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Netherlands.
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ABSTRACT
, It is shown how some amount. of nondeterminism can be enforced via
_ linear time temporal logic. This is achieved through extending the notion of .
‘ specxﬁcatxon rather than.changing the loglc i.e., no recourse is taken to branch-.
. } ing ume _The treatment is compared both in mtent and with nespect to realiza-
| ., ton to a s1m11ar approach usmg predicate transformers
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1. -Introduction -

A spemﬁcatxon describes requuements wluch further developments or 1mp1ementatxons must
fulﬁll m order to satlsfy it, Usually. many decrsrons are dehberately left .open to be ﬁlled in at
later stages Consequently, specrﬁcauons usually contam nondetermtmsm Whlch wﬂl perhaps

only in part, be resolved later

For example if productton of erther of the actions a b,c or d wrll sausfy the user a com-
ponent S mlght for the moment usmg thhout further explanauon an mtumvely obv1ous nota-
tion, be specxﬁed by

S sat a\lb\/c\/d

The customary mterpretauon of such a specnﬁcatlon is to allow S to be tmplemented by any
process - -of which the output is.in the set {a, b c,d}.. For mstance, by . process g, which
always, produces a when actwatcd but also by aV ¢, which produces elther an a or a c upon
different actiyations.

This kind of nondeterminism, say allowed nondeterminism, is not required of the implementa-

tion at all and only leaves some freedom to the implementor due to, deliberate, vagueness in
the specification. - .
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A completely different kind of nondeterminism, say required nondeterminism is the nondeter-
minism which the implementation should possess.

For example, a random number generator should not always generate the same number when
activated. Yet a specification like

S sat x:=x'(x"e N),

interpreted similarly as above as containing allowed nondeterminism, does not guarantee: this:
An implementation which always assigns, say, 5 to x would perfectly.satisfy this specification.

Usually, specification methods make use of the first kind of nondeterminism to allow general
specifications; * but - cannot  handle the second kind. Branching time temporal logic, ‘which
describes behaviour as sets of trees is one of the few exceptions. Linear time temporal logic,
describing behaviour as sets of sequences does, in its usual form, not have this expressive abil-
ity. There are, however, many different considerations which at present leave the debate as to
which of the two is the most suitable, wide open.

We will present and dlSCUSS a way to enable in the context of linear time temporal logic
spec1ﬁcanon of a modest amount of requlred nondeterminism. The idea is to limit the extent to
which the allowed nondeterminism’ may ‘be ‘resolved, by addmonally specifying a lower bound.
This enforces imiplementations to possess a degree of nondeterminism between the bounds set
by the requlred and the allowed nondelenmmsm

For the above examples such lower bounds mlght bc rcspecnvely, ?;'v c and
x: x(x e (1,..,100}). o

In section 2 we briefly discuss the (only).approach similar to ours we know of, namely [Fr77].
This is carried out in the context of predicate transformers and safcty properties, but it will be
seen that a more general idea  undertics his appmach In scction 3 we show how this can be
used for linear: time temporal logic specifications. The interaction with development is dis-
cussed in the next section. In section 5 a brief look is taken - at the situation for branching time
temporal logic. The last section contains some discussion.

2. A precursor: required nondeterminism and predicate transformers

In [Fr77], Francez addresscs specxfymg required nondeterminism using predicate transformers.

Wc look at the example glvcn above, S sat aV b V c V d wnh Lhe extra aim to spec1fy y some

 required nondeterminism.

Let the specification of S be given as (¢} S {y).
In the usual weakest précoridition appioach, only considering allowed nondeterminism, this

oy




means that S Vhas to satisfy

(i) ¢=>>wp(S.,y) where, in this example,
¢ = true
y=avbVvceVd.

This only gives an upper bound to the allowed nondetermxmstxc behav1our of S and allows
implementations like, e.g., § = b. '

The idea in [Fr77] now is, to enforce y as a lower bound on required nondeterminism as well,
again using weakest precondmons The exua part of the satxsfacuon notion is, that S should
also satisfy :

(ii) V\v* # \V[(\V*==>\V) =" (G=>wp (S, \v*))l
where agam in thrs example
- ¢=true
y=aVvVbvcvd.

It can be easily seen, that together these requirements lumt the 1mplementatxons to
avNby cydonly,

In this .example, lower and  upper-bound coincide. The words lower and upper suggest,
although [Fr77] does not claim this, noncoinciding bounds, allowing a range. of 1mplementa-
tions in between them. This might, for instance, be denoted by

0} S (yu), where Vis the upper
and y the lower bound.

Intuitively, expressed in terms of an obvious semantics of i/o pairs, the lower fupper bound
approach, in our view, aims at achieving the following kind of constraints.

Let <i,a> denote: on any mput, produce a. Take as lower and upper bound requrrements
respecnvely :

w=aVchvd
y=ave
Then the desired constraint on S would be
{<ia><i,c>) c [S] < (<i,a><ib><ic><id>),

i.e., allowing the implementations gV c,aVY bV c,aVcVYdandaVbyVcVd.

Unfortunately, ‘using (ii) with y as y does not glve the desxred result. Namely (ii) now is of
the form
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Yy* = yi(y* = a Vv c)=>—(true = wp (S y").

Consider the implementation S = b. As § produces only b, S does not satisfy wp(S,a V ¢),
which will remain the case if a V ¢ is strengthened. So S is, contrary to the intuition, allowed
as an implementation of {¢}S {w,w}. Hence, the approach in [Fr77] is limited to coinciding
lower and upper bounds.

In the next section, the lower/upper bound approach will be adapted to linear time temporal
logic specifications and extended to enable the use of lower and upper bounds that do not coin-
cide. . N

3. Enforcing required nondeterminism in linear time temporal logic

In linear time temporal logic (LTL) we take both the specification; , and the semantics, [S ],
of an implementation S to be an LTL formula Such a formula in tumn can be interpreted as
characterizing a set of (state) sequences, namely those for which it is true.

The customary satlsfacuon nelatlon when cons:denng only allowed nondeterminism is then
straightforward: ’

S sat \VA I[S]]=:>\|!

Intuitively this means that the set of sequences that can be generated by S is mcluded in the
set allowed by ¢. It is clear that any less nondeterministic implementation S’, meaning that the
set of sequences it can generate is smaller, which in tum means that [s] = [s], satisfies .y
as well. So the implication makes it impossible to specify required. faimness. Establishing -a
lower bound is the solution and, in the LTL framework, can be easily incorporated in a manner
reflecting the intuitive set inclusion as mentioned in the previous section.

Define
S sat <y y>2 m:»[[S]]»W

The speaﬁcauon of the example. m the formal notanon as used in [BKP84], i.e. assuming
sequences to have labels mdlcatmg environment (E ) steps and component an steps, then
becomes:

S sat <y,

where

Y= EU(HI\ @av c)),éfin,

starting with environment steps E,
eventually a component step occurs which produces a or ¢,




after which the component stops.)

and

V=EU@A@V bV cVd)Cfin.

Remarks

@

(_li)

An alternative way 1o enable specifying required nondetcrminism may scem to change the
implication to equivalence (thls, in fact, is the situation in [Fr77]):

P sat \V—A_: [P]=w.

This indeed fulﬁlls the aim, but does not possess the lower and upper bound flexibility.
Consequently, extra allowed nondeterminism can now only be obtained by explicitly list-

ing the allowed alternatives, ¢.g., via exclusive or notation:

Ssat%& \Vz@ AR - \ll,.é

Ssat Yy, ® S sat @ @ S sat y,.

This is unfortunate, as usually. when giving a spccxﬁcauon one only has a rough. idea
about what one wants to allow, but cenalnly not a full grasp of all possible alternatives.
Furthermore, if infinitely many alternatives for implementation exist, as in the case of the
random number. generator example, it is not possible to list all of these unless infinite ®
is allowed In that case, although the first objection remains, both extensions are
equivalent.

In, e & [Pn85] a strong notlon of cxpressmty is. dcfmcd for spccxﬁcauon methods A
' A

' method is expressive = for all S there isa chamctenshc spccxﬁcauon spec, such that

@ Forall§’,s’ sat spec, <= ([sT = [s D,

4. Development

(i) For all spec, S sat spec <= (spec. = spec)
This property_ usually does not hold; it is obtaincd for [BKP84] when extended as above.

§

One part of development is concemed with decomposition into subspeciﬁcations. The exten-
sion of the notion of specification is such, that adapting of this part of existing methods is
straightforward.
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For instance, a compositional specification method dealing with required nondeterminism can
be obtained by using an existing one like descrited in [BKP84] and just redeﬁmng the nonon
of specrﬁcatlon as above and adapting the proof rules as follows.

For the decomposmon part, the essential rules are those eoncemed with syntactical combina-
tors, e.g., sequential and parallel composition, enabling to derive properties of components
from _properties of their syntactic subcomponents. These rules reflect the semantics of such
operators and are of the form

S sat \yl
.Sy sat
C (81,52 sat C' (Y1)

where C is a syntactical combinator on components and C’ the correspondmg syntactical com-
binator on specifications. ’ '

The translation then is

Sysat <>
 Sysat
. C(S1,5) sat <C (W1 ). C' (W1 Wo)>

A concrete example, for sequentlal composition, using the temporal logic operator C (chop) is

S sat <3u1 ,\y1>

S sat > Y
$ 1382 sat <yy Cyo.y; C >

Another part of development is concemed with extending the requirements on the behaviour.
In the context of LTL this mtumvely means further narrowing down the sets of sequences
allowed by the specification. In the y = [S] = y framework, this amounts to weakemng (')
g[ and strengthenmg v. This gives rise to 'the followmg rule:’ S "

.S sat <Q¢> ;

gg=>g : . |
B _ : -
Ssat qu\p>

Agam tummg to the prevrously used example, thrs means that it can be denved that from

Ssat<aVchaVch>

it follows that



Ssat<avyc,aVvVbVcVd>

Tlus correspends to the mtumon as the first specrﬁcauon only allows the implementation
S = g___q_y_d This i$, as has been seen previously, one of the various implementations
allowed by the ‘second specification.

Remark

There is a rather subtle problem in the treatment of required nondeterminism in development.
Of variables about which at a certam stage in the development nothing has yet been decxded
usually Tnothing is requlred ie., all sequences are allowed as regards thetr values

However, if nothmg 1s reqmred in L about such a vanable, tlus should rcmam so dunng
further development because, as seen from the rulcs y may only be weakened Intumvely,
seen from the example, 1f stralghtforward strengthenmg of already mentxoned variables is
mvolved there 1s no problem because requmed nondctenmmsm for thxs vanable was exphcrtly
stated.

For the decomposmon case there is a problem as onc would like, but cannot, formulate that
for as yet unused vanables no lower bound is yet establlshed A possrble solutlon for thls case
is to argue that a decomposmon step causes a lower level of abstraction to be uséd. New vaii-
ables added to the interface can be viewed as visible only to the subcomponents
Requirements, especially required nondeterminism, pertaining to thése ‘variablés ¢in then also
be seen as limited to this level only.

The problem thén ‘disappears, as ¥ on a higher level of specification cannot impose réquire®
ments on these variables. This approach may-be formalized by introducing an-explicit interface
for each level of specification. (See, e.g., [BK83].)

5. Branching time temporal logic
. .

In branching time temporal logic (BTL), the formulae are interpreted not as characterizing sets
of sequences, but sets of trees.

It.is then obvious, that because sets of such trees are involved, a completely analogous treat-
ment as for the LTL case is, in principle, possible. Whether this is desirable depends on one’s
view about which objects are more natural as-bchaviour of programs in certain circumstances.

Consider, for example, required nondcterminism, say a V b. If one feels, that only a set con-
taining at least a sequence with @ and one with b on it is a correct representation of this
requirement, then a similar extension as to LTL is needed for BTL. The reason is, that
although sequences can be viewed as trecs, when required nondeterminism is imposed via sets
of these, the same problems with resolving allowed nondeterminism too far as in LTL apply to
BTL. If however, one allows this 1o be expressed via the requirement that each tree has at
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least a branch with a and one with b on it, standard BTL is expressive cnough already.

As yet, apart from many other arguments about which of these basic varieties is the most suit-
able (or when), about this particular choice there seems to be no consensus. For more informa-
tion on BTL, see, e.g., [EL85].

6. Discussion

We .presented a way to enforce some amount of required nondeterminism via LTL
specifications. It is sometimes argued that specifying required nondeterminism is meaningless,
as no test will be able to falsify a claim like, e.g., W =a V b. The idea is, that even after
repeated testing with con51stently result a, b mtght still occur at some future test.

One remark here 1s. that exactly the samc argumentanon appltes to faimess requtrements like:
eventually b will occur. This concept however now scems quite well accepted.

More dlrect counter arguments are the followmg

Lan't » ’ 4 £ 7; LREEAN

()] When desxgmng a system 1t Jis natural that 1mt1ally some propertles are underdeﬁned
~ During development these may be strengthened to falsifiable ones, which is certainly the
only way m whxch they can be lmplemented

o g g - po T - > v,
o UL e L ,7 < W Aagne

(ii) An 1mp1ementat10n will come together w1th a proof that 1ts specification is met SO testmg
is not required.

A fortunate consequence of the fact that the extension made to the notion of specification
retains the interpretation as a pure LTL formula and does not alter the logic is, that exxstmg
decision procedures (see, e.g., [Go83]) can sttll be used. '

An open problem is, whether existing devices that contain nondeterminism, like random
number generators, will satisfy abstract specifications of this property. Furthermore, if this is

the case, how can this be proven? The link between the formulation of the practlcal and the
theoretical properties seems not obvious.
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