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1 Introduction

The Hoo control problem has been studied extensively. First in continuous-time (see e.g. [3,
4, 10, 13]) and later in discrete time (see e.g. [1,8,6, 14]). For a more extensive reference list
we refer to two recent books [2, 15].
The objective of this paper is to present a solution of the general discrete-time Hoocontrol
problem. One way to approach this problem is to transform the discrete-time Hoo optimal
control problem into an equivalent continuous-time Hoo control problem via bilinear trans­
formation. Then the continuous-time controllers that are solutions to the auxiliary problem
can be obtained and transformed back to their discrete-time equivalent using inverse bilinear
transformation. However, in our opinion it is more natural to solve this problem directly
in discrete-time setting and in terms of the original system's performance. This approach
leaves the possibility of directly observing the effect of certain physical parameters which
might otherwise be blurred by the transformation to continuous-time. In view of this, and
in accordance with earlier literature [1, 6, 8, 12), we take this direct approach in solving the
discrete-time Hoo optimal control problem.

Compared to the existing literature, we solve this problem under weaker assumptions. All the
existing literature on the discrete-time H oo control problem make the following assumptions
on the system:

• The subsystem from the control input to the control output should be left invertible
and shoud not have invariant zeros on the unit circle.

• The subsystem from the disturbance to the measurement output should be right invert­
ible and should not have invariant zeros on the unit circle.

These conditions are the discrete time analogon of what is called regular problems in contin­
uous time Hoo control problems. In this paper, we remove the above mentioned left and right
invertibility condition.
Moreover, we give a representation of one controller in a suitable form such that it becomes
very transparent that this controller is a state and disturbance estimator in conjunction with
a full-information feedback (Le. a feedback of both state and disturbance). Such an interpre­
tation was not available before and due to the involved formulas it was not very clear what
kind of structure discrete time Hoo controllers should have.
Finally, a novel aspect of this paper is that we show that if certain states or disturbances are
observed directly, then this yields the possibility of deriving a controller of lower McMillan
degree. This result again corresponds to those obtained in continuous-time case (see [16]).

The notation in this paper will be fairly standard. By Nand n we denote the natural
numbers and the real numbers, respectively. Moreover by u we denote the shift:

(ux)(k):= x(k + 1) Vk EN

rankJC denotes the rank as a matrix with entries in the field K. By n(z) we denote the field of
real rational. functions. Moreover, by X t we denote the Moore-Penrose inverse of the matrix
X. Finally, by p(X) we denote the spectral radius of the matrix X.
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(2.1)

2 Problem formulation and main results

We consider the following time-invariant system:

{

ux = Ax + Bu + Ew,

~ : y = C1X . +D I2W,

Z = C2X + D 21U +D 22W,

where for all k E lV, x(k) E 'R,n is the state, u(k) E 'R,m is the control input, y(k) E 'R,l is
the measurement, w(k) E Rq is the unknown disturbance and z(k) E 'R,P is the output to be
controlled. A, B, E, Ct, C2 , D 12 , D 21 and D 22 are matrices of appropriate dimension.
If we apply a dynamic feedback law u =Fy to ~ then the closed loop system with zero initial
conditions defines a convolution operator ~cl.F from w to y. We seek a feedback law u = Fy
which is internally stabilizing and which minimizes the £2-induced operator norm of ~el.F

over all internally stabilizing feedback laws. We will investigate dynamic feedback laws of the
form:

~F: { up= J(p+ Ly,
u = Mp+ Ny.

(2.2)

(2.3)

=

We will say that the dynamic compensator ~F, given by (2.2), is internally stabilizing when
applied to the system ~, described by (2.1), if the following matrix is asymptotically stable:

(
A+BNCI BM)

LC1 J('

Le. all its eigenvalues lie in the open unit disc. Denote by GF the closed loop transfer matrix.
The £2-induced operator norm of the convolution operator ~cl.F is equal to the Hoo norm of
the transfer matrix GF and is given by:

sup IIGF(eill)11
Oe[O,21!"]

{ IIzl12 I l..t}
s~r IIwl12 wE £2' w r 0

where the £2-norm is given by:

(

00 )1/2
IIpll2 := EpT(k)p(k)

and where 11.11 denotes the largest singular value. We shall refer to the norm IIGFlloo as the
H oo norm of the closed loop system.
In this paper we will derive necessary and sufficient conditions for the existence of a dynamic
compensator EF which is internally stabilizing and which is such that the closed loop transfer
matrix GF satisfies IIGFlloo < 1. By scaling the plant we can thus, in principle, find the
infimum of the Hoo norm of the closed loop system over all stabilizing controllers. This will
involve a search procedure. Furthermore, if a stabilizing EF exists which makes the Hoo norm
of the closed loop system less than 1, then we derive an explicit formula for one particular F
satisfying these requirements. We also give an alternative non-minimal representation for this
controller whose structure makes clear that this controller is the interconnection of a current
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state and current disturbance estimator and a static full-information feedback. In section 5
we show that in some cases we can reduce the dynamical order of the estimator and we will
derive an explicit method to derive controllers of lower dynamical order.
In the formulation of our main result we will need the concept of invariant zero. Recall that
Zo is called an invariant zero of the system (A, B, C, D) if

(
zaI - A -B) ( zI - A -B)

rankR C D < rankR(z) C D

We can now formulate one of our main results. This is an extension of [1, 8, 14].

Theorem 2.1 : Consider the system (2.1). Assume that the systems (A, B,C2, D21 ) and
(A, E, C1, D12) have no invariant zeros on the unit circle. The following statements are
equivalent:

(i) There exists a dynamic compensator EF of the form (2.2) such that the resulting closed
loop system is internally stable and the closed loop transfer matrix GF satisfies IIGFlloo <
1.

(ii) There exist symmetric matrices P ;::: 0 and Q ;::: 0 such that

(a) We have

R>O,

where

V .-
R .-

(2.4)

BT PB + Di1D21,

1- Di2D22 - ET PE + (ETPB + Di2D21) vt (BTPE+ Di1D22 ).

(b) P satisfies the discrete algebraic Riccati equation:

P=ATpA+CjC2 - (B:PA+D!lC2)T C(P)t (B
T

PA+D!lC2). (2.5)
E PA + D22C2 £TPA+ D22C2

where

C(P) := ( DD!lDD
21 ~rlD22 ) + ( B: ) P (B E).

22 21 D22 D22 - I E

(c) For all z E C with Izl ;::: 1, we have

(2.6)

-B
BTPB + Di1 D21

ETP B + Di2D21
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(d) We have

S> 0,

where

W .-
S .-

(2.7)

D12Df2 + C1QCr,
1 - D22 Di2 - C2QCJ + (C2QCr + D22 Df2) wt (C1QcJ + D12Di2)'

(e) Q satisfies the following discrete algebraic Riccati equation:

Q = AQAT + EET _ (CIQAT + D12ET) TH(Q)t (CIQA
T

+ D12£T) . (2.8)
C2QAT + D22£T C2QAT + D22£T

where

(J) For all z E C with Izi ~ 1, we have

(2.9)

(

z1-A
rankn -C1

-C2

(g) p(PQ) < 1.

Remarks:

AQCr + EDT2
C1QCr + D12 DT2
C2QQ + D22 DT2

AQCj' +EDf2 )
C1QCi + D12 Df2

C2QQ + D22Di2 - 1

= n + q + rankn (z)C1(z1 - A)-lE + D12

o

(i) Necessary and sufficient conditions for the existence of an internally stablizing feedback
compensator which makes the H00 norm of the closed loop system less than some, a
priori given, upper bound, > 0 can be easily derived from theorem 2.1 by scaling.

(ii) In this paper, we only investigate controllers of the form (2.2). This is not an essential
restriction, since it can be shown that we can not make the Hoo norm less by allowing
more general, possibly even non-linear, causal feedbacks.

For the special cases of full-information and state feedback we can dispense with the second
Riccati equation. Moreover, in these cases there always exist suitable static controllers. More
specifically:

• Full information case: C1 = ( ~ ), D 12 = ( ~ ) .

In this case we have Yl = x and Y2 =W, i.e. we know both the state and the disturbance
of the system at time k. It is easy to check that Q = 0 satisfies conditions (d)-(f).
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Moreover this guarantees that the coupling condition (g) is automatically satisfied.
Therefore there exists a stabilizing controller which yields a closed loop system with the
H oo norm strictly less than 1 if and only if there exists a positive semi-definite matrix P
satisfying conditions (a)-(c). Moreover in that case we can find static output feedbacks
tt =FIX + F2w with the desired properties. One particular choice for F =(FI,F2) is
given by:

F1 .- -Vt(BTPA+D~lC2)+(I-VtV)Fo

F2 ._ -Vt (BTPE +D~lD22)

where Fo is an arbitrary matrix such that A + BF1 is stable.

• State feedback case: C1 =I, D12 =O.

(2.10)

(2.11)

In that case, it is easy to see that a necessary condition for the existence of a positive
sem-definite matrix Q satisfying conditions (d)-(f) is that II D2211 < 1. In that case, it is
easy to check that

satisfies conditions (d)-(f). Condition (g) then reduces to

(2.12)

Moreover, condition (2.12) implies that condition (a) is automatically satisfied. There­
fore there exists a stabilizing controller which yields a closed loop system with the
H 00 norm strictly less than 1 if and only if there exists a positive semi-definite matrix
P satisfying conditions (b),(c) and additionally condition (2.12).

In that case we can find a static output feedback u = Fx with the desired properties.
One particular choice for F is given by:

where Fo is an arbitrary matrix such that A +BF is stable (which can be shown to
always exist) and

Ax .- A-BVt[BTPA+D~IC2]'

Cx .- C2 - D21vt [BTPA +D~IC2]'

3 The proof of theorem 2.1

(2.13)

(2.14)

The proof of theorem 2.1 is divided into three parts. Each part establishes the proof for a
certain part of the theorem. Every part is framed up as a subsection with a heading that
represents a significant feature of its proof technique or its overall achievement. The rational
for dividing the proof into three parts is mainly due to the length and the complexity of the
proof.
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3.1 The existence of a solution to the Algebraic Riccati equation

In this subsection we assume that part (i) of the theorem 2.1 is satisfied we will show that the
existence of P satisfying conditions (a)-(c) in (ii) of the theorem 2.1 is necessary. We begin
with the following definition.

Definition 3.1 : Let a system ~ = (A, B, C, D) be given. The controllability subspace ~*(~)
is the largest subspace X of'Rn for which a mapping F exists such that

(A+BF)X ~ X

(C +DF)X = {O}

and such that (A, Bd is controllable where B1 is defined by:

1m B1 = XnB [(erD o

(3.2)

We next perform a basis transformation on the state and input spaces of~. We decompose
the state space X = n"(~ci) (f) X2 where ~ci = (A,B,C2,D2) and choose a basis adapted to
this decomposition. We also decompose the controller input space U = Ker V (f) U2 where
V is as defined in theorem 2.1. In the new bases, the matrices in the realization of ~ have a
special form:

A = (An +B 12 F Al2
) B = (Bn B 12

) E = (~:).BrF Ar ' o Br '

C1 = ( Cn C12) , D 12 = D 12 (3.1)

C 2=( DrF Cr ) , D 21 = ( 0 Dr) , D 22 = D 22

The above matrices have the following properties:

• (An, Bn ) is controllable,

• (An Br , Cn Dr) is left invertible,

• (Ar , B r ) is stabilizable.

If part (i) of theorem 2.1 holds, Le., if the measurement feedback problem is solvable, then
we also know that the full-information H 00 control problem is solvable. Let Fo be such that
All - BnFo is stable. Then it is easy to see that, after the preliminary feedback u =
-( F Fo)x + v the subspace ~*(~ci) does not affect the output to be controlled and the
dynamics restricted to~..(~ci) is stable. Hence the achievable H oo norm using full-information
feedback is completely determined by the following subsystem:

~r: { UX2 = Ar x 2 + Br V2 + E2w,
Z = CrX2 +DrV2 +D 22W,

However, for this subsystem the operator mapping the input V2 to the output z is left invert­
ible. Therefore we can apply the results from [2, 15] to obtain the following result:
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Lemma 3.2 : Consider the systems E and Er defined by (2.1) and (3.2) respectively. Assume
that the system (A, B, C2, D21) has no invariant zeros on the unit circle. Then also the system
(ATl BTl Cn Dr) has no invariant zeros on the unit circle. Moreover, the following statements
are equivalent:

(i) There exists a full information feedback u =FIX +F2w for the system E such that the
resulting closed loop system is internally stable and the closed loop transfer matrix GF

satisfies IIGFlioo < 1.

(ii) There exists a full information feedback u = FI,rX +F2,rw for the system Er such that
the resulting closed loop system is internally stable and the closed loop transfer matrix

GF,r satisfies IIGF.rlloo < 1.

(iii) There exists a symmetric matrix Pr ~ 0 such that

(a) We have

v,. > 0,

where

R,. > 0

Vr .- B;PrB,. + D;Dr,
R,. .- I - D~2D22 - E;PrE,. + (E; PrB,. + D'i2D,.) V,.-l (B; P,.E,. + D;D22).

(b) Pr satisfies the discrete algebraic Riccati equation:

o -ATOA eTc _ (B;P,.A,.+D;c,.)T G (0)-1 (B;PrAr+D;Cr)
.rr - r.rr ,. + r" T T ,. .rr I:"1T A DT C .E,. P,.A,. + D22 C,. .I:ly: Pr ,. + 22 ,.

where

G (P. ) := ( D;D,.,.,. DTD
22 ,.

(C) The matrix Ael,F is asymptotically stable where

o

Proof: The implication (ii) ~ (iii) can be found in [15]. The implication (il) =* (i) can be
easily checked using the arguments given before this lemma.
The implication (i) ~ (ii) can be derived in the following manner. First note that we can
apply, without loss of generality the transformation u = FOXI + v where Fo is such that
An +BIFo is stable. Suppose a stabilizing feedback, v = FnXl +Fl2X2 +F2W exists for the
system E (after our preliminary transformation) which yields a closed loop transfer matrix
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GF satisfying IIGFlloo < 1. Then it is easy to check that the following dynamic compensator
stabilizes ~r and yields the same closed loop transfer matrix GF:

~F: { (TXl = (An +B12 Fo)Xl + A12X2 + Elw,
U = FnXl + F12X2 + F2w,

However, ~r has a subsystem from V2 to z which is left-invertible and hence, from [14], we
know that the existence of a suitable dynamic full-information feedback also guarantees the
existence of a static full-information feedback. •

This lemma yields a solution Pr of a discrete time Riccati equation for the reduced order
system. We can extend this matrix to the original state space by setting it zero on 'R*(Eci),
i.e. if we define P by

P = (0 0)
o Pr

(3.3)

then Pr satisfies the conditions oflemma 3.2 if and only if P satisfies the conditions of (a)-(c)
of theorem 2.1. The above can be combined to yield:

Lemma 3.3 : Assume (A, B, C2, D2l ) has no invariant zeros on the unit circle. If part (i)
of theorem 2.1 is satisfied then there exists a symmetric matrix P ~ 0 satisfying (a)-(c) of
part (ii) of theorem 2.1. 0

We also need to know whether any solution P satisfying conditions (a)-(c) of theorem 2.1
can be connected to a matrix Pr satisfying the conditions of lemma 3.2. This is done in the
following lemma:

Lemma 3.4 : Let P ~ 0 be a matrix satisfying the conditions (a)-(c) of theorem 2.1. Then

Ker P 2 'R*(Eci)'

Hence, in our new bases, P will be of the form (3.3) for some matrix Pr. Moreover Pr satisfies
the conditions in part (iii) of lemma 3.2. 0

Proof: First note that condition (b) implies that

P 2:: A;PAx +C;Cx

where Ax and Cx are defined by (2.13) and (2.14) respectively. It is easily seen that this
implies that Ker P is controlled invariant.
Secondly conditions (a) and (c) imply that

rank (BT PB +D~lD2l) = rankn (z)C2(zI - A)-l B +D2l
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These two properties, when combined with the decomposition of the state space as introduced
in the beginning of this section, yield the desired result. •

Using Pr , or equivalently P, we can also derive explicit formulas for static full-information
compensators which achieve the desired objectives in parts (i) or (ii). This is outlined in the
following lemma which is an extension of results in [2, 15].

Lemma 3.5 : Let the systems :E and :Er be defined by (2.1) and (3.2) respectively. Assume
that a matrix Pr ~ 0 exists satisfying the conditions in part (iii) of lemma 3.2. Moreover,
define P by (3.3) .

• A controller satisfying the conditions of part (ii) of lemma 3.2 is described by:

F1,r .- -V-1 (B;PrAr +D;Cr)
D ! 1 'BT T)L'2,r .- -1 - ( rPrEr + Dr D22

• A controller satisfying the conditions of part (i) of lemma 3.2 is described by

( -F

( 0

F1,r - Fo )

F2 ,r )

where F and Fo are the parameters of the preliminary feedback described before lemma
3.2.

Alternatively, we can also describe a suitable controller for :E in terms of the original
system parameters of~:

F1 .- -vt(BTPA+D~lC2)+(I-VtV)F

F2 .- -Vt (BT PE+Djl D22)

where P is an arbitrary matrix such that A +BF1 is stable.

Proof: The first part of this lemma is a direct result of [14]. The second part of this lemma
gives two controllers of which it can be easily shown that when applied to the reduced order
system they yield the same closed loop transfer matrix as the controller given in the first
part of this lemma when applied to the original system. Hence the closed loop system has
H 00 norm strictly less than 1. Remains to check existence of a suitable P to yield internal
stability of the closed loop system. This is shown by using the decomposition introduced
in the beginning of this section together with stability of Ar + BrFr and stabilizability of
(All + B12F,Bll ). •

In the next subsection we show that the part (i) of theorem 2.1 also implies the remaining
statements of the part (ii) of theorem 2.1.

9



3.2 A first system transformation

In this subsection we assume that part (i) of theorem 2.1 is satisfied and we show that part
(ii) of the theorem 2.1 holds. A central component of the proof in this subsection is to
transform the original system (2.1) into a new system. This transformation is designed such
that the problem of finding an internally stabilizing feedback which makes the Boo norm of
the closed loop system less than 1 for the original system would be equivalent to the problem
of finding an internally stabilizing feedback which makes the Boo norm of the closed loop
system less than 1 for the new transformed system. Moreover, this new system has some
very desirable properties which makes it much easier to work with. In particular, for this new
system the disturbance decoupling problem with measurement feedback is solvable. We will
perform the transformation in two steps. First we will perform a transformation related to
the full-information Boo problem and next a transformation related to the filtering problem.
We assume that we have a positive semi-definite matrix P satisfying conditions (a)-(c) of
theorem 2.1. We define the following system:

where,

axp = Apxp + Bup + Epwp,

YP = Cl,pxp + D12,pWp,

Zp = C2,pxp + D21 ,pUp + D22 ,pWp,

(3.4)

A p .-
Ep .-
Cl,p .-
C2 ,P .-

D12,P

D21 ,P .-
D22,P .-

A +ER-1(ETPAx +Di2Cx),
ER-1!2,
C1 + D12R-1(ETPAx +Di2Cx),

(V1!2)t (BTPA + DilC2 + [BTPE +DilD22]R-1[(ETPAx +Di2CX]) '

D R-1!212 ,

V1/ 2,
(V1!2)t (BTPE +Di1D22) R-1!2,

where the matrix P satisfies parts (a)-(c) of theorem 2.1 and the matrices Ax and Cx are
defined by (2.13) and (2.14), respectively.
In order to continue, we need the system to be in the special basis as defined in the previous
section. Using lemma 3.4, we know that P is of the form (3.3) for some matrix Pr' We can
then define the following system:

where

axu = Auxu + Buuu + Euw,

Yu =C1,uX u +D12 ,UW,
Zu = C2 •U xu + D21 •U UU + D22,uW.

(3.5)

Vr .- B; PrBr +D;Dr

Au .- Ar - BrVr-
1 (B; PrAr +D;Cr)

Bu .- Br (0 Vr-
1/ 2)

Eu .- E2 - BrVr-
l (B; PrE2+ D; D22 )

10



C2 •U .- Cr - DrVr-
1 (B; PrAr +D;Cr)

C 1•U .- _R-1
/

2 (Ei PrAu +D'f2C2,U)

D 12•U .- R1/ 2

D 21 •U .- DrV- 1/ 2 (0 Vr-1/ 2)

D22•U .- D 22 - DrVr-
1 (B;PrE2 +D;D22)

where R is as defined in theorem 2.1. We will show that :Eu has a very nice property. In
order to do this, we first recall the definition of the so-called inner systems. Moreover, some
of the important properties of inner systems are also recalled in the following two lemmas.

Definition 3.6 : A system is called inner if the system is internally stable, square (i.e. the
number of inputs is equal to the number of outputs) and the transfer matrix of the system,
denoted by G, satisfies:

G(Z)cP'(Z-l) = I (3.6)

Lemma 3.7 : Let the following square system be given:

~ . { ax = Ax + Bu,
"lit·

z =Cx + Du.
(3.1)

Assume that A is asymptotically stable. The system :Ellt is inner if there exists a matrix X
satisfying:

(a) X=ATXA+CTC

(b) DT C +B T X A = 0

(c) DT D +BTX B = I o

Proof: See 16, 15].

Lemma 3.8 : Suppose we have the following interconnection of two systems:E1 and :E2' both
described by some state space representation:

u

z
~-

~1

Y

~2

(3.8)

11



Assume E1 is inner. Denote its transfer matrix from (w, u) to (z, y) by L. Moreover, assume
that if we decompose L compatible with the sizes of w, u, z and y:

L( w ) =: (Lll L12
) ( w ) = ( z ) ,

U L21 L 22 U Y
(3.9)

we have L;} E Hoo and L 22 is strictly proper. Then the following two statements are equiva­
lent:

(i) The closed loop system (3.8) is internally stable and its closed loop transfer matrix has
H 00 norm less than 1.

(ii) The system E2 is internally stable and its transfer matrix has H 00 norm less than 1. 0

Proof: See [9, 13]. •
Now, we are ready to come back to the system Eu and establish some of its properties in the
following lemma.

Lemma 3.9 : The system Eu as defined by (3.5) is inner. Denote the transfer matrix of Eu
by U. We decompose U compatible with the sizes of w, uu, zu and yu:

U ( : ) =: (~:: ~::) ( : ) = ( :: ) .

Then U 21 is invertible and its inverse is in Hoo • Moreover U22 is strictly proper. 0

Proof: It can be easily checked that Pr satisfies the conditions (i)-(iii) of lemma 3.7.
Condition (i) of lemma 3.7 turns out to be equal to the reduced order discrete algebraic
Rlccati equation as given in lemma 3.2. Conditions (ii) and (iii) follow by simply writing out
the equations in terms of the system parameters of system (2.1).
The stable matrix Ac'.p , as defined in lemma 3.2, can be written in the following form:

Next, we show that Au is asymptotically stable. We know Pr ;::: 0 and

Pr = A~PrAu + (C~u C;'u) ( ~l.U )

2,U

(3.10)

(3.11)

It can be easily checked that x -:f:. 0, Aux = .xx, C1,uX = 0 and C2•U x = 0 implies that
Acl.px = .xx. Since Acl,p is stable we have Re .x < O. Hence the realization (3.5) is detectable.
By standard Lyapunov theory the existence of a positive semi definite solution of (3.11)
together with detectability guarantee asymptotic stability of Au.
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We can immediately write down a realization for unl
:

~ . { (Jxu = Acl,pXu + EuD-;;~uw,
u.-1

• D-l C D-l
21 yu = - 12,U 1,UXU + 12,UW,

Since Ad,p is stable we know that Unl is an Hoo function. Finally, the claim that U22 is
strictly proper is trivial to check. •

We will now formulate our key lemma:

Lemma 3.10 : Let P satisfy theorem 2.1 part (ii) (a)-(c). Moreover, let ~F be an arbitrary
linear time-invariant finite-dimensional compensator in the form (2.2). Consider the following
two systems, where the system on the left is the interconnection of (2.1) and (2.2) and the
system on the right is the interconnection of (3.4) and (2.2):

(3,12)

p

Up

Zp w
...:- E

p
.-

p

EF

yU

z w- -E
y

EF

Then the following statements are equivalent :

(i) The system on the left is internally stable and its transfer matrix from w to z has
H00 norm less than 1.

(ii) The system on the right is internally stable and its transfer matrix from Wp to Zp has
H00 norm less than 1. 0

Proof: We investigate the following systems:

(3.13)

r······ ·······1

IYp :: Up I
i ~•..-._ -- _..- - --- ~

U

z w- l+-
E

Y

EF
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The system on the left is the same as the system on the left in (3.12) and the system on the
right is described by the system (3.5) interconnected with the system on the right in (3.12).
A realization for the system on the right is given by:

(

XU - X2p) (ACI P 0 0 ) (xu - X2p) ( 0 )
q Xp' = *' A+BNCI BM xp' + E+BNDI2 W

P * LCI K P LD12

XU =(. C,+D21 NC, D21M)(zu:;"p)+(D22 +D21ND12)W

where Acl,p is defined by (3.10). The *'s denote matrices which are unimportant for this
argument. The system on the right is internally stable if and only if the system described
by the above set of equations is internally stable. If we also derive the system equations for
the system on the left in (3.13) we immediately see that, since AcI,p is asymptotically stable,
the system on the left is internally stable if and only if the system on the right is internally
stable. Moreover, if we take zero initial conditions and both systems have the same input w
then we have z = zu Le. the input-output behaviour of both systems are equivalent. Hence
the system on the left has H oo norm less than 1 if and only if the system on the right has
H00 norm less than l.
By lemma 3.9 we may apply lemma 3.8 to the system on the right in (3.13) and hence we
find tha.t the closed loop system is internally stable and has Hoo norm less than 1 if and only
if the dashed system is internally stable and has H00 norm less than 1.
Since the dashed system is exactly the system on the right in (3.12) and the system on the
left in (3.13) is exactly equal to the system on the left in (3.12) we have completed the proof.

•
Using the previous lemma, we know that we only have to investigate the system I;p. This
new system has a nice property which is outlined in the following lemma:

Lemma 3.11 : There exists a matrix Fo such that if we define:

FI,p = -D!l,PC2,P +(I - D!1,pD21'P)Fo

F2 ,p = -DJl,pD22 ,P

then we have:

(i) Ap +BF1,p is stable,

(ii) C2 •P +D2I ,PF'"P = 0,

(iii) D22,p + D2l ,pF2,p = O.

Proof: We first write everything in terms of the new basis introduced in the previous
section. Hence the system parameters have the special form described by (3.1). Then it is

14



easily checked that conditions (ii) and (iii) are always satisfied, independent of the specific
choice for Fo. If we also write the matrix Fo in the new basis,

Fo = (Fo.n Fo.12 )

FO,21 FO•22

then we have:

A +BF = ( An +BnFo,n * )
p 1,P 0 A

c1,P

where *denotes a matrix which is unimportant for our argument. According to lemma 3.2, the
matrix AcI,p is asymptotically stable. Moreover, as noted in the previous section (Au, Bu ) is
controllable. Hence, any matrix Fo such that An +BuFo.n is stable satisfies the conditions
of our lemma. Moreover, controllability guarantees the existence of such matrices Fo• •

Remark: The above lemma implies that the full-information feedback u = F1,pxp +F2,pwp
applied to :Ep yields a stable closed loop system for which the closed loop Boo norm is equal
to O.

Next, we will look at the Riccati equation for the system :Ep. It can be checked immediately
that X = 0 satisfies (a)-(c) of theorem 2.1 for the system :Ep •

'We dualize :Ep • We know that (A,E,Ch D 12) has no invariant zeros on the unit circle. It
can be easily checked that this implies that (A p,E, Cl,P' D12) has no invariant zeros on the
unit circle. Hence for the dual of:Ep we know that (A~,C{'p, E T

, DIl) has no invariant zeros
on the unit circle. If there exists an internally stabilizing' feedback for the system :E which
makes the H oo norm of the closed loop system less than 1 then the same feedback is internally
stabilizing and makes the H 00 norm of the closed loop system less than 1 for the system :Ep •

If we dualize this feedback and apply it to the dual of:Ep then it is again internally stabilizing
and again it makes the Hoo norm of the closed loop system less than 1. We can now apply
lemma 3.3 which exactly guarantees the existence of a matrix Y ~ 0 satisfying the following
conditions

(i) Y is such that S p > 0 where

W p .- D12 ,pD'[2,P +Cl,pYCJp,
Sp .- 1- D22 ,pD;2,P - C2,pYC;,p

+ (C2,pYCJp +D22 ,pD'[2,P) W~ (C1,pYC;,p +D12,pD;2,P).

(ii) Y satisfies the following discrete algebraic Riccati equation:

(3.14)

where

(3.15)

15



(iii) Y satisfies a stability condition: for all z E C with Izi ~ 1, we have

(

zI-A

rank~ -Cl,p
-C2 ,p

Cl,pYA~ + D12,pE;, C2,pYA~ + D33,P~ )
C1,PYC'{p + D13,pDr2,p C1,pYc;,p + D12,pD;3,P
C2,pYC~P + D23,PDr2,p C3,PYC;,p + D22,pD;3,P - I

Note that Y satisfies the conditions (d)-(f) of theorem 2.1 for the system Ep •

The following lemma relates the existence and the solution of the above conditions to the
conditions in theorem 2.1:

Lemma 3.12 : There exist a matrix Y ~ 0 satsfying the above conditions if and only if there
exist matrices P ~ 0 and Q ~ 0 satisfying the conditions in part (ii) of theorem 2.1. Moreover,
in that case we have:

o

The above derivation yields the necessity part of theorem 2.1:

Lemma 3.13 :Let E, described by 2.1), be given with zero initial condition. Assume that
(A,B,C2,D2d and (A,E,Ct,D12) have no invariant zeros on the unit circle. If part (i) of
theorem 2.1 is satisfied then there exist matrices P and Y satisfying (a)-(J) of part (ii) of
theorem 2.1. 0

This completes the proof (i) => (ii). In the next section we will prove the reverse implication.
Moreover in case the desired compensator EF exists we will derive an explicit formula for one
choice for :EF which satisfies all requirements.

3.3 The transformation into a disturbance decoupling problem with mea­
surement feedback

In this section we assume that there exist matrices P and Q satisfying part (ii) of theorem 2.1
for the system (2.1) and we show that the part (i) of theorem 2.1 holds. First we transform
our original system:E into another system :Ep,y. We will show that a compensator is internally
stabilizing and makes the H 00 norm of the closed loop system less than 1 for the system E
if and only if the same compensator is internally stabilizing and makes the Hoo norm of the
closed loop system less than 1 for our transformed system :Ep,y, Next we will show that Ep,y

has a following very special property (see [11]):

There exists an internally stablizing compensator which makes the closed loop
transfer matrix equal to zero, Le. w does not have any effect on the output of the
system z. This property of :Ep,y has a special name: "the Disturbance Decoupling
Problem with Measurement feedback and internal Stability (DDPMS) is solvable".

16



We know a matrix Y := (I - QP)-lQ exists satisfying the conditions as outlined in the
previous section. Next, we define Ep ,)•• We start by transforming E into E p • Then we apply
the dual transformation on Ep to obtain Ep ,),:

UXp,y = Ap,yxp,y + Bp,y'Up,y + Ep,ywp,y,

'1IP,Y = C 1,pxp,y + D 12 ,p,ywp,y,

Zp,y =C2 ,P,Yxp,y + D 21 ,P,YUp,y +D 22 ,P,YWp,y,

(3.16)

where

Ep,y

.- A p - (ApYC;:p + EpD;2,P) W~CI,P

.- Ep - (ApYC;,p + EpD;2,P) W~Dn.p

.- Ap + (AIIYc;,p +EIIDi~,p)S;lC~,p

C~,p,y ._ S;1/2c.~,p

Bp,y .- B + (AIIYC;'p + EIID;~,p)S;l D~l,P

,- (ApYC;'p + EpD:~.p + [AIIYC;,p + EIID;;~,p]S;l[C2,PYC;,p + D32,PD:2,P]) (W;/2)t

D ._ Wpl/2
l~,P,Y

D S-1/2D
31,P,Y'- p 31,P

D 33•P,Y ._ S;1/2 (C3,PYC;,p + D~~,pD;3,P) (W;/2)t

When we first apply lemma 3.10 on the transformation from E to E p and then the dual of
lemma 3.10 on the transformation from E p to Ep,y we find:

Lemma 3.14 : Let P satisfy theorem 2.1 part (ii) (a)-(c). Moreover let an arbitrary linear
time-invariant finite-dimensional compensator EF be given, described by (2.2). Consider the
following two systems, where the system on the left is the interconnection of (2.1) and (2.2)
and the system on the right is the interconnection of (3.16) and (2.2):

Up,)'

wp,Y:!- f--
~py,

EF

Zp

yp,yU

Z W- f--
~

Y

~F

Then the following statements are equivalent :

(i) The system on the left is internally stable and its transfer matrix from w to z has
H 00 norm less than 1.

(ii) The system on the right is internally stable and its transfer matrix from wp,Y to Zp,Y
has Hoo norm less than 1. 0

It remains to be shown that for Ep,y the (DDPMS) is solvable. We first need the following
preliminary lemma

17



Lemma 3.15 : There exist a matrix K o such that if we define:

KI,p,l' = -Ep,l'Dt2,P,l' +Ko(I - D12,P,l'Dt2,P,l')

K 2,p,l' - -D;2,P,l'

then we have:

(i) Ap,l' +KI,p,l'C1,p is stable,

(ii) Ep,l' + K I,p,l'DI2 ,P,l' = 0,

(iii) D22,P,l' + K 2,p,l'D12,P,l' =0.

Moreover, let FI,p and F2,p be as defined in lemma 9.11. If we define

FI,p,l' .- FI,p,

F2,p,l' .- -D!I,P,l,D22 ,P,l'

then we have:

(iv) Ap,l' + BFI,p,l' = A p + BFI,p is stable,

(v) C2,p,l' +D2l ,P,l'FI,p = 0,

(vi) D22,P,l' + D2I ,P,l'F2,p,¥ = 0, o

Proof: The construction of a suitable matrix [(0 satisfying conditions (i)-(iii) is dual to the
derivation of a suitable Fo satisfying the conditions of lemma 3.5. Hence details are omitted.
Conditions (iv)-(vi) can be checked via straightfoprward algebraic manipulations. •

Remark: The first part of the lemma is dual to lemma 3.11 and shows that because of the
dual transformation we can now observe the states of ~p,l' perfectly. Surprisingly enough the
property that ~p could be controlled perfectly is preserved: the second part of the lemma
shows that also for ~p,l' we can find a full-information feedback that stabilizes the system
and yields a closed loop system with Roo norm equal to 0.
Now we are ready to show the solvability of (DDPMS) for the system ~p,l' in the following
lemma.

(3.17)

where

Np,l' .- -F2,p,l'[(2,p,l'

Mp,l' .- FI,p,l' - N p,l'C1 ,p

Lp,l' .- Bp,l'Np,l' - K 1,p,l'

Kp,l' .- Ap,l' + Bp,l'Mp,l' + [(l,P,l'C1,P

The interconnection of ~F and ~p,l' is internally stable and the closed loop transfer matrix
from Wp,l' to Zp,l' is zero. 0
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Proof: We can write out the formulas for a state space representation of the interconnection
of Ep,y and EF. We then apply the following basis transformation:

After this transformation one immediately sees that the closed loop transfer ma.trix from wP,Y

to zp,Y is zero. Moreover the system matrix (2.3) after this transformation is given by:

(
Ap,y + K1,p,yC1,P 0 )

Lp,yC1,P Ap,y +Bp,yF1,p,y

Lemma 3.15 guarantees that this ma.trix is asymptotically stable. Hence EF is internally
stabilizing. •

\Ve know EF is internally stabilizing and the resulting closed loop system has Hoo norm less
than 1 for the system I;P,l" Hence, by applying lemma 3.14, we find that I;F satisfies part
(i) of theorem 2.1. This completes the proof of (ii) => (i) of theorem 2.1. We have already
shown the reverse implication and hence the proof of theorem 2.1 is completed.

4 Controller structure

In the previous section, we found a controller for I; which satisfies all requirements, but its
structure is very cloudy. In this section we define a controller, which also achieves disturbance
decoupling when applied to ~p,y, but which has a very appealing structure.
\Ve first need to construct a matrix with a desired stability property:

Lemma 4.1 : There exists a matrix Ko such that

[ - t] t[ +KoU - D12,P,yD12,P,y)Cl,P (A p,>, - Ep,yD12,P,y)

is stable. o

Proof: According to lemma 3.15 there exists a matrix Ko such that Al + [(oCI is stable
where

Al = (Ap,y - Ep,yD!2,P,y)

CI - ([ - D12,P,yD!2,P,y)C1,p

Since, for discrete time systems detectability of (ChAI) implies that the pair (CIAhAI) is
detectable there exists a matrix Ko such that Al + KOCIAI is stable. This implies that Ko
satisfies the conditions of the lemma. •

Remark: This lemma might look rather strange but it is essential. If we use one-step­
ahead predictors then the estimator is stable if the filter gain [( is such that A + [(Cis
stable. However, in this section we use current estimators where we also use the measurement
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y(k) to estimate x(k). In that case the estimator is stable if the filter gain satisfies (1+[(C)A.
Intuitively the above lemma tells us that we can find a stable current estimator if we can find
a stable one-step-ahead estimator.

Note that an optimal full-information feedback for I::p,y is given by:

'UP.Y = F1,p,yxp,y + F2 ,p,ywp,y

where we change F2 ,p,y with respect to the previous section into:

F2,p,y := -Dtl,P,yD22,P,y +(I - DZ1,p,yD21 ,P,y )FoYC::p(Wp )t.

It can be shown, along the same lines as the proof of lemma 3.16 that the following controller
stabilizes I::p,y and achieves disturbance decoupling:

up = Ap,yP + Bp,y'Up,)' + Ep,yw - KoIh(uy - C1,p[Ap,yp +Bp,y'Up,y +Ep,yWD

to = D;2,P,y(YP,Y - C1,pP)
'Up,y = F1,p,yx +

where

III := 1 - D12 ,P,yD;2,P,1" = 1 - Wpl¥~

'We are going to apply this controller to the system I::. However, if we rewrite this controller
in terms of the original system parameters it has a very special structure:

ux = Ax +Bu +Ew +U[(I(Y - y)

uw = ER-I(ETPAx +D~2Cx)[Ax + Bu +EwD +U[(2(Y - y)

uy = CI[Ax +B'U +Ew] + DI2 ER-I(ETPAx +D~2Cx)[Ax +B'U +EwD

1£ = FIX + F2w

where

[(1 = -KoIII +YC~pl¥~(I+C1,pKoII1 )

T t -J(2 = D12,pl¥p(1 +Ct,p[(oII1 )

while FI and F2 are defined by (2.10) and (2.11) respectively. We see that we have a full­
information feedback:

1£ = FIX +F2w

where we replace the state X and the disturbance w by their respective estimates X and W.
For the state and and the disturbance we have build estimators. If we write s(klk) for the
estimate of the variable s at time k using measurements y(O), y(k) and s(klk - 1) for the
estimate of the variable s at time k using measurements Y( 0), y(k - 1) then we can express
the structure even clearer. We get the following form:

x(k + 11k +1) = x(k +11k)
w(k + 11k + 1) = w(k +11k)
x(k + 11k) = Ax(klk) +Bu(k) + Ew(klk)

w(k + 11k) = ER-1(ETPAx +D~2Cx)x(k + 11k)

y(k + llk) =C1x(k +11k) +D12W(k +11k)
'U(k) = F1x(klk) +F2w(klk)

20
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Note that in the state feedback case we can identify a worst-case response for the disturbance
w:

(4.1)

In the above controller we have to estimate w(k + 11k). Clearly past measurements do not
tell us anything. However, this controller expects the worst-case response (4.1) and estimates
this worst-case response.

5 Reduced order estimator based controller

In this section we show that for the singular Hoo optimal control problem satisfying part (i)
of theorem 2.1 we can always find a solution which has dynamical order less than that of
the plant and is of reduced order observer-based structure. This result is analogous to those
obtained in [16] for the continuous-time problems. Without loss of generality, we develop
such a reduced order observer-based controller for the system !:p,y defined in the previous
section. Consider the !:p,y defined by (3.16). There exists a constant output prefeedback law
FpreYp,y such that after applying this prefeedback law, namely setting

Up,y -- FpreYp,y + up,Y, (5.1)

the direct feed-through term from Wp,Y from Zp,Y disappears. Hence without loss of generality,
hereafter we assume that D 22 ,P,y = O. Also, there exists a state feedback gain Fp,y such that

(C2 ,P,Y +D 21 ,pFp,y)(81 - Ap,y - Bp,yFp ,¥ )-1Ep,y == O.

Without loss of generality but for simplicity of presentation, we assume that the matrices
Cl,P and D12 ,p,y are already in the form

(
0

CIP =, 1p- mo
and D _ ( D 12,o )

l2,P,Y - 0 ' (5.2)

where rno is the rank of D 12,P,Y and Dl2,O is of full rank. Then the given system !:p,y can be
written as,

q ( :: ) = (~:: ~::) ( :: ) + (~:) Wp,Y + ( ;: ) Up,Y

( ::) = (1p~mo C~02) (:: )+ ( D~2'O ) Wp,y (5.3)

zp,Y = C2,P,Y ( :: ) + D 2l ,P,YUp,y

where (x~, x2Y = xp,Y and (vb, vD' = Vp,y. We note that VI == Xl. Thus, one needs
to estimate only the state X2 in the reduced-order estimator. Then following closely the
procedure given in [16], we first rewrite the state equation for Xl in terms of the measured
output VI and state X2 as follows,

(5.4)
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where Yl and Up,Y are known. Observation of X2 is made via Yo and

Yl = A12 X 2 +E l Wp,Y =UYI - AnYl - B1Up,y.

A reduced-order system for the estimation of state X2 is given by

(5.5)

{

UX2 = ARX2 + ~Wp,y + ( A 2l

YR = CR X 2 + DRwp,y

(5.6)

where

C ._ ( Cl ,02 )
11.'- ,

A12
(5.7)

Based on (5.6), one can construct a reduced-order observer for X2 as,

(5.8)

where KR is the observer gain matrix chosen such that All. +KRCR is asymptotically stable.
For the purpose of implementing (5.8), let us partition KR = (KRO , KR1 ) to be compatible
with the dimensions of the outputs (yfJ, Y~)', and at the same time define a new variable,

V:= X2 + KR1Yl'

vYe then obtain the following reduced order estimator based controller,

where

UV =

Xp,y = (5.9)

Gil. = [-KRO , A 2l + KR1An - (All. +KRCR)J(Rl],

and Fp,y is state feedback gain and Fpre is the output prefeedback gain. We know that there
exists an output injection such that:

(
Au A12

) (!(llRK~2122) ( 0 C10,02 )
A2l A22 + K 2l Ip- mo

is stable and

Because the matrix in (5.10) is stable there exists a matrix L such that
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is stable. Moreover (5.11) implies that

E 2 +K 21 D12 ,O +L(El +K11D12,O) = O.

Then it is easy to check that a suitable choice for KR is given by:

K a = ( K aO K Rl ) =( K 21 +LK11 L)

Remark : It is interesting to point out that the state space representation of the reduced
order estimator based controller in (5.9) might not be minimal and hence the McMillan degree
of this controller might be less than the dynamical order of its state space representation (5.9).
This is mainly due to the stable dynamics which are unobservable in the controlled output
Zp,¥ and they are induced by the output prefeedback law (5.1). A very interesting example
is the sta.te feedback case for C l = I and D12 = O. In this case Fp ,¥ can be chosen as a zero
matrix and the output prefeedback law Fl're in (5.1) is equal to Fl,p given in Lemma 3.1l.
In view of this, the reduced order estimator based controller (5.9) has McMillan degree equal
to zero and it reduces to the static state feedback solution

6 Conclusion

In this pa.per, we removed some standard assumptions on the system parameters. Moreover,
we specified the structure of discrete time Hoo controllers. Finally, we showed how to derive
controllers of lower dynamical order without loss of performance. This is done by deriving
reduced order observers. Our results are obtained under the assumption that both systems
(A,B,C2,D2d and (A,E,Ct,D12) are free of invariant zeros on unit circle. A most trivial
technique to handle invariant zeros on unit circle is to perturbe the plant data such that the
perturbed plant satisfies our assumptions. However, the resulting criteria for the existence
of the solution to the H00 control problem for the perturbed plant are not algebraic in the
nature. Hence the derivation of algebraic criteria directly in discrete domain for this case is
an open problem.
Via the bilinear transform and our knowledge about the problems of invariant zeros on the
imaginary axis for Hoo control problems in continuous time (see [5, 7, 10]), we know that in
the case of invariant zeros on the unit circle several problems arise. These are mainly due to
the fact that H00 controllers have a tendency of cancelling stable zeros of the system and will
try to achieve this approximately if there are zeros on the unit circle. Hence we have poor
stability margins. Moreover, the minimal achievable Hoo norm may depend discontinuously
on the system parameters if there are invariant zeros on the unit circle. Hence we also have
numerical difficulties. The main problem in this respect is the nonuniqueness of (sub)optimal
H oo controllers. Suppose we want to get closer and closer to the minimal achievable Hoo norm.
When can we avoid almost pole-zero cancellations near the unit circle? For this question, very
little is known. However there are examples where we can get very good stability margins even
though there are zeros on the unit circle. Similarly there are examples where we always have
bad stability margins near optimality. What is needed is a characterization of the achievable
stability margin near optimality.
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