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Radiative heat transfer in semi-transparent media 

by 

C.J. Aldridge & W. Potze 

Abstract 

A ma.t.hema.t.ical model is proposed to describe the radiative heat transfer in a circular 

('\'lilldrical t.lllH'. The spectrally dependent raciiative intensity cletermining the radiative 

heat tran:"port in the tube is investigated. The tube is considered to be composed of semi

tran:'>parent material in which scattering is assumed to be negligible. At the boundaries 

of the t II be the rad iati ve in ten:'>i ty is specularly reflected. For an inti ni tely long hollow 

circular cylindrical tube , the radiative intensity is solved analytically from the radiative 

trall:'>port equation. III the case of a quartz glass tube, results for the radiative intensity 

MI' presented and its effect on the temperature is determined. 

Keywords. glass, heat raciiation, heat transfer, modeling, radiative heat transfer, racli

ative int.E'll:"it.y, tube. 
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1 Introduction 

In gla.ss processing the temperature of the glass is in general very high. Glass can be 

deformed if its temperature is higher than the ~o~t. The deformations occurring 

in a manufacturing process depend on the local viscosity of the glass. This viscosity 

depends strongly on the temperature [1, 2], and it also depends on the applied load [3] or 

rate of deformation [4]. It decreases significantly with increasing temperatures. Therefore 

the formability and hence the final shape of a glass product depends strongly on the 

temperature distribution in the glass part. Temperature gradients in the cooling stage 

of a production process may introduce thermal stresses [5, 6] and residual stresses in the 

final produced glass part. These thermal stresses or residual stresses may cause an early 

failure of the glass product. Therefore, the temperature distribution in a glass product is 

very important. 

Heat transfer in a semi-transparent medium, like glass, occurs by conduction and radi

atioll [7, 8, 9, 10J. A~ low temperatures conduction is the major means of heat transport, 

at }Iigh temperatures heat radiation also contributes significantly to the heat transport. 

Heat radiation or thermal radiation may be viewed as transported by electromagnetic 

waves [8, 10J . Thermal radiation is radiant energy emitted by a medium due solely to 

the temperature of the meclium . This means the temperature of the medium governs the 

emission of thermal radiation. The range of wavelengths of importan..ce for heat transfer 

considerations is between 0.1 Jlm (ultraviolet) and 100 ,un (infrared). Heat radiation may 

be polarized, because of its electromagnetic wave behaviour. In glass thermal radiation 

is emitted (cooling), absorbed (heating) and scattered (redirected). The heat radiation 

depends on the direction of propagation, the position in the meillnm~uency and 

the time. At the boundaries of the volume of the glass, a part of the heat radiation will .. 
he transmitted, another part will be reflected and a part will be scattered, depending on 

the quality of the surface and on the angle of incidence. 

The quantity t.hat determines the heat radiation in the glass is the radiative intensity 

TAx, s , t,) [8, 9, 10], representing the radiative energy flow in a certain direction per unit 
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time, solid angle, unit area normal to the propagation direction and per unit frequency. 

Instead of the dependence of the radiative intensity on the frequency v , the depenclE'lIce 

on wavelength or wavenumber is also often used. In this paper the dependence OIl the fre

quency is preferred, because frequency is unchanged if radiation passe:=; from olle IllpdillIn 

to another one with a different refractive index, while wavelength and wavenllrnbE'r do 

change. The material parameters that directly infl uence the heat radiation ina rned ill m 

are the refractive index and the absorption and scattering coefficients, which are depend

ent on frequency. Since scattering in glass can be neglected, the only material pararnpt,prs 

that influence heat radiation are the refractive index and the absorption coelficiellt. 

In this paper a mathematical model of the heat radiation in an infinitely long hollow 

circular cylindrical tube is proposed. The spectrally dependent radiative intensity is solved 

from the radiative transport equation and its contribution to the temperature change is 

determined . It is assumed that the temperature and the radiative intensity in the tuhe 

are axially symmetric. Furthermore, it is assumed that the heat radiation is unpolarizecl, 

hence no polarization effects are taken into account. The absorption coeffic:if'nt and till" 

refractive index in the considered medium are taken to be only dependent on the frequency 

v. Therefore the radiative energy in the medium propagates along straight lines. Specular 

reflection and transmission of the radiation at the inner and outer bOllndarif's occurs. Tn 

contrast to [111, where the heat flux emitted from an isothermal infinitely long circular 

cylindrical tube is determined, here the heat transport in the volume of the tube is 

determined. Other studies have investigated the radiative heat transfer in an iufini t.ely 

long circular cylindrical tube with black surfaces [121, with scattering [13, 14] or in a tube 

of finite length [15, 16] . 

In the present case of an infinitely long hollow circular cylindrical tube an exact ex

pression for the spectrally dependent radiative intensity is derived. This is probably not 

possible for a tube of finite length. For a given temperature distribution ill the tube, 

the radiative intensity is calculated and the contribution to the temperature chauge is 

determined. 
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2 Model equations 

2.1 Thermodynamics and radiative heat transfer 

Conservation of energy for the material is 

pCp(Tt + (u· V)T) = -V· q, (1) 
, . , 

wlH're (J is the density, u is the velocity, T lis the temperature, Cp is the specific heat 

capacity, lLnel q is the heat flux, and the subscript t represents differentiation with respect 

to time. The heat flux q consists of a part qc caused by heaL conduction and a part qr --caused by heat radiation. Fourier's law is used for the constitutive equation of the heat , 
flux by conduction, which, in our case of an isotropic glass is seen to be 

(2) 

where kc = kc(T) is the thermal conductivity. 

The basic vari able tha t describes radiative l1eat transfer within the glass is the spectral 

illt~~,.{g . This is defined as the amount of radiant energy at frequency v transported 

at a point x in the direction s per unit time, frequency, solid angle and normal area. 

Thus 1,/ = I,/(x , s , t), wl1ere lsi = 1. The spectral intensity Iv has the unit (Ws)j(m2sr), 

however we will drop the dimensionless unit steradians (sr = m2 jm2 ) and use only SI base 

llnits in the formulae and graphs helow. The general equation of radiative heat transport 

within an absorbing, emitting and scattering volume is [10] 
~ 

1 D 1,/ () () (J sv 1 (') (') , -::-::,;- + s· V I v = K,vh ,v - K,v + (Jsv Tv + - I <I> s , s Iv s dD . 
( ut 47r n =4.". I 

-t if 0'- i "Vr')u ~ J-c..... (. tv'- L... ~ , 

(3) 

Her(' ( ~ is the speed of light ill the glass, K,v and (Js';are the absorption and scattering coef-

fici('IIt.s, h." is the spectral hlackbody intensity, <1>(8', s) is a scattering pha.se function, and 

S2 is the solid angle (the integration is thus taken over all directions). The left-hand side of 

(:3) represents the change of the radiative intensity in the direction of propagation 8. The 

right-hand side represents the change in radiative intensity due to emission, absorption, 

scattering away from the s-direction and scattering into the s-direction, respectively. The 

subscript v is used throughout this report to indicate a frequency-dependent variable . 

.; <! 7 
)c .. 

" 
't2:. _ =v. ( ~('-1 ~,.J 

r ~0 If 
:1 I::- 'I - ) c/ ) --

I - t 

- - .:v , ( - ~c r f t. c. 17 f - p ,. I ' r a 
I 
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We could alternatively choose wavelength A, or wavenumber TI, as spectral quantities 

(1/ = ciA = cr}). Wavelength is often the preferred variable in recent literature, e.g. [10. 

17, 18]' on radiative transfer in semi-transparent media. However frequency is unchanged 

as radiation passes from one medium to another (with different refractive index) , and so 

appears a sound choice for this study. 

The radiative heat flux qr is defined as 

qr = roo 1 S [I/(X, s, t) dn dl/. 10 n=41T 
(4) 

We now detail some of the terms in (3). The spectral absorption coefficient KI/ of quartz 

glass typically varies over several orders of magnitude across the spectrum of thermal 

radiation. For frequencies lower than around 6 x 1013 
S-1, /'1,1/ is relatively large, while for 

higher frequencies /'1,1/ falls sharply to relatively small values [19] . Tn general the absorption 

coefficient is also dependent on temperature [20]. 

The blackbody intensity is given by Planck's law as 

2h1/3n2) J - v -
b,v - c~(ehl//kT _ 1)' (5) 

where h = 6.626 X 1O-34 .J s is Planck's constant, k = 1.3806 X 10-23 .J K-1 is Boltzman n \ 

constant, nl/ is the refractive index, and Co = 2.998 X 108 m S-1 is the speed of electro

magnetic radiation (= speed of light) in a vacuum (c = colnl/)' Since for glass nl/ ~ 1.5, 

radiative heat transfer occurs on a relatively rapid time scale, and we may neglect the 

time derivative in (3). The refractive index n,/ of glass in general is also dependent on t.lw 

temperature T [21]. Moreover, scattering of radiation is not considered to be significant. 

for this problem [22], and we may take (Jsv = O. Hence the radiative transport equat.ion 

(3) reduces to 

(6) 

Tn Figure 1 the dependence of h ,,/ on frequency for three different temperatures is shown. 

The total blackbody intensity h is given by 

(7) 

I 
./ 



1 

8 

6 

4 

2 

o 
o 

,. " 
/ ',1200 K 

I , , \ , \ 
I \ , \ 

I . 1000 K \ 
I /1'" \ 

1
1 /" \ II " \ II 800 K ", '" 

/I I """ 
\ "" '" "-...----.-:: ..... -. -.. -----

Figure 1: Spectral blackbody intensity, T = 800, 1000, 1200 K, TLv = 1.5. 

(taking n,/ = n constant); here (J is the Stefan-Boltzmann constant 

21f') k4 
(J = 2 h

3 
= 5.670 X 10-8 W m -2 K-4

. 
15 Co . 

(8) 

If it material is considered to be grey, that is, if ""v and nv are constant, then the source 

term in the equation of transfer for the total intensity l(x, s, t) = fooo lv(x, s, t) dv is thus 

proportional to T4. 

The equation of transfer (6) requires a boundary condition specifying the intensities 

directed into the volume at each point on the boundary. The boundary conditions will 

1)(-' discllssed in the next section. 

2.1.1 Radiative boundary conditions 

The boundaries of the volume are considered to be optically smooth. Then no scattering 

tHTll\'S at the boulldarie~, hence the radiatio:l is reflected and transmitted. Let TO be a 

point on th(' boundary of the volume, n be the outward unit normal at TO, and let e be the 

,tllg\(' between sand n, thus cos e = s, n, e E [0, 1f). Then the radiati ve in tensi ty Iv (TO, s) 

where s . n < 0 is composed of two components due to reflection and transmission, as 

shown in Figure 2. As polarization effects of heat radiation are neglected, we assume the 
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n n 

(b) 

Figure 2: (a) Reflected and (b) transmitted components of boundary intensity. 

radiation to be unpolarized. In this case of unpolarized radiation incident on an intE'rface 

between two perfect (non-attenuating) media (see, for example, [9] p .102) , thE' reflected 

component is given by 

(0) 

Here Sr is the direction of the incident radiation, given by 

Sr = S - 2 cos an, (10) 

Or E [0,7("/2) is the angle between Sr and n, given by ar = 7(" - a, so Sr' n = cos a,., and 

R(Or) is the 'reflectance function'. This is given by Fresnel's equation, 

if nv sin ar ::; 1, 
( 11 ) 

otherwise. 

Here X E [0,7("/2) is the angle between the refracted ray and n, given by Snell's law , 

sin X 
-- =nv' 
sin ar 

( 12) 

If ar = 0, then 

R(O) = (nv - 1)2, 
nv + 1 

( 13) 

which is the limit of the expression in (11) as ar - 0. Figure 3 shows the reflectance 

function R defined by (11) and (13), taking nv = 1.5. We see that for small angIE'S 
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Figure 3: Reflectance function, nv = 1.5. 

of incidence, R is very low (R(O) = 0.04), but for larger angles rises sharply to unity 

(R(e r ) = 1 for er 2: sin- J 1 ~ 0.73 rad), COrreSi)onding to total internal reflection. 

The transmittecl component of Iv(To, s) is 

if nv sin er ::; 1, 

otherwise. 

Here I,~(To, St) is the incident intensity from outsicle the volume, St is given by 

1 
St = --:---e (sin(et ) S + sin(e - et ) n), 

Sill 

(14 ) 

(15) 

and et E (7r /2, 7r 1 is the angle between St and n, given by sin etl sin e = n v , so St·n = cos et . 

Hence from (9) and (14) the boundary condition is 

( 16) 

We \lOW consider some special cases corresponding to simple geometries. 

2.1.2 Single slab 

Consider the radiative heat transfer in a one-dimensional medium, contained between two 

parallel planes x = Xi and x = Xo > Xi, with no variation in the directions normal to 
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the x-axis. Then we may write Tv = T,/(x,O), where cos 0 = s . e:r, and th€' equation of 

transfer (6) may be written as 

( 17) 

From (16), boundary conditions are 

TAxo,O) = R(7r - O)Jv(xo,7r - 0) + n~ (1 - R(7r - 0)) T~(xo,Oto), 7r/2 < 0::; 7r, (18) 

where sinOto = nvsinO, Oto E (7r/2,7r]' and 

/II 
/ 

Here J~ and I~ are the incident intensities from outside the volume at x = Xo ane! :r = Til 

respecti vely. 

2.1.3 Infinite axisymmetric tube 

We now consider radiative transfer in a hollow axisymmetric tube. Position is giV€'ll in 

cylindrical polar coordinates (1', ¢c, z), where the tube axis lies on the z-axis and th€' 

azimuthal angle ¢c is measured from some (arbitrary) fixed reference direction, as sllown 

in Figure 4. The inner radius of the tube is l' = 1'i and the outer radius is l' = To' 

Direction s is parameterised by local spherical polars (0, ¢), where 0 is the (polar) 

angle between sand e Z ) and ¢ is the (azimuthal) angle between er and the projection of 

s onto the (1') ¢c)-plane (see Figure 5). Hence 

s = sin 0 cos ¢ er + sin 0 sin ¢ e<J>c + cos 0 e Z ) (2U) 

so 

(
a 1 D) D 

s . V = sin 0 cos ¢ aT + ;- sin ¢ 8¢r + cos 0 8z' (2 1) 

and since the radiative energy propagates along straight lines, so ¢ + ¢c = constant alollg 

s , the equation of transfer (6) gives 

(22) 
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z 

l' 

Figure 4: Cylindrical polar position coordinates. 

We suppose at present that the problem is independent of z , so 8I,,/8z = 0 in (22), and 

w(' may writ.e [1/ = [,/(r, e, ¢». 

To describe retlection and transmission at the boundaries we introduce a second para

meterisation of direction (w, (), defined by 

cosw 

tan ( 

sin e cos ¢, 

tan B sin cP . 

(23) 

(24) 

Here w is the polar angle between sand e,., while ( is the azimuthal angle between ez 

anel the projection of s onto the (z, ¢c)-plane (see Figure 6). 

At the outer radius of the tube, the boundary condition is analogous to (18) and is 

given by 

[1/(1'0' B, cP) = R(wr)J" (1'0' Br, cPr) + n~(1 - R(wr))I~(To, Bt , cPt), 

o < B < 7r, 7r /2 < cP ~ 7r. 

13 
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Figure 5: Local spherical polar coordinates for direction. 
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Figure 6: Alternative direction coordinates at boundaries . 

Since we assume that the intensities are independent of z and there is no absorptioll , 

emission or scattering in the region r < Ti, hence no radiative energy is generated or ab

sorbed in the interior of the tube, the boundary condition at the inner radius is equivaleut 

to total internal reflection and is given by 

(26) 

Here the direction Sr of the incident radiation at the boundary from the interior of the 

semi-transparent medium, which after reflection becomes s, is gi ven by Or = 0, cPr = 7r - cP, 
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and Wr E [0, 7r /2) is given from above by 

cos Wr = - sin () cos </>. (27) 

TllE' direction St of t.he incident radiation at the boundary from outside the semi-transparent 

mpdium, which after transmission becomes s, is given by ()t E (0, 7r), </>t E (7r /2, 7rJ, defined 

by 

sin ()t cos </>t 

tan ()t sin</>t 

where (;.,' t E (7r/2,7r]' sinwt = nl>sinw, and (t = (. 

2.1.4 Finite axisymmetric tube 

COS Wt, 

tan(" 

(28) 

(29) 

Wp now suppose that the problem is z-dependellt, in which case the intensity may be 

written as II> = II>(r, z, () , </». The equation of transfer is again given by (22), and the 

boundary condition at tile outside of the tube remains as (25) (with the inclusion of the 

independent variable z). The boundary condition at the inside of the tube requires some 

modification . 

Let () E (O,7r), </> E [O , 7r/2). The intensity entering the volume in the direction ((),</» 

at (ri, z) is 

H Pre W is given by (23) , ()r = (), </>r = 7r - </>, and ()t E (0, 7r), </>t E [0, 7r /2) are given by 

where 

sin ()t cos </>t 

tan () t si n </>t 

cosw" 

sinwt=nvsinw, wt E(O, 7r/2); (t=(, 

(31 ) 

(32) 

(33) 

and ( is given by (24). If the transmitted intensity I~ arrives at (Til z) directly from the 
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_--t-_ 
L.. 

- - --

Figure 7: Intensity arriving at the inner boundary of the tube directly from tlH' ellvirOll

ment. 

environment surrounding the tube, without reflecting first at the inside of the t.ube. as 

drawn in Figure 7, then the boundary condition at r = ri is given by (30). Othenvisp, 

the transmitted intensity is 

where z = z-~z, with ~z denoting the increment in z associated with the path traversing 

the interior of the tube, as shown in Figure 8. Since the projection of the path onto the 

(r, ¢c)-plane has length l = 2ri cos ¢, and tan e = If ~z, the increment is given by 

~z = 2ri cos ¢ . 
tan e (35) 

The boundary condition at 1· = Ti may then be found from (34) , using (30) t.o elimillate 

J~ at z and z. We find 

(36) 
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Figure 8: Path traversi:lg interior of tube. 

In addition, boundary conditions are required at the end planes of the tube. Suppose 

that the ends of the tube are at 2 = 21 and z = Z2 > ZI. Then the incoming intensities at 

the enel planes are 

l//(r, z\ ,e,¢), Ti<T<To , O<e:::;n/2, O:::;¢<2n, 

lv(r, Z2, e, ¢) , 1"i < 1" < 1"0' n/2:::; e < n, 0:::; ¢ < 2n. 

(37) 

(38) 

These intensities should be expressed in terms of reflected and transmitted intensities as 

before. If the tube is infinitely long and t.he problem is independent of z, which was the 

ca::;(' ill the previous section, t.he boundary condition (36) at the inside of the tube reduces 

to (26), by setting lv(Ti' z, e, ¢) = lv(1"i' z, e, ¢) in (36) . 
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3 N on-dimensionalisation 

We now settle on the geometry of an infinite hollow axisymmetric tube , for which we will 

compute the intensities as determined by the equation of transfer (22) , with EJIv/D:: = O. 

and boundary conditions (26) and (25). Our first step is to introduce a new dependellt 

variable . The radiative term in the energy equation (1) is - V . qr, where the radiat.ive 

flux qr is defined by (4). Taking the divergence of (4) and using the equation of t.rall sfe r 

(6) we find 

V . qr = roo "'v 1 ( h,v - Iv) dD dv. io !l=41r 
(.39 ) 

This motivates the introduction of the 'relative intensity' iv = Iv - h,v as a new dependent 

variable. For an infinite axisymmetric tube, from (22), (25) and (26), il' satisfies 

(40) 

(41 ) 

iv(1'o, e, ¢) = R(wr)iv(1'o, e, 7r - ¢) + (1 - R(wr))( n~I~(1'ol etl ¢t) - hAro)), 

o<e<7r,7r/2<¢5,7r. (42) 

Our next step is to non-dimensionalise the equations. Let 6.1' = 1'0 - 1'i be the thickness 

of the tube , and let T be a typical temperature. We let 

T = 1'i + 6.1'1'*, (43) 

T = TT*, ( 44) 

where * denotes a dimensionless variable. As we are dealing with spectral quantities, we 

must define a dimensionless frequency: (5) motivates the choice 

hv hv 1 v* 
kT - kT T* T*' 

(45 ) 

that is 
kT 

v--v* - h . (46) 
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For example, if T = 1000 K, we find that a unit dimensionless frequency corresponds to 

2.1 x 1013 S-1. Suppose that nv = n = constant. Hence from (5) we let 

h,v = h,v I;,v, ( 47) 

where 

(48) 

v* 3 
I* = ---:=---

b,v eV' IT' - 1 . ( 49) 

For example, if T = 1000 K and n = 1.5, the spectral blackbody intensity scale is 

I,,,, = :3.0 x 10- 10 .J m- 2
. We also let 

(50) 

The absorption cOf'fficient is scaled with a typical value, say 

(51 ) 

Th is leads to the dimensionless system below: 

( 
0'* (!:l'*) 8J* .' Zv _.' u uzv _* .* _. b,1/ 

SlIl () cos <P ~ - :-;In <p {; 8 + TO"'1/2 11 - - Sill () cos <P -8 ' 
u/"* 1 + r* <p r* 

(52) 

(53) 

i~ (1, B, ¢» = R( Wr )i~ (1, B, 7f - ¢» + (1 - R( wr )) (J/~* (1, Bt, <Pt) - Ib'1/ (1)), 

a < e < 7f, 7f / 2 < <P ~ 7r, (54) 

and 

6.1" 
f, = -, TO = K6.r, 

1'i 

2IO -I IO* n 1/ = by 1/ • 

(55) 

(56) 

Since t.he problem is linear, it is convenient to consider the relative intensity as composecl 

of t.1t rf'e corn pOllen ts, say 

(57) 
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Here i:R is the relative intensity if the temperature is constant throughout the volume, 

so T* = 1, and there is no external source of radiation. The second component i: o is 

the difference between the relative intensity for non-constant temperature and i: R , again 

in the absence of external sources. The third component i:E is the relative intensity clue 

solely to external radiation sources. From (52), (53), and (54), the three cOmpOIJPllts 

satisfy 

(G8) 

(G9) 

where 

0 (R), 

A= 8 Ii, v 
(D), - sin B cos ¢ a 

r* 
(61) 

0 (E), 

-li,)r*=l (R), 

B= - (li,,) 1) - Ii,,vIT*=d (D), (62) 

IZ*( 1, Bt , ¢t) (E). 

4 Solution by the method of characteristics 

We now formally derive the solution of (52), a first-order hyperbolic partial differential 

equation. Characteristics of (52) are given by (dropping the *'s) 

81' . . B 
-8 = l' = Sill cos ¢, 

.') 

. b 
¢ = - sin B sin ¢ --, , 

1 + Or 

: .. B '" 8h,/~ 
'/,/~ = -TO/"i,vZ/~ - sin cos 'I-' -8-' 

'/' 
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(64) 

(65) 

(66) 



where .c; is a length parameter along the characteristic. From (64), it follows that the 

pola.r angle e is constant along a characteristic, hence 

where el is all initial value of e. Dividing (63) and (65) leads to 

and so 

/ 
8 d1' = - / cos ¢ d¢ 

1 + 01' sin ¢ , 

In(1 + h1') = -In I sin ¢I + In c, c > 0, 
\ J 

hence along a characteristic 

(67) 

(68) 

where 1'1 and ¢I are initial values of rand ¢ (Cauchy data). This relationship also follows 

geometrically from the straight line through the path of radiative energy transport. Along 

this straight line, dimensionally, l' sin ¢, indicating the distance from this line to the centre 

of the tube, ha.c; to be constant 

If </JI = 0, then ¢ == 0 and r = Tl + 8 sin e. If ¢l #- 0, then from (65) and (68), 

. - 6 sin e~ . 2 
¢ = sin ¢, 

(1 + 6r-I) sin ¢l 

anel rearrangi ng 

J d¢ - 15 sin e J 
sin 2 ¢ = (1 + Dr-J)sin¢l d8. 

Thel'pfore ¢ is given as a function of s by 

15 sin e 
cote/> = cOt¢1 + ( J:)' A. 8. 

1 + uri Slll 'PI 

Helice from (68), l' is given as a function of s by 

(1 + D1'J)2 sin2 ¢l cosec2¢ 

(1 +b1'I)2sin2 ¢1 (1 + cot2 ¢) 

(69) 

(1 + 151'1)2 sin2 ¢I + (( 1 + 61'1) cos ¢I + 68 sin e)2. (70) 
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On the other hand, given rand ¢, we may determine s: from (68) and (69), 

(1 + 8r) cos ¢ - (1 + 8r I) cos ¢ I 
S = --'----'---::----'-::----'----

8 sin B . (71) 

Note that the length parameter 8 is the actual arc length along the characteristic. Phys

ically the characteristic determines the ray of radiation. Finally, from (66), iv is given as 

a function of s by 

iv = ivle-T(s) - sin B los cos ¢(s') a~~v (r(s')) e-(T(S)-T(S')) ds', 

where 

T(8) = TO loS fiAr(s'))d8' 

is equivalent to the usual optical depth variable. 

(72) 

(73) 

As mentioned before, in order to solve the first-order differential equations (63)-(66), 

we need the intensities at the boundaries. These are determined by the implicit boundary 

conditions (53) and (54) and the differential equations themselves. The determination of 

these intensities is discussed next. 

We now identify the characteristic projections in the (r, ¢)- plane. Consider character

istics emanating from ro = (rl' ¢I, ivl ), where r[ = 0, ¢I E [0,1l"/2]. These correspond to 

'rays' of radiation starting at the inside of the tube. As the rays of radiation are straight 

lines, it is clear that along such characteristics ¢ decreases as r increases, if ¢I E (0, 7r /2) 

(see Figure 9a). The characteristic projection is given from (68) by 

(1 + 8r) sin ¢ = sin ¢I, (74) 

and reaches r = 1 with sin ¢ = sin ¢I /(1 + 8). If ¢I = 0, then ¢ == o. The 'limiting ray ' 

corresponding to ¢I = 7f /2 is given by 

(1 + br) sin ¢ = 1, (73) 

and reaches r = 1 with ¢ = "!, say, where,,! E (0,7f/2), sin,,! = 1/(1 + 6). Hence t.he 

characteristic projections emanating from r = 0 with ¢I E [0, 7r /2] reach T = 1 wit.h 

¢ E [0,1']. 
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(a) 

(b) 

, , 

(c) 

Figure 9: Rays of radiation through a tube (a) from inside to outside, (b) from outside 

to inside, (c) from outside to outside. 

"\Tow consider characteristics emanating from r 1 = (rl, (PI, i vl ), where rl = 1, <PI E 

('if/2,'ifj. The physical picture is again clear: rays leaving the outside of the tube may 

either (i) reach the inside of the tube if <PI is sufficiently large, or (ii) return directly to 

the outside (see Figure 9b and c). From the discussion above we see that case (i) occurs 

when <PI E ['if - ,),, 7rJ, and case (ii) if <Pl E ('if/2,'if - ')'). 

Tbe characteristic projection starting at TI = 1 is given from (68) by 

(I +8r)sin<p=(1 + 8) sin <PI, (76) 

and both <P and r decrease if <PI E ('if - ')', 'if). If <Pl = 'if, then <P == 'if. The limiting case 
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Figure 10: Characteristic projections, 8 = 0.1. 

cP! = 7r - 'Y is given by (75). If cP! E (7r/2,7r - 'Y), then 1" and cP initially botb decrease, 

before r reaches a minimum value of sincP!- (1 - sincPI)/{; at cP = 7r/2, whereafter T 

increases again while cP continues to decrease. The characteristic projections are shown 

in Figure 10 for the case {; = 0.1. 

We may now calculate iv as an integral along characteristics emanating from r 0 and 

r 1. For a given r E [0, 1], let IT E [0, 7r /2] be such that (r, IT) lies on the characteristic 

projection starting at r = 0, cP = 7r /2, as shown in Figure 11. Hence 

(1 + or) sin IT = 1. (77) 

Then if cP E [0, IT], the characteristic through (r, cP, iv) emanates from r 0, while if (/) E 

('T,7T], the characteristic emanates from r 1· 

Let r E [0,1] and cP E [O,'Yr]. Then from (72), 

(78) 
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sin¢ci = (1 +oT)sin¢, ¢ci E [O,1r/2j, 

1 
s+ = ~e( (1 + or) cos¢ - cos ¢ci), 

(I SIn 

from (11) and (74), and we introcl uce for convenience 

( . ( ) ah,v ( 5 8) = SlIl e cos 1> .'3 ~ r(8)). 
uT 

If c;) E ('yT) 7l-], then 

where 

(1 + 0) sin ¢1 = (1 + or) sin ¢, 1>1 E (7l-j2,1rJ, 

- 1 
8- = ~e( (1 + 01') cos¢ - (1 + 8) cos¢]). 

u SIll 

(79) 

(80) 

(81 ) 

(82) 

(83) 

(84) 

\Ve may now use the characteristic solutions (78) and (82), together with boundary 

condit.ions (53) and (54) , to calculate the intensities explicitly. Firstly, we consider the 

charact.eristics which emanate from or reach roo 

Let l' E [0,1] and ¢ E [O,l'r]' As shown in Figure 11, the characteristic projection 

through ('1", cp) emanates from the point (0, ¢ci), and reaches T = 1 at 1> = ¢i, say, where 

(1 + h)sin¢i = sin¢ci, ¢i E [0,,,]. (85) 

Frolll (78), 
+ . 

iv( 1, e, ¢i) = iv(O, e, ¢ci)e-T(si) - loS) S(s')e-(T(si)-T(S')) ds', (86) 

where st is given by 

+ _ 1 ( ( ') + +) 8 1 - -'-'-e 1 + b COS¢l - cos¢o . 
/J SIll 

(87) 

Aloll~ the characteristic projection, ¢ and T are given in terms of the parameter 8 by 

cot 1>6 + o.sinf s if ¢6 i= 0, 
SIll ¢o 

s sin e otherwise, 
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Figure 11: Characteristic projections between l' = 0 and l' = 1. 

(1 + 81') sin ¢ = sin ¢t, (80) 

from (68) and (69). Now let ¢j = 7r - ¢t E [7r - 1, 7r]. By symmetry, the characterist.il' 

projection emanating from (I, ¢j) reaches T = 0 at ¢ = ¢o = 7r - ¢t. From (82), 

where So is given by 

1 So = -z-:--{) (cos ¢o - (1 + 8) cos 1>1) = st-
u Sill 

(91 ) 

Along the characteristic projection, 

{ 
cot ¢ ¢- 8sin{) if¢j -:;i7r, cot 1 + (1 8)' 1> s + Sill 1 

l' 1 - .c; sin e otherwise, 

(~12 ) 

(1 + 81') sin ¢ = (1 + 8) sin ¢j. (93) 

From boundary conditions (53) and (54), 

(94) 
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Hellce from (86), (90), (94) and (95), the intensities iv(O, B, cp~) and iv(1, B, CPt) may be 

caltulated. We obtain the following expressions. If cP E [O,l'r], then with (78) we have 

___ I_.J + { _ R(w
r

) t i 5(o5')e--r(st)+-r(s'l--r(soJ--r(s+l do5' 
1 - R(wr )C-T(Sj ) ls+ 

- l
s0 

5(o5')p-T(SO)+T(S')-T($+l do5' - l
s
+ 5(s')e-T(S+)+T(S') ds' 

+ (1 - R(wr )) (J~( 1, Bt, CPt) - h,v(1) )e-T(sol--r(s+) }, (96) 

and if (1) E [1f - '"'IT) 1f], then with (82) we have 

1 { _ R(w
r

) rso 5(s')e-T(so)+r(s'l-r(si)-T(S-l ds' 
1 - R(wr )e-2r(so) ls-

- R(w
r

) lsi 5(s')e-T(st)+T(S'l-T(S-) ds' - l
s
- 5(s')e-T(S-)+T(S') ds' 

+ (1 - R(wr ) )(J~(I, Bt, CPt) - h,v( 1) )e-T(s-) }. (97) 

Seconclly, we consider characteristics that emanate from and return to r 1. Let r E [0, 1] 

allel 1) E ('Yr, 1f - '"'Ir). The characteristic projection through (T, cp) emanates from the point 

(1. di]), where CPl is given by (83), and returns to r = 1 at cP = CPt = 1f - CPl. From (82) 

where from (84), 

sl ~B( (1 + 8) cos CPt - (1 + 0) cos cPr) 
(I Sill 

2( 1 + 8) ",+ 
. . B cos 'P1 . o ~ln (99) 

The illt.C'llsity i,,( 1, B, cPt) may !lOW be found from (98) and boundary condition (54), anel 

t.he general intensity i,,(r, B, cp) is then given by (82). We obtain 

i,,(T, B, cp) = 1 _ {_ R(wr ) (SI 5(s')e-T(S;-)+T(s'l-r(s-) ds' 
1 - R(wr )e-T(Sj l ls-

-10'<- 5(s')e-T(S-)+T(S'lds' + (l-R(wr))(I~(l,Bt,cpt) - h ,v(1))e-T(S-l}. (100) 
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5 Intensity due to a constant temperature 

Suppose the temperature is constant throughout the tube, and no radiation is incident 

from outside. Then, using (58)-(62), the intensity ivR satisfies 

. ( OivR. 8 OiVR) . sm B cos ¢> ~ - sm ¢> --8-~ + TOKvZvR = 0, 
ur 1 + r u¢> 

( 101 ) 

ivR(O,B,¢» = ivR (0,B,7I" - ¢», 0 < B < 71",0::::; q)::::; 71"/2, ( 102) 

( 1 (3) 

and the previous expressions for the intensities simplify considerably. Setting 5 and J,~ to 

zero yields the following formulae. If ¢> E [O,)'r], then 

(104 ) 

(105 ) 

and if ¢> E [71" - )'r, 71"], 

(106) 

5.1 Total internal reflection 

We now consider the extent of total internal reflection at the outside of the tube, vvhicb. 

occurs for sufficiently large angles of incidence. SpeCifically, 

R(wr ) = 1 for sinwr > lin, Wr E [0 ,71"/2). 

Hence from (27), R(wr ) = 1 when 

-Jl- \ < singcos¢> < 0, 
n 
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Figure 12: Limits of total internal reflection . 

and ill this case (103) rrduces to 

(109) 

Fir;lIrr 12 shows the range of () and ¢ corresponding to total internal reflection. If 

e = 7r/'2, t.his occurs when ¢ E (7r/2,Wcrit), where sinWerit = I/n. For () < 7r/2, total 

i llternal reflectioll occurs when ¢ E (7r /2 , ¢erit) say, where ¢erit E (Werit,7r]. Taking the 

refractivp index as 1/. = 1.5, we find Werit = 2.41 rad. 

If total internal reflection occurs, (103) reduces to the form (109). In this case, we 

obtain the trivial solution ivR(r, 0, ¢) = 0, as given by (104)-(106). This holds along the 

characteristic projections (1', ¢) emanating from (1, ¢1), where 

t hat is , say, 

TlPIl<:E' (rom (83), 

-J 1 - \ < sin 0 cos 4>1 < 0, 
n 
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In particular, if 0 = 0.1 and n = 1.5 , then Wail > 7r - 'Y :::::; 2.00 rad, and the' rav:c: 

emanating from and returning directly to T = 1 make no contributioll to th e racliativ(J 

heat flux, assuming that the temperature remains constant. This occurs in general if 

7r - 'Y < Wcrit, and since sin 'Y = 1/(1 + 0), sin Wer i! = 1/11. , provided 11 > 1 + h. 

5.2 Results 

The intensities given by formulae (104) -( 106) were calculated using the ' Mathemat.it·a· 

package [23]. The following data were used: 

tube inside radius ri = 10 mm , 

outside radius Fo = 11 mm, 

refractive index n = l.5 , 

temperature T = 1000 K. 

The value of the absorption coefficient r,v was taken from a sequence of experimenta l 

values measured over a range of frequencies [19]' which are shown in Figure 13. The 

calculated dimensional intensities are shown in Figures 14 , 15 and 16. 

Figure 14 shows the intensities at fOllr particular frequencies , at the inside of the tuhe 

r = ri , for the range of directions () = 7r /2, 0 ::; ¢ ::; 7r . The profiles are symmetric 

about ¢ = 7r /2 because the boundary condition at the inside radius is equivalent to 

total internal reflection . Rays that undergo total internal reflection at the outside of 
- -

the tube reach and emanate from the inside with angles in the range ¢ E (¢ ,7r - 0), 

where sin ¢ = (1 + 0) sin Werit = (1 + 8)/n. We find ¢ :::::; 0.82 rad. Tn this range. the 

intensities are equal to the blackbody values given by (5) . For values of ¢ outside this 

range, the intensities decrease, depending on the size of the absorption coefficient /"1'. 

At low frequencies, Kv is large, and the intensities are close to the blackbody values: a t 

higher frequencies , Kv is small, and the intensities are a small fraction of the blackbody 

values. The first derivative with respect to ¢ exhibits a discontinuity, which is caused 

by the reflectance function being a continuous but not a smooth function of the angle of 

incidence Wr . Note that the blackbody intensity depends Oil the frequency, as already has 

been shown in Figure 1. 
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Figure 13: Absorption coefficient values. 
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Figure 14: Spectral intensities, T = Ti, 15 = 0.1, () = 'if /2. 
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Figure 16: Spectral intensities , /J = 6 X 1013 S-I, {; = 0.1, e = 7r/2. 
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Thl' col'l'('spollding intensities a.t the outer radill:) , .,. = '1'0' are shown in Figure 15, The 

i ntensi ties are equal to the blackbody val ues for ¢ E ('if -Werit, Werit), where Wcrit ~ 2,41 rae!' 

The low values of illtensity for ¢ > Wcrit correspond to low values of the reflectance 

function for ¢ < rr - Werit. The intensities for q) > Wcrit are a fractioll R( 'if - ¢) of those 

for 6* = rr - ¢ < 'if - Werit, For instance the intensity for cp = 'if is only R(O) ~ 0.04 of 

tktl ror rjJ = O. As mentioned bdore, the intellsity is closer to that of a blackbody for 

s llIallpr frequencies , corresponding to larger ahsorption coefficiellts. This is ShOWll clearly 

['or azimuthal angles ¢ < rr /2 . 

Figllre 16 shows the intensities at the frequency v = 6 X 1013 S-l at I' = Ti, (ri + 1'0)/2, 

and 1'0' The range of angles where the intensity equals the blackbody value broadens from 

the inside to the outside of the tube. Ouside this range, the illtellsity increases towards 

the blackhody value from 7' = To, ¢ > Wait via l' = 1'i to 'I' = '1'0, ¢ < 'if - Wcrit. Along 

a cha racteristic, the intensity increases exponertially to the blackbody value, as follows 

from (104)- (106) , and hence the intensity midway b etween the inner and outer boulldary 

is closer to that at the outer bounda.ry for angles ¢ E [0 , rr /2) and closer to that at the 

inllPl' houndary for angles ¢ E (rr/2,rrj. 

The divergence of the radiative heat tlux wa::; calculated and is shown in Figure 17. 

ft increases from the insicle of the tube towards the outside. This indicates that the rate 

o~ cooling clue to heat radiation is greater at the outer side thall at the inner side. The 

variation of the divergence of the heat flux with the radius l' is very small at the inner 

side, For all infinite slab with total reflection of radiation at one bounuary, the derivative 

of V . qr in the thickness direction is zero at that boundary. For a tube d(V . qr)/d1' 

at. l' = 1'i cloes not vanish (see Appendix), however it may become very small depending 

on (J = 6.1'/1'i. Note that this behaviour was obtained for an isothermal tube. If a 

t.ern perat. \lie gradient along the racli us of the tube rxists, the behaviou r can be different 

from t.hat. presently foul\d. 

Calculations were also clolle for an alternative tube geometry, with inside radius 1'i = 

1 Jllill and outside radius fa = 2 mrn (hence the thickness 6.1' = 1 mm as before). In this 

cas!:', rays ent.ering the volume from the outside of the tube return directly to the outside 
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Figure 17: Divergence of radiative flux , T = 1000 K, 8 = 0.1. 
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over a greater range of illitial angle than for the previous geometry. Since 8 = 6.r / Ti = 1, 

and the limiting angle I' = sin- 1 (1/( 1 +8)) = 7r /6, the characteristic projections emanating 

from T = To, qy E [7r /2, 57r /6] return directly to T = 7'0 as shown in Figure 18 . 

.,.,."--:::==-' ------- / ----4 

[// (7' , e, (jJ) 

[ ]()-lO 3 

.J III -2] 

1 
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o 
7r/4 

---I 
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\ 1 

\ I 
" 1 T = (ri + To)/2 

"t-...+ 
1 "'----
1 
I 
I , 
\ 
\ 
\ T = To 

\ + '------

Figure 19: Spectral intensities, v = 6 x 1013 S-I, 8 = 1.0, e = 7r /2. 

7r 

Figure 19 shows the intensities at the frequency v = 6 X 1013 S-l, at r = ri, (Ti +ro )/2, 

ancll'o , over the range of directions e = 7r/2, (jJ E [0,7r] (c.f. Figure 16). Since I' < 7r-Wcrit , 

the rays arriving at and leaving T = Ti do not experience total internal retlection at T = To, 

hence the intensity at 7' = Ti remains below the blackbody value. For T > To/n the 

intensity reaches t.he blackbody value over a range of ¢ which broadens with increasing T. 

The intensity has a discontinuity in the first derivative (with respect to ¢) at ¢ = I'r . This 

is due to the variat.ion in length along the characteristic projection(s) through (1', ¢) froIll 

l' = 1. Holding T constant and varying ¢ from 0 to 7r /2, we see that so' + s+ increases, 

ulltil ¢ = 1'" where 8(sa + s+)/o¢ becomes infinit,e. For ¢ > I'r, s- is a decreasing 

function of r/> (and reaches ° at (jJ = 7r /2). Since the intensity is inversely proportional to 

1.11(' exponential of the path length, the curve is not smooth at ¢ = I'r. Figure 20 shows 
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Figure 20: Spectral intensity, T = To, V = 6 X 1013 
S-I, 0 = l.0, e = 7r / 2. 

the situation at T = To in more detail. There is a corresponding discontinuity in the first 

derivative of the intensity at cp = 7r - "iT) however it is not visible in Figure 19. 

6 Conclusions 

A mathematical model is proposed to determine the radiative heat transport in an infin

itely long hollow circular cylindrical tube. Neglecting scattering and assuming optically 

smooth boundaries, an analytical expression for the spectrally dependent radiative in

tensity is derived from the radiative transport equation . If the temperature in the tulw 

is constant, for those directions of radiation where total reflection at the outer bound ary 

occurs, the intensity equals that of a blackbody. These intensities do not contribute to the 

heat transport in the tube. The divergence of the heat tiux, indicating the cooling rat.e 

in the tube, is greatest near the outer boundary and smallest near the inller boundary. 

If the ratio of the outer and inner radius is larger than the refractive index, the intensity 

has a second discontinuity in the first derivative with respect to the azimuthal angle. 
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A Derivative of the divergence of the radiative heat 

flux at the inside of the tube 

Theorem. 

If the temperature in an infinitely long hollow axisymmetrical tube is constant, the ab

sorption coefficient "',> does not depend on the radial position and the tube is such that 

111/ > 1',;/1'; for all u E [0,00), then the derivative of the divergence of the radiative heat 

Hux with respect to the radius is non-zero (negative) at the inner boundary. If ri ~ 00, 

while the thickness l1T remains finite, hence if 8 ~ 0 and l1T remains finite , the heat 

transfer problem approaches that of an infinite slab, with total reflection of radiation at 

one boundary. In that case the derivative of the divergence of the radiative heat flux in 

the thickness direction is zero at the side with total radiation reflection. 

Fmoj. 

The divergence of the radiative heat flux is given hy (39) 

(113) 

Expressed into the dimensionless quantities this becomes 

(114) 

In t.he case of a constant. temperature in the tube and no external radiation sources this 

reduces to , in view of (57) and (110), 

v . qr = -4"Kh,v (::1 ~ (i~R(r*, (), ¢) + i~R(r*, e, 7r - ¢)) dO. du , 10 si nBcos.p{>y l-l /n~ 
(115 ) 

where at a position r* the range of e, ¢ E [0, 'if 12] values are such that 

sine 1-(1+01'sin¢)2=sineJ1-sin2¢i > V1- \. 
l+b ~ 

( 116) 

~()tt' t.hat 'i.~R = 0 in those directions for which sinecos¢i :::; J1 - (lint), hence the 

intensities I,> equal those h,,> of a blackbody. The integrand can be differentiated with 
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respect to r if Wcrit > 7r - "t, hence with (11) and (77) if nv > 1'0/1'i for all v E [0, 'Xl ), 

yielding 

dV . qr 4Kh ,v 1000*1 o(i:R(r*, e, cp) + i:R(r*, e, 7r - cp)) , e Ie I I --- = - --. rev Sin ( ((./J ( v . 
d1' Tib 0 sin(icos(pi>JI-l /n~ 01'* 

( 117) 

In the following the '*'s will be dropped and quantities are dimensionless. 

The dimensionless intensity ivR(r, e, cp) in an infinitely long aXlsymmetricaJ tube at 

constant temperature is given by (104) -(106) . At the inner boundary (1' = 0) the inten sit.v 

is equal to 

,; 0 e _ -(1 - R(wr))h,vIT=l e-r(so) 
bvR( , , cp) - 1 _ R(w

r
)e- 2r (si) ,cp E [O,l'r] or cp E [7r - "iT, 7r] . (11~) 

Then for cp E [0, "tTl we have from (78) with 5(s') = 0 

. ( e,-h) -' (0 e ,-h+) -r(s+) lvR r, ,'P - l'.IR , ,'PO e (119 ) 

aud for cp E [7r - "tTl 7r], using (82) and (90) with 5(s') = 0 

. ( e,-h) -' (0 e _ ,-h+) r(so)-r(s-) 
lvR r, , 'P - ZvR , , 7r 'PO e . . (120 ) 

From (80), (84) with cp replaced by 7r - cp and (91) it is found that 

- - + 
80 =.') +.') ( 121 ) 

and therefore, as "'v does not depend on the radial positiou r, 

( 122) 

Then it follows from (53), (120) aud (122) that 

. ( e _,-h) _. (0 e ,-h+) r(s+) lvR r, ,7r 'P - lvR , ,'Po e , cp E [0, I'T] , ( 1 2.3 ) 

Summing the intensities in (119) and (123) yields 

(124 ) 

cpE [O,l'r] ' 
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Differentiating the expression in (124) and using the chain rule we have for ¢ E [0, 'Yr) C 

[0 , 7r /2] 

: (ivR(r, 0, ¢) + iVR(r, (} , 7r - ¢)) 
u1' 

(125) 

First. the second term on the right hand side of (125) is investigated. If the derivatives 

clT(s+)/ds+ and Ds+ /Dr are finite, this term is zero at the inner radius l' = 0, because 

at T = 0 we have s+ = 0 and therefore T(S+) = O. Now it is shown that the derivatives 

clT (8+)/<l8+ and Ds+ /Dr are finite. 

From (73) we have 

which is finite. Furthermore from (79) and (80) it follows that 

8+ = ~(} (( 1 + 81') cos ¢ - cos ¢t) 
(I sm 

= ~ ((1 + 81') cos ¢ - VI - sin 2 ¢t) (127) 
b sm [J 

= os:nO ((1 +01')cos¢- V1- ((1 +or) Sill¢p) , ¢,¢t E [O,~), 
t,her~fore 

as+ 1 ( (1+oT)Sin
2
¢) -=-.- cos¢+ 

aT Sill e F ((1 + Or') sin ¢)2 
(128) 

At r = ° the expressioll in (128) simplifies to 

Ds+ I _ 1 ( , + .. + +) -a - --=---e cos ¢o + Sill ¢o tan ¢o , 
T r=O SIn 

(129) 

which is also finite, since we consider e > 0 in the region of integration in (117). 

Next, t.he first term 011 the right hand side of (125) is investigated. From (79) it follows 

that 

¢t = arcsin((l + 81') sin ¢) , (130) 

Therefore, we have 
B¢t 8 Sill ¢ 

= --;======== 
aT Vi - ((1 + 01') sin ¢)2 , 

(131 ) 
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which at the inside of the tube r = 0 becomes 

a¢tl 
ar r=O 

J.: • A,+ 
u Slll 'PO ' + J = h tan ¢o . 
1-sin2 ¢t 

Furthermore, from (118) it follows that 

aivR(O, (), ¢t) 
a¢t 

from (27), because at r = 1 

and by (85) 

hence 

with 

Because 

we have 

d¢t 
d¢t -

cos Wr = sin () cos ¢t , 

(1 + b) sin ¢t = sin ¢t , 

Wr = arccos(sin () cos cPt) ) 

+ . sm 'PO 

(
. A,+) 

¢l = arCSlD 1'+'6 

1 cos ¢t 

( . "'+) 2 1 + b 1- ~ 
1+0 

cos¢t 

-1 (. (). +) d¢t - s m sm ¢l ----=i=" VI - (sin () cos ¢t)2 d¢o 

si n () sin ¢t cos ¢t 

sin () sin ¢t cos cPt 
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( 132) 

(13.3 ) 

( 134) 

(135 ) 

(13G) 

( 137) 

(138 ) 

(130 ) 



Finally from (91), (135) and (138) we have 

and from (73) we have 

( So Sill 'Po cos 'Po I - . ",+ ( "'+) 
d¢t = 6 sin f) 1 - )(1 + 8):2 - sin2 ¢t 

dT(SO) _ 
_ = TOKKII . 

dso 

For f),¢t E (O,1f/2) we have from (139) and (140) 

(140) 

(141 ) 

(142) 

;tllt! a,s c1T(so)/dso in (141) and clR(wr )/dwr are positive for Wr < 1f - Wcrit we have from 

(133 ) 
8iIlR (O, B, ¢t) 

8¢t > 0 . (143) 

Furthermore we have for ¢t E (O,1f/2) from (132) 

a¢t I > 0 ' 
aT r::O 

(144) 

Hence the first term at the right-hand side of (125) is positive at T = 0, Therefore, from 

(117) , it follows that 

d(V ' qr) I < 0 . 
dT r=O 

(145) 

rr ./'; ---+ XI, while 6r remains fillite, the heat transfer problem in the hollow tube 

approaches that ill an infinite slab with total radiation reflection at one boundary, In 

that ca};e it follows from (55) that b ---+ 0, while 61' remains finite. Then from (132) it is 

fonnel that 

a¢t I ---+ 0 
aT r=O 

(146) 

and thE' right-hand side of (125) tends to zero, Therefore, using (117), the derivative of 

the rael iati ve heat flux 

(147) 
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Notation 

Ser-tiOll 2.1 

(. speed of elecromaglletic radiatioll 

( 'p specific heat capacity 

( :0 speed of electromagnetic radiation ill a vacuum 

II Planck's constant 

To total blackbody intensity 

To." spect.ral blackbody intensity 

T" spectral intellsity 

k Bol t. z lnan n 's const.ant 

kc thermal eond ueti vi ty 

l!." refracti ve index 

time 

T temperature 

q heat. flux 

qr radiative heat flux 

qc con<l \lctiOll heat ft tlX 

s eli rection (11 Ili t vector) 

u velocity 

x posit.ioll 

I} \vavellumber 

h'" absurption coefficient 

A wavelength 

v frequency 

(! density 

(J Stefan-Boltzmann constant 

(J.", scattering coefficic'nt 

<P scattering phase fUllction 
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n solid angle 

V gradient operator 

subscripts 

t differentiation with respect to t 

Sections 2.1.1, 2.1.2, 2.1.3 

e:c unit vector in x-direction 

I!} reflected component of intensity at boundary 

I~ transmitted component of intensity at boundary 

I~ incident intensity from outside the volume 

n unit outward normal 

ro position on boundary 

R(·) reflectance function 

Sr direction of incident radiation at boundary from inside the medium 

St direction of incident radiation at boundary from outside the medium 

x position (in slab) 

Xi,Xo boundaries of slab 

e angle between sand n, cos e = S . n 

X angle between refracted ray and normal 

subscripts 

r reflected 

t transmitted 

Sections 2.1.4, 2.1.5 

er unit vector in r-direction 

e z unit vector in z- direction 

e</>c unit vector in ¢Ie-direction 

length of path traversing interior of tube 

r radial position coordinate 
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«xial position coordinate 

increment in z along path traversing interior of tube 

azimuthal angle of direction at boundary 

polar angle of direction 

azimuthal angle of direction 

azimu thaI angle position coordinate 

polar angle of direction at boundary 

S II hscripts 

ill urr boundary 

o outer boundary 

Section 3 

1, // relative spectral intensity 

1,// [) relative intensity due to temperature variations 

1,//£ relative intensity clue to external sources 

I./, R relative intensity at constant temperature 

h ratio of tube thickness to inside radius 

61' thickness of tube 

To optical thickness scale 

superscripts 

- scale 

* dimensionless variable 

Secti()ll 4 

.'; length parameter along cbaracteristic 

S source term 

T optical depth 

I critical azimuthal angle at l' = 1 - characteristic projections 

I T critical azimuthal angle for 0 < l' < 1 
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r initial values (r"(PI, i,) 

subscripts 

J initial value 

o inside racli us 

outside radius 

superscripts 

+ ou tgoing ray 

incoming ray 

Section 5 

subscripts 

cTit critical value associated with total internal reflection 
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