

Towards budgeting in real-time calculus : deferrable servers

Citation for published version (APA):
Cuijpers, P. J. L., & Bril, R. J. (2007). Towards budgeting in real-time calculus : deferrable servers. In J. F.
Raskin, & P. S. Thiagarajan (Eds.), Proceedings of the 5th International Conference on Formal Modeling and
Analysis of Timed Systems (FORMATS 2007) 3-5 October 2007, Salzburg, Austria (pp. 98-113). (Lecture Notes
in Computer Science; Vol. 4763). Springer. https://doi.org/10.1007/978-3-540-75454-1_9

DOI:
10.1007/978-3-540-75454-1_9

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1007/978-3-540-75454-1_9
https://doi.org/10.1007/978-3-540-75454-1_9
https://research.tue.nl/en/publications/ef79d1ea-d70f-432f-8d29-e40fb767a571

Towards Budgeting in Real-Time Calculus:
Deferrable Servers

Pieter J.L. Cuijpers and Reinder J. Bril

Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

Den Dolech 2, 5600 MB Eindhoven, The Netherlands

Abstract. Budgeting of resources is an often used solution for guaran-
teeing performance of lower priority tasks. In this paper, we take a formal
approach to the modeling of a deferrable server budgeting strategy, using
real-time calculus. We prove a scheduling theorem for deferrable servers,
and as a corollary show that an earlier claim of Davis and Burns, that
periodic servers dominate deferrable servers with respect to schedula-
bility, no longer holds when the context of the comparison is slightly
generalized.

1 Introduction

One of the main scheduling approaches in real-time computing systems is given
by fixed-priority preemptive scheduling (FPPS) [5,6]. The approach is founded
on a fixed-priority scheduling theory, supported by a suite of open software
standards, commercially available schedulability analysis tools and real-time op-
erating systems, and adopted by leading companies and institutions world-wide.

Scheduling a set of real-time tasks sharing a resource gives rise to the so-called
temporal interference problem, i.e. a malfunctioning task may cause other tasks
to fail to meet their time constraints. An often used solution for this problem is to
introduce resource budgets for tasks, which provide temporal protection between
tasks by guaranteeing a minimal amount of resources [8]. Those budgets are often
implemented using so-called servers that dispatch the available resources to the
tasks that are appointed to them.

In general, a server for a shared processing resource, such as a CPU, is char-
acterized by a capacity and a replenishment period [1]. The capacity is the max-
imum amount of resources (i.e. the maximum amount of processing time) that
a server can provide to its associated tasks during its replenishment period. The
replenishment period is the minimum time between replenishments of the ca-
pacity. Servers typically differ with respect to the amount and moment in time
of the replenishments and to the preservation of the remaining capacity when
none of the appointed tasks is ready to use it.

In this paper, we consider so-called deferrable servers [10], which have been
studied as implementations of resource budgets in [2,9], amongst others. We fo-
cus on [2], because its results improve on earlier work. Deferrable servers are

J.-F. Raskin and P.S. Thiagarajan (Eds.): FORMATS 2007, LNCS 4763, pp. 98–113, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Towards Budgeting in Real-Time Calculus: Deferrable Servers 99

replenished periodically, at fixed intervals of time, and have the following preser-
vation policy. When a deferrable server has access to the shared resource, its
capacity is provided if one of the tasks is ready to use it. If the tasks are not
ready to use it, the deferrable server suspends its access to the resource, pre-
serving its remaining capacity. Capacity can be preserved until the end of the
replenishment period. At the end of the server’s period any remaining capacity
is lost.

Our main contribution, is a formal model of deferrable servers using the real-
time calculus of [11]. Real-time calculus is a branch of network calculus [4], which
uses max-plus algebra for the algebraic analysis of real-time systems. Our spe-
cific interest in formalizing the behavior of deferrable servers using this calculus,
was due to a suspicion that the worst-case response time analysis of deferrable
servers in [2] becomes pessimistic, rather than exact, in a slightly generalized
context. Using our real-time calculus model, we derive a schedulability theorem
for deferrable servers with a single task. Application of this theorem for a de-
ferrable server with highest priority leads to an example showing that, in the
absence of a low-priority soft real-time task, the analysis in [2] indeed becomes
pessimistic, rather than exact. As a consequence, the applicability of deferrable
servers may be better than was suggested in [2].

This paper is structured as follows. First, in Section 2, we recapitulate the
real-time calculus theory of [11]. Next, in Section 3 we explain how to model
servers in this theory, and extend the theory with a model of a deferrable server.
Our schedulability theorem is the topic of Section 4. The consequences of our
schedulability theorem are discussed in Section 5, where we compare it with the
results of [2]. Section 6 summarizes the main contributions of the paper and
suggests directions for future research.

2 Real-Time Calculus Preliminaries

In this section, we recall part of the real-time calculus theory of [11]. The starting
point of this calculus, is to consider cumulative requests streams R(t) : R → R

(from time to amount of requested resources) and cumulative resource streams
C(t) : R → R (from time to amount of available resources) in a system. The
request stream models the total amount of requested tasks that have entered
the system at a certain time, while the resource stream models the total amount
of processing power that has been offered to a server. The total amount of tasks
that have been processed is modeled by a cumulative request stream R′(t), while
the total amount of resources that remains unused is processed by a cumulative
resource stream C′(t). For convenience we choose C(t) = R(t) = C′(t) = R′(t) =
0 whenever t < 0, reflecting that the system is turned on at t = 0.

Processing of a sequence of tasks can be depicted as in figure 1. It is obvi-
ous, that the total amount of tasks processed at time t can never exceed the
amount of tasks processed already at a time u ≤ t, plus the amount of resources
offered between u and t. Furthermore, the amount of processed tasks can never be

100 P.J.L. Cuijpers and R.J. Bril

R(t)

C(t)

C′(t)

R′(t)

Fig. 1. Basic processing in Real-time Calculus

more than the amount of requested tasks. This lower bound on the output R′ is
captured in the following formula1.

R′(t) ≤
�
R′(u) + C(t) − C(u)

�
∧ R(t).

With a little calculation we can rewrite this into:

R′(t) ≤ inf
u≤t

{R(u) + C(t) − C(u)} .

Now, if we furthermore assume that tasks may be buffered until resources
become available for it, and that a server is eager in the sense that it processes
each task as soon as resources are available for it, we can derive a lower bound
on R′(t) as well. We define t0 as the latest point before t at which the resource
buffer was empty, assuming R(0) = R′(0) for convenience to show there exists
such a point.

t0 � sup{τ ≤ t | R(τ) = R′(τ)}

Between t0 and t, the task buffer is always non-empty, which means that all
resources that arrive are used for processing tasks. So we find the equality:

R′(t) =
�
R′(t0) + C(t) − C(t0)

�
∧ R(t).

For a right-continuous resource stream R(t) we then find R(t0) = R′(t0) (using
the definition of t0) and thus:

R′(t) = (R(t0) + C(t) − C(t0)) ∧ R(t),

≥ inf
u≤t

{R(u) + C(t) − C(u)} ∧ R(t),

= inf
u≤t

{R(u) + C(t) − C(u)} .

In conclusion, R′(t) is exactly determined by
1 In this paper, we use x ∧ y to denote the minimum of x and y, and infu{f(u)} to

denote the infimum of f(u) over u. Furthermore, x ∨ y denotes the maximum of x
and y, and supu{f(u)} denotes the supremum of f(u) over u.

Towards Budgeting in Real-Time Calculus: Deferrable Servers 101

R′(t) = inf
u≤t

{R(u) + C(t) − C(u)} .

According to [4] the same formula holds if R(t) is left-continuous, but the
proof is more complicated. The amount of resources that is left unused can be
found easily by subtracting what is used from what is delivered.

C′(t) = C(t) − R′(t),

= C(t) − inf
u≤t

{R(u) + C(t) − C(u)} ,

= sup
u≤t

{C(u) − R(u)} .

In figure 2 we have depicted an example of a task R(t) = 3 · � t
3�∨ 0, modeling

the arrival of three requests every three time-units. This task is serviced by a
resource C(t) = 2·t∨0, which brings continuous service to a task at two resource-
units per time-unit. Note, that by definition C′(t) is flat whenever R′(t) rises,
since eager processing requires that all incoming resources are used as long as
the input buffer is non-empty. Vice versa, R′(t) is flat when C′(t) rises, for the
same reason.

2 4 6 8 10
t

2

4

6

8

10

R�t�,R’�t�

2 4 6 8 10
t

2

4

6

8

10

C�t�,C’�t�

Fig. 2. Requests and resources in RTC (inputs straight, outputs dashed)

3 Deferrable Server Model

In the previous section, we have shown how the processing of a single sequence
of tasks can be modeled using real-time calculus. But from a more high-level
point of view, the same equations can also be used to represent a server that
dispatches resources to a number of tasks. The input stream RS of the server
then is the sum of the input streams of the appointed tasks (whenever one of
its tasks has unfinished requests, the server must dispatch incoming resources to
it) and the output stream R′

S does not represent finished tasks, but represents
resources that have been reserved for the tasks operating under the server. This
scheme is depicted in figure 3, where the block labeled S represents a server and

102 P.J.L. Cuijpers and R.J. Bril

S+

C(t)

C′(t)

1R1(t) R′
1(t)

2R2(t) R′
2(t)

Fig. 3. Server modeling in real-time calculus

blocks 1 and 2 represent tasks that are dispatched to this server. So, we have
RS = R1 + R2, C1 = R′

S and C2 = C′
1.

The insight that the equations for a server and for a task are the same, albeit
with a different interpretation of the meaning of the variables, still holds when
we shift our focus to servers with a budgeting strategy. In other words, this
hierarchical way of modeling allows us to model the budgeting of a single task,
and use this model for a budgeting server as well. For a budgeting server, we
still assume that tasks are processed eagerly, and that tasks are buffered while
waiting for resources to arrive. Therefore, the previously derived upper bound
on R′(t) is still valid.

R′(t) ≤ inf
u≤t

{R(u) + C(t) − C(u)} .

But, additionally, a deferrable server periodically limits the resources it pro-
vides to a maximum capacity Q. Replenishment of the capacity takes place at
the start of each period T , which at a time t is determined (right-continuously)
by T ·

⌈
t
T − 1

⌉
. The output R′(t) of a deferrable server cannot be greater than the

output R′ (T ·
⌈

t
T − 1

⌉)
at the start of the period plus the processing capacity

Q. So, we refine the upper bound to capture this behavior.

R′(t) ≤ inf
u≤t

{R(u) + C(t) − C(u)}

∧ R′
�

T ·
�

t

T
− 1

��
+ Q

∧ R′
�

T ·
�

t

T
− 1

��
+ C(t) − C

�
T ·

�
t

T
− 1

��

Towards Budgeting in Real-Time Calculus: Deferrable Servers 103

Furthermore, for t0 � sup{τ ≤ t | R(τ) = R′(τ)} ≥ 0 we find

R′(t) = R(t0) + C(t) − C(t0)

∧ R′
�

T ·
�

t

T
− 1

��
+ Q

∧ R′
�

T ·
�

t

T
− 1

��
+ C(t) − C

�
T ·

�
t

T
− 1

��
≥ inf

u≤t
{R(u) + C(t) − C(u)}

∧ R′
�

T ·
�

t

T
− 1

��
+ Q

∧ R′
�

T ·
�

t

T
− 1

��
+ C(t) − C

�
T ·

�
t

T
− 1

��
.

What results is a recursive specification for the output of the deferrable server

R′(t) = inf
u≤t

{R(u) + C(t) − C(u)}

∧ R′
�

T ·
�

t

T
− 1

��
+ Q

∧ R′
�

T ·
�

t

T
− 1

��
+ C(t) − C

�
T ·

�
t

T
− 1

��
.

To prove that this recursive specification has a unique solution for R′(t), we
rewrite it to

R′(t + T) = inf
u≤t+T

{R(u) + C(t + T) − C(u)}

∧ R′
�

T ·
�

t

T

��
+ Q

∧ R′
�

T ·
�

t

T

��
+ C(t + T) − C

�
T ·

�
t

T

��
.

From this representation it is clear that, if the solution of the recursive spec-
ification is unique upto a point t, then it is unique upto t + T . Furthermore, we
find uniqueness for t < 0 where we have R′(t) = 0. So, the solution is unique
upto 0, and with induction upto n · T for any n ∈ N. We may conclude that
R′(t) is well defined, and may even solve the recursive specification to find:

R′(t) = inf
n∈N

inf
u≤t∧T ·� t

T
−n�

�
R(u) + C(t ∧ T ·

�
t

T
− n

�
) − C(u)

+
n−1�
m=0

Q ∧
�

C(t ∧ T ·
�

t

T
− m

�
) − C(T ·

�
t

T
− m − 1

�
)
�	

.

As before, we find C′(t) by subtracting what is used from what is delivered.
With a little calculation, we obtain:

104 P.J.L. Cuijpers and R.J. Bril

C′(t) = sup
n∈N

sup
u≤t∧T ·� t

T
−n�

C(u) − R(u) +
n−1�
m=0

�
C

�
t ∧ T ·

�
t

T
− m

��
− C

�
T ·

�
t

T
− m − 1

��
− Q

�
∨ 0

	
.

In figures 4 we have depicted an example of a task R(t) = 3 · � t
3� ∨ 0, serviced

by a resource C(t) = 2 · t∨0, on a deferrable server with Q = 2 and T = 2. Note,
that as before, C′(t) is flat whenever R′(t) rises, and vice versa, but the pattern
is different from the normal RTC processing.

2 4 6 8 10
t

2

4

6

8

10

R�t�,R’�t�

2 4 6 8 10
t

2

4

6

8

10

C�t�,C’�t�

Fig. 4. Requests and resources in a deferrable server, (inputs straight, outputs dashed)

4 Scheduling Theorem

The delay of a task entering at time t is the time between its request and its
completion. If we assume that tasks are completed in the order in which they
arrive, the delay is the earliest time τ at which R′(t + τ) ≥ R(t). The maximum
delay Δ in the processing of a sequence of tasks is then defined by:

Δ � sup
t

inf{τ | R′(t) ≥ R(t − τ)}.

Based on this definition, and the model of a deferrable server found in the
previous section, we will now prove the following schedulability theorem. This
theorem roughly states that task with a deadline greater than the sum of the
minimum interarrival time of the task and the maximum delay between arrival
of resources (due to other servers in the network) is schedulable (i.e. makes its
deadline) provided that the tasks utilization is smaller than the utilization of
the server and smaller than the utilization of the arriving resources.

Theorem 1 (Schedulability of a deferrable server). Consider a deferrable
server with period T and capacity Q. Assume that there is an upper bound S on
the arrival time of tasks R(t) such that for all s ∈ R:

Towards Budgeting in Real-Time Calculus: Deferrable Servers 105

R(s + S) − R(s)
S

≤ Q

T
.

Furthermore, assume that there is a lower bound U ≤ T on the arrival times of
resources, such that for all u ∈ R:

C(u + T) − C(u) ≥ Q,

C(u + U) − C(u)
U

≥ R(s + S) − R(s)
S

.

Then, all relative deadlines of at least S + 2 · U are met, i.e.

Δ � sup
t

inf{τ | R′(t) ≥ R(t − τ)} ≤ S + 2 · U.

Proof. The complete proof is by algebraic manipulation of the equations of the
deferrable server model and can be found in the appendix.

In the special but in practice not uncommon case (see [1]) where the deferrable
server has highest priority, the resource stream C(t) can be considered to be
linear, i.e. C(t) = C · t. As a corollary, we then find that deadlines of at least S
are met.

Corollary 1. Consider a highest-priority deferrable server with period T and
capacity Q. Furthermore, assume that we have an upper bound S on the arrival
time of tasks R(t) and a linear resource stream C(t) = C · t, such that the
respective utilizations satisfy the following inequalities for all s ∈ R:

C ≥ Q

T
≥ R(s + S) − R(s)

S
.

Then, all relative deadlines of at least S are met, i.e.

Δ � sup
t

inf{τ | R′(t) ≥ R(t − τ)} ≤ S.

Proof. By assumption, we have for all s ∈ R that R(s+S)−R(s)
S ≤ C. From

linearity, it follows that for all U > 0 and all u ∈ R we have C(u+U)−C(u)
U = C,

so R(s+S)−R(s)
S ≤ C(u+U)−C(u)

U and C(u + T) − C(u) ≥ Q. Using our main
theorem, we find for all U > 0, that relative deadlines greater than S + 2 · U are
met, and hence Δ � supt inf{τ | R′(t) ≥ R(t − τ)} ≤ infU>0{S + 2 · U} = S.
Which concludes our proof.

5 Discussion

As mentioned in the introduction, our reason for making a formal model of the
deferrable server strategy, was our suspicion that the schedulability analysis in
[2] for real-time tasks under hierarchical fixed-priority preemptive scheduling and

106 P.J.L. Cuijpers and R.J. Bril

a deferrable server, is in general pessimistic rather than exact. In this section, we
will discuss this claim in more detail, with an apology for the necessary cluttering
in use of terminology. Throughout the paper we have used the terminology that
is usual in real-time calculus as much as possible, but in this section we must
transliterate some of the results to fit the terminology of [2].

In [2], a comparison is made between deferrable servers and periodic servers,
which only differ from each other in that a periodic server does not preserve
its remaining capacity if resources are provided but tasks are not ready to use
them, while a deferrable server does. The comparison is carried out under the
assumption that there is a lowest priority, soft real-time task present (block 2 in
figure 3), of which the interarrival time is unknown. Davis and Burns show that,
under this assumption, the worst-case schedulability of tasks is better for peri-
odic servers. However, we feel their subsequent conclusion that periodic servers
dominate deferrable servers is somewhat misleading, because the presence of the
soft real-time task severely influences the behavior of the deferrable server, while
it does not influence the behavior of the periodic server. More precisely, in the
worst case scenario, the buffer of the soft real-time task is never empty. This
causes the deferrable server to loose capacity to this task at all times, and in
effect behave in the same way as the periodic server.

Using Corollary 1, we will show that a deferrable server can indeed outper-
form a periodic server when this unknown soft real-time task is not present. The
simplest example that shows this, is a system consisting of a single budgeted
task, with a deadline equal to its period. In the remainder of this section, we
first briefly relate our terminology with the terminology used in [2], and subse-
quently transliterate and refine Corollary 1 for our example system. Next, we
recapitulate worst-case response time analysis given in [2] by presenting a ded-
icated equation for our special case. Under the aforementioned conditions, the
analysis in [2] is exact for deferrable servers, i.e. provides a necessary and suffi-
cient schedulability condition for the task. However, our corollary shows that the
analysis is pessimistic for deferrable servers, when the unknown lowest priority
task is not present or its interarrival time becomes known. This we illustrate
using the aforementioned example.

In [2], a periodic task τ is characterized by a period (or inter-arrival time) T τ ,
a worst-case computation time Cτ , and a relative deadline Dτ . We assume that
the task’s period and deadline are equal, i.e. T τ = Dτ . A server σ is characterized
by a replenishment period T σ and a capacity Cσ. Based on these notions, the
utilization U τ of the task is given by Cτ

T τ and the utilization Uσ of the server by
Cσ

T σ .
The task τ can be either bound or unbound. The task τ is bound if it has

a period that is an exact multiple of the server’s period and an arrival time
that coincides with the replenishment of the server’s capacity. Otherwise τ is
unbound. We assume an unbound task. Without loss of generality, we assume
that the server σ is replenished for the first time at time ϕσ = 0. Moreover, we
assume that τ is released for the first time at time ϕτ ≥ 0, i.e. at or after the
first replenishment of σ. With this terminology in place, we can write

Towards Budgeting in Real-Time Calculus: Deferrable Servers 107

R(t) = Cτ ·
�

t − ϕτ

T τ

�
C(t) = t

Q = Cσ

S = T τ

T = T σ

For our system, we can now transliterate and refine Corollary 1.

Corollary 2. Consider a highest-priority deferrable server σ with period T σ and
capacity Cσ. Furthermore, assume that the server is associated with a periodic
task τ with period T τ and worst-case computation time Cτ , where the first release
of τ takes place at or after the first replenishment of σ. When the respective
utilizations satisfy the following inequality

Uτ ≤ Uσ ≤ 1,

the deadline Dτ = T τ of τ is met.

Note that our transliterated corollary holds for both a bound task and an un-
bound task. Furthermore, note that (2) is a necessary and sufficient (i.e. exact)
schedulability condition for both the task and the server. Finally, note that

UT ≤ Uσ ≤ 1,

is a necessary schedulability condition for a set T of independent hard real-time
tasks with utilization UT with an associated server σ with utilization Uσ

We will now derive a schedulability condition for our system from [2] starting
from an equation to determine the task’s worst-case response time. The task’s
worst-case response time WRτ is the longest possible time from its arrival to its
completion. Similarly, the server’s worst-case response time WRσ is the longest
possible time from the server being replenished to its capacity being exhausted,
given the task is ready to use all of its capacity. The task is said to be schedulable
if (and only if)

WRτ ≤ Dτ .

Similarly, the server is schedulable if (and only if) WRσ ≤ T σ.
For our system, the server is schedulable when Cσ ≤ T σ. Based on [2], we

derive for our system that WRτ is given by

WRτ = Cτ +
�

Cτ

Cσ

�
(T σ − Cσ) , (1)

which leads to the following condition for schedulability of a task with a deadline
Dτ equal to its period T τ

Cτ +
�

Cτ

Cσ

�
(T σ − Cσ) ≤ T τ . (2)

Now, as an example, we fix Cτ and T τ and plot the minimum utilization Uσ
min

of the server as a function of T σ, i.e. we plot

Uσ
min(T σ) = min

�
Cσ

T σ
| T τ ≥ Cτ +

�
Cτ

Cσ

�
(T σ − Cσ) , Cσ ≥ 0

�
.

108 P.J.L. Cuijpers and R.J. Bril

2 4 6 8 10
TΣ

0.2

0.4

0.6

0.8

1

UΣ
min

Fig. 5. Minimum server utilization Uσ
min for Cτ = 2 and T τ = 5 as a function of T σ

The result for Cτ = 2 and T τ = 5 is depicted in figure 5. The horizontal line in
this figure, shows the utilization U τ = Cτ

T τ of the task.
The figure illustrates that according to [2] only for values of T σ equal to an

integral fraction of T τ , i.e. T σ = T τ

n for n ∈ N
+, the minimum server utilization

Uσ
min needed for schedulability is equal to the task utilization U τ . For other

values of T σ, Uσ
min is higher than U τ . However, according to our theorem, the

server utilization Uσ may be chosen equal to the task utilization U τ when using
a deferrable server, irrespective of T σ. From this example, we conclude that the
schedulability condition expressed by (2) is sufficient but not necessary for an
unbound task with an associated deferrable server. As a result, equation (1)
is pessimistic, and the worst-case response time analysis presented in [2] for
unbound tasks with associated deferrable servers is therefore pessimistic, and
not exact, when the assumption of an unknown soft real-time lowest priority
task is dropped.

According to [2], their worst-case response time analysis is exact for both
deferrable servers and periodic servers. Based on that result, they claim that
periodic servers dominate deferrable servers with respect to schedulability of
tasks, i.e. “there are no systems . . . that can be scheduled using a set of deferrable
servers that cannot also be scheduled using an equivalent set of periodic servers”.
We have shown here, that this claim heavily relies on the assumed presence of
an unknown soft real-time lowest priority task, and that it may not hold if such
a task is not present, or if we somehow have more information on the interarrival
time of this lowest priority task.

6 Conclusive Remarks and Future Work

We presented a formal model of a deferrable server budgeting strategy [10],
using the real-time calculus of [11]. Using this model we derived a schedulability
theorem stating that a set of tasks with deadlines greater than the sum of the
minimum interarrival times of the tasks and the maximum delay between arrival
of resources (due to other servers in the network) is schedulable provided that the

Towards Budgeting in Real-Time Calculus: Deferrable Servers 109

utilization of the tasks is smaller than the utilization of the server and smaller
than the utilization of the arriving resources. Application of this theorem to the
special case of a highest-priority server has led to an example where deferrable
servers outperform periodic servers in the absence of soft real-time tasks. Hence,
the claim in [2] that periodic servers outperform deferrable servers, holds in the
presence of soft real-time tasks, but not in their absence. Worst-case response
time analysis of deferrable servers therefore still requires further research.

In this paper, we used real-time calculus as an aid to prove our schedulability
theorem for deferrable servers. In particular, we have proved the schedulabil-
ity theorem using direct symbolic manipulation of our model of the deferrable
server. Another, indirect way to analyse the behaviour of real-time calculus mod-
els, is through so-called service curves [4], comparable to analysis using Fourier
and Laplace transformations in system theory. Service curve transformations
define a system in terms of upper and lower bounds on the input and output
streams rather than defining the streams exactly. Initial investigations suggest
that service curve transformations can also be found for deferrable servers, but
will probably not be tight, i.e. they will not give optimal bounds. Our attempts
to use service curve transformations to prove our schedulability theorem failed,
because the exact timing of replenishments turned out to be crucial in this proof,
and is lost during the transformations.

Finally, the treatment of budgeting servers in general does not stop with the
treatment of deferrable servers. First of all, there is a great variety of budgeting
servers already in use in practice and theory. And secondly, the use of budgeting
servers has lead to the introduction of a hierarchical approach to scheduling.
If multiple tasks are run on a single server, one may first divide the available
resources over the servers, and in a second stage schedule the tasks that run
on each server independently of what runs on the other servers. Recent theory
about the schedulability of tasks under different kinds of budgeting servers was
presented in [2,3,7,9]. In the beginning of section 3 we have shown that there
is a connection between the modeling of individual tasks and the modeling of
servers. Of course, this concept can be lifted to meta-servers, etc. But, further
analysis is still needed to obtain a truly hierarchical approach, in which we first
abstract from lower level tasks and analyse the connections between servers, and
afterwards analyse the properties of the served tasks.

Acknowledgements. We would like to thank Lothar Thiele of ETH Zürich, and
Robert I. Davis and Alan Burns of the University of York, for their valuable
feedback on our initial results and for helping us to better understand their
respective work.

References

1. Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable Scheduling Al-
gorithms and Applications. Springer Science+Business Media, Inc. (2005)

2. Davis, R.I., Burns, A.: Hierarchical fixed priority pre-emptive scheduling. In: Proc.
26th IEEE Real-Time Systems Symposium (RTSS), pp. 389–398 (December 2005)

110 P.J.L. Cuijpers and R.J. Bril

3. Deng, Z., Liu, J.W.-S.: Scheduling real-time applications in open environment. In:
Proc. 18th IEEE Real-Time Systems Symposium (RTSS), pp. 308–319 (December
1997)

4. Thiran, P., Le Boudec, J.-Y. (eds.): Network Calculus. LNCS, vol. 2050. Springer,
Berlin (2001)

5. Joseph, M. (ed.): Real-Time Systems: Specification, Verification and Analysis.
Prentice-Hall, Englewood Cliffs (1996)

6. Klein, M.H., Ralya, T., Pollak, B., Obenza, R., González-Harbour, M.: A Practi-
tioner’s Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for
Real-Time Systems. Kluwer Academic Publishers, Dordrecht (1993)

7. Kuo, T.-W., Li, C.-H.: A fixed-priority-driven open environment for real-time appli-
cations. In: Proc. 20th IEEE Real-Time Systems Symposium (RTSS), pp. 256–267
(December 1999)

8. Rajkumar, R., Juvva, K., Molano, A., Oikawa, S.: Resource kernels: A resource-
centric approach to real-time and multimedia systems. In: Proc. SPIE, Conference
on Multimedia Computing and Networking (CMCN), vol. 3310, pp. 150–164 (Jan-
uary 1998)

9. Saewong, S., Rajkumar, R., Lehocky, J.P., Klein, M.H.: Analysis of hierarchical
fixed-priority scheduling. In: Proc. 14th Euromicro Conference on Real-Time Sys-
tems (ECRTS), pp. 152–160 (2002)

10. Strosnider, J.K., Lehoczky, J.P., Sha, L.: The deferrable server algorithm for en-
hanced aperiodic responsiveness in hard real-time environments. IEEE Transac-
tions on Computers 44(1), 73–91 (1995)

11. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard
real-time systems. In: Proc. IEEE International Symposium on Circuits and Sys-
tems (ISCAS), vol. 4, pp. 101–104 (2000)

A Scheduling Theorem: Proof

To prove supt inf{τ | R′ (t) ≥ R (t − τ)} ≤ S +2 ·U , it is necessary and sufficient
to prove that R′ (t) ≥ R (t − S − 2 · U) for all t. For this, we start from our
previously obtained solution for R′ (t).

R′ (t) = inf
n∈N

inf
u≤t∧T ·� t

T
−n�

�
R (u) + C

�
t ∧ T ·

�
t

T
− n

��
− C (u)

+
n−1�
m=0

Q ∧
�

C

�
t ∧ T ·

�
t

T
− m

��
− C

�
T ·

�
t

T
− m − 1

���	

We split off the special cases where n = 0 and m = 0, and find:

= inf
u≤t

{R (u) + C (t) − C (u)}

∧ inf
n≥1

inf
u≤T ·� t

T
−n�

�
R (u) + C

�
T ·

�
t

T
− n

��
− C (u)

+ Q ∧
�

C (t) − C

�
T ·

�
t

T
− 1

���

+
n−1�
m=1

Q ∧
�

C

�
T ·

�
t

T
− m

��
− C

�
T ·

�
t

T
− m − 1

���	

Towards Budgeting in Real-Time Calculus: Deferrable Servers 111

Again, we find two cases, depending on whether Q or C (t)− C
(
T ·

⌈
t
T − 1

⌉)
is

larger.

= inf
u≤t

{R (u) + C (t) − C (u)}

∧ inf
n≥1

inf
u≤T ·� t

T
−n�

�
R (u) + C

�
T ·

�
t

T
− n

��
− C (u)

+ Q +
n−1�
m=1

Q ∧
�

C

�
t ∧ T ·

�
t

T
− m

��
− C

�
T ·

�
t

T
− m − 1

���	

∧ inf
n≥1

inf
u≤T ·� t

T
−n�

�
R (u) + C (t) − C

�
T ·

�
t

T
− 1

��
+ C

�
T ·

�
t

T
− n

��
− C (u)

+
n−1�
m=1

Q ∧
�

C

�
T ·

�
t

T
− m

��
− C

�
T ·

�
t

T
− m − 1

���	

Take u = T ·
⌈

t
T − m − 1

⌉
in the assumption on resource arrivals to find

C
(
T ·

⌈
t
T − m

⌉)
− C

(
T ·

⌈
t
T − m − 1

⌉)
≥ Q.

= inf
u≤t

{R (u) + C (t) − C (u)}

∧ inf
n≥1

inf
u≤T ·� t

T
−n�

�
R (u) + C

�
T ·

�
t

T
− n

��
− C (u) + n · Q

�

∧ inf
n≥1

inf
u≤T ·� t

T
−n�

�
R (u) + C (t) − C

�
T ·

�
t

T
− 1

��

+ C

�
T ·

�
t

T
− n

��
− C (u) + (n − 1) · Q

�

Then, we truncate the argument of C (.) to a multiple of U with a convenient
remainder. Using monotonicity of C (t) we find:

≥ inf
u≤t

�
R (u) + C

��
t − u

U

· U + u

�
− C (u)

�

∧ inf
n≥1

inf
u≤T ·� t

T
−n�

R (u) + C

��
T ·

�
t
T

− n
�

− u

U

�
· U + u

�
− C (u) + n · Q

	

∧ inf
n≥1

inf
u≤T ·� t

T
−n�

R (u) + C

��
t − T ·

�
t
T

− 1
�

U

�
· U + T ·

�
t

T
− 1

��

− C

�
T ·

�
t

T
− 1

��
+ C

��
T ·

�
t
T

− n
�

− u

U

�
· U + u

�
− C (u) + (n − 1) · Q

	

Now, we define X as a lower bound on the utilization of R (t), and find:

inf
u

{
C (u + U) − C (u)

U

}
≥ sup

s

{
R (s + S) − R (s)

S

}
� X.

112 P.J.L. Cuijpers and R.J. Bril

Using X , we eliminate C (t) and Q.

≥ inf
u≤t

�
R (u) +

�
t − u

U

· U · X

�

∧ inf
n≥1

inf
u≤T ·� t

T
−n�

R (u) +

�
T ·

�
t
T

− n
�

− u

U

�
· U · X + n · T · X

	

∧ inf
n≥1

inf
u≤T ·� t

T
−n�

R (u) +

�
t − T ·

�
t
T

− 1
�

U

�
· U · X

+

�
T ·

�
t
T

− n
�

− u

U

�
· U · X + (n − 1) · T · X

	

Observe that for all x we have x · X ≥ 	 x
S
 · S · X . And since S · X serves as an

upper bound on R (s + S) − R (s), this gives us

≥ inf
u≤t

�
R

�
u +

��
t − u

U

· U

S

· S

��

∧ inf
n≥1

inf
u≤T ·� t

T
−n�

R

�
u +

��
T ·

�
t
T

− n
�

− u

U

�
· U

S
+ n · T

S

�
· S

�	

∧ inf
n≥1

inf
u≤T ·� t

T
−n�

R

�
u +

��
t − T ·

�
t
T

− 1
�

U

�
· U

S
+

�
T ·

�
t
T

− n
�

− u

U

�
· U

S
+ (n − 1) · T

S

�
· S

�	

And using monotonicity of R (t), together with the observation that 	x
 · y ≥
x · y − y we find:

≥ inf
u≤t

�
R

�
u +

�
t − u

U

· U − S

��

∧ inf
n≥1

inf
u≤T ·� t

T
−n�

R

�
u +

�
T ·

�
t
T

− n
�

− u

U

�
· U + n · T − S

�	

∧ inf
n≥1

inf
u≤T ·� t

T
−n�

R

�
u +

�
t − T ·

�
t
T

− 1
�

U

�
· U +

�
T ·

�
t
T

− n
�

− u

U

�
· U + (n − 1) · T − S

�	

≥ inf
u≤t

{R (u + t − u − U − S)}

∧ inf
n≥1

inf
u≤T ·� t

T
−n�

�
R

�
u + T ·

�
t

T
− n

�
− u − U + n · T − S

��

∧ inf
n≥1

inf
u≤T ·� t

T
−n�

Towards Budgeting in Real-Time Calculus: Deferrable Servers 113

�
R

�
u + t − T ·

�
t

T
− 1

�
− U + T ·

�
t

T
− n

�
− u − U + (n − 1) · T − S

��
= R (t − U − S)

∧ R

�
T ·

�
t

T

�
− U − S

�
∧ R (t − 2 · U − S)

= R (t − 2 · U − S)

Which concludes our proof.

	Towards Budgeting in Real-Time Calculus: Deferrable Servers
	Introduction
	Real-Time Calculus Preliminaries
	Deferrable Server Model
	Scheduling Theorem
	Discussion
	Conclusive Remarks and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

