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Introduetion 

Since Howard [5] publisbed his book "Dynamic programming and Markov pro

cesses", quite a number of extensions have been worked out for both the 

construction of numerical methods towards optimal solutions and the proof 

of the existence of an optimal solution, We shall deal with the latter 

problem in the average coats case. 

A Markovian decision process consists of the following elements: 

a) State spaoe. At each timet= 0,1,2, ••• the syste~ is in one of the 

states u ~ s. The state at time t is denoted by Xt. 

b) Aations. For each u ~ S there is a set of possible actions A(u), In state 

u one can choose an arbitrary action d ~ A(u), The state u and the ac

tion d determine the probability of being in a measurable set E c S 

next time, Pd(u,E) 1 (we assume the existence of a a-field E in S), A 

poLiay prescribes for each time t which action has to be chosen, If the 

action depends only on the state, the policy is called stationary, 

c) Costs, The expected coats of action dinstate u are denoted by c(u,d), 

d} Costs-criterion. Let c1,c2 ,c3, ••• be the expeeted costs in the first, 

seeond, ••• period. we shall concentrata on the average oosts 

For the average coats case Ross [12] derived a general result: 

if there exists a bounded measurable function f on S and a constant g 

such that for all u ~ S 

g + f(u) • Min {c(u,d) + J f(s)P d(u1 ds)} , 
d~A(u) 

then a stationary policy exists which is average optimal. 

We shall consider the problem of the existence of a stationary policy 

which is optimal in the class of all stationary policies, if this poliey 

is over-alloptimalor not. The processis a discrete time Matkov·proeess 

on S when a stationary policy is used, Our problem may be represented by a 

set of pairs {(Pu,ra)}, u~ A, where A is thesetof all stationary poli

cies, Pu the Markov proeess under policy a, and the function ru gives the 



2 

one-period costs 

a 0 e A such that 

ra(u) = c(u,a(u)). We have to prove the existence of an 

Sa (u) !!i Sa (u) for all u e S and a e A, (Sa (u) are the 
0 

average costs under policy a, starting in u). 

The most obvious way to t~èkle this problem is to prove the compactness of 

A and the continuity of ga in a. To this end we must. introduce a topology 

in A, (we shall use a metric topology). Then it is not essential that A be 

the set of stationary policies. We may consider A to repreaent a set of 

indices only. We shall show some difficulties arising in proving the con

tinuity of ga in a, 

E:JXJJ1f>Ze. The statespace consistsof three elements, S = {1,2,3}, Once in 

state· 2 or 3 one must stay· there, the costs being 0 and 10 each period, In 

state I one of the actions d e [0, j] can be chosen. The probability of a 

transition to the states 1,2,3 is I- d- d2 ,d,d2• The costs of each of these 

actions d in state I are I, The average costs, startingin state 2 or 3, 

are 0 and 10, indepe~dently of the policy used in state l, If one uses po

licy d = O, the average coats &tarting in state 10 g
0

(1), are equsl to I 

since the systemwill never leave state I, If one uses plicy d > 0, the. 

system will certainly leave state l and will never return. In this case 

the average costs starting in state 1, gd(l), are .equal to 

Hence inf { gd (I)} = 0 but this infimum is not attained since ia (I) ,. ), 
ddO,IJ 

There is no optimal policy, The average coats as function of d have a dis

continuity in d • 0. This discontinuity corresponds to a discontinuity in 

the number of ergodie sets. For d > 0 there are two ergodie sets, the sets 

{2} and {3}, but for d = 0 the set {I} is a lso an' ergodie sèt, The eigen

values of the transition matrix corresponding to the policy d are I and 

l - d- d2, For d = 0 the eigenvalues coincide~ 

These continuity problems can be investigated wit;.h the aid of the pertur

bation theory of linear operators. Each Markov process .in a finite state 

space corresponds to a transition matrix. In a ·more general state spaèe S 

each Markov process corresponds to a linear ope'tator in the space of all 

complex valued bounded measurllble functions on S. As in the finite cas'e 

the point I is one of the eigenvalues of the operator. Now let· { (P a•ra)}, 

a e A he a set of Markov processas with costs and assume that A is á metric 
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space. In the example we had A = [0,!]. Although the transition ~atrix is 

continuous in a and the one-period costs even independent of a, the aver

age costs starting in state 1 have a discontinuity corresponding to a dis

continuity in the di~nsion of the eigenspace of eigenvalue 1. Apart fr~ 

this discontinuity the average costs are continuous. Using the perturba

tion theory of linear operators it can be shown that this restricted con

tinuity of ga(u) holds if 

- the cost functions b are bounded and continuous in a, 

- the Markov processes Pa are quasi-aompaat and continuous in a, 

Quasi-compactness of a Markov process is defined in te~ of the corres

ponding linear operator. Essential is that this operator has only a finite 

number of eigenvalues on the unit circle, each of these a root of unity, 

and each with a finite di~nsional eigenspace. 

In chapter 2 we shall introduce quasi-compact Markov processes and we shall 

investigate the eigenvalues on the unit circle of the corresponding linear 

operators. As a preli~nary we give in chapter 1 so~ results fro~ speetral 

and perturbation theory of linear operators in Banach spaces. In section 

of chapter 4 we use these results to prove the restricted continuity of 

ga(u) in a for all u in state space S. 

If the eigenspace of eigenvalue 1 of the operator corresponding to Pa is 

one-di~nsional, then ga(u) is independent of u, If this is true for all 

a e A. the compactness of A implies the existence of an opti~l a0 e A. 
The existence of an opti~l policy for ~re general cases is also consi

dered in section 4. I. 

A ~re probabilistic concept, which is equi~lent to quasi-compactness, is 

the Doeblin-condition. For a countable state space the Doeblin-condition 

for a Markov process P is equivalent to the existence of a finite set A, 

an integer n, and an € > 0, such that the probability of being in the set 

A after n transitions P(n)(u,A) ~ € for each starting state u. To show how 

severe this condition and hence quasi-compactness is we consider the fol

lowing inventory problem: 

At the beginning of each period the inventory level is assumed to be. 

••••• -2,-1,0 0 1,2,,-.. , One ~y order a quantity of at ~st R units, 

the delivery is instantaneous. During the period there is a demand 

for 0,1.2, ••• units with a probability of p0 .p 1.p2, •••• The transi

tion probability under order policy a is P (i,j) = p.+ (.) ., (a(i) a 1 a 1 -J 
is the quantity to order in state i), 
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If R is large enougb there are policies a auch that for each state i one 

ean find a fini te set A1 an integer n, and an e > 0 such that P (n) (i ,A) l!: e, 
a 

However, if j is more than nR units below the lowest element of A, then 

P~n)(j,A) • O, Hence there is no policy sueh that the corresponding Markov 

process satisfies the Doeblin-condition, Such decision processes can be 

studied by introducing embedded Markov processes, We extend the proof of 

the continuity of g
0 

to the case in wbich there is a subset A of the state 

lipace such that the embedded Markov process of Pa on A exists and is quasi

compact for all a ~ A. 
Embedded Markov processes are introduced in section 2 of chapter 2, We de

rive some properties of Markov processes with a quasi-compact embeddéd 

Markov process, Chapter 3 deals with the existence of the average costs 

for these Markov processes with unbounded cost functions. The continuity 

of the average coats and the existence of an optimal a for problems 

{(P
0
,ra)}, oE A is worked outinsection 4,2, 

In the work of de Leve [8] quasi-compact embedded Markov processes play 

also an important role. De Leve constructs a metbod for finding optimal so

lutions, while we investigate the existence of an optimal solution. 

As observed before the existence of a constant g and a bounded function 

f(•} onS satisfying the equation 

(I) g + f(u) = Min {c(u,d) +I f(s)Pd(u,ds)} 
de:A(u) 

guarantees the existence of a stationary policy a which is average optimal. 

For this policy a we have (Ross [12]), 

g + f(u) • ra(u) + J f(s)Pa(u,ds), (ra(u) • c(u,a(u))) , 

where the constant gis equal to the average costs g
0

(u) for all u e: S, 

Now suppose we have the problem {(Pa,ra)}, a e: A with &a constantonS for 

each a E A, and assume that the equation 

(2) y(u)· ~ ra(u) - ga(u) + J y(s)Pa(u,ds) 

in y(u) has a bounded solution f
0

(u). If ga,fa(·) satisfy equation (1), 

the policy· a is optimal. This means that one can use the solutions of (2) 

to state a condition for optimslity. The existence of solutions of the 

equations (2) ia conaidered in chapter 3. In section 5,3 a condition for 
optimality for inventory problems is developed. The difficulty of the un-
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boundedness of the cost functions can be overcome by introducing spaces Bw 

of functions f such that ! is bounded. In section 5.4 we show how the re-w 
sults of section 5.2, (existence of an optimalordering policy), and sec-

tien 5. 3 can be used to prove that the optimal ordering policy of a speci

fic inventory problem is of a given structure. 
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CHAPTER l. QUASI-COMPACT LINEAR OPERATORS 

In this first chapter we. shall introduce quasi-compact linear operators 

and apply some results from speetral theory and perturbation theory to 

this class of operators. Pirst we shall give some preliminaries. In sec

tion 1.2 we state some speetral and speetral decomposition properties. 

Quasi-compact operators are defined insection 1.3. Quasi-compactness is 

a slight generalization of compactness. The last section of this chapter 

is dedicated to perturbation theory of quasi-compact operators. 

Let X and Y be complex Banach spaces. The space L(X,Y) is the space of 

all bounded linear operators from X to Y. To each T E L(X,Y) we can ad-

join a real number IITII :• sup IITxll. This function 11•11 is a norm on 
X!X,IIxll•l 

L(X,Y) and with this norm L(X,Y) is a Banach space. 

Let C be the space of all complex numbers with the absolute value as 

norm. We shall denote L(X,E) by x*; x* is called the aäJoint spaae of X. 

The elements of x* are usually called bounded Zinear funationa'Ls on x. 

With each operator T ! L(X,Y) there corresponds an adifoint operator 
T* e L (Y*,x*) defined by T* y * = y * o T for all y * e y*. The operators T 

and T* have the same norm. 

Let R(T) denote the range of the operator T and N(T) thè nutZ spaae. In 

the rest of this chapter we shall ass~ that X = Y. In this case the 

operators T2,T3, ••• exist and it is easy to see that 

n n +I 
If there is a smallest integer n0 ~ I such that N(T 0) = N(T 0 ), then 

n0 is called the ind~ of T; otherwise the index is said to be infinite. 
11\) m0+1 

If there is a smallest integer ma ~ I such that R(T ) = R(T ), then 

BQ is called the ao-ind~ of T; otherwise we define the co-index to be 

infinite. 



LEMMA l.I. Let both index and co-index of T be finite, then they are 

equal and X • N(TP) • R(TP), where p.is the index of T. 
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In this statement the symbol • stands for direct sum. For a proof of this 

lemma, we refer to Zaanen [18], Ch. 11, § 3, Th. 8. 

In the following chapters we shall mainly deal with two special Banach 

spaces. These will be given bere as examples. 

i) The space B(V,E). 

Let V be a set and E a a-field of subsets of V. 

B(V,E), or shortly B, is the space of all complex valued bounded 

measurable functions on V. Let llfll :• sup I f(u) I for all f E: B. 
UEV 

Then 11•11 is a norm on B and with tb is norm, B is a Banach space. 

ii) The space M(V,t). · 

A complex valued a-additive function on E is called a meaeure on E. 

We shall speak of a eigned meaeure if the function on E is real 

valued and of a poeitive measure if the function is real valued and 

nonnegative. 

A positive messure p with p(V) 1 is called a probabiZity. 
Let M(V,E), or shortly M, be the space of all measures on t. It is 

easy to see that M is a linear space over the complex numbers. 

Let p ~ M. By the Rabn-Jordan decomposition theorem there exist 

positive measures pi' v2,p3, v4 such that p .. v1 -p2 +i(v1 -J.!4). 

For all E E: E the totaZ variation of p on E, v (E), is defined by 
p 

n 
vp(E) :• sup .L IJ.!(Ei)l , 

1•1 

where the supremum is taken over all finite sequences {Ei}~ of dis

joint sets in E with Ei c E, I ~ i ~ n. 

The following relation holds 

(I) lP (E) I ~ V p (E) ~ "'J (E) + ll2 (E) +V 3 (E) +].! 4 (E) ~ 

~ ll 1(V) +p2(V) +p3{V) +p 4(V) 

It is easy to verify that v is a positive messure on r. 
ll 

The definition of v implies 
ll 
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V = lex I 'V , 
CX]J 1J JJeM,cxeG:. 

Define IIJJII := vlJ(V), 1J eM. Then 11•11 is a norm on M. Now, let {1Jn}7 

be a Cauchy sequence in M with respect to 11•11. Then, because of the 

relation (I), we can àefine the function 1J on r by 

Using (I) it turns out that 1J E Mand IIJJn-lJII..,. 0, 

Hence M with norm 11•11 is a Banach space. 

To concluàe this section we shall indicate the relationship between the 

spaces B and M. This relationship will be very important in the sequel. 

We need some properties of integrals of complex valued functions with 

respect to complex valued measures, 

Let 

where (A1, ••• ,An) is a measurable partition of V, and a~ e t, I st s n. 

Functions of this type are said to be simpte functions, Obviously the 

simple functions form a dense linear subspace of B. For every 1J e M we 

define 

).lf := J f d]J 

It is easy to verify that for each 1J e M, JJ(•) is a linear functional on 

the space of all simple functions on V such that 

This functional J,l( •) "bas a unique extension to a linear functional on B, 

also denoted by ).1(•), satisfying l).lfl s lllJII•IIfll. 

LEMMA 1.2. sup l).lfl • llfll for all f e B , 
).leM,II).III•l 

sup I!Jfl • IIJJII for all ll E M • 
feB,IIfll•l 
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PROOF. Use IIJ.fl s llllll'llfll and construct for a fixed 1.1 e M a suitable 

sequence of simple functions f
1
,f

2
, ••• , respectively, fora fixed f e 8 a 

suitable sequence of probabilities p1,p2,... • 0 

LEMMA 1.3. Mis isometrically isomorphic with a closed subspace of s*, 

the adjoint space of B, and B is isometrically isomorphic with a closed 

subspace of M*. 

PROOF. Let the linear mapping ~ from M to s* for all ll e M be defined by 

(~p)(f) := pf, f e B• It is easy.to verify that ~is an isomorphism be

tween Mand ~(M). By lemma 1.2, llq>l.lll = 111lll and therefore q>(M) is closed. 

This completes the proof of the first statement. The second statement can 

be shown similarly, D 

1. 2. Speetral theo:roy 

In the sequel the speetral decomposition of an operator plays an impor

tant role. For convenience of the reader some properties of the spectrum 

and speetral decomposition are collected in this section. The presenta

tion is mainly based on Dunford-Schwartz [3], VII.3. 

Let T be a fixed operator in L(X,X) with IITII > 0, The resolvent: set p (T) 

of .T is the set of complex numbers À such that the operator H- T is 1-1 

and onto (I is the identity). If À e p(T), then R(i.;T) := (H-T)-I 

exists and is bounded, 

The complement of p(T) in ~is called the spectrum of T and will be de

noted by cr(T). The speetral radius r(T) of T is defined by 

r(T) := sup li.l • 
À<!O(T) 

For the proofs of the following properties we refer to [3], VII.3. 

i) p(T) is open, a(T) is closed and nonempty. 

ii) r(T) = lim ~ s IITII • 
no+oo 

iii) R(i.;T) is an operator valued function which is analytic on p(T), 

iv) 
.. n 

R(i.;T) • l _T_ 
n-o Àn+l 

v) a(T) = a(T*), R(A;T*) = R(i.;T)* for A e p(T) = p(T*), 
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The definition of o(T) implies 

o(T) = {À~ C I N(H-T) !f. {o} v R(H-T) ;. X} • 

A point À e o(T) such that N(H- T) ;. {o} is called an eigenvattuil of T 

and N(U- T) is the corresponding eigenspace. The index of an eigenvalue 

>. will be the index of AI- T. 

LEMMA 1.4. Let À with IÄI = IITII be an eigenvalue of T, then the index of 

À is I. 

PROOF, It is sufficient to show: 

Let x ~ N( (U- T) 2) and y := (U- T)x. That means (H- T)y = 0, Using 

x = f + f x, we get 

T T T 2 T2 
x = X. + - x = X. + - (1.. + - x) = !:Z + - x = À h À À À À À À2 

for all n ~ JN. 
n 

Since liJ_ 11 :;; it follows that y ,. 0 and x e: N(H- T), 
Àn 

As a preliminary for the speetral decomposition theorem we reeall the 

concept of a function of an operator as given in [3], VII.3.9. 

0 

Let f be a complex valued tunetion on C which is analytic on some ndgh

bourhood of o(T). Let U be an open set whose boundary B consists of a 

finite number of rectifiable Jordan curves, oriented in the positive 

sense. Suppose that U ~ o(T) and that U u B is contained in the domain of 

analytieity of f, The operator f(T) is defined by 

(i) f(T) := z!i f f(À)R(À;T)dÀ 

B 

The operator.f(T) depends only on the values of f on o(T), 

A spectra~ set is a subset of o(T) which is bothopen and elosed in o(T). 

If ~ is a speetral set, then ~ := cr(T) \a is also a speetral set. For 

each speetral set a it is possible to choose a tunetion f satisfying the 

conditions of the above definition with f(À) = I on a and f(Ä) = 0 on a, 
For such a function f the operator f(T} is denoted by Ea(T), or ghortly 

by E~. The range of Ea is denoted by Xa' 



The following properties are immediate consequences of [3], VII.3.10. 

i) E~ = Ea (E~ is a projection), 

ii) EaT = TEa' hence Tx e X~ if x e X~, Xa is invariant under T, 

The restrietion of T to Xa is denoted by Ta. 

iii) Ea + Ea = r and Ea·Ea = o. This implies x= xa • xä. 
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If À is an isolated point of o(T), then the set {À} is of course a spec

tral set. In this case we shall write EÄ and E~, ••• , insteadof E{Ä} and 

E{):}' •.. • 
A poZe of T of order n is an isolated point of o{T) where the function 

R(•;T) has a pole of order n. 

LEMMA 1.5 (Spectra! decomposition theorem). Let a 1, ••• ,an be disjoint 
n 

speetral sets such that o(T) U ~i' Then the following properties hold: 
i=l 

i) (X,T) • (X ,T.) & (X ,T ) & .•• e (X ,T ) 
al al a2 a2 an an 

ii) o (T ) = a. ; 
ai l 

iii) À is a pole of T of order n if and only if À e a 1 and À is a pole 
ai 

of T of order n. 

PROOF. Statement i) is an immediate consequence of [3], VII.3.!0. 

The statements ii) and iii) are given explicitly in [3], VII.3,20. D 

The next lemma shows the relationship between poles of T and eigenvalues 

of T. 

LEMMA 1.6. An isolated point À of o(T) is a pole of order n if and only 
n n-1 if (U-T) EÀ = 0 and (H- T) EÀ /> 0. 

Furthermore, if À is a pole of T of order n, then À is an eigenvalue of T 

with index and co-index equal ton, and XÀ ~ N((H-T) 0
), Xr=R((.U-T)n), 

PROOF. The first statement is part cf [3], VII.3,18 (a pole of order 0 is 

impossible by [3], VII.3.3). 

Now let À be a pole of order n. In [3], VII.3. !8 it is also sh.own that À 

is an eigenvalue with index n. 

Because of {ÄI-T)n EÀ = 0 we have XÀ c N((ÀI-T) 0
). Hence for all x~: X, 
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Therefore 

Furthermore 

(2) 

By lemma 1.5, cr(TÀ) = À and hence À is a point in the resolvent set 

p(T>;:} of Tr· Hence R((U-T;:)n) =R(U-T;:) =X;: for all n" :N. Together 

with.(l) this completes the proof of X};.'= R((U-T)n). 

Using (2) we get 

Therefore, N((H- T)n) c XÀ • which completes the proof. 0 

Now we restriet ourselves to the case IITII = r(T). We shall use the decom

position theorem to show the existence of 

I n-1 ( T)R. 
lim ü L r:- , 
n-+«> R.=O l. 

where Ài is a pole of T with IAil • r(T). 

LEMMA 1.7. Let IITII = r(T). Asssume that the spectrum of T consistsof a 

finite number of poles A1, ••• ,Àq• on the circle with radius r(T) and of a 

set « within this circle. Then 

l n-l (T)'lim-L- =E 
~ n L=O Ài Ài 

PROOF. By lemma 1.5 

I" r EA. + E 
j=l J a 

Hence 

i = l, ... ,q • 
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q I n-1 ( T )R. 1 n-1 ( T )R. • L- L - E +- L - E , 
j=l n R.•O Ài Àj n R.=O Ài a 

By lemma 1.6, Àj is an eigenvalue and by lemma 1.4 the index is I. 

Therefore TEÀ • À.EÀ , and 
j J j 

(I) 

It is easy to see that 

(2) 
I n-1 (L)R. r 0 

lim-}: ...J.. =1 
n~ n R.=O Ài I 

if j ,. i • 

if j .. i 

I n-1 (T)R. 
lim - }: - E = 0 
n~ n R.=O Ài a 

Together with (I) and (2) this implies 

E = lim l ntl (~)t . 
Ài n~ n R.~O Ài 

In the last lemma of this section a relationship between poles of T and 

poles of T* is stated. 

LEMMA 1.8. Let À be a pole of Tof order 1. Then À is a pole of.T* of 

order 1. If the dimension of one of the spaces N(H- T) and N(H- T*) is 

finite, then both are finite and equal to each other. 

PROOF. The point À is an isolated point of o(T*) since o(T) = o(T*). 

We have 

(H- T)EÀ (T) = EÀ (T) (H- T) = 0 , 

Hence 

By [3], VII.3.10, EÀ(T)* = EÀ(T*), therefore, by lemma 1.6, À is a pole 

of T* of order I. 

0 
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It is easy to verify that 

(I) N(H-T*} • {x* ex* I x*x • o, x e R(H-T)} • 

By lemma l.ó, R(U-T) = 'XÀ. Using this and equation (I) we get 

x € x • 

Hence N(U- T*) is isomorphic with the space of all bounded linear func-

tionals on N(ÀI- T) • XÀ, which completes the proof. 

1. 3. Speat!'al propePties of quasi-aompaat Zineav operators 

Let X be a complex Banach space. The operator T e L(X,X) is called oom

pact if for each bounded sequence {x.}~1 of elementsof X, the sequence 
.. l. 

{Txi}l has a convergent subsequence. 

0 

Obviously, every operator with finite dimensional range is compact, and 

if T is compact and S bounded, then TS and ST are also compact. Moreover, 

the operator T e L(X,X) is compact if and on1y if the adjoint operator 

T* e L(x*,x*> is compact (see (3], VI.5.2). 

The spectrum of a compact operator has a very special structure. 

LEMMA 1.9. Let T e L(X,X) he compact. Then its spectrum is at most de

numerable and has no points of accumulation, except possibly the point 

À • 0. Every nonzero À e ~(T) is a pole of T and XÀ is finite dimensional, 

For the proof we refer to [3], VII.4.5. 

A concept related to compactness is quasi-compactness. An operator 

Te L(X,X),is said to be quasi-aompaat if there exists a compact operator 

K e L(X,X) and a positive integer n such that IITn- Kil :< r(T)n. 

Notice that quasi-compactness of T implies r(T} > 0. 

REMARK. In other work (e.g. Neveu [9], Yosida [16]}, quasi-compactnessis 

defined in a.somewhat different way: An operator T is said to be quasi

compact if there exists a sequence {Kn}~ of compact operators such that 

lim IITn-Knll .. 0, or equivalently, if there exists a compact operator K 
n...., 
such that 11rn- Kil < 1 for some n e Jl. Our definition agrees with these 

ones in the case r(T} • 1 but not in general. However, in most applica

tions we have IITII • r(T} • 1. 
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The advantage of our definition is that quasi-compactness of T is not 

disturbed by multiplication of T by a constant. This makes it possible to 

formulate a rather elegant relationship between quasi-compactness of T 

and the structure of its spectrum. 

LEMMA 1.10. An operator T ~ L(X,X) is quasi-compact if and only if 

o(T) n {A I lAl • r(T)} consists of a finite number of poles À I'' .. ,\ 

such that the spaces XÀ·' i= l, ••• ,q, are finite dimensional. 
l. 

PROOF. Let T be quasi-compact and let the compact operator K and the in-
n n • T · teger n be such that IIT -Kil < r(T) • Put T 1 .= 'i:(f) , then 

IITn - _K_II < I • 
I r(T)n 

By [3], VIII.8.2, each point À € o(T 1) with 

in particular each point À~ cr(T 1) with IÀI = l, is isolated in o(T1) and 

XÀ is finite dimensional. Hence each point À~ cr(T) with IÀI = r(T) is 

isolated in o(T) and XÀ is finite dimensional. This implies that o(T) 

contains only a finite number of such points, A1, ••• ,Àq' The space XÀ.' 
1. 

i • l, ••• ,q, is finite dimensional and therefore TÀ· is compact. By lemma 
l. 

1.9, À. is a pole of T, and hence a pole of 
l. ~i 

T (see lemma 1.5), which 

means that o(T) has a structure as described in the lemma. 

Now let o(T) have this structure and put a :• o(T) \{A 1, ••• ,Aq}. By lemma 

1.5 

I • J. EA. + E 
l. 

a 

and hence 

Tt ., Tt 
q 

+ TtE I E;.. 
i=l l. 

a 

Since EÀ· has finite dimensional range it is compact and therefore the 
l. t ~ 

operator K1 := T .L EA. 
1.•1 l. 

nTt- KR.II • IITtEall the proof is completed if we can show the existence of 

is also compact for all t € :N. Since 
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an n € :N such that IITnEall < r(T)n. By lemma 1.5, a(Ta) = a, hence 

r(Ta) < r(T). 

Let B € :R be such that r(Ta) < B < r(T). Using 

r{T ) = lim ~ and (rfT))n .,. 0 
a n.._ a 

it is easy to see that for sufficiently large n 

He nee 

As a consequence of this result we obtain the following lemma. 

0 

LEMMA 1.11. Let T € L{X,X) be quasi-compact and suppose IITII = r{T). Let Y 

be a closed invariant subspace of X and Ty the restrietion of X to Y. 

If r(Ty) = r{T) then Ty is also quasi-compact. 

PROOF. By lemma 1.10, T has a finite number of poles, A1, ••• ,Aq' on the 

circle with radius r(T). By lemma 1.4 the order of these poles is I. 

Since by lemma 1.7 

I n-1 (,T.)R, • E = lim- L ,., 
Ài n~ n 1=0 ~ 

the subspace Y is also invariant under E , i = 
À i 

under Ea• where a := o(T) \{Al' .. .,Aq}. 

J Put, as in the proof of lemma 1.10, K
1 

:= T1 

l•l 
and for sufficiently large 1 we have 

l, ••• ,q, and therefore 

E>..' then Y is invariant 
~ 

Since, obviously, K
1
y• the restrietion of K

1 
to Y, is compact, this im-

plies the quasi-compactness of Ty• 0 

In the last lemma of this section we consider the case of a quasi-compact 

operator T with IITII • r(T) • I and with an eigenvalue in the point 1. 



LEMMA 1.12. Let T" L(X,X) be quasi-compact and IITII = r(T) • I. Suppose 

there exists an integer d such that At= I for all poles A1, ••• ,Äq of T 

on the unit circle, and suppose that A1 = I. Then there exists a real 

number p, 0 < p < I, and a positive integer N such that 

{I) 
m+kd+d-1 

11 L Tyll < pk 
R.-m+kd 

k > N • 

Furthermore, the 
kd-l+m R. 

lim L Tl exists for m = 0,1,2, ••• , and 
k- R.=O 

(2) 
d-1 kd-l+m • -1 ! t t h d t.. lim t.. Tr = (I- TT) 
m=O k- i=O 

PROOF. In the proof we use the restrictions of the operators EÄ·' 
l. 

I i 

i= 2, ••• ,q, and E~ to x1. These restrictions arealso denoted by EÀ. and 
l Ea. By lemma 1.5, 

He nee 

Si nee À~ 
l 

Let 13 be 

R. > no· 

= 

T!;_l • Ty r EÀ. + T!:, E 
i=2 1 I a 

m+kd+d-1 
T!: "' 

q d-l 
J: E (À~+kd /: 

R.=m+kd I i=2 l R.=O 

d-1 
I, i= 2, ••• ,q, we have /: 

R.=O 

m+kd+d-1 
J: 

.t=m+kd 

R. m+kd/d-1 TR. E 
Tl • t.. l a 

R.-m+kd 

R. 
m+kd+d-1 

R. 
Ài)EL + J: TrEa • 

l R.-m+kd 

À~= 0 for i = 2, •.• ,q, and 
]. 

such that r(Ta) < a < 1 and choose n0 such that IIT!II < at for 

Then for k 
no 

>d and for all m = 0,1,2, ••• we have 

m+kd+d-1 
T!: E 11 • 

m+kd+d-1 
TR.E 11 < d•IIE 11•13kd 11 /: 11 r 

R.-m+kd I a R.-m+kd a a a 

It is possible to choose a positive p 

such that d•IIE~ iiol3kd < pk for k > N. 

This completes the proof of (1). 

no 
with 13 < p < I and an integer N > d 
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The existence of 

from (I). 

Pinally, 

kd-l+m t 
lim L Ti 
k- R.•O 

for m • 0,1,2, ••• follows immediately 

kd-l+m • kd 
( T ) lim \' T! .. I - lim T- +m , 
I- Ï Ie- .t:O I k..." I 

and 

Hence 

{ 
d-1 kd-I+m } I d-1 ~kd+m 

(I-T-
1
) i L lim L T:_ =I-- L {lim T;;. ) " 

m=O k~ .t•O I d m..O k.- I 

~I q S ~I 
I-.!. L .L À~ E =I-.!. l. E L Àl!l = I • 

d m..O 1•2 1 Ài d i=2 Ài m=O 1 

d-1 
since the sum L 

m•O 
À~= 0 for i • 2, ••• ,q. 

1 

1.4. Perturbation theory 

Let A be a set in the metric space H and let & > 0. The set S(A,&) is 

defined as the set of all m € M such that the distance of m to A is less 

than &. If A consists of a single print a, we shall write S(a,&) instead 

of S ( {a} , & ) • 

In this section A is a metric space with metric p, X is a complex Banach 

space and T(a) is a continuous function on A to L(X,X). 

The following two lemmas are consequences of [3], VII,6,3 and 6.7, and 

the fact that T(.) is continuous on A. 

0 

LEMMA 1.13. Por each e; > 0 there is a ö > 0 such that a € S(a0 ,ö} implies 

cr(T(a)) e S(cr{T(a0)),e) and 

IIR{À;T(a)) - R(À;T(a0}) 11 < & if À .t S(cr(T(a0)),e;) 

LEMMA 1.14. Let T(a) be a projection for all a € A. 

If R{T(a0}) is N-dimensional, there is a ó > 0 such that R(T{a)) is N

dimensional for all a € S(a0, 6). 
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In the next lemma we give some results under the assumption that T(a) is 

quasi-compact and bas the point I as an eigenvalue. 

LEMMA 1.15. Let for all af A the operator T(a) be quasi-compact, 

UT(a)ll • r{T(a)) = I, and I is an eigenvalue of T{a). 

a) Let a0 f A. There is a 6 > 0 such that for all a f S(a0,ö) " 

dimension N(I-T{a)) sdimension N(I-T{a0)). 

b) Let {an}7 be a sequence in A converging to a0 E A, such that · 

dim N(I-T(an)) • dim1 N(I-T(a0)) for all n f :t'l. Then 

c) Let S be such that 0 < a < I and for all a € A the spectrum of T(a) 

does not contain points of modulus between a and I. Then for all 

a0 E A there is a ö > 0 such that for all a E S(a0 ,ö) 

dim N(I- T(a}) = dim N(I- T(a0)) , 

FROOF. Let a0 € A. The quasi-compactness of T(a0) implies the isolated

ness of the point I in cr(T(a0)), there is an e > 0 such that 

S(l,e) n cr(T(a0)) = {1}. 

By lemma 1.13 there is a ö > 0 such that for all a E S(a0,ö) the spectrum 

cr(T(a)) contains no points À with j < 11- ÀI < 
2
3E • The quasi-compact

ness of T(a0) implies the existence of a compact operator K and an in

teger n such that p : .. IIT(a0)n - Kil < I. Because of the continuity of 

T(a) there is a ö1 > 0 such that 

Let a E S(a0 ,ö 1). By [3], VIII.8.2 each point À E cr(T(a)) with 

IÀin > 
1 ;P is an isolated point of cr(T(a)) and XÀ(T(a)) is finite 

dimensional. Hence, by lemma 1.9, À is a pole of TÀ(a) and therefore, by 

lemma 1.5, a pole of T(a). 

Now we may assume without loss of generality that fora f S(a0,ö), 

S(J,~) n cr(T(a)) contains only poles of T(a). 

Let f be a function which is equal to I on S(l,~) and equal to 0 on 
2E: 

C \ S(l,))• 

Let cra :• S(l,~) n cr(T(a)) and aal ;a cra \ {!}, 
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Then for all « ~ S(a0,ö) 

f(T(a)) • E
0 

(T(a)) 
a 

and 

(I) 

By [3], VII.6.5 and lemma 1.14 there is a 51 with 0 < ö' < o such that 

for all a ~ S(a0,ö') 

(2) 

By lemma 1.4 the order of the pole I of T(a) is 1. Hence, by lemma 1.6, 

X1(T(a)) "'N(I-T(a)) • 

Using (I) and (2) we get for all a ~ S(a0,ö') 

dim N(I-T(a0)) • dim x1(T(a0)) =dim Xaa (T(a)) = 

=dim X1(T(a)) +dim X
0 

(T(a)) = 
lll 

= dim N(I- T(a)) + dim X a (T(a)) <:: dim N(I- T(a)) 
a) 

This completes the proof of a). 

If dim N(I-T(a)) • dim N(I-T(a0)) forsome a" S(a0 ,o'), then aal • 0. 
It follows that 

aa ={I} and f(T(a)) =EO' (T(a)) • E1(T(a)) • 
a 

The proof of b) is easily given by application of [3], VII.6.5, 

The proof of c) is straightforward by choosing e: such that I - e: > a. 0 
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CHAPTER 2, MARKOV PROCESSES 

In this chapter we consider quasi-compact Markov processas (section 2,2) 

and embedded Markov processes (section 2,3), In the first section we shall 

give some preliminaries. 

2. 1. Sub-Ma:tikov prooesses 

Let V be a set and ~ a a-field of subsets of V, The spaces B(V,~) and 

M(V .~) are defined as in chapter 1. A sub-transition probability, is a re al 

valued function P on V x ~ such that 

i} for all u e V, P(u,•) is a positive measure on ~ with P(u,V) s I 

ii) for all A e ~. P(•,A) e B(v.~). 

A sub-transition probability is called a truneition probability if 

P(u,V) • I for all u e V. 

A sub-transition probability P induces operators in M and B given by the 

following definitions: 

a) for all~ e M (~P)(•) J P(u,•)\.l(du) 

b} for allfeB (Pf)(•) = J f(v)P(•,dv). 

The function ~p on E is an element of M for all ~ e M and the function Pf 

on V is an element of B for all f € B, 
The mappings p + pP and f + Pf are linear, In the sequel we shall denote 

both the (sub-) transition probability and the corresponding operators in 

B and M with the same letter, From the rest of the notation it will be 

clear in which sense this letter is meant: 

P(•,•) is the (sub-) transition probability, 

P to the left of a function is the operator in B, 

P to the right of a measure is the operator in M. 

In each of these cases P is called a (sub-) Markov prooess on (V,~). 
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The operator P has a probabilistic interpretation which can be usefull to 

understand the meaning of some definitions and lemma's. The remarks refer

ring to this probabilistic interpretation of P are indicated by "remark 

p.n", n = 1,2, •••• 

REMARK p. I. Each pair (1T ,P) with 1T a probability and P a transition proba

bility defines a discrete time Markov process X(t), t = 0,1,2, ••• with 

JP{X(O) E E} 1T (E) 
and 

lP{X(t +I) E E I X(t) = u} = P(u,E), t o, 1 ,2, •••• 

See for instanee Neveu [9], chapter 5. 

Now let P be a sub-Markov process on (V,E), It is easy to see that 

(~P)f = ~(Pf) for all f E B, ~ E M. 

This justifies the notatien ~Pf for both (~P)f and ~(Pf). In lemma 1.3 we 

proved that Mis isometrically isomorphic with a closed subspace of B*, 

the adjoint space of B, The isomorphism was the mapping er: M .... B* defined 

by (cp~) (f) = ~f, f E B. Let PB be the operator P in B and PM the operator 

P in /.l, Then 

This shows that 'P(M) is invariant 

to cr(M) corresponds to PM' We can 

P~ to the subspace of M* which ·is 

ponds to PB. 

* . . * under PB and that the restrLCtLon of PB 

prove similarly that the restrietion of 

isometrically isomorphic with B corres-

As a consequence of this we get the following lemma. 

LEMMA 2.1. Let P be a sub-Markov process on (V,E), Then liPBil = liPMil and 

o(PB) = o(PM), 

Let A be an element of E. A special case of a sub-Markov process which is 

rather important in the sequel, is the process IA determined by the sub

transition probability 

0 
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Applicatian of the corresponding operator in 8 is multiplying by the cha

racteristic function of A: IAf = 1A.f, f € B, and the corresponding opera

tor in M is given by 

Let P and Q be sub-Markov processas on (V ,r), The sub-Markov process PQ is 

defined by the sub-transition probability 

(PQ)(u,E) := (P (Q JE)) (u), u € V, E .: l: , 

The cr-additivity of (PQ)(u,•) fellows from the o-additivity in Bof the 

operator induced by a sub-transition probability. For the process PQ the 

operator in 8 is given by 

(PQ)f "' P(Qf). f E B 

and the operator in M by 

v(PQ) • (~P)Q, u " M • 

If Ris another sub-Markov process on (V,l:), then obviously the relation 

(PQ)R • P(QR) holds. 

2, 1. Quaai-aompaat Marokov proaesses 

In the sections 1.2 and 1.3 we showed that if T is a quasi-compact operator 

in a complex Banach space X wi th UT IJ = r(T), then the space X can be de

composed in the subspaces x11 ,x11 , ••• ,x" , and XCL where )_ 1, •• ,, À q are 
I 2 q 

eigenvalues of T wi th I À. I • 11 T 11 • r(T), a is a speetral set with 
l 

sup 1.\1 < r(T), and cr(T),. a u 0. 1, ... ,:>- }, 
lea q · 
In this section we assume that P is a Markov process on (V,E), Since 

PI a I we have 11 P 11 = r(P) • I and I is an eigenvalue of P. If the operator 

P in B is quasi-compact, the decomposition of 8 corresponds to a decompo

sition of V, which we shall study in this section. 

The next lemma makes it possible to speak about quasi-compact Markov pro-

cesses, 

LEMMA 2.2. The operator P in 8, P8 , is quasi-compact if and only if the 

operator P in M, PM• is quasi-compact. 
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PRDOF. The quasi-compactness of the operator P8 implies the existence of 

an integer n and a compact operator K in B such that 11 PB - K 11 < I • Since 
n I *n *I *· 11 P8 - KI • 11 (P8) - K I and the operator K l.S also compact, the operator 

PB is quasi-compact too, The space M is isometrically isomorphic with a 

closed subspace of B* which is invariant under PB and the restrietion of 
* . s* P8 to th1.s subspace of corresponds to PW 

Now the quasi-compactness of PM is a consequence of lemma 1.11. The proof 

in the other direction is similar. 

If P is quasi-compact, the point 1 must be a pole of P and x1 = N(I - P), 

Using lemma I. 8 we get 

<:dim N(I -PB) • 

0 

DEFINITION 2, 3. A set E " l: is inva.I'iant under P if (P IE) (u) = I for u € E. 

An equivalent definition is: E € l: is invariant if (~P)(E) I for all pro

bahilities p € M with ~(E) = p(V) = I. 

N~ice that E1 n E2 is invariant if E1 and E2 are invariant, An element 

p € N(I - P) is called an invariant measure of P. 

LEMMA 2.4. Let ~ be an invariant positive measure and let A be an inva

riant set under P, Then piA is invariant. 

PRDOF, Let Ac := V\A, We have 

(~P) (A) = (pi .P)(A) + (pi P)(A) • ~(A) + {l.ti P)(A) = ~(A) • 
A Ac Ac 

Hence (pi P)(A n B) = 0 for all BEl:. This implies 
Ac 

= (~)(A n B) = p(A n B) = (~IA)(B) for all BEl: 0 

In the next theoremwe shall prove that the quasi-compactnessof Pis 

coupled with the existence of a finite number of pairwise disjoint inva

riant sets. 



THEOREM 2,5, Let P be quasi-compact and suppose dim N(I - P) • n. Then 

there exists a unique set probabilities {~ 1 ••••• ~n} such that 

i) ~ 1,,,, .~nare invariant under P 

ii) there exist pairwise disjoint invariant sets E1, ••• ,En € ~ such that 

~i(Ei) • I for i= l, ••• ,n, 

Moreover, if p is a probability on ~ with p(Ei) a I then 

n-1 
lim.!. L llPR. • 11. 

l. n- n R-=0 

For the proof of this lemma we need the following two lemma's, 

LEMMA 2.6. Let p " N(I - P) be a positive messure on~ with support F, 

Then IJ has a support G c F which is invariant under P. 

PROOF. Let A be an arbitrary set in~ such that IJ(A) • IJ(V), From 

J(A) = IJP(A) • IJ(V) we conclude that J,l{u € A I P(u,A) = J} = IJ(V), Put 

c0 :• F, <\+I :={u E Gk I P(u,(\) =I}, k = 0,1,2, ... , 

·lUd G :• n (\• Then JJ(G) = JJ(Gk) = IJ(F) = IJ(V) and the invariance of G 
k=O 

i.s a direct consequence of P(u,(\) = 1, u EG c (\+I• k = 0,1,2,.... D 

i..EMMA 2. 7. Let IJ E N (I - P) be a (real) signed me as ure on ~ and let 

:: "' IJ+ - IJ- be the Hahn-Jordan decomposition of IJ, Then IJ+ € N(I - P) and 

.. - e N(I - P), 

PROOF, Let E be a support of u+ such that Ec := V\E is a support of u • 

Th en 

JJ(E) 

Hence (IJ!EP)(E) = !l(E) and (JJI P)(E) = 0. Therefore 
Ec 

lt follows that for each F e ~ we have 
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This shows the invariance of u+. The invariance of u- fellows from 
+ u = u - u. 

Now we shall give the proof of theerem 2.5. 

0 

PROOF OF THEOREM 2,5, Let u be an arbitrary element of N(I- P), Using the 

real valuedness of P we see that the real part u1 of u and the imaginary 

part u2 of u arealso elementsof N(I- P). By lemma 2,7 the positive mea

sures u;, u~, u;. u; are elements of N(I- P) too, This implies the exis

tence of n independent probabilities which are a base for N{I - P), Ob

viously, if the probabilities u1, ••• ,uk have pairwise disjoint supports, 

they are independent. Let k be the largest number of probabilities in 

N(I - P) with pairwise disjoint supports, Then k ~ n. Suppose k < n and 

let the probabilities u1, ••• ,uk ~ N(I- P) have disjoint supports. By lem

ma 2.6 there are pairwise disjoint supports E1, ••• ,~ of u1, ••• ,uk, which 

are invariant sets under P. Since k < n there is a probability ll " N (I - P), 

independent of u1, ••• ,uk. Let A be a support of u which is invariant under 
k 

P. If u(C) > 0 with C := A\ u E. then lllc is a nontrivial element of 
i=I l. 

N(I - P) with support c, which yields a contradiction. Hence u(C) = o. 
This implies that for at least one i, I ~ i ~ k, urE. is net a multiple of 

I l. 
ui. Let j be such an i and let 11 j := ~ • lllE., Then the signed measure 

J J 
11. - u. is an element of N(I- P) with nontrivial positive and negative 

J J 
parts, There are disjC?int sets E. 1 and E. 2 in E.suchthatEj 1is a support of 

+ J J - J T 
(11, - u.) and E. 2 is a support of (11. - ll·) • By lemma 2.7 (11. - ll·l and 

J J - J J J J J 
(11. -u.) are elements of N(I- P), This contradiets the maximality of k. 

J J 
Hence k • n, there aren probabilities w1 •••• ,1fn with pairwise disjoint in-

variant supports E1, ••• ,En' which are a base for N(I- P). Now we have to 

prove the uniqueness of these probabilities. Let {llt•••••un} be another 

set of probabilities in N(I- P) with pairwise disjoint supports F1, ••• ,Fn' 
n 

Each u. is a linear combination of w1, ••• ,w: ll• • l a .• w., It is easy 
l. n n l. j•l l.J J 

to verify that l a •• = 1 for i • I, ••• ,n and a.k ~ 0, From 
j•l l.J l. 
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we conclude that '!IJ. (F.) • I if ex .• > 0. Therefore, for each ie: {I,.,, ,n}, 
l. l.J 

there is only one j such that ex •• > 0, It follows that ex •• = I and ~. • 'IT., 
l.J l.J l. J 

This proves the uniqueness of {'11 1,,,,,'1Tn}, Now let~ be a probability on E 
n-1 " 

with ~(Ei) = I for some i. By lemma 1. 1,11 :• !!: .J; R.~O \lPR. exists and is 

an element of N(I- P). Since Ei is invariant, 'IT(Ei) = I and therefore 

'R' - 1f ... 
l. 

D 

Now let the conditions of theorem 2.5 be satisfied and let 'IT 1,.,.,'1Tn and 
n-1 

E1, ••• ,E be as in this theorem. By lemma 1.7,S := liml L PR. exists. It 
n ~nw 

is easy to see that S is a Markov process satisfying PS • SP • S, Hence 

S(u,•) is an invariant probability of P for all.u e: V, Define the sets 

F1, ••• ,Fn by Fi :={u~ V I S(u,•) = 1Ti(•)}, The sets Fi are pairwise dis

jointand since Fi ~Ei we have '!Ti(Fi) =I, For u! Fi we have 

I= S(u,Ei) = (PS)(u,Ei) ~ I P(u,ds)S(s,Ei) , 

V 

It follows that S(•,Ei) • 1, P(u,•)-almost everywhere, hence P(u,Fi) = I, 
This implies that the sets ~ 1 •••• ,Fn arealso invariant under P, These 

sets are called the maximal invcwiant sets. 

In the next theorem we shall prove that each eigenvalue À of P on the unit 

circle is a root of unity if P is quasi-compact. The proof given here is 

due toYosidaand Kak.utani [17], § 4,5, Weneed the following lemma, 

LEMMA 2. 8, Let u be a probability on r and f an element of B such that 

~f • I and jfj = I, ~-almost everywhere. Then f = I, ~-almost everywhere. 

PROOF, Let g and h be the real and imaginary part of f. Then 

~f = ].!g + i~h .. 1, hence ug = I and ~h = 0. However, 

which implies that h = 0, ~ almost everywhere, 

THEOREM 2,9. Let P be quasi-compact and À an eigenvalue of P on the unit 

eircle, Then À is a root of unity. 

D 



2.8 

PROOF, Suppose dim N(l- P) = n. Let the probabilities ~ 1 , •••• ~n and the 

1 
n-1 

1 sets E1, ••• ,E be as in theorem 2.5, PutS:= lim- L P and choose a n n 
t n-""' 11- 0 1 

nonzero element f € N(U -...P), Then lfl = IÀ fi•IP fl :s; P lfl which im-

plies lfl :s; sjfj. For each u € V, S(u,•) is an invariant probability and 

therefore a linear combination of~ I''" .~n' In particular S(u,•) = rri (•) 

if u E E .• lt follows that for u E E. 
l. ]. 

lfl (u) :s; (Sjfj)(u) = rrilfl :5 sup lfl (u) :• ei • 
U€Ei 

Hence c. :s; rr.jfj :s; c. which implies that ifl • c
1
., rr

1
.-almost everywhere 

]. ]. 1 

for all i= l, ••• ,n. 

If ifl • 0, rri-almost everywhere for all i • J, ••• ,n then slfl • 0, Since 

lfl s slfl there is at least one iE {t,2, ••• ,n} such that ei> 0. Choose 

u0 e: E. such that lfl(u
0

) • c .. Define the sets E.(1) for 1 .. 1,2, ••• , b;; 
]. 1 ]. 1 

Ei (1) := {u e: Ei I f(u) = À f(u
0
)}. Then we have 

J P1
(u0,ds)f(s) = À1f(u0) 

V 

and 

ei= IÀ1f(u0)j = IJ P1
(u0 ,ds)f(s)j s J P1

(u0 ,ds)jfl (s; 

V V 

= J P1 (u0 ,ds)jfj(s) s ei, 

Ei 

1 t Hence lfl • c., P (u0 ,•)-almost everywhere, and by lemma 2.8 f • À f(u0), 
1 1 1 

P (u
0

,·)-almost everywhere. This means P (u
0

,Ei (1)) = l for f. = 1,2,3, ••• 

Suppose that E.(t) n E. (m) = 0 for all pairs (t,m) with 1 ~ m. Then 
1 ]. l. 

P (u
0

,Ei(m)) = 0 for m ft and 

He nee 

(I) 

However, 

n-1 · 
lim·! I Pk(u

0
,E. (m)) • rr. (E. (m)) = 0 for all m.: t. • 

n~ n k•O 1 1 1 

rr.( u E
1
.(m)) = 0. 

1 m-1 



and therefore 

1r. ( u Ei (m)) = I , 
l. llF I 

which contradiets (1), 

29 

This implies the existence of a pair (t,m) with R. ;. mand Ei (R.) n Ei (m) 'F0, 
and therefore À t-m = I. 0 

For later reference we state the following corollary, 

COROLLARY 2, 10, Let P be quasi-compact and let d be an integer such that 

À d = I for all À EZ cr (P) with I À I = I, For f e B de fine 

I k-1 R. 
f 1 := lim k l P f • 

k-+<» t=O 

kd-l+m il. 
Then g := lim L P (f - f 1) 

m k.....,. ii.=O 

d-1 
exists for all m = 0,1,2, ... and ct L Sm 

m=O 
is a solution of the equation y- Py = f- f 1• 

PROOF. The existence of Sm follows from lemma 1.12. The rest of the proof 

is a straightforward verification using Pgm = gm+l - f + f 1 and gd = g0 • 0 

LEMMA 2,11. Let P be quasi-compact and À an eigenvalue of P on the unit 

circle. Then ~ ~ N(Àl- P) • v~ e N(l- P), where v~ is the total variation 

of ~. 

PROOF, Let A1, ••• ,An be a partition of V. Then for every fEB and u E M 

we have by lemma 1.2 

and therefore j~fl s v ifl. 
u 

n 
L sup I f I • v IJ (Ai) , 

i=l A1 

Now let u e N(ÀI- P), Then for allE e E we have 
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where the supremum has to be taken over all finite partitions {Ei} of E. 

It follows that v~ s v~P. Sinee obviously v~(V) • (v~P)(V), we eonclude 

v~ • vlJP on E. 0 

LEMMA 2.12. Let P be quasi-compact, dim N(I- P) • n, and n1, ••• ,nn as in 

theorem 2.5. Then there exists a real number a, 0 < S < I and an integer N 

such that ft PJI.f 11 s a~ f 11 for all 11. > N and for all funetions f "' 8 whieh 

are ni almost everywhere equal to zero for· i • l, ••• ,n. 

PBOOF. Let A be an eigenvalue of P on the unit eirele. For all u e V the 

measure ~u• with 

n-l 11. 
lJ (E) = liml L p (u,E) 
u n~ n 11.=0 AJI. 

is an element of N(AI- P), Hence, by lemma 2.11, v e N(I- P) and each 
lJu 

v is a linear combination of n1, •••• ~n• 
lJu 

Let f e 8 be ni-almost everywhere equal 

v -al!nost everywhere for each u. Sinee 
lJu 

to 0 for i= l, ••• ,n. Then f = 0, 

satisfies f,(u) • lJ f for all u e V we get lfÀ(u)l • IJJ fl s v lfl • 0 
A u u lJu 

for all u e V. 

This implies that f E Xa where a is the subset of o (P) within the unit 

eircle and Xa is the range of Ea(P) 0 (see section 1.1). 

Let S > 0 be such that sup IÀI <a < I and let Pa be the restrietion of P 
ÀEa 11. 11. 

to X a. Then there is an integer N such that 11 Pa 11 s a for · 11. > N and hence 
IIPtfll s Stllfll for 11. > N. 0 

COROLLARY 2.13. Let P be quasi-compact, dim N(I- P) = n, and w1, ••• ,wn as 

in theorem 2.5. If A"' Lis such that ~i(A) • 0 for i= t, ••• ,n then 

r(PIA) < I. 

PROOF. Let S be as in lemma: 2.12. For each nonnegative function f E 8 we 

have for sufficiently large n 
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Then 

r(PIA) ,. lim VIl (PIA)nll s IS , 
n-

0 

A space of some importsnee in the sequel is the space M0, the subspace of 

M with all measures p on E such that p(V) ,. 0, It is easy to see that M0 
is closed snd invariant under P, The restrietion of P to M0 is denoted by 

Po· 

LEMMA 2,14, Let P be quasi-compact snd dim N(l- P} • I. Then I € p(P0). 

Let d be sn integer such that À? .. I for all eigenvalues L of P on the 
l l 

unit circle. Then there is sn integer N > a and a real number B with 

0 < S < I, such that 

nd+d-1 
11 Ï P~ 0 < Sn for n > N • 

R.•nd 

PROOF. Because of lemma 1.5 snd 1.12 it is sufficient to show M0 c:: XT• 
Since all elements of N(I - P) are multiples of a probability, N(I - P0) 

which is a subspace of N(I - P) contains only the zero. Each p ~ Ma can be 

written as ul + u1 where ul e Xj and u1 € x1, Since 

n-1 
u1 ~ lim~ Ï uPR. 

n .... R.•a 

and u € Ma we conclude u1 E M0, u1 € N(I- P0), and u1 • O, which implies 

0 

There is a close relationship between quasi-compactness, the Doeblin condi

tion, and uniform u-recurrency. This relationship is studied in the rest 

of this section, 

DEFINITION 2,15, A Markov processPon (V,L) is said to satisfy the 

Doeblin aandition if there exist sn integer n > a, two positive numbers 

n, a with 0 < n, a < I and a probability u on E such that 

u(F) ~ a • Pn(u,F) ~ n, (or equivalently u(F) < I - a • Pn(u,F) < I - n). 

A Markov process P satisfies the Doeblin condition if and only if it is 

quasi-compact. The reader is referred to Neveu [9], V,3. 

One direction of the coimplication is shown in the proof of lemma 2. 17. 
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DEFINITION 2,16. Let u be a positive measure on 1:, not equal to o. and let 

P be a Markov process on (V 0 E), Pis said to be u-re~nt if for each 

A € E with u(A) > 0 lim (PIB)nlv{v) "' 0 for B := V\A and for all v € V. 
n400 ... 

If for all A" E with u(A) > 0 the convergence is uniform on V, P is said 

to he u:niformZ.y ll""re~nt. 

REMARK p,2, If P(u 0E) is interpreted as P{X(t + I) " E I X(t) • u}, then 

(PI
5

)n(IV) (v) "'P{X(I) " B, X(2) € B, •••• x(n) € B I X(O) = v} • 

Hence lim (PI8)n(lv)(v) can he interpreted as the prohability that start
n-

ing in v the system is in B at any time. If this limit is 0 the probabili-

ty that the system will reach the set A is equal to 1. 

The relation between quasi-compactness anduniform u-recurrency is shown in 

the next two lemma's, 

LEMMA 2.17. Let P be a quasi-compact Markov process on (V,E) with 

dim N(I- P) ,. l,and let ~he the invariant prohability. Then P is uniform

ly p-recurrent, 

PROOF, Let A € E he such that ~(A) > 0 and d an integer such that À? • 
l. 

for all eigenvalues Ài of Pon the unit circle, By lemma 2.14 there is a 

real B, 0 < B < I and an integer N such that for all prohahilities À on E 

and for all n > N 

(I) 

Substitution of À(•) • P(u0 •) in (I) yields 

I nO 
Choose a < 11 (A) such that 0 < a < 2d and n

0 
> N such that B < a. Then 

for n > n0 we have for every E " E with 11(E) < e 

d-1 
(2) {- l Pnd+ll.+ 1 (u,E) < 2e for all u " V 

t•O 

and 

pnd+l(u,E) < 29d for all u € V • 
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At this stage of the proof we actually have shown that the Doeblin condi

tion is satisfied with respect to ~. 

Define the transition probability Q on V x l: by 

Q (u,E) .. P (u,E) for u ~ V\A, E e l: 

Q{u,E) ~{A n E) 
= '11(A) for u e A, E e l: , 

Using (2) it is easy to verify that Q satisfies the Doeblin condition, The 

set A is an invariant set of Q, Suppose there are two disjoint invariant 

sets of Q, F1 and F2• lf F1 n A= 0 and F2 n A • 0 then F1 and F2 are also 

invariant sets of P which contradiets the fact that dim N(I - P) = I, Now 

let F
1 

nA f. 0. Then by the definition of Q, rr(AnF1) •rr(A) and F2 <: B. 

HenceF
2

isaninvariantsetofP.Therefore 1T(F2) =I and rr(A) = 0 which 

yields a contradiction. 

This implies that there are no two disjoint invariant sets of Q. Hence 

dim N(l- Q) = I. By corollary 2,13,r(QIB) < I for B := V\A, Therefore 

lim (QIB)n(IV)(v) • 0, uniform on V. For v € B we have (PIB)nlv(v) • 
n-+<» 

n • (QIB) JV(v). Then for all u e v, 

which tends to 0 uniformly on V, D 

LEMMA 2.18, Let~ be a positive measure on l: and Pa uniformly ~-recurrent. 

Markov process on (V,l:), Then P satisfies the Doeblin condition, 

PROOF, Orey [JO], 1.7 proved the existence of a probability rr, integers d 

and n0 , and real numbers a, p with a> 0 and 0 < p <I, such that 

d-1 
I ~ n+~ n lid l. ÀP - 1r 11 < a.p 

~-o 
for n > no 

and for all probabilities À, The rest of the proof is analogous to the 

first part of the proof of lemma 2.17. 0 
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2. 3. Erri:Jedt:Jsd Markov processes 

In this section we shall define embedded Markov processes and entry Markov 

processas and we shall discuss some properties of these processes. These 

properties will be used in' the chapters 3 and 4, 

As in the preceding sectien we shall assume that P is a Markov process on 

(V,I). For convenianee we shall write PE instead of PIE for E e I, 

The next lemma serves only as an introduetion to the concept of the embed

ded Markov process, which will be defined in definition 2.20. 

LEMMA 2,19, Let A e l: 0 B :• V\A. Define the function Q on V>< l: by 

for all u e V, E e I • 

Then Q is a sub-transition prob.ability on V x 1:, the operator Q on B(V,E) 

is given by 

(I) (Qf)(u) L (P~ Af)(u) 
n•O 

for u e V, f e B(V,I) , 

and the operator Q on M(V,l:) by 

... 
(2) (llQ)(E) "' L (!lP~ A) (E) 

n•O 
for E e I, ll e M(v,r) • 

Furtbermore, Q is a Markov process on (V,I) if and only if 

lim (P~IV)(u) = 0 for all u eV. 
n-

PROOF, We have PA= I'- I'B. Hence 

which implies that Q(u,E) s Q(u,V) s I for u e V, E e r. The measurability 

of Q as function of u and the cr-additivity as function of E are easy to 

verify. Hence Q is a sub-transition probability on V >< E and a transition 

probability if arid only if lim (P~IV)(u) • 0 for all u eV. The equations 
n-

(1) and (2) are direct consequences of the definition of Q. 0 
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REMARK p.3. If P(u,E) is interpreted as P{X(t +I) e E I X(t) • u} then 

(P~IV) (u) = P{X(l) e B,X(2) e B, ••• ,X(n) e B I X(O) • u} • 

n If lim (PBIV)(u) = 0 for all u e V, the system enters the setAalmost 
11'"""' 

surely for each initial state, i.e., the random variable indicating the 

time of the first visit to A, starting in u, is finite, almost surely. In 

this case, Q(u,E) can be interpreted as the probability that the system is 

in A n E when it enters A for the first time under the condition that at 

time t = 0 the system is in state u. This (sub-) transition probability Q· ' 

is usually called the embedded, (or induced), (sub-) Matkov process. Let 'u 

be the random variable indicating the time of the first visit to A, start

ing in u. Then 

Q(u,E) • P{X(T ) e E I X(O) • u} , 
u 

Now we can define embedded Markov processes. 

DEFINITION 2.20. Let A e E, B := V\A. The sub-Markov process Q on (V,E) 

with sub-transition probability 

.. 
Q(u 0E) := l (P~AIE)(u) 0 u e V, E e E , 

n=O 

is called the elrbecl.tkd suh-Markov process of P on A. 

It follows from lemma 2,19 that Q is a Markov process if and only if 

lim (P:lv)(u) • 0 for all u € V. It is clear that the restrietion of Q to 
n .... 
A x rA is a sub-transition probability on A x EA. We shall denote this 

process on (A,EA) also by Q. If not stated otherwise we shall consider the 

embedded process Q on A being a process on (V 0 E), 

Notice that Qf1 • Qf2 on V if f 1 = f 2 on A and that (uQ)(E) = 0 for all 

E c V\A and for all u E M. 

LEMMA 2.21. Let A er, B := V\A. Assume that lim (P~IV)(u) • 0 for all 
n...., 

u e V and let Q be the embedded Markov process of P on A. If u e M(V,E) 

and f e B(V,l) are invariant under P0 then uiAQ = uiA and Qf • f. Conver

sely, if Qf = f, then Pf = f and if E is an invariant set under Q then 

Ë :={u I Q(u,E) = I} 

is an invariant set under P. 
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PROOF, Tbe proof of the invariance of ~IA and f under Q is straightforward 

using 

and 

Conversely, suppose Qf = f. Then 

.. 
pf • pAf + PBf = pAf + PBQf • pAf + PB I p~ Af • 

n•O 

= I P~ f = Qf • f • 
n=O B A 

Finally, let E be an invariant set under Q and let Ë :={u Q(u,E) = 1}. 

From Q = PA + PBQ we conclude 

Since on Ë we have QIA\E = O, it fellows that PIA\Ë = 0 on Ë and 

PB\~IA\E = 0 on Ë. From QIA = I and the definition of Ë we infer that on 

V\Ë and in particular on B\Ë we have QIA\E > 0, It fellows that PIB\Ë = 0 

on Ë. Therefore PIV\Ë = 0, PIË = l on Ë. D 

The following technica! result will be used to show that the embedded pro

cess on a set F c A of the embedded process on A coincides with the embed

ded process on F, 

LEMMA 2.22, Let A ~ E, F ~ EA' C :• V\F. Let Q be the embedded sub-Markov 

process of P on A. Tben 

.. 
I· (Q~QFIE)(u) s I (P~FIE)(u) 

n=N n=N 
for all u ~ V, E ~ E • 

For N • 0 the equality holds. 

PROOF, Let D := A\F. First we note that for all u ~ V and f E 8 

.. 
{Qcf) (u) • I (P~ AIC)f(u) "' I (P~0f)(u) • 

n=O n=O 



37 

Rence 

"" 
(I) l (Q~QFIE) (u) 

n=O 

where the sum has tobetaken over all finite sequences (n 1, ••• ,nm) with 

ni 2: O. On the other hand 

where the sum has tobetaken over all sequences (n
1

, ••• ,n2) with ni 2: 0 

and n
1 

+ l + n
2 

+ l +, •• + I + nt = n. Substituting this in 

we see that 

The sum 

consists of all terms 

in {I) with at least N factors PD. 

The sum 

contains all terms 
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where n 1 + 1 + n2 +.,,+ nm?: N. Therefore 

.. 
L (Q~QFJE)(u) :s; L (P~FIE)(u) ' 

n•N "' n•N 
D 

The proof of the next lemma is an immediate consequence of the previous 

one, 

LEMMA 2,23. The emedded (sub-} Markov process on F c: A of the embedded 

(sub-) Markov processofPon A is identical.to the embedded (sub-) Markov 

process of P on F. 

Now we shall show that (uniform) v-recurrency of P implies (uniform) v-re

currency of the embedded Markov process of P on A. 

LEMMA 2,24, Let P be (uniformly) v-recurrent, Then for all A with IJ(A) > 0 

the embedded sub-Markov process of P on A is a Markov process which is 

(uniformly) v-recurrent. 

PROOF, Let A e: E he such that v(A) > 0 and put B :# V\A. Since P is IJ-re

current we have by definition lim (P~IV) (u) • 0 for all u " v. Then by 
no-

lemma 2,19 the embedded process Q on A is a Markov process, Let F" IA be 

such that v(F) > 0 and let C :• V\F, D :• A\F. By lemma 2,22 

"" "' L (Q~QFIV) (u) s L (P~FIV) (u) , 
n•N n=N 

He nee 

N+l 
• lv(u) - (Pc IV) (u) • 

The v-recurrency of P implies lim {Q~lv) (u) • 0 for all u e: V, If the con
n....,. 

vergence of (P~Iv)(u) is uniform on V then the converganee of (Q~lv)(u) is 

also uniform on V, D 

LEMMA 2,25, Let A,D e: I:, B :• V\A, F :• V\D, Assume that lim (P:Iv)(u) •0 
n-+«> 

on V. Let Q and S be the embedded Markov process of P on A and on A u D. 

Let IJ be a positive messure on E such that Q is v-recurrent and 
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J S(u,D)~(du) > 0 • 

A 

The.n the. e.mbe.dded sub-Markov proce.ss of P on D is also a Markov proce.ss. 

PROOF. If ~(D) > 0 the. re.sult is a direct conse.que.nce. of the. ~-,re.currency 

of Q and lemma 2,23, Suppose ~(D) • 0, Then 

f S(u,D)~(du) • J S(u,D)!l(du) > 0 , 

A\D A 

which implies the existence of > 0 d t A l: eh h an e: an a se e: E: A \D su t at , 
~(Ae:) > 0 and S(u,D) > e: for u E: Ae:. Since Q is ~-recurrent the embedded 

Markov process of Q on Ae: is a Markov proce.ss, which by lemma 2.23 coin

cides with the embedded processofPon Ae:• Using lemma 2,19 it" is easy to 

see that the embedded sub-Markov process Tof P, and therefore of s, on 

Ae: u Dis Markovian, Let Be: := V\(Ae: u D), From 

.. 
T • I s~ SA uD • SA uD + SB T 

n•O e: e: e: e: 

we conclude TIA ~SlA + SIB = SIF = I - Sl 0 , hence TIA s I - e: on Ae:. 
e: n+l e: e: e: 

It follows that (TA IV)(u) s (I- e:)n + 0 if n + ... Hence the embedded 
e: 

process of T on D which coincides with the embedded process of P on D is 

Markovian. 

Now we shall define entry Markov processes. 

0 

DEFINITION 2,26, Let A e E and B :• V\A, Let Q1 and Q
2 

be the embedded 

sub-Markov processes of P on A and on B, The entry sub-Markov process of P 

on A is the stib-Markov process Q2Q1• If both Q2 and Q1 are Markov proce.sses, 

then Q2Q1 is called the entry Markov process of P on A. 

REMARK p.4. Since Q1(u,E) can be interpreted as the probability of being 

in E the first time that A is entered and since Q2 has a similar interpre

tation with respect to B, (Q2Q1){u,E) can be interpreted as the probabili- " 

ty of being in E at the first visit to A after having visited B, starting 

in u. More formalistic, let T~ be the random variable indicating the time 

of the first visit to A after a visit to B, starting in u. Then 



In the next lemma we shall show that for every invariant set E of the entry 

Markov process R of P on A we can find an invariant set Ë of P with 

Ë n A => E n A, 

LEMMA 2,27, Let A € z, B :• V\A, 

lim (P~IV)(u) ~ 0 for all u EV. 
n+"> 

Assume that lim (P~IV)(u) = 0 and 
n....,. 

Let R := Q2Q1 be as in definition 2,26. 

Let E be an invariant set of R, Then the set Ë given by 

Ë :={u eB I Q1(u,E) = I} u {u E A I R(u,E) = I} , 

is an invariant set of P with Ë n A => E n A. 

RIA\E = PBQIIA\E + PARIA\E;:: PB\ËQJIA\E + PA\ËRIA\E' 

Since RIA\E = 0 on A n Ë we have PB\ËQIIA\E = 0 on A n Ë and PA\ËRIA\E • 0 

on A n Ë. By the definition of Ë, Q11A\E > 0 on B\Ë and RIA\E > 0 on A\Ë, 

Therefore both PlB\Ë = 0 on A n Ë and PIA\Ë = 0 on A n Ë, wbich implies 

that PIË = I on A n Ë. Asimilar reasoning applied to Q11A\E yields PIË = I 
on B n Ë and hence PlË • I on Ë. 0 

In lemma 2,24 we proved that (uniform) Jl-recurrency of P implies (uniform) 

jl-recurrency of an embedded Markov process of P on some subset A with 

Jl(A) > 0. Now we shall consider the Jl-recurrency and uniform u-recurrency 

of entry Markov processes, 

LEMMA 2.28. Let P be quasi-compact and suppose dim N(I- P) • 1. Let 1r be 

the invariant probability of P and let the set A E Z be such that 1r(A) > 0 

and 1f(V\A) > 0. Define the measure ; on z by i := 1riBPA' where B :• V\A. 

Then tt(V) > 0 and the entry Markov process of Pon A is uniformly i-recur-

rent, 

PROOF. We shall first show that i(V) > 0. Suppose rr(V) • 0, Then PIA ~ O, 

1r-almost everywhere on B, Since (1TP)(A) = 1r(A) we therefore have PIA = IA' 

1f-alomst everywhere and consequently PIB = 15 , 1r-almost everywhere. Then 

Hence 1r!A is invariant, 1riA = 1r and 1f(A) = 1, which contradiets the assump

tion 1f(V\A) > 0, it follows that w(V) > 0, Because of 1r(A) > O, 1r(B) > O, 

and lemma 2.17 the embedded sub-Markov processes of P on A and on B are 



Harkov processes. Let R be the entry Harkov process of P on A. Let F r 
be such that i(F) > 0, Then there is an E > 0 and a set Be c EB such that 

11(Bt:) > 0 and P(u,F n A) > e: for u € Be:• Let C := V\Be: and D !"' V\F. 

For f e B (V ,l:) we have 

(I) 

We shall prove by induction on N that 

For N =I this inequàlity follows immediately from (1). 

Now suppose (2) has been proved for N. Then 

In order to show that this last expression (3) does not exceed 

N+l 

(4) l ~RIFnA • 
n=O 

We substitute in (3) and (4) 

R = 

and note that each term then accuring in (3) is majorized by a curresponrl

ing term in (4). 

Since PIFnA ~ c.JB it follows that 
e: 
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By lemma 2.17,P is uniformly n-recurrent. This implies the existence of an 
N0 -. N0+1 

that PC IV < i on V. Hence, !), IV s I - ie: and integer N0 such 
m(N0+1) 

!), IV ,;; (I - !e:)m. Therefore lim ~IV • 0, uniform on V. 0 
n--

The next two lemma's will be used to derive conditions for the u-recurren

cy of entry Markov processes. 

LEMMA 2.29, Let A € ~. B := V\A, Define 

sum has tobetaken over all sequences n 1, ••• ,n~ 1 with ni ~ 0 where the 
~I 

and L n. + m • n. 
i= I 

Suppose 

]. 

lim (P~IV)(u) = 0 on V and the convergence is uniformonsome set 
n--

A' "A. Then lim (P IV)(u) ~ 0 on V and the convergence is uniform on A'. 
n-- m,n 

PROOF, Let Q := L P~A be the embedded Markov process of Pon A. Here as 
n'"O 

well as in the following proofs of this section we have to interprete in-

finite sums of operators in the pointwise convergence, Put QN := Ï P~A' 
n 1 n n=O 

Then Qm- Q: = L PB PA ••• PB Dip A' where the sum has to be taken over all 

sequences n 1,n2 •••• ,nm with at least one ni > N. Now it is easy to verify 

that for each p ~ 2 

. m-1 m-2 N+l N+l m-1 
,;; (Q +Q + ... +Q)PB IV(u) +PB QN IV(u) ,;; 

N+l N+l 
,;; (m-I), sup (PB IV) (v) +(PB IV) (u) 

V€A 

Now the required result is a direct consequence of the assumptions on 
n 

PB IV' 0 
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REMARK p.S. The expression (P IV)(u) can be interpreted as the probabi-m,n 
lity that, starting in u, in the first n steps of the process the set A is 

visited m times. Lemma 2,29 states that the probability of being m times 

in A in n steps of the process is small for large n. 

This result is extended in the following lemma, 

LEMMA 2.30. Let A € E, B := V\A. Suppose lim (P~Iv)(u} = 0 on V and the 
n....,. 

convergence is uniform on A. Let Q be the embedded Markov process of P on 

A and let D € EA be such that lim (Q~lv) (u) = O, uniform on A. Put F :=A\D 

and c := V\F. Let n....,. 

n n2 n nm+l 
P' = }) lp_p P ... Pc~ Pc • m,n C re F r 

where thesum has to be taken over all sequences nl''"'nm+l with ni;;, 0 
m+l 

and I n· + m = n, Then 
i .. l . l. 

i) lim (P~IV) (u) = 0 on V and the converganee is uniform on A 
n.,... 

ii) for all m € lN lim (P' IV) (u) = 0 on V and the converganee 
n-Jt<O m,n 

on A. 

is uniform 

PROOF. The second statement is an immediate consequence of the first one 

and lemma 2.29, Therefore it suffices to prove i). 
n Since Qf = QIAf for f ~ B we have QD = Qc• Hence lim (QCIV)(u) 0, uni-

n--
form on A. But 

and therefore lim (Q~IV)(u) = 0, uniform on V, By lemma 2.22, 
n-

Since 

and 
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this implies lim (P~IV)(u) = 0 on V. We have to prove that the convergence 
n-

is uniform on A. Put 

and 

where both sums has tobetaken over all sequences n 1, ••• ,nm+l with ni ~ 0 
m+l 

and i~l ni + m = n. Obviously 

(I) 

and 

(2) 

;<e get 

(P Cm,n IV) (u) "; (P lv)(u) m,n 

n 

n 
l (P Cm,n IV) (u) • 

m=O 

(3) L (P Cm,n IV) (u) 
m=N 

n Let o: > 0. Choose N
1 

such that (QDIV)(u) < E for u E A, n > N1• By the 

previous lemma there is an integer N2 > N1 such that for all n > N2 we 

have (P IV)(u) <-Ne: 
1 

for all u~ A, m s N1• Then by (l), (2) and (3) 
m,n 1 + 

we have for n > N2 and u <'- A 

Nl n 

(Pem lv)(u) = I (Pc lv)(u) + I 
,n m=O m,n m=Nl+l 

(Pc tv> (u) " m,n 
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n 
Hence lim (P c'v) (u) • o, uniform on A. 

n..., 
D 

LEMMA 2,31, Let A E E, B :• V\A. Suppose lim (P:lv)(u) • 0 on V and the 
n....., 

convergence is uniform on A. Let the embedded Markov process Q of P on A 

be uniformly ~-recurrent •. Let C be a set such that ~(A\C) > 0. Put 

D :• V\(A u C) and let S be the embedded Markov process of P on A u c. De

fine the measure ; on E by ; • ~IA\Cs. If rr(C) > 0 then the entry sub-Mar

kov process R of P on C is Markovian and rr-recurrent. 

PROOF. Suppose ;(C) > 0, By lemma 2.25 the embedded sub-Markov process of 

P on C is a Markov process. Since ~(A \ C ) > 0 an.d Q is '11"-recurrent • the 

embedded process of Q an.d therefore of P on· A\C is Markovian. It follows 

that the embedded process of P on V\C is also Markovian. Hence R is a Mar

k.ov process. 

Now let F be an element of EC such that i(F) > 0. Put H :• C\F. Then there 

is an e: > 0 and a set Ae: € EA\C such that 'IT(Ae:) > 0 and S(u,F) > t::for u € Ae:• 

We have to prove that lim (~IV)(u) • 0 on v. For Pn we can write 
n--

pn • !P1P2 ••• Pn• where the sumhas to be taken over all terms P 1P2 ••• Pn 

with Pi c {PV\C'PC}. The operator which we get if the factors PV\~C in 

these terms are replaced by PV\ctH• is denoted by Tn. Obviously Tn!VsPnlv• 

Substitution of 

The first n factors in these terms correspond to termsin Tn. Let P 1 ... Pn 

be a term in Tn an.d de fine (P 1 ••• Pn) * as the sum of all terms. in ~ which 

start with the factor PI ••• Pn• Then ~ • L (PI ••• Pn) *, where the sum has 

to be taken over all terms P 1P2 ••• Pn in Tn. 
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We shall prove that 

(I) (PIP2 ••• Pn)*IV s plp2 ••• PniV • 

Suppose there are k facto;~ PH in P 1 ••• Pn' If Pn • PC or PH, then 

(2) 

(3) 

The results (2) and (3) prove (1). Hence 

Let G ~ c. Substitution of PV\C = PV\G + PG\C in the terms of Tn yields 

Tn = L P 1P2 ,,, Pn where the sum has to be taken over all terms P 1P2 ••• Pn 

with Pi € {PV\G'PG\C'PC}' the factors PV\GtC and PG\CPC replaced by PV\GtH 

and PG\~H· For pn we can also write Pn =I P 1P2 ... Pn• where the sum has 

to be taken over all terms P 1P 2 ••• Pn with Pi ,;; {P V\G'P G}, The operator 

which we get if all factors PV\GtG are replaced by PV\GPG\F is denoted by 

T~. Substitution of PG = PG\C +PC and PG\F = PG\C +PH yields 

T~ •tP 1P2 ••• Pn• where the sum has tobetaken over all terms P1P2 ... Pn 

with Pi E {PV\G'PG\C'PC}' the factors PV\GtC replaced by PV\GPH. We saw 

that Tn is equal to the same sum with the factors PG\CPC also replaced by 

PG\~H' Hence 

(5) Tnlv s T~lv s Pnlv • 

We can use this result for G := (A u C) \Ae:. Substitution of PV\G =PA + P0 
e: 

yields T~ • L P 
1 

, •• P n • where the sum has to be taken over all terms 

P 1P2 ... Pn with Pi E: {PA ,P0 ,PG}' the factors PA PG and PDPG replaced by 
e e 

PA PG\F and P0PG\F' The operator which we get if we only replace the first 
e: 
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'* factor PG aftera factor PA by PG\F is denoted by Tn' Obviously 
E:: 

(6) 

We k.now that P~\A =LP 1P 2 ... P n, where the sum has to be taken over all 
e: 

terms P
1
P2 ... Pn with Pi e {P0 ,PG}. The operator which we get if the first 

factor PG in these terms is replaced by PG\F' is denoted by T~. 

Since 11 (A ) > 0 and Q is 11-recurrent the process Q := I P~\A PA is a 
e: e n=O e: . e: 

Markov process. The sub~Markov process which we get if the factors P~\A 
!: 

in Qe are replaced by r:. is called Q;, (Q; = I T:PA ). 
n=O e: 

Let Te be the sum of all terms in Tnt: with m,n 
which is replaced by PG\F included. Then 

(7) 

n 
I P~A + I I 

n=O e: n=l m=l 

m factors P G' the factor P G 

Let T~,I,Jè be the sum of alltermsin T~ with the factor PG\F on the R.-th 

place, Then 

n 

I 
m=l 

T" 
m,n 

n 
I 

Jè=l 

and for all nonnegative f 

Hence 

I Te l 
R,m) !1.' I ,JI. n=R. 

l E:: 
T!è I JI.IV = 

Jl.=l • • 

n-.t l E 
PV\A PA 1v = T.t,J • .tQelv"' 

e: e: Jl.=l 

! Jl.-1 I p~G\F 1 V ' PD PG\F1V"' 
Jl.=l n=O 
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Therefore, by (7), 

• Slv- SFIV S I - e, on Ae , 

By (4), (5), (6) we have a:lv s T:lv• The sum of all termsin T: with m 
factors PA is denoted by T* • We shall prove that · 

e m,n 

(9) ~ * * k-1 t. T •v s Q (Q ) •v • m-k m,n e e 

Let T:,k,t be the sum of all terms inT: with the k-th factor PA on the 
t-th place. Substitution of e 

yields 

n n 
Since mreover we have I r* • I r* and T* 1 s r* I it 

m-k m,n t•k n,k,t n,k,t V t,k,t V' 
follows that 

n 
t' * I ,. 
I. Tm,n V 

m-k 

By (4), (5), (6), and (9), we get 

(10) 

A straightforward application of lemma 2.30 yields 

(11) 
k-1 

lim L T* IV • 0 on V • 
n- m-O m,n 

* k-1 k-1 From (8) we conclude Qe(Qe) IV s (1-e) • Now, using (7), it is easy 

to verify that Üm a:lv • o. 0 
n ..... 
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To conclude this section we shall give an extension of lemma 2,6, 

LEMMA 2,32. Let A,C ~ t, B := V\A, D := V\C. Suppose that the embedded 

processas Q on A and S on A u C are Markov processes. If there exists a 

probability 11 ~ N(I -Q) such that 11(A n C) • 0 and SIC= 0, 11-almost evary

where, then there exists a set G c D such that 11(G) = I and P(u,G) = I for 

all u ~ G, 

PROOF. From QIA = I we conclude that 11(A) = I. Hence if 

H' :., {u ~ A n D I S (u, C) • 0} , 

then 11(H·') = and by lemma 2,6 there is a set H c H' such that 11(H) • I 

and Q(u,H) = for u ~ H, This implies 

.. 
S(u,A\H) .. I (P~nDPAuCIA\H)(u) :s I (P~AIA\H)(u) = Q(u,A\H) •0 

n=O n=O 

for u e H. Now we shall prove by induction on n that 

(I) (S~\CSIC) (u) = 0 for u € H , 

For n • 0 we have (S~\CSIC)(u) = (SIC)(u) = S(u,C) = 0 for u eH c H1
, Now 

let it be true for n " k. For n = k + I we have 

This completes the proof of (l), Therefore I (S~\CSIC)(u) = 0 on H, Since, 
n=O 

by definition SD\Af = 0 for all f € 8 we have S A\C = s0 and hence by lemma 

2.22 

Let 

.. 
I (s:,~IC)(u) = I (P~lc)(u) for u E: V • 

n=O n=O 

G :={u e DI I (P~Ic)(u) ~- 0} • 
n•O 

Then G ~ H and therefore 11(G) = I. Since 
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~ ~ 

Î (P~IC) (u) • P(u,C) + (PD Î P~IC) (u) 
n•O n-o 

we get P(u,C) ~ 0 for u ~ ~ and P(u,D\G) • 0 for u ~ G, Hence P(u,G) • 

for u EJ: G. 0 
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CBAPTER 3. MARKOV PROCESSES WITH COSTS 

Let P be a Markov process on (V 0 E) and r a nonnegative 0 not necessarily 

bounded, measurable function on V. The pair (P 0 r) is called a Markov pro

cess 'I!Jith costs on (V0 E), The function ris the aostfunction. 

Insection 2.1 the expression (Pf)(u) for f € B(V,E) and u e V is defined 

as the integral J P(u0ds)f(s), Now we shall also work with unbounded func

tions. If for a complex valued measurable function f the integral 

f P(u0ds)f(s) exists then it is also denoted by (Pf)(u). If (Pf)(u) exists 

for all u ! V then we shall speak about the function Pf. 

n-1 
If for all u € V (P2r){u) exists for all 2 € ~ and if !!=~ t!o (Ptr)(u) 

exists, this limit is called the ave~ costs of (P,r), startingin u, 

and is denoted by g(u). 

REMARK p.6. The name, average costs, is clear by the probabilistic inter

pretation of P: If 

P(u,E) = P{X(t +I) € E I X{t) • u} 

then 

(Pnr) (u) • E{r(X(t +n)) I X(t) • u} • 

We are interestad in the system of equations in x and y: 

(I) x • Px 

(2) y = r - x + Py , 

where x and y are complex valued measurable functions on V. These aqua

tions are called the (P,r)-equations. 

The next lemma is a direct consequence of corollary 2,10. 
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LEMMA 3.1. Let P be quasi-compact and r bounded. Let the integer d be such 

that À~ • I for all eigenvalues À. of P on the unit drcle. Then the func-
1 1 

ti ons 

n-1 
x := lim! L P1r 

n-- n R.•O 

are a salution of the (P,r)-equations. 

Insection 3. I we shall.prove the existence of a salution of the (P,r)-

. equations under somewhat weaker conditions. The quasi-compactness of P is 

replaced by the quasi-compactness of the embedded Markov process of P on 

some set A c V. The boundedness of r is replaced by the boundedness of 

r P~r on A, (B :• V\A), In section 3.2 some properties of the salution 
R.-o 
will be given. The function x will again turn out to be equal to the aver-

age casts. 

3.1. Existenae of a soZution 

DEFINITION 3.2. Let f be a nonnegative measurable real valued function on 

V and let A be a measurable set. The Markov process P is said to be (A,f)

reaurrent if 

i) Pmf exists for all m € N, (B := V\A), 
B 

ii) the sum L (P:f)(u) exists for all u € V, 
111'"0 .. "" 

iii) the convergence of L (P:f)(u) is uniform on A and L 
111'"0 111'"0 

bounded on A. 

We assume that A is a fixed measurable set such that P is (A,Iv)-recurrent 

and (A,r)-recurrent ànd further that the embedded Markov process Q of P on 

A is quasi-compact, (Q interpreted as a Markov process on (A,rA)). The 

(A,Iv)-recurrency implies that the embedded sub-Markov process of P on A 

is a Markov process, 
n 

Let Ej• j • l, ••• ,n be the maximal invariant sets of Q, F := u Ej• and 
A :• A\F, j=l 
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LEl.fMA 3. 3. For each m e :N, 

(I) 

PROOF. It is easy to see that QE.Qn = 0 for all j = 1,2, ••• ,n and 
J 

QE,QE. = 0 if i+ j. Substituting this in 
l J 

yields the expression (1), 

LEMMA 3.4. For all f E: B{V,~) and for all m "N the following relation 

holds, (B := V\A} 

(P:Qf)(u) = (P~fE.)' u E Ej' j = 1,2,,,.,n. 
J 

PROOF. It is sufficient to prove the assertion for nonnegative functions, 

namely, each f € B(V,~) can be written as f = f
1 

- f 2 + i(f3 - f 4), where 

the functions f 1, f 2 , f
3 

and f 4 are nonnegative elementsof B. Now assume 

"' 

0 

that fis a nonnegative function in B. Substitution of QfE = I PiPAfE in 
1',=0 

(i) for all E E ~ • 

Furthermore 

(2) (Qf) (u) = (QfE.) (u) 
J 

for u € Ej, j • I, ••. ,n 

Let Ë. := V\E., then f = fE. + fË .• By (I) and (2) 
J J J J 

(P~fË.)(u) ~ (QfË.)(u) = 0 
J J 

for u <: E. 
J 

Hence 

(P~f)(u) = (P~fE.)(u) for u € Ej' j = l, ••• ,n. 
J 

Now we can prove the existence of a solution of the (P,r)-equations. 

0 
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THEOREM 3, 5, The equations x • Px and y • r - x + Py in x and y, where x 

and y are complex valued measurable functions on V, have a solution. 

PROOF. By corollary 2.13 ~e speetral radius of Q6, r(Q6} < l. Hence, each 

of the equations x • QE. IE. + Q8x in B(A,EA) has a unique solution 
J J 

Using (Q8f)(u) = 0 for all f e B(A,EA)• u e Ej' j • l,2, ••• ,n, we get 

g.(u) =I for u € E. and g.(u} • 0 for u € E. if i~ j. This means that 
J J J J. 

QE IE • QE g. • (Q - Q8)g. and that g. is a salution of the equation 
j j j J J J 

x- Qx • 0 in B(A,EA), 

It is possible to extend 

B(V,E) by defining g~ 

g. to a solution g~ of the equation x - Qx • 0 in 
J J 

J 
B(V,E). 

:= Qgj' where Q is used as an operator on B(A,EA) to 

Each function gj. j = l, ••• ,n is a salution of the equation x • Px since 

The problem is to choose a linear combination x of the g~ such that the 
J 

equation y • r - x + Px has also a solution. Let Qj be the restrietion of 

Q to E. x EE .• The (A,r)-recurrency and (A,Iv)-recurrency of P imply the 
J J ® ~ 

boundedness on A of the functions I P~r and r P~g~. j = l, ••• ,n. For 
t•O ~ t•O J 

convenience we shall write Tf instead of L Pif for f • r or f is bounded, 
~-o 

Notice that PBTf = L P~f. 
R.=l 

The restrictions of Tr and Tg~ toE. areelementsof B(E.,EE ). Therefore 
n-l 1n-l J J j 

both lim! I Q~Tr and lim! I Q7Tg~ areelementsof N(I- Q.), Since 
n-- n t=O J n...., n R.=O J J J 

dim N(l - Q.) • 1 there is a constant c. such that 
J J 

Define the function g* € B(V,E) by g* :• 

equation y • r- g* + Py bas a solution. 

n 
L c.g~, We shall show that the 

j=l J J 
This can be done by proving that 
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1 n-1 ~ * !!: ii ~~O Q (Tr - Tg ) = 0 on A • 

For the moment we assume that this is true. 

Let the integer d be such that À~= l for all eigenvalues À. of Q on the 
1 1 

unit circle. By corollary 2.10 the function f' on A defined by 

d-1 kd-l+m 
f' := ~ Z: lim I QP..(Tr- Tg*) 

m=O k.,... 9..=0 

is a solution of the equation y • Tr- Tg*+ Qy in B(A,EA). The function 

f 1 can be extendedtoa function f on V by defining f := Tr- Tg*+ Qf'. 

The function f is a salution of the equation y = r- g* + Py. This can be 

seen as follows: 

"' 
= P T(r-g*)+f-T(r-g"')=f+ Z: Pt(r-g"')-

B ~I B 

* f- r + g 

What remains to be proved is 

I n-1 t * 
lim - I Q (Tr - Tg ) = 0 , 
n-- n l'.=O 

The constants c. have been defined such that 
J 

Hence 

(I) 

1 n-1 l'. 
lim- I Q.(Tr- c.Tg~) = 0 • 
n-- n ~-o l l J 

1 n-1 ~ * 
lim- L QE (Tr- cJ.TgJ.) = 0. 
n...,. n l'.=O j 

* * But Tgj = TQgj and, by lemma 3.4, 

cj(Tgj)(u) • cj(TQgj)(u) = cj(TQ IE.)(u) for all u é Ej' 
J j • 1 ••• , ,n • 
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In the same way 

(Tg*) (u) = (TQg;_)(u) = c. (TQ IE.)(u) for u e: E. 
J J J J 

Therefore 

(Tg*) (u) = c. (Tg~) (u) for u e: E. , 
J J J 

Ihis implies by (I) that 

• 1 n;::-1 J!, * 
l~m - L QE (Tr - Tg ) = 0 • 
n.._ n R.=O j 

Now we consider 

m Jè L Q (Tr - Tg*) 
~-o 

Using lemma 3.3 we get 

(2) m R. * L Q (Tr- Tg ) 
X.=O 

m R. * m R.- 1 k R.-k * L Q6 (Tr- Tg ) + L I Q, QE. (Ir- Tg ) = 
R.•O R.= 1 k=O '-' j I J 

Since the speetral radius of Q6 is smaller than one, we have 

(3) 
• 1 m;:t R. * 

lLm- L Q6 (Tr- Tg)= 0. 
lJ!"'«' m R.=O 

For each & > 0 there is an Ne: e: N such that for all j = I,,,. ,n 

1 m-1 J!, * 
IJ- I QE (Tr. - Tg ) 11 < E 

m R.=O j 
for m ~ N , 

E: 

Put m >Ne:. Then for j = 1,2,.,.,n we have 

m-N 
1 m- 1 k m-k R. * e: m - k k 1 m-k R. * - L Q L Q (Tr- Tg ) = L - Q (- L Q (Tr- Tg ) ) + 
m k•O ó R.• 1 E j k=O m 6 m - k l\= 1 E j 
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+ 

Using r(Q
11

) < I we get 

l m-I k m-k t * k 
11- J: Q11 l QE (Tr - Tg ) 11 ,:; e: , 11 I Qllll 

m k•O ~=I j k=O 

fer m large eneugh. Since e: was arbitrary this implies 

I m-I k m-k t * 
lim- L Qb l QE (Tr- Tg) • 0 fer j = 1,2, ••• ,n. 
m:- m k=O g_.,l j 

Together with (2) and (3) this cempletes the proef of 

I r.r-l t * 
lim - t Q (Tr - Tg ) = 0 • 
m:- m t=O 

of the sol-ution 

57 

0 

In this sectien the assumptions and notations are as in the preceding one. 

LEMMA 3.6. Let 

Then P~r and P~ IV exist for all m € ~ and 

lim l (P~r)(u) • liml (P~ IV)(u) = 0 for all u EV. 
ur-m ur-m 

PROOF, Substitution of P PA+ PB in Pm+l yields 

Hence 
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The existence of P~ 1Tr i~ implied by the existence of Tr and the bounded

ness of Tr on A, The existence of P~ 1 T IV is proved similarly, For each 

E > 0 there is an integer NE such that 

I 
J<=N 

E 

JO 
(PBr)(u) < e: for all u E A, 

For m > Ne: we have 

Let 11 TriiA := sup (Tr) (u), Then 
UEA 

(P~ 1Tr) (u) s (NE + 1)11 Tr IIA + (m - Ne:)e: + L (P~r) (u) 
JO=~ I 

Using standard arguments we can show that lim~ (P~r)(u) 0 for all uEV. 

That lim ~ (P~ 
m"""m 

m"""m 

IV)(u) = 0 can be proved similarly. 

In the next lemma we shall give some properties of the salution of the 

(P,r)-equation as constructed in the proof of theorem 3,5, The uniqueness 

of this salution is also considered, 

D 

LEMMA 3.7, Let the functions g* and f be as constructed in the proof of 

theorem 3,5, Then Pmf exists for all mE JN, lim ~ Pmf = 0, and g* = g (the 
m 

I!l700 

average casts of 

ti ons, such that 

(P,r)), Let g
1
,f 1 be another salution of the (P,r)-equa

lim ~ Pmf = 0, then g
1 

=g and f- f
1 

= Q(f- f 1). 
m->oo m I 

PROOF, The functions g* and f on V were defined in the following way: 

* n 
g := I 

j=l 
f := Tr -

* * e.g., where g. := Qg. and g. E B(A,EA); 
J J J J J 

* Tg + Qf' where f' E B(A,EA), 

Hence g* and Qf' are bounded, By lemma 3,6 Pmf exists for all m E lN and 

(I) 
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Repeated substitution of f(u) = r(u) - g*(u) + (Pf)(u) in its right-hand 

side yields 

He nee 

and by (I) 

m-1 m-1 
f(u) = L (Ptr)(u)- l (Ptg*)(u) + (Pmf)(u) • 

t=O t=O 

I m-1 R. 
g*(u) = lim- I (P r)(u) = g(u) for all u eV. 

m:+oo m t=O 

Now we consider the salution (g
1
,f 1) of the (P,r)-equations. As for the 

salution (g*,f) we can prove 

I m-I i 
g1(u) = lim- L (P r)(u) 

m-- m t=O 

Further the function f- f 1 satisfies f- f 1 = P(f- f
1
), hence by lemma 

For u E Ej it is possible to write the average casts 

g(u) = lim.!. 
m-""m 

1 !< 
(P r) (u) 

in a somewhat different way. 

LEMMA 3. 8. For u E Ej, = I, ••• ,n 

I m-1 t 
lim- L (P r)(u) 
nr+<o m t=O 

I m-1 
lim- L 
m-"" m t=O 

l m-1 
lim- I 
m-"" m i.=O 

PROOF. Let g* be as constructed in the proof of theorem 3,5. 'rhen 

g*(u) = cj for u E Ej' where 

D 
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c. "' 
J 

I m-1 
lim- I 
m;+oo m .t•O 

I m-1 
lim- I 
m;+oo m J!.•O 

t * (QE Tg.) (u) 
j J 

But for u "' E. 
J 

9. 
(QE. Tr) (u) .. 

and J 

.!!, * (QE Tg.) (u) • 
j J 

.t * (Q Tg.) (u) , 
J 

Further 

By lemma 3,4 

(TQg~)(u) = (TQIE.)(u) = (TQIV)(u) for u E EJ •• 
J J 

Hence (Tg~)(u) = (Tiv)(u) for u € E •• This completes the proof. 
J J 

A more general result of this type is proved by de Leve [8], part II, 

lemma 1.57. 

D 
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CHAPTER 4. STATIONARY MARKOVIAN DECISION PROBLEMS 

A stationary Mar>kovian de aision probZem (SMD) on (V •l:) is a set of Markov 

processes with costs {(Pa•ra)}, a E A. The elemants of A are called strat

egies. The average aosts of (Pa,ra) starting in u, if existing, are denot

ed by ga(u). The strategy a0 e A is called optimaZ if ga(u) exi~ts for all 

a E A, u € V and if g (u) $ g (u) for a E A, u € V. Suppose that p is a a0 a 

positive maasure on l: such that pga := J ga(u)~(du) exists for all a € A, 

then the strategy a0 is called p-optimat if pg $ pg for all a e A. 
ao a 

In this chapter we shall investigate the existence of optimal and ~-opti

mal strategies. Insection 4.1 it is assumed that Pa is quasi-compact for 

all a € A and ra is bounded, uniform on A. Under some extra conditions one 

can prove the existence of optimal or p-optimal strategies. This case is 

extended in section 4.2. The quasi-compactness of Pa. is replaced by the 

quasi-compactness of the embedded Markov process of Pa. on some set A (A 

independent of a.). The boundedness of ra• uniform on A, is replaced by the 

following conditions: 

i) For all a € A the Markov processPa is (A,ra.)- and (A,I)-recurrent. 
"' ., 

ii) The boundedness of E P:Bra. and n .. E
0 

P:BIV on A, with B :~ V\A, is 
n=O 

uniform on A. 

The conditions of section 4.2 for the existence of optimal and ~-optimal 

strategies are weaker than those of section 4.1. If A= V, the two cases 

are identical, But for a good understanding of the statements it is neces

sary to give both sections. 

In section 4.3 the results of section 4.2 are applied to the case where V 

is countable. These results are related to those of soma others. 

An important property of an SMD, if one is interested in the existence of 

optimal strategies, is its completeness. 
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DEFINITION 4.1. Let (P 1,r1) and (P2,r2) be Markov processes with costs on 

(y,r). For each F ~ r the Markov process with costs (P
1
FP

2
,r

1
Fr

2
) is de

fined by: 

for u € F, E " L 

for u E V\F, E € E, 

DEFINITION 4,2, An SMD {(Pa,ra)}, a e A is ~ompZete if for all a
1
,a2 € A 

and for all F ~ l: there is an a E A such that 

The strategy a is denoted by a 1Fa2• 

Intuitively speaking an SMD is complete if for all F e L and for all 

a
1
,a2 e A it is allowed to apply strategy a

1 
on F and strategy a

2 
on V\F. 

If v is a positive maasure then the function vga• if existing, is a real 

valued function on A, The most obvious way to prove the existence of a 

~optimal strategy is the following: 

i) Introduce a topology on A such that A is COmPact; 

ii) derive conditions for the continuity of vga as function on A. 

This metbod will be used in the sequel. For A we use a metric space. It 

will turn out that v-optimality is almast identical to optimality for co~ 

plete SMD's. 

4. 1. The quaBi-~o11?act anà boundeà caBe 

In this sectien we consider an S~ID, {(Pa,ra)}, a € A on (V,I) such that Pa 

is quasi-compact for all a € A and ra is bounded on V, uniform on A. 

Let for a € A, na be the dimension of N(I - P ) 
n a 

a 
maximal invariant sets of P • The union a 

I ~I 9. 

u E • 
j=J aJ 

Sa:= lim- I P, (the existence 
m- m t=O a 

is proved in 

and E ., j • l, ••• ,n , the 
aJ a 

is denoted by Ea. Let 

lemma 1.7). For all a e A 

and j = J, ••• ,n the probability ~ . is an element of N(I- P ) with sup-
a a] a 

port E ., (see theerem 2,5 for the existence of these probabilities). If p 
aJ 

is a probability on l: with )J(E .) = 1 then pS = v •• The average costs of 
a] a a] 

a, ga• exist and are equal to Sara• ga E N(I - Pa) and ga is constant on 

E • for j = l, ••• ,n, This constant is denoted by gNJ•• aJ a ~ 
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We assume the existence of a metric p on A such that 

lim IJ P - P IJ = o for all a0 " A • 
( ) a ao p a,a

0 
-+0 

These assumptions are used in subsectien 4.1.1 where the continuity of ga 

as a function on A is considered, The existence of an optima! strategy and 

the relationship between optimality and ~-optimality are investigated in 

the subsections 4.1.2 and 4,1,3, 

4.1.1. The eontinuity of ga 

DEFINITION 4.3. Let ~ be a positive measure on L. The function ga is ~

aontinuous in a on some subset V c A if 

for all a0 E V • 

For all n E N the subset of A wïth all a such that na = n is denoted by 

An. We shall prove the ~-continuity of ga on An for all n "N and all po

sitive measures ~ on L, Since Sa is continuous as an operator valued func

tion on An but generally not on A, (see lemma 1.15), this cannot be ex

tended to ~-continuity on A. 

LEMMA 4. 4. The function ga is ~-continuous on An for all n E N and for all 

positive measures ~ on L, 

PROOF, Let a0 E An and ~ a positive measure on L, We have 

Hence 

+ I ~s (r - r ) I • 
ao a ao 

By lemma I. JSb, Sa is continuous in a on An. Tagether with the boundedness 

of ra' uniform on A, this implies 
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Since pS is a linear combination of w 1,.,.,w • the assumption ao ao aon 

i1!1Plies 

This completes the proof. 0 

REMARK 4.5. This result implies the continuity of gal as a function on A1• 
However, the condition 

lim liP - P 11 = 0 
p(a,ao)+O a ao 

is unnecessarily strong. This condition can be replaced by 

lim 11 P~ (Pa - P ) 11 = 0 for some k <t l • 
p(a,ao)+O ao 

PROOF. Considering the proof of lemma 4.4 it is clear that it is sufficient 

to prove the continuity of Sa as an operator valued function on A1• 

Let a0 ~ A
1 

and let d be an integer such that Àd = I for all eigenvalues 

À of P on the unit circle, (see theorem 2.9). We have 
ao 

and 

Let 

Th en 

nd+d-1 
}: 

Jl.=nd 

11. t (P -P ) • (P -P )P d I +P (P - P )P d-l+ ••• + a a0 a a 0 n - a a a0 n 



••• + 

Let P00 be the restrietion of P
0 

to M0 , (see lemma 2,14). There is a real 

number 13, 0 < 13 < 1, and an integer N such that 11 P00 11 :;; f:\
0 for all n > ~. 

Since ~(P - P ) ~ M0 for all ~ ~ M this implies 
a ao 

11 (P - P )P 11 s; 213° for all n > N , a a0 n 

Choose e: > 0, m > N such that 2 < e:, and 6 > 0 such that 

For n such that nd - m > k and a. such that p (a,a.0) < 6 we get 

nd-1 m-1 d d-j 
::2 L flj + (m-l)d+€!d(l+d) .IIJ)•I PJ. + L L PR. !Is; 

jam j=l t=O ao 

213m e: 
:> T="'8 + (m-l)d+ !d(l +d) • {(m-l)d + !d(l +d)} $ 2e • 

Hence 

which completes the proof, IJ 
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4.1.2. Ea:istence of optima't st:Pategies 

In lemma 4,4 we proved the u-continuity of ga on An. This implies the con

tinuity of gal on A1• If ~ = A1 and A is compact, there is an optima! 

strategy. 

In the next lemma we give a slight generalization of this result. 

LEMMA 4.6, Let A be compact and An closed in A for all n • N. If na is 

bounded on A, there is a u-optimal strategy for all positive measures u on 

l:. 

PROOF. The set An is compact for each n • N. Hence the inf uga is attain
et€A 

n 
ed on An for all n • N, The boundedness of na completes the proof. D 

The following condition for closedness of An is a direct consequence of 

lemma l, JSc, 

LEMMA 4.7. If there is a B, 0 < B < 1, such that for all a € A the spec

trum of Pa has no points with absolute value between 6 and I, then for all 

n • N the set A is closed in A. 
n 

If for all a € A there is an a1 E AI such that g (u) s g (u), u € V, then a
1 

a 

AI is said to dominate A. If A
1 

dominates A it is sufficient to consider 

Al. 
We shall give a condition sufficient for A1 to dominate A. 

DEFINITION 4.8. The SMD is called aommuniaative*) if for all a • A and 

j • 1, ... ,na there is an a 1 € A1 such that 1r 1 (E .) > 0, 
al aJ 

LEMMA 4.9. If the SMD is complete and communicative, A1 dominatea A. 

PROOF. Let a E A. Choose J'o such that g. min {g .}, The com-
aJo • etJ J•l,2,3, ••• ,n!l 

municativeness of the SMD implies the existence of a strategy a 1 € A1 such 

that 'IT l(E .·) > o. Let az :• aE • al. Then a2 E Al and g (u). g •• 
al aJo aJo a2 aJo 

u E E •• Let A :• E • and,B i• V\A, By the lemma's 2,17 and 2.19 the 
aJo a.Jo 

embedded sub-Markov process Qa 
2 lemma 2.21, · 

of P on A is a Markov process. Now by 
a2 

*) Bather [I] and Hordijk [4] use the term communicating. 
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r 
g_ .. o 

and since 2 (u) • g for u e: A this is equal to 
--u2 ajo 

which completes the proof. 0 

In subsection 4,1,1 the ~-continuity of ga on A1 was proved, This is equi

valent to the continuity of gal on A1• The completeness and communicative

ness of the SMD, and the compactness of A1 are sufficient for the existen

ce of an optimal strategy (lemma 4,9). We shall prove that the compactness 

of A1 may be replaced by the compactness of A. To this end we need the fol

lowing lemma. 

LEMMA 4,10. Let {~}7 be a sequence in A1 converging to a 0 e: A, such that 

lim u 1(E .) exists for all j = 1,2, ••• ,n , Let for all k and j with 
k- ~ aoJ • ao 
u 

1 
(E • ) > 0 the measures n~ be defined by 

~ aoJ 

n~(E) 

Then for all j with lim n 1(E .) > 0 
k .... ~ aoJ 

(where 11.1~ . is the norm of the measure restricted toE .), 
aoJ aoJ 

PROOF. Let j be such that lim n 1(E .) > 0. Put A:= E . and B :• V\A. 
k- ~ "oJ aoJ 

The restrietion of the transition probability P to A x ZA is a transi-
aD 

tion probability on A x IA' but the restrietion of P~ toA x IA is in 

general only a sub-transition probability. Define for k € ~ the function 

1\: ( • , •) on A x I A by 

R (u,E) := '11' • (E) (I - P (u,A)) , u e: A, E e: l:A • 
-~ aoJ ak 
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Then Pk :# P~k + ~ is a transition probability on A x EA, We have 

and 

He nee 

This implies the quasi-eompaetness of Pk for k suffieiently large. The 

Markov process P on (A,IA) has only one invariant probability. Therefore, ao 
by lemma 1.15a, for large k, the Markov proeess Pk has only one invariant 

probability ~· By lemma !,!Sb 

(I) lim 11 ~ - 11 . IIA = 0 • 
k- <XoJ 

We shall prove that 

(2) lim 11 À_ - ~j 11 = 0 • 
k""""" lt kA 

Let n~A be the restrietion of n~ to IA' then for E E EA 

Henee, for large k, 

where (11~IBP ~)A is the restrietion of 1f~IBP '\. to 'i. A' 

For the measure 11~11.:- (rraiBPa )A on EA we have 
k 
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(1!~\)(A)- (1!~IBPak)A(A) = I 1!t(du)\(u.A)- J 1!~(du)Pak (u,A) = 

A B 

• I 1!~(du)(l - P (u,A))- I 1!~(du)P (u0 A} = 
ak '\ 

A B 

= J 1!~(du) - f 1!~(du)Pak (u.A) • 0 , 
A V 

Therefore the measure 1t~A~- (1t~IBPak)A on rA is an element of.~he sub

space M0 (A,EA) of M{A,EA)• (see lemma 2,14), The measure Àk- w~A is of 

~ou~se àlso an element of M0• We al ready had 11 ~ IIA s; 11 PaO - Pak IIA. Further 
Lt Ls easy to see that 

Hence 

= 11'~{A) - J 11'~(du)Pa0 (u.A) + 

A 

+ J 1!a(du)(Pa
0 

<u.A)- Pak <u.A)) = 
A 

= J l!~{du)(l- P'\ (u0A)) • 

A 

~Uw~~- (1t~I8P'\)AIIA = 0. 

Using lemma 2.14 and equation (3) we get lim 11 Àk- 1\'~AI~ = 0, This c~ 
k-

pletes the proof of (2) 0 and together with (I) the proef of the lemma. 0 

Now we can prove the main result of this subsection, 

THEOREM 4. 11. Let the SMD be complete and communicative, If A is comp.act 

then an optimal strategy exists. 

PROOF. Let g :• inf g 1• The compactness of A implies the existence of a 
aE:AI a 

sequence {ak} in A1 such that lim ga 1 = g and lim '\ • a0 for some a0 E: A. 
k .... k k .... 
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n"o 
Iastead of ECl j we shall write E •• lAt à :• V\ u Ej. Without loss of 

0 J j•l 
geuralitywe may assume ~het lim11a..t(B.) exists for all j•t,2,, •• ,n • 

k- k J ~ 
These limits are denoted by wj. We have 

s 1 • w 1s • '11' 1s r • 11 1r • f r (uh 1 (du) + 
'ie. 'ie. 'ie. 'ie. 'ie. '\ '\ '\ à <it <it 

Purther 

'rbe restrietion of the measure 11 1P to l:à is identical to the restric-
'\ ~ 

tion of the measure '11''\c.IIlClO to l:á. Rence 'll'llrtl • 11'\ 1 Il~ +1rllrt 1(P'\ -Pcto) 

(as equation in M(á,tá}). The eonvergence of 'ie. to ~ implies 

The speetral radius of I áp is smaller tha.n (see corollary 2. 13). There-
Clo 

fora lim ll11 111.,_ • 0 and lim I r (u)!r 1 (du} • 0. Now we have to eonsider 
k- 'ie. k- á ~ 'ie. 

J r . (u}w 1 (du) • 
~ 'ie. E • . J 

Let w. > 0. By lemma 4.10 
J 

lim { J r (u)lt 1(du) - 11. J r (u)11 j(du)}- o • 
tt-- E. ~ ~ J E . ~ ClO 

J j 



Uaing the aaaumption 

we get 

lim w.{ J r (u)n .(du) - J r (u)n .(du)} • 0 
k..... J '\ "ol "o aoJ 

Ej Ej 

and hence 

But 

Hence 
n (Jo 

(I) g .. lim 8a.t • r n •• g J' • 
k..... K j•l J "o 

We had lim h 111t. • 0, which implies that lim 11 1 (t.) • 0 and 
k- ~ ~ ~ 

n na ao 0 
l n. • L lim n I {E.) • I • 

j•l J j .. l k ..... ~ J 

Now, by (1), 

.. 
min 

j•J ,2, •••• n ao 
{g • } s g • 

"oJ 
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This implies, by lema 4.9, the existence of a a7rategy a 1 <f: A1 such that 

This strategy a 1 ia optimsl. 0 
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In this subsectien we shall work with a complete SMD. We shall prove that 

for all a 1,a2 ! A there i~ an a0 ! A such that 

g (u) s min{g (u),g (u)} for all u! V. ao al (12 

Using this property one can show that the u-optimality of some strategy a0 
implies that for all a ! A, g s; g , u-almost everywhere on V. Tbe strate

aO a 

gy a0 is said to be optimal, u-almost everywbere. 

We need the following three lemma's. 

LEMMA 4,12. Let {(Pa,ra)}, a" A be a complete SMD. Let a 1,a2 € A, F € t 

and a :• a 1Fa2• Assume that ~ .(F) = 0 for all j • l, .•• ,n • By lemma 2,6 
~ a 

a set G c V\F exists such that ~ .(G) = I for all j = J, ••• ,n, and 
. ~ a 

Pa(u,G) • I for.all u € G, By corollary 2.13 the embedded sub-Markov pro-

cesses Q1 and Q2 of Pa• on V\F and on F u G, are Markov processes. The 

functions Kn• n • 1,2,,,., on V are defined by 

81 (u) .. (Qiga )(u) 
2 

81 (u) • (Q2Fgl){u) + (Q2Gga )(u) 
2 

and for n = 2,3,4, ••• 

Kn {u) 

for u " F , 

for u " V\F , 

for u € F , 

for u " V\F , 

For these functions Kn the following property holds: 

lim (&n(u) - ga(u)) = 0 for all u" V .• 
n_..,. 

PROOF. By lemma 2.21, ga= Qlga 

of a we see that g (u) • g (u) 
a a2 

and ga = Q2ga. Considering the definition 

for u " G, Hence ga • Q2Fga + Q2Gga
2

' Now 

it is easy to verify that for n ;;, 

for u " F , 

and 

for u " V\F • 
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Using 

and 

we get the required result. 0 

It is easy to see that even 

limll ~ - ga 11 = 0 , 
n->oo 

but the lemma is formulated in this way to maintain the analogy with sec

don 4.2. 

REMARK p.7. The functions gn in this lemma can be interpreted as the aver

age costs if one applies strategy n until the (n + 1)-st time. the system 

enters the set V\F, and from then on the strategy a2• 

DEFINITION 4, 13, For n 1,n2 € A the set H , or shortly H, is defined by 
(11(12 

:• {u € V I g (u) < g (u)} • 
(11 ct2 

LEMMA 4. 14. Let the SMD {(Pa,ra)}, a 

If ~ .(V\H) > 0 for 
(liJ 

€ A be complete. Let cr 1,a2 € A, and 

all j = l, •••• n • then ~ .(H) = 0 
cri aJ 

PROOF, Suppose it is not true, then there is a j € {t,2,,,.,ncr}' such that 

~crj{H) > 0. Let E := Eaj' F := E\H and Paj the restrietion of Pa to 

(E • ,l:E ) • 
aJ aj 

Since ~ .(V\H) > 0 for all j = 1,2, ••• ,n , the embedded sub-Markov pro-
a1J al 

cess Q1 of P . on Fis a Markov process (see lemma 2.17), In the same. way 
<XJ 

~ .(H) > 0 implies that the embedded sub-Markov process Q2 of P • on En H 
~ ~ 

is also a Markov process. Let R be the entry Markov process of P . on F, 
<XJ 

By lemma 2.28, R is uniform ~-recurrent for some positive measure ~. and 

therefore, by lemma 2,18, quasi-compact. 

The Markov process P . has only one invariant probability and hence no 
<XJ 

disjoint invariant sets. Each invariant set of R can be extended to an in-

variant set of P ., (see lemma 2,27), hence R has no disjoint invariant 
ct) 

sets and therefore only one invariant probability. 
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n-1 
This means that for all f E B(E,tE) the lim~ L Rtf is constant on E. 

n..,... t=O 
Let Qj be the embedded Markov process of P on V\H, By lemma 2.21 

011 

Using the definition of a we get g (u)= (Q 1g01 )(u) for u eEn H. Let QZ 01 1 l 
be the embedded sub-Markov process of P on H, Using the definition of a 

012 
we get for u € F, Qz(u,E n H) = I and 

Hence, for u € F, 

n-1 
Let S := lim ! L R

1 
and c := 

n->oo n t=O 

" (Rg ) (u) • 
a2 

(S g ) (u) , u E E. Th en c " inf { g (u) } , 
a2 U€F a2 

attained then c > inf {g
01 

(u)}, 
UEF 2 

and if the infimum is not 

However, by (1), g (u) > c for all u € F, hence inf {g (u)}" c, This 012 uEF a2 
implies that the inf {ga (u)} is attained on F, say in u0• By (1), 

uEF 2 
g (llo) > (Rg )(u

0
) "g (u

0
), which yields a contradiction. This com-

a2 a2 012 
pletes the proof. 

LEMMA 4,15, Let the SMD {(P
01
,r

01
)}, a E A be complete. Let a 1,a2 € A.and 

H := H Assume that ~ .(V\H) = 0 forsome j € {1,2, ••• ,n }, By lem-
ala2 aiJ al 

ma 2.6 a set G c H exists such that ~ .(G) = 1 and P (u,G) = 1, a 1J a 1 

[ 

Let a := a
1
Ga2• Then g (u) = g (u) for u € G and g (u):> g (u) for u € V. a a

1 
a a

2 

PROOF. A direct consequence of the definition of a is that ga(u) = g (u) 
011 

for u e: G. 

E ·= I • 

Let 1 1 :={i I 11 .(G) = O}, r 2 :={i I 11 .(G) > 0}, and 
0121 0121 

E ., The embeäded sub-Markov process Q of P on G u Et is a a 21 a 2 
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Markov process, and by lemma 2,21 g • QGga + QE ga • 
a2 2 I 2 

Let Q' be the embedded Markov process of Pa on G u E 1• Then for u € V\G 

and for all fEB we have {Q'f)(u) = (Qf)(u), Hence 

Using g {u)= g (u) for u EG and g (u) • g (u) for u E E1, this implies a a 1 a a2 

for all u E V\G, This completes the proof, [J 

Using the lemma's 4.12, 4,14, and 4.15 we can prove the following theorem. 

THEOREM 4,16. Let the SMD {(Pa,ra)}, a E A be complete and let a 1,a2 E A. 

Then there is an a € A such that 

ga(u) s min{g (u),g (u)} for all u € V. 
al a2 

PROOF, Suppose there is a j E {1,2, ••• ,n } such that ~ .(V\H ) = 0. 
al aJJ a "2 

Then by application of lemma 4.15 we can construct a strategy a E A such 

that g (u)~ g (u) for all u E V and n .(V\H ) =I, Therefore it is 
a a2 a 1J a 1a 

possible to construct stepwise a strategy a3 € A such that g (u) ,:; g (u) 
0 3 "2 

for all u E V and n .(V\H ) > 0 for all j E {1,2,,,.,n }, 
"tJ a1a3 "1 

Let a
0 

:• a 1H a3• Application of lemma 4.14 yields n .(H ) = 0 for 
ala3 aoJ ala3 

all j • t,2, •• ,,n , Let the functions gn• n • 1,2,,,, bedefinedas in 
ao 

lemma 4,12 with a3 insteadof a2, H insteadof F, and a0 insteadof a. 
ala3 

Then it is easy to see by induction that for all n e: N 

iu(u) ~ min{g (u),g (u)t for all u E V, 
al a3 

By lemma 4.12 lim (iu(u)- g (u)) 0 for all u E V, Hence 
n-+<o ao 

g (u) s min{g (u),g (u)}~ min{g (u),g (u)} ao a, C<3 al Clz 

COROLLARY 4, 17, Let ~ be a positive measure on E. Assume that the complete 

SMD { (Pa,ra) }, a ,, A has a u-optimal strategy a0, Then a0 is optimal ~-al

most everywhere. 
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PROOF. Suppose there is an a 1 ~ A such that g < g on some set E with a, ao 
~(E) > 0. By theorem 4.16 there is an a~ A such that 

g (u) s min{g (u) ,g (u)} a a, ao for all u ~ V • 

Th en 

I g (u)~(du) s J (min{g (u),g (u)})~(du) < J g (u)~(du) , 
a a I aO a.O 

V V V 

which contradiets the v-optimality of a.
0

• 

4. 2. The errbedd8d quaai-co~~pact case 

0 

The resul~s of the preceding sectien will be extended to the case where Pa 

is net necessarily quasi-compact and ra not bounded. We assume the exis

tence of a measurable set A such that 

i) for all a € A the Markov processPa is (A,IV)-recurrent and (A,ra)

recurrent, 

ii) the erobedded Markov process Qa of Pa on A is quasi-compact for all 

a € A, (Qa is interpreted as a Markov process on (A,EA)), 
., .. 

iii) the functions L P~IV and I P:Bra on A, with B = V\A, are uni-
n=O n=O 

formly bounded on A. 

Let for all a € A, n be the dimension of N(I - Q ) , E . for j = 1,, •• ,n~ 
a a ~ ~ 

the maximal invariant sets of Q , and rr • the invariant probabilities of 
a aJ 

Qa with support Eaj' Let 

E . 
<lJ 

and 
. 1 n-1 t 

S :• l1m- I Q • 
a. n..- n t•O CL 

By lemma 3.7 the average costof (PCL,ra) startingin u, 

ga (u) 
I n-1 t 

:• lim- I (P r )(u) 
n...., n t=O CL CL 

exist for all a € A and u € V. In lemma 3,8 we proved 

for u 11 

where 



T f • 
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Hence ga is constant on Eaj for j = t, ••• ,na. These constants are denoted 

by g •• Let p be a metric on A. The continuity assumptions of section 4,1 
<IJ 

are replaced by 

v) 

for all a0 " A and j • 1, ••• ,n • 
"'o 

for all a0 € A and j = t, ••• ,n • 
ao 

For A = V these assumptions are identical to the assumptions made in sec

tion 4, I. 

4.2.1. The continuity of ga 

In this subsection we consider the continuity of ga for the embedded quasi

compact case. 

Let An bedefinedas in subsection 4.1.1 with Pa replaced by Qa• 

LEMMA 4.18. Let n e ~ and a0 " An. Then there is a o > 0 such that for all 

a" An with p(a,a0) < .S and for all i= 1,2, ... ,n, Tra
0
i(Eaj) > 0 for pre-

cisely one j E { 1,2, ... ,n}. 

Consider the .set Anó := {a E An p(a,a0) < .S}, Let for all a E Anê and 

i " {I ,2,, •• ,n} the integer ia be defined by '11' • (E • ) > 0. Then for all 
"ol. al.(l 

1!11 • - 11 • 11, and 
aol. al.(l 

converges to 0, 

PROOF. Lemma t.ISb implies the continuity of Sa as an operator valued func

tion on A • Let 6 > 0 be such that 11 S - S 11 < ! for all n E An with 
n n <10 

p (a,<1
0

) < ö. 

Let i " { 1,2 , .. , ,n} and let vl.. be some probability on l:, with v. (E .. , ., 1, 
" l. ''ul. 
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then by theorem 2.5. ~ .(E .) = (v.S )(E .) 
aol aol l ao aol 

I, Hence (v. S ) (E • ) > i 
l ct aol 

for all a € An with p(a,a0) < ö. But 

and therefore 

n 
(v. S ) (E • n ( u E • ) ) > 

l ao aol j=l ctJ 

for all a € An with p(ct,a0) < ó, This implies the existence of at least 

one j € {1.2, ... ,n} such that (v.S }{E .) = rr . (E .) > 0 for ct € A with 
1 ct0 ctJ a01 a3 n 

Suppose that forsome a € An with p{ct,ct0) < ö there are two j's, j
1 

and j
2 

such that rr . (E • ) > 0, Let the probabilities v.. and v.. on !:A be given 
a.Ol ctJ lJ I 1J 2 

by 

v .. (E) • 
lJ J 

and v .. (E) • 
1J2 

Then v .. S = v.. S = ~ • • Us ing ( v.. S )(E • ) = I and 
13 1 cto 1 J2 cto 0 01 1 J1 ct ctJI 

(v .. S )(E • ) = I it is easy to see that 
l.J 2 ct otJ 2 

and 

rr . (E • ) = (v. . S ) (E • ) > ~ 
aOJ. aJ I lJ 1 aO aJ I 

The disjunctness of E . and E . 
ctJ I otJ 2 

implies rr . {E • u E • ) > n which 
a 0 :t ctJI aJ 2 

contradiets the fact that ~ . is 
aol 

a probability. This completes the proof 

of the first part of the lemma. 

Now let for all ct € Anó and i € {J,2, •••• n} the integers ia be such that 

rrct
0

i (Ectia) > b, The probability viia on ~ is given by 

Then rr . ctl. 
therefor~ 

vii (E} :• 
ct 

and 



(I) 

Furthermore 11 • (E • \E . ) • 0 and hence 
Cll.a aol. al.a 

For j • l, ••• ,n we have 

for u € Eaj , 

(SNTNrN)(u) = 11 • (T r ) for u € E • , and (S T IV) (u) = 11 • (T IV). But 
~ " " aJ a a aJ a a aJ a 

and 
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Using (!)', the uniform boundedness of Tara and Talv• and the continuity as

sumptions made at the beginning of this section, we get 

D 

REMARK 4.19. This result implies the continuity of gal on A1• However, the 

condition 

is unnecessarily streng. It can be replaced by 

lim 11 Qk(Q - Q ) 11 = 0 for some k <! I • a a a 
p(a,a0)~ 0 

Compare remark 4.5. 

Now we consider the ~-continuity of ga. 
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LEMMA 4.20. Let u be a positive measure on EA. Then the function ga is u

continuous on An for all n " :N. 

J ga.(u)u(du) • J (Qa.ga.)(u)u(du) • J (Sa.ga.)u(du) • 

A A A 

• J ga (u) (uS a) (du) • 

A 

The measure uS~ is a linear combination of the ~ ., 
~ <:IJ 

(uSa)(A\Ea) • 0 and 

J ga (u) (uS a.) (du) 

A 

= J g (u)(uS )(du) • a a 
Eet 

+ I (g (u) - g (u)) (uS ) (du) + I g (u) (uS ) (du) -
a ao ao Cl.o ao 

Ea Ea 

g (u) {uS ) (du) 
ao Cl.o 

The continuity of Sa as an operator valued function on An and the uniform 

boundedness of ga imply 

lim I J g (u)u(S - s )(du)l a 0 • 
a; a a. 

p(a,a0)+0 E 0 
Ct 

Using (uS }(V\E ) = 0 we get 
Cl.o ao 

I (g (u)- g (u))(uS )(du) • J 
a ao ao 

E EnE 

(g (u) - g (u)) (uS ) (du) 
a ao ao 

Ct a ao 

and 
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I g (u)(~S )(du) = 
ao ao 

E a 

Hence 

(I) 
J
r (g (u) - g (u)) (~S ) (du) = Ï I (g (u) - g (u)) (~S ) (du) 

a ao ao j=l a ao ao 
E E .nE 

a aoJ a 

and 

(2) g (u) (~S ) (du) =- I ga (u) (~Sa ) (du). 
aO aO E \E 0 0 

ao a 

We complete the proof by application of lemma 4.18 on (I) and (2), using 

that ~S is a linear combination of the n .• 0 
ao aoJ 

4.2.2. Existenae of an optimaZ strategy 

The proofs of the following two properties are analogous to the proofs of 

the lemma's 4.6 and 4.7. 

i) Let ~ be a positive measure on EA. Let A be compact and An closed in A 

for all n E :N. If na is bounded on A, the 

inf {I ~(du)ga(u)} 
aEA A 

is attained. 

ii) If there is a real B, 0 < B < I, such that for all a E A the spectrum 

of Qa has no points with absolute value between B and I, then for all 

n E :N the set A is closed in A. 
n 

In lemma 4.18 we proved the continuity of gal on A1.,. So, if A= A1 and A 

is compact then an optimal strategy exists. We shall give conditions under 

which the set A is dominated by the set A1 (where dominating is defined as 

insection 4.1). Weneed some new concepts. 

DEFINITION 4.21. The SMD is called A-aommuniaative if for all a E A and 

j = l, ••• ,na there is an a 1 E A1 such that n 1(E .) > 0. 
a 1 aJ 

Notice that A-communicativeness is equivalent with communicativeness if 

A= V. 
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DEFINITION 4.22. Let a € Aandie {1,2, ••• ,na}• The set 

Ë • :• {u e V I Q (u,E • ) • I} a1 a a1 

is called the e:rtension of. E •• 
a1 

Notice that Eai c Bai and that, by lemma 2.21, Ëai is an invariant set of 

Pa• 

LEMMA 4.23, Let the SMD be complete and A-communicative, Then A1 dominatea 

A. 

PROOF. Let a e A. Choose j 0 such that 

min 
j•1,2,.,, ,na 

{g • } • 
C!J 

The A-communicativeness of the SMD implies the existence of a strategy 

a
1

eA
1

suchthat1T 
1
(E.)>O, 

al C<Jo 
Let C :• Ë • and r:t2 :• aca1• Using lemma 2,17 and lemma 2,23 it is easy 

Cl Jo 
to see that the embedded sub-Markov process Q' of P on C is a Markov 

a2 a2 
process. This implies a 2 e A1• By lemma 2,21,ga

2 
Q~2ga2 • The invariance 

of C • Ë . under P implies g (u) • g • for u E C, Hence 
aJo a a2 ClJo 

for all u E V • 0 

The following theerem is analogous to theerem 4.11. 

THEOREM 4,24. Let the SMD be complete and A-communicative. If A is compact 

then an optimal strategy exists. 

PROOF. Let g := inf gal' The compactness 
aeA1 

sequence {~}_in A1 converging to a0 e A 

of A implies the existence of a 

such that lim g 1 = g. Without 
k- ~ 

loss of generality we may assume that 11. := lim 11 1(E .) exists for all 
J k ..... ~ aoJ 

j = l, ••• ,n , We have ao 

for all k = 1,2,3,., •• 



As in the proof of theorem 4, 11 we can show that 

n ao 

where r. 
J 

where t. 
J 

limrr 
1

(T r) = ~ 
~ <lk <lk Clk j=l 

:= 11 • (T r ) 
aoJ ao ao and 

n 
ao 

lim 11 1 (T 1 v> a ~ 
~ ak ak j•l 

: = 11 • (T 1 v> • 
CloJ ao 

g = 

n ao 
~ 11 •• r. 

j= I J J 
n 

(1.0 

l: 
j=l 

1T •• t. 
J J 

Hence 

and therefore 

r. 
min 

j= 1, ••• ,n 
<::<o 

{....J.} ,; 
t. 

J 
g • 

r. 

rr .. r. 
J J 

1! •• t. 
J J 

• 

• 

But g•:>: j = ....J. for j 
0 tj 

I, 2, ••• ,n , which implies that ao 

min {g . } 
j=l , •••• n aoJ 

01.0 

By lemma 4.23 there is an a e 

The strategy a is optimal. 

,; g • 

Al such 

{g .} 
aoJ 

that 

for all u € V • 
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0 
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4.2.3. Optimatity ll-a1.moet everywhere and roptimality 

As in subsectien 4, 1,3 we assume that the SMD is complete. We shall prove 

that for all a 1,a2 "A th~re is an a0 € A such that 

for all u € V • 

Then we can show as in subsection 4.1,3 that JJ-optimality implies optima

lity p-almost everywhere. 

The next lemma is analogous to lemma 4.12, 

LEMMA 4.25. Let the SMD {{Pa,ra.)}, a € A be complete. Let a 1,a2 € A, Fo::l: 

and a := a 1Fa2• The embedded Markov process of Pa on F u A is denoted by Q, 

Suppose 1r • (F n A) = 0 and 
O.J 

J Q(u,F)1Taj(du) = 0 for j = l, ••• ,na, 

A 

By lemma 2.32 there is a set G c V\F such that 1r .(G nA)= I for 
aJ 

j = !, ••• ,na and Pa(u,G} = I for u € G, By corollary 2,13 and lemma 2.23 

the embedded sub-Markov processes Q 1 and Q2 of Pa on V\F and on F v G are 

Markov processes, 

The functions !u• n = 1,2, ••• , on V are defined by 

for u " F , 

for u E V\F , 

and for n = 2,3,4, ••• 

for u € F , 

for u € V\F 

For these fun~tions !u the following property holds 

lim (!u(u) - ga(u)) = 0 for all u € V • 
n..,... 

The proof is similar to the proof of lemma 4.12, 



85 

LEMMA 4,26. Let the SMD {(Pn,ra)}, a E A be complete. Let a 1,a2 E A, and 

a :• a 1Ha2 where H :• H is defined as in 4.13, Put C := H\A, B :• V\A, 
aln2 

D := V\(A u H), Let Q1 be the embedded Markov process of Pa on A u D and 
I 

Q2 the embedded Markov process of Pa on A u H, Assume that for all 

j • t,2, ••• ,n ~ .(A\H) > 0 and/or 
al alJ 

I (QI lV\H)(u)'lla'Jj(du) > 0 • 

A 

Then for all j = t •••• ,na '11 .(A n H) • 0 and 
aJ 

I (Q2 lH) (u)'llaj (du) • 0 • 

A 

PROOF. The assumptions imply that the embedded sub-Markov process S 
1 

of 

Pa on V\H is a Markov process (see letm11a 2. 25 and the letm~~a' s 2. 17 and 
I 

2.23). Let S be the embedded sub-Markov process of Pa on V\H. Since 

S(u,E) • s
1

(u,E) for u EH and E E E, Sisalsoa Markov process. Suppose 

that for some j '11 • (A \H) > 0 and 
aJ 

I (Q2 IH)(u)'llaj(du) > 0, 

A\H 

Put E :• Ë . (see definition 4,22), and interprete P as the restrietion 
aJ a 

of Pa to (E,rE). For GE r we denote G n E by G'. 

By lemma 2.31 the entry sub-Markov process R of Pn on H' is a Markov pro

cess and is i-recurrent, where 1T is the measure on rE defined by 

1l'(G) • I (Q2 lG)(u)~nj(du), GE EE. 

A'\H 1 

We can choose an t > 0 and a set HE e EH' such that ;(HE) > 0 and 

g (u) ~ g (u) + t for u E H • For u E H' we get a
2 

a
1 

t 

g (u) • (Sg ) (u) ~ (Sg ) (u) = (STg ) (u) , 
al nl n2 a2 

where T is the embedded Markov processof Pn on H'. 
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Hence 

He nee 

ga (u)~ (STga )(u) • (Rga )(u) • <Ra'\H ga )(u)+ <Ra ga )(u)~ 
I 2 2 E 2 E 2 

+ <Ra'\H Ra•\H ga )(u)~ ••• ~ 
E E I 

.. 
2 (~'\H Ra lv)(u) =I • 

n'"O E E 

.. .. 
g (u)~ 2 (~ 1 \H Ra ga )(u)~ E + 2 (~'\H Ra ga )(u)~ 
al n•O E E 2 n=O E E I 

~ E + inf ga (u) for all u € H' • 
U€H I 

E 

This yields a contradiction, 

This means that for all j = l, ••• ,na 

(I) naj(A\H) • 0 and/or I (Q21H)(u)naj(du) • 0. 
A\H 

Now suppose 

Since 

I (Q2 1H)(u)naj(du) = 0 forsome j , 

A\H 

this implies P (u,H) • 0, n .-almost everywhere on A\H and therefore a · aJ 

n .-almost everywhere on A\H. Hence 
aJ 



.. 
= Pa(u,H) + L (P:DPalH)(u) • (Q21H)(u) • 0 , 

n•l 

$aj-almost everywhere on A\H, Therefore 

$ .(A n H) = I$ .(du)Qa(u,A n H) 
aJ aJ 

A 

• J $aj(du)Qa(u,A n H) 
AnH 

and QN(u,A n H) • 1, ~ .-almost everywhere on A n H, This implies for 
~ aJ 

G <i. EA 

$aj(G n H) • I $aj(du)Qa(u,G n H) = J $aj(du)Qa(u,G n H) • 

A MH 
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• I 11 .(du){QN(u,G)-Q (u,G\H)}• J 11 .(du)Q (u,G). 
~ " a ~ a · 

MH MH 

Hence 11 jiH is invariant under Q and therefore $ . (A n H) • 0 or a . a aJ 
~.(A n H) = 1. Now the result (I) implies that 11 .(A n H) • 0 or I for 

«J aJ 
all j • l, ••• ,n. Suppose ~ .(A n H) = I forsome j "- {l, ••• ,n }, 

a ~ a 
Let Q be the embedded Markov process of Pa on A u D, If 

I 11 .(du)Q(u,V\H) • 0 , 
O.J 

AnH 

then by lemma 2.32 there is a set G c H which is invariant under Pa' This 

contradiets the fact that the embedded sub-Markov process of Pa on V\H is 

a Markov process, Hence 

I 11 .(du)Q(u,V\H) > 0. 
aJ 

AnH 

Let E := Ë . and interprete P as the restrietion of Pa to (E,EE), For 
aJ a 

G € E we denote G n E by G', 

By lemma 2,31 the entry sub-Markov process R of Pa on E\H' is a Markov 

process and is u-recurrent, where îl' is given by 

i(G) • f ~aj(du)Q(u,G), G € EE , 

A'nH' 
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Let 

He := {u € H' I g (u) ~ g (u) + d . 
0.2 a.l 

Let the measure 11* on l:E be defined by 

11*(G) = I ~{du)T(u,G), G € l:E , 

E\H' 

where T is the embedded Markov processof Pa. on H'. Since 11*(H') > 0 there 

is an n > 0 and an e: > 0 such that 11* (H ) > n and therefore a set G c E\H' e: e: 
such that W(Ge:) > 0 and T(u,He:) ~ n for u € Ge:. For u € E\H' we have 

g (u) • (Tg ) (u)> (Tg ) (u) • (TS)g (u) • (Rg ) (u)~ (Rg ) (u) .. 
a2 °2 a I a I a I a2 

" (1\:\(G uH')gCl )(u) + (RG g )(u) ~ "' ~ 
e: 2 e: a2 

since R is i-recurrent and i(Ge:) > 0, For u € Ge: we have 

+T(u,He:),e: + (TH'\H g )(u)~ (Tg )(u) +n,e: ~ {Rg }{u)+ 
e: Cll al a2 

+ n.e • 

Hence, for u € E\H', 

which yields à contradiction. Hence 11 .(A n H) • 0 for all j • l, ••• ,n~· 
O.J " 

By (I) this implies 

I (Q2 tH) (u)11 aj (du) • I (Q2 lH) (u) 'Ir Clj (du) • 0 • 

A\H A 

In the next lemma we consider the case where the conditions of lemma 4,26 

are not satisfied, 

D 
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LEMMA 4,27. Let the SMD { (Pa,ra)}, a " A be complete, Let al'a2 E A, and 

H :• H • Put C :• H\A. Suppose that for some j " { 1,2, ••• ,n J 
(11(12 (ll 

11 • (A\H) • 0 and 
<liJ 

J (QIIV\H) (u)lfalj (du) • 0 , 

A 

where Q1 is the embedded Markov process of P on V\C, By lemma 2.32 there 
(ll 

is a set G c: H such that 11 • (A n G) • I and P (u,G) • I for u " G. Let 
aiJ al 

a :• a 1Ga2, then g = g on G and g s ga on v. 
a al a 2 

PROOF. The definition of a implies ga = ga 
I 

and Q the i • l, •• ,,n • Let D := V\(A u G) 
a2 

on A u G. If 11 • (A n G) > 0 or 
a21 

f (QIG)(u)lf .(du) > 0 , 
a21 

A 

onG. Consider the sets E ., 
a21 

embedded Markov process of Pa 

then the embedded sub-Markov process on G n Ë . of the restrietion of P 
- - (121 (12 

to (E .,L-E ) is a Markov process on (E .,L-E ). Let r2 be thesetof 
(121 . a21 . (121 a21 

all such i and r 1 :• {J, ••• ,na
2
}\I2• By lemma 2.32 there is a set F c: V\G 

such that 11 • (A n F) • I for all i E r
1 

and P (u,F) • 1 for u E F, The 
(121 (12 

embedded sub-Markov process of P on G u F is a Markov process. The rest 
a2 

of the proof is analogous tothelast part of the proof of lemma 4.15. D 

We can use the lemma's 4,25, 4.26, 4,27 to prove the following result. 

THEOREM 4,28. Let the SMD {{Pa,ra)}, a E A be complete and let a 1,a2 E A. 

Then there is an a E A such that 

The proef of this theorem is completely analogous to the proof.of theerem 

4.16, The lemma's 4.12, 4.14 and 4.15 are replaced by the lemma's 4,25, 

4.26, 4.27. 
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The proof of the following corollary of theorem 4.28 is analogous to the 

proof of corollary 4.17. 

COROLLARY 4.29. Let ).1 be ~ positive meesure on E. Suppose that the complete 

SMD {(Pa,ra)}, a e A has a ).1-optimal strategy a0• Then a0 is optima! ).l-al

most everywhere. 

4. 3. CountabZe state spaae 

In this section some results of section 4.2 are applied to the case where 

V is countable and t is the G-field of all subsets of V. 

We shall relate our results to those of some others (Derman [2], Ross [13], 

Hordijk [ 4]). 

In the next lemma it will be shown that the conditions i), ii), iii), iv), 

end v), statedat the beginning of section 4,2, are implied by some simpler 

ones, 

LEMMA 4,30. Let the following conditions be satisfied. 

a) The functions ra are bounded on V for all a E A and the boundedness is 

uniform on A. 

b) There is a metric p on A such that Pa(u,v) and ra(u) are continuous in 

a for all u,v e V. (Instead of Pa(u,{v}) we write Pa(u,v).) 

c) There is a finite subset A of V such that the sum 

with B := V\A, exists for all u € V, a € A, and the converganee is uni

form on A for all u e A. 

Then the conditions i), ii), iii), iv), and v) are satisfied, 

For the proof of this lemma we need the following result. 

LEMMA 4.31. Let p be a metric on A such that Pa(u,v) is continuous as 

function on A, for all u,v e V, Let {fa}• a € A be a set of complex valued 

functions, bounded on V uniform on A and let fa(u) be continuous in a for 

all u e V, Then (PaGfa) (u) is continuous in a. for all u e V, Ge t, 
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PROOF. Choose u e v, G e ~. a0 e A, Let e > 0. There is a finite set Fe 

such that P (u,F ) > I - e, The cantinuity of P (u,F ) implies the exis-
a0 E a e 

tence of a 6 > 0 such that Pa(u,V\FE) < 2e for all a e A with p(a,a
0

) < ó, 

We have 

and 

(PaGfa)(u) = I Pa(u,ds)fa(s} + 

G\FE 

(P Gf }(u)- (P Gf )(u) • I P (u,ds)f (s)- J P (u,ds}f {s) + 
a a ao ao . a a ao ao 

G\F G\F ' 
E E 

+ I (P (u,ds) -P (u,ds))f (s) + J P (u,ds){f (s)- f (s)). 
a ao a ao a ao 

F nG 
E 

The rest of the proof is obvious. 

Now we can give the proof of lemma 4,30, 

FEnG 

0 

PROOF OF LEMMA 4.30, The canditions i) and iii) are direct consequences of 

the conditions a) and c), condition ii} is implied by the finiteness of 

the set A (Qa is even compact). To prove iv) it is sufficient to prove the 

continuity of Qa(u,E) in a for all u € A, E € ~A' This is easily done by 

using the expressian 

Namely, condition c) implies that for all E > 0 there is an integer N such 

that 

for all u € A, a E A, E € ~A' The continuity of 

in a follows from lemma 4.31, The rest of the proof of iv) is straightfor

ward, That condition v) is also satisfied can be shown similarly, using 

the continuity of ra (u) in a, 0 

The following theorem is a direct consequence of lemma 4,30 and theorem 

4,24. 
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THEOREM 4,32, Let the conditions a), b), and c) of lemma 4.30 be satisfied 

and let the SMD be COIIIPlete and A-communicative. If A is COlliPact then an 

optimal strategy exists. 

Cernment 

Por the case of a countable V we shall relate our results for stationary 

Msrkovian decision problems to some results in Markov decision processes 

with a countable state space. First we have to give the relationship be

tween stationary Markovian decision problems and Markov decision processes. 

A Markov decision process consists of the following elements (see Ross 

[ 13]). 

a) State spaoe. At each timet • 0,1,2, ••• the system is in one of the 

statea s e S, The state at time t is denoted by Xt. 

b) Actions. For each u e S there is a set A( u) of admissable actions. In u 

one can choo.se an arbitrary action d e A(u). The state u and the action 

d determine the probability P (E I u,d) of being in a set E next time. 

c) Coats, The expected costs of using action dinstate u are c(u,d), 

An iliiPortant concept in Markov de cision processes is the concept poliay. A 

policy prescribes for each time t a probability distribution*) over A(u). 

This probability distribution can depend on the whole history Xa• d0, x1, 

d1, x2,d2, ••• , Xt-l'dt~J•Xt• where di is the action chosenat time i. If 
the probability distributions only depend on t and Xt• the policy is call

ed Markovian, if the probability distributions only depend on Xt• the poli

cy is called stationary. A policy is called deterministic if the probabili

ty distributions are concentrated in one point**>, A policy which minimizes 

the average costs over a certain class of policies C is called average op

timal in c. 

Now let us consider an SMD such that 

- each a e A is a function on V, 

- for all u e' V, ra(u) and the function Pa(u,•) only depend on a by a(u), 

- the SMD is COIIIPlete, 

*) We assuua the existence of a cr-field in A(u) such that the point sets 

{d} are elements of this a-field. 

**) Notice that each policy can be made deterministic liy enlarging the 

sets A(u), 
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In this case one can interprete the strategies a as the stationary deter

ministic policies of a Markov decision process. The set V corresponds to 

the statespaceS of the Markov decision process and the set {a(u), a e A} 

to the set A(u), The completeness is required to make it possible that one 

may choose an action in u independently of what is chosen in the other 

states. An optimal strategy of the SMD, if existing, corresponds to a sta

tionary deterministic policy which is average optimal in the class of all 

stationary deterministic policies, Derman [2), Ross [13], and Hordijk [4] 

investigate the existence of a stationary deterministic policy which is 

average optimal in the class of all Markov policies (Hordijk), or in the 

class of all policies (Derman·and Ross), It is important to be conscious 

of this fact in relating our results to their results. 

We shall give the conditions of Hordijk and Ross for the existence of an 

average optimal stationaey deterministic policy. These are weaker than the 

conditions of Derman. For a discussion of the results of Derman (and others) 

we refer to Hordijk [4], section 12, Ross [13] as well as Hordijk require a 

countable state space. 

The conditions of Hordijk, in our terminology, are as follows: 

I) the functions ra(·) are bounded on V, uniform on A; 

2) the simultaneous Doeblin condition is satisfied: there is a finite set 

A, a pos. number c, and an integer n such that Pn(u,A} 2: c for all u e V, a 
a E: A; 

3) there is a metric p on A such that A is compact and 

4) for all u,v e V the functions ra(u) and Pa(u,v) are continuous in a; 

5} the SMD is communicative, (The simultaneous Doeblin condition implies 

the quasi-compactness of Pa for all a € A, so we may speak indeed about 

communicativeness.) 

The most striking difference with the conditions of theorem 4,32 is the 

simultaneous Doeblin condition. Instead of this condition we require con

dition c) of lemma 4,30: there is a finite set Ac V such that t~e sum 

where B := V\A, exists for all u e: V and a e A, and the converganee is uni

form on A for all u E: A. 

The simultaneous Doeblin condition implies the convergence of 

.. 
L (P~BIV)(u), uniform on V x A. 

n•O 
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Ross [ 13] gives the following conditions: 

for all u e V the set A(u) of all possible actions in u is finite; 

- the functions ra (•) are bounded on V, uniform on A; 

~ there exists a state v ~~v, an integer N > o, and a sequence of discount 

factors {Bn}• 0 < Bn < l,such that ;!:!' Bn • I and Muv<Ran) < N for all 

u ~ V, n ~ 11, where M (R.. ) is tbe mean time to go from state u to state 
uv J:Sn 

v when using the Bn-discounted optimal policy Re • 
n 

The finiteness of A(u) makes the compactness and continuity conditions 

superfluous, We can see this as follows: 

Let u1,u2,u3, ••• be the elementsof V. The set A of all stationary deteroo 

ministic policies is the Cartesian product ll A(ui), Let p.'n be a metric 
i= I 

on A(un) and define the metric p on A by 

The metric topology on A is the product topology, (Kelley (7], 4. 14) and A 

is compact in this topology (Tychonov), Now let 

The last condition of Ross states a very strong recurrency, (recurrency to 

a point v ~V) fora subset {R }, n • 1,2, ••• of the set of all stationary 
Bn 

deterministic policies. This condition quarentees the quasi-compactness of 

the Markov process under policy RB and also RB ~ A1 (only one invariant 
n n 

probability), In condition c) of lemma 4. 30 a we aker recurrency is stated 

(recurrency toa set A), but for all strategies a e A. The A-communicative

ness assumed in theorem 4,32 implies that A1 dominates A. 

In a set of conditions different from the just mentioned one Hordijk [4] 

also requires recurrency to a point, This set of conditions is more direct

ly related to the conditions i) - v) of section 4.2 with V countable and A 

consisting of one point. The boundedness of ra and the quasi-compactness 

of Pa is not required. 
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CHAPTER 5. INVENTORY PROBLEMS 

In this chapter we shall deal with inventory problems. Inventory problems 

are defined as a special class of stationary Markovian decision problems. 

In sectien 5.1 we give assumptions and definitions. The existenc~ of an 

optimal strategy is investigated in sectien 5,2. Using the solutions of 

the (Pa,ra)-equations one can formulate conditions for optimality and non

optimality of a strategy, This is done in sectien 5.3. For some classes of 

inventory problems it is possible to prove that the optima! strategy is of 

a specific structure. This problem is considered in section 5.4. 

5. I • Pre Ul'l'linal'iee 

Throughout this chapter we assume that V is the real line and E the a

field of Borel sets on V, 

Let the function won V be defined by w(u) =el ui, u! V. The space of all 

complex valued functions f on V such that f := ! € B is denoted by ~.,• w (i) w 

The space of all measures p such that the measure pw' defined by 

pw(E) = I w(u)p(du) 

E 

for E <:: I: , 

is an element of M, is denoted by Mw. 

Let 11 fllw := 11 fwll for f e Bw and 11 ullw := 11 pwll for 1.1 e Mw. Then 11 fllw and 

11 ullw are norms in Bw and Mw. 

LEMMA 5. I, The spaces B w and Mw wi th norms 11 f llw and 11 p llw are Banach spaces. 

PROOF. Let {fn}~ be a Cauchy sequence in Bw' Then {fnw} is a Cauchy se

quence in B which has a limit f 0 € B. But f0.w <:: Bw and 

Hence Bw is a Banach space. 

lim 11 f0 - fnw 11 = o 
n--

That M is also a Banach space can be proved similarly. 
w ' 

0 
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If P is a transition probability on (V x E) such that 

J P{• ,ds)w(s) 

V 

is an element of Bw• P can be interpreted as a linear operator in Bw' We 

will not use a new notatien for this operator. On which space P acts will 

be clear from the context or explicitly stated. 

In the next lemma we shall show the similarity of the spaces B and M to 

the spaces B00 and Mw. 

LEMMA 5.2. 

a) The integral ~f := f ~(du)f(u) exists for all ~ € M
00

, f € B
00

, and 

V 
l~fl $; 11 ~1100.11 fii(J). 

b) If P is a transition probability such that Pw € B
00

, then ~P € M
00 

for 

all ~ € M
00 

and (~P)f • p{Pf) for f € Bw. 

PROOF. It is sufficient to prove these statements for positive p and f. 

This can be done by using the analogous properties of the spaces M and B, 

(see the preliminaries of the chapters I and 2), and the monotone conver-

gence theorem. 

Now we shall define inventory problems. 

DEFINITION 5,3, An inventory prob~em is an SMD, {(Pa,ra)}, a € A on (V,E) 

with the following properties: 

0 

i) A is a subset of the set of all nonnegative measurable functions on v. 
ii) There is a probability distribution function F on V with F(a) = 0 for 

a< 0, F(O) ~ I, and J exdF(x) < oo, such that for all u € V, a € A, 

and intervals [a,b) 
ö 

b u+a(u)-a 

J dF(u + a(u) - v) = J dF(x) , 
u+a(u)-b a 

iii) There are nonnegative measurable functions r 1,r2 € 8
00 

such that 

ra(u) • r 1(a(u)) + r 2(u + a(u)) for all u € v, a € A. 
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An inventory problem as defined here can be interpreted as a one-point in

ventory problem with leadtime 0 and backlogging. The distribution function 

F is the distrihution function of the demand per period. The functions r 
1 

and r 2 give the ordering and inventory costs. For u e V, a(u) is the quan

tity to order under strategy a. 

The following theorem makes it possible to apply the results of chapter 4 

to inventory problems, 

THEOREM 5,4. Let m, M, R be real numbers such that m < 0 < M, R :> M - m, 

and 

Let {(Pa,ra)}, a e A he an inventory prohlem such that for all a € A: 

a (u) <!: R for u :> m 

u + a(u) :> M for u :> M 

a(u} = 0 for u > M 

Let A :• [m,M] and B := V\A. 

Then there exists an a> 0 and a p, 0 < p < I such that l1Pn
8

11 < a.pn for 
a w 

all a e A and n € JN. 

PROOF. First we have toproof that PaBf € B
00 

for all f € Bw and a € A, Let 

a € A and f e B • w 
For u s m we have 

He nee 

where 

(PaBf)(u) .. - rf(v)dF(u+a(u) -v). I f(u+a(u) -x)dF(x). 

u+a(u)-m 

I (P aBf) (u} I 
el ui 

I - --=u • 
e 

m 
s; 11 fll • 

w 

J f(u + a(u)- x)dF(x)l :> 

u+a(u)-m 

f ex-a(u)dF(x) , 

u+a(u}-m 
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m 
11 f IL :• sup 

-t»<usm 
{ f fu~ } 
e u • 

So 

(I) 

For m $ u $ M we have 

Henee 

12) 

.. 
(PaBf)(u) • I f(u + a(u} - x)dF(x} • 

u+a(u)-m 

I (P Bf)(u) i m 
al ,. " llfll .-. 

UI W -u 
e' ' -m e 

I e-u-a(u)+xdF(x) $ 

u+a(u}-m 

m 
11 fH • 

Ij) 

For u > M we have 

u-M 

(Pa5 f)(u) • f f(u- x)dF(x) + I f(u- x}dF(x) • 

u-m -
Henee 

I (P aBf) (u) I m 

I 
x-u .. fu-M u-x 

(3) $ 11 f 11(1) • _e_ dF(x) + llfll • eeu dF(x) el ui u M w e u-m 

.. 
m I exdF(x) 

"' 
11 fll • + 11 fll J -x $ . e dF(x) • - w M U) - -0 0 

The relations (1) 0 (2) 0 (3) imply that PaBf E Bw for fEBwand for all 

a E A. Naw we have to eonsider P:Bf. Let 

.. 
..,R I x r :• e e dF{x) and q :• I e-xdF(x) 

0-

s 



Then by (I) 

(4) 

and by (2) 

(5) 

J (P:Bf)(u)j 

el ui 

For u > M we have 

(6) 

m 
11 fll w tor u s. m 

for m s u s M , 

n n-1 n-1 R m co 
"; (r +qr +,,,+q r)e , 11 fll +qn 11 fll "; 

w M w 

n n-1 n-1 n R s(r+qr +.,,+q r+q)e.llfllw= 

n+l n+l R 
r - q r _ q • e .11 f llw 

The relations (4), (5), (6) complete the proof. 0 

An inventory problem as in theorem 5,4 is called an (m,M,R)-problem. lve 

shall show that an (m,M,R)-problem satisfies the conditions i) and iii) of 

sectien 4,2, 

LEMMA 5.5. Let {(Pa,ra)}, a ~ A be an (m,M,R)-problem and let A := [m,M] 

and B := V\A. Then for all a~ A the Markov process is (A,I)~recurrent and 

(A,ra)-recurrent, and the boundedness on A of the functions 

is uniform on A. 

PROOF. By theerem 5.4 it is sufficient to prove that IV ~ Bw' 
for all a e A and that 11 ra llw is. bounded on A. The boundedness 

that IV~ Bw. Further we have ra(u) A r 1(a(u)) + r 2(u + a(u)) 

r 1,r2 e Bw. Hence 

that r ~ B 
1 a w 

of w implies 

and 
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r (u):> llr
1

11 ,ea(u) + nr
2

n ,elu+a(u)l, 
a w w 

Using that {(Pa,ra)}, a € A is an (m,M,R)-problem it is easy to show that 

ra € Bw for a € A and thaf' 11 ra llw is bounded on A. 0 

We defined w(u) :• elul, But it is possible to use the same reasoning for 

w(u) := eclul, where cis some positive constant. Then we can apply the 

results to the case where the distribution function F has a negative expo

nential tail. 

5.2. E:dstenae of optimal strategi.es 

In this section we consider an (m,M,R)-problem {(Pa,ra)}, a € A, Using 

chapter 4 we shall give conditions for the existence of an optimal strate-

gy. 

By lemma 5,5 we know that the conditions i) and iii) of section 4,2 are 

satisfied forA := [m,M], Let, for all a E A, Qa be the embedded Markov 

process of P on A. In the next lemma we shall give a condition for co~ 
a2 

pactness of Qa' 

LEMMA 5.6. If F has a bounded density <P, Q2 is compact for a e: A, a 

PROOF. Let <Pav(u) := cp(u + a(u) - v) for a E A, v E V, u E V, Then 

where 

Qa(u,E) = f qa(u,v)dv , 
E 

"" 
qe<(u,v) := L (P~Bcpe<v)(u) • 

n•O 

By theorem 5.4 the boundedness of <P implies the boundedness of qe<(•,•) on 

A x A for all a E A, 

Now let À be the Lebesgue measure on A. It is easy to show that for all 

a E A lim ·(!IQ ) (E) = 0 uniformly for all measures ll on ;: A with 11!111 :> I, 
À (E)->0 a 

Using Dunford-Schwartz [3], IV,9,2 and VI.4.l we infer that Qa is weakly 

compact for all a E A. This implies the compactness of Q!, (see [3], 

VI.8.13 and the remarks at the end of VI.8). 0 
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Since compactness of Q; implies quasi-compactness of Qa• (see section 1.2), 

this lemma yields a condition sufficient for the condition ii) of section 

4.2. 

In the rest of this section we assume that F has a bounded density lP and 

also that, for all a ~ A, Qa has only one invariant probability. The re

sults of sub-section 4.2.1 for this case can be summarized in the follow

ing way. 

LEMMA 5, 7. Let p be a metric on A such that 

a) for a0 ~ A, 

lim 11 Qk (Q - Q ) 11 • 0 for some k a a a 
p (a ,a.0)-+<> o 

b) lim 1~ 1(T r) - ~ 1(T r >I = 0 for a0 e A , 
p(a,a

0
)+0 «o a a a.O a.O a.O 

Then gal is continuous as function on A. 

In the next lemma we shall show that condition a) of lemma 5.7 can bere

placed by a continuity condition on Pa• 

LEMMA 5.8. Let p be a metric on A and a0 an element of A such that for all 

n•O,I,2, ... 

Th en 
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PROOF. We have Qaf • L P~PaAf for all a € A. f € B. Let 
n•O 

and 

llf I~ :• sup lf(\1) I for f € B 
U€A 

llwiiA :• sup lw<u>l. 
U€A 

By theorem 5.4 1 for each E > 0 there is an integer NE such that for all 

a€Aandf.oB 

He nee 

and 

But 

IIQ < r 
a n•N 

E 

n 
P 8P Af} 11 s 2E.II PaAf 11 • !Iw IIA • 

ao ao (I) 

Therefore it is sufficient to prove for all n. 0.1.2 •••• 

(3) · n n ) lim 11 Q (P 8P A - P 8P A 11 • 0 • 
p(a.ao>~ a a a ao ao 

It is easy to show that 

n 
+ p B(P A - p A) • a a a0 

Hence, by the assumptions (I) and (2) 

(4) lim 11 P A(Pn8P A- Pn 8P A) 11 ,. 0 for n ,. 0 1 I 1 2 1 •••• 

p(a.ao>~ a a a ao ao 



.. 
By theorem 5.4 11 L 

n•O 
for all f € B we get 

Pn 11 is bounded on A• Let K be an upperbound. Then 
a,B w 

.. 
IIQ fiiA ~ IIQ fll ,llwiiA = 11 L PnBP Afll ,hilA~ 

a a w n•O a a w 

Together with (4) this implies (3). 

Now we con si der the condition b) of lemma 5, 7, 
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0 

LEMMA 5.9. Let a0 € A and let p be a metric on A such that for each ~ € Mw 

which is continuous with respect to the Lebesgue measure À, the following 

properties hold 

(I) lim I lra(u)- r (u)j~(du) = 0 
p(a,aO)~ V aO 

Then condition b) of lemma 5.7 is satisfied for a0• 

PROOF. First we shall show by induction that for all n • 0,1,2, ••• 

(3) lim J I (PnBr )(u) - (Pn Br )(u) hJ (du) "' 0 for all ~ € M a a a a, w 
p(a,a0)~ v 0 0 

which are continuous with respect to À. 

For n = 0 (3) is a direct consequence of assumption {1), Now let it be 

true for n = k. we have 
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By assumption (2) 

(4) 

Further 

f f Pa(u,ds)j(P~Bra)(s)- (P~0Bra0 )(s)j~(du) a 

V B 

where ~pa is an element of Mw• (see lemma 5,2). ~pa is continuous with re

spect to À, By (4) and the induction assumption we see that (3) is true 

'for n = k + 1. Hence (3) is true for all n • 0,1,2, •••• 

For each e: > 0, theorem 5. 4 and the boundedness of 11 ra llw on A, (see the 

proof of lemma 5.5), imply the existence of an integer Ne: such that 

for all a e A • 

He nee 

Using this and (3) we get for all À-continuous ~ € Mw 

(5) j(T r )(u)- (T r )(u)j~(du) • 0. 
a a ao ao 

Similarly we can prove 

(6) 

Let ~~ 1 for a· e A be the measure on E defined by 

Then ~~I e Mw. The existence of a bounded density of F implies the À-con

tinuity of~~~· Substitution of ~ :• v~ 1 in (5) and (6) completes the 

proof. 0 
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The next problem is the introduetion of a metric p on A such that the eon

tinuity conditions of lemma 5.7 are satisfied and sueh that A is compact. 

Since F has a bounded density g 1 = g 1 if a 1 and a2 are À-almost every-
al a2 

where equal. (À is the Lebesgue measure), This makes it possible to inter-

prete each element a € A as a class of functions which are À-almost every

where equal to eaeh other. 

Since {(Pa,ra)}• a € A is an (m,M,R)-problem the integral J :i:~ du is 

V 
finite for all a € A. The metric p on A defined by 

I 
la 1(u)- a2 (u)J 
_.;....~w""~(~u~) ...;.;.. __ du 

V 

is called the w-metric. 

Let A := {~,a € A}. A with the L 
1
-metric is a subspace of L 

1 
(V ,l: ,;q 

(I) (I) (I) 

which is isometrically isomorphic with the metric space A. Hence compact-

ness of Aw implies compactness of A. 

LEMMA 5,10, Let A be such that 

ll.·m I la(u +x) a(u)ld 0 'f A ; - ~ u = , un1 orm on • 
Ul\U +X) W\UJ 

x:+Ov 

Then the closure of Aw in L
1 

is compact, 

PROOF, Using that {(Pa•ra)}, a € A is an (m,M,R)-problem, we can see that 

J a(u) du is bounded on A, and 
W'(ü') 

V 

-a -
J 

a(u) du + 
W'(ü') I a(u) du} • 0, uniform on A . Wëii) 

+a 

By [3], IV.8,20 this implies that the closure of Aw is compact, 0 

Now we shall consider the continuity conditions of lemma 5,7 with p equal 

to the w-metric on A, 

LEMMA 5, 11, If the density ~of F has a bounded derivative ~· • the condi

tions (I) and (2) of lemma 5,8 and condition (2) of lemma 5.9 are satisfied 

for all a0 € A and for p equal to the w-metric on A. 
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PROOF. First we shall prove that for all a s: m, e: > 0 and for each n ~:: Jl 

there are n finite intervals Bi :• [ai,M]• i a l, ••• ,n such that for all 

a ~:: A and all u ~:: [a,M] 

(I) I (PnBoo)(u) - (PB PB a a 1 a 2 

For all a s m and all e: > 0 it is possible to choose an ae: s m such that 

for u " [a,M] and for all a ~:: A 

ae: 

J ~(u + a(u) - v)w(v)dv < e: • 

This proves (I) for n • I. 

Now let it be true for n • k, 

Dy theorem 5, 4 P aBw € 8 w and 11 P aBoo llw is bouf~:ded on A. Hence, the induetion 

assumption implies for each a s m and each e: > 0 the existenee of finite 

intervals Bi :• [ai,MJ, i • l, •.• ,k, sueh that 

I<Pk+Biw)(u)- (PB PB ••• P_", P Bw)(u)l <e: for UE[a,M], ae:A. 
a . a 1 a 2 ~k a 

Let the interval Bk+ 1 : • [ ~+ 1 ,M] be sueh that 

I (P Bw)(u)- (PB w)(u)l 
a a k+l 

E <---M- ~ 
for u e: [~,MJ, a e: A • 

Then for all u e: [a,M] and a e: A we get 

I k+t I e: (P B w) (u) - (PB PaB ••• P B PaR w)(u) < e; + (M- ~)~= 2e:, 
a a I 2 a k ·-k+l ~ 

whieh shows that (I) is true for n • k + I and hence for all n e: Jl, We can 

use this result to show for each e: > 0 the existence of intervals 

Bi := [ai 1 M], i= l, ••• ,n, such that for all a,a0 e: A 

(2) 

and the existence of intervals Bi :• [ai,M]• i • l, ••• ,n+l, such that for 

all a,a.0 " A 

{3) 
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Now let a0 be an arbitrary element· of A, A a := I a - a0 I for a E A, 11 q>' 11 is 

the supremum of q> 1 (u), and C := [a,b] is an arbitrary finite interval. 

Th en 

I<Pac-Pa c)f(u)l•l I {q~(u+a(u)-v)-q>(u+ao(u)-v}f(v)dvl!: 
0 c 

s Aa(u),llq~'ll. I lfCv)ldvsAa(u).llq~'ll,(b-a).llfll for.all f "8. 

c 

Let ei :• [ai,bi], i • l, ••• ,n be arbitrary finite intervals. Then 

But 

s (b - a) .H lP' 11.11 f 11. (Pal ac 
I 

Pac Aa)(u) for u E V, f e: 8. 
n 

s llwllc .(llpll,p(a,a0) , 
n 

where 11 q> 11 • sup cp (u). He nee 
UEV 

Using the results (I) and (2), this proves the conditions (I) and (2) of 

lemma 5,8 for all a0 E A. 

Now we have to prove condition (2) of lemma 5.9 for all a0 E A. Using the 

fact that {(Pa,ra)}, a e: A is an (m,M,R)-problem, we see that 

M I I (P aBf) (u) - (P a
0

Bf) (u) I J.l (du) = I I (P o.Bf) (u) - (Pa.i) (u) lil (du). 
V -® 

For each e: ·> 0 and each ll € M
00 

there is an ae: < m such that 

I<Pa.Bf)(u)- (Pa Bf)(u)jJ.l(du) < e: for all a,a0 € A. 
0 
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Henee, it is sufficient to prove for all ~ E: M
00 

and a0 E: A 

for all finite intervals c. This can be done by approximating B by a fi-

nite interval 0 as in tbe first part of the proof. 

Now we have the following result. 

THEOREM 5, 12. Let {(Pa,ra)}, a € A be an (m,M,R)-problem such that 

i) F has a bounded density with bounded derivative; 

0 

ii) The embedded Markov proeess on [m,MJ, Qa• has only one invariant prob

ability; 

iii) lim 
rio() 

.... 
I la(u +x)- a(u)jdu • 0 uniform on A 

w (u + x) W"('üY • 

iv) A
00 

is closed in L1(V,t,À); 

v) For eac:h 11 E: Mw which is continuons with respect to the Lebesgue mes

sure À and for p the w-metric 

lim f lra(u)- ra (u)ip(du) • o for all a0 € A. 
p(a,a0)+0 v 0 

In this case an optimal strategy exists. 

5.3. Criteria for optimaUty 

Using tbe (P,r)-equations introdueed in c:hapter 3, we shall give criteria 

for optimality and nonoptimality. We consider an (m,M,R)-problem suc:h that 

for all a € A the embedded Markov process Qa of Pa on [m,M] is quasi-com

pact and has only one invariant probability. 

The (P ,r )-equations are the equations a a 

in the complex valued measurable functions x,y on v. 
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The conditions of section 3.1, where we investigated these equations, are 

satisfied for all a E A with A := [m,MJ. Hence, there is a salution of the 

following type 

x., ga 

y ., Tara - Taga + ~f' • 

where f' is a bounded measurable function and Té/ = l P:Bf for f =ra,~. 
n=O 

By theorem 5,4, this guarantees the existence of a solution of the equa-

tion y = ra - ga + Pay in Bw' 
Let fa be such a solution. Since Qa has only one invariant probability ga 

is constant on V, In the next lemma we show that for all u E V and a E A, 
(Pnw) (u) is bounded in n. This implies that 

'" 
lim * (P!f)(u) • 0 
n._ 

for a € A, f € Bw' u € V • 

Hence, by lemma 3.7, the solution fa is unique upto a constant. 

LEMMA 5.13. For all u E v, a € A the function (P!w)(u) on Nis bounded, 

PROOF. Substitution of Pa • PaA + PaB in P:+ 1 gives 

Hence 

m 
l p~~ NAP~B + pm+ I 

k=O ~ ~ ~ aB 

m+l m k mH · 
+ (PaB w)(u)!!!: llwiiA l liP Bil + (PaB w)(u) , 

k=O a w 

The boundedness of (Pnw)(u} in nis a direct consequence of theorem 5,4, D 
a 

Now we ean give the criteria for optimality and nonoptimality, ·The struc

ture of these criteria is well known, (see Ross [12]), 
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LEMMA 5,14. Let a
0 

E: A. 

a) If for all a E: A 

(I) 

then the strategy ao is optimal. 

b) If for some a E A there is a positive measurable function 6a on V such 

that 

n-1 
P9..6 s 6 := lim..!. Ï: >0 

a a 11"""' n R.=O a a 

and 

(2} f ~ r - g + p f + 6 a· a ao a a.o a. 0 

then 

The proofs can be given by repeated substitution of f , in the right-hand 
cro 

sides of the inequalities (l) and (2}, by the complete right-hand sides, 

using that 

lim..!. (Pnf )(u) • 0 for all u EV. 
n- n a a0 

The existence of Sa6a is a consequence of the fact that 6a E Bw since 

6a ~ f -.r + g - P f , Further, Q has only one invariant probabili-
a.0 a aó a ao a. 

ty and therefore Sl'a is constant on V. D 

The inventory structure of the problem makes it possible to formulate the 

criteria in another, more applicable way. 

Define the function Ja on V for all cr E A by 

- -
(I} J fa (v)dF(u- v) = r 2 (u) + J fa (u- x)dF(x), 

u E: V, 

Tbe function Ja is an element of Bw' Since fa is a solution of 
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the function Ja is a solution of the equation 

.... 
(3) z(•) • r 2(•)- I {r1 (a(v)) -ga(v)}dF(• -v)-

-
.... 
J z(v + a(v))dF(• - v) 

r 

in z(•), 

But if za ( Bw is a solution of (3) then the function Ya on V defined by 

is an element of Bw and a solution of (2). By the lemma's 5,13 and 3,7 the 

functions ya and fa differ ouly a constant. Further, if zal and za2 are 

two solutions of (3) 0 then za1(• + a(•)) and za2(• + a(•)) differ only a 

constant and hence zal and za2 differ only a constant. Therefore the solu

tion of (3) in Bw is also unique upto a constant, 

Now we can formalate the criteria a) and b) of lemma 5.14 in Ja insteadof 

in fa• where Ja is defined as in (I) or as the solution of equation (3) in 

B • w 

LEMMA 5,15, Let a0 € A. The strategy a0 is optimal if 

for all u € v, a € A. If for some a € A there is a positive measurable 

function A on V such that 
a 

1 n-1 R. 
lim- I P A > 0 
It""' n t•O a a 

and 

thenga<g, ao 
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REMARK 5,16, Consiclering this seetion we see that the assumption of an 

(m,M,R)-problem is somewbat to strong. It is sufficient to require for 

eacb a <! A the existence of some (ma,Ma,Ra) with ma < 0 < Ua• Ra s Ha - ma 

I Ra . 
and exdF(x) < e .sueh that 

a(u) ~ Ra 

u+ a(u) ~ Ma 

a(u) = 0 

for u ~ m 
a 

for u s M 
a 

for u > M 
a 

5. 4, Structu:t:'e of optimal strategies 

In this seetion we shall consider the structure of optimal strategies. The 

following class of inventory problems is well known, 

r 1(x) = K,ö(x) + c.x, K > 0, c > 0, (ö(x) • 0 if x= 0, ö(x) = l 

if x > 0) • 

A is tbe set of all positive measurable functions on V, 

In this case one can prove under rather general conditions that the opti

mal strategy a0 is of the (s,S)-type. This means that for some pair (s,S) 

0 for u ~ s 

S - u for u < s 

For the average costs case this bas been proved by Johnson [6] and Tijros 

[14]. Both consider a discrete state space, but the proof of Tijros can al

so be used for the continuons case, llis proof consists of the following 

two steps: 

i) the existence of a strategy whieh is optimal in the class of all (s,S)

strategies; 

ii) the optimality of this sub-optimal strategy. 

Intbis proof·it is essential that under an (s,S)-strategy the process has 

a renewal point, If one orders, one starts again in S, This makes it pos

sible to derive explicit expressions for ga, the average costs under some 

(s ,S)-strategy a, and for fa the salution of the equation y = ra- ga+ P ay, 

(see section 5, 3), · 

However 0 in cases. where the process under the optimal strategy has no re

newal point 0 it is possible to carry out the same two steps. Instead of 

using explicit expressions for ga and fa one can work directly with the 

(Pa,ra)-equations. 
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We shall show this with aid of the following exa,mple; 

A is the set of all measurable func::tions on V with 

a(u) • 0 or c, (C > 0) , 

r 1 (x) • 0 if x • 0 and r 1 (x) • K if x • c, (K > 0) • 

We shall prove under c::ertain conditions that the optimal strategy is of 

the following type: a(u) • 0 if u ~ s, a(u) • C if u < s. 

The same method can be used for the cases: 

a) A is the set of all measurable functions a on V with 0 s a(u) s c. 
r 1 (x)- • c.x, c > 0. 

The optimal strate'gy is of the following type, (see [ 15]): a(u) = 0, 

u ~ s and a(u) • min{s - u, C}, u < s. 

b) A is the set of all positive measurable functions on V. r
1 

(x) • c(x) 

with c"(x) s 0. 

The op_timal strategy is of the follo~n,g type: a(u) • 0 if u ~ s, 

a(u) > 0 if u< s and u+ a(u) is nonincreasing for u <-s. 

The last case is considered by Porteus [IJ J for the discounted costs cri

terion. 

5. 4. I. E:x:anp Ze 

In this subsection we consider an inventory problean with Á the set of all 

meas.urable functions a on V such that a(u) • 0 or C, (C > 0) and r 1 (x) •K 

if x • c, r 
1 
(x) • 0 if x .. 0 (K > 01. 

We shall prove under certain eonditions that the optimal strategy is of 

the (s)-type: a(u) • 0 if u ~ s and a(u) • C if u < s. 

We make the following assumptions: 

(1) F has a bounded density q> with <P(x) > 0 if x > 0, and <p has· a bounded 

derivative tp 1
; 

(2) J ext(x)dx < ec 

0 

(3) r 2 is differentiable and r2 (u + C) - r2 (u) ~ 0 for all u ,;: V • 
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Each strategy (s) satisfies the conditions stated in remark 5.16 with 

Further, q~(x) > 0 for x>~. implies that the embedded Markov process Q(s) 

of P (s) on [s ,s + C] has only one invariant probability. Hence the average 

costs under strategy (s) exist for each s and are constant on V, and the 

equation y • r(s)- g(s) + P(s)Y in 8
00 

has a salution f(s) which is unique 
upto a constant, (see remark 5.16). 

Let -
J(s)(u) :• rz(u) + I ql(u- v)f(s)(v)dv, u~ V, s € V. 

We can use lemma 5.15 to campare the strategies (s) and (t). 

LEMMA5.17. Let t > s. 

a) If K + J(s)(u + C) < J(s)(u) for u € [s,t], then g(t) < g(s)* 

b) If J(t)(u) < J(t)(u + C) + K for u € [s,t], then g(s) < g(t)* 

PROOF. We shall only prove statement a), statement b) can be proved in the 

same way. Let 

for u € [s,t] 

for u I. [s,t] • 

Using lemma 5.15 with a0 :• (s) we infer that it is sufficient to prove 

1 n-l !1. 
limn }; P (t)A(t) > 0 • 
n._ Jl.-0 

Let Q(t) be the embedded Markov processof P(t) on [t,t+C] and let 

T := l PCt)B with B :• V\[t,t + C]. Then, by lemma 3. 8, 
n=O 

But, q~(x) > 0 if x> 0, implies TA(t) > 0 on [t,t +C], which completes the 

proof. 0 
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We shall use this lemma to show that g(s)' as function of (s), is decreas

ing in a neighbourhood of -» and increasing in a neighbourhood of ~. To 

this end we have to consider the functions J(s)" 
For each s we have for all u e V 

s 

J(s)(u) = r2 (u) -g(s) + I q~(u-v){K+J(s)(v+C)}dv + 

.. 
+ I q~(u- v)J(s)(v)dv. 

s 

By lemma 5.17 the functions D(s)' given by 

are important in relating g(s) to g(t)• Let dr(u) := r 2(u + C) - r 2 (u) for 
all u e V. An easy calculation shows that 

s 

(4) D(s)(u) = ar(u) + f ~(u+ C - v)D(s)(v)dv + 

For u s s we have 

+ J ~(u- v)D(s)(v)dv. 
s 

s 

(5) D(s)(u) = Ar(u) + I ~(u+ C - v)D(s)(v)dv. 

Let D~s) be ;he tunetion on [O,co) definsd by D~s)(y) := D(s)(s- y) for 
y ~ O, and A the function on [O,~) defined by a* (y) = ör(s - y) for rs rs 
y ~ 0. Then, by (5), 

.. 
(6) n(s)(y). a;s(y) + I q~(C- y + v)DCs)(v)dv. 

0 

Now let B0w be the space of all complex valued measurable functions f on 
[0,"') such that! is bounded. With the norm UfiL :• sup !f(u) I , this 

. w Uw ~O "]"W"ruJT 
space is a Banach space. 
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.. 
Using the assumption I ex~(x)dx < eC we can verify that the integral 

0 I ~(C- y + v)f(v)dv exists for all f E: BOw and y € [O,~). and that this 

0 

integral as function of y is au element of Baoo• 

Let SC be the operator in 80w given by 

(Scf)(y) • J ~(c- y + v)f(v)dv for f € BOw• y E: [0, .. ) • 
0 

The norm of this operator is smaller than I since 

.. 
<scf)(y) s 

ey 
I ~(C- y + v).llflh»•ev-ydv • 

0 

.. 
11 IL I J < v-y+C • 11 -c J x • fïJw'ë' ~C-y+v)e dvSufOw.e. ~(x)edx. 

8 0 0 

Therefore the equation x • f + S~ in 80w has a unique solution given by 

Application of this result to equation (6) yields 

.. 
* ~ n * D( ) • L SëA • 

s n'"O rs 

Now we can prove the next lemma, 

LEMMA 5.18, Let the real numbers a,b and E: > 0 be such that 

r2(u + C) - r2(u) < 0 for u < a and r2(u + C) - ri(u) > E for u> b. Then 

tbere are real numbers c,d such that g(s) is decreasing in s for s < c and 

increasing in s for s > d. 

PROOF. By equation (4), for all s the function D(s)(•) is continuous. 

Hence. as a conseq~ce of lemma 5.17, it is sufficient to prove the exis

tence of real numbers c.d such that 
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D(s)(s) < 0 fors< c and D(s)(s) > 0 fors> d, or 

n(
8

)(0} < 0 fors< c and n(
8
)(0) > 0 fors> d, 

Using A;
8

(u) = Ar(s- u)= r 2(s- u+ C)- r 2(s- u) < 0 fors< a, u~ 0, 

we infer that 

n*(s)(O) = I (SncA* )(O) < o 
naO rs 

for s < a • 

Now let s
2 

> s
1 

> b, Then 

n*< )(O)-n*( )(O)=I s~(l:.* -ll* )(O)~ 
s 2 s 1 n=O rs 2 rs 1 

* This implies the existence of a real number d such that D(s)(O) > 0 for 

s > d, which completes the proof, 

If we can prove the continuity of g(s) in s .then the conditions of lemma 

5,18 are sufficient for the existence of a minimum of g(s) on (-M,+~). 

LEMMA 5,19, The functiàn g(s) is continuous ins. 

0 

PROOF. Let a < b and let A b be the set of all s-strategies with a,; s,; b. a, 
The inventory problem with strategy set A b is an (m,M,R)-problem with a, 
m := a, M := b + C, R :• C, The topology on A b generated by the w-metric 

a, 
is equivalent with the usual topology on the interval [a,b]. 

The conditions of theorem 5,12 are easily verified. Hence g(s) is continu-

ous on [a,b] for all a < b and therefore on (-oo,+oo), 0 

Now we shall show that a strategy which is optimal in the class of all s

strategies is also optimal in a wider class of strategies, The set of all 

strategies a E A such that real numbers ba' ca exist with a(u) = C for 

u< ba and a(u) = 0 for u > ca is denoted by Ar' Notice that each a € Ar 

satisfies the conditions stated in remark 5, 16, 



118 

LEMMA 5.20. Let Ar{u) = r 2 (u + C) - r 2{u) for u E V and 

ár{u + h) - Ar{u) 
Arh (u) = ...::..---r--=---

Assume that 

lim 11 A' - A h 11 • 0 • 
h->0 r r w 

If g(s) attains a minimum in s0, the strategy {s0) is optimal in Ar. 

PROOF, By lemma 5.15 we have to prove 

(7) 

(8) 

Tbe continuity of D(sO) and the minimality of g(s) in s0 imply by lemma 

5.17 that D(s
0
)(s0) • o. 

Let P be the operator in Bw given by so 

so 
(P

8
/)(u) • J q>(u+C+v)f(v)dv+ J q>(u-v)f{v)dv for u E V, f E Bw , 

so 

As in theorem 5,4 we can prove that L Pn converges, Therefore the equa-
n•O 8 0 "' 

tion x • f + P x in B has a unique solution x • L Pn f. Let for h real 
80 w n=O 8 0 

the function ~ on V be gi ven by 

D(s
0
)(u + h) - D(s

0
)(u) 

~{u) • h for u E V, 

Using equation (4) we get 

s D(s
0
)(v+h) 

f{q>(u-v)-cp(u+C-v)} h dv , 

s-h 

... 
Since L Pn converges and lim HA' - A h 11 • 0, this implies the conver-

n-0 'o h-+0 r r w 
gence of ~ in Bw for h + 0, 
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Hence D(
80

) exists and is an element of Bw and 

for all u E: V , 

Therefore 

Since A~~ 0 we get D(
80

) ~ 0. Together with D(s
0
)(s0) = 0 this implies 

the inequalities (7) and (8), D 
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SAMENVATTING 

Het in dit proefschrift behandelde onderwerp hoort thuis in de theorie van 

de Markov beslissingsprocessen, 

Een Markov beslissingsproces kan als volgt beschreven worden: Op de tijd

stippent • 0,1,2 •••• verkeert het systeem in één van de toestanden uit 

één of andere toestandsruimte S, Op elk tijdstip kan men uit een. aantal 

mogelijke akties één kiezen. Deze aktie bepaalt in welke toestand het sys

teem de volgende keer zal zijn en ook welke kosten men tot dan zal oplopen, 

Een strategie is een voorschrift dat op elk tijdstip aangeeft hoe de aktie 

gekozen dient te worden. Strategieën waarvoor geldt dat de te kiezen aktie 

alleen maar afhangt van de toestand waarin het systeem verkeert noemt men 

stationair. Onder elke stationaire strategie is het proces een Markov pro-

ces. 

Bij Markov beslissingsprocessen gaat het om de beste strategie, In dit 

proefschrift wordt als maat voor de kwaliteit van een strategie de bijbeho

rende gemiddelde kosten gebruikt. Onderzocht wordt of er een stationaire 

strategie is die optimaal is in de verzameling van alle stationaire stra

tegieën. 

De gemiddelde kosten bij een stationaire strategie worden bepaald door de 

begintoestand en de overgangswaarschijnlijkheid behorend bij die stationai

re strategie, Bij vaste begintoestand zijn de gemiddelde kosten een funk

tie van de overgangswaarschijnlijkheid. !let gaat dus om het bestaan van 

een minimum van die funktie. 

De meest voor de hand liggende manier om kondities aan te gbven voor het 

bestaan van een dergelijk· minimum bestaat uit de volgende stappen: 

I) voer een topologie in op de verzameling van overgangswaarschijnlijkhe

den; 

2) ga na onder welke voorwaarden de topologische ruimte compact is en 

3) onder welke voorwaarden de gemiddelde kosten kontinu afhangen van de 

overgangswaarschijnlijkheid. 

Deze methode is hier toegepast. Voor de topologie wordt een metrische to

pologie gebruikt. 
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Elke overgangswaarschijnlijkheid komt evereen met een ~~rkov operator, dat 

is een lineaire operator op de Banach ruimte van alle begrensde, meetbare, 

kamplexwaardige funkties op de toestandsruimte, De norm en de spektraal

straal van een ~rkov operator zijn gelijk aan I en het punt I is in ieder 

geval een eigenwaarde. 

Een belangrijke rol in dit proefschrift speelt het begrip quasi-compact

heid. Een ~rkov operator is dan en slechts dan quasi-compact als het kor

responderende Markov proces voldoet aan de Doeblin konditie, 

Met behulp van perturbatietheorie van lineaire operatoren worden in sektie 

4. I enkele kondities afgeleid voor de kontinurteit van de gemiddelde kos

ten voor het geval de ~rkov operatoren. overeenkomend met elk van de 

overgangswaarschijnlijkheden. quasi-compact zijn. 

In hoofdstuk I en hoofdstuk 2, de sekties I en 2, worden ter voorbereiding 

hiervan enkele resultaten gegeven uit de spektraal- en perturbatietheorie 

van lineaire operatoren en uit de theorie van de Markov processen met dis

krete tijdsparameter. 

Gebruikmakend van de kondities voor kontinuLteit worden voorwaarden gefor

muleerd voor het bestaan van een optimale strategie, 

De eis dat de Markov operatoren behorend bij elk van de overgangswaar

schijnlijkheden quasi-compact zijn is nogal streng. In sektie 4.2 wordt de 

quasi-compactheid niet vereist voor de ~~rkov processen zelf maar voor de 

ingebedde Markov processen op een vaste deelverzameling van de toestands

ruimte. De resultaten uit sektie 4,1 kunnen gegeneraliseerd worden naar 

dit geval, Men gebruikt daarvoor bepaalde terugkeereigenschappen van der

gelijke ~~rkov processen. Deze worden afgeleid in sektie 2.2. 

In hoofdstuk 3 wordt ingegaan op het bestaan van de gemiddelde kosten, 

(de één-periode kosten hoeven niet noodzakelijkerwijs begrensd te zijn). 

De resultaten uit hoofdstuk 4 worden in hoofdstuk 5 toegepast op voorraad

problemen. In de laatste sektie van dit hoofdstuk wordt getoond hoe je 

·zonder gebruikmaking van resultaten voor het verdiskonteerde geval kunt 

bewijzen dat de gemiddeld optimale strategie van een bepaalde struktuur 

is. Er wordt een voorbeeld gegeven van een voorraadprobleem waarbij men 

aan het begin van elke periode alleen maar een vaste hoeveelheid kan be

stellen of niets. 
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STELLINGEN 

I 

Beschouw de volgende situatie: Een persoon P loopt op een regenachtige dag 

van A naar B. Hoewel hij geen paraplu bij zich heeft wil hij toch zo weinig 

mogelijk water vangen, De duur van de buien is negatief exponentieel ver

deeld met gemiddelde f, de duur van de droge perioden is.negatief exponen

tieel verdeeld met gemiddelde l , Er is geen wind, 
\l 

Zij a de oppervlakte van P's voorkant (in m2) en 6 de oppervlakte van zijn 

bovenkant, De maximale snelheid van P is w m/sec, 

Als geldt dat (a + S/w)~ < a heeft de vergelijking 

een niet-negatieve oplossing ~· 

De optimale strategie voor P is dan als volgt: 

Als de afstand tot B groter is dan ~-meter moet P zo hard mogelijk lopen als 

het droog is en stil blijven staan als het regent, als de afstand tot B klei

ner is dan ~-meter moet P zo hard mogelijk lopen, of het nu regent of droog 

is. 

J, Wijngaard, Een regenachtige geschiedenis, Rapport Bdk/OR/74-01, 

augustus 1974, 

II 

Het opnemen in de bedrijfskundestudie van eenvoudige modellen van productie

problemen, wachttijdproblemen, spelproblemen, kan men niet verdedigen op 

grond van de directe practische bruikbaarheid, 

De structuur van dergelijke modellen vindt men wel terug in de werkelijkheid. 

Behandeling ervan zal dus bijdragen in de vorming van het referentiekader 

van de student en verdient op grond daarvan een plaats binnen bedrijfskunde. 

UI 

In het algemeen doen bedrijven er verstandiger aan planners te ontwikkelen 

dan planningssystemen. 



IV 

Zij P een Markov proces met kosten op een aftelbare toestandsruimte, continu 

in de tijd, Vanuit toestand n zijn in één stap slechts de toestanden 

1,2,3, ••• ,n~l,n,n+l bereikbaar, Vanuit elke toestand wordt met zekerheid ooit 

toestand I bereikt en de verwachte kosten tot dan worden eindig verondersteld 

(en). Stel yn • en- en-I' n > 2, 
Als de drift naar toestand I sterk genoeg is zàl Yn begrensd zijn of althans 

niet al te snel divergeren, Gebruikmakend hiervan kan men c 1 gemakkelijk be

naderen door yn voor grote n gelijk te stellen aan 0, 

J. Wijngaard en E,G,F, van Winkel, Average number of back orders in a 

continuous review (s,S) inventory system with exponentially distributed 

lead time, presentedat Euro I, Brussel, januari 1975. 

V 

Dat de som f e -l.n ~ voor 0 < À < I gelijk is aan I : À en voor À > I 
n•l n. 

Àw · b ld • d À(w-1) k · d d aan T"='"1W , waar1.n w epaa 1.11 oor w • e • an men Vl.n en oor ge-

bruikmaking van het feit det in het Poissonproees N(t) met parameter À het 

verwachte aantal keren dat N(t} • t (t ~ I} zal optreden, juist gelijk is 

aan deze som. 

VI 

Zij { (P a• ra)}, a (( A een stationair Markov beslissingsprobleem op (V ,E), als 

gedefinieerd in § 4.2 van dit proefschrift. Laat V aftelbaar zijn en E de a

algebra van alle deelverzamelingen van V. Neem aan dat er een positieve func

tie w op V is met inf w(u) > O, zodanig dat ra(u) ~ w(u}, u (( V, a " A. Defi-
U(V 

nieer Ag voor g > 0 als de deelverzameling van A met alle a zodanig dat de 

gemiddelde kosten ga bestaan en er geldt ga (u) s g, u " V, Dan voldoet het 

beslissingsprobleem {(Pa,ra)}, a " A
8 

voor elke gaan de condities i), ii}, 
iii} van § 4,2, 

VII 

In "Quality control under Markovian deterioration" behandelt Ross een inspe~ 

tie-revisie probleem. Rij beschouwt een productiesysteem dat in goede of 

slechte staat verkeert. Ross definieert als toestandsruimte het interval 

[0,1 ], Het syste.em is in toestand p " [0, IJ als de kans dat het produetie

apparaat in slechte staat verkeert gelijk is aan p. Een natuurlijker toestands

ruimte, .die de resultaten helderder gemaakt zou hebben was hier geweest de 

ruimte van de natuurlijke getallen. Het systeem is in toestand n als het n 



tijdseenheden gedraaid heeft sinds voor het laatste is vastgesteld dat het 

in goede staat verkeerde. 

S,M, Ross, Quality control under Markovian deteroriation, Management 

Science, ~ (1971), 587-596, 

VIII 

De interne competitie bij veel schaak- en damclubs wordt gespeeld volgens 

het Keizersysteem. Daarbij wordt de rangorde bepaald op grond van gewogen 

wedstrijdpunten, Winst op nummer n van de ranglijst levert A- n punten op, 

A is een vrij willekeurig getal groter dan het aantal deel.nemers. Wil men 

echter meer recht doen aan de verschillen in puntentotalen dan kan men de 

gewichten evenredig aan die puntentotalen kiezen. De rangorde wordt dan be

paald door de eigenvector horend bij de grootste eigenwaarde van de uitsla

genmatrix. 

Keizer, Het systeem Keizer, Planeta, Enschede, 1956, 

IX 

Beschouw een voorraadprobleem met één voorraadpunt 0 vast bestelkosten en na

leverplicht, De bestelcapaciteit is beperkt (R). Onder de bestelstrategie 

(s ,s) bestelt men niet als de voorraad u ;" s en men bestelt min{S- u,R} als 

de voorraad u < s, 

In het algemeen is de gemiddeld optimale bestelstrategie niet van dit (s,S)

type. Echter als de vraag negatief exponentieel verdeeld is en de voorraad

en buiten voorraadkosten zijn lineair en als voor de beste (s,S)-strategie 

geldt dat s > 0, dan is de optimale strategie wel van het (s,S)-type. 

J. Wijngaard, An inventory problem with constrained ordercapacity, 

T.H.-Report 72-WSK-03, augustus 1972. 

x 

Een linkse stemmer die de belasting ontduikt is vergelijkbaar met een zondag

middag wandelaar die de hoekjes afsnijdt. 

Eindhoven, 29 april 1975, J, Wijngaard 




