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Embedded Markov processes and recurrence

by

L.P.J. Groenewegen, K.M, van Hee, D.A, Overdijk, F.H. Simons

Introduction

Let (X,Z,m) be a o-finite measure space. A Markov operator P in £_(X,I,m) is

a linear operator in £_(X,I,m) which satisfies

1) f20=Pf >0 forallfefoo,
2) f= ) £ =Pf= | Pf for f and £ (n = 1,2,,..) in £
n n n «©
n=] n=1
3) Pl <1,

Recall that an element of £ actually is an equivalence class of malmost
equal functions. As usual, we shall make the identification of the equiva-
lence class and any of its representatives. Consequently, in this definition
and in the sequel all statements on functions (and sets) have to be inter—
preted modulo mnull sets. Moreover, all functions and sets are supposed to
be I-measurable,

Finite or infinite sums of functions have always to be taken pointwise., We
shall use the convention to write the operator symbol to the left of the
function if we consider the operator as acting in £_, and similarly if we
consider an operator in £], then the operator symbol is written to the right
of the function,

A Markov operator P in £1(X,Z,m) is a linear operator in £](X,Z,m) such that
1) u20=u 20 for all u ¢ £I

2) pil<1.

The adjoint operator of a Markov operator in £] is a Markov operator in fw,
and conversely every Markov operator in £°° is the adjoint operator of a Mar-

kov operator in £1, and the relationship is given by



f u(Pf)dm = f (uUP)f dm for all u ¢ £l and f ¢ £ .

For details the reader is referred to Foguel [2],
It is not difficult to verify that, by means of monotone approximation from

below, the domain of both a Markov operator in £, and a Markov operator in

L can be extended to the space]ﬂT(X,Z,m) of thel(equivalence classes of m
almost equal) nonnegative extended real valued functions. Again, if we con-
sider the extension of a Markov operator in £1, then the operator symbol is
placed at the right of the function, and if we consider the extension of a
Markov_operator in £ , then the operator symbol is at the left of the func-

tion., We then also have
f u(P£)dm = J (WP)f dm for all u,f ¢ O .

A special type of a Markov operator is the operator I, which is defined by

A

ul, =ul, for all u e £l' Then obviously I,f=1,f for all f e L.

A
Instead of saying P is a Markov operator in £ , £ or an extension to

17 “e
‘nﬁ(x,z,m), we shall simply say P is a Markov process on (X,I,m), and it will
be clear from the context as which type of operator P is considered. This
terminology is justified by the following interpretation.

For every A € I, choose a representative P(+,A) for Pl Then for m—almost

A.
all x ¢ X, we have

i) 0 < P(x,A) <1 for all Ael,

ii) P(x, u A) = ) P(x,A,)
n=|] n=1

for every sequence of disjoint sets in I,

Hence P(+,A) is "almost" a transition probability, and PlA(x) can be inter—
preted as the probability that we enter the set A in one transition from x.
Similarly PIA?IB(X) can be considered as the probability that from state x
the process is after one transition in A, and after the second transition

in B.

Our first aim in this note is to obtain a straightforward deduction of the
decomposition of space X into a conservative part C and a dissipative part D.
The usual way to treat this decomposition due to E, Hopf [3] is to consider
P as an operator in £l’ to deduct the maximal ergodic theorem and with the
aid of this theorem to obtain a £ -characterisation of C and D, which then

1
by dualisation can be translated into a fm—characterisation.



Despite the mathematical elegancy of this treatment, especially of Garcia's
proof of Hopf's maximal ergodic theorem, there are two disadvantages. The
first one is that the probabilistic interpretation of the maximal ergodic
theorem is not obvious; the second one that in this way a rather weak des-
cription of the dissipative part is obtained. Therefore we prefer to go the
other way round., We shall start with the £ =-characterisation of C and D and
then dualize this characterisation to £1. Our description of D can already
be found in Feldman [1] but his proof is more probabilistic in its nature.
The basic tool for our proof of the decomposition theorems will be lemma 1
in the next section., In the course of the proof of this lemma an operator Q
will occur. This operator represents what is sometimes called the embedded
or induced process. In the third section we shall study the relationship of
the conservative parts of X with respect to the processes P and Q, and with
the aid of the process Q give a somewhat more detailed description of the

dissipative part of X with respect to P,

The conservative and dissipative part of a Markov process

Let P be a Markov process on (X,IZ,m). We shall prove the following theorem.

Theorem l. There exist disjoint sets C and D with X = C u D such that

i) for all AcC we have ) PnlA =« on A
n=0
ii) there exists a partition D!’DZ"°' of D such that

I P L fori=1,2,... .

The sets C and D are called the conservative part and the dissipative part
of X with respect to P, and are mod m uniquely determined by the conditions

i) and ii).

This theorem has the following interpretation in terms of recurrence. Since
PnlA(x) is the expectation of a visit to the set A at time n, starting in x,
condition 1) says that for every subset A of the conservative part the ex-
pected number of visits to A, starting in A, is infinite, i.e. the strong
recurrence property holds for every subset of the conservative part. On the
dissipative part the situation is quite different. For every partition ele-

ment D, there exists an integer n. such that the expected number of visits to



Di is less than n., no matter where we start.
The characterisation of the conservative part and the dissipative part by
means of the £w-operatof as in theorem ] is given by Feldman [1]. A duali-

sation of this theorem yields a characterisation by means of the £, -operator

1
as given by Hopf [3], see also Foguel {2], II.2.3. We shall first give this
dualisation and then prove theorem 1.

Let u be a nonnegative integrable function. Then we have for all A< C

(o)

o«© o] O O
J ( z uP")dm [ u( Z PnlA)dm = {w , Since E PnlA = { on X ,
A n=0 n=0 n=0 ©

f ( z uPn)dm
D n=0 n=0 1
i

= 1’2’0C| s
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Hence we obtain the following result,

Theorem 2. There exist disjoint sets C and D with X = C u D such that for all

nonnegative u ¢ £, we have

] -

{0 or @ on C
n=0

< » on D .,

The sets C and D are mod m uniquely determined by this condition.,

The proof of theorem | rests on the next lemma.

[><]

< Mon A, then ) P"l, < M+1 on X,

n
Lemma 1. If } PM, A

n=1 n=1
Intuitively, this lemma is obvious: if the expected number of visits from A to
A is at mostM, then for any point of X after the first visit to A we expect
at most M further visits to A, hence we expect over all at most M+ 1 visits
to A,

Proof of lemma 1. The formula

is easily verified by writing out, and simply says that the probability of

reaching A in n transitions equals the sum of the probabilities that A is



is reached for the first time after k transitions, and next A is entered

again after n-k transitions., Then we have

o © n

k-1 n-k
J PMi, = 7 7 1 )Y pr ey, =
n=1 & el k=1 AS A A
= )y } (I )'PI,PI
n=0 k=0 AS A A

by rearranging terms, which is allowed since all terms are nonnegative.

Now define for every f ¢ it

k
(r1 c) PIAf .

Qf =
=0 A

k

Obviously Q is a o—additive mapping of WL into itself. By writing out we

easily verify

ks k n
) (P J Pl ¢ (BT )R1 < 1,
k=0 A A A
and therefore
Ql = § (PI c)kPlA <1,
k=0 A
It follows that Q is a Markov process on (X,ZI,m), which satisfies Qf = QIAf
for all £ em. We obtain
1 n pt n -
P Pl = ] ety =q J PUi, +Ql, =
n=1 n=0 n=1
n
= Q(r, Z PU1,) +Ql, <
n=1
<M+ 1., d

Proof of theorem 1. The uniqueness of C and D mod m is obvious. Consider the

class

Feqr| [ Plipel ).
n=1



3.

Since subsets of elements of F are again in F, and m is o-finite, by an ex-

haustion procedure we can construct a sequence of disjoint sets D],Dz,... in

2o

F such that if D = v D, and C = X\D, then all elements of F which are con-
i=1

tained in C are mnull sets. The set D satisfies condition ii) of theorem 1;

it remains to show that the set C satisfies condition i),

Let A be a subset of C, and put

A =1] P, sk}na forallk eN.

n=1 A
Then
] PM1, < 7 PnlA Skona ,

n=1 Ak n=1

t~
d

o
A

k+] on X,

o«

Since Ak c C, we have m(Ak) = 0 for every k, and therefore Z PnlA = o -
n=|]

D

almost everywhere on A.

The embedded Markov process

Let P be a Markov process on (X,Z,m). In the proof of lemma 1 the Markov pro-

cess Q defined by

k
(P1 C) PIAf

Qf =
=0 A

k
for a fixed set A ¢ I appeared. For all B ¢ & QIB(x) can be interpreted as
the probability that at the first visit under P to the set A we also are in
B, This process Q is sometimes called the embedded or induced process.

Note that because of the property Qf = QIAf for all £ e'n{, we can restrict
the process Q to the set A, In many cases in the literature the term "embedded
process" is used for this restriction.

The next theorem and its corollaries show that there is a close relationship

between recurrence properties under P and recurrence properties under Q,



Theorem 3. Let P be a Markov process on (X,I,m) and let Q be the embedded

process of P with respect to some set A ¢ L, Then for all B ¢ ¥ we hawe
n v .n
L@y = Z P lpop

Proof. As in the proof of lemma 1, the formula

n
k-1 n-k
P'l, .= )} (L ) PIP "1
k=1 A A AnB

is easily verified by writing out. Hence we have

) yk=1pg pn7k, =
c A AnB

(P1

n
) Pl
n=1 A Ci k=1 A

o0 oQ n ~
nZO kZO (PIAc)kPIA? JUE

T et
Q(nzl Prlpap) * Qg

Therefore by iteration we obtain for every m

o0 ©0 m m
n m n n n
LBl g =Q (] Py )+ I Q2 Z Qlaap o
n=1 n=] =1 n=1
o 193 i n
[ ® Tang = [ 0 Lanp

n=1 n=1

In order to show that the equality sign holds, we only have to show that for

every N € N we have

N n N n
I Qg2 ] Pl q.
n=1 n=

From the definition of Q we obtain

(s

=} (1 c)kPl > Pl .

k=0 A AnB



Now suppose the formula has been proved for some N.
Then

N+1

n
El Q 1AnB

N
n
Q( Z Q lAnB * }AnB) z
n n=1

v
O
~~

&~
2~}
=]
>
o]
o
+
>
2
=
N’
1

N+1 n -
} ) @1 ) pIP 1 =
n=1 k=1 A

hY

N+1

n
L P fang
n=1

]

hence the formula is also true for N+ 1, This completes the proof of the

theorem, 8§

Corollary 1. Let P and Q be as in theorem 3, and let C be the conservative
part of X with respect to P. Then the conservative part of X with respect to

Q is the set A n C,
Proof. For every B ¢ A n C we have

Z Q"1 = Z P’ =wonB,

n=1 n

N\ .
hence A n C belongs to the conservative part of X with respect to Q. Let
D],Dz,... be the partition of the dissipative part D of X with respect to P

as in theorem 1, then

o0

n 00 o2
nzl Q 1AnDi = J P 1AnDi < Z Pily eL

hence A n D belongs to the dissipative part of X with respect to Q. Finally,
0

since Q! o = 0, we have Z in o = 0, and therefore also AS belongs to the
n=1 A

A
dissipative part of X with respect to Q. N



The next corollary says that if it is certain that almost all points of A
return to A under P, then the expected number of visits to A must be infi-

nite.

oo

Corollary 2. If QIA = | on A, then Z Pn]A = o on A,
n=1

Proof. From Qf = QIAf for all £ ¢ %T we conclude inA = 1 on A, and there~

fore

on X,

© .n
Corollary 3. If QlA <q <1 on A, then Z P 1A <5

n=1 -4

Proof., From Qf = QIAf for all £ e’ﬂf we conclude inA < qn on A, hence

o~ 8
g
s
H
~
o
=1
=3
A
[o]
ju]
b4

—
(=
(1]
A
(1]
h
O
]
[¢]
o
<
=
:
'Y

n —
! Pl < T_g_a t 1= g0y

on X . (1

This last corollary has as a consequence that any set A for which almost all
points have a probability at most q < ! of returning to A under P most be~
long to the dissipative part. In some sense the converse of this statement

is also true:

Theorem 4, Let P be a Markov process on (X,Z,m) with conservative and dis-

sipative parts C and D respectively. Then for all A ¢ C we have

o

;(pI C)kP] =1onaA,

k=0 A A

and there exigts a partition D],Dz,... of D and a sequence Qysdgseee with

0 < q; < 1 such that
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k .
(PID.c) PID. < q; on Di . i= 1,200 &
k=0 i i

Note that because of the corollaries 2 and 3 of theorem 3, this theorem is =2
slight strengthening of theorem 1., On the conservative part it is certain
that for every subset A almost all points of A will return to A under P,
while there exists a partition of the dissipative part such that for alwmost
all points of a partition element the probability of returning to that par-
tition element is uniformly less than 1.

In the proof of the theorem we need the following, in its interpretation ob-

vious, lemma:

Lemma 2, If A < B, then

oo o

7 et C)kPlA < J (PI C)kPlB .
k=0 A =0 B
Proof. For every N we have
¥ n N n N
Lo@r )%pr, ¢ [ @1 )V =PI+ (L )PL =1,
n=0 A =0 A A A
N n N n N
y(e1 QPRI+ J (1 Q=P+ @I )Pl =1,
n=0 B n=0 B B B
which because of | < 1 implies
C C
B A
Ii‘] n Ig n
(PI )"P1, < (PI ) Pl ,
n=0 A% A =0 3¢ B
oer %1, < [ @1 )1y . ]
n=0 A n=0 B

Proof of theorem 4. Consider the class

J (I )"P1, < q on A} .
n=0 AS A

Ol:= {a | <1
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Because of lemma 2 we have that all subsets of an element of OL are in OL.

Therefore we can consfruct by an exhaustion procedure a sequence D],Dz,...

of disjoint elements of Ol such that for every element A ¢ Ol with

o

An v Di = ) we have m(A) = 0, By corollary 3 of theorem 3 every set Di
i=1
belongs to the dissipative part of X, and it remains to show that every set

0

Awith An v D, = @ belongs to the conservative part. To this end it suf-

i=1

fices to note that by lemma 2 and the construction of the sets D, we have

o]

} @1 )™1, =1ona4,
n=0 AS A
and therefore by corollary 2 ) PnlA = ® on A, [
n=1
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