k )  = (1  O)u(k) 

C :  { 
Clearly for this system the normal rank of the subsystem 
from U to z is equal to 1 for all E .  On the other hand the semi- 
stabilizing solution of the algebraic Riccati equation behaves 
discontinously. The reason is clearly that a major objective 
of this system is the requirement to stabilize the system. For 
E 0 there is suddenly an extra input available to stabilize 
the system. This input is not weighted in the cost criterion 
and hence the cost jumps to 0. Therefore an additional condi- 
tion is needed which ensures that we do not change the num- 
ber of inputs that can stabilize unstable zeros. We can con- 
nect non-minimum-phase zeros to the following subspace: 

Definition 2.6 Consider a linear system E characterized by 
the quadruple (A, B ,  C, 0). Then, the strongly controllable 
subspace R* ( E )  is dejined as the m i t n a l  subspace of Iw" 
for which there exists a matrix F such that 

e R*(Z) is ( A  + BF)-invariant 

e R* (E) is contained in Ker( C + D F ) .  

e For each A. E IR there eixsts F1 such that R* (E) is 
A + B Fl invariant, contained in Ker( C + D F1 ) and 
the eigenvalues of A + B Fl restricted to R* (E) sat- 
i sh  R e h  < 1. 

Note that this subspace is closely related to left-invertibility. 
In particular, a system is left-invertible if and only if R* = 
(0) and ( BT DT) is surjective. Basically the example given 
before is such that part of the state space associated with a 
non-minimum phase zero suddenly becomes part of R* by a 
small perturbation. We have to exclude this from happening. 
In particular, we can obtain the following theorem: 

Theorem 2.7 Consider the set 2) of systems E for  which 
( A ,  B )  is stabilizable and, if y is finite, there exists F1, F2 
such that A + BF, is stable and (2.8) is satisfied. Con- 
sider a sequence of perturbed systems & with parameters 
(A, ,  B, , C, , D1 , E ,  Dz,, ) which converges to E. Moreover 
ussume that the normal rank of C,(zl - A,)-' B, + D',, is 
equal to the normal rank of C(z1 - A) - I  B + D1 for all E 

and 

dimR*(A, B,  C, 01)  = dimR*(A,, B E ,  C,, D I , , )  

4337 



for all E. Then the smallest, positive semi-de$nite semi- 
stabilizing solution Pc of the algebraic Riccati equation as- 
sociated with C, converges to the snuillest, positive senti- 
definite semi-stabilizing solution P of the algebraic Riccati 
equation associated with E. 

The quadratic matrix inequality is associated to the 
system which is parameterized by the matrices 
( A ,  B, E, C ,  D1 , 0 2 ) .  For finite y, we define the set V to 
be the class of systems C for which ( A ,  E ,  C, 01) is left- 
invertible and for which there exists matrices 4, F2 such 
that A + BFl is stable and 3 Continuous time systems 

3.1 Problem formulation 

Il(C+ D F l ) ( s l -  A - B F l ) - ' ( E +  BF2) Consider the following quadratic matrix inequality 

+ (D2 + D1F2)llm < Y (3.6) 
PA + A T P  + cTC+ y - * R  P 5 +  CTDl ~ o. ) (3.1) 

BTP + q c  D:Di 

where we denote the matrix on the left by Fy( p) and R is 
defined by := ( P E  + C T D 2 ) ( E T P  + OIC)* we are in- 
terested in rank-minimizing solutions which imposes the fol- 
lowing rank condition on solutions of the quadratic matrix 
inequality: 

For the H, control problem ( i.e. finite ,,) the semi- 
stabilizing solution always exists for elements of the set V 
(see [41) but i t  need not be unique. we will study the small- 
est, positive semi-definite semi-stabilizing solution p of he 
quadratic matrix inequality which is obviously unique. 

For the H~problem, where y = CO, the set V consists of 
systems E for which ( A ,  B, C, D1) is left-invertible and 
( A ,  B) is stabilizable. In that case, it is known (see [l]) that 
for elements of the set 2) there exists a unique real symmet- 
ric semi-stabilizing solution P of the linear matrix inequality 
(3.5). Moreover, this solution is positive semi-definite. 

Note that if Dl is injective then we can characterize rank- 
minimizing solutions of the quadratic matrix inequality as 
those matrices P that satisfy the following standard Riccati 

rankc Fy(  P )  = rankat,) G,, (3.2) 

in the discrete t ime we want to have semi-stabilizing so- 
iutions. this setting, semi-stabilizing solutions arc rank- 
minimizing so~ut ions which satisfy the following additional 
rank condition: 

rank  ( L y ( P '  Fyl P )  'I) = n + rankat,, G,, Vs E U?. (3.3) equation: 

where 

L , ( P ,  s) := ( s l -  A - y- 'EETP -5 ) .  
0 = PA + ATP + CTC+ Y - * ( P E +  C T D 2 ) ( 6 P +  D l C )  

If this last rank condition is also satisfied on the imaginary - ( f B +  C'D,)(D:D~)-'(B~P+ D:C) 
axis then we will call P a  stabilizing solution of the quadratic 
matrix inequality. Like in the continuous time we can asso- 
ciate this quadratic matrix inequality to an H ,  control pro- 
blem for the following system: In this case a solution is semi-stabilizing or stabilizing if the 

following matrix 

x = A x +  B u +  E U I ,  
z = CX + D I U  + DZW. 

c :  { (3.4) 

Basically there exists a stabilizing feedback U = FI x + F2w 
such that the closed loop Hm norm is less than y if and only 

A + y-*E(E'"P + D:C) - B(D:DI)-'(BTP+ DfC) 

if there exists a positive semi-definite semi-stabilizing, rank- 
minimizing solution of the above quadratic matrix inequality 
and some additional conditions (see 141). 

has all eigenvalues in the closed or open right half plane re- 
spectivel y. 

. . .  

For y = 00 the general quadratic matrix inequality (3.1) re- In the next subsection, we will show that P depends continu- 
duces to the HZ linear matrix inequality: ously on the system parameters for systems in the set 2) both 

for finite y and for Y = CO. Since we allow for zeros on the 
imaginary axis, this continuity is far from obvious. In sub- 
section 3.3 we study continuity questionsfor systems outside (3.5) 

PA + A T P +  CTC P B +  CTDl 

DfDl the set 2). BTP+ D:C 
F (  P )  := 
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3.2 Continuity 

We first show that the stabilizing, rank-minimizing solution 
of the quadratic matrix inequality depends continuously on 
the system parameters if we do not have zeros on the (ex- 
tended) imaginary axis. 

Lemma 3.1 Let Vo be the open subset in 2) of systems C 
for which (A, B, C ,  D1) has no zeros on the imaginary axis 
arid D1 is injective. For each element of Do. the quadratic 
matrix inequality (3.1 ) has a unique rank-nziriimizing, stabi- 
lizing solution P. The function f from DO to R""" which as- 
signs to each system in VO, the associated rank-minimizing 
stabilizing solution of the quadratic matrix inequality is con- 
tinuous. 

Our main objective is to show that the extension of this func- 
tion f to the whole set V is also continuous. The derivation 
will be mutatis mutandis equivalent to the discrete time. First 
we nced some technical lemmas. The following lemma is re- 
lated to the classical cheap control argument. 

Lemma 3.2 Let C be an arbitruty element .fV such that 
D1 is invertible and ( A ,  B ,  C ,  D I  ) has no zeros in the right 
half plane. For E # 0 small enough the following quadrutic 
matrix inequality has a stabilizing solution Pc: 

) L O  
P A  + A ' P  + C'C + E * [  + y- 'R 

B ' P  + DiC 
PU + C'D, 
D{ D I  + & ' I  

(3.7) 

where R is dejnedby R := ( P E +  C'D2) (E'P  + DiC).  
Moreover P, --+ 0 US E -+ 0. 

Again we extcnd the continuity from one system to a coni- 
pact set of systems: 

Lemma 3.3 Let Vi be a compact subset of V consisting of 
systems Z for which (A, B,  C ,  D1) has no zeros in the open 
right half plane. There exists E* > 0 such thutfor all E E 
[O,~*]at idforal l  C E V ~ ,  wehavea(Z ,E)  inD. Foreach 
element in Vi and E E [0 ,  E * ]  there exists a smullestpositive 
semi-definite stabilizing solution ofthe quadratic matrix in- 
equality.: 

P A  + A T P  + CTC+ 8'1 + y - ' R  P B  + C'Dt 
B'P + DTC DTDl +&'I 

(3.8) 

where R i s d e j n e d b y R : =  ( P E + C ' D 2 ) ( E ' P + D i C ) .  
P defines a map from VI x [0 ,  e*]  to R""" which is well- 
dejined and continuous. 

Then using a transformation we can obtain the general result 
from the above lemma: 

Theorem 3.4 Consider the set 2, of systems Z for which 
(A, B, C,  D1) is left-invertible and, if y isfinite, for which 
there exists Fl , F2 such that A + B F  is stable and (3.6) 
is satisjed. The smallest, positive semi-dejnite semi- 
stabilizing solution of the algebraic Riccati equation is a 
continuous function from 2) to R""". 

3.3 Non-left-invertible systems 

If a continuous time system is not left-invertible then we can 
almost always find a perturbation which yields a discontin- 
uous jump i n  the semi-stabilizing solution of the quadratic 
matrix inequality. This is quite natural. Basically the same 
arguments as in the discrete time case apply. Discontinu- 
ities only occur if we obtain an additional input that can ei- 
ther affect to the be controlled output z or can stabilize the 
non-minimum-phase zeros. The examples given in subsec- 
tion 2.3 can easily be adapted to the continuous time and the 
two theorems are repeated below in a continuous time set- 
ting. 

Theorem 3.5 Consider the set VmP of systems X for  which 
( A ,  B )  is stabilizable, (A, B ,  C ,  01) has no zeros in 
the open right half plane and, if y is jnite, there exists 
FI  , F2 such that A + B F is stable and (3.6) is satis- 

fied. Consider a sequence of systems Ze parameterized by 
(A&, B E ,  C,, Dl ,&,  D2,&) which converges to X. Moreover 
assume that the normal rank of C, ( S I  - A&)-' BIE + D I , ,  is 
equal to the normal rank of C(sI  - A)-' B + D1 for all E. 

Then the smallest, positive semi-dejnite semi-stabilizing so- 
lution P, of the quadratic matrix inequality associated with 
Z, converges to the smallest, positive semi-definite semi- 
stabilizing solution P of the quadratic matrix inequality as- 
sociated with E. 

We need the definition of R* given in definition 2.6. We can 
then obtain the following theorem: 

Theorem 3.6 Consider the set 2, of systems C for which 
( A ,  B )  is stabilizable and if y is jnite, for  which there 
exists Fl, F2 such that A + BF,  is stable and (3.6) 
is satisjied. Consider a sequence of perturbed systems 
ZF with parameters ( A , ,  Be, C,, D I . ~ ,  D2,,) which con- 
verges to C. Moreover assume that the normal rank of 
C,(sl - A,)-1 B, + D I . ,  is equal to the normal rank of 
C(s1-  A)- 'B+ Dl foral lEanddimR*(A,  B, C ,  01) = 
dimR*(A,, B,, C,, D I , ~ )  forallE. 
Then the smallest, positive semi-dejnite semi-stabilizing so- 
lution P, of the algebraic Riccati equation associated with 
E, converges to the smallest, positive semi-definite semi- 
stabilizing solution P of the algebraic Riccati equation as- 
sociated with C. 
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