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Nomenclature

Vectors are printed boldface, e.g. n, tensors and matrices are denoted boldface (B) as
well. Furthermore we use grad as well as ∇ for the gradient, and div as well as ∇·
for the divergence.

Constants
ρ density
c specific heat capacity
k thermal conductivity
Lf latent heat of fusion
Lv latent heat of vaporisation
λ wave length
w waist of a laser beam

Variables
H enthalpy
I intensity
T temperature
θ dimensionless temperature
η dimensionless enthalpy

Subscripts
0 initial or leading order
a ambient
b boundary
f fusion
i incident
l liquid
liq liquidus
m melting
r reflected
s solid
t refracted
sol solidus
v vaporisation
ref reference



vi

Abbreviations
ARTM Algebraic Ray Trace Method
DOM Discrete Ordinate Method
EBD Electron Beam Drilling
ECD Electro Chemical Drilling
EDM Electric Discharge Machining
FEM Finite Element Method
TIT Turbine Inlet Temperature



Contents

Nomenclature v

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Laser drilling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 The global model 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Melting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Gas Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Splashing and solidification . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Parameter régimes . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.2 Planar solidification . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.3 Axisymmetric splashing model . . . . . . . . . . . . . . . . . . . 27

3 Laser induced melting 31

3.1 Modelling melting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 The Stefan Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 The Enthalpy Problem . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Numerical methods for melting . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Discretisation of the Stefan Problem . . . . . . . . . . . . . . . . 35



viii Contents

3.2.2 Finding suitable initial conditions . . . . . . . . . . . . . . . . . 39

3.2.3 Discretisation of the Enthalpy Problem . . . . . . . . . . . . . . 41

3.3 Extension to 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Numerical results and discussion . . . . . . . . . . . . . . . . . . . . . . 46

4 The effect of the laser beam 51

4.1 Reflections of the incoming beam . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.2 Computational method . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Wavelength and peak intensity . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Spatial pulse shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Temporal pulse shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Splashing and solidification 75

5.1 Axisymmetric splashing model . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Planar solidification model . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Numerical methods for solidification . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.2 Enthalpy Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.3 Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Computational platforms 93

6.1 Scientific computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Conclusions and Recommendations 101

Bibliography 105

Index 109

Summary 111



Contents ix

Samenvatting 113

Acknowledgements 115

Curriculum vitae 117





CHAPTER 1

Introduction

1.1 Background

In the gas turbine industry there is ongoing research into making ’better’ turbines,
resulting in more efficient, safer, more environmentally friendly and more silent en-
gines. Figure 1.1 shows an aero-engine. In Figure 1.2 a schematic overview of such

Figure 1.1: Cross section of a Rolls-Royce Tay aero-engine.

an aero-engine is depicted. The airfoils at the left are called the fans. Air is acceler-
ated by these fans after which it is partly led through the by pass duct and partly
into the compressor stages. In this compressor, air is compressed going from the low
pressure to the high pressure stage. The compressed air is led into the combustion
chamber. The hot air leaving the combustion chamber is led through the turbines,
from the high pressure part to the low pressure part.
For thermodynamical reasons the efficiency of a turbine can be greatly enhanced by
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1 = inlet duct
2 = fan rotor
3 = outlet guide vanes
4 = engine section stator

    5 = bypass duct
    6 = low-pressure compressor
    7 = high-pressure compressor
    8 = combustion chamber
  

      9 = high-pressure turbine
    10 = low-pressure turbine
    11 = turbine exhaust duct
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Figure 1.2: Schematic overview of an aero-engine.

increasing the temperature in the combustion chamber and the first high pressure
turbine stages. Combustion chamber temperatures have increased up to 1600◦ C
over the past decade. This means that the gas turbine components have to cope with
these extreme conditions. Figure 1.3 shows the result of what an aero-engine man-
ufacturer wants to avoid: damage through overheating, in this case in overheated
turbine blades.

In the development of turbine blades (which rotate) and vanes (which are static) ca-
pable of dealing with increasing Turbine Inlet Temperature (TIT) three methods were
used. The first is concerned with the material the airfoils are made of and how they
are casted. A first aspect is that the airfoils material has resulted in better mechani-
cal and heat resistance properties. Furthermore, better casting techniques made the
blades stronger with respect to both mechanical and heat resistance sense. This led
from (i) the conventionally cast turbine blade, with good mechanical properties in
all directions and an equi-axed crystal structure, via (ii) the directionally solidified
turbine blade, with improved mechanical properties in the longitudinal axis and a
columnar crystal structure, to (iii) the single crystal turbine blade, with excellent
mechanical properties in longitudinal axis and improved heat resistance. A second
technique to be able to increase the thermal load on the turbine blades and vanes
without damaging them is to cover the airfoil with a coating which creates a sort of
thermal barrier. The third method used is to cool the blades. This cooling is done
both internally and through film cooling. In both techniques relatively cold air takes
care of the cooling. In the sixties the blades were cooled only internally through
either drilled longitudinal holes or through cavities created during the casting pro-
cedure. Because the TIT increased ever further, this internal cooling technique was
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Figure 1.3: Overheated turbine blades.

not sufficient. In the seventies film cooling was introduced on top of the internal
cooling. In film cooling, air flowing through holes drilled from the exterior to the
interior cavities creates a cold air film layer across the surface of the blades. This film
layer prevents the hot combustion gases to get into direct contact with the blade.
Nowadays this film cooling is used, together with improved internal cooling. This
development in turbine blade cooling techniques is shown in Figure 1.4.

Usually the cooling holes are produced by some form of drilling. There are sev-
eral techniques to drill these holes in metal, the biggest drawback of most of them
being the speed of the process. Mechanical drilling is not suited for superalloys; me-
chanical punching is fast but is limited to holes with a diameter larger than 3mm.
Electro Chemical Drilling (ECD) is also slow and, as a side effect, produces a lot of
waste, however, it does give neat holes. The procedure of ECD has been modelled
in [30]. Electric Discharge Machining (EDM), or spark erosion, is also slow and can-
not be used for coated materials. ECD and EDM have typically drilling speeds of
1–10 mm/min, but several holes can be drilled at the same time, using multiple elec-
trodes. Electron Beam Drilling (EBD) is fast, but needs a vacuum chamber. Holes can
also be drilled using a laser, which is of great potential because it delivers its energy
in a contactless and concentrated way, thereby drilling fast, typically 1–10 mm/sec.

To increase the TIT several parts have to be cooled and, as mentioned, one way
to achieve this is to drill cooling holes in the components. There are roughly four
groups of components that need to be provided with cooling holes. These are the
blades, the vanes, the inserts and the combution chambers. In blades, approximately
300 film cooling holes per blade need to be drilled, both of cylindrical and of fan
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Figure 1.4: Development of turbine blade cooling. In the 1960’s only single pass
internal cooling (left), in the 1970’s both single pass and multi-feed internal cooling
together with film cooling (middle). Nowadays, quintuple pass and multi-feed in-
ternal cooling together with extensive film cooling (right). The filled arrows denote
the flow of high pressure cooling air, the others of low pressure cooling air.

shaped form. The diameter of these holes ranges from 0.5 to 1.0 mm and their depths
vary between 3 and 10 mm. For the cylindrical holes a laser is often used, whereas
for the fan shaped holes EDM is better suited. For the vanes, the same more or
less holds. Approximately 500 holes per part need to be drilled, both cylindrical
and fan shaped. Again the laser is favoured for the cylindrical holes and EDM for
the fan shaped ones. In the inserts on average around 300 holes need to be drilled.
The holes are cylindrical, 0.3 – 3 mm in diameter. For these parts a laser gives the
best results. For the drilling of holes in the combustion chambers, where more than
100,000 holes per part need to be drilled, drilling speed is essential. The diameter of
the holes varies from 0.3 – 3 mm and the depth from 6 – 20 mm. As one can see, laser
drilling can be used extensively for drilling cooling holes in gas turbine components.
The actual laser drilling techniques will be outlined in the next section, with special
focus on laser percussion drilling.

1.2 Laser drilling

Since the first demonstrations of a ruby laser by Theodore Maiman in 1960, the laser
has always fascinated people. In its short life the laser has gained a popular im-
age that has more in common with science fiction than science. In fact, lasers have
become very important and commonplace tools. Lasers are nowadays applied in a
variety of fields, from reading bar codes at the local supermarket and CD-roms to
eye surgery applications. The main reason for its succes is that the laser delivers
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(a) Absorption (b) Spontaneous emission (c) Stimulated emission

Figure 1.5: Absorption and emission processes between two energy levels.

concentrated energy, where, when and in any desired quantity and furthermore, it
does so in a contactless and pure way. Because of this significant industrial potential
of the laser, it rapidly found its way into the field of processing materials through
an immense and still expanding number of applications. In the case of metals, the
applications are for instance surface hardening, welding, cutting and drilling.

Let us explain the working of a laser briefly. The basic laser consists of two mir-
rors which are placed in parallel to each other to form an optical resonator, that is a
chamber in which light would oscillate back and forth between the mirrors forever,
if not prevented by some mechanism such as absorption. One of the two mirrors
is partially transparent to allow some of the oscillating power to emerge as the op-
erating beam. The other mirror is totally reflecting. Between the mirrors an active
medium resides which is capable of amplifying the light oscillations by the mech-
anism of stimulated emission (the process after which the laser is named - Light
Amplification by Stimulated Emission of Radiation). When an atom in its “ground”
state absorbs a photon, it is excited, or raised to a higher energy state (Fig. 1.5(a)).
The excited atom may then radiate energy spontaneously, emitting a photon and re-
verting to its ground state (Fig. 1.5(b)). An excited atom can also be stimulated to
emit a photon when it is struck by an outside photon reverting it to its ground state
again (Fig. 1.5(c)). Thus in addition to the stimulating photon there is now a second
photon of the same wavelength, thereby amplifying the radiation. The laser sys-
tem can only operate if it has enough energy to become active and therefore needs a
pumping mechanism. There are several techniques to pump the active medium. A
DC or RF power supply is used in for instance CO2 and He/Ne lasers. A focussed
pulse of light was used in the first ruby laser and is used in for example the Nd:YAG
lasers. A schematic diagram of a laser is given in Figure 1.6.

When laser light, which is an electromagnetic wave, is incident on a metal surface,
electrons within the metal are driven into harmonic oscillation by this harmonic
wave. These conduction electrons undergo collisions with the thermally agitated
lattice or with imperfections and in doing so irreversibly convert electromagnetic
energy into joule heat. Evidently, the absorption of radiant energy by a material is a



6 Chapter 1: Introduction

pumping device

pumping device

active medium laser output

totally reflecting mirror partially reflecting mirror

Figure 1.6: A schematic diagram of a laser.

function of its conductivity.

In laser drilling the laser must be reasonably powerfull and this reduces the number
to only a few lasers currently, essentially the CO2, the Nd:YAG of Nd-glass and the
excimer lasers, see e.g. [39].

There are roughly three techniques to drill with a laser. The simplest way is to re-
move material through a single laser pulse. This technique is mainly used for drilling
narrow (< 1mm) holes through thin (< 1mm) plates. Another method, used to drill
wider (< 3 mm) holes in plates (< 10 mm), is to cut a contour out of the plate. This
technique is called laser trepanning drilling. The drilling process in which the laser op-

lens

laser

�

�

(a) Single pulse

rotating lens

laser

�

�

(b) Trepanning

lens

laser

�

�

(c) Percussion

Figure 1.7: Laser drilling methods. For single pulses the drilling depths t are
limited to 3 mm, for trepanning to 10 mm. For percussion drilling, holes up to 20
mm deep can be drilled. The diameter d of the holes drilled is typically 1 mm for
single pulse and percussion drilling and 0.5 – 3 mm for trepanning.

erates in a repeated manner, with short pulses, ranging from 10−12 to 10−3 s, which
are separated by longer time periods, is called laser percussion drilling. In this way the
laser builds up energy and operation in this manner allows for large bursts of energy.
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With this technique narrow (< 1 mm) holes up to 20 mm deep can be drilled. The
three techniques of laser drilling are depicted schematically in Figure 1.7. Figure 1.8
shows a laser trepanning drilling process in action.

Figure 1.8: A photograph of a laser drilling process. (Courtesy Eldim B.V.)

1.3 Problem setting

Laser percussion drilling is favoured over the older drilling techniques and the other
laser drilling techniques because it is by far the quickest. However, it still suffers
from some drawbacks. The first drawback is that a so called recast layer, that is,
resolidified material remains at the wall of the hole. Some resolidified material can
normally also be found at the entrance and exit of the hole, in which cases it is called
spatter and dross, respectively. Furthermore, the holes normally show some tapering:
the decrease of hole diameter with depth. Nowadays, one does not necessarely see
this tapering as a disadvantage any more, however, control of the taper angle and
reproducability is needed. Finally, occasionally the hole resulting from a laser per-
cussion drilling process shows barreling or a bellow shape; the local increase of hole
diameter. These terms are illustrated in Figure 1.9.
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barrelling

recast layer

spatter

dross
���

Figure 1.9: Explanation of terms for the results of a laser percussion drilling pro-
cess. The taper angle is given by α.

A series of photographs of holes machined by laser percussion drilling can be seen in
Figure 1.10. The number denotes the number of pulses used to create the particular
hole. The growth rate of the hole is initially linear with the number of pulses but
slows down in later photographs. The eleventh hole appears not to be as deep as
the tenth, because melt has resolidified at the bottom. We note that from the seventh
photograph on, one can see the recast layer at the walls of the hole. This resolidifi-
cation may be in the form of very thin layers or clumps, the latter form can be seen
in the eleventh photograph. In the last three photographs molten metal may have
escaped via the bottom exit.

It is because of the drawbacks mentioned and illustrated above that many tests have
to be performed to find the optimal settings for the laser to produce the desired
hole. If a simulation model can be used this would have two huge benefits. First:
it would save a lot of costs because the number of tests on expensive material can
be brought down tremendously. Secondly, within a simulation model one is not
limited to practical issues such as for instance wave length or power limitations.
This means that one can try to find the ’ideal’ laser and settings to drill a particular
hole. Furthermore, in the process of modelling a deep insight is gained with respect
to what the key variables in the process are.

In laser percussion drilling the metal is removed by a combination of evaporation
and melt ejection. The latter mechanism is by far the most important one, the mass
fraction extracted by vaporisation is typically one tenth of the total mass loss [1, p.
133]. Furthermore, it is by far the most efficient one, as evaporation is much more
’expensive’ than melting. However, the melting is also the reason for the resolidifi-
cation, the main drawback of laser drilling. Evidently, in order to thoroughly model
laser percussion drilling, the modelling of phase changes, as well in laser induced
melting as in resolidification, is essential. In laser drilling in metals, it turns out that
the actual input of energy at the surface of the material can be considerably different
than expected from the output of the laser. This is due to reflections of the incoming
laser beam of the walls of the hole. Therefore the modelling of reflections is also
essential to be able to predict the outcome of a laser percussion drilling process.
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1 2 3 4 5 6 7 8 9

10 11 12 13 14 15

Figure 1.10: A series of photos of holes produced by laser percussion drilling. The
number of pulses to produce each hole is indicated. (Courtesy of ELDIM BV)

1.4 Outline of the thesis

In laser percussion drilling, several physical phenomenae play a role. All these phe-
nomenae will be studied in Chapter 2. After a short introduction describing the
different stages of a laser percussion drilling process in Section 2.1, more detailed in-
formation about lasers used in practice is given. Sections 2.3–2.5 then deal with the
heat flow problems, (i) the melting, (ii) the gas dynamics, being the driving force for
(iii) the splashing and solidification. Laser induced melting is described mathemati-
cally and it is shown that a one-dimensional model is adequate. The gas dynamics is
modelled in Section 2.4 resulting in a system of equations, which, given the material
and beam properties, gives an estimate for the recoil pressure. This recoil pressure
is the driving force for the splashing and solidification; these two phenomenae are
described mathematically in Section 2.5.

Having treated the basic equations in Chapter 2, it is time to zoom in onto the various
subproblems. In Chapter 3 we study the laser induced melting, that is we formulate
and solve phase change occuring in the material under influence of the incoming
laser energy. We extensively investigate the two ways to formulate the phase change,
the Stefan problem, which treats the phase change interface as a moving boundary,
and the enthalpy problem, which makes use of this physical quantity to simplify the
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equations. These two methods are assessed and numerical solving techniques are
derived. Although Chapter 2 shows that a one-dimensional model is sufficient for
laser induced melting, some attention will be paid in Section 3.3 to the extension
of the two formulations to 2D, because the splashing and solidification models, in
which phase change occurs as well, do have essentially two spatial dimensions. The
results obtained following the numerical procedures as outlined in Section 3.2 are
presented and assessed in Section 3.4.
In Chapter 4 the laser comes into the picture again. Section 4.1 deals with the re-
flections of the incoming beam, which are extremely important to the result of the
process. In fact, due to reflections, the actual irradiation distribution at the suface of
the material can differ a lot from the distribution supplied by the laser.
In Section 4.1.1 the equations describing the reflection of an electromagnetic wave on
a metal are summarized. The procedure to find the actual distribution of irradiation
on the metal surface after multiple reflections is outlined in Section 4.1.2. Results
obtained following this procedure are presented in Section 4.1.3 and here the need
to incorporate a reflection model becomes obvious. Sections 4.2 to 4.4 subsequently
deal with the implications the laser beam itself has on the resulting holes. The effects
the wave length and peak intensity the laser supplies as well as its temporal and spa-
tial pulse shapes have on the results of the drilling process are studied. The advan-
tage modelling has in this respect is that the mathematical system is not restricted to
practical issues. One can freely experiment with changing wavelength, peak intensi-
ties, spatial and temporal irradiation distributions without bothering about whether
or not these are possible in the state of the art equipment. This aspect shows a huge
power of mathematical modelling. One can actually try to find the ’ideal’ laser for
laser percussion drilling. A complete simulation of a typical laser percussion drilling
process is carried out in Section 4.5.
The equations describing splashing and solidification as derived in Chapter 2, are
subject of study in Chapter 5. An asymptotic analysis of these equations yields first-
order models for axisymmetric splashing and planar solidification in Sections 5.1
and 5.2, respectively. A numerical solution procedure for the solidification model is
then outlined in Section 5.3. Within this numerical procedure several techniques are
employed. Finite element techniques are used to obtain temperature and enthalpy
distributions in both the solid and the liquid and as a result of this the position of
the solid-liquid interface is obtained. Coupled with this the movement of the liquid
blob follows from equations which are solved by means of slope limiter schemes.
Chapter 6 discusses the computational platform on which the simulation model is
based. Section 6.1 shows the benefits a visual programming environment has over
non-graphical ones. Furthermore, by adorning existing libraries with a standard in-
terface these can easily be used within a broader framework. The construction of
such an interface is outlined in Section 6.2. Finally, in Chapter 7 we give a short
overview of findings made in this thesis. Furthermore, some recommendations are
made to further enhance the model.



CHAPTER 2

The global model

This chapter is concerned with the modelling issues of the laser percussion drilling
process. The process will first be studied from a phenomenological, that is physi-
cal, viewpoint in Section 2.1. The next sections deal with the key phenomena: the
laser itself, melting, vaporisation, splashing and solidification. In Section 2.2 several
different aspects of the laser will be studied. Section 2.3 will look closer at melt-
ing, Section 2.4 at the gas dynamics and the last section in this chapter will focus on
modelling of splashing and solidification.

2.1 Introduction

Lasers are often used to machine materials when conventional techniques fail. Laser
percussion drilling is one of these applications. For instance, this drilling technique
is used to drill cooling holes in gas turbine components, which are typically made
of super alloys. The term “percussion” refers to the repeated operation of the laser
in short pulses (10−3 s), which are separated by longer time periods (10−2 s). The
energy supplied by the laser is bounded, and pulsewise behaviour allows for large
bursts of energy. We return to the laser and the laser beam in the next section.

The actual drilling consists of two material removal mechanisms: removal by evap-
oration and removal by melt ejection. The second mechanism has to be explained
futher. Because of the vapour pressure (commonly referred to as the recoil pressure),
the vapour is pushed away from the surface. At the same time, this recoil pressure
exerts a force on the melt pool and this melt is being squirted out. These two mech-
anisms are sketched in Figure 2.1.

Experiments show, see e.g. [1], that using the laser percussion drilling technique in
the intensity régimes used at Eldim BV and Rolls Royce plc., most of the material re-
moved is liquid. The energy needed to liquify the material is far less than the energy
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Figure 2.1: Schematic diagram of the material removal mechanisms in laser drilling.

needed to vaporise it and, therefore, this melt ejection is an efficient mechanism to
remove material. However, melt ejection also suffers from the important drawback
of depositing a resolidified layer, the so called recast layer, at the walls of the hole.

A laser percussion drilling process may in fact be split up into three stages. Initially,
a thin region of molten material is formed by absorption of laser energy at the target
surface. After some time, the surface of this melt pool reaches vaporisation temper-
ature. The sudden expansion of the vapour evaporating from the surface leads to
the final stage: the meltpool is being pushed out by the recoil pressure. On its way
out some part of this molten material may resolidify at the walls. Thus, during these
three stages three events occur for which a melting model is needed. These events
are depicted in Figure 2.2. A simple melting model can be used to predict the precise
dimensions of the melt pool, as generated by the incoming radiation, see Fig 2.2(a).
In fact, we can show that a one-dimensional melting model applies for the initial
stage. The motivations for this as well as the vices and virtues of existing formu-
lations to model this laser induced melting are studied thoroughly in Section 2.3.
More sophisticated models are needed to deal with splashing (Fig 2.2(b)) and with
solidification (Fig 2.2(c)). These models will be introduced in Section 2.5.

The physics suggest that the process per pulse behaves in a cyclic manner. That is,
the material is heated up due to the laser irradiation. The surface reaches melting
temperature and a melt pool starts to form. At a certain moment, the surface of this
melt pool reaches vaporisation temperature. A splash occurs in which the molten
material is pushed out radially by the pressure gradients caused by the sudden ex-
pansion of the vapour evaporating from the surface. The solid metal left exposed
after the splash now starts to absorb laser energy and so on. Based upon different
parameters, a typical number of cycles per pulse can be determined. As will become
clear in subsequent sections, for different materials, the time scales for these three
stages are between 10−5 s and 10−4 s for melting and between 10−6 s and 10−5 s for
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laser

(a) Formation of a melt
pool

laser

(b) Squirting out of
molten material

laser

(c) Recast layer

Figure 2.2: The three stages in a laser percussion drilling process: (a) melting, (b)
splashing and (c) resolidification.

splashing and solidification. The gas dynamics are assumed to be instantanious or
at least on a much smaller time scale than the other processes. We therefore expect
between 10 and 100 splashes within a millisecond pulse.

2.2 The laser

The laser used is of big importance to the process. Those who want to know more
about the basics of the laser are referred to [40]. The specifications of the laser used at
Eldim B.V. are the following. The laser used is a Nd:YAG (Neodymium in a Yttrium
Aluminium Garnet crystal) laser which emits light at a wavelength of 1064 nm. The
laser operates at an average power Pav [W], and emits its energy in sinusoidal pulses
as shown schematically in Figure 2.3. The pulse length tp is in the order of 1–4 msec
and the total amount of energy per pulse is given by Ep [J]. From this we can obtain
a lower bound for the relaxation time tr as follows:

tr ≥
Ep

Pav
− tp. (2.1)

Ideally, the laser produces a Gaussian beam, also known as the TEM00-mode, see
Figure 2.4(a). Although this will not be exactly the case in practice it is a reasonable
assumption. As an even better approximation one could use a superposition of the
TEM00-mode with higher order modes. This is studied in more detail in [47].

Knowing the waistw, i.e. the radius at which the intensity at the surface has dropped
by a factor e−2, and the maximum intensity Imax, see Figure 2.4(b), the intensity at
any point on the surface at any time within a pulse is given by

I(r, t) = Imaxe
− 2r2

w2 sin
(

πt

tp

)

. (2.2)
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.

I

tp

t

tr

Figure 2.3: The time dependent irradiation distributions of the laser beam. The
vertical axis depicts the irradiation whereas the horizontal axis depicts the time.
The Nd:YAG used at Eldim operates in sinusoidal pulses.

The constant Imax can, if the waist w is known, be derived from

2πImax

tp∫

0

∞∫

0

e
− 2r2

w2 sin
(

πt

tp

)

rdrdt = Ep. (2.3)

Solving (2.3) for Imax gives

Imax =
Ep

tpw2
. (2.4)

The waistw of a Guassian laser beam at the surface can be derived using optics. The
laser beam emitted is focussed by a lens with a focal length f (normally 254 mm (i.e.,
10”)) and the waist of the beam w0 is given at the lens. A first approximation of the
waist at the surface can be obtained using linear optics giving

w =
z

f
w0, (2.5)

where z denotes the distance of the focal point to the surface. A more accurate calcu-
lation of the waist at the surface can be done using the principles of Gaussian beam
focussing, see [40, Chapter 17]. We note that the VSM-number, denoting twice the
waist spot size w0, of the lens used is known. From this we can derive the waist
at the surface. Another important aspect concerning the laser beam is its incidence
at the surface. Part of the incident laser light is absorbed at the surface and trans-
formed into heat, the rest is reflected. These reflected rays may again impinge on the
surface, where again part is absorbed and so on. In most models, these reflections are
completely ignored. We will use a distribution of incident intensities in our model.
Thus, we can incorporate reflections easily. The modelling of these reflections and
its implications on the process will be studied in Section 4.1.
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Figure 2.4: The spatial intensity distribution of a Gaussian (TEM00) beam. Fig-
ure (a) depicts this distribution and in Figure (b) a cross section is shown to visualise
the meaning of the waist w of a beam.

2.3 Melting

The lasers used in practice to drill holes typically produce a Gaussian intensity distri-
bution, which is, ideally, axisymmetric. Moreover, further examination shows that
radial diffusion is negligible, which can be seen as follows: take an axi-symmetric
coordinate system, where z = 0 denotes the surface of the irradiated material, see
Figure 2.5. The density ρ, the specific heat capacity c and the thermal conductivity k

material

�

�

laser

Figure 2.5: Geometry of the model.

of the material are known and assumed to be constant. The temperature T in the ma-
terial is governed by the heat equation in cylindrical coordinates, which, employing
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Symbol Definition Value
Al W

ρ density 2.7× 103 kg m −3 19.3× 103 kg m −3

Lf latent heat of fusion 3.6× 105J kg−1 2.5× 105J kg−1

k thermal conductivity 2.3× 102 W m−1K−1 1.5× 102 W m−1K−1

c specific heat capacity 9.0× 102 J kg−1K−1 1.34× 102 J kg−1K−1

Tm melting temperature 9.3× 102K 3.65× 103 K
Tv vaporisation temperature 2.5× 103 K 5.27× 103 K
µ viscosity 2.7× 10−3 Pa s
σ surface tension 1 kg s−2

Table 2.1: Physical data for drilling aluminium (Al) and tungsten (W).

Symbol Definition Value
λ wave length 1.064× 10−6 m
Iref energy input 1.5× 1010 W m−2

w waist 1× 10−3 m

Table 2.2: Physical data for the Nd:YAG laser beam.

the axisymmetry, is given by

ρc
∂T

∂t
=
k

r

∂

∂r

(

r
∂T

∂r

)

+ k
∂2T

∂z2
. (2.6)

The intensity distribution of the laser beam is given by I = I(r, t). The laser energy
is supplied at the surface z = 0, yielding

k
∂T

∂z
= −I. (2.7)

Before nondimensionalising we introduce some typical numbers. For the tempera-
ture we need the vaporisation temperature Tv and the melting temperature Tm. (In
Table 2.1 we give typical parameters for aluminium and tungsten.) For the radial
coordinate the waist, denoted by w, of the (Gaussian) laser beam is used as a typical
length scale. Furthermore, let Iref be a typical intensity. Some data for a Nd:YAG laser
used in drilling can be found in Table 2.2. From this we can define the dimensionless
variables (indicated by a superbar) by

z =:
k(Tv − Tm)

Iref
z̄, (2.8)

r =: wr̄, (2.9)

t =:
ρck(Tv − Tm)2

I2ref
t̄, (2.10)

T =: Tm + (Tv − Tm)θ. (2.11)
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Symbol Definition Value
Al W

ε k2(Tv − Tm)2/(w2I2ref) 6.1× 10−4 2.6× 10−4

θa (Ta − Tm)/(Tv − Tm) -0.4 -2.1
λf Lf/c(Tv − Tm) 0.25 1.16

Table 2.3: Dimensionless parameters for typical laser percussion drilling pro-
cesses in aluminium and tungsten.

The dimensionless length scale in z-direction comes from balancing the two terms in
the boundary condition (2.7). The dimensionless time scale t̄ as introduced in (2.10)
is the corresponding diffusive time scale, as follows from (2.6). Writing (2.6) together
with the influx of energy (2.7) in dimensionless form we obtain

∂θ

∂t̄
= ε

1

r̄

∂

∂r̄

(

r̄
∂θ

∂r̄

)

+
∂2θ

∂z̄2
, (2.12)

where

ε =
k2(Tv − Tm)2

w2I2ref
, (2.13)

and

∂θ

∂z̄
= −

I

Iref
, z̄ = 0. (2.14)

For typical laser percussion drilling parameters, ε � 1, see Table 2.3. Thus, radial
diffusion can be neglected on the typical scales and our model for the initial stage of
the laser percussion drilling process degenerates to a one-dimensional model. This
one-dimensional model will therefore be studied in the next chapter and we will only
use results of 2-D computations to validate this. Note that we will address phase
transitions in two spatial dimensions in the solidification and splashing models.

2.4 Gas Dynamics

In this section we consider the mathematical model of the gas dynamics of a metal
vapour. The model is used to predict the recoil pressure of the vapour on the molten
metal in the process of laser drilling. This recoil pressure is the driving force of the
so called splashing mechanism which is an important mechanism for the removal
of material in the drilling process. The high recoil pressures involved also cause
significant variation in the vaporisation temperature. A one-dimensional model will
be derived and results will be presented.

The following assumptions will be made:
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(i) the time-scale of the gas dynamics is much smaller than the time-scale of the
intensity variations,

(ii) there is no substantial interaction between the laser beam and the vapour (the
absorption coefficient of aluminium vapour is 0.5 cm−1 at 5000 K [17] and a
coaxial jet is employed to remove the vapour from the laser path),

(iii) the vapour and air behave as ideal gasses,

(iv) there is no mixing between the vapour and compressed air,

(v) the liquid-vapour interface has negligible width,

(vi) all the incoming laser energy is used to vaporise the melt,

(vii) the three-dimensional problem can be viewed as an infinite set of one-dimensional
problems parameterised by the intensity and

(viii) the compression waves have coalesced to form discontinuities leaving the
vapour and compressed air at constant pressure [25].

Through these assumptions, the gas dynamics for this problem is similar to the well-
known model of a shock tube. For more detailed information on the shock tube
model see e.g. [25, 31]. The gas dynamics for this particular problem has been in-
vestigated by several other authors. The two papers that are referred to most are the
papers by Anisimov [3] and Knight [23]. Here, the modelling is done in a similar
way to the one used in these papers except for the conditions on the liquid-vapour
interface.

A schematic representation of the physical situation is shown in Fig. 2.6, in which
four regions can be distinguished, as in [23]. The four regions are:

4 3 2 1

molten metal metal vapour compressed air ambient air

Figure 2.6: The geometry of the gas dynamics model.

À the ambient air

Á the compressed air

Â the metal vapour
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Ã the molten metal

These regions are separated by three interfaces: a shockwave between the ambient
air À and the compressed air Á, a contact surface between the compressed air Á and
the metal vapour Â, and the liquid-vapour interface between the metal vapour Â
and the molten metal Ã. Within these regions the variables are taken to be constant,
which is a normal procedure in the literature, see [25]. Across the shockwave we
have got the following Rankine-Hugoniot shock relations, see for instance [31, p. 83]

ρ1(U− u1) = ρ2(U− u2), (2.15)

p1 + ρ1(U− u1)
2 = p2 + ρ2(U− u2)

2, (2.16)

c1T1 +
1

2
(U− u1)

2 = c2T2 +
1

2
(U− u2)

2, (2.17)

where U is the speed of the shock, p the pressure, ρ the density, u the velocity, T
the temperature, c the specific heat capacity at constant pressure and the subscripts
denote the region of interest. These three equations are a consequence of conserva-
tion of mass, conservation of momentum and conservation of energy, respectively.
Across the contact surface we have, see [25, p. 81]

p2 = p3, (2.18)
u2 = u3. (2.19)

Let Lv denote the latent heat of vaporisation, I the laser intensity and cv the specific
heat capacity at constant volume of the melt. Across the liquid-vapour interface we
have

ρ4u4 = ρ3u3 (2.20)

p4 + ρ4u
2
4 = p3 + ρ3u

2
3, (2.21)

ρ4u4

(

cvT4 +
1

2
u24 +

p4

ρ4

)

+ I = ρ3u3

(

c3T3 + Lv +
1

2
u23

)

. (2.22)

These equations again represent conservation of mass, conservation of momentum
and conservation of energy, respectively. We note that

ρ3

ρ4
� 1,

so that from Equation (2.20) follows that

u4

u3
� 1,

furthermore,

ρ4u
2
4 � ρ3u

2
3,

1

2
u24 �

1

2
u23,

p4

ρ4
� p3

ρ3
.

Together with the assumption that all the energy is used to vaporise the material,

I = ρ4u4Lv,
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we arrive at the following set of equations

ρ3u3 =
I

Lv
, (2.23)

p3 + ρ3u
2
3 = p4, (2.24)

c3T3 +
1

2
u23 = cvT4. (2.25)

To close the system of equations, we must add three constitutive laws. We assumed
the metal vapour Á and the compressed air Â to be ideal gasses. This yields

p2 = R2ρ2T2, (2.26)
p3 = R3ρ3T3, (2.27)

where Ri for i = 2, 3 is the universal gas constant in the appropriate region. Across
the liquid-vapour interface we use the Rankine-Kirchhoff equation

p4(T4) = p4(Tref)

(

T4

Tref

)

c3−c4
R3

exp
{
L0

R3

(

1

Tref
−
1

T4

)}
, (2.28)

where the subscript ’ref’ refers to an arbitrary reference state and Lv = L0 + (c3 −

c4)T4. This Rankine-Kirchhoff equation is a first integral of the Clausius-Clapeyron
equation, see e.g. [24]. Because the quantities c∗, R∗, L, p1, u1, ρ1,4, T1 and p4(Tref) are
known, we can solve the system consisting of equations (2.15)-(2.19) and (2.23)-(2.28)
with respect to the intensity I.

The system of equations is rewritten as

f = 0, (2.29)

where f is defined by

f :=





























ρ1(U− u1) − ρ2(U− u2)

p1 + ρ1(U− u1)
2 − R2ρ2T2 − ρ2(U− u2)

2

c1T1 + 1
2
(U− u1)

2 − c2T2 − 1
2
(U− u2)

2

R2ρ2T2 − R3ρ3T3
ρ3u2 − I

Lv

ρ3u
2
2 + R2ρ2T2 − p4

c3T3 + 1
2
u22 − cvT4

p4 − p4(Tref)
(

T4

Tref

)

c3−c4
R3 exp

[

L0

R3

(

1
Tref

− 1
T4

)]





























. (2.30)

This set is then, depending on I, solved with respect to x, defined as

x :=

























u2
U

T2
ρ2
ρ3
p4
T3
T4

























. (2.31)



2.4: Gas Dynamics 21

With the parameters as given in Table 2.4 we get the results as shown in Figures 2.7
to 2.10. In Figure 2.7 the different velocities as a function of intensity are sketched.
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Figure 2.7: The different velocities as a function of intensity.

The speed of sound in aluminium vapour is included to show that the shock speed is
subsonic in our regime of laser intensities. Note that this is in contradiction with the
assumption that the shock speed is sonic, made in [18, 19]. The magnitude of these
velocities with the typical length-scale (∼ 1mm) allows us to determine the time-scale
for the gas dynamics (∼ 10−6 s). In Figure 2.8 the different densities as a function of
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Figure 2.8: The different densities as a function of intensity.

intensities are plotted. The ambient air density is included as a reference. One can
see that the compressed air density is much higher than the density of the metal
vapour. Figure 2.10 shows the pressures as a function of intensity. One can see that
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Figure 2.9: The different temperatures as a function of intensity.

the difference between the recoil pressure and the compressed air pressure becomes
larger with intensity. The radial pressure gradient can now be deduced from the
known variation of intensity with radius. This is a necessary input to the splashing
model. The high recoil pressure (p4) also causes the vaporisation temperature to
vary considerably over the intensity régime (shown in Figure 2.9). This also has to
serve as an input for the splashing model in which the vaporisation is included. A
first order approximation of the velocity with which the melt gets splashed out can
be found as follows. If we use the value for the recoil pressure as the driving force
for the splashing mechanism, we get the velocity by simply balancing the forces,

u =

(

2p

ρ

)
1
2

. (2.32)

The velocities found with this approximation are sketched in Figure 2.11. Note that
this order of magnitude is also mentioned by Von Allmen [1, p. 132].

2.5 Splashing and solidification

The mathematical modelling of splashing and solidification is considered in this sec-
tion. To see which physical phenomena play an important role in these processes
we first look at the parameter régimes in Section 2.5.1. As the mathematical model
of solidification is less complex than the splashing model we consider this first (Sec-
tion 2.5.2). The mathematical model of splashing is presented in Section 2.5.3. These
mathematical models will be studied further, both analytically and numerically, in
Chapter 5.
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2.5.1 Parameter régimes

The different parameters in the model depend on laser set-up, the material to be
drilled and the temperature, which for aluminium may vary from 300K to 2500K.
For the drilling of aluminium the parameters are given in Table 2.2 (see, for example,
[34]). With a length-scale of L ∼ 10−3m and thickness d ∼ 10−4m, a typical aspect
ratio is given by δ = d/L ∼ 0.1. Of course the aspect ratio changes considerably
during the ejection of the melt and the variation in viscosity can result in deviation in
the Reynolds number. With a typical maximum velocity given by U ∼ 50ms−1 (see
[1, p. 132]), we have the following dimensionless numbers. The Reynolds number,
which compares the effects of inertia and viscosity, is given by

Re :=
ρUL

µ
∼ 5 · 104. (2.33)

The Froude number, which compares inertia and gravity,

Fr :=
U2

Lg
∼ 2.5 · 105, (2.34)

where g is the acceleration due to gravity. The Prandtl number, which compares the
viscous time scale with that of heat conduction,

Pr :=
µc

k
∼ 10−2. (2.35)

The Peclet number, which compares the inertial time scale with that of conduction,

Pe := Re · Pr = 5 · 102. (2.36)
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Figure 2.11: The first-order estimate according to Eq. (2.32) of the velocity of the
expelled melt as a function of intensity.

The Brinkman number, which compares viscous dissipation of heat with heat conduc-
tion,

Br :=
µU2

k(Tv − Tm)
∼ 3× 10−5. (2.37)

Finally, we give the Weber number of the problem, which, if it is large, rules out sur-
face tension

We :=
ρU2L

σ
∼ 7× 103, (2.38)

where σ is the surface tension. The magnitude of the parameters motivates us to
consider the flow as inviscid with heat convection and conduction, neglecting vis-
cous boundary layers and gravity. Moreover, we assume that the vorticity is initially
zero, so that we may consider the flow as irrotational.

The melt ejection is considered axisymmetric. Because the radius of curvature of
the geometry is so much larger than the melt thickness, we adopt an axisymmetric
representation for the splashing and a planar representation for the solidification.
In the splashing model, we make the simplifying assumption that the entire fluid
interface is vaporising. However, it may very well be the case that only a fraction
is at vaporisation temperature and a mixed boundary value problem needs to be
studied. As the splashing model is more complex, we derive the solidification model
first.



2.5: Splashing and solidification 25

Parameter Value
R1 3.0 × 102 N m kg−1 K−1

R2 3.0 × 102 N m kg−1 K−1

R3 3.1 × 102 N m kg−1 K−1

c1 1.0 × 103 J kg−1 K−1

c2 1.0 × 103 J kg−1 K−1

c3 5.0 × 102 J kg−1 K−1

cp4 1.0 × 103 J kg−1 K−1

cv 1.0 × 103 J kg−1 K−1

Lv 1.2 × 107 J kg−1

Tref 2.5 × 103 K
p4(Tref) 1.2 × 105 N m−2

u1 0.0 m s−1

p1 1.0 × 105 N m−2

T1 3.0 × 102 K

Table 2.4: The data for the gas dynamics.

2.5.2 Planar solidification

We consider an incompressible fluid contained in the vertical direction by a bottom
defined by y = s(x, t) and a top defined by y = h(r, t) as indicated in Figure 2.12,
where x and y are the coordinates in the horizontal (along the side wall) and vertical
(perpendicular to this side wall) directions, respectively, and t is time. We denote
this liquid by Ωl.

y

x

y = s(x, t)

y = h(x, t)

Figure 2.12: Planar representation of solidification. The horizontal direction
(along the side wall) is denoted by x and the vertical direction (perpendicular to
this side wall) by y. The incompressible fluid is in the region s(x, t) < y < h(x, t)

and the solid is in the region y < s(x, t).

Solidified material is present in the region Ωs := y < s(x, t). The initial bound-
ary value problem for the velocity potential φ(x, y, t), temperature T(x, y, t) and un-
known free surfaces y = s(x, t) and y = h(x, t) is stated in the following. We have
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conservation of mass

∇2φ = 0, (2.39a)

conservation of energy

∂T

∂t
+ ∇φ · ∇T =

k

ρc
∇2T, (2.39b)

in the liquid. Conservation of energy in the solid leads to

∂T

∂t
=
k

ρc
∇2T in Ωs. (2.40)

On the solid-liquid interface, we have the melting isotherm

T = Tm, (2.41a)

conservation of mass

∇φ · ∇(y− s) = 0, (2.41b)

and the Stefan condition

ρLf
∂s

∂t
+ k [∇T ]

s+

s− · ∇(y− s) = 0 on y = s(x, t), (2.41c)

At infinity we have ambient temperature

T → Ta as y → −∞. (2.42)

The boundary conditions on the top surface are given by

D

Dt
(y− h) = 0, (2.43a)

∂φ

∂t
+
1

2
|∇φ|2 = 0, (2.43b)

∇T · ∇(y− h) = 0 on y = h(x, t). (2.43c)

The boundary conditions in (2.43) represent conservation. Eq. 2.43a is conservation
of mass, 2.43b of momentum and 2.43c of energy. For the general formulations of the
conservation of mass and energy boundary conditions, see [12].

We transform the system of equations (2.39)- (2.43) to the dimensionless variables
via φ = ULφ̂, T = Tm + (Tv − Tm)θ, s = dŝ, h = dĥ, x = Lx̂, y = dŷ and t = Lt̂/U,
where Tv is the vaporisation temperature at one atmosphere pressure. The solidifica-
tion model then becomes (and without ambiguity the hats on the non-dimensional
variables can be omitted)

∂2φ

∂x2
+
1

δ2
∂2φ

∂y2
= 0, (2.44a)
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Symbol Definition Typical Value
δ d/L 0.1

D k/ρcULδ2 0.2

λf Lf/c(Tv − Tm) 0.3

λv Lv(Tv)/c(Tv − Tm) 8

θa (Ta − Tm)/(Tv − Tm) −0.4

Table 2.5: Dimensionless parameters for a typical laser percussion drilling process
on aluminium.

∂T

∂t
+
∂φ

∂x

∂T

∂x
+
1

δ2
∂φ

∂y

∂T

∂y
= D

(

δ2
∂2T

∂x2
+
∂2T

∂y2

)

, in Ωl, (2.44b)

∂T

∂t
= D

(

δ2
∂2T

∂x2
+
∂2T

∂y2

)

, in Ωs, (2.45)

1

δ2
∂φ

∂y
=
∂h

∂t
+
∂φ

∂x

∂h

∂x
, (2.46a)

∂φ

∂t
+
1

2

(

(

∂φ

∂x

)2

+
1

δ2

(

∂φ

∂y

)2
)

= 0, (2.46b)

∂θ

∂y
= δ2

∂h

∂x

∂θ

∂x
on y = h(x, t), (2.46c)

θ = 0, (2.47a)

1

δ2
∂φ

∂y
=
∂φ

∂x

∂s

∂x
, (2.47b)

λf
∂s

∂t
+D

[

∂θ

∂y
− δ2

∂s

∂x

∂θ

∂x

]s+

s−

= 0, on y = s(x, t), (2.47c)

θ → θa as y → −∞. (2.48)

The dimensionless constants δ, D, λf and θa are defined, and typical values for alu-
minium given in Table 2.5. For the parameter δ, representing the aspect ratio, the
constraint δ2 � 1 typically holds in practice. The solidification model is regularly
perturbed in this small parameter and this fact will be exploited in Chapter 5.

2.5.3 Axisymmetric splashing model

Again, we consider an incompressible fluid contained in the vertical direction by
a bottom defined by z = s(r, t) and a top defined by z = h(r, t) as indicated in
Figure 2.13, where r and z are the coordinates in the axial and vertical directions,
respectively, and t is time. We denote this region by Ωl.
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z

r

z = s(r, t)

z = h(r, t)

Figure 2.13: Axisymmetric representation of splashing. The axial direction is de-
noted by r and the vertical direction by z. The incompressible fluid is in the region
s(r, t) < z < h(r, t) and the solid is in the region z < s(r, t).

Solidified material is present in the region Ωs := z < s(r, t). The initial boundary
value problem for the potential φ(r, z, t), temperature T(r, z, t) and unknown free
surfaces z = s(r, t) and z = h(r, t) is stated in the following.

We have conservation of mass

∇2φ = 0, (2.49a)

and energy

∂T

∂t
+ ∇φ · ∇T =

k

ρc
∆T, in Ωl, (2.49b)

in the liquid. Conservation of energy in the solid

∂T

∂t
=
k

ρc
∇2T in Ωs. (2.50)

On the vaporising surface, we have the vaporisation isotherm

T = Tv(p), (2.51a)

conservation of momentum,

∂φ

∂t
+
1

2
|∇φ|

2
+
p

ρ
= 0, (2.51b)

and conservation of energy

− I+ k

(

∂T

∂z
−
∂h

∂r

∂T

∂r

)

+

ρLv(Tv(p))

(

−
∂h

∂t
−
∂h

∂r

∂φ

∂r
+
∂φ

∂z

)

= 0. (2.51c)

Here p is the recoil pressure, I is the influx of laser energy, Tv(p) is the vaporisation
temperature as a function of recoil pressure, Lv(Tv(p)) is the latent heat of vaporisa-
tion. The solid-liquid interface is at melting temperature,

T = Tm. (2.52a)
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Furthermore, conservation of mass holds

∂φ

∂z
=
∂s

∂r

∂φ

∂r
, (2.52b)

and we have the Stefan condition

ρLf
∂s

∂t
+ k

[

∂T

∂z
−
∂s

∂r

∂T

∂r

]s+

s−

= 0. (2.52c)

At infinity we have ambient conditions

T → Ta as z → −∞, (2.53)

where Ta is the ambient temperature.

The recoil pressure, the input of laser energy and the vaporisation temperature are
required to complete the mathematical model for splashing. The recoil pressure is
obtained via the shocktube approach, which is outlined in the previous section.

We transform to dimensionless variables via φ = ULφ̂, T = Tm + (Tv − Tm)θ, s = dŝ,
h = dĥ, r = Lr̂, z = dẑ and t = Lt̂/U. By again omitting the hats on the non-
dimensional variables the axisymmetric splashing model then becomes

∂2φ

∂r2
+
1

r

∂φ

∂r
+
1

δ2
∂2φ

∂z2
= 0, (2.54a)

∂θ

∂t
+
∂φ

∂r

∂θ

∂r
+
1

δ2
∂φ

∂z

∂θ

∂z
=

D

{
δ2
(

∂2θ

∂r2
+
1

r

∂θ

∂r

)

+
∂2θ

∂z2

}
, in Ωl, (2.54b)

∂θ

∂t
= D

{
δ2
(

∂2θ

∂r2
+
1

r

∂θ

∂r

)

+
∂2θ

∂z2

}
, in Ωs, (2.55)

θ = θv(p̄), (2.56a)

∂φ

∂t
+
1

2

(

(

∂φ

∂r

)2

+
1

δ2

(

∂φ

∂z

)2
)

+ p̄ = 0, (2.56b)

1

δ2
∂φ

∂z
−
∂φ

∂r

∂h

∂r
−
∂h

∂t
= Ī−

D

λvL̄v

(

∂θ

∂z
− δ2

∂h

∂r

∂θ

∂r

)

on z = h(r, t), (2.56c)

θ = 0, (2.57a)

1

δ2
∂φ

∂z
=
∂φ

∂r

∂s

∂r
, (2.57b)

λf
∂s

∂t
+D

[

∂θ

∂z
− δ2

∂s

∂r

∂θ

∂r

]s+

s−

= 0 on z = s(r, t), (2.57c)
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θ → θa as z → −∞, (2.58)

where p̄ = p/ρU2, Ī = IL/ρdULv (where typically Ī ∼ 0.1) and L̄v = Lv/Lv(Tv) are
specified functions. The dimensionless constants δ,D, λf, λv and θa are defined, and
typical values for aluminium given in Table 2.5. For the parameters δ, representing
the aspect ratio and λv, the Stefan number for vaporisation, the constraints δ2 � 1

and 1/λv � 1 typically hold in practice. The model is a regular perturbation in these
small parameters. This fact will be exploited in Chapter 5 to derive an asymptotic
splashing model which will be solved numerically.



CHAPTER 3

Laser induced melting

In this chapter we will focus on the laser induced melting. Melting problems are
commonly known as Stefan problems named after J. Stefan, who wrote his famous
article about the building up of ice in polar seas in 1891, see [43]. Several formula-
tions of melting problems have been studied in literature so far; extensive overviews
can be found in [6, 7, 52]. We will focus on the formulation using the original Ste-
fan condition (see e.g. [4]) and the enthalpy method (see for instance [44, 48, 49]).
Furthermore, we will pay attention to finding suitable initial conditions for the for-
mulation using the Stefan condition in applying this method to the laser percussion
drilling process. To be able to deal with superalloys, we will assess the problems
both for materials having a melting range and for materials with a discrete melting
point. Furthermore, in the last section of this chapter the numerical issues related
to modelling of melting in two spatial variables will be addressed. This is not of
key importance to modelling of melting as such, but will be important in modelling
splashing and solidification.

3.1 Modelling melting

In this section we will outline two different ways to formulate the melting problem.
Each formulation will give rise to a numerical scheme with its own vices and virtues.
As shown in the previous chapter the importance of radial diffusion in laser induced
melting is negligible. Therefore, we will study the one-dimensional model. That is,
the axisymmetric model can be viewed as an infinite set of one-dimensional prob-
lems parameterised by the intensity, which is a function of the radial coordinate.

We shall consider two models. One is based on use of the Stefan condition; this will
therefore be referred to as the Stefan problem. The other is employing an enthalpy
formulation, and will be referred to as the enthalpy problem.
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3.1.1 The Stefan Problem

Let Ωl denote the liquid region 0 ≤ z < s(t) and Ωs the solid region s(t) < z < ∞.
Furthermore, let s(t) be the position of the solid-liquid interface. The geometry is
sketched in Figure 3.1. The temperature in both the liquid and the solid region is

ax
is

of
ro

ta
tio

n

r

z

0

Ωl

s(t)

Ωs

Figure 3.1: The geometry of the laser induced melting problem.

governed by the heat equation, which in dimensionless form reads

∂θi

∂t
=
∂2θi

∂z2
in Ωi for i = s, l. (3.1)

Here the subscripts s and l refer to solid and liquid, respectively. At the boundary
z = 0 the laser supplies an intensity I = I(r, t),

∂θl

∂z
= −

I

Iref
, z = 0. (3.2)

For a material to melt, an extra amount of energy has to be supplied, the latent heat
of fusion, which, in dimensionless form, is defined as

λf :=
Lf

c(Tv − Tm)
. (3.3)
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At the solid-liquid interface we need an equation that expresses this absorption of
heat needed for phase change. This equation is commonly known as the Stefan con-
dition and is given by

∂θl

∂z

∣

∣

∣

∣

z↑s
−
∂θs

∂z

∣

∣

∣

∣

z↓s
= −λf

ds

dt
, z = s(t). (3.4)

Moreover, the temperature is assumed to be continuous across the interface

θs = θl = 0 z = s(t). (3.5)

At infinity, the boundary condition

θs → θa, z → ∞ (3.6)

holds, where θa is the dimensionless ambient temperature of the material. We start
with a known temperature distribution

θ(z, 0) = θ0(z). (3.7)

3.1.2 The Enthalpy Problem

The enthalpy H is defined as the sum of the sensible and the latent heat in a sub-
stance. If a material is liquid it contains latent heat of fusion per unit mass Lf, in
addition to the sensible heat ρcT . Figure 3.2 shows the relation between the temper-
ature and the enthalpy for two different materials. Figure 3.2(a) shows this relation
for pure substances with a single melting-point temperature, whereas figure 3.2(b)
illustrates this relation for a material where the phase change takes place over an
extended temperature range from the solidus temperature Tsol to the liquidus tem-
perature Tliq. The region with temperature between the solidus and the liquidus
temperature is referred to as the mushy region. We define the dimensionless enthalpy,
η, by

η =






θ θ < 0,

[0, λf] , θ = 0,

θ+ λf θ > 0.

(3.8)

Vice versa, we have

θ =






η, η < 0,

0, 0 < η < λf,

η− λf η > λf.

(3.9)
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H

T

Hm + ρLf

Hm

Tm

(a)

H

T

Hliq

Hsol

Tsol Tliq

(b)

Figure 3.2: Relation of enthalpy and temperature for (a) pure crystalline sub-
stances and (b) glassy substances and alloys.

Likewise, the relationship between the dimensionless enthalpy and temperatures for
materials with a melting range is given by

η =






θ θ ≤ 0,

θ+ λf
θ

θliq
0 ≤ θ ≤ θliq,

θ+ λf θ ≥ θliq.

(3.10)

Note that θliq denotes the dimensionless liquidus temperature and that λf = Lf

c(Tv−Tsol)

now. The inverse relation between temperature and enthalpy in this case is

θ =






η η ≤ 0,

θliq

θliq + λf
η 0 ≤ η ≤ θliq + λf,

η− λf η > θliq + λf.

(3.11)

As has been shown in the previous chapter, the laser induced melting problem de-
generates to a one-dimensional problem. Like in the previous subsection we take
the material to be in z ≥ 0 with the surface at z = 0. The enthalpy and temperature
of the material in this region are governed by the energy equation in enthalpy form,
which, in dimensionless form, is given by

∂η

∂t
=
∂2θ

∂z2
, z > 0, (3.12)
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for materials with a discrete melting point. The boundary and initial conditions are
the same as in the previous subsection. The influx of energy is represented by

∂θ

∂z
= −

I

Iref
, z = 0. (3.13)

We assume an ambient temperature infinity

θ → θa, z → ∞, (3.14)

and we begin with a known initial temperature (and hence enthalpy) distribution

θ = θ0, t = 0. (3.15)

3.2 Numerical methods for melting

In this section we will consider the numerical techniques used to solve the Stefan
problem. These numerical methods relate to the various formulations of the melting
problem we saw in the previous section. Section 3.2.1 deals with a discretisation of
the formulation using the Stefan condition, in Section 3.2.3 a discretisation based on
the enthalpy method is dealt with. The PDE’s are numerically solved by the finite
element method. The finite element method is preferred to other methods such as
the finite difference method because of its versatility in dealing with complex bound-
aries. Though we saw that the melting problem degenerates to a one-dimensional
one, the procedure used to solve the enthalpy method can easily be generalised to
2D and 3D, which will be needed for the splashing and solidification models. This
procedure will be outlined in the next section.

3.2.1 Discretisation of the Stefan Problem

Finite element methods are a powerful tool in the solution of partial differential
equations, also when moving boundaries are involved cf. [6, 15]. One way to handle
such a moving boundary is to use subdomains that change with time. Another way
to deal with the moving boundary is to use a transformation, see e.g. [29]. The latter
method, however, is not applicable to problems where no liquid is present initially.

The derivation consists of the following steps: (i) a Galerkin formulation, (ii) a dis-
cretisation method and (iii) the solution of the resulting initial value problems with
(iv) suitable initial conditions. The last step involves some subtleties in our problem
and will be considered separately in the next subsection.

The problem to begin with is given in Section 3.1.1, but we simplify it by cutting off
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the domain at z = zb. The problem is then given by





∂θl

∂t
=
∂2θl

∂z2
, 0 < z < s(t)

∂θs

∂t
=
∂2θs

∂z2
. s(t) < z < zb

∂θl

∂z
= −

I

Iref
, z = 0,

θl = θs = 0;
∂θl

∂z

∣

∣

∣

∣

z↑s
−
∂θs

∂z

∣

∣

∣

∣

z↓s
= −λf

ds

dt
, z = s(t),

θs = θa, z = zb,

(3.16)

along with suitable initial conditions for the temperature and the position of the
solid-liquid interface s.

If θl satisfies the PDE in (3.16), then it also satisfies
s∫

0

{
∂θl

∂t
−
∂2θl

∂z2

}
v(z, t)dz = 0, (3.17a)

for all suitable weight functions v(z, t). Likewise θs satisfies
zb∫

s

{
∂θs

∂t
−
∂2θs

∂z2

}
w(z, t)dz = 0, (3.17b)

for all suitable weight functions w(z, t). Let the weight functions v(z, t) and w(z, t)

satisfy v(s, t) = w(s, t) = w(zb, t) = 0 for all t. Using integration by parts and the
first boundary condition of (3.16), (3.17) can be rewritten as

s∫

0

{
∂θl

∂t
v(z, t) +

∂θl

∂z

∂v

∂z

}
dz =

I

Iref
v(0, t), (3.18a)

and
zb∫

s

{
∂θs

∂t
w(z, t) +

∂θs

∂z

∂w

∂z

}
dz = 0. (3.18b)

To solve the Galerkin form (3.18), we compute approximate solutions of the bound-
ary and the temperature distributions. First we fix the time t and divide the domains
0 ≤ z ≤ s(t) and s(t) ≤ z ≤ zb into N and M equal subintervals, respectively. Next,
at each node in the liquid domain

zl,j = jhl, j = 0, . . . ,N; with hl = hl(t) =
s(t)

N
(3.19)
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we construct the usual hat function ϕl,j(z, t). The same is done for each node in the
solid part

zs,j = s(t) + jhs, j = 0, . . . ,M; with hs = hs(t) =
zb − s(t)

M
(3.20)

where the hat functions are denoted by ϕs,j(z, t). Note that in contrast with the
usual basis functions used for finite element methods, these basis functions depend
on time. For later use we note that

dzl,j

dt
= j
dhl

dt
=
j

N

ds

dt
, (3.21)

and

dzs,j

dt
=
ds

dt
+ j
dhs

dt
=
M− j

M

ds

dt
. (3.22)

Next we determine approximate solutions of the forms

θhl
(z, t) =

N∑

j=0

θl,j(t)ϕl,j(z, t), θhs
(z, t) =

M∑

j=0

θs,j(t)ϕs,j(z, t). (3.23)

Letting θl,N(t) ≡ 0, θs,0(t) ≡ 0 and θs,M(t) ≡ θa yields approximations θhl
(z, t)

and θhs
(z, t) that satisfy the Dirichlet boundary conditions at the interface and at

z = zb. The computational problem is to obtain the time-dependent coefficients
θl,j(t) for j = 0, 1, . . . ,N − 1 and θs,j(t) for j = 1, 2, . . . ,M − 1. Substituting these
approximations in the Galerkin forms for θl and θs, respectively, and taking the
weight functions v(z, t) andw(z, t) to be the hat functionsϕl,j andϕs,j, respectively,
yields the two systems of equations in matrix form

Ml

dθl

dt
+ Nlθl = bl, (3.24a)

Ms

dθs

dt
+ Nsθs = bs, (3.24b)

where θl = (θl,i), Ml = (Ml,ij), Nl = (Nl,ij), bl =
(

bl 0 · · · 0
)T , θs = (θs,i),

Ms = (Ms,ij), Ns = (Ns,ij) and bs = (bs,i).

The nonzero entries of the matrices and the vectors on the right hand side are the
following:

Ml,0 0 =
1

2
hl(t), Ml,i i = hl(t) i = 1, . . . ,N− 1, (3.25a)

Nl,i−1 i = −
1

6

3i− 2

N

ds

dt
−

1

hl(t)
, (3.25b)

Nl,0 0 =
1

6N

ds

dt
+

1

hl(t)
, Nl,i i =

1

3N

ds

dt
+

2

hl(t)
, i = 1, . . . ,N− 1, (3.25c)
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Nl,i+1 i =
1

6

3i+ 2

N

ds

dt
−

1

hl(t)
, (3.25d)

bl,0 =
I

Iref
(3.25e)

Ms,i i = hs(t), (3.25f)

Ns,i−1 i = −
1

6

3M− 3i+ 2

M

ds

dt
−

1

hs(t)
(3.25g)

Ns,i i = −
1

3M

ds

dt
+

2

hs(t)
, (3.25h)

Ns,i+1 i =
1

6

3M− 3i− 2

M

ds

dt
−

1

hs(t)
(3.25i)

bs,M−1 = Ta

(

1

3M

ds

dt
+

1

hs(t)

)

. (3.25j)

On the mass matrices Ml and Ms lumping is performed. Note that lumping is O(h2)

and therefore does not affect the order.

The Stefan condition in (3.16) can be approximated by

−λf
ds

dt
=






N−1∑

j=0

θl,j(t)
∂ϕl,j

∂z

∣

∣

∣

∣

z↑s
−

M−1∑

j=1

θs,j(t)
∂ϕs,j

∂z

∣

∣

∣

∣

z↓s




 . (3.26)

Using the properties of the hat functions this simplifies to

ds

dt
=
1

λf

{
1

hl(t)
θl,N−1(t) +

1

hs(t)
θs,1(t)

}
. (3.27)

Thus, the problem (3.16) has been changed to the system of initial-value problems
comprising (3.24) and (3.27), with suitable initial conditions. Note that this deriva-
tion for two-dimensional problem is not this straightforward because of the Stefan
condition.

The discretisation of the time derivatives in (3.24) and (3.27) will be done by the ϑ-
method. We will outline the procedure for Euler forward (EF) for the boundary and
a ϑ-method for the temperature distributions in the following.

Assume the temperature distributions and the position of the solid-liquid interface
are known at time level t = tk. We denote these by θkl , θks and sk, respectively.
Here tk = k∆t, where ∆t is the time step. Then, we compute sk+1 through the
EF-discretized version of (3.27)

sk+1 = sk +
∆t

λf

{
1

hl(tk)
θkl,N−1 +

1

hs(tk)
θks,1

}
. (3.28)
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Now the new mesh can be computed using (3.19) and (3.20). The temperature dis-
tributions at time t = tk+1 are now computed via the solution of the discretized
versions of the matrix equations (3.24).

(

I + ϑ∆t
(

Mk+1
l

)−1
Nk+1
l

)

θk+1
l =

(

I − (1− ϑ)∆t
(

Mk
l

)−1
Nkl
)

θkl + ∆t
(

ϑ
(

Mk+1
l

)−1
+ (1− ϑ)

(

Mk
l

)−1
)

bl
(3.29a)

and
(

I + ϑ∆t
(

Mk+1
s

)−1
Nk+1
s

)

θk+1
s =

(

I − (1− ϑ)∆t
(

Mk
s

)−1
Nks
)

θks+∆t
(

ϑ
(

Mk+1
s

)−1
bk+1
s + (1− ϑ)

(

Mk
s

)−1
bks
)

(3.29b)

where the superscripts in the matrix notations denote the time level at which they
are evaluated. We know that for ϑ = 1

2
(Crank-Nicolson) the time stepping is O(∆t2).

3.2.2 Finding suitable initial conditions

The major problem that remains is to find suitable initial conditions. This problem
will be addressed below by looking at the premelting problem.

In the heating-up stage, the temperature θ in the material is governed by

∂θ

∂t
=
∂2θ

∂z2
, z > 0. (3.30)

The (dimensionless) energy, which we denote by F, is supplied at the surface:

∂θ

∂z
= −F, z = 0, (3.31)

and we assume an ambient temperature both at infinity

θ → θa, z → ∞, (3.32)

as well as initially

θ = θa, t = 0. (3.33)

We can find the analytical solution to (3.30)-(3.33) using Laplace transformations.
This yields

θ(z, t) = F

{
2

(

t

π

)
1
2

exp
(

−
z2

4t

)

− z erfc
(

z

2t
1
2

)

}
+ θa. (3.34)
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Figure 3.3: The position of the solid-liquid interface where the absorption of latent
heat is neglected for the case of aluminium.

Therefore, when latent heat is neglected, the position s of the solid-liquid interface is
found from

I

Iref

{
2

(

t

π

)
1
2

exp
(

−
s2

4t

)

− s erfc
(

s

2t
1
2

)

}
+ θa = 0, (3.35)

for all t. In Figure 3.3 this position is sketched for aluminium. This yields the
right initial value of ds

dt
. From this we compute s(∆t) by an EF step. Furthermore,

from (3.34) it follows that at time t = tm, with

tm =
I2refθ

2
aπ

4I2
, (3.36)

the surface starts to melt.

Now we need initial conditions for the temperature distributions. From the Stefan
condition (3.16) it follows that

∂θs

∂z

∣

∣

∣

∣

z↓s
= λf

ds

dt
−
∂θl

∂z

∣

∣

∣

∣

z↑s
≈ λf

ds

dt
−

I

Iref
, (3.37)

for s small. Therefore we let

θs,j(∆t) =

|θa| exp
(

−
(zs,j − s)2F2

θ2aπ

)

−F(zs,j−s)erfc
(

(zs,j − s)F

|θa|
√
π

)

+θa, j = 1, . . . ,M−1,

(3.38)
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be the initial temperature distribution in the solid at time level t = ∆t to our compu-
tational problem as sketched in Section 3.2.1, where

F =
I

Iref
− λf

ds

dt
. (3.39)

Because s(∆t) is small, we take the temperature distribution in the liquid at time
level t = ∆t to be linear

θl,j(∆t) =
I

Iref
(s− zl,j) , j = 0, . . . ,N− 1, (3.40)

satisfying the boundary conditions at z = 0 and z = s.
Note that this approach cannot easily be extended to cover problems with variable
energy supply.

Now, our numerical method to obtain the depth of the melt pool generated by the
laser is solvable.

3.2.3 Discretisation of the Enthalpy Problem

A discretisation of the enthalpy method in one spatial dimension which uses finite
differences is described in Tacke [44]. However, the extension of this model to two
spatial dimensions is very hard and becomes even harder when moving boundaries
(as in the solidification problem) come up. The finite element method again looks
promising to handle these kind of problems.

Again, the derivation of the finite element method consists of the following steps: (i)
a Galerkin formulation, (ii) a discretizing method and (iii) the solution of the result-
ing initial value problems with suitable initial conditions.

The problem to begin with is comprised by (3.12)-(3.15) and Eq. (3.8) or (3.10). Again,
the domain is bounded at z = zb and we let Ω = (0, zb). We search for a weak
solution by solving

∫

Ω

∂η

∂t
vdz =

I

Iref
v(0) −

∫

Ω

∂θ

∂z

∂v

∂z
dz, (3.41)

together with the relationship between η and θ as expressed in Eq. (3.8) or (3.10).

To solve this Galerkin form, we compute approximate solutions of the temperature
and enthalpy distributions, from which the position of the solid-liquid interface then
follows a posteriori. First we fix the time t and divide the domain 0 ≤ z ≤ zb into N
subintervals. At each node in this domain we construct the hat function ϕi(z). Next
we determine approximate solutions of the forms

η̃(z, t) =

N∑

i=0

ηi(t)ϕi(z), θ̃(z, t) =

N∑

i=0

θi(t)ϕi(z). (3.42)
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Letting ηN(t) ≡ η(θa) and θN(t) ≡ θa takes care of the ambient conditions at z = zb.
The computational problem is to obtain the time-dependent coefficients ηi(t) and
θi(t) for i = 0, . . . ,N − 1. Substituting the approximations into the Galerkin form
and taking the weight function v(z) to be the hat functions ϕj(z) for j = 0, . . . ,N− 1,
we obtain the set of equations in matrix form:

M
dη

dt
= b − Nθ. (3.43)

Here, η = (η0(t), . . . , ηN−1(t))
T and θ = (θ0(t), . . . , θN−1(t))

T . The entries of the
matrices and vector are given by

Mi j =

zb∫

0

ϕiϕjdz, i, j = 0, . . . ,N− 1, (3.44a)

bj =
I

Iref
ϕj(0) − Ta

zb∫

0

dϕN

dz

dϕj

dz
dz, j = 0, . . . ,N− 1, (3.44b)

Ni j =

zb∫

0

dϕi

dz

dϕj

dz
dz, i, j = 0, . . . ,N− 1. (3.44c)

Thus, we have a set of initial value problems which, together with the relationship
between enthalpy and temperature, can be solved numerically.

In order to show how we solve (3.43) by the ϑ-method, we rewrite (3.43) as

M
dη

dt
= F(η, t) := b(t) − Nθ(η). (3.45)

The enthalpy and temperature distributions in the material at time t = tk+1 are then
computed by the ϑ-method. We obtain

G(ηk+1) := M(ηk+1− ηk) −∆t
(

ϑF(ηk+1, tk+1) + (1− ϑ)F(ηk, tk)
)

= 0. (3.46)

This system can be solved together with the pointwise relationship of enthalpy and
temperature as in (3.8) or (3.10).

For ϑ = 0 the procedure is simply the following. Compute the enthalpy distribution
in the material at time t = tk+1 via

Mηk+1 = Mηk + ∆tF(ηk, tk), (3.47)

and then update the temperature via the inverse relation of (3.8) or (3.10) to get

θk+1
i = θ(ηk+1

i ). (3.48)

We note that this discretisation converges to the weak solution for ordinary Stefan
problems, see e.g. Elliot and Ockendon [15].
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Chosing a ϑ 6= 0 will lead to a system of nonlinear algebraic equations which can be
solved by Newton’s method. The iteration to obtain the solution at t = tk+1 is as
follows






ηk+1,l = ηk+1,l−1 − (∂G(ηk+1,l−1))−1G(ηk+1,l−1), l = 1, 2, . . . ,

ηk+1,0 = ηk.

(3.49)

Here, the notation ∂G(η) denotes the Jacobian of G(η) and is given by

∂G(η) = M + ∆tϑN
∂θ

∂η
(η). (3.50)

The iteration in (3.49) is stopped if a given accuracy is reached.

In this time-stepping algorithm we will begin with an initial solution given by the
analytical solution (3.34) to the pre-melting problem, as given in the previous sub-
section. Results will be assessed in Section 3.4.

3.3 Extension to 2D

In the various techniques in modelling the melting for the laser percussion drilling
process, we encounter several problems. The main problem is that the splashing and
solidification models are essentially 2D. Therefore, our computational model has to
cope with that.

The extension to two spatial dimensions is necessary in solving the splashing and
solidifcation models. We will show how this is done by the axisymmetric version of
our melting model. The geometry for the formulation using the Stefan condition is
sketched in Figure 3.4.
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Figure 3.4: The geometry for the Stefan formulation.

The dimensional form of the problem is as follows.






ρc
∂Ti

∂t
= div (k grad Ti), in Ωi, i = s, l,

Ts = Ta, on Γ1 ∪ Γ2,

k
∂Ts

∂n
= I(r, t), on Γ3,

k
∂Ts

∂n
= 0, on Γ5,

k
∂Tl

∂n
= I(r, t), on Γ6,

k
∂Tl

∂n
= 0, on Γ7,

Ts = Tl = Tm, k
∂T

∂n

∣

∣

∣

∣

s

l

= ρLfvn, on Γ4.

(3.51)

Here, the normal on Γ4 points into the solid and vn is the velocity in normal direction.
In this axisymmetric domain, the Stefan condition can be rewritten if we denote the
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position of Γ4 by z = s(r, t). The Stefan condition takes the form, see [33],
[

1+

(

∂s

∂r

)2
]

[

k
∂T

∂z

∣

∣

∣

∣

s

l

]

= ρLf
∂s

∂t
. (3.52)

The geometry for the enthalpy method is sketched in Figure 3.5.
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Figure 3.5: The geometry for the enthalpy method.

The dimensional form of the problem is now:





∂H

∂t
= div (k grad T), in Ω,

T = Ta, on Γ1 ∪ Γ2,

k
∂T

∂n
= I(r, t), on Γ3,

k
∂T

∂n
= 0, on Γ4,

T = T0, on t = 0,

(3.53)

together with the relationship between enthalpy and temperature as described in
Eq. (3.8) or (3.10).
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The numerical procedure of the 2D Stefan formulation is not straightforward be-
cause of the difficult interface condition, whereas the numerics of the 2D enthalpy
method is a simple extension of the 1D model. This is mainly because of the fact
that in the enthalpy method the position of the solid-liquid interface is not needed.
Numerical results of the 2D enthalpy method will be presented and discussed in the
next section.

3.4 Numerical results and discussion

In this Section we will discuss the results from the numerical models based on FEM
for the melting problem as derived in Sections 3.2 and 3.3. The results will be as-
sessed.

Because Eq. (3.27) is already O(∆t), we look at the O(∆t) time stepping schemes EF
and EB. Note that the results for the (explicit) EF-scheme are obtained using variable
time steps to ensure the stability of the scheme. For the Stefan condition method, the
(k+ 1)-th time step ∆tk+1 is taken to be

∆tk+1 = 0.4min((hl(t
k))2, (hs(t

k))2), (3.54)

to ensure that the stability condition

∆t ≤ 0.5h2 (3.55)

holds throughout both regions. Because we need to resolve the temperature in the
liquid region hl will be small and this puts a severe restriction on the time steps
used. So if we look at stability, this is in favour of the implicit method. However, for
both methods the error is O(∆t) +O(∆x2) so to reach the same accuracy we have to
take equally small time steps in both methods. In order to get a good estimation for
the dimensions of the melt pool, as needed in upcoming splashing and solidification
models, we need a high accuracy.

Furthermore, for the explicit method (ϑ = 0), Eqs (3.29) simplify because of the
lumped mass matrices. The matrix in front of Tk+1

l,s is simply I. In other words,
for this explicit method we do not need to solve a system of equations each time
step. The amount of flops to solve a tridiagonal system of n equations is, when one
makes use of the sparsity, asymptotically 3n, see e.g. [8], so here this means an ex-
tra amount of calculations of O(N) +O(M). From this we see that the total balance
therefore is in favour of using explicit methods after all.

Because the position of the solid-liquid interface is not needed explicitly in the en-
thalpy method, the restriction on the time step to be used in the enthalpy method is
somewhat less severe. The time step ∆t (which is constant now) can taken to be

∆t = 0.4h2. (3.56)

The results for the EB-scheme for ∆t = 0.01 are shown in Figures 3.6 to 3.8. In Fig-
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Figure 3.6: The temperature distribution in the liquid part at the time at which
the surface reaches vaporisation temperature.
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Figure 3.7: The temperature distribution in the solid part at the time at which the
surface reaches vaporisation temperature.
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Figure 3.8: The position of the solid-liquid interface. The numerical (with latent
heat) position is denoted by the solid line, whereas the analytical (without latent
heat) position is denoted by the dashed line.

ures 3.6 and 3.7 the temperatures in the liquid and the solid are shown, respectively,
at the time at which the surface reaches vaporisation temperature. Figure 3.8 shows
the evolution of the solid-liquid boundary. Here, the analytical solution in case of
latent heat is included as a reference to show its influence.

In Figure 3.9 the results for the two-dimensional model as derived in the previous
section are given compared to the results of the one dimensional analysis. The in-
tensity profile I(r, t) is assumed to be a Gaussian TEM00-mode, constant in time.
It is shown that the results for the one-dimensional model indeed give an almost
identical estimate of the dimensions of the melt pool.

If no phase change occurs, the numerics derived from the enthalpy problem are sat-
isfactory. For phase change problems, it is correct on average, since heat balances
are fulfilled throughout. However, calculated positions of the solid-liquid interface
and temperature and enthalpy oscillate with a period corresponding to the time the
interface needs to travel through a certain element. This phenomenon can be seen in
Figure 3.10. The plateau generated propagates to adjacent elements and smoothes
out only after the solid-liquid interface has travelled a sufficient distance from the
point under consideration.

This staircase-like behaviour has its cause in comparing average enthalpies per el-
ement with nodal temperatures. In problems in one spatial dimension this can be
overcome by an approach as suggested by Tacke [44]. This method works fairly
good, but can’t be extended to higher dimensional problems. Another solution is to
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Figure 3.9: The front at the time at which the surface in the origin reaches va-
porization temperature. The one dimensional result is denoted by the solid line,
whereas the result of the full two dimensional model is denoted by the dashed line.

use a finer grid near the front, the advantage of this is that it is easily extended to
higher dimensions. This is an important consideration in view of the splashing and
solidification models, see Smith [41].
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Figure 3.10: Time history plots for temperature in enthalpy problem for (a) 20
elements and (b) for 150.



CHAPTER 4

The effect of the laser beam

In this chapter we consider how the laser beam influences the laser drilling process.
We might be able to improve the process by selecting the laser with certain benefitial
properties. In order to get an idea of these parameters we can play with, we study
them in this chapter. Because the material reflects the incoming laser light to some
extent, the reflections of the incoming beam may play a major role in the geometry
of the drilled hole. This will be studied and modelled in Section 4.1. Section 4.2
reveals the influence of wavelength and peak intensity to the process. In Sections 4.3
and 4.4 the importance of spatial and temporal pulse shapes of the incident laser
beam, respectively, is assessed. Finally, in Section 4.5 an entire drilling simulation
consisting of several pulses is performed for one specific set-up of the Nd:YAG laser.

4.1 Reflections of the incoming beam

The knowledge that metals tend to reflect a lot of incoming light dates back to remote
antiquity. Early mirrors were made of polished copper and bronze and the word
specular originates from speculum, a copper alloy rich in tin. Because of this high
reflectance of metals, the reflections of the incoming beam play an important role in
the resulting hole geometry and therefore have to be taken into account. Because of
reflections the actual intensity distribution at the surface of the material may turn
out to be quite different than expected. And it is this actual intensity distribution at
the surface that is most vital to the outcome of the laser percussion drilling process.
In this section we use the Algebraic Ray Trace Method (ARTM), see [45], to find
this resulting intensity distribution. The ARTM is implemented and the results for
different settings of both laser and geometry are shown.
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4.1.1 Background

The parts of the energy of an incoming laser beam that are reflected and absorbed
depend on its angle of incidence θi, see Figure 4.1. It is exactly this dependence that
makes reflection important. When a ray si reaches a material, it is partially reflected

air or vacuum
dielectric medium

surface

nΓ

θi θr

θt

incident ray re
fle

ct
ed

ra
y

refracted
ray

si sr
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(a) Dielectric medium
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θ
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ct
ed
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si sr
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(b) Absorbing medium

Figure 4.1: Refraction and reflection of radiation at the surface of (a) a dielectric
and (b) an absorbing medium.

as sr and partially refracted as st, see Figure 4.1. Huygens’ law of reflection states
that the reflected direction follows the specular reflection defined as:

sr = si − 2(nΓ · si)nΓ . (4.1)

For incidence in air or vacuum on a dieletric we have Snell’s Law, which states that

sin θt

sin θi
=
1

n
, (4.2)

where θi and θt are the angles as defined in Figure 4.1(a) and n is the simple index of
refraction of the dielectric medium. For absorbing media such as metals, however,
we need to use the complex index of refraction defined by

ñ = n− ik, (4.3)

where n is the simple index of refraction, k the extinction coefficient. The simple in-
dex of refraction and the extinction coefficient depend on material properties and on
the wavelength of the incoming wave in vacuum, λ0 say. This dependence follows
from Maxwell’s equations and is given by [38, p. 101]

n2 =
µγc20
2




1+

[

1+

(

λ0

2πcoreγ

)2
]

1
2




 (4.4a)
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and

k2 =
µγc20
2




−1+

[

1+

(

λ0

2πcoreγ

)2
]

1
2




 , (4.4b)

respectively. Here, c0 the speed of the electromagnetic wave in vacuum. Further-
more, µ, γ and re are respectively the magnetic permeability, the electrical permit-
tivity and the electrical resistivity of the material. A good recent source of property
values for n and k is [32], containing extensive information for metals. For a ray
incident in air or vacuum on a metal, Snell’s law becomes

sin θt

sin θi
=
1

ñ
. (4.5)

As a consequence, sin θt is complex, and the angle θt can no longer be interpreted
physically as a simple angle of refraction for propagation into the material. Except
for the special case of normal incidence, n is no longer directly related to the propa-
gation velocity. The actual angle of refraction θ∗t , see Fig. 4.1(b), can still be calculated
from ñ and θi, albeit no longer via Snell’s law, see e.g. [38, pp. 109–110]. Note that
the refracted ray is strongly attenuated in metals as is evident from their exceed-
ingly small penetration depths (order of nanometers). This justifies the treatment
of the laser beam as a ’boundary’ source instead of a ’volume’ source in the mathe-
matical models. A wave that is attenuated as it travels through a medium is called
evanescent.

The Fresnel equations, see e.g. [5, 21, 38], relate the amplitude of the incoming wave
with the amplitudes of the reflected and the refracted waves, and, furthermore, do
so for both perpendicularly and parallelly polarised waves. We consider radiation
incident in air or vacuum on a material with properties n and k. For the case where
the E-field is perpendicular to the plane of incidence, the amplitude reflection coefficient
is given by

(

E0r

E0i

)

⊥

=
cos θi − ñ cos θt

cos θi + ñ cos θt
, (4.6)

and when the E-field is parallel to the plane of incidence by
(

E0r

E0i

)

‖

=
ñ cos θi − cos θt

ñ cos θi + cos θt
. (4.7)

Note that for metals these coefficients are complex. For the special case of normal
incidence, from Eqs. (4.6) and (4.7) we obtain, using Snell’s law (4.5),

(

E0r

E0i

)

⊥

= −

(

E0r

E0i

)

‖

=
1− ñ

1+ ñ
. (4.8)

The directional reflectivity of a material ρ(λ, θi) is defined as the ratio of the reflected
to the incident intensity of an incoming wave, yielding

ρ(λ, θi) =
Ir

Ii
. (4.9)
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The reflectivity depends on the wavelength λ through the index of refraction and on
the angle of incidence θi. The portion, A say, of the incident wave that is actually
absorbed by the metal is then simply

A(λ, θi) := 1− ρ(λ, θi). (4.10)

The reflectivity ρ(λ, θi) can be expressed in terms of the amplitude reflection coeffi-
cients

ρ⊥(λ, θi) =

∣

∣

∣

∣

(

E0r

E0i

)

⊥

∣

∣

∣

∣

2

=

(

E0r

E0i

)

⊥

(

E0r

E0i

)

⊥

(4.11a)

and

ρ‖(λ, θi) =

∣

∣

∣

∣

∣

(

E0r

E0i

)

‖

∣

∣

∣

∣

∣

2

=

(

E0r

E0i

)

‖

(

E0r

E0i

)

‖

, (4.11b)

where z is the complex conjugate of z.
For an unpolarized beam we have,

ρ(λ, θi) =
ρ⊥(λ, θi) + ρ‖(λ, θi)

2
. (4.12)

Because the relations for the two polarization directions are the same for normal
incidence, the reflectivity for normal incidence follows from (4.8) and is given by

ρ(λ, 0) = ρ⊥(λ, 0) = ρ‖(λ, 0) =
(n− 1)2 + k2

(n+ 1)2 + k2
. (4.13)

The reflectivities for oblique incidence can be found by substituting (4.6) and (4.7)
into (4.11). A more convenient way to present the results is to use the method of
effective indices to calculate ρ⊥(λ, θi) and ρ‖(λ, θi), see e.g. [5, 14].
In air or vacuum the effective indices ηi⊥ and ηi‖ for the perpendicular and parallel
components are defined by

ηi⊥ := cos θi, (4.14a)

ηi‖ :=
1

cos θi
, (4.14b)

respectively. In the absorbing material ηt⊥ and ηt‖ are complex and are defined by

ηt⊥ := ñ cos θt, (4.15a)

ηt‖ :=
ñ

cos θt
. (4.15b)

Here

cos θt =

(

(α2 + β2)1/2 + α

2

)

1
2

− i

(

(α2 + β2)1/2 − α

2

)

1
2

, (4.16a)
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with

α := 1+

(

sin θi

n2 + k2

)2

(k2 − n2) (4.16b)

and

β := −2nk

(

sin θi

n2 + k2

)2

. (4.16c)

Using these effective indices the amplitude reflection coefficients are given by
(

E0r

E0i

)

⊥

=
ηi⊥ − ηt⊥

ηi⊥ + ηt⊥
, (4.17a)

and
(

E0r

E0i

)

‖

=
ηi‖ − ηt‖

ηi‖ + ηt‖
. (4.17b)

The reflectivities can now be obtained using (4.11). Another form of these reflectivity
equations is given in [38],

ρ⊥(λ, θi) =
(nβ− cos θi)

2 + (n2 + k2)α− n2β2

(nβ+ cos θi)2 + (n2 + k2)α− n2β2
(4.18a)

ρ‖(λ, θi) =
(nγ− α/ cos θi)

2 + (n2 + k2)α− n2γ2

(nγ+ α/ cos θi)2 + (n2 + k2)α− n2γ2
, (4.18b)

where now

α2 :=

(

1+
sin2 θi

n2 + k2

)2

−
4n2

n2 + k2

(

sin2 θi

n2 + k2

)

,

β2 :=
n2 + k2

2n2

(

n2 − k2
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−

sin2 θi

n2 + k2
+ α

)

and

γ :=
n2 − k2

n2 + k2
β+

2nk

n2 + k2

(

n2 + k2

n2
α− β2

)

1
2

.

Figure 4.2 shows a typical distribution of the directional reflectivity of absorbing me-
dia as a function of the angle of incidence, for light waves polarised perpendicularly
or parallelly to the irradiated surface. Note the importance of the polarisation on the
reflectivity. The actual reflectivity of an incoming ray is the weighed sum of the re-
flectivities of the perpendicular and the parallel parts and for an unpolarized beam
given by (4.12). At steep sides almost all incoming energy is reflected; so if the hole
exhibits some tapering, this tapering is reinforced by reflection of incoming radia-
tion. This phenomenon is known as channeling. To be more general: the distribution
of irradiation at the surface is strongly influenced by reflections.
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Figure 4.2: Typical reflectivity for a linearly polarized beam incident on an absorb-
ing medium.

4.1.2 Computational method

The problem to solve is the following: given the intensity distribution supplied by
the laser and the geometry of the surface it is irradiating, compute the actual flux
of energy at this surface. The method that we use to solve this, is the Algebraic Ray
Trace Method (ARTM), derived and described in detail in [45]. We tailor this method
to employ it for our purpose. This is outlined below.

As in the previous chapters, the laser beam is assumed to be axisymmetric and for
the time being the vapour is assumed not to absorb any energy nor to scatter the
beam. The virtue of the ARTM is that eventual absorption and defraction of the laser
beam within the vapour cloud in between the laser exit and the metal surface can be
included easily. The method requires four groups of input:

The geometry The geometry of the computational problem actually consists of three
parts, (i) the surface of the irradiated metal, (ii) the boundary on which the laser
input is given and (iii) a closure, shown schematically in Fig. 4.3(a). These parts
will be denoted by Γs, Γi and Γc, respectively, and we define Γ := Γs ∪ Γi ∪ Γc.
Although we will take advantage of the fact that the beam is axisymmetric, the
geometry is 3D, as in Fig. 4.3(b), because the discrete direction set is 3D. We
will call the mesh M := {xi|i = 1, 2, . . . ,M} in the following.

The intensity distribution The intensity that the laser supplies for every direction
is given on a certain boundary.
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Figure 4.3: The geometry of the computational problem for the ARTM. Schemat-
ically in (a) and an example in (b).

A discrete direction set To limit the number of directions to a finite set S := {si|i =

1, 2, . . . ,N}, we use the Discrete Ordinate Method (DOM), see [45]. The influx
of energy is given in terms of this discrete set.

The reflectivity The optical behaviour of the metal under irradiation is governed
by the Fresnel equations. Furthermore, the index of refraction is a function of
the wavelength governed by (4.4). Complicating things further, phase of the
material and even temperature affect reflectivity behaviour. The latter is not
taken into account here, because there is not much data on this.

Given these four data structures, the ARTM builds the system of equations that de-
scribes the resulting irradiation at the surface of the material in terms of the intensi-
ties. This can on its turn be used as input for the simulation model. The procedure is
outlined below.

The intensity has to be discretized twice: a discretization in terms of the discrete
direction set, and a spatial discretization on the underlying grid. Because of the
assumption that the vapour is transparent, the mesh only consists of points on the
boundary, in contrast to the ARTM described in [45]. The discrete intensity is defined
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as

hij := I(xj, si), (4.19)

with xj ∈ M and si ∈ S. We follow a ray starting at xj back in direction −si until
the boundary is reached. Quantities related to such a ray are indicated with the
superscript ij. In general the intersection with the boundary xΓ does not coincide
with any of the nodes on the boundary. This means that we have to interpolate to
find the proper boundary intensity:

I(xijΓ , si)
.
=

M∑

m=1

vijmhim, (4.20)

where the interpolation coefficients vijm are determined for each ray separately. Through
Eq. (4.20) the intensity hij is related to the intensities at other points. Because there
is no absorption within the domain, this simply boils down to

hij =

M∑

m=1

vijmhim. (4.21)

If we furthermore define

σikjm := δikv
ij
m, (4.22)

where the Kronecker delta is used to make the coefficient σikjm operate over all
directions, we can rewrite (4.21) into

hij =

N∑

k=1

M∑

m=1

σikjmhkm. (4.23)

However, this ray tracing only holds for the case where rays fall onto the boundary,
i.e. the inner product of si and the inward pointing normal nj at xj is negative. For
rays that leave the boundary, i.e. (si · nj) > 0, another relation has to be used. Then,
the intensity hij is related to two contributions, see Fig. 4.4. First, it is related to the
other intensities h∗j at point xj through reflection equations. Secondly, it is related to
a possible prescribed incoming intensity rij at point xj through boundary conditions.
This discretized relation is given by

hij = rij + ρ(λ, θk)hkj. (4.24)

Here k refers to the direction sk related to the i-th direction si by means of Huygens’
law (4.1), that is,

si = sk − 2(nj · sk)nj.

Furthermore, ρ(λ, θk) is the reflectivity function as derived in the previous section
and θk is the angle between the incoming direction and the local normal. If this di-
rection is not an element of the DOM, hkj and thereby hij can be obtained from other



4.1: Reflections of the incoming beam 59

within domain
outside domain

boundaryxj

nj

θk θk
hij hkj

rij

Figure 4.4: The procedure of the ARTM for rays that leave the boundary. The
intensity hij of the ray in the direction si starting from xj is related to the possible
prescribed incoming intensity rij and the reflected part of hkj.

directions close to this direction through either interpolation or clipping. Note that
within our framework, the incoming intensity is prescribed on Γi. Furthermore, the
boundaries Γi and Γc are fictitious and therefore transparent. These two observations
lead to

rij = 0, for xj ∈ Γs ∪ Γc,

ρ(λ, θk) = 0, for xj ∈ Γi ∪ Γc.

Using a similar strategy as before to make σikjm operate over all points, we can
rewrite (4.24) to

hij =

N∑

k=1

M∑

m=1

σikjmhkm + rij. (4.25)

For simplicity, we rewrite the intensity as a vector h rather than a tensor, i.e. we place
the colums of the tensor below each other. Using this scheme to reorder the tensors
σikjm into R and rij into r, Eqs. (4.23) and (4.25) are transformed into the system

(I − R)h = r. (4.26)

Note that half of the coefficients in R are determined by (4.22) and the other half
by (4.24). The precise assembly of the matrix is done as follows. Every ray starts
from a node xj of the mesh. To find the intensity in direction si, we test whether the
inner product of the direction and the inward pointing normal is positive. If this is
the case, we have to use the reflection equations to construct the (N ∗ j + i)-th row
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Figure 4.5: Typical plot of the sparsity structure of R for a grid as in Fig. 4.3(b).
The system involves 17,136 unknowns. The number of non-zeros of R is only
68,418, i.e. 0.2 %.

of R. Otherwise, we use the ray trace procedure to fill the (N ∗ j + i)-th row of R.
Although the size of R is large, it is very sparse, see e.g. Fig. 4.5, and sparse solvers
can be used to solve (4.26).

However, we are not so much interested in the intensities as such. The intent of this
method was to predict the irradiation of the surface. To that end, we need the heat
flux q, which is determined by Fourier’s Law:

q = k∇T. (4.27)

The heat flux qj at point xj can be found from the intensities h∗j as follows

qj =

N∑

i=1

wisihij, (4.28)

where the wi’s are the weights determined by using the DOM. In the end, we are
interested in the influx of energy at the boundary and we get

nj · qj =

N∑

i=1

wi(nj · si)hij. (4.29)

So, given a geometry, the laser input and the reflectivity behaviour of the material
under irradiation, we can compute the actual irradiation distribution on the surface.
Some results are presented below.
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4.1.3 Results

In this section we present results, obtained using the ARTM as outlined in the pre-
vious section, for several geometries and spatial beam profiles. The first results pre-
sented here have been obtained using material data of tungsten and λ = 1064 nm, the
wavelength of a Nd:YAG laser. This corresponds to an index of refraction n = 3.04

and an extinction coefficient k = 3.52, see [42]. These n and k-values lead to a reflec-
tivity of 58% for normal incidence.
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Figure 4.6: Multiple reflection simulation on a Gaussian drill hole surface. The
surfaces are shown in the lower figures. The upper figures denote the irradiation.
The input irradiation distribution is Gaussian and is denoted by the solid line, the
actual distribution of irradiation is depicted by the dashed line.

Fig. 4.6 shows the effect that multiple reflections have on the actual distribution of
irradiation on the surface of the hole. The hole surface is taken to be Gaussian and
the depths are 5 and 10 mm, respectively. The lower part of both figures shows the
geometry, the upper part shows the distributions of irradiation. The distribution
supplied by the laser is indicated by the solid line and the actual distribution at the
surface of the hole by the dashed line. At the initial situation, that is no hole has
formed yet, the actual irradiation is just the non-reflected part (42%) of the input.
Figs. 4.6(a) and 4.6(b) clearly show that the energy the laser supplies is focussed to
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Figure 4.7: Multiple reflection simulation on a cubic drill hole surface. The sur-
face is shown in the lower figures. The upper figures denote the irradiation. The
input irradiation distribution is Gaussian and is denoted by the solid line, the ac-
tual distribution of irradiation is depicted by the dashed line.

the middle and at this center a very high energy concentration is found. Because
the irradiation is directly related to the amount of material that can be liquefied and
thereafter removed, tapering can easily be explained by this mechanism.

The influence multiple reflections have on the actual irradiation distribution strongly
depends on the shape of the hole surface. In Fig. 4.7 the hole surface is taken to be
a cubic polynomial. As can be seen by comparing Fig. 4.7 with Fig. 4.6, the incou-
pling of energy is far less efficient than with the Gaussian surface. Furthermore, the
energy is focussed to the center of the hole, but not as strongly as for the Gaussian
surface. These two examples show that multiple reflection phenomena are highly
geometrically dependent and a preassumed hole shape is therefore inappropriate
for simulation. Overall we see that in deeper holes multiple reflections occur and
therefore a significantly bigger part of the energy supplied by the laser is coupled
into the material. This enhanced incoupling of the laser beam for deeper holes is
well known in industry, see e.g. [22]. In laser welding this phenomenon is referred
to as keyhole formation in which the hole acts as a sort of blackbody, fully absorbing
the incident radiation.
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In order to stress the importance of multiple reflections in laser drilling, we also
study multiple reflections during laser drilling on a different material (diamond /
graphite) and with a different laser (excimer). During laser drilling in diamond
the incoming energy causes the diamond to graphitisate, and this graphite layer is
heated up to its sublimation point: the actual material removal mechanism. Multiple
reflections play an important role in this process. The reflectance of incoming laser
light is most influential near the steep sides of the hole and it causes a typical ab-
sorbed intensity distribution at the surface. The laser used for drilling diamond is an
excimer (KrF) laser which emits light at a wavelength of 248 nm (ultra violet UV-C).
For this wavelength graphite has an index of refraction n = 2.15 and an extinction
coefficient k = 1.15, see [9, 16]. For normal incidence this means a reflectivity of 24%.
The irradiation distribution the excimer laser supplies is a top-hat distribution, and
neglecting multiple reflections would imply that each pulse would remove a rect-
angular part. This would be the desired progress of the drilling process. However,
multiple reflections cause the actual irradiation distribution to be quite different, as
can be seen from Fig. 4.8. The actual irradiation distributions show a peak near the
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Figure 4.8: Multiple reflection simulation on a graphite surface. This surface is
shown in the lower figures. The upper figures denote the irradiation. The input
irradiation distribution is a top hat distribution and is denoted by the solid line, the
actual distribution of irradiation is depicted by the dashed line.

sides. This is because the incoming light is for an important part reflected of the
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steep sides. As the hole gets deeper, these peaks logically move towards the middle.
As was the case for tungsten, the incoming radiation is coupled into the graphite
more efficiently for deeper holes.

The results for both tungsten and graphite clearly show the importance of reflectivity
on the irradiation distribution on the surface. In turn, it is this irradiation distribu-
tion that is directly related to the amount of material removed and therefore it dra-
matically influences the geometry of the hole drilled. Incorporating a model for the
reflections is therefore essential in a thorough laser percussion drilling model. Not
only does this reflection model properly predict the reflections but also the incou-
pling of energy is modelled. It is through this incoupling that the wavelength of the
incoming beam comes into play. The index of refraction determines the amount of
energy being coupled into the material and this index of refraction depends on the
wavelength of the incoming wave, see Eq. (4.4). The influence of this dependence
will be studied more thoroughly in Section 4.2.

Note that the index of refraction is highly material dependent and changes with
temperature. Reliable experimental data on the reflectivity behaviour of hot metals
are scarse. This has to be studied to get a more realistic model. The benefit for ARTM
is that eventual absorption or scattering of radiation within a vapour cloud can be
included.

4.2 Wavelength and peak intensity

Two laser related aspects that influence the outcome of a laser percussion drilling
process are the wavelength of the incoming beam and its peak intensity. The wave-
length mainly plays a role in the incoupling of the energy into the material. It does
so through complex index of refraction which depends on wavelength, see Eq. (4.4).
For aluminium and tungsten, this dependency is depicted in Fig. 4.9, data from [32].
The dotted lines are added to pinpoint the values for three typical laser wavelengths:
a KrF excimer laser (λ=248 nm), a Nd:YAG-laser (λ=1.064µm) commonly used for
laser drilling processes, and a CO2 laser (λ=10.6 µm). It can be roughly stated that
for metals the optical constants n and k increase with wavelength.

The effect the wavelength has on a laser drilling process is best illustrated through
the reflectivity for perpendicular incidence onto a material. This reflectivity ρ(λ) de-
pends on wavelength through the optical constants n(λ) and k(λ) through Eq. (4.13).
Its variation with wavelength for again aluminium and tungsten is shown in Fig. 4.10.
In this figure, the importance of the wavelength on the reflectivity is clearly visible.
Aluminium is not very suitable for laser drilling. Its reflectivity is very high from
the near ultraviolet throughout the infrared, the domain in which industrial lasers
are available. For tungsten the reflectivity for excimer lasers and the Nd:YAG laser
is dramatically less than for the CO2 laser, that is, the incoupling is much better; this
makes the laser drilling process far more efficient. As for these two materials, the
reflectivity is very high in the infrared region for most metals and therefore a CO2
laser is not really suitable for laser drilling. Note furthermore that for the CO2-laser



4.2: Wavelength and peak intensity 65

10−2 10−1 100 101 102
10

−2

10−1

100

10
1

102

103

λ (µ m)

n, k

KrF Nd:YAG CO
2

(a) aluminium

10−2 10−1 100 101 102
10

−2

10−1

100

10
1

102

103

λ (µ m)

n, k

KrF Nd:YAG CO
2

(b) tungsten

Figure 4.9: The index of refraction n (solid line) and the extinction coefficient k
(dashed line) for aluminium and tungsten. The dotted lines denote the wavelengths
of an excimer laser (KrF, 0.248 µm), a Nd:YAG laser (1.064 µm) and a CO2 laser
(10.6 µm), respectively. (Data from [32])

as a result of the high values of n(λ) and k(λ) in the infrared for most materials, even
a possible large variation of these optical constants with temperature produces only
a small change in the reflectivity ρ, which is close to unity for these values.
Summarizing, it can be stated that the optical behaviour of the metal under irra-
diation is of key importance to the outcome of the process. Moreover, the actual
reflectivity behaviour of a material, as shown in Fig. 4.10 for aluminium and tung-
sten, should play an important role in the choice for a specific laser: the wavelength
with the best incoupling behaviour, that is the lowest reflectivity, is favoured.

The peak intensity of the laser beam more or less determines what kind of material
removal mechanism is dominant. That is, a high peak intensity will lead to more va-
porisation, a lower peak intensity leads to more molten material. Furthermore, the
assumption that the vapour is essentially transparent with respect to the irradiation,
as we do in this thesis, holds for the irradiance régimes currently used at Eldim B.V.
However, a vapour cloud does influence the process by scattering the laser beam
as it travels through it, thereby distorting the wavefront. As stated previously, this
scattering can be included in the ARTM context, but then more data are needed. At
higher irradiances the vapour becomes partially ionized and absorbs a substantial
fraction of the incoming laser energy. At a first glance one would think that this ab-
sorption would mean that the material is shielded. However, this absorption of laser
energy leads to a vapour plasma which emits energy as blackbody radiation. This
blackbody radiation tends to be absorbed more efficiently by the underlying metal
substrate [1]. So if this plasma stays close to the surface, it may actually enhance the
incoupling of energy into the material. At even higher irradiances than those leading
to ionization of the hot vapour, a plasma may even occur in the cold ambient gas.
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Figure 4.10: The reflectivity ρ for normal incidence of both an aluminium surface
(solid line) and a tungsten surface (dashed line) in vacuum. The dotted lines denote
the wavelengths of an excimer laser (KrF, 0.248 µm), a Nd:YAG laser (1.064 µm)
and a CO2 laser (10.6 µm), respectively.

This plasma does not stay close to the surface, but propagates against the incident
beam and shields the material completely, see [1, pp. 137–139].

Because of the fact that the interactions between laser light and the vapour only be-
come apparent at higher irradiances than those used commonly in laser percussion
drilling, this phenomenon falls outside the scope of this thesis. Yet, further research
into this subject is needed if one wants to model laser percussion drilling for these
higher irradiances correctly.

4.3 Spatial pulse shape

This section focusses on the importance of the spatial intensity distribution of the
laser beam. For most industrial lasers this is either a Gaussian distribution or a top
hat profile, see Fig. 4.11, and these two distributions will be used in the numerical
simulations shown below. However, with the aid of numerical simulation we could
also predict the results for different distributions. The basic laser settings used in this
and subsequent sections are given in Table 4.1. Furthermore, in this Section as well
as in the following, the material data of tungsten (see Table 2.1 and Section 4.1.3 for
data on reflectivity) are used in the computations.
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Symbol Definition Value
Ep total energy per pulse 40 J
Pav average power 50–100 W
tp pulse length 1× 10−3 s
tr relaxation time 1× 10−2 s
w waist 1× 10−3 m
λ wavelength 1.064× 10−6 m

Table 4.1: The data concerning the laser used in the simulation.
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Figure 4.11: The two spatial irradiation distributions used in this section. The
Gaussian distribution is denoted by the solid line and the top hat by the dashed
pattern.

The intensity distributions the laser supplies are given by

IG(r, t) =






Imaxe
− 2r2

w2 , t ∈ [ktr, ktr + tp], k ∈ N,

0, elsewise
(4.30a)

and

IT(r, t) =






Imax, r < w/
√
2, t ∈ [ktr, ktr + tp], k ∈ N,

0, elsewise,
(4.30b)

for the Gaussian and the top hat profile, respectively. Here, w denotes the waist, that
is a typical width of a Gaussian laser beam, see Section 2.2. The width of the top hat
beam is adjusted so that the maximum intensity as well as the total energy per pulse
is the same as for the Gaussian beam. The time distributions, also referred to as time
envelopes, are taken to be top hat for both. The effect this time envelope has on the
drilling process will be studied in the next section. Here a top hat distribution was
used in order to compare results with analytical solutions for the one-dimensional
model. The maximum intensity can be calculated from the total amount of energy
per pulse Ep and the pulse length tp, as done in Section 2.2. This yields

Imax =
2Ep

πtpw2
, (4.31)
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for both the Gaussian and the top hat profile. The values of three parameters at the
righthandside are equal for both set-ups and given in Table 4.1. One should bear in
mind that a significant part (for tungsten: 58% for normal incidence) of the intensity
the laser supplies is reflected. This leads to dimensionless scales as in Table 4.2.

Symbol Definition Value
Imax maximum intensity 2.5× 1010 W m−2

Iref maximum absorbed at surface 1× 1010 W m−2

t∗ equivalent of dimensionless unit 1.0× 10−5 s
z∗ equivalent of dimensionless unit 2.4× 10−5 m

Table 4.2: The dimensionless scales for experiments on spatial irradiation distributions.

To begin with, let us look at the first part of the initial pulse. The laser beam im-
pinges on a flat surface and energy is converted into heat within the metal. Fig-
ure 4.12 shows the temperature distributions, together with the melting isotherm,
in the metal for both settings at the time at which the surface reaches vaporization
temperature. The coordinates in this figure are in dimensionless units. The melt
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Figure 4.12: The temperature distributions within the irradiated material at the
time at which the surface starts to evaporate. The dashed lines denote the contour
lines caused by the top hat distribution, the solid lines denote the contour lines
caused by the Gaussian distribution.

pool depth is 1.17 in dimensionless units. For tungsten this corresponds to approxi-
mately 2.84 · 10−5 m. As can be seen, the contour lines follow the spatial irradiation
distribution. This is in agreement with the analysis in Chapter 2, which ruled out
the importance of radial diffusion. Furthermore, Fig. 4.12 shows that the energy pro-
vided in the top hat distribution is used far more efficiently. The dimensions of the
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melt pool are considerably larger, allowing for more material to be removed. Note
that the time at which the surface started to melt for both settings was t = 3.35 in di-
mensionless units, which is in agreement with the one-dimensional analytical model
that led to (3.36), yielding tm = 3.34 for tungsten. The time at which the surface starts
to evaporate is tv = 7.6. In dimensionless units the pulse length is tp = 98.2, so if we
assume the melt pool to splash out completely and instantaneously, we can expect
up to 30 cycles of heating up and splashing per one millisecond pulse.

If we assume the melt pool to splash out completely and instantaneously, the melt
model gives us the results for one pulse as in Figure 4.13. Note that the resulting
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Figure 4.13: The evolution of the hole that has formed after one complete pulse. The
different stages illustrate the hole geometry after a quarter, a half, three quarters of
the pulse and after one complete pulse. The dashed lines show this for the top hat
spatial distribution, the solid lines for the Gaussian distribution.

hole geometries for the two spatial distributions differ. As was already evident from
Figure 4.12, the top hat distribution is a far more efficient distribution. The resulting
hole depth is 36 in dimensionless units. For tungsten this corresponds to approxi-
mately 0.9 mm.

We conclude this section with some remarks concerning the actual spatial irradiation
distribution of state-of-the-art lasers. The Gaussian beam as well as the top hat one
are idealizations of the real beam. Normally, a laser beam that is said to be a Gaussian
beam is far from truly Gaussian (only the TEM00 mode, cf. Section 2.2), but closer
to the superposition of multiple TEMnm modes. A method to extract these higher
order contributions is presented in [47]. Furthermore, the pumping for a Nd:YAG
laser is done by flash lamps. In this process the medium is heated up considerably
and because of thermal effects beam distortions become noticeable. Because of a
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non-axisymmetric lay-out of the laser regarding the pumping devices the thermal
effects lead to a non Gaussian, more elliptically shaped laser beam. Obviously, in
this case the computations should be performed on a three-dimensional grid.

4.4 Temporal pulse shape

In this section we study the importance of the time envelope of the laser pulse. The
output of the laser pulse in time can be adjusted to some extent and this therefore
gives us a manner to control the outcome of the process. We assume the spatial dis-
tribution to be Gaussian, as this distribution is provided by most industrial lasers.
With state-of-the-art lasers, several different set-ups are possible: a top hat distribu-
tion, a sinusoidal time profile, a leading peak, a trailing peak and a pulse subdivided
in several shorter pulses. In this section we look at the two most common time en-
velopes, namely the sinusoidal one and the top hat, see Fig. 4.14. The sinusoidal

I
t
max

I
s
max

I

ttp0

Figure 4.14: The two temporal irradiation distributions used in this section. The
sinusoidal distribution is denoted by the solid line and the top hat by the dashed
pattern.

distribution is denoted by the solid line and the top hat by the dashed pattern. The
intensity distributions the laser supplies are given by

IS(r, t) =






Ismax sin
(

π(t−ktr)

tp

)

e
− 2r2

w2 , t ∈ [ktr, ktr + tp], k ∈ N,

0, elsewise

(4.32a)

and

IT(r, t) =






Itmaxe
− 2r2

w2 , t ∈ [ktr, ktr + tp], k ∈ N,

0, elsewise,
(4.32b)

for the sinusoidal and the top hat profile, respectively. The maximum intensity of
the top hat distribution is chosen such that the total amount of energy per pulse is
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the same as for the sinusoidal distribution, yielding

ITmax =
2

π
ISmax, (4.33)

with ISmax as in (2.4). This leads to the dimensionless scales as in Table 4.3.

Symbol Definition Value
ISmax maximum intensity 4.0× 1010 W m−2

Iref maximum absorbed at surface 1.68× 1010 W m−2

t∗ equivalent of dimensionless unit 3.6× 10−6 s
z∗ equivalent of dimensionless unit 1.4× 10−5 m

Table 4.3: The dimensionless scales for experiments on temporal irradiation distributions.

Some effects the different time envelope has on the melting process are illustrated
in Fig. 4.15. Obviously, the heating up of the material is faster for the top hat distri-
bution, as illustrated in Fig. 4.15(a). But, more interestingly, the subcyclic behaviour
within a pulse is completely different (Fig. 4.15) for the two time envelopes, as can be
expected. This figure shows the moments in time at which the central point reaches
vaporization temperature (sinusoidal in the upper half, top hat in the lower half).
For the top hat time envelope the intervals are more or less equidistant, for the sinu-
soidal time envelope, the intervals are smaller in the center.

If we assume the melt pool to splash out completely and instantaneously as we did
in the previous section, the melt model gives us the results for one pulse as in Fig-
ure 4.16. Note that the resulting hole geometries for the two temporal distributions
do not differ that much. The subcyclic behaviour, however, is completely different
and gives us much more insight in the effect the time envelope has on the process.

4.5 Simulation

In this section we perform a complete numerical simulation of a laser percussion
drilling process. The material we take is tungsten and for the laser we take the set-
tings of a Nd:YAG laser as used frequently. That is, we take the temporal pulse shape
to be sinusoidal and the spatial pulse shape to be Gaussian (TEM00). The simulation
model uses the melting model with the results of the reflection model as input. The
molten material present at the time at which the surface reaches vaporization tem-
perature is assumed to splash out completely and instantaneously. This means that
we assume that several subcycles of heating/splashing occur during one pulse. The
experimentally observed reflectivity behaviour supports this subcycle theory. Fur-
thermore, we assume that the remaining material has cooled down completely in
between two subsequent pulses. This assumption is supported by the tests carried
out in the previous section. Fig. 4.17 shows the results of a simulation over ten subse-
quent laser pulses on a tungsten sample. For clarity, the r and z values in this figure
are in millimeters. The strong effect of reflectivity on the hole geometry is clear to
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Figure 4.15: Some effects of the time envelope on the melting process. Figure (a)
shows the time history plot of the temperature of the origin at the start of the pulse.
Temperature and time are in dimensionless units. The lines are marked to discern
the sinusoidal and the top hat irradiation distribution. Figure (b) shows the distinct
subcyclic behaviour following from the different time envelopes (sinusoidal one in
the upper half, top hat in the lowerhalf).
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Figure 4.16: The evolution of the hole that has formed after one complete pulse. The
different stages illustrate the hole geometry after a quarter, a half, three quarters of
the pulse and after one complete pulse. The dashed lines show this for the top hat
distribution in time, the solid lines for the sinusoidal time envelope.

see in this simulation. The tapering is enforced by the effect of reflectivity as already
stated in Section 4.1.3. However, note that these results have been produced by using
a parallel beam, which is not the case in practice. In practice the beam diverges while
the hole grows deeper, and hereby, the reflectivity effect is reduced to some extent.
With accurate data on the laser settings more accurate results can be calculated.
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Figure 4.17: The results of a simulation consisting of ten subsequent laser pulses.
The dashedd lines denote the hole geometries after two, four, six and eight pulses
respectively. The solid line is the final hole geometry after ten pulses.



CHAPTER 5

Splashing and solidification

In this chapter we focus on the splashing and solidification models, briefly described
in Chapter 2. We will derive the leading-orders for these two models in Sections 5.1
and 5.2. The splashing model contains a link to the model for the gas dynamics
and this model needs to be investigated further experimentally. Therefore, we will
explain a method to solve the leading-order model for solidification in Section 5.3.

5.1 Axisymmetric splashing model

In this section we derive the leading-order equations for the splashing model. For
this we start of from the non-dimensional form of the equations describing the splash-
ing mechanism as already derived in Chapter 2. These represent conservation of
mass

∂2φ

∂r2
+
1

r

∂φ

∂r
+
1

δ2
∂2φ

∂z2
= 0 (5.1a)

and conservation of energy

∂θ

∂t
+
∂φ

∂r

∂θ

∂r
+
1

δ2
∂φ

∂z

∂θ

∂z
=

D

{
δ2
(

∂2θ

∂r2
+
1

r

∂θ

∂r

)

+
∂2θ

∂z2

}
, in Ωl (5.1b)

in the liquid. Conservation of energy in the solid led to

∂θ

∂t
= D

{
δ2
(

∂2θ

∂r2
+
1

r

∂θ

∂r

)

+
∂2θ

∂z2

}
, in Ωs. (5.2)

The vaporizing isotherm is expressed by

θ = θv(p̄). (5.3a)
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Furthermore, we have conservation of momentum

∂φ

∂t
+
1

2

(

(

∂φ

∂r

)2

+
1

δ2

(

∂φ

∂z

)2
)

+ p̄ = 0, (5.3b)

and conservation of energy

1

δ2
∂φ

∂z
−
∂φ

∂r

∂h

∂r
−
∂h

∂t
= Ī−

D

λvL̄v

(

∂θ

∂z
− δ2

∂h

∂r

∂θ

∂r

)

on z = h(r, t), (5.3c)

on the vaporizing surface. The solid-liquid interface is at melting temperature

θ = 0. (5.4a)

Conservation of mass yielded

1

δ2
∂φ

∂z
=
∂φ

∂r

∂s

∂r
, (5.4b)

and the Stefan condition told us

λf
∂s

∂t
+D

[

∂θ

∂z
− δ2

∂s

∂r

∂θ

∂r

]s+

s−

= 0 on z = s(r, t). (5.4c)

Finally, at infinity we have ambient conditions

θ → θa as z → −∞. (5.5)

We introduce expansions of the form

φ ∼ φ0 + δ2φ1, θ ∼ θ0 + δ2θ1, h ∼ h0 + δ2h1, s ∼ s0 + δ2s1, (5.6)

where φ∗, θ∗, h∗ and s∗ are independent of δ. We transfer the condition from the
correct boundary z = s to a convenient boundary z = s0 by using a Taylor series
expansion, that is

∂φ

∂z

∣

∣

∣

∣

y=s

=
∂φ0

∂z

∣

∣

∣

∣

z=s0

+ δ2

(

∂φ1

∂z

∣

∣

∣

∣

z=s0

+ s1
∂2φ0

∂z2

∣

∣

∣

∣

z=s0

)

+O(δ4). (5.7)

A similar transfer takes place between z = h and z = h0.

Equation (5.1a) gives us

∂2φ0

∂z2
= 0.

Together with (5.4b), which tells us

∂φ0

∂z
= 0, at z = s0,
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this leads to

∂φ0

∂z
= 0.

Thus,

φ0 = a(r, t).

Substituting this into (5.1a) again, yields

∂2φ1

∂z2
= −

∂2a

∂r2
−
1

r

∂a

∂r
= −

1

r

∂

∂r

(

r
∂a

∂r

)

,

and therefore

∂φ1

∂z
= −

z

r

∂

∂r

(

r
∂a

∂r

)

+ c(r, t).

Then (5.4b) gives us

∂φ1

∂z
=
∂a

∂r

∂s0

∂r
, on z = s0.

Thus

c(r, t) =
∂a

∂r

∂s0

∂r
+
s0

r

∂

∂r

(

r
∂a

∂r

)

=
1

r

∂

∂r

(

s0r
∂a

∂r

)

.

So

φ1 = −
z2

2r

∂

∂r

(

r
∂a

∂r

)

+
z

r

∂

∂r

(

s0r
∂a

∂r

)

+ b(r, t).

Through this derivation, we obtain

φ ∼ a+ δ2
{
b−

z2

2r

∂

∂r

(

r
∂a

∂r

)

r

+
z

r

∂

∂r

(

s0r
∂a

∂r

)}
(5.8)

where a = a(r, t) and b = b(r, t) are unknown functions. Substituting (5.8) into (5.1b),
(5.3b) and (5.3c), we find

∂θ0

∂t
+
∂a

∂r

∂θ0

∂r
+

{
1

r

∂

∂r

(

r
∂a

∂r
s0

)

−
z

r

∂

∂r

(

r
∂a

∂r

)}
∂θ0

∂z
= D

∂2θ0

∂z2
,

∂a

∂t
+
1

2

(

∂a

∂r

)2

+ p̄ = 0,

and

∂h0

∂t
+
1

r

∂

∂r

(

r
∂a

∂r
(h0 − s0)

)

+ Ī = 0,
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respectively. Finally, we make the substitution u = ∂a
∂r

, to give a differential equation
for the temperature

∂θ0

∂t
+ u

∂θ0

∂r
+

{
1

r

∂

∂r
(rus0) −

z

r

∂

∂r
(ru)

}
∂θ0

∂z

= D
∂2θ0

∂z2
for s0 < z < h0, (5.9)

with two boundary conditions

θ0 = 0, on z = s0 θ0 = θv(p̄) on z = h0, (5.10)

the equation for the evolution of the velocity

∂u

∂t
+ u

∂u

∂r
+
∂p̄

∂r
= 0, (5.11)

the equations for the evolution of the free boundaries

∂h0

∂t
+
1

r

∂

∂r
{ru(h0 − s0)} + Ī = 0, λf

∂s0

∂t
+D

[

∂θ0

∂z

]s+

0

s−

0

= 0, (5.12)

the equation and the boundary condition for conduction in the solid

∂θ0

∂t
= D

∂2θ0

∂z2
for z < s0 and θ0 → θa as z → −∞. (5.13)

The leading-order equations to describe axisymmetric splashing are (5.9)-(5.13).

We rewrite this set of equations to avoid complications with subscripts in subsequent
sections. Furthermore, we chose to use the film thickness ξ := h0 − s0 as a variable
rather than h0. We also replace s0 by ψ and omit the subscript in θ0 in the numerical
model. This leaves us with the following system of equations

∂ξ

∂t
+
1

r

∂

∂r
(ruξ) = −Ī−

∂ψ

∂t
, (5.14)

∂u

∂t
+ u

∂u

∂r
+
∂p̄

∂r
= 0, (5.15)

∂θ

∂t
+
1

r

∂

∂r
(ruθ) +

∂

∂z

({
1

r

∂

∂r
(ruψ) −

z

r

∂

∂r
(ru)

}
θ−D

∂θ

∂z

)

= 0, (5.16)

and

θ = θv(p̄) on z = ψ+ ξ, (5.17)

in the fluid,

θ = 0, (5.18)



5.2: Planar solidification model 79

and

λf
∂ψ

∂t
+D

[

∂θ

∂z

]ψ+

ψ−

= 0, on z = ψ, (5.19)

at the interface and

∂θ

∂t
= D

∂2θ

∂z2
, for z < ψ (5.20)

and

θ → θa as z → −∞, (5.21)

in the solid.

5.2 Planar solidification model

The derivation of the leading-order equations for the soldification model is similar
to that of the splashing model. We use the same expansions, that is (5.6), and also
transfer the boundary conditions using Taylor series expansions as in (5.7).

Similar to the derivation followed in the previous section, from Eqs. (2.44a) and (2.47b)
we obtain

φ ∼ a+ δ2
{
b−

1

2

∂2a

∂x2
y2 +

∂

∂x

(

∂a

∂x
s0

)

y

}
, (5.22)

where a = a(x, t) and b = b(x, t) are unknown functions. Substituting u = ∂a
∂x

,
we find, similarly to the derivation in the previous section, the following system of
equations:

∂ξ

∂t
+
∂

∂x
(uξ) = −

∂ψ

∂t
, (5.23)

∂u

∂t
+ u

∂u

∂x
= 0, (5.24)

∂θ

∂t
+
∂

∂x
(uθ) +

∂

∂y

({
∂

∂x
(uψ) −

∂u

∂x
y

}
θ−D

∂θ

∂y

)

= 0, (5.25)

and

∂θ

∂y
= 0 on y = ψ+ ξ, (5.26)

in the fluid,

θ = 0, (5.27)
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and

λf
∂ψ

∂t
+D

[

∂θ

∂y

]ψ+

ψ−

= 0, on y = ψ, (5.28)

at the interface and

∂θ

∂t
= D

∂2θ

∂y2
, for y < ψ (5.29)

and

θ → θa as y → −∞, (5.30)

in the solid.

This system of equations together with suitable initial conditions will be treated nu-
merically in Section 5.3.

5.3 Numerical methods for solidification

We consider the leading-order problem for the solidification of an amount of molten
material flowing past a relative cold solid wall. For its derivation, see Section 5.2.
Here ξ = ξ(x, t) represents the thickness of melt film and ψ = ψ(x, t) represents
the height of the solid-liquid boundary. Furthermore θ = θ(x, y, t) represents the
temperature of the material, and u = u(x, t) represents the horizontal velocity of the
melt film. Note that all the variables are dimensionless. The problem consists of the
following equations.

Conservation of mass

∂ξ

∂t
+
∂

∂x
(uξ) = −

∂ψ

∂t
; (5.31)

Burgers equation

∂u

∂t
+ u

∂u

∂x
= 0. (5.32)

The combination of these two equations also gives the conservation of momentum
equation

∂

∂t
(uξ) +

∂

∂x
(u2ξ) = −u

∂ψ

∂t
. (5.33)

Furthermore, we have conservation of energy in the melt

∂θ

∂t
+
∂

∂x
(uθ)+

∂

∂y

({
∂

∂x
(uψ) −

∂u

∂x
y

}
θ−D

∂θ

∂y

)

= 0 for ψ < y < ψ+ξ, (5.34)
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which may also be written as

∂θ

∂t
+ u

∂θ

∂x
+

{
∂

∂x
(uψ) −

∂u

∂x
y

}
∂θ

∂y
−D

∂2θ

∂y2
= 0 for ψ < y < ψ+ ξ. (5.35)

Furthermore, there is no heat flux through the top surface:

∂θ

∂y
= 0 on y = ψ+ ξ. (5.36)

We have the Stefan condition

λf
∂ψ

∂t
+D

[

∂θ

∂y

]ψ+

ψ−

= 0, (5.37)

and the melting isotherm

θ = 0 on y = ψ, (5.38)

at the solid-liquid interface. The well-known heat equation holds in the solid

∂θ

∂t
= D

∂2θ

∂y2
for y < ψ, (5.39)

with ambient conditions at infinity

θ → θa as y → −∞. (5.40)

The initial conditions are prescribed velocity

u(x, 0) = u0(x), (5.41)

prescribed temperature

θ(x, y, 0) = θ0(x, y), (5.42)

and a prescribed geometry

ξ(x, 0) = ξ0(x), (5.43)

and

ψ(x, 0) = ψ0(x). (5.44)

Here we assume

θ0(x, y) = θa for y < ψ0(x), θ0(x,ψ0(x)) = 0 and
∂θ0

∂y
(x,ψ0(x) + ξ0(x)) = 0 for ξ0(x) > 0.
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5.3.1 Shocks

We note that (5.32) uncouples from the system of equations. As known, this equa-
tion can exhibit shocks, see e.g. [51]. Because the melt always has compact support,
shocks will occur. Let u(x, 0) = u0(x) be the initial velocity profile. Then the time of
first ’breaking’ is

tB = −
1

u ′
0(Xs)

,

where Xs is defined by:

u ′
0(Xs) < 0, |u ′

0(Xs)| is a maximum.

To study the shock in detail, we use that u0(x) vanishes outside the range [XL, XR],
and u0(x) > 0 in the range. Then, one can show ([51, pp. 46–47]) that for t > tB the
asymptotic formulas for the position of the shock s(t) and the velocity just behind
the shock u are

s ∼
√
2At, (5.45)

u ∼

√

2A

t
, (5.46)

respectively. Here

A =

∫XR

XL

u0(x)dx (5.47)

is the area of the hump. The asymptotic form of the velocity profile is

u ∼
x− XL

t
, XL < x < XL +

√
2At. (5.48)

So, the details of the initial velocity distribution are lost; only the areaA is preserved.

Because the shock in the velocity distribution travels at half the speed of the velocity
just behind the shock and because of conservation of mass, melt will amass behind
this leading edge shock.

5.3.2 Enthalpy Method

We define XL(t) and XU(t) to be the points XL(t) = inf{x|ξ(x, t) > 0} and XU(t) =

sup{x|ξ(x, t) > 0}, that is, XL(t) and XU(t) represent the ‘beginning’ and ‘ending’ of
the liquid blob, respectively. We introduce the dimensionless enthalpy, η, by

η =

{
θ θ < 0 (solid),

θ+ λf θ > 0 (liquid),
(5.49)
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and therefore

θ =






η η < 0,

0 0 < η < λf,

η− λf η > λf,

(5.50)

The Eqs. (5.34)1, (5.37), (5.38) and (5.39)1 can then be rewritten as

∂η

∂t
+
∂

∂x
(χuθ) +

∂

∂y

(

χ

{
∂

∂x
(uψ) −

∂u

∂x
y

}
θ

)

−D
∂2θ

∂y2
= 0, (5.51)

where χ is the characteristic function

χ =

{
0 θ < 0 (solid),

1 θ > 0 (liquid).
(5.52)

Alternatively, (5.51) can be written as

∂η

∂t
+ χu

∂θ

∂x
+ χ

{
∂

∂x
(uψ) −

∂u

∂x
y

}
∂θ

∂y
−D

∂2θ

∂y2
= 0. (5.53)

We will use this enthalpy method in our numerical method as will be explained in
the next section.

5.3.3 Numerical Method

The geometry that will be used throughout this section is sketched in Figure 5.1. The
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Figure 5.1: The geometry used in the numerics for the solidification problem.

problem to solve is comprised by (5.31), (5.33) or (5.32), and (5.51) together with the
relationships between temperature and enthalpy (5.49) and (5.50) and the boundary
and initial conditions (5.36) and (5.40)-(5.44).

One way of solving this system is the following. Suppose everything is known at
time level tn: En, θn, un, ξn, ψn, Ωn. From the enthalpy equation (5.51) together
with (5.49) and (5.50), we find En+1, θn+1 and ψn+1. Now we’ve got a choice: we
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PSfrag replacements Ẽ θ̃ ψ̃ ũ ξ̃

En θn ψn un ξn

En+1 θn+1 ψn+1 un+1 ξn+1
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SLMSLM

Burgers

Heat

Mass
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Figure 5.2: The numerical scheme.

could use the coupled system (5.31) and (5.33) to compute un+1 and ξn+1 or we
could use (5.31) and (5.32) for this. The latter method has the benefit that this is a
decoupled system, un+1 follows from (5.32) and ξn+1 then follows from (5.31). The
final step is then to compute the new domainΩn+1 from un+1, ξn+1 andψn+1. This
numerical solving procedure is depicted in Figure 5.2. As un represents a vector
of velocities on different coordinates, we cannot use this vector as such in the 2D
enthalpy problem. Hence, the ’Spline’-block in this figure represents a possible way
of dealing with this.

The slope limiter scheme

In order to solve Burgers’ equation for the horizontal velocity we use a slope limiter
method, see e.g. [26]. This slope limiter method is based on the Godunov scheme and
is therefore a finite volume method. Consider the following initial value problem for
u(x, t)

∂u

∂t
+
∂f(u)

∂x
= 0, x ∈ R, t > 0, (5.54a)

u(x, 0) = ũ(x), x ∈ R. (5.54b)
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We introduce control volumes Vj:

Vj :=
[

xj− 1
2
, xj+ 1

2

)

, xj+ 1
2

=
1

2
(xj + xj+1) , j = 0,±1,±2, . . . (5.55)

The numerical solution unj has to be interpreted as an approximation of the aver-
age value of u(x, t) over Vj at time level tn. Associated with this unj we define the
function U(x, t) by:

∂U

∂t
+
∂f(U)

∂x
= 0, x ∈ R, t > tn, (5.56a)

U(x, tn) = unj + snj (x− xj), x ∈ Vj, j = 0,±1,±2, . . . , n = 0, 1, 2, . . .

(5.56b)

Here, unj and snj are the average value and slope, respectively, of U(x, tn) in the
control volume Vj. The ‘initial’ valueU(x, tn) is thus piecewise linear in each Vj. The
slope snj is still unknown, and has to be determined such that the resulting scheme
is Total Variation Diminishing (TVD), see e.g [20]. The slope limiter method is based
on the integral formulation of the initial value problem (5.56).

After integration over the control volume Vj and over the time interval [tn, tn+1], we
obtain

∫

Vj

U(x, tn+1)dx−

∫

Vj

U(x, tn)dx = −∆t
(

F(unj , u
n
j+1) − F(unj−1, u

n
j )
)

, (5.57)

where the numerical flux F(unj , u
n
j+1) is defined as

F(unj , u
n
j+1) :=

1

∆t

∫ tn+1

tn

f(U(xj+ 1
2
, t))dt. (5.58)

To compute the numerical flux F(unj , u
n
j+1) we have to solve the generalized Rie-

mann problem comprised by the conservation law (5.56a) and the piecewise linear
initial condition. This is generally difficult and involving, and for that reason we
replace the flux f(u) by its linear interpolant f̃(u), i.e.

f̃(u) := f(unj ) + ãn
j+ 1

2

(u− unj ), u ∈ int(unj , u
n
j+1), (5.59)

with ãn
j+ 1

2

the finite difference approximation of f ′(u(xj+ 1
2
, tn)) given by

ãn
j+ 1

2

:=

{
f(un

j+1)−f(un
j )

un
j+1

−un
j

if unj 6= unj+1,

0 if unj = unj+1.
(5.60)

Replacing f(u) by f̃(u), the generalized Riemann problem reduces to the following
initial value problem

∂U

∂t
+ ãn

j+ 1
2

∂U

∂x
= 0, x ∈ R, t > tn, (5.61a)

U(x, tn) = unj + snj (x− xj), x ∈ Vj, j = 0,±1,±2, . . . , n = 0, 1, 2, . . .

(5.61b)
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Analoguous to (5.58), the numerical flux F(unj , u
n
j+1) is the time average of f̃(U(xj+ 1

2
, t))

over [tn, tn+1], i.e.

F(unj , u
n
j+1) =

1

∆t

∫ tn+1

tn

f̃(U(xj+ 1
2
, t))dt. (5.62)

The computation of U(xj+ 1
2
, t) from (5.61b) is straightforward, and, provided that

ãn
j+ 1

2

> 0, we obtain

U(xj+ 1
2
, t) = unj + snj

(

1

2
∆x− ãn

j+ 1
2

(t− tn)

)

, (5.63)

and subsequently substituting this expression into (5.62), we find for the numerical
flux

F(unj , u
n
j+1) = f(unj ) +

1

2
ãn
j+ 1

2

(

1−
∆t

∆x
ãn
j+ 1

2

)

∆xsnj . (5.64)

Finally, we have to determine slopes snj such that the resulting scheme is TVD. We
do this using the technique of slope limiters. We take

snj = Φn
j+ 1

2

1

∆x
(unj+1 − unj ), (5.65)

where Φn
j+ 1

2

is a limiter on the slope (unj+1 − unj )/∆x. Usually the limiter Φn
j+ 1

2

is
given by

Φn
j+ 1

2

= Φ(rn
j+ 1

2

), (5.66)

with Φ(r) the so-called limiter function and where rn
j+ 1

2

is defined by

rn
j+ 1

2

:=
unj − unj−1

unj+1 − unj
, (5.67)

provided that ãn
j+ 1

2

> 0. More about these limiter functions can be found at the end
of this section.

Finally, the numerical value un+1
j is defined as the average value of U(x, tn+1) over

Vj, i.e.

un+1
j :=

1

∆x

∫

Vj

U(x, tn+1)dx. (5.68)

Substituting (5.68) into (5.57) leads to the final scheme

un+1
j = unj −

∆t

∆x
(F(unj , u

n
j+1) − F(unj−1, u

n
j )), (5.69)

with the numerical flux F(unj , u
n
j+1) as in (5.64).
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We conclude this derivation with mentioning three limiter functions. A smooth lim-
iter function is due to Van Leer [46], and is given by

Φ(r) =
2r

1+ r
, (5.70)

for r > 0. Another limiter function, especially suited for representing discontinuities,
is the so-called superbee limiter function of Roe [35]. It is given by

Φ(r) = max(min(1, 2r),min(r, 2)), (5.71)

for r > 0. The last limiter function we mention here is called the minmod limiter
function (see [26]) and is given by

Φ(r) = max(0,min(1, r)). (5.72)

An elaborated example

We take the case of no solidification as an example. That is, we only look at the
movement of the liquid blob. We use Eqs. (5.31) and (5.32) without the solidification
term ∂ψ

∂t
, i.e.

∂ξ

∂t
+
∂(uξ)

∂x
= 0, (5.73a)

and

∂u

∂t
+
∂(1
2
u2)

∂x
= 0. (5.73b)

The initial conditions to go with these equations are prescribed geometry and a pre-
scribed velocity

ξ(x, 0) = ξ̃(x), u(x, 0) = ũ(x). (5.74)

Eqs. (5.73) are both in the form as in (5.54) and we therefore use the slope limiter
method on both equations to solve this.

Burgers’ equation

Following the derivation of the slope limiter scheme as in the previous section with
f(u) = 1

2
u2 we get the scheme

un+1
j = unj −

∆t

∆x
(F(unj , u

n
j+1) − F(unj−1, u

n
j )), (5.75)

with numerical flux F(unj , u
n
j+1) given by

F(unj , u
n
j+1) =

1

2
(unj )2 +

1

2
ãn
j+ 1

2

(

1−
∆t

∆x
ãn
j+ 1

2

)

∆xsnj , (5.76)
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where

ãn
j+ 1

2

=

1
2

(

(unj+1)
2 − (unj )2

)

unj+1 − unj
=
1

2
(unj+1 + unj ). (5.77)

We can employ this scheme starting from the known initial velocity distribution
u(x, 0) = ũ(x).

Mass balance

For the mass balance equation (5.73a) we get the scheme

ξnj+1 = ξnj −
∆t

∆x
(F(ξnj , ξ

n
j+1) − F(ξnj−1, ξ

n
j )), (5.78)

with numerical flux F(ξnj , ξ
n
j+1) given by

F(ξnj , ξ
n
j+1) = unj ξ

n
j +

1

2
ãn
j+ 1

2

(

1−
∆t

∆x
ãn
j+ 1

2

)

∆xsnj , (5.79)

where

ãn
j+ 1

2

= un
j+ 1

2

. (5.80)

The numerical scheme for this elaborated example is depicted in Figure 5.3.

Results
The analytical results for this system of equations as stated in Section 5.3.1 are clearly
visible in the numerical results. We see the asymptotic triangular profile of the ve-
locity distributions and the corresponding melt accumulation at the leading edge
shock.

We will use the finite element method for solving the heat equation (5.53)

∂η

∂t
+ χu

∂θ

∂x
+ χ

{
∂

∂x
(uψ) −

∂u

∂x
y

}
∂θ

∂y
−D

∂2θ

∂y2
= 0, (5.81)

together with the no flux boundary condition on temperature (5.36), ambient condi-
tions at infinity (5.40) and the initial condition (5.42). Furthermore the relationship
between the enthalpy η and the temperature θ is described by (5.49) and (5.50).

We search for a weak solution of (5.81). Multiply (5.81) with a weight function p
which vanishes on Γ1 and integrate over the domain. Using the divergence theorem
we get the finite element variational formulation

∫

Ω

∂η

∂t
p+ χup

∂θ

∂x
+ χ

{
∂

∂x
(uψ) −

∂u

∂x
y

}
p
∂θ

∂y
+D

∂p

∂y

∂θ

∂y
dσ =

∫

Γ

Dp
∂θ

∂y
nyds = 0 for all p ∈ H10. (5.82)



5.3: Numerical methods for solidification 89
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Figure 5.3: The numerical scheme for the elaborated example. The dashed box
stands for the loop.

Here the last equality comes from the boundary condition of θ on Γ3 (5.36) and the
fact that p|Γ1

≡ 0.

Next, we consider a finite element discretization of Ω with a finite element space
Vh ⊂ H10(Ω) spanned by the basis {ϕi}

N
i=1. A typical choice for the basis functions

would be the hat functions. We look for finite element solutions

η̃(x, t) = ηΓ1 + ηΩ\Γ1 = ηΓ1 +

N∑

i=1

ηi(t)ϕi(x) (5.83)

and

θ̃(x, t) = θΓ1 + θΩ̄\Γ1 = θΓ1 +

N∑

i=1

θi(t)ϕi(x). (5.84)

The superscript Γ1 is used to indicate that the inhomogeneous Dirichlet boundary
conditions at Γ1 are fulfilled by this term.
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Figure 5.4: The evolution of the velocity profile
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Figure 5.5: The evolution of the melt drop

The computational problem is to determine the time dependent coefficients ηi(t)
and θi(t) for i = 1, . . . ,N. Substituting the approximations into the variational for-
mulation and taking the weight functions to be the basis functions ϕj, j = 1, . . . ,N

we obtain the set of equations in matrix form

M
dη

dt
+ C(u,ψ)θ +DSθ = b. (5.85)

We use the bold face characters for matrices and vectors. So, η = [ηi(t)] and θ =

[θi(t)]. The mass matrix M, the convection matrix C, the stiffness matrix S and the
right-hand side b are defined as follows:

[M]ij =

∫

Ω

ϕiϕjdσ, (5.86a)

[C]ij =

∫

Ω

χuϕi
∂ϕj

∂x
+ χ

{
∂

∂x
(uψ) −

∂u

∂x
y

}
ϕi
∂ϕj

∂y
dσ, (5.86b)
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[S]ij =

∫

Ω

∂ϕi

∂y

∂ϕj

∂y
dσ, (5.86c)

[b]i = −

∫

Ω

χuϕi
∂θΓ1

∂x
+ χ

{
∂

∂x
(uψ) −

∂u

∂x
y

}
ϕi
∂θΓ1

∂y
+D

∂θΓ1

∂y

∂ϕi

∂y
dσ. (5.86d)

Together with the initial conditions on temperature (5.42) and hence via the relation-
ship also on enthalpy, we have a set of initial value problems which can be solved
numerically.

In order to show how we solve (5.85) by the ϑ-method, we rewrite it as

M
dη

dt
= FFF(u,ψ,η, t) := b − C(u,ψ)θ(η) −DSθ(η). (5.87)

Suppose everything is known at t = tk. The enthalpy distribution and temperature
distributions in the material at time t = tk+1 are then computed by the ϑ-method.
We obtain

GGG(ηk+1) := M(ηk+1 − ηk)

− ∆t
(

ϑFFF(uk+1, ψk+1,ηk+1, tk+1) + (1− ϑ)FFF(uk, ψk,ηk, tk)
)

= 0. (5.88)

In order to solve (5.88) for ϑ 6= 0, the occurence of ηk+1 does not cause problems;
this could be dealt with in a similar way as in the melting model, see the previous
chapter. The problem for ϑ 6= 0 lies in the ψk+1 and uk+1 terms.

For ϑ = 0 the procedure is simply the following. Compute the enthalpy distribution
in the material at time t = tk+1 via

Mηk+1 = Mηk + ∆tFFF(uk, ψk,ηk, tk), (5.89)

and then update the temperature via (5.49) to get

θk+1
i = θ(ηk+1

i ). (5.90)

The position of the solid-liquid boundary ψ at time level t = tk+1 is simply the
melting isotherm.

For ϑ 6= 0 we can use a quasi Newton method. That is, we freeze the u and ψ terms

G̃GG(ηk+1) := M(ηk+1−ηk)−∆t(ϑFFF(uk, ψk,ηk+1, tk+1)+(1−ϑ)FFF(uk, ψk,ηk, tk)) = 0.

(5.91)

The iteration to obtain the solution at t = tk+1 is as follows





ηk+1,l = ηk+1,l−1 − (∂G̃GG(ηk+1,l−1))−1G̃GG(ηk+1,l−1), l = 1, 2, . . . ,

ηk+1,0 = ηk.

(5.92)
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This is similar to the method used in the previous chapter in solving the enthalpy
problem for laser induced melting. The difference lies in the operator GGG. Here, the
Jacobian ∂G̃GG(η) is given by

∂G̃GG(ηk+1,∗) = M + ∆tϑ(C(uk, ψk) −DS)
∂θ

∂η
(ηk+1,∗). (5.93)

The iteration in (5.92) is stopped when a given accuracy is reached.

After one complete time step for both the enthalpy problem and the two slope limiter
schemes has been calculated, we will need to adapt the domain of computation. One
has to be aware of the fact that as the liquid moves and the solid obviously does not,
interpolating the old solution on the new domain is a point of attention.



CHAPTER 6

Computational platforms

In the numerical procedures outlined in the previous chapters, several solution al-
gorithms are used. Each algorithm consists of a sequence of operations on specific
data. Most of these operations are available as part of public domain or commercial
libraries (collections of operations) or as operating system commands. However, dif-
ferent libraries tend to use different data structures and most computational libraries
were not written with visualization in mind. The same holds for the visualization of
the results, which is a very important aspect in simulation. Several user friendly and
extensive libraries for visualization are available. Preferably we want to use these ex-
isting and often well documented libraries together. This chapter shows how this is
achieved by adorning existing libraries with an interface within the NumLab visual
programming environment (see [28]). Section 6.1 shows how the to be introduced
interface can be used to implement complex numerical algorithms in a convenient
manner. The setup of such an interface is treated in Section 6.2 using the example of
the Piecewise Polynomial Package, PPPack [10].

6.1 Scientific computing

The focus for the implementation of complex numerical algorithms must be on the
reuse of existing unaltered libraries. Most libraries use own (i.e. non-standard) data
structures so that they cannot be used jointly. Therefore, these libraries do not seem
to aid to the implementation of complex numerical problems. In order to use li-
braries within a broader framework, these libraries need to communicate with each
other in some way. Basically, a library is a collection of operations on a specific
data type and normally different libraries use different data types. Within the Num-
Lab visual programming environment communication between different libraries
is achieved by equiping all ”outside” libraries with an interface ensuring that the
library accepts the same (common) data type, as depicted in Fig. 6.1 for the solidifi-
cation problem of Section 5.3. The outer circles denote the used existing ”outside”
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libraries, the grey shells denoting their interfaces. The arrows denote the data flow
between the libraries and the solidification program. The inner circle is the numeri-
cal solution procedure for the solidification problem encoded within NumLab. The

solidification
problem

in-house

PPPack

LAPackSEPRAN

VTK

OI

Figure 6.1: Schematic overview of the numerical procedure of the solidification
problem within NumLab.

transformation of the generic NumLab data type to the library specific data type is
provided within the library interface. This interface provides additional functional-
ity, see [13], which is beyond the scope of this thesis. The interface enables us to use
the existing libraries in an unaltered way and, furthermore, within a visual program-
ming environment.

For each of the solidification’s subproblems, numerical solution procedures exist.
Thus, the problem can be solved with a combination of the operations, which reside
in different libraries, as shown in Fig. 6.1. The finite element package SEPRAN [37]
builds the system of equations resulting from the finite element formulation of the
problem, see Section 5.3. The Linear Algebra Package LAPack [2] routines are then
used to solve the system. On the other hand, the solid-liquid interface as well as the
surface are represented by smooth splines using the Piecewise Polynomial Package
PPPack [10] and the positions of these moving boundaries are calculated using in-
house written finite volume codes, see Section 5.3. The results are visualized using
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the Visualization ToolKit (VTK) [36] and Open Inventor (OI) [50] libraries. The need
for some sort of communication between these different packages and libraries is
obvious.

1

2

3

Figure 6.2: The program which solves a part of the solidification problem and
visualizes the output.

Figure 6.2 shows the implementation of the problem described by Eq. (5.73) as de-
rived in Section 5.3, loaded into the NumLab visual programming environment,
see [28]. The implementation uses modules (we use the word module for both oper-
ations and data structures) from different libraries including LAPack, PPPack, VTK,
OI, etc., as well as operating system commands: the mpeg module. Most numerical
programs, like the one in Fig. 6.2, can be divided into three parts:
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1. the part which reads the input and performs the numerical computations,

2. the part which visualizes the computed results and

3. the post-processing part which writes the output.

Figure 6.2 needs further explanation. Each rectangle such as MIteration is a graph-
ical representation of an operation belonging to a certain library. For the sake of con-
venience, this representation is also called a module. Within each module, we discern
a bottom and a top area. Modules may have both input and output arguments. Each
of its arguments made available via the interface description, is mapped onto a small
coloured rectangular area at the bottom or top of the module, the input arguments
being related to the top, the output arguments to the bottom. These small rectangu-
lar regions are called ports. Different built-in data types are coloured in a different
manner, all pointers and derived types are coloured using a default. Each port is
either connected, or behind the scenes a default value is used. Output is connected
to input using the mouse by clicking on the bottom output port, dragging to the top
input port and releasing. The connection is established when the data types concur,
and refused when this is not the case. Default values can be altered using a graphical
user interface, called the interactor (Fig. 6.3), which is automatically generated from
the function’s interface, and which pops up when selected. This automatically built
editor can be used to enter the values of arguments which are not connected. As

Figure 6.3: The user provides default values to the modules using an automati-
cally built editor.

an example, see Fig. 6.3, which shows the equivalent of the Matlab linspace func-
tionality. We can prescribe an interval [a, b] ⊂ R and a number of points n ∈ N

and the module generates a vector z ∈ R
n of n points linearly spaced between, and

including, a and b, as well as the spacing h.

Figure 6.4 depicts a VTK Viewer, belonging to a VTK Viewer module, which shows
the initial shape of the melt blob flowing along the walls, superimposed with graph-
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ical operations onto the inside of a cylinder wall. This VTK viewer as well as the
OI viewer offers solid, hidden-line, wire-frame and other representations, as well as
interactive 3D manipulation of the visualized objects.

Figure 6.4: Visualization of the solidification process.

Building complex numerical algorithms with NumLab is convenient because of a
number of reasons. Firstly, the libraries LAPack, EigPack, SEPRAN, PPPack, VTK,
OI, etc. have been interfaced and can therefore be used together without restrictions
and explicit user data type conversions. In the example discussed in this section,
we used SEPRAN and PPPack to build the equations, LAPack to solve them and
VTK to visualize the results. Secondly, several methods have been added to the
NumLab computational platform, like new data-types, data-exchange in MATLAB /
Mathematica / Open-Math / LaTeX / VTK / other formats, and discretized ordinary
and partial differential related operators. Furthermore, programming in a visual
environment aids to the reusability of complex numerical algorithms.

6.2 Example

For this NumLab environment as sketched above, we show how to interface an ex-
isting library. For a more thorough explanation of this technique, see [27] and ref-
erences therein. Interfacing a library means interfacing all operations to be exposed
for usage. In this example we show how to interface the PPPack [10] to generate
an interpolating cubic spline (see e.g. [11]). The language in which the interface is
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Function Description
dcubspl computes polynomial coefficients of cubic spline
dppvalu computes function or derivative value of cubic spline
dinterv function used in dppvalu

Table 6.1: The operations from the PPPack library needed for NumLab spline operations.

implemented is C++, for reasons that are outlined in [27]. The interface consists of
three layers, the source-layer, the class-layer and the module-layer.

The source-layer contains the operations from the libraries which the user wants to
use, i.e. it is closest to the ”white” inner region of the library in Fig. 6.1. For the cubic
spline, these are given in Table 6.1. The dcubspl routine computes the polynomial
coefficients describing the interpolating cubic spline and writes these to a matrix
C. For this it basically needs three groups of input, the first and second being the
abscissae and ordinates of the data points, respectively, and the third describing the
boundary conditions in terms of type and value. Once the spline has been built, its
function or derivative value at a point x can be computed from the matrix C using
the dppvalu routine. The dinterv routine is merely an operation used repeatedly
within dppvalu. Because Fortran generates function names according to a different
rule than C++, we need to provide each Fortran function we want to use within our
C++-interface with a shell that ensures that the Fortran function is called.

The class-layer contains the C++ class version of a cubic spline. Its constructor calls
back to the dcubspl routine in the source-layer and checks whether this went cor-
rectly. The function value or j-th derivative value of the cubic spline can be ob-
tained using the operator(). If spline is an instance of the spline class, then
spline(x) and spline(x,j) return the function value and the value of the j-th
derivative of the spline in point x, respectively. This operator() calls back to the
dppvalu routine.

Finally, the module-layer contains a class. This so called module delegates all oper-
ations to the class-level and, moreover, is adorned with a few standard data-flow
operations for use in a visual programming environment. This module-layer makes
the spline class accessible within a visual programming environment through the
graphical representation as depicted in Fig. 6.5. This module has eight ports on the

Figure 6.5: The spline module. Please consult the text for further explanaition.
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top and two at the bottom. The first port on both the top À and the bottom È is a
pointer to the instance of the class itself. The other top ports represent the input ar-
guments: the point x at which the spline should be evaluated Á, the abscissae Â and
ordinates Ã of the data points and the type and value of the left (Ä and Å) and right
(Æ and Ç) boundary conditions. The second port at the bottom É is the function
value of the cubic interpolating spline at point x.

Figure 6.6 shows a network in which a spline through three data points is generated.
The boundary conditions used to generate the cubic spline are shown in the interac-
tor. This interactor also shows the benefit visual programming environments have
over non-graphical ones: all required input data is shown in a clear way. The type
of boundary condition is chosen through a pull-down menu with enumeratic types
with descriptive names such as Dx converted to an integer for the Fortran routine
dcubspl, which needs an integer describing the type. The resulting spline is visual-
ized using the MDFxSampler module, which input arguments are a function, in this
case the cubic spline function, and a vector, in this case a uniform gridding of the in-
terval [−1, 1]. The output of the sampler module is a vector containing the function
values at these abscissae. These two vectors can be visualized using VTK operations
resulting in the VTK Viewer window as shown in the figure.
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Figure 6.6: The spline module within a network.



CHAPTER 7

Conclusions and
Recommendations

Numerous experiments show that most of the material removed during a laser per-
cussion drilling process is in liquid state. This observation leads to the conclusion
that modelling laser induced melting is essential in a thorough understanding of the
drilling process. In this thesis the melting is investigated intensively and, moreover,
also the resolidification of this molten material during splashing is studied. One of
the main conclusions of this thesis is that the melting model reveals a small time scale
in which the material reaches vaporisation temperature. Taking the scales for the gas
dynamics and the splashing into consideration, multiple cycles of heating-splashing
per pulse may be expected. The number of cycles per pulse depends on material
properties and laser settings. Furthermore, the velocities for the expelled melt pre-
dicted from a simplified gas dynamics model are already in good agreement with
observations.

From the analysis of the two mathematical formulations of melting investigated in
this thesis, it follows that the enthalpy method is far more suitable for more dimen-
sional problems. Due to the fact that tracking the solid-liquid interface is an essential
part of the formulation that makes use of the Stefan condition, this poses severe prob-
lems in implementation for more-dimensional problems. Moreover, the enthalpy
method is also more suited for one-dimensional methods when initially only one of
the phases is present. The main advantage of the enthalpy method over the method
employing the Stefan condition is that the position of the interface is known a pos-
teriori; it is merely an isotherm. Although this enthalpy method is known since the
early eighties we did not find papers concerning modelling of the laser drilling pro-
cess that use this method.

The understanding of the incoupling of energy is essential in modelling laser per-
cussion drilling. The total amount of energy absorbed by the material is the key
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parameter in the process. The incoupling of energy is governed by the reflectivity be-
haviour of the material under irradiation. However, most publications on modelling
the laser-drilling process either do not use a reflection model or use an oversimpli-
fied reflection model. In this thesis we use the Algebraic Ray Trace Method (ARTM)
to give the actual incoupling of laser energy into the material. This reflectivity model
easily explains the role the wavelength of the laser has on the outcome of the pro-
cess, e.g. a different wavelength can easily increase the incoupling of laser energy
from only 5% to over 50%. It is therefore obvious, that the optical behaviour of the
material should be investigated thoroughly to get a more efficient laser drilling pro-
cess. Furthermore, the reflection model easily explaines both tapering of holes due
to reflections of steep sides and better incoupling of energy in deeper holes.

Using the results of the reflection model as input of the laser-induced melting model
a relatively simple simulation model has been built. By this simulation model one
can investigate the influence of different laser settings to the process. These laser
settings do not have to be conform to existing laser settings. Indeed, one can try to
find the optimal laser together with its settings for a specific desirable result. Instead
of expensive testing, one can thus get a better understanding of the role of the various
laser parameters.

The solidification model derived in this thesis tells us that a shock may be expected
within the melt flowing along the relatively cold sides. This study explains why
experimentally observed local clumps of resolidified material may arise in the drilled
hole during the laser percussion drilling process. With reliable experimental and
material data, it may even predict a typical length at which such a clump can be
expected. The versatility of the model is shown by the fact that with only a few
modifications the solidification model can also be used to predict the solidification
of a lava flow.

Another conclusion that can be drawn from this thesis is that it is very helpful to
use existing and unaltered libraries to implement complex numerical algorithms.
The software package NumLab is very instrumental in this and, moreover, offers
this within a visual programming environment thereby enhancing the reuseability
as well as the user-friendliness of the program. To be able to use ”outside” libraries
in an unaltered way, these libraries are equiped with an interface in which, amongst
others, the translation of the NumLab datatype to the library-own datatype and vice
versa is provided.

Evidently, because of the complexity of the process, although many phenomena are
treated in this thesis, a simulation model will never be covering all aspects. How-
ever, we will make some recommendations to enhance the modelling of laser per-
cussion drilling in the following. A first recommendation is based upon an assump-
tion made in the beginning of this thesis. From a computational point of view we
have restricted ourselves to axisymmetric geometries. However, the pumping for a
Nd:YAG laser is done by flash lamps. In this process the medium is heated up con-
siderably and because of thermal effects beam distortions become serious. Because
of a non-axisymmetric lay-out of the laser the thermal effects lead to a non-Gaussian
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laser beam. This beam is essentially non-axisymmetric and therefore computations
should be performed on a three-dimensional mesh to get better results.

The splashing mechanism is an extremely interesting and complex subject on itself. It
was beyond the scope of this thesis to study this subject into all its details. However,
a thorough study is needed to get a full understanding of the process of recasting.
For this, experiments would be needed to acquire qualitative and quantitative in-
formation about the behaviour of the material under consideration in all its phases.
This last remark also leads to a third and final recommendation. We have neglected
the absorption of laser energy by the vapour cloud for laser settings in the range we
studied. However, as lasers are becoming more and more powerful energy sources,
in the near future it may very well be not negligible any more for industrial lasers.
A thorough understanding of this absorption is needed and furthermore, a plasma
may even be used to achieve a better incoupling of energy into the material. The
ARTM will prove to be an instrumental tool for this, because, in contrast to normal
ray trace methods, absorption of energy within the medium can be incorporated into
the model easily. In fact, it was derived to do just that for radiation in glass.





Bibliography

[1] M. von Allmen and A. Blatter. Laser-beam interactions with materials. Springer-
Verlag, 1995.

[2] E. Anderson, Z. Bai, C. Bischof, et al. LAPACK user’s guide. SIAM Philadelphia,
1995.

[3] S. Anisimov. Vaporization of metal absorbing laser radiation. Soviet Physics
JETP, 27:182–183, 1968.

[4] N.S. Asaithambi. A Galerkin method for Stefan problems. Appl. Math. Comp.,
52:239–250, 1992.

[5] M. Born and E. Wolf. Priciples of optics. Pergamon Press, fifth edition, 1975.

[6] J. Crank. Free and moving boundary problems. Clarendon Press, 1984.

[7] A.J. Dalhuijsen and A. Segal. Comparison of finite element techniques for so-
lidification problems. Internat. J. Numer. Methods Engrg., 23:1807–1829, 1986.

[8] B.N. Datta. Numerical linear algebra and applications. Brooks/Cole, 1995.

[9] G. Davies, editor. Properties and Growth of Diamond. Number 9 in EMIS Datare-
view series. INSPEC, 1994.

[10] C. de Boor. Piecewise polynomial package. http://www.netlib.org/pppack.

[11] C. de Boor. A practical guide to splines. Number 27 in Applied Mathematical
Sciences. Springer-Verlag, 1978.

[12] J. Dowden, M. Davis, and P. Kapadia. Some aspects of fluid mechanics of laser
welding. J. Fluid Mech., 126:123–146, 1983.

[13] W. Drenth. A platform for numerical computations with special application to precon-
ditioners. PhD thesis, Eindhoven University of Technology, to appear 2003.

[14] W.G. Driscoll and W. Vaughn, editors. Handbook of Optics. McGraw-Hill, New
York, 1978. pp. 10-9–10-10.



106 Bibliography

[15] C.M. Elliot and J.R. Ockendon. Weak and variational methods for moving boundary
problems. Research notes in mathematics. Pitman, 1981.

[16] J.E. Field, editor. The Properties of Diamond. Academic Press, London, 1979.

[17] M.C. Fowler and D.C. Smith. Ignition and maintenance of subsonic plasma
waves in atmospheric pressure air by CW CO2 laser radiation and their effect
on laser beam propagation. J. Appl. Phys., 46:138–150, 1975.

[18] R.K. Ganesh and A. Faghri. A generalized thermal modeling for laser drilling
process–I. Mathematical modeling and numerical methodology. International
Journal of Heat Mass Transfer, 40(14):3351–3360, 1997.

[19] R.K. Ganesh and A. Faghri. A generalized thermal modeling for laser drilling
process–II. Numerical simulation and results. International Journal of Heat Mass
Transfer, 40(14):3361–3373, 1997.

[20] A. Harten. High resolution schemes for hyperbolic conservation laws. J. Com-
put. Phys., 49:357–393, 1983.

[21] E. Hecht. Optics. Addison-Wesley, 1998.

[22] H. Ki, P.S. Mohanty, and J. Mazumder. Multiple reflection and its influence on
keyhole evolution. Journal of laser applications, pages 39–45, 2002.

[23] C.J. Knight. Theoretical modeling of rapid surface vaporization with back pres-
sure. AIAA Journal, 17(5):519–523, 1979.

[24] L.D. Landau and E.M. Lifschnitz. Statistical Mechanics. Pergamon, New York,
1980.

[25] H.W. Liepmann and A. Roshko. Elements of gasdynamics. John Wiley & Sons,
inc., 1960.

[26] R.M.M. Mattheij, S.W. Rienstra, and J.H.M ten Thije Boonkkamp. Partial differ-
ential equations Modelling, Analysis, Computing. SIAM, Philadelphia, to appear in
2003.

[27] J. Maubach and W. Drenth. Data-flow oriented visual programming libraries for
scientific computing. Rana 01-30, Eindhoven University of Technology, 2001.

[28] J. Maubach and A. Telea. The NUMLAB numerical laboratory for computation
and visualisation. Computing and Visualization in Science, 2001. accepted.

[29] M. Mori. The finite element method and its applications. Macmillan publishing
company, New York, 1986.

[30] M.J. Noot. Numerical analysis of turbine blade cooling ducts. PhD thesis, Eindhoven
University of Technology, 1997.

[31] H. Ockendon and A.B. Tayler. Inviscid fluid flows. Springer-Verlag, 1983.

[32] E.D. Palik, editor. Handbook of optical constants of solids. Academic Press, New
York, 1998.



Bibliography 107

[33] P.D. Patel. Interface conditions in heat-conduction problems with change of
phase. AIAA Journal, 6:2454, 1968.
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Summary

Since the first demonstrations of the ruby laser in 1960, lasers quickly found their
way into different application areas. These applications range from the laser used in
a CD-player via lasers used in surgery, to lasers that operate as a material processing
tool. In this last area, the laser owes its success a great deal on its concentrated
and contactless energy supply. It is for these reasons that the laser can be used for
drilling when conventional techniques fail, as is the case for drilling holes in parts of
gas turbine engines. Drilling these cooling holes is necessary because the gas from
the combustion chamber flows along these parts thus exposing them to extremely
high temperatures. Overheating these blades leads to damage. The desired cooling
is comes from relatively cold air flowing through the drilled holes. For drilling these
cooling holes, conventional drilling techniques fail for two reasons: the diameter of
the holes is very small (± 1 mm) and the hard superalloy material the parts are made
of. A promising alternative is therefore laser percussion drilling.

In laser percussion drilling multiple laser pulses are fired at the material. The driling
is achieved via two material removal mechanisms. Material is evaporated due to
the laser energy and molten material is pushed out by the vaporization pressure, the
so-called recoil pressure. First, the material is heated up by the laser energy. At some
point the surface reaches the melting temperature. To achieve the phase change of
the material, an extra amount of energy, the so-called latent heat of fusion, has to be
supplied. The surface of the growing melt pool is constantly heated up further and
eventually reaches vaporization temperature. From this moment on, the greater part
of the incoming energy is used for the phase change to vapour. Because of this vapor-
ization, the recoil pressure increases and, eventually, the molten material is pushed
out. This effect is commonly referred to as the splashing mechanism. During this
splashing the molten material flows along the relatively cold walls, partly resolidi-
fying on its way. The vapour may have a second (negative) effect. Depending on the
laser settings, a part of the incoming beam can be absorbed to such an extent that a
plasma forms. This plasma, in turn, can shield the material completely. At this mo-
ment several drilling experiments are performed to improve the drilling technique.
Rather than performing drilling experiments on the expensive superalloy the parts
are made of one can use numerical simulations as a cheap and useful alternative.

In this thesis the physical phenomena playing a role in the drilling process are stud-
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ied. Concluding from the time scales of the various processes, a subpulse behaviour
can be expected. Multiple cycles of heating/splashing will occur during a pulse. The
melting is studied extensively both analytically and numerically. Two mathematical
formulations of phase change problems, also called Stefan problems, are discussed.
The first formulation makes use of a boundary condition (the Stefan condition) to
describe the evolution of the solid-liquid interface. The second is based on enthalpy
formulation of the problem. These two methods are assessed numerically. A next
essential part of this thesis treats the incoupling of energy into the material. This
incoupling is described in terms of reflection. This reflection strongly depends upon
both the laser, via its wavelength, and the irradiated material, via its index of refrac-
tion. In this thesis the reflection is dealt with using the Algebraic Ray Trace Method
(ARTM). The importance of this phenomenon is illustrated by some examples. With
the aid of both the melting model and the reflection model the influence of the set-
tings of the laser beam is investigated. Both the spatial and the temporal pulse shape
are assessed. Furthermore, a complete numerical simulation is presented.

The splashing and solidification is described mathematically and leading-order an-
alytical systems are derived through asymptotic analysis. The numerics for the so-
lidification model are studied extensively. Our study explains why local clumps of
material may arise in the drilled hole during the laser percussion drilling process.
Finally, NumLab, a computational platform on which all computations are carried
out, is briefly described. The advantage of NumLab is lying in the fact that it uses
existing and often wel documented libraries. One merely needs to write an interface
for each library translating the NumLab datatype to the library datatype and vice
versa. This usage is illustrated by an example.



Samenvatting

Ondanks zijn prille bestaan, de eerste demonstraties van een laser vonden plaats
in 1960, heeft de laser al snel zijn weg gevonden naar verschillende toepassingen
in evenzovele toepassingsgebieden. Denk hierbij bijvoorbeeld aan de laser in CD-
spelers, lasers die gebruikt worden om chirurgische operaties uit te voeren en de
laser als materiaalbewerkingsgereedschap. De laser heeft zijn succes in dit laatste ge-
bied, de materiaalbewerking (bijvoorbeeld lassen, harden en boren), voornamelijk te
danken aan zijn geconcentreerde en contactloze energie-overdracht. Het is om deze
reden dat de laser gebruikt kan worden om te boren als conventionele manieren het
af laten weten, zoals bijvoorbeeld het geval is bij het boren van gaten in een rotorblad
van een gasturbine. Het boren van gaten in deze bladen is nodig, omdat rotorbladen
blootgesteld worden aan een zeer grote thermische belasting ten gevolge van de hitte
van het gas uit de verbrandingskamer van de turbine. Dit leidt tot ongewenst hoge
materiaalspanningen. De benodigde koeling wordt verkregen doordat de lucht die
door de gaten stroomt een relatief lage temperatuur heeft. Bij het boren in de rotor-
bladen laten conventionele boortechnieken het afweten om twee redenen: enerzijds
is de diameter van de gaten erg klein (± 1 millimeter) en anderzijds zijn de rotor-
bladen gemaakt van een (zeer harde) superlegering. Een veelbelovend alternatief
voor bovengenoemde conventionele technieken is daarom het laser percussieboren.

Laser percussieboren is een boorproces waarbij meerdere laserschoten (pulsen) op
het materiaal worden afgevuurd waardoor er een gat ontstaat. Dit gat ontstaat door
twee factoren, te weten verdamping van het materiaal onder invloed van de laser-
straling alsmede uitstoting van gesmolten materiaal onder invloed van de verdam-
pingsdruk. In het begin van een puls wordt het materiaal opgewarmd, waardoor het
op een gegeven moment de smelttemperatuur bereikt. Om de fase-overgang te be-
werkstelligen moet een extra hoeveelheid energie, de zogenaamde latente warmte,
worden toegevoegd. De toplaag van het aldus groeiende smeltbad wordt voort-
durend verder verhit en bereikt daardoor op een gegeven moment de verdampings-
temperatuur. Vanaf dit moment wordt een groot deel van de inkomende energie
gebruikt voor de overgang naar de gasfase. Door de verdamping stijgt de druk
aanzienlijk, waardoor uiteindelijk het smeltbad weg wordt geperst. Dit effect wordt
wel het spatmechanisme genoemd. Tijdens dit spatten stroomt het gesmolten ma-
teriaal langs de relatief koude wanden naar buiten. Gedurende dit proces kan een
gedeelte van dit materiaal weer stollen. De damp heeft nog een tweede (negatief)
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effect: afhankelijk van de instellingen van de laser kan een deel van de inkomende
laserstraal ook geabsorbeerd worden, hetgeen zelfs kan resulteren in het ontstaan
van een plasma in de damp. Dit plasma kan dan op zijn beurt gaan werken als
een scherm met als resultaat dat de energie van de laserstraal het materiaal niet
bereikt. Op dit moment zijn verschillende boorexperimenten nodig om de bestaande
boortechniek te verbeteren. Dit is een kostbare zaak omdat de superlegering waar-
van het materiaal vervaardigd is erg duur is. Numerieke simulaties kunnen echter
een goedkoop en vruchtbaar alternatief zijn.

In deze dissertatie zijn alle fysische fenomenen die een rol spelen tijdens het boor-
proces onder de loep genomen. Uit de tijdsschalen van de verschillende deelpro-
cessen kan worden geconcludeerd dat er een subpulsgedrag kan worden verwacht.
Meerdere cycli van smelten-spatten komen tijdens een puls voor. Het smelten wordt
zowel wiskundig als numeriek uitvoerig bestudeerd. Zo worden twee mathema-
tische voorstellingen van problemen met een fase-overgang, de zogenaamde Ste-
fanproblemen, besproken. In de eerste wordt gebruik gemaakt van een randvoor-
waarde (de Stefanconditie) om de positie van het scheidingsvlak tussen vast en
vloeibaar te bepalen. De tweede behelst een enthalpie formulering van het probleem.
Deze twee methoden worden naast elkaar gezet en numerieke oplossingsstrategieen
worden afgeleid en gebruikt om tot resultaten te komen. Een volgend essentieel
onderdeel van deze dissertatie behandelt de inkoppeling van laserenergie in het ma-
teriaal. Dit wordt beschreven in termen van reflectie. Deze reflectie is sterk afhanke-
lijk van zowel de laser (via de golflengte) als het materiaal (via de brekingsindex).
De modellering hiervan wordt gedaan aan de hand van de Algebraı̈sche Ray Trace
Methode (ARTM). Het belang van deze laatstgenoemde studie wordt geillustreerd
aan de hand van enkele sprekende voorbeelden. Met behulp van het smeltmodel
alsmede het reflectiemodel wordt vervolgens de invloed van de instellingen van de
laserbundel onderzocht. Zowel de ruimtelijke als de tijdsafhankelijke vorm van de
bundel komen aan bod. Ook wordt een volledige simulatie gepresenteerd.

Het spatten en stollen wordt wiskundig beschreven en hiervoor worden eerste orde
vergelijkingen afgeleid. Het stolmodel wordt vervolgens ook numeriek verder uit-
gediept. Ons model levert daarmee een verklaring voor de experimenteel geob-
serveerde plaatselijke verdikkingen van de stollaag. Tenslotte wordt ingegaan op
NumLab, een numeriek platform waarop alle benodigde berekeningen uitgevoerd
worden. Het grote voordeel van NumLab is het feit dat zoveel mogelijk gebruik
wordt gemaakt van bestaande en goed gedocumentarieerde software. Dit wordt
bereikt door een schil te schrijven rond elke bibliotheek die de bibliotheekeigen
datatypen omzet naar NumLab datatypen en vice versa. Dit principe wordt geı̈l-
lustreerd aan de hand van een voorbeeld.
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