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Embedded Markov processes and recurrence

by

L.P.J. Groenewegen. K.M. van Hee, D.A. Overdijk, F.H. Simons

I. Introduction

Let (X,~,m) be a a-finite measure space. A Markov operator P in £oo(X.~,m) is

a linear operator in £ (X,~.m)· which satisfies
co

I)

2)

3)

f ~ o ~ Pf ~ 0 for all f E £ ,
00

co 00

f = L f ~ Pf = L Pf for f and f (n = I ,2, ••• ) in £
n n n 00

n=1 n=1

PI ~ I •

Recall that an element of £ actually is an equivalence class of m-almost
co

equal functions. As usual, we shall make the identification of the equiva-

lence class and any of its representatives. Consequently. in this definition

and in the sequel all statements on functions (and sets) have to be inter

preted modulo m-null sets. Moreover, all functions and sets are supposed to

be ~-measurable.

Finite or infinite sums of functions have always to be taken pointwise. We

shall use the convention to write the operator symbol to the left of the

function if we consider the operator as acting in £ , and similarly if we
00

consider an operator in £1' then the operator symbol is written to the right

of the function.

A Markov operator P in £I(XJ~,m) is a linear operator in £1 (X'~Jm) such that

I)

2)

u~O~uP~O

"P \I ~ I •

for all U E £ I

The adjoint operator of a Markov operator in £1 is a Markov operator in

and conversely every Markov operator in £ is the adjoint operator of a
00

kov operator in £1' and the relationship is given by

£ J
00

Mar-



I u(Pf)dm = J (uP)f dm
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for all u E £ I and f E: £00 •

For details the reader is referred to Foguel [2J.

It is not difficult to verify that, by means of monotone approximation from

below. the domain of both a Markov operator in £ I and a Markov operator in

£00 can be extended to the space ~+(X.L.m) of the (equivalence classes of ~

almost equal) nonnegative extended real valued functions. Again, if we con

sider the extension of a Markov operator in £ I' then the operator symbol is

placed at the right of the function, and if we consider the extension of a

Markov operator in £00. then the operator symbol is at the left of the func

tion. We then also have

J u(Pf)dm = f (uP)f dm
:l

for all u.f Em.

A special type of a Markov operator is the operator I A which is defined by

uIA = u IA for all U E £1. Then obviously IAf = IAf for all f E £00.

Instead of saying P is a Markov operator in £1' £00 or an extension to

r1t(X,L,m) , we shall simply say P is a Markov process on (X,L,m), and it will

be clear from the context as which type of operator P is considered. This

terminology is justified by the following interpretation.

For every A E L. choose a representative P(-,A) for PIA. Then for ~almost

all x E X, we have

i) o :0; P(x.A) :0; for all A E: L •

ii) P (x, u
n=l

A ) =n

for every sequence of disjoint sets in L.

Hence P(- ,A) is "almost" a transition probability, and PIA (x) can be inter

preted as the probability that we enter the set A in one transition from x.

Similarly PIAPIB(x) can be considered as the probability that from state x

the process is after one transition in A, and after the second transition

in B.

Our first aim in this note is to obtain a straightforward deduction of the

decomposition of space X into a conservative part C and a dissipative part D.

The usual way to treat this decomposition due to E. Hopf [3J is to consider

P as an operator in £1' to deduct the maximal ergodic theorem and with the

aid of this theorem to obtain a £ I-characterisation of C and D, which then

by dualisation can be translated into a £ -characterisation.00
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Despite the mathematical elegancy of this treatment, especially of Garcia's

proof of Hopf's maximal ergodic theorem, there are two disadvantages. The

first one is that the probabilistic interpretation of the maximal ergodic

theorem is not obvious; the second one that in this way a rather weak des

cription of the dissipative part is obtained. Therefore we prefer to go the

other way round. We shall start with the £ -characterisation of C and D and
00

then dualize this characterisation to £1' Our description of D can already

be found in Feldman [IJ but his proof is more probabilistic in its nature.

The basic tool for our proof of the decomposition theorems will be lemma 1

in the next section. In the course of the proof of this lemma an operator Q

will occur. This operator represents what is sometimes called the embedded

or induced process. In the third section we shall study the relationship of

the conservative parts of X with respect to the processes P and Q, and with

the aid of the process Q give a somewhat more detailed description of the

dissipative part of X with respect to P.

2. The conservative and dissipative part of a Markov process

Let P be a Markov process on (X,L,m). We shall prove the following theorem.

Theorem I. There exist disjoint sets C and D with X = CuD such that

i)

ii)

00

for all AcC we have L
ncO

there exists a partition

00

pnl = 00 on A
A

D1,D2 , ••• of D such that

The sets C and D are called the conservative part and the dissipative part

of X with respect to P, and are mod m uniquely determined by the conditions

i) and ii).

This theorem has the following interpretation in terms of recurrence. Since

pnIA(x) is the expectation of a visit to the set A at time n, starting in x,

condition i) says that for every subset A of the conservative part the ex

pected number of visits to A, starting in A~ is infinite, i.e. the strong

recurrence property holds for every subset of the conservative part. On the

dissipative part the situation is quite different. For every partition ele

ment D. there exists an integer n. such that the expected number of visits to
~ L



- 4 -

D. is less than n., no matter where we start.
~ ~

The characterisation of the conservative part and the dissipative part by

means of the £~-operator as in theorem J is given by Feldman [IJ. A duali

sation of this theorem yields a characterisation by means of the £ I-operator

as given by Hopf [3J, see also Foguel [2J, 11.2.3. We shall first give this

dualisation and then prove theorem I.

Let u be a nonnegative integrable function. Then we have for all Ace

J
(I uPn)dm = J u( I pnlA)dm = fa ,since I
n=O n=O 100 n=O

A

x ,

Hence we obtain the following result.

Theorem 2. There exist disjoint sets C and D with X = CuD such that for all

nonnegative U E £ 1 we have

~ {O or ~ on C
I uP

n
=

n=O < ~ on D •

The sets C and D are mod m uniquely determined by this condition.

The proof of theorem 1 rests on the next lemma.

~

Lemma 1. If L
n=1

pnl ~ M on A, then
A

~

I pn IA ~ M+ 1 on X.
n=1

Intuitively, this lemma is obvious: if the expected number of visits from A to

A is at mostM, then for any point of X after the first visit to A we expect

at most M further visits to A, hence we expect over all at most H + 1 visits

to A.

Proof of lemma 1. The formula

=
n

L
k= 1

~s easily verified by wr~t~ng out, and simply says that the probability of

reaching A in n transitions equals the sum of the probabilities that A is
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is reached for the first time after k transitions, and next A is entered

again after n-k transitions. Then we have

co

L
n=1

co n

L L
n= I k= 1

by rearranging terms, which ~s allowed since all terms are nonnegative.

Now define for every f E TIt

Qf =
co

L (PI lPIAf
k=O AC

Obviously Q is a a-additive mapping of ut into itself. By writing out we

easily verify

and therefore

QI =
co

I (PI )kp I
A

$;

k=O A
C

I •

It follows that Q is a Markov process on (X,E,m), which satisfies Qf = QIAf
~

for all f Em. We obtain

I QPnl A = Q I
n=O n=1

co

L
n=l

co co

co

$; M + I • o

Proof of theorem I. The uniqueness of C and D mod m is obvious. Consider the

class

F = {F I
co

L
n= I



D. and C = X\D, then all elements of F which are con
~
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Since subsets of elements of F are again ~n F, and m is a-finite, by an ex

haustion procedure we can construct a sequence of disjoint sets D1,DZ' ••• in
00

F such that if D = u
i=l

tained in Care m-null sets. The set D satisfies condition ii) of theorem I;

it remains to show that the set C satisfies condition i).

Let A be a subset of C, and put

00

= { I
n=1

Then

for all k E:IN •

00

L
n=l

and by lemma

00

00

L
n=1

k on ~ ,

Since ~ c C, we have m(~) =

almost everywhere on A.

3. The embedded Markov process

a for every k, and therefore
00

L
n=l

= 00 m-

o

Let P be a Markov process on (X,L,m). In the proof of lemma I the Markov pro

cess Q defined by

Qf =

for a fixed set A E r appeared. For all BEL Q1B(x) can be interpreted as

the probability that at the first visit under P to the set A we also are in

B. This process Q is sometimes called the embedded or induced process.
+Note that because of the property Qf = QIAf for all f E~, we can restrict

the process Q to the set A. In many cases in the literature the term "embedded

process" is used for this restriction.

The next theorem and its corollaries show that there is a close relationship

between recurrence properties under P and recurrence properties under Q.
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Theorem 3. Let P be a Markov process on (X,L ,m) and let Q he the emhedded

process of P with respect to some set A to E. Then fbr ull B t: ~: "'t~ hi;l\'t:'

00

Proof. As in the proof of lemma I, the formula

n
P I AnB =

n

L
k=1

1S easily verified by writing out. Hence we have

00 00 n

L L
n= I k= I

=

00 00

= L L (PIAc)~IApnl AnB =
ncO k=O

00

L n= QP I AnB =
ncO

00

Q( L n
+ QI AnB •= P I AnB)

n=1

Therefore by iteration we obtain for every m

00 00 m m
L n Qm( L n + L Qn lAnB L n

P I AnB = P I AnB) ~ Q 1AnB ,
n= I n=1 n=l n=l

00 00

In order to show that the equality sign holds, we only have to show that for

every N E :IN we have

From the definition of Q we obtain

Q1AnB =
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Now suppose the formula has been proved for some N.

Then

N+I n
L L

n=1 k=1
=

hence the formula ~s also true for N+ I. This completes the proof of the

theorem. o

Corollary 1. Let P and Q be as in theorem 3, and let C be the conservative

part of X with respect to P. Then the conservative part of X with respect to

Q is the set A n C.

Proof. For every B cAn C we have

00 00

00 on B ,

hence A n C belongs to the conservative part of X with respect to Q. Let

DI,DZ" •• be the partition of the dissipative part D of X with respect to P

as in theorem 1, then

00

L
n=l

pnI E: £
D. 00

~

hence AnD belongs to the dissipative part of X with respect to Q. Finally,
00

since QI = 0, we have L Qn I = 0, and therefore also AC belongs to the
AC n=1 AC

dissipative part of X with respect to Q. 0
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The next corollary says that if it is certain that almost all points of A

return to A under P, then the expected number of visits to A must be infi

nite.

00

Corollary 2. If QI
A I on A, then I

n=l

Proof. From Qf

fore

1 on A, and there ..·

00

I
n=1

00

I
n=l

Qn I = 00 on A •
A

00

Corollary 3. If QIA :<::; q < I on A, then I p
n

IA :<::; -:--_-q- on X.
n=1

fYh+ n nProof. From Qf = QIAf for all f E UQ~ we conclude Q lA :<::; q on A, hence

00

I
n=1

Therefore by lemma

=
00

I Qn IA :<::; ~q~ on A •
n=1 - q

q + I
- q

.__-- on X •
- q

[]

This last corollary has as a consequence that any set A for which almost all

points have a probability at most q < I of returning to A under P most be-

long to the dissipative part. In some sense the converse of this statement

is also true:

Theorem 4. Let P be a Markov process on (X,~,m) with conservative and dis

sipative parts C and D respectively. Then for all A c C we have

oa

I (PI )kpIA = 1 on A ,
k=O A

C

and there exists a partition D1,DZ"'. of D and a sequence ql,qz"" with

o :<::; q. < 1 such that
~
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i 1J 2, • •• •

Note that because of the corollaries 2 and 3 of theorem 3, this theorem is a

slight strengthening of theorem 1. On the conservative part it is certain

that for every subset A almost all points of A will return to A under P,

while there exists a partition of the dissipative part such that for almost

all points of a partition element the probability of returning to that par'

tition element is uniformly less than 1.

In the proof of the theorem we need the following, ~n its interpretation ob··

vious, lemma:

Lemma 2. If A c B, then

Proof. For every N we have

N N
(PI ) Np 1I (PI )np 1 + I (PI )n(l - PI) +

n=O AC A n=O AC AC AC

N N
(PI ) Np 1I (PI ) np I

B
+ I (PI ) n (l - P 1) +

n=O B
C

n=O B
C BC Be

which because of 1 ::; 1 implies
B

C AC

N N
I (PI ) np 1 ::; I n

(PI ) P I
B

J

n=O AC A n=O BC

00 00

I (PI ) np 1A I n::; (PI ) P I
B

•
n=O A

C
n=O Be

1 J

1 ,

rJ

Proof of theorem 4. Consider the class-
00

b1.. := {A I 3 I (p I ) np 1A ::; q on A} •
q< 1 n=O Ac



D. = ~ ~e have m(A) = O. By corollary 3 of theorem 3 every set D.
~ ~

" .
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Because of lemma 2 we have that all subsets of an element of &l are in Ct.
Therefore we can cons~ruct by an exhaustion procedure a sequence DI,DZ""

of disjoint elements of Oi such that for every element A E Dtwith
00

A n u
i=1

belongs to the dissipative part of X, and it remains to show that every set
00

D. = ~ belongs to the conservative part. To this end it suf
~

A with A n u
i=l

fices to note that by lemma 2 and the construction of the sets D.
~

we have

00

I (PI )npIA = on A ,
n=O AC

00

and therefore by corollary 2 I pnl = oo~~ 0
n=l A
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