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Abstract 

In this paper we consider the time-invariant, finite-dimensional, infinite-horizon, lin­
ear quadratic differential game. We will derive sufficient conditions for the existence of 
(almost) equilibria as well as necessary conditions. Contrary to all classical references 
we allow for singular weighting on the minimizing player in the cost-criterion. It turns 
out that this problem has a strong relation with the singular Hoo problem with state 
feedback, i.e. the H 00 problem where the direct feed through matrix from control input 
to output is not necessarily injective. 



1 Introduction 

In this paper we will consider the zero-sum linear quadratic finite-dimensional differential 
game. This is an area of research which was rather popular during the seventies. 

However, in the last few years, the solution of the Hoo control problem ( see [2,4,6] ) 
turned out to contain the same kind of algebraic Riccati equation as the Riccati equation 
appearing in the solution of the zero-sum differential game ( see [1,5,11]). This Riccati 
equation has the special property that the quadratic term is in general indefinite. Contrary 
to for instance the linear quadratic optimal control theory ( see [15] ) where the quadratic 
term in the Riccati equation is definite. 

Since in Hoo control theory the solution of the algebraic Riccati equation has no meaning 
in itself it is interesting to have the more intuitive explanation as an equilibrium in the theory 
of differential games. Recently a number of papers appeared which studied the differential 
game with this goal ( see [7,8,14] ) 

In a recent paper [10] about Hoo control theory it has been shown that in case the direct 
feedthrough matrix from control input to output is not injective then instead of an algebraic 
Riccati equation we get a quadratic matrix inequality. This phenomenon also occurs in linear 
quadratic optimal control theory although in that case we get a linear matrix inequality ( see 
[15] ). 

This paper is concerned with the zero-sum differential game in the case that the direct 
feedthrough matrix is not injective. It will be shown that, as expected, we also get a quadratic 
matrix inequality. Moreover by using results from Hoo control theory we are able to derive 
necessary conditions for the existence of an equilibrium which, to our knowledge, has not been 
done in previous papers. We will study the differential game with stability since it turns out 
to give results which indeed depend on the same solution of the quadratic matrix inequality 
as the one we need in Hoo control. If we assume detectability then the problems with and 
without stability turn out to be equivalent. 

The outline of the paper is as follows: 
In section 2 we will formulate the problem and give our main results. In section 3 we will 
introduce a system transformation which will enable us to prove our main results. In section 
4 we will prove the existence of an equilibrium under some sufficient conditions. After that, 
in section 5 we will be concerned with necesary conditions for the existence of equilibria. In 
section 6 we will show that if the direct feed through matrix from control input to output is 
injective that the necessary conditions of section 5 are also sufficient. We will conclude in 
section 7 with some concluding remarks. 

2 Problem formulation and main results 

We will consider the zero sum, infinite horizon, linear quadratic differential game with cost 
criterion 

(2.1) 

and dynamics given by the following linear, time-invariant and finite-dimensional system 
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2:: :i; = Ax + Bu + Ew, 
y= Cx+Du. 

x(O) = Xo (2.2) 

Here x E nn, u E n m , w E nl and y E n p • A,B,C,D and E are matrices of appropriate 
dimensions and Q is a positive definite matrix. We assume (A, B) stabilizable. We define the 
following class of functions, 

(2.3) 

Here C~(n+) denotes the space of square integrable functions from n+ to nk. On this space 
we define the standard C2-norm: 

(2.4) 

Note that we can consider C~ as a subset of Ujb by identifying to each function v E C~ a 
function ii E Ujb as follows ii(x,t) vet) "Ix E nn,t E n+. We call (u,w) E Ujb XU}b 
an admissible paidf by applying u(.) = u(x(.),.) and w(.) = w(x(.),.) in (2.2) the resulting 
state, denoted by XU,W,$O' satisfies xu,w,xo E C~(n+). Hence by definition of UfO we have 
u E CT(n+) and w E C~(n+). This implies that the resulting output, denoted by Yu,w,xo' 

satisfies Yu,W,$O E C~(n+) and hence :T( u, w) as defined in (2.1) is well-defined. We will only 
consider inputs of this form. 

Since (A, B) stabilizable the class of admissible pairs is non-empty for every initial value 
Xo· 

We will call u a minimizing player and his goal is to minimize the cost criterion :T( u, w). 
In the same way we will call w a maximizing player who would like to maximize the cost 
criterion :T( u, w). 

Definition 2.1 The system (2.2) with criterion function (2.1) is said to have an equilibrium 
if for all initial values Xo there exists an admissible pair (uo, wo) such that 

:T( uo, w) ::; :T( uo, wo) ::; :T( u, wo) (2.5) 

for all u E Ujb and wE Uh such that (u, wo) and (uo, w) are admissible pairs. Here Uo should 

be such that for all w E C~, (uo, w) is an admissible pair. 

The existence of an equilibrium is, in general, a too strong condition. We will define a 
weaker version. 
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Definition 2.2 The system (2.2) with cost criterion (2.1) is said to have an almost equilib­
rium if there exists a function :1* : 'Rn -+ 'R such that'Vt > 0, Xo E 'Rn 3uo E Un, Wo E U}b 
such that (uo, wo) is admissible and moreover, 

..J(Uo,w) < ..J*(xo)+t 

..J(u,wo) > ..J*(xo)-e (2.6) 

for all u E un and w E Uh such that ( u, wo) and ( UQ, w) are admissible pairs. Here Uo should 
be such that for all w E C&, (uo, w) is an admissible pair. 

Remark Note that if either Uo or Wo is fixed then choosing the other input in UJb such that 
we have an admissible pair, results in well-defined functions in C2 for state, minimizing player 
and maximizing player. Hence in definition 2.2 we can, without loss of generality, assume 
that u and ware in C2 instead of UJb. In that case there are no restrictions any more on w 
since (uo, w) is admissible for all w E C&. This latter condition is rather unusual in zero-sum 
linear quadratic differential games. Intuitively it means that we hand over the responsibility 
of the condition x E C2' to the minimizing player. Without that assumption it can happen 
that there exists Uo, Wo such that 

..J(uo,w) :5 Ml 

..J(u,wo) ~M2 

for all u, w such that (uo, w) and (u, wo) are admissible pairs and M2 > MI. Clearly (uo, wo) is 
not admissible but neither Uo nor Wo will change since that will be contrary to their objective 
of minimizing respectively maximizing the cost-criterion. To prevent such a deadlock we 
hand over the responsibility for x E C2' to one of the players. 

We will derive conditions for the existence of an almost equilibrium. Since we do not 
assume that the D matrix is injective it is not surprising that, as in the singular LQ problem, 
we find a matrix inequality instead of a Riccati equation. We define 

( 

ATP+PA+CTC+PEQ-IETP PB+CTD) 
FCP):= . 

BTP+DTC DTD 
(2.7) 

We call a symmetric P a solution of the quadratic matrix inequality if F( P) ~ O. Furthermore 
define 

-B] . (2.8) 
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This is in fact the controllability pencil associated to the system, 

Define G( s) = C( sf - A)-l B + D and let normrank G denote the rank of G as a matrix over 
the field of real rational functions. We denote by C- ( Co, C+ ) the set of all 8 E C such 
that Re s < 0 ( Re 8 = 0, Re s > 0 ). Finally we define the concept of invariant zero. The 
invariant zeros of (A,B,C,D) are all sEC such that 

(
sf - A 1-B) (Sf - A 1-B) rank C D < normrank C D ( = n + normrankG). (2.9) 

The following theorem is the main result of this paper. 

Theorem 2.3 Consider the system (2.2) with cost criterion (2.1). Assume (A,B) stabiliz­
able. There exists an almost equilibrium if the following condition is satisfied, 

There exists a positive semi-definite solution P of F(P) ~ 0 such that 

rank F(P) = normmnk G 

(2.10) 

Moreover ..7*(xo) = x'6Pxo defines an almost equilibrium and for each bounded set of initial 
values we can find static state feedbacks Fu,Fw such that uo Fux and Wo = Fwx satisfy 
(2.6) for all initial values in that set. 

Remark For this specific almost equilibrium we have the following equality: 

x'6Pxo sup inf ..7(u,w). (2.11) 
WEuh uEU;';(xo) 

About the necessity of the above conditions we have the following result: 
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Theorem 2.4 Consider the system {2.2} with cost criterion {2.1}. Assume (A, B) stabiliz­
able and assume (A, B, C, D) has no invariant zeros in Co. If there exists an almost equilib­
rium then the following condition is satisfied: 

There exists a positive semi-definite solution P of F( P) ~ 0 such that 

rank PCP) = normmnk G 

( LJfp) ) rank = n + normrank G "Is E C+. 
(2.12) 

Moreover in case D is injective the above condition is also sufficient. 

Remark Although, in case D injective, we can prove the existence of an equilibrium under 
the assumptions of theorem 2.4, we haven't been able to find static state feedback laws for 
Uo and Wo which we could find under the assumptions of theorem 2.3. 

3 A preliminary system transformation 

In this section we will apply a preliminary feedback transformation u = FoX + v to the system 
(2.2). It will be shown that the resulting system has a very particular structure. For details 
we refer to [10J. In the proof of theorem 2.3 this tranformation will be our main tool to prove 
the result. We shall display the structure of the transformed system by writing down the 
matrices with respect to some suitably chosen bases for the input, state and output spaces. 

Our basic tool is the strongly controllable subspace. We will first define this subspace 
and give an important property which will be used in the sequel. 

Definition 3.1 Assume we have a system 

X Ax + Bu 
y = Cx+Du 

(3.1) 

We define the strongly controllable subspace T(I;ci) as the limit of the following sequence 
of subspaces, 

1i+1(~ci) = {x E nn I 3 x E 1i(~ci), u E nm such that (3.2) 

x = Ax + Bu and Cx + Du = O} 

It is well known (see [9]) that 1i(I;ci) (i = 1,2, .. .) is a non-decreasing sequence of subspaces 
and attains its limit in a finite number of steps. A system is called strongly controllable if 
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its strongly controllable subspace is equal to the whole state space. 

We will give one property of the strongly controllable subspace at this point which will 
come in handy in the sequel (see [3,9] ), 

Lemma 3.2 Assume we have the system (3.1) with (C D) surjective. The system is strongly 
controllable if and only if 

(3.3) 

has ful row rank for all sEC. 

We can now define the bases which will be used in the sequel. 
First choose a basis ofthe input space 'Rm. Decompose'Rm = U1 ffiUz such that U2 = ker D 

and U1 arbitrary. Choose a basis UI, UZ, • •• ,Um of 'Rm such that Ul, UZ, ••• ,Ui is a basis of 
U1 and Ui+l, • •• ,Um is a basis of U2• 

Next choose an orthonormal basis Yl,Y2, ••• ,YP of'RP such that YI,'" ,Yi is a basis of 
im D and Yi+I," ., Up is a basis of (im D).l, Because this is an orthonormal basis this basis 
transformation does not change the norm lIyll. 

Finally we choose a decomposition of the state space X = Xl ffi X2 ffi X3 such that 
Xl = T(E) n C-limD, Xz ffi X3 = T(E) and Xl arbitrary. We choose a corresponding 
basis XI, Xz, .. • ,Xn such that X}, .. ,, Xr is a basis of XI, Xr+I,'" , Xs is a basis of Xl and 
x s+l" •• ,Xn is a basis of X3 • 

With respect to these bases the maps B, C, D have the following form, 

B = (BI B2), C = ( ~~ ) , D = ( ~l ~), (3.4) 

Next, we define a linear mapping Fo : 'Rn -+ 'Rm by 

( 
-DIICI ) ( 0 ) Fo := 0 and hence C + DFo = C2 . (3.5) 

We have the following properties of this decomposition which are proven in [1OJ. 

Lemma 3.3 Let Fo be given by (3.5). Then we have 
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(i) (A + BFo)(T(~) n C-limD) ~ T(~), 
(ii) imB2 ~ T(~), 
(iii) T(~) n C-limD ~ kerC2 • 

By applying thls lemma we find that the matrices A + BFo, B, C + DFo and D with respect 
to these bases have the following form. 

(

An 
A+BFo= A21 

A31 (3.6) 

C+DFo = (C~l 

We now apply the feedback u = FoX + v to the system. Let (vi, vnT be the coordinate 
vector of a given v E nm. Likewise we use the notation (xi, xL x§'f and (yf, ynT

• Finally 
decompose E = (El, Ef, E§)T correspondingly. Then the system (2.2) has the following 
form: 

(3.7) 

A21) (VI) + (~) W, 
A31 Xl E3 

(3.8) 

(3.9) 

Note that (u, w) is an admissible pair for the system (2.2) if and only if (v, w) is an 
admissible pair for the system (3.7)-(3.9). As already suggested by the way we arranged these 
equations, the system (3.7)-(3.9) can be considered as the interconnection of two systems: 

I I 
~ I 

w i) Xl x3 

~o I 
Here, 
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(3.10) 

is the system given by the equations (3.7) and (3.9). It has inputs VI, wand X3, state Xl and 
output Yt,Y2. The system Eo is given by equation (3.8). It has inputs V}'V2,W and XI, state 
X2, X3 and output X3. 

The systems :t and Eo turn out to have some nice structural properties, which have been 
shown in [10]. 

Lemma 3.4 We have the following properties: 

(i) C23 is injective, 

(ii) The system, 

E I := [( ~:~ ~::), ( ;:~ ) ,(0 1),0] (3.11) 

is strongly controllable, 

(iii) We have, 

norm rank G = rank (C~3 ~l)' (3.12) 

We need the following results from [10] which connects the conditions of theorem (2.3) to the 
matrices in the transformed system (3.7)-(3.9). 

Lemma 3.5 Assume a symmetric P is a solution of F(P) ~ O. We have 

(i) P T(E) = 0 i.e in our decomposition P can be written as 

( 

Pu 0 0) 
P = ° 0 0 ° 0 0 

(3.13) 

(ii) If P is in the form (3.13) then 
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Moreover R(P) = 0 if and only if rank F(P) = normrankG. 

(iii) If R(P)=O then we have for all sEC, 

( 
L(P,s) ) 

rank F( P) = n + norm rank G 

if and only if 

has no eigenvalue in s. 

4 Solution of the quadratic differential game 

In this section we assume that the condition of theorem (2.3) is satisfied. We show that there 
exists an almost equilibrium. We will use the following two lemmas which will give theorem 
2.3 as an almost direct result. 

Lemma 4.1 Let P be given such that F(P) ;::: O. Then for all admissible pairs (u,w) we 
have: 

where 

q3 X3 + (Cf3C23)-1 (Af3Pll + Cf3C21)Xb 

i3t Vl + (D[ D1)-1 B[lPUXl! 

WI ._ w_Q-1ETpx. 
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Moreover the dynamics in these new coordinates are given by: 

(4.5) 

(::) = (~:: 1:) (::) + (~~:) V2 + (1:~) Xl + (;:~) VI + (~:) WI (4.6) 

(::) (~~)Xl+(C~3)q3 (4.7) 

where we used the following matrices, 

All := An +EIQ-IE[Pn-A13(Cf3C23)-1(Af3Pn +Cf3C21) 

-Bll (D[D1r 1 B[lPU , 

A21 := A21 + E2Q-l E[ Pu - A23 (Cf3C23)-1 (Ai3PU + Cf3C21) 

-B21 (D[D1)-1 B[IPll , 

A31 := A31 + E3Q-l E[ Pll - A33 (C:isC23)-1 (Ar3PU + Cf3C21) 

-B31 (Dr DI )-1 B[lPn + (Cf3C23)-1 (Ai3 Pn + Cf3C2d Au, 

A33 := A33 + (Cf3C23 r 1 (Ar3PU + Cf3C21) A13 , 

C\ := -Dl (Dr Dt)-1 B[tPll, 

(:2 := C21 - C23 (Cf3C23r1 (Ai3Pll + Cf3C21) , 

E3 := E3 + (Cf3C23r1 (Ai3 Pn + Cf3C21)E1. 

Proof By using the system equations (2.2) we find 
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where we have 

v = u - Fox 

AF = A+BFo 

CF = C+DFo 

and WI as given by (4.4). We can now use the decomposition as defined in (3.6) and we find 
that (4.9) is equal to: 

(

,xl) T(P11All + Af1PU + Cf1C21 + P11 E1Q-l E[ PH 
,x3 Af3Pll + Cf3C21 

Vi Bft Pll 

Wl 0 

PllA13+Cf1C23 PUBll 

C13023 0 

o D[Dl 

o 0 

When we finally use the definitions (4.2) and (4.3) and integrate the equation (4.8) from 0 
to 00 we find the equation (4.1). Here we used that 

since the pair (V, w) is admissible. Moreover (v, w) admissible implies that the integral in 
(4.1) is well-defined. • 

We will use the following known result which turns out to be extremely useful for singular 
H 00 control and for singular differential games. 

Lemma 4.2 Consider the following system 

x = Ax+Bu+Ew 
y = Cx. 

Assume the system (A,B,C,O) is strongly controllable. Then we have the following result: 

For all bounded sets V C 'Rn, all c > ° and all AI E 'R there exists F E 'Rmxn such that 

(i) u(A + BF) C {s Eel Re s < AI} 

(ii) For all w E .c~ and all Xo E V we have lIyl12 :5 C (lIwll2 + 1), where y is given by 
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x 
y 

(A+BF)x+Ew x(O)=xoEV 
Cx 

(4.10) 

Proof In [13, theorem 3.36] it has been shown that if the system (A, B, C, 0) is strongly 
controllable then for all M E 'R and c > 0 there exists an F such that 

(j (A + B F) C {s E C I Re s < M} 

U sing the above the lemma can be shown straightforwardly. 

By using these two lemmas we can now prove theorem (2.3): 

(4.11) 

(4.12) 

• 

Proof of theorem 2.3 We choose the P satisfying (2.10). We choose an arbitrary c > O. 
First note that when we choose WI = 0, i.e. Wo = Q-l ET Px then by lemma (4.1) we have, 

..1(u,Wo) ~ x6Pxo ~ x'{;Pxo-c (4.13) 

for all u such that (u,wo) is an admissible pair. This is the second inequality in (2.6). 
In order to prove the other inequality in (2.6) we have to do some preparatory work. We 

start by choosing VI = 0 i.e. Vl = - (Di Dl)-I Bil PnXl We know by (2.10) and lemma 3.5 
(iii) that An is asymptotically stable. Assume we have an initial value in some bounded set 
then the mapping from q3 and WI to Xl is bounded i.e. there are Afl,M2,M such that for all 
q3 and WI in £2 we have 

(4.14) 

Consider the system given by equation (4.6) with input V2, state X2, q3 and output Q3. We 
claim that this system is strongly controllable. We have, 

(4.15) 

Since the first matrix has full rank for all sEC we find that both system matrices have the 
same rank for all sEC. By using lemmas 3.2 and 3.4 we find that the above mentioned 
system described by (4.6) is strongly controllable. We assumed that we have an upper bound 

on the initial value. Therefore by lemma 4.2 we know we can find a feedback V2 = FI (::) 
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such that by applying that feedback in (4.6) we find 

IIq311~ ~ IIC2311-Imin (c(cM1 + M + 1)-1 ,IIQ-1 11-1/
2 (IIQ-IIl- l

/
2MI + M2 + 1)-1) 

X (IIXll1~ + IIWll1~ + 1) 

Combining this with (4.14) we find 

(4.16) 

. (X2) (VI) By choosmg V2 = FI q3 and Uo = Fox + V2 we therefore find 

(4.17) 

This gives the first equality in (2.6). By noting that for each bounded set of initial values 
the Uo and Wo are given by a static feedback the proof is completed. • 

Corollary 4.3 Define the following class of control inputs 

U;:(Xo):= {u E Ufo I Vw E .c~(R+) (u,w) is an admissible pair for initial value xo}. 

We have the following equality, 

x6Pxo sup inf .J(u,w). (4.18) 
WEUjo uEU;';'(xo) 

Proof For some arbitrary € we can choose u = Uo as defined in the proof of theorem 2.3. 
We have ih = 0 and IIC23Q311 ~ IIQI/2wlll and using the equality in (4.1) we find 

sup inf .J(u,w) ~ x'/;Pxo + €. (4.19) 
WEU}o uEU!'i(xo) 

Since this is true for all e we find an inequality in (4.18). By choosing WI = 0 for arbitrary 
u we find the opposite inequality and hence equality. • 
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5 Solvability of the quadratic differential game 

In this section we will derive neccesary conditions for the existence of an almost equilibrium. 
Our main tool will be the following result from H 00 control theory which has been proven in 
[10]. 

Theorem 5.1 Consider the system (2.2) with Xo = O. Assume (A, B) stabilizable and as­
sume (A,B,C,D) has no invariant zeros in Co. Let 1 > 0 be given. Define Q := 121 then 
the following two conditions are equivalent 

(i) There exists a positive semi-definite solution P of F(P) ~ 0 such that both rank condi­
tions in (2.10) are satisfied. 

(ii) There exists 6 > 0 such that for all w E £~(n+) 
there exists u E £2'(n+) for which the resulting state Xu,w,o E £2(n+) and the resulting 
output satisfies 

IIYu,w,oI12 S; (-y 6)llwI12' 

We define the following class of input functions, 

U(~,w,XO) {u E £~ I By applying u,w in ~ we have xu,w,xo E Cn (5.1) 

We will use the following lemmas, 

Lemma 5.2 Assume for the system 2.2 with cost-criterion 2.1 there exists an almost equi-
librium. Let Xo O. Then we have 

inf 3( u, w) S; 0 
uEU(E,w,O) 

Vw E £~ (5.2) 

Proof We know that for some arbitrary e > 0 there exists Uo E UfO such that (2.6) is 
satisfied. Choose an arbitrary w E £~. 'rVe have 

inf 3( U, w) ::; 3( Uo, w) S; 3*(0) + e (5.3) 
uEU(E,w,O) 

This implies that for arbitrary A > 0 we have 
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inf .1( '\u,'\w) = inf .1( u,'\w) ::; .1( uo,'\w) ::; .1*(0) + c 
uEU(I:,w,O) uEU(I:,.\w,O) 

But since Xo = 0 we have .1('\u,'\w) = ,\2.1(u,w). Hence 

,\2 inf .1(u,w)::; .1*(0) + C 
uE U(I:,w,O) 

Since this is true for all ,\ > 0 we find 5.2. 

Lemma 5.3 For all Xo E nn we have, 

sup inf .1(u,w)::; .1*(xo). 
WEU}b uEU~(:ro) 

Proof Since .1* is an almost equilibrium we have 

sup inf .1(u,w)::;.1*(xo). 
wE'£:W<.+) uEU!':(:ro) 

We approximate an arbitrary tv E UJb by w E £~(n+) as follows, 

wet) = { ~ (xw,u,:ro(t), t) t ::; T 
elsewhere 

We find the following inequality for all u E Un 

(5.4) 

(5.5) 

• 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

since wet) = 0 Vt > T. Since T was arbitrary the desired inequality (5.6) is found by letting 
T~oo • 

Proof of necessity part of theorem 2.4 We define d := Ql/2W. Moreover we define, 

x = Ax + Bu + EQ-l/2d 
:Eo: 

y = Cx+Du 
(5.10) 
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and 

(5.11) 

It is easily seen that J-y( u, d) = J( u, w) for, = 1. Let, > 1 be given. We have, 

inf J-y(U, d) = inf J(u,w)-Cl2-1)lldll~ (5.12) 
uE U(I:o ,d,O) uE U(I:,w,O) 

and hence by lemma 5.2 we have 

inf "Yu,d,o"~ - ,211dll~ $ _(,2 - l)lldll~. (5.13) 
uEU(I:o,d,O) 

for all d E .c~. Hence by applying theorem 5.1 to the system ~o we find that there exists a 
positive semi-definite matrix P-y such that 

( 

ATP+PA+CTC+,-2PEQ-IETP PB+CTD) 
F-y(P) := ~ 0 

BTP+DTC DTD 
(5.14) 

and such that P-y satisfies the following two rank conditions, 

rank = normrank G 

rank n + normrank G \;/s E C+ U Co, 
(5.15) 

where L-y(P-y, s) := lsi - A - ,-2 EQ-l ET P-y - B] Since P-y is a solution of a differential 
game with cost criterion J-y it is easily seen by corollary 4.3 that if, 1 1 then P-y increases 
i.e. P-Yl - P-Y2 ~ 0 if 1 < ,I $ ,2. On the other hand we have by lemma 5.3 

X'6P-y Xo = sup inf J-y( u, w) (5.16) 
WEUjb uEU~(xo) 

< sup inf Jl( u, w) (5.17) 
wEuh uEU~(xo) 

< J*(xo) (5.18) 
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Hence lillLylI P"f = P exists. Since rank F"f(Q) ;::: normrank G for all symmetric matrices 
Q (see [10]) it can be shown that our limit P satisfies the first rank condition in (2.12) 
by a continuity argument. In lemma 3.5,part(iii) it has been shown that the second rank 
condition in (5.15) implies that a certain matrix is asymptotically stable. Therefore, again 
by a continuity argument, we know that in the limit this matrix has all its eigenvalues in the 
closed right half plane. This is equivalent with the second rank condition in (2.12) by lemma 
3.5,part (iii). • 

6 The regular differential game 

We will now show the last part of theorem 2.4. This has been recapitulated in the following 
lemma, 

Theorem 601 Assume we have the system (2.2) with cost-criterion (2.1). Furthermore as­
sume D is injective and assume there exists a P such that F(P) ;::: 0 and (2.12) is satisfied. 
Then there exists an almost equilibrium. 

Remark This is an extension of the results in [5]. However there is an essential difference 
because we require stability. In [5] one of the assumptions ( (C, A) detectable) is such that 
the problems with and without stability are equivalent. The problem in this paper is that 
the set of admissible inputs is no longer a simple product space. 

The proof will make use of two lemmas. The following lemma has been proven in [10]. 

Lemma 602 Assume that D is injective. Suppose a symmetric matrix P is given. Then the 
following two conditions are equivalent, 

(i) F(P) 2: 0 and rankF(P) = normrankG. 

(ii) R(P):= PA + ATP + PEQ-1ET P + CTC 
- (PB + CT D)(DTD)-l (BTP + DTC) = O. 

Moreover if P satisfies (i) ( or equivalently (ii) ) then the following two conditions are equiv­
alent for all sEC. 

(0") k(L(P)S») kG 
1ll ran F(P) = n + normran . 

(iv) the matrix A + EQ-l ET P - B (DT Dr! (BT P + DTC) has no eigenvalue in s. 
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Note that in case D is injective we have normrankG:::: rankD. At this point we will 
present the following, known, result for the LQ-problem with stability ( see [15] ). 

Lemma 6.3 Consider the system (2.2) with cost-criterion (2.1). Let w == O. Assume (A,B) 
stabilizable, (A,B,C,D) has no invariant zeros in CO and D injective. Then we have the 
following 

inf .1(u, 0) :::: x,&Lxo. (6.1) 
u EU(E,O,xo) 

Here L is the solution of the following algebmic Riccati equation, 

(6.2) 

with the property that the matrix A + B (DT D)-l (BT P + DTC) is asymptotically stable. 

Proof of theorem 6.1 We know that we have a solution of R(P) :::: ° such that the matrix 
A+EQ-l ET P-B (DT D)-l (BT P + DTC) has all its eigenvalues in the closed left half plane. 
It is known from H 00 theory ( a slight extension of [12] ,proposition 10 ) that this implies 

sup inf IIYII~ - I!dll~ =5 O. 
dE.c~('R+) uEU;':(xo) 

(6.3) 

where y is determined by the system equations (5.10). We know follow the reasoning in the 
proof of the necessity part of theorem 2.4 starting with formula (5.13). Hence we find there 
exists P"{ such that 

x'& P.,yxo:::: sup inf .1,( u, d). (6.4) 
dEUh uEU;':(xo) 

By choosing d :::: 0 it is easily seen that P-y 2:: L where L is defined by lemma 6.3. We 
know P-y -;. P as 'I ! 1 where P is also such that we have R(P) :::: 0 and the matrix 
A + EQ-l ET P - B (DT Drl (BT P + DTC) has all its eigenvalues in the closed left half 
plane. It is well known that such a solution of the ARE is unique and hence we find P :::: P 
and therefore P 2:: L. Consider the following Riccati differential equation ( RDE ), 

](0) :::: L. (6.5) 

18 



Let T > 0 be such that the solution of the RDE exists for all t ~ T. We know such a T exists. 
For the system (3.1) we will consider the finite horizon differential game with terminal cost. 
The cost-criterion is given by 

(6.6) 

It is well known ( see [5] ) that the optimal strategies for w and u are given by 

uo(t) := - (DT Drl (BT K(T - t) + CT D) x(t), wo(t) := Q-l ET K(T - t)x(t) (6.7) 

and the corresponding cost :1'; = x~K(T)xo. It can be seen ( using the interpretation of Las 
the cost defined in lemma 6.3 ) that this problem is equivalent with the original problem with 
cost-criterion (2.1) when we add the additional constraint Vt > T, wet) = O. This constraint 
is weakened for increasing T and hence it is clear that for increasing T the cost will increase 
since w is a maximizing player. That is, for T ?: tt ?: t2 we have IC(tI) ?: K(t2). Moreover 
since P is a stationary solution of the RDE such that P ?: L we know P ?: K(t) Vt < T 
Since K(.) is an increasing solution of the RDE which is bounded from above by a stationary 
solution of the RDE we know that K(.) exists for all t and converges to a matrix Koo which 
is a stationary solution of the RDE, i.e. R(Koo) = O. 

Next we claim that the matrix Al := A - B (DT D)-l (BT Koo + DTC) is asymptotically 
stable. To this end we rewrite the ARE in the following form. 

(6.8) 

By applying an eigenvector x corresponding to an unstable eigenvalue A to both sides of this 
equation we find Re A xT Koox = 0, ET Koox = 0, Cx = 0 and (BT Koo + DTC) X = O. We 
find for ReA> 0 that Ax = Ax and Koox = O. Since Koo ?: L ?: 0 this implies Lx = O. 
This again implies that A is also an unstable eigenvalue of A - B (DT D)-l (BT L + DTC). 
However since by lemma 6.3 this matrix is stable we have a contradiction. If Re A = 0 then 
we have Ax = Ax and Cx = 0 which contradicts the fact that we have no invariant zeros on 
the imaginary axis. Hence Al is stable. 

We are now in the position to show that :1*(xo) = x~Kooxo is an almost equilibrium 
of the system (3.1) with cost-criterion (2.1). Let c > 0 be given. Choose T > 0 such that 
x~Kooxo - x~K(T)xo < c. The following uo, Wo turn out to satisfy (2.6), 

uo(t) .- - (DT D)-l (BT Koo + DTC) x(t) (6.9) 

woCt) 
{ ~-1 E" K(T - t)«t) for t < T 

(6.10) .-
otherwise 
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Indeed for admissible pairs (u, w) we can now rewrite the cost-criterion in the following way 

(6.11) 

Since Uo is a stabilizing feedback it is easily seen from this equation that Uo satisfies its 
requirements. Another way of rewriting the cost-criterion when wet) = 0 Vt > T is given by 

.l(u, w) = X6J(T)xo + loT liD (u(t) + (DT D)-l (BT J(T t) + DTG) x(t») 11
2dt 

_ loT IIQ1/2 (w(t) - Q-1 ET J(T _ t)x(t») 11 2dt _ xT(T)Lx(T) + £00 yT(t)y(t)dt 

Since the sum of the last two terms is non-negative by lemma 6.3 and the first term differs 
from .l*(xo) less than £, it is easily seen that Wo satisfies the second equation in (2.6). This 
proves that indeed an almost equilibrium exists. • 

7 Conclusions 

In this paper the linear quadratic differential game was solved. We could derive necessary 
conditions as well as sufficient conditions for the existence of equilibria. For the derivation 
of necessary conditions we made however the extra assumption that there are no invariant 
zeros on the imaginary axis. After that we have necessary and sufficient conditions for the 
existence of equilibria in cas D is injective but not in case D is not injective. 

Interesting points for future research would be to find necessary and sufficient conditions 
in case either D is not injective or there are invariant zeros on the imaginary axis. Another 
point is the uniqueness of equilibria. In my opinion the equilibrium is unique but we haven't 
been able to prove it. The equilibria we find in theorem 2.3 can be shown to be the smallest 
possible. 

An interesting feature is that if the differential game is solvable under the assumptions 
of theorem 2.3 for Q = I, then the Hoo problem is solvable for f = 1, i.e. there exists an 
internally stabilizing feedback which makes the Hoo norm less than 1. In case D is injective 
then under the assumptions of theorem 2.4 we can do the same only the H 00 norm becomes 
less or equal than 1. This shows the strong relationship between Hoo control and differential 
games. 
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