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Introduetion 

In the middle of the 20th century Huffman, cf. [ Huffman 54 ] , and Muller and 
Bartky, cf. [ Muller- Bartky 59 ], started to develop theories for designing 
asynchronous circuits. Since then, interest in asynchronous design has existed at 
just a few places. Only in the last decade, asynchronous design seems to have 
become a topic of general interest, cf. [ Bamey 85], culminating in Sutherland's 
Turing Award lecture, see [ Sutherland 89 ] , and spreading over many research 
institutes since then. 

0.0 Synchronous and asynchronous 

In this section we indicate how we interpret the terms "synchronous" and 
"asynchronous" . These interpretations are inspired by [ Molnar92]. 

The terms "synchronous" and "asynchronous" have been used with different 
meanings in different contexts. As applied to circuits, the terms have generally 
distinguished those 

that employ a "clock signal" that serves as a reference to ·separate 
consecutive circuit states from one another 

from those 

that do not make use of such a signa!, but that de fine states in terms of input 
values and intemal actions that result in changes of circuit conditions. 

Some circuits, such as those designed with "fundamental mode" restrictions on 
the changes of input values, may be interpreted either way. 



2 Introduetion 

As applied to communications rather than circuits, the term "synchronous" has 
been used to mean that the sending and the reception of a communication signa! 
are regardedas the same event. In the case of CSP, cf. [ Hoare85 ] , there is an 
even stronger requirement that both "sender" and "receiver" mustagree upon a 
communication signa!, and hence that there is no distinction between sender and 
receiver. In a more general case, the term "synchronous" has been taken to mean 
that there is no delay between the sending of a signa! and its reception, or, more 
abstractly, that the actionsof sending and receiving a particular signa! each stand 
in precisely the same ordering relation to other signaling actions. In comparison, 
"asynchronous" communication signals have distinct sending and receiving 
actions associated with them, which, in genera!, have different ordering relations 
to other signaling actions. In other words, there may be a non-zero delay between 
the sending of an asynchronous communication signa! and its arrival at the 
receiver. 

The different usages of the terrus "synchronous" and "asynchronous" have arisen 
in the context of, on the one hand, circuit design and, on the other hand, abstract 
process communication models. They threaten no confusion when used 
exclusively within these distinct domains. Opportunities for severe confusion 
arise when these domains overlap, as they do in the discussion of the design of 
circuits to implement structures that are defined in the language and formalism of 
communication models, as in this monograph. 

At this point we want to distinguish and discuss three kinds of communication: 

(i) The sending of a communication signa! and its arrival are not identified; 
there is a condition that the arrival of such a signa! must not preeede the 
sending of this signa!. The sender alone controls if and when a signa! is 
sent. 

( ii) The sending of a communication signa! and its arrival are identified; the 
sending and arrival actions of each communication signa! are identically 
ordered with respect to all other actions. The sender alone controls if and 
when a signa! is sent. 

( iii) The sending of a communication signa! and its arrival are identified; the 
sending and arrival actions of each communication signa! are identically 
ordered with respect to all other actions. Both sender and receiver jointly 
control if and when such a joint action occurs. As a consequence, there is 
no difference in the role of "sender" and "receiver". 

There may exist general agreement that (i) and ( iii) are in the 
categones "asynchronous communication" and "synchronous communication", 
respectively; however, ( ii) might be classified either way. In this monograph we 
discuss communication in a physical context. We consicter ( ii) to be in the 
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category "synchronous communication"; the conneetion between components 
that model mechanisms that communicate as described by (i i) is called direct. 
Funhermore, the conneetion between components that model mechanisms 
that communicate as described by (i ) is called indirect. In the kind of 
communication described by ( iii) sender and receiver share the control whether 
and, if so, when a joint action occurs; we consicter this to constitute a higher level 
communication primitive that falls outside the scope of this monograph. 

0.0.0 Asynchronous communication 

There exist various reasons why one may be interested in asynchronous 
communication. Here, we mention sealing, variable or unknown delays, and 
metastability. 

When integrating circuits at an increasingly larger scale, delays in the 
interconnections between the switching elements tend to increase relatively to the 
delays in the switching elements, cf. [ Seitz80, van de Snepscheut85 ]. In order 
to obtain a lot of freedom for placement and routing, we are interested in 
separating the functional and geometrical design tasks. This can be established 
by designing circuits that behave correctly independent of the size of the delays. 
This goal is achieved in the area "dela:y-insensitive communication" in the 
discipline "asynchronous communication design". 

Another souree of motivation for studying deiay-insensitive communication is the 
occurrence of metastable behavior in digital circuits. We consicter a system that 
has a continuous state space with at least two stabie states and at least one 
unstable state. The system will converge to one of its stabie states. Which stabie 
state the system will end up in depends on the initia! condition. For such a system 
and a given finite interval of time, there exists an initia! condition such that the 
system doesn 't reach any stabie state within this interval. This phenomenon is 
called metastability. Chaney and Moinar, cf. [ Chaney- Molnar73 ] , presented 
experimental evidence showing metastable behavior in digital circuits. Hurtado, 
cf. [ Hurtado75 ] , argued that metastabie behavior is an important and intrinsic 
issue; therefore we mention it next to ( other) variabie delays, see also 
[ Kleemann - Cantoni 87 ] . 

Furthermore, asynchronous communication can be used as a model for the 
communication in distributed systems, e.g. transputers, Cosmie Cubes, cf. 
[ Seitz 85, Dally- Seitz 86 ] , or the FFP-machine, cf. [ Ma go 85 ] . Asynchronous 
communication can also be used in an interface between internally synchronous 
parts. 
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In this monograph we address communication between mechanisms. 
Mechanisms communicate by sending and receiving ( physical ) signals. 
We treat communication between mechanisms that are modeled to have an 
indirect connection. This results in the formal definitions of delay-safe and 
delay-insensitive communication. Our notion of delay-safe (and also delay
insensitive) communication camprises that the value of the delay between the 
sending and the reception of each such signa! has an unknown non-negative 
value. 

0.0.1 Communication Model 

We introduce the formal Communication Model. In the Communication Model 
we use trace theory as a tooi. The trace theory formalism has been developed 
at Eindhoven U niversity of Technology by Rem and others, cf. [ Rem 85, 
Rem-van de Snepscheut-Udding83, van de Snepscheut85, Kaldewaij86 ]. 
The interpretation of trace theory in the Communication Model yields a 
formalization of delay-safe ( and delay-insensitive) communication. Our research 
is concemed with three topics: 

delay-safe communication, 
- delay-insensitive communication, and 
- absence of computation interference hazard. 

We address these topics at three levels: 

- the relation between the Communication Model and the underlying physics, 
- notionsin the Communication Model and the relations between them, and 
- the use of the trace theory formalism in the Communication Model. 

Although we like to play forma! games, the forma! game presented in this 
monograph has been inspired by physical problems. We think that the material 
presented in this monograph may be a helpful tool for designers who are 
concemed with asynchronous communication; we show the limitations of 
delay-safe and delay-insensitive communication. Furthermore, our work provides 
a starring point for the inlegration of synchronous communication design and 
asynchronous communication design. 

0.0.2 Computation interference hazard 

Molnar and Fang pointed out that a specification of the mechanism to be designed 
should not only be interpreted as a specification for the mechanism itself, but that, 
in genera!, such a specification puts restrictions upon the communication between 
the mechanism and its environment, see [ Molnar- Fang 83 ] . Our study of 
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asynchronous communication has revealed the urge to distinguish between the 
reception (arrival) of a signal and its acceptance. The arrival of a signal at a 
moment that it cannot be accepted by a mechanism is called "computation 
interference". The danger that this might happen is called computation 
interference hazard. The correctness concern "absence of computation 
interference hazard" is the basic correctness concern in this monograph. The 
distinction between the "reception" and "acceptance" of a signa! provides the 
context that is needed for the discussion of computation interference hazard. Our 
interest in the correctness concern "absence of computation interference hazard" 
originally has emerged within the context of "asynchronous communication". 
Separating the correctness concern from this context has enabled us to address 
synchronous as well as asynchronous communication, using direct and indirect 
connections respectively, within one forma! framework: our Communication 
Model. 

0.1 Subsequent chapters 

In chapter 1 we present some tools that we use in this monograph. The 
Communication Model is presented in chapter 2. We use the word "model" to 
relate notions in our Communication Model to notions in the underlying physics. 
Our Communication Model provides a clear separation between the interpretation 
of physical issues and the formalism. We distinguish between the communication 
behavior of a module and the communication of an interconnection. 
Furthermore, we introduce abstractions: we define components as equivalence 
classes of modules and we define channels as equivalence classes of 
interconnections. We address computation interference hazard in chapter 3. 
Absence of computation interference hazard being our basic correctness concern, 
we present a technique to transfarm other correctness concerns into absence of 
computation interference hazard. In chapter 4 we are concerned with delay-safe 
communication; absence of computation interference hazard is the correctness 
concern. In this chapter we focus on the communication behavior of mechanisms 
that communicate in a delay-safe way. Within the context of delay-safe 
communication, we address in chapter 5 an additional correctness concern, viz. 
absence of transmission interference hazard. Transmission interference hazard 
models that it is possible that some signals interfere with each other. The 
communication is delay-insensitive if and only if the communication is delay-safe 
and there is no transmission interference hazard. In chapter 6 we address 
composition and decomposition. We present necessary and suftleient conditions 
for composition under some given correctness concerns and a metbod to calculate 
the composition under these conditions. In this chapter we are concerned with 
connections that are partially direct and partially indirect. Within our study at the 
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level of process communication, an indirect conneetion between components 
rnadeis allowing for delays of unknown size in signals exchanged between 
mechanisms, whereas a direct conneetion between components models allowing 
only for zero delays in signals exchanged between mechanisms. Bath direct and 
indirect connections are discussed in chapter 6. We present a relation between 
our research and the work of others in chapter 7; there, we also give some 
concluding remarks and we pinpoint some topics for future research. 

0.2 Denotations in the English language 

We use double quotes to indicate that we refer to the enclosed passage as a 
concept, not as a part of the sentence. Single quotes are used to indicate that we 
are skeptical about the enclosed passage. We use underlining to stress a part of a 
sentence. !talies are used to indicate the first appearance and/or definition of a 
forma! notion in this monograph. 

We also use italics to distinguish the forma! objects from the worcts in the English 
language; furthermore, boldface printing is used to indicate forma! operators. 

0.3 Notions related to "asynchronous" 

In this section we present terms that have been used in literature to refer to 
asynchronous communication design; we have included a lot of references which 
can be a starting point for exploring this area. Readers familiar with the research 
in this area may want to continue reading in section 0.4. At Eindhoven 
University of Technology a public bibliography on asynchronous communication 
has been set up. A compressed version of the bibliography file is available for 
anonymous ftp on Internet from <ftp.win.tue.nl> (address: [ 131.155.70.100]) 
as file async.bib.Z in directory /pub/tex. All communication concerning this 
library can be sent to the corresponding e-mail address: 

<async-bib@win.tue.nl> 

Many people have been concerned with notions that are related to delay
insensitivity. In the literature one encounters a variety of terms : asynchronous , 
speed-independent, self-timed, delay-safe, delay-insensitive, delay-independent. 
Although distinct terms are used, people are dealing with related intuitive notions. 
Attempts have been made to formalize these notions stressing distinct 
characteristics. Furthermore, the same term has been used by different people to 
indicate different aspects of the intuitive notions. 
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The term asynchronous arose to distinguish between synchronous, e.g. globally 
clocked, and not synchronous, e.g. locally clocked or not clocked, systems, cf. 
[ Muller - Bartky59, Unger69, Rosenberger69, Keller75, Molnar-Fang81, 
Dill-Clarke 85, Molnar 86, Brzozowski -Se ger 89, Brzozowski-Ebergen 89, 
Y oeli 87 ] . In [ Josephs- Hoare- Jifeng 89 ] Josephs, Hoare, and Jifeng have 
introduced asynchronous processes in CSP, cf. [ Hoare85]. Muller, cf. 
[ Miller65 ] , Keiler, cf. [ Keller74], Fang and Molnar, cf. [ Fang- Molnar83 ] , 
and Dill, cf. [ Dill88], use the term "speed-independent", and Seitz is arnong 
others concemed with "self-timed" systems, cf. [ Seitz79, Martin85b, 
Yakovlev85, Greenstreet-Williams-Staunstrup88 ]. Van de Snepscheut and 
Martin both use "delay-insensitive". They stress the intemal communication, cf. 
[van de Snepscheut85, Martin 86]; the extemal communication between the 
mechanisms and an extemal environment need not be delay-insensitive. Molnar, 
Fang, and Rosenberger apply delay-insensitivity to the extemal communication 
of Macromodules, cf. [ Molnar-Fang- Rosen berger 85, Cl ark- Molnar7 4, 
Molnar- Fang81 , Rosenberger- Molnar- Chaney-Fang 88 ] . The intemal 
communication is, generally, nat delay-insensitive. Based upon the latter 
approach several formalizations have emerged, cf. [ Udding 84, Schols 85, 
Verhoeff85, Black86, Ebergen 87] . 

Udding was the fust to capture delay-insensitivity formally. He has presented 
a set of rules, i.e. predicates on trace structures, that are necessary and 
sufficient for delay-insensitivity, cf. [ Udding84] . Udding is concemed with the 
communication behavior of components rather than with the communication in 
channels. He distinguishes four classes; the largest class he has called the 
"delay-insensitive class", see also chapter 5 and subsection 7.0.1. 

Within the study of asynchronous communication design the multiple use of 
terms has led to argument and confusion. In this monograph, see chapter 5, we 
wïll work within the area "delay-insensitive communication", see [ Udding 84]. 

0.4 Delay-insensitivity 

Restricting communication to delay-insensitive communication tums out to 
reduce the class of implementable specifications of circuits. Many questions 
arise, e.g. : 

- what are the limitations of delay-insensitive communication? 
- can delay-insensitive communication be integrated with more synchronized 

forms of communication? 
- is any liveness property implementable when using delay-insensitive 

communication? 
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In this monograph we address the first two questions extensively. Regarding the 
third question, it has been argued that liveness properties are nat expressable 
using finite trace theory. We have shown that it is possible to express some 
liveness properties in finite trace theory, e.g. absence of ambiguous quiescence 
hazard, cf. "absence of unspecified termination hazard" in [ Schols88]; in this 
monograph ambiguous quiescence hazard is presented as an example of the 
transformation technique shown in chapter 3. 

Seitz argues that a strict protocol of signaling conventions has to be imposed 
throughout a system in order to deal with the complexity of the design, cf. 
[ Seitz80]. We agree with him. On the other hand, confining oneself to such a 
restrietion may make the design problem fundamentally unsolvable or require 
unacceptable penalties in cast, performance, manufacturability, or testability. We 
would like to know whether our inability to findan acceptable salution for such a 
problem, is fundamentally due to the problem itself or to a possibly too severe 
restrietion that we imposed and that perhaps should be relaxed. In chapters 4 and 
5 we present tools that help to answer this question. 

0.5 Proofs 

Within this monograph we present forma! statements in theorems, lemmas, and 
properties. We present properties without forma! proofs, since the proofs of them 
are either trivial, easy, presented elsewhere, or analogous toother proofs; we do 
give hints when this is appropriate. The proofs of lemmas and theorems are 
presented in appendix A; this is done in order not to interrupt the flow of the 
discourse by the rather technica! proofs. Theorems represem the forma! 
conclusions drawn in this monograph; lemmas are intended for local use within 
the context of this monograph only. 



1 

Formalism and notation 

In this chapter we present some tools and notational conventions that we use in 
the remaioder of this monograph. 

1.0 Sets 

In this monograph a set is denoted by a pair of curly brackets. The elements of a 
set are listed between these brackets. The elements are separated from each other 
by commas. We also use quantification to denote sets, see section 1.2. 

We denote the empty set by "0". Between an element and a set there exists a 
binary relation, viz. "is an element of"; this relation is denoted by the infix 
operator "e ". The negation of this relation, i.e. the binary relation "is not an 
element of", is denoted by the infix operator "rt= ". 

example 1.0 
{3, 8) denotes the set that consists of the natura! numbers 3 and 8. 

OE {0,1 ,2) 

4rf= {0 ,1 ,2) 

end of example 

9 
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The intersection of two sets is denoted by the infix operator "n". The union of 
two sets is denoted by the infix operator "u". The binary relation "subset" is 
denoted by the infix operator "ç;;;" . 

example 1.1 
{2 ,3}1î {2 ,4} = {2} 

{2 ,3} u {2 ,4} = {2 ,3 ,4) 

{2 ,4}ç;; {2 ,3 ,4) 

{2 ,3 ,4)Ç {2 ,3 ,4) 

end of example 

The binary re lation "proper subset" is denoted by the infix operator "c" . For 
sets M and N, M c N is equal to (Mç;;; N) 11 (M -t: N). For sets M and N, we denote the 
asymmetrie set differenee of M and N by M\N. In definition 1.2 we use 
quantification to denote the set that is defined as M\N; we explain this notation in 
section 1.2 . 

definition 1.2 asymmetrie set differenee 
For sets M and N, 

M\N def {m : meMAmëN:m}. 

end of definition 

For sets M and N, the symmetrie set differenee of M and N is denoted by M -7 N. 

definition 1.3 symmetrie set difference 

For sets M and N, 

M -7 N def (M\N)u(N\M). 

end of definition 

example 1.4 
{2,3}\{2,4}={3} 

{2 ,3h {2 ,4}= {3 ,4} 

end of example 

The set of natura/ numbers is denoted by IN; in this monograph, zero is a natural 
number. Thesetof all positive natura! numbers is denoted by IN+ . 

property 1.5 

(i) OEIN 

(ii) JN+=IN\{0} 

end of property 
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1.1 Operators 

We assume that the reader is familiar with the following operators in 
propositional calculus: equality, denoted by "= ", inequality, denoted by "~ ", 
negation, denoted by "..., ", conjunction, denoted by "A", disjunction, denoted 
by "v", and implication, denoted by ":::;.". The disjunction is inclusive, i.e. x v y 

does not imply x~ y. 

1.1.0 Priority of operators 

Wedefine the priority of operators in ordertosave on parentheses. To do this we 
have grouped the operators; within each group all operators have equal binding 
power. The groups of operators are listed in table 1.0 in order of increasing 
binding power. 

= ~ 

A V :::;. 

E f/_ ç c 

\ n u ~ 
all other operators that have at least two parameters 

all unary operators 

catenation 

table 1.0 

Priority of operators in order of increasing binding power. 

As a consequence, catenation has the highest binding power; equality and 
inequality have the lowest binding power. 
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1.2 Quantification 

In order to denote quantification, we need a variabie binding construct. For such 
a construct we use a slightly unconventional notation. For instance, universa/ 
quantification, i.e. generalized conjunction, is denoted by 

(A/: R: E), 

where A is the quantifier, I is the list of bound variables, R is the predicate that 
delineates the range of the variables, and E is the quantified expression. Both R 

and E will, in genera!, contain variables from /. Analogously, we denote 
existentlal quantification, i.e. generalized disjunction, by 

(El: R: E). 

Furthermore, we may use quantification to denote sets: 

{l : R:e), 

where e denotes an element of the set. 

In this monograph, all variables that range over numbers, range over the natura! 
numbers, unless stated otherwise. 

example 1.6 

(Ai: 6~ i <9: P;) is equal toP6 AP7 AP8 • 

(Ei ,j: (2~ i~ 5)AEVEN(j)A (i= j): P;) is equal to P2 V P4 • 

{i: 2~ i~4 : i2
) is equal to {4,9,16). 

end of example 
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1.3 Denotation of proofs 

Proofs are often split into a number of steps. For instance, for expressions E, F, 
and G, we can prove E:::;. G by arguing that E = F and F::;. G. The sameness of the 
two occurrences of F is essential for the argument that the total proof is correct. 
To establish this sameness, a string comparison is needed. In order to prevent 
that the reader has to perfarm such comparisons, we denote proofs like this in the 
following way: 

E 

= { hint why E=F } 
F 

:::;. { hint why F::;.G } 

G 

In an analogous way, we denote the proof of A ç; C that consists of the steps A= B 

and se;;, C. This denotation of proofs is called hint calculus. It has been adopted 
from [ Dijkstra- Feijen 88 ] . 

1.4 Trace theory 

When we refer to trace theory in this monograph, we mean the trace theory that 
has been developed at Eindhoven University of Technology by Rem and others, 
cf. [Rem -van de Snepscheut- Udding83, van de Snepscheut85, Kaldewaij 86, 
Rem 85 ] . Trace theory is a tool that has been developed to formalize 
communication. In this section we present the trace theory notions that are used 
in this monograph. In subsection 1.4.3 we present the notions that we have added 
to the notions that exist in trace theory. For a detailed overview of trace theory 
we refer to [ Kaldewaij 86 ] . In subsection 1.4.4 we present a notational 
convention that may make it easier to appreciate trace theory. 

remark 1.7 
Mazurkiewicz, cf. [ Mazurkiewicz 85 ] , has developed a formalism that is 
also called trace theory. Mazurkiewicz's trace theory differs from our trace 
theory. Mazurkiewicz's traces correspond to equivalence classes over our 
traces. 

end of remark 

In our trace theory all traces have finite length. For this reason it is also called 
finite trace theory. Finite trace theory has been extended by Van Hom, cf. 
[Van Hom86], and Black, cf. [ Black86], with infinite traces; this extension is 
used by them in order to deal with liveness properties. Although liveness 
properties are nat a primary concern in this monograph, we use a liveness 
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property as an example of a correctness concern in section 3.4. From this we 
conclude that some liveness propertiescan be expressed in finite trace theory. 

1.4.0 Basic notions of trace theory 

We assume the existence of a finite set .Q; .Q is called the universe. The elements 
of .Q are called symbols . We assume that .Q is large enough, i.e. we will not run 
out of symbols. A subset of .Q is called an alphabet. A sequence of symbols is 
called a trace. A set of traces is called a trace set . The sequence containing no 
symbols is denoted by e; trace e is called the empty trace. We link sequences 
by catenating them. Catenation is denoted by juxtaposition. In trace theory 
the noun "concatenation" is sometimes used instead of "catenation", cf. 
[ Kaldewaij 86 ] . 

The set of all finite-length sequences of symbols chosen from an alphabet is 
called the Kieene-ciosure of this alphabet. 

definition 1.8 Kleene-closure of alphabet 
For alphabet A, the trace set that is the Kieene-ciosure of A is denoted by 
A* ; it is defined recursively by: 

(i) eeA* 

(ii) (As,a:seA*AaeA:saeA*) 

(iii) completeness axiom : A* contains no elements that are not required 
by (i) or (i i). 

end of definition 

Notice that 0* = {E}. Furthermore, traces are elements of n* . We extend 
definition 1.8, "Kieene-ciosure of alphabet", totrace sets. 

definition 1.9 Kieene-ciosure of trace set 

Fortrace setS, the trace set that is the Kieene-ciosure of S is denoted by s* ; 
it is defined recursively by : 

(i) e es* 

(ii) (As ,t: se s* AteS: ste S*) 

(iii) completeness axiom: s* contains no elements that are not required 
by (i) or (ii). 

end of definition 
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Wedefine the binary operation prefix on traces. 

definition 1.10 prefix 

Fortraces s and t, sis called a prefix of t, denoted by sprefixt, if and only if 

(Eu: uen*: su=t) 

end of definition 

In trace theory the symbol "s" has been used to denote the operation "prefix", 
cf. [ Kaldewaij 86 ] ; since the operator " s " has been used in licerature to denote 
many different operations, we prefer to use prefix to denote the operation prefix. 

For trace sets we de fine the unary opera ti on prefix-ciosure. 

definition 1.11 prefix-ciosure of trace set 
Fortrace setS, prefS denotes the trace set that contains all prefix es of S: 

prefS def {s, t: (sprefixt) A (tE S): s) 

end of definition 

We call a tracesetS prefix-closed if and only if S =prefS. 

We denote the lengthof trace t by lt. 

definition 1.12 length of trace 
Wedefine the length of a trace recursively by: 

(i) Ie def 0 

(i i) for trace t and sym bol a, 

/ta def ft +1 

end of definition 

For trace t and alphabet A we denote the projection of t on A by t t A. 

definition 1.13 projection of trace 

Wedefine projection of a trace on an alp ha bet A recursively by: 

(i) dA def E 

(ii) fortracetand symbol a such that a eA , 

ratA def CdA)a 

(iii) fortracetand symbol a such that aE:A, 

tatA def dA 
end of definition 
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We extend the definition of projection totrace sets. 

definition 1.14 projection of trace set 
For trace set S and alp ha bet A, 

S~A def {t:teS:dAJ 
end of definition 

In traces, occurrences of symbols are counted from the left to the right. As a 
consequence, the fust occurrence of a symbol in a trace is the left most 
occurrence of this symbol in this trace. For trace tand symbol a we denote the 
number of occurrences of a int by #at. 

definition 1.15 number of occurrences 
Wedefine the number of occurrences of a symbol a in a trace t by: 

#at def l(d{a} ). 

end of definition 

Wedefine the notion bag. 

definition 1.16 bag 
A bag, say B, is a set of pairs such that 

B= {a: ae Q: (a ,f(a ))} forsome functionf: Q-HN. 

end of definition 

In definition 1.16, "bag", for every symbol a, f(a) is the number of occurrences 
of a in the bag B. In order to avoid a cumhersome notation, we abbreviate the 
denotation of a bag, say B, to {a, n: (a, n)e B fl n > 0: (a, n)}. 

Wedefine the bag of a trace: 

definition 1.17 bag of trace 
Fortracet, bagt denotes the bag of t: 

def 
bagt= {a:aeQ:(a,#at)) 

end of definition 
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1.4.1 Trace structures 

A trace structure is an ordered pair <A, S >, in which A denotes an alphabet and 
S denotes a trace set satisfying S~A *. For trace structure T, aT denotes the 
a/phabet of trace structure T, and tT denotes the trace set oftrace structure T. 

Wedefine the partial order inclusion on trace structures. 

definition 1.18 trace structure inclusion 
For trace structures T and U, we say that T is included in U, denoted by 
TC U, if and only if 

(aT= aU) A (tn; tU) 

end of definition 

Of course, the proper inclusion Tc U equals (aT=aU) A (tn; tU) A (tT::t tU). We 
extend the definition of prefix-ciosure to trace structures. 

definition 1.19 prefix-ciosure of trace structure 
For trace structure T, pref T denotes the trace structure that is the prefix
ciosure of T: 

def ( prefT = <aT, pref tT) > 
end of definition 

We call a trace structure T prefix-c/osed if and only if T= prefT. We call a trace 
structure nonempty if and only if its trace set is nonempty. 

property 1.20 
For prefix-closed trace structure T, 

(ee tT) = (T is nonempty) 
end of property 

We aften refer to prefix-closed trace structures that contain e in their trace set. 
Using property 1.20 we cal! such a trace structure a nonempty and prefix-closed 
trace structure. 

For trace structures with equal alphabets we de fine their inters eetion. 

definition 1.21 intersection of trace structures 

For trace structures T and U such that aT= aU, the intersection of T and U, 
denoted by T n U, is defined by 

def 
TnU = <aTnaU, tTn tU > 

end of definition 
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Analogously, fortrace structures with equal alphabets wedefine their union. 

definition 1.22 union oftrace structures 
Fortrace structures Tand U such that aT= aU, the union of Tand U, denoted 
by T u U, is defined by 

def 
TuU = <aTuaU, tTu tU > 

end of definition 

We extend the definition of projection to trace structures. 

definition 1.23 projection of trace structure 

Fortrace structure Tand alphabet A, 

TtA def <aTnA, tTtA > 
end of definition 

For trace structures T and U we denote their we ave by Tw U. Tw U is a trace 
structure. We consicter traces t, tE tT, and u, uE tU, that are equal w.r.t. the 
common symbols, i.e. dCaTnaU)=ut(aTnaU). Tracestand u are 'merged' into 
one or more traces of t(TwU); the common symbols are not duplicated by this 
'merging'. All pairs of traces t and u that satisfy dCaTnaU)=ut(aTnaU) are 
'merged' in this way. 

definition 1.24 weave 

For trace structures Tand U, 

TwU def <aT u aU, (s: sE (aT u aU)* 1\ s taTE tT 1\ s taUE tU: s) > 
end of definition 

In example 1.25 we give examples of the weave of trace structures. 

example 1.25 

(i) <{a ,b}, (e,a ,ab ,aba} > w < (b ,c}, {e,b ,bel> 

= <(a ,b, c}, (e ,a ,ab ,aba ,abc ,abac ,abea) > 

( ii) < {a , b , d) , ( e , b , d , ba } > w < ( b , e , d} , ( e , b , d , de } > 
= <{a ,b ,e ,d}, (e ,b ,d ,ba ,de}> 

end of example 

property 1.26 weaving is symmetrie 

Fortrace structures Tand U, 

TwU= UwT 

end of property 
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For trace structures Tand U suèh that aT 11 aU= 0, the trace set of Tw U consists of 
all traces that are interleavings of a trace of tT and a trace of tU . Property 1.27 
shows that weaving is equal to intersection if the alphabets of the trace structures 
are equal. 

property 1.27 

Fortrace structures Tand U such that aT= aU, 

TwU = Tr.U 
end of property 

The weave of nonempty prefix-closed trace structures is a nonempty prefix-closed 
trace structure : 

property 1.28 
For nonempty prefix-closed trace structures T and U, 

TwU is nonempty and prefix-closed. 
end of property 

For trace structures T and U we denote their blend by Tb U. Tb U is a trace 
structure, viz. the projection ofTwU on the non-common symbols. 

definition 1.29 blend 
For trace structures T and U, 

TbU def (TwU)r(aT7aU) 

end of definition 

In example 1.25 we considered the weave of some trace structures. Examples of 
the blend of these same trace structures are gi ven in exam ple 1. 30 . 

example 1.30 

(i) < {a , b} , {e , a , ab , aba} > b < {b , c} , { e, b , bc] > 
=<{a ,c}, {e ,a ,aa ,ac ,aac ,aca) > 

(i i) < {a , b , d} , { e , b , d , ba } > b < { b , c , d} , { e , b , d , de} > 
= <{a , c }, (e ,a , c } > 

end of example 



20 F ormalism and notation 

1.4.2 State graphs 

We often denote a nonempty prefix-closed trace set by a state graph (i.e. a 
simple, arc-labeled, directed graph ) that is deterministic and minima!, cf. 
[ Kaldewaij 86]. The nodesof the graph are the states; the arcs of the graph are 
the transitions. The state, to which trace t corresponds, is denoted by [ t]. As a 
consequence, [ e] denotes the initia/ state. Each path starting in [ e] yields a trace 
by catenating the labels of the arcs on that path as they are traversed. If a state 
graph has a fini te number of states, it is called regu/ar. In a diagram of a regular 
state graph the initial state is indicated by a fat dot, see figure 1.1 . 

• 

• 
tigure 1.1 

Stategraphof trace set {E ,a, b ,ab ,ba}. 

A state graph can also denote a nonempty prefix-closed trace structure, say T, if 
every symbol of aT occurs in at least one of the traces of tT. In that case the 
alphabet of the trace structure consists of all symbols that occur as a label of some 
are in the state graph. If the state graph in tigure 1.1 is used to denote a trace 
structure, it denotes < {a , b} , { e , a , b , ab , ba} >. 
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Often we present state graphs in which two states are connected by two arcs that 
point in opposite directions and have the same label, see tigure 1.2. 

a 

~ • • 
"--.-/ 

a 

tigure 1.2 
A state graph. 

b > • 

We abbreviate such a pair of arcs by replacing these two arcs by one bidirectional 
are with the same label, see tigure 1.3 . 

• < a > • b > • 
tigure 1.3 

Abbreviated diagram of the state graph of tigure 1.2. 

As a consequence, the diagrams in tigure 1.2 and tigure 1.3 are diagrams of the 
same state graph. 
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1.4.3 Extensions of trace theory 

In this subsection we introduce two extensions of trace theory that are used in this 
monograph. 

1.4.3.0 The bipartitions alphbip and iobip 

We introduce the notion alphbip. An alphbip is an unordered pair of disjoint sets 
of symbols. The union of these sets is called the alphabet of the alphbip; an 
alphbip is a bipartition of its alphabet. Given alphbip D, the alphabet of D is 
denoted by aD. Given two disjoint sets of symbols, say A and B, the alphbip of 
which A and B are the parts is denoted by A EB B. 

property 1.31 EB is symmetrie 
For two disjoint sets, A and B, of symbols, 

AEBB=BEBA 
end of property 

definition 1.32 intersection of alphbip and alphabet 
For two disjoint sets, A and B, of symbols, and alphabet C, the intersection 
of alphbip A EB B with C is defined by: 

(AEBB)nC der (AnC)EB(BnC) 

end of definition 

For symbol a and alphbip D such that ae aD, we denote the alphabet of symbols in 
aD that are in the same part of alphbip D as a by spa (a, D); we denote the alphabet 
of sym bols in aD that are in the othe r part of alphbip D than a by opa (a, D). 

property 1.33 
For alphbip D, 

(Aa: aeaD: D = spa(a,D) EB opa(a,D) ). 

end of property 

We also introduce the notion iobip. Aniobipis a pair of disjoint sets of symbols, 
viz. the input alphabet of the iobip and the output alphabet of the iobip. The 
uni on of these sets is called the alphabet of the iobip; an iobip is an ordered 
bipartition of its alphabet. Given iobip F, the alphabet of Fis denoted by aF. The 
input alphabet of Fis denoted by iF; the output alphabet of Fis denoted by oF. 

For iobip F we define its rejlection, which is denoted by F : iF def oF and 
oF def iF. The reflection of an iobip is an iobip. 



1.4 Trace theory 23 

1.4.3.1 Reduction operator 

We introduce the function redts; this function reduces the trace set of a trace 
structure by removing eertaio traces. The motivation for the introduetion of this 
operator redts can only be provided in the context of the following chapters. 
Until there, the reader may not fully appreciate it. 

definition 1.34 redts 

For trace structure T, alphabet A, and trace set S, we define trace structure 
redts(T ,A ,S) by: 

def 
redts(T ,A ,S) = 
<aT, tT\ {x ,y ,w: XE(aT)* AyE(aT\A)* AX)'E(tTnS)AwE(aT)*: XW} > 

end of definition 

In definition 1.34, "redts", not only every trace (.xy) in tTnS is removed from 
tT, but also all prefixes (x) of such a trace (.xy) that differ from it (.xy) by a 
sequence (y) of symbols that are not in A; to ensure the prefix-closedness of 
t(redts(T ,A ,S)), all traces (xw) of which a prefix (x) is removed are removed, 
too. For the necessity of the intersection with tT in definition 1.34, "redts", we 
refer to example 1.43. The role of alp ha bet A is illuminated by property 1.35: 
every trace in tTnS causes the elimination from tT of a trace that contains a 
symbol in A. 

property 1.35 
For prefix-closed trace structure T, alp ha bet A, and trace set S such that 
EE t(redts(T ,A ,S)), 

(As: sE (tTnS): (Ex, a: xE(aT)* AaEA Axaprefixs 

:XE t(redts(T ,A ,S))Axaf/. t(redts(T ,A ,S)) 

end of property 

In property 1.36 we present a generalization of property 1.35. 

property 1.36 
For prefix-closed trace structure T, alphabet A, and tracesets S and R such 
that EE t(redts(T ,A ,S)) and R= ( tT\ t(redts(T ,A ,S))), 

(Ar: rER: (Ex ,a: xE(aT)* AaEA Axaprefixr 

:XE t(redts(T ,A ,S))Axaé t(redts(T ,A ,S)) 

end of property 
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remark 1.37 
Trace x and symbol a in the existential quantification in properties 1.35 and 
1.36 do not only exist: they are also unique. 

end of remark 

In order to distinguish between statements about forma! objects in definitions, 
properties, lemmas, and theorems and statements about specific instantiations of 
such objects in examples, we index the instantiations in examples with natura! 
numbers. We refer to the indexed instantiations locally: in the chapter in which 
they occur. 

example 1.38 
We consicter prefix-closed trace structure Ta, alphabet Aa, and trace sets Ra 

and Sa ; they are defined by: 
def 

Ta=< (a ,b}, (E ,a ,ab} >, 

A def { } 
a- a ' 

def 
Ra= {a}, 

So def {ab). 

From definition 1.34, " redts", follows redts(T0 ,A0 , R0 )= <{a , b} , {E} >. 
We also see that redts(T0 ,A0 ,S0 )=<{a,b },(E}>, since trace a is 
eliminated from tT0 because be (aT0 \A0 )* and abe (tT0 nS0 ). 

end of example 

The following properties follow from definition 1.34, "redts". 

property 1.39 redts preserves prefix-closedness 
For prefix-closed trace structure T, alphabet A, and tracesetS , 

redts(T ,A ,S) is prefix-closed. 
end of property 

property 1.40 
For nonempty, prefix-closed trace structure T, alp ha bet A, and tracesetS, 

(As: sE(tTnS) : l(s ~A)>O) = (EE t(redts(T ,A ,S))) 
end of property 

property 1.41 
Fortrace structure T, alphabet A, and trace sets R and S, 

redts(T, A , RuS) = redts(redts(T ,A , R), A , S) 
end of property 
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property 1.42 
Fortrace structure T, alphabetA, and tracesetS such that tTnS = 0, 

redls(T ,A ,S) = T 

end of property 

In example 1.43 we illustrate the necessity of the intersection with tT in definition 
1.34, "redts". 

example 1.43 
We consider prefix-closed trace structure Ij, alphabet A1 , and trace set S1 ; 

they are defined by: 
def 

T1 =<{a ,b}, {E ,a}>, 

A def { } 
~-a, 

SI def {ab}. 

We are interested in redls(T1 ,A1 ,S1 ). If the intersection with tij in 
definition 1.34, "red Is", is not present, then trace a would be removed when 
reducing the trace set of Ij , since abe S1 and be (a Ij \A1 )*. We see, 
however, that there is no need to remove trace a from tT1 , since abé tij 
anyway. 

end of example 

1.4.4 Notational convention 

Lower case letters near the beginning of the Latin alphabet are symbols; when 
they are used as variables, they denote symbols. Lower case letters near the end 
of the Latin alphabet denote traces. Capita! letters are used to denote alphabets, 
alphbips, trace sets, and trace structures. 

Boldface lower case operators are used in the trace theory formalism; this does 
allow them to range over objects in the Communication Model. Boldface upper 
case operators are used in the Communication Model; this does allow them to 
range over objects in the trace theory formalism. 
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2 

Communication Model 

In this chapter we introduce the Communication Mode/. By introducing this 
model we achieve a separation of concerns between the interpretation of the 
underlying physics and the use of the trace theory formalism. We do not 
interpret any notions of trace theory in the underlying physics directly: we 
interpret them in our Communication Model. The importance of establishing the 
separation of concerns between the interpretation of the physical model and the 
formalism has been recognized previously by others. Van de Snepscheut, see 
[van de Snepscheut SS], and Udding, see [ Udding84], carefully distinguished 
trace theory from its mechanistic appreciation. We make this separation of 
concerns even more explicit by the introduetion of our Communication Model. 

When one addresses communication in a formal way, one introduces an 
abstraction from the underlying physics; the latter is either some physical model, 
that is considered to constitute a good model for some physical phenomena, or it 
is one's private notion of 'physical reality'. In this chapter we will set down the 
postulates for our Communication Model. These postulates have been chosen so 
as to be consistent with at least one class of "physical models" that is used for the 
design of computing machinery. In this monograph we wiJl notpresent rigarous 
arguments for this consistency: we rather discuss the 'reasonableness' of the 
postulates in one interpretational example, which we will address as "the physical 
model" in the remainder of this monograph. 

27 
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The Communication Model is introduced fonnally insection 2.0. We discuss the 
relation between our Communication Model and the physical model in section 
2.1. In section 2.2 we introduce the trace theory fonnalism. In section 2.3 we 
present some examples and in section 2.4 we motivate why we have chosen to 
make our Communication Model an event-based model. 

2.0 Definition of Communication Model 

In this section we present the definitions and postulates that form the foundation 
of our Communication Model. The motivation for choosing these definitions and 
postulates is provided in section 2.1 . 

2.0.0 Commports 

We assume the existence of a finite set 'I'. The elements of 'I' are called 
commports. 'I' is partitioned into two parts: '1'0

, the set of output commports, 
and 'I';, the set of input commports. Of course, the set of commports is disjunct 
with the set Q of symbols, which has been introduced in subsection 1.4.0. 

postulate 2.0 

( i ) 'I' = 'l'o V 'I' i 

( ii ) '1'0 n 'I'; = 0 

(iii) 'l'nQ = 0 

end of postuJa te 

For output commport a and input commport ~, we introduce the predicate "a 
matches ~", which is denoted by aMATCH~ . We postulate that a commport 
matches exactly one commport. Matching commports are either "connected 
directly" or "connected indirectly". 



2.0 Definition of Communication Model 

postulale 2.1 

( i ) For input commport y, 

(Ea: ae '1' 0
: aMATCHy) 

( ii) for output commports a and ~, and input commport y, 

(aMATCHy A~ MATCHy) ::::> (a=~) 

( iii) for output commport a, 

(Ey: ye 'Pi : aMATCHy) 

( iv) for output commport a, and input commports y and ö, 

(aMATCHy A aMATCHö) ::::> (y= ö) 
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( v) for commports a and ~ such that aMATCH~, either a and ~ are 
"connected directly" or a and ~are "connected indirectly". 

end of postulale 

From postulate 2.1 we infer that '1' 0 and 'I'; have the same number of elements. 
From the definition of matching commports we infer property 2.2. 

property 2.2 

For commports a and ~, 

aMATCH~ ::::> (ae'l'0 A ~E'I'i) 
end of property 

2.0.1 Comminsts and commsigs 

The elements of the Cartesian product of 'I' and IN+ are called comminsts. The 
camminst with commport a and positive natura) number n is denoted by a,.. If a 

is an output commport, we call a,. an output comminst; if a is an input commport, 
we call a,. an input comminst. A set of comminsts, say A, is called an initia/ set 
of comminsts if, for every camminst in A, A contains all comminsts with the same 
commport and a smaller number, see definition 2.3. 

definition 2.3 initia/ set of comminsts 
A set of comminsts A is called an initia/ set of comminsts if and only if 

(Aa,m ,n: a,.eA A me IN+ A m<n: amEA) 

end of definition 
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The elements of the Cartesian product of '!' 0
, IN+ , and 'l'i, for which the output 

commport matches the input commport, are called commsigs, see definition 2.4: 

definition 2.4 
Fora, ~. and n such that ae '!'0

, ~E 'l'i, neiN+, and aMATCH~, the triple 
(a,n.~) is a commsig. 

end of definition 

Analogously to "initia! set of comminsts", we define the predicate "initial" for 
sets of commsigs. A set of commsigs, say 11., is called an initia/ set of commsigs 
if, for every commsig in 11., 11. contains all commsigs with the same pair of 
matching commports and a smaller number, see definition 2.5. 

definition 2.5 initia/ set of commsigs 

A set of commsigs 11. is called an initia/ set of commsigs if and only if 

(Aa.~.m ,n: (a,n.~)E/1.11 me IN+ 11 m<n : (a,m.~) e /1.) 

end of definition 

2.0.2 Comminstorders and commsigorders 

In order to define camminstorders and commsigorders we need the notion strict 
parrial order. A strict parrial order is an antireftexive and transitive relation; as a 
consequence, it is antisymmetric. It is also referred to as an "antireftexive partial 
order" in literature. 

A camminstorder is a pair <11., c >, in which 11. denotes a fini te initial set of 
comminsts and "c" is a strict partial order on 11.. For comminstorder <)l, 11.~ 

denotes the set of comminsts of camminstorder <)l, and c 9 denotes the strict 
parrial order of camminstorder <P. 

In the strict partial order of a comminstorder, a comminst is preceded by every 
camminst with the same commport and a smaller number. 

postulale 2.6 
For camminstorder <P, 

(Aa,m ,n: anE 11.~ 11 me IN+ 11 m < n: amc 9 an) 
end of postulale 

For camminstorders we de fine the restrietion to an initial set of comminsts: 
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definition 2.7 restrietion of camminstorder 
For camminstorder q, and initia! set of comminsts A, we denote the 
camminstorder that is the restrietion of q, to A by q, t A; it is defined by: 

t de{ 
$ A = <AI> c 1 > 

where A1 = A9(") A and c 1 is given by: 

(A À, IJ.: : (À.E A1 A J!E A1 A À C. J!) = (À. c 1 J!)) 

end of definition 

Notice that A1 in definition 2.7, "restriction of comminstorder", is an initia! set of 
comminsts. 

Analogously to comminstorders, we define commsigorders. A commsigorder is a 
pair <A, c >, in which A denotes a fini te initia! set of commsigs and "c" is a 
strict parrial order on A. For commsigorder q,, A~ denotes thesetof commsigs of 
commsigorder .p, and c• denotes the strict part ia/ order of commsigorder .p. 

In the strict partial order of a commsigorder, a commsig is preceeded by every 
commsig with the same output commport and a smaller number; notice that 
commsigs with the same output commport also have the same input commport. 

postulate 2.8 
For commsigorder .p, 

(Aa.~.m ,n: (a,n,J3)eA• A melN+ A m<n: (a,m,J3) c~(a,n,J3)) 

end of postul a te 

For commsigorders we de fine the restrietion to an initia! set of commsigs: 

definition 2.9 restrietion of commsigorder 
For commsigorder .p and initial set of commsigs A, we denote the 
commsigorder that is the restrietion of .p to A by .p t A; it is defined by : 

t 
def 

.pA= <A1, c 1 > 

where A1 = A+(") A and c 1 is given by: 

(A À, IJ.: : (À.E A1 A J!E A1 A À.C' J!) = (À.C1 J!)) 

end of definition 

Notice that A1 in definition 2.9, "restriction of commsigorder", is an initia! set of 
commsigs. 
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2.0.3 Iodirs and modules 

An iodir, say cll, is a pair <cll0
, clli >, in which cll0 is a set of output commports and 

clli is a set of input commports. 

postulate 2.10 

For iodir cll , 

(i ) cllo ~ 'Po 

( ii ) cllj ~ 'Pj 

end of postul a te 

Wedefine the rejlection of an iodir . The reflection of an iodir is an iodir. 

definition 2.11 rejiection of iodir 

For an iodir cll, the reflection of cll, which is denoted by ëi>, is defined by 
ëi)O def cll i 

ëi)i def cllo 

end of definition 

A module, say ~, is a pair < 10 ~. CB ~>, in which 10 ~ is an iodir and CB ~ is a 
set of comminstorders; 10 ~ is called the iodir of module ~, and en ~ is called the 
communication behavior of module ó . 'Pf is called the set of output commports 
of module~. 'Pi is called thesetof input commports of module~- Of course, 
10 ~ = <'Pf, 'Pi>. We postulate that no two commports of ~ match, that the 
empty camminstorder, i.e. <0, 0>, is in CB ~, and that CB ~ is closed with 
respect to restriction. 

postulate 2.12 
For module ~, 

(i) for every output commport ae 'Pf and input commport ~E 'Pi, 

...., (a MATCH~) 

( ii ) for every comminstorder cpe CB ~ , 

A$Ç { 'Pf U 'Pi} X IN+ 

(iii) <0,0>E CB~, 

( iv) for every comminstorder cpe CB ~ and comminst ÀE A$ such that 
(A ~t: IJ.E A$:...., (ÀC$1J.)), 

(cpr(A~ \ {À}))E CB ~ 
end of postuJa te 
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2.0.4 Opdirs and interconnections 

An opdir, say 3, is an unordered pair <3 1 
, 3 11 >, in which 3' and 3 11 are 

disjoint sets of input commports. Since an opdir is an unordered pair, the opdirs 
3, i.e. <3 1 

, 3 11 >, and <3 11 ,3 1 > are equal. 

postulale 2.13 
For opdir 3, 

(i) 3 I c 'Jij 

(ii ) 3 " ç;; 'Pj 

(iii ) 3' n 3" = 0 

( iv) for opdirs 31 and 3 2 such that 3f = 32' and 3/ 1 = 3f , 

end of postulale 

An interconnection, say rr, is a pair <OP rr, CM IT>, in which OP rr is an opdir 
and CM rr is a set of commsigorders; OP rr is called the opdir of interconnection 
rr and CM rr is called the communication of interconnection rr . We postuJa te that 
the empry commsigorder, i.e. <0, 0>, is in CM rr, and that CM rr is closed with 
respect to restriction. 

postulale 2.14 
For interconnection rr , 
(i) (OPIT) 1 n(OPIT) 11 =0 

( ii) for every commsigorder q,e CM rr and commsig (a., m, ~) e A,, 

~E((OPIT) 1 u(OPIT)") 11 me IN+ 11 a.MATCH~ 

(iii) <0,0>E CMIT, 

(iv) for every commsigorder q>e CM rr and commsig À.E A~ such that 
(Al-t: J.LE A,: -.(À.C:~ J.L)), 

(q,I(A, \ (À}))E CM rr 
end of postul a te 

The asymmetry in postulate 2.14(ii) is caused by ~ being the input commport in 
( a.,m , ~) and both (OP IT) 1 and (OP IT) 11 being sets of input commports. 

We say that two commports have the same type with respect to interconnection rr 
if ei ther both are in (OP rr)' or both are in (OP rr) 11 

• 
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2.1 Interpretation of Communication Model 

We interpret our Communication Model in the physical model. In the physical 
model we refer to "mechanisms", "terminals", "wires", and "signals". 
Mechanisms convey information to each other by exchanging signals: a 
mechanism sends a signal at one of its terminals; this signal is received by a 
mechanism at a terminal. Either these two terminals are connected by a wire or 
they coincide. 

In our Communication Model we abstract from voltage levels, transmlsswn 
times, and the difference between high-going and low-going transitions. 
Furthermore, we model the sending and reception of signals as point actions, i.e. 
they have no duration. 

2.1.0 Commports 

A terminal in the physical model is modeled in our Communication Model by 
zero or more commports. A terminal that can only be used by one mechanism to 
send signals to one terminal of one other mechanism is modeled by one output 
commport. Analogously, a terminal that can only be used by one mechanism to 
receive signals from one terminal of one other mechanism is modeled by one 
input commport. In genera!, a terminal, that can be used by a mechanism to send 
signals to m terminals and to receive signals from n terminals, is modeled by m 

output commports and n input commports. As a consequence, every commport is 
either an output camroport or an input commport, see postulate 2.0(i) and (ii). 

Let a mechanism be able to send a signa! from a terminal, say terminal I, to one 
specific terminal, say terminal 11, of another mechanism. The output commpon 
that roodels the sending of such a signa! at terminal I is said to match the input 
camroport that roodels the reception of this signa! at terminal 1/. From the way 
the terminals have been 'split' into commports we infer that every camroport 
matches exactly one other commport, see postulate 2.1 . Matching commports 
that model terminals that coincide are said to be directly conneered. Matching 
commports that model terminals that are connected by a wire are said to be 
indirectly conneered, see postulate 2.1 ( v). 

remark 2.15 
Not allowing one-to-many communication from a camroport does not 
exclude braadcasting or buswire communication from the descriptive power 
of our Communication Model. We deal with these communication forms 
by introducing modules for them. 

end of remark 
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2.1.1 Comminsts 

The act of sending a signa! by a mechanism is modeled by a comminst. Let 
commport a model ( the part of) the terminal, say terminal I, that is used by a 
mechanism to send signals to one specific terminal, say terminal 11, of another 
mechanism. The act of sending the first signa! from terminal I to terminal 11 is 
modeled by a1 , the act of sending the second one by a 2 , and so on. In a similar 
way we denote the act of receiving a signa!. We treat comminsts as point actions, 
i.e. they have no duration. 

No second signa! can be sent from one terminal to another before the fust one has 
been sent. The same holcts for the reception of signals. For this reason we are 
often interested in sets of comminsts that are closed with respect to the lower 
numbered comminsts. Such a set was called an initia! set of comminsts (see 
definition 2.3). 

2.1.2 Comminstorders 

An order in which signals are sentand received is modeled by a comminstorder. 
When the sending or reception of a signa! causally precedes the sending or 
reception of another signa!, we model this by: a camminst occurs before another 
comminst in a comminstorder. Signals that are sent or received in parallel or 
concurrently are modeled in our Communication Model as comminsts that occur 
independently -i.e. there exists no causa! relation between the sending or 
reception (of signals) that they model- in a comminstorder. Notice that in our 
Communication Model the negation of "before" is "after or independently". For 
this reason, a camminstorder is a strict partial order on a set of comminsts, cf. 
subsection 2.0.2. Comminsts occur either one before the other or independently; 
no two comminsts occur together. As a consequence, our Communication Model 
has an interleaving semantics. 

Camminst a 2 models the act of sending ( or receiving ) the second signa! at the 
part of the terminal that is modeled by commport a, see subsection 2.1.1 . If a 2 

occurs befare ~3 in camminstorder <J>, then, of course, a1 occurs befare ~3 in 
camminstorder <J>. In order nottoneed to specify this explicitly, we require that 
a1 c$ a 2 , cf. postulate 2.6. Using postulate 2.6 and the transitivity of strict partial 
orders, we infer from a 2 c+ ~3 that a1 c~ ~3 • This motivates why A~ is an initia! set 
of comminsts, cf. subsection 2.0.2. We have chosen to introduce postulate 2.6 in 
order to be able to state that ai c~ ~j in stead of (A k: 1 ~ k ~i : ak c, ~). 
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In our Communication Model we deal with finite behaviors. For this reason, we 
only consicter camminstorders with finite sets of comminsts, cf. subsection 2.0.2. 

2.1.3 Modules 

A mechanism is modeled in our Communication Model by a module. The 
terminals of this mechanism, that can be used by this mechanism to send signals 
to another mechanism, are modeled by one or more output commports, cf. 
subsec ti on 2.1.0. These output commports are the output commports of the 
module that rnadeis the mechanism, cf. subsection 2.0.3. Analogously, we define 
the input commports of the module that rnadeis the mechanism, cf. subsection 
2.0.3. We distinguish output and input commports, while we assume that 
mechanisms actively send signals but passively undergo the reception of signals: 
a mechanism controls the production of the signals that it sends, but it has no 
control over the production of the signals that it receives. This distinction is 
elaborated on in chapter 3. A camminst that rnadeis the sending of a signa! by a 
mechanism is called an output camminst of the module that rnadeis this 
mechanism; a camminst that rnadeis the reception of a signa! by a mechanism is 
called an input camminst of the module that rnadeis this mechanism. 

We assume that no mechanism sends a signa! to itself, cf. postulate 2.12(i). An 
order in which a mechanism may send or receive signals is modeled by a 
camminstorder ofthe module. From this follows postulate 2.12(ii). Initially, no 
signals have been sent or received. This is modeled by the empty camminstorder 
being a memher of the set of camminstorders of the module, cf. postulate 
2.12(üi) . A camminstorder rnadeis a possible behavior of a mechanism. If we 
omit from such a behavior a signal that has no successors, we are left with 
another possible behavior of the mechanism. The latter behavior is also modeled 
by a camminstorder of the module that rnadeis this mechanism, cf. postulate 
2.12(iv). 

We consicter a camminst that rnadeis the reception of a signa! by a mechanism. 
The mechanism is modeled by a module. We say that the mechanism accepts this 
signa!, if this camminst is in accordance with a camminstorder of the module : in 
this case there is no instanee of computation interference. For a forma! definition 
of computation interference we refer to chapter 3. 



2.1 lnterpretation ofCommunication Model 37 

remark 2.16 
We have postulated that the communication behavior of a module is such 
that the mechanism accepts a signal when the comminst that models this 
signal is in accordance with a comminstorder of the module. Furthermore, 
the mechanism may send a signa! when the comminst that models this 
signal is in accordance with a comminstorder of the module. There is no 
obligation for a mechanism to send a signal, even if it is consistent with a 
comminstorder of the module. 

end of remark 

We present some modules in the following examples. 

example 2.17 
We consider a mechanism that can receive one out of two input signals after 
which it sends an output signa!. The module that models this mechanism 
has one output commport, say y, and two input commports, say a and p. 
This module has five comminstorders, viz. 

<0,0> 

<{a1 }.0> 

<{~1},0> 

<{al ,yl l. {al cyl }> 

< { ~~, Y1 l. { ~~ cyl l > 
end of example 

example 2.18 
We consider a mechanism that can receive two input signals independently 
of each other after which it sends an output signa!. The module that models 
this mechanism has one output commport, say y, and two input commports, 
say a and ~. This module has five comminstorders, viz. 

<0,0> 

<{a1 }.0> 

<{~1},0> 

<{a1 .P1l.0> 

<{al .~l,yJl, {al cyl .~1CY1}> 
end of example 
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remark 2.19 
It is possible to infer the camminstorders of a module from the 
causal orderings of signals exchanged by a mechanism: i.e. no temporal 
ordering of signals has to be taken into account, cf. example 2.20. 

end of remark 

example 2.20 "Pure Delay" element 

In the mechanism "Pure Delay" element every output is causally preceded 
by an input. Let a denote the input commport and let ~ denote the output 
commport. For every pair (m,n) such that O~n~m, we infer one 
comminstorder, say cp, of the module that roodels this mechanism: A~ is 
{i:O<i~m:a;)u{j:O<j~n:~i] and the transltlve dosure of 
{k: 0< k ~ n: Ut c• ~tl u {k: 0< k < m: Ut c~ ak+J} u {k : 0< k < n: ~kc~ ~k+J} 
defines c 9 • 

end of example 

2.1.3.0 Connected modules 

We postulate that modules can be connected in different ways: a direct 
conneetion and an indirect conneetion; furthermore, we consider the general case 
in which both conneetion ways are combined: a mixed connection. 

Two modules have a direct conneetion if all their matching commports are 
directly connected, see figure 2.34 . 

r 

tigure 2.0 
Direct conneetion of modules r and À . 

In figures of modules ( and components) we indicate the commports of a module 
(component) by crosses at the boundary of this module (component). 

Two modules have an indirect conneetion if all their matching commports are 
indirectly connected, see figure 2.1 . 
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r 'v 6 

figure 2.1 
Indirect conneetion of modules rand 6.. 

In the general case, in which some of the matching commports of two modules 
are directly connected and the others are indirectly connected, we say that the 
modules have a mixed conneetion, see figure 2.2. 

figure 2.2 
Mixed conneetion of modules rand 6.. 

We discuss directly connected modules in chapter 3; in chapters 4 and 5 we are 
concerned with indirectly connected modules; we discuss modules that have a 
mixed conneetion in chapter 6. 

We say that modules have a closed conneetion if every output commport of every 
module in this conneetion matches an input commport of another module in this 
connection, i.e. there is no communication between the connected modules and 
some environment. Modules that have a conneetion that is not closed are said to 
have an open connection. We address modules that have a closed conneetion in 
chapters 3, 4, and 5. In chapter 6 we deal with modules that either have a closed 
or an open connection. 
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2.1.4 Commsigs 

A signa! travels from the terminal at which it has been sent to the terminal at 
which it is received. This is modeled by a commsig. We do not distinguish 
between two signals that have been sent from one terminal to one other terminal, 
while they travel between these terminals. As a consequence, "overtaking of 
such signals" is a meaningless notion in our model. Furthermore, we assume that 
every signa! that is sent also is received. As a consequence, the first signa! that is 
sent from a terminal, say terminal I, to another terminal, say terminal //, is the 
first signa! that is received by terminal // from terminal I. This is modeled in 
definition 2.4: two commports are used to define a commsig, yet only one 
number is used. Since signals sent from one specific terminal to one other 
terminal do not overtake one another, we are often interested in initia/ sets of 
commsigs ( see definition 2.5). 

We consicter a module, which models a mechanism. A commsig that models a 
signal that is sent by the mechanism is said to be sent by the module. A commsig 
that rnadeis a signa) that is received by the mechanism is said to be received by 
the module; a commsig that mode is a signa! that is accepted by the mechanism is 
said to be accepted by the module. 

2.1.5 Commsigorders 

An order, in which signals that travel between two mechanisms occur, is modeled 
by a commsigorder. When a mechanism has to receive a signa!/ befare it sends 
signa! //, we say that signa! I precedes signa! // . This causality relation is 
modeled by: a commsig occurs before another commsig in a commsigorder. 
Again, cf. subsection 2.1.2, the negation of "befare" is "aft er or independently". 
For this reason, a commsigorder is a strict partial order on a set of commsigs, cf. 
subsection 2.0.2. And again, commsigs occur either one befare the other or 
independently; we do not model that commsigs occur together. 

We argued in subsection 2.1.4 that overtaking of signals that have been sent from 
one terminal to one other terminal is a meaningless notion in our Communication 
Model. This is why we are allowed to introduce postulate 2.8. The reason for 
introducing it is the same one as the reason for introducing postul a te 2.6, cf. 
subsection 2.1.2. Analogously to subsection 2.1.2, we use postulate 2.8 and the 
transitivity of strict partial orders to motivate that, for commsigorder <IJ, A~ is an 
initia/ set of commsigs, cf. subsection 2.0.2. Furthermore, since we deal with 
finite behaviors in our Communication Model, we only consider commsigorders 
with a fini te set of commsigs, cf. subsection 2.0.2. 
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2.1.6 Interconnections 

We next consicter two mechanisms such that the modules that model these 
mechanisms have a closed connection. The communication between such two 
mechanisms is modeled in our Communication Model by an interconnection. In 
such a closed conneetion every output commport of one module matches one 
input commport of the other module. For this reason, the input commports suffice 
to identify all commports of the two modules, the communication between which 
is modeled by the interconnection, cf. subsection 2.0.4. The amount of delay 
between the sending of a signa! by a mechanism and the reception of this signa! 
by another mechanism is nonnegative. Due to this asymmetrie delay we 
distinguish two directions in an interconnection, which are opposite to each other. 

remark 2.21 
Unlike the types of comminsts with respect to modules, which have been 
classified as either input or output, there is no point in classifying commsigs 
of an interconnection based upon their direction: they merely are distinct. 

end of remark 

The sets of input commports of the two modules are disjunct, cf. postulate 
2.14(i) . An order in which signals that are exchanged by two mechanisms 
happen, is modeled by a commsigorder of the interconnection. This is our 
motivation for postulate 2.14(ii). Initially, no signals have been exchanged. 
This is modeled by the empty commsig order being a member of the set of 
commsigorders of the interconnection, cf. postulate 2.14(iii). A commsigorder 
models a possible exchange of signals between two mechanisms. If we omit from 
such an exchange a signa! that has no successors, we are Ieft with another 
possible exchange of signals between the two mechanisms. The latter exchange 
is also modeled by a commsigorder of the interconnection that models the 
exchange of signals between these two mechanisms, cf. postulate 2.14(iv ). 

remark 2.22 
We do not discuss observation nor problems related to observing 
communication. Although it is possible to discuss some observation issues 
within our Communication Model, we will not do so in this monograph. As 
a consequence, our results do not depend u pon notions of observation. 

end of remark 
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2.1.6.0 lnterconnection between two modules 

In this subsection we present a methad to construct the interconnection between 
two modules that have a c/osed conneetion. Th is construction methad depends 
on the way in which the commports of these modules are connected. We consicter 
the interconnection, say rr, between two modules, say r and ó. In genera!, r and 
ó have a mixed connection. 

First, we define an operator that reduces the amount of ordering in a 
comminstorder. We only keep orderingsof the fonns a; c ~j and Ym cyn, in which 
commports a,~. and y are such that ~ is an output commport and that a is not an 
indirectly connected output commport. In the remaioder of this subsection we 
denote by 'l';c the set of commports that are conneered indirectly to their matching 
commport. 

definition 2.23 REDOC 

For camminstorder <P, we de fine camminstorder REDOC <P. The set A REooq 

of comminsts is equal to the set A, of comminsts. The set of orderings of 
REDOC<P is: 

{a,~ ,i ,j: a; c, ~jA ~E '1' 0 
A aé ('I' 0

rt 'I';c) : a; CREDOq ~j} 

u {'y. m • n : Ym c~ Yn : Ym CREDOC' Yn J 

end of definition 

Notice that in the definition above ~ is an output commport and that a is either an 
input commport or a directly connected output commport. Furthennore, from 
Ym c 9 Yn follows that m < n. 

We use the reduction operator REDOC to construct the commsigorders of rr out 
of the camminstorders of r and ó. 

Let <Pr be a camminstorder of 1, and let <Pc. be a camminstorder of ó such that for 
every output commport a and input commport ~ such that aMATCH~, if ~j is in 
the set of comminsts of one of these camminstorders then aj is in the set of 
comminsts of the other comminstorder. For every such pair we construct a 
commsigorder !;n in the following way: 

- Wedefine <P to be the camminstorder on the union of the sets of comminsts 
of <Pr and <Pc. such that the set of orderings of cp is the union of the sets of 
orderingsof REDOCct>r and REDOCct>c.. 
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- Now, we transfonn comminstorder $ into commsigorder l;n by renaming the 
comminsts in cp. Let a be an output commport of r; let ~ be the input 
commport of 6 such that aMATCH~. We rename output comminst a; into 
commsig (a, i,~). Analogously, let a be an input commport of r; let ~ be 
the output commport of 6 such that ~MATCH a. We rename input comminst 
a; into commsig (~,i.a). 
In this way, we rename every comminst of cl>r into a commsig of l;n ; 
analogously, we rename every comminst of cl>t. into a commsig of l;n. 

Commsigorder l;n is the result of this renaming in comminstorder cp. 

We now define interconnection n. lts opdir OP n is equal to <'P~, 'Pi>; its 
communication CM n is equal to the union of the set of all commsigorders l;n that 
can be constructed in the way described above and the set of all commsigorders 
that are restrictions of such a l;n to an initia! set of commsigs. This construction 
method is demonstrated in example 2.24. 

example 2.24 
We consicter modules 6 0 and 6 1 • 6 0 has output commport a and input 
commports ~ and y. 6 1 has output commports Ç and TJ and input commport 
ö. These commports match in the following way: aMATCHö, ÇMATCH~, 

and TJMATCHy. a and o are indirectly connected, Ç and ~ are indirectly 
connected, but TJ and y are directly connected. As a consequence, 6 0 and 6 1 

have a closed mixed connection, see figure 2.3 . 

tigure 2.3 
Connected modules 6 0 and 6 1 • 
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Module !J.0 sends two commsigs at commport a; independently, it may 
receive one commsig at commport ~ and one commsig at commport y. Of 
course, comminst a1 occurs before comminst a 2 ; this is the only order 
between comminsts of !J.0 • As a consequence, tJ.0 bas twelve 
comminstorders, say <Po through $11 : 

def 
<Po= <0,0> 

def 
<I>J = <{~/},0> 

def { } <Pz = < Y1 ,0> 
def 

<1>1 = <{~I·Yd.0> 
def { 

<1>4 = < ad,0> 
def 

<!>5 = <{a1 .~1 },0> 
def 

<1>6 = <{a1 ,y1 },0> 
def 

<1>7 = <{ai.~1 .y1 },0> 
def 

<Ps = < { a1 , a 2 } , { a1 Cq,8 a 2 } > 
def 

$9 = < { a1 , a 2 , ~~}, { a1 Ccp9 a 2 } > 
def 

<!>JO = <{a1 , a 2 , y1 }, {a1 Ccp
10 

a 2 }> 

<Pu def <{a/,a2 .~I,'fi}, {ai Ccp// a 2 }> 

Module tJ.1 may receive two commsigs at commport o; thereafter it sends 
one commsig at commport Ç, after which it sends one commsig at 
commport 11· Comminst o1 occurs before comminst o2 ; o2 occurs before Ç1 ; 

Ç1 occurs before 111 • As a consequence, t:. 1 has five comminstorders, say $12 

through $16 : 
def 

$12 = <0,0> 
def { } $13 = < o1 ,0> 
def 

<1>14 = <{o/,o2},{o1Ccp14 Öz}> 

def } { <!>J5=<{oJ,02,ÇJ, oiCcp15 0z,OzCcp15 ÇI}> 
def 

<1>16 = <{ol ,Oz. Çl .111}, {ol Ccp16 Oz. Oz Ccp16 Çl. Oz Ccp16 111 }> 

There are twelve pairs of comminstorders that can be used to construct a 
commsigorder: (<Po. <Pd. ($4.<Pn), ((j>4,$n), (<Ps.<Pn), (<Ps.<Pn), (<Ps.4>14), ($s.<!>J5), 

(<Ps. <1>16), ((j>9, <1>15), ((j>9, <1>16), (<!>JO, <1>16), and ($11 • $16). Th ere is no partner for 
comminstorders $1, $2, 4>3 , $5 , $6, and 4>7, since !J.1 will not send any 
commsig until it has received two commsigs. From definition 2.23, we 
infer that REDOC <l>j = q,j for Os j s 15; furthermore, we infer that: 

REDOC <1>16 = < { OJ 'Öz • ç/ ·111}, { OJ Ccp/6 Öz '02 Ccp/6 çl • Öz Ccp/6 11d > 
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After the combining of the comminstorders and the renaming of the 
comminsts into commsigs, we are left with five commsigorders, say ~ 
through Ç.,: 

~= <0,0> 

ç, == <{(a,l,o)}.0> 

1;2 = <{(a,l,o),(a,2,o)}. {(a,l,ö)cç
2 

(a,2,o)}> 

1;3 = < { ( a, l,o) , ( a, 2 ,o ) , ( Ç, l, ~ ) } 

• {(a,l,ö)cç
1 
(a,2,o),(a,2,o)c~ (Ç, 1.~)} 

> 

Ç., = <{(a,l,o),(a,2,o),(Ç, I.~).(T\.I.y)} 

, {(a, l , o)c~ (a, 2,1)), ( a,2, o )c~ ( Ç, 1, ~). (a, 2,15 )c~ (T\. 1, y)} 

> 

The pair of comminstorders (<!>0, <1>12 ) yields commsigorder 1;0; the pairs 
(<1>4.<1>12) and (<1>4.<1>11 ) both yield Ç,; the pairs (<!>8.<!>12 ), (<1>8.<!>13), and (<!>8,<!>14 ), all 
three yield 1;2; the pairs (<!>a. <1>15 ) and (<!>9, <1>15 ), both yield 1;1 ; the pairs (<I> a. <1>16 ), 

(<1>9· <1>16), (<!>JO• <1>16), and (<l>n, <1>16), all four yield Ç.,. Wh en we restriet these five 
commsigorders to all possible initia! sets of commsigs, we find one 
additional commsigorder/;5 (1;5 =Ç.,~{(a,1,ö),(a,2, o) , (ll . l,y)} ) : 

1;5 = < { (a, 1, o) , (a, 2,1)) , (Tl, l, y)} 

• {(a,l,o)cç
5 

(a,2,o),(a,2,o)cç
5 

(T\.I,y)} 

> 

We now have constructed interconnection I10 between modules t:.0 and t:.1 

that are connected in the way described above: opdir OP I10 is equal to 
<{~, y}. {o}> and communication CM Il0 is equal to {l;o, 1;1, 1;2 ,1;3 ,Ç., ,1;5} . 

end of example 

When constructing the interconnection between two modules as desribed in this 
subsection, we are not concerned with the correctness concerns "absence of 
computation interference hazard" and "absence of transmission interference 
hazard". We deal with these when we address composition, see chapter 6 . 
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2.1.7 Overview of interpretative issues 

In table 2.4 we present the relation between our Communication Model and the 
underlying physics. 

modeling communication 
Communication Model the physical model 

module mechanism 

one or more commports terminal 

directly connected commports coinciding terminals 

indirectly connected commports terminals connected by a wire 

camminst individual instanee of signa! 
at terminal 

modules have mechanisms exchange signals 
a direct conneetion via coinciding terminals 

modules have mechanisms exchange signals 
an indirect conneetion via wires 

camminstorder of module order in which a mechanism 
may exchange signals 

interconnection all coinciding terminals of two 
mechanisms and all wires 
between these mechanisms 

commsig individual instanee of signa! 
that propagates between 
two terminals 

commsigorder of interconnection order in which signals may 
happen that are exchanged 
by two mechanisms 

table 2.4 

Relation between Communication Model and underlying physics. 

Of course, to our Communication Model one can relate another physical model or 
some particular notion of 'physical reality' that one considers as the underlying 
physics; as a consequence, the entries in the right column will vary in accordance 
with the particular physical model or notion of physical reality that one wants to 
relate to our Communiearlon Model. 
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2.1.8 Notational convention 

When we need variables in our Communication Model we use Greek letters that 
are not in the Latin alphabet. We do not use e or n, since we use them for other 
purposes in trace theory, see subsection 1.4.0; we do not use co, since it has been 
used in the extension of trace theory with infinite traces. 

Lower case letters near the beginning of the Greek alphabet are used to denote 
commports. Lower case letters near the middle of the Greek alphabet are used to 
denote comminsts and commsigs. Lower case letters near the end of the Greek 
alphabet are used to denote camminstorders and commsigorders. Capita! Greek 
letters are used to denote modules, components, interconnections, channels, and 
sets of commports, comminsts, commsigs, comminstorders, or commsigorders. 
We will use r or 6 to denote a module or a component, n to denote an 
interconnection, and 0 to denote a channel. We use 'P to denote a set of 
commports, A to denote a set of comminsts or commsigs, <I> to denote an iodir or 
a set of comminstorders, and .=: to denote an opdir or a set of commsigorders. 

When we refer to specific objects, e.g. in examples, we use indexes. We use 
natura! numbers as indexes to refer to specific objects locally, i.e. within one 
chapter of this monograph. When we want to refer to a specific object throughout 
the chapters of this monograph we u se letters ( or short words) as indexes. 

As stated in subsection 1.4.4, boldface lower case operators are used in trace 
theory; boldface upper case operators are used in our Communiearlon Model. 

2.2 Introduetion of trace theory in our Communication Model 

In subsection 2.2.0 we associate notions in trace theory with commports, 
comminsts, and camminstorders; we associate notions in trace theory with 
commsigs and commsigorders in subsection 2.2.1. In subsection 2.2.2 we 
introduce the notions opdir and iodir in our Communication Model and we 
associate notions in trace theory with them. We abstract components from 
modules in subsection 2.2.3. In subsection 2.2.4 we abstract channels from 
interconnections. In subsection 2.2.5 we address the difference between our 
usage of the trace theory formalism and the earlier usage of directed trace 
structures to model delay-insensitive communication. 
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2.2.0 Commports, comminsts, and comminstorders 

With commports and comminsts we associate symbols. With a commport ex and 
each of its comminsts ex; the same symbol is associated. We associate the same 
symbol witheither of two matching commports. With two commports that do nat 
match, we associate distinct symbols. 

With a camminstorder (strict partial order) we associate a trace set, viz. the set 
that consists of every full order ( trace) that is consistent with the strict partial 
order ( camminstorder). With every camminst in a camminstorder we associate a 
distinct symbol in every trace of the trace set that is associated with this 
comminstorder, see example 2.25 . 

example 2.25 
Symbols a and b are associated with commports ex and ~. respectively. In 
trace aba we associate the leftroost occurrence of a with cx1 , b with ~~, and 
the rightmost occurrence of a with cx2 • With the camminstorder <!>,in which 

camminst cx1 occurs befare comminsts cx2 and ~1 , and 

- ~1 occurs befare cx2 , 

viz. <1> = < { cx1 , cx2 , ~~}, {cx1 c~ ~1 , ~~ c~ cx2 } >, we associate trace set (aba}. 
end of example 

A trace is a totally ordered object ( full order). Let symbols a and b be associated 
with commports a and ~. respectively. The occurrence of camminst ex; befare 
camminst ~j in a camminstorder is modeled by 

in every trace of the trace set that is associated with this comminstorder, the 
i-th occurrence of a is to the leftof the j-th occurrence of b . 

To model that comminsts ex; and ~j occur independently, we include in the trace 
set bath: traces in which the i-th occurrence of a is to the left of the j-th 
occurrence of band traces in which the j-th occurrence of b is to the leftof the i-th 
occurrence of a. 

example 2.26 
Symbols a and b are associated with commports ex and ~. respectively. 
Trace set {ab} is associated with the camminstorder <1> in which camminst cx1 

occurs befare camminst ~1 : <1> = < ( a1 , ~~ J, { cx1 c~ ~1 J > . 
end of example 

All traces in the trace set that is associated with a camminstorder have the same 
bag of symbols; as a consequence, they all have the same length. If and only if 
two comminsts are ordered in a comminstorder, the symbols, that are associated 
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with these two comminsts, occur in this same order in every trace of the trace set. 
On the other hand, if two comminsts are not ordered in a comminstorder, then 
there are traces (in the trace set that is associated with this comminstorder) in 
which the symbols, that are associated with these two comminsts, occur in one 
order, and there are traces (in this trace set) in which these symbols occur in the 
other order, see example 2.27. 

example 2.27 
Symbols a, b, and care associated with commports a,~. and y, respectively. 
With the comminstorder ~.in which 

comminst a1 occurs before comminst ~~, and 

comminst y1 occurs independently of a1 and ~1 , 

viz. ~ = <(a1 , ~1 , y1 }, (a1 c 9 ~1 }>,we associate trace set {abc, acb, cab). 

end of example 

2.2.1 Commsigs and commsigorders 

With commsigs we associate symbols. We consicter output commport aandinput 
commport ~ such that aMATCH~. Let symbol a be associated with a and ~. cf. 
subsection 2.2.0. We associate symbol a with every commsig (a, n, ~ ), for n ~ 1. 

Analogously to comminstorders, we associate with a commsigorder a trace set, 
viz. the set that consists of every full order ( trace) that is consistent with the 
strict partial order ( commsigorder). With every commsig in a commsigorder we 
associate a distinct symbol in every trace of the trace set that is associated with 
this commsigorder. 

Again, all traces in the trace set that is associated with a commsigorder have the 
same bag of symbols; as a consequence, they all have the same length. If and 
only if two commsigs are ordered in a commsigorder, the symbols, that are 
associated with these two commsigs, occur in this same order in every trace of the 
trace set. On the other hand, if two commsigs are not ordered in a commsigorder, 
then there are traces (in the trace set that is associated with this commsigorder) in 
which the symbols, that are associated with these two commsigs, occur in one 
order, and there are traces (in this trace set) in which these symbols occur in the 
other order. 
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2.2.2 Opdirs and iodirs 

An opdir consists of two disjoint sets of commportso In trace theory we associate 
an alphbip with an opdiro With opdir :=:, alphbip ab:=: is associatedo The union of 
the sets of symbols that are associated with the two sets of commports of:=: is 
called the alphabet of:=:, which is denoted by a:=: 0 Of course, a:=:= a(ab:S) 0 

An iodir consists of a set of input commports and a set of output commportso In 
trace theory we associate an iobip with an iodir. With iodir <I>, the iobip io<l> is 
associatedo The set of symbols that are associated with the input commports of <I> 
is denoted by i <I>, the input alphabet; the set of symbols that are associated with 
the output commports of <I> is denoted by o<l>, the output alphabet. 

property 2o28 
For iodir <I>, 

a<l> = o<I>ui<I> 
i(io<l>) = i<l> 
o(io<I>) = o<l> 

end of property 

From definition 2011 , reftection of iodir, we infer property 2029 0 

property 2.29 
For iodir <I>, 

aiî> = a<l> 
oiî> = i <I> 
iil> = o<l> 

end of property 
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2.2.3 Components 

In subsection 2.0.3 we have introduced modules. The communication behavior of 
a module is a set of comminstorders. In subsection 2.2.0 we have associated a 
trace set with every comminstorder. As a consequence, a set of trace sets is 
associated with thesetof camminstorders of a module. Wedefine componentsas 
an abstraction from modules: 

definition 2.30 equivalence class of modules 
We call two modules equivalent if and only if they have 

( i ) the same iodir, 

( ii ) the same union of the trace sets that are associated with the 
camminstorders in the communication behavior of the module. 

The equivalence classes are called components. 
end of definition 

Since the abstraction is confined to the communication behavior of modules, we 
feel free to discuss commports, comminsts, sending, reception, and acceptance of 
commsigs, and open, closed, direct, indirect, and mixed conneedons with respect 
to components as we do with respect to modules. Formally, a component r is a 
pair < io r. ptr r>. Iobip io r is called the iobip of r, and trace structure ptr r is 
called the communication behavior ofr. 

definition 2.31 component 
We consider component r. Let ~ be a module in the equivalence class 
component r. Now ris defined by 

(i) io r def io(IO ~) 

( i i) a( ptr r) def a(IO ~) 

( iii) t(ptr r) is defined as the union of all trace sets that are associated with 
the camminstorders of ~ . 

end of definition 

The definition of t(ptrr) in definition 2.31 (iii) is independent of the particular 
choice of the module in the equivalence class r, cf. definition 2.30(ii). Since for 
component r, a( ptr r)= a(io r), we could have defined a component as an 
iobip- "trace set" pair in stead of as an iobip- "trace structure" pair. We have 
chosen not to do so, while on the one hand we like to separate the iobip from the 
communication behavior, and on the other hand trace sets are not very well 
suited for rnadeling composition due to the absence of associativity, cf. 
[ Rem 85, Rem- van de Snepscheut- Udding 83 ] . 
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In remark 3.16 we argue that we may lose some information when abstracting 
from module to component. In example 2.32 we present two distinct modules 
that are in one equivalence class. In the examples in this subsection 2.2.3 we use 
ll to denote a module and r to denote a component. 

example 2.32 

A module Ll2 has two output commports ex and ~ and no input commports. 
Only one camminst of each commport can occur. They occur 
independently of each other. 

'PX, ={ex.~} 
'~'X,= 0 

CB Ll2 = { <0,0>, <{cx1 }.0>, <{~1 }.0>, <{cx1 , ~1 },0>} 

Let module Ll2 be a member of the equivalence class component 12 . Let 
symbols a and b be associated with commports ex and ~, respectively : 

o (io I2) = {a , b} 
i(iol2)=0 
ptr IZ = < {a , b} , { e , a , b , ab , ba } > 

We consicter module ll3 • Module 6 3 has two output commports ex and ~ and 
no input commports. Only one camminst of each commport can occur. 
Either cx1 occurs befare ~~ or ~~ occurs befare cx1 . 

'I'X, ={ex.~} 
'~'X, = 0 

CB ll3 = { <0,0>, <{ad,0>, <{~1 }.0> 
, < {(X/ , ~/} , {(X/ C ~/} > , < { CX/ , ~I}, { ~/ C CX1 } > 
} 

Module ll3 also is a member of the equivalence class I2. 
end of example 

The alphabet of component r is the set of symbols that are associated with the 
commports of r; it is denoted by ar. The set of symbols that are associated with 
the output commports of component r is called the output alphabet of r, which is 
denoted by or. Thesetof symbols that are associated with the input commports 
of component r is called the input alphabet of r, which is denoted by i r. We 
also associate an alphbip with r, which is denoted by abr. Even a symbol that is 
associated with a commport of a component at which no commsig will be 
received or sent, is an element of the alphabet of this component: the alphabet of 
a component is not restricted to symbols that occur in some trace in the trace 
structure of the component. 
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property 2.33 
For component r, 
(i) ar= a(ptr r) 

(ii) ar= oruir 

(iii) or= o(ior) 

(iv) ir= i(ior) 

(v) abr=orEI)ir 

end of property 

Notice that $ is a symmetrie operator, see property 1.310 

Using postulate 2012 we infer property 2034 0 

property 2.34 
For component r, 

(i) EE t(ptr r) 

( ii ) ptr r is prefix -closed 
end of property 

53 

Of course, the input alphabet and the output alphabet of a component are not 

interchangeable, cfo example 2o35 0 

example 2.35 
We consicter components I4 and 15 0 Their output alphabets, input alphabets, 
and trace structures are defined by : 

def 0 def 
of4 ={a) 1!4 = {b) 
ol5 def {b) il5 def {a) 

def 
t(ptrf4)= {e,a,ab) 

def 
t(ptr 15) = t(ptr I4) 

Components I4 and 15 differ : I4 may initially send a commsig (comminst to 
which a is associated), after which it has to be able to accept a commsig 

(comminst to which bis associated); initially, 15 has to be able to accept a 
commsig (comminst to which a is associated), after which it may send a 

commsig ( comminst to which b is associated) 0 
end of example 
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We extend definition 2.11, reftection of iodir, to components. The reftection of a 
component is a component. 

definition 2.36 rejlection of component 

For component r, componentris the reftection of r; it is defined by 
of def ir 

if dec or 
-deC 

ptrr = ptrr 
end of definition 

In subsection 1.4.2 we have introduced state graphs to denote trace sets and trace 
structures. We also use a state graph to denote a component, say r; we shall only 
do this if every symbol of ar occurs in at least one trace of t(ptr r). If t(ptr r) has 
a regular state graph, then in the diagram of this state graph we shall postfix 
the sym bols of i r with a question mark ( ? ), and we shall postfix the symbols 
of o r with an exclamation mark (!); in figure 2.5 we show such a diagram, see 
example 2.37. 
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example 2.37 

We consider the module that we presented in example 2.18. In this 
example we call it ~ . Module ~ bas one output commport y and two input 
commports a and ~. Only one comminst of each commport can occur. 
Comminsts a1 and ~1 occur independently of each other; comminst y1 occurs 
after both a1 and ~1 have occurred. 

'~'X. = {y} 

'I'~= {a.~} 
CB~ = {<0,0>,<{a1 }.0>,<{~d.0>,<{a1 .~1 }.0> 

, <{a1 .~1 ,y1 }, {a1 cy1 .~1 cy1 }> 
} 

Let module ~6 be a merober of the equivalence class component f6 . Let 
symbols a, b, and c be associated with commports a,~, and y, respectively: 

ol6 = {c} 

if6={a,b} 

ptr 16 = < {a , b , c } , { E , a , b , ab , ba , abc , bac } > 

The state graph of 16 is shown in figure 2.5 . 

• 

cl 
• 

• 
tigure 2.5 

State graph of component 16 . 

end of example 
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example 2.38 
A module /Jq has one output commport a and one input commport j3. 

Output comminst a1 occurs before input comminst 131 ; output comminst a 2 

occurs after input comminst 131 • 

'PX
7 

= {a} 

'l-'17 = !13} 
CB .17 = { <0,0>, <[a1}, 0>, <la1, l31l. {al cl31}> 

, < { a1 , 131 , a2 l. { a1 c 131 , 131 c a2 l > 
} 

Let module .17 be a member of the equivalence class component I7. Let 
symbols a and b be associated with commports a and 13, respectively: 

oi7= {a} 

ii7={b} 

ptr I7 = < {a , b } , { e , a , ab , a ba } > 

We notice that the two comminsts a1 and a 2 are explicitly distinguished 
from each other by their indexes. In the traces of trace set ptr I7 , however, 
this explicit distinction is not present. 

end of example 
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2.2.3.0 Enabling and disabling 

We consicter a component r. r has two commports: a and ~· With 
these commports we associate symbols a and b, respectively. We say that 
comminst ai enables comminst ~j in r ( for i~ 1 and j ~ 1 ) if and only 
if (Et:te!l*A(#0 t=i-/)ll(#bt=j-J):tbet(ptrr)Atabet(ptrr)). We give an 
example of the enable relation in example 2.39. 

Analogously, we say that comminst ai disables comminst ~j in r if and only if 
(Et: ten* A(#0 t=i-1)11(#bt=j-1): tbe t(ptrr)Atabe t(ptrr)) . We notice that 
every comminst disables itself. In example 2.39 we also give an example of the 
disable relation. 

example 2.39 

We consider component 18. 18 has one input commport ex and two output 
commports ~ and y. With commports a,~ . and y we associate symbols a, b, 
and e, respectively, see figure 2.6. 

b! 

~ • >. 
~ 

cl 

figure 2.6 
State graph of component 18. 

In component IS comminst a 1 enables comminst ~~, since bé t(ptr 18) and 
abe t(ptr18). Analogously, a 1 enables y1 in 18. In genera!, comminst ak 

enables comminsts ~j and 'Ij in component 18 and ~j and 'Ij both enable ak+J 

in 18 (for 1 s j s k ) . 

In component 18 comminst ~1 disables comminst y1 , since ace t(ptr18) and 
abelE t(ptrl8). Analogously, y1 disables ~1 in 18 . In genera!, comminst ~j 
disables comminst 'Ik in component 18 and 'Ik disables ~j in 18 (for j ~ 1 and 
k ~ 1 ) ; furthermore, every comminsts dis a bles itself in 18 . 

end of example 

We could have defined more sophisticated "enabling" and "disabling" relations, 
e.g. on triples of two comminsts and a comminstorder. Since we do not need 
such sophisticated relations, we didn 't choose to define them in this monograph. 
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remark 2.40 
Notice that the "enabling" and "disabling" relations do nat exclude each 
other: it is possible that camminst ai enables and disables camminst ~jin r 
( for i;::: 1 andj;::: 1 ), see example 2.41. 

end of remark 

example 2.41 
We consicter component 19. 19 has no input commports and three output 
commports a,~' and y. With commpons a,~' and y we associate symbols 
a, b, and c, respectively, see figure 2.7. 

al 

~ 
• • 

7 ~ bi 

• 
~ 

• 
bi 

tigure 2.7 
State graph of component I9 . 

In component 19 camminst a1 enables camminst ~1 , since bf/. t(ptrl9) 

and abe t(ptrl9). Furthermore, a1 disables ~1 , since cbe t(ptrJ9) and 
cabf/. t(ptrr9 ). 

end of example 
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2.2.4 Channels 

In this subsection we define channels as an abstraction from interconnections. 
This abstraction is analogous to the abstraction from modules to components in 
subsection 2.2.3. 

definition 2.42 equivalence class of interconnections 

We cail two interconnections equivalent if and only if they have 

(i) the same opdir, 

( ii) the same union of the trace sets that are associated with the 
commsigorders in the communication of the interconnection. 

The equivalence classes are called channels. 
end of definition 

Since the abstraction is confined to the communication of interconnections, we 

feel free to discuss commports and commsigs with respect to channels as we do 
with respect to interconnections. Formaily, a channel 0 is a pair <ab0, ptr0>. 

Alphbip ab0 is cailed the alphbip of 0, and trace structure ptr 0 is cailed the 
communication of 0. 

definition 2.43 channel 

We consicter channel 0. Let 11 be an interconnection in the equivalence 
class channel 0. 

(i) ab(ptr0) def ab(OPIT) 

( ii) a(ptr0) def a(OPIT) 

( iii) t(ptr 0) is defined as the union of all trace sets that are associated with 
the commsigorders of 11 . 

end of definition 

The definition of t(ptr 0) in definition 2.43 (i i i) is independent of the particular 

choice ofthe module in the equivalence class 0, cf. definition 2.42(ii). 

The alphabet of channel 0 is the set of symbols that are associated with the 
commports of channel 0; it is denoted by a0. Of course, a0=a(ptr0). Like the 

alphabet of a component, the alphabet of a channel is not restricted to symbols 
that occur in some trace in the trace structure of the channel. 

property 2.44 
For channel 0 and sets of symbols A and B such that ab0=A EB B, 

a0=AUB 

end of property 
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From postulate 2.14 we infer property 2.45 . 

property 2.45 
For channel e, 
(i) eet(ptre) 

( ii) ptr e is prefix-closed 
end of property 

property 2.46 alphbip of channel between two components 

For channel e between components r and !!. , 

ab0=(orn i!J.)$(ol!.n ir). 

end of property 

Communication Model 
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2.2.5 Comparison with the use of directed trace structures 

Until now directed trace structures have been used to model delay-insensitive 
communication, cf. [van de Snepscheut85, Udding84, Schols85, Verhoeff85, 
Black 86, Ebergen 87, Schols 88, Dill88 ] . In directed trace structures the 
alphabet is partitioned into disjoint, possibly empty sets, for example the "input 
alphabet" and the "output alphabet". 

In this monograph we use ( undirected) trace structures to model either the 
communication in an interconncetion or the communication behavior of a 
module. 

We consider directions to be issues that are related to the use of an 
interconnection or to the use of the commports by a module. Hence, directions 
are interpretative issues. For this reason we use ( undirected) trace structures 
to model the communication of an interconnection ( channel) and the 
communication behavior of a module (component). 

The use of ( undirected) trace structures in this monograph leads to formally 
different definitions of properties such as delay-safety, delay-insensitivity, 
computation interference hazard, and transmission interference hazard. These 
now appear as properties of channels and/ or components, see chapters 4 and 5. 
The redefinitions given here have equivalent consequences as the definitions 
given earlier, see [ Udding84, Schols85, Verhoeff85, Ebergen 87]. 

2.3 Examples of components 

In this section we give some examples of components. These components will be 
used in the following chapters. 
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example 2.47 "Wire" element 

We consicter a mechanism that is a "Wire" element. It has one input and 
one output. Initially the input is low, the output is low, and there are no 
signals on their way. When the input is high the output may go high; when 
the input is low the output may go low. No input change is allowed 
whenever an output change is pending. The transitions between low and 
high (and vice versa) are modeled as the comminsts of component rw, see 
tigure 2.8. 

a? 

~ • • 
~ 

b! 

ligure 2.8 
Stategraphof component rw. 

Symbol a is associated with the input commport of rw; symbol b is 
associated with .the output commport. 

We consider the same mechanism with a different initial condition: 
initially the input is high, the output is low, and there is one signal on its 
way. We call the mechanism with this initial condition a "Wire with Initia! 
Transition" element. The transitions between low and high (and vice 
versa) are modeled as the comminsts of component fw;1 , see tigure 2.9. 

a? 

~ 
• • 
~ 

b! 

ligure 2.9 
Stategraphof component 4.;1 • 

Symbol a is associated with the input commport of rw;1 ; symbol b is 
associated with the output commport. 

end of example 
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example 2.48 "Muller-C" element 

We consider a mechanism that is a "Muller-C" element. The "Muller-C" 

element is also called a "Rendez Vous" element. It has two inputs and one 
output. Initially both inputs are low and the output is low. When both 
inputs are high the output may go high; when both inputs are low the output 
may go low. No input that has the other value (low versus high) than the 
output, is allowed to change. The transitions between low and high ( and 
vice versa) are modeled as the comminsts of component r;; , see tigure 2.10 . 

• 

i~ 
• < c! • 

~) 
• 

figure 2.10 
State graph of component r,: . 

Symbols a and b are associated with the input commports of r;;; symbol cis 

associated with the output commport. 
end of example 
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example 2.49 "Fork" elements 
We consicter a mechanism that is a "Fork" element. It has one input and 
two outputs. Initially the input is low, bath outputs are low, and there are 
no signals on their way. When the input is high the outputs may go high; 
when the input is low the outputs may go low. No input change is allowed 
whenever an output change is pending. The transitions between low and 
high (and vice versa) are modeled as the comminsts of component IJ, see 
tigure 2.11 . 

• 

i~ a? • >. 

~) 
• 

tigure 2.11 
State graph of component r;. 

Symbol a is associated with the input commport of IJ; symbols bandcare 
associated with the output commpons. 

We consicter a mechanism that is an "Asymmetrie Fork" element, see the 
scheme in tigure 2.12. 

I lil 

11 

tigure 2.12 
Scheme of an Asymmetrie Fork element. 

The delay element has a delay that is large enough to guarantee that, after a 
signa! has happened at the input terminal (I), a signa! happens at the lower 
left output terminal ( 11) befare a signal happens at the upper right output 
terminal(///). This mechanism is modeled by component r.;1 . Component 
r,;1 has input commpon a and output commports p and y, see tigure 2.13. 
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a r<if y 

~ 
... 

tigure 2013 
Component r.,1 0 

Output commport y models the output terminal 'after the delay element'; 
output commport ~ models the other output terminal. We associate symbol 
a with input commport a of r.;1 ; symbols b and c are associated with the 
output commports ~ and y of r.;1 , respectivelyo 

a? 
------=>~ • 

• 
figure 2014 

State graph of component r.,1 0 

The state graph of component r.;1 is shown in tigure 2014 0 
end of example 
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In example 2.50 we illustrate that a given mechanism might be associated with 
different behaviaral abstractions. In our Communication Model this leads to 
-possibly different- components that model these different behaviaral 
abstractions of a mechanism. 

example 2.50 wires with bundling constraint 

We consicter a communication mechanism for which the delay from input to 
output is less for the data wires than for the control wire. There is one 
control wire and there are a number of data wires. The control wire is a 
so-called "data-valid wire". No input change on a wire is allowed 
whenever an output change on this wire is pending. Initially all inputs are 
low, all outputs are low, and there are no signals on their way. When a 
signal at the input of a data wire is received ( by the communication 
mechanism ) before a signal at the input of the control wire is received, this 
communication mechanism behaves such as to produce a signal at the 
output of the particular data wire before it produces a signal at the output of 
the control wire. In figure 2.15 we present a scheme of such a mechanism 
with one data wire. 

control wire 

• > • 
data wire 

• > • 
tigure 2.15 

Scheme of a mechanism that has a bundling constraint. 
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The most general use of such a mechanism with one data wire is modeled 
by component rbc . The terminals of the control wire are modeled by input 
commport a and output commport p of lbc ; the terminals of the data wire are 
modeled by input commport y and output commport ö of lbc , see figure 2.16. 

figure 2.16 
Component rbc . 

8 f 
' 

We associate symbols a and c with input commports a and y, respectively; 
we associate symbols band d with output commports p and 8, respectively. 
The state graph of component rbc is presented in figure 2.17. 

d! 

d! 

figure 2.17 
Stategraphof component Ibc . 

b! 
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A signalat the input of the control wire of this mechanism may be received 
before a signal at the input of a data wire is received, i.e. the control 
and data wires can be used as normal wires. Still this communication 
mechanism differs from two normal wires due to the existing bundling 
constraint, cf. component I2w, see tigure 2.18. 

d! 

c? 

tigure 2.18 
State graph of component f2w. 

Component rbc does not model the typical use of this mechanism. This use 
is modeled by component T7ubc , see tigure 2.19. 
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d! • 

ligure 2.19 
State graph of component Ilubc. 

The typical use modeled by fiubc is a restrietion of the general use as 
modeled by lbc ; formally' ptr fiubc ç; ptr Tbc • 

end of example 
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example 2.51 "Or" and "And" elements 
We consider a mechanism that is an "Or" element. It has two inputs and 
one output. Initially both inputs are low, the output is low, and there are no 
signals on their way. When at least one of the inputs is high the output may 
go high; when bóth inputs are low the output may go low. There are no 
restrictions on input changes. The transitions between low and high ( and 
vice versa) are modeled as the comminsts of component r;,,, see figure 
2.20. 

• 

• 
tigure 2.20 

Stategraphof component r",. 

• 
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Symbols a and bare associated with the input commports of Ç,; symbol cis 
associated with the output commport. 

Since our Communication Model is event-based, the only difference 
between component Ç, and rand, which mode Is the "And" element, is the 
initial state, see figure 2.21. 

end of example 

• 

• 
tigure 2.21 

Stategraphof component rand . 

• 
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example 2.52 "Majority" element 
We consider a mechanism that is a "Majority" element. It has three inputs 
and one output. Initially all inputs are low and there are no signals on their 
way. When at least two of the inputs are high the output may go high; 
when at least two of the inputs are low the output may go low. There are no 
restrictions on input changes. The transitions between low and high ( and 
vice versa) are modeled as the comminsts of component r:naj, see figure 
2.22. 

d! 

d! 

d! 

figure 2.22 
State graph of component r.,.1 . 

Symbols a, b, and c are associated with the input comrnports of rmaj; 
symbol dis associated with the output commport. 

The diagram of the state graph in figure 2.22 is nat minimaL Nevertheless, 
we have chosen to show this diagram. The reason for doing so is clearness. 

end of example 
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2.4 Event-based model 

We have chosen to make our Communication Model an event-based model. In 
an event-based model the changes of inputs and outputs are modeled. In a 
state-based model the states of the inputs and outputs, e.g. low or high, are 
modeled. We prefer an event-based model to a state-based model, see also 
[ Rem 91 ], because we want to model delay-safe and delay-insensitive 
communication: there are no clocks in our model and there is no sampling of 
'states of terminals ( or wires )' . Notice that trace theory also is an event-based 
model, see [ Rem- van de Snepscheut- Udding 83 ] . 

States and state graphs are derived notions in our Communication Model. A state 
is an equivalence class of traces; our states do, in genera!, not correspond to the 
'states of wires', cf. example 2.53. 

example 2.53 
Component IJo is given by the state graph in tigure 2.23. 

• af 
--->~. 

b? > • af 
---....:>~. 

tigure 2.23 
Stategraphof component fj0 • 

b? > • 

We see that symbol a is associated with the output commport of IJo and 
symbol b is associated with the input commport of IJo. Let us assume that 
IJo roodels a mechanism of which the terminals are connected to wires; and 
let us assume that initially these wires are low (i.e. they have a voltage that 
corresponds to the logica! 0), and that transitions change the wires from 
low to high and vice versa. We see that in the state graph of I}0 in our 
Communication Model the state that contains trace E differs from the state 
that comains trace abab; the 'state of both wires' in the physical model, 
however, is equal to low in both cases. This is why in a "four-phase 
handshake protocol" extra variables are needed, cf. [ Martin 85b ] . 

On the other hand we consicter component r..,, see example 2.47. The initia! 
state in the state graph of rw comains trace ab. However, in the mechanism 
the 'state of the terminals' is initially low, whereas after the comminsts with 
which a and b are associated have occurred, the 'state of the terminals' is 
high. 

end of example 
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Notice that we do not assume that the mechanisms, which implement the 
components in the physical model, are designed event-driven: we have only 
chosen to model the communication in our Communication Model event-based. 
For a detailed treatment of the event-driven ( transition-signaling) concept we 
refer to ( Seitz80]. For an exarnple of the transition-signaling conceptual 
framework we refer to the micropipelines in [ Sutherland89]. 
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Computation interference hazard 

In this chapter we define the correctness concern absence of computation 
interference hazard. Furthennore, we present a technique to 'transfonn' other 
correctness concerns into absence of computation interference hazard. An 
example of such an other correctness concern is "absence of transmission 
interference hazard". Josephs and Udding have chosen an opposite approach: 
they 'transfonn' absence of computation interference hazard into absence of 
transmission interference hazard, see [ Josephs- Udding90). 

In this chapter we study the communication between two components 
that have a closed direct connection. At some places we refer to one 
component only; then the environment of this component implicitly plays 
the role of the other component. In section 3.0 we explain why we often 
refer to "computation interference hazard" when we discuss the phenomenon 
"computation interference". Computation interference hazard can arise when we 
compose components. In order to compose components, we have to conneet 
them in a proper way. This is discussed in section 3.1 . In section 3.2 we define 
computation interference hazard fonnally. In the next chapters we will transfonn 
some phenomenon hazards into computation interference hazard. The general 
transformation technique is presented in section 3.3. 

75 
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3.0 Hazards 

In our Communication Model we shall refer to some ( undesired) phenomena, 
viz. "computation interference", "transmission interference", and "ambiguous 
quiescence", using the word hazard in order to indicate that it is possible for such 
a phenomenon to occur. The "phenomenon hazard" is a weaker notion than a 
guaranteed occurrence of the phenomenon. As a consequence, given some 
phenomenon, "absence of phenomenon hazard" is a stronger notion than 
"absence of (any guaranteed occurrence of) this phenomenon": when we have 
proven "absence of phenomenon hazard", we may conclude that the phenomenon 
is not present. The name hazard originates from switching theory, cf. 
[ Unger69], where it has the same connotation that we attach to it now. 

There exists "computation interference" if a mechanism receives a signa! that it 
doesn't accept, cf. subsection 2.1.3 . We say that there exists "computation 
interference hazard" if we cannot guarantee that a mechanism only receives 
signals that it does accept. 
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example 3.0 computation interference hazard 

We consider components IQ and tlo. IQ and tlo have a direct connection. IQ 

has one output commport (a) and one input commport (J3); ~0 has one 
output commport (o) and one input commport (y). Commport a matches 
commportyand commporto matches commport ~. see tigure 3.74. 

tigure 3.0 
Directly conneeled components fo and flo . 

We associate symbol a with commports a and y; we associate symbol b with 
commports 13 and o. Components IQ and ~0 are defined by: 

def { } oiQ = a 
otlo def {b} 

i IQ def {b} 

"A def{} 
1u0 - a 

def 
t ( ptr IQ) = { E , a , ab} 

def 
t(ptrtlo) = {E ,a ,b ,ab ,ba) 

Initially, tlo may send o1• In this case JO receives ~1 before it has sent a1 • 

Th is is not allowed according to ptr IO : IO does not accept !31 before it has 
sent a1 • Thus there is an occurrence of "computation interference". If ~0 
sends o1 after it has received y1 , IQ receives 131 after it has sent a1 • In this 
case, there is no occurrence of computation interference. 
Since tlo may send o1 before it has received y1 , it is possible that ~~ is 
received by IQ before IQ has sent a1 . Thus we cannot guarantee that there is 
no occurrence of computation interference. We say that there exists 
"computation interterenee hazard" . 

end of example 
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There exists "transmission interterence" if two signals exchanged by two 
mechanisms intertere. We say that there exists "transmission interterenee 
hazard" if we cannot guarantee that two signals exchanged by two mechanisms 
do not intertere. 

example 3.1 transmission interference hazard 

We consider indirectly connected components IJ and 1:11 • IJ has one output 
commport (a); 1:11 has one input commport (~). Commport a matches 
commport ~. see figure 3.1. 

a ~ a' ...., 
IJ / 6., 

tigure 3.1 
Indirectly connected components r; and ó.1 • 

We associate symbol a with both commports. The components IJ and 6.1 

are defined by : 
def 

t ( ptr IJ ) = ( E , a , aa } 
def 

t(ptr61) = (e,a,aa) 

The mechanisms modeled by these components agree about the 
communication between them: the mechanism modeled by IJ sends two 
signals, which are accepted by the mechanism modeled by t.1 • If the two 
signals intertere, there is an occurrence of "transmission interterence". 
Since IJ may send a 2 before 6.1 has received ~', it is possible that the two 
signals intertere. We say that there exists "transmission interterenee 
hazard". 

end of example 
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3.1 Connected components 

We associate the same symbol with either of two matching commports. The 
conneetion of the components must be such that no input commports are 
connected to each other and no output commports are connected to each other. 
This restrietion is captured in the definition of "i/o-connectable". 

definition 3.2 ilo-connectab/e 
Components r and 6 are ilo-connectable if and only if 

arna6 = (orn i6)u(irn o6) 

end of definition 

From definition 3.2, "i/o-connectable", we infer that i/o-connectable is a 
symmetrie relation. The following property shows a different characterization of 
i/o-connectable. 

property 3.3 
Components r and 6 are i/o-connectable if and only if 

(irn it.=0) 11 (orno6=0) 

end of property 

We notice that definition 3.2, "i/o-connectable" , doesn' t require that r and 6 

have a closed connection. Nevertheless, in this chapter we are concerned with 
closed connections only. In chapter 6 we consicter open connections. 

3.2 Absence of computation interf erenee hazard 

In subsection 3.2.0 we present the definitions of "absence of computation 
interference hazard" for two components that have a closed direct connection. In 
subsection 3.2.1 we relate the acceptance of commsigs by a component to 
(absence of) computation interference. 

remark 3.4 
Absence of computation interterenee hazard is the correctness concern that 
has a central part in this monograph. Whatever we do, we always see to it 
that there is absence of computation interterenee hazard. This means that, 
whatever we do, we always establish that no commsig might be received by 
any component that is not able to accept this commsig. 

end of remark 
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3.2.0 Direct conneetion 

In this subsection we will define absence of computation interference hazard for 
two i/o-connectable camponems that have a closed direct connection. We fust 

define absence of computation interterenee hazard at one component for two 
i/o-connectable components that have a closed direct connection. For all 
definitions of absence of computation interference hazard in this chapter we need 
two components. In chapter 6 we refer to absence of computation interference 
hazard in connections of more than two components. 

definition 3.5 NCIHA 

For i/o-connectable components r and 6, we define predicate r NCIHA 6 by: 

rNCIHA6 def (At,u,a:taEt(ptrr)AuEt(ptr6)AaE(orni6) 

A (t r(arna6)=u r(arna6)) 

: uaE t(ptr6) 

end of definition 

The predicate r NCIHA 6, is the formalization of there is absence of computation 
interfere nee hazard at 6 for components r and 6 that have a direct conneetion. 
If r NCIHA 6, then 6 accepts every commsig that it may receive from r. To 

illustrate definition 3.5, "NCIHA ", we present some examples. 

example3.6 
We consicter components I2 and rwil; they are defined by: 

def { } 1• J'2 def ( b} ( ) def ( ( b} *) oJ'2 = a t ptrJ'2 = pref a 
oi;.,;, = {b} irwit =(a) t(ptrrw;1)= pref({ba}*) 

Both components model a "Wire with Initia! Transition" element, 
cf. example 2.47. Since aE t(ptrJ'2), EE t(ptrrw;1), and aE(oJ'2n irwiJ), 

but a~ t(ptrr,.,it), we conclude from definition 3.5, "NCIHA ", that 
-, (1'2 NCIHA r,.,il): there is computation interference hazard at r,.,il for 
components I2 and rwit that have a direct conneetion. 

By symmetry we conclude also that -.(I;";, NCIHA J'2). 

end of example 
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example3.7 
We consider components r..,", cf. example 2.47, and IJ; they are given by : 

or..,i, = {b} irwil ={a} t(ptrrwil)= pref({ba}*) 
oiJ def {a} i IJ def {b} t(ptr IJ) def pref( {ab, ba}*) 

We notice that rwit NCIHA IJ, but...., (IJ NCIHA rwit), cf. example 3.6 . 
end of example 

Using definition 3.5, "NCIHA ", we define absence of computation interterenee 
hazard for two components that have a direct connection. 

definition 3.8 NCIH 

For i/o-connectable components r and ~ , we de fine predicate r NCIH ~ by: 

r NCIH ~ def (r NCIHA ~) 11 (~ NCIHA r) 

end of definition 

The predicate r NCIH ~, is the formalization of there is absence of computation 
interference hazardfor components rand~ that have a direct connection. From 
definition 3.8, "NCIH" follows the symmetry of NCIH . 

property 3.9 symmetry of NCIH 

For i/o-connectable components rand~, 

INCIH ~ = ~NCIHI 
end of property 

To illustrate definition 3.8, "NCIH " , we present some examples. 

example 3.10 
We consider components Iw, see example 2.47, and I4 . I4 models a "Wire 
with Initial Transition" element, see example 2.47. They are defined by: 

orw = {b} iÇ" ={a} t(ptrrw) = pref({ab}*) 
def def def * oi4 ={a} ii4 = (b} t(ptrf4) = pref({ab} ) 

We notice that I4 NCIHA Iw and fw NCIHA I4 ; from definition 3.8 , "NCIH", 

we conclude that rw NCIH I4 . 
end of example 
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example 3.11 
We consicter components r,;, cf. example 2.48, and 15; they are given by: 

or,; = (c} iÇ = (a,b} t(ptrÇ)= pref((abc,bac}*) 
def def def * 

o 15 = {a , b} i 15 = { c} t ( ptr 15) = pref ( (abc} ) 

We notice that 15 NCIHA r,;. We see that ptr 15 ç;;; ptr r,;; nevertheless, we 
conclude from definition 3.5, "NCIHA ", that r,; NCIHA 15 . From definition 
3.8, "NCIH", we conclude that r,; NCIH 15 . Notice that we infer that 
ÇNCIHI5 although t(ptrÇ);tt(ptr15). 

end of example 

From definition 3.8, "NCIH" and definition 2.36, "reftection of component" we 
infer property 3.12 . 

property 3.12 
For component r, 

rNCIH'f 

end of property 

3.2.1 Acceptance of commsigs 

In subsection 2.1.3 we introduced informally the distinction between the 
"acceptance" and the "reception" of a signa!. In subsection 2.1.4 we modeled 
this in our Communication Model by distinguishing the acceptance and the 
reception of a commsig by a module. In subsection 2.2.3 we argued that we also 
distinguish the acceptance and the reception of a commsig by a component. We 
now define that a component accepts a commsig if and only if it receives this 
commsig without an occurrence of computation interference. As a consequence, 
a module accepts a commsig if both the module receives this commsig and the 
occurrence of the comminst that represents the reception of this commsig is in 
accordance with the communication behavior of the module. A component 
directly controls the production of a commsig and the sending of it; however, a 
component has no direct control over the production of the commsigs that it 
receives. The sending of a commsig is independent of whether this commsig can 
be accepted by another component. A component has to cooperate in order to 
sendor accept commsigs; it 'undergoes' the reception of commsigs. 
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remark 3.13 
We say that a component engages in a comminst, which represems the 
sending or the reception of a commsig, if it either sends or accepts this 
commsig. 

end of remark 

In the remaioder of this monograph we abbreviate "a component engages in a 
camminst that represems the sending of a commsig" into "a component sends a 
comminst". Analogously, we abbreviate "a component receives a commsig, the 
act of reception of which is represented by a comminst" into "a component 
receives a comminst". We also abbreviate "a component engages in a camminst 
that represents the acceptance of a commsig" into "a component accepts a 
comminst" . 

3.3 Transformation into computation interference hazard 

We have seen in remark 3.4 that computation interference hazard amounts to "a 
component is not able to accept a commsig that it may receive at one of its input 
commports". In this section, we present a technique called transformation into 
computation interference hazard. By this technique, we 'transform' "undesired 
phenomenon hazards" into computation interference hazard: we establish that 
we deal with the undesired phenomenon hazard whenever we deal with 
computation interference hazard. In this way we reduce the number of undesired 
phenomenon hazards with which we have to deal. In subsection 3.3.0 we present 
the technique; in subsection 3.3.1 we give an example how this technique is 
applied. 

3.3.0 The technique 

The technique "transformation into computation interference hazard" consists of 
two steps : 

( 1) Findatrace structure T, an alphabetA , and a tracesetS such that 

(i) T is the trace structure of a component, 

( ii) A is the input alphabet of this component, and 

( iii) S is the trace set that is associated with the ( undesired) phenomenon 
hazard. 

( 2 ) Calculate redts (T , A , S). 
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We consicter a component, say r. By replacing ptrl by redts(ptrl, i! ,S), see 
definition 1.34, we achieve absence of the phenomenon hazard with which S is 
associated, whenever absence of computation interterenee hazard is established. 
In this technique we choose forA the input alphabet of the component, since the 
environment of this component directly controls the 'production' of the commsigs 
that it sends to the component, but it has no direct control over the 'production' of 
the commsigs that the component sends to it. 

There is an initia! problem when applying this transformation technique. In order 
to interpret redts(ptrl, il ,S) as the trace structure of a component, we have to 
guarantee that redts(ptrl, il ,S) is non-empty, cf. property 1.40 . In other words: 
the empty trace e must not be removed when computing redts( ptr 1, i 1, S). 

theorem 3.14 
Let UndesPh be some undesired phenomenon. Let trace set 
S be associated with UndesPh. Let 1 be a component such 
that (As : se t(ptrr)nS : l(shr)>O) . We define component I' by 
I' def <io I, redts(ptr I, i I, S)>. 

Then I' is the maximal ( w.r.t. trace structure ioclusion) component such 
that 

(i ) io r' = io I ' 

( ii ) ptr I' ç; ptr I , 

( iii) I' has absence of UndesPh hazard. 
end of theorem 

In theorem 3.14 component I' has absence of UndesPh hazard, since no traces 
that are associated with UndesPh are in t(ptr I') . For every component 6, such 
that 6 NCIH I' , we conclude using definition 1.34, that 6 NCIH I; furthermore, 
using theorem 3.14 we find that 1 has absence of UndesPh hazard when 
communicating with such a 6 . 

In subsection 3.3.1 we present an example of this transformation technique. 
In chapter 5 we shall transform transmission interference hazard in the 
communication between a component and its environment into computation 
interterenee hazard. In chapter 6 we shall transform transmission and 
computation interterenee hazard in the ( intemal) communication between two 
components into computation interterenee hazard at the ( extemal inputs of the) 
composition of these components. 
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3.3.1 Example of transformation technique 

In this subsection we show how we apply the technique "transformation into 
computation interference hazard" . We choose to transform "ambiguous 
quiescence hazard" into computation interference hazard. In subsection 3.3.1.0 
we explain the notion "ambiguous quiescence hazard" and we argue why one 
may be interested in it. In subsection 3.3.1.1 we show how we transform 
ambiguous quiescence hazard into computation interference hazard. Examples of 
ambiguous quiescence hazard and its transformation into computation 
interference hazard are shown in subsection 3.3.1.2. The notion "ambiguous 
quiescence hazard" was introduced in [ Schols 88 ] under the name "unspecified 
terminalion hazard". The correctness concern "absence of ambiguous quiescence 
hazard" is a liveness property. 

3.3.1.0 Ambiguous quiescence hazard 

We have noticed in remark 2.16 that a mechanism has no obligation to send 
output signals. As a consequence, a component has no obligation to send 
commsigs. This turns a Molnar 's-universal-do-nothing-wrong-component (with 
the appropriate iobip) into an acceptable (i.e. free of computation interference 
hazard when connected to any i/o-connectable environment) implementation of 
any specification, see example 3.15. The mechanism that is modeled by such a 
component accepts every input signa! that it may receive. Unfortunately, m 
general it isn ' t very useful, since it doesn 't produce any output signal. 

example 3.15 Molnar 's-universal-do-nothing-wrong-component 
Given iodir ct>, we consider component rvNW(<I>); its iobip and its trace 
structure are defined by: 

·r; der ...... 
JO DNW(<I>) = 10-v 

ptrrvNW(<I>) def <act>, pref(( iet>)*)> 

This component can do nothing wrong: it accepts every commsig that it 
may receive; however, it doesn 't send any commsig. 

end of example 

The correctness concern "absence of ambiguous quiescence hazard" amounts to 
"a component that is allowed to engage in an output comminst will eventually 
engage in some output comminst, unless it engages in an input comminst". In 
other words: a component has absence of ambiguous quiescence hazard if it will 
not stop engaging in comminsts in a state in which it is allowed to engage in an 
output comminst. 
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remark 3.16 
By discussing ambiguous quiescence hazard we step outside the scope of 
our Communication Model: for each trace in the trace set of a component 
we indicate whether it is guaranteed 'to be extended' or not. One point at 
which ambiguous quiescence hazard might be introduced is the abstraction 
from module to component in subsection 2.2.3. We demonstrate this in 
example 3.17. 

end of remark 

example 3.17 
We consicter module 6 6 • lt has one output commport y and two input 
commports a and ~ · At most one comminst of each commport can occur. 
When a1 and ~1 occur independently, no output comminst occurs. When 
either a1 occurs before ~1 or ~1 occurs before a1 , output comminst y1 occurs 
thereafter: 

'1'%,. = { y} 

'~'L ={a.~} 
CB ~ = { <0, 0>. <{a1 }. 0>. <{~1 }. 0>, <{a1 , ~1 }. 0> 

, < { a1 , ~J}, { a1 c ~J} > , < { a1 , ~J}. { ~J c ad> 

• <la1. ~J• yJl, {al c~J• ~JcyJl>. <la1. ~J·'YJ }, {~JcaJ. a1 cyJ }> 
} 

Module ~ has absence of ambiguous quiescence hazard. We associate 
symbols a, b, and c, with commportS a, ~. and y, respectively. Let 
component I6 be the equivalence class of which module ~ is a member. 
The state graph of I6 is shown in tigure 3.2 . 

a? • . >. 

• __ ____;>~ • 
a? 

ligure 3.2 

<cl> 
> • 

Stategraphof component 16. 

In tigure 3.2 we have putthelabel cl between angle brackets to indicate that 
we cannot guarantee that comminst y1 takes place. Thus, component r 
might engage in output comminst y1 , but we cannot guarantee that it 
engages in any comminst. We conclude that component I6 has ambiguous 
quiescence hazard. 



3.3 Transformation into computation interference hazard 87 

One might argue that the introduetion of ambiguous quiescence hazard 
shown in this example has more to do with the rnadeling in our 
Communication Model than with the abstraction from module ~ to 
component 16. We discuss this insection 7.1 . 

end of example 

Ambiguous quiescence hazard, see also unspecified tennination hazard 
in [ Schols88], is related to "livelock" and "deadlock", cf. [ Kimura79, 
Kaldewaij 86 ] ; it is an example of a liveness property that can be expressed in 
finite trace theory. In order to deal with more sophisticated liveness properties, 
fini te trace theory has been extended, e.g. with refusal sets, cf. [ Hoare85, 
Verhoeff86], or with infinite traces, cf. [Van Horn86, Black86]. 

3.3.1.1 Transformation of ambiguous quiescence hazard 

We consider component r with trace structure ptr r and (input) alp ha bet i r. We 
want to transfonn r into a component that has absence of ambiguous quiescence 
hazard. We need to calculate redts, see subsection 3.3.0. In order to apply redts 

we need a trace set, say S, that is associated with ambiguous quiescence hazard in 
r. S is defined as the set of all traces t such that 

(i) t can be extended with a symbol of or 
(formally: (Eb: be or: tbe t(ptrr))), 

( ii) we cannot guarantee that t will be extended ( with a symbol of ar). 

Let f' be the component such that iof' = iof and ptrf' = redts(ptrf, if,S). 

Component f' has absence of ambiguous quiescence hazard. If we conneet 
component r only to components tJ. for which tJ. NCIH f' , then r will nat enter a 
state in which it can stop engaging in comminsts although it is allowed toengage 
in an output comminst. 
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remark 3.18 
We consicter components r and r' and trace setS such that ior' = ior, 
ptrr' = redts(ptrr, ir,S), and S is associated with ambiguous quiescence 
hazard in r. If we conneet r only to components ll (environment of r) for 
which llNCIHr' , then no instanee of ambiguous quiescence will occur in 
component r. In this case component r behaves like component r' , since 
it can only engage in comminsts in which also r' can engage. Component 
r' has absence of ambiguous quiescence hazard. 

end of remark 

In remark 3.18 we see that after reducing r ( to r' ) we establish absence of 
ambiguous quiescence hazard for r by establishing absence of computation 
interference hazard ( by ll NCIH r' ) . 
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3.3.1.2 Examples 

In this subsection we present some examples of ambiguous quiescence hazard. In 
the diagrams of the state graphs of components we will indicate which output 
transitions cannot be guaranteed to take place ( not even if no other transitions 
take place) by putting their labels between angle brackets. A state is called lary 
if and only if 

(i) it has at least one outgoing output transition, and 

( ii) all its outgoing output transitions have labels between angle brackets. 

In the diagrams of the state graphs of components we will mark lazy states by 
"L". We wil! use these extensions of state graphs only in this subsection 
(3.3.1.2). 

We present a smal! example of ambiguous quiescence hazard and its 
transformation into computation interference hazard in example 3.19. 
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example 3.19 
Component 17 has one input commport, to which a is associated, and one 
output commport, to which b is associated. Initially, 17 accepts an input 
comminst; thereafter it will produce an output comminst, unless it fust 
receives a second input comminst: if 17 receives a second input camminst 
before it has producedan output comminst, it will either produce two output 
comminsts or it will not produce any output comminst at all. If 17 receives 
a second input camminst after it has produced an output comminst, it will 
produce a second output camminst thereafter. We notice that 17 accepts the 
second input camminst anyway, but its reaction to it depends on whether it 
received this input comminst before or after it has sent an output comminst. 
The state graphof 17 is shown in tigure 3.3. 

a? a? L • > • > • 

·-1 1 <b!> 

• > • 
a? 

1·· 
• 

tigure 3.3 
Stategraphof component I7. 

In tigure 3.3 the are teaving state [ aa] ( see subsection 1.4.2) has been 
labelect with "< b! >" . Th is means that we cannot guarantee that the 
transition b will take place. Since b is an element of o G, state [ aa] is lazy. 
For this reason it has been labelect with "L". State [aa] is the only lazy 
state of 17 . Trace aa is the only trace leading from the initia! state 
to state [ aa ] . From this follows that set [ aa} is the trace set that is 
associated with ambiguous quiescence hazard in G. We now calculate 
redts(ptrfl, il7, [aal). We consicter component G', that is detined by: 

r:; ' def [b} . r-• def [ } o 7- , ••7- a ' 

t(ptr17') def redts(ptrfl, il7, {aal). 

The state graph of G' is shown in tigure 3.4. 
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• a? 
--->~. 

• ---->~ • a? 

• 
ligure 3.4 

State graph of component I;'. 
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For any component, say tJ.7 , such that tJ.7 NCIH I7', we notice that tJ.7 NCIH I7 
and I7 has absence of UndesPh hazard when communicating with tJ.7 . We 
see that the transformation of I7 into I7' has transformed ambiguous 
quiescence hazard into computation interference hazard: if absence of 
computation interference is guaranteed between any component tJ.7 and I7', 
I7 has no ambiguous quiescence hazard, when I7 communicates with such a 
tJ.7. 

end of example 

In example 3.20 we show that not only traces of the trace set that is associated 
with the undesired phenomenon hazard are removed, but that also prefixes thereof 
may be removed. 
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example 3.20 
Component 18 has one input commport, to which a is associated, and one 
output commport, to which b is associated. Component 18 is given by tigure 
3.5. 

• a? --->,... b! L 
----=>~. 

tigure 3.5 

<b!> ___ __,;>,... 

State graph of component 18 . 

After 18 has received an input, it produces an output; however, thereafter it 
may or may not produce a second output. We notice that trace ab can be 
extended with b, which is an element of o18, but that we cannot guarantee 
that ab will be extended by a symbol of o 18 . Since ab is the only trace for 
which this is the case, trace set {ab} is the trace set that is associated with 
ambiguous quiescence hazard in 18. We notice that there is no problem 
with trace ab itself, but the problem has to do with extending ab. We 
consicter component 18'; it is detined by: 

,..., def {b} .,..., def { } 
o •s - ' ••s - a , 
t(ptr 18') def redts(ptr 18, i 18, {ab}). 

The state graph of the trace set of 18' is shown in tigure 3.6 . 

• 
tigure 3.6 

State graph of t ( ptr (18')) . 

We see that by transforming 18 into 18' not only trace ab is removed from the 
trace set, but a lso trace a. 

end of example 

The following examples are more realistic and more complex. 
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Example 3.21 is spread over two pages. It starts at page 94. 
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example 3.21 
We consicter component 19 that is given by tigure 3.7. 

a? 

• 
L 

a? 

tigure 3.7 
Stategraphof component rs,. 

a? 

When 19 is in a state labelect with "L" it mayor may notproduce an output; 
in all other states in which it is allowed to produce an output, it will 
eventually produce it. Let S9 be the set of all traces that lead to a state 
labelect with "L" in tigure 3.7. Now, S9 is the trace set that is associated 
with ambiguous quiescence hazard in I9. We consicter component f9', that 
is detined by: 

rr def r • , def . 
0!9 = 0!9• •f9 = •f9, 
t(ptr f9') def redts(ptr I9, i f9, S9). 

The stategraphof f9' is shown in tigure 3.8. We notice that f9'=If, cf. 
example 2.49. 
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ligure 3.8 
Stategraphof component J7,' . 
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Again, the transfonnation of I9 into !9' has transfonned ambiguous 
quiescence hazard into computation interference hazard. 

end of example 

example 3.22 

We consider component Iïo that is given by figure 3.9. Component Iïo 
models some kind of "Or" element ( see example 2.51 ) : ptr r", ç;;; ptr f/0 • 

The difference between them is that f/0 may at some points engage in two 
output comminsts of the same output commport whereas in such a case r", 
doesn 't en gage in any output comminst at all. 
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L 

figure 3.9 
Slate graph of component I}0 • 

Let S10 bethetrace set that is associated with ambiguous quiescence hazard 
in f} 0 , viz. the set of all traces that lead from the initial state to one of the 
four states labeled with "L" in tigure 3.9 . We consider component fJó , that 
is defined by: 



3.3 Transformation into computation interference hazard 97 

• 

r; ' def • r;' def • r; 
0 JO = 0 Ij0 , I JO = I JO , 

t(ptrf/6) def redts(ptriJo. iiJo,SJO). 

The state graph of r;~ is shown in tigure 3.10 . 

• 

• 
tigure 3.10 

State graph of component r;~ . 

Again, the transformation of IJo into IJó has transformed ambiguous 
quiescence hazard into computation interference hazard. 

end of example 

• 
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4 

Communicating delay -safely 

In this chapter we address indirect connections. In an indirect conneetion 
matching commports model terminals that are connected by a wire, see 
subsection 2.1.0. 

Our formal definition of the delay-safety of a channel is based on our causality 
notion: 

no commsig is received before it has been sent. 

This causality notion roodels that there is only one assumption made with respect 
to the delay of a signa! that is sent from one terminal via a wire to another 
terminal in the physical model, viz. : 

the value of this delay is nonnegative. 

Even distinct signals that travel along the same wire may have different values of 
delays. 

Notice that delay-safety is not a property of a component, but it is a property of a 
channel. We shall carefully distinguish between "communication in a channel" 
and "communication behavior of a component". These two topics are, of course, 
related to each other. Distinguishing these two topics enables us to separate the 
communication behavior of components from the delay requirements in the 
channel. 

In this chapter we introduce three important operators in our Communication 
Model. In subsection 4.1.1 we present the delay-safe ciosure of a channel. Given 
channel e, channel DSC e is the smallest ( w.r.t. trace structure inclusion) delay
safe channel such that ptreç ptr(DSC0). In subsection 4.2.1 we present DSE, 

99 
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i.e. the delay-safe enelosure of a component. For component r, component 
DSEr is the maximal (w.r.t. trace structure inclusion) partner of r; when r 
and DSE r are indirectly connected, they have no computation interference 
hazard. In subsection 4.2.3 we present CBDS , i.e. the communication behavior of 
a delay-safely communicating component. The maximal (w.r.t. trace structure 
inclusion) communication behavior of a component, say r, that communicates 
delay-safely without computation interference hazard equals trace structure cbdsr 
( cbds n: ptr r). This means that r behaves in that case like component CBDS r 
( io( CBDS r)= io rand ptr( CBDS r)= cbds r). 

4.0 Causality 

In this section we formalize our causality notion. We consicter the components r 
and ó such that io r= ioó; as a consequence, r and ó have a closed connection, 
i.e. ar= aó . Let t and u be traces such that tE t ( ptr r) and uE t( ptr ó). In chapter 3 
we have considered components that have a direct conneetion; in that case, if t 
and u are consistent, they are equal. In this chapter we deal with components that 
are indirectly connected; now, tand u need not be equal; the condition that tand u 
have to satisfy is called composability. In tigure 4.0 we show these two 
components that have an indirect connection. 

r ó 

ligure 4.0 
Components r and t;,. that have an indirect connection. 

We have stated in the beginning of this chapter that no commsig can be 
received before it has been sent. In order to model this causality we define the 
composability relation between traces. Let iobip F be such that F= ior. Lettand 
u be traces such that tE t(ptrr) and uE t(ptró). We call t composable under F 

with u, if, at some moment, t is associated with a comminstorder of r and u is 
associated with a comminstorder of ó such that t and u are consistent with our 
causality notion, cf. also subsection 4.0.2. 
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remark 4.0 
Molnar has characterized "composability" in a nice way: 

Trace t is a member of a trace set that is associated with a 
camminstorder of r. Trace u is a member of a trace set that is 
associated with a camminstorder of ~. Causality implies a partial 
order between comminsts of r and ~. Composability of t and u equals 
the existence of a full order consistent with the union of these three 
partial orders ( viz., the two camminstorders and the partial order that 
is implied by causality). 

end of remark 

Initially, when no comminsts have happened yet, both t and u are equal to e. 
From a pair of composable traces we construct another pair of composable traces 
by extending one of the traces with one symbol. Since no commsig can be 
received before it has been sent, the extension of a trace with an input symbol is 
restricted, see definition 4.1. 

definition 4.1 composability 
Given are traces t and u, and iobip F such that tE (aF)* and ue (aF)*; we 
define that t is composable under F with u, denoted by tcFu, recursively by 

(i) ECFE 

(ii) fortracestand u and symbol a such that tcFu and ae oF, 

( iii) for traces t and u and symbol a such that tcFu, ae oF, and #at> #au, 

tcFua 

(iv) fortraces tand u and symbol b such that tcFu and be iF, 

tcFub 

( v) fortraces tand u and symbol b such that tcFu, be iF, and #bu > #bt, 

tbcFu 

( vi) completeness axiom: t is not composable under F with u, unless this is 
required by (i), ( ii), (iii), (iv), or ( v). 

end of definition 

The conditions in the definition above ref'lect that no commsig is received before 
it has been sent, see also subsection 4.0.2. 
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Udding was the first to define composability formally, cf. [ Udding84 ]. 
Composability as defined in definition 4.1 is equal to composability as defined by 
Verhoeff, cf. [ Verhoeff85 ] . In definition 4.1 no trace set or trace structure is 
involved: only the iobip is important. The earlier definitions in [ Udding 84 ] and 
[ Schols 85 ] restriet the traces to elements of given trace sets. When this 
restrietion is dropped, all definitions are equivalent, see [ Schols 85 ] and 
[ Verhoeff85 ] . The present definition is nicer from a mathematica! point of 
view, cf. [ Verhoeff85], than the definitions in [ Udding84] and [ Schols85]. 
Property 4.2 asserts that the non-restricted version of the definition in 
[ Schols 85 ] is equivalent to definition 4.1 ; for a proof of this property we refer to 
[ Siccama 86 ] . 

property 4.2 composability 
Fortraces tand u, and iobip F such that te (aF)* and ue (aF)*, 

tcFu=( (Aa:aeoF:#0 t?.#0 u) 

end of property 

A (A b : be iF : #bu?. #bt) 
A (A a ,b, r ,s: ae oF AbE iF A rbprefixt A sa prefix u 

: (#0 r>#0 s)v(#bs>#br) 
) 

) 

Unfortunately, none of the definitions of composability mentioned above is very 
well suited to check manually whether two traces are composable under an iobip. 
For this reason, we present Verhoeff's methad to check this graphically, see 
subsection 4.0.0. 
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4.0.0 Composability diagram 

Whether a trace t is composable under an iobip F with a trace u, can be concluded 
by constructing a composability diagram. Such a diagram provides more insight 
into the composability relation, and its construction is a practical tooi for 
concluding whether tand u are composable under F or not. 

The symbols in trace t are listed in the top row; each symbol is postfixed with an 
exclamation mark or a question mark to indicate whether it is an element of oF or 
iF, respectively. The symbols in trace u are listed in the bottorn row; each 
symbol is postfixed with an exclamation mark or a question mark to indicate 
whether it is an element of oF or iF, respectively. To the right of the last ( right 
most) symbol of each trace an end of trace marker ($)is added. 

For every symbol, its fust ( left most) occurrence in t is connected to its fust 
occurrence in u by an arrow pointing from the occurrence that is postfixed with an 
exclamation mark to the occurrence that is postfixed with a question mark ( if 
there are not enough occurrences in either one of the traces, the $ at the end of 
that trace is used instead ) . The second and higher occurrences of symbols int or 
u are connected in the same way. Now, all occurrences of symbols are connected 
by some arrow. See figures 4.1 and 4.3 for such a composability diagram. 

In a composability diagram two intersecting arrows are said to form a backward 
inters eetion if and only if one arrow ( the tu-arrow) starts at trace t and the other 
arrow ( the ut-arrow ) starts at trace u, the tu-arrow points in trace u to the left of 
the beginning of the ut-arrow, and the ut-arrow points in trace t to the leftof the 
beginning of the tu-arrow. 

Trace t is composable under iobip F with trace u if and only if in the 
composability diagram: 

(i) there is no arrow starting from a$, and 

(ii) there is no backward intersection of two arrows. 
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example 4.3 composable traces 

We consider tracestand u, symbols a, b, c, and d, and iobip F0 such that 
oF0 = {a, c} and iF0 = {b, d}. We are interested in whether trace abca ( = t) 

is composable under F0 with trace adbcb ( =u). In tigure 4.1 this 
composability diagram is shown. 

a! b? 

a? d! 

c! a! 

b! c? 

tigure 4.1 
Composability diagram. 

$ 

b! $ 

The absence of bath an arrow starting from a $ and a backward 
intersection of two arrows in the composability diagram indicates that t and 
u are composable under F0 • By direct application of definition 4.1, 
"composability", we can derive in several ways a confirmation that 
abcacF0 adbcb: 

ECF0 E ECF0 E ECF0 E 

aCF0 E acF0 E acF0 E 

acF0 a acF0 a acF0 a 

acF0 ad acF0 ad acF0 ad 

acF0 adb acF0 adb acF0 adb 

abcF0 adb abcF0 adb abcF0 adb 

abccFoadb abccF0 adb abccF0 adb 

abccF0 adbc abccF
0
adbc abcacF0 adb 

abccFo adbcb abcacF0 adbc abcacF
0
adbc 

abcacF0 adbcb abcacF
0
adbcb abcacF

0
adbcb 

table 4.2 

Three derivations of abcacFo adbcb. 

end of example 
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We consicter the case that two traces, say t and u, are nat composable under an 
iobip, say F. Now, there must exist an arrow starting from a $ or a backward 
intersection of two arrows in the composability diagram. All arrows that farm 
some backward intersection indicate tagether the longest prefixes (of traces t and 
u) that are composable under iobip F, cf. example 4.4 

example 4.4 traces that are not composable 

We consicter traces t and u, symbols a, b, c, and d, and iobip F0 such that 
oF0= {a, c} and iF0= {b, d). We are interested in whether trace bca ( = t) is 
composable under F0 with trace acdb (=u). 

b? c! a! $ 

a? c? d! b! $ 

tigure 4.3 
Composability diagram. 

In tigure 4.3 this composability diagram is shown. From definition 4.1, 
"composability", we infer that _,(bcF

0
e) and _,(ecF

0
a). We conclude that 

_,(bcacF
0
acdb). Notice that the leftroost arrowheads of all arrowheads of 

the arrows that farm some backward intersection indicate the longest 
prefixes that are composable under Fo: ecF

0
e. 

end of example 

This construction of the composability diagram has first been shown by Verhoeff, 
cf. [ Verhoeff89 ] . He has characterized tcFu by requirements (i) and (ü) 
( see p.l03) w.r.t. the composability diagram of tcFu; this characterization 
corresponds to the (non-recursive) definition of composability in property 4.2 , 
"composability". In this property, the fust two conjuncts at the right hand side of 
the equation formalize requirement (i) in the construction of the composability 
diagram above; they reflect that each received commsig is sent at some moment 
befare or afterit is received. The third conjunct formalizes requirement ( ii) in 
that construction; it reflects that, when two commsigs travel in opposite 
directions, at least one of them must have been sent when either of them is 
received. The first two conjuncts are insuftleient to model the nonnegativeness of 
the delays: tagether with the third conjunct, they impose this requirement. 
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4.0.1 Properties of composability 

In this subsection we present some properties of composability. These properties 
were given in [ Udding84]. 

property 4.5 
Fortracestand u, symbols a and b, and iobip F such that tE (aF)*, uE (aF)*, 
aEaF, and bEaF, 

(Ï) tCFt 

(ii) tacFe :::> tcFe 

( iii) ecFub :::> ecFu 

(iv) tacFub :::> (tacFu V tcFub) 

end of property 

property 4.6 
Fortrace t, symbol a, and iobip F such that tE (aF)*, 

(i) foraEoF, tacFt 

(ii) for aE iF, tcFta 

end of property 

property 4.7 
For traces t and u, sym bol a, and iobip F such that tE (aF)*, uE (aF)*, and 
aEaF, 

tcFua :::> (Es: sprefixt: scFu) 

end of property 

example4.8 
For symbols a and b, and iobip F1 such that oF1 ={a} and iF1 = {b}, 

abcF
1 
ba A--, (abc~ ba) 

end of example 

From the example above we observe that, in genera!, the definition of 
composable traces is not symmetrie in inputs and outputs. (A contrary statement 
by Udding, see [ Udding84, p.44], is erroneous; this does not invalidate 
Udding's work). Because of this asymmetry, an asymmetrie iobip Fis needed to 
define composability. 

property 4.9 
Fortracestand u, and iobip F such that tE (aF)* and uE (aF)*, 

tCFU = UCji t 

end of property 
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Property 4.9 illustrates that pairs of composable traces do satisfy some symmetry 
propeny; as a consequence, the particular choice of the iobip with respect 
to the alphbip of a channel, say e, viz. ( given symbol aE a0) iF= spa(a, 0) 
and oF= opa(a, 0) or the other possibility iF= opa(a , e) and oF= spa(a, 0), is 
irrelevant. 

From property 4.2, "composability", we infer that composability is transitive. 

property 4.10 transitivity of composability 

For traces s, t, and u, and iobip F, 

(sept A tCpU) =:> SCpU 

end of property 

property 4.11 
Fortracestand u, symbol a, and iobip F such that tE (aF)* and uE (aF)*, 

(i) foraEoF, (tCpUA#at>#au)=tcpua 

(ii) foraeoF, 

(iii) foraeiF, 

(iv) for aE iF, 
end of property 

tCpU = (tacFu A#at ";?.#au) 

(tcFuA#at<#au)= tacFu 

tcFu = (tcFuaA#at'!>#au) 

In property 4.11 the implications from right to left are the most important ones, 
since the implications from left to right are similar to those in definition 4.1, 
"composability" . From property 4.11 we derive property 4.12. 

property 4.12 
For iobip F, traces t and u, and symbol a such that tE (aF)*, uE (aF)*, and 
aeaF, 

tCFU = taCpua 

end of property 
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4.0.2 Composability versus independenee of comminsts 

In section 4.0 we formalized our causality notion "no commsig is received befare 
it has been sent". In this subsection we have a closer look at this formalization. 
We first study the following example. 

example 4.13 
We consicter components IJ and !:11 that have a closed and indirect 
conneetion, see figure 4.4. 

IJ 

a 
.... 

'I' / 

/ 

b ..... 

tigure 4.4 
Components Ij and 1'>.1 • 

!:11 

Component IJ accepts one input camminst befare it sencts one output 
comminst. Let T1 be the trace set that is associated with the camminstorder 
of IJ in which the input camminst occurs befare the output camminst of IJ : 
T1 = {ba}. Component !:11 accepts one input camminst and sencts one output 
comminst; these comminsts occur independently. Let U1 be the trace set 
that is associated with the camminstorder of !:11 in which the input camminst 
and output camminst of !:11 occur independently: U1 = {ab, ba}. 

def • def def 
oiJ =(a}, •IJ = {b}, t(ptriJ)= prer{ba}, 

def . def def 
o!:i1 = (b}, 1!:11 ={a}, t(ptr!:i1)= pref{ab,ba}. 

Let iobip Fj be such that F1 = io IJ . We notice that...., (bacF1 ab) in spite of the 

independenee of the comminsts of !:11 • 

end of example 
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In example 4.13 we considered the comminstorder of IJ , with which trace set 1j is 
associated, and the comminstorder of 6 1 , with which trace set U1 is associated. 
These comminstorders are consistent with our causality notion. Trace ba is 
an element of T1 and trace ab is an element of U1 • Nevertheless, these traces are 
not composable under Fj . This seems to be a problem: the question arises 
whether our composability operator, see definition 4.1 , can be associated with 
our causality notion. We consicter iobip F and trace t. We are not interested 
whether tcpu holds for a particular trace u. But, we are interested in whether 
(Eu : ue U: tcpu) holds for some trace set U. Furthermore, trace set U is such that 
it is the union of trace sets that are associated with comminstorders, cf. subsection 
2.2.3. As a consequence, if two comminstorders are consistent with our causality 
notion, then for every trace ( t) in the trace set that is associated with one of these 
comminstorders there exists a trace (u) in the trace set that is associated with the 
order comminstorder such that these two traces are composable ( tcpu) . Th is is 
why there is no problem in associating our composability operator with our 
causality notion. We illustrate this by example 4.14. 

example 4.14 
We consicter components IJ and 61 , trace sets T1 and U1 , and iobip Fj, see 
example 4.13. We notice that baet(ptriJ) , baeT1 , baet(ptrö1 ), baeU1 , 

and bacp
1
ba. As a consequence, (Eu : ueU1 : bacp

1
u). From this we find 

(Et, u: te T1 11 ue U1 : tCF1 u) . We conclude that the comminstorders with 

which 1j and U1 are associated are consistent with our causality notion. 
end of example 

remark 4.15 
Since we are only interested in predicate (Eu: ue U: tcpu) for trace t, trace 
set U, and iobip F, we conclude that, in this way, we may associate the 
composability of traces in the trace theory formalism with our causality 
notion in our Communiearlon Model. 

end of remark 

The statement in remark 4.15 has been relied on by everyone that uses Udcting's 
composability operator, see [ Udding84], to model concurrent or parallel 
behavior. 
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4.1 Communication in channels 

In this section we address the communication in channels. From subsection 2.2.4 
we reeall that a channel is a pair: an alphbip and a trace structure. 

4.1.0 Delay-safe channels 

We define the class D4 in order to formalize that a channel is "delay-safe", see 
definition 4.19. 

definition 4.16 D4 

Fortrace structure Tand alphbip D, the pair (T,D) is an element of D4 if and 
only if T is nonempty and prefix-closed and 

T = < iFu oF, {s, t, u: se tT 11scFt 11 tcFu 11 ue tT: t) > 

for some iobip F such that D = îF e oF. 

end of definition 

In definition 4.16 an iobip is needed in order to address the composability of 
traces; this is why there is an existential quantification over iobip F. 

remark 4.17 
Property 4.18 shows that we need to consicter only one iobip when proving 
that a "trace structure" - alphbip pair is not in D4 • 

end of remark 

property 4.18 
Fortrace structure Tand iobip F such that aT= îF u oF, 

(tT;t {s ,t ,u: se tTIISCFtlltcFullue tT: t}) :;> (T, iF$ oF)éD4 

end of property 

In [ Schols 85 ] we used the "Foam Rubber Wrapper Postulate" ( see also remark 
4.35) to give the definition of what we now call "delay-safe channel" . Here we 
present an equivalent form of this definition, using the class D4 , cf. [ Schols 85, 
Siccama86, Verhoeff85]. Insection 4.0 we have shown that the composability 
of traces formalires our causality notion ( "no commsig is received before it has 
been sent"). Using class D4 we now define that a channel is delay-safe. 

definition 4.19 delay-safe channel 

For channel e, we call e delay-safe if and only if 

(ptr8,abe)eD4 

end of definition 
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4.1.1 Delay-safe dosure 

The operator dsc yields the trace structure of the mathematica! ciosure of a 
"trace structure" - alphbip pair within the class D4 . 

definition 4.20 dsc 
For trace structure T and alphbip D such that aT=aD, trace structure 
dsc (T, D) is the smallest ( w.r. t. trace structure inclusion) trace structure 
such that 

p;;;, dsc (T,D) 11 (dsc (T,D),D)e D4 

end of definition 

Notice that in the definition above aT=a(dsc(T,D)); this follows from definition 
1.18, "trace structure inclusion". In [ Schols 85 ] we derived that such a unique 
minimum exists. 

property 4.21 
Fortrace structure Tand alphbip D such that (T, D )e D4 , 

dsc(T,D)=T 
end of property 

remark 4.22 
From property 4.21 we infer that, for every alphbip D, the function 
dsc (T,D) is idempotent inT, i.e. 

dsc (dsc (T,D),D) = dsc (T,D) 
end of remark 

property 4.23 dsc is monotonic in its first argument 
Fortrace structures Tand U, and alphbip D such that aT= aD and aU= aD, 

(Tr~ U) ::;. (dsc (T, D)c;;. dsc (U, D)) 
end of property 

We extend the definition of dsc to components and channels. 

definition 4.24 dsc of component or channel 
For component or channel e, trace structure dsc e is defined by 

def 
dsce = dsc(ptre,abe) 

end of definition 
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property 4_25 

For component r, 
dscr = dscr 

end of property 

definition 4.26 delay-safe ciosure of channel 

Communicating delay-safely 

For channel E> the channel DSC E> denotes the delay-safe ciosure of E>; it is 
defined by 

and 

def 
ab(DSC E>) = abE> 

def 
ptr(DSC E>) = dsce 

end of definition 

Given a channel e, channel osce is the smallest (w.r.t. trace structure 
ioclusion) delay-safe channel such that ptr eç; dsc e. 

remark 4.27 

Given is a channel e that is oot delay-safe. Now dsc e cao be associated 
with the communication in e instead of ptr e. Th is is formalized in 
definition 4.26, "delay-safe ciosure of channel". 

end of remark 

We have no interpretation for the "delay-safe ciosure of a component", cf. 
remark 4.59 and example 4.58. For this reason we do oot define it. 

From property 4.21 we derive that DSC is idempotent, see also remark 4.22. 

property 4.28 DSC is idempotent 

For channel e , 
DSC(DSC 0) = DSC e 

end of property 
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4.2 Communication behavior of components 

In this section we concentrate on the communication behavior of components that 
communicate delay-safely. We have one correctness concern: absence of 
computation interterenee hazard. We shall show that delay-safe communication 
may restriet the communication behavior of a component, when absence of 
computation interterenee hazard is a correctness concern. 

4.2.0 Computation interference hazard 

We extend definition 3.5, "NCIHA ", and definition 3.8, "NCIH", to indirect 
connee ti ons. 

definition 4.29 NCIHADS 

Given are i/o-connectable components 1 and fl . Let iobip F be such that 
iF= i!n ofl and oF= o!n ió. By ! NCIHADS ll, we denote that there is no 

computation interterenee hazard at ll, when ! and ó have an indirect 
conneetion; ! NCIHADS ll is defined by 

def 
!NCIHADS!l =(At ,u ,a: tE t(ptrl) 11 ue t(ptró) 11 ae oF 

) 

end of definition 

11 Cd(a!na!l))cF(ur(a!naó)) 11 #at>#au 
: uae t(ptrll) 

Given that 1 and ll have an indirect connection, the condition 
Cd(a! n a/l))cF(u re ar-nall)) in definition 4.29 ref'lects that t and u are consistent 
with our eausality notion. Definition 4.29 reflects that ó aeeepts every commsig 
that it may receive. 

Using definition 4.29, "NCIHADS", we define absence of computation 
interterenee hazard when the conneetion is indirect. 

definition 4.30 computation interference hazardfor indirect conneetion 

Given are i/o-eonnectable eomponents ! and ó . •r- and ll have no 

computation interference hazard, when they have an indirect connection, 
which is denoted by 1 NCIHDS ll, is defined by 

r NCIHDS ó def (! NCIHADS ó) 11 (ll NCIHADS!) 

end of definition 
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"Computation interference hazard at one component for indirectly connected 
components" and "computation interference hazard for indirectly connected 
components" have been defined first by Verhoeff, cf. [ Verhoeff85 ] . From 
definition 4.30, "computation interference hazard for indirect connection", 
follows the symmetry of NCIHDS . 

property 4.31 symmetry of NCIHDS 

For i/o-connectable components 1 and ~, 

1 NCIHDS ~ = ~NCIHDS 1 

end of property 

Since indirect connections are used to model nonnegative delays, whereas direct 
connections are used to model zero delays only, we find the relations between 
"computation interference hazard for indirectly connected components" and 
"computation interference hazard for directly connected components" shown in 
property 4.32. 

property 4.32 
For i/o-connectable components 1 and ~, 

(i) 1NCIHADS~ => 1NCIHA~ 

(ii) r NCIHDS ~ => r NCIH ~ 

end of property 

In genera!, implications from right to left in property 4.32 do not hold, see 
example 4.33. 

example 4.33 
We consicter component I2 that is defined by 

• def def{ } ( )def{ } 
t I2 = 0, o I2 = a , b , t ptr I2 = E , a , ab , 

def • def def 
o~2 = 0, •~2 = {a ,b}, t(ptr~2 ) = {E ,a ,ab} . 

We see that I2 NCIHA ~2 , but not I2 NCIHADS ~2 • Furthermore, we see that 
I2 NCIH ~2 , but not I2 NCIHDS ~2 • 

end of example ·~ 

In chapters 4, 5, and 6 we present more properties that show relations between 
NCIHA and NCIHADS and between NCIH and NCIHDS . 
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4.2.1 Delay-safe enelosure 

We are interested in the communication behavior of a component, say r, that has 
an indirect conneetion with its environment, say ~. In order to study this 
communication behavior and the communication betweenrand ~.we introduce 
the notion delay-safe enelosure of a component. The delay-safe enelosure of 
component r is a component. It is denoted by DSE r. Using the delay-safe 
enclosure, we learn about the indirect conneetion of r and ~ by studying the 
direct conneetion of DSE r and DSE ~, see tigure 4.5. 

DSE r DSE ~ 

~ ~~ 

r ~ 

figure4.5 
Components r and D. and their delay-safe enclosures. 

We will define the delay-safe enelosure such that the indirectly connected 
components rand~ communicate delay-safely and have absence of computation 
interference hazard, if and only if the direetly connected components DSE r and 
DSE~ have absence of computation interference hazard, see theorem 4.56. 
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The reflection of the delay-safe enelosure of a component, say r, can be 
interpreted as an environment of r that is able to communicate delay-safely with 
r, see tigure 4.6. 

r 

, 

' 

I' 

tigure 4.6 
Components rand DSE r. 

DSE r 

For component r, component DSE r is the maximal ( w.r.t. trace structure 
inclusion) partner of r; when r and DSE r are indirectly connected, they have no 
computation interference hazard, see definition 4.34. 

definition 4.34 delay-safe enelosure 

For component r, we define the de/ay-safe enelosure of r, denoted by 
DSEr, as the maximal (w.r.t. trace structure inclusion) component such 
that 

(i) ior = io(DSE r) 

(ii) rNCIHDS DSEr 

(iii) (A a, t: aE i( DSE r)AtaE t(ptr( DSE r)): (Es: SE t(ptrr): sC 10 rta)) 

end of definition 

The existence of the maximum in definition 4.34, "delay-safe enclosure", above 
follows from the "delay-safe enclosure" theorem 4.45. Requirement (iii) in 
definition 4.34, "delay-safe enclosure" , restfiets in the traces of DSE r the 
occurrences of symbols ae i( DSE r) to those occurrences that are associated with 
the reception by DSE r of commsigs that may have been sent by r. In 
requirement (iii) there is noneed to quantify over symbols ae o( DSEr), since 
their occurrences in traces of ptr( DSE r) are restricted by requirement (i i). 

remark 4.35 
Molnar introduced the roetaphor "a component wrapped in a Foam 
Rubber Wrapper" for a component that communicates delay-safely, cf. 
[ Schols 85 ] . Readers that are familiar with this roetaphor will recognize 
the delay-safe enelosure as its formalization. 

end of remark 
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For component r we de fine trace structure dse r. It will turn out that this is the 
trace structure of the delay-safe enelosure of r, see theorem 4.45. 

definition 4.36 dse 

For component r, we define trace structure dse r recursively by 

(i) a( dse r) def a( ptr r) 

(ii) t:E t(dser) 

(iii) fortrace x and symbol a such that xe t(dser), aE ol, and 
(Es : SE t(ptr r)A SC~orX: #0 s > #0 x), 

xaE t(dser) 

(iv) fortrace x and symbol a such that xE t(dser), aE i!, and 
(As, b : sE t(ptrr)A bei I AsC 10rxa A #bs < #"xa: sbe t(ptr r)), 

xaE t(dser) 

( v) completeness axiom : t(dse r) contains no elements that are not 
required by (i i), (iii), or (iv) . 

end of definition 

In definition 4.34 (ii) absence of computation interference hazard between 
the indirectly conneered r and DSE r has been required. In definition 4.36, 
(iii) reftects that a component may produce any output whenever this output is 
enabled, and, hence, DSE r accepts any input from r, whenever it receives this 
input. Furthermore, (iv) reftects that r accepts all inputs it might receive from 
DSE r, and, hence, DSE r does notproduce any output unless r is able to accept 
it. In addition to this, the quantification over input b in (iv) reftects that DSE r 
may only produce an output when this will not prevent r from accepting all 
inputs that it might receive from DSE r, cf. example 4.37. 



118 C ommunicating delay-safely 

example 4.37 
We consicter component IJ, see tigure 4.7. 

a? 
-----'>~ • 

• 
figure4.7 

State graph of component IJ . 

Using definition 4.36, "dse", we find that t(dse Ij)= {e, a , b}. Let symbols 
a and b be associated with commsig a1 and ~1 , respectively. We notice that 
trace ab is nota member of trace set t(dseij), despite that IJ will accept ~1 • 

The reason for the absence of ab is that IJ might receive ~1 first; hereafter IJ 
will not accept a 1 any more. 

end of example 

We illustrate definition 4.36, "dse", by calculating dse for some components 
introduced in chapter 2. 

example 4.38 
We consicter component rw, see example 2.47. From definition 4.36, 
"dse", we conclude that dse rw = ptr rw, see tigure 4.8. 

a 

~ • • 
~ 

b 

figure4.8 
Stategraphof trace structures ptr(r,.) and dse r... 

end of example 
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example 4.39 
We consicter component ç1, see example 2.49 and tigure 4.9a. Using 
definition 4. 36, "dse" , we calculate dse ç1 , see tigure 4. 9b . 

• 

a? 1\ 
• a > • • >. 

~~- \) 
• • 

ligure 4.9a ligure 4.9b 
State graphs of component r"1 ( ligure 4.9a) and trace structure dse r"1 ( tigure 4.9b). 

We notice that dse ç1 = ptr IJ, see example 2.49 
end of example 

The following properties and lemmas are used in the proof of theorem 4.45, 
"delay-safe enclosure". 

property 4.40 
For component r, 
(i) EE t(dser) 

(i i) dse r is prefix -closed 
end of property 

property 4.41 
For component r, 

(AS, b ,X: SE t(ptrr)A bE if A SbC 10rX AXE t(dse r): SbE t(ptr r)) 

end of property 
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Property 4.42 will be used in theorem 4.45 to ref1ect that there is absence of 
computation interference hazard between indirectly connected components r and 
DSEr. 

property 4.42 
Given is component r 0 Let ö be a component such that ioö= io f 
and ptrö= dser. Now, 

INCIHDSö 

end of property 

lemma 4.43 
For component r, 

(At: tE t(dser): (Es: SE t(ptrr): SC10 rt)) 

end of lemma 

lemma 4.44 
For components rand ö such that ior= ioö and ÓNCIHADS r, 

(As ,t: SE t(ptrr) A tE t(ptrö)\t(dser): -,(SC 10 rt)) 

end of lemma 

N ow, we can link trace structure dse r to component DSE r 0 

theorem 4.45 delay-safe enelosure 

For component r, 

ptr( DSE r) = dse r 
end of theorem 

remark 4.46 
The operator dse is equal to Verhoeff's operator h, cfo [ Verhoeff85 ] 0 
We consider component r; in our terminology, Verhoeff considers all 
components ö with ö NCIHDS r and ioö= io f 0 He defines dse r as the uni on 
of the trace structures of the channels between each such a ö and r 0 Our 
definition is constructive: starting from e, every trace of t(dse r) can be 
constructed in the way described in definition 4036, "dse" 0 

end of remark 

remark 4.47 
The following example illustrates that, for component r, ptr r and dse r are, 
in general, not ordered with respect to trace structure inclusion, see also 
[van der Veeken87]; Chen, Udding, and Verhoeff have defined a 
different, more complex order with respect to which ptr r and dse r are 
ordered, see [ Chen- Udding- Verhoeff89] 0 
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end of remark 

examp1e 4.48 
We consicter component 14 , see figure 4.10 . 

• 

• 

------:>~ • 
c? 

figure4.10 
State graph of component 14 . 
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Using definition 4.36, "dse", we calculate dse 14; io( DSE 14 )= io 14; trace set 
t ( dse 14) is shown in figure 4.11 . 

• 

1\ • • 

\) 
• 

figure 4.11 

State graph of trace set t ( dse 4) . 

Let iobip F4 be such that F4 =iof4 . From abcF,b follows bEt(dsef4), cf. 

definition 4.34 (iii). Analogously, from abcF
4
ba follows baE t(dsef4). We 

see that the ordering of a and bis lost. We conclude that -o(dsef4Ç ptrl4). 

Furthermore, from acF,c, aE t(ptr 14) and acë t(ptr 14) follows cë t(dse 14 ), cf. 

definition 4.36 (iv). We conclude that--, (ptr 14 ç;;; dse 14) . 
end of example 
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4.2.2 Properties of the delay-safe enelosure 

In this subsection we present some properties of DSE . Of course, see theorem 
4.45, "delay-safe enelosure", we also present some properties of dse. 

lemma 4.49 
For component r, 

(At: tE t(ptrr)A(Ey: yE t(dser): tC 10 rY): tE t(dser)) 

end of lemma 

From lemma 4.49 we infer property 4.50. 

property 4.50 
For component r, 

(At: tE t(ptrr): (Ey: yE t(dser): tC 10 ry)) ::::> ptrrc;;; dser 

end of property 

lemma 451 
For component r, 

(dser, abr) E D4 

end of lemma 

lemma 4.52 
For component r, 

(ptrr,abr)ED4 = (dser= ptrr) 

end of lemma 

From theorem 4.45, "delay-safe enclosure", lemma 4.51, and lemma 4.52 we 
infer property 4.53. 

property 4.53 DSE is idempotent 
For component r, 

DSE( DSE r) = DSE r 
end of property 
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4.2.2.0 Computation interference hazard 

In this subsection we present some properties about the delay-safe enelosure and 
computation interterenee hazard. 

property 4.54 
For i/o-connectable components 1 and 6, 

(i) I NCIHADS Ä = ( DSE I) NCIHADS Ä 

(ii) I NCIHADS Ä = I NCIHADS ( DSE 6) 

(iii) INCIHDS Ä = (DSEI)NCIHDS Ä 

end of property 

The delay-safe enelosure enables us to express "(input) computation interterenee 
hazard when the communication is delay-safe" in terros of "(input) computation 
interterenee hazard". In order to do this we substitute one of the components by 
its delay-safe enelosure, see property 4.55 (iii). 

property 4.55 
For i/o-connectable components 1 and 6, 

(i) I NCIHADS Ä = ( DSE I) NCIHA Ä 

(ii) I NCIHADS Ä = I NCIHA ( DSE 6) 

(iii) INCIHDS6= (DSEI)NCIHÄ 

end of property 

From property 4.54 (iii) and property 4.55 (iii) we conelude that the delay-safe 
enelosure has been defined such that the indirectly connected components r and 6 

communicate delay-safely and have absence of computation interterenee hazard, 
if and only if the directly connected components DSE I and DSE 6 have absence 
of computation interterenee hazard, cf. theorem 4.56. 

theorem 4.56 
For i/o-connectable components I and 6, 

INCIHDS Ä = (DSEI)NCIH(DSE6) 

end of theorem 
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4.2.2.1 Trace structure inclusion 

In this subsection we present some examples that show some properties of trace 
structures ptr r' dse r' and dsc r' for component r. 

remark 457 
In general, the delay-safe enelosure is not monotonic w.r.t. trace structure 
inclusion, as is shown in example 4.58 and in example 4.81 . 

end of remark 

example 4.58 
We consicter component I5; the stategraphof I5 is given in tigure 4.12. 

b! a? > • • > • 

c? ,,1 
"1 a? 

• > • 

tigure 4.12 
State graph of component IJ . 

The stategraphof trace structure dscl5 is given in figure 4.13 . 

• b > • a > • 

'1 '1 a '1 
• • > • 

~ 
tigure 4.13 

State graph of trace structure dsc IJ . 
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The state graph of component DSE 15 is given in figure 4.14. 

• b! > • a? > • 

''l b! 

,,1 
a? 

,,1 
• > • > • 

figure4.14 
State graph of component DSE Tj . 

We see that cbart t(dsc 15) and cbaE t(dse 15). 

Let component ö5 be such that io ö5 = io IS and ptr ö5 = dsc IS . From 
(ptrö5 ,abiS)ED4 and lemma 4.52 it follows that dseö5 = ptrö5 • Now, it can 
be seen that --. ( dse 15 ç; dse ö5 ); nevertheless, ptr 15 c ptr ö5 • 

end of example 

remark 4.59 
In genera!, --. (dse rç; dsc r), for component r, see example 4.58; however, 
there exist components r for which dse r c dsc r, see example 4.60. 

end of remark 
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example 4.60 
We consicter component Iiu1x:, see example 2.50 . The state graph of Iiubc is 
shown in tigure 4.15. The state graph of trace structure dsc Iiubc is shown in 
tigure 4.16. 

• 

• 

~ 
~~ 
~~ 

tigure 4.15 

• 

State graph of component r,ubc . 

tigure 4.16 
State graph of trace structure dsc rtubc . 
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The state graph of component DSE fiubc is shown in tigure 4.17 . 

• 
~ 

• 

figure4.17 

Stategraphof component DSE ru.bc. 

b! 
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Despite cae t(ptrr,ubc), ca is not an element of t(dsel/u~>c), while 
acé t(ptr I/u~>c). cf. definition 4.36 (iv). We notice that dse r,ubc c dsc fiubc (i.e. 
dse fiubc ç dsc Itubc and dse r,ubc * ptr r,ubc ) • 

end of example 
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example 4.61 
We consicter component rbc, see example 2.50. The state graph of 
component DSE Ibc is shown in figure 4.18. 

d! 

c? 

tigure 4.18 
State graph of component DSE loc . 

We see that DSE rbc = I2w, see example 2.50. Furthermore, using definition 
4.24, "dsc of component or channel", we find that dse Ibc = dsc rbc . 

end of example 
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4.2.2.2 Regularity and choice 

In this subsection we present some examples to illustrate some properties of the 
delay-safe enelosure. 

remark 4.62 
Example 4.63 shows that the delay-safe enelosure does not preserve 
regularity. 

end of remark 

example 4.63 DSE does notpreserve regularity 

We consicter component 16, see figure 4.19. 

a? 

~ • • 
~ 

b! 

tigure 4.19 

Stategraphof component I6 . 

Since the number of states of 16 is finite, the state graph of component 16 is 
regular, see subsection 1.4.2. Using definition 4.36, "dse" , we infer that 

(An: neJN: (anbne t(dsef6)) 11 (anbn+lrt t(dsel6))), 

where an denotes the trace that consistsof n symbols that are all equal toa. 
We notice that the number of states of dse 16 is infinite. Using theorem 
4.45, "delay-safe enclosure", we conclude that the state graph of 
component DSE 16 is not regular. 

Analogously, the regularity of the state graphs of components lor and ç;nd, 
see example 2.51 , and rmaj , see example 2.52, is not preserved by DSE . 

end of example 

remark 4.64 
Example 4.65 shows that the delay-safe enelosure does not preserve 
"absence of choice . between outputs". 

end of remark 
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example 4.65 
We consider component I7; the stategraphof I7 is shown in tigure 4.20. 

b? 

~ • • 
~ 

cl 

a? a? 

b? 

~ 
• • 
~ 

d! 

figure4.20 
Stale graph of component r;. 

The stategraphof component DSE I7 is shown in tigure 4.21. 

b? 

~ 
• • 
~ 

c! 

a? a? 

b? b? 

~ ~ 
• • • • 

c! d! d! 

figure 4.21 

State graph of componenl DSE r; . 

Whereas in I7 "no outputs disable each other", in DSE I7 this does not hold: 
abce t(dsefl) and abde t(dsefl), but abcdé t(dsefl) and abdcé t(dsefl). 
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In example 4.67 we will refer to dsc I7; for this reason we present this trace 
structure in figure 4.22. 

b 

~ • • 
~ 

c 

a a 

b b 

~ ~ 
• • • 

J~ ~ d 

• 
tigure 4.22 

State graph of trace structure dsc r; . 

Notice that abc has no successar in t(dsc I7). 
end of example 

remark 4.66 

• 

In example 4.67 we present two components that have the same dsc but 
different dse. 

end of remark 
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example 4.67 

We consicter components IS and !!:.a; IS is equal to component I7 in example 
4.65. t:.a has two inputs a and b, and two outputs c and d. The state graph 
of component l!:.a is shown in tigure 4.23. 

b? 

~ 
• • 
~ 

c! 

a? 

b? 

~ 
• • 
~ 

d! 

figure4.23 
Stategraphof component ll8 • 

Notice that the state graph of 1!:.8 is almast equal to the state graph of 
component IS . From detinition 4.24, "dsc of component or channel", we 
infer that dsc l!:.a = dsc IS , see tigure 4.22. 

b 

~ • • 
~ 

c 

a 

• 

tigure 4.24 
State graph of t ( dse .18 ) • 

In tigure 4.24 we show the stategraphof trace set t(dsel!:.a). Let iobip f8 be 
such that ioFa= ioiS. Using definition 4.36 (iv), we infer from bcacF

8
ab, 

bcE t(ptrt:.8 ), and bcaé t(ptrt:.8 ), that abri. t(dsef!:.s). Using that abE t(dseiS), 

we conclude that dse IS* dse l!:.a , whereas dsc IS= dsc !!:.a • 
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end of example 

4.2.3 Behavior of delay-safely communicating components 

In remark 4.47 we noticed that, in general, ptrr and dser are notordered with 
respect to trace structure inclusion. This is due to to the fact that the boundaries 
at which components r and DSE r are interpreted do not coincide, cf. figure 4.5. 
In this subsection we are interested in the impact of delay-safe communication 
on the communication behavior of a component. We define the maximal 
communication behavior of a component that communicates delay-safely, i.e. the 
maximal communication behavior of the component at the commports of the 
component when the component has an indirect conneetion with its environment 
and there is absence of computation interference hazard between them. 
The "maximal communication behavior of component r that communicates 
delay-safely" is a component. It is denoted by CBDS r. Components r and 
CBDS rare interpreted at the same boundary, see figures 4.25 and 4.26. 

r 

CBDS r 

'' 

tigure 4.25 
Components rand 8. 

' " 

ligure 4.26 
Components CBDS r and 8. 

tl 

tl 
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We consicter the indirectly connected components r and 6 that communicate 
delay-safely and have absence of computation interference hazard. Let, at some 
moment, trace t be associated with a comminstorder of r and trace u be associated 
with a comminstorder of 6 such that t and u are consistent with our causality 
notion. We will define CBDS such that tE t(ptr(CBDSr)), uE t(ptr(CBDS6)), and 
tc10 ru; this is formally expressed by theorem 4.77. Furthermore, for every trace 
tE t(ptr( CBDS r)) there exist a component 6 (e.g. DSE r) and a trace uE t(ptr 6) 

such that r and 6 communicate delay-safely without computation interference 
hazard, and, at some moment, t is associated with the order of comminsts at the 
commports of r, u is associated with the order of comminsts at the commports of 
6, and t and u are consistent with our causality notion; this is formally expressed 
by property 4.78. 

definition 4.68 maximal communication behavior for delay-safe communication 

For component r, we define the maximal communication behavior of r 
when r communiemes delay-safely, denoted by CBDS r, as the maximal 
(w.r.t. trace structure inclusion) component such that 

(i) io(CBDSr)=ior 

(ii) ptr( CBDS r)ç;; ptr r 

(iii) (A a, s: aE ir /\SaE t(ptr( CBDS r)): (Et: tE t(dse r): sac10 rt)) 
end of definition 

The existence of the maximum in definition 4.68, "maxima! communication 
behavior for delay-safe communication", follows from theorem 4.74 . In 
requirement (iii) of definition 4.68 we restriet the communication behavior of 
CBDS r by eliminating traces that are not composable under iobip io r with any 
trace of dsel. In requirement (iii) we do not quantify over symbols aE or, since 
there is no way to prevent a component from sending commsigs, cf. subsections 
2.2.3, 2.1.4, and 2.1.3. 

lemma 4.69 
For component r, 

( CBDS r)NCIHDS DSE r 

end of lemma 

From lemma 4.69 we conclude that there is no need to require that 
( CBDS r) NCIHDS DSE r in definition 4.68, "maximal communication behavior 
for delay-safe communication". 

For component r wedefine trace structure cbdsr. It wiJl turn out that this is the 
trace structure of CBDS r, see theorem 4.74. 
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definition 4.70 cbds 
For component r trace structure cbds r is defined by 

def 
cbdsr = <ar, {t, U: tE t(ptrr)AtClorU J\ UE t(dse r): t} > 

end of definition 
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The definition above reflects that only the traces in t(ptrr), that are composable 
with some trace in t(dser), are associated with the maximal communication 
behavior of component r when r communicates delay-safely. For an 
appreciation of this definition we refer to theorem 4.74 . Using definition 4.36, 
"dse", we derive the following property. 

property 4.71 

For component r, trace t, and sym bol a, 

(i) for aE or, (tE t(cbdsr)AtaE t(ptrr)) = taE t(cbdsr) 

(ii) foraE ir, 
end of property 

(te t(cbdsl)AtaE t(dsel)) = taE t(cbdsr) 

In property 4.71 (ii) taE t(cbdsr)=:> taE t(dser) follows from lemma 4.49; from 
lemma 4.49 we also infer property 4.72. 

property 4.72 
For component r, 

cbds r= ptr r n dse r 
end of property 

From the nonemptiness and prefix-closedness of ptr and dse we infer the 
nonemptiness and prefix-closedness of cbds . 

property 4.73 
For component r, 

cbds ris nonempty and prefix-closed. 
end of property 

Now, we can linktrace structure cbdsr to component CBDS r. 

theorem 4.74 maximal communication behavior for delay-safe communication 

For component r, 

ptr( CBDS r)= cbds r 
end oftheorem 
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example 4.75 
We consicter component 14 of example 4.48, see figure 4.10. 
io( CBDS f4)= iol4. Trace set t(dse 14) is shown in figure 4.11. 

• 

1\ 
• • 

tigure 4.27 
State graph of trace set t ( cbds r.). 

In figure 4.27 the state graph oftrace set t(cbdsJ4) is shown. 
end of example 

example 4.76 
From definition 4.70, u cbds", we derive that cbds lor= ptr lor, 
cbds I:;nd = ptr ~ ' cbds rbc = ptr Ibc ' cbds rmaj = ptr rmaj ' and cbds I:;t= ptr I:;/; 

however, cbds fiu~x: = dse Tiubc . 

end of example 

We now present some properties of CBDS announced in the introduetion of this 
subsection. Theorem 4.77 expresses that CBDS ris oot too smal!. 

theorem 4.77 
For components r and t:. such that io r= io ~, 

rNCIHDSt:. 

:::;> (At ,U: tE t(ptrr)fltC10 rUIIUE t(ptrt:.) 

:tE t(ptr( CBDS r)) 11 UE t(ptr( CBDS .::\)) 

end of theorem 

Property 4.78 expresses that CBDS ris not too large. 

property 4.78 
For component r, 

(At: tE t(ptr( CBDS r)): (Eu: UE t(ptr( DSE r)): tC 10 rU)) 

end of property 

From lemma 4.43 and definition 4.36, "dse", we infer property 4.79; it is used in 
theorem 4.80. 
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property 4.79 
Forcomponents rand L\ such that ior= iol\ and ptrl\ç ptrr, 

(se t(dser)llte(or)* Aste t(dsel\)) :::> ste t(dser) 
end of property 

Theorem 4.80 expresses that the traces that have beenleftout when reducing ptrr 
to cbdsr do not play a role fora component that communicates delay-safely. 

theorem 4.80 
For components r and L\ such that io r= iol\, cbds rç ptr L\, and ptr L\!:: ptr r, 

dser= dsel\ 
end of theorem 

In theorem 4.80 we have proven that dse r= dse L\, for components r and L\ such 
that (ptr r n dse r)ç ptr L\ and ptr L\ ç; ptr r; in example 4.81 we show that this, in 
genera!, does not hold for components r and L\ such that ptr r c ptr L\ and 
ptr L\ Ç ( ptr r V dse r). 
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example 4.81 
We consider components I9 and ~, see figure 4.28 . 

• • 

1'\ c? 
1'\ c? 

• • > • • • > • 

~ 
• 

tigure 4.28a tigure 4.28b 
State graphs of components I9 ( tigure 4.28a) and &; ( tigure 4.28b). 

The delay-safe enclosures of I9 and ~ are given in figure 4.29; of course, 
io(DSE~)= io~9 • 

• • 

l"t 
c? !\ • • > • • • 

~) ~~ 
• • 

tigure 4.29a tigure 4.29b 
State graphs of component DSE I9 (fig. 4.29a) and trace set t(dsel\,) (fig. 4.29b ). 

We see that ptr I9 c ptr ~9 and ptr ~9 ç dse I9, but--. (dse I9 = dse ~). 

end of example 

lemma 4.82 CBDS is idempotent 

For component r, 

CBDS ( CBDS l) = CBDS [' 
endoflemma 
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property 4.83 
For i/o-connectable components r and 6, 

(i) I NCIHADS 6 = ( CBDS r)NCIHADS 6 

( ii) I NCIHADS 6 = r NCIHADS ( CBDS 6) 

(iii) I NCIHDS 6 = ( CBDS r)NCIHDS 6 
end of property 

4.2.4 Impact of delay-safe communication on components 

We consider a component r that communicates delay-safely, see tigure 4.30. 

r 

ligure 4.30 
Component r communicating delay-safely. 
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Now, the allowed communication behavior of r is restricted. We notice that in 
CBDSI: 

- no input camminst enables an input comminst, and 
- no output camminst disables an input comminst. 

lemma 4.84 
For component r, no input camminst enables an input camminst in 
CBDSI. 

endoflemma 

lemma 4.85 
For component r, no output camminst disables an input camminst in 
CBDSI. 

end of lemma 
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remark 4.86 
Example 4.87 illustrates that the lemmas above are the only relations 
between comminsts as far as enabling and disabling are concemed. In the 
six other cases no such lemmas can be derived: the existence of such 
lemmas is disproved by example 4.87. 

end of remark 

example 4.87 
In the communication behavior of a delay-safely communicating 
component 

(i) an input comminst may disable an input comminst, 

(ii) an input comminst may disable an output comminst, 

(iii) an input comminst may enable an output comminst, 

(iv) an output comminst may enable an input comminst, 

( v) an output comminst may disable an output comminst, 

(vi) an output comminst may enable an output comminst. 

Table 4.31 lists components that illustrate the above. 

ir or t(ptrr) t( dse r) t(cbdsr) 

(i) {a ,b) {c) pref( {ac, bc) *) pref( {ac, bc) *) pref({ac, bc) *) 

(ii) {a) {b) prer{a ,ba) pref {ab, ba) pref {a ,ba) 

( iii) {a) {b) pref( {ab) *) pref( (ab} *) pref((ab} *) 

(iv) {b} {a) pref( {ab) *) pref( {ab) *) pref( {ab) *) 

(v) {c) {a, b) pref( {ac, bc} *) pref({ac,bc)*) pref( (ac, bc) *) 

( vi) {c) {a ,b} pref( {abc)*) pref({abc , bac) *) pref({abc)*) 

table 4.31 

Example iobips and trace sets for components r, DSE r, and CBDS r. 
end of example 
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remark 4.88 
From example 4.89 we conclude that lemma 4.84 and lemma 4.85 are not 
sufficient to characterize CBDS . 

end of remark 

example 4.89 
We consider component Ij0 that is defined by 

iij0 def {a ,c}, 
def 

ofio = {b}, and 
def 

t(ptrij0 ) = pref{abc ,ba). 

We see: 

t( dse Ij0 ) = pref { ab , ba}, and 
t(cbdsij0)= pref{ab,ba). 

For component Ij0 no input comminst enables an input comminst and no 
output comminst disables an input comminst ; nevertheless, ptr Ij0 -t= cbds Ij0 • 

end of example 

4.2.5 'Off-the-shelf' mechanisms 

In subsection 4.2.1 we have defined the operator dse for components. For 
component r, dse r is the trace structure of the delay-safe enelosure of r. U sing 
dse we have defined the operator cbds in subsection 4.2.3; cbdsf is the trace 
structure of the maximal communication behavior of r, if r communicates 
delay-safely. Let component r model some 'off-the-shelf' mechanism; now, 
trace structure cbds r can be used as a label that can be attached to such a 
mechanism to show its maximal delay-safe communication behavior. 

Suppose that we have such a mechanism. From its specification we can teil the 
iobip of the component that models this mechanism. If there are no explicit 
timing requirements, we are able to derive the trace structure of this component 
from the specification of the mechanism. If there are explicit timing requirements 
(e.g. signa! 1/ may not happen until at least 3 microseconds after signa! I has 
happened ), we have to separate them from ' ( the rest of) the communication 
behavior of the mechanism' . Adding delay elements may be effective. An 
alternative is to add clock signals to indicate when the timing requirements have 
been met. In both cases we create a new mechanism from which the explicit 
timing requirements have been separated. Again, we are able to derive the trace 
structure of the component from the specification of the ( new ) mechanism. In 
this way, the component models the "new mechanism from which the explicit 
timing conditions have been separated". 
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After we have detennined the trace structure of the component that models the 
mechanism, we calculate the cbds of this component. If this cbds is too restricted, 
we conclude that we do not want to require that the communication between this 
component and its environment is delay-safe. We might choose a mixed 
conneetion between this component and its environment, cf. partial delay-safety 
in chapter 6; or we might create a new mechanism, e.g. by adding some clock 
signals in the way described above. 



5 

Comn1unicating delay-insensitively 

In this chapter we deal with "absence of transmission interference hazard" within 
the context of delay-safe communication ; as a consequence we are only 
concemed here with indirect connections . We consider a component and its 
environment that have a closed connection. We study the communication in the 
channel between this component and its environment. If a channel is delay-safe 
and there is no transmission interference hazard, we say that the channel is 
delay-insensitive. 

In subsection 5.1.0.1 we present DIE , i.e. the delay-insensitive enelosure 
of a di-initializable ( see subsecdon 5.1.0.0) component. For di-initializable 
component r, component DIEr is the maximal (w.r.t. trace structure inclusion) 
partner of r. When r and DIEr are indirectly connected, they have no 
computation interference hazard and there is no transmission interference 
hazard in the communication between them. In subsection 5.1.0.3 we present 
CBDI, i.e. the communication behavior of a delay-insensitively communicating 
di-initializable component. The maximal (w.r.t. trace structure inclusion) 
communication behavior of a di-initializable component, say r, that 
communicates delay-insensitively without computation interference hazard 
equals trace structure cbdi r ( cbdi n;;; ptr r). Th is means that r behaves in that 
case like component CBDir ( io(CBDir)= ior and ptr(CBDir)= cbdir). 

143 
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5.0 Communication in channels 

Wedefine class C4 in order to formalire "delay-insensitive channel" . Absence of 
transmission interference hazard is characterized by: 

no two signals are pennitted to interfere with each other. 

remark 5.0 
Within the context of delay-safe communication absence of transmission 
interterenee hazard is equal to: 

no commsig is sent from a oornmport before all commsigs, that 
previously have been sent from that commport, have been received. 

end of remark 

definition 5.1 c4 
Fortrace structure Tand alphbip D, the pair (T,D) is an element of C4 if and 
only if 

(T,D)ED4 

A (As, t, a: sE (aT)* AlE (aT)* AaE aT AsataE tT: l(d opa(a,D))> 0) 

end of definition 

That the communication is delay-safe is reflected by the first conjunct in 
definition 5.1, "C4 ", cf. definition 4.19, "delay-safe channel". The second 
conjunct reflects, given that the communication is delay-safe, absence of 
transmission interterenee hazard: no commsig may propagate from a commport 
of the component at 'one end of the channel' toa camroport of the component at 
'the other end of the channel', unless all commsigs that have previously 
propagated between these commports have been received. As a consequence, 
using that the communication is delay-safe, no commsig must be sent from a 
commport unless all commsigs that have previously been sent from this 
commpon have been received. Since the conneetion between the component and 
its environment is closed, the only way in which the component that sencts these 
commsigs is able to know that a commsig has been received, is by receiving one 
or more commsigs that travel in the opposite direction. 

Class C4 has been called the "delay-insensitive class" by Udding, cf. subsection 
7.0.1. Definition 5.1, "C4 ", ctiffers from Udcting's original definition, cf. 
[ Udcting84]; in theorem 5.2, "C4 ", we prove that these definitions are 
equivalent. Udcting's definition is simpler from a forma! point of view; we 
believe that our definition is closer to our intuitive notion "absence of 
transmission interterenee hazard". 
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theorem 5.2 c4 
Fortrace structure Tand alphbip D, 

(T,D)EC4 = (T,D)ED4 11 (As ,a: SE(aT)* llaEaT: saae tT) 
end of theorem 
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Notice, that in the proof of theorem 5.2, "C4", weneed that the communication is 
delay-safe in order to prove that absence of transmission interference hazard is 
equal to Udding's requirement, viz. (As ,a: se(aT)* 11aeaT: saae tT). Using 
class c4 ' we de fine the notion "delay-insensitive channel". 

definition 5.3 delay-insensitive channel 
For channel e, we say that e is delay-insensitive if and only if 

(ptr0,ab0)E C4 
end of definition 

We deal with absence of transmission interference hazard as a propeny that may 
or may not hold for the communication in a delay-safe channel. Udding, cf. 
[ Udding84], and Ebergen, cf. [ Ebergen 87], however, take delay-insensitivity 
as their staning point. 

We do not define, fortrace structure Tand alphbip D, the smallest ( w.r.t. trace 
structure inclusion) trace structure X such that T c;;X and (X,D)eC4: in genera!, 
such a trace structure X does not exist, see example 5.4. Funhermore, if such an 
X exists, then X= dsc(T,D), see definition 4.20, "dsc". 

example 5.4 
Component IO is defined by: 

def { oiO= a] 
i IQ def {b} 

def { t(ptriQ) =pref baa) 

From theorem 5.2, "C4", weconclude that( AX: t(ptriQ)ç tX: (X, abiQ)ê C4). 
end of example 
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5.1 Communication behavior of components 

In this section we focus our attention on the communication behavior of a 
component that communicates via a delay-insensitive channel. In chapter 4 we 
have proven that delay-safe communication restricts the communication behavior 
of a component, when absence of computation interference hazard is the 
correctness concern. We shall show here that the additional correctness concern, 
viz. absence of transmission interference hazard, gives an additional restrietion on 
the communication behavior of a component. 

Throughout the remaioder of this section we will only consicter components that 
communicate via a delay-safe channel. 

5.1.0 Transformation into computation interference hazard 

In this subsection we use the transformation technique presented in subsection 
3.3.0 to transform "transmission interference hazard" into "computation 
interference hazard", see subsection 5.1.0.1. We reeall that there is an initia! 
problem when this technique is applied. We deal with this problem in subsection 
5.1.0.0. 

5.1.0.0 Initializability 

In subsection 4.2.4 we studied the restrietion imposed by delay-safe 
communication on the communication behavior of components. We were able to 
calculate the maximal communication behavior of every component that 
communicates via a delay-safe channel. In this section we deal with the 
restrietion imposed by "delay-insensitive communication" on the communication 
behavior of components. It turns out that some components are not able to 
communieale via a delay-insensitive channel: they may initially 'produce 
transmission interference' before the environment is able to control them. Such 
components are said to be not di-initializable. 

definition 5.5 di-initializable 

Component r is di-initializable if and only if 

(As, t, a: se (aï)* AtE (aï)* 11 ae or llsatae t(dse ï) 

: /(sdopa(a,abr))>O 
) 

end of definition 
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We consider the condition that is used to define that a component is 
di-initializable, see definition 5.5. This condition looks very much like the 
second conjunct in definition 5.1, "C4 ". The restrietion satae t(dse r) is included, 
because we assume that component r communicates via a delay-safe channel and 
because we are concerned with "absence of transmission interterenee hazard" 
only in the context of delay-safe communication. The restrietion ae or is 
included, because r 'produces' the commsigs sent at its output commpons, 
whereas the commsigs received at its input commpons are 'produced' by 
some other component. The requirement l(dopa(a,D))>O is weakened to 
l(sdopa(a,D))>O, since we are only concerned with absence of transmission 
interterenee hazard in the initia! pan of the communication behavior of r. Notice 
that in definition 5.5 opa (a, ab r) = i r holds, while a E o r. 

In property 5.6 we present an alternative characterization of "di-initializable". 

property 5.6 di-initializable 

Component r is di-initializable if and only if 

(A a: aE or: aart= t(dser)) 
end of property 

In propeny 5.7 we present a characterization of "di-initializable" in which dseï 
does not occur; it shows that inthetrace structure that models the communication 
behavior of di-initializable components all initia! 'repetitions' of output symbols 
are separated by at least one input symbol. 

property 5.7 di-initializable 

Component ris di-initializable if and only if 

(As' t ,a: SE (or)* i\ tE (or)* i\aE 0 r: sataot t(ptrr)) 
end of property 

example5.8 
Component Tj is defined by: 

def 
oTj = [a,b) 
ifj deC {c} 

def 
t(ptr Tj) = pref {abc a, bc} 

Using abcac10r;bcaa, we derive that t(dsefj)= pref{abca ,baca ,bcaa) from 

definition 4.36, "dse" . From definition 5.5, "di-initializable", we conclude 
that Tj is a di-initializable component. Notice that the environment of Tj 

may refuse to send a commsig to which c is associated. 
end of example 
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5.1.0.1 Delay-insensitive enelosure 

In this subsection we define for di-initializable component r component DIEr, 

i.e. the delay-insensitive enelosure of r. Furthermore, we give a constructive 
definition of ptr (DIE r), viz. dier. 

When di-initializable component r communicates via a delay-insensitive channel, 
trace structure ptr(DIE r) gives the maximal communication in this channel. 
Furthermore, component DIEr is the maximal (w.r.t. trace structure inclusion) 
partner of r. When r and DIEr are indirectly connected, they have no 
computation interference hazard and there is no transmission interference hazard 
in the communication between them. 

definition 5.9 delay-insensitive enelosure 

For di-initializable component r, wedefine the delay-insensitive enelosure 
of r, denoted by DIEr, as the maximal ( w.r.t. trace structure inclusion) 
component such that 

(i) ior = io( DIEr) 

(ii) rNCIHDS DIEr 

(iii) (A a ,t: ae i(DIE r)Atae t(ptr(DIE r)) : (Es: se t(ptrr): sc1.rta)) 

(iv) (ptr(DJEr),abr)eC4 

end of definition 

The existence of the maximum in definition 5.9, "delay-insensitive enclosure", 
above follows from the "delay-insensitive enclosure" theorem 5.24. 

Requirement (iii) in definition 5.9 restricts in the traces of DIEr the occurrences 
of symbols ae i( DIEr) to those occurrences that are associated with the reception 
by DIEr of commsigs that may have been sent by r . In requirement ( iii) there is 
no need to quantify over symbols ae o( DIEr), since their occurrences in traces 
of ptr ( DIEr) are restricted by requirement (i i) . Compared to definition 4 .34, 

"delay-safe enclosure" , we have added requirement (iv). This additional 
requirement guarantees absence of transmission interference hazard. In order to 
achieve absence of transmission interference, it is formally sufficient to require 
only that the second conjunct in definition 5.1, "C4 ", holds. However, we are 

only able to interpret absence of transmission interference hazard by that conjunct 
within the context of delay-safe communication. For this reason we prefer 
requirement (iv) in definition 5.9. 
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For component r we will de fine trace structure dier . It will turn out that this is 
the trace structure of the delay-insensitive enelosure of r, see theorem 5.24, 
"delay-insensitive enelosure" . In order to de fine dier, we first introduce trace 
set tih r and component DSENTIH r. Trace set tih r will be used to exclude 
the trace set that is associated with transmission interference hazard from trace 
structure dse r; in this way component DSENTIH r is a 'reduction' of component 
DSEr . 

definition 5.10 tih 

For component r, let D be the alphbip that is associated with ior; wedefine 
trace set tih r: 

tih r def {s.t. a :SE (ar)*" aE ar" tE (spa(a, D))* "sataE t(dse r): sata} 

end of definition 

In definition 5.10, "tih", we use a formula that is similar to the condition in 
property 5.7, "di-initializable". 

In definition 5.11 we transfarm transmission interference hazard into computation 
interference hazard, see subsection 3.3.0. The operator dse in this definition 
is nat present to establish absence of computation interference hazard, but it 
provides the context in which we address transmission interference hazard. 

definition 5.11 DSENTIH 

For di-initializable component r, component DSENTIH r is defined by: 

io(DSENTIH r) def ior 

ptr(DSENTIHr) def redts(dser, ir, tihr) 

end of definition 

In definition 5.11, "DSENTIH ", the di-initializability of r is needed to achieve 
that (As : sE tih r : l(s ti r) > 0). Now, we infer from property 1.40 that 
ptr(DSENTIH r) is nonempty; the prefix-elosedness of ptr(DSENTIH r) follows 
from property 1.40, using the prefix-closedness of dser. 

In property 5.12 we present an alternative characterization of DSENTIH . 

property 5.12 

For di-initializable component r, 
ptr(DSENTIH r) = 
redts(dse r, i r, (s, a: SE (ar)* 11 aE ar 11 saaE t(dse r): saa}) 

end of property 
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Our motivation for choosing the noun "DSENTIH" is provided by the alternative 
characterization of DSENTIH in property 5.13 . 

property 5.13 
For di-initializable component r, 

io ( DSENTIH r) = io ( DSE r) 

ptr(DSENTIH r) = redts(ptr(DSE r), i(DSE r), tih(DSEr)) 

end of property 

In definition 5.14 the operator dse is used to establish absence of computation 
interference hazard when the communication is delay-safe. Since we have 
transformed transmission interference hazard into computation interference 
hazard by definition 5.11, " DSENTIH ", we also establish absence of transmission 
interference hazard by doing so. 

definition 5.14 die 
For di-initializable component r we de fine trace structure dier by 

die r dei dse ( DSENTIH r) 

end of definition 

The following properties and lemmas are used in the proof of theorem 5.24, 
"delay-insensitive enclosure". 

property 5.15 

For di-initializable component r, 

(i) dier is nonempty, 

(ii) dier is prefix-closed. 
end of property 

lemma 5.16 
For di-initializable component r, 

(At, u: tE t(ptr r) A tC10 rU A UE t(die r): tE t(ptr( DSENTIH r))) 

endoflemma 

lemma 5.17 

For di-initializable component r, 

dier ç; dser 

end of lemma 

From lemma 5.17 and lemma 4.43 we infer property 5.18. 
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property 5.18 
For di-initializable component r, 

(At: tE t(dier): (Es: SE t(ptrr): SC10 rt)) 

end of property 

lemma 5.19 
For di-initializable component r, 

dier~ ptr(DSENTIH r) 
end of lemma 

lemma 5.20 
For di-initializable component r, 

(dier ,abr)eC4 

endoflemma 
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Absence of computation interterenee hazard is reflected by the following 
properties. The condition iof= io~ rnadeis that rand~ have a closed connection. 

property 5.21 
For di-initializable components r and ~ such that io f= io ~ and ptr ~= dier, 

(DSENTIH r)NCIHDS ~ 

end of property 

property 5.22 
For di-initializable components rand~ such that iof= io~ and ptr ~=dier, 

(DSENTIH r)NCIHDS ~ =:> r NCIHDS ~ 

end of property 

From lemma 4.44 we infer property 5.23. 

property 5.23 
For di-initializable components r and ~ such that ioï= io~ and 
~ NCIHADS ( DSENTIH r), 

(At, u: tE t(ptr( DSENTIH r)) fl UE (t(ptr ~)\ t(die r)):..., (tc 10 rU)) 

end of property 

Now, we can link trace structure dier to component DIEr. 

theorem 5.24 delay-insensitive enelosure 
For di-initializable component r, 

ptr(DIEr)= dier 
end of theorem 
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Van der Heijden and Teunissen have developed software to calculate die ï for 
di-initializable components ï that have regular trace structures, see 
[ van der Heijden- Teunissen 89 ] . From their work we infer theorem 5.25, 
which is presented here without a proof. 

theorem 5.25 
For di-initializable component ï, 

"ptr ï is regular" ::;. "dier is regular" 
end of theorem 



5.1 Communication behavior of components 153 

5.1.0.2 Properties of delay-insensitive enelosure 

In this subsection we present some properties of DIE ; of course, see theorem 
5.24, "delay-insensitive enclosure", some properties of tih and DSENTIH are 
included. 

property 5.26 
For di-initializable component r, 

(ptrr,abr)eC4 :::;> (tihr=0) 
end of property 

Using property 5.26 we infer property 5.27 . 

property 5.27 
For di-initializable component r, 

(ptrr,abr)eC4 =(dier= ptrr) 
end of property 

We consicter a di-initializable component r. In order to calculate dier, we first 
calculate trace structure dse r, see definition 5.11 , "DSENTIH "; next, we reduce 
dser to ptr(DSENTIHr), cf. definition 1.34, "redts"; finally, we calculate trace 
structure dse(DSENTIHr), see definition 5.14, "die". Example 5.28 andremark 
5.29 show that the approach "first reducing trace structure ptrr insome way and 
next calculating dse only once" does nat work. 

example 5.28 
Di-initializable component 12 is defined by: 

def 
of2 = {a,b) 
if2 def {c ) 

def ) t(ptrf2) = pref [abca 

We derive that t(dsef2)=pref{abca,baca,bcaa) from definition 4.36, 
"dse" , see also example 5.8 . From definition 5.14, "die", we derive that 
t(dief2)=pref{abca,baca) . Let ó2 be a component such that ioó2 =iof2, 
ptr ó2 ç; ptr I2, and ptr ó2 '1:- ptr I2. Since ptr ó2 is prefix-closed, 
t(ptró2 )k: {E,a,ab,abc}. Hence, abcaét(dseó2 ). As a consequence, 
dieó2 '1:- die I2. 

end of example 

remark 5.29 
From example 5.28 we conclude that fora componentrit is, in general, nat 
possible to reduce ptrr to ptró for some component ó such that ioó= ior 
and dieó= dier. 
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end of remark 

From theorem 5.24, "delay-insensitive enclosure" , lemma 5.20, and property 
5.27 we derive that DIE is idempotent 

property 5.30 DIE is idempotent 

For di-initializable component r, 

DIE (DIE r) == DIE r 
end of property 

Like DSE , operator DIE is not monotonie. 

remark 5.31 
In genera!, DIE is not monotonie, see example 4.58. For components I5 
and t.5 in example 4.58, die I5 == dse I5 and die t.5 == dse t.5 • 

end of remark 

property 5.32 
For i/o-connectable components randt. such that ris di-initializable, 

(i) ( DSE r) NCIHADS ö. ::::> (DIEr) NCIHADS ö. 

(ii) ö.NCIHADS(DlEr) ::::> t.NCIHADS(DSEr) 

end of property 

From lemma 5.16, definition 5.14, " die", and lemma 4.49 we infer lemma 5.33. 

lemma 5.33 
For di-initializable component r, 

(At, u : tE t(ptr r)A tc1.ru A UE t(die r): tE t(die r)) 
end of lemma 

From theorem 4.80 we infer theorem 5.34. 

theorem 5.34 
For di-initializable components r and t. such that ior== iot., cbdsn;; ptrt., 
and ptr 6 ç ptr r, 

dier==diet. 
end of theorem 
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We present some examples of die and DIE . 

example 5.35 
For component rw, see example 2.47 and example 4.38, die I:,= dse I:,. Also 
for r;; , see example 2.48, r;. see example 2.49, ç1, see example 2.49 and 
example 4.39, Itu~x:, see example 2.50 and example 4.60, Ibc, see example 
2.50 and example 4.61, and !2w, see example 2.50, the die is equal to the 
dse . 

end of example 
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example 5.36 

• 

We consicter component I;,,, see example 2.51. The state graph of DIE I;,, is 
shown in tigure 5.0. 

• 

• 
tigure 5.0 

State graph of component DIE~' . 

Notice that 
t(diei;,,)= prer{x ,y: xe {acac ,bcbc }* 11ye {acb ,abc ,bca ,bac}: .xy}. 

• 
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There are some traces in t(dielo,) that 'lead to dead ends', viz. all traces in 
{x ,y: xe {acac, bcbc} * 11ye pref {acb, abc, bca, bac}: xy). We consider such 
a trace which is apparently not extendable : acb. 

(i) Since (As: se ptrlor: -.(sc 1.r,,acbc)), we conclude from property 5.18 

that acbcfÉ. t(diel;,r). 

(ii) From lemma 5.20 and theorem 5.2, "C4", we conclude that 
acbbfÉ. t(dielor). 

(iii) From lemma 5.20, definition 5.1, "C4 ", definition 4.16, "D4 ", 

and theorem 5.2, "C4 ", we conclude, using acacbce t(die lor), 
acacbcc~or;,. acbacc, and acbaccc 10 r". acba, that acbaé t(die ç,r). 

The non-extendability of the other traces 'leading to dead ends' can be 
argued analogously. The interpretation of the existence of such traces is the 
following: when some environment communicates delay-insensitively with 
component lor in such a way as to 'move DIE lor toa dead end', component 
lor goes along without vialating any of the correctness concerns, viz. 
absence of computation interference hazard and absence of transmission 
interference hazard; however, any further extension of the communication 
will vialate at least one of the correctness concerns. In this particular 
example the correctness concern "absence of transmission interference 
hazard" will be violated. 

end of example 
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example 5.37 

• 

We consicter component çnd, see example 2.51. The state graph of DIE çnd 
is shown in figure 5.1. 

• 

• 
tigure 5.1 

State graph of component DIE Çnd. 

Notice that DIE çnd differs from DIE fa,, see example 5.36, only in its initia! 
behavior, cf. example 2.51 . 

end of example 

Component rncel, see example 5.38, has been presented by Ebergen, see 
[ Ebergen 87 ] . 

• 



5.1 Communication behavior of components 159 

example 5.38 
We consider Ebergen's "NCEL component", cf. [ Ebergen87]. We call it 
r,;cel ; it is defined by: 

der • der 
or,;cel = {c) •I;;ce/ = {a ,b) 

dd * t(ptr rilCel) = pref( {aa. bb. abc. bac} ) ' 

We present the stategraphof component rncel in tigure 5.2 . 

• 

(\ç 
• < c! • 

\) 
• 

figure 5.2 
Stategraphof component rncel · 

From theorem 5.24, "delay-insensitive enclosure", and definition 5.14, 
"die", we conclude that DIE r,;cel = r,; , cf. example 2.48. Ebergen presents 
r,;cel as an example of a component that is nat a "DI component"; in our 
terminology this means that DIE r,;cel '# ~;;c.,. 

end of example 

5.1.0.3 Behavior of delay-insensitively communicating components 

In this subsection we are interested in the impact of delay-insensitive 
communication on the communication behavior of a component. We define 
the maximal communication behavior of a component that communicates 
delay-insensitively, i.e. the maximal ( w .r.t. trace structure inclusion) 
communication behavior of the component at the commports of the component 
when the component has an indirect conneetion with its environment and there is 
absence of computation interference hazard between them and there is absence of 
transmission interference hazard in the channel between them. The "maxima! 
communication behavior of component r that communicates delay-insensitively" 
is a component. It is denoted by CBDI r. 
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definition 5.39 maximal communication behavior for delay-insensitive communication 
For di-initializable component r, we define the maximal communication 
behavior of r when r communiemes via a delay-insensitive channel, 
denoted by CBDI r, as the maximal (w.r.t. trace structure inclusion) 
component such that 

(i) io(CBDir)=ior 

( ii) ptr( CBDI r)ç;; ptr r 

(iii) (A a, s: ae i !Asae t(ptr( CBDI r)): (Et: te t(dier): sac 10 rt)) 

end of definition 

The existence of the maximum in definition 5.39, "maximal communication 
behavior for delay-insensitive communication", above follows from theorem 
theorem 5.48, "maximal communication behavior for delay-insensitive 
communication". In requirement (iii) in definition 5.39, "maximal 
communication behavior for delay-insensitive communication", we do not 
quantify over symbols ae or, since there is no way to prevent a component to 
'produce' commsigs at its output commports, cf. subsection 2.2.3. 

property 5.40 
For di-initializable component r, 

( CBDI r)NCIHDS DIE! 
end of property 

From property 5.40 we conclude that there is no need to require that 
( CBDI r)NCJHDS DIEr in definition 5.39, "maximal communication behavior for 
delay-insensitive communication". 

For component r we define trace structure cbdir. It will turn out that this is the 
trace structure of CBDI r, see theorem 5.48. 

definition 5.41 cbdi 
For di-initializable component r trace structure cbdi r is defined by 

cbdi! def <a!, {r, u: te t(ptrr)A tC 10 rU A ue t(die r): t} > 
end of definition 

property 5.42 
For di-initializable component r, trace t, and symbol a, 

(i) for ae or, 

(ii) forae i!, 
end of property 

(te t(cbdi r)A tae t(ptr !)) = taE t(cbdi r) 

(te t(cbdir)Atae t(dier)) = tae t(cbdir) 
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In property 5.42 (ii) taet(cbdir)::::> taet(dier) follows from lemma 5.33; from 
lemma 5.33 we also infer property 5.43. 

property 5.43 
For di-initializable component r, 

cbdi r= ptr r n dier 

end of property 

theorem 5.44 
For di-initializable component r, 

cbdi r= cbds r n dier 

end of theorem 

remark 5.45 
In example 4.60 we have seen that the correctness concern "absence of 
computation interference hazard" restricts the communication behavior of a 
component. From theorem 5.44 we conclude that the additional correctness 
concern "absence of transmission interference hazard" indeed gives an 
additional restrietion on the communication behavior of a component, cf. 
example 5.46. 

end of remark 

example 5.46 
Component IJ is defined by: 

r; def 
0 0 3-

iiJ def {a ,b} 

t(ptriJ) der {e,a,b,ba,aaJ 

We infer that t(cbdsl])={e,a,b,aa} and t(cbdil])={e,a,b}. Since 
cbds IJ= die IJ , we conclude that the communication behavior of IJ is further 
restricted by the additional correctness concern absence of transmission 
interference hazard. 

end of example 

Due to the nonemptiness and prefix-closedness of ptr and dse we infer property 
5.47 from property 5.43. 

property 5.47 
For di-initializable component r, 

cbdir is nonempty and prefix-closed 
end of property 
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Now, we can linktrace structure cbdir to component CBDI r. 

theorem 5.48 maximal communication behavior for delay-insensitive communication 
For di-initializable component r, 

ptr( CBDI r) = cbdi r 
end of theorem 

Property 5.49 relates the trace structures of components DSENTIH rand CBDI r. 

property 5.49 
For di-initializable components r and ~ such that io f= io~, 

(DSENTIH r)NCIHDS ~ 

=:> (At, u: tE t(ptr r) A tC 10 rU A UE t(ptr ~) 

:tE t(cbdir)AUE t(cbdi~) 

end of property 

From theorem 5.34 and definition 5.39, "maximal communication behavior for 
delay-insensitive communication" we derive that CBDI is idempotent 

property 5.50 CBDI is idempotent 
For di-initializable component r, 

CBDI ( CBDI r) = CBDI r 
end of property 

In example 5.51 we take another look at Ebergen's 1ncei· 

example 5.51 

We consicter Ebergen's "NCEL component", cf. [ Ebergen87] and 
example 5.38. 

Using property 5.43 we calculate trace structure cbdirnce/ · From theorem 
5.48, "maximal communication behavior for delay-insensitive 
communication", we now conclude that CBDI 1ncet = ç, cf. example 2.48. 

end of example 
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5.1.1 'Off-the-shelf' mechanisms 

After we have detennined the trace structure of the component that models the 
mechanism, we calculate the cbdi of this component. If this cbdi is too restricted, 
we conclude that we do not want to require that the communication between 
this component and its environment is delay-insensitive. We might choose a 
mixed conneetion between this component and its environment, cf. parrial 
delay-insensitivity in chapter 6; or we might create a new mechanism, e.g. by 
actding some clock signals as described in subsection 4.2.5. 

In subsection 5.1.0.1 we have defined the operator die for di-initializable 
components. For di-initializable component r, dier is the trace structure of the 
delay-insensitive enelosure of r. Using die we have defined the operator cbdi in 
subsection 5.1.0.3; cbdi r is the trace structure of the maximal communication 
behavior of di-initializable component r, if r communicates delay-insensitively. 
Let di-initializable component r model some 'off-the-shelf' mechanism; now, 
trace structure cbdi r can be used as a label that can be attached to such a 
mechanism to show its maximal delay-insensitive communication behavior. This 
labeling can be done only for di-initializable components; notice that labeling 
such an 'off-the-shelf' mechanism with trace structure cbdsr to show its maximal 
delay-safe communication behavior is always possible, see subsection 4.2.5. For 
components that are not di-initializable, the cbdi is not defined: such a 
component cannot be prevented from causing transmission interterenee hazard 
when it communicates via a delay-safe channel. This problem might be solved by 
assuming that the conneetion between this component and its environment is 
mixed, cf. partial delay-insensitivity in chapter 6 . 
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6 

Composition 

In this chapter we present our most general study of composition: we are 
concerned with mixed connections of components, cf. subsection 2.1.3.0 and 
subsection 2.2.3. In section 6.0 we introduce some notions that are used in the 
following sections. In section 6.1 we study composition of components given the 
correctness concern "absence of computation interterenee hazard" . We deal with 
an additional correctness concern, viz. "absence of transmission interference 
hazard", in section 6.2 . We address decomposition in section 6.3. We refer to 
other correctness concerns in section 6.4. 

6.0 Conneetion of components 

In this chapter we study the composition of two components; in order to refer to 
them conveniently in the remainder of this chapter, we call them r and 6. There 
are several ways in which two components can be connected. In subsection 2.2.0 
we have stated that we associate the same symbol with two matching commports. 
In order to campose two components they have to be i/o-connectable, cf. 
definition 3.2. 

165 
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In chapters 3, 4, and 5 we studied closed connections of two components, cf. 
subsection 2.1.3.0. In chapter 6 we do not restriet ourselves to closed 
connections: we are interested in connections of two components that are either 
open or closed. Furthermore, in chapter 3 we have dealt with direct connections 
of two components; in chapters 4 and 5 we have dealt with indirect connections. 
The clearly missing case of mixed connections will emerge from the treatment of 
composition in chapter 6; within a mixed conneetion of components, some pairs 
of matching commports may be directly connected, whereas the others may be 
indirectly connected. 

remark 6.0 
The open composition of two components constitutes a problem in which 
implicitly the environment of these components appears as a third 
component. As a consequence, we must deal with the closed composition 
of three components. By calculating the composite of two components 
given some correctness concerns, we generate conditions on the acceptance 
of (external) inputs by the composite. If absence of computation 
interference hazard is a correctness concern for the communication between 
such a composite and its environment, the allowed communication behavior 
of this environment is reduced by these conditions on the acceptance of 
(external) inputs by the composite. 

end of remark 

Some people do not care about the environment. We do care about the 
environment, since we are interested in the correctness concern "absence of 
computation interference hazard" for the communication between the composite 
and its environment. As a consequence, when discussing the open composition of 
two components we address three party composition. We do not explicitly refer 
to the environment of the composite. Nevertheless, concerns about this 
environment are present: we address this environment implicitly. 

remark 6.1 
When calculating the composite, we assume that the (implicit) environment 
of this composite is directly connected to this composite. 

end of remark 
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6.0.0 ExternaJ input and output 

Since components that have an open conneetion participate in communication 
with the environment of their composite, we de fine the notions "external input" 
and "external output". 

definition 6.2 extiop 
For i/o-connectable components rand t:J., alphabet extiop(r, t:J.) is defined by 

extinp(r,t:J.) def (iruit:J.)n(ar-:-at:J.) 

end of definition 

definition 6.3 extoutp 
For i/o-connectable components r and t:J., alphabet extoutp(r, t:J.) is defined 
by 

extoutp(r,t:J.) def (oruot:J.)n(ar-:-at:J.) 
end of definition 

The set extinp(r, t:J.) is associated with the set of external input commports of i/o
connectable components rand t:J.. The set extoutp(r, t:J.) is associated with the set 
of external output commports of i/o-connectable components r and t:J.. In our 
Communication Model all communication is one-to-one communication, cf. 
subsection 2.1.0. As a consequence, inputs and outputs of r and t:J. that belang to 
arn at:J. are not available for extern al communication; for this reason these inputs 
and outputs are excluded from extinp(r, t:J.) and extoutp(r, t:J.). In definition 6.2, 
"extinp", and definition 6.3, "extoutp", the i/o-connectability of r and t:J. is 
required to provide the context for these definitions. 

When we study composition of components in our Communication Model, we 
distinguish directly and indirectly conneered commports, cf. subsection 2.1.0. 
Since in this chapter we are concemed with mixed connections of components, 
we deal with both cases. In the definitions in this chapter, alphabets I and D are 
used to indicate which part of the conneetion (of components r and t:J.) is indirect 
and which part is direct: the symbols in arnat:J.nl are associated with the 
indirectly conneered commports of these components, and the symbols in 
arnat:J.nD are associated with their directly connected commports, see tigure 6.0. 
Set I is associated with the set 'l';c of indirectly connected commports, see 
subsectien 2.1.6.0; as a consequence, set D is associated with 'l'\ 'Pic . 
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ligure 6.0 
Composing components rand ll under I. 

In figure 6.0 we distinguish three kinds of commports of the composite of 
components rand!:!.: 

the extemal commports, with which an element of ar-;. a!:!. is associated. 

- the indirectly connected matching commports of r and !:!., with which an 
element of arnaM11 is associated; these commports have been encircled. 

the directly connected matching commports of r and !:!. , with which an 
element of arn at:J.n D is associated; these commports have been boxed. 

Alphabets I and D constitute a bipartition of the universen of symbols: D=n\1. 

In the remainder of this monograph we will use the expression the composition of 
components under I as an abbreviation for "the composition of components in 
which with the indirectly connected matching commports an element of I is 
associated and in which with the directly connected matching commports an 
element of Dis associated". 

remark 6.4 
Many definitions in this chapter depend on the bipartition of n into 
alphabets I and D . As a consequence, I occurs formally as a parameter in 
these definitions. For this reason, we explicitly mention I in these 
definitions rather than defining it globally with respect to them. 

end of remark 
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6.0.1 General composability 

When two components have a mixed connection, we say that the communication 
between them is partially delay-safe, cf. [ Schols 86 ) . In order to deal with the 
(partial) delay-safe communication in a composition of two components we 
extend definition 4.1, "composability", leading to definition 6.5, "general 
composability" . In definition 6.5, (i) through (v) are equal to (i) through (v) in 
definition 4.1. Condition (vi) is added in definition 6.5 . We do not use general 
composability to relate traces of r to traces of ó; we u se it to give a relation 
between traces (at the curly boundary in figure 6.1, see also remark 6.1 ) of the 
composite of rand 1'1. We project these traces (onto ar or aó) when we want to 
relate them totraces of either r or 1'1, see also definition 6.11, "totcom" . 

tigure 6.1 
Composing components r and ó . 

Definition 6.5, "general composability", will be used such that iobip Fis equal to 
the restrietion of iobip ior totheindirect conneetion of rand 1'1: iF=(irnaflnl) 
and oF=(ornaón/). This relation between r, 1'1 , and Fis shown in definition 
6.11 , " totcom" . As a consequence, each symbol c$. aF in definition 6.5 ( vi) is 
associated with either a pair of directly connected commports of r and ó or a 
commport of r or 1'1 that does not match a commport of the other component : 
(arnaó)\aF = (arnaónD)v(ar..;.aó). Thus, aF includes only symbols that are 
associated with the encircled commports of figure 6.1 . The boxed commports of 
figure 6.1 are directly connected. 
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We use general composability to caplure our causality notion, cf. section 4.0. 
Since in definition 6.5, "general composability" (ii) through (v) we are 
concerned with symbols that are associated with indirectly conneeled commports, 
lhe consistency with our causality notion follows from section 4.0. For this 
reason ( ii) through ( v) in definition 6.5, are equal lo ( ii) lhrough ( v) in definition 
4.1, "composabilily". A symbol that is associated with a pair of directly 
connected commports is added to both general composable traces, see definition 
6.5 ( vi), in order to rnaintaio consistency with our causality notion, see also 
chapter 3 and section 4.0. A symbol that is associated with a commport of r or ~ 
that does not match a commport of the other component is also added to both 
general composable traces, see definition 6.5 ( vi) ; since the environment of the 
composite of r and ~ is assumed to be directly conneeled to this composite, cf. 
remark 6.1, adding these symbols to both general composable traces maintains 
consistency with our causality notion. 

definition 6.5 general composability 

For traces t and u and iobip F, we de fine that t is generally composable 
under F with u, denoled by tgpu, recursively by 

(i) EgpE 

(ii) fortracestand u and symbol a such that tgpu and ae oF, 

tagpu 

(iii) fortracestand u and symbol a such that tgpu, ae oF, and #at> #au, 

tgpua 

(iv) fortraces tand u and symbol b such that tgpu and be iF, 

tg pub 

( v) fortraces tand u and symbol b such that tgpu, be iF, and #bu > #bt, 

tbgpu 

( vi) fortraces tand u and symbol c such that tgpu and cfi. aF, 

tcgpuc 

( vii) completeness axiom: t is not generally composable under F with u, 
unless this is required by (i), (ii), (iii), (iv), (v), or (vi) . 

end of definition 

From definition 6.5, "general composability", we conclude that, as far as general 
composability ( under iobip F) is concerned, it is irrelevant whether a symbol that 
is not in aF is an input or an output with respect to some iobip ( see also 
subsection 6.0.1.0). Of course, when we take absence of compulation 
interterenee hazard inlo account, this difference is crucial. 
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In analogy to property 4.9 we infer property 6.6. 

property 6.6 
For traces t and u, and iobip F, 

tgpu = ug;; t 
end of property 

6.0.1.0 Relation to composability 

The relation between definition 6.5, "general composability", and definition 4.1, 
"composability", is expressed in property 6.7 . 

property 6.7 
For traces t and u and iobips F and F' such that te (aF)*, ue (aF)*, oF' ç: oF, 

and iF'Ç iF, 

tgp u = tcpu 11 (1 rcaF\aF' )=u rcaF\aF' )) 

end of property 

We consicter two i/o-connectable components r and tl. When we want to apply 
property 6. 7, we may want to choose iobips F and F' as follows: 

oF' = o rn atln I 

iF' =i rn atlé"\/ 

oF= oru extoutp(r, tl) 

iF = iru extinp(r, tl) 

The distribution of the extemal outputs and extemal inputs over oF and iF is 
irrelevant from a formal point of view. 

We consicter traces t and u and iobips F and F' such that te (aF)*, ue (aF)*, 

oF' ç oF, iF' ç iF, and tgp u. From property 6.7 we infer that our causality 
constraint, viz. tcpu, holds independently of whether symbols are associated with 
directly or indirectly connected commports; for symbols that are associated with 
directly connected commports there is an additional constraint, viz. that they have 
to occur in the same order in both traces. 

remark 6.8 
In chapter 4 we introduced our causality notion: no commsig is received 
before it has been sent. This causality notion holds independent of whether 
a commsig is sent between directly or indirectly connected commports. For 
directly connected commports there is an additional constraint: sending 
and reception of a commsig coincide. 

end of remark 
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6.0.1.1 General composability diagram 

In subsection 4.0.0 we explained the construction of composability diagrams. 
This construction methad of Verhoeff is used to check whether two traces are 
composable under an iobip. In this subsection 6.0.1.1 we extend this methad. 
The extended methad is called constructing a general composability diagram. 
By constructing a general composability diagram we check whether two traces 
are generally composable under an iobip. 

When constructing a composability diagram, see subsection 4.0.0, we are 
interested in whether traces t and u are composable under iobip F; he re, t, u, and 
F satisfy tE (aF)"' and ue (aF)"'. We have seen that definition 6.5, "general 
composability", differs from definition 4.1, "composability", by the addition of 
( vi). In 6.5 ( vi) we deal with symbols that are not elements of aF. The 
construction of a general composability diagram is equal to the construction of a 
composability diagram with one exception: an occurrence of a symbol that is 
not an element of aF is connected by a bidirectional arrow (in stead of a 
unidirection al arrow). The bidirectional arrow is treated as two non-intersecting 
arrows that point in opposite directions. A symbol that is not in aF is 
associated with two commports that are directly connected, cf. remark 6.1 . As a 
consequence, such a symbol has to occur consitent with our causality notion 
either in both composable traces or in none, cf. definition 6.5 (vi) . These symbols 
which are not in aF are not postfixed (nor with an exclamation mark nor with a 
question mark) inthetraces in a general composability diagram. 

Trace t is generally composable under iobip F with trace u if and only if in the 
general composability diagram: 

(i) there is no arrow starting from a $, and 

(i i) there is no backward intersection of two arrows. 

These two conditions are equal to the conditions in subsection 4.0.0. 
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example 6.9 generally composable traces 

We consider traces tand u, symbols a, b, c, and d, and iobip Fj such that 
oF3 ={a} and iFj={b,d}. We are interested in whether trace abca (=t) is 
generally composable under Fj with trace adbcb ( =u) . In tigure 6.2 this 
general composability diagram is shown. 

a! b? c a! $ 

a? d! b! c b! $ 

tigure 6.2 
General composability diagram. 

The absence of a backward intersection in the general composability 
diagram indicates that t and u are composable under F3 • By direct 
application of definition 6.5, "general composability", we can derive in 
several ways a confinnation that abcagp

3
adbcb: 

egp
3
e egp

3
e 

agp
1
e agp

3
e 

ag ... 
3
a agp

3
a 

agp
1
ad agp

3
ad 

agp
3
adb agp3 adb 

abgp
3
adb abgp

3
adb 

abcgp
1
adbc abcgp

1
adbc 

abcgp1 adbcb abc a g p1 adbc 

abcagp
3
adbcb abcagp

1
adbcb 

table 6.3 

Two derivations of abcagp
1 
adbcb. 

end of example 
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In example 6.10 we show how the bidirectional arrows are used to check for 
general composabability. 

example 6.10 
We consider symbols a and b. We are interested in whether trace ab is 
generally composable under a given iobip with trace ba. In this example we 
consider several iobips. 

Let iobip F4 be such that aF4 =0. We are interested in whether abgF
4
ba. In 

tigure 6.4 this general composability diagram is shown. 

a b $ 

b a $ 

figure 6.4 
General composability diagram. 

Since the bidirectional arrows give rise to a backward intersection in the 
general composability diagram, we conclude that---, (abgF

4
ba). 
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Let iobip Fs be such that oFs= {a} and iFs=0. We are interested in whether 
abgF

5
ba. In tigure 6.5 this general composability diagram is shown. 

a! b $ 

b a? $ 

tigure 6.5 
General composability diagram of abgp

5
ba. 

Since there is no a backward intersection in the general composability 
diagram and there is no arrow starting from a $, we conclude that ab gF

5 
ba. 

Let iobip F6 be such that o F6 = { b I and i f6 = 0. We are interested in whether 
abgF

6
ba. In tigure 6.6 this general composability diagram is shown. 

a b! $ 

b? a $ 

tigure 6.6 
General composability diagram. 

Since the bidirectional arrow gives rise to a backward intersection in the 
general composability diagram, we conclude that -.(abgF

6
ba) . 

end of example 
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6.1 Composition without computation interference hazard 

When we compose components we define a component that is the composite of 
them: this composite is under the given correctness concerns maximal with 
respect to both the ( external) inputs that are guaranteed to be accepted by it and 
the (external) outputs that might be produced by it. In this section we are 
concerned with only one correctness concern, viz. "absence of computation 
interference hazard". The composite of two components, say rand~, given this 
correctness concern is calculated in three steps: 

We calculate in subsection 6.1.0 trace structure r totcom1~, which results 
from 'combining' the trace structures of r and ~. This combination is 
calculated regardless of our correctness concern "absence of computation 
interference hazard", see definition 6.11, "totcom". Of course, the alphabet 
of trace structure r totcoml ~ equals ar u a~. 

- In subsection 6.1.1 we deal with the correctness concern "absence of 
computation interference hazard" . U sing this correctness concern we 
calculate trace structure r totcomncih1 ~, see definition 6.24. Of course, the 
alphabet of trace structure rtotcomncih1 ~ equals arua~. The trace set of 
rtotcomncih1~ is a subset of the trace set of r totcom1 ~. 

- In subsection 6.1.2 we hide the intemal communication; the resulting trace 
structure is called r extcomncih1 ~. Of course, the al ph a bet of trace structure 
r extcomncih1 ~ equals ar 7 a~, see definition 6.29, "extcomncih". In this step 
we maintain absence of computation interference hazard, which has been 
established in the previous step. 

Of course, we will motivate the calculations performed in the three steps 
mentioned above. However, since in our Communication Model we cannot give 
an interpretation for the trace stuctures calculated in the first two steps, we do not 
give such an interpretation in our Communication Model: no component is 
defined in these first two steps. Notice that this implies that we do not attempt to 
define a kind of 'composite regardless of "absence of computation interference 
hazard"' in our Communication Model. 
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6.1.0 Combining two conneeled components 

We combine the trace structures of r and ö into one trace structure, viz. 
r totcom1 ó, see definition 6.11. 

definition 6.11 totcom 

Given are i/o-connectable components r and ó and alphabet I . Let iobip F 

be such that iF= irnaön/ and oF= ornaM1/. Trace structure rtotcom1ö 

is defined by: 

(1") ( )dcf a rtotcomtó = aruaó 

(ii) eE t(rtotcom1ö) 

(iii) fortraces s and tand symbol d such that dE(ar\oó), sE(aruaó)*, 
tE t(rtotcom1ö), (star)E t(ptrr), and sgptd, 

tdE t(rtotcom1ö) 

(iv) fortracestand u and symbol e such that eE(aó\or), te t(rtotcom1ö), 

uE (aruaó)*, (u taö)E t(ptr ó), and tegpu, 

teE t(rtotcomtó) 

( v) completeness axiom: t(rtotcom1ö) contains no traces that are not 
required by (ii), (iii), or (iv). 

end of definition 

In definition 6.11 ( üi) symbol d is associated with either an ex tema! commport of 
r or an internal output commport of r, since (ar\oö)=(ar\aö)u(orniö). 
Analogously, in definition 6.11 (iv) symbol eis associated witheither an external 
commport of ö or an in tema! output commport of ö. 

property 6.12 totcom is nonempty and prefix-closed 

For i/o-connectable components r and ö and alphabet I, 

(i) rtotcom1ö is nonempty, 

(i i) r totcomt ó is prefix -closed. 
end of property 

We present an alternative characterization of totcom in property 6.13. 

property 6.13 totcom 

Given are i/o-connectable components rand ö and alphabet /. Let iobip F 

be such that iF= irnaön/ and oF= ornaön/, 

t (r totcomt ó) 

= {s , t, u: (s tar)e t(ptr r) 11 (u taö)e t(ptr ó) 11 sgpt 11 tgpu: t} 

end of property 
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From detinition 6.11, "totcom", detinition 3.2, "i/o-connectable", and property 
6.6 we infer the symmetry of totcom, see property 6.14. 

property 6.14 totcom is symmetrie 
For i/o-connectable components r and ö and alphabet 1, 

r totcoml ö = 6/otcom/ r 
end of property 

We present some running examples to show applications of the composition 
method. Apart from this, the specitic reason to include the running example that 
starts in example 6.15 is that the combination of trace structures ptr 10 and ptr 6 0 

reveals computation interterenee hazard at one of the external inputs. 

example 6.15 

• 

We consider i/o-connectable components 10 and flo; m this example 
alphabet I equals {b}, see tigure 6.7. 

b 
~"a ro / 

öo '' "-.. 

tigure 6.7 
Conneetion of components lö and ó.o . 

Components 10 and flo are detined by: 
def 

oiO= {a}, 
def 

oflo = {b}, 

iiQ def {b}, 

• A. def { } 
1'-'()- c ' 

def 
t(ptr IQ) = pref {ba}, 

def 
t(ptrflo) = pref{cbc}. 

'" 

The state graphs of components 10 and flo are shown in tigure 6.8. 

b? 
---'>~. 

a! __ ___.:>~. • c? --->:31>. b! > • 
tigure 6.8a figure 6.8b 

State graphs of components lö ( tigure 6.8a) and ó.o ( tigure 6.8b) . 

c 

c? > • 
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From definition 6.11, "totcom", we derive that 

Iö totcom1 b l flcJ 
= < {a , b , c} , { e , c , eb , cc , cba , cbc , ccb , cbac , cbca , cc ba} > 

179 

Notice that symbol a in the traces in this trace structure occurs on account 
of definition 6.11 ( iii); symbols b and c in these traces occur on account of 
definition 6.11 (iv). We present the state graph of Iö totcomlb l flcJ in figure 
6.9. 

• 

'1 b a 
• > • > • 

'1 b '1 '1 > • a > • • 
tigure 6.9 

Stale graphof Lrace struclure 10 totcom(b 1 óa. 

We notice that cce t(Iö totcomlb l tlcJ) on account of definition 6.11 (iv), 
since ceaflcJ\olö, ce t(IötotcomlbJ60 ), cbce(aiöuaflcJ)*, cbdaó0 =cbc, 

cbce t(ptr 6 0 ), and ccgF
0
cbc, for iobip F0 such that îF0 = {b} (i.e. 

i IönaflcJrl {b}) and oF0 = 0 (i.e. o Iönaó0 rl {b] ) . 
end of example 
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The specific reason to include the running example that starts in example 6.16 is 
that the combination of trace structures ptriQ and ptrÓo reveals computation 
interference hazard at one of the internal inputs. 

example 6.16 
We consider i/o-connectable components IJ and l:l1 ; in this example 
alphabet I equals {b}. Components IJ and l:l1 are defined by: 

def } 
oiJ = {a , 

def 
ol:l1 = {b}. 

i IJ def {b}. 

i/::,./ def { c} • 

def 
t( ptr IJ) = pref {ab}, 

def 
t(ptrl:l1)= pref{cb}. 

The state graphs of components IJ and l:l1 are shown in figure 6.10 . 

• a! > • b? __ ___;:>~. • c? 
------'>~ • 

tigure 6.1 Oa tigure 6.1 Ob 

b! > • 

State graphs of components IJ ( tigure 6.10a) and 6.1 ( tigure 6.10b) . 

From definition 6.11, "totcom", we derive that 

IJ totcom{bll:l1 ==<{a ,b ,c}, {E ,a ,c ,ac ,ca ,eb ,acb , cab , cba} > 

We present the state ~rraoh of IJ totcom{b 1 l:l1 in figure 6.11. 

• 

• 

c > • 

c 
--~>~. 

b 
---->~. 

b 
------'>~ • 

tigure 6.11 
Stategraphof trace structure IJ totcom(b ] t!l1 • 

We notice that cbe t(IJ totcom{b 1 l:l1 ) on account of definition 6.11 ( iv), since 
beal:l1 \oiJ, ce t(IJ totcom!bll:l1 ), cbe(aiJ ual:l1 )*. cbral:l1 ==eb , cbe t(ptrl:l1 ), 

and cbgF1 cb, for iobip F1 such that iFj== {b} (i.e. iiJnal:l1 n {b}) and oF1 ==0 

(i.e. o IJ n al:l1 n { b } ) . On the other hand we notice that abé t (IJ totcom {b 1 l:l1 ) 

on account of definition 6.11 (iv), since be ol:l1 and --.(abgF
1
u) for any trace 

u such that ur(al:l1)E t(ptr.11 ) because of#cu==O . 

end of example 
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In examples 6.15 and 6.16 we presented 'toy problems' to illustrate the 
calculation of the composite in this section. We present a more realistic case 
in the running example that starts in example 6.17: how to campose a 
Muller C-element out of a majority element and an asymmetrie fork element. 
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example 6.17 
We consicter i/o-connectable components ll and ~2 ; m this example 
alp ha bet I equals the empty set 0, see figure 6.12. 

c ~ 

tigure 6.12 
Conneetion of components f2 and A2 • 

Component ll roodels a majority element, cf. example 2.52, where 
i ll ={a, b, e} and o ll = {d}. Component ~2 mode is an asymmetrie fork 
element, cf. example 2.49, where i ll2 = { d} , o ~2 = { e , c} , and c is associated 
with the commport that models the delayed output. From definition 6.11, 
"totcom", we derive ll totcom0 tl2 , see figure 6.13. 

Notice that symbols a, b, and d inthetraces in this trace structure occur on 
account of definition 6.11 (iii); symbols c and e in these traces occur on 
account of definition 6. 11 (i v). 

We notice that abdeabdE t(ll totcom0 tl2 ) on account of definition 
6.11 (iii), since dE all\ o~2 , abdeabE t(ll totcom0 ~2 ), abdeabdE (all u a~2 )"', 

abdeabdtall =abdeabd, abdeabdE t(ptrll), and abdeabdgF
2
abdeabd for iobip 

Fi such that afi = 0. 
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• ;. 
• 
~ 

d 

c 

c 

I 
• 

• 

. -
d 

--!-+~./ 
d • I a/ 
~~~ 

d 

d 

tigure 6.13 

~ •I 

d 

d 

• ;. ~. ;. 
~ • 

S late graph of trace structure Ti totcom0 l12 • 

d 
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Three statesin the above state graph have been marked I; this marking will 
be explained later. 

end of example 
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6.1.1 Absence of computation interference hazard 

In this subsection we deal with the correctness concern absence of computation 
interference hazard. We do so in definition 6.24, "totcomncih", by reducing trace 
structure rtotcom1tL In order to do this we introduce definition 6.18, "cihi". 
Trace set cihi 1 (r , 6) consists of the traces of r totcom16 that are associated with 
computation interference hazard at 6. 

definition 6.18 cihi 
Given are i/o-connectable components r and 6 and alphabet I. Let iobip F 
be such that iF= i rnaMil and oF= orna6n/. We define trace set 
cihi 1 (r , 6) by: 

cihi 1 (r, 6) def (a, t, u 

end of definition 

: aE i6AIE t(rtotcom16)AuE(aruaL\)* 
A (ut al\) E t(ptr L\) A (ua tal\) e t( ptr L\) A tgFua 

: t 

We continue by calculating the cihi for our running examples. In example 6.19 
we present an example in which there is computation interference hazard at an 
extemal input. 

example 6.19 
We consicter components TO and L\0 , see example 6.15. From definition 
6.18, "cihi", we derive that 

cihi[b 1 (10 , L\o) = (cc} and 

cihi(b)(L\o '10) =0. 

Trace cc is an element ofcihi(bJ(IO.L\o), since cEil\o, ccEt(TOtotcom[bJL\o), 
CE (aiO Ual\o) *, da60 = c, CE t(ptr L\0 ), cdal\o =cc, cce t(ptr L\o), and ccgF0 cc. 

end of example 

Example 6.20 exhibits computation interference hazard at an internat input. 
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example 6.20 
We consider components fj and l:l1 , see example 6.16. From definition 
6.18, "cihi", we derive that 

cihi(b)(IJ ,!:J./)=0 

cihi(b)(fl1 , IJ)= {eb) 

Let iobip F7 be such that F7 = fj. Trace eb is an element of cihi(bJ(fl1 ,IJ), 

since beiiJ, ebet(IJtotcomlbJfl1 ), ee(aiJUal:l1)*, daij=e, eet(ptrij), 

eb tafj = b, bé t(ptr fj ), and ebgF7 eb. 

end of example 

Like example 6.20, example 6.21 exhibits computation interfere nee hazard at an 
internal input. 

example 6.21 
We consider components I2 and fl2 and iobip Fi, see example 6.17. The 
majority element accepts all commsigs that it receives, see example 2.52; 
we derive from definition 6.18, "cihi", that cihi0 (l:l2 , f2) = 0. 

We notice that (At ,u: tdude t(ptrl:l2 )A(#du=O): u=ee); as a consequence, 
dedé t(ptrl:l2 ). Since abdeabde t(f2 totcom0 l:l2 ) and ded = abdeabd ~al:l2 , there 
is computation interference hazard at fl2 • As a consequence, trace set 
cih~(I2 ,l:l2 ) is nonempty; it consists of all traces that lead from the initial 
state via states that have not been marked to a state marked I in the diagram 
of the state graph of I2 totcom0 1':.2 shown in figure 6.13, see example 6.17. 
From definition 6.18, "cihi", we infer that abdeabde cih~(I2 ,l:l2 ), since 
deil:l2 , abdeabdet(f2totcom0 l:l2 ), abdeabe(af2ual:l2 )*, abdeab~al:l2 =de, 
dee t(ptr l:l2 ), abdeabdtafl2 =ded, dedé t(ptr fl2 ), and abdeabdgF2 abdeabd. 

end of example 
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In definition 6.24, "wtcomncih", we use the technique "transfonnation into 
computation interference hazard", see subsection 3.3.0; here we transfarm 
"computation interference hazard at the boundary of r or ll" into "computation 
interference hazard at the external boundary of the composite of r and ll". We 
have argued in subsection 3.3.0 that there may be initia! problems when rnadeling 
correctness concerns in our Communication Model. We do not want to end up 
with a component that has an empty trace set, when reducing trace structure 
r totcom1 ll to trace structure r totcomncih1 tJ. . For this reason we de fine predicate 
r NICIH1t., see definition 6.22. 

definition 6.22 NICIH 

For i/o-connectable components r and tJ. and alphabet /, we define predicate 
f' NICIHJtl. by: 

f'NICIHitJ. 

def (As: se(cihi 1 (1 ,tJ.)v cihi 1 (tJ., 1)): l(s t extinp(f', tJ.))> 0) 

end of definition 

Notice that if--, (r NICIH1tJ.), then the composite of r and tJ., where I is associated 
with the indirect connection, has computation interf erenee hazard: computation 
interference can occur befare any external input has occurred. 1/o-connectable 
components r and ll can be connected under alphabet I with no initia/ 
computation interfere nee hazard if and only if r NICIH1tJ.. 

From the symmetry of extinp we infer the symmetry of NICIH1 . 

property 6.23 NICIH is symmetrie 

For i/o-connectable components rand tJ. and alphabet I, 

f'NICIHtll = tJ.NICIHtf' 

end of property 

Now we are ready to reduce f'totcom1tJ. to f'totcomncih1tJ.. 

definition 6.24 wtcomncih 

For i/o-connectable components r and tJ. and alphabet I such that r NICIH1t., 
trace structure r totcomncih1 tJ. is defined by : 

[' totcomnciht Ä 

def redls(f'totcom1!l, extinp(f', tJ.), cihit (f', tJ.)v cihit (tJ., r)) 

end of definition 
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The prefix -closedness of r totcomncih1 il follows from property 6.12 (i i) and 
proptrty 1.39 . The nonemptiness of r totcomncih1t:J. follows from property 1.40, 
using r NICIH1!l and property 6.12(i). 

From property 6.23, "NICIH is symmetrie", and property 6.14, "totcom is 
symmetrie", we infer the symmetry of totcomncih. 

property 6.25 totcomncih is symmetrie 

For i/o-connectable components rand tJ. and alphabet 1 such that r NICIH1t:J., 

r totcomncih[ tl = iltotcomncihl r 
end of property 

We now calculate totcomncih for our running examples. We show that by 
calculating totcomncih we have dealt with computation interference hazard. 

example 6.26 
We consicter components IQ and t:J.0 , see example 6.15 and example 6.19 . 
From definition 6.24, "totcomncih", we derive that 

IQtotcomncih(b)tlo = <{a ,b , c}, {e,c,cb,cba,cbc,cbac,cbca} > 

see tigure 6.14. 

• 

'l b a 
• > • > • 

'1 '1 a > • • 
tigure 6.14 

State graph of trace structure I0 totcomncih(b l t>o. 

Since cc E ei hit b) (IQ ' ilo)' we infer that cc 1/:. t cro totcomncih( b) l:io). In 
subsection 6.1.2 we will deal with hiding the intemal communication, while 
maintaining absence of computation interference hazard. 

end of example 
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example 6.27 
We consicter components IJ and 6 1 , see example 6.16 and example 6.20. 
From definition 6.24, "totcomncih", we derive that 

IJ totcomncih(bJ61 =<{a ,b ,c}, {e ,a ,ac ,acb} > 

see figure 6.15. 

• 

• 
c 

------=>~ • b 
------:)'3f/il> • 

tigure 6.15 

State graph of trace structure I} totcomncih {b 1 !J.1 • 

Since cbe cihi{bJ(61 , IJ), we infer that cbé t(IJ totcomncihcbJ61 ). Since 
be extinp(IJ , 6 1 ) and ce extinp (IJ , 6 1 ), we see that not only trace eb has been 
removed while calculating IJ totcomncih[b 161 , but álso trace c. 

end of example 
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example 6.28 
We consicter components 12 and ~2 , see example 6.17 and example 6.21. 
From definition 6.24, "totcomncih" , we derive trace structure 
12 totcomncih0 ~2 , see tigure 6.16. 

c 

d 

• 
ligure 6.16 

State graph of trace structure r; totcomncih0 !J.2 • 

In the state graph shown in tigure 6.16 all states have been located at 
relative positions that are equal to those in tigure 6.13. The state graph in 
tigure 6.16 has been redrawn in tigure 6.17. 
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• 
e 

• c • 

c • c • 

7~ 
• • 

~/ d 

• 

tigure 6.17 
State graph of trace structure fi totcomncih0 ll2 . 

Since abdeabde cihi0 (62 , I2), we infer that abdeabdé t(I2 totcomncih0 62 ). 

Since déextinp(J2 ,62 ) and beextinp(I2 ,62 ), we see that not only trace 
abdeabd has been removed while calculating I2 totcomncih0 6 2 , but also trace 
abdeab. 

end of example 
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6.1.2 Hiding the internat communication 

The last step in the construction of the composite is "hiding the intemal 
communication". In the beginning of section 6.1 we have argued that the 
composite has to be maxima!. Since absence of computation interference hazard 
is our correctness concern, projecting onto the extemal alphabet is sufficient as 
far as extemal outputs are concemed, see definition 6.29(iii); however, an 
additional restrietion with respect to extemal inputs is needed, see definition 
6.29(iv). 

definition 6.29 extcomncih 

For i/o~connectable components ï and 6 and alphabet 1 such that ï NICIH16, 

trace structure ï extcomncih1 6 is defined by: 

(i) a(ïextcomnciht6) def aï7a6 

(ii) ee t(ïextcomncih16) 

(iii) fortrace u and symboljsuch that ue t(ïextcomncih16), 

Je extoutp (r , 6), and (Et : te t (ï totcomncih1 6) : dCar.;. a6)= uf), 

ufe t(ïextcomnciht6) 

(iv) for trace u and sym bol g such that ue t (ï extcomncih16), ge extinp (r , 6), 

and (At: te t(ï totcomncih16) A CdCaï .;.at-,)= u): tge t(ïtotcomncih16)), 

uge t(ïextcomncih16) 

( v) completeness axiom: t(ï extcomncih16) contains notraces that are not 
required by (ii), (i i i), or ( iv). 

end of definition 

By ï extcomncih16 we denote the trace structure that is associated with the 
external communication of the composite of r and 6 under 1 without computation 
interference hazard. Every trace in the trace structure of this composite 
must belong to the projection of trace set t(f"totcomncih16) onto the external 
alphabet (i.e. a17a6 ). This gives un upper limit fortrace set t(f"extcomncih16). 

In order to maintain absence of computation interference hazard, there is 
an additional restrietion needed for extern al inputs; this is why restrietion 
(At: te t(f"totcomnciht6)A(d(af".;. a6)= u): tge t(f"totcomnciht6)), occurs in definition 
6.29(iv). There is a universa! quantification in this restriction, since we deal not 
only with absence of some instanee of computation interference but with absence 
of computation interference hazard: we have to guarantee that computation 
interference does not occur. 
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In definition 6.29, "extcomncih", we construct extcomncih1 from totcomncih1. This 
construction can be interpreted as 'projection onto the extemal alphabet of the 
composite under invariance of absence of computation interference hazard': we 
may interpret rtotcomncih1d as the communication behavior of the composite of r 
and d under I at the curly boundary in figure 6.18a. 

tigure 6.18a tigure 6.18b 
Interpretation of trace structures r totcomncih1t:. ( 6.18a) and r extcomncih1 t:. ( 6.18b ) . 

We interpret rextcomncih1d as the communication behavior of the composite of r 
and d under I at the curly boundary in figure 6.18b . 

From property 6.23, "NICIH is symmetrie", property 6.25, "totcomncih is 
symmetrie", and definition 6.29, "extcomncih", we infer the symmetry of 
extcomncih. 

property 6.30 extcomncih is symmetrie 

For i/o-connectable components r and d and alp ha bet I such that r NICIH1 d, 

r extcomnciht d = d extcomnciht r 
end of property 

remark 6.31 
Notice that the technique that we u se in definition 6.29, "extcomncih", is 
generally applicable when hiding intemal communication. Since we only 
use it once in this monograph we have not chosen to present it as a general 
technique; we only present the one instantiation of it. 

end of remark 
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We now hicte the internal communication in our running examples by calculating 
extcomncih for them. 

example 6.32 
We consicter components Iö anct t-.0 , see example 6.15 anct example 6.26. 
From ctefinition 6.29, "extcomncih", we cterive that 

IQ extcomncih ( b J f..o = < (a , C } , ( E , C , Ca , cac } > 

Notice that by calculating Iö extcomncih[b J t<.o we have 'lost' trace cc 

( = cbd(aiQ+af..o)) on account of ctefinition 6.29(iv), since 
CE t(Iö totcomncih[b l f..o) anct cel/:. t(Iö totcomncih[b J t-.0 ). 

In subsection 6.1.3 we willinterpret trace structure IQextcomncih[b)f..o in the 
Communication Model: we will ctefine a component that has this trace 
structure. 

end of example 

example 6.33 
We consicter components IJ anct 6 1 , see example 6.16 anct example 6.27. 
From ctefinition 6.29, "extcomncih", we cterive that 

1Jextcomncih[b)61 =<(a ,c], {e,a ,ac} > 
end of example 

example 6.34 
We consicter components 12 anct 62 , see example 6.17 anct example 
6.28. From ctefinition 6.29, "extcomncih", we cterive trace structure 
12 extcomncih0 62 , see figure 6.19. 

• 

1\ 
• < c • 

\I 
• 

tigure 6.19 
Stategraphof trace structure I2 extcomncih0 6 2 • 

Notice that by calculating 12 extcomncih0 6 2 we have 'lost' -among others
trace abb on account of ctefinition 6.29(iv), since abdE t(f2totcomncih(ljt-.2 ), 

abdbé t(lz totcomncih0 6 2 ), anct abb = abdb ~(af2+a62 ) . 
end of example 
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6.1.3 Composite of two components 

The component that is the composite of r and ó under I without computation 
interfere nee hazard is denoted by r COMPNCIH1 ó, see definition 6.35. At this 
point "composition" becomes defined in our Communication Model. In our 
Communication Model we are only interested in composites without computation 
interference hazard. 

definition 6.35 COMPNCIH 

For i/o-connectable components rand ó and alphabet I such that r NICIH1ó, 

component rCOMPNCIH1ó is defined by: 

i(ICOMPNCIH,ó) def extinp(l, ó) 
def 

o(fCOMPNCIH1ó) = extoutp(l, ó) 

ptr(ICOMPNCIH,ó) def lextcomncih1ó 

end of definition 

From propeny 6.23, "NICIH is symmetrie", property 6.30, "extcomncih is 
symmetrie", and the symmetry of i/o-connectability, extinp, and extoutp, we infer 
the symmetry of COMPNCIH. 

property 6.36 COMPNCIH is symmetrie 

For i/o-connectable components 1 and ó and alphabet I such that 1 NICIH1 ó, 

ICOMPNCIH,ó = óCOMPNCIH,I 

end of property 

Although the proof of the associativity of COMPNCIH is very long and awkward, 
there is nothing to be learned from it; for this reason we present propeny 6.37 
without a proof. 

property 6.37 COMPNCIH is associative 

For alphabet I and components 1, ó, and e such that each pair of them is 
i/o-connectable, 

(i) (ICOMPNCIH1ó)NICIH1e = INICIH1(óCOMPNCIH1e) 

(ii) (ICOMPNCIH1ó)COMPNCIH1e = ICOMPNCIH1(óCOMPNCIH1e) 
end of property 

In property 6.37 (i) either the left and right hand side both holdor each of them 
"either is oot defined or does oot hold". In propeny 6.37 (ii) either the left and 
right hand side bothare defined or neither is defined; if bothare defined then they 
are equal. 
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We now are able to interpret the composites that have been constructed in our 
running examples. 

example 6.38 

We consicter components IQ and t.0 , see example 6.15 and example 
6.32. From definition 6.35, "COMPNCIH", we derive component 
IQ COMPNCIH (b 1 t.o , see tigure 6.20. 

• c? 
--->~ • af 

----'>~. 

tigure 6.20 

c? __ ..........;>~. 

Stategraphof component lo COMPNCIH[b) Ao. 

In example 6.15 we have seen that cce t(IQ totcomlbl t.o) and 
cbce t(IQtotcomlbJt.o), whereas ccé t(ptrt.0 ), but cbce t(ptrt.a) . Since 
cc = cbc r at.o, we conclude that absence of computation interf erenee hazard 
was not dealt with by calculating IQ totcom(b 1 t.o . After component 
IQCOMPNCIH(bJt.o has accepted the commsig to which the fustcis 
associated, it may or may not accept the commsig to which the second c is 
associated. For this reason, the environment of this composite has to 
postpone the sending of the latter commsig until it has received the 
commsig to which a is associated. After component IQ COMPNCIH(blt.o has 
sent the commsig to which a is associated, il accepts the commsig to which 
the second c is associated. 

end of example 
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example 6.39 
We consider components IJ and d 1 , see example 6.16 and example 
6.33. From definition 6.35, "COMPNCIH", we derive component 
IJ COMPNCIH(bl d1 , see tigure 6.21. 

• a! 
------=>~ • 

tigure 6.21 

c? :> • 

State graph of component ~ COMPNCIH{b l D-1 • 

In example 6.16 we have seen that cbE t(IJ totcomlb 1 d 1), whereas b~ t(ptr IJ). 
Since b = eb taiJ , we conclude that absence of computation interterenee 
hazard was not dealt with by calculating IJ totcom(b l 6.1 . We conclude that 
the environment of the composite IJ COMPNCIH[bJó.1 should not send a 
commsig to which cis associated until it has received a commsig to which a 

is associated, since after the sending of the latter commsig it is guaranteed 
that internally ( between IJ and d 1 ) no computation interterenee occurs. 

In this example hiding the internal communication (alphabet {b} ) has been 
no problem: a simple projection onto the external alphabet has been 
sufficient. 

end of example 
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example 6.40 
We consicter components I2 and i\2 , see example 6.17 and example 
6.34. From definition 6.35, "COMPNCIH", we derive component 
I2 COMPNCIH0 l\2 , see figure 6.22. 

• 

('\ 
c! • < • 

~~ 
• 

tigure 6.22 
State grnph of component 12 COMPNCIH0 !1.2 • 

Component I2 COMPNCIH(lJL\2 is equal toEbergen's r..cel, see [ Ebergen87]. 
From example 5.38, we infer that DIE(f2 COMPNCIH(lJL\2 ) = ç, cf. example 
2.48. From example 5.51, we infer that CBDI(f2 COMPNCIH(lJ L\2 ) = ç. 

end of example 

In property 6.41 we present the unity element of the composition operator 
COMPNCIH. 

property 6.41 unity element of COMPNCIH1 

Given is component r . Let component i\ be such that ai\= 0 and 
t(ptri\)= {e). 

(i) rand i\ are i/o-connectable 

(ii) foralphabet/, fNICIH1l\ 

(iii) for alphabet /, fCOMPNCIH1l\ = r 

and l\COMPNCIH1r = r 
end of property 

We notice that the unity element of COMPNCIH1 does notdepend on alphabet /. 
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In property 6.41 we give conditions under which the trace structure of the 
composite of two components is equal to the blend, see definition 1.29, of the 
trace structures of the two components. 

property 6.42 
For i/o-connectable components r and ó such that cih~ (r, ó)= 0 and 
cih~(ó,r)=0 , 

r extcomncihfll ó = ( ptr r) b ( ptr ó) 

end of property 

We investigate the distribution of DSE over COMPNCIH. We fust look at 
example 6.43 . 

example 6.43 
We consicter components IJ and ó 3 ; they are defined by: 

def 
oi] = {a,b}, 

def 
OÓ3 = 0, 

• r def { } 
liJ - c ' 
• def [ b} 
1ó3 = a, . , 

def 
t(ptri]) = pref{ cab), 

def { } t(ptró3 ) = pref ab . 

From definition 4.36, "dse", we derive that 
t(dsei])= {e,c,ca,cb,cab,cba) and t(dseó3 )= {e ,a} . From definition 
6.22, "NICIH", we derive that Ij NIC/Hflló3 and (DSEI])N/C/Hfll(DSEó3 ). 

Using theorem 4.45, "delay-safe enelos ure" , we infer from definition 6.35, 
"COMPNCIH", that ptr((DSEI])COMPNC/Hfll (DSEó3 )) = < {c}, {e} > and 
ptr(I]COMPNC/Hflló3 )=<{c),{e ,c)>. From definition 4.36, "dse", we 
derive that dse(Ij COMPNCIHfll ó3 ) = < {c }, [e, c } >. 

end of example 

remark 6.44 
From example 6.43 we see that, in genera!, for i/o-connectable components 
r and ó and alphabet I such that r NICIH1 ó, 

DSE (r COMPNCIH1 ó) :t- ( DSE r) COMPNCIHJ{ DSE ó) 

We conclude that, in genera!, DSE does nat distribute over COMPNCIH1. A 
sufficient condition for the distribution of DSE over COMPNCIH is given in 
the following property. 

end of remark 

property 6.45 
For i/o-connectable components r and ó and alphabet I such that arnaóÇI 

and rNICIH1ó, 

DSE (r COMPNCIH1 ó) = ( DSE r) COMPNCIH1( DSE ó) 
end of property 
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From trace theory, see [ Kaldewaij 86], we know that afl'la.1.ç;J is the condition 
that is needed for the distribution of projection over weaving of trace structures, 
i.e. ((ptrr)w(ptr.1.))r/ = (ptrdl)w(ptr.1.r/). Analogously to property 6.45 we 
find property 6.46. 

property 6.46 
For i/o-connectable components rand ö and alphabet I such that afl'la.1.<;;;;/ 

and r NICIH1 ö, 

CBDS(fCOMPNCIH1ö) = (CBDSr)COMPNCIH1(CBDSö) 

end of property 
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6.1.4 Examples 

In example 6.47 we show that computation interference hazard may be absent in 
the composite of components that have a mixed connection, whereas it is present 
in the composite of these components when they have an indirect connectiono 

example 6.47 
We consicter components I4 and !J.4 ; they are detined by: 

def def def 
oi4 = {a,b), ii4 = {c,d}, t(ptr(4)= pref{bad}, 

def def def { 
o!J.4 = {c ,d), î!J.4 = {a ,b}, t(ptr!J. 4 ) = pref abc , bad) 0 

We consicter the composition of I4 and !J.4 when they have an indirect 
connection, see tigure 6023 0 

a 

d 

tigure 6023 
Indirect conneetion of components 14 and 6 4 0 

We infer that (4totcom!a,b,c,d]!J.4 =pref{abc,abd,bac,bad) from detinition 
6011, "totcom"o Using definition 6018 , "cihi"; we find that 
cihi(a ,b ,c ,dl ((4 , !J.4 )= 0 and cihita ,boe ,dl (!J.4 , I4 )= {abc, bac) 0 From detinition 
6022, "NICIH", we derive that --,(14 NICIHta ,b,cod)!J.4 )o 

We now consider the composition of I4 and !J.4 when they have a mixed 
connection, see tigure 6024 0 
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a 

d 

figure 6.24 
Mixed conneetion of camponems Ç and tJ. 4 • 

Now, we infer that r., totcom(a ,c,d) !i4 ::::: pref {bad). Funherrnore, we find that 
cihi(a,c,dJ(f4 ,t'i4 ):::::0 and also cihi(a,c,dJ(I'i4 , (,):::::0. As a consequence, we 
conclude that r; NICIH [a,c,d)t'i4 • From definition 6.22, " NICIH", using 

propeny 1.42 we derive that t(Ç totcomncih(a ,c ,d)li4 )::::: pref {bad) . 

We conclude that the problem with computation interference hazard in the 
composition with the indirect conneetion is not present in the composition 
with the mixed connection. Funherrnore, we notice that it hasn't been 
necessary to confine the conneetion of r; and ti4 to be direct. Only the 
commports to which b is associated are directly connected, all other 
commpons are indirectly connected. 

end of example 

In example 6.48 we show that, depending on the particular bipartition of the 
universen into I and D, we may end up with different composites. 
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example 6.48 
We consicter components 15 and 65 , see tigure 6.25. 

• b? > • • d? 
---->~. 

''l ta? 
d! 

•--7• ''1 
•--7• •--7• 

d? b? 

c!t 

• 

c! 

d! 
> • 

e!t 

• ____ ....::>~. 
f! 

tigure 6.25a tigure 6.25b 
State graphs of components Ij ( tigure 6.25a) and 6 5 ( tigure 6.25b). 

e! 

We now study the composite of these two components in the four different 
ways to conneet them. 

- Let 15 and t.5 have a direct connection. We find that 
t(ptr(l5 COMPNCIH~t.5 ))=pref {abel, bafe). 

- Let 15 and t.5 have a mixed conneetion such that the commports to 
which c is associated are indirectly connected and the commports 
to which d is associated are directly connected. We find that 
t(ptr(rj COMPNCIH(c)L'.5 ))= pref{abef,abfe ,bafe). 

- Let I5 and t.5 have a mixed conneetion such that the commports 
to which c is associated are directly connected and the commports 
to which d is associated are indirectly connected. We find that 
t(ptr(rj COMPNCIH(d) 65 ))= pref {abef, baef, bafe). 

- Let I5 and 65 have an indirect connection. We find that 
t(ptr(rj COMPNCIH(c,d]L'.5 ))= pref{abef,abfe ,baef,bafe). 

We conclude that the condition for composition, viz. I5 NICIH1t.5 (see 
definition 6.35, "COMPNCIH" ), is satisfied in all four cases (for the 
appropriate alphabet I, of course). The composite depends on the particular 
alphabet /. 

end of example 
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6.1.5 Interpretation of the composition metbod 

In the beginning of section 6.1 we have stated that the composite of two 
components is the result of the composition of these components that, under the 
given correctness concerns, is maximal with respect to both the inputs that are 
guaranteed to be accepted by it and the outputs that might be produced by it. In 
this section we have been concerned with only one correctness concern, viz. 
"absence of computation interterenee hazard". The maximality of the composite 
COMPNCIH under absence of computation interterenee hazard fol1ows from the 
way in which we have combined the trace structures of the two components in 
definition 6.11, "totcom", from the subsequent delerion of only those traces that 
give rise to computation interterenee hazard in definition 6.24, "totcomncih", 

and from the hiding in definition 6.29, "extcomncih", such that no computation 
interterenee hazard is present in the resulting composite. 

6.2 Composition without transmission interference hazard 

In this section we deal -in actdition to absence of computation interterenee 
hazard- with the correctness concern absence of transmission interference 
hazard. 

6.2.0 Transformation into computation interference hazard 

We deal with the additional correctness concern absence of transmission 
interterenee hazard by transforrning it into computation interterenee hazard, see 
section 3.3. In order to apply this technique we have to define trace set(s) that 
model "transmission interterenee hazard". For this reason wedefine tihi. 

definition 6.49 tihi 
For component rand alphabet A, we de fine trace set tihiA r by: 

tihiAr def {a,s:ae(irnA)AsE(ar)* Asaaetr:saa} 
end of definition 

By tihi1n o& r, see definition 6.49, we denote the trace set that is associated 
with transmission interterenee hazard between the indirectly connected input 
commports of componentrandtheir matching output commports of component 
l1; the symbols of i rn olin/ are associated with these commports. 
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We transfarm transm1sswn interference hazard into computation interference 
hazard by reducing ptr r to ptr ( CBNTIHIA r). 

definition 6.50 CBNTIHI 

For component r and alp ha bet A, component CBNTIHIA r is defined by: 

~(CBNTIHIAr) ~f ior 

ptr( CBNTIHIA r) def redts( ptr r, i r, tihiA r) 

end of definition 

6.2.1 Condition for composition 

From definition 6.22, "NICIH", we infer condition r NICTIH1ó. for the definition 
of rCOMPNCTIH1ó.. 

definition 6.51 NICTIH 

For i/o-connectable components r and tJ. and alphabet I, we define predicate 
r NICTIH1ó. by: 

def 
r NICTIHJt':i = ( CBNTIHI/r.o6 r)NICIHI( CBNTIHI/r.ort':i) 

end of definition 

The condition r NICTIH1ó. is sufficient on account of definition 6.22. 
Furthermore, if i/o-connectable components r and ó. can be connected under 
alphabet I with no initia/ computation and no initia/ transmission interference 
hazard , it has to be satisfied. 

From property 6.23 , "NICIH is symmetrie", we infer the symmetry of NICTIH. 

property 6.52 NICTIH is symmetrie 

For i/o-connectable components r and tJ. and alphabet I, 

rNICTIH1ó. = ó.NICTIH1r 

end of property 
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6.2.2 Composite of two components 

The component, that is the composite of r and ó under I without computation 
interference hazard and without transmission interference hazard, is denoted by 
r COMPNCTIH1 ó. 

definition 6.53 COMPNCTIH 

For i/o-connectable components r and ó and alphabet I such that 
r NICTIH1ó, component rCOMPNCTIH1ó is defined by: 

del 
rCOMPNCTIH1ó = ( CBNTIHI/n o~ r) COMPNCIH1( CBNTIHI/n oró) 

end of definition 

From property 6.36, "COMPNCIH is symmetrie", property 6.52, "NICTIH is 
symmetrie", and definition 6.53, "COMPNCTIH", we infer the symmetry of 
COMPNCTIH. 

property 6.54 COMPNCTIH is symmetrie 
For i/o-connectable components r and ó and alphabet I such that 
rNICTIH1ó, 

rCOMPNCTIH1ó = óCOMPNCTIH1r 

end of property 

From property 6.37, "COMPNCIH is associative", definition 6.51, "NICTIH" , and 
definition 6.53, "COMPNCTIH", we infer property 6.55. 

property 6.55 COMPNCTIH is associative 
For alphabet I and components r, ó, and e such that each pair of them is 
i/o-connectable, 

(i) (rCOMPNCTIH1ó)NICTIH1e = rNICTIH1(óCOMPNCTIH1e) 

(ii) (rCOMPNCTIH1ó)COMPNCTIH1e = rCOMPNCTIH1(óCOMPNCTIH1e) 

end of property 

As in property 6.37, in property 6.55 (i) either the leftand right hand side both 
hold or each of them "either is not defined or does not hold". In property 6.55 
(ii) either the left and right hand side both are defined or neither is defined; if 
both are defined then they are equal. 

In example 6.56 we illustrate composition without transmission interference 
hazard. 
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example 6.56 
We consider components 16 and 6 6 , see tigure 6.26. 

a? > • • • 
b!l l·' b?l 

cl 

• > • • > • 
a? 

lb! •'l l·' 
• • > • 

cl 

ligure 6.26a tigure 6.26b 
State graphs of components 16 ( tigure 6.26a) and ó 6 ( tigure 6.26b). 

We are interested in component 16 COMPNCTIH[b l 6 6 • From definition 6.53, 
"COMPNCTIH", we infer that we have to calculate CBNTIHI[blno~l6 and 
CBNTIID[I>lnor~. Since bfio6 and be or, this amounts to computing 
CBNTIHI0 16 and CBNTIHI[b}~ . From definition 6.50, "CBNTlHI", we 
infer that we have to calculate tih~l6 and tihi[bl~. From definition 6.49, 
"tihi" , we conclude that tihi0 16=0 and tihi[bJ~={bb}. Since 16NICTIH~, 
cf. definition 6.51 , "NICTJH", we can calculate component 
16 COMPNCTIH[b ) ~, see tigure 6.27a . 

• c! > • •• cl > • 

l·' ·'l }' 
• • 

c! 
> • 

tigure 6.27a tigure 6.27b 
State graphs of components 16 COMPNCTIH[b J ó6 ( 6.27a) and f.s COMPNCIH(b J ó 6 ( 6.27b) . 

To show the difference with the composite when absence of transmission 
interference is nat a correctness concern, we show the state graph of 
component 16 COMPNCIH[b)~ in tigure 6.27b. 

end of example 
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In property 6.57 we present the unity element of the composition operator 
COMPNCTIH. 

property 6.57 unity element ofCOMPNCTIH1 

Given is component I. Let component L\ be such that a!\=0 and 
t(ptr !\)= {E}. 

(i) 1 and L\ are i/o-connectable 

(i i) for alphabet I, 

(i i i) for alp ha bet/, 
end of property 

INICTIH,L\ 

ICOMPNCTIH,L\ = I 

The unity element of COMPNCTIH1 is equal to the unity element of COMPNCIH1 , 

cf. property 6.41. As a consequence, it does notdepend on alphabet I. 

Analogously to property 6.45 we find property 6.58. 

property 6.58 
For i/o-connectable components 1 and L\ and alphabet I such that alna!\ÇI 

and I NICTIH1L\, 

DIE (I COMPNCTIH, L\) = (DIE I) COMPNCTIH,( DIE!\) 

end of property 

Analogously to property 6.46 we find property 6.59. 

property 6.59 
For i/o-connectable components 1 and L\ and alphabet I such that alna!\ÇI 

and I NICTIH1 L\, 

CBDI (I COMPNCTIH,L\) = ( CBDI I) COMPNCTIH,( CBDI !\) 

end of property 
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6.3 Decomposition 

When we discuss decomposition we are motivated by concerns about the 
imp-lementation of specifications. The decomposition problem that we address is 
known asfactorization, cf. [ Fang87]: in this technique a specification IS and a 
(desired) part IM of a salution of this specification are given; the problem 
amounts to calculating the specification IX of the remainder, whenever under the 
given correctness concerns such a remainder exists. Of course, the task of 
calculating IX has to be accomplished under the given correctness concerns. In 
this monograph we are concerned with the correctness concerns "absence of 
computation interference hazard" and "absence of transmission interference 
hazard". Bath correctness concerns are symmetrie w.r.t. the specification (IS ) 
and all parts of the solution. Due to this symmetry factorization is equal to 
composmon. We notice that factorization is concerned with the closed 
composition of three parts, see figure 6.28. 

tigure 6.28 
Factorization of IS into rM and IX . 

When factorizing IS into IM and IX , we deal with a mixed conneetion between IS 
and IM . The conneetion between on the one hand the composite of IS and rM and 
on the other hand IX is direct; a possible indirect or mixed conneetion between 
this composite and IX is left to the next step(s) in the factorization. 
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In our Communication Model we calculate the specification of the remaioder 
mentioned above by composing the IS with rM. The specification IX of the 
remaioder is the reflection of this composite. As mentioned in section 6.1 this 
composite is maximal w.r.t. outputs that might be produced and maximal w.r.t. 
inputs that are guaranteed to be accepted. Since absence of computation 
interterenee hazard is a correctness concern the specification of the remainder, 
which is the reflection of the composite calculated in this way, is maximal w.r.t. 
the inputs that is has to accept and maximal w.r.t. the outputs that it might 
produce. 

The following examples have been shown by Ebergen, cf. [ Ebergen87]. In 
example 6.60 we show the decomposition of a wire component into two wire 
components. In spite of our notational convention we will u se r, ó, and 0 to 
denote components in these examples. 

example 6.60 
We consicter components 17, ó 7 , and 0 7 ; all three model wire elements, cf. 
example 2.47; they are given by: 

017 def {b), ( 
def { t ptr17) = pref ab) , 

def ) oó7 = (c , 
def 

o07 = {b), 

def 
t(ptró7 ) = pref[ac), 

def 
t ( ptr 0 7 ) = pref {eb ) . 

Since r:, = (ó7 COMPNCIH0 0 7), we conclude that 17 can be decomposed into 
ó 7 and 0 7 such that the conneetion of ó 7 and 0 7 is direct and there is 
absence of computation interterenee hazard, see tigure 6.29. 

ligure 6.29 
Decomposition of wire component into two wire components. 

Notice thatalso f:,=(ó7 COMPNCIH[c) 0 7 ) , and that f:,=(ó7 COMPNCTIH[c) 0 7 ). 

end of example 
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In example 6.61 we show the decomposition of a wire component that models a 
wire element into components that model a fork element and a Muller-e element. 

example 6.61 
We consider components 18, 118 , and 0 8 ; 18 models a wire element, see 
example 2.47, ~ models a fork element, see example 2.49, and 0 8 models 
a Muller-e element, see example 2.48 ; they are given by: 

def def def * 
o 18 = { b }, i 18 = {a } , t ( ptr 18) = pref ( { ab }) , 

def def def * 
o/1.8 = {c,d}, i/1.8 ={a}, t(ptr/1.8 ) = pref({acd,adc)), 

def def def * o08 = {b}, i08 = {c,d}, t(ptr08 ) = pref({cdb,dcb)) . 

Since 18=(118 COMPNCIH0 0 8 ), we conclude that 18 can be decomposed into 
~ and 0 8 such that the conneetion of 118 and 0 8 is direct and there is 
absence of computation interlerence hazard, see figure 6.30. 

c )~ 

d ' 

tigure 6.30 
Decomposition of wire component into fork component and Muller-e component. 

Notice that also 18 = (~ COMPNCIH(c J 0 8 ), and that 18 = (~ COMPNCTIH(c J 0 8 ). 

end of example 

6.4 Other correctness concerns 

The metbod for constructing the composite of components presented in this 
chapter is also suited to deal with other correctness concerns. E.g. we can deal 
with "absence of ambiguous quiescence hazard", cf. subsection 3.3.1.0, 
insteadof or in actdition to "absence of transmission in tenerenee hazard". 
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Concluding remarks 

In chapter 2 we have introduced our Communication Model as a forma! 
abstraction of 'the underlying physics'. In this model we distinguish direct, 
indirect, and mixed connections of components. Furthermore, we deal with 
interpretational issues like inputs and outputs in this model; by doing so, we do 
not saddle the trace theory formalism with this burden. Trace theory is a 
formalism that is used in several ways in our Communication Model. 
Furthermore, we believe that the presence of a Communication Model has 
enabled us to pinpoint the abstraction from module to component, see subsection 
2.2.3. We also carefully distinguish between the communication behavior of 
components and the communication of a channel between them. 

In section 3.3 we presented a technique that transforms "undesired phenomenon 
hazards" into "computation interference hazard" . We showed some applications 
of this technique in the subsequent chapters. The example of the application of 
this technique in which we deal with the correctness concern "absence of 
ambiguous quiescence hazard", see subsection 3.3.1, indicates that many 
correctness concerns (even some liveness properties) can be incorporated in our 
Communication Model in this way. This transformation technique is also the 
basis for the composition operators defined in chapter 6 , where it suggests a way 
to define new composition operators that include other correctness concerns. The 
definitions of our composition operators for mixed connections of components are 
helpful tools to compare and combine synchronous and asynchronous design 
methods. 

211 
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We have formally defined absence of computation interference hazard in chapters 
3 and 4 ( for direct and indirect connections of components, respectively). 
Absence of computation interference hazard is the basic correctness concern in 
this monograph. The distinction between the reception and the acceptance of a 
signa! provides the context that is needed for the discussion of computation 
interference hazard. 

In chapter 4 we have addressed delay-safety. We do not talk about 'delay-safe 
circuits': delay-safety is nota property of a physical circuit. At the circuit level 
delay-safety is just an assumption, viz. the value of the delay of a signa! that is 
sent from one terminal via a wire to another terminal is nonnegative. Of course, 
we could try to define the predicate "delay-safe" for circuits; this would amount 
to sarnething like: "the correctness of the functioning of the circuit does not 
depend on the values of the delays in the wires of the circuit". Notice that the 
functioning of the circuit may depend on the values of these delays: e.g., 
depending on the values of the delays the circuit may behave in a different 
-but correct ! - way. In order to define this predicate "delay-safe", however, one 
does not only need a circuit, but also a description of the correctness of its 
functioning and a method to check whether this correctness does or does not 
depend on the values of the delays in the wires of the circuit. 

In chapters 4 and 5 we present theorems that link in our Communication Model 
the constructive definitions of trace structures dse, cbds, die , and cbdi, to the 
intuitive definitions of components DSE, CBDS, DIE, and CBDI , respectively. 
These are tools that help a designer to decide whether he wants to use 
delay-safe ( or delay-insensitive) communication or not, since they can be used to 
indicate the limitations of delay-safe and delay-insensitive communication, see 
subsection 4.2.5 and subsection 5.1.1, respectively. In these subsections we 
address so-called 'off-the-shelf' mechanisms, cf. [ Molnar85]: 

In the context of delay-safe communication we present in chapter 5 an intuitive 
definition of "absence of transmission interference hazard". We show 
furthermore, that "delay-insensitive communication" is equal to "delay-safe 
communication without transmission interference hazard". 

In chapter 6 we address composition. There we deal with the general case: 
mixed connections of components. We generalize composability to "genera! 
composability"; we also present a generalization of "composability diagrams", 
viz. "general composability diagrams". General composability diagrams can be 
used to check readily whether two traces are generally composable under some 
given iobip or not. In this chapter we present necessary and sufficient conditions 
for composition in two cases: (i ) under the correctness concern absence of 
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computation interference hazard, and ( ii) under the correctness concerns absence 
of computation interference hazard and absence of transmission interference 
hazard. Furthermore, we address factorization in this chapter. Factorization is 

the decomposition problem, in which the specification and a part of the desired 
solution are given and the remainder has to be calculated. Factorization is equal 
to composition if and only if all correctness concerns are symmetrie w.r.t. the 
specification and all parts of the solution. 

7.0 Formal definitions of delay-insensitive 

In this section we present some links between the pieces of research that have 

been carried out within the field "delay-insensitivity". Furthermore, we show 
relations between our work and the work of other researchers. 

7.0.0 Relation between self-timed and delay-insensitive 

The class of self-timed circuits has been introduced by Seitz, see [ Seitz 80 ] . He 
distinguishes time geometry, i.e. time metric, and time topology, i.e. a partial 

order on the occurrences of events. The relation between the time metric and the 
time topology is inside the self-timed elements. Self-timed elements either are 
synchronous systems with an intemal clock that can be stopped synchronously 
and restarted asynchronously or they are speed-independent circuits. The design 
of self-timed circuits has two principal facets: the design of elements and the 
design of systems of interconnected elements. Along the seam between those 

subjects are conventions for self-timed signaling. Equipotential regions have 
been introduced in order to try to assure consistent physical meaning for the 

relations that hold within them; it is necessary that a self-timed element is 
contained in at least one equipotential region ; the set of equipotential regions 

covers all of the elements of the self-timed system. 
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Seitz argues that a strict protocol of signaling conventions has to be imposed 
throughout the system in order to deal with the complexity of the design, see 
[ Seitz80] . Two-phase handshaking and four-phase handshaking are such 
protocols. Van de Snepscheut has given a theoretica! foundation, see 
[Van de Snepscheut85 ] . He defines the "agglutinate", which really is the same 
operator as the composition operator "©" which we presented in [ Schols 85 ]; 
the only difference is that van de Snepscheut was concemed with the extemal 
communication behavior of the composition, whereas we were interested 
in the intemal communication. Van de Snepscheut detects computation 
interference hazard. His delay-insensitive communication is more restrictive 
than ours; our composition operator COMPNCIH, see chapter 6, is a 
generalization of his agglutinate. Building on van de Snepscheut's foundation, 
Martin shows how a compilation can be performed from a specification 
to a self-timed circuit in which four-phase handshaking is used for the 
communication between elements that are not in the same equipotential region, 
see [ Martin 85b, Martin 86, Martin 87 ] . Among the most significant results of 
Martin's group is the design of an asynchronous microprocessor, see 
[ Martin-Bums-Lee- Borkovic-Hazewindus 89 ] . The specification language 
from which Martin starts his compilation is CSP extended with the 
communication primitive "probe", see [ Martin85a ] . A detailed overview of 
Martin's methad is given in [ Martin90]. 

We have suggested an alternative approach to Martin ' s methad using invariants. 
This has been formalized by Langenberg, see [ Langenberg92] . Langenberg 
also addresses overspecification in this context. De Graaff has suggested a design 
methad that is somewhat similar to Martin' s method, see [ de Graaff 86 ] . De 
Graaff introduces the distinction between the acceptance/reception of a signa! 
by a mechanism and the 'observation' of that signal by this mechanism. Based 
u pon Martin 's approach, van Berkel has developed a decomposition metbod 
that leads to 'delay-insensitive circuits', see [ van Berkel92 ] . In the graduate 
student project VOC at Eindhoven University of Technology methods for 
designing 'delay-insensitive circuits' are investigated and developed, see 
[ Bisseling-Eemers-Kamps - Peeters 90 ] ; the ultimate goal is to build a silicon 
compiler for translating parallel computations into 'delay-insensitive VLSI 
circuits'. 
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7.0.1 Modolar approach to delay·insensitivity 

Keiler, see [ Keller74], defines a "delay-insensitive network" as follows: 

A network. is called delay-insensitive if its extemal behavior remains 
unchanged, regardless of whether any number of delay elements are inserted 
into, or removed from any lines. 
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In the approach in this monograph we do not require the extemal behavior to 
remain unchanged, regardless of the amount of delay in such lines. We allow the 
extemal behavior to change, as long as it remains correct w.r.t. its specification; 
here, the environment plays an important role, see sec ti on 6.0. Furthermore, 
Keller's definition suggests that the delay along such a line is fixed, although 
unknown; in the approaches mentioned below, the delay constraint has been 
strengthened to allow values of the delays in a given line to be distinct. Keller's 
definition refers to delays in "any lines". When such a constraint is imposed 
rigorously on all parts of the circuit, it results in a very restricted class of delay
insensitive networks, see [ Seger88]. This constraint is weakened in the 
approaches mentioned below to delays in the lines that conneet so-called 
modules: lines inside these modules are not being considered for inserting such 
delay elements. 

Molnar has introduced the "Foam Rubber Wrapper metaphor", see 
[ Molnar-Fang - Rosenberger85 ] . With respect to the communication in the 
channel, it assumes that the values of the delays of the commsigs are nonnegative. 
With respect to the communication behavior of components, it assumes that there 
is no computation interterenee hazard, see [ Schols 88 ] . Based u pon this 
intuitive notion three formalizations of delay-insensitivity arose, see [ Udding84, 
Schols 85, Black 86 ] . Furthermore, this notion in spired Verhoeff, Ebergen, and 
Dill to define delay-insensitivity formally, see [ Verhoeff85, Ebergen87, 
Dill88]. 
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Udding has classified 'delay-insensitive circuits', see [ Udding84]. The smallest 
classis called the "synchronization class". No data communication is possible in 
this class, since no choice can be made: the only way to disable a communication 
action is to let it take place. The second class is called the "data communication 
class". In this class choice between inputs is allowed; this enables data 
communication. The communication in this class depends on the role of inputs 
and outputs; interchanging inputs and outputs yields, in genera!, a circuit that is 
not in the data communication class. The 'regular circuits' in this class are 
considered to be synthesizable. Next comes the "arbitration class" . This class 
contains nondeterministic behavior: in addition to choice between inputs, choice 
between outputs is allowed in this class. The greatest class is called the "delay
insensitive class"; it is also called C4 . The synchronization class is a subset of 
the data comrnunication class. The latter is a subset of the arbitration class which, 
in turn, is a subset of the delay-insensitive class. Except for the arbitration class, 
all classes are closed under composition, see [ Verhoeff85]. Udding's classes 
cannot be used to classify the communication behaviors of components that 
communicate delay-insensitively: such a communication behavior need not 
belang to the delay-insensitive class, see CBDI in subsection 5.1.0.3. These 
classes, except for the data communication class, can be used to classify the 
communication in delay-insensitive channels, cf. section 6.0 . The data 
communication class is not suited to this purpose, since it has been defined 
asymmetrically w .r.t. the two parts of the alphbip; these two parts are called input 
and output in [ Udding84]. Udding's classes can be used to classify 
components, say î, according to the communication in the channel between î 

and its maximal partner, when they communicate delay-insensitively, see 
subsection 5.1.0.1. Udding's classes can be interpreted at the boundary between 
DIE î and DIE ó in tigure 7.0. 
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DIEr DIE ö 

1 ö 

figure 7.0 
Components I and t!. and their delay-insensitive enclosures. 

We have eliminated the correctness concern "absence of transmisston 
interterenee hazard" from the conditions imposed on Udcting's delay-insensitive 
class, see [ Schots 85 ] . Verhoeff has eliminated this correctness concern from 
the conditions imposed on all four classes, see [ Verhoeff85]; this yields the 
classes D1 through D4 ( D4 , see subsection 4.1.0, being the largest of the four). 
These classes can be interpreled at the boundary between DSE 1 and DSE ö in 
tigure 7.1, see subsection 5.2.3 . 

DSE 1 DSE ö 

1 ö 

figure 7.1 
Components rand t!. and their delay-safe enclosures. 

Verhoeff has shown which protoeals are suited for delay-insensitive data 
communication, see [ Verhoeff88]. 



218 Concluding remarks 

7.0.2 Delay-safety and delay-insensitivity 

We have previously defined a composition operator that can be used to check 
delay-safety and also to calculate the smallest delay-safe communication that 
includes the original communication, see [ Schols 85 ] . We have proven that 
delay-safety can be separated from "absence of transmission interference 
hazard", see [ Schols85, Verhoeff-Schols85]. We show this separation of 
concerns in [ Schols 88] . "Delay-safe communication without transmission 
interference hazard" is called "delay-insensitive communication", see chapter 5 . 
In this monograph we apply our earlier results, see [ Schols 85 ] , to 
communication in channels; we discuss the impact of these results on the 
communication behaviors of components. Furthermore, we address composition 
in this monograph. 

Black uses infinite trace theory, i.e. he allows for traces of infinite length, see 
[ Black 86 ] . He extends our earlier definition of delay-safety using in fini te trace 
theory. Furthermore, he deals explicitly with the 'capacity' of the "links" , which 
form the conneetion between indirectly connected commports. 

Verhoeff has introduced a Delay-demon, that models the non-negativity of the 
delays in the "links" in the channels, see [ Verhoeff85]. Like Udding, Verhoeff 
is concemed with the communication behavior of components; he also 
distinguishes four classes. He does not, however, include "absence of 
transmission interference hazard" in the definitions of his classes. He deals 
separately with the 'capacity' ofthe "links" in the channels. 

Ebergen has defined Wire components, see [ Ebergen 87 ] . He does not 
distinguish the "links" in the channels from the other components; in his 
approach transmission interference hazard is a special case of computation 
interference hazard, viz. at the inputs to the Wire components. Ebergen defines 
his Wire componentsin such a way that they have a 'capacity' of one commsig . 
Furthermore, Ebergen has defined a decomposition method for the translation of 
specifications (in particular: programs) into 'delay-insensitive circuits', see 
[ Ebergen 87 ] . [ Ebergen 88 ] is a good introduetion to Ebergen' s method. The 
decomposition problem has also been attacked by Fang; he addresses 
"factorization" in [ Fang87], see also section 6.3 . 

Dill defines delay-safety for CSP-like processes. His processes are quadruples: 
input alphabet, output alphabet, set of successful traces, set of failure traces. The 
set of successful traces and the set of failure traces need not be disjunct. 
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Josephs and Udding have developed an "algebra for delay-insensitive circuits", 
see [ Josephs- Udding 89] and [ Josephs- Udding90] . Their approach is based 
upon CSP. Their fonnalism is such that every specification that is syntactically 
correct is 'delay-insensitive'. On the one hand this is convenient when one wants 
to end up with a 'delay-insensitive specifica ti on'; on the other hand, it is difficult 
to express in their fonnalism the functionality that one desires. Of course, 
arguing about delay-insensitivity is not possible (nor necessary ) within their 
fonnal framework. 

If we disregard transmission interterenee hazard, all of the above fonnalizations 
are equivalent. Although the definitions of the fonnalizations differ very much in 
fonn, none makes it easy to prove by hand that a particular communication is 
delay-insensitive. They can more easily be used to show that a particular 
communication is not delay-insensitive: find a case and show that it does not 
satisfy the requirements for delay-insensitivity. 

7.0.3 Fairness and delay-insensitivity 

In the past much discussion has gone on conceming the question whether delay
insensitive fair arbitration is possible or not. People interested in building arbiters 
are referred to [ Chaney86] and [ Unger80] . Martin has shown that delay
insensitive fair arbiterscan be built, see [ Martin85b, Dill88]; in his design the 
communication that is intemal to the fair arbiter is delay-insensitive. On the 
other hand it has been argued that delay-insensitive fair arbitration is not possible, 
see [U deling 85, Moll85, Cox 85 ] . Our condusion is: we are able to build fair 
arbiters that intemally communicate delay-insensitively, but when an arbiter 
communicates delay-insensitively with its environment this arbiter may not be 
fair any more, seen from the point of view of this environment. The lesson to be 
learned from this is: if we need a fair arbiter, we can build it such that the 
internal communication is delay-insensitive; we have to take care that the 
communication between this arbiter and its environment is not delay-insensitive. 
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7.0.4 Testing for delay-insensitivity 

Burstyn and Udding have written a program to test automatically whether 
the composition of a number of delay-insensitive modules is correct in 
the sense that no possible sequence of communication actions can result in 
computation interference hazard. This program can be used to verify that a 
particular communication is delay-insensitive, see [ Burstyn 86 ] . The program 
accomplishes this by, first, internally generating the reflection of the given 
component and Ebergen's Wire components. The Wire components are used to 
conneet the component to its reflection. Next, the program tests the resulting 
composition for computation interference hazard. If this test is negative, the trace 
structure of the original component is in Udcting's delay-insensitive class, i.e. C4 . 

7.1 Topics for further research 

In chapter 2 we remarked that it is possible to infer a camminstorder of a module 
from the causa! ordering of signals exchanged by a mechanism. Some initia! 
exercises showed that it might be interesting to consicter Dynamica! Systems 
theory as the underlying physical model; it seems promising to pursue a forma! 
relation between Dynamica! Systems theory and our Communication Model. 

We presented abstractions in chapter 2: a component is an equivalence class of 
modules, and a channel is an equivalence class of interconnections. Delay-safety 
and delay-insensitivity could be modeled using modules and interconnections 
instead of components and channels. In this case, communication behaviors 
would be sets of trace sets rather than trace sets. The outcome of such work will 
yield interesting information about what is lost by our abstraction; e.g., 
ambiguous quiescence hazard can be introduced by this abstraction, see remark 
3.16. 

For the operators that have been defined in this monograph programs can be 
developed; these programs mightserve as a tooi for designers. Furthermore, they 
might be integrated in larger development environments. Van der Heijden and 
Teunissen have developed a program for the operator DIE , which is referred to as 
" DECNTIH " by them, see [ van der Heijden-Teunissen 89 ] . 
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Within our Communication Model, both synchronous and asynchronous 
communication can be addressed. We integrate them in chapter 6: the 
composition operators in this chapter deal with mixed connections of 
components. As such, these operators may constitute a step towards the 
integration of design techniques based on synchronous and asynchronous 
communication models, see section O.O. We believe that in the next decade 
synchronous and asynchronous design techniques will end to be competitors: 
they will be integrated in large development environments in which they both can 
be used by a designer, depending on the particular design task. 

In this monograph we have been concerned with the limitations of delay-safe and 
delay-insensitive communication. Often a strict protocol of signaling conventions 
is imposed throughout a system in order to deal with the complexity of the design, 
cf. [ Seitz 80 ] . The operators presented in this monograph can be used to 
check whether such a methooical approach is consistent with delay-safe and 
delay-insensitive communication. 
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Appendix A 

Proofs 

This appendix has three sections. Section A.3 contains the proof of the 
theorem of chapter 3. Sections A.4 and A.5 contain the proofs of the lemmas and 
theorems of chapters 4 and 5, respectively. 
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A.3 Computation interference hazard 

theorem 3.14 

proof 

Let UndesPh be some undesired phenomenon. Let trace set 
S be associated with UndesPh. Let r be a component such 
that (As:set(ptrr)nS: l(stiO>O). ---We define component f' by 
r' der <io r, redts(ptr r, i r, S)>. 

Then r' is the maximal ( w.r.t. trace structure inclusion) component such 
that 

(i) ior' = ior, 

( ii ) ptr r' ç;: ptr r' 

( iii) r' has absence of UndesPh hazard. 

Let UndesPh be an undesired phenomenon hazard. Let trace set S be 
associated with UndesPh. Let r be a component. Let component f' be 
definedbyr' der <iof,redts(ptrr,ir,S)>. 

From the definition of f' follows (i). From definition 1.34, "redts", 
follows (ii ). Since all traces of t(ptrr)nS are missing in t(ptrf' ), cf. 
definition 1.34, "redts", we infer that ( iii) holds. 

In order to argue the maximality of f' , we consicter a trace t such that 
te(t(ptrr)\t(ptrf')) . Using ptrf'=redts(ptrf,if,S) we infer from 
property 1.36, that 
(Ex' a: XE (ar)* fl aE i r fl xaprefixt: XE t(ptr r') fl xaé t(ptr f' )) . From 
definition 1.34, "redts", we infer that 

(Ex ,y 'a: XE (ar)* flyE (or)* fl QE i r fixaprefixt 
: xE t(ptr f') fl xart. t(ptr f' )AxayE (t(ptr r)nS) 

). 

Given such traces x and y and such a symbol a . The actdition of trace t to 
t(ptrf') leads to the presence of xa in t(ptrr' ). Since components cannot 
be prevented from producing their output comminsts, trace xay should be 
present, too. Since xayE (t(ptrr)nS) and Sis associated with UndesPh, we 
infer that the actdition of a trace to t(ptrr') introduces UndesPh hazard. 
We conclude that r' is maximaL 

end of theorem 
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A.4 Communicating delay-safely 

In this section we present the proofs of the lemmas and theorems of chapter 4. 
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lemma 4.43 

proof 

For component r, 

(At: te t(dser): (Es: se t(ptrr) : sc10rt)) 

Given component r. Let t be such that te t(dser). We prove this lemma 
by induction on the length of t. 

induction hypothesis 
(Au: ue t(dser)A Iu < lt: (Es: se t(ptrr) : sc10 ru)) 

base: lt=O 

true 

= { property 4.5 (i) } 

EC1orE 

= { t = e , since I t = 0 } 

EC1o rt 
::;. { property 2. 34 (i ) } 

(Es: se t(ptrr): sC10rt) 

step: lt> 0 

Let t=xa fortrace x and symbol a; hence, lx< lt . From te t(dser) 

follows that ae ar and xaE t(dse r) . 

Since ar is bipartitioned intoor and i r, we distinguish : 

case 0: aeor 
true 

{ xaE t(dser) } 

xae t(dser) 

::;. { definition 4.36, "dse ", using ae o r } 
(Es: SE t(ptrr)AsC 10 rX: #as> #ax) 

= { property 4.11 (i), using aE o r } 
(Es: SE t(ptrr) : SC10 rxa) 

{ t=xa } 
(Es : SE t(ptrr): SC10rt) 
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casel: aEir 

true 

= { xaE t(dse r) } 

xaE t(dse r) 

::::> { dse r is prefix-closed } 
XE t(dser) 

::::> { induction hypothesis, using lx < lt } 

(Es : SE t(ptr r): SC10 rX) 

::::> { property 4.11 ( iv ), using aE i r } 
(Es: SE t(ptrr) ; SC10 rxa) 

{ t=xa } 
(Es; SE t(ptrr): SC10 rt) 

end of lemma 
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lemma 4.44 

proof 

For components rand~ such that ior= io~ and ÓNCIHADS r, 

(As, t: se t(ptr r) 11 te t(ptr 6)\ t(dse r):-. (sc1.rt)) 

Given components r and ~ such that ior= io~ and IS.NCIHADS r. Let 
trace t be such that te t(ptr~)\t(dser). Since ee t(dser) , t:t:e. Let trace x 
and symbol a be such that xaprefixt, aEar, xE t(dser), xaE t(ptr~), and 
xal/:. t(dser). We first prove that aE or. 

true 

= { definition 4.29, "NCIHADS", using IS. NCIHADS r and ar= a~ 
} 

(Ar ,s ,b: re t(ptr/S.)>E t(ptrr»E olic10i!Jihr>#bs: sbE t(ptrr)) 
::;, { xaE t(ptr/S.), since xaE t(ptr ~). see definition 2.36, "refiection of 

component" 
} 

(As ,b: sE t(ptrr) A be o3 11 xac10öS 11 #bxa > #bs: sbE t(ptr r)) 
= { property 4.9, and calculus } 

(As ,b: se t(ptrr) A bE o3 11 sc1• 6 xa A #bs < #bxa: sbE t(ptr r)) 
= { io~= ior and o3= ir, see definition 2.36, "refiection of 

component" 
} 

(As ,b: SE t(ptrr) A bE ir A sc 1.rxa 11 #bs <#bxa : sbE t(ptrr)) 
::;, { definition4.36, "dse",usingxet(dser)andxaét(dser)} 

aéir 
{ aEarandor=ar\ir,seeproperty2.33} 

a e or 

We have derived aE or. 

true 

{ definition 4.36, "dse", using aE or, XE t(dse r), and xae t(dse r) } 
(AS : SE t(ptr r) 11 SC10 rX: #as!, #ax) 

{ predicate calculus } 
(As : SE t(ptr r) : --, (sclorX 11 #as> #a x)) 

{ property 4.1l(i), using aE or } 
(As: SE t(ptrr): -.(sc1.rxa)) 

::;, { property 4.7, using xaprefix t and property 2.45 ( ii) } 
( Au : UE t(ptrr): -.(uc1.rt)) 

endoflemma 
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theorem 4.45 delay-safe enelosure 

proof 

For component r, 
ptr( DSE r) = dse r 

Given component r. Let component 6 be such that io6= ior and 
ptr6= dser. 

From property 4.42 we conclude that r NCIHDS 6. From lemma 4.43 we 
derive that (A a, t: ae o r Atae t(ptr 6) : (Es :se t(ptr r): sc10rta)). The 
maximality of 6 follows from lemma 4.44. 

end of theorem 
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lemma 4.49 

proof 

For component r, 

(At: te t(ptrr)A(Ey :ye t(dsel): tC 10ry) : te t(dsel)) 

Given component r. 
(Ey: ye t(dse 1): tC~orJ). 

of t. 

induction hypothesis 

Let trace t be such that te t(ptrl), and 
We prove this lemma by induction on the length 

( A u : u E t ( ptr r)" l u < l t " ( E z : zE t ( dse n : u c lor z) : u E t ( dse n) 
base: lt=O 

true 
{ lt=O } 

t=e 
:::. { ee t(dsel), see definition 4.36, "dse" } 

te t(dser) 

step: lt>O 

Let t=xa fortrace x and symbol a; hence, lx< lt, aear, xae t(ptrr), 
and (Ey: ye t(dse r): xaclorY). 

true 
= { xae t(ptrr) } 

xae t(ptrr) 
:::. { ptr r is prefix -closed, see property 2.45 (i i) } 

XE t(ptrf') 

:::. { induction hypothesis, using lx < lt and calculus } 
(Ez : ze t(dser): XC10 rZ) =:> xe t(dser) 

=:> { property4.7,using(Ey:yet(dser):xac1orY)} 
xet(dser) 
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Since ar is bipartitioned into o r and i r, we distinguish: 

caseO: aE or 
true 

{ XE t(dser) } 
XE t(dser) 

{ property 4.6(i), using aE o r } 
XE t(dser)Axac1.rx 
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= { definition 4.36, "dse", USing ae Ol and XQE t(ptr 1) } 

xaE t(dser) 

casel: aEi! 
We know that (Ey: yE t(dser): xac1.ry). Given such a trace y. 

Hence yE t(dser) and xac1.rY· Using aE i! we find that 
(Eb,w,z:bEi!AzE(or)*:wbz=y). Given such a symbol b 

and such traces w and z. Hence bE i r. From property 4.40 ( ü) 
we derive that wbE t(dser) . From property 4.2, 
"composability", we derive that xac1.rwb. 

true 
= { property4.41,usingwbEt(dser)} 

(As ,C: SE t(ptrr)ACE i1ASCC10 rWb : SCE t(ptrr)) 

::::. { predicate calculus } 
(AS , C: SE t(ptr r) A CE i 1 A SCCJ0rxa A SCC10rWb : SCE t(ptr r)) 

= { property 4.10, "transitivity of composability", using 

xac 1.rwb 
} 

(AS , C: SE t(ptr r)A CE i 1 A SCC10rxa : SCE t(ptr r)) 
= { property 4.11 ( iii) } 

(As ,C: SE t(ptrr)ACE i!ASC 10 rXa A#cs<#cxa : SCE t(ptrr)) 
= { definition4.36,"dse",usingxet(dser)andaEi1} 

xaE t(dser) 

Hence, xaE t(dser); since xa=t, we conclude re t(dser). 

end of lemma 
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lemma 451 

proof 

For component r, 

(dser,abr)ED4 

Given component r . Let traces t, y, and z be such that yE t(dser), 
zE t(dser),yc~ort, and tC~orz . We prove by induction on t, that tE t(dser). 

induction hypothesis 
(Au : uprefixtA Iu< lt: UE t(dser)) 

base: lt=O 
Hence t=e . From definition 4.36, "dse", we derive that tE t(dser) . 

step: lt> 0 
Let t=xa fortrace x and symbol a ; hence, x prefixt, lx < lt, yc10rxa, and 
xac~orz. From the induction hypothesis we conclude that xE t(dse r). 

Since ar is bipartitioned into o r and i r , we distinguish: 

case 0: aE or 
true 

{ yE t(dse r) } 
yE t(dser) 

::::> { lemma 4.43 } 
(Eu : UE t(ptrr) : UCiorY) 

::::> { property 4.10, "transitivity of composability" , using 

yclorxa 
} 

(Eu : UE t(ptr r): UC 10 rXa) 
{ property 4.11 (i) , using a E o r } 

(Eu : UE t(ptr r) : UC;0 rX A #au > #0 x) 

= { definition4.36, " dse" , usingaeorandxet(dser)} 
xae t(dser) 
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case 1: aE ir 
Since aE ir and xac10 rz we derive, using property 4.11 (iü), that 

#az>O. Hence, there exist traces v and w, and symbol b such 
that z=vbw, bEir, and wE(or)*. Given such v, w, and b. 
Hence, vbwE t(dser) andxac10 rvbw. From property 4.40(ii) we 
derive that vbE t(dser). Using wE(or)* and xac10 rvbw, we 

derive from property 4.11 (i) that xac10 rvb. 

true 

{ property 4.41, using bEirand vbE t(dse r) } 
(Au ,C: UE t(ptrr)AcE irAucC 10 rVb: UCE t(ptrr)) 

~ { calculus } 

(A U, C: UE t(ptr r) A CE i rA UCC10rXa A UCC10rVb: UCE t(ptr r)) 
{ (As: SE(ar)*: (SCiorXaASCiorYb)= SCiorxa), See 

property 4.10, "transitivity of composability", using 

xaC 10 rVb 
} 

(Au ,C: UE t(ptrr)ACE irAuCC10 rXa : UCE t(ptrr)) 

{ property 4.11 ( iii) } 
(A U, C: UE t(ptr r)AcE ir A UC10rxa A#cU < #cXa: UCE t(ptrr)) 

{ definition4.36, "dse",usingxEt(dser)andaEir} 
xaE t(dser) 

Hence, xaE t(dser); since xa=t, we conclude that tE t(dser) . 

We have proven that 

( Ay, t, z: yE t(dse r) Ayc10rt AtC10 rZ A zE t(dse r): tE t(dse r)). 

Now we conclude from definition 4.16, "D4 ", and abr= orEB ir that 
(dse r, abr)E D4. 

end of lemma 
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lemma452 

proof 

For component r, 

(ptrr,abr)ED4 = (dser= ptrr) 

Given component r. We fust prove that (dser= ptrr):::;. (ptrr,abr)ED4 • 

Let component r be such that dse r= ptr r. From lemma 4.51 we conclude 
that (ptrr,abr)E D4 . 

We now prove that (ptrr,abr)ED4 :::;. (dser=ptrr). Let component r be 
such that (ptrr,abr)ED4 • Now, a(dser)=a(ptrr). Fortrace t we prove 
that tE t ( dse r) = tE t (ptr r) by induction on the length of t. 

induction hypothesis 
(A u: Iu <ft: UE t(dser) = UE t(ptr r)) 

base: lt=O 

Hence, t=E. Since EE t(dser) and EE t(ptrr), we conclude that 
tEt(dser)= tEt(ptrr). 

step: lt> 0 

Let t=:xa fortrace x and symbol a; hence, lx <lt. 

We first prove that xaE (dse r) :::> :xaE (ptr r). 

Since ar is bipartitioned into o r and i r, we distinguish: 

case 0: aE or 
Using aE or we derive from property 4.6(i) that xac 10 rX. 

:xaE t(dse r) 
= { definition 4.36, "dse", using aE o r } 

XE t(dse r)A (Es: SE t(ptr r) A sc 10 rX: #as> #ax) 

{ induction hypothesis, using lx < ft } 

XE t(ptr r)A (ES: SE t(ptr r)A SC10rX: #aS> #aX) 
{ property4.1l(i),usingaEor} 

XE t(ptrr)A(Es: SE t(ptrr): SC 10 r:xa) 
{ definition 4.16, "D4 ", using (ptrr,abr)ED4 and:xac10 rX 
} 

XE t(ptr r)A:xaE t(ptr r) 
{ property 2.45(ii) } 

;xaE t(ptrr) 
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casel: aEil 

Using aE i r we derive from property 4.6(ii) that xc 10rxa . 

.mE t(dser) 

= { definition 4.36, "dse", using aE i r } 
XE t(dse r) 

A (As, b: SE t(ptrr)AbE i i ASC10r.W A#bs <#bxa: sbE t(ptrr)) 

= { induction hypothesis, using lx < lt } 

XE t(ptrr) 

A(As ,b: SE t(ptrr)AbE i i ASC10r.WA#bs <#bxa : SbE t(ptrr)) 
::;. { aE i r, xc10 rxa, and calculus } 

.mE t(ptrr) 

Hence, .mE t(dse r) ::;. .mE t(ptr r) . 

We now prove that .mE (ptrr)::;. .mE (dser). 

xaE t(ptrr) 

{ property 2.45 (ii) } 
XE t( ptr r)AxaE t(ptr r) 

{ induction hypothesis, using I x< lt } 

XE t(dser)AxaE t(ptrr) 

= { (As ,b: SE t(ptrr)AbE ir: sC10 rsb), see property 4.6(ii) } 
XE t(dser)AXaE t(ptrr)A( As ,b: SE t(ptrr)AbE i i: SC10r Sb) 

::;. { definition4.16,"D4 ",using(ptrl,abr)ED4 } 

XE t(dser)A(As ,b: SE t(ptrr)AbE il: sbc10 rXa::;. sbE t(ptrr)) 

{ predicate calculus and property 4.11 ( iii) } 
XEt(dser) 

A(As ,b: SE t(ptrr)AbE iiASC10rxafl#bs<#bxa : sbE t(ptrr)) 

{ definition 4.36, "dse", using a E i r } 
xaE t(dser) 

Hence, we have proven that xaEt(dser)=xaEt(ptrr) ; since xa=t, 
we conclude that tE t(dse r) = tE t(ptr r). 

end of lemma 
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theorem 4.56 

proof 

For i/o-connectable components r and 6, 

r NCIHDS 6 = (DSE r)NCIH(DSE6) 

Given i/o-connectable components rand 6 . 

rNCIHDS6 

{ property 4.31, "symmetry of NCIHDS" } 

6NCIHDSr 

= { property 4.54(iii) } 
( DSE 6) NCIHDS r 

{ property 4.31 , "symmetry of NCIHDS" } 

r NCIHDS ( DSE 6) 

{ property 4.55 (iii) } 
(DSEr)NCIH(DSE 6) 

end of theorem 

Appendix A: Proofs 
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lemma4.69 

proof 

For component r, 

( CBDS r) NCIHDS DSE r 

Given component 1. From definition 4.34, "delay-safe enclosure", we 
infer that 1NCIHADS DSEr. Using that ptr(CBDSr)ç;;; ptrr, see definition 
4.68, "maximal communication behavior for delay-safe communication", 
we conclude that ( CBDS r) NCIHADS DSE r. 

Let traces t and u and symbol a be such that tE t(ptr(DSEl)), 

uEt(ptr(CBDSr)), aEir, tc1.ru. and #at>#au. From definition 4.68 we 
infer that uE t(ptrr). Using definition 4.34, "delay-safe enclosure", we 
conclude that uaE t(ptrr). From property 4.9, we get that uac1.rt, where 
tE t(ptr(DSE r)). Using the maximality ( w.r.t. trace structure ioclusion) of 
CBDS, we conclude that uaEt(ptr(CBDSr)). Now, from definition 4.29, 
"NCIHADS ", we infer that DSE r NCIHADS ( CBDS l). 

From definition 4.30, "computation interference hazard for indirect 
connection", we conclude that ( CBDS l)NCIHDS DSE r. 

end of lemma 
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theorem 4.74 maximal communication behavior for de/ay-safe communication 

proof 

For component r, 

ptr( CBDS r) = cbds r 

Given component r. From property 4.72 we derive that 
cbds n;; ptr r. From definition 4. 70, "cbds", we derive that 
(A a ,s: ae ir A sae t(cbdsr): (Et: te t(dse r): sac10 rt)). 

We now have to prove that cbdsr is maximaL Lettraces and symbol a be 
such that se t(cbdsr), sae t(ptr r), and ae i r::;. (Et: te t(dse r): sac 10rt). 
We prove that sae t(cbdsr). 

Since ar is bipartitioned into o r and i r, we distinguish: 

caseO: aeor 
true 

{ property 4.72, using se t(cbdsl) } 
SE t(dser) 

{ property 4.6(i), using ae or } 

se t(dser)AsaC 10 rS 
::;. { definition 4.36, "dse", using ae or and sae t(ptr r) } 

sae t(dser) 
{ property 4.72, using sae t(ptrr) } 

sae t(cbdsr) 

case 1: ae ir 
true 

{ (Et:tet(dser):sac 10 rt),sinceaeir} 
(Et: te t(dse r): saC 10 rt) 

{ definition 4. 70, "cbds" , using sa e t ( ptr r) } 
sae t(cbds r) 

end of theorem 



A.4 Communicating delay-safely 239 

The proof of theorem 4.77 is spread over two pages. It starts at page 240. 
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theorem 4.77 

proof 

For components rand ó such that ior= ioÓ, 

rNCIHDSó 

:::;> (At ,U: tE t(ptrr)lltCJ0 rUIIUE t(ptró) 
:tE t(ptr(CBDSr))lluE t(ptr(CBDSó)) 

Given components rand ó such that ior= io 6, Let traces tand u be such 
that, tE t(ptrr), tC10rU, and UE t(ptró). 

We fust prove that te t(ptr( CBDS r)). In order to be able to prove this, we 
prove that ue t(dser). The latter we prove by induction on the lengthof u. 

induction hypothesis 
(A v: VE t(ptr 6)11/v < Iu 11 (Es : se t(ptrr) : sc10 rv): vE t(dser)) 

base: lu=O 

Hence u=e. From propeny 4.40(i), we conclude that ue t(dser). 

step: lu>O 

Let u=xa for trace x and symbol a; hence, xprefixu, lx < Iu, and 
tC10rxa . We prove thatxE t(dser) 

true 
{ xprefixu and property 4.7, using tc 10 rU } 

(Es: sprefixt: sc 10rX) 11 x prefix u 
:::;. { property 2.45 (i i) twice, using tE t ( ptr r) and u E t ( ptr ó) } 

(Es: SE t(ptrr) : sc10 rx) 11 XE t(ptró) 
:::;. { induction hypothesis, using lx < Iu } 

XEt(dser) 
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Since ar is bipartitioned into o r and i r, we distinguish: 

case 0: aEor 
true 

{ property 4.11 (i), using aE or and tc 10 rXa } 
tC10 rX 11 #at> #aX 

::;. { definition4.36, "dse",usingxEt(dser)andaEor} 
xaE t(dser) 

casel: aEir 
true 
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{ definition 4.30, using r NCIHDS ~, and definition 4.29, 
using xa E t ( ptr ~) 

} 
(As' b : SE t(ptr r) 11 bE i r 11 SCiorXa 11 #bs < #bxa : sbE t(ptr r)) 

= { definition 4.36, "dse", using aE i rand XE t(dse r) } 
xaE t(dser) 

Hence, we have proven thatxaE t(dser); sincexa=u we conclude that 
UE t(dser). 

We have proved that uE t(dser). Now, using tE t(ptrr) and tC10 rU, we infer 
from definition 4.70, "cbds", that tE t(cbdsr). From theorem 4.74, we now 
conclude that tE t(ptr( CBDS r)). 

We now have proven that for components r and ~ such that ior= io ~. 
r NCIHDS ~ ::;. (At' u: tE t(ptrr)ll tCiorU 11 UE t(ptr 6): tE t(ptr( CBDS r))). 

Using that io~= io r, and r NCIHDS ~ = ~NCIHDS r, we conclude that 
r NCIHDS ~::;. (At ,U: tE t(ptrr)lltCiorUIIUE t(ptr~): UE t(ptr(CBDS~))). 

end of theorem 
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theorem 4.80 

proof 

Por components rand i\ such that ior= ioi\, cbdsn;; ptr i\, and ptr i\!;; ptrr, 

dser= dsei\ 

Given components rand i\ such that ior=ioi\, cbdsr!;;ptri\ , and 
ptr i\!;; ptr r. 

We first prove that dse re;:: dsei\ . Let trace t be such that tE t(dse r). 

induction hypothesis 
(Au: UE t(dser)A Iu < lt : UE t(dsei\)) 

base: lt=O 
Hence t=e. From property 4.40(i) we conclude that tE t (dsei\). 

step: lt>O 
Let t=xa fortrace x and symbol a; hence, lx< lt and xaE t(dser). 
From property 4.40(ii) we conclude that XE t(dser). From the 
induction hypothesis we infer that XE t ( dse i\) . 

Since ar is bipartitioned into o r and i r , we distinguish : 

case 0: aE or 
From ior= ioi\ we infer that aE oi\ . 

true 
= { definition4.36,"dse",usingaEorandxaEt(dser)} 

(Es : SE t(ptr r): SC;0 rxa) 
{ property 4.5, usingxaE t(dser) } 

(Es : SE t(cbdsr): SC10 rxa) 
:;. { cbdsrc ptri\ } 

(Es : se t(ptr M : sciorxa) 
{ definition 4.36, "dse" , using XE t(dsei\) and ae oi\ } 

xaE t(dsei\) 
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case 1: ae ir 
From ior= ioó we infer that ae ióo 

true 

= { definition4o36, "dse",usingaeirand.xaet(dser)} 
(AS, b: se t(ptr r) A bei r ASCtor.xa A #bs < #b.xa : sbe t(ptr r)) 

:::;:. { ptróç;;; ptrr and ior= ioó } 
(As, b : se t(ptr ó)A be ió AsC106.xa A #bs < #b.xa: sbe t(ptr r)) 

= { definition 4070, "cbds", usingxae t(dser) } 
(As, b: se t(ptr ó)A be ió A SC106.xa A#bs < #b.xa : sbe t(cbds r)) 

:::;:. { cbdsrç;;; ptró } 
(As ,b: se t(ptró)Abe ióAsC106.xa A#bs <#b.xa: sbE t(ptró)) 

= { definition4036,"dse",usingxEt(dset1)andaeit1} 
.xae t(dseó) 

Hence, we have proven that.xae t(dset1); since t=xa, we conclude that 
te t(dseó)o 

We conclude that dserç;;; dseóo 

We now prove that dseóç;;; dser. Let trace t be such that te t(dseó)o We 
prove that te t(dser) by mathematica! induction on l(tht1)0 

induction hypothesis 
(Au: ue t(dseó)i\ /(uhó)< l(dió) : UE t(dser)) 

base: t(dió)=O 
Since aó is bipartitioned into oó and ió, we conclude that te (oó)* 0 
From property 4.40(i) we conclude that ee t(dser)o Now we infer 
from property 4079 that tE t(dser)o 

step: Hdió)>O 
Let t = xay for traces x and y and sym bol a such that ae i ó, and 
ye(oó)*; hence, /(xrió)< l(dió) and xaye t(dseó)o From property 
4.40(ii) we conclude that xaE t(dseó) and XE t(dseó)o From the 
induction hypothesis we infer that xe t(dser)o From ior= ioó we 
infer that ae i r and YE (on* 0 

Let trace wand symbol b be such that wE t(ptrr), be ir, wc 10r.xa, and 
#bw<#bxao From property 4.11 (iii) we infer that wbc 10rXa. Since 
ior= ioó, we infer that bE ió and wbc106.xa. 
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S up pose that w ~ t ( ptr ~). 
Using definition 4.70, "cbds", we infer that ptr r n dse r c ptr ~ . 

Since we t(ptrr), we conclude that w~ t(dser). Now, using 
properties 4.40(i) and 4.40(ii) we derive, that there ( uniquely) 
exist traces u and v and symbol c such that w=ucv, ue t(dser), 
and 

ucË t(dsel). 

Given such u, v, and c. He nee, ucvbc106xa and, using property 
4.4Q(ii), UCE t(ptrl) and UE t(ptrr). 

Since ar is bipartitioned into o r and i r, we distinguish: 

caseO: ceor 

true 
= { uce t(ptrl) and property 4.6(i) using ce or } 

uce t(ptrl)AucC10 rU 

:::> { definition4.36, "dse",usinguet(dser)andceor 
} 

UCE t(dsel) 

casel: ceir 
First we derive: 

l(udi~) 
< {bei~} 

l(ucvbti~) 

s { property 4.2, "composability", using ucvbc 106xa 
} 

l(xati~) 
= { t =xay andye (o~)* } 

l(d i~) 

Hence, l(ud i~)< l(d i~) . 

From ( several times) 
that ucvbc106xa, 

(Ez: zprefixxa : UCC106z). 
property 4.40(ii) , 
(Ez : ZE t(dse~): UCC106 Z) . 

property 4.7, using 
we derive that 
Using xae t(dse~) and 
we conclude that 
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true 
= { property 4.72, using ue t(ptrr) and ue t(dser) } 

ue t(cbdsr) 
::::. { cbdsn: ptr6 } 

ue t( ptr 6) 
= { (Ez:zet(dse6):ucc1• 6 z)} 

ue t(ptr6)A(Ez: ze t(dse6): ucc1• 6 z) 

::::. { property 4.41, using ce i1 } 
uce t(ptr6)A(Ez : ze t(dse6): ucc1• 6 z) 

::::. { lemma 4.49 } 
UCE t(dse6) 

::::. { induction hypothesis, using l(ud i6) < l(d i6) } 
uce t(dser) 

We have proven that uce t(dser). This is in contractietion with 
( *0 ). 

Hence, we t(ptr 6) . 

true 
= { definition4.36, "dse",usingxaet(dse6)andaei6} 

(Ar, d: re t(ptrr)Ade i! A rc10rxa A#dr < #dxa: rde t(ptrr)) 
::::> { wet(ptr6),bei6,andwbc106xa} 

wbe t(ptró) 
::::> { ptr 6 ç; ptr [' } 

wbe t(ptrr) 

Now we have proven that 

(A w, b : we t(ptrr)Abe i[' A wc10 rxa A#bw <#bxa: wbe t(ptrr)) . 

From definition 4.36, "dse", using xe t(dse r) and ae i!, we derive 
that xae t(dser). From property 4.79, using io1= io6 , ptr6C ptr1, 
xae t(dse r), ye (or)*, and xaye t(dse6), we derive that xaye t(dser). 
Since t=xay, we conclude that te t(dser). 

Hence, dse 6 ç;;; dse 1 . 

end of theorem 
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Jemma4.82 CBDS is idempotent 

proof 

For component r, 
CBDS ( CBDS r) = CBDS r 

Given component r . We notice that a( CBDS ( CBDS r))= ar and 
a( CBDS r)=ar. 

ptr( CBDS ( CBDS r)) 

= { theorem 4.74 } 
cbds( CBDS r) 

{ property 4.72 } 
ptr( CBDS r)n dse( CBDS r) 

= { theorem 4.80 } 
ptr( CBDS r)n dse r 

= { theorem 4.74 } 
cbdsrn dser 

{ property 4.72 } 
ptrrn dsern dser 

{ calculus } 
ptrrn dser 

= { property 4.72 } 
cbdsr 

= { theorem 4.74 } 
ptr(CBDS r) 

end of lemma 
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lemma 4.84 

proof 

For component r, no input comminst enables an input comminst in 
CBDSr. 

Given component r. Let trace t and symbols a and b be such that ae i r, 
be ir, tae t(cbdsr), and tabe t(cbdsr). 

true 

{ property 4.2, "composability" , using ae ir } 
tbC,0 rlab 

{ te t(ptrr) and tabe t(dse r), see property 4.72, using property 
2.45 (ii) 

} 
tE t(ptrr)Atc10rtabAtabE t(dser) 

::;. { property 4.41, using be ir } 
tbE t(ptr r)A tbc10 rtab A tabe t(dse r) 

::;. { definition 4.70, "cbds" } 

tbe t(cbdsr) 

Hence, no input comminst may enable an input comminst in CBDS r . 

end of lemma 
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lemma 4.85 

proof 

For component r, no output camminst elisables an input camminst in 
CBDSr. 

Given component r. Let trace t and sym bols a and b be such that ae i r, 
be or, tae t(cbdsr), and tbe t(cbdsr). 

true 

{ property 4.2, "composability", using be or } 

tbaCtorta 
{ tbe t(ptrr) and tae t(dser), see property 4.72 } 

tbe t(ptr r)A tbac 10 rta A tae t(dse r) 

:::;. { property 4.41, using ae ir } 
tbae t(ptrr)A tbaCtorta A tae t(dse r) 

:::;. { definition 4. 70 , "cbds" } 

tbae t(cbdsr) 

Hence, no output camminst may disable an input camminst in CBDS r. 

end of lemma 
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A.S Communicating delay-insensitively 

In this section we present the proofs of the lemmas and theorems of chapter 5. 
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theorem 5.2 c4 

proof 

Fortrace structure Tand alphbip D, 

(T,D)eC4 = (T,D)eD4 A(As,a:se(aT)*AaeaT:saal/.tT). 

Given trace structure Tand alphbip D. 

We fust prove that 
(T,D) e c4 ::::. (T,D) e D4 A (As, a: se (aT)* Aae aT: saaf/= tT). 

Let (T,D)eC4. From definition 5.1, "C/', we conclude that (T,D)eD4. 
Lettraces and symbol a be such that se (aT)* and ae aT. 

true 
= { definition5.1, "C4",using(T,D)eC4 ,se(aT)*,andaeaT} 

(A 1 : IE (aT)* Asatae tT: l(d opa(a, D))> 0) 
{ predicate calculus } 

(At: re(aT)*: satal/. tT v(l(dopa(a,D))>O)) 
::::. { instantiation, using ee (aT)* } 

saai/. tT v (l(d opa(a,D))> 0) 

::::. { definition 1.13, "projection of trace" } 
saae tT 

Hence, (T,D) e c4 ~ ((T,D) e D4 A (As, a : se (aT)* AaeaT: saart. tT)). 



A.5 Communicating delay-insensitively 251 

We now prove that 
((T,D)ED4 A (As ,a: sE(aT)* AaEaT: saaé tT)) ::::> (T,D)EC4. 
Let (T,D) E D4 and ( Az, c: zE (aT)* AcE aT: zccé tT). Let traces s and t, and 
symbol a be such that sE (aT)*, tE (aT)*, aE aT, and sataE tT. Now, saaé tT. 

Let iobip F be such that oF= spa(a,D) and iF= opa(a,D); hence, 
aT= oFu iF, aE oF, D= oF$ iF, andsE(aF)*. 

true 

{ property 4.6(i), using sE (aF)* and aE aF } 
tE (oF)* :::> satcFsa 

{ example 4.60, using sE (aF)* and aE aF } 
tE (oF)* :::> satacFsaa 

= { tE(aT)*,aT=oFuiF,andoFniF=0} 
(l(d iF)=O) ::::> satacFsaa 

{ iF= opa(a, D) } 
(l(dopa(a,D))=O) ::::> satacFsaa 

{ property 4.6(i), using aE oF } 
(l(dopa(a,D))=O) ::::> (satacFsaaAsaacFs) 

:::. { definition 4.16, "D4", using (T,D)ED4 ,D= oF$ ïF, andsaaé tT 
} 

(l(dopa(a,D))=O) :::> (sataé tT v sé tT) 

= { tT is prefix-closed, since (T, D) E D4, see definition 4.16, "D4" } 
(l(dopa(a,D))=O) ::::> sataé tT 

= { predicate calculus, using sataE tT } 
l(dopa(a,D))>O 

Hence, ((T, D) E D4 A (As' a: SE (aT)* A aE aT: saaé tT)) :::> (T,D)E c4. 
end of theorem 
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lemma 5.16 

proof 

For di-initializable component r, 

(At, u: tE t(ptrr)A tC 10 rU A UE t(die r): tE t(ptr( DSENTIH r))). 

Given di-initializable component r. Let traces t and u be such that 
tE t(ptrr), tC~orU, and UE t(dier). 

Suppose t~ t(ptr(DSENTIH r)) 
From property 4.40 we derive that there exist a trace v and a 
symbol b such that vE(ar)*, bear, vbprefixt, vE t(ptr(DSENTIHr)), 
and vb~ t(ptr(DSENTIH r)). Given such v and b. Now, using tc10 rU, 
we derive from property 4.7 that there exists a trace w such that 
wprefixu and vbc 10 rw. Given such w. We firstderive thatbE or. 

true 

= { UE t(dier) } 
UE t(dier) 

{ definition 5.14, "die" } 
UE t(dse( DSENTIH r)) 

:::;. { property 4.40(ii), using wprefixu } 
WE t(dse(DSENTIH r)) 

:::;. { property 4.41, using ve t(ptr(DSENTIH r)), vbc10 rW, and 
vb~ t(ptr( DSENTIH r)) 

} 
béir 

:::;. { bEar and tsar= oru ir } 
bE or 

We have derived that bEo r. 
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true 
= { definition 5.11, "DSENTIH", using VE t(ptr(DSENTIH r)) } 

VE t(dser) 
= { property 2.34(ii), using tE t(ptrr) and vbprefixt } 

vbE t(ptrr)A VE t(dser) 
;:;. { definition 4.36, "dse", using bEorand vbc10 rV, see property 

4.6(i) 
} 

vbE t(dser) 
= { vbE t(ptr(DSENTIH r)) } 

vbE t(dse r) A vb~ t(ptr(DSENTIH r)) 
;:;. { definition 5.11, "DSENTIH ", and definition 1.34, "redts", 

using bE or 
} 

v~ t(ptr(DSENTIH r)) 
= { VE t(ptr(DSENTIHr)) } 

false 

This is a contradiction. 
Hence, tE t(ptr(DSENTIHr)). 

end of lemma 
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lemma 5.17 

proof 

For di-initializable component r, 

dier ç; dser. 

Given di-initializable component r. Let trace t be such that tE t(die r) . We 
prove that tE t(dser) by induction on the lengthof t . 

induction hypothesis 
(Au; UE t(dier)A Iu < lt; UE t(dser)) 

base: lt=O 
Hence t=E. From property 4.40(i) we infer that EE t(dser). 

step: lt>O 
Let t=xa fortrace x and symbol a; hence, xE(ar)*, aEar, lx< lt, and 
xae t(dier). 

Since ar is bipartitioned into o r and i r, we distinguish: 

caseO: aEor 
true 

= { xaE t(die r) and property 5.15(ii) } 
XE t(dier)AxaE t(dier) 

= { induction hypothesis, using lx < lt } 
XE t(dser)AxaE t(dier) 

{ definition 5.14, "die", and definition 4.36, "dse" } 
XE t(dse r) A (Es: SE t(ptr(DSENTIH r))ASCiorX: #as> #ax) 

= { property 4.ll(i), usingxE(ar)* } 
XE t(dse r) A (Es :SE t(ptr( DSENTIH r)) : SC 10 rXa) 

=> { definition 5.11, "DSENTIH" } 
XE t(dser) A (Es: SE t(dser): SC10 rXil) 

= { lemma 4.43 } 
xe t(dse r) A (Er ,s: re t(ptr r)AsE t(dse r) : rc10 rS ASC~orxa) 

=> { property 4.10, "transitivity of composability" } 
xe t(dse r) A (Er : re t(ptr r): rc 10 rxa) 

= { property 4.11(i), using xe(ar)* } 
XE t(dser) A (Er: re t(ptrr)ArC 10 rX : #ar>#ax) 

= { definition4.36, "dse",usingaeor} 
xae t(dser) 
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casel: aEif 
Suppose there exist traces and symbol b such that sE t(ptrr), bE ir, 
sc10 rxa, and #bs <#bxa. We fust prove that sbE t(ptrr). 

true 
= { lemma 5.16, using SE t(ptrr), sc10rxa, andxaE t(dier) } 

SE t(ptr(DSENTIHr)) 
:::: { definition 4.36, "dse", usingxaE t(dse(DSENTIHr)), aE ir, 

SE t(ptr r), bE ir, sc10 rxa, and #bs <#bxa 

} 
sbE t(ptr(DSENTIH r)) 

:::;. { definition 5.11, "DSENTIH" } 
sbE t(dser) 

= { property 4.5(i) and property 4.11 (iii), using bE i r } 
sbE t(dse r) 11 sc10rsb 11 #bs < #bsb 

:::;. { definition4.36,"dse",usingsEt(ptrr)andbEif} 
sbE t(ptrr) 

We have proven that 

(As, b: SE t(ptrr)flbE ir 11 sC10rxa fl#bs < #bxa: sbE t(ptrr)).( *) 

true 
{ induction hypothesis, using lx < lt } 

XE t(dser) 
= { definition 4.36, "dse", using ae i r and ( * ) } 

xaE t(dser) 

From t::::xa we conclude that tE t(d~e r). 
end of lemma 
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lemma 5.19 

proof 

For di-initializable component r, 
dierç;; ptr(DSENTIH r). 

Given di-initializable component r . Let trace t be such that te t(die r). 

Suppose tiÉ t(ptr(DSENTIHr)) 

true 
= { lemma 5.17, using te t(dier) } 

tE t(dser) 

= { definition 5.11, "DSENTIH ", using tiÉ t(ptr( DSENTIH r)) } 

(Eu: ue(or)* : tuE tihr) 

Given such a trace u; hence, ue(or)* and tue tihr. From property 
1.35 we conclude that there exist a trace x and a symbol a 

such that xe(ar)*, aeir, xaprefixtu, xet(ptr(DSENTIHr)), and 
xaiÉt(ptr(DSENTIHr)). Given such x and a. Since aeir and 
ue (or)*, we infer xaprefixt. From property 5.15(ii) and te t(dier), 

we conclude that xa e t ( dse ( DSENTIH r)) . 

true 

= { property 4.5(i) and property 4.11 (iii), using xE (ar)* and 
aeir 

} 
XC 10rXa 11#0 X < #axa 

=> { definition 4.36, "dse", using xae t(dse( DSENTIH r)) , 

xe t(ptr(DSENTIH r)), and ae i r 
} 

xaE t(ptr(DSENTIH r)) 

= { xaiÉt(ptr(DSENTIHr)) } 

false 

This is a contradiction. 

Hence, te t ( ptr ( DSENTIH r)) . 

end of lemma 
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lemma 5.20 

proof 

For di-initializable component r, 

(dier' abr)e c4. 

Given di-initializable component r. From lemma 4.51 we derive that 
(dier ,abr)eD4. 

Suppose (Et ,a: te (ar)"' A ae ar: taae t(dier)). 
Given such a trace tand such a symbol a; hence, te (ar)"', ae ar, and 
taa e t (dier). We conclude from definition 5.14, "die" , that 
taa e t ( dse ( DSENTIH r)). 

true 

{ lemma 5.19, using taae t(die r) } 
taae t(ptr(DSENTIH r)) 

{ definition 5.11, "DSENTIH" } 
taae redts(dse r' i r' tih r) 

::::> { definition 1.34, "redts" } 
taae t(dser)Ataaé tihr 

{ definition 5.10, "tih" } 
false 

This is a contradiction. 
Hence, (At ,a: te(ar)"' i\aear: taaé t(dier)). Using (dier ,abr)eD4 we 
conclude from theorem 5.2, "C4", that (dier, abr)e C4. 

end of lemma 
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theorem 5.24 delay-insensitive enelosure 

proof 

For di-initializable component r, 

ptr( DIEr)= dier. 

Given di-initializable component r. Let component r' be such that 
ior' = ior and ptrr' =dier. We first prove that r' satisfies (i) through (iv) 
in definition 5.9, "delay-insensitive enelos ure". 

From property 5.21 and property 5.22 we infer that r NCIHDS r' . From 
property 5.18 we conclude that 
(Aa,t:aEorAtaEt(ptrr'):(Es:sEt(ptrr):sc10 rta)). From lemma 5.20 
we conclude that (ptrr' ,abr)EC4 . 

We now show the maximality of dier by proving that if a component ~ 
satisfies (i) through (iv) in definition 5.9, "delay-insensitive enclosure", 
then ptr~ç;;;dier. Let component~ be such that io~=ior, rNCIHDS~, 
(A a' t: aE or i\ taE t(ptr ~):(Es: SE t(ptr r): sclorta)), and (ptr ~. abr)E c4. 

Suppose (Et: tE t(ptr ~): té t(die r)) 
Given such a trace t. From property 2.34(ii) and property 5.15(i) it 
follows that 
(Ex' a: XE (ar)* i\ aE ar Axaprefixt: XE t(die r) i\Xaé t(die r)). 
such a trace x and such a sym bol a. 

Given 

From definition 4.34, "delay-safe enclosure", we infer that 
ptr~ç;;; dser. Hence, xaE t(dser). From lemma 5.19 we infer 
that XE t(ptr(DSENTIH r)). Now, we conclude from definition 
5.11, "DSENTIH", and definition 1.34, "redts", that aEir 
and furthermore, using property 5.18, ( E y : yE (ar)*: x= ya) or 
( Ez 'b: ZE (or)* "bE or: xazbbE t(dse r)). 

caseO: (Ey:yE(ar)* : x=ya) 

Given such a trace y. Now, xa=yaa. Since xaE t(ptr~), we 
conclude from theorem 5.2, "C4", that (ptr~,abr)éC4 • 

case 1: (E z, b: zE (or)* AbE or : xazbbE t(dse r)) 
Given such a trace zand such a symbol b. Using xazbbE t(dser) 
we conclude from lemma 4.43 that (Ew: wE ptrr : wc 10 rxazbb). 

Using zE(or)*, bEor, xaEt(ptr~), and rNCIHDS ~, we 
conclude that xazbbEt(ptr~). From theorem 5.2, "C4 ", it 
follows that (ptr ~. abr)é c4. 

We conclude that (ptr ~. abr)é C4 . This is a contradiction. 
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Hence, ptr~~ dier. As a consequence, the maximum in property 4.11(i), 
exists and dier is maxim al. 

end of theorem 
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lemma 5.33 

proof 

For di-initializable component r, 

(At, u: tE t(ptrr) A tC 10 rU A UE t(die r): tE t(dier)). 

Given componentrandtracet such that :tE t(ptrr). We distinguish two 
cases: 

case 0: ..., (Eu: tC 10 rU : UE t(die r)) 

Since the universal quantification over an empty domain holds, we are 
done. 

case 1: (Eu: tC~orU: UE t(dier)) 

Given such a trace u; hence, tc~oru and uE t(dier). 

true 
{ lemma 5.17, using :tE t(p:rr), tc 10 ru, and uE t(dier) } 

tE t(ptr( DSENTIH r)) 

{ definition 5.14, "die", using uE t(dier) } 

tE t(ptr( DSENTIH r)) A UE t(dse( DSENTIH r)) 

:::;. { lemma 4.49 } 

tE t(dse( DSENTIH r)) 

{ definition 5.14, "die" } 

tE t(die r) 

end of lemma 
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theorem 5.34 

proof 

For di-initializable components rand I:J. such that ior= ioi:J. , cbdsrç;;; ptri:J., 

and ptr I:J. ç ptr r' 

dier= diei:J.. 

Given di-initializable components r and I:J. such that ior= ioi:J. , 
cbds rç ptr I:J., and ptr I:J. ç ptr r . From theorem 4.80 we infer that 
dser= dsei:J. . 

true 
{ definition 5.10, "tih " , using ior= ioi:J. and dser= dsei:J. } 

tihr= tihi:J. 
::;. { definition 5.11, "DSENTIH ", using ior= ioi:J. and dser= dsei:J. } 

DSENTIH r= DSENTIH I:J. 

::;. { definition 5.14, "die" } 
dier= diei:J. 

end of theorem 



262 

theorem 5.44 

proof 

For di-initializable component r, 

cbdi r= cbds r ll dier. 

Given di-initializable component r. 

cbdir 
{ property 5.43 } 

ptrrn dier 
:::: { lemma 5.17 } 

ptrrn dse rn dier 
= { property 4.72 } 

cbds r ll dier 
end of theorem 

Appendix A : Proofs 
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theorem 5.48 maximal communication behavior jor delay-insensitive communication 

proof 

For di-initializable component r, 

ptr( CBDI r)= cbdir. 

Given di-initializable component r. From property 5.43 we 
derive that cbdin:ptrr. From definition 5.41, "cbdi", we derive that 

(Aa ,s : aE irAsaE t(cbdir): (Et: tE t(dier): sac1.rt)). 

We now have to prove that cbdir is maximaL Lettraces and symbol a be 
such that SE t(cbdir), saE t(ptrr), and aE ir ::::>(Et: tE t(dier): sac1.rt). 
We prove that saE t(cbdir). 

Since ar is bipartitioned into o r and i r, we distinguish: 

case 0: 

:::;. 

:::;. 

= 

case 1: 

aEor 
true 

{ property5.43 , usingsEt(cbdir)} 
SE t(dier) 

{ property 4.6(i), using aE or } 
sac1.rsASE t(dier) 

{ lemma 5.16, using saE t(ptrr) } 
sac~ars A saE t(ptr( DSENTIH r)) 

{ definition 4.36, "dse" , using aE o r } 
saE t(dse(DSENTIHr)) 

{ definition 5.14, "die", } 
saE t(dier) 

{ property 5.43, using saE t(ptr r) } 
sae t(cbdir) 

aeir 
true 

{ (Et:tet(dier):sac1.rt),sinceaEir} 
(Et: tE t(die r): saclort) 

{ definition 5.41, "cbdi", using sae t(ptr r) } 
sae t(cbdir) 

end of theorem 
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strict parrial order of camminstorder (or: commsigorder) cp 
reftection of component r 
reftection of iodir <1> 

Kieene-ciosure of set A 

negation: not x 
the number of occurrences of symbol a intracet 
equality: x equals y 
inequality: x differs from y 

conjunction: x and y 
disjunction: x or y 

implication: x implies y 

initia! state 
state to which trace r corresponds 
allowed transition a ( possibly leaving a lazy state) 
trace structure with alphabet A and trace setS 
i-th commsig withoutput commport aandinput commport ~ 
set with elements a and b 

quantification denoting a set 
projection of trace set ( or: trace structure) S on alp ha bet A 

projection of traces on alphabet A 

restrietion of camminstorder (or: commsigorder) cp 
to initia! set of comminsts ( or: commsigs) A 

merober: a is an element of set A 

nonmerober : a is not an element of set A 

set A is a proper subset of set B 

trace structure T is properly included in trace structure U 

set A is a subset of set B 

trace structure T is included in trace structure U 
intersection of sets ( or: trace structures) P and Q 
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alphbip consisring of disjoint alphabets A and B 

symmetrie set difference of sets A and B 

asymmetrie set difference: A minus B 

trace t is composable under iobip F with trace u 
trace t is generally composable under iobip F with trace u 
set of comminsts ( or: commsigs) of comminstorder 

(or: commsigorder) cp 

disjoint sets of input commports of opdir:::: 
set of input commports of iodir <1> 

set of output commports of iodir <1> 

set of all commports 
set of all input commports 
set of input commports of module ó 

set of all indirectly connected commports 
set of all output commports 
set of output commports of module ó 

universe: set of all symbols used in trace theory 
empty trace 
universa! quantification 
class of "trace structure"- alphbip pairs related to 

delay-insensitivity 
communication behavior of module ó 

component: maximal communication behavior of r 
component: maximal communication behavior of r 
component: reduction of r by tihiA r 
communication in interconnection n 
composite of rand ó without computation interference hazard 
composite of r and ó without computation and transmission 

interference hazard 
alphabet associated with the directly connected commports 
class of "trace structure" -alphbip pairs related to delay-safety 
component: delay-insensitive enelosure of component r 
channel: delay-safe dosure of channel 0 
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output commport a is connected to input commport ~ 
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components r and ~ have no computation interference hazard 
r and ~ have computation nor transmission interference hazard 
opdir of interconnection rr 
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length of trace s 
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prefix-ciosure of trace set (or: trace structure) S 
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trace structure: communication of channel 0 
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Summary 

In this monograph we study delay-insensitive communication. Communication is 
called delay-insensitive if it is delay-safe and it has absence of transmission 
interfere nee hazard ( no two signals along the same wire may interfere). 
Communication is called delay-safe if its correctness does not depend on the 
values of the delays in wires nor on the reaction times of mechanisms. Notice 
that the communication may depend on these delays or reaction times, as long as 
the correctness of it remains unchanged. The formalization of delay-safety is 
based on our causality notion: "no signa! is received befare it has been sent" . 
There exist various reasans why one may be interested in delay-safe 
communication, e.g. sealing ( the delays in the wires tend to increase relatively to 
the delays in the switching elements ) and metastability ( the reaction time of 
some mechanisms is unbounded). 

We introduce our Communication Model as a forma! abstraction of 'the 
underlying physics'. Modules model the physical mechanisms. The terminals of 
the mechanisms are modeled by commports. We define components as 
equivalence classes of modules. We distinguish directly and indirectly connected 
commports; this leads to components that have a direct, an indirect, or (in 
general) a mixed connection. The correctness concern "absence of computation 
interference hazard" (a component accepts everyinput that it may receive) plays 
a central role in this monograph. We present a technique to transfarm other 
correctness concerns into absence of computation interference hazard. 

We distinguish between the communication behavior of components and the 
communication of a channel between them. We present the limitations of delay
safe communication and of delay-insensitive communication. Furthermore, given 
the correctness concern absence of computation interference hazard ( and possibly 
also absence of transmission interference hazard) we define composition of 
components that have a mixed connection. We give necessary and suftleient 
condirlans for the existence of the compositions under the given correctness 
concern(s) . We address factorization, which is a farm of decomposition in which 
the specificatien and a ( desired) part of the salution of this specificatien are 
given. Sirree our two correctness concerns are symmetrie w.r.t. the specificatien 
and all parts of the solution, factorization is equal to composition. 
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Samenvatting 

In dit proefschrift bestuderen we vertragingsongevoelige communicatie. We 
noemen de communicatie vertragingsongevoelig als de communicatie 
"vertragingsveilig" is en als er geen gevaar bestaat voor transmissie interferentie 
( geen tweetal signalen op dezelfde verbindingsdraad kunnen met elkaar 
interfereren). In vertragingsougevoelige communicatie is de correctheid van de 
communicatie niet afhankelijk van de vertragingen in verbindingsdraden, noch 
van de snelheid waarmee een mechanisme reageert op signalen; de communicatie 
zelf mag wel hiervan afhangen. De formele definitie van vertragingsveiligheid is 
gebaseerd op ons oorzakelijkheidsbegrip: "geen signaal wordt ontvangen 
voordat het verstuurd is". Er zijn verscheidene redenen waarom we interesse 
hebben in vertragingsveilige communicatie, bijv. schaalverkleining 
(vertragingen in verbindingsdraden hebben de neiging relatief toe te nemen in 
vergelijking met schakeltijden van transistoren ) en meta-stabiliteit (de 
reactietijden van sommige mechanismen zijn niet naar boven begrensd). 

Ons communicatiemodel is een formele abstractie van 'de onderliggende fysische 
begrippen'. Mechanismen worden gemodelleerd door modulen. De 
communicatie-poorten van deze modulen modelleren de terminals van de 
mechanismen. Componenten zijn equivalentieklassen van modulen. We maken 
onderscheid tussen directe en indirecte verbindingen van communicatie-poorten; 
op deze manier onderscheiden we directe, indirecte en gemengde verbindingen 
van componenten. Het correctheidscriterium "geen gevaar voor interferentie van 
inputs met de lopende berekening" (een component accepteert elke input die hij 
ontvangt) loopt als een rode draad door dit proefschrift. Er wordt een methode 
gepresenteerd om andere correctheidscriteria te transformeren tot "geen gevaar 
voor interferentie van inputs met de lopende berekening". 

We maken onderscheid tussen het communicatiegedrag van componenten en de 
communicatie in een kanaal tussen deze componenten. De uiterste grenzen van 
vertragingsveilige en vertragingsongevoelige communicatie worden aangegeven. 
Gegeven het correctheidscriterium "geen gevaar voor interferentie van inputs met 
de lopende berekening" (en eventueel ook "geen gevaar voor transmissie 
interferentie") definiëren we samenstelling van componenten die een gemengde 
verbinding hebben. We geven nodig en voldoende voorwaarden voor het bestaan 
van de samenstellingen van componenten gegeven de correctheidscriteria. Ook 
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wordt aandacht besteed aan de uitsplitsing van componenten; uitsplitsing is een 
vorm van ontbinding, waarbij de te ontbinden component en een (gewenst) 
deel van het resultaat van de ontbinding gegeven zijn. Omdat onze twee 
correctheidscriteria symmetrisch zijn met betrekking tot de uit te splitsen 
component en alle delen van het resultaat van de uitsplitsing, komt uitsplitsing 
neer op samenstelling. 
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0 Delay-safety is not a property of some physical circuits: at the circuit level 
it is an assumption about delays. In a forma! model it can be defined as a 
property of forma! objects. 

lit.: - This thesis. 

Udcting's composability operator is suited to be used to model the matching 
of behaviors of mechanisms that exchange signals in a delay-insensitive 
way; this can be done even in the presence of concurrency or parallellism. 

lit.: - Jan Tijmen Udding, Classification and Composition of Delay-lnsensitive 
Circuits, Eindhoven: University of Technology, September 1984, 
(Department of Mathernaties and Computing Science; doctoral 
dissertation) . 

- This thesis. 

2 The technique "transformation into computation interference hazard" can 
be used totransfarm some liveness properties into safety properties. 

!it.: - Th is thesis. 

3 We consicter factorization. Factorization is the decomposition problem, in 
which the specification and a part of the desired solution are given and the 
remainder has to be calculated. Factorization is equal to composition if and 
only if all correctness concerns are symmetrie w.r.t. the specification and 
all parts of the solution. 

lit.: - This thesis. 

4 It is possible to give a forma! definition of "the observation of 
delay-insensitive communication" . 

5 The so-called "isochronie forks" have been a severe impediment to the 
development of design methods for circuits with asynchronous 
communication. 



6 Some liveness properties are expressable in finite trace theory. "Absence of 
ambiguous quiescence hazard" is such a liveness property. 

lit.: - Huub M.J.L. Schols, Notes on Delay-insensitive Communication, 
Eindhoven: University of Technology, March 1988, (Department of 
Mathernaties and Computing Science; Computing Science Notes 
88/06). [In this paper "ambiguous quiescence hazard" is referred to as 
"unspecified termination hazard"] . 

7 For every natural number N, N'?.2, there exist alphabet A and minimal 
deterministic state graph S, that contains exactly N states, such that 
projecting S onto A yields a minimal deterministic state graph that contains 
( 3 * 2<N-2 l- t ) states. ( (3 * 21.N-2)- 1) is the up per limit ) . 

lit.: - Huub M.J.L. Schols, The Maximum Number of States after Projection, 
Eindhoven: University of Technology, April t 987, ( Department of 
Mathernaties and Computing Science; Computing Science Notes 
87 /08) . 

8 We consicter a stack consisting of F fast cells at the top and S slow cells at 
the bottom. The speed ratio between the fast and the slow cells is r. A 
suftleient condition for using such a stack at full speed is: 
S<(F/(2*(r-t))) . 

9 The technique "restoring an invariant", which is often used in sequentia! 
programming, suggests a wrong connotation of the notion "invariant", viz. 
an invariant may not hold; this connotation is an impediment to the 
construction of invariants for parallel programs. 

10 A complete presentation of research does not only contain the final results, 
but also the discarded results and the reason for discarding them. 

11 Engineering is a creative profession. Computer scientists should not try to 
"automate" engineers. They shou1d rather provide the engineers with tools 
that enable the engineers to use their creativity. 


