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Efficiency in Audio Processing: 
Filter Banks and Transcoding 

 
 
 
 
Audio transcoding is the conversion of digital audio from one compressed form A to 
another compressed form B, where A and B have different compression properties, such as 
a different bit-rate, sampling frequency or compression method. This is typically achieved 
by decoding A to an intermediate uncompressed form, and then encoding it to B. A 
significant portion of the involved computational effort pertains to operating the synthesis 
filter bank, which is an important processing block in the decoding stage, and the analysis 
filter bank, which is an important processing block in the encoding stage. 
 
This thesis presents methods for efficient implementations of filter banks and audio 
transcoders, and is separated into two main parts. In the first part, a new class of Frequency 
Response Masking (FRM) filter banks is introduced. These filter banks are usually 
characterized by comprising a tree-structured cascade of subfilters, which have small 
individual filter lengths. Methods of complexity reduction are proposed for the scenarios 
when the filter banks are operated in single-rate mode, and when they are operated in multi-
rate mode; and for the scenarios when the input signal is real-valued, and when it is 
complex-valued. An efficient variable bandwidth FRM filter bank is designed by using 
signed-powers-of-two reduction of its subfilter coefficients. Our design has a complexity an 
order lower than that of an octave filter bank with the same specifications. 
 
In the second part, the audio transcoding process is analyzed. Audio transcoding is modeled 
as a cascaded quantization process, and the cascaded quantization of an input signal is 
analyzed under different conditions, for the MPEG 1 Layer 2 and MP3 compression 
methods. One condition is the input-to-output delay of the transcoder, which is known to 
have an impact on the audio quality of the transcoded material. Methods to reduce the error 
in a cascaded quantization process are also proposed. An ultra-fast MP3 transcoder that 
requires only integer operations is proposed and implemented in software. Our 
implementation shows an improvement by a factor of 5 to 16 over other best known 
transcoders in terms of execution speed. 
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pδ  : peak passband ripple of a filter. 

sδ  : peak stopband ripple of a filter. 
Γ  :  the complexity of a system, usually approximated by the number of multiplications 

required per input sample. 
 

( )nλ  : a modulating signal. 
( )T zΦ  : distortion error function for a filter bank pair. 
( )A zΦ  : aliasing error function for a filter bank pair. 

( )uA  : an interpolation factor used in the context of the FFB. 
( , )m uα  : a binary variable used in the context of the FFB. 
( , )W m u  : an exponential function used in the context of the FFB. 

 
v�  : the bit-reversed version of v. 

( )vh n
�

 : the v-th polyphase component of h(n). 
( )H z  : the complementary transfer function of ( )H z . 

Hu,v(z) : transfer function of a subfilter in a multi-stage filter bank, indexed by u and v. 
 
Often used symbols and notations specific to Part II 
 
s : index of scalefactor band. 
A: represents a compressed audio bitstream. 
B: bit-rate. 
N : number of quantization steps. 
R : tandem region label. 
NT : number of tandem quantization error regions for a cascaded quantizer pair. 
PT : tandem noise power. 
IT: tandem indicator. 
PR : tandem gain. 
 
ζ  : a scaling factor used in MPEG 1 Layer 2 quantization. 
Δ : quantization step-size. 
Φ : the set of quantization boundaries of a quantizer. 
Θ : the set of quantization steps of a quantizer. 
]  : lumped quantization parameter used to describe an MP3 quantizer. 
δ  : the difference between the 2 quantization parameters 1]  and 2] . 
 
T{ . } : a map which is used by a transcoder. 
R : set of tandem quantization error regions 
 
x{s} :  a vector comprising x[m] falling within the scalefactor band indexed by s, in the 

context of MP3. 
x�  : integer component of the real-valued x, in the context of MP3. 
x  : mean of x. 
q̂  : a modified quantizer, which is derived from q. 
 





 

 
 

Chapter 1 
Introduction 

 
 
 
 

1.1 About this thesis 
 
This thesis is written in partial requirement of the PhD criteria for the Joint PhD program as 
a collaboration between the National University of Singapore (NUS) and the Technical 
University of Eindhoven (TU/e). The work done in this Joint PhD program comprises 2 
parts. In Part I (conducted at NUS), we focus on efficient filter bank designs. These filter 
banks are directed at applications in audio, but are equally applicable to other generalized 
filter bank applications such as communications. In Part II (conducted at TU/e), we focus on 
the subject of audio transcoding. 
 
The initial objective of our work was to look into efficient filter bank designs. With this in 
mind, we proposed several new efficient filter bank designs in Part I, which are based on the 
Frequency Response Masking technique. In the collaborative work in Part II, we originally 
intended to apply these filter banks to the implementation of efficient audio transcoders, 
with the expectation that more efficient filter banks would lead to more efficient 
transcoders. Typically, filter banks comprise a significant amount of processing with 
regards to the overall transcoder processing (in the region of 15%-35%, depending on the 
compression method used to encode the audio). As it turns out, we found that a very 
efficient audio transcoder can be realized, that actually eliminates filter banks altogether. As 
a result, we redirected the work in Part II to the design of a 'filter bank-less' audio 
transcoder. 
 

1.2 Compressed digital audio processing 
 
1.2.1 Background 
 
In recent decades, audio storage technology has shifted from analog audio in the form of 
magnetic tape storage to digital audio in the form of the Compact Disc (CD) [60]. CD-
quality digital audio is sampled and quantized using the Pulse Code Modulated (PCM) 
format. PCM audio is typically associated with high bit-rates and large storage 
requirements. Conventional CD systems are usually sampled at 44.1 kHz using a 16-bit 
sample resolution. For a stereo audio representation, this translates to approximately 1.4 
megabits per second (Mbps). 
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With the advances in internet technology, a demand for compressed digital audio was 
created. Reduced data rates and storage requirements were required for effective music 
sharing and distribution. Furthermore, mobile music devices using solid-state storage 
technology have high cost-to-storage ratios, and thus benefit from digital audio 
compression. Significant research and improvements have been made in the field of digital 
audio compression. Using current methods of compression, bit-rates can be reduced by a 
factor of more than 10 over the bit-rate of PCM audio, at no perceptible loss in audio 
quality. 
 
1.2.2 Audio encoding, decoding and transcoding 
 
The main subject that is addressed in this thesis is the efficiency of audio compression 
systems. A typical audio encoder or decoder comprises several functional blocks, such as 
shown in Figure 1-1. During encoding, the PCM input is separated into its subband 
components by the analysis block. The subband components are then quantized and 
assembled by packing them into a compressed bitstream. The quantization process is 
controlled by a psychoacoustic model that analyzes the spectral content of the input, and 
determines the number of bits allocated to the quantization of each subband component. The 
quantized components are usually represented in the form of an integer factor and a scaling 
factor. 
 
During decoding, the bitstream is first unpacked, then rescaled (by combining the integer 
and scaling factors), and the PCM output is finally reconstructed by the synthesis block. 
Filter banks are typically used in the implementation of the analysis and synthesis blocks. 
Different compression methods might use different types of filter banks. A more detailed 
explanation on the operation of the audio encoder and decoder, and the functions of their 
individual blocks can be found in Section 7.1. 
 

PCM signal
Compressed

bitstream
Analysis block

Psychoacoustic
modelFFT

Quantizer Bitstream
packing

 
(a) Typical audio encoder 

Compressed
bitstream PCM signalBitstream

unpacking Rescaling Synthesis block
 

(b) Typical audio decoder 

Figure 1-1 Simplified overview of an audio encoder/decoder. 

 
Audio transcoding refers, in a general sense, to the process whereby a compressed bitstream 
is re-encoded to another compressed bitstream. The re-encoded bitstream can be in a 
different compression method from the original, or it can have a different bit-rate, etc. The 
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conventional method of transcoding is to first decode the compressed bitstream to a PCM 
signal, and then to re-encode this signal to the second compressed bitstream. i.e. the decoder 
is cascaded with the encoder. For example, a transcoding process is illustrated by the 
following: an MPEG 1 Layer 2 [71] song which is encoded at 192 kbps stereo, is decoded to 
the PCM format, by using an MPEG 1 Layer 2 decoder. This PCM signal is then encoded to 
an MP3 song at 128 kbps mono, using an MP3 encoder. 
 
The conventional method of transcoding, as described above, presents several options for 
complexity reduction. For example, each individual block (in Figure 1-1) can be optimized 
separately: an efficient, modified psychoacoustic model can be used [106], an efficient FFT 
implementation can be used [11], optimized hardware programming language can be used 
to code the individual blocks, etc. A more detailed explanation of audio transcoding, and a 
discussion of the state-of-the-art pertaining to this subject, can be found in Section 7.2. 
 

1.3 About our work 
 
In this thesis, we consider the complexity of an audio transcoder, for the scenario of bit-rate 
alteration. We focus mainly on 2 areas of complexity reduction: (i) filter banks, and (ii) 
overall transcoder design. In the first part, we consider on a local scale, the use of efficient 
filter banks as a means of reducing the overall transcoder complexity. In the second part, we 
proceed to consider on a broader scale, the complexity reduction possibilities that are 
available, such as the elimination of the various processing blocks shown in Figure 1-1. 
 
1.3.1 Filter banks 
 
Part I of this thesis (Chapters 2-6) focuses on filter banks. A background on the state of the 
art, relevant to our work on filter banks, is provided in Chapter 3. 
 
We propose several new filter bank structures for different operating conditions, such as for 
single-rate and multi-rate operation, and for scenarios where the input signal is real-valued 
or complex-valued. The proposed filter banks belong to a new class, which we call the 
Frequency Response Masking (FRM) [23] filter banks. The FRM filter banks are based on 
the Fast Filter Bank (FFB) [21]. 
 
Contributions 
 
• The design considerations for the FFB are consolidated, and further expanded on. A 

general structure and working principle of the FFB was first proposed in [21]. We 
expand on this by performing an in-depth analysis on the design of the subfilters 
comprising the FFB (Chapter 3). 

• A new structure, based on the FFB, is proposed by using the node-modulation method 
(Section 4.2). 

• The pruning method is proposed for the scenario when the input to the FFB is real-
valued (Section 4.3). 

• A matrix formulation is proposed for the implementation of the FFB on systems 
optimized for vector and matrix processing (Section 4.5). 
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• The design of FRM filter banks for multi-rate processing is analyzed (Sections 6.1 and 
6.2). 

• A classification of FRM filter banks is proposed (Section 5.2). 

• Efficient implementations of FRM filter banks for multi-rate processing are proposed 
(Sections 5.1 and 6.4). In Section 6.4, we design a very efficient multiplierless FRM 
filter bank, comprising subfilters having filter coefficients that are reduced to signed-
powers-of-two terms. 

 
Note that although efficient filter banks are useful in audio coding (for speeding up the 
audio encoding and decoding processes), we do not intend to restrict the application of these 
filter banks to only audio. Filter banks are widely applied in many areas of digital signal 
processing, and the proposed filter banks could be used in other areas, such as in 
communications. 
 
 
1.3.2 Transcoding 
 
The subject of transcoding is discussed in Part II: Chapters 7-10. A background on the state 
of the art, relevant to our work on transcoding, is provided in Chapter 7. We focus on the 
MPEG 1 Layer 2 and MP3 compression methods in this thesis. 
 
The transcoding process is modeled as a cascaded quantization process (Section 7.4), which 
we use extensively in our work. The performance, in terms of audio quality and complexity, 
of a transcoder is then considered. 
 
Contributions 
 
• Tandem quantization error, which is a consequence of cascaded quantization, is 

analyzed. We propose several new methods of reducing this error (Chapter 8), such as 
the modified quantizer method and the quantizer selection method. 

• We analyze the effect of different delays (measured from the input to the output of the 
transcoder) on the audio quality of transcoded materials. We develop a measure for 
estimating the impact of different delays when transcoding MPEG 1 Layer 2 and MP3 
audio (Chapter 9). 

• A very efficient MP3 transcoder is proposed (Chapter 10). 
 

1.4 Thesis overview 
 
The flow of the thesis is as follows. 
 
Part I: Filter Banks - Chapters 2-6 
 
In Chapter 2, we provide a general overview of frequently used filter banks, such as the 
polyphase filter bank and the octave filter bank. The Fast Filter Bank (FFB) [21], which 
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belongs to a new class of FRM filter banks, is also introduced. A preliminary comparison of 
the characteristics of each type of filter bank is also provided. 
 
In Chapter 3, we explain the operation of the FFB. Its design and properties are then 
considered. The FFB usually comprises a tree-structured cascade of subfilters, which have 
complex-valued coefficients and small filter lengths. The FFB is useful in designs requiring 
low complexity at very small transition widths. As an example, a 32-channel FFB design is 
given. 
 
In Chapter 4, we propose several methods to reduce the complexity of the FFB. We 
consider both the scenarios when the input signal is real-valued, and when it is complex-
valued. The node-modulation method is proposed as a method of reducing FFB complexity, 
by reducing its subfilters to having real-valued coefficients. The pruning method is 
proposed for the scenario of a real-valued input signal. As an example, we then design a 16-
channel FFB using the pruning and node-modulation methods, and compare its complexity 
to the original FFB. A matrix formulation of the FFB is then proposed for software 
implementation on machines which have vector- or matrix-optimized capability (such as the 
matrix processing package BLAS [38]). 
 
In Chapter 5, we consider the multi-rate operation of the FRM class of filter banks (when 
the outputs are decimated). A method of decimation is proposed that reduces the complexity 
of the filter bank in multi-rate mode. We categorize the FRM filter banks into 4 different 
types, based on the implementation of the subfilters. The different types of FRM filter banks 
are then compared in terms of complexity. 
 
In Chapter 6, we analyze the reconstruction characteristics of the FRM filter banks in the 
multi-rate mode, when the analysis filter bank is cascaded with the synthesis filter bank. 
The design of filter banks with small aliasing and distortion error is considered. A filter 
bank with variable bandwidths is then designed. The coefficients of its subfilters are 
reduced to signed-powers-of-two (SPT) [45] terms. The resultant complexity is shown to be 
lower than that of the octave filter bank. 
 
Part II: Audio Transcoding - Chapters 7-10 
 
In Chapter 7, we introduce the concept of audio coding and audio transcoding, which we 
model as a cascaded quantization process. The terms and notational conventions which are 
frequently used for Part II are defined. 
 
In Chapter 8, we analyze transcoding as a cascaded quantization process. When the input-
to-output delay of the transcoder is a multiple of the decimation factor, cascaded 
quantization leads to an error component which we call 'tandem quantization error'. This is 
analyzed for the MPEG 1 Layer 2 method, and several methods of reducing the tandem 
quantization error are proposed. 
 
In Chapter 9, we study the effect of different input-to-output delays on the quality of 
transcoded audio material. Both the MPEG 1 Layer 2 and MP3 methods are discussed. 
 
In Chapter 10, a very efficient transcoder is proposed. Our method uses an integer-to-integer 
mapping. Since no floating-point computations are required, the transcoder is suitable for 
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fast implementations that require a small software memory footprint (or hardware chip 
area). A prototype transcoder is implemented using the C programming language, and 
results of listening tests (in terms of audio quality) and execution speed tests are included. A 
patent application [104] was filed on the proposed method of transcoding. 
 

1.5 Publications 
 
• J.W. Lee and Y.C. Lim, "Efficient Implementation of Real Filter Banks using Frequency 

Response Masking Techniques", IEEE Asia Pac Conf. on Circuits and Systems,  vol. 1, pp 69-
72, Oct. 2002. 

• J.W. Lee and Y.C. Lim, "Designing the Fast Filter Bank with a Minimum Complexity 
Criterion", IEEE Int. Symp. on Signal Processing Applications,  vol. 2, pp 279-282, July 2003. 

• Y.C. Lim and J.W. Lee, "Matrix Formulation: Fast Filter Bank", IEEE Int. Conf. on Acoustics, 
Speech, and Signal Processing, vol. 5, pp 133-136, May 2004. 

• J.W. Lee and Y.C. Lim, "A multiplierless filter bank with deep stopband suppression and 
narrow transition width", IEEE Int. Symp. on Circuits and Systems, pp. 4305-4308, May 2005. 

• J.W. Lee, A. Lemma, M. van der Veen, "An analysis of tandem error during audio transcoding", 
AES 117th Convention, Preprint Number 6198, October 2004. 

• J.W. Lee, Y.C. Lim, S.H. Ong, "A flexible and efficient sharp filter bank architecture for 
variable bandwidth systems", IEEE Int. Symp. on Circuits and Systems, pp. 2029-2032, May 
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Chapter 2 
General Overview of Filter Banks 

 
 
 
 
In this chapter, we provide a brief review of the various filter bank implementations that are 
typically used in the field of audio compression. Due to its high efficiency in multirate 
systems, the polyphase filter bank is the most widely applied filter bank in audio 
compression, communications systems and general signal processing applications. A 
multirate system is defined as a system where different sampling rates exist in different 
parts of the system. A single-rate system is defined as a system where the sampling rate 
remains constant throughout. The octave-type filter bank is also included in our discussion, 
and is often applied in the areas of speech and image processing. A brief overview of the 
Fast Filter Bank (on which we will be focusing our work) is also provided. The polyphase 
and octave-type filter banks provide the basis of our subsequent complexity comparisons 
with the Fast Filter Bank. 
 

2.1 Filter bank overview 
 
The perceptual model used in audio compression techniques is based on the human ear's 
varying sensitivity to noise at different frequencies. Most audio coders utilize a filter bank 
to separate an audio signal into different subbands, which are then separately quantized. The 
perceptual model, the audio compression techniques and the quantization processes are 
described in greater detail in Part II. In Part I, we focus on filter banks. 
 

x(n) x(n)

Analysis
filterbank

H

Synthesis
filterbank

G

L

L

L

L

L

L

Quantization and
bitstream packing

x[m](n) x[m](n)

 
Figure 2-1 Typical model of audio compression 

using a pair of analysis-synthesis filter banks. 
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A typical application of filter banks in audio compression is shown in Figure 2-1. We use H 
to represent the set of analysis filter transfer functions [ ] ( )mH z  for the subband m, where 
0 1m M≤ ≤ − , M denotes the total number of subbands, and G represents the set of 
synthesis filter transfer functions [ ] ( )mG z . In our work, we only consider Finite Impulse 
Response (FIR) filters and filter banks. The input signal to the analysis filter bank is 
denoted as x(n). 
 
The z-transform of x(n) is notated by X(z), where: 

 ( ) ( ) n

n

X z x n z
∞

−

=−∞

= ∑ . (2.1) 

Similarly, [ ] ( )mH z  and [ ] ( )mG z  are implicitly understood to be the z-transforms of [ ] ( )mh n  
and [ ] ( )mg n  respectively. For a FIR filter, the coefficients of the transfer function H[m](z) are 
equal to the values of the filter impulse response h[m](n). 
 
The outputs of the analysis filter bank are assumed to be decimated by a factor of L, and are 
subsequently interpolated by a factor of L before reconstruction [3]. If L = 1, then the 
system is said to be single-rate. If L < M, the system is oversampled, and if L = M, then the 
system is critically-decimated. 
 
The filtered version of the input signal for the m-th subband, after passing through the 
analysis filter bank, is given by: 

 [ ] [ ]( ) ( ) ( )m mx n h n x n= ∗ , (2.2) 

where ∗  represents the convolution operator. The signal x[m](n) is then quantized to: 

 ( )[ ] [ ] [ ]ˆ ( ) ( )m m mx n q x n= , (2.3) 

where [ ] (.)mq  represents the quantization used in the subband m. 
 
The quantization error in each subband is denoted by: 

 [ ] [ ] [ ]ˆ( ) ( ) ( )m m me n x n x n= − , (2.4) 

and the reconstructed signal is: 

  
1

[ ] [ ]
0

ˆ ˆ( ) ( ) ( )
M

m m
m

x n g n x n
−

=

= ∗∑ . (2.5) 

In the scenario when there is no quantization error, ˆ( )x n  is related to ( )x n  by the filter 
bank pair G and H only. If ˆ( )x n  is a delayed version of ( )x n , i.e. ˆ( ) ( )x n x n d= − , where d 
is the total delay of the filter bank pair, then the filter bank pair is said to be perfectly 
reconstructing (PR). If ˆ( ) ( )x n x n d≈ −  to a very good approximation, then the filter bank 
pair is said to be near-perfectly reconstructing (NPR). 
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Our objective in Part I of this thesis is to study the complexity-related issues of current filter 
banks used in audio compression techniques. Also, we examine the possibility of using the 
Fast Filter Bank (FFB) as an efficient alternative. The FFB is a new category of filter banks 
that is designed using the Frequency Response Masking (FRM) Technique. We provide an 
in-depth coverage of the design and implementation issues of the FFB, and propose several 
architectural improvements and complexity reductions. We first review the filter banks that 
are commonly used. 
 

2.2 Definitions and conventions 
 
2.2.1 Indices used 
 
Due to the frequent references to multi-stage filter banks, which consist of many subfilters 
arranged in a 2-dimensional structure, we use the symbols u and v mainly as horizontal and 
vertical indices of these subfilters respectively. The symbol m is used as the subband index. 
When m is used in transfer functions and impulse responses, it is typically enclosed in 
square brackets to avoid confusion with other indices, e.g. H[m](z). 
 
2.2.2 Filter specifications 
 
In this thesis, we will be concerned with low-pass, high-pass and band-pass filters. By way 
of illustration, we consider the archetypal low-pass characteristics in Figure 2-2. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Normalized frequency (  rad/sample)π×

M
ag

ni
tu

de
 re

sp
on

se

2 pδ

sδ

Δ

pω sω

 
Figure 2-2 Frequency response of a generic filter. 

 
Sampling frequency: In our work, we assume that the sampling frequency is normalized to 
2π  radians/sample. 
 
Passband edge/stopband edge: These are denoted by the symbols pω  and sω  respectively 
and are shown in Figure 2-2. 
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Peak passband/stopband ripple: These are denoted by the symbols pδ  and sδ  respectively 
and are shown in Figure 2-2. 
 
Note that the peak passband ripple is taken about a gain of unity, and the peak stopband 
ripple is taken about a gain of zero. Hence, equal values of pδ  and sδ  does not necessarily 
equate to equal values in terms of dB. For example, 0.01 0.086pδ = = dB and 

0.01 40sδ = = − dB. 
 
Stopband attenuation: The value of the average passband gain divided by the peak stopband 
ripple, in dB. 
 
Transition width: The difference in frequency between the passband edge and the stopband 
edge and is denoted by Δ  (Figure 2-2). These are expressed in the form bπ  radians/sample, 
as was explained in the paragraph on sampling frequency. 
 
Bandpass/highpass filters: The same set of specifications apply for highpass filters, except 
that the passband is centered at the frequency π , instead of zero. The passband edge and 
stopband edge are thus reversed laterally. For a bandpass filter with bandwidth Bω , centred 
at frequency Cω , its passband edges are at ( / 2)C Bω ω+  and ( / 2)C Bω ω− . Its stopband 
edges are at ( / 2)C Bω ω+ Δ +  and ( / 2)C Bω ω− Δ − . The peak passband/stopband ripple are 
defined as for the lowpass filter. 
 
 
2.2.3 Complex/real scenarios for filter bank 
 
First, we make the distinction between the transfer functions of the filter bank and the 
nature of the inputs and outputs of the filter bank. 
 
The input signal to the filter bank can be real-valued or complex-valued. We begin our 
discussion by assuming the general case that the input signal is complex-valued (Chapters 2 
and 3). Since our work is applied to audio, the case of a real-valued input signal is relevant. 
In Chapter 4, we make the transition from the complex-valued input signal case to the real-
valued input signal case, and propose methods to reduce filter bank complexity for the real-
valued input signal case. In Chapters 5 and 6, we consider the case when the input signal is 
real-valued. 
 
The transfer functions of the filter bank can have coefficients that are real-valued or 
complex-valued. Transfer functions with purely real-valued coefficients have frequency 
responses that are symmetrical about the frequency origin (e.g. (a)). Transfer functions that 
have complex-valued coefficients have non-symmetrical frequency responses about the 
origin (e.g. (b)). In Chapters 2 and 3, we assume the general case when the filter bank 
transfer functions have complex-valued coefficients. 
 



Chapter 2:  General Overview of Filter Banks 13 

 

|H(ω)|

|H(ω)|

ω

ω

0

0

 
Figure 2-3 Frequency response for a (a) transfer function with purely 

real-valued coefficients; (b) transfer function with complex-valued coefficients. 

 
When the input and output signals are both real-valued, a transfer function with purely real-
valued coefficients is sufficient. We would like to clarify that even when the transfer 
function from the input to the output has purely real-valued coefficients, the transfer 
functions of the subfilters that make up the filter bank may represent either case (real-
valued, or complex-valued coefficients). In Chapters 5 and 6, we use filter banks with 
transfer functions that have real-valued coefficients. These filter banks comprise subfilters 
with transfer functions that have complex-valued coefficients. In Chapter 4, both cases are 
considered. 
 
 
2.2.4 Glossary and Appendix information 
 
Frequently used notational conventions are provided in the Glossary. 
 
In Appendix A, we provide information on methods of filter length estimation. Estimated 
filter length is often used when we compare different filter bank implementations in Part I 
of this thesis. In Appendix B, we define our methods for calculating the complexity of a 
filter for different scenarios. For example, one such scenario is a complex-valued input 
signal, and a linear phase FIR filter with real-valued coefficients. The information in 
Appendix B is used when we calculate complexity in Part I of this thesis. 
 
 
2.2.5 Causality 
 
Causal form: When it is not stated, we assume the causal form of the filters in the diagrams 
and equations given in this thesis. The causal form of a filter with transfer function H(z) is 
defined to have coefficients h(n), where 0 1n N≤ ≤ −  and N is the filter length of H(z). 
 
Non-causal form:   For the sake of representation simplicity, we occasionally assume the 
non-causal form of the filters where stated. The reason for using the non-causal form is so 
that the delay of an odd-length linear-phase FIR filter is equal to zero. Odd-length filters 
with length N and impulse response h(n) are defined for ( 1) / 2 ( 1) / 2N n N− − ≤ ≤ − , where 
the center coefficient is located at n=0. Even-length filters with length N and impulse 
response h(n) are defined for ( / 2 1) / 2N n N− − ≤ ≤ . 
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2.3 Filter-array filter bank 
 

Before discussing the various filter bank implementation strategies, let us first examine the 
basic filter-array. The filter-array analysis and synthesis filter banks (Figure 2-4) consist of 
an array of bandpass filters [ ] ( )mH z  and [ ] ( )mG z , which have passbands in different parts of 
the frequency spectrum. 
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x[1](n)

x[M-1](n)

L

L

L

L

L

L
 

Figure 2-4 Filter-array for an 
analysis-synthesis filter bank pair. 

 
In much of our work, we omit the discussion of the synthesis filter bank. Instead, we focus 
on the design of the analysis filter bank. In places where the synthesis filter bank is not 
mentioned, we can simply assume that the synthesis filter bank is the mirror image of the 
analysis filter bank, i.e. H[m](z)=G[m](z). 
 
 
2.3.1 Uniform filter bank 
 
A uniform filter bank is defined as one where the frequency responses of the subbands have 
equal bandwidths, transition widths, passband and stopband ripples. One such example is 
when the frequency response of the m-th subband filter is a modulated version of the 
lowpass filter [0] ( )H z , i.e.: 

 2 /
[ ] [0]( ) ( )j m M
mH z H e zπ−= ,  for 1 1m M≤ ≤ − . (2.6) 

 
 
2.3.2 Even-stacked and odd-stacked filter bank 
 
If the passband of the subband m has center frequency at 2 /m Mπ  (Figure 2-5(a)), then the 
subbands of the filter bank are said to be even-stacked. An odd-stacked filter bank on the 
other hand, has center frequencies located at (2 1) /m Mπ+  (Figure 2-5(b)). 
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Figure 2-5 Frequency responses of (a) even-stacked, 

and (b) odd-stacked filter banks. 

 
 
2.3.3 Complexity 
 
We estimate complexity as the approximate number of operations required per input sample 
that is processed into the filter bank. For a decimation factor of L, L input samples are 
processed into the filter bank per output sample. The approximate number of operations 
required for one output sample (L input samples) is MN, and the approximate number of 
operations required for one input sample is therefore MN/L. Accordingly, the complexity of 
the filter-array filter bank is: 

 A MN LΓ = , (2.7) 

where we assumed a real-valued input signal and real-valued filter coefficients. A general 
discussion on our approach to calculating complexity for a complex-valued input signal or 
complex-valued coefficients is provided in Appendix B. 
 
The filter-array is very inefficient in a practical situation, especially when the number of 
subbands is large. As can be seen from (2.7), the number of multiplications required scales 
proportionally upwards with the number of subbands. 
 
An advantage of the filter-array is that each filter can be designed to have a frequency 
response that is independent of the others. Thus, it is suitable for the implementation of non-
uniform filter banks with highly customized specifications, such as the case when each 
subband has a different bandwidth, stopband attenuation, etc. 
 

2.4 Polyphase filter bank 
 
An efficient method for filter bank implementation is the polyphase filter bank [4]-[8]. For 
an analysis filter bank with uniform subbands, the transfer function for subband m can be 
expressed as a modulated version of the lowpass prototype filter with transfer function 

[0] ( )H z  as shown in (2.6). 
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2.4.1 Polyphase decomposition 
 
We first decompose the transfer function of the lowpass prototype filter in terms of its v-th 
polyphase component ( )vH z

�
, which is annotated with a tilde underline, as follows: 

 
1

[0]
0

( ) ( )
M

v M
v

v

H z z H z
−

−

=

= ∑ �
, (2.8) 

where the coefficients of the v-th polyphase component can be found from the time-domain 
impulse response of the prototype filter: 

 [0]( ) ( )vh n h nM v= +
�

,  for 0 1v M≤ ≤ − . (2.9) 

Note: We chose v as the index here, instead of the usual convention as in [5], to conform to 
our convention of assigning v as a vertical index for filter banks. 
 
The transfer function for subband m can be expressed in terms of the polyphase components 

( )vH z
�

: 
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In matrix form, this is expressed as: 
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. (2.11) 

From (2.11), since the M filters share a common set of polyphase components which are 
modulated by an M-point inverse discrete fourier transform (IDFT), they can be 
conveniently implemented using the structure illustrated in Figure 2-6. In the figure, we 
assumed an arbitrary decimation factor of L. If L = M, then the decimation block can be 
brought to the front of the polyphase subfilters. 
 

0 ( )MH z
�

x(n)

z -1

M-point
IDFT

x[0](n)

x[1](n)

x[M-1](n)

1( )MH z
�

1( )M
MH z−�

z -1

z -1

L

L

L
 

Figure 2-6 Polyphase structure for a M-channel analysis filter bank. 
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A variation of the above, that is often used for real-valued outputs, is the cosine-modulated 
filter bank (CMFB). An efficient polyphase structure can be obtained by decomposing the 
prototype filter into 2M polyphase components, followed by a M by 2M cosine modulation 
matrix T, comprising the elements tmv given by: 

 12cos ( 0.5)( ) ( 1)
2 4

m
mv

Nt m v
M
π π−⎛ ⎞= + − + −⎜ ⎟

⎝ ⎠
. (2.12) 

The prototype filter has the impulse response h(n), transfer function H(z), and a filter length 
of N. The coefficients of its v-th polyphase component are given by: 

  ( ) (2 )vh n h nM v= +
�

,  for 0 2 1v M≤ ≤ − . (2.13) 

The transfer function of the m-th subband of the CMFB takes the form: 

 
2 1

2
[ ]

0

( ) ( )
M

v M
m mv v

v

H z t z H z
−

−

=

= −∑ �
. (2.14) 

It is also interesting to note that the modified discrete cosine transform (MDCT) is a special 
case of the CMFB, when the prototype filter has a filter length of 2M and the outputs are 
critically decimated. The MDCT is used in many audio compression methods such as MP3, 
AAC and WMA. 
 
 
2.4.2 Complexity 
 
The complexity of the polyphase structure is determined by that of a single prototype filter, 
with transfer function [0]( )H z , and that of an M-point Fast Fourier Transform 
(FFT)/MDCT. For a polyphase structure, the complexity scales inverse-proportionally with 
the decimation factor: 

 ( )
( )

[0] /, H IDFT MDCT
P

M
M L

L

Γ + Γ
Γ = , (2.15) 

where L is the decimation factor, 
[0]HΓ  is the complexity of the prototype lowpass filter and 

( )/ 2( log )IDFT MDCT M M MΓ = Ο  is the complexity of the M-point IDFT/MDCT. 
 
The filter length of the prototype filter can be estimated (refer to Appendix A). Due further 
to many well-known efficient methods of computing the IDFT/MDCT using the FFT or 
IFFT, the polyphase filter bank can be very efficiently implemented. Assuming that M is a 
power of 2, the complexity of an M-point IDFT is: 

 22 logIDFT M MΓ = . (2.16) 

Various methods have also been proposed to compute the M-point MDCT very efficiently 
([10]-[12]). In [11], an efficient method was proposed with the following number of 
multiplications for an M-point MDCT: 
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 ( ) 20.5 logMDCT M M MΓ = . (2.17) 

The filter length of [0] ( )H z , given by N, is usually much greater than M. Therefore, 

2log ( 1)M N<< −  and P AΓ << Γ . Thus the polyphase filter bank has a much lower 
complexity than the filter-array implementation. 
 

2.5 Octave filter bank 
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x[1](n)

x[M-1](n)

x[M](n)

2 2
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HK-1,M/2(z) 2
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x[2](n)

x[3](n)

HK-1,1(z) 2

2

 
Figure 2-7 Equal bandwidth octave filter bank 

comprising two-channel filter banks. 

 
A two-channel filter bank can be cascaded into a tree-structured format to obtain an octave 
filter bank [13]. Figure 2-7 shows the structure of an equal bandwidth octave filter bank 
with K stages. At each stage, the input signal is filtered into its highpass and lowpass 
components and then decimated by a factor of 2. Therefore, the outputs of the filter bank are 
critically decimated (L = M). A key advantage of this structure is the ease of a PR design. 
As long as the PR property is satisfied for each 2-channel subfilter, the analysis-synthesis 
filter bank pair is PR. Literature on the design of 2-channel filter banks satisfying the PR 
property is relatively abundant [14]-[18]. 
 
Each subfilter has 2 outputs: the upper output path has a transfer function , ( )u vH z , and the 

lower output path (marked with a circle symbol) has a transfer function , ( )u vH z . The 

transfer function , ( )u vH z  is complementary to , ( )u vH z  in its frequency response: if , ( )u vH z  
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is lowpass, then , ( )u vH z  is highpass. The 2-channel analysis filter bank (with transfer 

functions , ( )u vH z  and , ( )u vH z ) and the corresponding 2-channel synthesis filter bank (with 

transfer functions , ( )u vG z  and , ( )u vG z ) form a 2-channel analysis-synthesis pair. 
 
x(n)

x[M](n)

x[M-1](n)

x[0](n)

x[1](n)

HK-1,0(z) 2

2

H0,0(z) 2 H1,0(z)

2

2

2

 
Figure 2-8 Octave filter bank in an unequal bandwidth configuration. 

 
Figure 2-8 shows a modified implementation of the octave filter bank which is used in 
applications such as speech coding [19]-[20]. The outputs of this filter bank have unequal 
bandwidths, i.e. some subbands have larger bandwidths than others. The octave filter bank 
shown in Figure 2-8 has a larger bandwidth at higher frequencies, and a smaller bandwidth 
at lower frequencies. Its frequency response is shown in Figure 2-9(e). The subbands with 
small bandwidths correspond to the frequencies where the human ear is more sensitive to 
noise, and the subbands with large bandwidths correspond to the frequencies where the 
human ear is less sensitive to noise. In such a scenario, the number of subbands for an 
unequal bandwidth filter bank is less than the number of subbands for an equal bandwidth 
filter bank, assuming that the subband with the smallest bandwidth has the same bandwidth 
as each subband of the equal bandwidth filter bank (e.g. Figure 2-9(d) and Figure 2-9(e)). 
Therefore, less operations are required for processing the decreased number of subbands, 
e.g. compression, quantization, etc. 
 
Let us represent the transfer function from the input x(n) to the output x[m](n) of the octave 
filter bank as [ ] ( )mH z . These transfer functions are related to the transfer functions of the 
subfilters depending on the filter path taken. As an illustration, for the 8-channel equal 
bandwidth octave filter bank using the structure shown in Figure 2-7, 

2 4
[0] 0,0 1,0 2,0( ) ( ) ( ) ( )H z H z H z H z=  and 2 4

[2] 0,0 1,0 2,0( ) ( ) ( ) ( )H z H z H z H z= . 
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(e) Unequal bandwidth configuration

(d) Equal bandwidth configuration
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Figure 2-9 Frequency responses of the octave filter bank. 

 
The solid lines in Figure 2-9(a)-(c) represent the frequency responses of 0,0 ( )H z , 2

1,0 ( )H z  

and 4
2,0 ( )H z  respectively, if we assume that the same base filter is used for each subfilter, 

i.e. 0,0 1,0 2,0( ) ( ) ( )H z H z H z= = . The dotted lines represent the complementary frequency 

responses of 0,0 ( )H z , 2
1,0 ( )H z  and 4

2,0 ( )H z  respectively. Figure 2-9(d) shows the 
frequency responses of [ ] ( )mH z  for the 8-channel equal bandwidth octave filter bank using 
the structure shown in Figure 2-7. We note that although the bandwidths of the different 
subbands are equal, their transition widths are unequal. Since 8

2,0 ( )H z  is interpolated from 

2,0 ( )H z , the transition edges in Figure 2-9(d) corresponding to the transition edges of 
8

2,0 ( )H z  have smaller widths, and the transition edges corresponding to the transition edges 
of 0,0 ( )H z  have larger widths. Figure 2-9(e) shows the frequency responses of an unequal 
bandwidth octave filter bank corresponding to the structure in Figure 2-8. 
 
The equal bandwidth octave filter bank is considered only for interest, and is typically not 
used in the implementation of uniform filter banks. For the case shown in Figure 2-9(d), in 
order that the transition widths of the different subbands are equal, the filter lengths of 

0,0 ( )H z  and 1,0 ( )H z  must be increased. For a filter bank with equal transition widths, the 
filter lengths of , ( )u vH z  increases as u decreases, i.e. 0, 1, 2, ....v v vN N N> >  (where ,u vN  is the 
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filter length of , ( )u vH z ). From Figure A-2, we observe that filter length increase drastically 
as the transition width becomes smaller. 
 
Typically, for the design of equal bandwidth octave filter banks, ,u vH  is selected to be equal 
to ,0uH . Hence, the overall complexity of the octave filter bank can be estimated from: 

 
1

,0
0

K

O u
u

N
−

=

Γ = ∑ . (2.18) 

 
Example:    In an illustration of the application of the octave filter bank to the design of 
uniform filter banks, let us consider a 128-channel octave filter bank with equal transition 
widths of π /320. Assume that the passband and stopband ripples for all subfilters are equal 
to 0.086 dB and -80 dB respectively. 
 
The transition widths for the subfilters are: 

0,vΔ =π /320, 1,vΔ =π /160, 2,vΔ =π /80, 3,vΔ =π /40, 

4,vΔ =π /20, 5,vΔ =π /10, 6,vΔ =π /5. 
 
The lengths of the subfilters are estimated from (A.1): 

0,vN =2061, 1,vN =1031, 2,vN =516, 3,vN =258, 4,vN =129, 5,vN =65, 6,vN =33. 
 
It is observed from the example that the lengths of the subfilters can be very large for a 
uniform filter bank implementation with many subbands. 
 
In this and the next few chapters, our comparisons mainly concern equal bandwidth filter 
banks. Section 6.4 will be dedicated to the efficient design of unequal bandwidth filter 
banks. 
 

2.6 Fast Filter Bank (FFB) 
 
The Fast Filter Bank (FFB) [21] is a tree-structured filter bank and its structure is shown in 
Figure 2-10. In this section, we provide a very simplified introduction to the structure of the 
FFB and its notational conventions, as well as a brief discussion of its computational 
complexity. An in-depth coverage of the working principle and design of the Fast Filter 
Bank will be provided in Chapter 3. Improvements to the efficiency of the FFB will be 
proposed and analyzed in subsequent chapters. 
 
Note:    The original motivation behind the naming of the Fast Filter Bank (FFB) was due to 
it being a generalized form of the sliding FFT filter bank [31]. When the subfilters of the 
FFB are reduced to a length of 2, and having the transfer function of 

2 / 1
, ( ) 1 j v M

u vH z e zπ− −= + � , the FFB becomes a sliding FFT filter bank. 
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Figure 2-10 The tree-structured Fast Filter Bank. 

 
In Figure 2-10, the FFB is shown, comprising a K-stage cascade of subfilters with transfer 
functions , ( )u vH z . The number of subbands is given by 2KM = . 
 
Although an initial glance at the FFB seems to suggest a great similarity to the octave filter 
bank discussed in the previous section, their methods of operation are in fact fundamentally 
different. For the octave filter bank, each subfilter is a 2-channel filter bank that separates 
the input signal into its lowpass and highpass components. For the FFB on the other hand, 
the subfilter with transfer function H0,0(z) is interpolated to obtain a frequency response with 
multiple passbands. The subfilters with transfer functions Hu,0(z) for u>0, then act to mask 
the unwanted passbands such that the outputs of the FFB have a single passband for each 
subband. The frequency response masking aspect of the FFB is further explained in Chapter 
3. 
 
Example:    In an illustration of the lengths of the subfilters normally used in the FFB, let us 
consider a 128-channel FFB with equal transition widths of π /320. Assume that the 
passband and stopband ripples for all subfilters equal to 0.086 dB and -80 dB respectively. 
 
The transition widths for the subfilters are: 

0,vΔ =0.2π , 1,vΔ =0.4π , 2,vΔ =0.7π , 3,vΔ =0.85π , 

4,vΔ =0.925π , 5,vΔ =0.9625π , 6,vΔ =0.9812π . 
 
The minimum filter lengths required for the subfilters are: 

0,vN =31, 1,vN =14, 2,vN =6, 3,vN =4, 4,vN =3, 5,vN =2, 6,vN =2. 
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From the example, it can be seen that the FFB typically comprises subfilters with very short 
filter lengths. This is due to the decreased transition width requirements on the subfilters by 
using the FRM technique. As a result, the FFB has a very low complexity when operated in 
single-rate mode (this is presented in the next section). The complexity of the FFB can be 
generally described by: 
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0,0 ,0
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−

=

Γ = + ∑ . (2.19) 

When the outputs of the FFB are decimated by a factor of L, its complexity does not scale 
downward proportionally to L (such as when compared to the polyphase filter bank (2.16)). 
The reason for this is that the subfilters in the last stage, given by 1. ( )K vH z− , are not 
interpolated and thus we are unable to bring the decimation factor towards the front of the 
filter bank (this is explained in Appendix B). In Chapters 5 and 6, we shall propose methods 
to improve the efficiency of the FFB in multirate operation. 
 

2.7 Filter bank comparisons 
 
It is useful at this point to have an approximate idea of the relative complexities of the 
various filter bank implementations. In this comparison, we consider uniform filter banks 
with M =2K uniform subbands and transition widths Δ . Table 2-1 shows an approximate 
comparison of the computational complexities for the various filter bank implementations. 
 
 

Filter bank Approximate complexity 

Filter-array A MN LΓ =  

Polyphase 22 logP N M M LΓ = +  

Octave 
1

,0
0

K

O u
u

N
−

=

Γ = ∑ , when L=M 

FFB 
1

0,0 ,0
1

4 2
K

u
F u

u
N N

−

=

Γ = + ∑  

Table 2-1 General complexity comparison. 

 
 
Example - Comparison for L=1, p sδ δ= =0.001: 
 
Let us first consider the single-rate case, i.e. L=1. For an example of p sδ δ= =0.001 (0.0087 
dB and -60 dB respectively), we tabulate the estimated complexity in Table 2-2 for various 
transition widths and numbers of subbands, for the polyphase filter bank and the FFB. 
 
 



24 Chapter 2:  General Overview of Filter Banks 

  Polyphase filter bank Fast Filter Bank 
M Δ  N PΓ  N0,0 FΓ  
16 π /32 202 330 25 352 

 π /64 402 530 50 339 
 π /128 804 932 101 372 
 π /256 1607 1735 201 465 

32 π /64 402 722 25 497 
 π /128 804 1124 50 477 
 π /256 1607 1927 101 507 
 π /512 3213 3533 201 598 

128 π /256 1607 3399 25 1105 
 π /512 3213 5005 50 1073 
 π /1024 6426 8218 101 1096 

Table 2-2 Complexity comparisons between the uniform 
polyphase filter bank and the FFB in single-rate mode (L=1). 

 
From Table 2-2, we can observe that the filter length N and complexity of the polyphase 
filter bank increase significantly when the transition width is decreased. For the FFB, on the 
other hand, the filter length of 0,0 ( )H z  is much smaller. Furthermore, the complexity of the 
FFB does not increase much for very small transition widths. For single-rate filter banks 
with large M and very small transition widths, the FFB is clearly more efficient than the 
polyphase filter bank. 
 
 
Example - Comparison for L=M, p sδ δ= =0.001: 
 
Consider the critically decimated case, i.e. L=M. For the same example of p sδ δ= =0.001 
(0.0087 dB and -60 dB respectively), we tabulate the estimated complexity for various 
transition widths and numbers of subbands for the polyphase filter bank, octave filter bank 
and the Fast Filter Bank  in Table 2-3. 
 
As mentioned earlier, the octave filter bank is unsuitable for the implementation of uniform 
filter banks, because the lengths of some subfilters become prohibitively large. The example 
clearly illustrates this. The FFB has a high complexity compared to the polyphase filter 
bank in the critically-decimated case. However, its complexity is still significantly lower 
than that of the uniform octave filter bank. 
 
Note: The comparisons given above are based on a general estimation of the complexity of 
the filter banks. In reality, the complexity may be influenced by other factors: e.g., fixed or 
floating-point implementation, complexity reduction strategies specific to the type of filter 
bank, etc. 
 
The polyphase filter bank is very efficient, and popularly used for the implementation of 
uniform filter banks (such as in communications and audio compression). For the 
implementation of non-uniform filter banks, the octave filter bank is efficient and popularly 
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used (such as in speech and image processing). In our work, we compare the FFB to the 
polyphase filter bank for the case of uniform filter banks, and to the octave filter bank for 
the case of non-uniform filter banks. 
 

M Δ  Polyphase, PΓ  Octave, OΓ  FFB, FΓ  
16 π /32 21 378 352 

 π /64 33 756 339 
 π /128 58 1509 372 
 π /256 108 3015 465 

32 π /64 23 780 497 
 π /128 35 1560 477 
 π /256 60 3116 507 
 π /512 110 6229 598 

128 π /256 27 3191 1105 
 π /512 39 6380 1073 
 π /1024 64 12756 1096 

Table 2-3 Complexity comparisons between the uniform polyphase filter bank, 
octave filter bank and the FFB in critically-decimated mode (L=M). 

 

2.8 Summary 
 
In this chapter, we have introduced the 4 main types of filter banks that are relevant to our 
work: the 1) filter-array filter bank, 2) polyphase filter bank, 3) octave filter bank and 4) 
Fast Filter Bank. The advantages and disadvantages associated with the various types of 
filter banks are summarized in Table 2-4. 
 

Filter 
bank Advantages Disadvantages 

Filter-
array 

- Can have highly customized 
specifications. 

- Very high complexity. 

Polyphase - Very efficient when operated in 
multi-rate mode. 

- The filter lengths may be very large, and 
increase with the number of channels. 
- High cost of decreasing transition width. 

Octave - Useful for non-uniform filter bank 
implementation. 

- Very long filters required for uniform 
filter bank implementation. 
- Very high cost of decreasing transition 
width. 

FFB - Very efficient in single-rate mode. 
- Low coefficient count. 
- Low cost of decreasing transition 
width. 

- Not well adapted for operating in 
multirate mode. 

Table 2-4 Summary of the advantages and disadvantages 
associated with the various filter bank implementations. 
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The FFB has a very low coefficient count, and is very efficient in single-rate mode. In an 
example, the FFB was shown to have a significantly lower complexity than the other 
implementations, including the polyphase filter bank, when operated in single-rate mode. 
 
However, the complexity of the FFB does not scale downward when its outputs are 
decimated. In an example for which the outputs of the filter banks were critically decimated, 
the complexity of the FFB significantly exceeded that of the polyphase filter bank.  
 



 

 
 

Chapter 3 
Single-rate Systems I: 

The Fast Filter Bank 
 

 
 
 
Until recently, the theory on the Fast Filter Bank has remained as a study of efficient single-
rate filter banks, with limited application to practical situations. The literature base relating 
to the FFB is very small, with the introduction of its concept in [21] and a short analysis on 
the selection of the subfilter transition widths in [22]. 
 
The FFB is normally characterized by having subbands with narrow transition widths, and 
consists of subfilters with very small filter lengths. It has been mentioned in the previous 
chapter that the FFB is very efficient in single-rate mode. However, when used as a multi-
rate filter bank, its complexity becomes significantly higher than that of the polyphase filter 
bank. In this chapter, we focus on the design of the FFB for single-rate operation. 
 
In this chapter, we assume the non-causal form for the representation of all filter transfer 
functions, i.e. they are represented as zero-delay filters. 
 

3.1 Frequency response masking technique 
 
Before delving into the topic of the FFB, let us first give an overview of the concept of 
Frequency Response Masking (FRM). The FRM technique was first introduced in [23]-
[24], and it is used in the design of FIR filters with narrow transition widths by means of a 
multi-stage structure. The complexity of the multi-stage FRM filter is greatly reduced when 
compared to the conventional single-stage FIR filter. 
 

H(z)
x(n) y(n)

Hsh(z
a)

x(n)
Hma1(z)

Hma2(z)

y(n)

(a) Single-stage filter

(b) 2-stage FRM filter  
Figure 3-1 Block diagram showing the structure of a  

(a) single-stage filter; (b) 2-stage FRM filter. 
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Consider a single-stage FIR filter with transfer function H(z) (Figure 3-1(a)). Suppose that 
the following set of specifications is desired: passband edge = pω , stopband edge = sω , 
peak passband ripple = pδ  and peak stopband ripple = sδ . 
 
The length of the optimal equiripple filter fulfilling this set of specifications can be 
estimated (see Appendix A). The transition width of the filter ( s pω ωΔ = − ) is an important 
determining factor in the resultant filter length N. Figure 3-2 shows the estimated minimum 
filter lengths for various transition widths and fixed values of 0.1 dBpδ = , 60 dBsδ = − . It 
can be observed that for narrow transition widths, the required filter lengths increase 
drastically. 
 

0.001 0.005 0.01 0.02 0.04 0.06 0.1
10
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N

Δ (xπ rad/sample)  
Figure 3-2 Plot of required filter length N for transition 

width Δ , when 0.1 dBpδ =  and 60 dBsδ = − . 

 
In the Frequency Response Masking (FRM) approach to filter design, a multi-stage filter 
structure (such as shown in Figure 3-1(b)) is adopted. By appropriately designing the filters 
with transfer functions ( )a

shH z , 1( )maH z  and 2 ( )maH z , the overall complexity of the filter 
system can be greatly reduced when compared to H(z). The subscripts sh and ma are used to 
denote 'shaping' and 'masking', respectively. 
 
To understand how the complexity of the filter system can be reduced by using this method, 
let us first consider the frequency response shown in Figure 3-3(a). Due to the narrow 
transition width of this response, a large filter length is expected for the single-stage 
structure of Figure 3-1(a). 
 
In the FRM approach, a lowpass filter with transfer function Hsh(z) is first designed. Its 
frequency response is shown in Figure 3-3(b). As can be observed from the plot, the 
transition width of this filter is much larger than that of H(z), hence we expect Hsh(z) to have 
a smaller filter length than H(z). Interpolating Hsh(z) by an integer factor a, the resultant 
frequency response of Hsh(za) is given by the dotted line in Figure 3-3(c). The transfer 
function Hsh(za) describes a sparse filter, because many of its coefficients are zero-valued. 
The number of non-zero coefficients in Hsh(za) is equal to the filter length of Hsh(z), and 
hence the effective complexity of Hsh(za) is equal to the complexity of Hsh(z). 
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The masking filter with transfer function Hma1(z) is designed with a frequency response 
shown by the bold line in Figure 3-3(c) and its purpose is to mask the unwanted passbands 
of Hsh(za). The resultant frequency response of the cascade Hsh(za)Hma1(z) is shown in Figure 
3-3(d). Again, the transition width of Hma1(z) is larger than that of H(z), so we expect 
Hma1(z) to be a shorter filter than H(z). 

 

(b)

|Hsh(e jω)|

(a)

Required |H(e jω)|

(d)

|Hsh(e jaω) Hma1(e jω)|

(f)

|[1-Hsh(e jaω)] Hma2(e jω)|

ω

ω

ω

ω

(c)

|Hsh(e jaω)|   (dotted line), |Hma1(e jω)|   (bold line)

ω

(e)

|1-Hsh(e jaω)|   (dotted line), |Hma2(e jω)|   (bold line)

ω

 
Figure 3-3 Frequency response plots illustrating the FRM technique. 

 
The dotted line in Figure 3-3(e) shows the frequency response of ( )1 ( )a

shH z−  and the bold 
line shows the frequency response of Hma2(z). The frequency response of the cascaded 
filters ( ) 21 ( ) ( )a

sh maH z H z−  is shown in Figure 3-3(f). The two outputs of the FRM filter 
system are then summed together to give the resultant transfer function: 

 ( ) 2 1( ) 1 ( ) ( ) ( ) ( )a a
FRM sh ma sh maH z H z H z H z H z= − + . (3.1) 

The resultant FRM filter system has a frequency response approximating the desired narrow 
transition width, lowpass FIR filter H(z). However, it comprises component FIR filters that 
have lower complexity than H(z), and the overall complexity is reduced. 
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In a FRM filter design example in [23], a linear-phase FIR lowpass filter with specifications 
0.6pω π= , 0.61sω π= , 0.1 dBpδ =  and 40 dBsδ = −  was designed. An estimated filter 

length of 383 was required for the H(z) design. Using the FRM technique, the lengths of the 
filters ( )shH z , 1( )maH z  and 2 ( )maH z  were reported to be 45, 38 and 30 respectively. The 
interpolation factor a was chosen to be 9. In this particular design example, the complexity 
of the FRM system was only 29.5% of the non-FRM system. A drawback of the FRM 
technique however, is a slightly increased group delay. In this example the group delay of 
the FRM system was 216.5, compared to 191 in the non-FRM system, an increase of 13.4%. 
 

3.2 FFB structure and operation 
 
In this section, we describe the operation of the FFB, and formalize the notations used. Note 
that we generally assume that the inputs and outputs of the FFB are complex-valued. Real-
valued inputs and outputs will be considered in Section 4.1. 
 
 
3.2.1 Representation of a subfilter block 

 

 

Hu,v(z
a)Hu,v(z

a)
Hu,v(z

a)

(a) Hu,v(z) subfilter block

Hu,v(z
a)

(b) Hu,v(z
a) = 1- Hu,v(z

a)

Hu,v(z
a)

Hu,v(z
a)

 
Figure 3-4 Representation of a subfilter block , ( )a

u vH z . 

 
In this section, we extend the FRM theory to the design of the FFB. The non-causal forms 
for all filters and subfilters are assumed in this discussion. We begin by first defining a 
subfilter block , ( )a

u vH z  as shown in Figure 3-4(a). The subfilter block , ( )a
u vH z  consists of 

2 filters with a transfer function , ( )a
u vH z  defined by the upper output path, and its 

complementary transfer function , ( )a
u vH z  defined by the lower output path which is 

demarcated by a circle. For example, if , ( )a
u vH z  is a lowpass function, then , ( )a

u vH z  is a 
highpass function, and the sum of the 2 functions is equal to unity: 

 , ,( ) ( ) 1a a
u v u vH z H z+ = . (3.2) 

Figure 3-4(b) is an implementation of the subfilter block , ( )a
u vH z , where 

, ,( ) 1 ( )a a
u v u vH z H z= − . Another possible definition of the complementary transfer function 

is , ,( ) ( )a a
u v u vH z H z= − . 
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3.2.2 Description of FFB structure 
 

 

H0,0(z
M/2) H1,0(z

M/4)

H1,1(z
M/4)

H2,0(z
M/8)

H2,1(z
M/8)

H2,2(z
M/8)

H2,3(z
M/8)

HK-1,0(z)

HK-1,M/2(z)

x(n)
[0] ( )x n�

[1] ( )x n�

[ 1] ( )Mx n−

[ 2] ( )Mx n−

HK-1,1(z) [2] ( )x n�

[3] ( )x n�

 
Figure 3-5 The tree-structured Fast Filter Bank. 

 
Figure 2-10 (which we repeat in Figure 3-5 for convenience) shows the block diagram of 
the M-channel Fast Filter Bank (FFB), which consists of a multi-stage, tree-structured 
arrangement of subfilters. The number of cascade stages is K, and the number of subbands 
is M = 2K. The subbands of the FFB shown in Figure 3-5 are even-stacked.  For an input 
x(n), the M subband outputs of the FFB are represented using [ ] ( )mx n , for 0 1m M≤ ≤ − . It 
is convenient to use m to index the subbands in order of increasing frequency, such that the 
center frequency of the subband m is at 2 /m Mπ . In so doing, the outputs of the filter bank 
(Figure 3-5) become ordered in bit-reversed fashion, where m�  is the bit-reversed version of 
m in K bits: 

 
1

1
2

0

( )2
K

K k

k

m m k
−

− −

=

= ∑� , (3.3) 

where m2(k) is the k-th least significant bit of m, such that: 

 
1

2
0

( )2
K

k

k

m m k
−

=

= ∑ . (3.4) 

The subscript '2' indicates a base-2 representation, and m2(0) is the value of the least 
significant bit of m. 
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The reason for the bit-reversed ordering of the subband index at the FFB outputs lies in the 
structure of the FFB, and is left to be explained in Section 3.2.3. The FFB transfer functions 
H[m](z) generally have complex-valued coefficients. We consider the FFB for the complex-
valued input signal, complex-valued output signal scenario in this chapter. 
 
 
3.2.3 FFB and sliding FFT 
 
x(n)

-1

-1

-1

-1

z -1

z -1
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2 0/8je π
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(a) Represented using butterfly structure.
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2 1/8 11 je zπ −+
2 1/8 11 je zπ −−

2 3/8 11 je zπ −+
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2 0 /8 21 je zπ −−

2 2/8 21 je zπ −+
2 2/8 21 je zπ −−

2 0/8 41 je zπ −+
2 0 /8 41 je zπ −−

x(n)

(b) Represented using subfilter block diagram.

x[0](n)

x[4](n)

x[2](n)
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x[1](n)
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x[3](n)
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u

v

u = 0 u = 1 u = 2

 
Figure 3-6 Eight-channel sliding FFT with 

a decimation-in-time FFT structure. 
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The sliding FFT ([31]-[32]) originally inspired the FFB, and hence the structure of the FFB 
follows closely that of the sliding FFT. The sliding FFT takes the structure of the 
decimation-in-time FFT, as shown in Figure 3-6 for the 8-channel case. In Figure 3-6(a), the 
sliding FFT is shown using the well-known FFT butterfly structure. In Figure 3-6(b), we 
represent the sliding FFT using the equivalent subfilter block diagram, which is used 
throughout this thesis for representing the FFB. 
 
For the sliding FFT, the input x(n) is in natural order, and the outputs are in bit-reversed 
order. The transfer functions of the subfilters at each stage have only 2 non-zero 
coefficients, given by: 

 
12 / 2

, ( ) 1
K uj v M

u vH z e zπ − −−= + � , (3.5) 

and their complementary transfer functions: 

 
12 / 2

, ( ) 1
K uj v M

u vH z e zπ − −−= − � , (3.6) 

where K is the number of stages, M is the number of subbands, and v�  is the bit-reversed 
version of v in K-1 bits. Bit-reversal is further explained below. 
 
The sliding FFT has fixed transition widths and stopband attenuation. The FFB is a 
generalized case of the sliding FFT (see Section 3.4), in the sense that the filter lengths of its 
subfilters are arbitrary, and the frequency responses of its outputs are arbitrary. 
 
 
3.2.4 Bit-reversal 
 
The integer v�  is the bit-reversed version of the integer v expressed in u bits. If v is 
expressed in binary form: 

 
1

'
2

' 0

( ')2
u

u

u

v v u
−

=

= ∑ , (3.7) 

where v2(u') is the binary value of the u'-th bit of v, then v�  is defined as: 

 
1

1 '
2

' 0

( ')2
u

u u

u

v v u
−

− −

=

= ∑� . (3.8) 

For example, an integer v = 10 can be expressed in binary form as '...001010'. The bit-
reversed version of v in 4 bits is given by '0101', and 5v =� . The bit-reversed version of v in 
5 bits is given by '01010' and 10v =� . 
 
 
3.2.5 Description of FFB operation 
 
To understand how the M-channel FFB shown in Figure 3-5 operates, let us first consider 
the subfilter with transfer function 0,0 ( )H z . Its frequency response is shown in Figure 
3-7(a). Interpolating the filter by a factor of M/2, the resultant frequency response is shown 
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by the dotted line in Figure 3-7(b). The interpolated transfer function / 2
0,0 ( )MH z  consists of 

a set of M/2 passbands and the complementary transfer function / 2
0,0 ( )MH z  consists of a 

complementary set of M/2 passbands. Together, they constitute the M subbands of the FFB. 
 

0
ω

(a)

|H0,0(e
jω)|

(b)

|H0,0(e
jωM/2)| (dotted line), |H1,0(e

jωM/4)| (bold line)

ω
0

(c)

|H0,0(e
jωM/2) H1,0(e

jωM/4)|  (dotted line), |H2,1(e
jωM/8)| (bold line)

ω
0

(d)

|H0,0(e
jωM/2) H1,0(e

jωM/4) … HM-1,a(e
jω)|

ω
0  

Figure 3-7 Frequency responses of the subfilters in the FFB. 

 
Applying a masking subfilter with transfer function / 4

1,0 ( )MH z  and frequency response 

given by the bold line in Figure 3-7(b), the cascaded transfer function / 2 / 4
0,0 1,0( ) ( )M MH z H z  

retains only the passbands shown by the dotted line in Figure 3-7(c). By masking half of the 
number of passbands at each cascade stage in the FFB, only one passband per output 
channel is retained after K stages. Figure 3-7(d) shows the cumulative frequency response 
of the K cascaded transfer functions / 2 / 4

0,0 1,0 1,( ) ( ) ( )M M
K aH z H z H z−… . 

 
Similarly, other cascade paths in the filter bank lead to different masking combinations and 
the outputs of the FFB take on the M-channel filter bank characteristic. Since the transition 
edges of the FFB are primarily determined by the first subfilter with transfer function 

0,0 ( )H z , this subfilter is termed the shaping subfilter. The remaining subfilters perform 
masking functions to remove unwanted passbands of the interpolated shaping subfilter, and 
are therefore termed masking subfilters. 
 

3.3 FFB design considerations 
 
In the previous section, we have discussed the operating principle of the FFB. In this 
section, we provide design considerations for the FFB and its subfilters. Consider the design 
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of a filter bank with M subbands. We are generally restricted to M = 2K, where K is the 
number of cascade stages. Assume that the desired passband and stopband ripple are ppδ  
and ssδ  respectively, and the desired transition width of each subband is Δ . Let us denote 
the passband and stopband edges of the subfilter with transfer function , ( )u vH z  as ( , )p u vω  
and ( , )s u vω , its transition width as ,u vΔ , and its passband and stopband ripples as ( , )p u vδ  and 

( , )s u vδ . 
 
 
3.3.1 Subfilter design 
 
We are required to design the shaping subfilter with transfer function 0,0 ( )H z  and the 
corresponding set of masking subfilters with transfer functions , ( )u vH z , such that the  
transfer functions H[m](z) (from the input to the m-th output of the FFB), for 0 1m M≤ ≤ − , 
are bandpass and have center frequencies 2 /m Mπ . In the following discussion, we 
establish a set of basic conditions governing the design of the FFB subfilters. Conditions 1 
to 3 are necessary conditions that are required for the outputs of the FFB to attain the 
desired bandpass characteristic with center frequency at 2 /m Mπ . Conditions 4 and 5 are 
optional conditions that determine properties of the output frequency responses which are 
possibly desired but not necessarily required. 
 
 
Condition 1: The shaping subfilter has a transfer function 0,0 ( )H z . The frequency 

response of its interpolated form / 2
0,0 ( )MH z  must be approximately equal to the frequency 

response of the desired subband H[m](z) within the passband and transition band. Since the 
subbands are uniform, this can be equivalently represented as / 2

0,0 [0]( ) ( )j M jH e H eω ω≈ , for 

0
2 M

πω Δ⎛ ⎞≤ ≤ +⎜ ⎟
⎝ ⎠

. 

 
Since 0,0 ( )H z  is interpolated by a factor of M/2, the transition width requirement of the 
interpolated 0,0 ( )H z  is relaxed by a factor of M/2: 

 0,0 (0,0) (0,0) 2s p
Mω ωΔ = − = Δ . (3.9) 

Its passband and stopband edges are: 

 (0,0) 2p pp
Mω ω= , and 

 (0,0) 2s ss
Mω ω= . (3.10) 

Furthermore, the passband edge of 
12

,0 ( )
K u

uH z
− −

 must overlap the passband and transition 
band of H[0](z): 
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 ( ,0) (0,0)2 u
p u sω ω−≥ , for 1 1u K≤ ≤ − . (3.11) 

 
Condition 2: The masking subfilters have transfer functions given by 

12
,0 ( )

K u

uH z
− −

, for 
1 1u K≤ ≤ − . In order that the frequency response at the m-th output of the FFB has only 

one passband, all unwanted passbands and transition bands of 
' 1

1
2

',0
' 0

( )
K u

u

u
u

H z
− −

−

=
∏  must be in 

the stopband of 
' 1

1
2

',0
'

( )
K u

K

u
u u

H z
− −

−

=
∏ . Condition 2 can be satisfied by defining the stopband 

edges of ,0 ( )uH z  as follows: 

 ( ,0) (0,0)2 u
s u sω π ω−≤ − , for 1 1u K≤ ≤ − . (3.12) 

We note that the transition widths of the subfilters become increasingly larger as u 
increases, and are given by: 

 1
,0 (0,0)2 u

u sπ ω− +Δ = − , for 1 1u K≤ ≤ − . (3.13) 

We can thus infer that the filter length of , ( )u vH z  generally becomes smaller as u increases. 
 
 
Condition 3: In order that the subband frequency responses H[m](z) for 0 1m M≤ ≤ −  have 
mutually exclusive passbands, the transfer functions 

12
, ( )

K u

u vH z
− −

 (for a given u and 

0 2 1uv≤ ≤ − ) must be designed such that their passbands cover mutually exclusive regions 
of the frequency spectrum, in addition to satisfying Conditions 1 and 2. For our work, we 
can choose (as is used for the case of the sliding FFT): 

 
2

, ,0( ) ( )
vj

M
u v uH z H e z

π
−

=
�

, for 0 2 1uv≤ ≤ − , (3.14) 

where v�  is the bit-reversed version of v in K-1 bits. 
 
 
Optional condition 4:  Let the transfer functions of the subbands of the filter bank sum to 

unity, i.e. 
1

[ ]
0

( ) 1
M

m
m

H z
−

=

=∑ . In this case, the sum of the outputs of the FFB ˆ( )x n  is equal to 

the input ( )x n . For a single-rate system, this obviates the necessity of a synthesis filter 
bank. The condition can be satisfied if we define: 

 , ,( ) 1 ( )u v u vH z H z= − , for all u and v. (3.15) 

 
 
Optional condition 5: Let the outputs of the FFB have exactly uniform subbands, such that 

2

[ ] [0]( ) ( )
mj

M
mH z H e z

π
−

= . This is achieved when Condition 3 is satisfied and moreover: 
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 , ,( ) ( )u v u vH z H z= − , for all u and v. (3.16) 

 
In order to satisfy both Conditions 4 and 5 for linear phase FIR filters, we require (i) the 
coefficients of the subfilters to be zero for all even values of n, and (ii) the coefficient hu,v(0) 
to be 0.5. For both requirements to be satisfied, a half-band filter is necessary for Hu,0(z). If 
a non-half-band filter is used for Hu,0(z), then either the sum of the impulse responses of the 
FFB subbands is not unity (Condition 4 is not satisfied), or the frequency responses of the 
subbands are not exactly uniform (Condition 5 is not satisfied). 
 
Note: A zero-phase half-band filter ([25]-[26]) is defined by the transfer function 

1 2( ) 0.5 '( )H z z H z−= + , where the transfer function H'(z) contains the odd-numbered 
coefficients of the half-band filter. The half-band filter has the property that 

( ) ( ) 1H z H z+ − = . 
 
An additional advantage of a half-band filter is its decreased complexity when compared to 
a non-half-band filter with similar specifications. We note that the coefficients of the half-
band filter h(n) are equal to zero for even non-zero n. However, the passband and stopband 
ripples of a half-band filter are constrained to be equal, and this might result in a slightly 
longer filter than is necessary, leading to an increased delay. 
 
To illustrate the above points, let us consider an example. Suppose that a filter with 
specifications of 0.01 0.086pδ = =  dB, 0.001 60sδ = = − dB and 0.2πΔ =  is desired. A 
linear-phase equiripple filter requires a filter length of 27. A half-band equiripple filter, on 
the other hand, requires a filter length of 31, because pδ  must be equal to sδ . In this 
example, the half-band filter is longer and hence a greater delay is incurred. However, the 
half-band filter has only 17 non-zero coefficients when compared to the non-half-band filter 
which has 27 non-zero coefficients. 
 
 
3.3.2 Filter bank delay 
 
In most designs, the subfilter with transfer function H0,0(z) has the smallest transition width 
of all the subfilters. Hence, H0,0(z) is usually the longest subfilter. Furthermore, it is 
interpolated by M/2, which is the largest interpolation factor for all the subfilters. For a 
linear-phase FIR design, the delay incurred in stage u by 

1/ 2
,0 ( )

uM
uH z

+

 is: 

 2
,0( 1) / 2u

u ud M N += − , (3.17) 

where du is the delay of 
1/ 2

,0 ( )
uM

uH z
+

. 
 
In most FFB designs, the filter lengths of the subfilters decrease as u increases, i.e. 

1,0 ,0u uN N+ ≤ . Therefore, we can assume that 1 / 2u ud d+ ≤ . Then, the delay d0 incurred by the 

shaping subfilter is at least half of the overall filter bank delay, i.e. 1
0 0

2 K
uu

d d−

=
> ∑ . 
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Furthermore, the contribution to the overall complexity of the filter bank due to 0,0 ( )H z  is 
usually small.  
 
Thus, a significant reduction in the overall filter bank delay without a significant change to 
the overall complexity can be achieved, if we design H0,0(z) to have a small delay. Methods 
of designing suitable low-delay FIR filters can be found in [27]-[30]. A minimum-phase 
FIR filter [9] can be designed, by taking an FIR filter and replacing those zeros which are 
outside the unit circle by their inverses.  The resultant filter has a non-linear phase response. 
 
A more flexible approach, where the phase response is approximately linear in the passband 
can be adapted from [30]. We approach the design of H0,0(z) by optimizing its coefficients 
to have minimum energy in the stopband. The problem is phrased as an eigenproblem, with 
the solution being the eigenvector corresponding to its minimum eigenvalue. The desired 
passband delay d0,0 can be selected to take on an odd value (2k+1, where k is an integer), by 
constraining the coefficients 0,0 ( 2 ' 1)h n k= +  to be non-zero at k' = k, and zero at all other k'. 
The reader is referred to [30] for a more detailed description. 
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Figure 3-8 (a) Magnitude response of filters with different passband delays, 

(b) Group delay of filters with different passband delays. 

 
For H0,0(z) with a filter length of 31, we used this method to design filters with different 
values of k. For k=7, H0,0(z) is linear-phase. Figure 3-8(a) shows a comparison of their 
magnitude responses, and Figure 3-8(b) shows a comparison of their group delays. Low 
delay FIR filters designed using this method have a non-linear phase in the transition band 
and stopband. Its magnitude response in the transition band and stopband is also shifted 
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upwards. In the passband, however, the magnitude and phase responses remain almost 
unchanged. The phase in the passband is also approximately linear. 
 
 
3.3.3 Selection of transition width 
 
We have denoted the length of ,0 ( )uH z  as Nu,0. We have also made the general assumption 
that the complexity of the Fast Filter Bank is approximated by: 

 
1

0,0 ,0
1

4 2
K

u
FFB u

u
N N

−

=

Γ ≈ + ∑ . (3.18) 

Note that if we use linear-phase half-band subfilters, the complexity is reduced to less than 
half of the above value (refer to Appendix B). Furthermore, we noted that since the 
transition widths of the subfilters ,0uΔ  generally increases as u increases, the lengths of the 
subfilters Nu,0 decreases as u increases. From  (3.13), we know that ,0uΔ  can be calculated 
from (0,0)sω . If the width of the passband is approximately equal to the width of the 
stopband for 0,0 ( )H z , i.e. (0,0) (0,0)p sω π ω≈ − , then 0,0 (0,0)2 sω πΔ ≈ − . 
 
Consider that there are 2u subfilters in stage u. The contribution to the overall complexity of 
the filter bank from stage (u-1) and u is given by ( )1

1,0 ,04.2 2u
u uN N−

− + . For the case when 

1,0 ,0 / 3u u π−Δ = Δ = , then 1,0 ,0u uN N− =  and their contribution to the overall complexity is 

( )1
,04.2 3u

uN− . For the case when 1,0' / 3u π−Δ > , then ,0' / 3u πΔ < . Therefore, ,0 ,0'u uN N>  

and 1,0 ,0'u uN N− < , and their contribution to the overall complexity is increased to 

( )1
1,0 ,04.2 ' 2 'u

u uN N−
− + . 

 
From this reasoning, if 0,0 / 3πΔ >  then 1,0 / 3πΔ < . The contribution to the overall 
complexity in this case is greater than if 0,0 1,0 / 3πΔ = Δ = . Since the overall transition width 
of the filter bank is determined by the transition width of the shaping subfilter, it is desirable 
to keep 0,0Δ  small. Increasing 0,0Δ  beyond / 3π  not only increases the overall complexity 
of the filter bank, but also provides no advantage with regards to the filter bank transition 
width Δ . 
 
Table 3-1 shows values of ,0uΔ , Nu,0 and overall complexity for various 0,0Δ , for a FFB with 
K=4. The stopband attenuation is 50 dB in this example. We can see that the optimal 
complexity occurs for 0,0Δ  falling in the region of 0.28π  to 0.3π . Decreasing the transition 
width below this amount causes 0,0N  to increase, and increasing the transition width causes 

1,0N  to be increased. 
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0,0Δ  1,0Δ  2,0Δ  3,0Δ  0,0N  1,0N  2,0N  3,0N  FFBΓ  

0.10π  0.450π  0.725π  0.8625π 27 7 5 3 259 
0.20π  0.400π  0.700π  0.8500π 13 7 5 3 245 
0.24π  0.380π  0.690π  0.8450π 11 7 5 3 243 
0.28π  0.360π  0.680π  0.8400π 9 7 5 3 241 
0.30π  0.350π  0.675π  0.8375π 9 7 5 3 241 
0.32π  0.340π  0.670π  0.8350π 9 9 5 3 257 
0.35π  0.325π  0.663π  0.8313π 7 9 5 3 255 
0.50π  0.250π  0.625π  0.8125π 7 11 5 3 271 
0.70π  0.150π  0.575π  0.7875π 5 19 5 5 397 
0.80π  0.100π  0.550π  0.7750π 5 27 7 5 493 

Table 3-1 Effect of 0,0Δ  on the filter bank complexity, for K = 4 and sδ = -50 dB. 

 
We find that in most cases, the general rule applies: the minimum complexity design occurs 
when 0,00.28 / 0.3π< Δ < . Thus, for design specifications where 0.6 / MπΔ > , we 
recommend setting 0,0 0.3πΔ =  which leads to ' 0.6 / MπΔ = . The result of using 'Δ  
instead of Δ  is not only a smaller transition width, but also a reduced overall filter bank 
complexity. For design specifications with a very small transition width, such as 

0.1 / MπΔ < , we recommend using the FRM technique as described in Section 3.1 to 
further decompose the subfilter with transfer function H0,0(z). 
 
 
3.3.4 Distribution of complexity by stage 
 
From (3.18), we note that the complexity contributed by the subfilters in stage u is equal to 
the complexity of Hu,0(z), multiplied by the number of subfilters 2u. Therefore, the 
complexity distribution of the FFB is heavily weighted towards the latter stages. Table 3-2 
lists the complexity distribution of the FFB for M = 128, 0,0 0.2πΔ =  and stopband 
attenuation of 50 dB. 
 

Total complexity of all subfilters in the stage u 
M FFBΓ  

0 1 2 3 4 5 6 
128 1663 23 88 112 96 192 384 768 

Table 3-2 Complexity distribution of the FFB, 
for M = 128, 0,0 0.2πΔ =  and sδ = -50 dB. 

 
We can draw several conclusions here: 
 

(i) Significant savings can be obtained if we focus on reducing the complexity 
of the subfilters in the latter stages. This is addressed in Section 5.1.2, where we 
consider a method of decimation for multi-rate filter banks that reduces subfilter 
complexity in the latter stages; and in Section 6.4, where we consider filter banks 
with signed-powers-of-two coefficients. 
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(ii) The shaping subfilter with transfer function H0,0(z) has a small contribution 
to the overall complexity. Therefore, a great flexibility is allowed in the design of 
H0,0(z) without a significant impact on the overall complexity. 

 
(iii) From (ii), we can conclude that the overall complexity is also insensitive to 
changes in the transition width of the filter bank. Thus, we can design efficient filter 
banks with very small transition widths. This was clearly demonstrated in the 
examples in Section 2.7, where we showed that at very small transition widths, the 
FFB is more efficient than the polyphase filter bank when in single-rate operation. 

 

3.4 Properties of the FFB 
 
In this section, we formalize the properties and definitions of the Fast Filter Bank.  Figure 
3-9 shows a detailed block diagram of the FFB. 
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Figure 3-9 Detailed FFB block diagram. 

 
Property 1: The FFB has M = 2K uniform subbands, where K is the number of cascade 
stages. The passband of the subband m has a center frequency 2 /m Mπ . The transfer 
function of each subband H[m](z) is generally complex, i.e. its frequency response is not 
symmetrical about zero. 
 
Property 2: The subfilters are defined as Hu,v(z) for 0 1u K≤ ≤ −  and 0 2 1uv≤ ≤ − . At stage 
u, there are 2u subfilters. We define the prototype lowpass subfilter for stage u as the 
subfilter Hu,0(z). 
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Property 3: The subfilters , ( )u vH z  can be derived from the prototype lowpass subfilter 

,0 ( )uH z  by complex-modulating its coefficients according to: 

 
2

, ,0( ) ( )
vj

M
u v uH z H e z

π
−

=
�

, (3.19) 

where v�  is the bit-reversed version of v in K-1 bits. As a result, the coefficients of , ( )u vH z  
are generally complex-valued. 
 
Property 4: The subfilters at stage u are interpolated by a factor of 2K-u-1.  
 
Property 5: The outputs of the FFB are arranged from top-to-bottom order according to m� , 
where m�  is the bit-reversed version of m in K bits. 
 
Property 6: The transfer function of subband m is given in a general form by: 
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where: 
- v(m,u) is a function representing the value of v in the cascade path for the subband m 
and stage u. The variable v(m,u) can be found by taking the bit-reversed version of 

( , )v m u�  in u bits, where: 

 ( , ) 2 / 2u uv m u m m⎢ ⎥= − ⎣ ⎦� . (3.21) 

The symbol .⎢ ⎥⎣ ⎦  represents the operator for rounding down to the nearest integer. The 
above equation can be simply interpreted as taking the remainder when m is divided by 
2u. 
 
- ( , )m uα  is a binary value, and is equal to 0 when the cascade path of the subband m 
and stage u is the direct output of the subfilter , ( )u vH z . It is equal to 1 when the cascade 

path of the channel m and stage u is the complementary output of the subfilter , ( )u vH z . 
The variable ( , )m uα  satisfies the condition: 

 
1

0

2 ( , )
K

u

u

m m uα
−

=

= ∑ . (3.22) 

The variable ( , )m uα  can be found by taking the value of the u-th bit of m, where bit 0 
is the least significant bit. 
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- ( , )W m u  is an exponential function used to modulate the coefficients to shift the  
passband to the correct center frequency, and: 

 
2

( , )
vj

MW m u e
π

−
=

�

. (3.23) 

 
- ( , )K uA  is the interpolation factor of the subfilter in stage u and is given by: 

 1( , ) 2K uK u − −=A . (3.24) 

Since K is constant for an instance of the filter bank, we can also express this as 
( )uA . 

 

3.5 Design example: 32-channel FFB 
 
3.5.1 Design example 
 
In this section, we design a 32-channel FFB with / 80πΔ = , 0.001pp ssδ δ= =  (0.0087 dB 
and -60 dB respectively). Half-band subfilters are used, and the coefficients of the prototype 
filters ,0 ( )uH z  are tabulated in Table 3-3. We assume the non-causal form, where h(n) for 

0n = , is the center coefficient. 
 

n 0,0 ( )h n  1,0 ( )h n  2,0 ( )h n  3,0 ( )h n  4,0 ( )h n    n 0,0 ( )h n  
0 
1 
2 
3 
4 
5 
6 
7 

0.5000 
0.3157 
0.0000 

-0.0984 
0.0000 
0.0515 
0.0000 

-0.0298 

0.5000 
0.3079 
0.0000 

-0.0782 
0.0000 
0.0259 
0.0000 

-0.0063 

0.5000 
0.2864 
0.0000 

-0.0370 

0.5000 
0.2825 
0.0000 

-0.0326 

0.5000 
0.2506 

 8 
9 

10 
11 
12 
13 
14 
15 

0.0000 
0.0172 
0.0000 

-0.0094 
0.0000 
0.0046 
0.0000 

-0.0021 

Table 3-3 Coefficient values for ,0 ( )uH z  for a 32-channel FFB. 

 
The frequency responses for adjacent subbands m=0 and m=1 are shown in Figure 3-10. In 
the same figure, we also show the frequency response of a sliding FFT filter bank, for m=2. 
Recall that the sliding FFT filter bank is a specific case of the FFB, when the filter length of 
each subfilter is equal to 2. As a result, we expect the FFB to have a smaller transition width 
and a larger stopband attenuation than the sliding FFT filter bank. This can be clearly 
observed in Figure 3-10 for the given example. 
 
We also expect the FFB to have a larger complexity and delay than the sliding FFT filter 
bank. For the FFB, the complexity and delay are calculated to be 200 and 314 respectively. 
For the sliding FFT filter bank, the complexity and delay are calculated to be 121 and 15.5 
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respectively. Note that in this example, the FFB was designed to a much more stringent 
specification than the sliding FFT filter bank, hence the greatly increased delay. 
 
A polyphase filter bank with the same specifications as the designed FFB is calculated to 
have a complexity of 800, and a delay of 240. In single-rate mode, the 32-channel FFB has 
about 1/4 of the complexity, and 1.3 times the delay of the polyphase filter bank. 
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Figure 3-10 Frequency responses for a 32-channel 

FFB, and a 32-channel sliding FFT filter bank. 

 
3.5.2 Discussions 
 
We considered the design of a 32-channel FFB. In single-rate operation, the FFB is very 
efficient. In multi-rate operation however, the FFB becomes inefficient compared to the 
polyphase filter bank. This aspect will be further discussed in Section 5.1. 
 
In modern audio compression methods (and also in other areas of application such as 
communications), the filter banks that are used typically have a much larger number of 
channels, e.g. 576 channels for MP3 and 1024 channels for AAC. The design of the FFB for 
a large number of channels is not difficult. The filter lengths of the subfilters remain small, 
and it is the interpolation factor of the transfer functions of these subfilters that are 
increased. The design methodology is repetitive and can be easily performed recursively. A 
basic design methodology is as follows: 
 

1. Set stopband attenuation. Set stage u = 0. 
2. Design shaping subfilter. Calculate transition width for next stage. 
3. u = u + 1. 
4. Design prototype masking subfilter. Complex-modulate its coefficients to obtain 
the remaining 2u-1 masking subfilters in stage u. 
5. Calculate transition width for next stage. Go to step 3. 

 
Implementing the FFB in hardware is also not difficult, even when the number of channels 
is large. In fact, we can take advantage of the low sensitivity of the FFB’s frequency 
response to variations in the masking subfilter coefficients. Very efficient hardware 
implementations can be obtained by using the signed-powers-of-two design method. This is 
further discussed in Chapter 6. 
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Implementing the FFB in software, on the other hand, presents more obstacles. As the 
number of stages increases, it can be seen that the number of subfilters increases drastically. 
Generally, the number of subfilters is one less than the number of channels. At each 
subfilter, the signal must be filtered and branched into 2 connecting subfilters at its output. 
This requires a significant amount of memory and control logic to store the intermediate 
signals, as well as to direct the flow of these signals. A matrix formulation method is 
discussed in Section 4.5 to overcome this, but it is still considerably more complicated to 
implement than the polyphase filter bank. 
 

3.6 Summary 
 
In this chapter, we briefly introduced the concept of Frequency Response Masking (FRM), 
and a class of filter banks that operate based on the FRM principle. We focused on the 
single-rate operation of the Fast Filter Bank (FFB), and formalized the representation and 
notations of the M-channel FFB. We considered the design aspects of the FFB, and imposed 
a set of conditions on the subfilters such that the masking subfilters effectively mask the 
unwanted passbands in the shaping stage. A relationship was established between the FFB 
and the FFT, when the number of non-zero coefficients in each subfilter is equal to 2. 
 
We found that when designing the shaping subfilter H0,0(z), its transition width should not 
be greater than 0.3π  for desirable overall complexity. Finally, we compared the single-rate 
design of a 32-channel FFB, 32-channel sliding FFT, and the 32-channel polyphase filter 
bank.  The FFB is very efficient in single-rate applications and is highly suitable for designs 
which require very small transition widths.  
 





 

 
 

Chapter 4 
Single-rate Systems II: 

Simplifications of the Fast Filter Bank 
 

 
 
 
In this chapter, we further look into the options that are available for the single-rate 
processing scenario. First, we consider the scenario when the input signal to the FFB is real-
valued, and find that the FFB method of Chapter 3 presents an amount of redundant 
processing. Using our proposed node-modulation and pruning methods, we are able to 
reduce the amount of processing required. We then illustrate this with an example of a 16-
channel odd-stacked FFB. 
 
In the last part of the chapter, we propose a matrix method for processing the filtering 
operations. By formulating the data and filtering operations in terms of matrices and 
vectors, we are able to improve processing time on a computer platform using specialized 
software packages. We have published work on the pruning and node-modulation methods 
in [33]-[34], and the matrix method in [35]. 
 

4.1 Processing of real-valued input signals 
 
In Chapter 3, we assumed the general scenario that the input to the FFB is complex-valued. 
In this section, we consider the scenario when the input is real-valued. 
 
 
4.1.1 Even-stacked FFB 
 
An even-stacked filter bank was defined to have frequency responses with passband center 
frequencies at 2 /m Mπ , where m is the subband index and M is the total number of 
subbands. For an even-stacked FFB, the frequency responses of the filter bank for subbands 
m=1 to m=(M/2-1) form a set of M/2-1 complex-conjugate pairs with the frequency 
responses of the filter bank for subbands m=(M/2+1) to m=M-1. The following property 
holds: 

 *
[ ] [ ]( ) ( )m M mH z H z−= ,  for 0 m M≤ ≤ . (4.1) 

This is evident, since for even-stacked uniform filter banks: 
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Note that [0] ( )H z  has real-valued coefficients, and [0] [ ]( ) ( )MH z H z= . Similarly, [ / 2] ( )MH z  
has real-valued coefficients. On the other hand, H[m](z) for 0 / 2m M< <  and 

/ 2M m M< <  have complex-valued coefficients. Also, note that ,0 ( )uH z  has real-valued 
coefficients, and , ( )u vH z  for 0v ≠  have complex-valued coefficients. 
 
When the input signal to the FFB is real-valued, the outputs [ ] [ ]( ) ( ) ( )m mX z H z X z=  form 

complex-conjugate sets such that *
[ ] [ ]( ) ( )m M mX z X z−= . Therefore, only M/2+1 unique 

outputs exist for 0 / 2m M≤ ≤ . The outputs can be made to be real-valued by taking the real 
parts of the complex-valued outputs. The real-valued part of the outputs is given by: 

 

*
[ ] [ ] [ ]

[ ]

( ) ( ) ( )

2 ( ) ,
R m m m

m

X z X z X z

X z

= +

= c fd ge h   for 1 / 2 1m M≤ ≤ − , (4.3) 

where a b.  denotes taking the real part of the bracketed term. 
 
The input-to-output transfer function from X(z) to XR[m](z) is then given by the real-valued 
part of the filter bank transfer function: 

 [ ] [ ]( ) ( )R m mH z H z= ,  for 0, / 2m M= ; and 

 [ ] [ ]( ) 2 ( )R m mH z H z= c fd ge h ,  for 1 / 2 1m M≤ ≤ − . (4.4) 

Using the FFB for processing real-valued input signals results in 12 1K
RM −= +  subbands, 

which are even-stacked with center frequencies at 2 / 2Kmπ , for 0 1Rm M≤ ≤ − . We note 
that the subbands m=0 and m=MR-1 have only half of the bandwidth of the subbands from 
m=1 to m=MR-2. This is illustrated in Figure 4-1(a). 
 
 
4.1.2 Odd-stacked FFB 
 
An odd-stacked filter bank was defined to have frequency responses with passband center 
frequencies at (2 1) /m Mπ + , where m is the subband index and M is the total number of 
subbands. A modified form of the FFB can be obtained such that its frequency responses are 
odd-stacked, by defining the transfer function H'[m](z) of the odd-stacked FFB to be: 

 /
[ ] [ ]' ( ) ( )j M
m mH z H e zπ−= ,  for 0 m M≤ ≤ , (4.5) 
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where H[m](z) represents the transfer function of the even-stacked FFB. 
 
Statement: One method to satisfy (4.5) is by modulating 

12
, ( )

K u

u vH z
− −

 by a frequency of 
/ Mπ : 

 ( )1 12 / 2
, ,' ( ) ( )

K u K uj M
u v u vH z H e zπ− − − −−= , (4.6) 

which is equivalently represented by: 

 
( 1)2
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u v u vH z H e zπ − +−= . (4.7) 

 
Proof: Modifying the transfer function given in (3.20) by (4.5), we get: 
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and this is equivalent to (4.6). 
 
The frequency responses of the odd-stacked FFB for m=0 to m=(M/2-1) form a set of M/2 
complex-conjugate pairs with the frequency responses for m=M/2 to m=M-1. The following 
property holds: 

 *
[ ] [ 1]' ( ) ' ( )m M mH z H z− −= ,  for 0 1m M≤ ≤ − . (4.9) 

We note that ,' ( )u vH z , for all u and v, have complex-valued coefficients. When the input 
signal to the FFB is real-valued, the outputs [ ] [ ]( ) ' ( ) ( )m mX z H z X z=  form complex-

conjugate sets given by *
[ ] [ 1]( ) ( )m M mX z X z− −= , and only M/2 unique outputs exist for 

0 / 2 1m M≤ ≤ − . The outputs can be made to be real-valued by taking the real parts of the 
complex-valued outputs: 

 [ ] [ ]( ) 2 ( )R m mX z X z= c fd ge h ,  for 0 / 2 1m M≤ ≤ − . (4.10) 

The transfer functions of the filter bank are then given by: 

 [ ] [ ]' ( ) 2 ' ( )R m mH z H z= c fd ge h ,  for 0 / 2 1m M≤ ≤ − . (4.11) 

Using the odd-stacked FFB for processing real-valued input signals results in 12K
RM −=  

subbands, which have center frequencies at 2 ( 0.5) / 2Kmπ + , for 0 1Rm M≤ ≤ − . The 
subbands have equal bandwidths. This is illustrated in Figure 4-1(b). We note that the odd-
stacked form of the FFB is interesting in our work because audio filter banks (such as those 
used in MPEG 1 and 2) are also odd-stacked. 
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Figure 4-1 Even and odd stacked frequency responses for real-valued inputs. 

 

4.2 Node-modulation method 
 
The FFB comprises subfilters with transfer functions , ( )u vH z  which are modulated versions 
of ,0 ( )uH z  (which has real-valued coefficients), and they generally have complex-valued 
coefficients. In this section, we propose a method that reduces these subfilters to have real-
valued coefficients. The resultant implementation has a lower complexity when compared 
to the original FFB. We consider the even-stacked FFB, and then extend the method to the 
odd-stacked FFB. The method is applicable to both real-valued input and complex-valued 
input signals. Here, we consider the more general case when the input signal is complex-
valued. 
 
We note that the input signal xu,v(n) and output signal yu,v(n) of the subfilter with transfer 
function , ( )u vH z  are related according to: 

 ( )
, , ,( ) ( ) ( )u

u v u v u vY z H z X z= A , (4.12) 

and in the time-domain for odd-length filters (non-causal form) according to: 
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Thus, we can reduce the operation of filtering Xu,v(z) (complex-valued coefficients) with 
Hu,v(z) (complex-valued coefficients) into an operation of filtering Xu,v(z) (complex-valued 
coefficients) with Hu,0(z) (real-valued coefficients) by adopting the following strategy: 
 
For practical purposes, we consider the causal implementation of Hu,v(z) here. First, 
modulate the input signal to the subfilter by a modulating signal . ( )u v nλ : 
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 , , ,' ( ) ( ) ( )u v u v u vx n n x nλ= , (4.14) 

where x'u,v(n) is the modulated input signal to the subfilter with transfer function Hu,0(z) and 
the modulating signal is given by: 

 2 / ( )
, ( ) j vn u M

u v n e πλ −= � A . (4.15) 

The modulated input signal is then passed into the subfilter with transfer function Hu,0(z) 
and the output is denoted by y'u,v(n). The desired yu,v(n) can be obtained by demodulating 
y'u,v(n): 

 ( ), , ,( ) ( ) ' ( )u v u v u u vy n n d y nλ= − − , (4.16) 

where du is the delay of the interpolated subfilter with transfer function ( )
,0 ( )u

uH zA . 
 
If we denote the complexity of the first method by Γ  (Xu,v(z) has complex-valued 
coefficients and Hu,v(z) has complex-valued coefficients), then the complexity of the second 
method (Xu,v(z) has complex-valued coefficients and Hu,v(z) has real-valued coefficients) is 
approximately equal to / 2 8Γ + . 
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Figure 4-2 Scheme for the proposed node-modulated even-stacked FFB. 

 
Figure 4-2 shows our proposed node-modulated FFB. The subfilters with transfer functions 
Hu,v(z) are replaced by subfilters with transfer functions Hu,0(z), and a modulation node 

( )u nλ  is inserted prior to each subfilter with transfer function Hu,v(z), where v is odd. 
Alternatively, one can view the modulation node 1( )u nλ +  as being inserted at the 
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complementary output of each subfilter with transfer function , ( )u vH z . For the causal form 
of the FFB, 
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u n e
π

λ
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⎛ ⎞
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∑
= , for 0 1u K≤ ≤ − . (4.17) 

By performing node-modulation for the complementary outputs of all subfilters of the FFB 
for 0 1u K≤ ≤ − , , ( )u vH z  (which has complex-valued coefficients) can be replaced by 

,0 ( )uH z  (which has real-valued coefficients). Furthermore, the outputs of the filter bank 

[ ]' ( )mx n  will be baseband signals, i.e. their centre frequencies are zero. The output signals 
can be brought back to their original frequencies by applying a demodulating signal given 
by: 

 [ ] [ ] [ ]( ) ' ( ) ' ( )m m mx n n x nλ= , (4.18) 

where: 

 

1

1
02

[ ]' ( )

K

uK
u

mj n d

m n e
π

λ

−

−
=

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎝ ⎠

∑
= . (4.19) 

It is more efficient, however, to perform node-modulation for the complementary outputs of 
the subfilters with transfer function , ( )u vH z  for 0 2u K≤ ≤ −  only. The filter bank outputs 

[ ]' ( )mx n  will then have center frequencies equal to zero for 0 / 2 1m M≤ ≤ − , and equal to 
π  for / 2 1M m M≤ ≤ − . The demodulating signal is then given by: 
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and: 
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For the odd-stacked FFB, the same principle can be applied. However, since the transfer 
functions of the subfilters in the odd-stacked FFB are related to those of the even-stacked 
FFB by (4.7), the modulating signals are modified to: 

 2
0 ( )

Kj nn e πλ
−−= , 
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⎜ ⎟− −⎜ ⎟
⎝ ⎠

+

∑
= , for 0 1u K≤ ≤ − . (4.22) 

The structure of the node-modulated odd-stacked FFB is shown in Figure 4-3. The even-
stacked, node-modulated FFB block in the diagram can be replaced with the structure 
shown in Figure 4-2. 
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Even-stacked, node-
modulated FFB
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0 ( )nλ
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Figure 4-3 Scheme for the proposed node-modulated odd-stacked FFB. 

 
The demodulating signals are modified to: 
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In the case when a synthesis filter bank is used to reconstruct the subband signals, and 
assuming that the synthesis filter bank is also implemented using node-modulation, the 
demodulation at the output stage of the analysis filter bank and at the input stage of the 
synthesis filter bank cancel each other and can be omitted. 
 

4.3 Pruning method 
 
In this section, we propose a pruning method for the FFB when the input signal x(n) is real-
valued. The pruning method involves the removal of redundant subfilters that lead to non-
unique outputs for the real-valued input signal scenario. We look at both the even-stacked 
and odd-stacked FFB, and use a "bit-pattern" analysis to determine the redundant subfilters. 
 
 
4.3.1 Even-stacked FFB 
 
In the real-valued input signal scenario, the output signal at the (2 )K m− th subband is the 
complex-conjugate of the output signal at the mth subband, i.e. *

[ ][2 ]
( ) ( )K mm

x n x n
−

= , and 

there are only 12 1K − +  independent outputs. The real-valued output signal at the mth subband 
can be obtained by simply dropping the imaginary part of the complex-valued output signal. 

 

Hu,v(z)
1, '

w
u v−m

0
,u vm

1
,u vm

 
Figure 4-4 Bit-pattern used for a subfilter. 
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The M output subbands of the FFB, indexed by m ( 0 1m M≤ ≤ − ), are ordered in bit-
reversed fashion in K bits. Let mbin denote the binary representation of m. Each subfilter 
with the transfer function , ( )u vH z  has 2 output paths. Let us denote the upper path of the 

output of , ( )u vH z  using the multi-bit-pattern 0
,u vm  (expressed as a row vector) and the lower 

path of the output of , ( )u vH z  using the multi-bit-pattern 1
,u vm . This is shown in Figure 4-4. 

Define the single-bit terms 0
0,0 0m =  and 1

0,0 1m = . Assuming that the input to , ( )u vH z  is 

denoted as 1, '
w
u v−m , we can describe the outputs of , ( )u vH z  using the bit-pattern: 

 0
, 1, '[0 ]w

u v u v−=m m , (4.24) 

and: 

 1
, 1, '[1 ]w

u v u v−=m m . (4.25) 
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Figure 4-5 A 16-channel FFB with bit-pattern annotations. 

 
Figure 4-5 shows the bit-patterns for a 16-channel FFB. Propagating the bit-pattern for each 
of the cascaded subfilters of the FFB finally leads to the bit-pattern mbin. As an example, the 
output signal of the 16-channel FFB for m=5 is the result of propagation through the 
subfilters with transfer functions 8

0,0 ( )H z , 4
1,1( )H z , 2

2,2 ( )H z  and 3,5 ( )H z . The bit-patterns 

are 1
0,0 '1'm = , 0

1,1 '01'=m , 1
2,2 '101'=m  and 0

3,5 '0101'=m  respectively. Therefore, the output 
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of the subfilter with transfer function H3,5(z) has a bit-pattern '0101'. This corresponds to the 
value of m=5, which converts to the binary value of mbin='0101'. 
 
It can be further verified that the input to , ( )u vH z , which has the bit-pattern 1, '

w
u v−m , is a u-

bit integer v�  which is the bit-reversed version of v in u bits. Thus, (4.24) and (4.25) can be 
alternatively expressed as: 

 0
, [0 ]u v v=m � , (4.26) 

and: 

 1
, [1 ]u v v=m � . (4.27) 

In the real-valued input signal scenario, the outputs [ ] ( )mx n  and 
[2 ]

( )K m
x n

−
 of the even-

stacked FFB are complex-conjugates of each other. Thus, if the output [ ] ( )mx n  is computed, 
all the processing that finally leads only to the output 

[2 ]
( )K m

x n
−

 may be removed. 

 
 
Statement:    If ( )'

, , '
w w
u v u v+m m  truncated to u+1 bits is equal to 0, then either the signal path 

with bit-pattern ,
w
u vm , or the signal path with bit-pattern '

, '
w
u vm  may be removed. 

 
Proof:    Assume that ( )'

, , '
w w
u v u v+m m  truncated to u+1 bits is equal to 0, and since both ,

w
u vm  

and '
, '

w
u vm  are non-negative (i.e. ( )'

, , ' 1[0 ]w w
u v u v u++ ≠m m 0 ), then: 

 ( )'
, , ' 1[1 ]w w

u v u v u++ =m m 0 , (4.28) 

where 0u+1 is a bit-pattern consisting of u+1 zeros. 
 
The signal path with bit-pattern ,

w
u vm  leads to the signal paths with bit-patterns ,[1 ]w

u vm  

and ,[0 ]w
u vm . The signal path with bit-pattern '

, '
w
u vm  leads to the signal paths with bit-

patterns '
, '[1 ]w

u vm  and '
, '[0 ]w

u vm . From (4.28), we find that: 
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and: 
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Applying the principle in (4.29) and (4.30) recursively: the signal path with bit-pattern ,
w
u vm  

leads to the signal path with bit-pattern ,[ ]w
u vb m  (where b is an arbitrary row vector of 
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binary bits) and the signal path with bit-pattern '
, '

w
u vm  leads to the signal path with bit-pattern 

'
, '[ ' ]w

u vb m  (where b' is an arbitrary row vector of binary bits), such that for every vector b, 
there exists a corresponding vector b' satisfying the condition: 

 [ ]'
, , '[ ] [ ' ] 1w w

u v u v+ =b m b m 0 , (4.31) 

if ( )'
, , ' 1[1 ]w w

u v u v u++ =m m 0 . 
 
The value of (2K-m)+m is equal to 2K, which when truncated to K bits is equal to 0. The 
signals [ ] ( )mx n  and 

[2 ]
( )K m

x n
−

 are complex-conjugates, and therefore any one of them can be 

removed without data loss. 
 
Based on the arguments above, we conclude that for a signal [ ] ( )mx n , which passes through 

the signal path with bit-pattern ,
w
u vm , its complex-conjugate signal 

[2 ]
( )K m

x n
−

 must pass 

through the signal path with bit-pattern '
, '

w
u vm , where ( )'

, , ' 1[1 ]w w
u v u v u++ =m m 0 . 
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Figure 4-6 Pruning for an even-stacked 16-channel FFB. 

 
If ( )'

, , '
w w
u v u v+m m  truncated to u+1 bits is equal to 0, then either the signal path with bit-

pattern ,
w
u vm  or '

, '
w
u vm  may be removed. The signal paths with bit-patterns 0

, 1[0 1 ]u v u−=m 0  

and 1
, 1[1 1 ]u v u−=m 0  form such a pair, where 0u-1 is a bit-pattern consisting of u-1 zeros. 

Figure 4-6 shows the scenario where signal paths with bit-patterns 1
, 1[1 1 ]u v u−=m 0  are 

removed. Alternatively, signal paths with bit-patterns 0
, 1[0 1 ]u v u−=m 0  may be removed 

instead. 
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We can derive a simple rule-of-thumb based on the above argument for pruning the signal 
paths by removing the fourth subfilter ,3 ( )uH z  for each stage u, and all subsequent subfilters 

that are attached to it. The number of subfilters required for stage u is now given by 12 1u− + . 
The savings achieved for each stage u are 1(2 1) / 2u u− −  for 1 1u K≤ ≤ − . Figure 4-6 shows a 
pruned even-stacked 16-channel FFB. 
 
 
4.3.2 Odd-stacked FFB 
 
For the implementation of the odd-stacked FFB, the efficiency of the pruning method can be 
further improved. Assume the case in Section 4.1.2, where each subfilter is modified by 

( 1)2
, ,' ( ) ( )

uj
u v u vH z H e zπ − +−= . Following the same reasoning as for the even-stacked FFB, we 

are able to prune the entire propagation path attached to the complementary output of 
0,0 ( )H z . Figure 4-7 shows a pruned odd-stacked 16-channel FFB. The resultant complexity 

of the filter bank is approximately halved. 
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Figure 4-7 Pruning for an odd-stacked FFB with input modulation. 

4.4 Odd-stacked 16-channel FFB 
 

H1,0(z
8) H2,0(z

4) H3,0(z
2)

x(n)

3 ( )nλ

3 ( )nλ

0 ( )nλ

H0,0(z
16)

H2,0(z
4)

2 ( )nλ

H3,0(z
2)

H3,0(z
2)

H3,0(z
2)

H4,0(z)

4 ( )nλ H4,0(z)

H4,0(z)

4 ( )nλ H4,0(z)

H4,0(z)

4 ( )nλ H4,0(z)

H4,0(z)

4 ( )nλ H4,0(z)

[[ . ]]

x[m](n)

 
Figure 4-8 Using pruning and node-modulation to 
implement an efficient odd-stacked 16-channel FFB. 
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We consider the design of an odd-stacked 16-channel FFB for a real-valued input signal. 
We make use of the design in Section 3.5 (32-channel FFB for complex-valued input signal) 
and perform our proposed pruning and node-modulation techniques. The coefficients of the 
subfilters Hu,0(z) were taken from Table 3-3. The design is shown in Figure 4-8. 
 
The lengths of the subfilters H0,0(z), H1,0(z), ..., H4,0(z) are 31, 15, 7, 7, 3 respectively.  A 
breakdown of the complexity by stage is tabulated in Table 4-1. The methods used to 
calculate the complexity of the subfilters are outlined in Appendix B. The proposed scheme 
has a complexity of about half of the original FFB. 
 
The estimated length of the prototype filter required for a polyphase filter bank with the 
same specification is 521. The estimated total complexity for the polyphase filter bank 
would be approximately 553. 
 

 Complexity breakdown by stage, u  
Method 0 1 2 3 4 Total 

FFB 16 32 32 64 32 176 
Pruning 16 16 16 32 16 96 

Pruning + 
node-modulation 

20 8 12 24 24 88 

Table 4-1 Complexity breakdown by stage for pruned node-modulated FFB. 

 

4.5 A matrix formulation 
 
The FFB is organized in a tree structure. When the FFB is implemented on a computer or a 
digital signal processor, using a software programming method, we have to allocate 
resources to manage the signal flow through the individual subfilters. Data buffers of 
varying sizes must be created for each subfilter, due to the varying filter lengths. When the 
number of subbands M increases, allocating, addressing and manipulating these buffers 
becomes cumbersome. Thus, it is convenient to formulate the FFB processing in a matrix 
form to facilitate data processing. Using the node-modulation method, we find that we can 
express the filtering operation conveniently using 2-D matrices. Furthermore, only one data 
buffer needs to be implemented per stage u, instead of 2u data buffers required per stage u 
previously. 
 
In modern computers, the limiting factors in processing are usually not due to the rate at 
which arithmetic operations are performed, but rather due to the efficiency at which data 
accesses and transfers to and from memory occurs [36]-[37]. This is especially relevant in 
our filter bank processing, in which a lot of data is manipulated. By arranging the data in 
vectors and matrices, data pipelining and efficient memory usage is facilitated within the 
hardware. Furthermore, many software mathematical packages are available for computing 
matrix operations efficiently. These mathematical packages are highly-optimized for 
specific processors and make use of the special facilities and architectures inherent in the 
target processors. One such popular package is the Basic Linear Algebra Subprograms 
(BLAS) [38]. 
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4.5.1 Matrix formulation for a subfilter 
 
We denote the input signal into the subfilter with transfer function Hu,v(z) as xu,v(n). The 
output signal is denoted as xu+1,2v(n), and the complementary output signal 1,2 ( )u vx n+  as 
xu+1,2v+1(n). These signals are then processed as input signals into the subfilters with transfer 
functions Hu+1,2v(z) and Hu+1,2v+1(z) respectively. The delay of the interpolated subfilter with 
transfer function ( )

, ( )u
u vH zA  is denoted as du. We assume the general complex-valued input 

signal scenario. If we further assume that Nu,v is odd and that Condition 4 listed in Section 
3.3.1 is true, then: 

 ( )1,2 , 1,2( ) ( )u v u v u u vx n x n d x n+ += − − . (4.32) 

The filtering operation for Hu,v(z) is described by: 

 ( )
1

1,2 , ,
' 0

( ) ( ') ( ) '
uN

u v u v u v
n

x n h n x n u n
−

+
=

= −∑ A . (4.33) 

First, we arrange the input signal ranging from xu,v(n) to ( ), ( ) 1u v ux n N u− +A  in a ( ) uu N×A  
matrix: 

 ( ) ( ), , , ,
( ) ( 1)( ) ( ) ( ) ( 1) ( ) ,u v u v u v u v u

uu Nn n n u n N u × −⎡ ⎤= − − − ∈⎣ ⎦X x x x AA " A ^ , (4.34) 

where xu,v(n) is a column vector of length ( )uA : 

 , , , ,( ) ( ) ( 1) ( ( ) 1)
T

u v u v u v u vn x n x n x n u⎡ ⎤= − − +⎣ ⎦x " A . (4.35) 

The coefficients of Hu,v(z) are arranged in a column vector of length Nu: 

 , , , ,(0) (1) ( 1)
T

u v u v u v u v uh h h N⎡ ⎤= −⎣ ⎦h " . (4.36) 

We then express the filtering operation in (4.33) in matrix form as: 
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u v
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x
X h

x A
, (4.37) 

where the left-hand-side result is a column vector of length ( )uA . Since ( ) 2 ( 1)u u= +A A , we 
divide this vector into 2 sub-vectors of length ( 1)u +A . 
 
From (4.32), we express the complementary output of the subfilter as: 

 
( ) ( ) ( )
1,2 1 1,2

,
1,2 1 1,2

( ) ( )
( 1) ( 1)

u v u v
u v u

u v u v

n n
n d

n u n u
+ + +
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⎡ ⎤ ⎡ ⎤
= − −⎢ ⎥ ⎢ ⎥− + − +⎣ ⎦ ⎣ ⎦

x x
x

x xA A
, (4.38) 

where ( )( 1) / 2u ud u N= −A  is the delay of the subfilter. 
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We perform the operations in (4.37) and (4.38) for 0, ( ), 2 ( ),...n u u= A A . In using this form, 
we easily avoid redundant multiplications for the zero-valued coefficients. The input to the 
subfilter is organized into a ( ) uu N×A  buffer, Xu,v. The input signal xu,v(n) is shifted ( ( )uA  
samples at a time) into the buffer Xu,v. 
 
 
4.5.2 Matrix formulation for the filter bank 
 
From observation of the tree structure of the FFB, we realize that a straightforward method 
of implementing the filter bank processing would be to allocate 2u sets of Xu,v and hu,v 
matrices per stage and performing the convolution individually. Instead, we propose a 
method that requires only 1 set of Xu and hu matrices per stage. We note that it is also 
desirable to have the same number of rows for all the Xu matrices. 
 
First, we refer to the node-modulation method proposed earlier. Using this method, we can 
reduce the subfilters such that the coefficient vector hu,v=hu,0. We denote this coefficient 
vector as hu. Furthermore, hu is a real vector, i.e. only 1 set of real-valued coefficients is 
now required per stage u. Let us next attempt to arrange the data matrices. Since there are 2u 
sets of Xu,v and each has 1( ) 2K uu − −=A  rows, we can group all the 2u Xu,v matrices for the 
same u and arrange them into a single ( / 2) uM N×  matrix. We first define the column 
vector xu(n) of length M/2 such that: 
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( 1)

( ) 1
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n
u
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u
u

n u
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#
, (4.39) 

where: 

 ( )
,0 ,1 ,2 1

( ) ( ) ( )u

Tn
u u u u

x n x n x n
−

⎡ ⎤= ⎣ ⎦x " . (4.40) 

We can thus form the matrix Xu(n) as: 

 ( ) ( )( ) ( ) ( ) ( 1) ( )u u u u un n n u n N u= − − −⎡ ⎤⎣ ⎦X x x xA " A . (4.41) 

The matrix Xu(n) is updated every ( )uA  samples. The most recent ( )uA  samples of ( )u nx  
are shifted into the data buffer of Xu(n) and the last column of Xu(n) is shifted out. This is 
illustrated in Figure 4-9. 
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Figure 4-9 Data buffer shifting. 
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Figure 4-10 Overview of matrix method for stage u. 

 
Figure 4-10 shows an overview of our proposed method for a single stage. We perform the 
filter bank operations on a stage-by-stage basis and repeat for u from 0 to K-1. Filtering Xu 
with hu, we get a column vector out1( )u nx  of length M/2: 

 out1( ) ( )u u un n=x X h . (4.42) 

From (4.38), the complementary output which we denote by out2 ( )u nx  can be obtained from: 

 out2 out1( ) ( ) ( )u u u un n d n= − −x x x . (4.43) 

From Section 4.2, the complementary output should be modulated by a signal 1( )u nλ + . We 
note that the modulating signal 1( )u nλ +  is periodic with period 2 ( )uA , and hence 

( )1 1( ) 2 ( )u un n uλ λ+ += − A . Furthermore, ( )1 1( ) ( )u un n uλ λ+ += − − A . 
 
 Let us define the modulating signal as a column vector 1u+λ  with a length of M/2, where: 
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and ( )
1

n
u+λ  is a length 2u column vector made up of repeating elements of 1( )u nλ + : 

 [ ]( )
1 1 1 1( ) ( ) ( ) Tn

u u u un n nλ λ λ+ + + +=λ " . (4.45) 

Modulation can then be achieved by the element-by-element multiplication of the 2 column 
vectors: 

 out2 out2 / ( )
1' ( ) ( ) ( 1)n u

u u un n += ⋅∗ −x x λA , (4.46) 

where ⋅∗  represents the element-by-element multiplication operator. 
 
The input vectors to the next stage 1( )u n+x  and ( )1 ( 1)u n u+ − +x A  can be formed from 

out1( )u nx  and out2' ( )u nx , where the even rows of 1( )u n+x  and ( )1 ( 1)u n u+ − +x A  are formed 

from out1( )u nx  and the odd rows are formed from out2' ( )u nx . The re-ordering of the vectors is 
described in Figure 4-11. 
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Figure 4-11 Re-ordering of data vectors. 

 
 
4.5.3 Algorithm 
 
An algorithm making use of recursive functions can be used to implement the data 
processing for the matrix method. Our proposed recursive function 'subfilter' is presented 
below. The initial inputs to the function are x0(n) and u=0. The outputs xK(n) are obtained 
after recursive iterations for 0 1u K≤ ≤ − . 
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function: subfilter (xu(n), u) 

shift xu(n) into buffer Xu(n); 
multiply Xu(n)hk, obtain out1( )u nx  and out2 ( )u nx ; 
modulate out2 ( )u nx , obtain out2' ( )u nx ; 
reorder out1( )u nx  and out2' ( )u nx , obtain 1( )u n+x  and ( )1 ( 1)u n u+ − +x A ; 

call subfilter ( ( )1 ( 1)u n u+ − +x A , u+1); 
call subfilter ( 1( )u n+x , u+1); 

end of function. 
 
 
 
4.5.4 Sample test results 
 
We wrote a Fortran program to compare the performances of the FFB using the normal 
method and our proposed matrix formulation. For the normal method, we simply convolved 
the input signal with each individual subfilter, and repeated the process for each subfilter in 
the FFB. The computational platform used was an Intel Pentium 4-based 2.4 GHz 
workstation. For a 16-channel FFB sample run with 10K input data samples, we took 
approximately 0.0164s for the normal method, and approximately 0.0139s using the matrix 
method. For a 256-channel FFB sample run with 10K input data samples, the normal 
method took about 0.28s, and the matrix method took about 0.1s. 
 

4.6 Summary 
 
We proposed 2 methods of reducing the implementation complexity of the FFB. The node-
modulation method applies a complex-valued modulating signal at various nodes in the 
FFB. As a result, the subfilters which had complex-valued coefficients are reduced to 
having real-valued coefficients. Furthermore, for systems with real-valued input signals, 
certain redundant signal paths in the FFB can be pruned. For an even-stacked filter bank, 
this can be achieved by removing every fourth subfilter and all subsequent subfilters 
connected to it for each stage. For an odd-stacked filter bank, the lower propagation path of 
the shaping subfilter with transfer function H0,0(z) can be conveniently removed. We 
designed a 16-channel filter bank, and our 2 methods reduced the overall complexity to 
about half. 
 
We also proposed a matrix representation of the FFB. By representing the data operations in 
terms of matrices and vectors, an efficient filtering scheme was implemented. The resultant 
data buffers for processing the matrices and vectors are regularly-sized, with equal numbers 
of rows. By further making use of easily available mathematical packages such as BLAS, 
which are highly optimized for specific target architectures, the required computation time 
was decreased by up to a factor of 3 when compared to the normal method of evaluating the 
convolution result for each subfilter. 
 





 

 
 

Chapter 5 
Multi-rate Systems I: Frequency 
Response Masking Filter Banks 

 
 
 
 
In this chapter, we focus on the multi-rate operation of odd-stacked filter banks for the real-
valued input signal scenario (such as in typical audio applications). The number of subbands 
for the real-valued input signal, odd-stacked filter bank is given by 12KM −= , where K is 
the number of cascade stages (refer to Section 4.1.2). The outputs of the analysis filter bank 
are decimated by a factor of L, and in most cases we assume the outputs are critically 
decimated, i.e. L = M. 

L
x(n)

L

L

Shaping
subfilter block

Hsh(z) Masking
subfilter block

Hma(z)

x[1](n)

x[0](n)

x[M-1](n)
 

Figure 5-1 A general representation of the 
FRM-class filter bank for multirate operation. 

 
Throughout this chapter, we adopt a general representation (shown in Figure 5-1) for the 
FRM-class of filter banks when used in multi-rate mode. This general representation 
comprises 2 blocks: the first block consists of the set of shaping subfilters Hsh(z) and the 
second block consists of the set of masking subfilters Hma(z). In the later parts of this 
chapter, we divide the FRM-class of filter banks into 4 categories, based on the method of 
implementing the shaping and masking subfilter blocks. 
 

5.1 Complexity considerations 
 
5.1.1 Efficiency of FFB in multirate operations 
 
The Fast Filter Bank is very efficient at single-rate processing of signals. However, we have 
shown that it does not match the polyphase filter bank in multi-rate operation in terms of 
efficiency. The complexity of the FFB scales non-linearly with the number of subbands: 
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 ( )
1

,0
0

2
K

u
FFB u

u

K Nη
−

=

Γ ≈ ∑ , (5.1) 

where η  is some complexity scaling variable depending on the design method we use to 
implement the FFB, K is the number of cascade stages, and ,0uN  is the filter length of 
Hu,0(z). Since the transition width of the shaping subfilter with transfer function H0,0(z) is 
approximately M times that of the polyphase prototype filter, its filter length is 
approximately 1/M times that of the comparable polyphase prototype filter. The typical 
filter lengths of the masking subfilters for various designs are tabulated in Table 5-1. 
 

 Values of Nu,0 
u 

sδ = -50 dB sδ = -60 dB sδ = -80 dB sδ = -100 dB 
1 12 16 22 29 
2 5 7 11 15 
3 3 4 8 11 
4 3 3 6 9 
5 3 3 6 9 
6 3 3 5 8 

 (a) 0,0 0.2πΔ = , p sδ δ= . 

 Values of Nu,0 
u 

sδ = -50 dB sδ = -60 dB sδ = -80 dB sδ = -100 dB 
1 10 12 15 18 
2 4 5 6 8 
3 3 3 4 5 
4 3 3 3 4 
5 3 3 3 3 
6 3 3 3 3 

 (b) 0,0 0.2πΔ = , 0.086pδ = dB. 

Table 5-1 Lengths of subfilters with transfer 
functions Hu,0(z) for various design conditions. 

 
Previously, we compared the complexity of the polyphase filter bank and the FFB for 
single-rate processing. Let us now compare their complexities for multi-rate processing. 
From Appendix B, the pruned odd-stacked FFB with linear-phase subfilters has an 
approximate complexity: 

 ( )
2

1 2
0,0 ,0 1,0

1
2 4 2 2 2.2 2

K
u K

FFB u K
u

K N N N
−

− −
−

=

⎛ ⎞⎢ ⎥ ⎢ ⎥Γ ≈ + +⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠
∑ . (5.2) 

The polyphase filter bank has an approximate complexity: 

 ( ) 0,0 20.5 log
,PFB

MN M M
M L

L
+

Γ ≈ , (5.3) 

where L is the decimation factor. 
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For single-rate operation, the complexity of the FFB is lower than that of the polyphase 
filter bank. However, as L increases, the complexity of the polyphase filter bank decreases 
proportionally to L, whereas the complexity of the FFB does not scale. We plot the value of 
L/M at which the complexity of the FFB is equal to the complexity of the polyphase filter 
bank, for various transition widths 0,0Δ , in Figure 5-2. The peak passband ripple pδ  and the 
peak stopband ripple sδ  were chosen to be 0.086 dB and -80 dB respectively in this 
comparison. 
 
Note: When L/M < 1, the polyphase filter bank is more efficient than the FFB when the 
outputs of both are critically decimated. 
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Figure 5-2 Plot of decimation factor ratio (L/M) vs 0,0Δ , when FFB PFBΓ = Γ . 

 
We observe that the FFB has a comparatively high complexity when the transition width 

0,0Δ  is large, or when the number of subbands M is large. At very small transition widths, 
the complexity of the FFB becomes comparable to that of the polyphase filter bank in a 
critically decimated system. 
 
 
5.1.2 Simple method of complexity reduction 
 
Although the complexity of the FFB does not scale with the decimation factor, some 
savings in complexity can be made when the outputs are decimated. First, we consider the 
last-stage subfilters with transfer functions HK-1,v(z), which have filter lengths of NK-1,0. 
When the outputs are decimated by L, the filtering operations need only to be evaluated 
once every L samples, and the complexities of these subfilters scale downwards by a factor 
of L.  
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If 1,0KN L− ≥ , then no further savings can be obtained from the subfilters with transfer 
functions HK-2,v(z). The complexity of the FFB becomes approximately: 

 ( )
2

1,01
,0

0

2 2
K

Ku K
FFB u

u

N
K N

L
η η

−
−−

=

Γ ≈ +∑ , if 1,0KN L− ≥ . (5.4) 

If 1,0KN L− < , then we require only 1,0KN −  input samples into the subfilters with transfer 
functions 1, ( )K vH z−  per L output samples. Thus, only 1,0KN −  samples per L output samples 
need to be evaluated by the subfilters with transfer functions 2, ( )K vH z− . The complexity of 
the FFB is further reduced to approximately: 

 ( ) 2,0 1,0
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3
1,02 1
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2 2 2K K
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K
K H Hu K K

FFB H
u

N
K

L L
η η η− −
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Γ Γ
Γ ≈ Γ + +∑ ,  

 if 1,0KN L− < . (5.5) 
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Figure 5-3 Illustration of subfilter complexity 

reduction when the outputs of the FFB are decimated. 

 
Similarly, savings can be made on the subfilters with transfer functions 3, ( )K vH z− , if 

1,0 2,02 2K KN N L− −+ − < , and so on. This scheme is illustrated in Figure 5-3, where the black 
squares represent samples of xu,v(n) that need to be evaluated, and the white squares are 
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samples that do not need to be evaluated, when the output x[m](n) is decimated by a factor of 
L. For stage u, the complexity is reduced by a factor of: 

 L , for u=K-1, (5.6) 

and: 

 
1

1 '
',0

' 1

1 2 ( 1)
K

K u
u

u u

L N
−

− −

= +

⎡ ⎤+ −⎢ ⎥⎣ ⎦
∑ , for u<K-1. (5.7) 

If the complexity reduction factor is evaluated to be less than or equal to one, then no 
savings can be attained for that stage. 
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Figure 5-4 (a) Comparison between the complexity of the FFB and the proposed 

simple complexity reduction method; (b) Plot of the values of the transition width 0,0Δ , at 
which the FFB (with simple complexity reduction) has equal complexity to the polyphase 

filter bank, when the outputs are critically decimated. 

 
In Figure 5-4(a), we compare the complexities of the FFB with and without the simple 
complexity reduction method. We used the ratio of the complexity of the FFB to the 
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complexity of the polyphase filter bank, FFB PFBΓ Γ , when the filter bank outputs are 
critically decimated (L=M) as the unit of measurement. The peak passband ripple pδ  and 
the peak stopband ripple sδ  were chosen to be 0.086 dB and -80 dB respectively in this 
comparison. It can be seen that the proposed method becomes very effective as the number 
of subbands M increases. 
 
In Figure 5-4(b), we compare the complexity of the FFB (with simple complexity reduction) 
to the polyphase filter bank, when the outputs are critically decimated. The plot shows 
values of 0,0Δ , at which the FFB (with simple complexity reduction) has equal complexity 
to the polyphase filter bank. For transition widths that are smaller than this value, the FFB 
(with simple complexity reduction) has a lower complexity than the polyphase filter bank. 
 

5.2 Different types of FRM-class filter banks 
 
We defined the FRM-class of filter banks as comprising a shaping subfilter block which 
processes an input signal into output signals with multiple passbands, and a masking 
subfilter block which subsequently reduces these multiple passband signals into output 
signals with single passbands. The scheme was illustrated in Figure 5-1. We proceed to 
classify the FRM-class of filter banks into 4 Types according to the composition of the 
masking and shaping subfilter blocks. The FFB that was described in Chapters 2 and 3 is 
then classified as Type F-I. Using this classification scheme, we develop variants of the 
FFB (namely Type F-II and Type F-III) and we further propose implementation 
methodologies that lead to filter banks with reduced complexity. 
 
 
5.2.1 Type F-I: Fast Filter Bank 
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Figure 5-5 M-channel odd-stacked Type F-I FFB. 
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The Type F-I filter bank has the following properties: (i) Hsh(z) is single-stage, and (ii) 
Hma(z) is multi-stage. The FFB described in the previous chapter is a Type F-I filter bank. 
The shaping subfilter block is given by / 2

0,0( ) ( )j M
sh z H e zπ=H , where 0,0 ( )H z  describes a 

lowpass filter with passband edge at approximately / 2π . The masking subfilter block 
Hma(z) is a branching network of subfilters given by / 2

, ( )
uM

u vH z , for 1 1u K≤ ≤ −  and 
10 2 1uv −≤ ≤ − . Figure 5-5 shows the implementation of the odd-stacked, pruned M-channel 

Type F-I filter bank. The [[.]] operator denotes taking the real part of the bracketed term. 
 
 
5.2.2 Type F-II: Single-stage shaping subfilter, single-stage masking 

subfilter 
 
The Type F-II filter bank has the following properties: (i) Hsh(z) is single-stage, and (ii) 
Hma(z) is single-stage. The transfer function of the single-stage shaping subfilter block is 
given by / 2

0,0( ) ( )j M
sh z H e zπ=H , where 0,0 ( )H z  describes a lowpass filter with passband 

edge at approximately / 2π . The masking subfilter block Hma(z) is single-stage and may 
thus be implemented using a polyphase filter bank with the prototype filter having a transfer 
function 2

1,0 ( )j MH e zπ . Due to the single-stage implementation of the masking subfilter 
block, the complexity of Hma(z) can be scaled downwards with the decimation factor M. 
 
Some multi-stage filter bank implementations such as in [40]-[42] fall into this category. In 
these papers, the front-end comprises a shaping subfilter and the back-end comprises a 
polyphase masking subfilter. The sampling rates of the shaping and masking subfilters were 
modified, typically by using non-integer decimation factors within the blocks, to achieve an 
overall decreased complexity. In this thesis, we approach the implementation of the odd-
stacked Type F-II filter bank differently, by using subfilters with complex-valued 
coefficients, and by using the structure shown in Figure 5-6. 
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Figure 5-6 Type F-II FRM structure, with a 
polyphase masking subfilter block. 

 
The transition width of the shaping subfilter with transfer function 0,0 ( )H z  is given by: 

 0,0 MΔ = Δ , (5.8) 



72 Chapter 5:  Multi-rate Systems I: Frequency Response Masking Filter Banks 

where Δ  is the transition width of each subband of the filter bank. The transition width of 
the masking subfilter with transfer function 1,0 ( )H z  is given by: 

 ( )1,0 / MπΔ = − Δ . (5.9) 

The Type F-II implementation is useful for a filter bank with many subbands, as the 
complexity of the Type F-I implementation increases very quickly with an increasing 
number of subbands. The complexity of the Type F-II implementation F II−Γ  can be 
approximated by: 

 ( )HM FFT
F II HS

M
M−

Γ + Γ
Γ = Γ + , (5.10) 

where the variables HSΓ , HMΓ , ( )FFT MΓ  represent the complexity of the shaping subfilter, 
prototype masking subfilter and M-point FFT respectively. 
 
 
5.2.3 Type F-III: Multi-stage shaping subfilter, single-stage masking 

subfilter 
 
The Type F-III filter bank has the following properties: (i) Hsh(z) is multi-stage, and (ii) 
Hma(z) is single-stage. Figure 5-7 illustrates the case when Hsh(z) is 2-stage, and Hma(z) is 
implemented using the polyphase structure. 
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Figure 5-7 Type F-III FRM structure, with 
polyphase masking subfilter blocks. 

 
For a Type F-III filter bank with KS stages in the shaping subfilter block, Hsh(z) is an odd-
stacked Type F-I filter bank with KS stages and 12 SK

SM −=  outputs. In our implementation 
of the masking subfilter block, we use MS sets of masking subfilters in parallel. Each 
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masking subfilter can be implemented using the polyphase filter bank, comprising a 
prototype filter and an ( / )SM M -point FFT. The prototype filters have transfer functions 

, ( )
SM vH z  for 0 1Sv M≤ ≤ − , and are given by: 

 (1 ) / 2
, ,0( ) ( )

S S

j v M
M v MH z H e zπ += � , (5.11) 

where v�  is the bit-reversed version of v in MS bits. The transition width of the masking 
subfilter with transfer function ,0 ( )

SMH z  is: 

 [ ],0 (2 1) /
SM SM MπΔ = − − Δ . (5.12) 

The shaping subfilter block is operated in single-rate mode and the masking subfilter block 
is operated in multi-rate mode. When we increase the number of stages KS for the shaping 
subfilter block, its complexity increases. However, the filter lengths and complexity of the 
masking subfilter block Hma(z) decrease. For the case when the shaping subfilter block 
comprises a 2-stage cascade, the complexity is: 

 [ ]( ) ( / ) /F III F I S S HM FFT SM M M M M− −Γ = Γ + Γ + Γ , (5.13) 

where ( )F I SM−Γ  is the complexity of a Type F-I filter bank with MS outputs, HMΓ  is the 
complexity of the prototype masking subfilter with transfer function ,0 ( )

SMH z  and 
( / )FFT SM MΓ  is the complexity of the ( / )SM M -point FFT. 

 
 
5.2.4 Type F-IV: Multi-stage shaping subfilter, multi-stage masking 

subfilter 
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Figure 5-8 Type F-IV FFB structure. 
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For completeness, we include the description for Type F-IV. Consider the Type F-I filter 
bank in Figure 5-5, and the Type F-IV filter bank in Figure 5-8. Although the grouping of 
the set of subfilters that constitute the shaping subfilter block and the masking subfilter 
block are different, the subfilters are structurally identical. In this thesis, we assume that our 
results (in terms of complexity and design) for the Type F-I structure can also be applied to 
the Type F-IV structure. 
 
 
5.2.5 Comparisons of the various Types 
 
Let us compare the complexities of the different types of FRM-class filter bank structures. 
In Table 5-2, we tabulate the filter length Nmax of the longest component subfilter, and the 
complexity of the FRM-class filter bank as a ratio to the complexity of the polyphase filter 
bank, / PΓ Γ . We consider different values of transition widths 0,0Δ  and different numbers 
of subbands M. We assume a 2-stage shaping subfilter block for the Type F-III comparison. 
The peak passband and stopband ripples are 0.086 dB and -80 dB respectively. 
 

 Polyphase Type F-I Type F-II Type F-III 
0,0Δ , M Nmax Nmax / PΓ Γ  Nmax / PΓ Γ  Nmax / PΓ Γ  

0.02π , 4 629 158 0.67 158 0.60 158 0.69 
0.02π , 16 2512 158 0.74 158 0.63 158 0.73 
0.02π , 32 5023 158 0.76 210 0.64 158 0.75 

0.02π , 128 20087 158 0.81 837 0.66 272 0.77 
0.1π , 4 127 32 1.42 32 1.07 32 1.54 

0.1π , 16 504 32 1.91 126 1.17 35 1.74 
0.1π , 32 1006 32 2.03 251 1.21 72 1.78 

0.1π , 128 4019 32 2.22 1005 1.30 287 1.85 

Table 5-2 Complexity comparisons of the various filter bank implementations. 
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complexity of the polyphase filter bank, for M=4 and M=16. 
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In Figure 5-9, we plot the complexity ratio / PΓ Γ  for transition widths of 

0,00.02 0.1π π≤ Δ ≤ , for the case when M=4 and M=16. For values of 0,0Δ  such that 
/ 1PΓ Γ < , the FRM-class filter bank has a lower complexity than the polyphase filter bank; 

and vice versa for / 1PΓ Γ > . 
 
The plots exhibit a decreasing complexity ratio / PΓ Γ  as the transition width decreases. It 
can be observed that there are minor discontinuities in the plots for the Type F-I and Type 
F-III filter banks, e.g. in the region 0,00.069 0.07π π≤ Δ ≤  for M=16. This is further 
explained at the end of this sub-section. 
 
In general, the different filter banks exhibit an Nmax and complexity trade-off. The 
polyphase filter bank has large values of Nmax, especially for a large value of M and a small 
value of 0,0Δ . For the FRM-class filter bank, the individual filter lengths of its subfilters are 
much smaller than that of a polyphase filter bank having the same specifications. The Type 
F-I structure, which has the largest number of stages, also has the smallest value of Nmax. 
 
For very small transition widths (such as 0,0 0.03πΔ < ), the FRM-class filter banks are more 
efficient. For values of 0,0Δ  that are approximately 0.03π  to 0.08π , or larger, the 
polyphase filter bank implementation generally has a lower complexity than the FRM-class 
filter banks, as the polyphase structure can be fully operated in multi-rate mode. The FRM-
class filter banks on the other hand, can only be partially operated in multi-rate mode and 
tend to have a higher complexity. We summarize the properties of the different filter banks 
in Table 5-3. 
 
 

 Polyphase Type F-I Type F-II and F-III 
Complexity Generally lowest 

complexity. 
Generally highest 
complexity. At very 
small transition widths, 
has a lower complexity 
than the polyphase filter 
bank. 

Generally falls 
between the polyphase 
filter bank and the 
Type F-I. 

Filter 
lengths 

Prototype filter 
have very large 
filter lengths. 

Subfilters have very 
small filter lengths. 

Filter lengths vary 
according to number 
of stages KS. 

Table 5-3 Summary of the characteristics of the various FRM-class filter banks. 

 
Note that although the FRM-class of filter banks generally exhibit a higher complexity than 
the polyphase filter bank, their complexity can be further reduced for hardware 
implementations, such as by using the signed-powers-of-two method. The FRM-class of 
filter banks are also efficient for implementing non-uniform filter banks with small 
transition widths. These will be discussed in Chapter 6. 
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Explanation of discontinuities observed in Figure 5-9: 
 
As 0,0Δ  decreases, / PΓ Γ  follows a decreasing trend. Furthermore, as 0,0Δ  decreases, the 
requirement on 1,0Δ  increases (i.e. becomes more relaxed). Hence, we expect the filter 
length of H1,0(z), and hence the complexity of H1,0(z), to decrease as 0,0Δ  decreases. 
 
The discontinuities in the plots for the Type F-I and Type F-III can be explained by 
examining their structures (Figure 5-5 and Figure 5-7). In both cases, H0,0(z) is interpolated 
by a factor of M and H1,0(z) is interpolated by a factor of M/2. The filter length of H1,0(z) is 
typically small (e.g. typically between the range of 15 to 25), and can only take on integer 
values. As a result, the filter length of H1,0(z) changes only at some values of 0,0Δ , which 
becomes visible as a discontinuity in the plots. For example, as 0,0Δ  decreases from 0.07π  
to 0.069π , the filter length of H1,0(z) decreases by one, and is visible as a discontinuity. As 

0,0Δ  further decreases from 0.069π  to 0.027π , the estimated filter length of H1,0(z) does 
not change. The effect of different 0,0Δ  on the filter lengths of the subfilters comprising the 
FFB was discussed at length in Section 3.3.3. 
 
For the Type F-II filter bank (Figure 5-6) on the other hand, the change in / PΓ Γ  is 
somewhat more gradual. In this case, H1,0(z) is not interpolated and its filter length is large 
(e.g. typically between the range of 150 to 250 for M=16) and changes gradually with 0,0Δ . 
 

5.3 Alternate multi-rate structures 
 

H0(z
M) H1(z)     M

H0(z)H1(z)     M

(a) Method 1

(b) Method 2

x(n)

x(n)

y(n)

y(n)

 
Figure 5-10 Equivalent multirate structure for cascaded filters. 

 
Figure 5-10(a) shows a multirate system in which the output of the cascaded filters H0(zM) 
and H1(z) is decimated by a factor of M. This system can be equivalently implemented as 
shown in Figure 5-10(b), in which the order of H0(z) and H1(z) has been reversed. The 
output of H1(z) is decimated by M, and is then input to H0(z). Let us denote the complexity 
of H0(z) and H1(z) as 0Γ  and 1Γ  respectively. 
 
In the first method, since H0(zM) has the same number of non-zero coefficients as H0(z), its 
complexity is 0Γ . Since the output of H1(z) is decimated by M, and only 1 output sample 
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needs to be evaluated per M input samples, i.e. its complexity is 1 / MΓ . Thus, the 
complexity of method 1 is 0 1 / MΓ + Γ . In the second method, the filters are arranged 
differently. Since the output of H1(z) is decimated by M, and only 1 output sample needs to 
be evaluated per M input samples, i.e. its complexity is 1 / MΓ . Since the signal entering 
H0(z) is already decimated by M, the complexity of the filter operation involving H0(z) is 

0 / MΓ . Thus, the complexity of method 2 is 0 1( ) / MΓ + Γ . 
 
The second method offers a lower complexity. Note that methods 1 and 2 are 
interchangeable only if the front-end filter in method 1 is interpolated by a factor of M that 
is equal to the output decimation factor M. 
 
We can apply the same logic to the FRM filter banks. Figure 5-11 shows the equivalent 
structure for the Type F-I filter bank, and Figure 5-12 shows the equivalent structure for the 
Type F-II filter bank. 
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Figure 5-11 Equivalent multirate structure for Type F-I filter bank. 
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Figure 5-12 Equivalent multirate structure for Type F-II filter bank. 
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Note that even though the number of subfilter blocks for / 2

0,0 ( )jH e zπ  has increased by a 
factor of M, the sampling rate of these subfilter blocks has decreased by a factor of M. 
Therefore, the overall complexity of the filter bank is unchanged. 
 
 
5.3.1 Application: Frequency-hopping system using the Type F-II 

implementation 
 
The alternate equivalent multirate structure can be applied efficiently in a general 
frequency-hopping system such as in Figure 5-13. In this implementation, the outputs of the 
masking subfilter are passed through a detector. Due to the wider transition width of the 
masking subfilter block compared to the shaping subfilter block, the signal entering the 
detector has an increased overlap with adjacent subbands. Since signal detection involves 
rough approximations (unlike signal reconstruction which requires accurate 
approximations), the increased overlap may be acceptable. 
 

Masking
subfilters

detector

Shaping subfilter

detector

M

M Shaping subfilter

input
signal

detector

Shaping subfilterM

subband
index

0

1

M-1

m

decoded
signal

 
Figure 5-13 Applying the equivalent multirate structure 

efficiently in a general frequency-hopping scenario. 

 
When a signal is detected, we pass the signal into the shaping subfilter to refine the 
transition edge for reconstruction purposes. When no signal is detected, the operations 
required by the shaping subfilter can be saved. For a system with low subband utilization, 
the savings achieved by this method can be significant. 
 

5.4 Summary 
 
The operation of the Fast Filter Bank in multi-rate systems is considered. When the system 
is critically decimated, the FFB typically has a much higher complexity than the polyphase 
filter bank. We proposed a method of reducing the FFB complexity by removing redundant 
computations required by the subfilters at the output stage. The improvements can be very 
significant when the number of subbands is large. For some implementations, such as 
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designs with very small transition widths, our improved FFB designs can be even more 
efficient than the polyphase filter bank. 
 
We further proposed a classification of filter banks that are based on frequency response 
masking. We labeled these classes of filter banks Type F-I, Type F-II, Type F-III and Type 
F-IV. The original FFB belongs to the Type F-I class. The Type F-II and Type F-III classes 
lead to implementations that have lower complexity than the FFB. The trade-offs between 
the different types lie primarily between the subfilter lengths and the overall complexity. 
 
We then considered alternate multi-rate structures for FRM filter banks. These alternate 
structures can be applied in situations where the entire bandwidth is not fully utilized, such 
as in a frequency hopping scenario. As a case in point, we briefly described a scheme where 
the alternate structure was applied to decrease the overall complexity. 





 

 
 

Chapter 6 
Multi-rate Systems II: Reconstruction 

Analysis and Multiplierless Designs 
 

 
 
 
In this chapter, we consider practical aspects of efficient filter bank implementation using 
our FRM filter bank structures. In the first part of the chapter, we derive the distortion and 
aliasing functions as a result of cascading a pair of analysis-synthesis FRM filter banks. We 
consider the odd-stacked filter bank with a real-valued input signal. We find that the 
masking subfilters have only a small impact on the distortion and aliasing functions as well 
as on the overall frequency response of the filter bank, as long as they are effective masking 
subfilters. We thus propose to use signed-powers-of-two (SPT) quantization on the masking 
subfilter coefficients. A variable bandwidth filter bank is then designed and optimized using 
the proposed techniques in this thesis. 
 

6.1 Reconstruction analysis for 4 channels 
 
We begin the analysis of signal reconstruction in a cascaded analysis-synthesis FRM filter 
bank pair with the general-case 4-channel filter bank, and extend it to the case of the M-
channel filter bank later. The design of the analysis and synthesis filter banks for the NPR 
scenario is considered. Although recent literature [8] has focused on the design of PR multi-
rate filter banks, our situation is different from those described. The FRM filter bank is a 
multi-stage cascade of subfilters, and the transfer function of each subband consists of the 
transfer functions of multiple subfilters. At this point, we are uncertain of the requirements 
on these subfilters, such that their interaction results in the PR property, if it is at all 
possible. Note that simply making each set of Hu,v(z) and Gu,v(z) a 2-channel PR pair, as in 
the octave filter bank, does not result in the overall H and G being a PR pair. Furthermore, 
our approach to the efficient design of the masking subfilters involves the reduction of their 
coefficients to signed-powers-of-two terms (in Section 6.3), which would also result in the 
PR property being infeasible. 
 
Due to the multiple interactions of the subfilter transfer functions, the reconstruction 
equations become overly-complex. Fortunately, as we shall see (in arriving at (6.8)), some 
assumptions can be made to simplify these equations. This is also the reason why the 4-
channel case was chosen as illustration. The condition for these assumptions to be made is 
not visible in the 2-channel case, i.e. in the 2-channel case, all subbands are adjacent. 
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6.1.1 Reconstruction equations 
 
The 4-channel FRM filter bank pair is shown in Figure 6-1. 
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Figure 6-1 A pruned odd-stacked FFB for a real-valued input signal. 

The transfer functions for the analysis part are given by: 

 / 2 4 / 4 2 /8
[0] 0,0 1,0 2,0( ) ( ) ( ) ( )j j jH z H e z H e z H e zπ π π= c fd ge h , 

 / 2 4 / 4 2 5 /8
[1] 0,0 1,0 2,0( ) ( ) ( ) ( )j j jH z H e z H e z H e zπ π π= − −c fd ge h , 

 / 2 4 / 4 2 5 /8
[2] 0,0 1,0 2,0( ) ( ) ( ) ( )j j jH z H e z H e z H e zπ π π= −c fd ge h , 

 / 2 4 / 4 2 /8
[3] 0,0 1,0 2,0( ) ( ) ( ) ( )j j jH z H e z H e z H e zπ π π= −c fd ge h , (6.1) 

where a b.  denotes taking the real part of the bracketed expression. 
 
The transfer functions for the synthesis part are given by: 

 / 2 4 / 4 2 /8
[0] 0,0 1,0 2,0( ) ( ) ( ) ( )j j jG z G e z G e z G e zπ π π= c fd ge h , 

 / 2 4 / 4 2 5 /8
[1] 0,0 1,0 2,0( ) ( ) ( ) ( )j j jG z G e z G e z G e zπ π π= − −c fd ge h , 

 / 2 4 / 4 2 5 /8
[2] 0,0 1,0 2,0( ) ( ) ( ) ( )j j jG z G e z G e z G e zπ π π= −c fd ge h , 

 / 2 4 / 4 2 /8
[3] 0,0 1,0 2,0( ) ( ) ( ) ( )j j jG z G e z G e z G e zπ π π= −c fd ge h . (6.2) 

Given the input signal x(n) with z-transform X(z), the output signal ˆ( )x n  after passing 
through the critically decimated analysis-synthesis filter bank pair can be expressed using 
the following z-transform equation: 
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0 0
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( ) ( ) ( )

j a j a
m m

m a

j a j a
m m

a m

X z G z H e z X e z

X e z H e z G z

π π

π π

= =

= =

⎧ ⎫⎡ ⎤= ⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤= ⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

∑ ∑

∑ ∑ . (6.3) 
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The output signal with z-transform ˆ ( )X z  consists of a filtered version of X(z), and of 
filtered versions of / 2( )jaX e π  (for 1 3a≤ ≤ ), which are modulated 'images' of X(z). The 
component of ˆ ( )X z  due to the modulated 'images' of X(z) is termed the aliasing error 
function. The component of ˆ ( )X z  due to its fundamental X(z) is termed the distortion error 
function and denoted ( )T zΘ . This function can be found by setting a=0, and is given by: 

 
3

[ ] [ ]
0

( ) ( ) ( ) ( )T m m
m

z X z G z H z
=

Θ = ∑ . (6.4) 

The aliasing error function ( )A zΘ  is then given by: 
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For perfect reconstruction (PR), i.e. ˆ ( ) ( )X z X z= , ( ) 1T zΘ =  and ( ) 0A zΘ = . We can 
express this in matrix form as: 

 

/ 2 2 / 2 3 / 2
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 (6.6) 

 
6.1.2 Aliasing error 
 
Expanding from (6.5), we get: 
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We can simplify the above expression by assuming that products of transfer functions 
defining non-adjacent subbands do not have significant overlap and are approximately zero. 
For example, by inspection of the frequency responses, we get: 

 / 2 4 5 / 4 2 5 /8 / 2 4 / 4 2 /8
0,0 1,0 2,0 0,0 1,0 2,0( ) ( ) ( ) ( ) ( ) ( ) 0j j j j j jH e z H e z H e z G e z G e z G e zπ π π π π π⎡ ⎤ ⎡ ⎤ ≈⎣ ⎦ ⎣ ⎦ . (6.8) 

Let us further assume that the subfilters in the masking subfilter block of the analysis and 
the synthesis filter bank are mirror images, i.e. , ,( ) ( )u v u vG z H z=  for u>0. Then we can 
simplify (6.7) for a=1 to: 
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where: 
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Similarly, by performing the same evaluation for a=2 and a=3, we obtain: 
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− −

Θ ≈ Φ

⎡ ⎤+⎣ ⎦ , (6.11) 
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where: 

 

3 / 4 2 3 /8 5 / 4 2 5 /8
2 1,0 2,0 1,0 2,0

3 / 4 2 3 /8 5 / 4 2 5 /8
1,0 2,0 1,0 2,0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

j j j j
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j j j j

z H e z H e z H e z H e z

H e z H e z H e z H e z

π π π π

π π π π

=

− − − −

Φ =

+ , (6.12) 

and: 
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Θ ≈ Φ

⎡ ⎤+⎣ ⎦ , (6.13) 

where: 

 

3 / 4 2 3 /8 / 4 2 /8
3 1,0 2,0 1,0 2,0

5 / 4 2 5 /8 7 / 4 2 7 /8
1,0 2,0 1,0 2,0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

j j j j
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j j j j

z H e z H e z H e z H e z

H e z H e z H e z H e z

π π π π

π π π π

− − − −
=Φ =

+ . (6.14) 

Generalizing from (6.9)-(6.14), we obtain the aliasing error function as: 

 

3
/ 2

1

/ 2 4 / 2 4 / 2 4 / 2 4
0,0 0,0 0,0 0,0

1( ) ( ) ( ) ...
4
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=
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⎡ ⎤+⎣ ⎦

∑
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where: 

(2 1) / 4 2 (2 1) /8 (2 1) / 4 2 (2 1) /8
1,0 2,0 1,0 2,0

(2 9) / 4 2 (2 9) /8 (2 7) / 4 2 (2 7) /8
1,0 2,0 1,0 2,0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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z H e z H e z H e z H e z

H e z H e z H e z H e z

π π π π

π π π π

+ + − −

− − − −

Φ =

+ . (6.16) 

We find that the aliasing error function is approximately zero, ( ) 0A zΘ ≈ , when the 
following equation is satisfied: 

 / 2 4 / 2 4 / 2 4 / 2 4
0,0 0,0 0,0 0,0( ) ( ) ( ) ( ) 0j j j jH e z G e z H e z G e zπ π π π− −+ = . (6.17) 

The above equation can be satisfied when: 

 / 2 / 2 / 2 / 2
0,0 0,0 0,0 0,0( ) ( ) ( ) ( ) 0j j j jH e z G e z H e z G e zπ π π π− −+ = . (6.18) 

The above is a property of a non-aliasing, 2-channel analysis-synthesis filter bank pair, 
0,0 ( )H z  and 0,0 ( )G z . Therefore, if we choose the shaping subfilter pair to be non-aliasing, 

then the filter bank is approximately non-aliasing. If the shaping subfilter pair is aliasing, 
then the total alias component in the filter bank can be found from (6.15). 
 
 
6.1.3 Distortion error 
 
Following the assumption that , ,( ) ( )u v u vG z H z=  for u>0, the terms in the summation 
brackets of the distortion error function can be expanded and simplified to: 
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If the transfer function 2

,0 ( )uH z⎡ ⎤⎣ ⎦  is that of a half-band filter for 1 1u K≤ ≤ −  (i.e. if 
2 2

,0 ,0( ) ( ) 1u uH z H z⎡ ⎤ ⎡ ⎤+ − =⎣ ⎦ ⎣ ⎦ ), then (6.19) reduces to: 

 / 2 4 / 2 4 / 2 4 / 2 4
0,0 0,0 0,0 0,0

2 ( ) ( ) ( ) ( ) ( )
( )

j j j jT z G e z H e z G e z H e z
X z

π π π π− −Θ
= + . (6.20) 

Thus, the filter bank can be made distortionless if both the following conditions are met: 
2

,0 ( )uH z⎡ ⎤⎣ ⎦  for u>0 are all half-band filters, and the 2-channel shaping subfilter pair is 
distortionless: 

 / 2 / 2 / 2 / 2
0,0 0,0 0,0 0,0( ) ( ) ( ) ( ) 1j j j jG e z H e z G e z H e zπ π π π− −+ = . (6.21) 

Consider the case when 2

,0 ( )uH z⎡ ⎤⎣ ⎦  for u>0 are not half-band filters. Manipulating (6.19), 
this becomes: 

 

/ 2 4 / 2 4 4
0,0 0,0

/ 2 4 / 2 4 4
0,0 0,0

2 ( ) ( ) ( ) ( )
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j jT
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π π π− −

Θ
= Φ

+ Φ  (6.22) 

where: 

 
3

4 2 (1 4 ) / 4 2 2 (1 4 ) /8
1,0 2,0

0

( ) ( ) ( )j a j a
T

a

z H e z H e zπ π+ +

=

Φ = ∑ . (6.23) 

We note that 4( )T zΦ  comprises mirrored images of HT(z) at regular intervals of / 2π , where 
we define: 

 2 / 4 2 2 /8
1,0 2,0( ) ( ) ( )j j

TH z H e z H e zπ π= . (6.24) 

Therefore, the coefficients of ( )T zΦ  must be given by: 

 ( ) (4 )T Tn h nΦ = , (6.25) 

where hT(n) can be found by taking the inverse z-transform of (6.24). 
 
The distortion error function of the filter bank can be found by first calculating the function: 

 / 2 / 2 / 2 / 2
0,0 0,0 0,0 0,0( ) ( ) ( ) ( ) ( ) ( ) ( ),j j j j

D T Tz G e z H e z z G e z H e z zπ π π π− −Θ = Φ + Φ −  (6.26) 

and then: 
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 41( ) ( ) ( )
2T Dz X z zΘ = Θ . (6.27) 

The distortion error function ( )T zΦ  can then be found using (6.24) and (6.25). 
 
We find that as long as we use effective masking subfilters (the concept of effective 
masking subfilters was explained in Section 3.3.1), then the passband and transition bands 
of / 2 / 2

0,0 0,0( ) ( )j jG e z H e zπ π  fall within the passband of ( )T zΦ . Thus, we can approximate 
( )D zΘ  according to: 

 / 2 / 2 / 2 / 2
0,0 0,0 0,0 0,0( ) ( ) ( ) ( ) ( )j j j j

D z G e z H e z G e z H e zπ π π π− −Θ ≈ + , (6.28) 

when effective masking subfilters are used. 
 
The contribution of the masking subfilters to the overall distortion error function of the filter 
bank is small when effective masking subfilters are used, and the overall distortion error 
function can be approximated from the distortion error function of the cascaded pair of 
analysis-synthesis 2-channel shaping subfilter. 
 

6.2 Reconstruction analysis for M channels 
 
We extend the results of our reconstruction analysis to the general M-channel case. 
 
6.2.1 Distortion and aliasing 
 
The input signal x(n) with z-transform X(z), after passing through the critically decimated 
analysis-synthesis M-channel filter bank pair, can be expressed using the following z-
transform equation: 

 
1 1

2 / 2 /
[ ] [ ]

0 0

ˆ ( ) ( ) ( ) ( )
M M

j a M j a M
m m

m a

X z G z H e z X e zπ π
− −

= =

⎧ ⎫⎡ ⎤
= ⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

∑ ∑ . (6.29) 

The distortion error function ( )T zΘ  is given by: 

 1( ) ( ) ( )
2

M
T Dz X z zΘ = Θ , (6.30) 

where: 

 / 2 / 2 / 2 / 2
0,0 0,0 0,0 0,0( ) ( ) ( ) ( ) ( ) ( ) ( )j j j j

D T Tz G e z H e z z G e z H e z zπ π π π− −Θ = Φ + Φ − . (6.31) 

The coefficients of ( )T zΦ  are given by: 

 ( ) ( )T Tn h MnΦ = , (6.32) 

where hT(n) is the inverse z-transform of: 
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The aliasing error function is given by: 

 

/ 2 / 2 / 2 / 2
0,0 0,0 0,0 0,0

1
2 /

1

1( ) ( ) ( ) ( ) ( ) ...
4

( ) ( ) ,

j M j M j M j M
A

M
j a M

A a
a

z H e z G e z H e z G e z

X e z z

π π π π

π

− −

−

=

⎡ ⎤Θ ≈ +⎣ ⎦

Φ∑  (6.34) 

where: 
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By the use of effective masking subfilters, the distortion and aliasing error functions 
become approximately determinable from the transfer functions of the shaping subfilters. 
Denoting the peak magnitude response in the passband of 0,0 ( )H z  as (0,0)(1 )pδ+ , and the 
peak magnitude response in the passband of ( )TH z  as (1 )pTδ+ , the ripple in the distortion 
error function can be approximately bounded to first order by (0,0)( )p pTδ δ+  if we assume 

(0,0) 1pδ <<  and 1pTδ << . 
 
 
6.2.2 Selection of shaping subfilters 
 
The selection of masking subfilters is trivial in the consideration of the reconstruction 
properties of the filter bank, as long as they are effective masking subfilters. It is possible to 
use half-band subfilters, for example. Since the overall reconstruction properties of the M-
channel filter bank pair are primarily dependent on the reconstruction properties of the 2-
channel shaping subfilter pair, we consider their design here. In general, we are able to 
replace the shaping subfilters by a pair of PR or NPR 2-channel filter banks. There are many 
sources of literature available on this subject, such as [13]-[15]. 
 
Here, we would like to highlight the 2-channel quadrature mirror filter (QMF) banks [16],  
where the transfer functions of the outputs are related by 0,0 0,0( ) ( )H z H z= − . This requires 

less processing because the coefficients of 0,0 ( )H z  are related to the coefficients of 0,0 ( )H z . 
 
As a side note, we recall from literature that typical 2-channel PR/NPR filter bank pair 
designs have the following properties: (i). 1

0,0 0,0( ) ( )G z H z−= , (ii). 1
0,0 0,0( ) ( )H z H z−  is 

approximately a half-band filter, and (iii). the phase of 0,0 ( )H z  at / 2π  frequency is 
approximately equal to / 4π± . As an example, the Johnston 64D filter in [17] can be used 
as a shaping subfilter in our multirate filter bank. This filter has the added advantage that 
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0,0 ( )H z  has linear phase and therefore 1
0,0 0,0 0,0( ) ( ) ( )G z H z H z−= = . The synthesis filter 

bank is then the exact mirror-image of the analysis filter bank. Other filter designs are 
available [18] where the filter length is exactly twice the number of subbands. 
 
 
6.2.3 Eight-channel filter bank using the Johnston 64D filter 
 
In this example, we design an 8-channel odd-stacked Type F-I FFB. The outputs of the 
analysis filter bank are critically decimated by a factor of 8. We used the linear-phase 
Johnston 64D filter for our shaping subfilters, 0,0 0,0( ) ( )H z G z= . Its frequency response is 
shown in Figure 6-2(a). The masking subfilters are designed using half-band filters with 
lengths of 1,0 15N = , 2,0 11N =  and 3,0 7N = . The solid line in Figure 6-2(b) shows the 
frequency response of the filter bank [ ] ( )mH z  for m=2 and the dotted line for m=3. 
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(b) 

Figure 6-2 (a) Frequency response of H0,0(z), 
(b) Frequency responses of H[m](z) for m=2 and 3. 
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Figure 6-3 (a) Spectrum of distortion error function of filter bank, 

(b) Spectrum of aliasing error function of filter bank for a=1. 

 
The spectrum of the distortion error function ( )T zΘ  is plotted in Figure 6-3(a) and the 
spectrum of the aliasing error function | 1( )A az =Θ  is plotted in Figure 6-3(b). Note that the 
use of a PR or NPR filter bank pair for the shaping subfilters typically leads to a small 
increase in the overall complexity of the filter bank, compared to the use of an equiripple 
filter (for example). This is because the PR/NPR filter pair has a larger set of constraints, 
and hence larger filter length than an equivalent equiripple filter matching the pre-defined 
specifications. One such constraint is that the peak stopband ripple of the PR/NPR filter is 
approximately the square root of the peak passband ripple  (in order that 

0,0 0,0 0,0 0,0( ) ( ) ( ) ( ) 1H z G z H z G z+ − − ≈ ). For example, the Johnston 64D has a filter length of 
64. The filter length of an equipripple filter with similar transition width, peak passband and 
stopband ripple is approximately 50. For the FFB however, the contribution of the shaping 
subfilter to the overall complexity is small, compared to the masking subfilters. For this 
example, the overall increase in complexity of the FFB, by using the Johnston 64D instead 
of the equiripple filter, is approximately 5-8%. 
 

6.3 Design of filters using signed-powers-of-two terms 
 
6.3.1 Signed-powers-of-two overview 
 
A real number x, in the range of 1 1x− < < , can be expressed to a precision 2-B as: 

 
1

( , )2 , ( , ) { 1,0,1}
B

b
SPT

b

x s x b s x b−

=

= ∈ −∑ . (6.36) 
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The number xSPT is a sum of B ternary digits s(x,b) weighted by 2-b, where s(x,b) is used to 
denote the value of the b-th ternary digit. The ternary digit s(x,b), { 1,0,1}s ∈ − , is called a 
signed-powers-of-two (SPT) term. 
 
The SPT-r reduction of the number x is denoted as xSPT-r, and consists of not more than r 
non-zero SPT terms. SPT terms which are equal to zero, s=0, do not add to xSPT and can be 
removed. As an example, the SPT-2 reduction of the number 0.19x = −  for B=5 is 

2 4 3 4
2 2 2 2 2 0.1875SPTx − − − −

− = − + = − − = − .  Note that the set of s(x,b) that gives rise to the 
same xSPT-r is not necessarily unique. Two sets of values of s(x,b) for the given example are 
tabulated in Table 6-1. In this case, the error of the SPT-2 reduction of x is equal to 0.0025. 
 

b 5 4 3 2 1 
s(x,b) 0 

0 
+1 
-1 

0 
-1 

-1 
0 

0 
0 

Table 6-1 Example showing the values of s(x,b) for the 
SPT-2 reduction of the number x= -0.19, for B=5. 

 
Using a smaller value of r leads to a larger average error in the SPT-r reduction of x as 
fewer values of x are represented, but has the advantage that fewer computations are 
required during the processing of operations involving xSPT-r. For example, the conventional 
multiplication of two B-bit binary numbers x and y can be expressed as: 

 
1

2
B

b
b

b

xy x y−

=

= ∑ , (6.37) 

where xb is the b-th bit of x. Since the computation of the terms in the summation bracket 
uses binary shifts and does not require any additions (xby=y if xb=1 and xby=0 if xb=0), 
evaluation of xy requires B shifts and B-1 additions. On the other hand, the multiplication of 
the B-bit binary number y with the number xSPT-r requires only r shifts and r-1 (r<B) 
additions. For example, assuming that the number 1 2

2 1 2( , )2 ( , )2b b
SPTx s x b s x b− −

− = + , the 
multiplication of x and y can be computed as 1 2

2 1 2( , )2 ( , )2b b
SPTx y s x b y s x b y− −

− = + , which 
requires 2 shifts and 1 addition. 
 
Given a number x, the following algorithm (taken from [45]) can be used to efficiently find 
the nearest value of xSPT-r to a precision of 2-B: 
 

1. Initialize b = 1 and x0 = x. 

2. Find s(x,b)2-g(b) which minimizes xb-1 - s(x,b)2-g(b), where g(b) is an integer 
describing the bit position of the SPT term, 1 ( )g b B≤ ≤ . 

3. If either s(x,b) = 0 or b = r, go to step 6, otherwise go to step 4. 

4. Update xb = xb-1 - s(x,b)2-b. 

5. Set b = b+1. Go to step 2. 

6. ( ')

' 1
( , ')2

b
g b

SPT r
b

x s x b −
−

=

= ∑ . Stop. 
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6.3.2 On the design of FIR filters 
 
In the design of finite-precision FIR filters having coefficients with a precision of 2-B, it is 
known that the minimum peak stopband ripple is constrained by B. For a fixed B, increasing 
the filter length beyond a certain value provides no improvement to the peak stopband 
ripple [43]. It is also known that directly rounding the filter coefficients to their nearest 
quantized value may not yield the optimal frequency response. To overcome this problem, 
integer programming methods (using objective functions which minimize the peak passband 
and stopband ripples) have been proposed to design finite-precision FIR filters [44]. 
 
Attempts to further reduce the filter coefficients using SPT terms have been proposed more 
recently [45]-[47]. Similarly, integer programming methods can also be used to find 
solutions to the SPT reduction of the filter coefficients [48]-[52]. Filters designed using 
these integer-programming methods typically exhibit better frequency response 
characteristics such as smaller peak stopband ripples, when compared to direct rounding of 
the filter coefficients to their nearest SPT terms. Filters which have coefficients that are 
reduced to SPT terms can then be implemented 'multiplierlessly', relying instead on the use 
of shifters and adders which are more cost-effective to implement. 
 
For a long filter (e.g. having a filter length greater than 50), optimizing its coefficients to 
SPT-r terms, with respect to its frequency response, can be a tedious process. Consider the 
optimization of a single coefficient h(n), 1 ( ) 1h n− < < , to ( )SPT rh n−  having a precision of 
2 B− . The number of possible values that ( )SPT rh n−  can take on is a function of r and B, and 
is denoted as f(B,r). For example, ( ,1) 2 1f B B= +  and 1( , ) 2 1Bf B B += − . For a filter having 
a length of N, an exhaustive search of all possible combinations of SPT-r filter coefficients 
requires ( , )Nf B rη  operations, where η  is the number of operations required to evaluate 
each possibility (e.g. calculating the frequency response, measuring the peak stopband 
ripple, etc.). The search space increases exponentially with the filter length N. For example, 
the search space for N=20, B=16, r=3 is equal to 342120. 
 
Fortunately, with algorithms which localize the search space and make use of mixed integer 
linear programming [52], the time required for optimizing a set of SPT terms can be greatly 
reduced. However, the time required is still prohibitive for very long filters. The FRM filter 
banks proposed in this thesis use subfilters with short filter lengths, and are thus suitable for 
design using SPT techniques. 
 

6.4 Variable bandwidth filter bank 
 
We showed that the overall frequency response and reconstruction characteristics of an 
FRM filter bank are heavily influenced by the frequency response of its shaping subfilter. 
Its masking subfilters are tolerant to changes in their coefficient values. The coefficients of 
the masking subfilters can thus be reduced to B-bit fixed-point values, such as by 
quantization, e.g. rounding to the nearest B-bit term, integer programming, etc. 
Alternatively, the coefficients of the masking subfilters may be reduced to SPT terms 
(which have a lower complexity but also lower numerical precision than quantization), such 
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as in the mentioned literature [55]-[59]. Research into the design of multiplierless filter 
banks, such as by using the SPT reduction technique, is primarily focused on the 2-channel 
case [55]-[59]. We extend this work to the scenario with multiple channels using the FRM 
filter bank, which comprises cascaded 2-channel subfilters. 
 
Consider the following variable bandwidth scenarios (Figure 6-4). Scenario 1 is typical of 
applications such as speech or image coding, where the bandwidth increases with 
frequency. Scenario 2 is similar to Scenario 1, except that the transition widths are equal. 
Scenario 3 depicts subbands with arbitrary bandwidths, with the limitation that the 
transition edges are clearly defined on multiples of the unit frequency value given by 

12 K π− + , where K is an integer value greater than 1. Scenario 4 depicts subbands with 
arbitrary bandwidths and arbitrary transition edges. 
 
Octave filter banks are popularly used in (and restricted to) the Scenario 1 application [13], 
[53]-[54]. Designs of octave filter banks usually involve a tree-structured cascade of 2-
channel QMF filter banks (section 2.5). Since each 2-channel QMF filter bank is critically 
decimated, octave filter banks are restricted to critically decimated outputs. 
 

(a)    Scenario 1: Varying transition width.
0 π

(b)    Scenario 2: Equal transition width.
0 π

(c)    Scenario 3: Arbitrary bandwidths
constrained to multiples of             .

0 π

(d)    Scenario 4: Arbitrary bandwidths.
0 π

12 K π− +

12 K π− +

|H[m](ω)|

|H[m](ω)|

|H[m](ω)|

|H[m](ω)|

ω

ω

ω

ω

 
Figure 6-4 Some variable bandwidth scenarios. 

 
In this section, we consider the design of a general-purpose variable bandwidth filter bank 
with arbitrary decimation factor. We apply the Type F-I filter bank to the implementation of 
variable bandwidth filter banks. The masking subfilter coefficients are optimized using SPT 
algorithms. The resultant implementation can support a flexible variety of non-uniform 
bandwidth combinations and an arbitrary output decimation factor (oversampled or 
critically sampled). Very small transition widths between adjacent subbands can be 
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achieved at a very low computational complexity. We then demonstrate the results using a 
5-channel design. 
 
 
6.4.1 Overview of proposed method 
 
Our method can be applied to Scenarios 1-3, as long as the transition bands between 
adjacent subbands are centered on multiples of the frequency 12 K π− + , where K is the 
number of cascade stages. The proposed architecture for a 5-stage (K=5) variable bandwidth 
system for Scenario 2 is shown in Figure 6-5. The architecture shown uses the Type F-I 
structure, with the shaping stage brought to the back-end instead of the front-end. The 
summing stage of the filter bank can also be configured in other combinations for different 
bandwidth requirements. The corresponding synthesis filter bank can be obtained by the 
mirror image of the analysis filter bank and is thus omitted from our discussion. 
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Figure 6-5 Proposed 5-stage architecture for variable bandwidth application. 

 
For the case when the outputs are critically decimated, we are able to simplify the shaping 
stage to Figure 6-6. 
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Figure 6-6 Further simplification of the shaping stage. 
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6.4.2 Design procedure 
 
The design procedure for the filter bank is as follows: 
 

(i). Design the pair of prototype shaping subfilters with transfer functions H0(z) and 
G0(z). The 2-channel shaping subfilter pair should fulfill the reconstruction 
criteria for the filter bank. 

 
(ii). Design a set of prototype masking subfilters Hu(z) for each of the cascade stages, 

for 1 1u K≤ ≤ − . The transfer functions Hu(z) are lowpass and have real-valued 
coefficients. The transition widths of Hu(z) can be found from (3.13). 

 
(iii). The transfer functions Hu,v(z) can then be found from: 

 

 ( )1
2

2 2
, ( ) u K

vj

u v uH z H e z
π π

+
⎛ ⎞− +⎜ ⎟
⎝ ⎠=

�

, for 0 1u K≤ ≤ − , (6.38) 

where v�  is the bit-reversed version of v in K-1 bits. 
 

(iv). The set of masking subfilters for the synthesis filter bank is the mirror image of 
the analysis filter bank, , ,( ) ( )u v u vG z H z=  for 1 1u K≤ ≤ − . 

 
(v). Reduce the masking subfilter coefficients for Hu,v(z), 1 1u K≤ ≤ −  to their SPT 

terms. 
 
 
6.4.3 Design result 
 
In our 5-channel variable bandwidth filter bank design example, we used the Johnston 64D 
filter [17] for the prototype shaping subfilters H0(z) and G0(z). The transfer functions of the 
shaping subfilters H0,0(z) and G0,0(z) were obtained using (6.38). Since H0,0(z) and G0,0(z) 
were modulated by / 2π , we note that each coefficient of H0,0(z) and G0,0(z) is either purely 
real or purely imaginary. This observation can be used to further reduce the complexity of 
the filtering operation, compared to the case where coefficients have both real and 
imaginary parts (details are provided in Appendix B). 
 
We used half-band filters for the masking subfilters. A search of the local SPT space around 
the infinite-precision coefficients was used. We used mixed SPT-2 and SPT-3 terms with a  
16-bit wordlength. The resultant SPT coefficients are listed in Table 6-2. Since the subfilters 
have linear phase and are therefore conjugate-symmetrical about the center coefficient, we 
listed only the coefficients hu,v(n) for , ,( 1) / 2 1u v u vN n N− ≤ ≤ − , where Nu,v is the length of 
the subfilter with transfer function Hu,v(z). 
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u,v SPT terms of hu,v(n) u,v SPT terms of hu,v(n)
1,0

3,0

3,1

3,2

3,3

 [2-1]
 [2-2-2-5-2-10] . [1+j]
 0
 [2-4-2-7] . [1–j]
 0
 [2-6+2-9] . [1+j]
 0
 [2-8 - 2-11] . [1-j]

 [2-1]
 [2-2+2-5] +j[2-4-2-7]
 0
-[2-5+2-15] -j[2-6+2-8]
 [2-1]
-[2-4-2-7] +j[2-2+2-5]
 0
-[2-6+2-8] +j[2-5+2-15]
 [2-1]
 [2-3+2-5] +j[2-2-2-6]
 0
 [2-5-2-11] -j[2-8+2-9]
 [2-1]
-[2-2-2-6] +j[2-3+2-5]
 0
-[2-8+2-9] -j[2-5-2-11]

2,0

2,1

4,0

4,1

4,2

4,3

4,4

4,5

4,6

4,7

 [2-1]
 [2-2+2-6] +j[2-3-2-6]
0
-[2-6-2-10]-j[2-5-2-8]
 [2-1]
-[2-3-2-6]+j[2-2+2-6]
0
-[2-5-2-8]+j[2-6-2-10]

 [2-1]
 [2-2-2-11] +j[2-6+2-7]
 [2-1]
-[2-6+2-7] +j[2-2-2-11]
[2-1]
[2-3+2-5+2-10] +j[2-3+2-4+2-7]
[2-1]
-[2-3+2-4+2-7] +j[2-3+2-5+2-10]
 [2-1]
 [2-2-2-5] +j[2-3-2-8+2-10]
 [2-1]
-[2-3-2-8+2-10] +j[2-2-2-5]
 [2-1]
 [2-4+2-7+2-10] +j[2-2-2-7-2-9]
 [2-1]
-[2-2-2-7-2-9] +j[2-4+2-7+2-10]

 
Table 6-2 SPT coefficients for masking subfilters 

used in 5-channel variable bandwidth filter bank. 

 
The frequency responses of the subbands, H[m](z) are shown in Figure 6-7(a). The stopband 
attenuation is approximately 60 dB. Consider the unequal transition width Design A: a 5-
channel octave filter bank (see Figure 2-8), where the Johnston 64D filter is used in place of 
the subfilters H0(z), H1(z), H2(z) and H3(z). Such a system has a frequency response as 
shown in Figure 6-7(b). We notice the larger transition widths associated with subbands that 
have larger bandwidths. Alternatively, consider Design B: a narrow transition width 5-
channel octave filter bank, having transition widths similar to our proposed design. The 
filter lengths required for H0(z), H1(z), H2(z) and H3(z) would be approximately 1024, 512, 
256 and 128 respectively. 
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(a)  Frequency response of our 5-channel 

variable bandwidth filter bank. 
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(b)  Frequency response of unequal transition width Design A: 

Octave filter bank with Johnston 64D shaping subfilters. 

Figure 6-7 Frequency responses for different variable bandwidth filter banks. 

 
 
6.4.4 Comparisons 
 
Compare our 5-channel variable bandwidth filter bank with the octave filter bank Design B. 
Their frequency responses are similar: the transition widths are approximately 0.01π , and 
the stopband attenuations are approximately 60 dB. The number of adds, shifts, multiplies 
and the delay for the analysis filter banks are tabulated in Table 6-3. Our design has a 
greatly reduced complexity and delay when compared to the octave filter bank (Design B). 
The number of multipliers required is reduced by a factor of 10 and the delay is reduced by 
a factor of 4. 
 

 Multiplies Adds Shifts Delay 
Our design 

Design B
32 

340 
272 
340 

168 
- 

579 
2040.5 

Table 6-3 Comparisons between our variable bandwidth 
filter bank and the narrow transition width octave filter bank. 
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Compare our 5-channel variable bandwidth filter bank with the octave filter bank Design A. 
Their stopband attenuations are 60 dB. For Design A, different subbands have different 
transition widths. The transition widths for the different subbands, from the lowest 
frequency to the highest frequency, are approximately 0.02π , 0.04π , 0.08π , and 0.17π . 
On the other hand, our design has a transition width of 0.01π  for all subbands. The number 
of adds, shifts, multiplies and delay for the analysis filter banks are tabulated in Table 6-4. 
Their complexities are similar, assuming that adders and shifters are inexpensive compared 
to multipliers. Our design has about a 20% larger delay than Design A. 
 

 Multiplies Adds Shifts Delay 
Our design 

Design A
32 
30 

272 
30 

168 
- 

579 
472.5 

Table 6-4 Comparisons between our variable bandwidth 
filter bank and the unequal transition width octave filter bank. 

 
6.4.5 Discussions 
 
The FRM filter bank structure is suited for the implementation of multi-rate uniform and 
non-uniform filter banks, when small transition widths are required, or in hardware 
implementations that can benefit from multiplierless reductions of the subfilter coefficients. 
When implemented in software, shifts and adds do not gain significant efficiency over 
multiplications, as computers are typically not optimized for such operations. 
 
When the number of channels is increased, the difficulty of the design is also increased, 
especially if SPT reduction is to be performed on all the masking subfilters. However, this is 
an initial expenditure, and we would expect the FRM filter bank to operate efficiently, for 
small transition widths, even for a large number of channels. 
 
It is important to note that the objective of the work done here is mainly to establish some 
groundwork on the application of FRM filter banks to multi-rate applications, which has not 
been done before. There is certainly a large scope of material for future work and 
improvements. One such aspect is to quantify the sensitivities of the overall frequency 
responses and reconstruction properties of the filter bank to variations (including SPT 
reduction) in the masking subfilter transfer functions. Also, our design in Section 6.4.3 uses 
a trial-and-error approach to determine which coefficients are reduced to SPT-2 terms and 
which are reduced to SPT-3 terms. It would be interesting to analyze the effect of different 
combinations of mixed SPT-r terms, in the context of multi-stage cascaded subfilters; i.e. 
methods to optimize each subfilter, in terms of determining r and hSPT-r(n) for each 
coefficient h(n), such that the overall frequency responses and reconstruction properties 
when they are cascaded fall within the desired specifications. 
 

6.5 Summary 
 
We analyzed the effects of distortion and aliasing caused by a pair of FRM analysis-
synthesis filter banks. We derived the distortion and aliasing error functions for the M-
channel FFB, and found that the masking subfilters make only a minor contribution to these 
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functions. Therefore, the design of NPR FRM filter banks can be suitably achieved by using 
PR/NPR 2-channel filter banks as the shaping subfilters. Furthermore, since the masking 
subfilters have only a small impact on the distortion and aliasing error functions as well as 
on the overall filter bank transfer functions, we proposed to reduce the coefficients of the 
masking subfilters to SPT terms. The proposed methods were applied to the design of a 5-
channel variable bandwidth filter bank with small transition widths. The result was a 
reduction in complexity by a factor of up to 10, when compared to an octave filter bank. 
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Chapter 7 
Overview of Audio Transcoding 

 
 
 
 
In Part II of this thesis, we focus on the subject of audio transcoding. To re-iterate from the 
introduction in Chapter 1, the initial objective behind our work on audio transcoding was to 
apply efficient filter banks to the implementation of fast transcoders, with the expectation 
that more efficient filter banks would lead to faster transcoders. As we progressed, we found 
that an ultra-fast transcoder (subject to fulfilling the sample-synchronization condition) that 
does not require filter banks at all can be achieved. Further to this, we also realized that 
sample-synchronous transcoding presents several problems, in terms of audio quality, 
particularly for MP3. 
 
As a result, we re-directed our work to focus on the implementation of 'filter bank-less' 
transcoders. This is covered in detail in Chapter 10. Since audio quality is an important 
aspect of transcoding, we further delved into several issues relevant to audio quality, that 
arise during transcoding. These issues, which comprise Chapters 8 and 9, are considered in 
our implementation of the ultra-fast transcoder. 
 
In this chapter, we first provide an overview of the audio coding process, which uses 
compression methods to reduce the bit-rate. This is followed by an overview of audio 
transcoding. The cascaded quantization model which we use to represent the audio 
transcoding process is also introduced. We then define and explain some important terms 
that are frequently used in this thesis. 
 

7.1 Introduction to audio coding 
 
7.1.1 Audio compression methods 
 
Digital audio is stored in the form of a string of bits, called a bitstream. Its bit-rate indicates 
the number of bits used to transmit or store the information for 1 second of audio. Audio 
coding uses audio compression methods to obtain high quality audio at low bit-rates so as to 
facilitate transmission or storage. 
 
Lossless compression methods [61], in which the encoded audio can be decoded perfectly, 
are often able to achieve a compression ratio of 1.2 to 1.7 over the original PCM source. 
Some well-known lossless compression methods include the Free Lossless Audio Codec 
(FLAC) [62], and the MPEG 4-Audio Lossless Coding (ALS) extension [63]-[64]. 
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Lossy compression methods [65]-[68], on the other hand, can reach compression ratios 
greater than 10 (about 128 kbps for stereo audio sampled at 44.1 kHz). Errors are introduced 
during encoding, however, these errors are usually controlled by a psychoacoustic modeling 
process to ensure a reasonable standard of reproduction quality. Many lossy compression 
methods are available today, such as Windows Media Audio (WMA) [69] and Ogg-Vorbis 
(OGG) [70]. More popularly known, is the MPEG 1 ISO/IEC standard [71]-[72] and its 
extensions – Layer 1, Layer 2 and Layer 3 (MP3). More recently, this has evolved into the 
improved MPEG 2 format [73], and its Advanced Audio Coding (AAC) extension [74]. In 
this thesis, we focus on the MPEG 1 Layer 2 and MPEG 1 Layer 3 (MP3) compression 
methods. 
 
 
7.1.2 Psychoacoustic models 
 
It is well-known that the human auditory system (HAS) responds to audio stimuli in a 
frequency-selective manner [75]-[79]. Figure 7-1 shows the absolute hearing threshold of 
the human ear in a quiet environment, measured in terms of dB SPL (decibels, sound 
pressure level) [80]. Sound pressure levels which are below the curve cannot be detected by 
the average human listener. It can be observed that the human ear tends to be less sensitive 
towards the lower and upper ends of the hearing spectrum. 
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Figure 7-1 Absolute threshold of hearing in quiet. 

 
Furthermore, in the presence of a tonal stimulus (masker), the hearing threshold is modified. 
The hearing threshold in the neighborhood frequencies of the masker are raised, and noise 
and other tones falling below the raised hearing threshold cannot be heard (i.e. are masked). 
This concept is known as auditory masking. Figure 7-2 shows the modified hearing 
threshold (masking threshold) in the presence of 3 tonal maskers at 0.25 kHz, 1 kHz and 4 
kHz. 
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Figure 7-2 Modified hearing threshold 

in the presence of certain tonal stimuli. 

 
In lossy audio coders, a psychoacoustic model is commonly used to analyze the frequency 
content of a segment of audio samples. The masking threshold is then estimated based on 
known models of the HAS. The audio samples are quantized so that they can be encoded 
using fewer bits. The quantization is controlled by the encoder such that the noise caused by 
the quantization error remains below the masking threshold. The noise is then inaudible to 
the human ear, and the compressed audio is 'perceptually transparent'. 
 
In lossy audio coding, the input digital audio signal is usually represented using as few bits 
as possible, while achieving perceptually transparent output audio quality. For the MP3 
method, perceptually transparent quality can be achieved at approximately 128-192 kbps, 
which corresponds to a compression ratio of about 10. Newer and improved methods such 
as the AAC method claim perceptual transparency at about 64-96 kbps. 
 
 
7.1.3 Audio encoder and decoder overview 
 
Figure 1-1 (repeated here) shows a simplified architecture of a typical lossy audio encoder. 
For most lossy audio encoders, the PCM input signal is first separated into its constituent 
subbands by an analysis block. The total number of subbands varies, depending on the 
compression method that is used. 
 

PCM signal
Compressed

bitstream
Analysis block

Psychoacoustic
modelFFT

Quantizer Bitstream
packing

 
(a) Typical audio encoder 
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Compressed
bitstream PCM signalBitstream

unpacking Rescaling Synthesis block
 

(b) Typical audio decoder 

(Repeat of Figure 1-1.) 

 
Note: The analysis block may comprise a set of multi-stage analysis filter bank operations. 
In some cases, this block comprises only a single analysis filter bank, e.g. for MPEG 1 
Layer 2. In other cases, the analysis block comprises cascaded filter bank processing. For 
MP3, as an example, the analysis block comprises an analysis filter bank cascaded with an 
MDCT and an aliasing reduction stage (see Appendix C). 
 
Referring to Figure 1-1, the PCM inputs are analyzed using a psychoacoustic model to 
estimate the masking thresholds for different time-segments of the audio. The subband 
samples are then quantized using the masking threshold information from the 
psychoacoustic model. In subbands where the masking thresholds are higher, coarser 
quantizers are used and vice versa. The quantized subband samples are packed, along with 
the reconstruction information (e.g. global gain, scalefactors, etc.) and other descriptors 
(e.g. bit-rate, sampling frequency, compression method used, song title, etc.), into the output 
bitstream. The output bitstream is checked to ensure that the target bit-rate is met. A more 
detailed explanation and block diagram for the MP3 method can be found in Appendix C. 
 
The decoder is usually more straightforward to implement. The compressed bitstream is 
first unpacked, and the subband samples are then rescaled by using the reconstruction 
information. The PCM output is reconstructed from the rescaled subband samples by means 
of the synthesis block. 
 

7.2 Introduction to audio transcoding 
 
Audio transcoding is broadly defined as the conversion of compressed audio from an 
encoded bitstream to another encoded bitstream. Audio transcoding might involve a change 
in any of the following: compression method (e.g. from MP3 to AAC), bit-rate, sampling 
frequency, number of channels, etc. 
 
In this thesis, we focus on audio transcoding in the context of changing the bit-rate (usually 
a reduction in the bit-rate), while the other properties remain primarily unchanged. Bit-rate 
reduction is used to decrease the storage space required by the audio, at the expense of a 
decreased audio quality. Possible applications of bit-rate reduction include: 
  

(i). Transfer of songs from the computer to hardware portable players. Since storage 
space is abundant on the computer harddisk, audio stored in computers tend towards 
high quality and high bit-rate. Hardware portable players are often storage-expensive; 
medium-quality and low bit-rate are preferred. 
 
(ii). Transfer of songs over the internet. High quality and high bit-rate audio are 
stored on a server. The client might wish to preview some songs at a lower quality 
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and bit-rate (such as prior to deciding which song to buy), so as to improve data 
transfer speed over the internet. 

 
 
7.2.1 Perceptual quality in audio transcoding 
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Figure 7-3 Transcoding from 256 kbps to 
192 kbps for the MPEG 1 Layer 2 method. 

 
Figure 7-3 shows an example of bit-rate transcoding where an MPEG 1 Layer 2 bitstream at 
256 kbps (labeled A1) is recompressed to 192 kbps (labeled A2). As a reference, we included 
the bitstream A3 which is directly compressed to 192 kbps from the original source. 
 
The result of transcoding on audio quality has been studied [81]-[83], and it is generally 
well known that the audio quality of A2 is inferior to that of A3. In Chapter 10, we conduct a 
series of listening tests (detailed results included in Appendix E) which also demonstrates 
this behaviour. In Figure E-3, listeners generally rated LT-2 (representative of A3 in this 
example) to have better audio quality than LT-3 and LT-4 (representative of A2 in this 
example). The effect of transcoding on audio quality is further investigated in Chapters 8 
and 9. 
 
 
7.2.2 Literature on audio transcoding 
 
The main areas of interest in the subject of transcoding are: i) improvement in audio quality, 
and ii) complexity reduction in transcoder implementation. To achieve these objectives, 
different transcoding methods have been proposed. Some of these transcoding methods 
conform to the specifications of the original compression method (in the sense that 
conventional decoders are sufficient to play back the transcoded audio), others are 
proprietary (in the sense that specialized decoders are required to play back the transcoded 
audio). Here, we provide an overview of the background work. In subsequent chapters, 
more details will be provided as necessary to the topic of each chapter. 
 
Some methods that have been proposed to improve transcoding audio quality are based on 
recognizing certain conditions which are known to result in better audio quality. These 
conditions are then enforced during transcoding. In [84] for example, the audio quality of 
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MPEG 1 Layer 2 audio was related to the total input-to-output delay of the 
analysis/synthesis filter bank block. By inserting an 'optimal delay' between the decoder and 
the encoder during transcoding, audio quality can be improved. The effect of delay on 
transcoding is studied in Chapters 8 and 9. 
 
Other methods to improve transcoding audio quality rely on the inclusion of additional 
information in the encoded bitstream. The European Advanced Television at Low Bit-rates 
And Networked Transmission over Integrated Communication systems (ATLANTIC) 
project [90]-[91], is a system that adopts the MPEG 1 audio and video coding schemes for 
the production and distribution of television programs. For the MPEG 1 Layer 2 method, a 
"MOLE" signal is proposed to be embedded into the bitstream [92]. The "MOLE" signal 
contains information that is specifically used during transcoding to improve audio quality in 
the output. 
 
In [93]-[95], specially designed 'new' compression methods are proposed. The data in these 
methods is encoded, or structured, in such a way that it is robust to transcoding. For 
example, the "Audio Layered Transcoder" [99] structures the data in layers of increasing 
bit-rate. Transcoding can be performed by simply truncating the high bit-rate layers. We 
discuss the Audio Layered Transcoder in Chapter 10. Literature on complexity reduction in 
transcoder implementation is also covered in Chapter 10. 
 

7.3 Cascaded quantization model 
 
7.3.1 Overview 
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Figure 7-4 Cascaded quantization model for audio transcoding. 
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A transcoder can be represented as a cascade of a decoder with an encoder (see repeat of 
Figure 1-1, and Figure 7-3). Since the bitstream packing and unpacking does not change the 
information, they are removed from our transcoder model. We represent the transcoder 
using the cascaded quantization model shown in Figure 7-4. The source PCM signal is 
denoted as x0(n). The input to the transcoder is denoted as x1(η ), and contains the subband 
components retrieved from the bitstream encoded at bit-rate B1. The output of the transcoder 
is denoted as x2(n), and is then placed into the bitstream encoded at bit-rate B2. 
 
The total number of subbands is denoted by M, and m indexes the m-th subband. Some 
values of M for different compression methods are shown in Table 7-1. 
 

 MPEG 1 Layer 1 & 2 MP3 AAC WMA 

M 32 576 1024 2048 

Table 7-1 Some examples of the number of 
subbands M for different compression methods. 

 
We use n and η  to denote sample time. Since, for the compression methods of interest (i.e. 
MPEG 1 Layer 2 and MP3), the outputs of the analysis block and the inputs to the synthesis 
block are critically decimated (L=M, where L is the decimation factor), we assume in this 
thesis that η  corresponds to a sampling rate 1/M times that of n.  
 
 
7.3.2 Initial encoding 
 
The PCM signal x0(n) is separated into its subband components x0(η ): 

 0 0[0] 0[1] 0[ 1]( ) ( ) ( ) ( )
T

Mx x xη η η η−⎡ ⎤= ⎣ ⎦x " , (7.1) 

where x0[m](η ) is the subband component for the subband m. 
 
The vector of subband components x0(η ) is then quantized to a vector x1(η ) during the 
initial encoding. The set of quantizers used is represented by the symbol 1,ηq . The vector 
x1(η ) represents the quantized subband components of the compressed audio at bit-rate B1: 

 ( ) ( ) ( )
1 1[0] 1[1] 1[ 1]

1[0], 0[0] 1[1], 0[1] 1[ 1], 0[ 1]

( ) ( ) ( ) ( )

( ) ( ) ( ) ,

T

M

T

M M

x x x

q x q x q xη η η

η η η η

η η η

−

− −

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎣ ⎦

x "

"  (7.2) 

where 1[ ],mq η  denotes the quantizer used for the subband m, at the sample time η . 
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7.3.3 Transcoding 
 
The synthesis and analysis blocks in the transcoder are represented by G and H 
respectively. The outputs 1' ( )ηx  of the transcoder analysis block can be obtained from the 
inputs 1( )ηx : 

 ( )1 1' ( ) ( )dη η=x F x . (7.3) 

The set of transform functions Fd describes the input-to-output transformation due to the 
synthesis-analysis block pair of the transcoder, and varies depending on the value of the 
input-to-output delay d. The input-to-output delay d of the transcoder can be modified by 
means of an external delay dE. The external delay can be easily introduced by delaying the 
decoded intermediate PCM samples x1(n). Appendix D provides a more complete 
explanation of the operation of Fd, and the effect of adjusting d on Fd (a summary is 
available in Section D.4). 
 
A second quantization, which is represented by 2,ηq , is applied to 1' ( )ηx . The vector x2(η ) 
represents the quantized subband components of the compressed audio at bit-rate B2, where: 

 ( ) ( ) ( )2 2[0], 1[0] 2[1], 1[1] 2[ 1], 1[ 1]( ) ' ( ) ' ( ) ' ( )
T

M Mq x q x q xη η ηη η η η− −
⎡ ⎤= ⎣ ⎦x " . (7.4) 

 
 
7.3.4 Expanded view 
 
The bit-rate transcoding process is sometimes referred to as a cascaded quantization 
process, because the input signal undergoes two successive quantizations 1,ηq  and 2,ηq . 
Since the errors incurred during audio transcoding are mainly due to these quantizations, let 
us focus on their relationship, using the expanded view shown in Figure 7-5(a). 
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Figure 7-5 Expanded view of cascaded quantization model. 
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The subband components x0[m](η ), x1[m](η ), x'1[m](η ) and x2[m](η ) were defined earlier. The 
quantizers represented by 1[ ],mq η  and 2[ ],mq η  were also defined earlier. 
 
The quantization error in the initial encoder due to 1[ ],mq η  is denoted by: 

 1[ ] 1[ ] 0[ ]( ) ( ) ( )m m me x xη η η= − . (7.5) 

The quantization error in the transcoder due to 2[ ],mq η  is denoted by: 

 2[ ] 2[ ] 1[ ]( ) ( ) ' ( )m m me x xη η η= − . (7.6) 

For comparison purposes, we show the same system in Figure 7-5(b) with 1[ ],mq η  removed. 
The subband components x'0[m](η ) are transformed versions of x0[m](η ) using Fd, and are 
subsequently quantized to xD[m](η ) using 2[ ],mq η . 
 
Since the samples xD[m](η ) are only quantized once for the system in Figure 7-5(b), the 
system can also be viewed as a single encoding process (i.e. no transcoding takes place). 
The quantization error in the single encoding process due to 2[ ],mq η  is denoted by: 

 [ ] [ ] 0[ ]( ) ( ) ' ( )D m D m me x xη η η= − . (7.7) 

The total quantization error due to the cascaded quantization using 1[ ],mq η  and 2[ ],mq η  (with 
the transformation Fd due to the synthesis-analysis blocks in Figure 7-5(a)) is denoted by: 

 [ ] 2[ ] 0[ ]( ) ( ) ' ( )C m m me x xη η η= − . (7.8) 

 
 
7.3.5 Note on variables used 
 
We note that for most audio compression schemes, the quantizers 1[ ],mq η  and 2[ ],mq η  are 
time-varying with the sample time η . However, in part of our work, we use a fixed arbitrary 
sample time instant, and are not concerned with the time-varying properties of the signals or 
quantizers. When this is the case, it is convenient to hide the variable η  in our equations. In 
this case, we use q1[m], q2[m] to equivalently represent the quantizers 1[ ],mq η , 2[ ],mq η . We use 
x0[m], x1[m], x2[m], xD[m], e1[m], e2[m], eD[m], eC[m] to equivalently represent samples of the signals 
x0[m](η ), x1[m](η ), x2[m](η ), xD[m](η ), e1[m](η ), e2[m](η ), eD[m](η ), eC[m](η ) respectively. 
 

7.4 Definitions and conventions 
 
For the purpose of standardization, we assume all audio in this thesis to be stereo and to 
have a sampling frequency of 44.1 kHz. 
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7.4.1 Quantization frames (q-frames) 
 
The quantizers represented by 1[ ],mq η  and 2[ ],mq η  vary with subband m and sample time η . It 
is overly complicated to assign a different quantizer for each m and η , as it would then 
become necessary to record the information for each selected quantizer into the bitstream. 
Typically, a common quantizer is selected for a defined range of subbands m and/or times 
η . For example, the MP3 method uses 576 subbands. The subband samples are grouped 
into 22 scalefactor bands, and a quantizer is selected for each scalefactor band (details in 
Appendix C). 
 
In this thesis, we define a quantization frame (q-frame) as a unit consisting of M by b 
subband samples, where b is the number of consecutive subband samples that are acted 
upon by a common quantizer. 
 
 
7.4.2 Frames 
 
A frame is a term which is commonly used in audio compression, and is clearly defined 
within the specifications of each compression method. A frame refers (such as in MPEG 1 
Layer 2 or MP3) to a time-segment of encoded data which contains 1 or more q-frames, in 
addition to supplementary information used by the decoder to interpret the bitstream. For 
example, this supplementary information can contain information on the bit-rate, and the 
method used to pack the bitstream. More information is available in [71]. A short 
description of frames for the MP3 method is also provided in Appendix C. 
 
The q-frame that we defined earlier is not to be confused with a frame. A q-frame for the 
MPEG 1 Layer 2 method consists of (M=32) by 12 subband samples, whereas a frame 
consists of 3 consecutive q-frames. A q-frame for the MP3 method consists of (M=576) by 
1 subband samples, whereas a frame consists of 2 consecutive q-frames. 
 
 
7.4.3 Sample-synchronization 
 
During transcoding, the synthesis block is cascaded with the analysis block (Figure 7-4). 
The inputs x1[m](η ) of the synthesis block and the outputs x'1[m](η ) of the analysis block are 
usually critically decimated (L=M). When the total input-to-output delay d is equal to kM 
(where k is an integer), the outputs are delayed versions of the inputs: 

 1[ ] 1[ ]' ( / ) ( )m mx d M xη η+ = , (7.9) 

assuming that Fd is a pure delay. 
 
The system is then said to be sample-synchronized. When d is neither 0 nor a multiple of M, 
the outputs are related to the inputs by a set of transforms Fd (see (7.3)). The system is then 
said to be non-sample-synchronized. When the transcoding system is not sample-
synchronized, the external delay dE can be varied to enforce sample-synchronization. These 
concepts are explained in Appendix D in greater detail. 
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Note that the value of d is known a-priori to the transcoder, since the transcoder is in control 
of the encoding and decoding processes. Hence, the transcoder can opt to operate in either 
the sample-synchronous or non-sample-synchronous mode. 
 
For sample-synchronized transcoding, the cascaded quantizations become: 

 

( )
( )( )

2[ ] 2[ ], 1[ ]

2[ ], 1[ ], / 0[ ]

( ) ' ( )

( / )

m m m

m m d M m

x q x

q q x d M

η

η η

η η

η−

=

= − . (7.10) 

The errors due to the quantizations 2[ ],mq η  and 1[ ], /m d Mq η−  become correlated in a predictable 
manner, and we call this a tandem quantization scenario. In Chapter 8, this is further 
analyzed. 
 
It is generally known that for different audio coding methods, sample-synchronization can 
have different effects on transcoding. For transcoding in the MPEG 1 Layer 2 method, 
sample-synchronization is preferred over non-sample-synchronization. For the MP3 
method, on the other hand, the reverse is true. The effect of sample-synchronization on 
transcoding for these 2 methods will be investigated in more detail in Chapters 8 and 9. 
Here, we show the effect of sample-synchronization on transcoding using a listening test 
example. 
 
Figure 7-6 compares the effect of sample-synchronization for these 2 compression methods. 
The comparisons show the results of a listening test conducted with a variety of music 
material. In each case, listeners are placed in a quiet environment and are asked to listen to a 
piece of music encoded using different methods over a set of headphones. The encoding 
methods are as follows (with reference to Figure 7-3 and Figure 7-6): 
 
 Original  -  PCM format of the original source material x0; 

 B192 / B128  -  A3, which is directly encoded from the PCM source to 192 kbps (for 
MPEG 1 Layer 2) / 128 kbps (for MP3); 

 NS - A2, non-sample-synchronized transcoding from 256 kbps to 192 kbps 
(Figure 7-6(a), for MPEG 1 Layer 2) or from 192 kbps to 128 kbps 
(Figure 7-6(b), for MP3); 

 SS - A2, sample-synchronized transcoding from 256 kbps to 192 kbps 
(Figure 7-6(a), for MPEG 1 Layer 2) or from 192 kbps to 128 kbps 
(Figure 7-6(b), for MP3). 

 
The original is placed as a hidden reference in the listening test. The listeners are asked to 
rate the perceived quality (Opinion Score) of each music item on a scale of 0 to 100. The 
plots show the Mean Opinion Score (MOS) and the 95% confidence interval for all 
listeners. It can be observed that for music items which are encoded using the MPEG 1 
Layer 2 method, sample-synchronized transcoding leads to better audio quality (higher 
MOS). The reverse is true for music items which are encoded using the MP3 method. 
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 (a) MPEG 1 Layer 2. (b) MP3. 

Figure 7-6 Comparison of the effect of sample-synchronization 
on transcoding for MPEG 1 Layer 2 and MP3. 

 
 
7.4.4 Frame-synchronization 
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Figure 7-7 Illustration of frame-synchronization. 
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In this thesis, we define "frame-synchronization" to refer to the condition when each frame 
in the bitstream A1 is related to each frame in the transcoded bitstream A2 by a delay which 
is a multiple of the frame size (number of samples in each frame). Thus, for each frame in 
bitstream A1 which is decoded to time samples within a time region, there is a 
corresponding frame in the bitstream A2 which is decoded to time samples within the same 
time region. This is illustrated in Figure 7-7. We note that since the frame size is a multiple 
of M, frame-synchronized bitstreams are always sample-synchronized. 
 
Example:  For MP3, each frame consists of 1152 samples. For delays that are not multiples 
of M=576, the bitstreams are neither frame-synchronized nor sample-synchronized. For 
delays that are not multiples of 1152, the bitstreams are not frame-synchronized. In Figure 
7-7, the indicated frames are decoded to samples which are contained in the boxed regions. 
Bitstreams A1 and A2 are frame-synchronized. Bitstreams A1 and A3 are neither frame-
synchronized nor sample-synchronized. 
 
Note that we usually assume non-frame-synchronization and non-sample-synchronization 
when it is not specified, because the input-to-output delay d of the transcoder is usually 
neither a multiple of M nor a multiple of the frame size. However, frame-synchronization or 
sample-synchronization can be easily enforced by inserting an external delay dE between the 
decoder and encoder, since d is known a-priori to the transcoder. 
 
 
7.4.5 Glossary and Appendix information 
 
Frequently used notational conventions are provided in the Glossary. 
 
In Appendix C, a brief description of the MP3 method is provided. In Appendix D, a 
mathematical relationship between the inputs 1( )ηx  and the outputs 1' ( )ηx  of the cascaded 
quantization model is derived. In Appendix E, we conducted and recorded the results for 2 
formal listening tests, based on audio material that is encoded or transcoded using different 
methods.  
 

7.5 Overview of quantization schemes 
 
The quantization schemes for the MPEG 1 Layer 2 and MP3 method are central to our 
work. In this section we provide an overview of these quantization schemes and explain the 
notations used. We hide the sample-time variable n and η  in this section. 
 
7.5.1 Overview of quantization used in MPEG 1 Layer 2 
 
The MPEG 1 Layer 2 quantization scheme is shown in Figure 7-8. The vector x0 consists of 
32 subband samples. A q-frame consists of 32 by 12 subband samples. The subband 
samples are first grouped into a q-frame, and are then normalized to the range of -1 to 1 by 
dividing by a scaling factor 1[ ]mζ . The scaling factors are selected from a set of values pre-
defined by the ISO specifications. The action of the scaling factor 1[ ]mζ  on the subband 
signal x0[m] is illustrated in Figure 7-9. 
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Figure 7-8 A block diagram showing the MPEG 1 Layer 2 quantization scheme. 
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scaling used in MPEG 1 Layer 2. 

 
The normalized samples are then quantized using q1[m]. The quantizer is selected from a set 
of uniform quantizers pre-defined by the ISO specifications. As an illustration, Figure 
7-10(a) shows the quantization characteristics of the 7-step quantizer that is used in the 
Layer 2 method. 
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7.5.2 Overview of quantization used in MP3 
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Figure 7-11 A block diagram showing the MP3 quantization scheme. 

 
The MP3 quantization scheme (Figure 7-11) differs significantly from that of MPEG 1 
Layer 2. The vector x0 consists of 576 subband samples x0[m] per unit sample time. A q-
frame consists of 576 by 1 subband samples. These 576 subband samples are first grouped 
into scalefactor bands (22 for long windows and 13 for short windows). In the 'group into 
scalefactor bands' block, the horizontal lines pictorially show the allocated widths of the 
scalefactor bands (refer to Appendix C, Figure C-2 for more information). We denote the 
set of subband samples x0[m] that is grouped into the s-th scalefactor band as the vector x0{s}. 
As an illustration, for a long window: 
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 0 0{0} 0{ } 0{21}

TT T T
s⎡ ⎤= ⎣ ⎦x x x x" " . (7.11) 

In MP3 quantization, which we represent using q1{s}, x0[m] is quantized to x1[m] in the 
following manner. In the MP3 encoder, the subband samples x0[m] that are in the s-th 
scalefactor band (i.e. in the vector x0{s}), are scaled from the real-valued x0[m] to the integer-
valued 1[ ]mx� . We represent this scaling using the function 1{ }

RN
sQ  (RN indicates that the scaling 

takes place from a real value to an integer value): 

 

( )
( )1{ }

1[ ] 1{ } 0[ ] 1{ }

3/ 4
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,

2 ,s

RN
m s m s

m

x Q x

x

=

⎡ ⎤= ±ℜ ⎢ ⎥⎣ ⎦
]

� ]

 (7.12) 

where 1{ }s]  is the lumped quantization parameter for the quantizer q1{s}, 1{ }s]  consists of 
the global gain, scalefactor band gain and encoder-specific gains (see Appendix C); (.)ℜ  
rounds the bracketed term to its nearest integer; and the sign of 1[ ]mx�  is taken equal to the 
sign of x0[m]. 
 
A larger value of 1{ }s]  scales x0{s} to a larger range of values before rounding, leading to a 
better resolution of values (i.e. having smaller quantization errors). The set of 1[ ]mx�  that is 
grouped into the s-th scalefactor band is denoted as the vector 1{ }sx� . The integer-valued 1{ }sx�  
is packed into the MP3 bitstream. 
 
In the MP3 decoder, the integer-valued 1[ ]mx�  that are in the s-th scalefactor band are scaled 

to the real-valued x1[m]. We represent this scaling using the function 1{ }
NR

sQ  (NR indicates that 
the scaling takes place from an integer value to a real value): 

 

( )
1{ }

1[ ] 1{ } 1[ ] 1{ }

4/ 3

1[ ]

,

2 s

NR
m s m s

m

x Q x

x −

=

= ± ]

� ]

� , (7.13) 

where the sign of x1[m] is taken equal to the sign of 1[ ]mx� . 
 
The quantization from the vector x0 to the vector x1 can be visualized as applying a non-
uniform power-law quantizer (which we represent as q1{s}) to x0{s} in each of the scalefactor 
bands, where the quantizer q1{s} is defined by the lumped quantization parameter 1{ }s] . If 
we assume that the inputs x0{s} to the quantizer range between -1 and 1, then the effective 
number of quantization steps is ( )1[ ]3 / 42 2 1s +] . Figure 7-10(b) illustrates the quantizer 

characteristics for the case of 1{ }s] =4. 
 
Figure 7-12 shows the absolute values of 1x�  in a typical q-frame which is encoded using the 
MP3 method. We observe that in frequency regions where the human auditory system is 
more sensitive to noise (i.e. 0 100m≤ ≤ ), the subband samples tend to be scaled to larger 
values, so that the quantization introduces smaller errors. On the other hand, for the mid-to-
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high frequency region, quantization is usually very coarse and typically involves only one 
or two quantization steps. 
 

0 100 200 300 400 500
0

5

10

15

20

25

subband, m

0 100 200 300 400 500 600
0

1

2

3

4

Magnified view

1[ ]| |mx�

 
Figure 7-12 Plot of | 1x� | for a typical MP3 q-frame. 

 
 

7.6 Outline of our work 
 
In this chapter, we introduced some of the concepts behind audio coding and transcoding. 
Many audio compression methods are available, and we focused mainly on the MPEG 1 
Layer 2 and MP3 methods. We used a cascaded quantization model to describe the 
transcoding process, and important concepts such as sample-synchronization and frame-
synchronization were defined. 
 
For Part II of this thesis, our work is summarized as follows. In Chapter 8, we focus on the 
analysis of tandem quantization error, which occurs during sample-synchronized 
transcoding. In Chapter 9, we investigate the impact of sample-synchronization on the audio 
quality of transcoded material, for the MPEG 1 Layer 2 and MP3 methods. In Chapter 10, 
an ultra-fast MP3 transcoder is proposed, implemented and tested. 
 





 

 
 

Chapter 8 
Tandem Quantization Error 

 
 
 
 
In the previous chapter, we used the cascaded quantization model to describe the audio 
transcoding process. When the transcoding is sample-synchronized, the outputs of the 
transcoder synthesis-analysis block were shown to be delayed versions of the inputs. In 
[83], the effect of transcoding on audio quality was studied, and different combinations of 
transcoding methods (sample-synchronization vs. non-sample-synchronization, different 
compression methods, etc.) were tested. It is known that a major problem of transcoding is 
the potentially significant degradation of audio quality in the transcoded material. 
 
Furthermore, it is known that for the MPEG 1 Layer 2 method, audio which is transcoded 
sample-synchronously tends to be of higher quality than audio which is transcoded non-
sample-synchronously. Thus, a method of 'improved' transcoding ([84]-[85]) is to estimate 
or calculate the input-to-output delay of a transcoder and then adding to the delay, such that 
the total delay is a multiple of the number of subbands M. 
 
In this chapter, we analyze the effect of sample-synchronized cascaded quantization on the 
error of the output relative to the input. Our work is different from previous works, in the 
sense that our study focuses on the quantizers that are used, and the solutions address the 
transcoding problem by directly addressing these quantizers. The scope of our work in this 
chapter covers only uniform quantizers, such as those that are used in MPEG 1 Layer 2. 
Here, we reduce the audio transcoding problem to the general problem of a cascaded pair of 
quantizers. Note that our approach to the problem of cascaded quantization, and the 
methods and results presented, is not necessarily restricted to only audio transcoding. 
 

8.1 Definition of tandem quantization error 
 
8.1.1 Sample-synchronized transcoding 
 
The cascaded quantization model was first defined in Section 7.3, and we repeat Figure 7-5 
here for convenience. The variables that are listed in the diagram were explained earlier. In 
this chapter, we hide the sample-time η  in our equations for convenience. 
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(Repeat of Figure 7-5.) 

 
When the transcoding is sample-synchronized, x'1[m] = x1[m] up to a delay. The outputs x2[m] 
are related to the inputs x0[m] by 2 successive quantizations: 

 ( )2[ ] 2[ ] 1[ ] 0[ ]( )m m m mx q q x= . (8.1) 

The synthesis-analysis blocks can be removed, and we redraw the diagram as shown in 
Figure 8-1. The variables in the diagram were explained in Section 7.3. 
 

q1[m]x0[m]

x1[m]

e1[m]

eC[m]

q2[m] x2[m]e2[m]

q2[m]
xD[m]

eD[m]
 

Figure 8-1 Cascaded quantization model for sample-synchronized transcoding. 

 
 
8.1.2 Illustration of tandem quantization error effect 
 
Figure 8-2(a) shows a sample x0[m] which is quantized by a cascade of two quantizers 
represented by q1[m] and q2[m]. Figure 8-2(b) shows the sample x0[m] which is quantized 
directly by q2[m]. In this particular example, q1[m] has 7 quantization steps, q2[m] has 5 
quantization steps, and the value of 2[ ] 2[ ] 1[ ] 0[ ]( )m m m mx q q x⎡ ⎤= ⎣ ⎦  is not equal to the value of 

[ ] 2[ ] 0[ ]( )D m m mx q x= . For the illustrated value of x0[m], the cascaded quantization case results 
in a larger error than the direct quantization case. 
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Figure 8-2 Illustration of tandem quantization error effect. 

 
 
8.1.3 Some definitions 
 
Directly quantizing x0[m] with q2[m], the quantization error power is given by 2

[ ]D me . The 
relative quantization error power of q2[m](x0[m]) is defined as the quantization error power 
divided by the average squared quantization step-size: 

 
2

[ ]2
[ ] 2

2[ ]

D m
RD m

m

e
e =

Δ
, (8.2) 

where 2
2[ ]mΔ  is the average squared quantization step-size of q2[m]. The average squared 

quantization step-size can be found by summing the square of the individual quantization 
step-sizes for the dynamic range of the quantizer, and then dividing by the number of 
quantization steps. For a uniform quantizer, the quantization step-sizes are constant, and the 
average squared quantization step-size is thus equal to the square of the individual 
quantization step-size, 2 2

2[ ] 2[ ]m mΔ = Δ . 
 
Tandem noise power: The tandem noise power PT[m] is defined as the difference between the 
error power of x2[m] and the error power of xD[m]: 

 

( ) ( )2 2

[ ] 2[ ] 0[ ] [ ] 0[ ]

2 2
[ ] [ ].

T m m m D m m

C m D m

P x x x x

e e

= − − −

= −  (8.3) 

The relative tandem noise power is defined as the tandem noise power divided by the 
average squared quantization step-size of q2[m]: 

 [ ]
[ ] 2

2[ ]

T m
RT m

m

P
P =

Δ
. (8.4) 

For the case when the tandem noise power is equal to zero, the error in x2[m] is solely due to 
q2[m], (i.e. 2 2

[ ] [ ]C m D me e= ). This case is considered an ideal cascaded quantization; the 
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cascaded quantization using q1[m] followed by q2[m], does not change the result as compared 
to direct quantization using q2[m]. As an example, for the case when q1[m]=q2[m], x2[m]=x1[m] 
and PT[m]=0. 
 
Tandem indicator: The 'tandem indicator' is a ternary value, which serves to indicate 
whether tandem noise power is present, and whether tandem quantization error is positive or 
negative, for a combination of q1[m], q2[m], and x0[m]. The values are defined to be: 

 

( )
( )
( )

[ ] [ ]

[ ] [ ] [ ]

[ ] [ ]

1,      if 0

0,      if 0

1,    if 0

C m D m

T m C m D m

C m D m

e e

I e e

e e

⎧ − >
⎪⎪= − =⎨
⎪

− − <⎪⎩

. (8.5) 

When IT[m] is zero, tandem noise power is zero. When IT[m] is non-zero, tandem noise power 
is positive. 
 
Tandem quantization error: The tandem quantization error eT[m] is defined to be: 

 [ ] [ ] [ ]T m T m T me I P= . (8.6) 

 

8.2 Tandem quantization error regions 
 
The tandem quantization error that is incurred depends on the value of x0[m], and on the 
relationship between the quantizers q1[m] and q2[m]. We define tandem quantization error 
regions as the range of values of x0[m] for a set of q1[m] and q2[m] that lead to tandem 
quantization error, i.e. [ ] 0T mI ≠ . In this chapter, we analyze tandem quantization error for 
the MPEG 1 Layer 2 method. It is assumed that the input signal has a minimum value of -1 
and a maximum value of 1 ( 0[ ] [ 1,1]mx ∈ − ), and that the quantizers are uniform. 
 
For q1[m] and q2[m], let us denote the number of quantization steps by N1[m] and N2[m], and the 
quantization step-sizes by 1[ ]mΔ  and 2[ ]mΔ  respectively. For the quantizers used in the 
MPEG 1 Layer 2 method: 

 [ ] [ ]2 /m mNΔ = . (8.7) 

The number of tandem quantization error regions NT[m] is limited by the number of 
quantization steps for q2[m]: 

 [ ] 2[ ] 1T m mN N≤ − . (8.8) 

For illustrative purposes, let us assume that q1[m] has 7 quantization steps and q2[m] has 5 
quantization steps. 
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8.2.1 Analysis for a 7-step/5-step quantizer pair 
 

Tandem quantization error regions

7-step q1[m]

5-step q2[m]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

eC[m] - eD[m] < 0eC[m] - eD[m] > 0

 
Figure 8-3 Quantizer characteristics and tandem 

quantization error regions for the 5-step and 7-step quantizers. 

 
Figure 8-3 shows a one-dimensional plot of the quantization characteristics for q1[m] and 
q2[m]. In our figure, the bold vertical bars mark the quantization boundaries and the crosses 
mark the quantization steps for a quantizer q[m]: samples having values which are between 2 
adjacent bold vertical bars are quantized to the nearest value which is marked by a cross. 
 
For a pair of q1[m] and q2[m], if all the quantization boundaries of q2[m] fall on the same values 
as the quantization boundaries of q1[m], then NT[m]=0. If some of the quantization boundaries 
of q2[m] fall on the same values as the quantization boundaries of q1[m], then NT[m]<N2[m]-1. If 
none of the quantization boundaries of q2[m] fall on the same values as the quantization 
boundaries of q1[m], then NT[m]=N2[m]-1.  
 
For the 7-step/5-step quantizer pair shown in Figure 8-3, there exist NT[m]=4 tandem 
quantization error regions. For values of x0[m] which fall within these regions, tandem 
quantization error is not zero, i.e. 2[ ] 1[ ] 0[ ] 2[ ] 0[ ]( ) ( )m m m m mq q x q x⎡ ⎤ ≠⎣ ⎦  and [ ] 0T me ≠ . For values 
of x0[m] falling outside the tandem quantization error regions, tandem quantization error is 
zero, i.e. 2[ ] 1[ ] 0[ ] 2[ ] 0[ ]( ) ( )m m m m mq q x q x⎡ ⎤ =⎣ ⎦  and [ ] 0T me = . In the figure, examples are shown 
where x0[m], which are marked by circles, fall within the tandem quantization error regions. 
The path taken when x0[m] is quantized by q2[m] is indicated by a dotted arrow, and the path 
taken when x0[m] is quantized by q1[m] followed by q2[m] is indicated by solid arrows. 
 
If there are zero tandem quantization error regions for a pair of q1[m] and q2[m],(e.g. for the 
case of q1[m]=q2[m]) or alternatively, if all values of x0[m] fall outside the tandem quantization 
error regions for a pair of q1[m] and q2[m], then the cascaded quantization is ideal. In such a 
case, eT[m]=0 and PT[m]=0. In our analysis, we focus on values of x0[m] that fall within the 
tandem quantization error regions. 
 
Let us denote the set of quantization boundaries of q1[m], q2[m] (marked by bold vertical bars) 
respectively by 1[ ]mΦ , 2[ ]mΦ  and the set of quantization steps (marked by crosses) by 1[ ]mΘ , 

2[ ]mΘ . For example, for the MPEG 1 Layer 2 method, a 7-step q1[m] has the following 
parameters: 
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{ }1[ ] -0.7143   -0.4286   -0.1429    0.1429   0.4286    0.7143mΦ = , and 

{ }1[ ] -0.8571   -0.5714   -0.2857    0    0.2857    0.5714    0.8571mΘ = . 
 
A 5-step q2[m] has the following parameters: 

 
{ }2[ ] -0.6   -0.2    0.2    0.6mΦ = , and 

{ }2[ ] -0.8   -0.4    0    0.4    0.8mΘ = . 
 
The tandem quantization error regions can be determined from the quantization boundaries 

1[ ]mΦ  and 2[ ]mΦ . Let us denote the set of tandem quantization error regions by R[m]. A 
simple rule for finding R[m] is to take the set of values in 2[ ]mΦ  and pair them with a subset 
of the values in 1[ ]mΦ , such that the values for each pair have the least absolute difference. 
In our example, the 4 tandem quantization error regions are (see Figure 8-3): 
 

[ ] [ ]
[ ] [ ]

[ ],1 [ ],2
[ ]

[ ],3 [ ],4

0.714, 0.6 , 0.2, 0.143

0.143,0.2 , 0.6,0.714 .
m m

m
m m

R R

R R

⎧ ∈ − − ∈ − −⎪= ⎨
∈ ∈⎪⎩

R  

 
The lower and upper bounds of x0[m] for each tandem quantization error region are denoted 
by [ ]

L
mR  and [ ]

U
mR  respectively, e.g. [ ],1 [ ],1 [ ],1,L U

m m mR R R⎡ ⎤∈ ⎣ ⎦ . 
 
 
8.2.2 Tandem indicators 
 
For values of x0[m] falling within R[m], a plot of the tandem indicators for the 7-step/5-step 
pair is shown in Figure 8-4. 
 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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[ ]T mI

1
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Figure 8-4 Plot of tandem indicators for a 7-step/5-step quantizer pair. 

 
8.2.3 Tandem noise power 
 
For values of x0[m] falling within R[m], the tandem noise power is: 
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where α  and β  are constant for values of x0[m] falling within each tandem quantization 
error region: 

 ( ) ( )2 2

2[ ] 1[ ] 0[ ] 2[ ] 0[ ]( ) ( )m m m m mq q x q xα ⎡ ⎤= −⎣ ⎦ , and (8.10) 

 ( )2[ ] 0[ ] 2[ ] 1[ ] 0[ ]2 ( ) ( ) .m m m m mq x q q xβ ⎡ ⎤= − ⎣ ⎦  (8.11) 

From (8.9), we observe that the tandem noise power varies in a linear-piecewise fashion 
with x0[m]. As an illustration, for N1[m]=7, N2[m]=5, and values of x0[m] falling within R[m],4 
(i.e. 0[ ] [ ],4m mx R∈ ), the tandem noise power is given by: 

 
0[ ] [ ],4

2 2
[ ], 0[ ] 0[ ]

0[ ]

(0.4 ) (0.8 )

,
m mT m x R m m

m

P x x

xα β
∈ = − − −

= +  (8.12) 

where α =-0.48 and β =0.8. 
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Figure 8-5 Plot of tandem noise power for a 7-step/5-step quantizer pair. 

 
The solid line in Figure 8-5 shows the tandem noise power [ ]T mP  for the range of values 

0[ ]1 1mx− < < , and the 7-step/5-step quantizer pair with input x0[m] and output x2[m]. The 

dotted line shows the quantization error power 2
[ ]D me  when x0[m] is directly quantized to xD[m] 

by the 5-step quantizer. It is clear that for certain values of x0[m], the tandem noise power can 
be significant when compared to 2

[ ]D me . 
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8.3 Mean tandem noise power 
 
When audio is encoded directly to bit-rate B2, we model the process as a direct quantization 
of the subband signal x0[m] with q2[m] for each q-frame. The quantization error can be 
calculated and the mean quantization error power for subband m can be found from 

2
[ ]D mE e⎡ ⎤⎣ ⎦ . 

 
When audio is encoded to bit-rate B1, and then transcoded (sample-synchronized) to bit-rate 
B2, we model the process as a cascaded quantization of the subband signal x0[m] with q1[m] 
and q2[m] for each q-frame. The mean quantization error power for subband m can be found 
from: 

 2 2
[ ] [ ] [ ]C m D m T mE e E e E P⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . (8.13) 

Both the instantaneous and mean quantization error powers provide an objective indication 
of the quality of the encoded or transcoded material. Short-term, large spikes in the 
quantization error power can be highly audible to the human ear. Long-term, mean 
quantization error power provides a reasonably objective (though not fully perceptually 
accurate) estimation of the audio quality. For low bit-rates, coarse quantizers are used, 
which result in a larger mean quantization error power and generally lower audio quality. 
On the other hand, for high bit-rates, fine quantizers are used, which result in a smaller 
mean quantization error power and generally higher audio quality.  
 
For the transcoded audio at bit-rate B2, the instantaneous and mean tandem noise power 
provide an objective indication to its audio quality. For the ideal case, tandem noise power 
is zero, and the transcoded audio is equal in audio quality to the directly encoded audio at 
bit-rate B2. 
 
 
8.3.1 Mean direct quantization error power 
 
Consider the uniform quantizer represented by q2[m] with N2 steps. The quantization step-
size is 2[ ] 2[ ]2 /m mNΔ = . If we assume that the inputs to the quantizer are uniformly 
distributed between -1 and 1, it is well-known that the error can be approximated using a 
uniform distribution with zero mean and variance 2

2[ ] /12mΔ . The error power incurred by 
the quantization xD[m] = q2[m](x0[m]) is: 

 ( )
2

2 2[ ]2
[ ] 2[ ] 0[ ] 12

m
D m m mE e E x x

Δ⎡ ⎤⎡ ⎤ = − ≈⎣ ⎦ ⎢ ⎥⎣ ⎦
. (8.14) 

 
8.3.2 Signal distributions 
 
We would like to highlight that for actual audio inputs, x0[m] does not necessarily follow any 
specific distribution. The actual distribution of x0[m] depends on the nature and content of the 
audio material, as well as on the encoding method. The encoder may modify the subband 
samples in a way that affects its distribution, e.g. normalization scaling of the subband 
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samples in the MPEG 1 Layer 2 method. It is observed that in most cases, for the MPEG 1 
Layer 2 method, there is a tendency for a larger concentration of values towards the zero 
value and a smaller concentration of values towards the -1 and +1 extremities. 
 
In this chapter, we would like to address the problem of cascaded quantization for a general 
scenario, and for a wide range of possible signal distributions. For this purpose, we do not 
restrict the methods and results presented here to a specific signal distribution. Instead, as an 
illustrative tool to show the effectiveness of our methods, we simply assume a uniformly 
distributed x0[m] for the analysis of tandem quantization error. In Section 8.8, we further 
consider the implications for signal distributions that are more typical for audio transcoding. 
 
 
8.3.3 Mean tandem noise power 
 
For an input signal 0[ ] [ 1,1]mx ∈ − , the mean tandem noise power can be found if we know its 
probability density function: 
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⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎢ ⎥⎣ ⎦
∑ ∫ , (8.15) 

where p(x0[m]) is the probability density function of x0[m]. As an example, for a uniform 
distribution of 0[ ] [ 1,1]mx ∈ − , this equation can be simplified to: 

 ( ) ( )
[ ] 2

[ ] [ ], [ ], [ ], [ ],
1

0.5 0.5
T mN

U L U L
T m m a m a m a m a

a

E P R R R Rα β
=

⎤⎡⎡ ⎤ = − + −⎣ ⎦ ⎣ ⎥⎦∑ . (8.16) 

 

8.4 Effect of different cascade-pair combinations 
 
Figure 8-6 shows the tandem noise power (given by PT[m], which is shown by a solid line) 
for various combinations of the cascaded pair q1[m] and 5-step q2[m]. The error power for a 
direct quantization using q2[m] (given by 2

[ ]D me ) is shown by a dotted line. It is noted that for 
the 15-step q1[m] (which we did not show), there is zero tandem quantization error and 
tandem noise power because the quantization boundaries of the 15-step quantizer are 
aligned with the quantization boundaries of the 5-step quantizer. It can be observed that as 
the difference in the number of quantization steps between q1[m] and q2[m] increases, the 
widths of the tandem quantization error regions generally decrease. 
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Figure 8-6 Tandem noise power for a 5-step q2[m] and various q1[m]. 

 
When the difference in the number of quantization steps between q1[m] and q2[m] is 
sufficiently large, PT[m] becomes very small compared to 2

[ ]D me . From this result, it can be 
inferred that when transcoding (sample-synchronized) from bit-rate B1 to bit-rate B2, the 
larger the difference between B1 and B2, the smaller the amount of tandem noise power 
compared to 2

[ ]D me . Consequently, the audio quality of the transcoded material approaches 
that of the quality of material that is directly encoded from the source to bit-rate B2. 
 

8.5 Overview of proposed methods to reduce tandem noise power 
 
In the next 2 sections (Sections 8.6-8.7), we consider methods to reduce tandem noise 
power for a cascaded quantization process, in the context of audio transcoding. Cascaded 
quantization effects in the time domain PCM signal from a larger wordlength (finer 
quantization) to a smaller wordlength (coarser quantization) have been well-studied [86]. 
Usually, a small amount of uncorrelated noise known as dither is added to the signal prior to 
the second quantization [87]-[88]. Dithering methods are effective for improving the audio 
quality of PCM signals having long time-segments of similar values. These PCM signals are 
usually quantized to many quantization steps, e.g. using 16 bits. Since we consider 
quantizers with very few quantization steps in this chapter, the noise added by dithering 
becomes very large and easily audible. 
 
In [89], audio transcoding from material encoded using compression method A to material 
that is encoded using a different compression method B (at a similar bit-rate) is considered. 
To improve the audio quality of the transcoded material, the second quantizer (compression 
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method B) is matched, in terms of having a similar bit-rate, to the first quantizer 
(compression method A), i.e. 2[ ] 1[ ]m mq q≈ . 
 
For audio transcoding from a higher bit-rate to a lower bit-rate, so that q2[m] has fewer 
quantization steps than q1[m], the typical approach is to embed additional information in the 
initial encoding ([93]-[100], also see Section 10.1.1 for a more detailed explanation). 
Another approach (further explained in Chapter 9) is to enforce sample-synchronization 
(such as for MPEG 1 Layer 2) or non-sample-synchronization (such as for MP3). 
 
Our approach considers the problem of transcoding, in terms of audio quality, at its 
fundamental level: the quantization process. In Section 8.6, we consider a method that 
modifies the quantization characteristics of q1[m]. The method assumes an a-priori 
knowledge of q2[m]. Further discussions on the validity of this assumption are provided in 
Section 8.6.5. 
 
In Section 8.7, we consider a method that selects q2[m] from a range of possible quantizers. 
Given the available x1[m] (signal entering the transcoder) and q1[m], the method estimates the 
likely range of values of x0[m] and selects q2[m] that minimizes the resultant tandem noise 
power. 
 

8.6 Modified quantizer method 
 
8.6.1 Modification of initial quantization 
 
 

q1[m] q2[m]

Derive tandem
quantization error

regions and
design q1[m]

q1[m] q2[m]x0[m]

q1[m](x0[m])
q2[m][q1[m](x0[m])]

 
Figure 8-7 Proposed method for reducing tandem noise power. 

 
Figure 8-7 shows the proposed method for the reduction of tandem noise power. If we 
assume that the quantizer pair q1[m] and q2[m] is known (i.e. that we have a-priori knowledge 
of the quantizer represented by q2[m], which is used in the transcoder), then we are able to 
derive the tandem quantization error regions, and the corresponding tandem noise power for 
different values of x0[m]. Suppose that for a value of x0[m] falling within the tandem 
quantization error region, we apply a modified non-uniform quantizer 1[ ]ˆ mq  such that x0[m] is 
quantized in the opposite direction instead of the usual direction 1[ ] 0[ ]( )m mq x . Then, the 
quantization error power introduced in the first quantization is: 
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22

1[ ] 1[ ] 0[ ] 0[ ]ˆ ˆ ( )m m m me q x x⎡ ⎤= −⎣ ⎦ . (8.17) 

This value is larger than the quantization error power 2
1[ ]me  incurred in the original 

quantization 1[ ] 0[ ]( )m mq x . However, if we consider the second quantization using q2[m], the 
tandem quantization error is negated (eT[m]=0) : 

 2[ ] 1[ ] 0[ ] 2[ ] 0[ ]ˆ ( ) ( )m m m m mq q x q x⎡ ⎤ =⎣ ⎦ . (8.18) 

An example of this modified quantization method for an illustrative value of x0[m] falling 
within the tandem quantization error region is shown in Figure 8-8(b). Compare this with 
the normal quantization method shown in Figure 8-8(a). The trade-off in using a modified 

1[ ]ˆ mq  is a decreased cascaded quantization error power ( 2 2
[ ] [ ]ˆC m C me e< ), at the expense of an 

increased quantization error power at the output of q1[m] ( 2 2
1[ ] 1[ ]ˆ m me e> ). The increased 

quantization error power at the output of 1[ ]ˆ mq  (i.e. the quality of the audio material encoded 
at bit-rate B1 is not as good as it would be when encoded normally) might or might not be 
acceptable, depending on the application. 
 

1[ ]
ˆ

mq

2[ ]mq

1[ ]mq

2[ ]mq

1[ ]
ˆ

me

[ ]
ˆ

C me

1[ ]me

[ ]C me
(a) Normal quantization (b) Modified quantization  

Figure 8-8 Illustration of a modified quantization 
method, where 1[ ]mq  is replaced with 1[ ]ˆ mq . 

 
Another possible implementation of 1[ ]ˆ mq  is to divide the tandem quantization error region 
into two sub-regions. Values of x0[m] falling into the first region are quantized normally and 
those falling in the second region are quantized in the opposite direction. Figure 8-9 shows 
the division of the tandem quantization error region into 2 equal halves. Values of x0[m] that 
fall within the shaded tandem quantization error regions are quantized in the opposite 
direction using 1[ ]ˆ mq . On the other hand, values of x0[m] that fall within the non-shaded 
tandem quantization error regions or outside of the tandem quantization error regions are 
quantized normally using q1[m]. 
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7-step q1[m]

5-step q2[m]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 
Figure 8-9 Dividing each of the tandem 
quantization error regions into 2 half-parts. 

 
The implementation of 1[ ]ˆ mq  can be possibly varied by defining other split-points for the 
division of the tandem quantization error regions. The modified quantizer 1[ ]ˆ mq  might also 
be varied over time and subband m, depending on psychoacoustic conditions. 
 
In Section 8.6.5, we further discuss the validity of the assumption of a-priori knowledge of 
q2[m], and we also propose a nearest neighbours method when this knowledge is unavailable. 
 
 
8.6.2 Dividing the tandem quantization error regions 
 
The tandem quantization error regions can be divided to varying proportions (instead of 
simply into halves), to offer a tradeoff between the quantization error power at the output of 
the first quantizer and the cascaded quantization error power at the output of the second 
quantizer. 
 

( )2[ ] 1[ ]m mk Φ − Φ

2[ ]mΦ

q1[m]

q2[m]

a b

1[ ]mΦ
 

Figure 8-10 Diagram illustrating method 
to divide tandem quantization error region. 

 
With reference to Figure 8-10, let a sample x0[m] that falls within the shaded region between 

1[ ]mΦ  and ( )2[ ] 1[ ]m mk Φ − Φ , 0 1k≤ ≤ , be quantized to the quantization step 'a' using q1[m]. 

Let a sample x0[m] that falls within the non-shaded region between ( )2[ ] 1[ ]m mk Φ − Φ  and 

2[ ]mΦ  be quantized to the quantization step 'b' using q1[m]. 
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Figure 8-11 Effect of dividing the tandem 
quantization error region on the error powers. 

 
In Figure 8-11(a), the dotted line shows the quantization error power for different values of 
x0[m] when quantized with q1[m]. The solid line shows the quantization error power when x0[m] 
falling within the shaded region are quantized in the opposite direction (using 1[ ]ˆ mq ). In 
Figure 8-11(b), the dotted line shows the tandem noise power for different values of x0[m] 
when quantized with the cascade q1[m] and q2[m]. The solid line shows the tandem noise 
power when x0[m] falling within the shaded region are quantized using 1[ ]ˆ mq . 
 
Assuming uniform distribution of x0[m], for 0[ ] 1[ ] 2[ ],m m mx ⎡ ⎤∈ Φ Φ⎣ ⎦ , we can calculate (see 
Figure 8-11(b)): 

 

( ) ( )

( )

2
[ ] 2[ ] 1[ ] [ ],max

2[ ] 1[ ]

2
[ ],max

1 1ˆ 1
2

1 1 ,
2

T m m m T m
m m

T m

E P k P

k P

⎡ ⎤⎡ ⎤ = − Φ − Φ⎢ ⎥⎣ ⎦ Φ − Φ ⎣ ⎦

= −  (8.19) 

where the equation in square brackets on the right-hand side is the area of the solid triangle, 
and PT[m],max is found by taking the value of PT[m] when 0[ ] 1[ ]m mx = Φ . 
 
Furthermore: 

 

( )

( )

( )

2[ ] 1[ ]

2[ ] 1[ ]

2[ ] 1[ ]

2
1[ ]2

1[ ] 0[ ] 0[ ]0
2[ ] 1[ ]

2
1[ ]

0[ ] 0[ ]
2[ ] 1[ ]

2
1[ ] 2[ ] 1[ ]

1ˆ
2

1
2

,

m m

m m

m m

k m
m m m

m m

m
m mk

m m

m m m

E e x dx

x dx

C k

Φ −Φ

Φ −Φ

Φ −Φ

Δ⎛ ⎞
⎡ ⎤ = +⎜ ⎟⎣ ⎦ Φ − Φ ⎝ ⎠

Δ⎛ ⎞
+ −⎜ ⎟Φ − Φ ⎝ ⎠

= + Δ Φ − Φ

∫

∫  (8.20) 

where 1[ ]mΔ  is the quantization step size of q1[m], and: 

 
( ) ( )2 2

2[ ] 1[ ] 1[ ] 2[ ] 1[ ] 1[ ]

3 2 4
m m m m m mC

Φ − Φ Δ Φ − Φ Δ
= − + . (8.21) 

Let us consider the relationships between k, 2
1[ ]ˆ mE e⎡ ⎤⎣ ⎦  and [ ]T̂ mE P⎡ ⎤⎣ ⎦ . Define the ratio: 
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  2
[ ] 1[ ]

ˆ ˆT m mR E P E e⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦ , (8.22) 

which can be expanded by substituting from (8.19) and (8.20). Note that 0 1k≤ ≤ , and 
[ ],max0 / 2T mR P C≤ ≤ . 

 
It can be seen that as k increases, 2

1[ ]ˆ mE e⎡ ⎤⎣ ⎦  increases, [ ]T̂ mE P⎡ ⎤⎣ ⎦  decreases, and hence R 

decreases. Working backwards, we can also obtain k from R, by way of the second-order 
equation: 

 ( )[ ],max [ ],max2
1[ ] 2[ ] 1[ ] [ ],max 0

2 2
T m T m

m m m T m

P P
k R kP RC

⎛ ⎞ ⎛ ⎞
− Δ Φ − Φ − + − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, (8.23) 

which can be easily solved. 
 
In a typical transcoding scenario, it is conceivable that we might want to make the tandem 
noise power after transcoding as small as possible, subject to the condition that the 
quantization error power after the first encoding does not exceed the amount E0, i.e. 
minimize [ ]T̂ mE P⎡ ⎤⎣ ⎦  such that 2

1[ ] 0ˆ mE e E⎡ ⎤ ≤⎣ ⎦ . Since 2
1[ ]ˆ mE e⎡ ⎤⎣ ⎦  increases monotonically with k, 

and [ ]T̂ mE P⎡ ⎤⎣ ⎦  decreases monotonically with k, the solution is straightforward. We can solve 

for k by substituting 2
1[ ] 0ˆ mE e E⎡ ⎤ =⎣ ⎦  into (8.20). 

 
Conversely, we might want to make the quantization error power after the first encoding as 
small as possible, subject to the condition that the tandem noise power after transcoding 
does not exceed the amount P0, i.e. minimize 2

1[ ]ˆ mE e⎡ ⎤⎣ ⎦  such that [ ] 0T̂ mE P P⎡ ⎤ ≤⎣ ⎦ . The 

solution for k can be obtained by substituting [ ] 0T̂ mE P P⎡ ⎤ =⎣ ⎦  into (8.19). 

 
 
8.6.3 Results for a pair of modified quantizers 
 
In this sub-section, the proposed modified quantization method is tested in a simplified 
scenario. In our experiment, we generate a large number (>10,000) of input samples x0[m] 
with a uniform distribution between -1 and 1. In Case 1, x0[m] is quantized normally with a 
7-step q1[m], followed by a 5-step q2[m]. 
 
In Case 2, x0[m] is quantized with the modified 7-step 1[ ]ˆ mq , such that all values of x0[m] that 
fall within the tandem quantization error region are quantized in the opposite direction. The 
tandem quantization error regions are located at: 
 

[ ] [ ]
[ ] [ ]

[ ],1 [ ],2
[ ]

[ ],3 [ ],4

0.714, 0.6 , 0.2, 0.143

0.143,0.2 , 0.6,0.714 .
m m

m
m m

R R

R R

⎧ ∈ − − ∈ − −⎪= ⎨
∈ ∈⎪⎩

R  
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In Case 3, we divide each of the tandem quantization error regions into 2 half-parts as was 
shown in Figure 8-9, and modified quantization is applied to the values of x0[m] that fall 
within the shaded region. The modified regions (shaded area) are located at: 
 

[ ] [ ]
[ ] [ ]

1[ ] 2[ ]
[ ]

3[ ] 4[ ]

ˆ ˆ0.714, 0.657 , 0.172, 0.143ˆ
ˆ ˆ0.143,0.172 , 0.657,0.714 .

m m
m

m m

R R

R R

⎧ ∈ − − ∈ − −⎪= ⎨
∈ ∈⎪⎩

R  

 
The results are tabulated in Table 8-1. Here: E[e1[m]

2], E[eDm]
2] and E[eC[m]

2] refer to the 
average power of the quantization errors of q1[m](x0[m]), q2[m](x0[m]) and the cascaded 
quantization q2[m][q1[m](x0[m])] respectively. Max inst. [e1[m]

2] and max inst. [eC[m]
2] refer to 

the largest instantaneous quantization error power that is incurred for the test. 
 

 Case 1 Case 2 Case 3 
E[e1[m]

2] 0.0068 0.0115 0.0080 
E[eD[m]

2] 0.0133 0.0133 0.0133 
E[eC[m]

2] 0.0199 0.0133 0.0150 
Max inst. [e1[m]

2] 0.0204 0.0660 0.0400 
Max inst. [eC[m]

2] 0.0988 0.0400 0.0660 

Table 8-1 Comparison of quantization error power 
for different cascaded quantization methods. 

 
Figure 8-12 plots the instantaneous cascaded quantization error power for q2[m][q1[m](x0[m])] 
against the values of x0[m], for the 3 cases. 
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Figure 8-12 Plot of quantization error power vs. input 
sample value for different cascaded quantization methods. 

 
For Case 1, tandem noise power plays a significant role; the average cascaded quantization 
error power, and the maximum instantaneous cascaded quantization error power of 
q2[m][q1[m](x0[m])], are large. For Case 2, tandem noise power is eliminated and the average 
cascaded quantization error power of q2[m][q1[m](x0[m])] is equal to the average cascaded 
quantization error power of q2[m](x0[m]). However, q1[m](x0[m]) is affected, as reflected by the 
increased average and max instantaneous quantization error power at the output of the first 
quantizer. Case 3 offers a compromise between the first 2 cases. 
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8.6.4 Possible future work using modified quantization in transcoding 
 
We provided a theoretical groundwork for the reduction of tandem noise power, based on 
the assumption that the input signal x0[m] is uniformly distributed between -1 and 1. A 
practical implementation requires considerably more factors to consider, such as 
programming issues, compliance with the MPEG 1 Layer 2 specifications, and further 
tweaking and testing of the algorithm. Since our focus for Part II is on efficient transcoder 
implementation, we leave the implementation aspects of the reduction of tandem noise 
power for future work. We propose a possible basic guideline for future work below. 
 
A possible use of the modified quantization method in audio transcoding is as follows. 
During the first encoding process to bit-rate B1, the subband samples x1 are quantized using 
q1, which are selected based on the psychoacoustic analysis. During this quantization, the 
noise-to-mask ratio (NMR) generated in each subband is calculated. In subbands with low 
NMR, there is a potential to increase the quantization error power without significantly 
affecting the perceptual quality. Assuming that q2 is known (if not, a nearest neighbours 
method may be used; this is explained in Section 8.6.5), the samples x0[m] in these low NMR 
subbands that lead to large tandem noise power when cascaded with q2[m] are then quantized 
in the opposite direction with 1[ ]ˆ mq . Those x0[m] that would lead to zero or small tandem 
noise power, or are in subbands where the NMR's are high, are quantized in the normal 
direction with q1[m]. 
 
Definitions of some terms used here: i) The mask-to-signal ratio is defined as the masking 
threshold value divided by the signal power; ii) The noise-to-mask ratio (NMR) is defined 
as the noise power due to the quantization error divided by the masking threshold value; iii) 
The noise-to-signal ratio is defined as the  noise power due to the quantization error divided 
by the signal power. 
 

m

Mask-to-signal ratio

Noise-to-signal ratio

5

dB

 
Figure 8-13 Sample illustration of noise-to-signal ratio and 

mask-to-signal ratio for reduction of tandem noise power. 

 
Figure 8-13 shows a sample plot of the noise-to-signal ratio generated by the quantization of 
the subband signals and the mask-to-signal ratio calculated by the psychoacoustic model. 
Note that the NMR is equal to the noise-to-signal ratio minus the mask-to-signal ratio, if the 
values are given in dB. For noise-to-signal ratios that are smaller than the mask-to-signal 
ratios, the noise generated by the quantization is inaudible. In this example, the quantization 
q1[5](x0[5]) has a noise-to-signal ratio that is well below the mask-to-signal ratio. Thus, x0[5] 
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can be subjected to our modified quantizer 1[5]q̂ , where 1[5]q̂  can be designed using the 
proposed method. 
 
Though, as the result of the modified quantization method, the quantization error power in 
the audio compressed at bit-rate B1 is slightly increased, it may not be perceptually 
significant when compared to the normal quantization method. However, when transcoded 
to bit-rate B2, both the instantaneous and mean tandem noise power can be reduced. 
 
 
8.6.5 Further discussions: On the assumption of a-priori knowledge of the 

second quantizer 
 
On the subject of using modified quantizers during transcoding, we realize that several 
'modification' options are available. The approach that was discussed involved a 
modification in the quantization boundaries of q1[m], which requires a-priori knowledge of 
q2[m]. 
 
In some applications, a-priori knowledge of q2[m] may be available and hence exploited. For 
example, in a music distribution system ([96]-[97]), music is encoded and stored at a high 
bit-rate on the server. Prior to distribution, the music can be transcoded to a lower bit-rate to 
increase transmission speed, or alternatively, watermarked ([100]) and transcoded to a lower 
bit-rate. Since the transcoding is also performed on the server, q2[m] can be made known at 
the time of the initial encoding. 
 
An alternative approach when q2[m] is not known a-priori, might be to modify 1[ ]ˆ mq  for a 
range of q2[m] that are its nearest neighbours. This is based on the reasoning that as the 
difference in the number of quantization steps between q1[m] and q2[m] increases, the tandem 
noise power tends to decrease. For example, for a 7-step q1[m], we might modify 1[ ]ˆ mq  for a 
5-step q2[m]. Naturally, in the event that a different q2[m] is actually used, such as a 3-step 
q2[m], the quantization error power 2

[ ]C me  is likely to be increased compared to if a non-
modified q1[m] was used. 
 
To illustrate this approach, consider the following example. The Case 3 1[ ]ˆ mq  (with the 
tandem quantization region divided into 2 half-parts) in Section 8.6.3  was designed with a 
5-step q2[m] in mind. In Table 8-2, we use this 1[ ]ˆ mq  to show the quantization error power for 
different conditions. We assume that x0[m] is uniformly distributed between -1 and 1.  
 
When x0[m] is quantized once with the 7-step, 5-step and 3-step quantizers q1[m], the mean 
quantization error powers are 0.00680, 0.0133 and 0.0370 respectively. In the first and 
second rows of Table 8-2, the mean quantization error powers when the 7-step modified 

1[ ]ˆ mq  and normal q1[m] (respectively) were used are tabulated. In this example, it can be 

observed that when the 7-step modified 1[ ]ˆ mq  is used, 2
1[ ]mE e⎡ ⎤⎣ ⎦  is increased by 17%, 

2
[ ]C mE e⎡ ⎤⎣ ⎦  is decreased by 25% for a 5-step q2[m], 2

[ ]C mE e⎡ ⎤⎣ ⎦  shows no change for a 3-step 
q2[m], when compared to using the normal 7-step q1[m]. 
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 2

1[ ]mE e⎡ ⎤⎣ ⎦  2
[ ]C mE e⎡ ⎤⎣ ⎦  

for 5-step q2[m] 

2
[ ]C mE e⎡ ⎤⎣ ⎦  

for 3-step q2[m] 
Using a 7-step modified 1[ ]ˆ mq  0.00797 0.0150 0.0431 
Using a normal 7-step q1[m] 0.00680 0.0199 0.0431 

Table 8-2 Mean quantization error powers, using the modified quantizer 
method when q2[m] is not known a-priori, for the example when a 7-step q1[m] is used. 

 
 
8.6.6 Further discussions: Modification of second quantization 
 
Previously, we proposed a method that modifies the initial quantizer q1[m] to reduce the 
tandem noise power. In this sub-section, we consider an alternative method that modify the 
values (i.e. positions) of the quantization steps of the second quantizer. 
 
Modification of the quantization steps of the second quantizer q2[m] presents a problem in 
that it requires the use of a custom decoder. To clarify, the values of the quantization steps 
are determined by the rescaling performed in the decoder. Since we typically do not have 
control over the decoder (e.g. in music distribution), the quantization steps are fixed for a 
certain compression method. Modifying the quantization steps of q2[m] would be feasible 
only if the transcoded bitstream is for personal use, i.e. usage of a customized bitstream 
decoder that is matched specifically to the transcoder. For interest, we briefly touch on the 
concept of a possible method. 
 
Note that at the point of decoding the transcoded material, we typically have no knowledge 
of x0[m], q0[m] or x1[m]. Thus, we require knowledge of q1[m], or at least some information to 
guide the 'modification of q2[m]', which will therefore require additional information to be 
embedded into the transcoded bitstream. We use the cascaded 7-step/5step quantizer pair for 
illustration, and their characteristics (Figure 8-3) are included here for easy reference. 
  

Tandem quantization error regions

7-step q1[m]

5-step q2[m]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1  
(Repeat of Figure 8-3, with unnecessary markings removed.) 

 
Since the number of quantization steps of q2[m] is N2[m], we have N2[m] possible values of 
x2[m]. Since N2[m]< N1[m], each value of x2[m] could have originated from more than 1 value of 
x1[m]. For each value of x2[m], we define its 'region of influence' as the range of values of x0[m] 
that eventually end up at the value of x2[m] after cascaded quantization with q1[m] and q2[m]. 
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In this example, the regions of influence are: 
 

x2[m] Region of influence 
-0.8 
-0.4 
 0.0 
 0.4 
 0.8 

[-1. -0.7143] 
[-0.7143, -0.1429] 
[-0.1429, 0.1429] 
[0.1429, 0.7143] 

[0.7143, 1] 

Table 8-3 Regions of influence for a 7-step/5-step cascaded pair. 

 
A straightforward method to determine the quantization steps of the modified 2[ ]ˆ mq  would 
then be to place them at the centre of each region of influence. In this example, they would 
be given by { }2[ ]ˆ 0.857, 0.4286,0,0.4286,0.857mx ∈ − − . More advanced methods might take 
into account the distribution of x1[m] (which would then require some more information to be 
embedded into the transcoded bitstream). 
 

8.7 Quantizer selection method 
 
A 'quantizer selection' method that does not modify either q1[m] or q2[m] is proposed next. A-
priori knowledge of q2[m] is also not required. Consider the transcoding from an MPEG 1 
Layer 2 audio encoded at bit-rate B1 to an MPEG 1 Layer 2 audio encoded at bit-rate B2. 
Without the availability of the PCM source, x0[m] is not known. Furthermore, in this context, 
q1[m] is known since the information on q1[m] is included in the bitstream. In this case, 
contrary to the modified quantizer method, x1[m] is already fixed and we do not have the 
option to modify the initial encoding process. 
 

q1[m] q2[m]

Select q2[m] based
on a guess of x0[m]

x1[m] q2[m] x2[m]
 

Figure 8-14 Block diagram for quantizer selection method. 

 
The block diagram for the proposed method is shown in Figure 8-14. Assume that the 
transcoding is performed as per the normal practice, e.g. cascaded decoder-encoder. 
However, instead of quantizing x1[m] with the q2[m] that was chosen by the psychoacoustic 
model (assuming the chosen q2[m] has fewer quantization steps than q1[m]), another quantizer 
represented by 2[ ]ˆ mq  is used. 
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The decision which 2[ ]ˆ mq  to use is based on a guess of likely values of x0[m], given the input 
x1[m], and the q1[m] that was used to quantize x0[m] to x1[m]. If these likely values of x0[m] give 
rise to significant tandem noise power when q2[m] is used, then we attempt to use a 2[ ]ˆ mq , 
where 2[ ] 2[ ]ˆ m mq q≠ , so that 2[ ]ˆ mx  has a lower tandem noise power than 2[ ] 2[ ] 1[ ]( )m m mx q x= . 
 
In the simple method that follows (Section 8.7.2), we allow only 2 possible options for 

{ }2[ ] 1[ ] 2[ ]ˆ ,m m mq q q∈ . Thus, when the likely values of x0[m] give rise to significant tandem 

noise power when q2[m] is used, we use 2[ ] 1[ ]ˆ m mq q= . The output 2[ ]ˆ mx  is then equal to x1[m], 
i.e. no change to x1[m]. The output 2[ ]ˆ mx  therefore takes on 1 of 2 possible values, 

{ }2[ ] 1[ ] 2[ ]ˆ ,m m mx x x∈ . The overall tandem noise power is reduced when compared to normal 

transcoding, because values of 2[ ]mx  that are estimated to have large tandem noise power, 
are replaced with 1[ ]mx  which have zero tandem noise power. The drawback is a larger final 
bit-rate, when compared to normal transcoding. 
 
 
8.7.1 Selection of quantizer 
 
In this section, we consider the issues involved in the selection of 2[ ]ˆ mq . The number of 

quantization steps of 2[ ]ˆ mq  is 2[ ]
ˆ

mN , and 2[ ] 2[ ] 1[ ]
ˆ

m m mN N N≤ ≤ , where N1[m] and N2[m] are the 
number of quantization steps of q1[m] and q2[m] (chosen by the psychoacoustic model) 
respectively. Values of 2[ ]

ˆ
mN  outside of this range are meaningless; if 2[ ] 1[ ]

ˆ
m mN N>  then the 

bit-rate would be increased, if 2[ ] 2[ ]
ˆ

m mN N<  then the resultant error power would likely be 
greater than allowed (by the psychoacoustic model). 
 
A number of consecutive samples x1[m] which are within the same q-frame were previously 
quantized (during initial encoding) by the same q1[m]. For MPEG 1 Layer 2, the number of 
consecutive samples x1[m] in a q-frame is 12. For each value of x1[m], we make the 
assumption that its true value, i.e. x0[m], has an equal probability of being any value within 
the range defined by the 2 quantization boundaries of q1[m] which quantizes to x1[m].  
 
When q1[m] is cascaded with q2[m], 2[ ] 2[ ] 1[ ]( )m m mx q x= . Clearly: 

 ( )1[ ]

1[ ]

22
[ ] 0[ ] 2[ ] 0[ ] 0[ ]( )

U
m

L
m

C m m m m mE e x x p x dx
Φ

Φ
⎡ ⎤ = −⎣ ⎦ ∫ , (8.24) 

where 1[ ]
L

mΦ  and 1[ ]
U

mΦ  are the values of the quantization boundaries of q1[m] which quantize 

to x1[m], 1[ ]
U

mΦ  being the larger of the two; and p(x0[m]) is the probability of x0[m]. 
 
If x0[m] is uniformly distributed between 1[ ]

L
mΦ  and 1[ ]

U
mΦ : 



146 Chapter 8:  Tandem Quantization Error 

 ( )1[ ]

1[ ]

22
[ ] 0[ ] 2[ ] 0[ ]

1[ ] 1[ ]

1 U
m

L
m

C m m m mU L
m m

E e x x dx
Φ

Φ
⎡ ⎤ = −⎣ ⎦ Φ − Φ ∫ . (8.25) 

 
 
8.7.2 Simple method 
 
In the simple method that we propose here, we use a 2[ ]ˆ mq  such that: 

 2[ ] 2[ ]ˆ m mq q= , if [ ]

2
[ ]

T m

D m

E P

E e
σ

⎡ ⎤⎣ ⎦ ≤
⎡ ⎤⎣ ⎦

, (8.26) 

or: 

 2[ ] 1[ ]ˆ m mq q= , if [ ]

2
[ ]

T m

D m

E P

E e
σ

⎡ ⎤⎣ ⎦ >
⎡ ⎤⎣ ⎦

, (8.27) 

where σ  is a tolerance value that is set by the user. 
 
Assume that each q-frame has 12 consecutive samples x1[m]. For each q-frame, [ ]T mE P⎡ ⎤⎣ ⎦  is 

calculated as the average of the 12 values of [ ]T mE P⎡ ⎤⎣ ⎦ , where [ ]T mE P⎡ ⎤⎣ ⎦  is the likely tandem 

noise power for 1 sample of x1[m]. Similarly, 2
[ ]D mE e⎡ ⎤⎣ ⎦  is calculated as the average of the 12 

values of 2
[ ]D mE e⎡ ⎤⎣ ⎦ , where 2

[ ]D mE e⎡ ⎤⎣ ⎦  is the likely quantization error power 
2

2[ ] 0[ ] 0[ ]( )m m mq x x⎡ ⎤−⎣ ⎦  for 1 sample of x1[m]. 
 

The value of ( )22
[ ] 2[ ] 0[ ] 0[ ]( )D m m m mE e E q x x⎡ ⎤⎡ ⎤ = −⎣ ⎦ ⎢ ⎥⎣ ⎦

 can be calculated for each x1[m], where 

x0[m] is assumed to be uniformly distributed between the 2 quantization boundaries of q1[m] 
that are nearest to x1[m]: 

 

( )

( )

1[ ]

1[ ]

1[ ]

1[ ]

22
[ ] 0[ ] [ ] 0[ ] 0[ ]

2

0[ ] [ ] 0[ ]
1[ ] 1[ ]

( )

1

U
m

L
m

U
m

L
m

D m m D m m m

m D m mU L
m m

E e x x p x dx

x x dx

Φ

Φ

Φ

Φ

⎡ ⎤ = −⎣ ⎦

= −
Φ − Φ

∫

∫ , (8.28) 

where [ ] 2[ ] 0[ ]( )D m m mx q x= . 
 
The likely tandem noise power can be calculated from: 

 2 2
[ ] [ ] [ ]T m C m D mE P E e E e⎡ ⎤ ⎡ ⎤⎡ ⎤ = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . (8.29) 
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8.7.3 Example and results for a 7-step initial quantization 
 
In this sub-section, we illustrate the use of the quantizer selection method, by using a 7-step 
q1[m] as an example. Consider a uniformly distributed sample x0[m] which is quantized to x1[m] 
using a 7-step q1[m]. The possible values that x1[m] can take are the quantization steps of q1[m], 
which are: 

 { }1[ ] -0.8571   -0.5714   -0.2857    0    0.2857    0.5714    0.8571mΘ = . 

Assume that a 5-step q2[m] was chosen by the transcoder. We repeat the plot of the tandem 
quantization error regions for a 7-step/5-step pair (Figure 8-3) here for easy reference. 
 

Tandem quantization error regions

7-step q1[m]

5-step q2[m]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1  
(Repeat of Figure 8-3, with unnecessary markings removed.) 

 
1[ ] 0mx = : There are no tandem quantization error regions within the 2 nearest quantization 

boundaries. Therefore, [ ] 0T mE P⎡ ⎤ =⎣ ⎦  and 2
[ ] 0.00681D mE e⎡ ⎤ =⎣ ⎦ , where: 

( )22
[ ] 0[ ] 0[ ]

0.1429

0.1429

1 0
0.2857D m m mE e x dx

−
⎡ ⎤ = −⎣ ⎦ ∫ . 

 

1[ ] 0.2857mx = : We calculated [ ] 0.0046T mE P⎡ ⎤ =⎣ ⎦  and 2
[ ] 0.0153D mE e⎡ ⎤ =⎣ ⎦ , where: 

( )22
[ ] 0[ ] 0[ ]

0.4286

0.1429

1 0.4
0.2857C m m mE e x dx⎡ ⎤ = −⎣ ⎦ ∫ , 

( ) ( )2 22
[ ] 0[ ] 0[ ] 0[ ] 0[ ]

0.2 0.4286

0.1429 0.2

1 10 0.4
0.2857 0.2857D m m m m mE e x dx x dx⎡ ⎤ = − + −⎣ ⎦ ∫ ∫ . 

 

1[ ] 0.5714mx = : We calculated [ ] 0.0183T mE P⎡ ⎤ =⎣ ⎦  and 2
[ ] 0.0179D mE e⎡ ⎤ =⎣ ⎦ , where: 

( )22
[ ] 0[ ] 0[ ]

0.7143

0.4286

1 0.4
0.2857C m m mE e x dx⎡ ⎤ = −⎣ ⎦ ∫ , 

( ) ( )2 22
[ ] 0[ ] 0[ ] 0[ ] 0[ ]

0.6 0.7143

0.4286 0.6

1 10.4 0.8
0.2857 0.2857D m m m m mE e x dx x dx⎡ ⎤ = − + −⎣ ⎦ ∫ ∫ . 
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1[ ] 0.8571mx = : There are no tandem quantization error regions within the 2 nearest 

quantization boundaries. Therefore, [ ] 0T mE P⎡ ⎤ =⎣ ⎦  and 2
[ ] 0.0101D mE e⎡ ⎤ =⎣ ⎦ , where: 

( )22
[ ] 0[ ] 0[ ]

1

0.7143

1 0.8
0.2857D m m mE e x dx⎡ ⎤ = −⎣ ⎦ ∫ . 

 
Thus, for a 7-step/5-step cascaded pair, we tabulate the values of [ ]T mE P⎡ ⎤⎣ ⎦  and 2

[ ]D mE e⎡ ⎤⎣ ⎦  in 
Table 8-4. 
 

x1[m] = 0 x1[m] = 0.2857, 
or      -0.2857 

x1[m] = 0.5714, 
or      -0.5714 

x1[m] = 0.8571, 
or      -0.8571 

[ ]T mE P⎡ ⎤⎣ ⎦  0.0000 0.0046 0.0183 0.0000 
2

[ ]D mE e⎡ ⎤⎣ ⎦  0.0068 0.0153 0.0179 0.0101 

Table 8-4 Reference table for a 7-step/5-step cascaded pair. 

 
We can see from Table 8-4 that for values of x1[m] ∈{0, ± 0.8571}, no tandem noise power 
is incurred when a 7-step q1[m] is cascaded with a 5-step q2[m]. For values of x1[m] 

∈{ ± 0.2857}, about 23% of 2
[ ]C mE e⎡ ⎤⎣ ⎦  is due to tandem noise power, and for values of x1[m] 

∈{ ± 0.5714}, about 51% of 2
[ ]C mE e⎡ ⎤⎣ ⎦  is due to tandem noise power. 

 
For a q-frame with 12 samples x1[m] which were quantized using a 7-step q1[m], the ratio 

2
[ ] [ ]T m D mE P E e⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦  ranges from a minimum value of 0 (for the case when x1[m] ∈{0, 

± 0.8571}) to a maximum value of 1.02 (for the case when x1[m] ∈{ ± 0.5714}). Therefore, 
we can set a tolerance value 0 1.02σ≤ ≤ , such that for 2

[ ] [ ]T m D mE P E e⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦  that are larger 

than σ , we choose 2[ ]ˆ mq  = q1[m]. For 2
[ ] [ ]T m D mE P E e⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦  that are smaller than or equal to 

σ , we choose 2[ ]ˆ mq  = q2[m]. 
 
In a simulation to test our method for different values of σ , we used a sample size of 
100,000 q-frames. In each q-frame, a set of 12 values of uniformly distributed x1[m] was 
generated. 
 
Figure 8-15 shows a plot of the ratio of the number of q-frames that are unchanged (i.e. 

2[ ]ˆ mq  = q1[m]) to the total number of q-frames, against the tolerance σ . A larger ratio 
indicates a smaller reduction in the overall bit-rate after transcoding (i.e. having a poor bit-
rate efficiency), and vice-versa. 
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Figure 8-15 Plot of the ratio of the number of unchanged q-frames 

to the total number of q-frames, against the tolerance σ . 

Figure 8-16 shows a plot of the mean quantization error power 2
[ ]C mE e⎡ ⎤⎣ ⎦  against the 

tolerance σ . It can be clearly seen from the results that a smaller tolerance value of σ  
results in a smaller mean quantization error power 2

[ ]C mE e⎡ ⎤⎣ ⎦ , at the cost of a larger bit-rate. 
Conversely, a larger tolerance value of σ  results in a larger mean quantization error power 

2
[ ]C mE e⎡ ⎤⎣ ⎦ , and a smaller bit-rate.  
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2
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Figure 8-16 Plot of the mean quantization error 

power 2
[ ]C mE e⎡ ⎤⎣ ⎦  against the tolerance σ . 

 
 
8.7.4 Remarks on quantizer selection method 
 
The drawback of the quantizer selection method is that the final bit-rate using the quantizer 
selection method will be larger than bit-rate B2, assuming that bit-rate B2 was initially fed as 
a requirement into the transcoder. This is because some of the quantizers that are selected to 
be the finer q1[m] would, under normal transcoding, have been selected to be the coarser 
q2[m]. If bit-rate B2 is required, we can define a bit-rate B3 (perhaps by using an iterative 
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guess) that is smaller than B2, and the target bit-rate of B3 is then fed as a requirement into 
the transcoder. 
 
The simple method that was proposed considers only a quantizer 2[ ]ˆ mq  that is either equal to 
q1[m] or q2[m], and can be further improved by allowing 2[ ]ˆ mq  to be a quantizer with a number 
of quantization steps between the range of N1[m] and N2[m]. Similarly, as for the modified 
quantizer method, we provided some groundwork for the quantizer selection method and 
based our results on the statistical assumption that the input signal x0[m] is uniformly 
distributed between -1 and 1. The implementation aspects are left for future work. The 
simple method proposed in this section assumes that 2[ ]ˆ mq  takes on one of two possible 
options, 2[ ]ˆ mq  = q1[m] or 2[ ]ˆ mq  = q2[m]. The investigation of using a 2[ ]ˆ mq  that takes on one of 
a greater selection of possible options can also be room for future work. 
 

8.8 Comments for other distributions 
 
We illustrated the effect of tandem quantization error by using input signals that are 
uniformly distributed. In actual applications, this may not be the case. It was noted that for 
MPEG 1 Layer 2, the distribution of the subband samples (prior to quantization) is typically 
more concentrated towards the zero value and less concentrated towards the +1 and -1 
values. Let us consider the implications of this distribution on tandem quantization error. 
There are 2 cases of interest here. 
 
Case 1: 1[ ] 2[ ]m mΦ < Φ  

2[ ]mΦ

q1[m]

q2[m]

a b

1[ ]mΦ0 1

q1[m]

 
Figure 8-17 Illustration of tandem quantization error 

for an input signal with non-uniform distribution - Case 1. 

In the first case, the value of 1[ ]mΦ  is nearer to zero, than the value of 2[ ]mΦ  is. This is 
illustrated in Figure 8-17, where the zero point on the quantizer axis lies towards the left, 
and the +1 point on the quantizer axis lies towards the right. Samples of x0[m] falling 
between 1[ ]mΦ  and 2[ ]mΦ , such as at points 'a' and 'b', follow the quantization path as 
indicated by the solid arrows. Due to the distribution of x0[m], there is a higher probability of 
x0[m] at 'a' then at 'b'. It can clearly be seen that the mean tandem noise power [ ]T mE P⎡ ⎤⎣ ⎦  
would be larger in this case, than for the case of a uniformly distributed x0[m]. 
 
The dashed arrows show the quantization path when the modified quantizer 1[ ]ˆ mq  is used. 
Since there is a higher probability of x0[m] at 'a' then at 'b', the mean quantization error power 
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2
1[ ]ˆ mE e⎡ ⎤⎣ ⎦  due to using 1[ ]ˆ mq  is smaller in this case, than for the case of a uniformly 

distributed x0[m]. 
 
Case 2: 1[ ] 2[ ]m mΦ > Φ  
 

2[ ]mΦ

q1[m]

q2[m]

1[ ]mΦ0 1

a b

q1[m]

 
Figure 8-18 Illustration of tandem quantization error 

for an input signal with non-uniform distribution - Case 2. 

In the second case, the value of 2[ ]mΦ  is nearer to zero, than the value of 1[ ]mΦ  is. This is 
illustrated in Figure 8-18. Since there is a higher probability of x0[m] at 'a' then at 'b', 

[ ]T mE P⎡ ⎤⎣ ⎦  is smaller (for the solid arrow path) and 2
1[ ]ˆ mE e⎡ ⎤⎣ ⎦  is larger (for the dashed arrow 

path) in this case, than for the case of a uniformly distributed x0[m]. 
 

8.9 Summary 
 
During sample-synchronized transcoding, which we represented using a cascaded 
quantization model, we isolated an error component called tandem quantization error. We 
investigated the nature of tandem quantization error, with reference to the quantizers used in 
the MPEG 1 Layer 2 compression method. Tandem quantization error is a characteristic that 
depends on the nature of the cascaded quantizer pair, q1[m] and q2[m]. 
 
Several methods for reducing the total quantization error power of the signal at the output of 
the transcoder were proposed. In the modified quantizer method, characteristics of either 
q1[m] or q2[m] are modified. One proposed method was to modify the quantization boundaries 
of q1[m], making use of a-priori knowledge of q2[m] (or in the event that q2[m] is not known, a 
nearest-neighbours approach is used). Another method, in which the values of the 
quantization steps of q2[m] are modified, was also highlighted briefly. This method requires 
the use of a custom decoder that is matched to the transcoder, thus necessitating the 
embedding of additional information in the transcoded bitstream (such as information on the 
q1[m] that was used). 
 
The quantizer selection method takes an approach that does not modify the quantizers. It 
uses the values of x1[m] in each q-frame, and calculates the likely tandem noise power when 
q1[m] is cascaded with the q2[m] chosen by the psychoacoustic model in the transcoder. If the 
likely tandem noise power is beyond a specified tolerance, then another quantizer is selected 
in place of q2[m]. 
 





 

 
 

Chapter 9 
Analysis of the Impact of Sample-

synchronized and Non-sample-synchronized 
Audio Transcoding for MPEG 1 

 
 
 
 
It is known that sample-synchronization (defined in Section 7.4.3) can have different effects 
on transcoded audio material for different compression methods [83]. For example, sample-
synchronized transcoding is preferred for the MPEG 1 Layer 2 method, in terms of output 
audio quality. On the contrary, non-sample-synchronized transcoding is preferred for the 
MP3 method. Sample-synchronization can be trivially realized by the insertion of delay 
elements in the transcoder, such that its input-to-output delay is a multiple of the decimation 
factor (equal to the number of subbands for critically-decimated subband samples). This 
was explained in Section 7.4.3 and further details can be found in Appendix D. 
 
Note that the additional delay required is known, if the entire transcoding process is 
performed at once (i.e. decoding is followed by encoding immediately). The original delay 
of the transcoder can then be easily established; for example, by first encoding from and 
then decoding to a PCM signal, the transcoder delay is then measured as the delay of the 
PCM output relative to the PCM input. The required delay is computed such that the sum of 
the required delay and the original delay of the transcoder is a multiple of the decimation 
factor. In this thesis, we only consider transcoding processes where decoding and encoding 
are performed at once. 
 
Consider as a counter-example to the above, a compressed MP3 bitstream which is decoded 
to an intermediate PCM signal, and is then stored to an audio CD. The CD is distributed, 
and the end-user decides to encode the PCM signal back to MP3. In this case, the delay of 
the decoding stage is not known at the encoding stage. To address this problem, methods to 
estimate the delay of the decoding stage based on the intermediate PCM signal were 
proposed in [84]-[85]. 
 
In this chapter, we investigate the impact of sample-synchronization and non-sample-
synchronization on audio transcoding. The MPEG 1 Layer 2 compression method is first 
discussed, followed by MP3. 
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9.1 Overview 
 

Synthesis-
analysis
blocks

Fd

Synthesis-
analysis
blocks

Fd

(a)

(b)

0[ ] ( )mx η

1[ ],mq η

0[ ] ( )mx η

1[ ] ( )mx η

1[ ] ( )me η

1[ ]' ( )mx η

0[ ]' ( )mx η

2[ ],mq η

2[ ],mq η

2[ ] ( )me η

2[ ] ( )mx η

[ ] ( )C me η

[ ] ( )D mx η

[ ] ( )D me η
 

(Repeat of Figure 7-5, with additional blocks showing normalization scaling.) 

 
In this chapter, we hide the sample-time variable η  for the sake of convenience. The 
cascaded quantization model (Figure 7-5), which was used to model audio transcoding, is 
repeated above. A detailed explanation of the figure can be found in Section 7.3. Note that 
we added normalization scaling blocks in this figure, where the right-pointing triangle 
represents normalization scaling and the left-pointing triangle represents inverse 
normalization scaling, which is applicable to the case of MPEG 1 Layer 2. 
 

9.2 Analysis for MPEG 1 Layer 2 
 
9.2.1 Overview 
 
An explanation of the MPEG 1 Layer 2 method was provided in Chapter 7 (more 
information is available in [71]). It is known ([83]-[85]) that for this method, sample-
synchronized transcoding is preferred over non-sample-synchronized transcoding, in 
relation to the audio quality of the transcoded material. 
 

q1[m]x0[m]

x1[m]

e1[m]

eC[m]

q2[m] x2[m]e2[m]

q2[m]
xD[m]

eD[m]
 

(Repeat of Figure 8-1.) 
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In Chapter 8, we provided a detailed analysis of sample-synchronized transcoding for 
MPEG 1 Layer 2. Figure 8-1, which shows the reduced block diagram of the cascaded 
quantization model for sample-synchronized transcoding, is repeated above. We defined the 
tandem noise power of the transcoded signal x2[m] as PT[m], where: 

 2 2
[ ] [ ] [ ]T m C m D mP e e= − . (9.1) 

The characteristics of the tandem noise power were shown to be a function of the input 
signal x0[m] and the quantizers represented by q1[m] and q2[m]. 
 
 
9.2.2 Non-sample-synchronized transcoding 
 
When the transcoding is non-sample-synchronized, the samples x1[m] (for 0 1m M≤ ≤ − ) are 
transformed into x'1[m] by the set of transform functions f[m',m], as a result of the filter bank 
block processing. The values of x'1[m] vary for different values of delay d (measured from 
the input to the output of the filter bank block). Details on f[m',m], the effect of different 
values of d on x'1[m] and the transform operation from x1[m] to x'1[m] are found in Appendix D. 
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x1[m]

x'1[m]

x'1[m]

x'1[m]

pdf of x'1[m]
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pdf of x1[m]

pdf of x0[m]
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m=0, d=6

m=6, d=3
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(b)

(c)

(d)

(e)

x'1[m]

x'1[m]

 
Figure 9-1 Effect of non-sample-synchronization on 

the distribution of x'1[m], for a uniform distribution of x0[m]. 

 
Assuming that x0[m] is uniformly distributed between -1 and 1 (Figure 9-1(a)), the 
quantization of x0[m] with a 7-step q1[m] gives x1[m] with the distribution shown in Figure 
9-1(b). Figure 9-1(c)-(e) shows experimentally-obtained distributions of x'1[m] for different 
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values of m and d, where x'1[m] can be found from x1[m] by the transformation using f[m',m] 
(refer to Appendix D, Section D.4). A simple way to view the effect of the transform 
operation on x1[m] is to visualize the values x'1[m] as being 'dispersed' with respect to the 
discretely distributed values x1[m]. 
 
For a non-uniform distribution of x0[m], the same outcome is observed, i.e. dispersal of the 
discretely distributed values x1[m] for the case of non-sample-synchronization. A typical 
distribution of x0[m] for MPEG 1 Layer 2 has a larger concentration of values towards zero, 
and a smaller concentration of values towards +1 and -1. In this case, it is intuitive that the 
corresponding distribution curves would also show a larger concentration towards zero, and 
a smaller concentration towards +1 and -1, such as shown in Figure 9-2. 
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Figure 9-2 Effect of non-sample-synchronization on the 
distribution of x'1[m], for a non-uniform distribution of x0[m]. 

 
It is known that for MPEG 1 Layer 2, sample-synchronization is preferred for transcoding, 
in terms of audio quality. To explain this, we introduce a more advanced cascaded 
quantization model for MPEG 1 Layer 2, that takes into account the scaling of x'1[m] to the 
normalized range of -1 and +1. 
 
 
9.2.3 Effect of normalization scaling on cascaded quantization 
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(Repeat of Figure 7-8.) 
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For MPEG 1 Layer 2 (refer to Section 7.5.1), the subband samples x'1[m] are grouped into a 
q-frame, and the values of x'1[m] are normalized by a scaling factor 2[ ]mζ  to the range of -1 
and +1 prior to quantization by q2[m] (see Figure 7-8 and Figure 7-9 for an illustration of 
normalization scaling). This is necessary so that large values of x'1[m] do not saturate the 
quantizer, and small values of x'1[m] acquire sufficient dynamic resolution when quantized. 
The value of 2[ ]mζ  for each q-frame is selected to be the smallest value from a pre-defined 
discrete set (see [71]); such that the largest absolute value of x'1[m] in the same q-frame, 
when divided by 2[ ]mζ , has a magnitude less than unity. 
 
From Figure 9-1 and Figure 9-2, we notice that the distribution of x'1[m] is 'dispersed' into a 
range of values which may exceed the range of -1 and +1, depending on the values of m and 
d. In this case, 2[ ]mζ  takes on a value which is larger than unity. Here, we show that the 
normalization scaling is an important consideration when estimating the mean quantization 
error power 2

[ ]C mE e⎡ ⎤⎣ ⎦  during non-sample-synchronized transcoding. 
 
Let us define the effective scaling factor [ ]E mζ  as the root-mean-squared value of 2[ ]mζ : 

 2
[ ] 2[ ]E m mEζ ζ⎡ ⎤= ⎣ ⎦ . (9.2) 

Taking into account the normalization scaling, the signal that is fed as input to q2[m] 
becomes 1[ ] 2[ ]' /m mx ζ .Therefore, x2[m] can be expressed as: 

 2[ ] 2[ ] 2[ ] 1[ ] 2[ ]( ' / )m m m m mx q xζ ζ= , (9.3) 

and the error 2[ ] 2[ ] 1[ ]'m m me x x= −  can be expressed as: 

 2[ ] 2[ ] 2[ ]m m q me eζ= , (9.4) 

where eq2[m] is the quantization error that is locally visible to q2[m]: 

 ( )2[ ] 2[ ] 1[ ] 2[ ] 1[ ] 2[ ]' / ' /q m m m m m me q x xζ ζ= − . (9.5) 

Therefore: 

 2 2 2 2
[ ] 1[ ] [ ] 2[ ]C m m E m q mE e E e E eζ⎡ ⎤ ⎡ ⎤ ⎡ ⎤≈ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . (9.6) 

 
The effective scaling factor [ ]E mζ  is typically larger than unity when transcoding non-

sample-synchronously (due to the 'dispersal' effect). Therefore, 2
[ ]C mE e⎡ ⎤⎣ ⎦  is typically larger 

when transcoding non-sample-synchronously than sample-synchronously. (Note that 
2

[ ]C mE e⎡ ⎤⎣ ⎦  in the sample-synchronized case can be approximated by setting [ ]E mζ  to unity). 
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To verify the validity of our assumptions and results, we performed several experiments and 
show an example where N1[m]=127, N2[m]=63 and x0[m] (for 0 1m M≤ ≤ − ) is uniformly 
distributed between -1 and 1. Assuming that the mean quantization error power due to the 
quantization of a uniformly distributed sample by a uniform quantizer with step-size [ ]mΔ  is 

2 2
[ ] [ ] /12m mE e⎡ ⎤ ≈ Δ⎣ ⎦  (a well-known result), we estimate 2

1[ ] 0.0000207mE e⎡ ⎤ ≈⎣ ⎦  and 
2
2[ ] 0.0000840mE e⎡ ⎤ ≈⎣ ⎦ . The solid lines in Figure 9-3 show the measured values of 2

[ ]C mE e⎡ ⎤⎣ ⎦  
(for 0 1m M≤ ≤ − , and for d=1 and d=6) when we used generated values of x0[m]. The 
dotted lines show the predicted values of 2

[ ]C mE e⎡ ⎤⎣ ⎦  using (9.6). These values correspond 

closely to the measured values of 2
[ ]C mE e⎡ ⎤⎣ ⎦ . 
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Figure 9-3 Comparison of predicted and measured values 

of 2
[ ]C mE e⎡ ⎤⎣ ⎦  for different m, and for d=1 and d=6. 

We further averaged the values of [ ]E mζ  across all m, for each value of d ( 0 31d≤ ≤ ), 
where: 

 
31

[ ] [ ]
0

1
32E m E m

m

ζ ζ
=

= ∑ . (9.7) 

It was found that [ ] 0.99E mζ ≈  when d=0. This result agrees with our prior assumption that 

[ ]E mζ  is approximately unity when the transcoding is sample-synchronized. For values of d 

between 1 and 31, we found that [ ]E mζ  was approximately 1.23 for each value of d (also see 

note below). Therefore, we expect 2
[ ]C mE e⎡ ⎤⎣ ⎦  to exhibit a 48% ( )2(1.23 1)−  increase when 

the transcoding is non-sample-synchronous (as compared to sample-synchronous), where: 

 
31

2 2
[ ] [ ]

0

1
32C m C m

m

E e E e
=

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦∑ . (9.8) 

This also corresponds with our measured values which were: 
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Sample-synchronized transcoding : 2
[ ] 0.000105C mE e⎡ ⎤ ≈⎣ ⎦  

Non-sample-synchronized transcoding : 2
[ ] 0.000148C mE e⎡ ⎤ ≈⎣ ⎦  

 
Note:  Although it is known that [ ]E mζ  varies with different values of m and d, we found that 

[ ]E mζ  (which is averaged across all m) does not vary significantly with d. For a fixed d, say 
d=1, some values of [ ]E mζ are larger than 1.23 (e.g. for m=30), and some are smaller than 

1.23 (e.g. for m=0). The mean value [ ]E mζ , is approximately 1.23. For a different d, say 
d=5, although a different set of larger and smaller values (relative to 1.23) of [ ]E mζ  exists, it 

turns out that the mean value [ ]E mζ  remains approximately 1.23. 
 
 
9.2.4 Remarks 
 
The scaling factor [ ]E mζ  can be used to provide an indication of the increase in 2

[ ]C mE e⎡ ⎤⎣ ⎦ , 

for different m and d. Since 2
[ ]C mE e⎡ ⎤⎣ ⎦  is increased (as a result of the 'dispersion' of x1[m]) 

when the transcoding is non-sample-synchronous (as compared to sample-synchronous), we 
can draw the conclusion that sample-synchronized transcoded material generally has a 
better audio quality than non-sample-synchronized transcoded material, for MPEG 1 Layer 
2 audio. 
 
We realize that it is possible to calculate [ ]E mζ  for a variety of x0[m] distributions, d, m, and 

q1[m]; and then use these values of [ ]E mζ  to estimate 2
[ ]C mE e⎡ ⎤⎣ ⎦ . However, such a method is 

perhaps too painstaking. Instead, it might be more reasonable to make a few simplified 
conclusions for MPEG 1 Layer 2 audio: 

a. Sample-synchronized transcoding ( [ ] 1E mζ ≈ ) is better than non-sample-
synchronized transcoding in terms of objective audio quality. 

b. Assuming a uniform distribution of x0[m], the mean cascaded quantization 
error 2

[ ]C mE e⎡ ⎤⎣ ⎦  can be estimated from [ ]E mζ , where we can find [ ]E mζ  for different m 
and d by performing a prior experiment. An even bigger simplification would be to 
assume [ ] 1.23E mζ = . 

c. For non-uniform x0[m] distributions with a larger concentration of values 
towards the zero value than the -1 and +1 values, [ ]E mζ  should take on a  value 
between 1 and 1.23. This is evident, for example, by considering a triangularly 
distributed x0[m] (see Figure 9-2(a)). The distribution of x1[m] is then shown in Figure 
9-2(b). Since the probability of large values of |x1[m]| is smaller for the triangularly 
distributed x0[m] case than for the uniformly distributed x0[m] case, we also expect the 
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probability of |x'1[m]|>1 to be smaller for the triangularly distributed x0[m] case (and 
hence [ ] 1.23E mζ < ). 

 

9.3 Analysis for MP3 
 
9.3.1 Overview 
 
A short description of the MP3 compression method is available in Appendix C. 
Quantization in MP3 is performed very differently from quantization in MPEG 1 Layer 2, 
and in Section 7.5, this was explained in greater detail. For convenience, we repeat the 
block diagram (Figure 7-11) showing the MP3 quantization scheme (Figure 9-4). Note that 
in this diagram, we changed the symbols to appropriately reflect that these signals and 
processing blocks are used in the second quantization (instead of the first quantization, as 
was the case for Figure 7-11). For example, q1{s} in Figure 7-11 is changed to q2{s} in this 
diagram. 

x2{s}2{ }sx�

Group into
scalefactor

bands

x'1

2{ }
RN

sQ

Bitstream packing

x'1{s} x2

2{ }
NR

sQ

MP3
Encoder
portion

MP3
Decoder
portion

q2{s}

MP3 bitstream

 
Figure 9-4 (Repeat of Figure 7-11.) 

 
In MP3, a q-frame consists of 576 samples of x'1[m], which are then grouped into its 
scalefactor bands. We denote the samples which are grouped into a scalefactor band using 
the vector x'1{s} (s being the index of the scalefactor band). The samples x'1[m] which belong 
to x'1{s} are quantized by q2{s}, where the implementation of q2{s} is shown in Figure 9-4 and 
was explained in Section 7.5.2. 
 
Note: When we quantize a sample x0[m] which belongs to the vector x0{s} using q1{s}, we 
express this mathematically as 1[ ] 1{ } 0[ ]( )m s mx q x= . Although it is not explicitly stated in the 
equation that x0[m] belongs to the vector x0{s}, we implicitly assume this for equations of this 
form. 
 
It is known [83] that for MP3, non-sample-synchronized transcoding is preferred over 
sample-synchronized transcoding, in relation to the audio quality of the transcoded material. 
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Note that this is in contradistinction to MPEG 1 Layer 2 audio. In our work, we attempt to 
explain this by using a measure which we call tandem gain. 
 
 
9.3.2 Sample-synchronization: Problems posed 
 
The initial quantization in the first encoding process using q1{s} (defined by the lumped 
quantization parameter 1{ }s] ) is described by 1[ ] 1{ } 0[ ]( )m s mx q x= ; or alternatively by 

( )1[ ] 1{ } 0[ ] 1{ },RN
m s m sx Q x=� ]  and ( )1[ ] 1{ } 1[ ] 1{ },NR

m s m sx Q x= � ] , where x0[m] and x1[m] are real-valued 

and 1[ ]mx�  is integer-valued. The functions 1{ }
RN

sQ  and 1{ }
NR

sQ  were defined in Section 7.5.2. 
 
Similarly, the second quantization in the transcoding process using q2{s} (defined by the 
lumped quantization parameter 2{ }s] ) can be described by 2[ ] 2{ } 1[ ]( ' )m s mx q x= ; or 

alternatively by ( )2[ ] 2{ } 1[ ] 2{ }' ,RN
m s m sx Q x=� ]  and ( )2[ ] 2{ } 2[ ] 2{ }' ,NR

m s m sx Q x= � ] , where x'1m] and 

x2[m] are real-valued and 2[ ]mx�  is integer-valued. The functions 2{ }
RN

sQ  and 2{ }
NR

sQ  take the same 

mathematical form as 1{ }
RN

sQ  and 1{ }
NR

sQ . 
 
Since 1[ ] 1[ ]' m mx x=  for sample-synchronized transcoding, we can relate x2[m] directly to x1[m] 
by 2[ ] 2{ } 1[ ]( )m s mx q x= . 
 
Furthermore, 2[ ]mx�  can also be directly related to 1[ ]mx�  by: 

 ( )1{ } 2{ }
3/ 4( )

2[ ] 1[ ]| | 2 s s
m mx x − −⎡ ⎤= ±ℜ ⎢ ⎥⎣ ⎦

] ]� � , (9.9) 

where the sign of 2[ ]mx�  is taken equal to the sign of 1[ ]mx� . 
 
The difference in the lumped quantization parameters, 1{ } 2{ }s s−] ] , generally determines 
the amount of bit-rate reduction when transcoded. The larger the difference, the greater is 
the bit-rate reduction, as the values of 2[ ]mx�  tend to be smaller and are hence more easily 
compressible. 
 
The tandem quantization error analysis for MPEG 1 Layer 2 can be extended to MP3. The 
tandem quantization error regions can be similarly derived for pairs of q1[m] and q2[m], if we 
take into account the non-uniform quantization step-sizes for MP3. However, in this thesis, 
we will not go into specific details on tandem quantization error for the case of non-uniform 
quantizers. 
 
More importantly, apart from tandem quantization error, a serious problem that arises 
during sample-synchronized cascaded quantization is "tandem gain". We define tandem 
gain as the ratio of the power of x2[m] to x1[m], when x1[m] is sample-synchronously 
transcoded to x2[m]: 
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 2 2
[ ] 2[ ] 1[ ]/R m m mP x x= . (9.10) 

We also define the regional tandem gain as: 

 

2

1

1 2 2

1

2
2[ ]

[ : ]
2
1[ ]

m

m
m m

R m m m

m
m m

x
P

x

=

=

=
∑

∑
, (9.11) 

where m1 and m2 are the lower and upper bounds of the subband indices that fall within the 
arbitrarily defined frequency region. Regional tandem gain can be perceived as increased 
volume of the audio within the defined frequency region during playback. 
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(Repeat of Figure 7-12.) 

 
Tandem gains are most noticeable for coarsely quantized values, especially in the mid-to-
high frequency regions (roughly m>134). As an illustration, take the case when 1[ ] 1mx = ±� , 
which often occurs in the mid-to-high frequency region (roughly m>134). This can be 
observed in Figure 7-12 (which we repeated above), where we plotted values of 1[ ]| |mx�  
taken from a typical MP3 q-frame. For q1[m] and q2[m] with lumped quantization parameters 

1{ }s]  and 2{ }s]  respectively, we consider the cases when 1{ } 2{ }0 4 / 3s s≤ − ≤] ]  and when 

1{ } 2{ } 4 / 3s s− >] ] : 
 

1{ } 2{ }0 4 / 3s s≤ − ≤] ]  :  Calculating from (9.9), we get 2[ ] 1[ ]m mx x=� �  when 1[ ] 1mx = ±� . Since 

( )2{ }
4 /3

2[ ] 2[ ]2 | |s
m mx x−= ± ] �  and ( )1{ }

4 /3

1[ ] 1[ ]2 | |s
m mx x−= ± ] � , the ratio of 2

2[ ]mx  to 2
1[ ]mx  is 

1{ } 2{ }2( )
[ ] 2 s s

R mP −= ] ] . As the difference 1{ } 2{ }s s−] ]  increases within the stated range, PR[m] 
increases. 
 

1{ } 2{ } 4 / 3s s− >] ]  :  Calculating from (9.9), we get 2[ ] 0mx =�  when 1[ ] 1mx = ±� . The tandem 

gain is equal to zero. 
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Note that the event 1{ } 2{ } 0s s− <] ]  is not particularly interesting in the context of 
transcoding, because 2[ ]| |mx�  will tend to be larger than 1[ ]| |mx�  when this is the case, thus 
increasing the average bit-rate. 
 
Taking the same values of 1x�  as were used in Figure 7-12, we show the effect of different 
values of 1{ } 2{ }s s−] ]  on the values of 2x� , in Figure 9-5. Even though it appears in Figure 
9-5(b) ( 1{ } 2{ } 1s s− =] ] ) that most of the content in the mid-to-high frequency regions is 
preserved, note that regional tandem gain is inherent since 1{ } 2{ }s s≠] ] . In Figure 9-5(c) 
( 1{ } 2{ } 1.5s s− =] ] ), we observe that most of the spectral content in the mid-to-high 
frequency regions is lost. 
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Figure 9-5 Plot of | 2x� | for different values of 1{ } 2{ }s s−] ] . 

Furthermore, we expect the difference 1{ } 2{ }s s−] ]  to be time-varying across consecutive q-
frames, since 2{ }s]  is selected by the algorithm used in transcoding (typically by using a 
psychoacoustic model analysis), which does not take into consideration the value of 1{ }s] . 
Thus, when transcoding sample-synchronously for MP3, we are faced with a problem of 
fluctuating regional tandem gain. Due to the non-constant regional tandem gain across 
consecutive q-frames, the power of x2[m] (for values of m which belong to the defined 
frequency region) fluctuates disproportionately relative to the power of x1[m]. Also, when the 
tandem gain is zero, x2[m] has zero power. We found that fluctuating tandem gain creates an 
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audible and irregular 'loud-soft-loud-soft' sensation (in the affected frequencies). A 
repeatable experiment can be conducted whereby 1{ } 2{ }s s−] ]  is set to 1 and 1.5 for 
alternating q-frames. For frequencies where 1[ ] 1mx = ±� , 2[ ]mx�  alternates between 0 and 1±  
for consecutive q-frames. The result is a highly audible 'on-off-on-off' effect. 
 
We informally tested the audible effect of fluctuating tandem gain on transcoding. Figure 
9-6 illustrates the setup that we used. In Case 1, we held the tandem gain constant in the 
mid-to-high frequency region, over the duration of transcoding from the set of samples from 
the n-th q-frame, x1(n), to x2(n)  (such as by using the fixed mapping transcoder, which is 
described in Section 10.4.4). The transcoding parameters were set to give a reasonably large 
tandem gain in the mid-to-high frequency region, so as to accentuate the effect of the 
fluctuation. In Case 2, we fluctuated the tandem gain in the mid-to-high frequency region by 
alternating between 2 transcoding states for consecutive q-frames; the first state (from x1(n) 
to x2(n)) is defined by using the same transcoder parameters as were used in Case 1 (and 
hence the same tandem gain as in Case 1), and the second state (from x1(n) to x1(n), i.e. no 
change) is defined by not using the transcoder (and hence zero tandem gain). We expect 
transcoded audio material in Case 2 to have a smaller average error power than in Case 1, 
since every other frame consists of subband samples taken from the 192 kbps bitstream (not 
transcoded). Therefore, objectively, transcoded audio material in Case 2 should have an 
audio quality that is not worse (if not better) than in Case 1. Even so, transcoded audio 
material in Case 2 generally showed an audio quality that is worse than in Case 1. 
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Figure 9-6 Illustration of informal test on fluctuating tandem gain. 

For some music material (such as rock music and singing), the difference in audio quality 
was not easily discernible. For other material (such as orchestral, instrumental, and highly 
tonal audio material), the difference in audio quality was clearly in favor of Case 1. This 
result is further substantiated in our formal listening tests in Appendix E (which were 
conducted to evaluate the transcoders proposed in Chapter 10). As an example (see Figure 
E-5), for audio material such as the highly tonal harpsichord (Item S-8) and the orchestral 
music (Item S-9), the fixed mapping transcoder (constant tandem gain) performed better 
than the conventional transcoder (fluctuating tandem gain). 
 
 
9.3.3 Sample-synchronization: Possible solutions 
 
A direct solution to the problem of fluctuating regional tandem gain is to avoid sample-
synchronized transcoding (by trivially inserting delays, see Section 7.4.3) in the case of 
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MP3, as the severity of the fluctuating tandem gain problem is greatly reduced for non-
sample-synchronized transcoding. This is further explained in the next sub-section. 
 
A possible alternative method to reduce the fluctuating regional tandem gain is to exert a 
degree of influence on the selection of 2{ }s] , perhaps in conjunction with the 
psychoacoustic model. In Section 10.4.4, we propose a method of transcoding that totally 
bypasses the psychoacoustic model, by fixing 2{ }s]  for the entire duration of the audio. We 
also show that a reasonable audio quality (for the transcoded material) can be achieved by 
using this method, for certain selections of 2{ }s] . 
 
 
9.3.4 Non-sample-synchronization 
 
Following the analysis for the MPEG 1 Layer 2 non-sample-synchronized transcoder 
(Section 9.2.2), we extend the same principles to the analysis here. Again, let us assume a 
uniform distribution of x0[m] between -1 and 1, for 0 575m≤ ≤ . By way of illustration, we 
assume a 3-step q1{s} (by choosing the parameter 1{ } 0s =] ). 
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Figure 9-7 Distributions of x1[m] and x'1[m] for different values of delay d. 

The distribution of x1[m] is shown in Figure 9-7(a). Note that the probabilities of x1[m] are not 
constant because q1{s} is non-uniform. When the transcoding is non-sample-synchronized, 
we expect the distribution of x'1[m] to be 'dispersed' in a similar fashion as for the MPEG 1 
Layer 2 method. We show the distributions of x'1[m] for different values of d in Figure 9-7 
(b)-(d). 
 
There are some advantages to be gained by 'dispersing' the distribution of x'1[m]:  
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1. Firstly, the tandem gain problem is greatly reduced. We illustrate this with an 
example using x1[m] with distribution shown in Figure 9-7(a), and the 'dispersed' x'1[m] with 
distribution shown in Figure 9-7(d). For 1{ } 0s =] , when: 
 

i. 2{ }4 /3
1[ ]| ' | 0.5 2 s

mx −≤ ] : 2[ ]| | 0mx =� , and 2[ ]| | 0mx = ; 

 
ii. 2{ } 2{ }4 /3 4 /3

1[ ]0.5 2 | ' | 1.5 2s s
mx− −< ≤] ] : 2[ ]| | 1mx =� , and 2{ }

2[ ]| | 2 s
mx −= ] ; 

 
 and in general, 
 

iii. ( ) ( )2{ } 2{ }
4 /3 4 /3

1[ ]0.5 2 | ' | 0.5 2s s
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Figure 9-8 Quantization of dispersed 1[ ]' mx . 

 
Only values of 1[ ]' mx  falling in the shaded region (labeled by 'X') with probability 

( )2{ }4 /3
1[ ]| ' | 0.5 2 s

mp x −≤ ]  (see Figure 9-8) would be quantized to 0. Values of 1[ ]' mx  falling 

in the shaded regions labeled by 'Y' would be quantized to 1, etc. Changing the value of 
2{ }s]  changes the probability that 1[ ]' mx  is quantized to 0 or 1. Contrast this with the 

sample-synchronized case, where the probability ( )2{ }4 /3
1[ ]| | 0.5 2 s

mp x −≤ ]  is equal to either 

0 (when 2{ } 4 / 3s < −] ), or 1 (when 2{ }4 / 3 0s− ≤ ≤] ). 
 
For the mid-to-high frequency region (say 134 418m≤ ≤ ), the 'on-off-on-off' effect is 
eliminated, since ( )2[ ]| | 0mp x =  changes gradually with 2{ }s] . This is illustrated in Figure 

9-9, where we show a statistically generated plot of 1[ ]' mx  with 1{ } 0s =] , and the subsequent 
quantized values of 2[ ]| |mx�  for different 2{ }s] . The values of 1[ ]' mx  are obtained by first 
generating x0[m] (uniformly distributed between -1 and 1), which are then quantized using 
q1{s} (with parameter 1{ } 0s =] ), and then dispersed by processing with the transcoder filter 
bank blocks. 
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Figure 9-9 Effect of different 2{ }s] , with 1{ } 0s =] , 
on 2[ ]| |mx�  for non-sample-synchronized transcoding. 
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Figure 9-10 Estimated regional tandem 
gain for different values of 1{ } 2{ }s s−] ] . 
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The fluctuating regional tandem gain (for the frequency region 134 418m≤ ≤ ) is also less 
severe when compared to the sample-synchronized case. In Figure 9-10, we plot the 
estimated regional tandem gain (obtained by means of simulations) PR[134:418] for the case 
when 1{ } 0s =]  (i.e. 1[ ]| |mx ∈� {0, 1}) and 1{ } 1s =]  (i.e. 1[ ]| |mx ∈� {0, 1, 2}). It can be seen that 
PR[134:418] in the non-sample-synchronized case is much more stable with respect to changes 
in the values of 1{ } 2{ }s s−] ] . 
 
2. Secondly, as 1{ } 2{ }s s−] ]  is gradually increased, we expect the quantization using 
q2{s} to gradually decrease the mean value of 2[ ]| |mx� , as demonstrated in Figure 9-9. This 
leads to a gradual bit-rate reduction in the mid-to-high frequency region when 1{ } 2{ }s s−] ]  
is gradually increased. On the other hand, for the sample-synchronized case, the change in 
bit-rate in the mid-to-high frequency region is expected to be abrupt due to the abrupt 
change in the mean value of 2[ ]| |mx�  with 1{ } 2{ }s s−] ] , as demonstrated in Figure 9-5. 
 

9.4 Remarks 
 
We discussed bit-rate transcoding for the case of MPEG 1 Layer 2 to MPEG 1 Layer 2, and 
for the case of MP3 to MP3, and the effect of sample-synchronization on their audio quality. 
The reason why we chose to analyze the MP3 to MP3 case was partly because of our work 
in Chapter 10 on MP3 transcoding, but also very importantly, because same-format sample-
synchronized transcoding is known to exhibit a lower audio quality than can be explained 
by the perceptually-weighted quantization error power alone. The MPEG 1 Layer 2 case 
was presented as a counterpoint to the MP3 case, as an example when sample-synchronized 
transcoding tends to lead to a better audio quality compared to non-sample-synchronized 
transcoding. 
 
For same-format bit-rate transcoding of other compressed audio (e.g. from AAC to AAC), 
the same issues that are discussed here may also be used to explain the effect of sample-
synchronization on audio quality. For AAC, as an example, the quantization issues are 
similar to that for MP3, in that mid-to-high frequency subband samples are very coarsely 
quantized. Sample-synchronization is known to lead to a lower transcoded audio quality for 
AAC, and this can be explained by the fluctuating tandem gain effect as observed for the 
case of MP3. However, as we did not look into transcoding for these other compression 
methods, there may also be other important factors causing poor audio quality that we are 
unaware of. 
 
Our analyses on tandem quantization error and sample-synchronization in Chapters 8 and 9 
assume that the synthesis block of the decoder and the analysis block of the encoder form a 
PR or NPR pair. This is the case for same-format bit-rate transcoding. For cross-format 
transcoding, such as from MP3 to AAC, this is usually not true. Hence, the sample-
synchronization condition does not exist for these cases, and our analyses do not apply. 
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9.5 Summary 
 
The impact of sample-synchronization on audio transcoding was investigated for the MPEG 
1 Layer 2 and MP3 compression methods. 
 
For MPEG 1 Layer 2, we proposed a measure termed the effective scaling factor [ ]E mζ , 
which can be used to estimate the amount of quantization error incurred during transcoding. 
The effective scaling factor was related to the normalization scaling of the subband signals 
prior to quantization. Assuming the input x0[m] is uniformly distributed between -1 and 1, the 
effective scaling factor was found to be approximately 1.23. For non-uniform input with 
distributions that have a higher concentration of values towards zero (such as triangular 
distribution), the effective scaling factor lies between unity and 1.23. The increased value of 

[ ]E mζ  leads to a larger error power during non-sample-synchronized transcoding and hence 
a lower objective quality of the transcoded audio, when compared to sample-synchronized 
transcoding. 
 
For MP3, we found several problems associated with audio that was transcoded sample-
synchronously. MP3 subband samples in the mid-to-high frequency region are usually 
quantized using very coarse quantizers. In this frequency region, the subband components 
suffer from a condition which we call fluctuating tandem gain, due to a time-varying 

1{ } 2{ }s s−] ] , where 1{ }s]  and 2{ }s]  are the lumped quantization parameters for the 
quantizers q1{s} and q2{s} respectively. Fluctuating tandem gain can give rise to an irregular 
and audible 'loud-soft-loud-soft' sensation during audio playback. 
 
On the other hand, for MP3 audio material which are transcoded non-sample-
synchronously, the 'dispersal' of the distribution of the subband samples was found to be 
favourable, as it allows for a smoother degradation of audio quality and bit-rate reduction 
with respect to 1{ } 2{ }s s−] ] . The regional tandem gain was also found to be more stable in 
the mid-to-high frequency range with respect to changes in 1{ } 2{ }s s−] ] . 
 





 

 
 

Chapter 10 
An Ultra-fast Bit-rate Transcoder for MP3 

 
 
 
 
In conventional audio transcoding (from a higher bit-rate to a lower bit-rate), a cascaded 
decoder-encoder is usually applied. In Chapter 9, we examined the effect of different input-
to-output transcoder delays on the quality of the transcoded material. For some audio 
compression methods (such as MPEG 1 Layer 2), a sample-synchronized transcoder is 
preferred. For other methods (such as MP3), a non-sample-synchronized transcoder is 
preferred. 
 
The conventional cascaded decoder-encoder is very inefficient in terms of number of 
operations required and the total execution time. In this chapter, we propose an ultra-fast 
bit-rate transcoder for MP3. It assumes that the transcoding is frame-synchronous (as 
defined in Section 7.4.4), and does not require a psychoacoustic model. Although it was 
shown (Section 9.3) that MP3 audio material which is transcoded sample-synchronously 
tends to have a lower audio quality than material that is transcoded non-sample-
synchronously, we impose certain controls to address the problem of tandem gain (Section 
9.3.2). Results show that the proposed transcoder compares favorably with existing 
transcoders in terms of audio quality, while affording significant reductions in the operating 
complexity and total execution time. 
 
The organization of this chapter is as follows: First, an introduction to the current methods 
of bit-rate transcoding is given. We proceed to describe the proposed method of bit-rate 
transcoding. The results of this new method are then presented, and finally possibilities for 
further developments are suggested. The transcoder was implemented using the C 
programming language, and its execution time and audio quality were tested. The new 
method was described in a patent application [104]. 
 

10.1 Audio bit-rate transcoding 
 
10.1.1 State-of-the-art 
 
Audio Layered Transcoder for fast transcoding 
 
Some prior work on audio transcoding is of interest to this chapter. In [99], an 'Audio 
Layered Transcoder', based on the MPEG 1 Layer 2 compression method, was proposed for 
fast bit-rate transcoding (mainly directed towards internet-distributed audio applications), 
by restructuring the way in which data is stored in the bitstream. 
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Figure 10-1 Data truncation using audio layered transcoding. 

 
The operation of the Audio Layered Transcoder can be explained using Figure 10-1. The 
PCM input is first encoded using the Audio Layered Encoder, which comprises several 
standard MPEG 1 Layer 2 encoder processing blocks (such as filter banks, psychoacoustic 
model, etc.). However, in order to structure the data in a layered form, proprietary 
quantizers are used. The data is arranged such that each additional layer stores extra 
information which provides an increasingly higher precision. Transcoding of the 'layered 
data' can then be performed quickly by the simple procedure of removing unwanted 'layers'. 
The diagram shows the transcoding from a bit-rate of B192 (192 kbps) to B128 (128 kbps). 
 
The above description can be visualized by considering an analogous example of the 
'layered' quantized number 0.111. The first layer contains the value 0.1, the second layer 
contains 0.01 and the third layer contains 0.001. To 'transcode' from 3 layers to 2 layers, we 
simply have to remove the 3rd layer. The result is then 0.11. The drawback of this method is 
that modified decoders are required to decode the layered data. 
 
Use of ancillary data for better audio quality 
 
Some 'ancillary' data bits are allocated within the MPEG (including Layer 2 and MP3) 
bitstream for custom usage (refer to the specifications [71]). The number of ancillary data 
bits can be arbitrarily defined by the user. In normal encoding and decoding, these bits are 
not utilized. The ancillary data provide the flexibility for custom encoders and decoders to 
insert additional information into the bitstream, at the cost of a higher bit-rate. 
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Figure 10-2 Using ancillary data for transcoding. 

 
In [100]-[101], methods were proposed that use the ancillary data space to store additional 
information during the initial encoding (using a custom encoder). This data is then used to 
guide future transcoding, with the objective of improving the output audio quality. Figure 
10-2 shows a simple overview of the described methods. A-priori knowledge of both the 
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higher and lower target bit-rates (bit-rates B1 and B2 respectively) is assumed. In the initial 
stage, encoding of both B1 and B2 bitstreams take place. The differences between these 
bitstreams are encoded, and multiplexed as ancillary data with the B1 bitstream. When 
transcoding the multiplexed B1 bitstream to a bit-rate of B2, the ancillary data is used as 
helper information to guide the transcoding (using a custom transcoder). Alternatively, the 
multiplexed bitstream can be read by a standard decoder, by ignoring the ancillary data. 
 
This method has a few drawbacks however. Extra bits are required to store the ancillary 
data, the PCM source must be available, and both the bit-rates B1 and B2 must be known a-
priori. A trade-off between the increase in the bit-rate of the multiplexed B1 bitstream and 
the audio quality of the transcoded B2 bitstream exists. The method is useful in situations 
where the prospect of future transcoding is certain, and transcoded audio quality is vital, 
such as in music distribution [96]. Furthermore, in music distribution applications, the 
conditions that the PCM source is available, B1 and B2 are known a-priori, are satisfied. 
 
Efficient transcoding by a direct requantization of data 
 
The method of transcoding (using a 'bit-rate scaling in coded data domain') proposed in 
[102] resembles the 'ultra-fast bit-rate transcoding method' that is discussed later on in this 
chapter. Figure 10-3 shows the block diagram for the bit-rate scaler (compare with the ultra-
fast transcoder in Figure 10-7). Computation-intensive processing such as the filter bank 
blocks were removed. The bit-rate scaler extracts the values of x1[m] from the bitstream (by 
Huffman decoding), quantizes x1[m] to x2[m] by using q2[m], and then processes x2[m] into the 
output bitstream (by Huffman encoding). This process of transcoding is sample-
synchronous. The bit-rate scaler was applied successfully in the quoted literature for MPEG 
1 Layer 2 transcoding. 
 

Huffman
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Quantization
q2[m]

Huffman
encoding

Compressed
bitstream A1

Compressed
bitstream A2

x1[m] x2[m]

 
Figure 10-3 Block diagram for bit-rate scaling in coded data domain. 

 
The method of quantizing x1[m] to x2[m] (i.e. by choosing q2[m]) that is proposed in this paper 
is straightforward. Starting from the largest m (highest frequency) down to the smallest m 
(lowest frequency), q2[m] is chosen to have a wordlength of 1 bit less than q1[m], where q1[m] 
was used in the initial encoding process to quantize the source x0[m] to x1[m]. This quantizer 
wordlength reduction is iteratively performed until the output bitstream satisfies the target 
bit-rate requirement. 
 
Note that the bit-rate scaler benefits from the fact that sample-synchronized transcoding is 
favorable for the case of MPEG 1 Layer 2. For MP3, successful sample-synchronized 
transcoding requires the consideration of more factors (see Section 9.3 for a more complete 
analysis). Transcoded material typically exhibits poor audio quality when the wordlengths 
of all the quantizers q1[m] are reduced by an equal amount (see also Section 10.4.3, which 
describes some experiments to verify this statement). For MP3, the mid-to-high frequency 
components are deemed to be more important than the low frequency components, due to 
the very coarse quantizers that are used in this region. The bit-rate scaler method, on the 
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other hand, tends to reduce the resolution of high frequency components prior to the low 
frequency components. Furthermore, since the high frequency components for MP3 usually 
comprise only 1 or 2 quantization levels, the bit-rate scaler tends to completely remove 
these components. 
 
Our ultra-fast transcoder focuses on MP3. For the quantization process, we impose a form 
of control both within the same q-frame (by placing greater importance on the mid-to-high 
frequency components), and across consecutive q-frames (by controlling fluctuating tandem 
gain). We also propose a lookup table method for the quantization process, which further 
reduces the computation time. We also demonstrate that the ultra-fast transcoder performs 
reasonably well for a variety of MP3 audio material. 
 
Other methods 
 
Several proprietary compression methods that evolve from the MP3 compression method, 
including [103], make use of additional audio descriptors, such as 'music beat', and encode 
them together with the primary bitstream. The descriptors can be utilized by compatible 
transcoders to improve audio quality. However, these methods are often incompatible with 
standard encoders and decoders.  
 
 
10.1.2 Objectives of the transcoder 
 
The main design objectives of the transcoder are: 
 

(i). Targeted for the MP3 compression method. Since there are many compression 
methods available in the current market which are incompatible with each other, we 
need to select one for our implementation. MP3 is currently the most popular, and is 
viable for market-oriented development. 

 
(ii). Low implementation complexity. A more complex design requires a larger 
memory footprint in the case of a software implementation and a larger chip area and 
power consumption in the case of a hardware implementation. 
 
(iii). High execution speed. The design should be streamlined as much as possible to 
optimize the transcoding speed. 
 
(iv). Preservation of audio quality. The transcoded material should maintain a 
reasonable reproduction quality during play back. 

 
 
10.1.3 MP3 encoding 
 
Both commercial and freeware MP3 encoder and decoder software are widely available. In 
our work, we focus on the highly popular LAME 3.95 software [108], MADPLAY [109] 
(which we found to be a very fast decoder), and the Philips Fast MP3 encoder [110] (a very 
fast MP3 encoder). In Appendix C, we highlighted important aspects of the MP3 method 
which are relevant to our work. A full description of the MP3 method is available in [71]. In 
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Section 7.5.2, we further explained the notations used for the MP3 quantization. For 
convenience, we briefly highlight the important details below. 
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(Repeat of Figure 7-11.) 

 
In Figure 7-11, the subband components x0[m] (shown in the diagram as the vector x0, 
comprising x0[m] for 0 575m≤ ≤ ) are grouped into scalefactor bands. In the 'group into 
scalefactor bands' block, the horizontal lines pictorially show the allocated widths of the 
scalefactor bands (refer to Appendix C, Figure C-2 for more information). Those x0[m] 
(shown in the diagram as the vector x0{s}) which fall within the scalefactor band denoted by 
s, are then quantized by q1{s} to x1[m] (shown in the diagram as the vector x1{s}). The 
selection of q1{s} typically depends on the psychoacoustic model analysis (not shown in 
diagram). 
 
The quantizer represented by q1{s} is defined by the parameter 1{ }s] : 

 1{ } 1 1 1{ } 1/ 4s g f sα φ= − +] ] ] ] ] , (10.1) 

where the parameters 1g] , 1α] , 1{ }f s]  and 1φ]  are the values of the global gain, scalefactor 
multiplier, scalefactor and other encoder-specific variables respectively (see [71] for more 
information). 
 
The quantization is given by: 

 ( )( )1{ } 1{ }

4 /33/ 4

1[ ] 0[ ]2 2 | |s s
m mx x− ⎡ ⎤= ± ℜ⎢ ⎥⎣ ⎦

] ] , (10.2) 

where (.)ℜ  is the rounding operator, and the sign of x1[m] is taken equal to the sign of x0[m]. 
 
Furthermore: 

 ( )1{ }
4 / 3

1[ ] 1[ ]2 | |s
m mx x−= ± ] � , (10.3) 
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where 1[ ]mx�  is the integer part of x1[m] which is stored in the MP3 bitstream, and the sign of 

1[ ]mx�  is taken equal to the sign of x1[m]. 
 
Just as in Chapters 8 and 9, we hide the time variables n and η  in our equations. Also note 
that for MP3, a q-frame consists of 576 subband samples, and an MP3 frame consists of 2 
q-frames (1152 subband samples). 
 
 
10.1.4 Conventional method of bit-rate transcoding 
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Figure 10-4 Conventional implementation of an MP3 transcoder. 

 
Figure 10-4 shows the block diagram of the conventional method of transcoding using a 
cascaded decoder-encoder. Descriptions of the individual blocks can be found in Appendix 
C. This method is straightforward, and its advantage is that it can be implemented easily by 
using readily available software, such as the LAME software package (by first decoding 
from MP3 to a PCM signal, and then re-encoding to MP3). This method is computationally 
intensive. Implementations using this method typically focus on reducing the complexity of 
the individual blocks, such as the filter bank blocks [105]. 
 
Using the Fast MP3 encoder and decoder programs as basis, a rough indication of the 
relative complexities of the different processing blocks is as follows: 
 

Filter bank blocks 20-30% 
Huffman encoding and decoding 20-30% 
Psychoacoustic model + rate-distortion loop + quantizer 50% 

 
Note that these relative complexities only provide crude estimates. The actual complexities 
for different software implementations and different audio material (having different bit-
rates, for example) can vary significantly. As an example, for the LAME encoder and 
decoder, the psychoacoustic model + rate-distortion loop + quantizer can account for more 
than 80% of the total complexity. 
 



Chapter 10    An Ultra-fast Bit-rate Transcoder for MP3 177 

 

10.2 Complexity reduction I: Frame-synchronization 
 
Frame-synchronization was defined in Section 7.4.4. For the MP3 method, frame-
synchronized transcoding can be realized by delaying the intermediate PCM signal (refer to 
Figure 10-5), so that the total input-to-output delay is a multiple of 1152 (the size of an MP3 
frame). Since this number is also a multiple of 576 (the size of a q-frame, also the number 
of subbands, and the decimation factor) sample-synchronization is realized by frame-
synchronized transcoding. 
 
If 1[ ] 1[ ]' m mx x= , we can directly route x1[m] to the rate-distortion loop block as shown in 
Figure 10-5. The intermediate PCM signal is used as input for the FFT and psychoacoustic 
model. The analysis block can be removed. The resultant complexity, compared to the 
conventional transcoder, is approximately reduced by a factor of 1.15 (based on using the 
Fast MP3 programs). 
 
For MP3, the analysis and synthesis blocks form NPR pairs. Therefore, 1[ ] 1[ ]' m mx x≈  to a 
small degree of error. This error is much smaller than the quantization step-size of q1[m] and 
q2[m]. Realistically, this means that ( ) ( )2[ ] 1[ ] 2[ ] 1[ ]'m m m mq x q x=  for almost all values of x1[m]. 
This complexity reduction is therefore also applicable to NPR analysis-synthesis blocks, in 
the context of audio transcoding. 
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Figure 10-5 Complexity reduction I: Frame-synchronization. 

 

10.3 Complexity reduction II: Modified psychoacoustic model 
 
The original psychoacoustic model uses the 1024-point complex-valued FFT of the PCM 
signal to analyze the audio content. By using a modified psychoacoustic model which can 
directly make use of the 576 real-valued subband samples x1[m], the complexity of the 
frame-synchronized transcoder can be further reduced. Such modified psychoacoustic 
models have been proposed for the MPEG 1 Layer 2 and MP3 methods [106], and for the 
MPEG 2 AAC method [107]. 
 
Figure 10-6 shows the block diagram for a frame-synchronized transcoder using a modified 
psychoacoustic model. The synthesis block has been further removed (compared to Figure 
10-5), and x1[m] can be directly fed to both the modified psychoacoustic model and the rate-
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distortion loop. The resultant complexity, compared to the conventional transcoder, is 
approximately reduced by a factor of 1.3 to 1.5 (based on using the Fast MP3 programs). 
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Figure 10-6 Complexity reduction II: Modified psychoacoustic model. 

 

10.4 Complexity reduction III: Direct mapping 
 
In conventional transcoding methods, some form of psychoacoustic analysis is typically 
used to drive the quantization process. We call a transcoding process in which 
psychoacoustic models are used to direct quantizer selection a psychoacoustic-centric 
transcoding process. Conversely, a non-psychoacoustic-centric transcoding process does not 
rely on psychoacoustic models to direct the quantizer selection. The proposed method of 
transcoding differs from conventional methods by using a non-psychoacoustic-centric 
transcoding process. 
 
 
10.4.1 Overview of method 
 
From our analysis in Section 9.3 on sample-synchronized transcoding, simply selecting the 
quantizers using a psychoacoustic-centric process is not sufficient to ensure good 
reproduction quality. The fluctuation of tandem gain across consecutive MP3 frames should 
also be considered. Furthermore, since the audio has already been compressed using a 
psychoacoustic model in the initial encoding process (by the selection of q1{s}), we question 
whether it is necessary to reapply the psychoacoustic model in the transcoder. Instead, we 
propose that the quantizer q2{s} should be selected based on the quantizer q1{s} that was 
selected, using a defined set of rules. Then, 1x�  can be mapped directly to 2x�  based on the 
defined set of rules, using only information which is available in the MP3 bitstream A1. 
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Figure 10-7 Complexity reduction III: Direct mapping. 
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Note: The following notational conventions are used: x represents a vector of samples x[m] 
(for 0 575m≤ ≤ ); [ ]mx�  is the integer component of x[m] (refer to (10.4)); { }s]  is a parameter 
defining the quantizer q{s}(for 0 21s≤ ≤ ). 
 
Supposing that the psychoacoustic model can be taken out, the transcoder can then be 
reduced to the 3-step operation which is shown in Figure 10-7. The MP3 bitstream A1 is 
first Huffman-decoded. The integer vector 1x�  and the quantizer parameters 

{ }1 1{ }, for 0 21s s= ≤ ≤] ]  are then extracted, and mapped to 2x�  and 2] . We denote the 

mapping by the symbol T{.}. Finally, 2x� , 2]  and other bitstream data are Huffman-
encoded to the MP3 bitstream A2. Other bitstream data refers to the MP3 frame header and 
side info (Appendix C). Minor processing is required, such as changing the header 
information to reflect the new bit-rate. 
 
The complexity of the resultant transcoder is very low since: 
 

(i). Most of the computation-intensive blocks have been removed, e.g. 
psychoacoustic model, filter bank blocks, and rate-distortion loop. 
 
(ii). The mapping T{.} can be efficiently performed in the integer domain. Integer-to-
floating point conversions, floating point-to-integer conversions, and floating point 
operations can be avoided. This is further explained below. 

 
 
10.4.2 Simplification of quantization operation 
 
Note: In an equation involving both m and s, e.g. 1[ ] 1{ } 0[ ]( )m s mx q x= , we assume 

1s sm m m +≤ < , where ms refers to the index of the subband corresponding to the first 
element of the scalefactor band s (refer to (C.2)); i.e. although it is not explicitly stated in 
the equation that x0[m] belongs to the vector x0{s}, we implicitly assume this for equations of 
this form. 
 
For the MP3 method, 1[ ]mx  is first obtained from 1[ ]mx� : 

 1{ }
4/ 3

1[ ] 1[ ] 2 s
m mx x −= ± ⋅ ]� , (10.4) 

where 1{ } 1 1 1{ } 1/ 4s g f sα φ= − + −] ] ] ] ]  and the sign of 1[ ]mx  is taken equal to the sign of 

1[ ]mx� . 
 
Then, x1[m] is quantized to x2[m], having the integer component 2[ ]mx� : 

 ( )2{ }
3/ 4

2[ ] 1[ ]2 | |s
m mx x⎡ ⎤= ±ℜ ⎢ ⎥⎣ ⎦

]� , (10.5) 
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where 2{ } 2 2 2{ } 2/ 4s g f sα φ= − + −] ] ] ] ] , (.)ℜ  is the rounding operator, and the sign of 

2[ ]mx�  is taken equal to the sign of 1[ ]mx . 
 
Therefore, we can relate 2[ ]mx�  directly to 1[ ]mx�  by: 

 ( ){ }1{ } 2{ }
3/ 4( )

[ ] 1[ ] 2 s s
m mx x − −= ℜ2

] ]� � . (10.6) 

Let us set 2 1α α=] ]  and 2 1φ φ=] ] , so that the scalefactor multiplier and the fine-tuning 
variables are unchanged by the transcoder. Then: 

 1{ } 2{ } 1 2 1 1{ } 2{ }( ) / 4 ( )s s g g f s f sα− = − − + −] ] ] ] ] ] ] , (10.7) 

where 1 0.5 or 1α =]  (defined by the MP3 specifications). 
 
Define: 

 { } 2{ } 1{ }f s f s f sδ = −] ] , (10.8) 

and: 

 2 1g g gδ = −] ] . (10.9) 

From the MP3 specifications, the global gains ( 1g]  and 2g] ) and scalefactors ( 1{ }f s]  and 

2{ }f s] ) take on a discrete range of values. The global gains have discrete steps of 0.25 
( 1 20 ( , ) 255g g≤ ≤] ] ) and the scalefactors have discrete steps of 0.5 
( 1{ } 2{ }0 ( , ) 15f s f s≤ ≤] ] ). Therefore, 1{ } 2{ }( )s s−] ]  takes on the set of possible values from 
{-78.75, ..., -0.5, -0.25, 0, 0.25, 0.5, 0.75, ...,78.75}. Hence, the mapping T{.} is limited to a 
finite space. 
 
Note that the Huffman-encoder used in the MP3 encoder allocates statistically fewer bits to 
store smaller integer values of 1[ ]| |mx�  and 2[ ]| |mx� , and statistically more bits to store larger 

integer values of 1[ ]| |mx�  and 2[ ]| |mx� . If 1{ } 2{ }( ) 0s s− <] ] , then 2[ ] 1[ ]m mx x≥� �  and thus 

2[ ]| |mx�  is likely to require more bits than 1[ ]| |mx� . Since we are interested in transcoding from 
a higher bit-rate to a lower bit-rate, 1{ } 2{ }( )s s−] ]  is usually larger than 0. 
 
On the other hand, if 1{ } 2{ }( )s s−] ]  becomes too large, (i.e. if q2{s} is a very coarse 
quantizer) then the quantization error in x2[m] may become unacceptable. In fact, the set of 
meaningful values of 1{ } 2{ }( )s s−] ]  typically consists of only about 10 to 15 values in the 
range of approximately 0 to 2 (for transcoding from about 192 kbps to 128 kbps) or 0 to 3 
(for a larger difference in bit-rate), in steps of 0.25. 
 
We define the direct mapping transcoder using the map T{.}, consisting of the maps T{s}{.} 
for 0 21s≤ ≤ . The map T{s}{.} is defined by the parameter 1{ } 2{ }( )s s−] ] , which can be 
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varied by changing gδ  and { }f sδ . The resultant map from the input integer vector 1{ }sx�  to 

the output integer vector 2{ }sx�  is { }2{ } { } 1{ } 1{ } 2{ }, , )s s s s sT=x x� � ] ] . Thus, the objective now is to 

design the map T{s}{.} by selecting gδ  and { }f sδ . 
 
 
10.4.3 A basic map 
 
A simple method to achieve an immediate bit-rate reduction is to increase the value of the 
global gain, i.e. to set a positive value of gδ . To further reduce the bit-rate, we can limit the 
cutoff frequency of the audio by removing subband components in the higher frequencies, 
i.e. by setting x2[m] to zero. 
 
Let us define a basic map, by using the following rules: 
 

(i). Set 2 1( )g g gδ = −] ]  to be a positive integer constant. 
(ii). Set { } 2{ } 1{ }( ) 0f s f s f sδ = − =] ] , for all s. 
(iii). Set 2[ ] 0,mx =�  for cutoffm m> , where mcutoff relates to the cutoff frequency. 

 
The value of mcutoff offers a tradeoff between the cutoff frequency and the bit-rate for the 
transcoded material. If mcutoff is very small, then the lack of high frequency components may 
become too apparent. If mcutoff is very large, the increase in the bit-rate may be excessive 
while having little quality gain, as the human ear has a low sensitivity at high frequencies. 
For a target bit-rate of 128 kbps, a reasonable value of mcutoff is experimentally determined 
to be about 342. We also chose 342 for convenience because this value corresponds with the 
edge of a scalefactor band. The value of mcutoff can be changed to make minor adjustments 
to the final bit-rate. For example, mcutoff can be reduced by 1 to reduce the number of bits 
required for each q-frame by approximately 1. 
 
Thus: 

 { }2 1
3/ 4( ) / 4

1[ ]
2[ ]

2 , for 

0 , for .

g g
m cutoff

m

cutoff

x m m
x

m m

− −⎧ ⎡ ⎤ℜ ≤⎪ ⎣ ⎦= ⎨
⎪ >⎩

] ]�
�  (10.10) 

The amount of bit-rate reduction can be controlled by the parameters gδ  and mcutoff. When 

gδ  is increased (i.e. a coarser q2{s} is selected), the values of 2x�  tend to be decreased, and 
are thus expected to require fewer bits to store. The quantization error power is expected to 
be increased. When mcutoff is decreased, the range of m for which 2[ ]mx�  are stored is 
decreased, and hence fewer bits are expected to store 2x� . However, this leads to a loss of 
higher-frequency components. 
 
Figure 10-8 shows the plot of 1x�  and 2x�  for 5gδ =  and mcutoff = 342. The vector 1x�  was 
taken from an orchestral music item encoded using MP3 at 192 kbps. 
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Figure 10-8 Plot of 1x�  and 2x�  for 5gδ =  and mcutoff = 342. 

 
The basic map is straightforward, and effective in decreasing the bit-rate. However, we 
found it unsuitable for transcoding MP3. Experiments using different values of gδ  and 
mcutoff (for typical bit-rates, e.g. from 192 kbps to 128 kbps), show that the quality of the 
transcoded audio is likely to be considered unacceptable by listeners. 
 
Subband samples in the mid-to-high frequency regions (e.g. m>134; which corresponds to 

14s ≥ ) are typically coarsely quantized. This can be observed in our example in Figure 
10-8(a). For m>134, 1[ ]| | {0,1,2}mx ∈� . These subband samples do not provide much 
allowance for further quantization. On the other hand, subband samples in the lower 
frequencies are more pliable to further quantization, due to the larger values of 1[ ]| |mx� . 
 
To verify these claims, we transcoded a variety of music material (e.g. singing, orchestral, 
instrumental, etc.). The basic mapping method was used, and a frequency region was 
defined in which the subband samples were not altered, i.e. x1[m] is mapped to x2[m] for all m, 
except for m falling within the frequency region where x1[m] is not to be altered 
( 2[ ] 1[ ]m mx x= ). We tested for different frequency regions and for different values of gδ . In 
each case, the transcoded material was compared to the control, in which no frequency 
region was defined, i.e. x1[m] is mapped to x2[m] for all m. Generally, the most significant 
improvement in audio quality was attained when the frequency region was defined to 
correspond to the scalefactor bands 15 18s≤ ≤ , or subbands 134 287m≤ ≤ . 
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10.4.4 A fixed map 
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Figure 10-9 Block diagram for a fixed mapping transcoder. 

 
Note: This method is 'fixed' in the sense that the map T{.} is held constant for all MP3 
frames. The fixed mapping method is basically a modification of the basic mapping method 
of Section 10.4.3. The map for each frequency region can be applied by using the 
mathematical function in (10.6).  
 
The block diagram for the proposed fixed mapping transcoder is shown in Figure 10-9. For 
each q-frame, the vector of input samples 1x�  is divided into a number of frequency regions 
(we proposed 4 in this example), with the boundaries of each frequency region coinciding 
with the boundaries of certain scalefactor bands. 
 
We define 4 frequency regions labeled by R0, R1, R2 and R3, and the input samples are 
grouped into these regions. In each frequency region, a different value of 

{ } 2{ } 1{ }f s f s f sδ = −] ]  is applied. In frequency regions where large values of { }f sδ  are 
applied, a relatively coarser quantization is applied. These frequency regions have 'low 
emphasis'. In frequency regions where small values of { }f sδ  are applied, a relatively finer 
quantization is applied. These frequency regions have 'high emphasis'.  
 
Figure 10-10 shows the proposed division of the 22 scalefactor bands (576 subband 
samples) into frequency regions R0, R1, R2 and R3. The proposed division was chosen based 
on experimental observations (described earlier in Section 10.4.3). Since the frequency 
region R1 corresponding to 15 18s≤ ≤  was deemed to provide the most significant impact 
on audio quality relative to the other frequency regions, we designate R1 as 'high emphasis', 
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and the rest as 'low emphasis'. Since the change in global gain gδ  is applied to the entire q-
frame, the emphasis is varied by applying different values of { }f sδ  to each frequency region. 
 

134 238 3420 575
subband, m

418288

scalefactor band, s
2115 18

R0 R2R1 R3

 
Figure 10-10 Division of scalefactor bands into 
frequency regions for fixed mapping transcoder. 

 
An effective map that worked well for a variety of audio material encoded at 192 kbps was 
found to be: 
 

(i). Set gδ  to be a positive integer constant. 

(ii). Set { } 0

1

2

0, for : 0 14
1, for :15 18
0, for : 19.

f s R s
R s
R s

δ = ≤ ≤⎧
⎪ ≤ ≤⎨
⎪ ≥⎩

 

(iii). Set 2[ ] 0,mx =�  for cutoffm m> , where mcutoff =342. 
 
The average bit-rate achieved using this map was found to be about 55-75% of the initial 
bit-rate. For an initial bit-rate of 192 kbps, the bit-rate of the transcoded material works out 
to be around 128 kbps. Various options are possible for the definition of the map T{.}. For a 
different source and target bit-rate, a different T{.} would have to be defined. The given 
parameters can also be adjusted to tweak the final bit-rate along with audio quality.  
 
Since gδ  and { }f sδ  are 'fixed' for the duration of the transcoding, the tandem gain (refer to 
Section 9.3.2) is constant for the duration of the transcoded material. Thus, the fixed 
mapping transcoder has the advantage over conventional sample-synchronized transcoders 
in that the tandem gain of transcoded material is controlled (does not fluctuate). The effect 
of fluctuating tandem gain was discussed earlier (Section 9.3.2). 
 
Results of formal listening tests, using audio material that was transcoded by the fixed 
mapping method are documented in Section 10.5 (Figure 10-13) and Appendix E. The fixed 
mapping transcoder (LT-5) performs reasonably well, when compared to the conventional 
frame-synchronized transcoder (LT-3). The mean opinion score for LT-5 is slightly higher 
than for LT-3, and the confidence intervals overlap significantly. The favourable results of 
the listening test demonstrates the feasibility of a non-psychoacoustic-centric transcoder. 
 
 
10.4.5 An adaptive map 
 
A fixed map may not be optimized for the different conditions that are faced when 
transcoding. Due to the highly time-varying nature of audio, and the different methods that 
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are used to compress the audio in the initial encoding stage, some form of adaptation is 
desirable. For example, i) the source bit-rate might not be constant, such as for variable bit-
rate audio; and ii) certain scalefactor bands might be more or less compressible than others. 
 
In this sub-section, we consider a transcoder using a non-psychoacoustic-centric adaptive 
map. Compared to the conventional transcoder, the adaptive mapping transcoder is very 
efficient. 
 

2g]
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Remove high-
freq components

1{ }sx�

( )1{ }max sx� 1{ } 2{ }select ( )s s−] ]

1x�

2{ }sx�Apply map for
scalefactor band, s

2x�

2{ }f s]

Select mcutoff

 
Figure 10-11 Block diagram for adaptive mapping transcoder. 

 
Figure 10-11 shows the block diagram of the proposed adaptive mapping transcoder. For 
each q-frame, the compression strength and the value of the largest element in the vector 

1{ }sx�  are considered in the selection of 1{ } 2{ }( )s s−] ] . The proposed transcoder can be 

thought of as a trimmer; it trims the values of 1{ }sx�  (using quantization) by a variable 

amount which is deemed as surplus, where the surplus is estimated by ( )1{ }max | |sx� . The 
'degree of compression' is used to control the trade-off between the reduction in bit-rate and 
the audio quality of the transcoded material. A higher degree of compression increases the 
bit-rate reduction at the cost of decreased audio quality. 
 
The algorithm is described as follows: 
 
a. Select 1{ } 2{ }( )s s−] ] : 

 
We adopt a case-select approach for the selection of 1{ } 2{ }( )s s−] ] , based on the 

degree of compression and the value of ( )1{ }max | |sx� . An internal table of 

1{ } 2{ }( )s s−] ]  for a 'normal' degree of compression is pre-generated (see Table 10-1). 
A 'normal' degree of compression is deemed to result in transcoding to a bit-rate of 
approximately 128 kbps for MP3. If the value of ( )1{ }max | |sx�  falls within the 

indicated range, then the corresponding value of 1{ } 2{ }( )s s−] ]  is selected, e.g. if 

( )1{ 8}max | | [15, 20]s= ∈x� , then 1{ } 2{ }( )s s−] ]  is selected to be 2. 
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Select Value of ( )1{ }max | |sx� , where: 

1{ } 2{ }( )s s−] ]  0 5s≤ ≤  6 11s≤ ≤  12 14s≤ ≤ 15 17s≤ ≤ 18 20s≤ ≤  
2.5 >63 >20    
2 [32, 63] [15,20] >12 >10 >4 

1.5 [16,31] [10,14] [8,12] [6,10] [4] 
1 [8,15] [5,9] [4,7] [2,5] [2,3] 
0 [0,7] [0,4] [0,3] [0,1] [0,1] 

Table 10-1 Allocation table for 1{ } 2{ }( )s s−] ] , 
for a 'normal' degree of compression. 

 
The tabulated values in Table 10-1 were calculated empirically. The spectrum was 
divided into 5 frequency regions, and separate rules were applied to each frequency 
region. The proposed table reflects the tendency that values of 1{ }sx�  tend to have 
larger magnitude at the lower frequencies and smaller magnitude at the higher 
frequencies. The determination of the table is not rigid, and we merely proposed one 
that was tested to work well. 
 

b. Obtain 2g]  and 2{ }f s] : 
 

Recall from (10.7)-(10.9) that 1{ } 2{ }s s−] ]  is defined to be equal to 

1 { }0.25 g f sαδ δ−] , where the global gain gδ  is a value that is common to all 
scalefactor bands. The decomposition of 1{ } 2{ }s s−] ]  to gδ  and { }f sδ  is not unique, 
since we can obtain: 

 { } 1{ } 2{ } 10.25 ( ) /f s g s s αδ δ⎡ ⎤= − −⎣ ⎦] ] ] . (10.11) 

Note that gδ  and { }f sδ  are integers, and the parameter 1α]  is retrieved from the 
initially-encoded bitstream. For transcoding from 192 kbps to 128 kbps, gδ  can 
normally be set to a value of 6. We can then obtain 2g]  and 2{ }f s]  from 1g gδ+]  
and 1{ } { }f s f sδ+]  respectively. 

 
c. Map 1{ }sx�  to 2{ }sx�  using (10.5). 
 
d. Remove high-frequency components: 
 

Set x2[m] = 0 for m > mcutoff. Decreasing the value of mcutoff reduces bit-rate and audio 
quality due to the loss of high-frequency content. We use a default of mcutoff = 342 
for a 'normal' compression strength, which is reasonable at a target bit-rate of 128 
kbps. Note that we maintain a constant value of mcutoff throughout the transcoding of 
a piece of audio, because it is known that fluctuating values of mcutoff have an 'on-off-
on-off' effect which is highly audible during play back (explained in Section 9.3.2). 
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Results of formal listening tests, using audio material that was transcoded by the adaptive 
mapping method are documented in Section 10.5 (Figure 10-14) and Appendix E. It can be 
seen that the mean opinion score for the adaptive mapping transcoder (LT-6) is slightly 
higher than for the fixed mapping transcoder (LT-5). Furthermore, its upper confidence 
interval range overlaps with the lower confidence interval range of the non-frame-
synchronized transcoder (LT-4). Contrast this with the fixed mapping transcoder (LT-5), 
which does not overlap with LT-4. The adaptive mapping transcoder has a slightly better 
audio quality, at the cost of increased computations. In our implementation, the adaptive 
mapping transcoder typically shows a 10% - 20% increase in the amount of processing time, 
compared to the fixed mapping transcoder. Note, however, that this result is only indicative, 
as the efficiency of the transcoder is highly implementation-dependent, and our 
implementation is not fully optimized. 
 
 
10.4.6 Using a lookup table 
 
The proposed transcoders are non-psychoacoustic-centric, and highly streamlined in terms 
of operations required. Computations normally required by the filter bank blocks, 
psychoacoustic modeling, rate-distortion loop and FFT are eliminated (compare Figure 10-4 
and Figure 10-7). The transcoding is reduced to only 3 steps: Huffman decoding, mapping 
and Huffman encoding. 
 
We recall that the quantized subband samples 1[ ]mx�  and 2[ ]mx�  are integer-valued. The map 
from 1[ ]mx�  to 2[ ]mx�  is: 

 ( ){ }1{ } 2{ }
3/ 4( )

[ ] 1[ ] 2 s s
m mx x − −= ℜ2

] ]� � . (10.12) 

It can be easily seen that some computationally-intensive mathematical operators are 
involved, notably the multiplication, division, and exponential operators. We can further 
streamline the transcoding by using an integer-to-integer map, via a lookup table search, 
that avoids these computationally-intensive mathematical operations. For software 
implementations, costly floating-point operations are eliminated. For hardware 
implementations, we can see benefits in complexity reduction, lower power consumption 
and smaller chip area. 
 
The integer-to-integer map, using the proposed lookup table method, is illustrated in Figure 
10-12. For each value of 1{ } 2{ }( )s s−] ] , we pre-generate a lookup table that is represented 
by a vector 

1{ } 2{ }s s−χ] ] . The map from 1[ ]mx�  to 2[ ]mx�  can then be performed by reading the 

1[ ]mx� -th element of the vector 
1{ } 2{ }s s−χ] ] . 
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Figure 10-12 Lookup table method for ultra-fast integer-to-integer mapping. 

 
Using the lookup table, the mapping becomes as fast as a single memory-read operation. 
We realize that an effective lookup table should also be reasonably sized in order to reduce 
memory storage requirements. At a first glance though, the mapping range is very large, if 
we assume 1{ } 2{ }( )s s−] ]  is arbitrary and the range of 1[ ]| |mx�  and 2[ ]| |mx�  are from 0 to 8207 
(according to the MP3 specifications, [71]). 
 
To overcome this problem, we first limit the range of admissible values of 1{ } 2{ }( )s s−] ] . 
For example, we discussed the bit-rate transcoding scenario from 192 kbps to 128 kbps 
(Section 10.4.2), and concluded that values of 1{ } 2{ }( )s s−] ]  are usually limited in range 
from 0 to 2, in steps of 0.25. Thus, only 9 lookup tables are needed.  
 
Second, we assume that the majority of the values of 1[ ]| |mx�  and 2[ ]| |mx�  are limited in range 
from 0 to 255. This is consistent with repeated observations of typical MP3 audio. The 
memory size of each lookup table can then be reduced considerably. Each element of the 
lookup table can be stored using a single byte ( 2[ ]0 | | 255mx≤ ≤� ), as compared to 2 bytes 
( 2[ ]0 | | 8207mx≤ ≤� ) previously. Furthermore, the memory-address index can also be 
similarly represented using a single byte ( 1[ ]0 | | 255mx≤ ≤� ), as compared to 2 bytes 
previously ( 1[ ]0 | | 8207mx≤ ≤� ). The total memory required is 2304 bytes (9 lookup tables, 
each with 256 elements). Compare this with the lookup table using 8208 elements; the total 
memory required is 147,744 bytes (9 lookup tables, each with 8208 elements, each element 
requiring 2 bytes). 
 
Note that for the small minority of values exceeding 255, it is possible to handle them 
separately without incurring significant overhead, by rounding the product of 1[ ]| |mx�  and the 

pre-generated values of 1{ } 2{ }3/ 4( )2 s s− −] ]  (refer to (10.6)). 
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10.5 Results 
 
10.5.1 Results on audio quality 
 
The transcoders were implemented using the C programming language, on the Windows 
Intel Pentium-3 1 GHz platform. For our tests, we used the MP3 encoding and decoding 
packages in [108]-[110]. We conducted 2 listening tests. Details of the tests, and their 
results are included in Appendix E. 
 
In each test, the audio pieces are shuffled randomly, and the listener is asked to grade based 
on his opinion (scoring on a scale of 0 to 100) of the audio quality of each audio piece. The 
mean opinion scores (MOS) are obtained by averaging the individual opinion scores. The 
results are shown in Figure 10-13 and Figure 10-14. In the figures, the MOS is indicated by 
a cross 'x' and its 95% confidence interval is indicated by the delimited vertical line. The 
different audio items are abbreviated as follows: 
 

LT-1 Hidden reference of the original PCM signal. 
LT-2 Conventional encoding from original PCM signal to MP3 at 128 kbps. 
LT-3 Conventional transcoding (frame-synchronized),  

from MP3 at 192 kbps to MP3 at 128 kbps. 
LT-4 Conventional transcoding (non-frame-synchronized), 

from MP3 at 192 kbps to MP3 at 128 kbps. 
LT-5 Fixed map transcoding from MP3 at 192 kbps to MP3 at 128 kbps. 
LT-6 Adaptive map transcoding from MP3 at 192 kbps to MP3 at 128 kbps. 
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Figure 10-13 Results of Listening Test 1. 
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The first listening test (shown in Figure 10-13) compares the fixed mapping transcoder (LT-
5) with the conventional transcoder (LT-3 and LT-4). Results show that it is statistically 
comparable to the conventional frame-synchronized transcoder (LT-3). 
 
For the second listening test (shown in Figure 10-14), we also included the adaptive 
mapping transcoder (LT-6). Results show a slight improvement over the fixed mapping 
transcoder (LT-5). 
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Figure 10-14 Results of Listening Test 2. 

 
Both the proposed transcoders (labeled by LT-5 and LT-6) show comparable audio quality 
to the conventional method of frame-synchronized transcoding. 
 
 
10.5.2 Results on execution speed 
 
For these tests, we used the LAME [108] and the Fastmp3 [110] software packages as a 
basis for comparison. These software packages are used to perform conventional 
transcoding, by first decoding a 192 kbps MP3 bitstream to an intermediate PCM signal and 
then re-encoding to a 128 kbps MP3 bitstream. 
 
We used an assortment of songs as material for transcoding. The total playback time of the 
songs was about 140 mins. For a bit-rate of 128 kbps, these songs take up approximately 
128 MB of memory (a typical amount of memory available in a hardware portable player). 
The total time taken to transcode these songs is tabulated in Table 10-2. The RT (real-time) 
ratio is the ratio of the total playback time to the total time taken to perform transcoding. 
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 Time taken RT ratio 
LAME package 27 min 10 secs 5.2 
Fastmp3 package 7 mins 45 secs 18.1 
Fixed map method 1 min 40 secs 84 
Adaptive map method 2 min 2 secs 68.9 

Table 10-2 Results of test on transcoding speed. 

 
In this test, the fixed mapping transcoder was operating at a RT ratio of 84 (i.e. 84 times 
faster than the total playback speed), about 16 times faster than the popular LAME software 
package, and about 5 times faster than the Fastmp3 software package (which is highly 
optimized for fast processing). With additional refinements and coding improvements (such 
as by using hardware language programming), we could expect an even higher RT ratio. 
The adaptive mapping transcoder required about 20% more processing time than the fixed 
mapping transcoder. 
 

10.6 Discussions 
 
The drawback to enforcing a frame-synchronous condition was noted in Chapter 9 to have a 
negative effect on the MP3 audio quality. Nevertheless, we found that very significant 
opportunities for complexity reduction are presented when transcoding frame-
synchronously. To this end, we developed the ultra-fast frame-synchronous MP3 bit-rate 
transcoder. From test results, the audio quality when using this frame-synchronous method 
generally falls within acceptable limits, while being able to achieve a large efficiency gain. 
Thus, the two approaches (frame-synchronous and non-frame-synchronous) present a trade-
off between quality and efficiency, and may be useful in different applications having 
different requirements. 
 
Our work focused on the MP3 to MP3 bit-rate transcoding scenario. The complexity 
reduction methodology that was discussed can also be extended to other same-format bit-
rate transcoding scenarios, e.g. AAC to AAC, or WMA to WMA. In general, this 
methodology can also be applied to cross-format transcoding (i.e. between different 
compression methods), if the synthesis block of the first compression method has the same 
number of subbands and is PR or NPR, when matched with the analysis block of the second 
compression method. Since many compression methods use analysis-synthesis blocks 
which do not form PR or NPR pairs with each other, e.g. AAC has 1024 subbands, while 
MP3 has 576 subbands, this methodology does not apply in most cases of cross-format 
transcoding. 
 

10.7 Summary and future work 
 
10.7.1 Summary 
 
In this chapter, we developed methods to improve bit-rate transcoding for the MP3 method. 
By using frame-synchronization, it is possible to bypass the filter bank blocks, rate-
distortion loop and psychoacoustic modeling. Furthermore, floating point operations (which 
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are normally required in the filter bank, psychoacoustic model and quantization blocks) can 
be avoided by using a lookup table. Using our method, the transcoding process is reduced to 
3 simple stages: Huffman decoding, an integer-to-integer mapping and Huffman encoding. 
Both a fixed map (quantization parameters are constant for the duration of each transcoding) 
and an adaptive map (quantization parameters are selected using a ruleset) were proposed. 
 
The proposed transcoder has a very low complexity and is suitable for power/memory 
constrained applications. Using a software program written using the C programming 
language, we observed execution speeds of approximately 5-16 times faster than the best 
known conventional transcoders. Formal listening tests showed that material transcoded 
using our implementation did not exhibit any significant deterioration in terms of audio 
quality, when compared to conventional frame-synchronized transcoders. 
 
 
10.7.2 Future work 
 
The prototype program that was written in C is not fully optimized, both in terms of audio 
quality and execution speed. The adaptive map rules that were proposed could be further 
improved, such as by taking into account the mean, median, etc. of the vector 1{ }sx� . 
However, it is to be noted that when more factors are taken into account, more computation 
time is also required. The execution speed can also be improved, for instance by using 
hardware programming language and other software tweaks. 
 
Our transcoding method for MP3 can be extended to other methods such as AAC. However, 
implementations and listening tests would need to be conducted to establish an appropriate 
set of transcoding parameters for such methods. 
 
In the proposed transcoder, the Huffman decoding and encoding processes require a 
significant amount of computation (>50%), when compared to the overall amount of 
computation required for transcoding. Future work might consider the possibility of a 
mapping that operates in the bitstream domain, i.e. directly operating on the Huffman-
encoded data. This could further reduce the total computation required, by eliminating the 
need for Huffman decoding and encoding. 
 
It would also be interesting to investigate the possibility of complexity reduction in the case 
of non-frame-synchronized transcoding. The advantages of non-frame-synchronized 
transcoding for MP3 were discussed in Section 9.3. The main problem faced, however, is 
that our method of complexity reduction is dependent on the condition of frame-
synchronization (Sections 10.2-10.4). Future work could include investigations on the 
possibility of reducing the filter bank blocks, psychoacoustic model and quantization 
processes for non-frame-synchronized transcoding. Complexity reduction for the general 
transcoding scenario, between different compression methods, also provides many 
opportunities for future work. 
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Chapter 11 
Conclusion 

 
 
 
 
In this thesis, we approached the subject of efficient audio processing (in the context of 
compressed audio) in  2 parts: Part I: Filter banks and Part II: Audio transcoding.  
 
In Part I, Chapter 3, we considered the design and complexity aspects of the Frequency 
Response Masking (FRM) class of filter banks for single-rate processing. For example, we 
found that when designing the shaping subfilter H0,0(z), its transition width should not be 
greater than 0.3π  for desirable overall complexity. A 32-channel single-rate Fast Filter 
Bank (FFB) with very small transition widths was designed and had only 1/4 of the 
complexity compared to the 32-channel polyphase filter bank. 
 
In Chapter 4, we proposed the node-modulation method which reduces the complexity of 
the FFB, by constraining the subfilters to having real-valued coefficients. For the processing 
of real-valued input signals, we further proposed a pruning method to reduce the FFB 
complexity. Using both the pruning and node-modulation methods, a 16-channel FFB was 
designed, and it had about half of the complexity compared to the original FFB. A matrix 
formulation of the FFB for software implementation was also proposed. By expressing the 
data operations using vectors and matrices, an efficient filtering scheme can be implemented 
using easily available mathematical packages, such as the Basic Linear Algebra 
Subprograms (BLAS), which are highly optimized for specific computer architectures. The 
required computation time was decreased by up to a factor of 3 when compared to the 
normal method of evaluating the convolution result for each subfilter. 
 
In Chapter 5, we considered the application of the FFB to multi-rate signal processing. A 
method of decimation was proposed by the removal of redundant computations required by 
the subfilters at the output stage. It was shown that for some designs with very small 
transition widths, our improved FFB designs were even more efficient than the polyphase 
filter bank. We classified the FRM filter banks into 4 types: Type F-I, Type F-II, Type F-III 
and Type F-IV. The structure of each type was explained and the different types offer trade-
offs between the filter lengths required for the individual subfilters and the overall 
complexity of the filter bank. 
 
In Chapter 6, we analyzed the effects of distortion and aliasing caused by a pair of critically-
decimated FRM analysis-synthesis filter banks. The distortion and aliasing error functions 
for the M-channel FFB were derived, and we found that the masking subfilters have a very 
small contribution to these functions. Therefore, the design of near-perfectly-reconstructing 
(NPR) FRM filter banks can be suitably achieved by using perfectly-reconstructing (PR), or 
NPR 2-channel filter banks as the shaping subfilters. Furthermore, since the masking 
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subfilters have a small impact on the distortion and aliasing error functions as well as the 
overall filter bank transfer functions, we reduced the masking subfilter coefficients to 
signed-powers-of-two (SPT) terms. We designed a 5-channel variable bandwidth filter bank 
using SPT terms. The result was a reduction in complexity by a factor of up to 10, when 
compared to an octave filter bank with similar transition widths. 
 
In Part II, Chapter 8, we analyzed the tandem quantization error for the MPEG 1 Layer 2 
method. Two methods for reducing the total quantization error power of the signal at the 
output of the transcoder were proposed. In the modified quantizer method, the quantization 
characteristics of either the first quantizer q1[m], or the second quantizer q2[m] were modified 
to reduce the tandem noise power at the output. The quantizer selection method takes an 
approach that does not modify the characteristics of the quantizers. Instead, when the 
tandem noise power at the output exceeds a threshold value, a different quantizer is selected 
instead of the originally intended q2[m], such that the resultant tandem noise power is 
decreased. 
 
In Chapter 9, the impact of sample-synchronization on audio transcoding was investigated 
for the MPEG 1 Layer 2 and MP3 methods. For the MPEG 1 Layer 2 method, we proposed 
a measure termed the effective scaling factor [ ]E mζ , which can be used to estimate the 
amount of quantization error incurred during transcoding. For a typical piece of audio, we 
found that the effective scaling factor can be estimated to lie between 1 and 1.23. For the 
MP3 method, we found that the subband samples in the mid-to-high frequency region are 
sensitive to transcoding. In this frequency region, the subband components are prone to a 
condition which we call fluctuating tandem gain, which can give rise to an irregular and 
audible 'loud-soft-loud-soft' sensation during audio playback. 
 
In Chapter 10, we developed methods to improve bit-rate transcoding for the MP3 method. 
We reduced the transcoding process to 3 simple stages: Huffman decoding, an integer-to-
integer mapping and Huffman encoding. Both a fixed map and an adaptive map were 
proposed. The result is a transcoder with very low complexity that is suitable for 
power/memory constrained applications. Using a software program written using the C 
programming language, we observed execution speeds of approximately 5-16 times faster 
than the best known conventional transcoders. Formal listening tests showed that material 
transcoded using our implementation did not exhibit any significant deterioration in terms 
of audio quality, when compared to conventional frame-synchronized transcoders. 
 



 

 
 

Appendix A Length of a Filter 
 

 
 
 
Known methods of estimating the minimum length of an equiripple lowpass FIR filter, 
based on its design requirements, exist ([1]-[2]). The estimates are provided in (A.1) and 
(A.2). 
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Figure A-1 Specifications for a lowpass FIR filter. 

 
The estimated length of the FIR filter (see Figure A-1) with transition width Δ  (with Δ  
being normalized to a sampling frequency of 2π ), passband and stopband ripple pδ  and sδ  
respectively, is given by: 
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Equations (A.1) and (A.2) can be further approximated under certain conditions. For the 
situation when the passband and stopband ripples are equal, i.e. p sδ δ δ= = , then (A.1) can 
be simplified to: 

 ( )ˆ 5.506 / 1
0.5 /
DN δ π

π
∞= − Δ +
Δ

, (A.3) 

and (A.2) can be simplified to: 
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For relatively long filters, (A.1) can be approximated by: 
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Figure A-2 shows the estimated filter lengths for various values of Δ , when 
0.01 0.086pδ = = dB and 0.001 60sδ = = − dB. The dotted line represents the estimated filter 

length using (A.5) and the solid line represents the estimated filter length using (A.1). In 
general, (A.5) is a reasonable approximation of (A.1) for filter lengths which are greater 
than 20. 
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Appendix B Complexity of a Filter 
 

 
 
 
B.1. Overview 
 
In this thesis, we normally assume that the complexity of a filter is approximately given by 
the number of real multiplications required per input sample processed into the filter. For 
example, in hardware designs, the processing time, power consumption and silicon area 
required by a multiplier are significantly greater than that of the adder and delay elements. 
We also make the general assumption that 4 real multiplications are required for the 
multiplication between 2 complex numbers, and 2 real multiplications are required for the 
multiplication between a complex number and a purely real/imaginary number. 
 
In this appendix, we summarize and explain how we arrive at our complexity estimates for a 
variety of scenarios that are encountered throughout this thesis. 
 
 
B.2. Summary 
 
Consider an FIR filter h(n) with length N, and input signal x(n). We assume the causal form 
of the filter here, where h(n) is defined from n=0 to n=N-1. 
 

Filter Description Complexity Comments 
General-case FIR h(n) real, x(n) real. 

h(n) real, x(n) complex; or 
 h(n) complex, x(n) real. 
h(n) complex, x(n) complex 

N 
2N 

 
4N 

 

 

Linear-phase FIR h(n) real, x(n) is real: 
 N is odd. 
 N is even. 

 
(N+1)/2 

N/2 
 

 

Half-band FIR h(n) real, x(n) real. 1 + (N-3)/4 
 

Refer to 
Section B.3 

Modulated linear-
phase FIR, 
N is odd. 

( )( )j dH e zθ− − : 
 x(n) is real. 
 x(n) is complex. 

( )( ), / 4j dH e z cθ θ π− − = : 
(where c is an arbitrary integer) 
 x(n) is real. 
 x(n) is complex. 

 
N 

2N 
 
 

(N+1)/2 
N+1 

 

Refer to 
Section B.4 

Taking the real part 
of the outputs: 
a b( ) ( )h n x n∗  

N is odd. 

General-case FIR filter: 
 h(n) real, x(n) complex; or 
 h(n) complex, x(n) real. 
 h(n) complex, x(n) complex 

 
N 
 

2N 

Refer to 
Section B.5 
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(continued from previous page) 

Filter Description Complexity Comments 
 Linear-phase FIR filter: 

 h(n) real, x(n) complex; or 
 h(n) complex, x(n) real. 
 h(n) complex, x(n) complex 

 
(N+1)/2 

 
(N+1) 

 

Table B-1 Summary of filter complexities. 

 
Note: We only listed the basic properties in the above table. The complexity of filters with 
mixed properties can be further derived. For example, a complex half-band FIR filter for a 
real input signal would have a complexity of 2[1 + (N-3)/4]. 
 
 
B.3. Half-band FIR filter  
 
Half-band FIR filters have the following properties: 
 

• N is odd, and N is defined as N=4a+3 where 0a ≥  is an integer; 
• h(n) = 0 for all odd n except for n=(N-1)/2; 
• ( )( 1) / 2 0.5h N − = ; 
• it is symmetrical about its center coefficient. 

 
The delay d is equal to (N-1)/2. The convolution operation of h(n) with x(n) can be 
described by: 

 [ ]
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h n x n h n x n n
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−

=

−

=
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∑
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The zero-valued coefficients require no computations. Furthermore, since the center 
coefficient is equal to 0.5, its computation does not require any multiplication and is trivial. 
Since ( ) ( ) ( ) / 2h d x n d x n d− = − , we can simply perform a single-bit right-shift of x(n'-n) to 
arrive at the result. Alternatively, we might choose to normalize the filter by a factor of 2 
such that ( ) 1h d = . 
 
Thus, the number of multiplications required for real h(n) and real x(n) is given by a+1. 
This is equal to 1 ( 3) / 4N+ − . 
 
 
B.4. Modulated linear-phase FIR filter  
 
Consider the linear-phase FIR filter H(z) with odd N, where all its coefficients are real. 
When the filter is modulated by an angle of θ  radians, the resultant filter can be described 
by ( )'( ) ( )j dH z H e zθ− −= , where d=(N-1)/2 is the delay of the filter. 
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Then, H'(z) is conjugate-symmetrical: 
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The convolution operation of h'(n) with x(n) can be described by: 
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where Re{.} denotes taking the real part of, and Im{.} denotes taking the imaginary part of. 
 
When x(n) is real, N real multiplications are required. When x(n) is complex, 2N real 
multiplications are required. 
 
Let us now consider a few special values of θ  which we encounter in this thesis. 
 

/ 4θ π= : 
 
The function / 4j ne π  takes on values with unity magnitude and a periodic phase difference of 

/ 4π . This expands into a series that takes on values of …, 1, (1 ) 2j+ , j, ( 1 ) 2j− + , -
1, ( 1 ) 2j− − , -j, (1 ) 2j− , … . 
 
Therefore, the coefficients of the filter ( / 2 )'( ) ( )j dH z H e zπ− −=  take on values that are either: 
(1) purely real, (2) purely imaginary, or (3) complex numbers with equal magnitude real and 
imaginary parts. Only 1 real multiplication is required per coefficient for such a filter when 
x(n) is real. 
 

/ 2θ π= : 
 
The function / 2j ne π  expands into a series that consists of purely real and purely imaginary 
numbers. Similarly, only 1 real multiplication is required per coefficient for such a filter 
when x(n) is real. 
 
In general, for a filter with transfer function ( )'( ) ( )j dH z H e zθ− −= , where / 4cθ π=  and c is 
an arbitrary integer, the complexity in terms of real multiplications is taken to be equal to 
the real filter H(z). However, we note that the number of additions is increased for the 
modulated filters. 
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B.5. Taking the real-outputs of a filter 
 
We denote this operation as a b( ) ( )h n x n∗ , or equivalently { }Re ( ) ( )h n x n∗ , where: 

 

a b

a b

1

' 0

1

' 0

( ) ( ) ( ') ( ')

( ') ( ')

N

n

N

n

h n x n h n x n n

h n x n n

−

=

−

=

∗ = −

= −

∑

∑

c fd gd gd ge h

. (B.4) 

Consider the operation a bhx , where h and x are two numbers. This can be evaluated as: 

 a b Re{ }Re{ } Im{ }Im{ }hx h x h x= − . (B.5) 

When both the numbers h and x are complex, we require 2 real multiplications to evaluate 
a bhx . When either h or x is complex and the other is real, we require 1 real multiplication to 

evaluate a bhx . Thus, the evaluation of a b( ) ( )h n x n∗  requires 2N real multiplications if both 
h(n) and x(n) are complex and N real multiplications if only one of h(n) and x(n) is complex 
for a general-case FIR filter. For a linear phase FIR filter, the evaluation of a b( ) ( )h n x n∗  
requires N+1 real multiplications if both h(n) and x(n) are complex and (N+1)/2 real 
multiplications if only one of h(n) and x(n) is complex. 
 
 
B.6. Filter complexity in a multirate system 
 
Consider the general-case FIR filter H(z) with length N. The complexity of the filter is 
approximately N. Let us assume that the output of the filter is decimated by a factor of L, 
Figure B-1(a). The filtering operations need to be evaluated only once for every L input 
samples, and thus the complexity of the filter is reduced by a factor of L. Therefore, N/L 
multiplications are required per input sample. Consider now a cascade of 2 filters (Figure B-
1(b)), H1(z) and H2(zL') where the second filter is interpolated by a factor L'. Their lengths 
are N1 and N2 respectively. If L' is an integer factor of L, then that integer decimation factor 
can be carried to the front of H2, as shown in Figure B-1(c). The complexity of the 2 filters 
can then be calculated as N1/L' + N2/L. 
 

H(z) L

(a)

H2(z
L' ) LH1(z)

H2(z) L/L'H1(z) L'

(b)

(c)  
Figure B-1 Complexity of filters in a multirate system. 



 

 
 

Appendix C MP3 Description 
 

 
 
 
A detailed description of the MP3 method can be obtained from the ISO MP3 specifications 
[71]. In this appendix, we provide an overview of the MP3 method which is relevant to our 
work on audio transcoding. Figures C-1(a) and (b) show the general block diagrams for a 
typical MP3 encoder and decoder respectively. 
 

Huffman
encodingQuantizerRate-distortion

loop

Aliasing
reduction

Psychoacoustic
modelFFT

MDCT
window

Analysis
filter bank

PCM
signal, x0

MP3
bitstream A1

x0[m]

x1[m]

Analysis block

 
(a) MP3 encoder block diagram. 

Huffman
decoding Rescale Aliasing

reduction
MDCT
window

Synthesis
filter bank

PCM
signal, x1

x1[m]
MP3

bitstream A1
Synthesis block

 
(b) MP3 decoder block diagram. 

Figure C-1 MP3 encoder and decoder block diagrams. 

 
C.1. Filter bank block 
 
The input PCM signal, which we denote by x0, is first separated into its subband 
components x0[m] (for 0 1m M≤ ≤ −  where M is the total number of subbands). The analysis 
filter bank separates x0 into 32 subbands and the Modified Discrete Cosine Transform 
(MDCT) window further separates each of these 32 subbands into 18 subbands (long 
window) or 6 (short window) subbands. Therefore, M is either 576 (long window) or 192 
(short window). 
 
The psychoacoustic model analyzes the audio content of the input and selects the window. 
Normally, long windows are selected (more than 90% of the time for a typical piece of 
music). Short windows are selected for sections of the audio material where there is a 
significant change in signal power in a short span of time, such as for staccato music. In this 
thesis, we simplify by assuming only long windows. The selection of short windows does 
not impact our results. 
 
The aliasing reduction block is used to reduce the aliasing caused by overlap between 
adjacent subbands of the analysis filter bank. The spectral content of x0 is concurrently 
analyzed using a 1024-point FFT and a psychoacoustic model, in a parallel branch. 
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We represent the subband samples in vector form consisting of elements x0[m]: 

  0 0[0] 0[1] 0[ 1]

T

Mx x x −⎡ ⎤= ⎣ ⎦x " , (C.1) 

where x0 is a vector of length M, and assumes real values from –1.0 to 1.0. 
 
 
C.2. Scalefactor bands 
 
The samples in the vector x0 are grouped into scalefactor bands. There are 22 scalefactor 
bands for long windows and 13 scalefactor bands for short windows. We represent the 
group of subband samples, which belongs to the scalefactor band denoted by s, using the 
vector 0{ }sx : 

 
10{ } 0[ ] 0[ 1] 0[ 1]s s s

T

s m m mx x x
++ −⎡ ⎤= ⎣ ⎦x " , (C.2) 

where ms is the index of the subband corresponding to the first element of the scalefactor 
band s, 0 21s≤ ≤  for long windows and 0 12s≤ ≤  for short windows. Information on the 
values of ms can be obtained from the MP3 specifications [71]. 
 
The vector x0 can be represented using the scalefactor band vectors: 

  

0{0}

0{1}
0

0{21}

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x
x

x

x
#

, for long windows and 

0{0}

0{1}
0

0{12}

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x
x

x

x
#

 for short windows. (C.3) 

The grouping of each scalefactor band varies (i.e. the values of ms vary), depending on the 
sampling frequency (sampling frequencies of 32, 44.1 and 48 kHz are supported). Again, 
sampling frequency does not have an impact on our results, and we consider only the 
sampling frequency of 44.1 kHz in this thesis. For illustrative purposes, Figure C-2 shows 
the division of the subband samples into 22 scalefactor bands for a sampling frequency of 
44.1 kHz and a long window. Subbands which are located between 2 vertical markers 
belong to the same scalefactor band. In this example, ms=342 for s=20, and ms=418 for 
s=21. Therefore, the scalefactor band vector for s=20 is denoted as 

0{21} 0[342] 0[343] 0[417]

T
x x x⎡ ⎤= ⎣ ⎦x " . 

 
 

134 238 3420 575
subband m418

 
Figure C-2 Scalefactor band division for MP3, 44.1 kHz, long window. 
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C.3. Quantization 
 
The objective of the rate-distortion loop is to minimize perceptual distortion, within the 
limits of the bit-rate constraint (e.g. 192 kbps). Perceptual distortion is determined by 
weighting the quantization error in each scalefactor band, using the psychoacoustic model. 
The quantization of the subband samples is performed on a per-scalefactor band basis. The 
subband samples in each scalefactor band, x0{s} are quantized to the values x1{s} by the 
quantizer q1{s}: 

 

( )
1 1 1{ } 1

1[ ] 1{ } 0[ ]

4 /3 / 4
1[ ] 2 g f s

m s m

m

x q x

x α φ− +

=

= ± ⋅ ] ] ] ]� , (C.4) 

where 0[ ]mx  is an element of 0{ }sx , 1[ ]mx  is an element of 1{ }sx , and: 
 

1[ ]mx�  is an integer, and is constrained to take on values in the range of -8206 to 
8206 (according to the MP3 specifications); 

1g]  is the value of the global gain; 

1{ }f s]  is the value of the scalefactor; 

1α]  is the scalefactor multiplier and takes on a value of either 0.5 or 1 (selected 
by the encoder); 

1φ]  consists of other encoder-specific variables. These variables are sometimes 
used for fine-tuning and do not have a significant impact in our context; 

 and the signs of 1[ ]mx  and 1[ ]mx�  are taken equal to the sign of 0[ ]mx . 
 
The quantizer q1{s} is defined by the lumped quantization parameter 1{ }s] , where 

1{ } 1 1 1{ } 1/s g f sα φ= − + −] ] ] ] ] . The quantizers used for MP3 are non-uniform, i.e. the 
quantization step-sizes are not equal. The amount of compression achieved (bit-rate) is 
mainly determined by the number of bits required to code the integer vector 1x� . Low bit-
rates are usually achieved by increasing the global gain 1g]  or decreasing the scalefactor 

1{ }f s] . 
 
The quantization error is given by: 

 

( )

( ){ }
( ) ( ){ }

1{ } 1{ }

1{ } 1{ } 1{ }

1[ ] 1{ } 0[ ] 0[ ]

4/33/ 4

0[ ] 0[ ]

4/33/ 4 3/ 4

0[ ] 0[ ]

2 2

2 2 2

s s

s s s

m s m m

m m

m m

e q x x

x x

x x

−

− −

= −

⎡ ⎤= ℜ −⎢ ⎥⎣ ⎦

⎡ ⎤= ℜ −⎢ ⎥⎣ ⎦

] ]

] ] ] , (C.5) 

where [.]ℜ  denotes rounding the bracketed term to its nearest integer. Since the value of 

( ) ( )1 1
3/ 4 3/ 4

0[ ] 0[ ]2 2m mx x− −⎡ ⎤ℜ −⎢ ⎥⎣ ⎦
] ]  is distributed between -0.5 and 0.5 (error of rounding a 
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real number to its nearest integer), we can see from (C.5) that the magnitude of the 
quantization error e1[m] tends to increase with 12]  as 1]  is increased. Therefore, decreasing 
the bit-rate constraint increases the coarseness of the quantization. 
 
 
C.4. MP3 frame 
 
The quantized vector 1x�  is Huffman-encoded (lossless) to further reduce the bit-rate. The 
Huffman-encoded data, quantizer parameters and information relevant to reconstruction are 
then arranged into a bitstream (one-dimensional string of bits), which we denote as A1. An 
MP3 bitstream is made up of a series of MP3 frames. The organization of an MP3 frame is 
shown in Figure C-3. 
 

Header Sideinfo Maindata
(Huffman encoded data of quantized subband samples and scalefactor gains)

granule 0

Left audio channel

granule 1

Right audio channel Left audio channel Right audio channel

 
Figure C-3 Layout of an MP3 frame. 

 
Header – Contains general information about the encoded frame, such as the compression 
method (e.g. MP3), encoded bit-rate, number of audio channels, and sampling frequency, 
etc. 
 
Sideinfo – Contains information about the composition of the current MP3 frame, such as 
the selection of short or long windows, number of bits used for the encoding, and the 
Huffman codes that were used, etc. 
 
Maindata – Consists of 2 granules. An MP3 granule contains information for the left and 
right audio channels. Each audio channel contains 576 samples of quantized subband 
samples 1[ ]mx�  (which are Huffman-encoded). In the case of short windows (M=192), 3 
consecutive vectors of 1x�  form a granule-channel. In the case of long windows (M=576), 1x�  
forms a granule-channel by itself. For MP3, a single-channel of a single granule is 
equivalent to a quantization-frame (q-frame, see Section 7.4.1). 
 
 
C.5. Decoding 
 
The MP3 bitstream A1 can be decoded back to the PCM signal x1 by using an MP3 decoder. 
The decoder functions are the reverse of the encoder functions. The MP3 bitstream is first 
Huffman-decoded. The real-valued subband samples 1[ ]mx  are retrieved by rescaling the 
integer subband data 1[ ]mx� . The PCM signal x1 is then reconstructed from 1[ ]mx  by using the 
aliasing reduction block, MDCT and synthesis filter bank. 
 



 

 
 

Appendix D Input-to-output Relationship for a 
Transcoder 

 

 
 
 
This appendix provides mathematical substantiation to the section on sample-
synchronization in Chapter 7. 
 
D.1. System overview 
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(Repeat of Figure 7-4.) 

 
We refer to the transcoder model shown in Figure 7-4, repeated here for convenience. Note 
that n and η  are time indices for different sampling rates. The sampling rate of η  is 1/M (M 
being the total number of subbands) times that of the sampling rate of n for the purpose of 
our discussion. The description of Figure 7-4 was provided in Section 7.3. In this appendix, 
we focus on the transcoding stage. Consider the cascaded synthesis-analysis blocks G and 
H. The inputs to these blocks are denoted by x1(η ) and the outputs by x'1(η ), where: 

 1 1[0] 1[ ] 1[ 1]( ) ( ) ( ) ( )
T

m Mx x xη η η η−⎡ ⎤= ⎣ ⎦x " " , (D.1) 

and: 

 1 1[0] 1[ ] 1[ 1]' ( ) ' ( ) ' ( ) ' ( )
T

m Mx x xη η η η−⎡ ⎤= ⎣ ⎦x " " . (D.2) 
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Let 1[ ] ( )mx n↑  be the interpolated version of x1[m](η ): 

 1[ ]
1[ ]

( ), when  
( )

0, otherwise.
m

m

x n M
x n

η η
↑

=⎧
= ⎨

⎩
 (D.3) 

Let 1[ ]' ( )mx n↑  be the interpolated version of x'1[m](η ): 

 1[ ]
1[ ]

' ( ), when  
' ( )

0, otherwise.
m

m

x n M
x n

η η
↑

=⎧
= ⎨

⎩
 (D.4) 

 
 
D.2. Mathematical description of transcoding stage 
 
Define 1 [ ] ( )hg mx n↑  to be the m-th output of H prior to being decimated by a factor of M, 
when H is cascaded with G. The input-to-output relationship of the cascaded synthesis-
analysis blocks from 1[ ] ( )mx n↑  to 1 [ ] ( )hg mx n↑  is: 

 
1

[ ] [ ']1 [ ] 1[ ']
' 0

( ) ( ) ( ) ( )
M

m mhg m m
m

x n h n g n x n
−

↑ ↑
=

⎛ ⎞= ∗ ∗⎜ ⎟
⎝ ⎠
∑ , (D.5) 

where ∗  is the convolution operator. 
 
Define the cascaded transfer function [ ', ] [ '] [ ]( ) ( ) ( )m m m mF z G z H z= , or in the time domain: 

 [ ', ] [ '] [ ]( ) ( ) ( )m m m mf n g n h n= ∗ . (D.6) 

Then: 

 
1 1

[ ', ]1 [ ] 1[ ']
' 0 ' 0

( ) ( ') ( ')
M N

m mhg m m
m n

x n f n x n n
− −

↑ ↑
= =

= −∑ ∑ , (D.7) 

where N is the length of the transfer function F[m',m](z). 
 
Since 1[ ] ( )mx n↑  is interpolated by a factor of M, 1[ ] ( )mx n↑  consists of only 1 non-zero value 

for every M samples. Define the variables n0 and n1, such that 10 1n M≤ ≤ −  and n = n0+n1. 
Furthermore, let n0 take on values such that: 

 
( / 1)1

0 [ ', ] 01 [ ] 1[ ']
' 0 ' 0

( ) ( ') ( ')
N MM

m mhg m m
m n

x n f Mn x n Mn
−−

↑ ↑
= =

= −∑ ∑ , (D.8) 

where we assume that N is a multiple of M. In the case that N is not a multiple of M, we can 
simply append zeroes at the end of F[m',m](z) until N is a multiple of M, without affecting the 
result. 
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Note: We can alternatively view n0 as the set of sample times at which 1[ ] ( )mx n↑  takes on 
non-zero values. The variable n0 takes on the set of values that are incremented by M each 
time. 
 
Then, 1 [ ] ( )hg mx n↑  can be expressed as: 

 
( / 1)1

0 1 [ ', ] 1 01 [ ] 1[ ']
' 0 ' 0

( ) ( ') ( ')
N MM

m mhg m m
m n

x n n f n Mn x n Mn
−−

↑ ↑
= =

+ = + −∑ ∑ . (D.9) 

Since 1[ ]' ( )mx η  is decimated by a factor of M, 1[ ]' ( )mx n↑  consists of only 1 non-zero value 

for every M samples. Let the sample time at which 1[ ]' ( )mx n↑  is non-zero be 0 Dn n d= + , 

where dD is a constant value and 0 1Dd M≤ ≤ − . Then: 

 

0 01[ ] 1 [ ]

( / 1)1

[ ', ] 01[ ']
' 0 ' 0

' ( ) ( )

( ') ( ')

D Dm hg m

N MM

m m D m
m n

x n d x n d

f d Mn x n Mn

↑ ↑

−−

↑
= =

+ = +

= + −∑ ∑ , (D.10) 

and: 

 0 11[ ]' ( ) 0mx n n↑ + = , when 1 Dn d≠ . (D.11) 

The delay of the cascaded synthesis-analysis blocks (represented by the set of transfer 
functions F[m',m](z)) is defined as dF. The external delay (such as delays inserted by the user) 
is defined as dE. Then, the system is said to be sample-synchronized if the total delay d is a 
multiple of M: 

 E F Dd d d d kM= + − = , (D.12) 

where k is an integer. 
 
For a pair of PR synthesis-analysis blocks, when the system is sample-synchronized, the 
output 1[ ]' ( )mx n↑  becomes a delayed version of the input 1[ ] ( )mx n↑ , i.e. 

1[ ] 1[ ']' ( ) ( )m mx n kM x n↑ ↑+ = . The values of 1[ ]' ( )mx n↑  are: 

 0 01[ ] 1[ ']' ( ) ( )m mx n kM x n↑ ↑+ = , 

 0 1 0 11[ ] 1[ ']' ( ) ( ) 0m mx n n kM x n n↑ ↑+ + = + = , for 11 1n M≤ ≤ − . (D.13) 

This is proved in the next sub-section. 
 
 
D.3. Proofs 
 
In this section, we prove that 1[ ] 1[ ']' ( ) ( )m mx n kM x n↑ ↑+ =  for a pair of PR synthesis-analysis 
blocks, when the total delay d is a multiple of M. 
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Figure D-1 Illustration of cascaded analysis-synthesis 

blocks having different decimation factors. 

 
Figure D-1 illustrates the notations for the signals w0(n),…, w5(n) and y0[m](n),…, y5[m](n) 
that are used in this section. It is to be noted that in this section, the signals which we 
represent using the symbols w0(n),…, w5(n) and y0[m](n),…, y5[m](n) are not to be associated 
with signals having the same symbol outside of this section. 
 
Let the pair of analysis-synthesis blocks H and G be perfectly reconstructing when they are 
critically decimated (L=M), and the sum of their delays be dF. The requirement to prove that 

1[ ] 1[ ']' ( ) ( )m mx n kM x n↑ ↑+ = , when E F Dd d d d kM= + − = , can be established by proving that 
y5[m](n+kM) = y3[m](n) when d kM= , in the context here (Figure D-1(c)). 
 
Consider the system in Figure D-1(a), where the analysis and synthesis blocks are operated 
in single-rate mode, i.e. the decimation and interpolation factors L=1. 
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Property:  When H and G are operated in single-rate mode (L=1), the input-to-output PR 
property is retained, i.e. w1(n) and w2(n) are delayed versions of w0(n). 
 
Proof of property:  A PR pair of H and G when operated in critically-decimated mode 
(L=M) has the property (refer to Section 6.1): 

  
1

[ ] [ ]
0

( ) ( ) F

M
d

m m
m

H z G z z
−

−

=

=∑ . (D.14) 

When the same H and G are operated in single-rate mode (L=1), (D.14) exactly describes 
the input-to-output (from w0(n) to w1(n)) transfer function of a pair of H and G. Therefore, 
w2(n+2dF) = w1(n+dF) = w0(n) in Figure D-1(a). 
 
Since 1[ ] [ ] 0( ) ( ) ( )m my n h n w n= ∗  and 2[ ] [ ] 1 [ ] 0( ) ( ) ( ) ( ) ( )m m m Fy n h n w n h n w n d= ∗ = ∗ − , we 
further conclude that y2[m](n) is a delayed version of y1[m](n): 

 2[ ] 1[ ]( ) ( )m F my n d y n+ = . (D.15) 

Consider now the system in Figure D-1(b), where the first set of analysis-synthesis blocks is 
critically decimated (L=M) and the second set is single-rate (L=1). Since H and G are PR 
when L=M, w4(n+2dF) = w3(n+dF) = w0(n). Relate y3[m](n) in Figure D-1(b) to y1[m](n) in 
Figure D-1(a): 

 1[ ] 0 1 1
3[ ] 0 1

1

( ),  when  is a multiple of 
( )

0,                    when 0,
m

m

y n n n M
y n n

n
+⎧

+ = ⎨
≠⎩

 (D.16) 

where n0 is the set of sample times when y3[m](n) takes on non-zero values, and takes on 
values which are incremented by M each time; and n1 is an integer such that 0 1n n n= +  and 

10 1n M≤ ≤ − . 
 
Since H and G are PR, w3(n+d) = w0(n). Thus, w3(n) = w1(n). 
 
It follows that y4[m](n) = y2[m](n). Thus, 4[ ] 0 3[ ] 0( ) ( )m F my n d y n+ = . 
 
Consider finally the system in Figure D-1(c), where both sets of analysis-synthesis blocks 
are critically decimated (L=M). Relate y5[m](n) in Figure D-1(c) to y4[m](n) in Figure D-1(b): 

 4[ ] 0 1 1
5[ ] 0 1

1

( ),  when 
( )

0,                           when ,
m E D

m
D

y n n d n d
y n n

n d
+ − =⎧

+ = ⎨
≠⎩

 (D.17) 

where dD is a constant ( 0 1Dd M≤ ≤ − ), such that y5[m](n) takes on non-zero values only at 
the sample times given by n = n0+dD, and dE is a delay external to the transcoder, that is 
arbitrarily chosen by the user. In practice, this can be easily performed by delaying the 
decoded PCM signal w3(n), prior to the encoding stage. 
 
Therefore, 5[ ] 0 1[ ] 0( ) ( )m D m D F Ey n d y n d d d+ = + − − . 
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Since 1[ ] 0 3[ ] 0( ) ( )m D F E m D F Ey n d d d y n d d d+ − − = + − −  only when D F Ed d d− −  is a 
multiple of M (i.e. F E Dd d d kM+ − = , where k is an integer), 5[ ] 0 3[ ] 0( ) ( )m my n d y n+ =  only 
when: 

 F E Dd d d d kM= + − = . (D.18) 

When d is a multiple of M, we say that the transcoding system is 'sample-synchronized'. 
When the transcoding system is not sample-synchronized, the external delay dE can be 
varied to enforce sample-synchronization. 
 
 
D.4. Summary 
 
Let the set of transforms relating the inputs x1(η ) of the cascaded synthesis-analysis blocks 
H and G  to the outputs x'1(η ) be represented simplistically as: 

 ( )1 1' ( ) ( )dη η=x F x , (D.19) 

where x1(η ) and x'1(η ) are vectors comprising 1[ ] ( )mx η  and 1[ ]' ( )mx η  respectively (see 
(D.1) and (D.2)). 
 
The transform operator Fd consists of f[m',m] for 0 , ' 1m m M≤ ≤ −  (see (D.6)), and is 
described as follows. 
 
Let 1[ ] ( )mx n↑  be the interpolated version of 1[ ] ( )mx η  (see (D.3)), and 1[ ]' ( )mx n↑  be the 

interpolated version of 1[ ]' ( )mx η  (see (D.4)). Then: 
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= + −∑ ∑ , (D.20) 

where n0 takes on values such that 01[ ] ( )mx n↑  are non-zero values, and dD takes on values 

such that 01[ ]' ( )Dmx n d↑ +  are non-zero values. 
 
Let the total delay of the transcoder be d, where E F Dd d d d= + − , dE is the external delay, 
and dF is the delay due to only H and G. 
 
When d is equal to 0 or a multiple of M, the transcoding system is sample-synchronized. 
The output becomes a delayed version of the input: 

  1 1' ( / ) ( )d Mη η+ =x x . (D.21) 

 
 



 

 
 

Appendix E Listening Test Results 
 

 
 
 
In Chapter 10, an ultra-fast method of implementing an MP3 bit-rate transcoder was 
proposed.  Listening tests were conducted based on our implementation of the transcoder in 
the C programming language. The platform used for our tests was Microsoft Windows 
running on an Intel Pentium 3-1 GHz processor. In this appendix, we provide a detailed 
overview of the conduct of the listening tests as well as the results. 
 
E.1. Listening test overview 
 
We performed 2 separate listening tests. Listening Test 1 was targeted at our 
implementation of a fixed mapping transcoder, and Listening Test 2 was targeted at our 
implementation of an adaptive mapping transcoder. 
 
In each listening test, listeners were asked to listen to a range of audio material. The audio 
material was processed using both our methods and conventional methods of encoding and 
transcoding. For the conventional encoders/decoders, we use the Fast MP3 encoder 
(fmp3ENC) and the Fast MP3 decoder (fmp3DEC) ([110]). The fmp3ENC and fmp3DEC 
are two very efficient and high quality MP3 encoder and decoder respectively, developed by 
the Philips PDSL Sound Coding Group. The various encoding/transcoding methods that 
were used in the generation of audio samples for the listening test are shown in Figure E-1. 
The generated audio samples are designated labels from LT-1 to LT-6. 
 

fmp3ENC
at 192 kbps

fmp3ENC
at 128 kbps

fmp3ENC
at 192 kbps

fmp3ENC
at 192 kbps

fmp3ENC
at 192 kbps

Frame-sync
delay element

fmp3ENC
at 128 kbps

fmp3ENC
at 128 kbps

Proposed “fixed"
bitrate transcoder

PCM audio
source

fmp3DEC

fmp3DEC

fmp3DEC

fmp3DEC Proposed “adaptive"
bitrate transcoder

LT-1
hidden reference

LT-2
conventional encoding
to 128 kbps

LT-3
conventional transcoding to 128
kbps (frame-synchronized)

LT-4
conventional transcoding to 128
kbps (non-frame-synchronized)

LT-5
proposed transcoding to
approximately 128 kbps

LT-6
proposed transcoding to
approximately 128 kbps  

Figure E-1 Illustration of the various encoding/transcoding 
methods used to generate the listening test samples. 

 
The listeners then provided an opinion score (on a scale of 0 to 100) to judge their perceived 
audio quality of the material.  The EBU MUSHRA (European Broadcasting Union Multi-
stimulus test with hidden reference and anchors) 100-points scale [111]-[115] was used (see 
Table E-1). 



216 Appendix E:  Listening Test Results 

 
Score Label 
100  
90 Excellent 
80  
70 Good 
60  
50 Fair 
40  
30 Poor 
20  
10 Bad 

Table E-1 The grading scale used in the listening test. 

 
Figure E-2 shows the user interface for the listening test tool. 
 

 
Figure E-2 User interface for the listening test tool. 

 
E.2. Listening test setup 
 
The listening test was held in an enclosed listening room with minimal external 
interference. The test was conducted using headphones. Eight listeners took part in the test.  
 
The test contained 9 stereo items (see Table E-2), and the sampling frequency used for all 
items is 44.1 kHz. These 9 items have been used in the development of MP3 audio encoders 
and are known to be critical to encoding artifacts during compression.  
 
For each session, there are 9 trials, 1 trial for each of the 9 stereo items. One trial consists of 
4 different encodings, as well as the original (used as a hidden reference). The order of the 
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trials and items are randomized for each session. It takes a listener about twenty minutes to 
half an hour to complete the listening test. 
 

Item no. Item name Duration in 
seconds 

S-1 Castanets 7 
S-2 Eye in the sky (by Alan Parson's Project) 17 
S-3 Pop music (by ABBA) 27 
S-4 Tom's Diner (by Suzan Vega) 10 
S-5 Pitch pipe 27 
S-6 Trumpet 10 
S-7 Layla (by Eric Clapton) 19 
S-8 Harpsichord 7 
S-9 Orchestral 12 

Table E-2 Items used in the listening test. 

 
 
E.3. Listening Test 1 and 2 summary results 
 
The following charts plot the results of the listening tests. The results for Listening Test 1 
was shown in Figure E-3 (repeated from Figure 10-13), and the results for Listening Test 2 
was shown in Figure E-4 (repeated from Figure 10-14). We repeat these 2 figures below for 
convenience. The x-axis shows the encoding/transcoding method used (see Figure E-1). The 
y-axis represents the Mean Opinion Score (MOS) according to the EBU MUSHRA 100-
points scale. The MOS is the average of the individual opinion scores, and is marked with a 
cross 'x'. The 95% confidence interval range is indicated with a delimited vertical line. 
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Figure E-3 (Repeat of Figure 10-13) - Results of Listening Test 1. 
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Figure E-4 (Repeat of Figure 10-14) - Results of Listening Test 2. 

 
E.4. Listening Test 1 individual results 
 
The following figures show the individual results for Listening Test 1, for the items 
numbering from S-1 to S-9. 
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Figure E-5 Individual results for Listening 
Test 1, from S-1 to S-9. 
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E.5. Listening Test 2 individual results 
 

The following figures show the individual results for Listening Test 2, for the items 
numbering from S-1 to S-9. 
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Figure E-6 Individual results for 
Listening Test 2, from S-1 to S-9. 
 

 
 
E.6. Conclusions 
 
Listening Test 1 (Figure 10-13) shows that our fixed mapping transcoder (LT-5) performs 
reasonably well, when compared to the conventional frame-synchronized transcoder (LT-3). 
The MOS for LT-5 is slightly higher than LT-3, and the confidence intervals overlap 
significantly. It can be seen that the non-frame-synchronized transcoder (LT-4) results in 
better audio quality than both the frame-synchronized methods, but is still inferior to non-
transcoded 128 kbps material (LT-2). 
 
In Listening Test 2 (Figure 10-14), item LT-3 was replaced by LT-6 (which represents our 
adaptive mapping transcoder). It can be seen that the MOS for the adaptive mapping 
transcoder (LT-6) is slightly higher than the fixed mapping transcoder (LT-5). Furthermore, 
its upper confidence interval range overlaps with the lower confidence interval range of the 
non-frame-synchronized transcoder (LT-4). Contrast this with the fixed mapping transcoder 
(LT-5), which does not overlap with LT-4. 
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Samenvatting 
 

 
 
 
Audio transcodering is de conversie van digitale audio van een gecomprimeerde vorm A 
naar een gecomprimeerde vorm B met andere compressie-eigenschappen, zoals bitsnelheid, 
bemonsteringsfrequentie, of compressiemethode. De gebruikelijke methode van 
transcodering is om eerst A te decomprimeren, gevolgd door een compressiestap naar B. De 
hiertoe benodigde rekenoperaties betreffen in belangrijke mate de synthesefilterbank die 
gebruikt wordt bij de decompressiestap, en de analysefilterbank die gebruikt wordt bij de 
daaropvolgende compressiestap. 
 
In dit proefschrift, dat bestaat uit twee delen, worden methoden voor efficiënte 
implementatie van filterbanken en audio transcoders gepresenteerd. In het eerste deel wordt 
een nieuwe klasse van Frequency Response Masking (FRM) filterbanken geïntroduceerd. 
Deze filterbanken worden normaliter gekarakteriseerd als een cascade van subfilters in een 
boomstructuur, waarbij de individuele filters een kleine lengte hebben. Er worden diverse 
methoden van complexiteitsreductie voorgesteld voor scenario’s waarbij de filterbanken in 
single rate of multi-rate mode werken, alsook voor scenario’s waarbij een reëelwaardig of 
complex ingangssignaal gebruikt wordt. Een efficiënte variabele bandbreedte FRM 
filterbank wordt ontworpen door gebruik te maken van 'signed-powers-of-two' reductie van 
de subfilter coëfficiënten. Ons ontwerp heeft een complexiteit die een orde van grootte lager 
is dan die van een octaaf filterbank met gelijke specificaties. 
 
In het tweede deel wordt het audio transcodeerproces geanalyseerd. Het transcoderen van 
audio wordt gemodelleerd als een gecascadeerd quantisatie proces, wat vervolgens voor een 
ingangssignaal onder verschillende condities geanalyseerd wordt voor de MPEG 1 Layer 2 
en MP3 compressie methoden. Een belangrijke parameter is de transcodeervertraging van 
ingang tot uitgang, die een invloed heeft op de uiteindelijke audiokwaliteit. Er worden ook 
methoden voorgesteld om de fout in een gecascadeerd quantisatieprocess te verkleinen. 
Tenslotte presenteren we een ultra-snelle MP3 transcoder die slechts gebruik maakt van 
integer operaties en geïmplementeerd is in software. Onze implementatie laat een 
verbetering in executiesnelheid zien met een factor 5 tot 16 ten opzichte van andere best 
bekende transcoders. 
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