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1. Introduction

General spare parts networks, in which items are both repaired and
stocked for future use have received considerable attention since the
pathbreaking work of Sherbrooke [20] in 1968. In this chapter, we present
both an exact and, under somewhat relaxed assumptions, a fast approx-
imate evaluation method of fairly general multi-echelon, multi-indenture
spare parts networks that serve to support the operation of technolog-
ically highly involved field systems. These evaluation methods provide
the basis for a procedure to optimize the availability of these systems,
given limited spare parts budgets. In this introductory section, we first
describe the general structure of the networks we wish to study, and we
motivate their importance. Next, we discuss some key references and
finally summarize the main contributions of the current chapter.

The model studied in this chapter generalizes the VARI-METRIC
model as analyzed by Sherbrooke [22] in 1986 for two-echelon, two-
indenture spare parts networks. We consider identical, or almost identi-
cal, technical systems that operate at or are supported by various base
stations. The base stations are supported by other, supporting stations.
The supporting and base stations together constitute a general multi-
echelon network with a pure distribution structure. For the technical
systems, a general multi-indenture structure is assumed. Each techni-
cal system is built up from several assemblies whose complete material
breakdown structure is given. We allow that technical systems at differ-
ent bases consist of slightly different sets of assemblies. One can consider
this as a form of commonality at the level of assemblies. Commonality
may also occur in the assembly structures, i.e. subassemblies may oc-
cur in different assemblies, and similarly for components at lower levels.
Spare parts can be stocked at each of the base and supporting stations,
and repair facilities may be present at each of the stations (e.g., limited
repair facilities at base stations and advanced repair facilities at sup-
porting stations). The spare parts stocks are controlled by basestock
policies.

The network of supporting and base stations and the configuration of
the technical systems are described by graphs. As a result, also basic
systems such as the two-echelon, single-indenture system and the single-
echelon, two-indenture system fit in our model. Also, for the assemblies
and all other components we assume repair probabilities. This allows
to model both repairable items and consumable items (for which repair
probabilities equal 0 at all stations), and we can deal with condemnation.

Logistic support systems such as those described here involve a large
number of decisions that have to be taken in order to optimize the field
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system’s operations: what parts (at what level of the material break-
down structures) should be kept on stock, and at which stations (at the
bases, or more central, or both)? Also, how should repair facilities be
equipped and manpowered, in order to enable certain repairs at certain
stations (e.g. simple repairs at the bases, more involved restorations only
at support stations)? In this chapter, we do not consider the modeling
of the repair facilities explicitly but instead concentrate on the ques-
tions related to inventory management. We will come back to the other
questions in the final section.

The importance of the possibility to analyze models such as described
here (and in more detail in the next section) is that it allows the evalua-
tion of rather complex systems and complex logistic support (supply dnd
repair) structures. In particular, the techniques developed enable deci-
sion makers to relate overall system availability to available budgets via
optimal or close-to-optimal stock allocation policies, that prescribe how
much money should be invested in eaclh part, at each location. In other
words: what is the optimal system availability that can be achieved,
given a prescribed available budget? Or, vice versa: how much inventory
investment is minimally needed to achieve a target overall system avail-
ability? These questions are highly relevant for many capital-intensive
equipment installations such as military weapon systems, medical equip-
ment, aircraft, nuclear power plant installations, and computer systems
and infrastructures. In fact, the current study was motivated by prob-
lems encountered at the ship maintenance facilities of the Royal Nether-
lands Navy.

Models for spare parts networks have initially been considered by
Sherbrooke [20] and have become known as METRIC models. Following
an earlier paper by Feeney and Sherbrooke [9] on an exact analysis for
a single-echelon, single-indenture model, Sherbrooke [20] presented an
approximate analysis for a divergent two-echelon, single-indenture model
controlled by basestock policies. Assuming ample repair capacities, he
focuses on the determination of optimal basestock levels at both the
bases and the central stocking center, for technical systems composed of
multiple items (each item may fail, leading to a replacement and a repair
of the broken item, either at the local base or at the central facility).
Although, under a basestock policy, the total number of rotating items of
each type is fixed, the number of items operating in the field is assumed
to be sufficiently large, or down-times of technical systems are assumed
to be sufficiently large, to justify the modeling of each assembly’s failure
process as a Poisson process with a constant rate. The assumption of
ample repair capacities and the assumption of Poisson failure processes
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are typical for METRIC type models, and they constitute the key to
come to relatively simple analyses for complicated systems.

An ezact analysis of a two-echelon, single-indenture model has been
presented by Simon [24]. This work has been extended by Kruse [13] to
multi-echelon systems and by Shanker [19] to compound Poisson demand
processes.

In Sherbrooke [21], an approzimate procedure for a single-site, two-
indenture model has been discussed. Muckstadt [14] extended the ex-
isting METRIC model to a two-echelon, two-indenture model, which
is also referred to as MOD-METRIC. Another variant of METRIC is
VARI-METRIC, a two-echelon, single-indenture model developed by
Slay [25]). In the core part of the analysis of the initial METRIC and
MOD-METRIC model, it is assumed that, for each product, the number
of items in the repair pipeline (i.e., in repair or waiting for components
needed for the repair) follows a Poisson distribution (of which the vari-
ance equals the mean). In his VARI-METRIC method, Slay derives an
approximate expression for the variance of the number of items in the
pipeline. Next, for each product, he fits a negative binomial distribu-
tion on the first two moments of these items in order to obtain a more
accurate approximation. Graves [10] independently developed a slightly
simpler approximation for the variance of the number of items in the
repair pipeline. Next, he also continues with fitting a negative bino-
mial distribution on the first two moments. Sherbrooke [22] extended
the original VARI-METRIC method to a version for two-indenture, two-
echelon systems. By simulation, he has verified that the results produced
by this method are fairly accurate. An overview of METRIC type mod-
els is given in Sherbrooke [23]; see also Guide Jr. and Srivastava [12].
In Rustenburg [16] further generalizations and a unifying framework for
the approximate analysis of general multi-echelon, multi-indenture spare
parts systems with commonality and condemnation have been presented
(see also Rustenburg et al. [18]). Two extensions that were developed re-
cently are by Rustenburg et al. [17] and Caggiano et al. [7]. Rustenburg
et al. [17] studied so-called resupply problems, in which an annual budget
is available each year to replace condemned repairable and consumable
parts. In case of low budgets the question then arises how to spend the
remaining budget optimally. Caggiano et al. [7] studied multi-echelon,
single-indenture systems with so-called time-based fill rate constraints,
which are quite common in practice.

A line of research that is closely related to the research on METRIC
type models concerns models with limited repair capacities. Since this
is not the focus of the current chapter, we only mention some references:
Gross et al. [11] , Albright [2], Diaz and Fu (8], Avsar and Zijm [3, 32],
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and Sleptchenko et al. [26, 27]. Another related line of research can be
found in the work of Axsiter and subsequent authors. They present ex-
act methods for the analysis of classical, continuous-review, single-item,
multi-echelon inventory systems for consumable products. The differ-
ence with the METRIC models is the absence of any notion of repair or
production centers. These authors are capable to analyze models with
compound Poisson demand processes and more general (R, Q) policies.
See e.g. Axséter [4, 5] and the references therein for this line of research.
Exact methods for classical, periodic-review, multi-echelon models are
available too; see e.g. Van Houtum and Zijm [30, 31] and the references
therein. Finally, the METRIC type models are related to models for
assemble-to-order and assemble-to-stock systems with similar assump-
tions, such as Poisson demand processes, ample capacities, and basestock
control. A main difference is that in the latter models a demand for an
end-product decomposes into coupled demands for underlying compo-
nents. These coupled demands for components complicate the analysis
considerably. For references on this type of research, see e.g. Song and
Yao [29] and the references therein.

As stated above, we present both an exact and an approximate method
for the evaluation of basestock policies in a general multi-echelon, multi-
indenture model with commonality. These methods constitute the main
contribution of this chapter. The exact method generalizes previous
work in this area for single-indenture systems without commonality (see
Simon [24] and Kruse [13]). The key to the analysis, i.e. the develop-
ment of recursive expressions, has to the best of our knowledge not been
presented earlier. The approximate method extends previous approxi-
mate methods for general systems without commonality (see Sherbrooke
[22, 23]). Based on the recursive expressions developed for the exact
method, the derivation of the approximate method is rather straight-
forward and we obtain a simple formal procedure (which reduces the
complexity for implementations). The approximate method uses two-
moment fits of pipeline distribution functions, and is clearly much more
efficient than the exact method. This is useful for large systems (many
items, many indenture levels and/or many locations), and in particular
for procedures for the optimization of basestock levels for such systems,
for which usually many evaluations are needed. In addition, the approx-
imate method is quite flexible and allows the relaxation of some assump-
tions (in particular, deterministic repair and order and ship times, see
Section 4) and extensions (e.g., to compound Poisson demand processes).

The organization of this chapter is as follows. In Section 2, we describe
the model in detail. Next, the exact and approximate evaluation method
are described in Section 3 and Section 4, respectively. Subsequently, in
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Section 5, we report on the use of the model in two field tests at the
Royal Netherlands Navy. This includes a presentation of an optimization
procedure for the generation of efficient solutions with respect to the
inventory investment and average availability. Finally, conclusions and
suggestions for further research are given in Section 6.

2. Modeling general spare parts support systems

In this section, the multi-echelon, multi-indenture model with com-
monality is described. In particular, we discuss the technical system’s
structure, the material breakdown of the assemblies that constitute each
technical system, and the divergent multi-echelon network of stations
where spare parts are stocked and repaired. After that, we describe the
repair and distribution process in more detail and give an overview of
assumptions and notations.

2.1. Model description

We assume the existence of a set Ny, of base stations or bases, each
of which serves a number of technical systems. Technical systems at the
same base are assumed to be identical. Let Z, € N (N := {1,2,...})
denote the number of technical systems at base n (n € Np,). Technical
systems at different bases may be different (although in many real-life
situations they are identical or at least similar). A technical system
consists of several assemblies, each of which may fail incidentally. Let
I,s denote the set of all assemblies that may occur in the configurations
of the technical systems, and let z;, denote the number of assemblies ¢
in each technical system served at base n (i € I;5, n € Ny, zin € Np 1=
N U {0}). We assume that the total stream of failures of assemblies
1 as observed by base n constitutes a Poisson process with a constant
rate mj,. This assumption is standard in METRIC type models (and a
key factor for obtaining a tractable model). For many real-life systems,
lifetimes of assemblies are (close-to-)exponential, or lifetimes are not
precisely exponential but the total stream of failures is a composition
of subprocesses coming from relatively many technical systems that are
supported by a base. In those cases it is reasonable to assume a Poisson
failure process. Further, in practice, one does not allow long down-times
of technical systems, and thus, for relevant situations, it is reasonable to
assume constant failure rates.

For each assembly, a complete material breakdown structure is given,
through subassemblies, sub-subassemblies, and so on. We use the word
part to indicate any item in the material breakdown structure, i.e., parts
indicate assemblies, subassemblies, sub-subassemblies, until basic com-
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Figure 1.1. The material breakdown structure of a fire extinguishing system. This
system consists of two pump units with a pump as a common item.

ponents. Let I denote the set of all parts. Hence, I D I,;. The parts are
numbered 1,..., |I|. Each part i € I'\ I, has a set of parents Py (7). We
allow commonality, i.e., subassemblies may occur in the configurations
of two or more assemblies, and similarly for lower-level items. (That an
assembly occurs in the configuration of another assembly is not allowed
in the current model. But this may be relaxed if needed.) So, we may
have |Ppp(z)] > 1 for several parts ¢ € I\ Is. For each part i € I,
Cmp(t) = {j € I|i € Ppup(j)} denotes the set of children of ;. The set
I = {t € I|Cpmp(i) = 0} consists of all childless parts. We assume that
the directed graph with the parts as nodes and the parent-child relations
as directed arcs contains no circles. For computational convenience, we
assume that the assemblies and underlying parts are numbered such that
Jj<iforallj& Ppy(i),i €I\l

Notice that very general material breakdown structures can be mod-
eled. Also single-indenture systems fit. For those systems, we have
I,s = Iy = I. For an example of a material breakdown structure of a
complete technical system, see Figure 1.1.

Each base station may hold stock of any part and in addition may have
repair facilities. Apart from the base stations, there exists a number of
support stations with the same possibilities. These stations in turn may
be supported by a few other stations, etc. The network of all stations is
supposed to constitute a tree. Hence, there is a single root station in the
network. This station is supported by external suppliers. Each of the
other station has a unique supporting station. Let N denote the set of all
stations. Hence, N D Ny,. The root station, also called central depot, is
denoted as station 0 and the other stations are numbered 1,...,|N|—1.
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S = Storage capacity
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Figure 1.2. A distribution network consisting of a central depot and an arbitrary
number of bases.

For each station n > 1, the unique supporting station, called the parent,
is denoted by pgn(n). For computational convenience, we assume that
the locations are numbered such that pg,(n) < n, n € N\ {0}. For each
station n, Cyn(n) = {k € N|pan(k) = n} denotes the set of children.
Hence, the set of base stations Ny, satisfies Ny, = {n € N|Cyn(n) =
0}. Notice that the distribution network may consist of any number
of echelon levels. Also the extreme case with only one echelon level is
allowed. In that case, we have one single location only, which is a base
and central depot at the same time. Then N = Ny, = {0}. For an
example of a distribution network, see Figure 1.2.

We now describe the operational process, which involves the failures,
repairs and distribution of parts. A series of actions starts with each
failure of a technical system. We assume that failures only occur (or,
are observed) at the assembly level. Therefore, the description starts
with a failure of an assembly.

Suppose an assembly i of a technical system at some base station n
fails. Then the technical system goes down. To keep the down time of the
system as short as possible, the complete assembly is replaced by a ready-
for-use one from the base stock, if available, while the malfunctioning
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assembly is sent into repair. With probability rs assembly ¢ can be
repaired at base n, and then the part is sent to the repair shop at the
base. With probability 1 — r;, the assembly cannot be repaired at base
n. In the latter case, the malfunctioning assembly is sent to the parent
station pgn(n), while at the same time a request for a ready-for-use
assembly of type 1 is placed at station pg,(n). The order and ship time for
a part 1 from the parent station pg,(n) to n is denoted by Oyy,. This time
is excluding a possible waiting at station pg,(n) in case a ready-for-use
assembly is not immediately available there. In case the malfunctioning
assembly can be repaired at base n, the repair action involves the possible
detection of a subassembly j that causes the problem. Let g;;, denote
the probability that the failure of assembly ¢ is due to subassembly j.
With probability 1 — Zjecmb(i) gijn the failure is not due to one of the
children j € Cpp(¢). Then the failure may be due to a component that is
not considered in our model and of which always sufficient spare parts are
available, or the failure is due to environmental conditions (for instance,
dust), or a real repair of the assembly itself is needed. Once assembly 1 is
sent into repair at base n (i.e., after a possible delay because a requested
subassembly is not available immediately), it takes a repair leadtime T3,
until the assembly is returned to the spare parts stock as a ready-for-use
item. If the repair of assembly i is outsourced to parent station pg,(n),
then the same actions take place at station pgn(n).

A broken subassembly 7 undergoes the same routine, i.e. after in-
spection a possible malfunctioning component is detected and replaced.
Again, repair of the subassembly may not be possible at the station itself
in which case the parent station becomes involved. In this way, we may
proceed along the material breakdown structure of any assembly until
its lowest level is reached. In principle at each level, except the lowest
one, a repair action basically consists of a disassembly, component re-
placement and finally an assembly action. Only at the lowest level repair
indeed means an actual repair action. All underlying items correspond
to lower indenture levels in the material breakdown structure. However,
at any level it may be that repair is not possible at the base in which
case the next higher station is asked for support, i.e. the broken item is
sent there and a ready-for-use item is shipped downstream to replenish
the stock. The higher station in turn may need help as well from its sup-
porting station as was described above, etc. However, if a part 7 appears
to be irreparable at the central depot, which happens with probability
1 — r;0, then it is disposed of. Then the part is called condemned, and
immediately a new part is ordered at an external supplier in order to
replace this condemned part. We assume that the external supplier of
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Figure 1.3. Possible actions for a broken part i € I with one child j € Crs(i) at a
station n € N\ {0}.

part ¢ can always deliver. The total procurement time is denoted by the
random variable Oyp.

Notice that implicitly a one-for-one procurement/replenishment pol-
icy has been assumed for all items at all stations. IL.e., each part i at each
station n is controlled according to a basestock policy. The correspond-
ing basestock level is denoted by S;,. Since we often have to deal with
expensive slow moving items this seems to be a reasonable assumption.
Also note that consumable items are included in our model. Consum-
ables items are irreparable at any station (and thus they are disposed of
at the central depot), i.e. for a consumable item ¢ we simply have r;, = 0
foralln e N.

Obviously, for each part ¢ € I at each station n € N backordered
demands may occur. In all cases these backorders are treated in FCFS
order. Possible actions for a broken part ¢ € I with one child j € Cp(4)
at a station n € N \ {0} are visualized in Figure 1.3. Similar pictures
are obtained for other parts and for possible actions at the central depot
(n =0).
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With respect to the repair leadtimes T}, the order and ship times Oy,
n € N\ {0}, and procurement leadtimes O;p, we assume the following.
We assume that the expected values of all these times are given. These
expected values are needed in the analysis below. For all parts ¢, the
procurement leadtimes O;y may be stochastic. Further, for all childless
parts ¢ € I, the repair leadtimes T;, may be stochastic. All other repair
leadtimes and all order and ship times are assumed to be deterministic,
and hence can be viewed as nominal leadtimes as used in e.g. ERP
systems. Under these assumptions, an exact evaluation is possible as we
will see in Section 3. The approximate evaluation as presented in Section
4 also allows stochastic order and ship times and stochastic leadtimes
for all parts.

The objective of both the exact (Section 3) and the approximate eval-
uation (Section 4) of the above model is to determine its overall perfor-
mance, given the basestock levels Sy, of all items at all stations. We
distinguish the following performance measures. We define 3, as the
fraction of all demands for assemblies at base n € Ny, which are imme-
diately fulfilled from stock. This measure is called the fill rate at base n.
The overall fill rate 8 denotes the fill rate for all demands for assemblies
at all bases together. Next, we define A, as the average fraction of all
Zy,, technical systems at base n € Np, which are not down because of a
lack of assemblies. This measure is called the average availability at base
n. The overall average availability A denotes the average availability for
all technical systems at all bases together. The higher all these measures
the better the performance, but also the higher the total investment in
spare parts will be. The total investment in spare parts is denoted by C

and equals
C=>c), S, (11)

i€l neN
where c; denotes the price of a part 1.

2.2. Overview of assumptions and notations

The main assumptions of the model are as follows:

1 At each of the bases, the failures for the different assemblies occur
according to independent Poisson processes;

2 Each failure of a part with one or more children is due to at most
one child;

3 The directed graph with the parts as nodes and the parent-child
relations as directed arcs contains no circles. Further, no assembly
occurs in the material breakdown structure of another assembly;
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4 For each childless part and each stations, the repair leadtimes of
all items of that part at that station are independent and iden-
tically distributed random variables, while for the exact analysis
(Section 3) the repair leadtimes for all other parts are assumed to
be deterministic. The approximate evaluation method (Section 4)
allows for random repair leadtimes of all parts;

5 For each part, the procurement leadtimes of all items of that part
are independent and identically distributed random variables;

6 For the exact analysis, for all parts the order and ship times are
assumed to be deterministic (Section 3). The approximate evalua-
tion method (Section 4) allows for stochastic order and ship times;

7 A one-for-one replenishment/procurement policy is applied for all
parts at all stations;

8 There is no lateral supply in the distribution network.
The input variables of the model are as follows:

N: Set of all stations in the distribution network. The central depot
has index 0 and the other stations are numbered 1,...,|N|— 1.

Pan(n), n € N \ {0}: Unique parent station of station n. The stations
are numbered such that pg,(n) < n for alln € N \ {0}.

Can(n), n € N: Set of children of station n.
Npq: Set of bases, i.e. set of stations n with Cyg,(n) = 0.

Zn, n € Npo: Number of identical technical systems installed at base n
(Z, € N).

I: Set of all parts (assemblies and underlying parts) that occur in the
configurations of the technical systems.

I,s: Set of all assemblies (Ips C I).

Pop(1), ¢ € I'\ Is: Set of parents of part i. The items are numbered
such that j <4 for all j € Ppp(i), 1 € I'\ Igs.

Cmp(3), 1 € I: Set of children of item i.
I: Set of childless items, i.e. set of items i with Cpp(i) = 0.

Ziny © € Igs, N € Npg: Number of occurrences of assembly i in the
technical systems installed at base n. If assembly ¢ does not occur
in the configuration of the technical systems at base n, then z;, =
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0, otherwise z;, € N. We require that ), . Ny, Zin > 0 for each
assembly ¢ € I,5.

Min, © € Igs, n € Ny Total failure rate (in failures per year) for
assembly 7 at base n. We require that m;, = 0 if z;, = 0, and
Zie[ﬂs My, > 0 for each n € Ny,.

Tin, © € I, n € N: Probability that a failed part i at station n is
repairable at station n itself (0 < 7y, < 1).

Qijn, + € I, j € Cmp(%), n € N: For a part i, being repaired at station
n, each g;jn with j € Cp,,(7) denotes the probability that part j is
the cause of the failure of this part i. We require that g;;, > 0 for
all] € Cmb('L) and ZjECmb(i) dijn S 1.

ETin, i € I, n € N: Mean repair leadtime (in years) for a part ¢ being
repaired at station n (ET;, > 0).

EOin, i € I, n € N\ {0}: Mean order and ship time (in years) for a
part i being sent from station pg,(n) to station n (EO;, > 0).

EO;o, ¢ € I: Mean procurement leadtime (in years) for a part ¢ procured
by the central depot at the external supplier (EO;o > 0).

Sin, 1 € I, n € N: Basestock level of part ¢ at station n (S;, € Np).
¢;, © € I: Price of part 1.
As output variables, we distinguish:
Bn, 1 € Ny, Fill rate at base n.
B: Overall fill rate for all bases together.

An, n € Nypg: Average availability at base n, i.e., the average fraction
of all technical systems installed at base n which are not down
because of a lack of assemblies.

A: Overall average availability for all technical systems at all bases
together.

C: Total investment in spare parts.

Example 1 To highlight the concepts introduced so far, we introduce
an example taken from a small case study carried out at the Royal
Netherlands Navy; see Rustenburg [16]. We consider the fire extinguish-
ing system whose material breakdown structure has been depicted in
Figure 1.1. An identical fire extinguishing system is installed at each of
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5 different bases. So, Z,, = 1 for each base n. Each fire extinguishing
system consists of 2 different pump units. The pump units are the assem-
blies. They are numbered 1 and 2, and 21, = 29, = 1 forn=1,...,5.
Both pump units consist of a pump and an electromotor. The electromo-
tors are of different types, but the two pumps in the units are identical.
Hence, the pumps and all their components are common (the structure
of the pump in the second pump unit is not given in more detail in Fig-
ure 1.1 because it is identical to the pump in the first pump unit). The
bases are supported by one central depot. So, we have a distribution
network as depicted in Figure 1.2. The bases are numbered 1,...,5.

Also the circumstances at the different bases are similar and hence
identical values are assumed for the m;y, 7in, ETin, EOin, and gijn. The
input data are given in Tables 1.1 and 1.2. The g¢;;j, are given in the
latter table. The g;jo at the central depot are assumed to be the same
as the gijn at the bases. Notice that the repair probability ry at the
central depot equals 0 for the parts 6,7, ...,12; for that reason no repair
times ET}g are given for these parts. The prices are given in Netherlands
Guilders (NLG); 1 NLG is equal to 0.4538 EURQO. All repair leadtimes,
order and ship times and procurement leadtimes are assumed to be de-
terministic in this example.

Part Name Zin Min Tin Ti0 ETin ET;o EOQ:, EOsp Ci
no. (p-yr) (yrs) (yrs) (yrs) (yrs) (NLG)

1 p.unit 1 1 204 0.8 095 0.01 0.1 0.2 0.75 11000
3 pump - - 0.2 0.7 0.03 0.2 0.2 0.5 1980
6 Dbearing - - 0.2 0 0.1 - 0.2 0.3 330
7 seal - - 0.2 0 0.1 - 0.2 0.3 450
8 casing - - 0.2 0 0.1 - 0.2 0.3 440
4  elmo - - 0.2 0.75 0.03 0.2 0.2 0.5 5080
9 rotor - - 0.2 0 0.1 - 0.2 0.3 150
10 stator - - 0.2 0 0.1 - 0.2 0.3 480
2 paunit2 1 136 0.8 095 0.01 0.1 0.2 0.75 10000
5 elmo - - 0.2 075 0.03 0.2 0.2 0.5 3300
11 rotor - - 0.2 0 0.1 - 0.2 0.3 450
12 stator - - 0.2 0 0.1 - 0.2 0.3 440

Table 1.1. Input data for Example 1

3. Exact Analysis

In this section we present a complete exact performance analysis. First
we give some preliminary results. After that we derive recursive ex-
pressions for the determination of the pipeline distribution functions.
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i\ J 3 4 5 6 7 8 9 10 11 12
0.55 0.45
0.38 0.62

032 047 o021
029 0.7

Ut b WO B ]

0.37 0.63

Table 1.2. The failure probabilities ¢;;» for Example 1 (the g;jn are the same for all
n=20,1,...,5).

Based on these recursive procedures, the evaluation procedure is easily
deduced.

3.1. Preliminary results

In the initial state of the spare parts network we have an initial number
of Sin (possibly zero) spare parts on stock of each part ¢ € I at each
station n € N. These parts are demanded according to some demand
processes and the stock is replenished according to a basestock policy
with the S;, as basestock levels. The latter means that the inventory
position of each part ¢ € I at each station n € N is kept at a constant
level S;y,.

First, we look at the demand processes. The demands for an assembly
i € Iy, at a base n € Ny, occur according to a Poisson process with a
given rate m;,. Each demand may immediately result in a demand for a
subassembly at base n or a demand for an assembly 7 at the parent sta-
tion pgn(n). A demand for assembly i at base n immediately results in a
demand for a subassembly j € Cp,p(3) with probability 7i,gijn and in a
demand for an assembly ¢ at station pg,(n) with probability 1 — ri,. As
a result, the Poisson demand process for assembly ¢ at base n splits into
independent Poisson demand processes for subassemblies at the same
base and the same assembly at the parent station. These subprocesses
join with independent other subprocesses and thus constitute Poisson
demand processes for the subassemblies j € Cpp(i) at base n and as-
sembly i at station pgp(n). In their turn these Poisson processes are
split into Poisson processes in a similar way as for assembly 7 at base
n, and so on. Ultimately we obtain a Poisson demand process for each
part ¢ € I at each station n € N. This is stated in the following lemma,
where also the rates are given.

Lemma 2 For each part 7 € I and station n € N, the demand process
of part ¢ at station n is a Poisson process with rate m;,, where the rates
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Min, © € Igs, N € Npg, are given and

Zjerb(i) MinTindjin if i € I'\ Iys, n € Nyg;

M = 4 22k€Can(n) mfk(} -“m) 66 L, n € N\ Nuai () o
§€Pm(5) ThinT jndjin

+ ZkGCdn(n) mi(l—rig) fi€l\I,ne N\ Npg.

We now consider the inventory of a part ¢ € I at a station n € V.
The inventory position is kept at a constant level S;,. Hence,

OHm(t) + Xm(t) - BOm(t) = Sin , t >0, (13)

where OH;p(t), Xin(t), and BO;y(t) denote the physical stock on hand,
the number of parts in repair and on order, and the number of backorders
at time instant t. X;,(¢) is also called the pipeline stock. Obviously, at
each time instant ¢t > 0, either OH;,(t) = 0 or BO;,(t) = 0, or both.
Therefore, if X;,(t) is known, then OH;,(t) and BO;,(t) are known.
Equation (1.3) is known as the stock balance equation.

Let OH;y, Xin, and BO;, be random variables which denote the phys-
ical stock on hand, the number of parts in repair and on order, and the
number of backorders in steady state. Then

0Hin+Xin_BOin= in iEI,TLEN.

By this equation the distribution of BO;, and OH;, can be determined
from the distribution of X;,. For the backorder distribution, this is
stated in the following lemma.

Lemma 3 For all i € I and n € N, the distribution of the number of
backorders BO;, is given by:

Sin P{Xip =y} ifz=0;
N =0 in
P{BOin = 2} = { P{%Xin =z+ Sy} ifz>0. (14)
By Lemma 3 we can compute backorder distributions from pipeline
distributions. The other way around appears to be possible too, as we
will see in the next subsection. There we will derive a recursive procedure
for the computation of all pipeline and backorder distributions. That
procedure starts with the pipeline distributions of childless parts at the
central depot and ends with the distributions for the pipelines X, and
backorders BO;, of all assemblies ¢ € I,5 at all bases n € Np,. Once we
have the latter distributions, we can easily determine the steady-state
fill rates and availabilities. For the fill rate at a base, we find:

,Bn = Z Min P{Xin < S:m} y ne Nbaa (15)

i€lps O
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with mo, 1= Zie 1., Min for all n € Ny,. The overall fill rate equals

p=3Y Tmg,, (1.6)

m
nENo, 00

with mgo 1= )¢ N,, Mon- For the average availability of the technical
systems at a base n € N, we find (cf. [16] and [23])

A, = H 1{zin>0}P{Xin < Sin}

i€l,s
= [[ lem>0y(1=P{BOw >0}) fZ,=1, (L7)
1€las
X Zin
A, = H Lizin>0} (1 - E{ZB.A) if Z, > 1. (1.8)
i€ls nZin

The average availability for all technical systems together equals

A= ZZ” An (1.9)
n€Nsg tot
With Ztot = Znera Zn.
3.2. Recursive expressions for pipelines

In this subsection, we describe the recursive procedure for the com-
putation of all pipeline and backorder distributions. By Lemma 3, we
can compute the distribution of the number of backorders BO;, of a
part i at a station n from the pipeline distribution of the same part at
the same station. It is also possible to compute pipeline distributions
from backorder distributions. However, the distribution of the pipeline
stock X;, of a part ¢ at a station n is not computed from the back-
order distribution of the same part at the same station, but from the
backorder distribution of the same part ¢ at the parent station pg,(n)
(if applicable) and the backorder distributions of parts j € Cpp(i) (if
applicable) at the same station n. To explain this in more detail, let
X and X7 be random variables which denote the number of parts i
in repair at station n and the number of parts i on order by station n
(= being resupplied to station n) in steady state. Then

Xin = X[ P+ X[, iel, neN, (1.10)

and X and X7® are mutually independent. So, the distribution of
Xin can be obtained by convoluting the distributions of X;¥ and X[%.
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For both the repair pipeline stocks X;fp and the resupply pipeline stocks
Xres, we derive recursive expressions below. The distribution of X;°*
can be computed directly if part ¢ is childless and from the backorder dis-
tributions of the children j € Cy,(i) at station n otherwise; see Lemma
4. The distribution of X[® can be computed directly at the central
depot (i.e., for n = 0) and from the backorder distribution of part ¢ at
the parent station pg,(n) otherwise; see Lemma 5. These recursive ex-
pressions, together with the expressions (1.4) and (1.10), result directly
in an exact, recursive evaluation procedure. The procedure starts with
the pipeline distributions of childless parts at the central depot and ends
with pipeline and backorder distributions of assemblies at all bases; see
the algorithm formulated at the end of this subsection.

Lemma 4 Letiecl andne& N.

(i) If ¢ € Iy, then the repair pipeline X * is Poisson distributed with
parameter minrinETin;

(i) If i € T\ Iy, then

Xh=Yo+ ) Y,
jECmb(i)

where Y} is a Poisson distributed random variable with parameter
MinTinETin, Y; is a random variable with

oo Yy
i MinTingiq
-0y - 3(7) (et

=y

g \ T
(1 _ TM) P{BO;, = z}, y € Ny,
for each j € Cpyp(3) (with the convention that P{Y; =0} = 1 and
P{Y; =y} =0 for all y > 1 when mj, =0), and Y and all Y; are
independent.

Proof. Let i € I and n € N. Demands for part 7 at station n occur
according to a Poisson process with rate m;,. Each demand is accom-
panied by a failed part that is returned. Each failed part is sent into
repair with probability r;,. So, parts enter the repair pipeline of part
¢t according to a Poisson process with rate mg,ri,. For each part, the
repair leadtime is given by the generic random variable T, and this time
is independent of other parts being sent into repair.

If ¢ € Iy, i.e., if part ¢ has no children, then the repair of a failed part
i cannot be delayed because some underlying part is not immediately
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available. In that case we can apply Palm’s theorem (see [15]), and we
find that X[? is Poisson distributed with parameter mgnrinET;n. This
completes the proof of part (i).

We now consider the case ¢ € I\ I, i.e., part ¢ has one or more
children j € Cpp(%). Then each failed part has a deterministic repair
leadtime Tj, = ET;,, but the start of this deterministic repair leadtime
may be delayed because an underlying part is required for the repair
while that part is not immediately available.

Let X[ P(t) denote the number of parts ¢ in repair at station n at
some time instant t (assume t > T;,). Then

X, P(¢) = Parts in repair which arrived in the interval (t — Tip, t)

+ Z [Parts in repair which arrived prior to t — T;, and which
J ecmb(i)
are waiting for a backordered part j at time instant ¢t — T;y,] .

Note that the terms in the latter sum have the same distributions as the
numbers of parts ¢ waiting for a backordered part j, j € Crp(3), at an ar-
bitrary time instant. Now, let random variable Yy denote the number of
parts ¢ sent into repair at station n in an interval of length T3, and let Yj,
J € Crp(3), denote the number of parts ¢ which are waiting for an under-
lying part j at an arbitrary instant. Then X{,fp = Y0+Ej€Cmb(i) Y;. Fur-
ther, Yp is Poisson distributed with parameter minrinTin = MinTinETin,
and Yp is independent of the Y}, j € Cpyp(%), due to the non-overlapping
time intervals and the fact that Poisson processes have independent in-
crements. For the random variable Y; we obtain a binomial distribution
if we condition to the total number of backorders for part j at station n
at an arbitrary time instant:

P{Y} — leOjn _ :I:} — (CE) (minrinq'ijn>y (1 _ min"'z’n‘]ijn)z—y
Yy Mjn Min
for all 0 < y < z. The explanation for this result is as follows. Demands
for part j at station n arrive according to a Poisson process with rate
Mjn. A fraction minringijn of this stream comes from parts ¢ that need
a part j for their repair at station n. Hence, each demand, and thus also
each backordered request comes from parts ¢ being repaired at station n
with probability (minringijn)/mjn. Finally, it is easily seen that the Yj,
J € Cpp(i), are independent of each other. This completes the proof of
part (ii). O

Lemma 5 Leti€ Jand ne N.

(i) If » = 0, then the resupply pipeline X[¢ = XJ£° is Poisson dis-
tributed with parameter m;o(1 — 7;0)EO;p;
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(ii) If n € N\{0}, then X[ = Yp+Y, where Y is a Poisson distributed
random variable with parameter m;, (1 — 7in)EQ;ip, Y is a random
variable with

P{Y =y} = i (3) <—mm(,;; %))y

=y

(1 — o V\EY

(1 - M) P{BOu = z}, y € Ny,
Mik

where k = pg,(n) (with the convention that P{Y = 0} = 1 and

P{Y = y} = 0 for all y > 1 when my; = 0), and Yy and Y are

mutually independent.

Proof. The proof of this lemma is along the same lines as the proof
of the preceding one. Note that each term of the sum in the equation
in the second part of the lemma denotes the probability that out of a
total of z backlogged items at station k, y items can be attributed to
demands from station n. O

Algorithm 6 - Exact evaluation (of a given basestock policy)

Step 1. Read all input variables (see Subsection 2.2); this includes
basestock levels S;, for all items ¢ € I and all stations n € N.
Apply Equation (1.2) to determine all m;, for all ¢ and n with
1€ I\ Ipsorn € N\ Ny.

Step 2. For all i = |I|,|I| -1,...,1and n =0,1,...,|N| -1 do:
(i) Determine the distribution of X;-* by Lemma 4;
(ii) Determine the distribution of X}°® by Lemma 5;
(ifi) Determine the distribution of X;, (cf. Equation (1.10));
(iv) Determine the distribution of BO;, by Lemma 3.

Step 3. Compute the relevant performance measures cf. the Equations
(1.1) and (1.5)-(1.9).

4. An approximate evaluation procedure

From a computational point of view, the calculation of complete dis-
tribution functions may be less attractive. An often applied procedure
then is to calculate the first two moments of backorder quantities and
pipeline stocks. Below we derive recursive expressions to determine the
first two moments of pipeline stocks from first two moments of backo-
rder quantities (see Lemmas 8 and 9). For the other way around, we first
have to fit a distribution function to the first two moments of a pipeline
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stock Xin, 2 € I, n € N, in order to determine the first two moments
of the backorder quantity BQO;,. This follows from the expressions in
Lemma 7 below. Lemma 7 follows directly from Lemma 3. Lemmas 8
and 9 follow after some tedious but straightforward calculations based
on the expressions given in Lemmas 4 and 5.

Lemma 7 Foralli € T and n € N, the first two moments of the number
of backorders BQO;, are given by:

Szn
E{BOin} = E{Xin}—Sin+ D (Sin—z)P{Xin =1z},
=0
Sin
E{BOZ,} = E{X}}—2SimE{Xin}+S% — > (Sin —z)’P{Xin = z}.
=0

Lemma 8 Let i€ I andn € N.
(i) If 7 € Iy, then

E{Xrep} Var{Xrep} MinTinELin ;

(i) If s € I'\ Iy, then

E{Xrep = MipTinETn + Z hjE{BOjn} y
jecmb(i)
Var{X[P} = miprinETin
+ Z fJ (1 - f)E{BOjn} + f; Va"{BOyn}]
JECmp(i 1)

where f; := (MinTinGijn)/mjn for all j € Cpp(i).
Lemma 9 Let i€ I and n € N.
(i) If n =0, then X2? = X[5° and
E{ res} Var{XTes} mio(l - 'r‘io)EOiO N
(ii) If n € N \ {0}, then

E{X{,,fs = mi(l - Tin)EOin + fE{BOik} ,
Var{X;2*} = min(l = 1in)EO;y
+£(1 = /YE{BOx} + f2Var{BOy} ,

where k = pgn(n) and f 1= (min(1 — 7in)) /M.
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Note that, as long as the repair leadtimes are deterministic, we may
replace ET;, by Tj, in Lemma 8. Similarly, in Lemma 9, EO;, can
be replaced by O;, if the order and ship times are deterministic. The
results for the first moments of X[ * and X[* are exact anyhow, while
the results for the variances are exact for deterministic repair leadtimes
and deterministic order and ship times. Experiments performed in Avsar
and Zijm [3] however show that the expressions for the variances of X[,
and X% are very accurate in case the repair leadtimes and the order
and ship times are random variables. Based on these results, from now
on we allow all these times to be stochastic, and use the above results
as the basis for fitting procedures in these more general cases as well.
Note that from Equation (1.10) and the independence of X *and X[
the mean and variance of X;, follow immediately.

We now discuss the fit of a distribution function to the first two mo-
ments of a pipeline stock X;,. Since X;, is a discrete random variable we
use discrete probability distribution functions for the fitting. Suppose
that a random variable X has a mean E{X} and a variance-to-mean ra-
tio V, then it can be shown that, for all possible values of E{X} and V5,
one of the distributions listed in Table 1.3 may be fitted on these values
of E{X} and V,. In Table 1.3 it is also shown which distribution has to
be used for each combinations of E{X} and V, (V; < 1 — E{X} is not
possible; see Adan et al. [1]). For more details on the fitting procedure
and the required parameter setting, the reader is referred to Adan et al.
[1] and Rustenburg [16].

Combinations of E{X} and V, Type of distribution

1-E{X} <V, <1 mixture of two binomial distributions
z =1 Poisson distribution

1<V, <1+4+E{X} negative binomial distribution

Ve > 1+ E{X} mixture of two geometric distributions

Table 1.3. Four types of distributions related to V, and E{X}

The question now is which class of distributions may be appropriate
for the pipeline distributions. Recall that demand is assumed to follow
a Poisson process. Combining this with positive basestock levels, it
can be shown that the variance of X;, always exceeds its mean. So
we either have to use the negative binomial distributions or mixtures
of two geometric distributions. There is one special case, viz. the case
with all stock levels equal to zero. From Lemma 5 we learn that in
that particular situation the expected number of backorders of a certain
product equals the number of items of that particular product in the
pipeline. Moreover the variance of the number of backorders equals the
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expected number of backorders of these products. So in this situation we
arrive at E{X;,} = Var{X;,}. As a consequence the variance-to-mean
ratio equals 1, and in that case we have to use a Poisson distribution.

We conclude with a description of the approximate evaluation algo-
rithm, based on moment fitting procedures, and suited for the case in
which all repair leadtimes, as well as all order and ship times are random
variables.

Algorithm 10 - Approximate evaluation of a basestock policy

Step 1. Read all input variables (see Subsection 2.2). Apply Equation
(1.2) to determine all m;, for all i and n with i € I\ I,s orn €
N\ Np,. Let basestock levels S;, for all items ¢ € I and all stations
n € N be given.

Step 2. For all i = |I|,|I| - 1,...,1and n=0,1,...,|N| -1 do:
(i) Determine the mean and variance of X ¥ by Lemma 8;
(ii) Determine the mean and variance of X/¢® by Lemma 9;
(iii) Determine the mean and variance of X, (cf. Equation (1.10));
(iv) Fit an appropriate probability distribution function to
the mean and variance of X;,;
(iv) Determine the mean and variance of BO;, by Lemma 7.

Step 3. Compute the relevant performance measures cf. the Equations
(1.1) and (1.5)-(1.9).

Example 1 (continued) We apply both the exact and approximate
algorithm to evaluate the basestock policy with the following basestock
levels:

(S10,-..,S120) = (3,3,23,12,13,9,11,6,7,12,6,9),
(Sim--rSi2n) = (3,2,5,2,3,1,1,1,1,1,1,1), n=1,...,5.

This basestock policy is one of the solutions generated by the optimiza-
tion procedure that is described in Subsection 5.1 and that leads to the
availability versus investment curve depicted in Figure 1.4. Under this
basestock policy, the total investment of spare parts C = 664930 NLG.
Application of the exact evaluation procedure, Algorithm 6, shows that
the overall average availability under this policy equals A = 89.71%. The
percentage found by the approximate evaluation procedure, Algorithm
10, is 89.87 %, which is very close. Tests by e.g. Sherbrooke [22] and
Rustenburg [16] have shown that the approximate procedure is rather
accurate in general. (The computation times of both procedures were
low in this case; less than 0.01 seconds on a standard PC.)
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5. Field tests at the Royal Netherlands Navy

The evaluation algorithms of Sections 3 and 4 may be used in opti-
mization procedures for the generation of basestock policies under which
an optimal tradeoff is obtained for total inventory investment on one
hand and e.g. overall average availability on the other hand. Such base-
stock policies are efficient solutions and by generating a whole series of
them one obtains an efficient frontier for total inventory investment ver-
sus average availability. In the literature, greedy algorithms are proposed
for the generation of these efficient frontiers; see e.g. Sherbrooke [23] and
Rustenburg [16]. In Subsection 5.1, we derive a greedy algorithm for the
two-echelon, multi-indenture case, and we justify the use of the greedy
algorithm in this case. For the evaluations of basestock policies that are
needed in this algorithm, one may use either the exact or the approx-
imate evaluation procedure. The approximate evaluation procedure is
advised for somewhat larger systems. That procedure is sufficient ac-
curate and leads to much smaller computation times. (Explicit results
on the differences in accuracy and computation time when using the ap-
proximate instead of the exact evaluation in the greedy algorithms have
not been generated however.)

The greedy algorithm as presented in Subsection 5.1 has been applied
to Example 1 and in field tests at the Royal Netherlands Navy. This is
reported in Subsection 5.2.

5.1. Optimizing availability under a given
budget

As stated above, in this subsection we derive an optimization proce-
dure for the two-echelon, multi-indenture case (with commonality). The
echelon structure then is represented by one central depot, denoted by
index 0, that supplies a number of local bases, referred to by indices
1,...,|N| = 1. For notational convenience, we introduce N := |[N| - 1
to denote the number of bases. As before, let I denote the set of all
possible items, and I, the set of assemblies as they appear in the tech-
nical systems. For ease of presentation we assume that one technical
system is present at each base, ie. Z, =1 forn=1,...,N, and that
the technical systems at the various bases are identical. In this identical
systems case we can limit ourselves to the consideration of present as-
semblies, i.e. zi, > 0 foralli € I, andn=1,...,N. Let S,, denote the
vector that describes the basestock levels at station n of all items i € I,
n=0,1,...,N. Then we may express the availability of the technical
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system at base n by rewriting {1.7) as

An(S5,8,) = ] (1 = P{BOn(Sp, S,,) > 0}), (1.11)

1€1as

where the arguments S, and §,, indicate the dependence of availability
and backorder probabilities of the basestock levels of all parts, at both
base n and the central depot (notice that, due to the FCFS allocation
rule at the central depot, the BO;, at a given base n do not depend on
the basestock levels at other bases; they only depend on the rates with
which the other bases place orders at the central depot). There is some
redundancy in the notation here, since clearly BO;n(S,,S,,) depends
only on the basestock levels of those parts that appear in the product
structure of the assembly 1.

The average availability over all technical systems at the respective
bases now follows from (1.9) a

N

1
n=1
where § = (89,8, ---,8n)- The objective is to determine a set of stock

levels S such that the availability A(S) is maximized given a limited
budget C. The objective function (1.12) however is not a very convenient
one. Therefore, we first rewrite (1.12) as follows:

N
AS)=1- %;(1 — An(80,5,))- (1.13)

When A,(8Sy, S,,) is sufficiently close to 1, then, according to (1.11), all
P{BO;n(Sy,S,) > 0} must be small and thus

An(Sp,8,) ~ 1= P{BOin(8y,S,) > 0}.
t€las
Then 1 — An(Sy,S,) is approximately equal to the sum of backorder

probabilities on the righthand side of this expression, and substituting
that result into (1.13) gives:

(S)~1-— —-Z > P{BOi(Sy, S,) > 0}. (1.14)

n~1 i€l.s

We may conclude from Equation (1.14) that, within the area of relevant
choices for all basestock levels, maximizing availability is equivalent to
minimizing the sum of all the backorder probabilities.
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We can now formulate the following nonlinear integer programming
problem:

N

minz Z P{BOin(Sy,S,) > 0} (1.15)
n=11i€l,s

subject to:

N

n=1 i€l
Sin€Ngforallie I andn=0,1,...,N.

We apply a marginal analysis approach to solve the latter problem.
However, such an algorithm only provides optimal solutions if, for each
assembly i € I,s and each base n = 1,..., N , the backorder probabil-
ities P{BO;,(8,,S,) > 0} are convex as a function of the basestock
levels S;,. We will not extensively discuss solution procedures for this;
the reader is referred to Rustenburg [16] for further details. For simple
single-echelon, single-indenture systems we can use simple arguments
to derive lower bounds above which the backorder probability are in-
deed convex. Here we only remark that extensive tests have revealed
that in our more general case the functions P{BO;,(S,,S,) > 0} ful-
fill convexity requirements if the arguments exceed a certain minimum
value, indicating that we should start the marginal analysis with not too
small values of the basestock levels. From the experiments, we obtained
the following initial basestock levels for the two-echelon, multi-indenture
case as a starting point for the marginal analysis:

Sin = round(min(rinETin + (1 — 140)EOi)); (1.16)
Sio := round(3mo(rioETio + (1 — 7in)EOi0)). '
Notice that these initial levels are related to the expected values of the
pipeline inventories. They are still relatively low, and thus associated
with high backorder probabilities.

The marginal analysis now boils down to a procedure where in each
step an item 7 and a station n is selected such that adding that item
to that station yields the largest decrease in the overall objective func-
tion per unit of money invested (sometimes referred to as ”the biggest
bang for the buck” approach, and similar to some well-known knapsack
problem heuristics). The formal procedure is described in the algorithm
below. In this procedure, e; is an |I|-dimensional vector with a 1 on the

j
Jj-th position and zeros on all other positions.
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Algorithm 11 - Greedy procedure for the two-echelon, multi-
indenture model

Step 1. Set Si, = round(min(rinELin + (1 — 7n)EOsn)) for each i € I
and each n = 1,...,N.
Set S;p := round(szo(rioETio + (1 — 74 )EOip)) for each i € I.

C:= Zzel Zn 002 in-

Step 2. Aip 1= [Z,’Ll S er,, P{BOjn(S0, 5,,) > 0}
— SN Sjer,, P{BOjm (S0 + €:,5,) > 0} fes for all i € 1.
Ay = [Zje,“ P{BO;n(S;,S,) > 0}
= Yier,, PABOjn(S8o, S, +¢;) > O}} /ci for alli € I and

n=1,...,]\7. A
k,l = argmax{Apli € [;n=0,1,...,N}

Step 3. If C+¢; < C’, then C := C + ¢k, Sk := Sk + 1 and return to
step 2, else stop.

In Algorithm 11, in each step the basestock vector S constituted by all
current basestock levels can be stored. Then, at the end of the algorithm,
one has a series of solutions S under which one has an optimal combi-
nation for the average availability A(S) and the inventory investment
C. The tuples (C, A(S)) constitute the efficient frontier for the average
availability versus inventory investment. Procedures for the generation
of the efficient frontier of inventory investment versus overall fill rate, or
other performance measures, can be derived in a similar way.

5.2. Field tests

In this subsection, we present numerical results for Example 1 and
field tests carried out at the Royal Netherlands Navy.

Consider the fire extinguishing system of Example 1. The resulting
availability-investment curve is depicted in Figure 1.4, for both the situ-
ation in which we do account for commonality effects and in which we do
not (in the latter case, the two pumps are treated as different subassem-
blies, with different components). Both curves have been generated by
Algorithm 11, where the approximate evaluation procedure was used
for all evaluations. Figure 1.4 indicates that small savings are possible
when commonality is taken into account. For example the ‘commonality
curve’ reaches 95.0 % availability at an inventory investment of 7.43-108
NLG. When commonality is not taken into account, 95.0 % availability
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Figure 1.4. Availability versus investment curve for Example 1, for both the situation
in which commonality is taken into account and the situation where common parts
are treated as different parts.

is reached at an inventory investment of approximately 7.63 - 10 NLG.
In this example, the savings are small because the common parts (pump,
seal, casing, bearing) are rather cheap in comparison to the other parts
in the material breakdown structure. Much higher savings are obtained
when common parts are expensive.

Field tests have been executed at the Royal Netherlands Navy, which
motivated part of the studies reported here. Below, we briefly present
the results for two of these tests, to show the impact of smart spare
parts methods on overall inventory investments and system availability;
for more results, and further details, see Rustenburg [16]. One system
studied is the Goalkeeper, a close-in weapon system primarily designed to
intercept fast and low incoming missiles, as well as aircrafts, helicopters
and surface targets. In the Netherlands Navy, we find these systems
on frigates as well as auxiliary ships. All Goalkeepers are more or less
identical, hence we consider all ships on which such a system is installed.
The second system is the long range air surveillance radar, type LW-
08/02, which is installed on Multi-Purpose frigates (M-frigates). The
primary function of the LW-08/02 is the timely detection of air targets.
For that purpose the LW-08/02 is equipped with a long distance radar
with a small minimum range and a high resistance to electronic counter
measures. A picture of the LW-08/02 is shown in Figure 1.5.

For our studies we selected the parts with a price > 75 NLG (recall
that 1 NLG = 0.4538 EURQO). Moreover the parts with a registered
demand rate equal to zero are excluded. With this selection, we reduced



Figure 1.5. A photo of the long range air surveillance radar, type LW-08/02.

the number of products considered in the cases by approximately 12 %
while the inventory investment considered was approximately 98 % of
the complete investment in spare parts of the systems considered. For
the total number of spare parts with corresponding inventory investment
and the selected spare parts with corresponding inventory investment,
see Table 1.4.

In order to judge the current investments properly, we should note
that the Navy Maintenance Company used inventory control policies
based on achieving target fill rates that were equal for most items, inde-
pendent of their level in a product structure as well as their price. Al-
though not emphasized explicitly, the application of the marginal analy-
sis approach typically reveals stock allocations in which the cheaper parts
lower in the product breakdown structures obey high fill rates whereas
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the more expensive higher level parts (assemblies and subassemblies)
typically satisfy lower fill rates (one does not want to have a system
down due to a shortage on cheap items, while for the more expensive
items repair by replacement is a good option).

Total no. .Inventory Selected nr Inv. investm.
System of parts investment of parts selected parts
p (in 10° NLG) P (in 10° NLG)
Goalkeeper 771 114 675 112
LW-08/02 140 26.4 133 26.0

Table 1.4. Selected number of spare parts for the field tests.

In Table 1.5 we compare the current situation with an optimal situa-
tion, as obtained by Algorithm 11 (in combination with the approximate
evaluation procedure). The optimal situation refers to the combination
of the first availability above 90% and the corresponding inventory in-
vestment. We learn from Table 1.5 that for both cases the current in-
vestments in spare parts are far from optimal with respect to availability.
When studying the Goalkeeper we observe that the optimal inventory
investment is relatively close to the current inventory investment. How-
ever the availability in the current sitation is much lower than in the
optimal situation. Hence, in this case we have to do with a substan-
tial misinvestment. The current availability of the LW-08/02 is rather
close to the optimal availability; however the current investment is much
higher than the optimal investment. So, here we have to do with a sub-
stantial overinvestment.

Goalkeeper LW-08,/02 |
Current Optimal Current Optimal |

Inventory invest-
ment (in 106 NLG) 112 102 26.0 104
Availability (%) 56.3 90.3 88.9 90.7

Table 1.5. Current situation versus an optimal situation.

6. Conclusion

In this chapter, we have presented both an exact and an approximate
analysis of general multi-echelon, multi-indenture models, in which the
stations are embedded in a divergent (inverse aborescent) structure while
in the product material breakdown structure commonality is allowed. In
principle, each failed item arriving at a station is replaced by a ready-
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for-use one from the station stock, while the failed item is attempted to
repair in that station’s repair facility. At each station repair of items
is possible in principle. For all but the lowest items repair means re-
placement of one of its constituting components, whereas items on the
lowest level are either repaired or disposed of, in which case a new one is
procured. If repair of some item at a station is not possible it is sent to
the next higher station while at the same time an order for a replacing
item is issued. For the case where the operation in each repair center
is modeled via a (workload independent) leadtime, and order and ship
times of items that have to be ordered at higher echelons are determin-
istic, an exact analysis has been presented. For practical purposes, also
an approximate procedure has been developed, based on a moment fit-
ting procedure, that in addition allows us to handle the case in which
also order and ship times are random. The approximate procedure has
appeared to be rather accurate. An example is used to illustrate its use
while results on real life test cases are also briefly reported. We have
seen that smart inventory control may lead to considerable savings for
the company involved.

This research is currently extended in several directions. First, we
mention that, without much difficulty, the approximate method can be
extended to handle the case with compound Poisson processes. More
important is the extension to capacitated systems. Based on approaches
by Buzacott et al. [6], Avsar and Zijm [3] recently developed approximate
procedures to handle the case in which each repair center is modeled as a
finite capacity queuing network, thus allowing a more careful study of the
interplay between available repair capacity, inventory levels and resulting
leadtimes. While in this paper they deal with a single item, a second
paper [32] discusses the multi-indenture situation. The study of multiple
items, each with a material breakdown structure, in a divergent multi-
echelon structure is a natural further extension of this line of research.

Quite a different approach can be found in Sleptchenko et al. [28], who
study finite capacity serial system where the repair centers are modeled
as M/G/c queues (hence allowing for general repair times). In addition,
they distinguish between several classes of items and allow for priority
setting in the repair centers. They restrict themselves to the single-
indenture case.

Still another line of research is explored by the current authors. In
[17] they studied the so-called resupply problem that concentrates on
repairable items that are disposed of and hence have to be procured
again. Often organizations such as the Netherlands Navy only have
a limited annual resupply budget available for these procurements; if
during the year one foresees a shortage the question arises which items
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still should be purchased and which not. Again, the efficient frontier
curves provide guidelines to answer these questions.

The importance of these models for spare parts logistics is beyond
any doubt. They allow us to study spare parts supply chains in relation
to product structures and resource availability in repair centers. The
exploitation of commonality is just one example of how a smart product
structure may influence the costs of logistic support, but more generally
the impact of product design on the costs of logistic support during its
full lifetime (life cycle analysis) is a topic that has recently attracted
much attention in practice, in particular in relation to investments in of-
ten expensive equipment in the military industry. A further exploration
of models such as the one discussed here can significantly contribute to
a thorough basis in such life cycle analysis studies.
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