

Silent steps in transition systems and Markov chains

Citation for published version (APA):
Trcka, N. (2007). Silent steps in transition systems and Markov chains. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR627345

DOI:
10.6100/IR627345

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR627345
https://doi.org/10.6100/IR627345
https://research.tue.nl/en/publications/97036f80-952a-45b1-8245-20953c44f43c

Silent Steps in Transition Systems

and Markov Chains

c©Nikola Trčka
IPA Dissertation Series 2007-08
Typeset using LATEX2e
Printed by University Press Facilities, Eindhoven
Cover design by Jelena Radošević, adaptation by Paul Verspaget

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN
Trčka, Nikola
Silent steps in transition systems and Markov chains / door Nikola Trčka.
Eindhoven : Technische Universiteit Eindhoven, 2007
Proefschrift. ISBN 978-90-386-1045-0
NUR 993
Section headings: Markov chains / transition systems
CR: F.1.2 / F.3.1 / F.3.2 / G.3

The work in this thesis has been carried out under the auspices of the
research school IPA (Institute for Programming research and Algorithmics).

The author was employed at the Eindhoven University of Technology,
supported by the Netherlands Organization for Scientific Research (NWO),
project 612.064.205

Silent Steps in Transition Systems and
Markov Chains

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op donderdag 28 juni 2007 om 16.00 uur

door

Nikola Trčka

geboren te Belgrado, Servië

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. J.C.M. Baeten
en
prof.dr.ir. J.E. Rooda

Copromotor:
dr. S.P. Luttik

Preface

This thesis is an outcome of my Ph.D research at Eindhoven University of
Technology, started in July 2003. Many people have contributed to my life
and to my research in different ways. Here I can only mention some of them.

First of all I would like to thank my supervisor Jos Baeten for giving me
a position while I was still a student. I highly appreciated working with Jos
and being under his supervision. He is the leader of our group and the main
reason for its friendly, relaxed, positive, and productive atmosphere. I would
also like to thank Koos Rooda who accepted to be my second supervisor.

I am very happy to have Bas Luttik as a co-supervisor. He is an excellent
supervisor. He carefully read every word I wrote, and at any time was
available to answer my questions. From Bas I have learned a lot. Not only
a vast amount of computer science, but also how to write better, how to
be more precise, how to get a paper accepted, how to give good talks, and
many many other things. Bas, thanks a lot!

A large part of the research presented in this thesis is joint work. Most
of all I would like to thank my friend and colleague Jasen Markovski. Jasen
came as a Ph.D. student just at the time when I was searching for a victim
to join me in the “Markov chain business”. He immediately got hooked
on the topics and the result was a three-year period of great collaboration.
Without Jasen many pages in this thesis would have been left blank. I also
thank Rob van Glabbeek for helping Bas and me solve some complicated
issues regarding divergence in branching bisimulation. Ever since he joined,
he has been providing us with many insightful comments.

I thank the members of the committee, Onno Boxma, Holger Hermanns,
and Jaco van de Pol, for reviewing the manuscript of this thesis and giving
me valuable comments. I also thank Kees van Hee and Wan Fokkink for
accepting to be members of the defense committee.

My work was supported by the NWO project TIPSy. I appreciated the
project meetings and the discussions with the project members Wan Fokkink
(in the beginning), Koos Rooda, Asia van de Mortel-Fronczak, Jaco van de

i

ii PREFACE

Pol, Elena Bortnik, and Anton Wijs.
I thank Holger Hermanns, Joost-Pieter Katoen, and Jane Hillston for

inviting me to visit them and present my work. I thank Jane Hillston also
for giving me the chance to work as a postdoc in her group in Edinburgh.

I thank my colleagues of the Formal Methods Group for contributing to
the pleasant working atmosphere.

We have many friends in The Netherlands. They have made our stay a
very enjoyable experience and full of memories. They know who they are
and I thank them all. Unique thanks go to Ana, whose useful advice (and
furniture) helped us survive in the beginning, Georgi, who showed his hos-
pitality when it was needed, Christina, whom we stuffed with letters when
we were away, and Jasen, whose “secretarial work” is greatly appreciated.

I thank Jeca for designing the cover of this thesis.
I thank my parents and my sister for their encouragement and support.
Finally, I thank my wife Marija for all the love and joy that she brings

into my life. I look forward to the wonderful time that will come soon when
our little family expands.

Eindhoven, May 2007 Nikola Trčka

Summary

Silent Steps

in Transition Systems and Markov Chains

Formal methods provide a set of notations and techniques for construction
of mathematical models of systems and for (automatic) verification of these
models against requirements. The requirements are usually represented in
terms of a set of properties that a system should satisfy. A property can be
qualitative or quantitative. A qualitative property is a property pertaining
to the functional behavior of a system (e.g. “the system never deadlocks”);
a quantitative property is a property pertaining to a system’s performance
(e.g. “the throughput of the system is as desired”).

This thesis consists of three parts. The first part solves some problems
related to functional verification of systems. The third part considers perfor-
mance analysis and contributes to the field of Markov processes. The second
part serves as a bridge between the first and the third part. It recollects
some standard results from the verification world but explains them in the
standard matrix-analytic language of Markov processes. In each part the
focus is on the elimination of silent steps, i.e., of steps in a system that are
considered unobservable. A short summary of each part follows.

In Part I, we define timed doubly-labeled transition systems as transition
systems that incorporate data, timing and successful termination. We define
a silent step to be a step that does not change the global state and that
involves the execution of an internal action. We also define an equivalence
relation that abstracts away from silent steps. The main contribution of
Part I is the sequence of adaptations that have to be made in order for this
equivalence to be a congruence for a standard modeling language.

Part II approaches the theory of transition systems and bisimulations
from matrix theory. We define transition systems with successful termina-
tion as tuples of matrices over a boolean algebra of actions. We also define

iii

iv SUMMARY

some standard operations on transition systems in matrix theory, and give
matrix definitions of forward and backward strong bisimulation, of bisimu-
lation up-to a relation, and of weak and branching bisimulation. The main
purpose of Part II is to show the analogies between transition system theory
and Markov chain theory.

Part III introduces two types of silent transitions in the theory of Markov
reward processes. The first type of silent step is an instantaneous step
that is assigned a probability with which it is selected. The second is an
instantaneous step for which this probability is left unspecified. This is
to express internal non-determinism. For each type, two different ways of
eliminating silent steps are provided and compared, one based on lumping of
states and the other on a more traditional aggregation approach. The results
of Part III can serve as the correctness criterion for various compositional
Markov (reward) chain generation methods.

Origin of the parts Most of the material presented in this thesis is an
extension of the joint work that was published before in several papers.

• Part I is based on the following papers:

– N. Trčka - Verifying Chi Models of Industrial Systems in Spin.
In Proceedings of ICFEM’06, Macau, China.

– B. Luttik, N. Trčka - Stuttering Congruence for Chi.
In Proceedings of SPIN’05, San Francisco, CA, USA.
A longer version published as a Computer Science Report 05/13,
Eindhoven University of Technology, 2005.

– E. Bortnik, N. Trčka, A.J. Wijs, B. Luttik, J.M. van de Mortel-
Fronczak, J.C.M. Baeten, W.J. Fokkink, J.E. Rooda, Analyzing
a Chi Model of a Turntable System Using SPIN, CADP and UP-
PAAL.
Journal of Logic and Algebraic Programming, vol. 65, 2005, pp
51-104.

– R. van Glabbeek, B. Luttik, N. Trčka - Branching Bisimulation
with Explicit Divergence.
Submitted for publication.

• Part II is based on the following unpublished manuscript:

– N. Trčka - Transition Systems in Matrix Theory.

• Part III is based on the following papers:

SUMMARY v

– J. Markovski, N. Trčka - Lumping Markov Chains with Silent
Steps.
In Proceedings of QEST’06, Riverside, CA, USA.
A longer version published as Computer Science Report 06/13,
Eindhoven University of Technology, 2006.

– J. Markovski, N. Trčka - Eliminating Fast Transitions and Silent
Steps in Markov Chains by Aggregation: Reduction vs. Lumping.
Submitted for publication.

Table of Contents

Preface i

Summary iii

I Silent Congruence and Timed Silent Congruence 1

1 Introduction 3

1.1 Underlying model . 4

1.2 Properties of interest . 6

1.3 Bisimulation relations . 7

1.4 Divergence . 9

1.5 Some extensions . 10

1.6 Refined goal . 13

1.7 Outline . 13

2 Silent bisimulation 15

2.1 Doubly-labeled transition system 15

2.2 Silent bisimulation . 16

2.3 Equivalence proof . 17

2.4 Stuttering closure . 21

2.5 Alternative definitions . 24

2.6 Deadlock preservation . 26

3 The language κ 29

3.1 Syntax and semantics . 30

4 Silent congruence 37

4.1 Silent bisimulation on processes 37

4.2 Stateless silent bisimulation 44

vii

viii TABLE OF CONTENTS

4.3 Root condition and congruence proof 50

5 Timed Silent Congruence 61

5.1 Timed silent congruence . 63

5.2 Adding maximal progress . 88

6 Application: Translating χ to Promela 93

6.1 The language χ . 94

6.2 Embedding χ into Timed κ 95

6.3 Translation to Promela . 98

Conclusion to Part I 105

II Transition Systems and Bisimulations in Matrix The-
ory 107

7 Introduction 109

7.1 Outline . 112

8 Transition Systems as Matrices 117

8.1 Preliminaries . 117

8.2 Transition systems . 121

8.3 Operations on transition systems 122

9 Strong bisimulation 127

9.1 Strong bisimulation on a system 127

9.2 Strong lumping . 131

9.3 Strong bisimulation between systems 133

9.3.1 Compatibility with the operations 135

9.4 Backward bisimulation . 138

9.5 Strong bisimulation up-to . 142

10 Bisimulations on systems with silent steps 145

10.1 Weak bisimulation . 145

10.1.1 Weak bisimulation as a strong bisimulation 148

10.1.2 Weak lumping . 150

10.2 Branching bisimulation . 152

10.2.1 Branching bisimulation as a strong bisimulation 158

10.2.2 Branching lumping . 158

10.2.3 Stuttering property . 160

TABLE OF CONTENTS ix

Conclusion to Part II 163

III Aggregation of Markov Reward Chains with Fast and

Silent Transitions 165

11 Introduction 167
11.1 Motivation . 167
11.2 Our approach . 171
11.3 Outline . 175

12 Markov Reward Chains with Discontinuities, and with Fast
and Silent Transitions 177
12.1 Discontinuous Markov reward chains 177

12.1.1 Adding rewards . 182
12.2 Markov reward chain with fast transitions 184
12.3 Markov reward chains with silent transitions 187

13 Aggregation by Lumping 189
13.1 Ordinary lumping . 189
13.2 τ -lumping . 198
13.3 τ∼-lumping . 218

14 Aggregation by Reduction 229
14.1 Reduction to a Markov reward chain 229
14.2 τ -reduction . 232
14.3 τ∼-reduction and total τ∼-reduction 235

15 Comparative Analysis 247
15.1 Reduction vs. ordinary lumping 247
15.2 τ -reduction vs. τ -lumping . 250
15.3 τ∼-reduction vs. τ∼-lumping 252
15.4 τ∼-lumping vs. weak bisimulation for Interactive Markov chains255

Conclusion to Part III 257

Bibliography 259

Index 269

List of Figures

1.1 a) Labeled transition system, b) Kripke structure and c) doubly-
labeled transition system . 5

1.2 a) Branching bisimulation and b) stuttering equivalence . . . 8

1.3 Branching bisimulation is blind to divergence 9

1.4 Stuttering equivalence does not ignore divergence except in
deadlocked states . 10

1.5 Branching bisimulation and successful termination 11

1.6 Branching bisimulation and discrete timing 12

1.7 Divergence and timing . 13

2.1 Stuttering closure . 22

8.1 Transition system and its matrix representation – Example 8.2.2122

9.1 Transition system and a strong bisimulation on it – Exam-
ple 9.1.2 . 129

9.2 Transition system, strong lumping and the lumped system –
Example 9.2.6 . 133

9.3 Transition system and a backward strong bisimulation on it
– Example 9.4.2 . 140

9.4 Backward strong lumping and the lumped system – Exam-
ple 9.4.4 . 141

9.5 Transition system and a bisimulation up-to on it – Exam-
ple 9.5.2 . 143

9.6 Lumping up-to and the lumped system – Example 9.5.5 . . . 144

10.1 Transition system and a weak bisimulation on it – Exam-
ple 10.1.2 . 148

10.2 Transition system from Figure 10.1 after τ -closure 149

xi

xii LIST OF FIGURES

10.3 Transition system, weak lumping and the weakly lumped sys-
tem – Example 10.1.7 . 151

10.4 Transition system and a branching bisimulation on it – Ex-
ample 10.2.2b . 156

11.1 a) A simple Markov chain and b) a Markov reward chain . . 168
11.2 a) An Interactive Markov chain, b) the intermediate model

with τ -transitions, and c) the induced Markov chain – Exam-
ple 11.1.1. 170

11.3 a) A generalized stochastic Petri net, b) the corresponding
extended reachability graph, and c) the derived Markov chain
– Example 11.1.2. 171

12.1 Markov reward chains with fast transitions – Example 12.2.4 186
12.2 Markov reward chains with silent transitions corresponding to

the Markov reward chains with fast transitions from Figure 12.1188

13.1 τ -lumpings with unique τ -lumped processes – Example 13.2.4 200
13.2 τ -lumping where the τ -lumped process depends on the pa-

rameters in the τ -distributor – Example 13.2.5 204
13.3 Markov reward chains with fast transitions without non-trivial

τ -lumpings – Example 13.2.6 208
13.4 Markov reward chain with fast transitions before and after

the renumbering of states – Example 13.2.7 209
13.5 Not every τ -lumping can be τ∼-lumping – Example 13.3.1 . . 219
13.6 τ∼-lumpings – Example 13.3.4 226

14.1 Markov reward chains obtained by reduction - Example 14.1.3 233
14.2 τ -reduction – Example 14.2.2 234
14.3 τ∼-reduction – Example 14.3.5 239
14.4 Markov reward chains with silent transitions that are not τ∼-

reducible – Example 14.3.6 240
14.5 A total τ∼ reduction – Example 14.3.7 241

15.1 τ -reduction vs. τ -lumping –Example 15.2.1 251
15.2 τ -reduction sometimes coincides with τ lumping 252
15.3 The process in a) τ∼-lumps to the one in b) but cannot be

τ∼-reduced – Example 15.3.1 253
15.4 The process in a) τ∼-reduces to the one in b) but cannot be

(properly) τ∼-lumped . 254

Part I

Silent Congruence and

Timed Silent Congruence

1

Chapter 1

Introduction

Formal methods provide a set of notations and techniques for construction
of mathematical models of systems and for (automatic) verification of these
models against some requirements, i.e. against a set of properties that a
system should satisfy. These models, usually some kind of state transition
graphs, are rarely obtained by hand. A system is first specified in a formal
specification language, a language similar to a programming language. The
distinguishing characteristic of a formal specification language, apart from
features to express many different aspects of systems, is its formal semantics.
The final model, called state space, is next automatically obtained by the
semantics of the language. A typical formal specification language involves
the notion of a process and provides different constructs used to compose
processes, such as non-deterministic choice, repetition, sequential or parallel
composition.

Sometimes, prior to verification there is a need to transform a system’s
specification into another specification. There are several reasons why this
can be useful:

1. The generated state space of a specification is expected to be too
large. This brings the need for its symbolic representation, that is,
a simplified specification that lies between the original specification
and its state space. Linearization of specifications in the modeling
language µCRL [17] is an example of this method [96].

2. Different symbolic optimization techniques can be performed on the
model, e.g. to reduce the size of the final state space before it is gen-
erated. For example, see again [96] for the symbolic manipulations on
the linearized µCRL process.

3

4 Chapter 1. Introduction

3. The model is to be translated to another specification language for the
purpose of verification in some other environment. In case the source
and the target language do not have a common semantics, the new
specification should be in a syntactical form that is easier or trivial
to translate. The correctness of the translation process can then take
place entirely within the realm of the source language. The useful-
ness of this approach was shown in [95, 74] where the translation of
the modeling language χ [90] to Promela, the input language of the
model checker Spin [65], is presented. In Chapter 6 we discuss some
parts of this translation process as an application of our results.

The goal of Part I is to find a suitable correctness criterion for these
transformations. To be precise, we want to define an equivalence relation
on process specifications that:

1. preserves all relevant properties of a system,

2. is a congruence, i.e., is compatible with all the standard constructs of
a typical modeling language, and

3. allows for sufficient flexibility of transformations.

The first goal makes sure that every transformation modulo this equiv-
alence is correct. The equivalence should satisfy the congruence property
because we want to be able to transform only a part of the specification and
still obtain an equivalent specification. The last goal is clear. We want to
have freedom to simplify as much as possible. The equivalence should be as
coarse as possible still satisfying the first two requirements.

In the following sections we explain how we will achieve this goal, moti-
vating every decision.

1.1 Underlying model

To obtain an equivalence on process specifications we follow the standard
approach and first choose a suitable mathematical model for the represen-
tation of systems. This model serves as the underlying model, i.e. the state
space, generated from the specifications. The equivalence is first defined in
that model and then lifted to the level of process specifications. We discuss
the two most common formal models.

Labeled transition systems are a well established formalism for modeling
of the qualitative aspects of systems, focusing on the behavioral part. A

1.1. Underlying model 5

labeled transition system is a directed graph in which each node represents
a state of the system, and each arrow is labeled by an action denoting that
the system can perform a transition from the source state to its target state
while executing that action. Figure 1.1a depicts a transition system.

Another well known formalism for the representation of systems are
Kripke structures. They are also directed graphs with nodes representing
states of a system, but they have labels associated to states denoting which
propositions are satisfied by the system when in that state. Contrary to
labeled transition systems, the focus is not on the actions that a system can
perform but rather on their effect on its data-state. A Kripke structure is
depicted in Figure 1.1b.

a) /.-,()*+

a

����
��
��
�

b

��0
00

00
00

/.-,()*+ /.-,()*+

c

QQ

b) /.-,()*+
γ

����
��
��
�

��0
00

00
00

/.-,()*+ψ /.-,()*+
ϕ

QQ

c) /.-,()*+
γ

a

����
��
��
�

b

��0
00

00
00

/.-,()*+ψ /.-,()*+
ϕ

c

QQ

Figure 1.1: a) Labeled transition system, b) Kripke structure and c) doubly-
labeled transition system

A doubly-labeled transition system is the combination of a labeled tran-
sition system and a Kripke structure. It generalizes both formalisms by
allowing labels to be both on arrows and states. When the action labels
are ignored, a doubly-labeled transition system becomes a Kripke structure;
when the state labels are ignored, it becomes a labeled transition system. A
doubly-labeled transition system obtained by combining the labeled transi-
tion system of Figure 1.1a and the Kripke structure of Figure 1.1b is depicted
in Figure 1.1c.

The behavioral part and the data part of a system are often insepa-
rable. Most modeling languages involve some notion of state variable (for
data) together with action executions (e.g. for the synchronization of par-
allel components). This motivates us to work with a model that integrates
these two features and to define our equivalence on it. One such model is
a doubly-labeled transition system. Since modeling languages give rise to
doubly-labeled transition systems only indirectly (they keep variables with
values on states and not complete sets of propositions), we also need that
our equivalence can be automatically interpreted on the semantics of those

6 Chapter 1. Introduction

languages.

1.2 Properties of interest

In this section we define the main properties that must be preserved under
transformation. The formal notion of a property of a system comes from
the type of verification that is to be used.

The most widely used verification technique today is model checking [31].
This technique performs an exhaustive search of the state space checking if a
certain property holds of the system. The property is specified by a formula
of some temporal logic, a logic that allows us to say things like: if a machine
is given certain input, then it will eventually produce a correct output. Once
the property is formalized, model checking becomes a completely automated
process.

There are many variants of temporal logics (consult e.g. [43, 94]) and
there is no common agreement on which is superior. The logic can be linear-
time, when reasoning is about a single sequence of states (like ltl [88]), or
it can be branching-time, when reasoning involves several different branches
starting from a state (like ctl [30] or Hennessy-Milner logic [59]). There are
also logics that combine these two features, like ctl∗ [44] and µ-calculus [71]
(see their comparison in [21]). Also, a logic can consider only infinite, or
both finite and infinite, executions of the system. Depending on whether
the underlying model is a labeled transition system or a Kripke structure,
the logic is called action-based (reasoning is about what actions can be per-
formed in a state) or state-based (reasoning is about the validity of proposi-
tions in a state). Traditionally, the logics ltl, ctl and ctl∗ are interpreted
over Kripke structures, and therefore are state based, while Hennessy-Milner
logic and µ-calculus are action based. However, due to its large expressiv-
ity, the logic ctl∗ has also been interpreted in the action-based setting of
labeled-transition systems [36].

We choose the preservation of temporal logic formulas to be the major
part of our correctness criterion. That is, if the system is to be checked by
ctl model checking, then we require that the original and the transformed
system satisfy the same set of ctl formulas. To obtain more applicability
we want to preserve both state- and action-based logics, and both linear-
and branching-time logics.

There are also two other important properties of systems that we want
to preserve. The first is deadlock, i.e. a system’s inability to proceed, and it
should be preserved for obvious reasons. The second property is divergence.

1.3. Bisimulation relations 7

It represents a systems’s ability to repeat the same behavior indefinitely.
It is a subject of discussions whether divergence is really important or not.
However, divergence sensitivity is, to some extent, already built-in in many
temporal logics. Because of this, and because, as we will see later, divergence
becomes crucial when timing is introduced, we incorporate it into the theory.

1.3 Bisimulation relations

Establishing the correctness criterion directly is usually cumbersome. It is
often more convenient to equate specifications by establishing that they are
related according to some behavioral equivalence pertaining to the opera-
tional semantics of the modeling language. We adopt this approach.

For the setting of labeled transition systems and Kripke structures there
is a variety of trace- and bisimulation-like equivalences each with a different
temporal logic that it characterizes [52, 51]. Many of these equivalences
have been defined for many modeling languages and shown to be congru-
ences. If the original and the transformed model are to agree on every step
they take, then they are equivalent modulo strong bisimulation equivalence
[84, 79]. This equivalence is known to characterize the logic ctl∗ in the
setting of Kripke structures, and to characterize Hennessy-Milner logic for
labeled transition systems. Strong bisimulation is often not appropriate for
establishing the correctness of the transformation because it equates too
few states due to the requirement that every step needs to be simulated. A
model is often transformed with the introduction of some auxiliary actions
that do not change the global state of data (e.g. think of variables exchang-
ing values and the temporary variable introduced to achieve that). So, in
our case, it is better to work with weaker equivalences.

Sometimes a system can perform internal steps of which the impact is
considered unobservable. Weaker equivalences abstract away from these
steps but require that the other, i.e. visible, steps are simulated. For labeled
transition systems internal steps are the steps labeled by the internal action
τ and systems are usually related by a weak [79] or by a branching [53, 11]
bisimulation equivalence. Several variants of Hennessy-Milner logics are
given for both weak and branching bisimulations [60, 37]. In the setting of
Kripke structures an internal transition is a transition from a state to a state
that has the same set of propositions satisfied. Systems are then usually
related by stuttering equivalence [22, 37]. This equivalence characterizes a
variant of the logic ctl∗−x (the logic ctl∗ but without the operator next)
[22]. It is shown in [36, 37] that branching bisimulation and stuttering

8 Chapter 1. Introduction

equivalence correspond, i.e. that they follow the same idea but in a different
setting. Figure 1.2a depicts a labeled transition system with a branching
bisimulation on it. Figure 1.2b depicts a (corresponding) Kripke structure
with a (corresponding) stuttering equivalence on it. Note a small difference.
Branching bisimulation does not require that the first state of the left system
is connected to the second state of the right system.

a) /.-,()*+

τ

��
a

�� 4
4

4
4

4
4

4
4 ____ /.-,()*+

τ

��/.-,()*+

a

��

G
G

G
G

G
G /.-,()*+

τ

��/.-,()*+

G
G

G
G

G
G /.-,()*+

a

��/.-,()*+

b) /.-,()*+
ϕ

��

�� 4
4

4
4

4
4

4
4

G
G

G
G

G
G ____ /.-,()*+

ϕ

��/.-,()*+
ϕ

��

G
G

G
G

G
G /.-,()*+

ϕ

��/.-,()*+ψ

G
G

G
G

G
G /.-,()*+

ϕ

��/.-,()*+ψ

Figure 1.2: a) Branching bisimulation and b) stuttering equivalence

When working with doubly-labeled transition systems, the bisimulation
we use should be a combination of the bisimulations developed for labeled
transition systems and Kripke structures. As explained, to achieve the first
part of the goal, that is, a sufficient flexibility of transformation, we need an
equivalence that is weaker than strong bisimulation. We choose to combine
branching bisimulation and stuttering equivalence. Since the two equiva-
lences correspond, the decision is natural. An unobservable step in a model
is then a step that is labeled by the internal action τ and such that the
resulting state satisfies the same set of propositions as the starting one.

With the decision to (conservatively) combine branching bisimulation
and stuttering equivalence we are sure that our transformed model satisfies
the same set of ctl∗−x formulas in both the action- and state-based set-
ting [36, 37]. Since this logic is very expressive, covers almost all logics used
in practice, and combines branching-time and linear-time, it follows that if
two specifications are related by the new equivalence, then the main part
of the correctness requirement is satisfied. However, the equivalence does
not guarantee that deadlock and divergence are also preserved. In the next
section we explain how this can be solved.

1.4. Divergence 9

1.4 Divergence

Divergence is infinite repetition of the same behavior and it should be pre-
served in the transformed system. Since branching bisimulation and stutter-
ing equivalence make sure that all observable steps are properly simulated,
it is clear that we can only need to consider a more strict version of diver-
gence. A system is considered divergent if it can perform infinitely many
internal steps. The idea is that this behavior cannot be ignored, i.e. that
an unobservable step cannot be considered unobservable anymore if it is
performed indefinitely, and that it must be equally simulated.

The original version of branching bisimulation abstracts totally from di-
vergence. For example, the systems in Figure 1.3 are all branching bisimilar.
In [53] another condition is added to the definition saying that a state re-
lated to every state on a divergent path must also be divergent and with
all the states in its divergent path related to all the states in the divergent
path of the other state. This notion is known as branching bisimulation with
explicit divergence. It distinguishes all the three systems from Figure 1.3.

/.-,()*+

τ

��

a

��

____ /.-,()*+

a

��

____ /.-,()*+

a

��/.-,()*+ ____ /.-,()*+ ____ /.-,()*+

τ

mm

Figure 1.3: Branching bisimulation is blind to divergence

The most generally accepted version of ctl∗−x, namely the one inter-
preted on maximal (infinite) paths only, does not ignore divergence except
when relating a divergent state with a state that cannot perform any step.
In other words, it identifies deadlock and livelock. The two systems in
Figure 1.4a are indistinguishable while the systems in Figure 1.4b are dis-
tinguished by the ctl∗−x formula ∀Fψ. The formula encodes the property,
that for all (maximal) paths there is a state in which ψ holds. This is
clearly not satisfied by the first system since it has an execution where it
only stays in the first state. To obtain a bisimulation-like notion that charac-
terizes ctl∗−x, instead of adding a divergence condition, in [37] a divergence
sensitive version of stuttering bisimilarity is obtained by extending Kripke
structures with a fresh state that serves as a sink-state for deadlocked or

10 Chapter 1. Introduction

divergent states. This approach is not suitable in our case, because it does
not allow us to interpret the equivalence directly on the operational seman-
tics of some modeling language. In addition, divergence sensitive stuttering
bisimilarity identifies deadlocked with non-deadlocked states, which not only
violates our requirement of deadlock preservation but also introduces a con-
gruence problem for parallel composition. So, adding a divergence condition
and treating divergence in all cases is a more suitable approach for us. For
stuttering equivalence several divergence conditions appeared in the liter-
ature [85, 50, 81]. Adapting these conditions to our setting causes some
complications when proving transitivity of the relation, so we develop our
own condition.

a) /.-,()*+
ϕ

��

____ /.-,()*+
ϕ

��/.-,()*+ψ ____ /.-,()*+ψmm

b) /.-,()*+
ϕ��

��

_____ ×× /.-,()*+
ϕ

��/.-,()*+ψ _____ /.-,()*+ψ

Figure 1.4: Stuttering equivalence does not ignore divergence except in dead-
locked states

1.5 Some extensions

There are two more aspects of systems that we choose to cover; these are
successful termination and timing. Successful termination can ease the mod-
eling and it gives better axiomatizations; timing allows for modeling of time
critical systems. In the setting of branching bisimulation, termination and
timing have already been successfully added to the theory [9, 7, 6]. These
additions can be naturally interpreted in the setting of stuttering equiva-
lence. Since our aim is to combine the two equivalences, we choose to suit-
ably adapt and (conservatively) include the conditions for timed branching
bisimulation from [97, 7, 6] and for branching bisimulation with termination
from [9]. Note that, although it is possible to include successful termina-
tion and timing in the correctness criterion, by suitably extending the logic
ctl∗−x (see e.g. timed ctl [2]), we will not do so. There is no real standard
for timed logics and our purpose is more to illustrate the problems when
successful termination and timing are introduced to the theory. This is jus-

1.5. Some extensions 11

tified more by the fact that these features are usually only present in the
specification and often discarded at the verification phase.

Successful Termination The main reason to incorporate explicit suc-
cessful termination in a process theory is that it is needed for a proper
treatment of sequential composition. The theory becomes more modular
and algebraic if action execution and termination are not combined. This is
important if in the future we decide to axiomatize our equivalence.

In labeled transition system setting (and, to the best of our knowledge,
the issue has not been considered in the setting of Kripke structures) explicit
termination is obtained by allowing a state to have a termination predicate
attached to it, denoting that the system can successfully terminate in that
state. In addition, as a counterpart to the deadlock constant, the so-called
empty process is introduced into the specification language. This process can
only successfully terminate and it serves as a neutral element for sequential
and parallel composition. It is shown in [70, 98] that many things can be
modeled more easily if the empty process is present in the language. This
is one more reason to incorporate successful termination into our theory.

Branching bisimulation deals with successful termination similarly to
action execution. A successful termination is simulated by a successful ter-
mination preceded by a zero or more silent steps (see Figure 1.5). This idea
is lifted to our setting naturally and clearly as a conservative extension.

/.-,()*+ ____

G
G

G
G

G
G

↓

/.-,()*+

τ
����/.-,()*+
↓

Figure 1.5: Branching bisimulation and successful termination

Timing In many systems timing plays a major role. A typical example,
found in industrial systems, is a distributor that delivers products to a ma-
chine and discards them if the machine is not available within a certain
amount of time. Other examples are found in the modeling of controllers.
This forces us to incorporate timing into our setting.

When timing is to be incorporated into a theory several choices need
to be made (see [7]). First, whether time will be discrete, i.e. divided into

12 Chapter 1. Introduction

slices, or dense, measured on the continuous scale. Second, whether it will
be absolute, measured by a global clock, or relative to the previous action.
Third, a more technical one, is whether to associate the passage of time with
actions, i.e. to stamp actions with duration or with the explicit time point
indicating when they become available, or to leave actions unstamped (and
timeless) and treat the passage of time independently.

We take time to be discrete; since computers are in general discrete, this
is not a serious restriction. We also take it to be relative and independent
of actions. This is considered to be the simplest version of timing (see
e.g. [7, 48] for the possible complications in the other settings).

The passage of time is indicated in the model by a special transition
∆
7→ called tick. This transition represents that the system is moving to the
next time slice. To correctly simulate ticks, branching bisimulation has been
extended into a timed branching bisimulation [97, 7, 6]. The idea is the same
as with actions; a tick must be simulated by a tick but preceded by zero or
more internal steps (see Figure 1.6).

/.-,()*+
_

∆
��

G
G

G
G

G
G /.-,()*+

τ
����/.-,()*+

G
G

G
G

G
G /.-,()*+

_

∆

��/.-,()*+

Figure 1.6: Branching bisimulation and discrete timing

It is straightforward to extend timed branching bisimulation to the set-
ting of (timed) doubly-labeled transition systems. However, it is not straight-
forward to extend it to the setting with explicit termination if the congruence
property is to remain. We devote Chapter 5 to adapting the timed branching
bisimulation so that it stays a congruence for sequential composition. Even
though we work with doubly-labeled transition systems and with divergence,
an observant reader will notice that these additions are independent of the
congruence problem.

Note that detecting and properly simulating divergence is crucial when
timing is involved. Suppose that we relate the two systems from Figure 1.7.
The first system can only move to the next time slice. The second system,
however, can stay in the first state performing the internal (and timeless!)

1.6. Refined goal 13

step, thus stopping time. This certainly should not be considered as equiv-
alent behavior.

/.-,()*+
_

∆
��

____ /.-,()*+
_

∆
��

τ

/.-,()*+ ____ /.-,()*+

Figure 1.7: Divergence and timing

1.6 Refined goal

Based on the previous discussions we refine our goal set in the beginning.
The new objective is to develop an equivalence that:

• is defined on process terms of some standard modeling language,

• is a conservative extension of branching bisimulation and stuttering
equivalence,

• preserves deadlock,

• is divergence sensitive,

• incorporates timing and successful termination, and

• is a congruence.

Even though branching bisimulation and stuttering equivalence are known
to be equivalences and congruences for standard basic process algebras, their
lifting to our setting introduces several complications due to the addition of
data, divergence, successful termination, and timing.

1.7 Outline

The outline of Part I is as follows.
In Chapter 2 we formalize the notion of a doubly-labeled transition sys-

tem and introduce a bisimulation relation that is a combination of branch-
ing bisimulation and stuttering equivalence, and that incorporates diver-
gence and successful termination. We show that it generalizes some existing

14 Chapter 1. Introduction

divergence sensitive equivalences from the literature and that it preserves
deadlock.

In Chapter 3 we introduce a specification language κ that generates
doubly-labeled transition systems with successful termination. The language
is very expressive and is designed to serve as a core of any language for
modeling of systems.

In Chapter 4 we show that silent bisimulation is not a congruence for
most of the operators of the specification language. Similar problems have
been recognized and solved before and so, following the same footsteps, we
adapt silent bisimulation and turn it into a congruence.

Chapter 5 adds timing into consideration. We define a timed doubly-
labeled transition system and extend the language κ to enable the modeling
of delays. We first show that the straightforward lifting of timed branching
bisimulation to this setting does not work (fails to be a congruence for
sequential composition) due to the presence of successful termination. We
define a timed silent bisimulation as a bisimulation that treats timing and
termination in a combined fashion, based on the fact that in the semantical
rules they always go together.

Finally, in Chapter 6 we show how our ideas can be used to verify the
translation from the engineering language χ to Promela, the input lan-
guage of Spin.

Chapter 2

Silent bisimulation

As explained in the introduction, to cover both data and behavioral aspects
of systems we take doubly-labeled transition systems for our working model.
In this chapter we give a formal definition of a doubly-labeled transition
system and we introduce a notion of silent bisimulation as a combination
of branching bisimulation and stuttering equivalence. The bisimulation in-
corporates divergence and successful termination but not yet timing. We
first prove that silent bisimulation is an equivalence. Then we show that it
generalizes other divergence-sensitive branching bisimulations and stutter-
ing equivalences from the literature. Recall that this ensures that the most
important correctness requirement, that is the preservation of the ctl∗−x

formulas, is satisfied. It also ensures that divergence is properly simulated.
We compare our divergence condition with some other divergence conditions
we found in the literature, and argue that ours is the most compositional
one. Finally, we show that silent bisimulation preserves deadlock, which is
another correctness requirement.

2.1 Doubly-labeled transition system

Doubly-labeled transition system were first introduced in [37] as a tool to
relate branching bisimulation and stuttering equivalence. A doubly-labeled
transition system is a directed graph with labels on both arrows and states.
The labels on arrows denote the actions that the system can perform, and
the labels on states indicate which data propositions are satisfied in a state.
Since we integrated successful termination into the setting, we also add a
special predicate denoting which states are considered successfully termi-
nated. The formal definition follows.

15

16 Chapter 2. Silent bisimulation

Definition 2.1.1 (Doubly-labeled transition system) Let A be a set
of actions and let Π be a set of atomic propositions. A doubly-labeled tran-
sition system is a quadruple (S,→, ↓, ℓ) where:

• S is a set of states,

• → ⊆ S × A × S is the transition relation,

• ↓ ⊆ S is a set of (successfully) terminated states, and

• ℓ : S → P(Π) is the state-labeling function.

The set of all doubly-labeled transition systems with set of actions A and
set of atomic propositions Π is denoted TA,Π. �

We write s
a
−→ s′ instead of (s, a, s′) ∈ →, and s↓ instead of s ∈ ↓. We

abbreviate the statement ‘s
a
−→ s′ or (a = τ and s = s′)’ by s

(a)
−−→ s′. We also

write s −→ s′ when s
τ
−→ s′ and ℓ(s) = ℓ(s′) and call it an internal step. We

denote by →
+

and ։ respectively the transitive and the reflexive-transitive
closure of −→.

2.2 Silent bisimulation

We now introduce a relation on doubly-labeled transition systems called
silent bisimulation. The relation is essentially an extension of branching
bisimulation with termination and divergence, with the extra requirement
that it only relates states with the same set of propositions satisfied.

Definition 2.2.1 (Silent bisimulation) Let (S,→, ↓, ℓ) ∈ TA,Π. A sym-
metric binary relation R ⊆ S×S is called a silent bisimulation on (S,→, ↓, ℓ)
if, for all (s, t) ∈ R, the following holds:

〈lab〉 ℓ(s) = ℓ(t),

〈term〉 if s↓, then there exists a t′ ∈ S such that t։ t′, t′↓ and (s, t′) ∈ R,

〈tran〉 if s
a
−→ s′ for some a ∈ A and s′ ∈ S, then there exist t′, t′′ ∈ S such

that t։ t′′
(a)
−−→ t′, (s, t′′) ∈ R and (s′, t′) ∈ R, and

〈div〉 if there is an infinite sequence of states s0, s1, s2, . . . ∈ S such that
s0 = s, s0 −→ s1 −→ s2 −→ · · · and (si, t) ∈ R for all i > 0, then there
exists a t′ ∈ S such that t→

+
t′ and (sk, t

′) ∈ R for some k > 0.

2.3. Equivalence proof 17

Two states s and t are silently bisimilar, denoted s ∼s t, if there exists a
silent bisimulation R such that (s, t) ∈ R. �

The condition 〈lab〉 comes from bisimulations defined on Kripke struc-
tures. It makes sure that related states satisfy the same atomic proposi-
tions. This is a condition coming from stuttering equivalence. The condi-
tions 〈term〉 and 〈tran〉 are called the termination and the transfer condition
respectively. Like in the case of branching bisimulation, they require that
successful termination and action execution are simulated after a sequence
of internal steps. The condition 〈div〉 is the divergence condition. It says
that if a state is related to every state on some infinite execution, then this
divergence must be simulated by a non-empty execution sequence of which
the final state is related to some state on the diverging path. Note that we
treat divergence only in this specific case. However, as we will show later, it
turns out that this is not a restriction and that divergence is properly simu-
lated in every case. We localized the requirement only to make bisimulation
relations smaller since that is convenient in applications.

2.3 Equivalence proof

In this section we prove that ∼s is an equivalence relation. The usual way
of proving that a bisimulation relation is transitive is to show that the com-
position of two bisimulation relations is again a bisimulation relation. How-
ever, this method fails here because the divergence condition is, in general,
non-compositional due to the requirement that every state on the divergent
execution from s must be in relation with t. We solve the problem by replac-
ing the condition 〈div〉 of Definition 2.2.1 by a technically more convenient
one (a “transitive” one). The new condition appears stronger at first, but
we prove that, in combination with 〈lab〉, 〈term〉 and 〈tran〉, it induces the
same notion of silent bisimulation. The reason why we did not use it in
Definition 2.2.1 is that it is very complex; we prefer to use 〈div〉 in other
applications.

We presuppose a doubly-labeled transition system (S,→, ↓, ℓ) ∈ TA,Π

and define the new divergence condition by:

〈div’〉 if there is an infinite sequence s0, s1, s2, . . . ∈ S such that s0 = s
and s0 →

+
s1 →

+
s2 →

+
· · · , then there exists an infinite sequence

t0, t1, t2, . . . ∈ S and a mapping φ : N → N such that t0 = t, t0 →
+

t1 →
+
t2 →

+
· · · and (sφ(i), ti) ∈ R for all i > 0.

18 Chapter 2. Silent bisimulation

To prove that the silent bisimulation coincides with the bisimulation
defined using 〈div’〉 we need to prove some lemmas first.

The following lemma shows that bisimilar states always reach bisimilar
states.

Lemma 2.3.1 Let R be a binary relation on S that satisfies 〈lab〉 and
〈tran〉. If (s, t) ∈ R and s ։ s′, then there is a state t′ such that t ։ t′

and (s′, t′) ∈ R. �

Proof From s։ s′ we have that there exist s0, . . . , sn ∈ S such that s0 = s,
s0 −→ · · · −→ sn and sn = s′. We construct, inductively on n, a sequence
t0, . . . , tn ∈ S such that t0 = t, t0 ։ · · ·։ tn and (sn, tn) ∈ R.

For the base case (n = 0) we take t0 = t. Suppose s0 −→ · · · −→ sn −→ sn+1.
By the inductive hypothesis there exist t0, . . . , tn ∈ S such that t0 = t,
t0 ։ · · · ։ tn and (sn, tn) ∈ R. By 〈tran〉 it now follows that there exist

t′n, t
′′
n ∈ S such that tn ։ t′′n

(τ)
−−→ t′n, (sn, t

′′
n) ∈ R and (sn+1, t

′
n) ∈ R. If

t′′n = t′n, then trivially ℓ(t′n) = ℓ(t′′n); if t′′n
τ
−→ t′n, using 〈lab〉, we have ℓ(t′n) =

ℓ(sn+1) = ℓ(sn) = ℓ(t′′n). Therefore, tn ։ t′n, and so we take tn+1 = t′n. �

It is clear that 〈div’〉 implies 〈div〉. The following lemma shows that in
combination with 〈lab〉 and 〈tran〉 the converse also holds.

Lemma 2.3.2 If R ⊆ S × S satisfies 〈lab〉, 〈tran〉 and 〈div〉, then it also
satisfies 〈div’〉. �

Proof Suppose that (s, t) ∈ R and that there exists an infinite sequence
s0, s1, s2, . . . ∈ S such that s0 = s, s0 →

+
s1 →

+
s2 →

+
· · · and (si, t) ∈ R for

all i > 0. We construct, inductively, an infinite sequence t0, t1, t2, . . . ∈ S
and a mapping φ : N → N such that t0 = t, t0 →

+
t1 →

+
t2 →

+
· · · and

(sφ(j), tj) ∈ R for all j > 0. For the base case we set t0 = t and φ(0) = 0.
Then it clearly holds that (sφ(0), t0) ∈ R. Suppose we have constructed
the sequence and the mapping up to n elements. Then (sφ(n), tn) ∈ R.

Let u = φ(n). Since su →
+
su+1 →

+
su+2 →

+
· · · , by the definition of

→
+

it follows that there exist m0,m1, . . . > 0 and sju+i ∈ P for i > 0 and
j = 0, . . . ,mi such that, for all i > 0, s0u+i = su+i, s

mi

u+i −→ s0u+i+1 and, if

mi > 0, then sju+i −→ sj+1
u+i for all j = 0, . . . ,mi − 1.

We distinguish two cases.

(i) Suppose (sju+i, tn) ∈ R for all i > 0 and j = 0, . . . ,mi.

Then, since R satisfies 〈div〉, there exist t′′n ∈ S, k > 0 and l ∈
{0, . . . ,mk} such that tn →

+
t′′n and (slu+k, t

′′
n) ∈ R. Note that slu+k ։

2.3. Equivalence proof 19

su+k+1. By Lemma 2.3.1 there exists a t′n ∈ P such that t′′n ։ t′n and
(su+k+1, t

′
n) ∈ R. Clearly, tn →

+
t′n.

(ii) Suppose (sju+i, tn) ∈ R for all i = 0, . . . , k and j = 0, . . . ,mi, but

(s′, tn) 6∈ R where with s′ we denote sl+1
u+k or s0u+k+1 depending if

l < mk or l = mk. Since R satisfies 〈tran〉, there exist t′′n, t
′′′
n ∈ S

such that tn ։ t′′′n
(τ)
−−→ t′′n, (slu+k, t

′′′
n) ∈ R and (s′, t′′n) ∈ R. From

(s′, t′′n) ∈ R, we obtain ℓ(t′′n) = ℓ(s′) = ℓ(su+k) = ℓ(t′′′n). Because
(s′, tn) 6∈ R we have that either tn 6= t′′′n or t′′′n 6= t′′n. Therefore tn →

+
t′′n.

Note that s′ ։ su+k+1. By Lemma 2.3.1 there exists a t′n ∈ P such
that t′′n ։ t′n and (su+k+1, t

′
n) ∈ R. Clearly, tn →

+
t′n.

In both cases we now take tn+1 = t′n and φ(n+ 1) = u+ k + 1. �

The following now easily follows from Lemma 2.3.2.

Corollary 2.3.3 Let R be symmetric binary relation on S. Then R is
a silent bisimulation iff it satisfies the conditions 〈lab〉, 〈term〉, 〈tran〉 and
〈div’〉. �

To prove that ∼s is an equivalence relation we also need to show that
the conditions 〈lab〉, 〈term〉, 〈tran〉, 〈div’〉 are preserved under union.

Lemma 2.3.4 Let Ri for i ∈ I be binary relations on S and let con ∈
{lab, term, tran, div’}. If all relations Ri satisfy 〈con〉, then so does their
union R =

⋃
i∈I Ri. �

Proof Suppose that Ri satisfies 〈lab〉 for all i ∈ I. To prove that R also
satisfies 〈lab〉, suppose that (s, t) ∈ R. Then (s, t) ∈ Ri for some i ∈ I. Since
Ri satisfies 〈lab〉, it follows that ℓ(s) = ℓ(t).

Suppose that Ri satisfies 〈term〉 for all i ∈ I. Suppose that (s, t) ∈ R
and that s↓. From (s, t) ∈ R it follows that (s, t) ∈ Ri for some i ∈ I. Since
Ri satisfies 〈term〉, there exists a t′ ∈ S such that t։ t′, t′↓ and (s′, t′) ∈ Ri.
Hence (s′, t′) ∈ R.

Suppose now that Ri satisfies 〈tran〉 for all i ∈ I. Suppose (s, t) ∈ R
and s

a
−→ s′ for some a ∈ A and s′ ∈ S. As before, (s, t) ∈ R implies that

(s, t) ∈ Ri for some i ∈ I. Using that Ri satisfies 〈tran〉, we obtain that

there exist t′, t′′ ∈ S such that t ։ t′′
(a)
−−→ t′, (s, t′′) ∈ Ri and (s′, t′) ∈ Ri,

and hence (s, t′′) ∈ R and (s′, t′) ∈ R.
Finally, suppose that Ri satisfies 〈div’〉 for all i ∈ I. To prove that R also

satisfies 〈div’〉, suppose that (s, t) ∈ R and that there is an infinite sequence

20 Chapter 2. Silent bisimulation

of states s0, s1, s2, . . . ∈ S such that s0 = s and s0 →
+
s1 →

+
s2 →

+
· · · . From

(s, t) ∈ R it follows that (s, t) ∈ Ri for some i ∈ I. By 〈div’〉 there exists an
infinite sequence of states t0, t1, t2, . . . ∈ S and a mapping φ : N → N such
that t0 = t, t0 →

+
t1 →

+
t2 →

+
· · · and (sφ(k), tk) ∈ Ri for all k > 0. From

the latter it follows that (sφ(k), tk) ∈ R for all k > 0. �

Since ∼s coincides with the union of all silent bisimulations, the following
is a direct consequence of Lemmas 2.3.4 and 2.3.3.

Corollary 2.3.5 The relation ∼s is a silent bisimulation. �

Note that we could have proved Corollary 2.3.5 also by showing that the
union of silent bisimulations is again a silent bisimulation. However, the
proof of this is more complicated than the one of Lemma 2.3.4 due to the
nature of 〈div〉.

The following lemma shows that the composition of two silent bisimula-
tions is again a silent bisimulation. This property is crucial for the transi-
tivity proof.

Lemma 2.3.6 Let R1 and R2 be binary relations on S and let R = R1 ◦R2

be their composition. Then

(a) if R1 and R2 satisfy 〈lab〉, 〈term〉 and 〈tran〉, then so does R,

(b) if R1 and R2 satisfy 〈div’〉, then so does R. �

Proof (a) Suppose R1 and R2 satisfy 〈lab〉. To prove that R also satis-
fies 〈lab〉 suppose (s, u) ∈ R. Then there exists a state t such that
(s, t) ∈ R1 and (t, u) ∈ R2. Since R1 satisfies 〈lab〉, ℓ(s) = ℓ(t). Since
R2 satisfies 〈lab〉, ℓ(t) = ℓ(u). Thus, ℓ(s) = ℓ(u).

Suppose R1 and R2 satisfy 〈term〉 and 〈tran〉. Suppose (s, u) ∈ R.
Then there is a t ∈ S such that (s, t) ∈ R1 and (t, u) ∈ R2.

Suppose s↓. Because R1 satisfies 〈term〉, there exists a t′ ∈ S such
that t։ t′, t′↓ and (s, t′) ∈ R1. Because R2 satisfies 〈lab〉 and 〈tran〉,
by Lemma 2.3.1 there is a u′′ ∈ S such that u։ u′′ and (t′, u′′) ∈ R2.
Since R2 also satisfies 〈term〉, there exists a u′ ∈ S such that u′′ ։ u′,
u′↓ and (t′, u′) ∈ R2. From (s, t′) ∈ R1 and (t′, u′) ∈ R2 we obtain
(s, u′) ∈ R.

Suppose s
a
−→ s′. Since R1 satisfies 〈tran〉, there exist states t′ and

t′′ such that t ։ t′′
(a)
−−→ t′, (s, t′′) ∈ R1 and (s′, t′) ∈ R1. Since R2

satisfies 〈tran〉, by Lemma 2.3.1 there is a state u′′ such that u։ u′′

and (t′′, u′′) ∈ R2. We now distinguish two cases:

2.4. Stuttering closure 21

(i) Suppose that a = τ and t′′ = t′. Then u ։ u′′
(a)
−−→ u′′. From

(s, t′′) ∈ R1 and (t′′, u′′) ∈ R2 it follows that (s, u′′) ∈ R, and
from (s′, t′) ∈ R1 and (t′, u′′) ∈ R2 it follows that (s′, u′′) ∈ R.

(ii) Suppose that t′′
a
−→ t′. Then there exist states u′′′ and u′ such

that u′′ ։ u′′′
(a)
−−→ u′, (t′′, u′′′) ∈ R2 and (t′, u′) ∈ R2. So,

u ։ u′′′
(a)
−−→ u′. From (s, t′′) ∈ R1 and (t′′, u′′′) ∈ R2 it follows

that (s, u′′′) ∈ R. From (s′, t′) ∈ R1 and (t′, u′) ∈ R2 it follows
that (s′, u′) ∈ R.

(b) Suppose R1 and R2 satisfy 〈div’〉. To prove that R also satisfies 〈div’〉
suppose (s, u) ∈ R and that there is an infinite sequence of states
s0, s1, s2, . . . ∈ S such that s0 = s and s0 →

+
s1 →

+
s2 →

+
· · · . As

before, there is a t ∈ S such that (s, t) ∈ R1 and (t, u) ∈ R2. Since R1

satisfies 〈div’〉, there exists t0, t1, t2, . . . ∈ S and a mapping φ1 : N → N
such that t0 = t, t0 →

+
t1 →

+
t2 →

+
· · · and (sφ1(j), tj) ∈ R1 for all

j > 0. Since R2 satisfies 〈div’〉, there exists u0, u1, u2, . . . ∈ S and a
mapping φ2 : N → N such that u0 = u, u0 →

+
u1 →

+
u2 →

+
· · · and

(tφ2(k), uk) ∈ R2 for all k > 0. Clearly, (sφ1(φ2(k)), uk) ∈ R. �

Now we can prove the following theorem.

Theorem 2.3.7 The relation ∼s is an equivalence relation. �

Proof The binary relation {(s, s) | s ∈ S}, i.e. the diagonal on S, is a
symmetric relation that clearly satisfies the conditions 〈lab〉, 〈term〉, 〈tran〉
and 〈div’〉. So, by Corollary 2.3.3, ∼s is reflexive.

That ∼s is symmetric follows immediately from the required symmetry
of the witnessing relation.

To prove that ∼s is transitive, suppose s ∼s t and t ∼s u. Then there
exist symmetric binary relations R1 and R2 satisfying 〈lab〉, 〈term〉, 〈tran〉
and 〈div’〉, and such that (s, t) ∈ R1 and (t, u) ∈ R2. The relation R =
(R1 ◦R2)∪ (R2 ◦R1) is clearly symmetric and, by Lemmas 2.3.4 and 2.3.6,
also satisfies 〈lab〉, 〈term〉, 〈tran〉 and 〈div’〉. Since (s, u) ∈ R, it follows that
s ∼s u. �

2.4 Stuttering closure

In this section we prove that ∼s satisfies the so called ‘stuttering property’.
We use this property in the next section, to compare the transfer and diver-
gence conditions that we use with those that appear in the literature.

22 Chapter 2. Silent bisimulation

Definition 2.4.1 (Stuttering property) A binary relation R on S has
the stuttering property if, whenever t0 −→ · · · −→ tn, (s, t0) ∈ R and (s, tn) ∈
R, then (s, ti) ∈ R for all i = 0, . . . , n. �

To prove that ∼s satisfies the stuttering property we first show that every
relation R ⊆ S × S can be extended to a relation R̂ ⊆ S × S, called its
stuttering closure, that has the stuttering property. Then, we show that if
R is a silent bisimulation, then so is R̂.

Definition 2.4.2 (Stuttering closure) Let R be a binary relation on S.
The stuttering closure of R, denoted R̂, is defined by

R̂ = {(s, t) | ∃s, s̄, t, t̄ ∈ S : s։ s։ s̄, t։ t։ t̄, (s, t̄) ∈ R and (s̄, t) ∈ R} .

�

Figure 2.1 illustrates the idea of stuttering closure.

s // //

OOOOOOOOOO s // // s̄

o o o o o o o o o o ___ R

R̂

t // // t // // t̄

Figure 2.1: Stuttering closure

Clearly R ⊆ R̂. We establish a few basic properties of the stuttering
closure.

Lemma 2.4.3 The stuttering closure R̂ of a binary relation R has the stut-
tering property. �

Proof Suppose that t0 −→ · · · −→ tn, (s, t0) ∈ R̂ and (s, tn) ∈ R̂. On the one
hand, there exist states s̄ and t0 such that s ։ s̄, t0 ։ t0 and (s̄, t0) ∈ R.
On the other hand there exist states s and t̄n such that s։ s, tn ։ t̄n and
(s, t̄n) ∈ R. Now, since s ։ s ։ s̄ and t0 ։ t0 ։ ti ։ tn ։ t̄n, it follows
that (s, ti) ∈ R̂ for all i = 0, . . . , n. �

Lemma 2.4.4 The stuttering closure R̂ of a symmetric relation R is sym-
metric. �

2.4. Stuttering closure 23

Proof Suppose (s, t) ∈ R̂. Then there exist s, s̄, t, t̄ ∈ S such that s։ s։
s̄, t։ t։ t̄, (s, t̄) ∈ R and (s̄, t) ∈ R. Since R is symmetric, it follows that
(t̄, s) ∈ R and (t, s̄) ∈ R. Hence (t, s) ∈ R̂. �

Lemma 2.4.5 Let R̂ be the stuttering closure of R ⊆ S × S. If (s, t) ∈ R̂
and R satisfies 〈lab〉 and 〈tran〉, then there exists t′ ∈ S such that t։ t′ and
(s, t′) ∈ R. �

Proof Suppose (s, t) ∈ R̂. Then there exist s, s̄, t, t̄ ∈ S such that s ։
s ։ s̄, t ։ t ։ t̄, (s, t̄) ∈ R and (s̄, t) ∈ R. From (s, t̄) ∈ R and s ։ s it
follows by Lemma 2.3.1 that there exists a t′ ∈ S such that (t։) t̄։ t′ and
(s, t′) ∈ R. �

Lemma 2.4.6 Let R be a binary relation on S. If R satisfies 〈lab〉, 〈term〉
and 〈tran〉, then so does its stuttering closure R̂. �

Proof Suppose that (s, t) ∈ R̂. Then there exist s, t̄ ∈ S such that s ։ s,
t ։ t̄ and (s, t̄) ∈ R. From s ։ s and t ։ t̄ we have ℓ(s) = ℓ(s) and
ℓ(t) = ℓ(t̄). Since R satisfies 〈lab〉, from (s, t̄) ∈ R it follows that ℓ(s) = ℓ(t̄).
Thus ℓ(s) = ℓ(t).

Suppose that (s, t) ∈ R̂ and s↓. Since R satisfies 〈lab〉 and 〈tran〉, by
Lemma 2.4.5 there exists t̃ such that t ։ t̃ and (s, t̃) ∈ R. From s↓ it
follows that there exist states t′ such that (t ։) t̃ ։ t′, t′↓ and (s, t′) ∈ R.
The latter implies (s, t′) ∈ R̂.

Suppose that (s, t) ∈ R̂ and that s
a
−→ s′ for some s′ ∈ S. Then by

Lemma 2.4.5 there exists t̃ such that t ։ t̃ and (s, t̃) ∈ R . Hence, since
s

a
−→ s′, by 〈tran〉 we have that there exist states t′′ and t′ such that (t ։

) t̃։ t′′
(a)
−−→ t′, (s, t′′) ∈ R and (s′, t′) ∈ R. Now, (s, t′′) ∈ R and (s′, t′) ∈ R

respectively imply (s, t′′) ∈ R̂ and (s′, t′) ∈ R̂. �

Lemma 2.4.7 If R satisfies 〈lab〉, 〈tran〉 and 〈div’〉, then R̂ satisfies 〈div’〉.�

Proof Suppose that (s, t) ∈ R̂ and that there exists an infinite sequence
s0, s1, s2, . . . ∈ S such that s0 = s and s0 →

+
s1 →

+
s2 →

+
· · · . By

Lemma 2.4.5 there exists a t′′ ∈ S such that t։ t′′ and (s, t′′) ∈ R. Since R
satisfies the condition 〈div’〉, there exists an infinite sequence t0, t1, t2, . . . ∈ S
and a mapping φ : N → N such that t0 = t′′, t0 →

+
t1 →

+
t2 →

+
· · · and

(sφ(i), ti) ∈ R for all i > 0. From t ։ t′′ and (t′′ =)t0 →
+
t1 it follows that

t→
+
t1. Since (sφ(i), ti) ∈ R, we have (sφ(i), ti) ∈ R̂. �

We can now prove the main theorem.

24 Chapter 2. Silent bisimulation

Theorem 2.4.8 The relation ∼s has the stuttering property. �

Proof By Corollaries 2.3.3 and 2.3.5, ∼s satisfies the conditions 〈lab〉, 〈term〉,
〈tran〉 and 〈div’〉. By Lemma 2.4.6, its stuttering closure ∼̂s also satis-
fies 〈lab〉, 〈term〉 and 〈tran〉. By Lemma 2.4.7, ∼̂s also satisfies 〈div’〉.
By Lemma 2.4.4, it is symmetric. So, ∼̂s ⊆ ∼s. By definition, ∼s ⊆ ∼̂s, so
we obtain ∼s = ∼̂s. It follows by Lemma 2.4.3 that ∼s has the stuttering
property. �

2.5 Alternative definitions

In this section we present some other transfer and divergence conditions and
show that they lead to the same notion of silent bisimilarity. Some of the
conditions presented are obtained from conditions used in the literature to
define equivalence relations similar to silent bisimilarity.

Previously we have seen that a silent bisimulation could have also been
defined with the divergence condition 〈div’〉 instead of 〈div〉. Since 〈div’〉
implies 〈div〉, we can define a silent bisimulation using also an interpolant of
〈div〉 and 〈div’〉, i.e. using any condition that is implied by 〈div’〉 and implies
〈div〉. For example, one such condition is:

〈div”〉 if there exists an infinite sequence s0, s1, s2, . . . ∈ S such that s0 = s
and s0 −→ s1 −→ s2 −→ · · · , then there exists a t′ ∈ S such that t →

+
t′

and (sk, t
′) ∈ R for some k > 0.

Note that all, 〈div〉, 〈div’〉 and 〈div”〉, lead to the same relation on the
bisimulation level, that is they give rise to the same bisimulation relation. We
now present some conditions that are equal only on the level of bisimilarity,
i.e. only for maximal silent bisimulations.

First we give an alternative to the termination and the transfer condition.
Theorem 2.4.8 tells us that instead of using 〈term〉 and 〈tran〉 we could define
∼s with the following conditions:

〈termstt〉 if s↓, then there exists t0, . . . , tn ∈ S such that t0 = t, t0 −→ · · · −→ tn,
tn↓ and (s, ti) ∈ R for all i = 0, . . . , n, and

〈transtt〉 if s
a
−→ s′ for some a ∈ A and s′ ∈ S, then there exist t0, . . . , tn, t

′ ∈ S

such that t0 = t, t0 −→ · · · −→ tn
(a)
−−→ t′, (s, ti) ∈ R for all i = 0, . . . , n

and (s′, t′) ∈ R.

2.5. Alternative definitions 25

We now give some other divergence conditions.
Let s ∼”’s t denote that (s, t) ∈ R for some binary relation R ⊆ S × S

that satisfies the conditions 〈lab〉, 〈term〉, 〈tran〉 of Definition 2.2.1 and the
condition:

〈div”’〉 if there exists an infinite sequence s0, s1, s2, . . . ∈ S such that s0 = s,
s0 −→ s1 −→ s2 −→ · · · and (si, t) ∈ R for all i > 0, then there exists an
infinite sequence t0, t1, t2, . . . ∈ S such that t0 −→ t1 −→ t2 −→ · · · and
(si, tj) ∈ R for all i, j > 0.

When silent bisimulation is defined using the condition 〈div”’〉 and in-
terpreted on a singly-labeled transition system without termination, then it
coincides with the notion of branching bisimulation with explicit divergence
proposed in [51].

We now show that ∼s = ∼”’s. Since 〈div”’〉 implies 〈div〉, we have ∼”’s ⊆ ∼s.
To establish ∼s ⊆ ∼”’s, we use the following lemma.

Lemma 2.5.1 The relation ∼s satisfies 〈div”’〉. �

Proof Suppose s ∼s t and that there is an infinite sequence s0, s1, s2, . . . ∈ S
such that s0 = s, s0 −→ s1 −→ s2 −→ · · · and si ∼s t for all i > 0. By
Corollaries 2.3.3 and 2.3.5, ∼s satisfies 〈div’〉, so there exists an infinite
sequence of states t0, t1, t2, . . . ∈ S and a mapping φ : N → N such that
t0 = t, t0 →

+
t1 →

+
t2 →

+
· · · and sφ(j) ∼s tj for all j > 0. By Theorem 2.3.7

∼s is an equivalence, so, for all i, j > 0, we have tj ∼s sφ(j) ∼s t ∼s si. Let

tj →
+
tj+1, for some j > 0, be witnessed by t0j , . . . , t

nj

j ∈ S such that t0j = tj

and t0j −→ · · · −→ t
nj

j −→ tj+1. Because s ∼s t
0
j and s ∼s tj+1, it follows from

Theorem 2.4.8 that s ∼s t
k
j for all k = 0, . . . , nj. �

Since ∼s = ∼”’s, we can replace the condition 〈div〉 by any interpolant
of 〈div”’〉 and 〈div〉 and end up with the same equivalence. For instance, we
could replace it by one of the following conditions:

〈div1〉 if there exists an infinite sequence s0, s1, s2, . . . ∈ S such that s0 = s,
s0 −→ s1 −→ s2 −→ · · · and (si, t) ∈ R for all i > 0, then there exist
t0, . . . , tn ∈ S such that t0 = t, t0 −→ · · · −→ tn −→ tn+1 and (s, tj) ∈ R
for all j = 0, . . . , n and (s1, tn+1) ∈ R.

〈div2〉 if there exist an infinite sequence s0, s1, s2, . . . ∈ S such that s0 = s,
s0 −→ s1 −→ s2 −→ · · · and (si, t) ∈ R for all i > 0, then there exists a
t′ ∈ S such that t −→ t′ and (sk, t

′) ∈ R for some k > 0.

26 Chapter 2. Silent bisimulation

〈div3〉 if there exist an infinite sequence s0, s1, s2, . . . ∈ S such that s0 = s,
s0 −→ s1 −→ s2 −→ · · · and (si, t) ∈ R for all i > 0, then there exists a
t′ ∈ S such that t −→ t′ and (sk, t

′) ∈ R for some k > 0.

When silent bisimulation is defined using the conditions 〈transtt〉 and
〈div1〉 (resp. 〈transtt〉 and 〈div2〉) and in a setting without termination, it
coincides with the notion of visible bisimulation (when τ is the only invisible
action) of [85] (resp. of [50]). When silent bisimulation is defined using
the conditions 〈transtt〉 and 〈div3〉 and interpreted on a Kripke structure, it
coincides with the notion of stuttering equivalence from [81].

Let us now explain why we consider 〈div〉 to be more compositional then
the other divergence conditions mentioned. In Corollary 2.3.3 we have es-
tablished that a relation defined with 〈div〉 and the one defined with 〈div’〉
are equivalent on the bisimulation level. The conditions 〈div”’〉, 〈div1〉, 〈div2〉
and 〈div3〉 are all ”non-transitive”, i.e. cannot be composed, and so, when
proving transitivity, one must use a condition similar to 〈div’〉. Note, how-
ever, that all these conditions somehow incorporate stuttering steps. This
makes it impossible to prove that the new notion is equivalent to the old one
on the bisimulation level, but only on the level of bisimilarity where the stut-
tering property can be proved first. Clearly, this introduces an unnecessary
complication.

Remark 2.5.2 One may argue that transitivity of a bisimilarity can be
proved by providing its temporal logic characterization. This is, of course,
only true if, in the proof of characterization, transitivity is not used. �

By showing that, when interpreted on a simpler model, silent bisimilar-
ity coincides with the known equivalences, we prove that it preserves the
validity of all the corresponding modal logics, most importantly of the logic
ctl∗−x. Recall from the introduction that this is the most important part
of our correctness criterion. We finish the chapter by showing that silent
bisimilarity also preserves deadlock.

2.6 Deadlock preservation

Intuitively, a state is considered deadlocked if it is not successfully termi-
nated and cannot do an action. A state is said to have deadlock if from it a
deadlocked state can be reached.

Definition 2.6.1 (Deadlock) A state s is deadlocked if s 6↓ and s 6
a
−→ for all

a ∈ A. A state s has deadlock if it is deadlocked or if there exist s1, . . . , sn ∈

2.6. Deadlock preservation 27

S and a1, . . . , an ∈ A, for n > 1, such that s
a1−→ · · ·

an−→ sn and sn is
deadlocked. �

The following lemma plays the major role in the proof of deadlock preser-
vation.

Lemma 2.6.2 Let R satisfy 〈lab〉, 〈term〉, 〈tran〉 and 〈div’〉. If (s, t) ∈ R
and s is deadlocked, then there exists a t′ ∈ S such that t ։ t′ and t′ is
deadlocked. �

Proof Suppose first that t0 = t and t0
τ
−→ t1

τ
−→ t2

τ
−→ · · · . for some

t0, t1, t2, . . . ∈ S. Then, because s is deadlocked, it follows easily (by in-
duction and by Lemma 2.3.1) that (s, ti) ∈ R for all i > 0. From this, we
have ℓ(s) = ℓ(ti) for all i > 0, and so t0 −→ t1 −→ t2 −→ · · · . Since R is
symmetric and satisfies 〈div〉, there exists an s′ ∈ S such that s −→ s′. This,
however, contradicts the fact that s is deadlocked. We conclude that there
exists a t′ ∈ S such that t ։ t′ and t′ 6

τ
−→. As before, by Lemma 2.3.1,

(t′, s) ∈ R.

Suppose t′
a
−→ t′′ for some a ∈ A and a 6= τ . Since R satisfies 〈tran〉 and

since s 6
τ
−→, there exists an s′ ∈ S such that s

a
−→ s′. This is a contradiction

because s is deadlocked. We conclude that t′ 6
a
−→ for all a ∈ A.

Suppose t′↓. Since R satisfies 〈term〉 and since s 6
τ
−→, we have s↓. Contra-

diction. We conclude that t′ 6↓.
Since t′ 6↓ and t′ 6

a
−→ for all a ∈ A, it follows that t′ is deadlocked. �

Now we can prove that silent bisimilar states have equal deadlock be-
havior.

Corollary 2.6.3 If s ∼s t and s has deadlock, then t has deadlock. �

Proof Let s ∼s t be witnessed by a silent bisimulation R. Since s has dead-
lock, either it is deadlocked or there exist s1, . . . , sn ∈ S and a1, . . . , an ∈ A,
n > 1, such that s

a1−→ · · ·
an−→ sn and sn is deadlocked.

If s is deadlocked, then by Lemma 2.6.2 it follows directly that t has
deadlock. Suppose s

a1−→ · · ·
an−→ sn for n > 1 and some s1, . . . , sn ∈

S and a1, . . . , an ∈ A. We prove, by induction on n, that there exist

t0, t1, t
′
1, . . . , tn, t

′
n ∈ S such that t0 = t, ti−1 ։ t′i

(ai)
−−→ ti and (si, ti) ∈ R,

for i = 1, . . . , n. For n = 1, since (s, t) ∈ R, there exist t′, t′′ ∈ S such

that t ։ t′′
(a1)
−−→ t′ and (s1, t

′) ∈ R. Set t′1 = t′′ and t1 = t′. Suppose the

statement holds for 1 6 k 6 n and let s
a1−→ · · ·

an−→ sn
an+1
−−−→ sn+1. By

28 Chapter 2. Silent bisimulation

the inductive hypothesis, there are t0, t1, t
′
1, . . . , tn, t

′
n ∈ S such that t0 = t,

ti−1 ։ t′i
(ai)
−−→ ti and (si, ti) ∈ R, for i = 1, . . . , n. From (sn, tn) ∈ R

it follows that there exist t′n, t
′′
n ∈ S such that tn ։ t′′n

(an+1)
−−−−→ t′n and

(sn+1, t
′
n) ∈ R. Set t′n+1 = t′′n and tn+1 = t′n.

Now suppose that sn is deadlocked. Then, because (sn, tn) ∈ R, by
Lemma 2.6.2, there is a t′ ∈ S such that tn ։ t′ and t′ is deadlocked.
Clearly, this implies that t has deadlock. �

Chapter 3

The language κ

We explained in the introduction that, in general, we want our results to ap-
ply to as many modeling languages as possible. It is, of course, not possible
to cover all languages. In this chapter we introduce a process specification
language called κ (from “core”) that, we think, represents the core of most
languages. We use this language to establish the congruence property of
silent bisimulation in the next chapter.

A typical modeling language (or a process algebra) usually incorporates
features such as non-deterministic choice, sequential composition, parallel
composition with synchronization, and repetition. To model some aspects
of systems more easily it is also common for a language to have constructs
to handle data. There are many ways in which these features can be imple-
mented. For example, the communication mechanism can be in CCS [78],
CSP [64] or ACP [9] style, data flow can be achieved with variables and
assignments (like in Spin [65] for example, or in most imperative program-
ming languages) or some constructs can be parameterized with data (like in
µCRL [17]), repetition can be in terms of a repetition operator or obtained
with a general recursion, etc. Our idea is to design a language that is gen-
eral enough to present the applicability of our theory, but not too general,
so that the focus is always on the important things.

The language κ is inspired by the engineering specification language
χ [90] (more precisely, on its first formalization called χσ [20]). The reason
we introduce a new language, and not work with χ, is because χ is more
application oriented and would hide the full generality of our results. Our
language has the standard modeling features, i.e. alternative, sequential and
parallel composition. Synchronization of parallel components is in the (most
general) ACP style (unlike in χ, where it is CSP style). Data is also incor-

29

30 Chapter 3. The language κ

porated in a very general way, using variables and scoping, and with the
possibility to specify (as an outside parameter) how every basic language
construct is interpreted in a given data state. Process behavior is affected
by data through the concept of guard that, like in χ, originates from the
guarded command language [40]. To avoid having to deal with too many
technicalities, infinite behavior can be modeled in κ only by means of a rep-
etition operator. We, however, believe that our results hold in the setting
with (general) recursion as well. Most features of the modeling languages
(χ, Spin and µCRL) and of process algebras (ACP, CSP, CCS) can be easily
mapped to κ.

We now present the syntax and semantics of the untimed version of κ.
In Chapter 5 we extend κ with discrete time.

3.1 Syntax and semantics

We presuppose a set of actions A, that includes the special action τ . We
also presuppose a set V of variables, a set D of data values, a set E, that
includes D and V , of data expressions, and a set of atomic propositions Π.
We define B to be the set of boolean expressions over the set Π and assume
that it includes the set of truth values {true, false}.

Before we give the syntax of κ we introduce the notion of valuation. A
valuation is usually a semantical notion that assigns values to variables in
the global scope. In κ variables can also be declared locally, by the scope
operator, and we let a valuation also be attached as a parameter to this
operator. Although this does not correspond to common practice (where a
valuation is not part of the syntax and is not mixed with the syntactical
declaration of local variables [87, 83]), it is to avoid unnecessary additions
to syntax and to simplify the presentation of the theory. Note that, again
to keep the focus on important things, we take a very abstract view of a
valuation, and do not use the more implementation oriented approach with
stacks [87, 20, 13].

Definition 3.1.1 (Valuation) A partial mapping σ : V ⇀ D with a finite
domain (denoted dom(σ)) is called a valuation. The set of all valuations is
denoted Σ. �

That is, a valuation assigns values only to some variables; other variables
have no values assigned to them. We assume that any valuation naturally
extends to a partial function from the set of data expressions E to D.

3.1. Syntax and semantics 31

We now give the syntax of κ. We presuppose a set Act of action execution
processes. The set of κ process terms, denoted P , is build over the set of
atomic processes (that includes Act) by using the eight operators of the
language.

The set P is generated by the following grammar:

P ::= ε | δ | α | b :→ P | P · P | P + P | P ∗ | P ‖ P

| |[ς | P]| | ∂Ξ(P) | τI(P) ,

where α ∈ Act, b ∈ B, ς ∈ Σ, Ξ ⊆ A \ {τ} and I ⊆ A.

The processes ε, δ and α are called atomic; the others are compound.
Let us informally explain their meaning.

Atomic processes

1. The constant δ stands for the deadlock process. It cannot execute an
action nor terminate successfully.

2. The empty process ε cannot do an action either, but it is considered
successfully terminated.

3. The action execution α ∈ Act executes some action, given by the
function act defined later, and successfully terminates. In most process
algebras the set Act is taken to be the same as the set of actions
A. However, in some languages (e.g. in χ and µCRL) the syntactical
constructs in Act can be parameterized and it should be distinguished
from their instances that appear on the labels in the state space.

Compound processes

1. The guarded process b :→ p behaves as p when the value of the guard
b ∈ B is true, and is deadlocked otherwise.

2. The sequential composition p · q behaves as p followed by the process
q, or as q if p is successfully terminated.

3. The alternative composition p+q stands for a non-deterministic choice
between p and q.

4. The repetition operator ∗ is for the modeling of infinite behavior. The
process p∗ behaves as p executed zero (successful termination) or more
times.

32 Chapter 3. The language κ

5. The parallel composition p‖q executes p and q concurrently in an inter-
leaved fashion. In addition, the two processes can also communicate,
i.e. execute two matching actions synchronously.

6. The scope operator is used for declarations of local variables. The
process |[ς | p]| behaves as p in the (local) valuation ς.

7. The encapsulation operator ∂Ξ disables all actions from Ξ. Since Ξ ⊆
A \ {τ}, the internal action cannot be disabled.

8. The hiding operator τI renames all actions from I into the special
action τ .

The language κ is very expressive. It allows for modeling of many stan-
dard constructs present in other modeling and programming languages. For
example, the construct if b then p else q is easily represented by b :→ p +
¬b :→ q. Also, the κ process (b :→ p)∗ · (¬b :→ ε), corresponds to the while
b do p construct (instead of the ε, some process α can be used to directly
express the statement(s) with which the loop is exited).

We now give the formal (operational) semantics of κ. The semantics
is given in terms of configurations which represent processes together with
their context, i.e. processes in a global valuation (see [5] for an alternative
approach with the state operator). Formally, a configuration is an element
of the set P × Σ. Due to the presence of ε, a distinction between successful
and unsuccessful termination is made.

The formal semantics of κ is parameterized by the following four func-
tions. The first three functions are needed for the correct handling of data,
and are modifications similar functions used in [5, 57]; the fourth function is
standardly used for modeling communication in ACP style process algebras.

• A partial function check : Π × Σ ⇀ {true, false} describes the propo-
sitions that are considered true in a given valuation. We assume that
check naturally extends to a partial function from B to {true, false}.
The function corresponds to the function test from [57] and its main
purpose is to give semantics to guards.

To give an example, if x = d, for x ∈ V and d ∈ D, is a proposition
from Π, then we would typically have check(x = d, σ) = true iff σ(x) =
d. In addition, if (x = d1 ∧ y = d2) ∈ B, then check(x = d1 ∧ y =
d2, σ) = true iff check(x = d1, σ) = true and check(y = d2, σ) = true.

It is required that, if two valuations satisfy exactly the same set of
propositions, then they must be equal. This is needed to make a

3.1. Syntax and semantics 33

link with the semantics of κ and doubly-labeled transition systems.
Formally, if check(ϕ, σ1) = check(ϕ, σ2) for all ϕ ∈ Π, then σ1 =
σ2. The function check from the above example clearly satisfies this
requirement.

• A function act : Act × Σ → P(A) describes the actions that can be
observed when an action execution process is executed in some valua-
tion. A similar function appears in [5] but with the set A used instead
of Act and P(A).

Most of the time we can take that act(α, σ) = {a} for some a ∈ A.
This is because the action a usually denotes the instance of α with the
parametric variables replaced by their values in the current valuation
σ. A typical example is an assignment process x := e where x is a
variable and e is an expression. Then we would define act(x := e, σ) =
{x := d} where d is the value of e in σ. However, in some languages
that incorporate the send/receive style of communication we need a
more general version of act. For example, the semantics of the receive
process a?x could be to receive any possible value along the channel a
and assign it to x. Then we would have to define act(a?x, σ) = {a?d |
d ∈ D}. Note that in this case the possible set of observed actions
does not depend on σ.

For every a ∈ A, we define the special action execution process a and
assume that act(a, σ) = {a} for all σ ∈ Σ.

• A function eff : A × Σ → P(Σ) denotes the resulting valuations when
an action is executed. Our definition of eff corresponds to the one
of [57]; in [5] this function is defined with the codomain Σ.

To give a typical example, if a denotes the action that should assign
some value d ∈ D to a variable x ∈ V , then we would have eff(a, σ) =
{σ′} where σ′ is the same as σ except that σ′(x) = d.

Note that, in general, we allow actions to change the valuation in mul-
tiple ways. As called in [57] these actions become non-deterministic
state transformers. For example this possibility is needed if we want
to embed the choice quantification operator [73] from µCRL.

• A partial function comm : (A\{τ})×(A\{τ}) ⇀ A is a communication
function. If comm(a, b) = c, then this means that the actions a and
b can communicate and that the resulting action is c. The internal
action cannot communicate with any other action but it can be the
result of a communication.

34 Chapter 3. The language κ

We need to introduce two more notions to deal with local scopes. For
a valuation σ ∈ Σ and a set X ⊆ dom(σ) we write σ/X to denote the
restriction of σ to the set X. To correctly override global variables by local
variables of the same name, we introduce an operator ≪ : Σ × Σ → Σ
defined by:

dom(σ≪ ς) = dom(σ) ∪ dom(ς)

(σ≪ ς)(x) =

{
ς(x), if x ∈ dom(ς)
σ(x), if x ∈ dom(σ)\dom(ς).

The operator ≪ binds weaker than /.
We can now give the formal (operational) semantics of κ. The opera-

tional rules for atomic processes are given in Table 3.1; for the operators they
are in Table 3.2. Note that the operational rules give rise to a doubly-labeled
transition system (S,→, ↓, ℓ) ∈ TA,Π with

S = P × Σ and ℓ(〈p, σ〉) = {ϕ ∈ Π | check(ϕ, σ) = true}.

The requirement we imposed on the function check ensures that ℓ(〈p, σ1〉) =
ℓ(〈q, σ2〉) iff σ1 = σ2.

〈ε, σ〉↓
〈eps〉

a ∈ act(α, σ), σ′ ∈ eff(a, σ)

〈α, σ〉
a
−→ 〈ε, σ′〉

〈act-exec〉

Table 3.1: Operational semantics for atomic processes

Most of the operational rules in Table 3.2 are either standard or directly
correspond to the informal semantics described before. The only two rules
that maybe need more explanation are Rule 〈par-tran2〉 and Rule 〈scp-tran〉.

Rule 〈par-tran2〉 describes how synchronization is performed. The re-
quirement σ′≪σ′′/dom(σ′′)\dom(σ′) = σ′′≪σ′/dom(σ′)\dom(σ′′) in the premise is

the conflict absence requirement. Its purpose is to establish that σ′ and σ′′

are not in conflict, i.e. that they assign equal values to same variables. This
is needed because the two valuations are to be combined in one valuation.
Without conflicts, σ′≪σ′′/dom(σ′′)\dom(σ′) (or σ′′≪σ′/dom(σ′)\dom(σ′′)) can be

seen as the combination of σ′ and σ′′.
Rule 〈scp-tran〉 has a complicated conclusion. This is because the valua-

tion σ′ from the premise must be divided into its ’local’ and its ’global’ part
in the conclusion. The valuation σ′/dom(ς) restricts σ′ to the local variables,

that is to those in the domain of ς. The valuation σ≪σ′/dom(σ′)\dom(ς) leaves

the variables that are also in dom(ς) intact. The other variables are given
values by σ′.

3.1. Syntax and semantics 35

check(b, σ) = true, 〈p, σ〉↓

〈b :→ p, σ〉↓
〈grd-term〉

check(b, σ) = true, 〈p, σ〉
a
−→ 〈p′, σ′〉

〈b :→ p, σ〉
a
−→ 〈p′, σ′〉

〈grd-tran〉

〈p, σ〉↓, 〈q, σ〉↓

〈p · q, σ〉↓
〈seq-term〉

〈p, σ〉↓, 〈q, σ〉
a
−→ 〈q′, σ′〉

〈p · q, σ〉
a
−→ 〈q′, σ′〉

〈seq-tran1〉

〈p, σ〉
a
−→ 〈p′, σ′〉

〈p · q, σ〉
a
−→ 〈p′ · q, σ′〉

〈seq-tran2〉
〈p, σ〉↓

〈p+ q, σ〉↓, 〈q + p, σ〉↓
〈alt-term〉

〈p, σ〉
a
−→ 〈p′, σ′〉

〈p+ q, σ〉
a
−→ 〈p′, σ′〉, 〈q + p, σ〉

a
−→ 〈p′, σ′〉

〈alt-tran〉
〈p∗, σ〉↓

〈rep-term〉

〈p, σ〉
a
−→ 〈p′, σ′〉

〈p∗, σ〉
a
−→ 〈p′ · p∗, σ′〉

〈rep-tran〉
〈p, σ〉↓, 〈q, σ〉↓

〈p ‖ q, σ〉↓, 〈q ‖ p, σ〉↓
〈par-term〉

〈p, σ〉
a
−→ 〈p′, σ′〉

〈p ‖ q, σ〉
a
−→ 〈p′ ‖ q, σ′〉, 〈q ‖ p, σ〉

a
−→ 〈q ‖ p′, σ′〉

〈par-tran1〉

〈p, σ〉
a
−→ 〈p′, σ′〉, 〈q, σ〉

b
−→ 〈q′, σ′′〉, comm(a, b) = c,

σ′≪σ′′
/dom(σ′′)\dom(σ′) = σ′′≪σ′

/dom(σ′)\dom(σ′′) = σ′′′

〈p ‖ q, σ〉
c
−→ 〈p′ ‖ q′, σ′′′〉, 〈q ‖ p, σ〉

c
−→ 〈q′ ‖ p′, σ′′′〉

〈par-tran2〉

〈p, σ≪ς〉↓

〈|[ς | p]|, σ〉↓
〈scp-term〉

〈p, σ≪ς〉
a
−→ 〈p′, σ′〉, X = dom(σ′)\dom(ς)

〈|[ς | p]|, σ〉
a
−→ 〈|[σ′

/dom(ς) | p
′]|, σ≪σ′

/X 〉
〈scp-tran〉

〈p, σ〉↓

〈∂Ξ(p), σ〉↓
〈enc-term〉

〈p, σ〉
a
−→ 〈p′, σ′〉, a 6∈ Ξ

〈∂Ξ(p), σ〉
a
−→ 〈∂Ξ(p′), σ′〉

〈enc-tran〉

〈p, σ〉↓

〈τI(p), σ〉↓
〈hide-term〉

〈p, σ〉
a
−→ 〈p′, σ′〉, a 6∈ I

〈τI(p), σ〉
a
−→ 〈τI(p′), σ′〉

〈hide-tran1〉

〈p, σ〉
a
−→ 〈p′, σ′〉, a ∈ I

〈τI(p), σ〉
τ
−→ 〈τI(p′), σ′〉

〈hide-tran2〉

Table 3.2: Operational semantics for compound processes

Chapter 4

Silent congruence

In the previous chapter we have shown that a κ process with a valuation
generates a doubly-labeled transition system. In Chapter 2 we introduced
a notion of silent bisimulation on doubly-labeled transition systems. As we
said in the introduction, we are interested in symbolic techniques and so
we need a corresponding notion of bisimulation defined directly on process
terms. We also want the new notion to be a congruence to allow for com-
positional manipulation. In this chapter we first lift the definition of silent
bisimilarity to the level of κ processes. We show that the new notion is
not a congruence and we adapt it, in a step by step manner, to obtain a
congruence.

4.1 Silent bisimulation on processes

A natural way to lift the relation ∼s to κ processes is as follows.

Definition 4.1.1 (Silent bisimulation on processes) Two processes p
and q are silently bisimilar, denoted p ∼s q, if there exists a silent bisimula-
tion R such that (〈p, σ〉, 〈q, σ〉) ∈ R for all σ ∈ Σ. �

Silent bisimulation on processes is an equivalence relation. This easily
follows from Lemmas 2.3.4 and 2.3.6 of Chapter 2. We show that it is a
congruence relation for guards, and for the scope, the encapsulation, and
the hiding operator.

Theorem 4.1.2 For all p, q ∈ P and all b ∈ B, if p ∼s q, then b :→ p ∼s
b :→ q. �

37

38 Chapter 4. Silent congruence

Proof Let Rpq be a silent bisimulation such that (〈p, σ〉, 〈q, σ〉) ∈ Rpq for
all σ ∈ Σ. Let

R = {(〈b :→ p, σ〉, 〈b :→ q, σ〉) | σ ∈ Σ}

∪ {(〈b :→ p, σ〉, 〈s, σ〉) | check(b, σ) = true, (〈p, σ〉, 〈s, σ〉) ∈ Rpq}

∪ {(〈r, σ〉, 〈b :→ q, σ〉,) | check(b, σ) = true, (〈r, σ〉, 〈q, σ〉) ∈ Rpq}.

We show that R is a silent bisimulation. Note that it is clear from the
definition that R satisfies 〈lab〉. It is symmetric because Rpq is symmetric.
We show that it also satisfies 〈term〉, 〈tran〉 and 〈div’〉. By Corollary 2.3.3
this is enough to prove that R is a silent bisimulation.

• We first check the conditions for the pairs in the first set.

Cond. 〈term〉: Suppose 〈b :→ p, σ〉↓. Rule 〈grd-term〉 is the final rule
of any derivation with 〈b :→ p, σ〉↓ as conclusion, so it holds
that check(b, σ) = true and 〈p, σ〉↓. Since (〈p, σ〉, 〈q, σ〉) ∈ Rpq,
there exists a q′ ∈ P such that 〈q, σ〉 ։ 〈q′, σ〉, 〈q′, σ〉↓ and
(〈p, σ〉, 〈q′, σ〉) ∈ Rpq. If q = q′, then by Rule 〈grd-term〉, we have
〈b :→ q, σ〉↓. Otherwise, by Rule 〈grd-tran〉, 〈b :→ q, σ〉։ 〈q′, σ〉.
Since we have check(b, σ) = true and (〈p, σ〉, 〈q′, σ〉) ∈ Rpq, ac-
cording to the definition of R, that (〈b :→ p, σ〉, 〈q′, σ〉) ∈ R.

Cond. 〈tran〉: Suppose 〈b :→ p, σ〉
a
−→ 〈t, σ′〉 for some σ′ ∈ Σ and

t ∈ P . Since Rule 〈grd-tran〉 must be the final rule of any deriva-
tion of this transition as conclusion, it holds that check(b, σ) =
true, 〈p, σ〉

a
−→ 〈p′, σ′〉 and t = p′. Since (〈p, σ〉, 〈q, σ〉) ∈ Rpq,

there exist q′, q′′ ∈ P such that 〈q, σ〉 ։ 〈q′′, σ〉
(a)
−−→ 〈q′, σ′〉,

(〈p, σ〉, 〈q′′, σ〉) ∈ Rpq and (〈p′, σ′〉, 〈q′, σ′〉) ∈ Rpq. From this, by

Rule 〈grd-tran〉, we have 〈b :→ q, σ〉 ։ 〈q′′, σ〉
(a)
−−→ 〈q′, σ′〉. Since

check(b, σ) = true and (〈p, σ〉, 〈q′′, σ〉) ∈ Rpq, according to the
definition of R, we have (〈b :→ p, σ〉, 〈q′′, σ〉) ∈ R. Finally, since
(〈p′, σ′〉, 〈q′, σ′〉) ∈ Rpq ⊆ R, also (〈p′, σ′〉, 〈q′, σ′〉) ∈ R.

Cond. 〈div’〉: Suppose that there exist t0, t1, t2, . . . ∈ P , such that
t0 = b :→ p and 〈t0, σ〉 −→ 〈t1, σ〉 −→ 〈t2, σ〉 −→ · · · . Rule 〈grd-tran〉
is the only rule in any derivation with 〈t0, σ〉 −→ 〈t1, σ〉 as conclu-
sion, and so check(b, σ) = true and 〈p, σ〉 −→ 〈t1, σ〉 −→ 〈t2, σ〉 −→
· · · . Since Rpq satisfies 〈div’〉, there exist q0, q1, q2, . . . ∈ P and
a mapping φ : N → N, such that q0 = q, 〈q0, σ〉 −→ 〈q1, σ〉 −→
〈q2, σ〉 −→ · · · (tφ(i), qi) ∈ Rpq for all i > 0. By Rule 〈grd-tran〉,

4.1. Silent bisimulation on processes 39

〈b :→ q0, σ〉 −→ 〈q1, σ〉 −→ 〈q2, σ〉 −→ · · · . Since (tφ(i), qi) ∈ Rpq,
according to the definition of R, we have (tφ(0), b :→ q) ∈ R and
(tφ(i), qi) ∈ R for i > 0.

• We now check the conditions for the pairs in the second set.

Cond. 〈term〉: Suppose 〈b :→ p, σ〉↓. Since Rule 〈grd-term〉 is the final
rule of any derivation with 〈b :→ p, σ〉↓ as conclusion, and since
check(b, σ) = true, we have 〈p, σ〉↓. Since (〈p, σ〉, 〈s, σ〉) ∈ Rpq,
there exists an s′ ∈ P such that 〈s, σ〉 ։ 〈s′, σ〉, 〈s′, σ〉↓ and
(〈p, σ〉, 〈s′, σ〉) ∈ Rpq. According to the definition of R, we have
(〈b :→ p, σ〉, 〈s′, σ〉) ∈ R.

Cond. 〈tran〉: Suppose 〈b :→ p, σ〉
a
−→ 〈t, σ′〉 for some σ′ ∈ Σ and

t ∈ P . Since Rule 〈grd-tran〉 must be the final rule of any
derivation of this transition as conclusion and since check(b, σ) =
true, 〈p, σ〉

a
−→ 〈p′, σ′〉 and t = p′. Since (〈p, σ〉, 〈s, σ〉) ∈ Rpq,

there exist s′, s′′ ∈ P such that 〈s, σ〉 ։ 〈s′′, σ〉
(a)
−−→ 〈s′, σ′〉,

(〈p, σ〉, 〈s′′, σ〉) ∈ Rpq and (〈p′, σ′〉, 〈s′, σ′〉) ∈ Rpq. Now, because
(〈p, σ〉, 〈s′′, σ〉) ∈ Rpq, according to the definition of R, we have
(〈b :→ p, σ〉, 〈s′′, σ〉) ∈ R. Also, since (〈p′, σ′〉, 〈s′, σ′〉) ∈ Rpq ⊆ R,
(〈p′, σ′〉, 〈s′, σ′〉) ∈ R.

Cond. 〈div’〉: Suppose that there exist t0, t1, t2, . . . ∈ P , such that
t0 = b :→ p and 〈t0, σ〉 −→ 〈t1, σ〉 −→ 〈t2, σ〉 −→ · · · . Rule 〈grd-tran〉
is the only rule in any derivation with 〈t0, σ〉 −→ 〈t1, σ〉 as con-
clusion and, since check(b, σ) = true, we have 〈p, σ〉 −→ 〈t1, σ〉 −→
〈t2, σ〉 −→ · · · . Since Rpq satisfies 〈div’〉, there exist s0, s1, s2, . . . ∈
P and a mapping φ : N → N, such that s0 = s, 〈s0, σ〉 −→
〈s1, σ〉 −→ 〈s2, σ〉 −→ · · · (〈tφ(i), σ〉, 〈si, σ〉) ∈ Rpq for all i > 0.
By Rule 〈grd-tran〉, 〈b :→ s0, σ〉 −→ 〈s1, σ〉 −→ 〈s2, σ〉 −→ · · · . Since
(〈tφ(i), σ〉, 〈si, σ〉) ∈ Rpq, according to the definition of R, we have
(〈tφ(0), σ〉, 〈b :→ s, σ〉) ∈ R and (〈tφ(i), σ〉, 〈si, σ〉) ∈ R for i > 0.

• Finally, we now check the conditions for the pairs in the third set.

Cond. 〈term〉: Suppose 〈r, σ〉↓. Since (〈r, σ〉, 〈q, σ〉) ∈ Rpq, there is a
q′ ∈ P such that 〈q, σ〉։ 〈q′, σ〉, 〈q′, σ〉↓ and (〈r, σ〉, 〈q′, σ〉) ∈ Rpq.
Since check(b, σ) = true, by Rule 〈grd-term〉, 〈b :→ q, σ〉։ 〈q′, σ〉.
Since check(b, σ) = true and (〈r, σ〉, 〈q′, σ〉) ∈ Rpq, according to
the definition of R, (〈r, σ〉, 〈q′, σ〉) ∈ R.

40 Chapter 4. Silent congruence

Cond. 〈tran〉: Suppose 〈r, σ〉
a
−→ 〈r′, σ′〉 for some σ′ ∈ Σ and r′ ∈

P . Since (〈r, σ〉, 〈q, σ〉) ∈ Rpq, it follows that there exist q′, q′′ ∈

P such that 〈q, σ〉 ։ 〈q′′, σ〉
(a)
−−→ 〈q′, σ′〉, (〈r, σ〉, 〈q′′, σ〉) ∈ Rpq

and (〈r′, σ′〉, 〈q′, σ′〉) ∈ Rpq. Since check(b, σ) = true, it follows

by Rule 〈grd-tran〉 that 〈b :→ q, σ〉 ։ 〈q′′, σ〉
(a)
−−→ 〈q′, σ′〉. Since

(〈r, σ〉, 〈q′′, σ〉) ∈ Rpq and (〈r′, σ′〉, 〈q′, σ′〉) ∈ Rpq, according to the
definition of R, (〈r, σ〉, 〈q′′, σ〉) ∈ R and (〈r′, σ′〉, 〈q′, σ′〉) ∈ R.

Cond. 〈div’〉: Suppose that there exist r0, r1, r2, . . . ∈ P , such that
r0 = r and 〈r0, σ〉 −→ 〈r1, σ〉 −→ 〈r2, σ〉 −→ · · · . Since Rpq satis-
fies 〈div’〉, there exist q0, q1, q2, . . . ∈ P and a mapping φ : N →
N, such that q0 = q, 〈q0, σ〉 −→ 〈q1, σ〉 −→ 〈q2, σ〉 −→ · · · and
(rφ(i), qi) ∈ Rpq for all i > 0. Because check(b, σ) = true, by
Rule 〈grd-tran〉, we have 〈b :→ q0, σ〉 −→ 〈q1, σ〉 −→ 〈q2, σ〉 −→ · · · .
Since (〈rφ(i), σ〉, 〈qi, σ〉) ∈ Rpq, according to the definition of R,
(〈rφ(0), σ〉, 〈b :→ q, σ〉) ∈ R and (〈tφ(i), σ〉, 〈qi, σ〉) ∈ R for i > 0.�

The following lemmas from the core of the proof that silent bisimulation
on processes is a congruence for the scope, the encapsulation, and the hiding
operator. We state these results as lemmas because we will use them later
in the text.

Lemma 4.1.3 If RS is a silent bisimulation, then

R = {(〈|[ς | p]|, σ〉, 〈|[ς | q]|, σ〉) | ς, σ ∈ Σ, (〈p, σ≪ ς〉, 〈q, σ≪ ς〉) ∈ RS}

is also a silent bisimulation. �

Proof We show that R satisfies the conditions of Definition 2.2.1. It is
symmetric because RS is symmetric. That it satisfies 〈lab〉 follows directly
from its definition. We show that it also satisfies 〈term〉, 〈tran〉 and 〈div〉.

Cond. 〈term〉: Suppose 〈|[ς | p]|, σ〉↓. Since Rule 〈scp-term〉 is the final rule of
any derivation with 〈|[ς | p]|, σ〉↓ as conclusion, it holds that 〈p, σ≪ ς〉↓.
Since (〈p, σ≪ ς〉, 〈q, σ≪ ς〉) ∈ RS , there exists an s′ ∈ P such that
〈q, σ≪ ς〉 ։ 〈q′, σ≪ ς〉, 〈q′, σ≪ ς〉↓, and (〈p, σ≪ ς〉, 〈q′, σ≪ ς〉) ∈ RS .
Hence, by Rule 〈scp-term〉, 〈|[ς | q′]|, σ〉↓. Using that (σ≪ ς)/dom(ς) =
ς and σ≪(σ≪ ς)/(dom(σ)∪dom(ς))\dom(ς) = σ≪(σ≪ ς)/dom(σ)\dom(ς) =
σ≪σ/dom(σ)\dom(ς) = σ, by Rule 〈scp-tran〉, we obtain 〈|[ς | q]|, σ〉 ։
〈|[ς | q′]|, σ〉. Finally, since (〈p, σ≪ ς〉, 〈q′, σ≪ ς〉) ∈ RS , according to the
definition of R, (|[ς | p]|, |[ς | q′]|) ∈ R.

4.1. Silent bisimulation on processes 41

Cond. 〈tran〉: Suppose 〈|[ς | p]|, σ〉
a
−→ 〈r, σ′〉 for some σ′ ∈ Σ and r ∈ P .

Since Rule 〈scp-tran〉 is the final rule of any derivation with this tran-
sition as conclusion, we have that there exist p′ ∈ P and σ′′ ∈ Σ
such that 〈p, σ≪ ς〉

a
−→ 〈p′, σ′′〉, σ′ = σ≪σ′′/dom(σ)\dom(ς) and r =

|[ς ′ | p′]| for ς ′ = σ′′/dom(ς). Since (〈p, σ≪ ς〉, 〈q, σ≪ ς〉) ∈ RS , there ex-

ist q′, q′′ ∈ P such that 〈q, σ≪ ς〉 ։ 〈q′′, σ≪ ς〉
(a)
−−→ 〈q′, σ′′〉, and also

(〈p, σ≪ ς〉, 〈q′′, σ≪ ς〉) ∈ RS and (〈p′, σ′′〉, 〈q′, σ′′〉) ∈ RS . Using again
that (σ≪ ς)/dom(ς) = ς and σ≪(σ≪ ς)/(dom(σ)∪dom(ς))\dom(ς) = σ, by

Rule 〈scp-tran〉, we have 〈|[ς | q]|, σ〉։ 〈|[ς | q′′]|, σ〉
(a)
−−→ 〈|[ς ′ | q′]|, σ′′〉.We

calculate the following: σ′≪ ς ′ = (σ≪σ′′/dom(σ′′)\dom(ς))≪σ′′/dom(ς) =

σ≪(σ′′/dom(σ′′)\dom(ς)≪σ′′/dom(ς)) = σ≪σ′′/dom(σ′′) = σ′′. Hence, since

(〈p, σ≪ ς〉, 〈q′′, σ≪ ς〉) ∈ RS and (〈p′, σ′〉, 〈q′, σ′〉) ∈ RS , according to
the definition of R it follows that (〈|[ς | p]|, σ〉, 〈|[ς | q′′]|, σ〉) ∈ R and
(〈|[ς ′ | p′]|, σ′′〉, 〈|[ς ′ | q′]|, σ′′〉) ∈ R.

Cond. 〈div〉: Suppose that there exist σ ∈ Σ and r0, r1, r2, . . . ∈ P , such
that r0 = |[ς | p]| and 〈r0, σ〉 −→ 〈r1, σ〉 −→ 〈r2, σ〉 −→ · · · where also
(〈ri, σ〉, 〈|[ς | q]|, σ〉) ∈ R for all i > 0. According to the definition of
R, there exist p0, p1, p2, . . . ∈ P such that, for all i > 0, ri = |[ς | pi]|
and (〈pi, σ≪ ς〉, 〈q, σ≪ ς〉) ∈ RS . Since Rule 〈scp-tran〉 is the final rule
in any derivation with 〈ri, σ〉 −→ 〈ri+1, σ〉 as conclusion, we have that
p0 = p and 〈p0, σ≪ ς〉 −→ 〈p1, σ≪ ς〉 −→ 〈p2, σ≪ ς〉 −→ · · · . Since RS
satisfies 〈div〉, it follows that there exist q′ ∈ P and k > 0 such that
〈q, σ≪ ς〉 →

+
〈q′, σ≪ ς〉 and (〈pk, σ≪ ς〉, 〈q′, σ≪ ς〉) ∈ RS . As before,

by Rule 〈scp-tran〉, 〈|[ς | q]|, σ〉 →
+
〈|[ς | q′]|, σ〉. According to the defini-

tion of R, (〈|[ς | pk]|, σ〉, 〈|[ς | q
′]|, σ〉) ∈ R. �

Lemma 4.1.4 If RS is a silent bisimulation, then

R = {(〈∂Ξ(p), σ〉, 〈∂Ξ(q), σ〉) | (〈p, σ〉, 〈q, σ〉) ∈ Rpq},

with Ξ ⊆ A \ {τ}, is also a silent bisimulation. �

Proof We show that R satisfies the conditions of Definition 2.2.1. It is
symmetric because RS is symmetric. That it satisfies 〈lab〉 follows directly
from its definition. We show that it also satisfies 〈term〉, 〈tran〉 and 〈div〉.

Cond. 〈term〉: Suppose 〈∂Ξ(p), σ〉↓. Rule 〈enc-term〉 is the final rule with
this as conclusion so we have 〈p, σ〉↓. Since (〈p, σ〉, 〈q, σ〉) ∈ RS , there

42 Chapter 4. Silent congruence

is a q′ ∈ P such that 〈q, σ〉։ 〈q′, σ〉, 〈q′, σ〉↓ and (〈p, σ〉, 〈q′, σ〉) ∈ RS .
Now, by Rules 〈enc-term〉 and 〈enc-tran〉, 〈∂Ξ(s), σ〉։ 〈∂Ξ(q′), σ〉 and
〈∂Ξ(q′), σ〉↓. Since (〈p, σ〉, 〈q′, σ〉) ∈ RS , according to the definition of
R, (〈∂Ξ(r), σ〉, 〈∂Ξ(q′), σ〉) ∈ R.

Cond. 〈tran〉: Suppose 〈∂Ξ(p), σ〉
a
−→ 〈r, σ′〉 for some σ′ ∈ Σ and

r ∈ P . Since Rule 〈enc-tran〉 is the final rule with this tran-
sition as conclusion, we have 〈p, σ〉

a
−→ 〈p′, σ′〉, r = ∂Ξ(p′)

and a 6∈ Ξ. Since (〈p, σ〉, 〈q, σ〉) ∈ RS , there exist q′, q′′ ∈ P

such that 〈q, σ〉 ։ 〈q′′, σ〉
(a)
−−→ 〈q′, σ〉, (〈p, σ〉, 〈q′′, σ〉) ∈ RS and

(〈p′, σ′〉, 〈q′, σ′〉) ∈ RS . Now, because τ 6∈ Ξ, by Rule 〈enc-tran〉,

〈∂Ξ(s0), σ〉 ։ 〈∂Ξ(q′′), σ〉
(a)
−−→ 〈∂Ξ(q′), σ′〉. Since (〈p, σ〉, 〈q′′, σ〉) ∈ RS

and (〈p′, σ′〉, 〈q′, σ′〉) ∈ RS , according to the definition of R, we have
that (〈∂Ξ(p), σ〉, 〈∂Ξ(q′′), σ〉) ∈ R and (〈∂Ξ(p′), σ′〉, 〈∂Ξ(q′), σ′〉) ∈ R.

Cond. 〈div〉: Suppose that there exist r0, r1, r2, . . . ∈ P , such that
r0 = ∂Ξ(p), 〈r0, σ〉 −→ 〈r1, σ〉 −→ 〈r2, σ〉 −→ · · · and that
(〈ri, σ〉, 〈∂Ξ(q), σ〉) ∈ R for all i > 0. According to the definition of R,
there exist p0, p1, p2, . . . ∈ P such that ri = ∂Ξ(pi) for all i > 0. Since
Rule 〈enc-tran〉 is the only rule that has 〈∂Ξ(pi), σ〉 −→ 〈∂Ξ(pi+1), σ〉
as conclusion, we have 〈p0, σ〉 −→ 〈p1, σ〉 −→ 〈p2, σ〉 −→ · · · . By
the definition of R, also (〈pi, σ〉, 〈∂Ξ(q), σ〉) ∈ RS . Since RS sat-
isfies 〈div〉, there exist q′ ∈ P and k > 0 such that 〈q, σ〉 →

+

〈q′, σ〉 and (〈pk, σ〉, 〈q
′, σ〉) ∈ RS . By Rule 〈enc-tran〉, 〈∂Ξ(q), σ〉 →

+

〈∂Ξ(q′), σ〉. Since (〈pk, σ〉, 〈q
′, σ〉) ∈ RS , according to the definition of

R, (〈∂Ξ(pk), σ〉, 〈∂Ξ(q′), σ〉) ∈ R. �

Lemma 4.1.5 If RS is a silent bisimulation, then

R = {(〈τI(p), σ〉, 〈τI(q), σ〉) | (〈p, σ〉, 〈q, σ〉) ∈ RS},

with I ⊆ A, is also a silent bisimulation. �

Proof We show that R satisfies the conditions of Definition 2.2.1. It is
symmetric because RS is symmetric. That it satisfies 〈lab〉 follows directly
from its definition. We show that it also satisfies 〈term〉, 〈tran〉 and 〈div〉.

Cond. 〈term〉: Suppose 〈τI(p), σ〉↓. Rule 〈hide-term〉 is the final rule with
this as conclusion so we have 〈p, σ〉↓. Since (〈p, σ〉, 〈q, σ〉) ∈ RS , there
is a q′ ∈ P such that 〈q, σ〉։ 〈q′, σ〉, 〈q′, σ〉↓ and (〈p, σ〉, 〈q′, σ〉) ∈ RS .

4.1. Silent bisimulation on processes 43

By Rule 〈hide-term〉, and by Rules 〈hide-tran1〉 and 〈hide-tran2〉, we ob-
tain 〈τI(q), σ〉։ 〈τI(q

′), σ〉 and 〈τI(q
′), σ〉↓. Since (〈p, σ〉, 〈q′, σ〉) ∈ RS ,

according to the definition of R, (〈τI(p), σ〉, 〈τI(q
′), σ〉) ∈ R.

Cond. 〈tran〉: Suppose 〈τI(p), σ〉
a
−→ 〈r, σ′〉 for some σ′ ∈ Σ and r ∈ P .

Since Rules 〈hide-tran1〉 and 〈hide-tran2〉 are the final rules with this

transition as conclusion, we have 〈p, σ〉
b
−→ 〈p′, σ′〉 and r = τI(p

′), for
some b ∈ A such that either b ∈ I and a = τ or b 6∈ I and a = b. Since

(〈p, σ〉, 〈q, σ〉) ∈ RS there exist q′, q′′ ∈ P such that 〈q, σ〉։ 〈q′′, σ〉
(b)
−→

〈q′, σ〉, (〈p, σ〉, 〈q′′, σ〉) ∈ RS , and (〈p′, σ′〉, 〈q′, σ′〉) ∈ RS. Note that, if
b = τ , then also a = τ . Now, by Rules 〈hide-tran1〉 and 〈hide-tran2〉,

〈τI(q), σ〉 ։ 〈τI(q
′′), σ〉

(a)
−−→ 〈τI(q

′), σ′〉. Since (〈p, σ〉, 〈q′′, σ〉) ∈ RS ,
and (〈p′, σ′〉, 〈q′, σ′〉) ∈ RS, according to the definition of R, we have
(〈τI(p), σ〉, 〈τI(q

′′), σ〉) ∈ R and (〈τI(p
′), σ′〉, 〈τI(q

′), σ′〉) ∈ R.

Cond. 〈div〉: Suppose that there exist r0, r1, r2, . . . ∈ P , such that r0 =
τI(p), 〈r0, σ〉 −→ 〈r1, σ〉 −→ 〈r2, σ〉 −→ · · · and (〈ri, σ〉, 〈τI(q), σ〉) ∈ R
for all i > 0. By Rules 〈hide-tran1〉 and 〈hide-tran2〉, there exist

p0, p1, p2, . . . ∈ P and a0, a1, a2, . . . ∈ A such that 〈p0, σ〉
a0−→ 〈p1, σ〉

a1−→

〈p2, σ〉
a2−→ · · · and, for all i > 0, ri = τI(pi) and either ai = τ or ai ∈ I.

According to the definition of R, (〈pi, σ〉, 〈q, σ〉) ∈ RS for all i > 0.

Suppose first that ai = τ for all i > 0. Since RS satisfies 〈div〉,
there exist an q′ ∈ P and k > 0 such that 〈q, σ〉 →

+
〈q′, σ〉 and

(〈pk, σ〉, 〈q
′, σ〉) ∈ RS . By Rules 〈hide-tran1〉 and 〈hide-tran2〉, we ob-

tain 〈τI(q), σ〉 →
+
〈τI(q

′), σ〉. Since (〈pk, σ〉, 〈q
′, σ〉) ∈ RS, according to

the definition of R, (〈τI(p), σ〉, 〈τI(q
′′), σ〉) ∈ R.

Let now n > 0 be the smallest index such that an 6= τ and an ∈ I.
Since (〈pn, σ〉, 〈q, σ〉) ∈ RS , there exist q′, q′′ ∈ P such that 〈q, σ〉 ։
〈q′, σ〉

an−→ 〈q′, σ〉, (〈pn, σ〉, 〈q
′′, σ〉) ∈ RS and (〈pn+1, σ〉, 〈q

′′, σ〉) ∈ RS .
By Rules 〈hide-tran1〉 and 〈hide-tran2〉, 〈τI(q), σ〉 ։ 〈τI(q

′′), σ〉
τ
−→

〈τI(q
′), σ〉. From this it clearly follows that 〈τI(q), σ〉 →

+
〈τI(q

′), σ〉.
Since (〈pn+1, σ〉, 〈q

′′, σ〉) ∈ RS, according to the definition of R, we
have (〈τI(pn+1), σ〉, 〈τI(q

′′), σ〉) ∈ R. �

Now we can easily prove the following.

Theorem 4.1.6 For all p, q ∈ P , if p ∼s q, then

1. |[ς | p]| ∼s |[ς | q]|, for all ς ∈ Σ;

44 Chapter 4. Silent congruence

2. τI(p) ∼s τI(q), for all I ⊆ A; and

3. ∂Ξ(p) ∼s ∂Ξ(q), for all Ξ ⊆ A \ {τ}. �

In the next section we deal with parallel composition.

4.2 Stateless silent bisimulation

Silent bisimulation is not a congruence for parallel composition. To show
this consider the following example.

Example 4.2.1 a. Let a ∈ A, let b ∈ B and let p ∈ P . Suppose that,
for all σ ∈ Σ and all σ′ ∈ eff(a, σ) = {σ′}, check(b, σ′) = true. Then,
the processes a · b :→ p and a · p are silently bisimilar. They both do
the action a and proceed as the process p. Let now b ∈ A be such
that, for all σ ∈ Σ and all σ′ ∈ eff(b, σ), check(b, σ′) = false. When
put in parallel with the process b the two processes from above behave
differently in any valuation. The process (a · b :→ p) ‖ b can execute
a, then b, and then deadlock. The process (a · p) ‖ b cannot deadlock
(assuming that p does not deadlock).

b. It is easily shown that a · τ{a}(a) ∼s a if, for example, for all σ ∈ Σ
and all σ′ ∈ eff(a, σ), we have eff(a, σ′) = {σ′}. However, in general,
a · τ{a}(a) ‖ b 6∼s a ‖ b. To show this, let σ ∈ Σ be some valuation
and suppose eff(a, σ) = {σ′}, eff(b, σ′) = {σ′′} and eff(a, σ′′) = {σ′′′}.
Now, the left-hand side process can change the valuation from σ to σ′,
then to σ′′ and then, finally, to σ′′′. This behavior cannot be simulated
by the right-hand side process in case σ′′′ 6= σ′′. �

The reason why silent bisimilarity fails to be a congruence for paral-
lel composition is because it is blind to a change in the intermediate data
state caused by a parallel component. The same problem also occurs when
strong bisimulation is lifted to a relation on process terms and the solution
is known [57, 20, 80]. The idea is to require that after performing a step two
bisimilar processes are again bisimilar, but in every valuation and not only
in the resulting one. A condition that ensures this requirement is given in
the following definition.

Definition 4.2.2 A binary relation R on S = P × Σ is called stateless iff,

(〈p, σ〉, 〈q, σ〉) ∈ R implies that for all σ′ ∈ Σ, (〈p, σ′〉, 〈q, σ′〉) ∈ R. �

4.2. Stateless silent bisimulation 45

Before we use this definition to define a relation on processes we establish
some properties of stateless relations. The following two lemmas show that
the union and composition of two stateless relations is again stateless.

Lemma 4.2.3 Let Ri for i ∈ I be some stateless binary relations on S =
P × Σ. Then their union

⋃
i∈I Ri is also stateless �

Proof Let R =
⋃
i∈I Ri. Suppose (〈p, σ〉, 〈q, σ〉) ∈ R for some p, q ∈ P

and σ ∈ Σ. Then there exists an i > 0 such that (〈p, σ〉, 〈q, σ〉) ∈ Ri. Let
σ′ ∈ Σ. Then, because Ri is stateless, also (〈p, σ′〉, 〈q, σ′〉) ∈ Ri. From this
(〈p, σ′〉, 〈q, σ′〉) ∈ R. �

Lemma 4.2.4 Let R1 and R2 be stateless binary relations on S = P × Σ.
Then their composition R1 ◦R2 is also stateless. �

Proof Let now R = R1 ◦ R2 and suppose (〈p, σ〉, 〈r, σ〉) ∈ R for some
p, r ∈ P and σ ∈ Σ. Then there exists a q ∈ P such that (〈p, σ〉, 〈q, σ〉) ∈ R1

and (〈q, σ〉, 〈r, σ〉) ∈ R2. Let σ′ ∈ Σ. Then, because R1 and R2 are stateless,
(〈p, σ′〉, 〈q, σ′〉) ∈ R1 and (〈q, σ′〉, 〈r, σ′〉) ∈ R2. From this (〈p, σ′〉, 〈r, σ′〉) ∈
R. �

Now we could lift the definition of ∼s to the level of κ processes by saying
that two processes, p and q, are silently bisimilar iff there is a stateless silent
bisimulation relation R such that (〈p, σ〉, 〈q, σ〉) ∈ R for some, and thus for
all, σ ∈ Σ. Having proved Lemmas 4.2.3 and 4.2.4 we can straightforwardly
prove that this relation is an equivalence relation. However, since the defini-
tion gives an extra proof obligation in application (the stateless property),
it is more usual to define the equivalence as follows.

Definition 4.2.5 (Stateless Silent Bisimulation on Processes) A
symmetric relation R ⊆ P × P is a stateless silent bisimulation (on
processes) iff, for all (p, q) ∈ R and for all σ ∈ Σ,

〈sl-term〉 if 〈p, σ〉↓, then there exist q′ ∈ P such that

〈q, σ〉։ 〈q′, σ〉, 〈q′, σ〉↓ and (p, q′) ∈ R,

〈sl-tran〉 if 〈p, σ〉
a
−→ 〈p′, σ′〉, then there exist q′, q′′ ∈ P such that

〈q, σ〉։ 〈q′′, σ〉
(a)
−−→ 〈q′, σ′〉, (p, q′′) ∈ R and (p′, q′) ∈ R,

46 Chapter 4. Silent congruence

〈sl-div〉 if there exists an infinite sequence p0, p1, p2, . . . ∈ P such that p0 = p,

〈p0, σ〉 −→ 〈p1, σ〉 −→ 〈p2, σ〉 −→ · · · and (pi, q) ∈ R

for all i > 0, then there exist q′ ∈ P and k > 0 such that

〈q, σ〉 →
+
〈q′, σ〉 and (pk, q

′) ∈ R.

Two processes p and q are stateless silent bisimilar, denoted p ∼sl
s q, if there

exists a stateless silent bisimulation R ⊆ P × P such that (p, q) ∈ R. �

We now show that the above definition indeed leads to the desired notion
of silent bisimilarity. The core of the proof is divided into two lemmas.

Lemma 4.2.6 Let RP be a binary relation on processes and let

R = {(〈p, σ〉, 〈q, σ〉) | (p, q) ∈ RP , σ ∈ Σ}.

If RP satisfies 〈sl-con〉, for con ∈ {term, tran, div}, then R satisfies 〈con〉. �

Proof Suppose thatRP satisfies 〈sl-term〉 and that 〈p, σ〉↓. From (p, q) ∈ RP
it follows that there exists an s′ ∈ P such that 〈q, σ〉 ։ 〈q′, σ〉, 〈q′, σ〉↓ and
(p, q′) ∈ RP . According to the definition of R, (〈p, σ〉, 〈q′, σ〉) ∈ R.

Suppose that RP satisfies 〈sl-tran〉 and suppose 〈p, σ〉
a
−→ 〈p′, σ′〉 for some

p′ ∈ P, σ′ ∈ Σ. From (p, q) ∈ RP it follows that there exist q′, q′′ ∈ P such

that 〈q, σ〉։ 〈q′′, σ〉
(a)
−−→ 〈q′, σ′〉, (p, q′′) ∈ RP , and (p′, q′) ∈ RP . According

to the definition of R, (〈p, σ〉, 〈q′′, σ〉) ∈ R and (〈p′, σ′〉, 〈q′, σ′〉) ∈ R.

Suppose that RP satisfies 〈sl-div〉 and suppose 〈p0, σ〉 −→ 〈p1, σ〉 −→
〈p2, σ〉 −→ · · · for some p0(= p), p1, p2 . . . ∈ P such that (〈pi, σ〉, 〈q, σ〉) ∈ R
for all i > 0. This implies that (p, qi) ∈ RP for all i 6 n. From that there ex-
ist q′ ∈ P and k > 0 such that 〈q, σ〉 →

+
〈q′, σ〉 and (pk, q

′) ∈ RP . According
to the definition of R, (〈pk, σ〉, 〈q, σ〉) ∈ R.

Lemma 4.2.7 Let RS be a stateless binary relation on S = P × Σ and let

R = {(p, q) | (〈p, σ〉, 〈q, σ〉) ∈ RS for some/all σ ∈ Σ}.

If RS satisfies 〈con〉, for con ∈ {term, tran, div}, then R satisfies 〈sl-con〉. �

4.2. Stateless silent bisimulation 47

Proof Suppose that RS satisfies 〈term〉 and suppose 〈p, σ〉↓ for some σ ∈
Σ. It follows that (〈p, σ〉, 〈q, σ〉) ∈ RS , and so there exists a q′ ∈ P such
that 〈q, σ〉 ։ 〈q′, σ〉, 〈q′, σ〉↓ and (〈p, σ〉, 〈q′, σ〉) ∈ RS . According to the
definition of R, (p, q′) ∈ R.

Suppose that RS satisfies 〈tran〉 and suppose 〈p, σ〉
a
−→ 〈p′, σ′〉 for some

r′ ∈ P, σ, σ′ ∈ Σ. It follows that there exist s′, s′′ ∈ P such that 〈q, σ〉 ։

〈q′′, σ〉
(a)
−−→ 〈q′, σ′〉, (〈p, σ〉, 〈q′, σ〉) ∈ RS, and (〈p′, σ′〉, 〈q′, σ′〉) ∈ RS . Accord-

ing the definition of R, (p, q′′) ∈ R and (p′, q′) ∈ R.
Suppose thatRS satisfies 〈div〉 and suppose 〈p0, σ〉 −→ 〈p1, σ〉 −→ 〈p2, σ〉 −→

· · · for some p0(= r), p1, p2 . . . ∈ P and σ ∈ Σ such that (pi, q) ∈ R for all
i > 0. This implies that (〈p, σ〉, 〈qi, σ〉) ∈ RS for all i > 0. From that there
exist q′ and j > 0 such that 〈q, σ〉 →

+
〈q′, σ〉 and (〈pj , σ〉, 〈q

′, σ〉) ∈ RS . From
the stateless property of RS, and the definition of R, (pj , q

′) ∈ R. �

The following now easily follows.

Theorem 4.2.8 For all p, q ∈ P , p ∼sl
s q iff there is a stateless silent bisim-

ulation relation R ∈ S × S such that (〈p, σ〉, 〈q, σ〉) ∈ R for some, and thus
for all, σ ∈ Σ. �

Proof Suppose first that p ∼sl
s q. Then there exists a binary relation Rpq

that satisfies the conditions of Definition 4.2.5 and such that (p, q) ∈ Rpq.
Let R = {(〈r, σ〉, 〈s, σ〉) | (r, s) ∈ Rpq, σ ∈ Σ}. The relation R is by definition
stateless. It also satisfies 〈lab〉. From this and Lemma 4.2.6 we conclude that
R is an silent bisimulation. Clearly, (〈p, σ〉, 〈q, σ〉) ∈ R for some, and thus
for all, σ ∈ Σ.

Suppose now that there is a stateless silent bisimulation Rpq such that
(〈p, σ〉, 〈q, σ〉) ∈ Rpq for all σ ∈ Σ. Let R = {(r, s) | (〈r, σ〉, 〈s, σ〉) ∈ Rpq}.
Note that (p, q) ∈ R. From Lemma 4.2.7 it follows that R satisfies 〈sl-term〉,
〈sl-tran〉 and 〈sl-div〉, and thus it is a stateless silent bisimulation on pro-
cesses. �

Theorem 4.2.8 establishes a direct link between the stateless silent bisim-
ulation and the standard silent bisimulation. This allows allows us to use
results from before, most importantly Lemmas 4.2.3 and 4.2.4, and to easily
prove the following.

Corollary 4.2.9 The relation ∼sl
s is an equivalence relation. �

Corollary 4.2.10 The relation ∼sl
s is a stateless silent bisimulation on pro-

cesses. �

48 Chapter 4. Silent congruence

We now show that stateless silent bisimulation on processes is a com-
patible with parallel composition. The following lemma is the core of the
proof.

Lemma 4.2.11 Let RP ⊆ P × P and R̄P ⊆ P × P be stateless silent
bisimulations. Then

R = {(p ‖ p̄, q ‖ q̄) | (p, q) ∈ RP , (p̄, q̄) ∈ R̄P }

is also a stateless silent bisimulation. �

Proof Note that R is symmetric because RP and R̄P are. We show that it
satisfies 〈sl-term〉, 〈sl-tran〉 and 〈sl-div〉.

Cond. 〈sl-term〉: Suppose 〈p ‖ p̄, σ〉↓ for some σ ∈ Σ. Since Rule 〈par-term〉
is the only rule with 〈p ‖ p̄, σ〉↓ as conclusion, we have 〈p, σ〉↓ and
〈p̄, σ〉↓. Since (p, q) ∈ RP there exists an q′ ∈ P such that 〈q, σ〉 ։
〈q′, σ〉, 〈q′, σ〉↓, and (p, q′) ∈ RP . Since (p̄, q̄) ∈ R̄P , there exists a
q̄′ ∈ P 〈q̄, σ〉։ 〈q̄′, σ〉, 〈q̄′, σ〉↓, and (p̄, q̄′) ∈ R̄P . By Rule 〈par-tran1〉,
〈q ‖ q̄, σ〉։ 〈q′ ‖ q̄, σ〉։ 〈q′ ‖ q̄′, σ〉, and by Rule 〈par-term〉 〈q′ ‖ q̄′, σ〉↓.
Since (p, q′) ∈ RP and (p̄, q̄′) ∈ R̄P , according to the definition of R it
holds that (p ‖ p̄, q′ ‖ q̄′) ∈ R.

Cond. 〈sl-tran〉: Suppose 〈p ‖ p̄, σ〉
a
−→ 〈r, σ′〉 for some σ, σ′ ∈ Σ and r ∈ P .

The final rule of a derivation with this transition as conclusion is either
Rule 〈par-tran1〉 or Rule 〈par-tran2〉; we treat these cases separately.

If the final rule applied is Rule 〈par-tran1〉, then 〈p, σ〉
a
−→ 〈p′, σ〉 and

r = p′ ‖ p̄ (or, symmetrically 〈p̄, σ〉
a
−→ 〈p̄′, σ〉 and r = p ‖ p̄′). Since

(p, q) ∈ RP , there exist q′, q′′ ∈ P such that 〈q, σ〉 ։ 〈q′′, σ〉
(a)
−−→

〈q′, σ′〉, (p, q′′) ∈ RP and (p′, q′) ∈ RP . By Rule 〈par-tran1〉, 〈q ‖ q̄, σ〉։

〈q′′ ‖ q̄, σ〉
(a)
−−→ 〈q′ ‖ q̄, σ′〉. Since (p, q′′) ∈ RP and (p′, q′) ∈ RP , accord-

ing to the definition of R, (p ‖ p̄, q′′ ‖ q̄) ∈ R and (p′ ‖ p̄, q′ ‖ q̄) ∈ R.
Note that the last step is where the stateless property is crucial. We
used the fact that 〈p′, σ〉 and 〈q′, σ〉 are silently bisimilar. This might
not be true in general if RP were not stateless.

If the final rule applied is Rule 〈par-tran2〉, then there exist b, c ∈ A

such that 〈p, σ〉
b
−→ 〈p′, σ′′〉, 〈p̄, σ〉

c
−→ 〈p̄′, σ′′′〉, r = p′ ‖ p̄′, and

a = act(comm(b, c), σ). In addition, we have σ′ = eff(comm(b, c), σ) =
σ′′≪σ′′′/dom(σ′′′)\dom(σ′′) = σ′′′≪σ′′/dom(σ′′)\dom(σ′′′). Since (p, q) ∈ RP ,

there exist q′, q′′ such that 〈q, σ〉 ։ 〈q′′, σ〉
b
−→ 〈q′, σ′′〉, (p, q′′) ∈ RP ,

4.2. Stateless silent bisimulation 49

and (p′, q′) ∈ RP . Since (p̄, q̄) ∈ R̄P , there exist q̄′, q̄′′ ∈ P such
that 〈q̄, σ〉 ։ 〈q̄′′, σ〉

c
−→ 〈q̄′, σ′′′〉, (p̄, q̄′′) ∈ R̄P and (p̄′, q̄′) ∈ R̄P .

By Rule 〈par-tran1〉, 〈q ‖ q̄, σ〉 ։ 〈q′′ ‖ q̄, σ〉 ։ 〈q′′ ‖ q̄′′, σ〉. By
Rule 〈par-tran2〉, 〈q′′ ‖ q̄′′, σ〉

a
−→ 〈q′ ‖ q̄′, σ′〉. Since (p, q′′) ∈ RP ,

(p′, q′) ∈ RP , (p̄, q̄′′) ∈ R̄P and (p̄′, q̄′) ∈ R̄P , according to the defini-
tion of R, (p ‖ p̄, q′′ ‖ q̄′′) ∈ R and (p′ ‖ p̄′, q′ ‖ q̄′) ∈ R.

Cond. 〈sl-div〉: Suppose that there exist σ ∈ Σ and r0, r1, r2, . . . ∈ P , such
that r0 = p ‖ p̄, 〈r0, σ〉 −→ 〈r1, σ〉 −→ 〈r2, σ〉 −→ · · · and (ri, q ‖ q̄) ∈ R
for all i > 0. By Rules 〈par-tran1〉 and 〈par-tran2〉 it easily follows that
there exist p0, p1, p2, . . . ∈ P and p̄0, p̄1, p̄2, . . . ∈ P such that p0 = p,
p̄0 = p̄ and, for all i > 0, ri = pi ‖ p̄i and either 〈pi, σ〉 −→ 〈pi+1, σ〉 and
p̄i+1 = p̄i, or 〈p̄i, σ〉 −→ 〈p̄i+1, σ〉 and pi+1 = pi, or 〈pi, σ〉

a
−→ 〈pi+1, σ〉

and 〈p̄i, σ〉
b
−→ 〈p̄i+1, σ〉 for some a, b ∈ A such that comm(a, b) = τ .

From ri = pi ‖ p̄i and (ri, q ‖ q̄) ∈ R, according to the definition of R
we have (pi, q) ∈ RP and (p̄i, q̄) ∈ R̄P for all i > 0.

Suppose that there exists an n > 0 such that 〈pn, σ〉
a
−→ 〈pn+1, σ〉 and

〈p̄n, σ〉
b
−→ 〈p̄n+1, σ〉 and suppose that this n is the smallest such index.

Since (pn, q) ∈ RP , there exist q′, q′′ ∈ P such that 〈q, σ〉 ։ 〈q′, σ〉
a
−→

〈q′, σ〉, (pn, q
′′) ∈ RP and (pn+1, q

′) ∈ RP . Since (p̄i, q̄) ∈ R̄P , there ex-

ist q̄′, q̄′′ ∈ P such that 〈q̄, σ〉 ։ 〈q̄′, σ〉
b
−→ 〈q̄′, σ〉, (p̄n, q̄

′′) ∈ R̄P and
(p̄n+1, q̄

′) ∈ R̄P . Now, by Rules 〈par-tran1〉 and 〈par-tran2〉, 〈q ‖ q̄, σ〉։
〈q′′ ‖ q̄, σ〉 ։ 〈q′′ ‖ q̄′′, σ〉

τ
−→ 〈q′ ‖ q̄′, σ〉. Clearly, 〈q ‖ q̄, σ〉 →

+

〈q′ ‖ q̄′, σ〉. Since (pn+1, q
′) ∈ RP and (p̄n+1, q̄

′) ∈ R̄P , according to
the definition of R (pn+1 ‖ p̄n+1, q

′ ‖ q̄′) ∈ R.

Suppose there is no such n. Then there exists an infinite sequence
i0, i1, i2, . . . such that i0 = 0, 〈pi0 , σ〉 −→ 〈pi1 , σ〉 −→ 〈pi2 , σ〉 −→ · · ·
and rik = pik ‖ p̄ik for all k > 0 (or the symmetric case when there
is a similar sequence from 〈p̄, σ〉). Since (pik , q) ∈ RP for all k >
0, we have that there exists q′ ∈ P and l > 0 such that 〈q, σ〉 →

+

〈q′, σ〉 and (pil , q) ∈ RP . By Rule 〈par-tran1〉, 〈q ‖ q̄, σ〉 →
+
〈q′ ‖ q̄, σ〉.

Since (pil , q) ∈ RP and (p̄il , q̄) ∈ R̄P , according to the definition of R
(pil ‖ p̄il , q

′ ‖ q̄) ∈ R. �

The following now easily follows from Lemma 4.2.11.

Theorem 4.2.12 For all p, q, p̄, q̄ ∈ P , if p ∼sl
s q and p̄ ∼sl

s q̄, then p ‖ p̄ ∼sl
s

q ‖ q̄. �

We have proved that stateless silent bisimilarity is a congruence for par-
allel composition. That it is also a congruence for the encapsulation, scope

50 Chapter 4. Silent congruence

and the hiding operator follows directly from Lemmas 4.1.3, 4.1.4, 4.1.5
where the defined relations R are clearly stateless. We show in the next
section that one more thing needs to be done before we obtain a congruence
for all operators in κ.

4.3 Root condition and congruence proof

Stateless silent bisimilarity is not a congruence for alternative composition,
sequential composition and repetition. In fact, by requiring the bisimulation
relation to be stateless, the congruence property for guards is lost as well.
Consider the following example.

Example 4.3.1 Note that δ ∼sl
s τ · δ if eff(τ , σ) = {σ} for all σ ∈ Σ.

However,

a. τ + δ 6∼sl
s τ + τ · δ, for the right-hand side process can perform the τ

and then deadlock, while the left-hand side process never deadlocks;

b. (a+ε) · δ 6∼sl
s (a+ε) ·τ · δ, for the right-hand side process can perform

the τ action and deadlock, avoiding to do the action a, while the left-
hand side must always do the action a;

and

c. a∗ · δ 6∼sl
s a∗ · τ · δ, for the right-hand side process can perform the τ

action and deadlock, while the left-hand can only execute the action
a indefinitely. �

Note that the problem in all the three cases from above appears because
they all involve some kind of non-deterministic choice. In the first case,
the addition of the τ process in front of δ masks the deadlock, giving the
right hand side process the possibility to choose the “wrong” path. In the
other two cases, the problem is similar, only that the non-determinism is
not explicit, but implicitly hidden in the sequential composition, resp. the
repetition.

The next example shows that ∼sl
s is also not a congruence for guards.

Example 4.3.2 Note that a ∼sl
s τ · a when eff(τ , σ) = {σ} for all σ ∈ Σ.

However, for some b ∈ B that is not true in all valuations, b :→ a 6∼sl
s

b :→ (τ · a). This is because, for any valuation for which b is true, the
right-hand side process performs τ , passes the guard and then behaves as

4.3. Root condition and congruence proof 51

a. The process b :→ a can simulate this τ action only by doing nothing.
However, the stateless property requires then that b :→a and a behave the
same way in any valuation which is impossible. �

The problem illustrated in the first example and its solution are well
known; we need to add a root condition [15]. This condition requires that
related processes must simulate each other’s initial steps in the strong sense.
Adding the root condition to the relation also solves the problem for guards.

Definition 4.3.3 (Root condition) A pair (p, q) ∈ P × P satisfies the
root condition in R ⊆ P × P if, for all σ ∈ Σ,

〈root-term〉 〈p, σ〉↓ iff 〈q, σ〉↓,

〈root-tran1〉 if 〈p, σ〉
a
−→ 〈p′, σ′〉 for some σ′ ∈ Σ, then there exists q′ ∈ P such that

〈q, σ〉
a
−→ 〈q′, σ′〉 and (p′, q′) ∈ R, and

〈root-tran2〉 if 〈q, σ〉
a
−→ 〈q′, σ′〉 for some σ′ ∈ Σ, then there exists p′ ∈ P such that

〈p, σ〉
a
−→ 〈p′, σ′〉 and (p′, q′) ∈ R. �

We now define a notion of silent congruence.

Definition 4.3.4 (Silent congruence) Two processes p and q are silently
congruent, denoted p ≈s q, iff there is a stateless silent bisimulation relation
on processes R such that (p, q) ∈ R and (p, q) satisfies that root condition
in R. �

Clearly, p ≈s q implies p ∼s q. The root condition is compositional so it
is straightforward to prove that ≈s is an equivalence relation. We show that
≈s is a congruence. For that we need to prove some lemmas first.

The first lemma is the stateless analogue of Lemma 2.3.1; the second
shows that we can define stateless silent bisimulation using the stateless
variant of 〈div”〉. When proving the relation ≈s compositional it is some-
times more convenient to work with the condition 〈div”〉 than with the con-
dition 〈div〉.

Lemma 4.3.5 If R ⊆ P ×P satisfies 〈sl-tran〉 and if (p, q) ∈ R and 〈p, σ〉։
〈p′, σ〉 for some σ ∈ Σ, then there is a q′ ∈ P such that 〈q, σ〉 ։ 〈q′, σ〉 and
(p′, q′) ∈ R. �

Proof By Lemma 4.2.6 it follows that the relation RS = {(〈p, σ〉, 〈q, σ〉) |
(p, q) ∈ R, σ ∈ Σ} satisfies 〈tran〉. It is clear from the definition that it
also satisfies 〈lab〉. By Lemma 2.3.1, there is exists a q′ ∈ P such that
〈q, σ〉 ։ 〈q′, σ〉 and (〈p′, σ〉, 〈q′, σ〉) ∈ RS. From (〈p′, σ〉, 〈q′, σ〉) ∈ RS , it
follows that (p′, q′) ∈ R. �

52 Chapter 4. Silent congruence

Lemma 4.3.6 If R ⊆ P × P satisfies 〈sl-tran〉 and 〈sl-div〉, then it also
satisfies

〈sl-div”〉 if there is an infinite sequence p0, p1, p2, . . . ∈ P such that p0 = p and
〈p0, σ〉 −→ 〈p1, σ〉 −→ 〈p2, σ〉 −→ · · · for some σ ∈ Σ, then there exists a
q′ ∈ P such that 〈q, σ〉 →

+
〈q′, σ〉 and (pk, q

′) ∈ R for some k > 0. �

Proof Define RS = {(〈p, σ〉, 〈q, σ〉) | (p, q) ∈ R, σ ∈ Σ}. By Lemma 4.2.6
it follows that RS satisfies 〈tran〉 and 〈div〉. It is clear from its the definition
that it also satisfies 〈lab〉. We have shown before that then it must also
satisfy 〈div”〉. It follows that there exists a q′ ∈ P such that 〈q, σ〉 →

+
〈q′, σ〉

and (〈pk, σ〉, 〈q
′, σ〉) ∈ RS for some k > 0. From (〈pk, σ〉, 〈q

′, σ〉) ∈ RS we
have (pk, q

′) ∈ R. �

We are now ready for the congruence proof.

Theorem 4.3.7 For all p, q, p̄, q̄ ∈ P , if p ≈s q and p̄ ≈s q̄, then

1. b :→ p ≈s b :→ q for all b ∈ B,

2. p · p̄ ≈s q · q̄,

3. p+ p̄ ≈s q + q̄,

4. p∗ ≈s q∗,

5. p ‖ p̄ ≈s q ‖ q̄,

6. |[ς | p]| ≈s |[ς | q]| for all valuations ς ∈ Σ,

7. ∂Ξ(p) ≈s ∂Ξ(q) for all Ξ ⊆ A \ {τ}.

8. τI(p) ≈s τI(q) for all I ⊆ A. �

Proof All cases are proven in the same fashion. We let Rpq and Rp̄q̄ be
two stateless silent bisimulations such that (p, q) ∈ Rpq and (p̄, q̄) ∈ Rp̄q̄ sat-
isfy the root conditions in them respectively. Then, using these relations,
we construct a symmetric relation R and prove that it is a stateless silent
bisimulation and that a desired pair satisfies the root condition in it. When
checking the conditions for a stateless silent bisimulation we ignore symmet-
ric cases. For the root condition we only check the condition 〈root-tran1〉 and
the implication from left to right of the condition 〈root-term〉; the verifica-
tion of the condition 〈root-tran2〉 and of the other implication of 〈root-term〉

4.3. Root condition and congruence proof 53

proceed similarly. Note that if a pair in R also satisfies the root condition
in R, then it automatically satisfies the conditions 〈sl-term〉, 〈sl-tran〉 and
〈sl-div”〉. By Lemma 4.3.6 it follows that this pair also satisfies 〈sl-div〉, and
thus all the conditions for stateless silent bisimulation.

1. Let R = {(b :→ p, b :→ q), (b :→ q, b :→ p)}∪Rpq. It is enough to show
that the pair (b :→ p, b :→ q) satisfies the root condition in R.

Cond. 〈root-term〉: Suppose 〈b :→ p, σ〉↓ for some σ ∈ Σ. Note that
Rule 〈grd-term〉 is the final rule of any derivation with 〈b :→ p, σ〉↓
as conclusion, so it holds that check(b, σ) = true and 〈p, σ〉↓.
Since (p, q) satisfies the root condition in Rpq, we have 〈q, σ〉↓.
By Rule 〈grd-term〉, 〈b :→ q, σ〉↓.

Cond. 〈root-tran1〉: Suppose 〈b :→ p, σ〉
a
−→ 〈r, σ′〉. Rule 〈grd-tran〉

must be the final rule in any derivation of this transition, so
it holds that check(b, σ) = true, 〈p, σ〉

a
−→ 〈p′, σ′〉 and r = p′.

Since (p, q) satisfies the root condition in Rpq, there exists a

q′ ∈ P such that 〈q, σ〉
a
−→ 〈q′, σ′〉 and (p′, q′) ∈ Rpq, and hence,

by Rule 〈grd-tran〉, 〈b :→ q, σ〉
a
−→ 〈q′, σ′〉.

2. Let R = {(r · p̄, s · q̄) | (r, s) ∈ Rpq}∪ {(r · q̄, s · p̄) | (r, s) ∈ Rpq}∪Rp̄q̄.

Cond. 〈sl-term〉: Suppose 〈r · p̄, σ〉↓ for some σ ∈ Σ. Rule 〈seq-term〉
is the final rule in any derivation of 〈r · p̄, σ〉↓, so it holds that
〈r, σ〉↓ and 〈p̄, σ〉↓. Since (r, s) ∈ Rpq, there exists an s′ ∈ P
such that 〈s, σ〉։ 〈s′, σ〉, 〈s′, σ〉↓, and (r, s′) ∈ Rpq. So by Rule
10, 〈s · q̄, σ〉 ։ 〈s′ · q̄, σ〉. Furthermore, since (p̄, q̄) satisfies the
root condition in Rp̄q̄, it follows that 〈q̄, σ〉↓. By Rule 〈seq-term〉,
〈s′ · q̄, σ〉↓. Finally, since (r, s′) ∈ Rpq, according to the definition
of R, (r · p̄, s′ · q̄) ∈ R.

Cond. 〈sl-tran〉: Suppose 〈r · p̄, σ〉
a
−→ 〈t, σ′〉 for some σ, σ′ ∈ Σ and

t ∈ P . As before, the final rule of a derivation with this transition
as conclusion is either Rule 〈seq-tran1〉 or Rule 〈seq-tran2〉 and we
treat these cases separately.

If the final rule applied is Rule 〈seq-tran1〉, then it holds that
〈r, σ〉↓, 〈p̄, σ〉

a
−→ 〈p̄′, σ′〉 and t = p̄′. Since (r, s) ∈ Rpq, there exists

an s′ ∈ P such that 〈s, σ〉։ 〈s′, σ〉, 〈s′, σ〉↓ and (r, s′) ∈ Rpq. So,
by Rule 10, 〈s · q̄, σ〉։ 〈s′ · q̄, σ〉. Furthermore, since (p̄, q̄) satis-
fies the root condition in Rp̄q̄, there exists q̄′ such that 〈q̄, σ〉

a
−→

〈q̄′, σ′〉 and (p̄′, q̄′) ∈ Rp̄q̄. Now, by Rule 〈seq-tran1〉, 〈s
′ · q̄, σ〉

a
−→

54 Chapter 4. Silent congruence

〈q̄′, σ′〉. Finally, since (r, s′) ∈ Rpq and (p̄′, q̄′) ∈ Rp̄q̄ ⊆ R, accord-
ing to the definition of R, (r · p̄, s′ · q̄) ∈ R and (p̄′, q̄′) ∈ R.

If Rule 〈seq-tran2〉 is the final rule applied, then it holds that
〈r, σ〉

a
−→ 〈r′, σ′〉 and t = r′ · p̄. Since (r, s) ∈ Rpq, there exist

s′, s′′ ∈ P such that 〈s, σ〉 ։ 〈s′′, σ〉
(a)
−−→ 〈s′, σ′〉, (r, s′′) ∈ Rpq,

and (r′, s′) ∈ Rpq. So, by Rule 〈seq-tran2〉, we obtain 〈s · q̄, σ〉։

〈s′′ · q̄, σ〉
(a)
−−→ 〈s′ · q̄, σ′〉. From (r, s′′) ∈ Rpq, (r′, s′) ∈ Rpq and the

definition of R, we have (r · p̄, s′′ · q̄) ∈ R and (r′ · p̄, s′ · q̄) ∈ R.

Cond. 〈sl-div”〉: Suppose that there exist σ ∈ Σ and t0, t1, t2, . . . ∈ P
such that t0 = r · p̄ and 〈t0, σ〉 −→ 〈t1, σ〉 −→ 〈t2, σ〉 −→ · · · ,.
From Rules 〈seq-tran1〉 and 〈seq-tran1〉 it easily follows that ei-
ther there exist r0, r1, r2, . . . ∈ P such that r0 = r, 〈r0, σ〉 −→
〈r1, σ〉 −→ 〈r2, σ〉 −→ · · · and ti = ri · p̄ for all i > 0, or there exist
r0, r1, . . . , rn, p̄

′ ∈ P such that r0 = r, 〈r0, σ〉 −→ · · · −→ 〈rn, σ〉,
〈rn, σ〉↓, 〈p̄, σ〉 −→ 〈p̄′, σ〉, ti = ri · p̄ for 0 6 i 6 n and tn+1 = p̄′ · p̄.

Suppose first that 〈r0, σ〉 −→ 〈r1, σ〉 −→ 〈r2, σ〉 −→ · · · . Since
(r, s) ∈ Rpq, by Lemma 4.3.6 there exist s′ ∈ P and k > 0 such

that 〈s, σ〉 →
+
〈s′, σ〉 and (rk, s

′) ∈ Rpq. So by Rule 〈seq-tran2〉,

〈s · q̄, σ〉 →
+
〈s′ · q̄, σ〉. Since (rk, s

′) ∈ Rpq, according to the defi-
nition of R, (rk · p̄, s

′ · q̄) ∈ R.

Suppose now 〈r0, σ〉 −→ · · · −→ 〈rn, σ〉, 〈rn, σ〉↓, 〈p̄, σ〉 −→ 〈p̄′, σ〉,
ti = ri · p̄ for 0 6 i 6 n and tn+1 · p̄′. By Lemma 4.3.5, there
exists an s′′ ∈ P such that (rn, s

′′) ∈ Rpq. Now, since 〈rn, σ〉↓,
there exists an s′ ∈ P such that 〈s′′, σ〉 ։ 〈s′, σ〉, 〈s′, σ〉↓, and
(rn, s

′) ∈ Rpq. By Rule 〈seq-tran2〉, 〈s · q̄, σ〉 ։ 〈s′′ · q̄, σ〉 ։
〈s′ · q̄, σ〉. Furthermore, since (p̄, q̄) satisfies the root condition
in Rp̄q̄, there exists a q̄′ ∈ P such that 〈q̄, σ〉 −→ 〈q̄′, σ〉 and
(p̄′, q̄′) ∈ Rp̄q̄ . Hence, by Rule 〈seq-tran1〉, 〈s′ · q̄, σ〉 −→ 〈q̄′, σ〉.

Clearly 〈s · q̄, σ〉 →
+

〈q̄′, σ〉. From (p̄′, q̄′) ∈ Rp̄q̄ it follows that
(p̄′, q̄′) ∈ R.

We now show that (p · p̄, q · q̄) satisfies the root condition in R.

Cond. 〈root-term〉: Suppose 〈p · p̄, σ〉↓ for some σ ∈ Σ. Since in any
derivation with 〈p · p̄, σ〉↓ as conclusion Rule 8 is the final rule
applied, it follows that 〈p, σ〉↓ and 〈p̄, σ〉↓. Since (p, q) and (p̄, q̄)
satisfy the root condition in Rpq and Rp̄q̄ respectively, we obtain
〈q, σ〉↓ and 〈q̄, σ〉↓, and hence, by Rule 〈seq-term〉, 〈q · q̄, σ〉↓.

4.3. Root condition and congruence proof 55

Cond. 〈root-tran1〉: Suppose 〈p · p̄, σ〉
a
−→ 〈r, σ′〉 for some σ, σ′ ∈ Σ

and r ∈ P . The final rule of a derivation of this transition is
either Rule 〈seq-tran1〉 or Rule 〈seq-tran1〉; we treat these cases
separately.

If the final rule applied is Rule 〈seq-tran1〉, then 〈p, σ〉↓, 〈p̄, σ〉
a
−→

〈p̄′, σ′〉 and r = p̄′. Since (p, q) satisfies the root condition in
Rpq, we have 〈q, σ〉↓. Moreover, since (p̄, q̄) satisfies the root

condition in Rp̄q̄, there exists q̄′ ∈ P such that 〈q̄, σ〉
a
−→ 〈q̄′, σ′〉

and (r̄′, s̄′) ∈ Rp̄q̄. So, by Rule 〈seq-tran1〉, 〈q · q̄, σ〉
a
−→ 〈q̄′, σ′〉.

If the final rule applied is Rule 〈seq-tran2〉, then 〈p, σ〉
a
−→ 〈p′, σ′〉

and r = p′ · p̄. Since (p, q) satisfies the root condition in Rpq,

there exists q′ ∈ P such that 〈q, σ〉
a
−→ 〈q′, σ′〉 and (p′, q′) ∈ Rpq.

By Rule 〈seq-tran2〉, 〈q · q̄, σ〉
a
−→ 〈q′ · q̄, σ′〉. Since (p′, q′) ∈ Rpq,

according to the definition of R, (p′ · p̄, q′ · q̄) ∈ R.

3. Let R = R′ ∪Rpq ∪Rp̄q̄ where

R′ =

{
(r + r̄, s+ s̄) |

(r, s) ∈ Rpq and (r̄, s̄) ∈ Rp̄q̄ satisfy the root
condition in Rpq and Rp̄q̄ respectively

}
.

It is enough to show that every pair from R′ satisfies the root condition
in R.

Cond. 〈root-term〉: Suppose 〈r + r̄, σ〉↓ for some σ ∈ Σ. Because
Rule 〈alt-term〉 is the final rule of any derivation of 〈r + r̄, σ〉↓,
it holds that 〈r, σ〉↓ or 〈r̄, σ〉↓. We only consider the case when
〈r, σ〉↓; when 〈r̄, σ〉↓ the proof is similar. Since (r, s) satisfies
the root condition in Rpq, it follows that 〈s, σ〉↓, and hence, by
Rule 〈alt-term〉, that 〈s+ s̄, σ〉↓.

Cond. 〈root-tran1〉: Suppose 〈r + r̄, σ〉
a
−→ 〈t, σ′〉 for some σ, σ′ ∈ Σ

and t ∈ P . Since Rule 〈alt-tran〉 must be the final rule of any
derivation of this transition, it holds that 〈r, σ〉

a
−→ 〈r′, σ′〉 and

t = r′ or that 〈r̄, σ〉
a
−→ 〈r̄′, σ′〉 and t = r̄′. Suppose 〈r, σ〉

a
−→ 〈r′, σ′〉

(the proof of the other case is similar). Since (r, s) satisfies the
root condition in Rpq, there exists s′ ∈ P such that 〈s, σ〉

a
−→

〈s′, σ′〉 and (r′, s′) ∈ Rpq. Now, by Rule 〈alt-tran〉, 〈s+ s̄, σ〉
a
−→

〈s′, σ′〉. Since (r′, s′) ∈ Rpq, according to the definition of R,
(r′, s′) ∈ R.

56 Chapter 4. Silent congruence

4. Let R = {(p∗, q∗), (q∗, p∗)} ∪R′ where

R′ = {(r · p∗, s · q∗) | (r, s) ∈ Rpq} ∪ {(r · q∗, s · p∗) | (r, s) ∈ Rpq}.

For the pair (p∗, q∗) it is enough to show that it satisfies the root
condition in R′ ⊆ R and thus in R too. By Rule 〈rep-term〉, the con-
dition 〈root-term〉 holds trivially. For 〈root-tran1〉, suppose 〈p∗, σ〉

a
−→

〈r, σ′〉 for some σ, σ′ ∈ Σ and r ∈ P . Since in any derivation with
this transition Rule 〈rep-tran〉 is the final rule applied, it follows that
〈p, σ〉

a
−→ 〈p′, σ′〉 and r = p′ · p∗. Since (p, q) satisfies the root condition

in Rpq, there exists q′ such that 〈q, σ〉
a
−→ 〈q′, σ′〉 and (p′, q′) ∈ Rpq. By

Rule 〈rep-tran〉, 〈q∗, σ〉
a
−→ 〈q′ · q∗, σ′〉. Since (p′, q′) ∈ Rpq, according

to the definition of R′, (p′ · p∗, q′ · q∗) ∈ R′. We conclude that (p∗, q∗)
satisfies the root condition in R′.

We now show that R′ also satisfies the conditions 〈sl-term〉, 〈sl-tran〉
and 〈sl-div”〉.

Cond. 〈sl-term〉: Suppose 〈r · p∗, σ〉↓ for some σ ∈ Σ. Rule 〈seq-term〉
is the final rule applied in any derivation of 〈r · p∗, σ〉↓, and
since 〈p∗, σ〉↓, by Rule 〈rep-term〉 it follows that 〈r, σ〉↓. Since
(r, s) ∈ Rpq, there exists an s′ ∈ P 〈s, σ〉 ։ 〈s′, σ〉, 〈s′, σ〉↓, and
(r, s′) ∈ Rpq. By Rule 〈seq-tran2〉, we now obtain 〈s · q∗, σ〉 ։
〈s′ · q∗, σ〉. By Rules 〈seq-term〉 and 〈rep-term〉, 〈s′ · q∗, σ〉↓. Since
(r, s′) ∈ Rpq, according to the definition of R, (r · p∗, s′ · q∗) ∈ R.

Cond. 〈sl-tran〉: Suppose 〈r · p∗, σ〉
a
−→ 〈t, σ′〉 for some σ, σ′ ∈ Σ and

t ∈ P . Note that the final rule of a derivation with this transition
as conclusion is either Rule 〈seq-tran1〉 or Rule 〈seq-tran2〉; we
treat these cases separately.

If the final rule applied is Rule 〈seq-tran1〉, then it holds that
〈r, σ〉↓ and 〈p∗, σ〉

a
−→ 〈t, σ′〉. Since (r, s) ∈ Rpq, there exists an

s′ ∈ P such that 〈s, σ〉 ։ 〈s′, σ〉, 〈s′, σ〉↓, and (r, s′) ∈ Rpq.
Applying Rule 〈seq-tran2〉, 〈s · q

∗, σ〉 ։ 〈s′ · q∗, σ〉. Furthermore,
since Rule 〈rep-tran〉 is the final rule of a derivation with 〈p∗, σ〉

a
−→

〈t, σ′〉 as conclusion, we have 〈p, σ〉
a
−→ 〈p′, σ′〉 and t = p′ ·p∗. Since

(p, q) satisfies the root condition in Rpq, there exists q′ such that

〈q, σ〉
a
−→ 〈q′, σ′〉 and (p′, q′) ∈ Rpq. Applying Rule 〈rep-tran〉, we

obtain 〈q∗, σ〉
a
−→ 〈q′ · q∗, σ′〉. Since 〈s′, σ〉↓, by Rule 〈seq-tran1〉,

we have 〈s′ · q∗, σ〉
a
−→ 〈q′ · q∗, σ′〉. Finally, because (r, s′) ∈ Rpq

and (p′, q′) ∈ Rpq, by the definition of R, (r · p∗, s′ · q∗) ∈ R and
(t, q′ · q∗) ∈ R.

4.3. Root condition and congruence proof 57

If Rule 〈seq-tran2〉 is the final rule applied, then 〈r, σ〉
a
−→ 〈r′, σ′〉

and t = r′ · p∗. Since (r, s) ∈ Rpq, there exist s′, s′′ ∈ P such

that 〈s, σ〉 ։ 〈s′′, σ〉
(a)
−−→ 〈s′, σ′〉, (r, s′′) ∈ Rpq and (r′, s′) ∈ Rpq.

Now, by Rule 〈seq-tran2〉, we obtain 〈s · q∗, σ〉 ։ 〈s′′ · q∗, σ〉
(a)
−−→

〈s′ · q∗, σ′〉. Since (r, s′′) ∈ Rpq and (r′, s′) ∈ Rpq, according to the
definition of R, (r · p∗, s′′ · q∗) ∈ R and (r′ · p∗, s′ · q∗) ∈ R.

Cond. 〈sl-div”〉: Since (p∗, q∗) satisfies the root condition in R′, the
proof that R satisfies 〈sl-div”〉 is essentially the same as in the
case of sequential composition.

5. Let R = {(r ‖ r̄, s ‖ s̄) | (r, s) ∈ Rpq, (r̄, s̄) ∈ Rp̄q̄}. By Lemma 4.2.11, R
is a stateless silent bisimulation. We only need to show that (p‖p̄, q‖ q̄)
satisfies the root condition in it.

Cond. 〈root-term〉: Suppose 〈p ‖ p̄, σ〉↓ for some σ ∈ Σ. Because
Rule 〈par-term〉 is the final rule of any derivation with 〈p ‖ p̄, σ〉↓
as conclusion, we have 〈p, σ〉↓ and 〈p̄, σ〉↓. Since (p, q) and (p̄, q̄)
satisfy the root condition in Rpq and Rp̄q̄ respectively, we obtain
〈q, σ〉↓ and 〈q̄, σ〉↓, and hence, by Rule 〈par-term〉, 〈q ‖ q̄, σ〉↓.

Cond. 〈root-term〉: Suppose 〈p ‖ p̄, σ〉
a
−→ 〈r, σ′〉 for some σ, σ′ ∈ Σ and

r ∈ P . The final rule of any derivation with this transition as
conclusion is either Rule 〈par-tran1〉 or Rule 〈par-tran2〉; we treat
these cases separately.

If the final rule applied is Rule 〈par-tran1〉, then 〈p, σ〉
a
−→ 〈p′, σ′〉

and t = p′ ‖ p̄; (or symmetrically 〈p̄, σ〉
a
−→ 〈p̄′, σ′〉 and t = p ‖

p̄′). Since (p, q) satisfies the root condition in Rpq, there exists

a q′ ∈ P such that 〈q, σ〉
a
−→ 〈q′, σ′〉 and (p′, q′) ∈ Rpq. Hence,

by Rule 〈par-tran1〉, 〈q ‖ q̄, σ〉
a
−→ 〈q′ ‖ q̄, σ′〉. Since (p′, q′) ∈ Rpq,

according to the definition of R, (p′ ‖ p̄, q′ ‖ q̄) ∈ R.

If the final rule applied is Rule 〈par-tran2〉, then 〈p, σ〉
b
−→ 〈p′, σ′′〉,

〈p̄, σ〉
c
−→ 〈p̄′, σ′′′〉, r = p′ ‖ p̄′, and a = act(comm(b, c), σ) for some

b, c ∈ A and σ′ = eff(comm(b, c), σ) = σ′′≪σ′′′/dom(σ′′′)\dom(σ′′) =

σ′′′≪σ′′/dom(σ′′)\dom(σ′′′). Since (p, q) and (p̄, q̄) satisfy the root

condition in Rpq and Rp̄q̄ respectively, there exist q′, q̄′ ∈ P such

that 〈q, σ〉
b
−→ 〈q′, σ′′〉, 〈q̄, σ〉

c
−→ 〈q̄′, σ′′′〉, and (p′, q′) ∈ Rpq and

(p̄′, q̄′) ∈ Rp̄q̄. Now, by Rule 〈par-tran2〉, 〈q ‖ q̄, σ〉
a
−→ 〈q′ ‖ q̄′, σ′〉.

Since (p′, q′) ∈ Rpq and (p̄′, q̄′) ∈ Rp̄q̄, according to the definition
of R, (p′ ‖ p̄′, q′ ‖ q̄′) ∈ R.

58 Chapter 4. Silent congruence

6. Let R = {(|[ς | r]|, |[ς | s]|) | ς ∈ Σ, (r, s) ∈ Rpq}. From Lemmas 4.1.3
and 4.2.7 it follows that R is a stateless silent bisimulation. We only
prove that the pair (|[ς | p]|, |[ς | q]|) satisfies the root condition in it.

Cond. 〈root-term〉: Suppose 〈|[ς | p]|, σ〉↓ for some σ ∈ Σ. Because
Rule 〈scp-term〉 is the final rule of any derivation with 〈|[ς | p]|, σ〉↓
as conclusion, it holds that 〈p, σ≪ ς〉↓. Since (p, q) satisfies the
root condition inRpq, 〈q, σ≪ ς〉↓. By Rule 〈scp-term〉, 〈|[ς | q]|, σ〉↓.

Cond. 〈root-tran1〉: Suppose 〈|[ς | p]|, σ〉
a
−→ 〈t, σ′〉 for some σ, σ′ ∈ Σ

and t ∈ P . Since Rule 〈scp-tran〉 is the final rule of any deriva-
tion with this transition as conclusion, we have that there ex-
ist p′ ∈ P and σ′′ ∈ Σ such that 〈p, σ≪ ς〉

a
−→ 〈p′, σ′′〉, σ′ =

σ′′/dom(σ)\dom(ς) and t = |[ς ′ | p′]| for ς ′ = σ′′/dom(ς). Since (p, q)

satisfies the root condition in Rpq, there exists a q′ ∈ P such

that 〈q, σ≪ ς〉
a
−→ 〈q′, σ′′〉 and (p′, q′) ∈ Rpq. By Rule 〈scp-tran〉,

〈|[ς | q]|, σ〉
a
−→ 〈|[ς ′ | q′]|, σ′〉. Since (p′, q′) ∈ Rpq, according to the

definition of R, (|[ς ′ | p′]|, |[ς ′ | q′]|) ∈ R.

7. Let R = {(∂Ξ(r), ∂Ξ(s)) | (r, s) ∈ Rpq}. From Lemmas 4.1.4 and 4.2.7
it follows that R is a stateless silent bisimulation. We only prove that
the pair (∂Ξ(p), ∂Ξ(q)) satisfies the root condition in it.

Cond. 〈root-term〉: Suppose 〈∂Ξ(p), σ〉↓ for some σ ∈ Σ. Because
Rule 〈enc-term〉 is the final rule of any derivation with 〈∂Ξ(p), σ〉↓
as conclusion, it holds that 〈p, σ〉↓. Since (p, q) satisfies the root
condition in Rpq, 〈q, σ〉↓. By Rule 〈enc-term〉, 〈∂Ξ(q), σ〉↓.

Cond. 〈root-tran1〉: Suppose 〈∂Ξ(p), σ〉
a
−→ 〈t, σ′〉 for some σ, σ′ ∈ Σ

and t ∈ P . Since Rule 〈enc-tran〉 is the final rule of any derivation
with this transition as conclusion, we have that a 6∈ Ξ and that
there exist p′ ∈ P such that 〈p, σ〉

a
−→ 〈p′, σ′〉 and t = ∂Ξ(p′). Since

(p, q) satisfies the root condition in Rpq, there exists a q′ ∈ P

such that 〈q, σ〉
a
−→ 〈q′, σ′〉 and (p′, q′) ∈ Rpq. By Rule 〈enc-tran〉,

〈∂Ξ(p), σ〉
a
−→ 〈∂Ξ(p′), σ′〉. Since (p′, q′) ∈ Rpq, according to the

definition of R, (∂Ξ(p′), ∂Ξ(q′)) ∈ R. �

8. Let R = {(τI(r), τI(s)) | (r, s) ∈ Rpq}. From Lemmas 4.1.5 and 4.2.7
it follows that R is a stateless silent bisimulation. We only prove that
the pair (τI(p), τI(q)) satisfies the root condition in it.

4.3. Root condition and congruence proof 59

Cond. 〈root-term〉: Suppose 〈τI(p), σ〉↓ for some σ ∈ Σ. Because
Rule 〈hide-term〉 is the final rule of any derivation with 〈τI(p), σ〉↓
as conclusion, it holds that 〈p, σ〉↓. Since (p, q) satisfies the root
condition in Rpq, 〈q, σ〉↓. By Rule 〈hide-term〉, 〈τI(q), σ〉↓.

Cond. 〈root-tran1〉: Suppose 〈τI(p), σ〉
a
−→ 〈t, σ′〉 for some σ, σ′ ∈ Σ

and t ∈ P . Since Rule 〈hide-tran1〉 or Rule 〈hide-tran2〉 is the
final rule of any derivation with this transition as conclusion,
we have that there exist p′ ∈ P such that 〈p, σ〉

a
−→ 〈p′, σ′〉 and

t = τI(p
′). Since (p, q) satisfies the root condition in Rpq, there

exists a q′ ∈ P such that 〈q, σ〉
a
−→ 〈q′, σ′〉 and (p′, q′) ∈ Rpq. By

Rule 〈hide-tran1〉 and 〈hide-tran2〉, 〈τI(p), σ〉
a
−→ 〈τI(p

′), σ′〉. Since
(p′, q′) ∈ Rpq, according to the definition of R, (τI(p

′), τI(q
′)) ∈ R.

Chapter 5

Timed Silent Congruence

In the introduction we explained the importance of timing in the modeling
of dynamic systems. In this chapter we broaden our theory to deal with this
aspect. As said before, we take the simplest version of timing, i.e. we take
timing to be discrete, relative and independent of actions.

We first extend the notion of doubly-labeled transition systems with a
time-transition relation 7→ that represents the progress of time to the next
time slice. Then we incorporate timing into the language κ by following the
approach similar to [97] and [20]. Finally, we define timed stateless silent
bisimulation and show that it is a congruence relation.

Definition 5.0.8 (Timed doubly-labeled transition system) Let A be
a set of actions and let Π be a set of atomic propositions. A timed doubly-
labeled transition system is a quintuple (S,→, 7→, ↓, ℓ) where:

• (S,→, ↓, ℓ) ∈ TA,Π, and

• 7→ ⊆ S × S is the time-transition relation.

We will write s
∆
7→ s′ instead of (s, s′) ∈ 7→. The set of all timed doubly-

labeled transition systems with the set of actions A and the set of state
labels Π is denoted T ∆

A,Π. �

We now add timing to the specification language κ. The new language
is called Timed κ and is interpreted over timed doubly-labeled transition
systems. We assume that the set D of data values is the set N of natural
numbers (with 0). We also assume that expressions in E are built using
standard operators, like +, −, etc., that are correctly evaluated by a valua-
tion.

61

62 Chapter 5. Timed Silent Congruence

We extend the set of atomic processes with the delay process ∆e where
e ∈ E. This process delays n time units, where n ∈ N is the value of the
expression e in the current valuation, and terminates (c.f. Table 5.1). To
obtain full generality, we extend the domain of the eff function to (A∪{∆})×
Σ and consequently allow a tick to change the valuation. We, however,
require that |eff(∆, σ)| = 1. This is to ensure that Timed κ satisfies the
so-called time determinism property, i.e. the property that time does not
make a choice.

σ(e) = 0

〈∆e, σ〉↓
〈delay-term〉

σ(e) = n ∈ N, n > 1, eff(∆, σ) = {σ′}

〈∆e, σ〉
∆
7→ 〈∆(e−1), σ′〉

〈delay-tick〉

Table 5.1: Operational semantics for the delay process in Timed κ

In Table 5.2 we present the operational rules for Timed κ operators to
deal with timing. For guarded processes, scopes, and repetition, time tran-
sitions are just like action transitions. Also, as expected, the encapsulation
and the hiding operator have no effect on timing transitions. The rules for
sequential, alternative and parallel composition require more explanation.

We start with the alternative composition operator. Rule 〈alt-tick2〉 en-
sures that Timed κ satisfies the time determinism property by requiring that
processes in a non-deterministic choice always delay together. Rule 〈alt-tick1〉
describes the case when only one of the processes can delay. In this case
time is allowed to make a choice.

Recall that, when action behavior is concerned, if the first process in
a sequential composition terminates, then the whole composition can do
either an action from the first or from the second process. This is a non-
determinism hidden in a sequential composition. Since we also want the time
determinism property here, we distinguish four cases [97]. The first case,
demonstrated in Rule 〈seq-tick1〉, is the case when the first element of a se-
quential composition cannot terminate. In this case, time transitions behave
as action transitions. Rules 〈seq-tick2〉, 〈seq-tick3〉 and 〈seq-tick4〉 describe
the situations in which the first process terminates. In Rule 〈seq-tick2〉, the
first process also ticks but the second one does not, and so its conclusion
is based on the same idea described in Rule 〈alt-tick2〉. Similar situation
appears in Rule 〈seq-tick3〉 where the second process ticks but the first does
not. In this case, the sequential composition continues as the second pro-
cess. Finally, in Rule 〈seq-tick4〉 we have a hidden non-deterministic choice
in which both alternatives delay. Following the time-factorization principle
the processes delay together and the actual choice between them is post-

5.1. Timed silent congruence 63

poned.
Parallel processes are expected to always delay together and so we have

Rule 〈par-tick2〉. In the case when one component can delay, the other
cannot, but it can terminate, we let the parallel composition tick and then
proceed as the first component. Rule 〈par-tick1〉 appears in [97] and [20] but
has been recently dropped in [8]. We keep it here only to show that our
results hold for more modeling languages.

5.1 Timed silent congruence

In this section we define the notion of timed silent congruence as an ex-
tension of silent congruence with timing. We have already mentioned in
the introduction that, for the setting of labeled transition systems without
termination, timed branching bisimulation has been defined and shown to
satisfy all the desired properties. Therefore, the easiest way to define timed
silent bisimulation is to suitably adapt the timing condition from there.

Suppose we define a timed stateless silent bisimulation R as a stateless
silent bisimulation such that for all (p, q) ∈ R and all σ ∈ Σ the following
holds:

• if 〈p, σ〉
∆
7→ 〈p′, σ′〉, then there exist q′, q′′ ∈ P such that

〈q, σ〉։ 〈q′′, σ〉
∆
7→ 〈q′, σ′〉, (p, q′′) ∈ R and (p′, q′) ∈ R.

This definition is proposed in [97, 7, 6]. With a suitable root condition
it works well in the setting without successful termination. However, in our
case, it leads to a bisimilarity that is not a congruence for sequential and
parallel composition. The following example illustrates where the problems
are.

Example 5.1.1 Assume that eff(τ , σ) = {σ} for all σ ∈ Σ.

a. The processes ∆1+ ε and τ · (∆1+ ε)+∆1 are timed stateless silently
bisimilar. However, when followed in a sequential composition by the
process ∆1 ·a they start exhibiting a different behavior. The left-hand
side process does a tick (in any valuation) and then can choose whether
to tick again or execute the action a. The right-hand side process can
also do a tick initially, but then it has to do another tick without the
option to execute a.

The problem lies in the fact that the right-hand side process does
not have an option to terminate initially. This makes it a subject to

64 Chapter 5. Timed Silent Congruence

check(b, σ) = true, 〈p, σ〉
∆
7→ 〈p′, σ′〉

〈b :→ p, σ〉
∆
7→ 〈p′, σ′〉

〈grd-tick〉

〈p, σ〉
∆
7→ 〈p′, σ′〉, 〈p, σ〉6↓

〈p · q, σ〉
∆
7→ 〈p′ · q, σ′〉

〈seq-tick1〉

〈p, σ〉↓, 〈p, σ〉
∆
7→ 〈p′, σ′〉, 〈q, σ〉6

∆
7→

〈p · q, σ〉
∆
7→ 〈p′ · q, σ′〉

〈seq-tick2〉

〈p, σ〉↓, 〈p, σ〉6
∆
7→, 〈q, σ〉

∆
7→ 〈q′, σ′〉

〈p · q, σ〉
∆
7→ 〈q′, σ′〉

〈seq-tick3〉

〈p, σ〉↓, 〈p, σ〉
∆
7→ 〈p′, σ′〉, 〈q, σ〉

∆
7→ 〈q′, σ′〉

〈p · q, σ〉
∆
7→ 〈p′ · q + q′, σ′〉

〈seq-tick4〉

〈p, σ〉
∆
7→ 〈p′, σ′〉, 〈q, σ〉6

∆
7→

〈p+ q, σ〉
∆
7→ 〈p′, σ′〉, 〈q + p, σ〉

∆
7→ 〈p′, σ′〉

〈alt-tick1〉

〈p, σ〉
∆
7→ 〈p′, σ′〉, 〈q, σ〉

∆
7→ 〈q′, σ′〉

〈p+ q, σ〉
∆
7→ 〈p′ + q′, σ′〉

〈alt-tick2〉
〈p, σ〉

∆
7→ 〈p′, σ′〉

〈p∗, σ〉
∆
7→ 〈p′ · p∗, σ′〉

〈rep-tick〉

〈p, σ〉
∆
7→ 〈p′, σ′〉, 〈q, σ〉↓, 〈q, σ〉6

∆
7→

〈p ‖ q, σ〉
∆
7→ 〈p′, σ′〉, 〈q ‖ p, σ〉

∆
7→ 〈p′, σ′〉

〈par-tick1〉

〈p, σ〉
∆
7→ 〈p′, σ′〉, 〈q, σ〉

∆
7→ 〈q′, σ′〉

〈p ‖ q, σ〉
∆
7→ 〈p′ ‖ q′, σ′〉

〈par-tick2〉

〈p, σ≪ς〉
∆
7→ 〈p′, σ′〉

〈|[ς | p]|, σ〉
∆
7→ 〈|[σ′

/dom(ς) | p
′]|, σ≪σ′

/dom(σ′)\dom(ς)〉
〈scp-tick〉

〈p, σ〉
∆
7→ 〈p′, σ′〉

〈∂Ξ(p), σ〉
∆
7→ 〈∂Ξ(p′), σ′〉

〈enc-tick〉
〈p, σ〉

∆
7→ 〈p′, σ′〉

〈τH(p), σ〉
∆
7→ 〈τH(p′), σ′〉

〈hide-tick〉

Table 5.2: Operational semantics for Timed κ – composed processes

Rule 〈seq-tick1〉, leading to a behavior that the left-hand side cannot
simulate.

5.1. Timed silent congruence 65

b. The processes ∆1 + ε and τ · (∆1 + ε) + ε are timed stateless silently
bisimilar. As in the previous example, when composed sequentially
with the process ∆1 · a, the two processes behave differently. The
left-hand side process must do a tick and then choose whether to tick
again or execute the action a. The right-hand side process can also do
a tick initially but then it has to do another tick without the option
to execute a.

Similarly, when composed in parallel with the process ∆1 · a, the two
processes behave differently. The process ∆1+ ε‖∆1 ·a can only tick,
then do the action a and terminate. The process (τ ·(∆1+ε)+ε)‖∆1·a,
however, can tick, perform the a, then the action τ and then tick again.

In both cases the problem lies in the fact that the process ∆1 + ε can
initially tick and terminate at the same time, while the process τ ·(∆1+
ε) + ε can terminate but not tick. In the sequential composition with
∆1 ·a, the left-hand side process is subject to Rule 〈seq-tick4〉 and the
right-hand side process is not. Similarly, in the parallel composition
with ∆1 · a, the left-hand side process is subject to Rule 〈par-tick1〉
while the right-hand side process is not.

c. The processes ∆1+ε and ∆1·τ+ε are timed stateless silently bisimilar.
In the sequential composition with ∆1 · a the left-hand side process
does a tick and then chooses between another tick or the action a while
the right-hand side process never has this choice.

Both processes can tick and terminate at the same time and therefore
are subject to Rule 〈seq-tick4〉. This rule transforms a sequential com-
position into an alternative composition and, because alternative com-
position requests some kind of root condition, the problem emerges.�

The solution to the first two problems is to keep termination and the
passage of time together. In other words, instead of simulating ticks and
termination separately, we should combine them and distinguish the follow-
ing three situations: a process terminates and can perform a tick, a process
terminates but cannot tick, and a process does not terminate but can do
a tick. By requiring in a bisimulation that these three predicates are sim-
ulated we solve the problem in the first two cases of the above example.
To solve the problem in the third case, we should additionally require that
when a tick with termination is simulated, then the resulting pair must sat-
isfy some kind of root condition, i.e. the elements of the pair must simulate
each other in the strong sense. However, it does not suffice to add to the

66 Chapter 5. Timed Silent Congruence

root condition of Definition 4.3.3 that 〈p, σ〉
∆
7→ 〈p′, σ′〉, for some σ ∈ Σ,

implies 〈q, σ〉
∆
7→ 〈q′, σ′〉 for some q′ ∈ P (and the symmetric case). This is

illustrated in the following example.

Example 5.1.2 As before, we assume that eff(τ , σ) = {σ} for all σ ∈ Σ.
The processes ∆2 and ∆1 ·τ ·∆1 would then be rooted timed stateless silent
bisimilar. However, ∆2 + ∆1 · a and ∆1 · τ · ∆1 + ∆1 · a are not timed
stateless silently bisimilar. This is because after a tick the left-hand side
process can choose between another tick and the execution of a while the
right-hand side process never has this choice. �

This problem is well known from the setting of timed branching bisim-
ulation. The solution is to require that two processes simulate each other’s
steps in the strong sense until an action is executed (see [97, 7, 6]). For our
setting, however, this is still not a suitable solution. We need to use the root
condition not only at the root, but also for the pairs in the bisimulation rela-
tion that result from matching transitions. The root condition must be used
instead of the regular bisimulation conditions and it must be stronger than
them. We decided to have a nested relation inside a bisimulation relation
that contains the “strong pairs”.

Definition 5.1.3 (Relation of Strong Pairs) Let R ⊆ P ×P be a sym-
metric relation. A subrelation S ⊆ R is said to be a relation of strong pairs
in R if it is symmetric and if, for all (p, q) ∈ S, the following holds:

〈str-term∆〉 if 〈p, σ〉↓, then 〈q, σ〉↓,

〈str-tran∆〉 if 〈p, σ〉
a
−→ 〈p′, σ′〉, then there exists q′ ∈ P such that 〈q, σ〉

a
−→ 〈q′, σ′〉

and (p′, q′) ∈ R, and

〈str-tick∆〉 if 〈p, σ〉
∆
7→ 〈p′, σ′〉, then there exists q′ ∈ P such that 〈q, σ〉

∆
7→ 〈q′, σ′〉

and (p′, q′) ∈ S. �

Now, using the notion of strong pairs, and treating termination and ticks
together, we define timed silent bisimulation.

Definition 5.1.4 (Timed Stateless Silent Bisimulation) A pair (S,R),
where R ⊆ P × P is a symmetric relation and S ⊆ R is a relation of strong
pairs in R, is a timed stateless silent bisimulation if it satisfies 〈sl-tran〉 and
〈sl-div〉 and iff, for all (p, q) ∈ R, the following holds:

〈sl-term∆〉 if 〈p, σ〉↓, then there exists a q′ ∈ P such that 〈q, σ〉։ 〈q′, σ〉, 〈q′, σ〉↓,

(p, q′) ∈ R and such that 〈p, σ〉6
∆
7→ implies 〈q′, σ〉6

∆
7→.

5.1. Timed silent congruence 67

〈sl-tick∆〉 if 〈p, σ〉
∆
7→ 〈p′, σ′〉, then there exist q′, q′′ ∈ P such that 〈q, σ〉 ։

〈q′′, σ〉
∆
7→ 〈q′, σ′〉, (p, q′′) ∈ R, (p′, q′) ∈ R, and

(a) if 〈p, σ〉↓, then 〈q′′, σ〉↓ and (p′, q′) ∈ S,

(b) if 〈p, σ〉6↓, then 〈q′′, σ〉6↓.

Two processes p and q are timed silently congruent, denoted p≈∆
s q, if

there exists a timed stateless silent bisimulation relation (S,R) such
that (p, q) ∈ S. �

Note that, we could have alternatively defined timed stateless silent
bisimulation relation (S,R) by requiring that R satisfies 〈sl-div”〉 instead
of 〈sl-div〉. This follows from Lemma 4.3.6.

The notion of a timed stateless silent bisimulation is a conservative ex-
tension of both, stateless silent bisimulation from Chapter 4, and timed
branching bisimulation from [97, 7, 6]. If the timing part and the relation S
are ignored, then timed stateless silent bisimulation coincides with stateless
silent bisimulation. If the termination, the divergence, and the valuation
part is ignored, the bisimulation coincides with timed branching bisimula-
tion.

We now prove that ≈∆
s is indeed a congruence. First we prove that it is

an equivalence relation. For that we need some lemmas. Some of the lemmas
are given without a proof. This is either because they are straightforward
or to avoid repeating the technicalities from Chapter 2.

Lemma 5.1.5 Let Ri ∈ P × P and Si ⊆ Ri for i ∈ I. Let R =
⋃
i∈I Ri

and S =
⋃
i∈I Si. Let con ∈

{
〈str-term∆〉, 〈str-tran∆〉, 〈str-tick∆〉

}
. Then if

all (Si, Ri) for i ∈ I satisfy con, also (S,R) satisfies con. �

Lemma 5.1.6 Let Ri ∈ P × P and Si ⊆ Ri for i = 1, 2. Let R = R1 ◦ R2

and S = S1 ◦ S2. Let con ∈
{
〈str-term∆〉, 〈str-tran∆〉, 〈str-tick∆〉

}
. Then if

(S1, R1) and (S2, R2) satisfy con, also (S,R) satisfies con. �

Corollary 5.1.7 If Si ⊆ Ri is a relation of strong pairs in Ri, for i = 1, 2,
then S1 ◦ S2 is a relation of strong pairs in R1 ◦R2. �

Lemma 5.1.8 Let Ri ∈ P × P and let Si be a relation of strong pairs
in Ri, for i = 1, 2. Let R = R1 ◦ R2 and S = S1 ◦ S2. Suppose that
R2 satisfies 〈sl-tran〉. Then if (S1, R1) and (S2, R2) satisfy 〈sl-term∆〉, resp.
〈sl-tick∆〉, then (S,R) also satisfies 〈sl-term∆〉, resp. 〈sl-tick∆〉. �

68 Chapter 5. Timed Silent Congruence

Proof Let (p, r) ∈ R. Then there exists a q ∈ P such that (p, q) ∈ R1 and
(q, r) ∈ R2.

Suppose first that 〈p, σ〉↓ for some σ ∈ Σ. Then there exists a q′ ∈ P

such that 〈q, σ〉 ։ 〈q′, σ〉, 〈q′, σ〉↓ and (p, q′) ∈ R1. Also, if 〈p, σ〉6
∆
7→, then

〈q′, σ〉6
∆
7→. Since R2 satisfies 〈sl-tran〉, from Lemma 4.3.5 it follows that there

exists an r′′ ∈ P such that 〈r, σ〉 ։ 〈r′′, σ〉 and (q′, r′′) ∈ R2. Since 〈q′, σ〉↓,
there exists an r′ ∈ P such that 〈r′′, σ〉 ։ 〈r′, σ〉, 〈r′, σ〉↓ and (q′, r′) ∈ R2,

and that 〈q′, σ〉6
∆
7→ implies 〈r′, σ〉6

∆
7→. From (p, q′) ∈ R1 and (q′, r′) ∈ R2 we

have (p, r′) ∈ R. Clearly, if 〈p, σ〉6
∆
7→, then 〈r′, σ〉6

∆
7→.

Suppose 〈p, σ〉
∆
7→ 〈p′, σ′〉 for some σ, σ′ ∈ Σ. Then there exist q′, q′′ ∈

P such that 〈q, σ〉 ։ 〈q′′, σ〉
∆
7→ 〈q′, σ′〉, (p, q′′) ∈ R1, (p′, q′) ∈ R1, and if

if 〈p, σ〉↓, then 〈q′′, σ〉↓ and (p′, q′) ∈ S1, and if 〈p, σ〉6↓, then 〈q′′, σ〉6↓. By
Lemma 4.3.5 there is an r′′ ∈ P , such that 〈r, σ〉։ 〈r′′, σ〉 and (q′′, r′′) ∈ R2.
From the latter it follows that there exist r′, r′′′ ∈ P such that 〈r′′, σ〉 ։

〈r′′′, σ〉
∆
7→ 〈r′, σ′〉, (q′′, r′′′) ∈ R2, (q′, r′) ∈ R2, and if 〈q′′, σ〉↓, then 〈r′′, σ〉↓

and (q′, r′) ∈ S2, and if 〈q′′, σ〉6↓, then 〈r′′, σ〉6↓.
From (p, q′′) ∈ R1 and (q′′, r′′) ∈ R2 we obtain (p, r′′) ∈ R, and from

(p′, q′) ∈ R1 and (q′, r′) ∈ R2, we obtain (p′, r′) ∈ R. If 〈p, σ〉↓, then 〈q′′, σ〉↓,
and from this 〈r′′, σ〉↓. In this case, we also have (p′, q′) ∈ S1 and (q′, r′) ∈ S2,
so (p′, r′) ∈ S. If 〈p, σ〉6↓, then 〈q′′, σ〉6↓, and from this 〈r′′, σ〉6↓. �

The following theorem now easily follows.

Theorem 5.1.9 The relation ≈∆
s is an equivalence relation. �

We now show that timed silent congruence is compositional with respect
to the operators of Timed κ.

Theorem 5.1.10 For all p, q, p̄, q̄ ∈ P , if p ≈∆
s q and p̄ ≈∆

s q̄, then

1. b :→ p ≈∆
s b :→ q for all b ∈ B,

2. p · p̄ ≈∆
s q · q̄,

3. p+ p̄ ≈∆
s q + q̄,

4. p∗ ≈∆
s q∗,

5. p ‖ p̄ ≈∆
s q ‖ q̄,

6. |[ς | p]| ≈∆
s |[ς | q]| for all valuations ς ∈ Σ,

5.1. Timed silent congruence 69

7. ∂Ξ(p) ≈∆
s ∂Ξ(q) for all Ξ ⊆ A \ {τ}.

8. τI(p) ≈∆
s τI(q) for all I ⊆ A. �

Proof All cases are proven in the same fashion. We let (Spq, Rpq) and
(Sp̄q̄, Rp̄q̄) be two timed stateless silent bisimulation that witness the p ≈∆

s q
and p̄ ≈∆

s q̄ respectively. Using these relations we construct a pair (S,R),
show that it is a timed stateless silent bisimulation, and that the desired pair
is in S. When checking the conditions for a timed stateless silent bisimula-
tion we ignore symmetric cases. The pairs from R that were already treated
in the corresponding cases of Theorem 4.3.7 are not checked against 〈sl-tran〉
and 〈sl-div〉 (or 〈sl-div”〉). The pairs in R that are also in S are not checked
against Conditions 〈sl-term∆〉, 〈sl-tran〉, 〈sl-div”〉 and 〈sl-tick∆〉. These is
because these conditions are directly implied by the conditions of Defini-
tion 5.1.3.

1. Define R = Rpq ∪ S with

S = Spq ∪ {(b :→ p, b :→ q), (b :→ q, b :→ p)}.

It is enough to show that S is a relation of strong pairs in R. We only
check the conditions of Definition 5.1.3 for the pair (b :→ p, b :→ q).

Cond. 〈str-term∆〉: Suppose 〈b :→ p, σ〉↓ for a σ ∈ Σ. Rule 〈grd-term〉
is the final rule of any derivation with 〈b :→ p, σ〉↓ as conclusion,
so check(b, σ) = true and 〈p, σ〉↓. Since (p, q) ∈ Spq, we have
〈q, σ〉↓. By Rule 〈grd-term〉, 〈b :→ q, σ〉↓.

Cond. 〈str-tran∆〉: Suppose 〈b :→ p, σ〉
a
−→ 〈r, σ′〉 for some σ, σ′ ∈ Σ.

Since Rule 〈grd-tran〉 must be the final rule in any derivation of
this transition, it holds that check(b, σ) = true, 〈p, σ〉

a
−→ 〈p′, σ′〉

and r = p′. Since (p, q) ∈ Spq, there exists a q′ ∈ P such that

〈q, σ〉
a
−→ 〈q′, σ′〉 and (p′, q′) ∈ Rpq. Hence, by Rule 〈grd-tran〉,

〈b :→ q, σ〉
a
−→ 〈q′, σ′〉. From (p′, q′) ∈ Rpq, according to the defi-

nition of R, (p′, q′) ∈ R.

Cond. 〈str-tick∆〉: Suppose 〈b :→ p, σ〉
∆
7→ 〈p′, σ′〉 for some p′ ∈ P

and σ, σ′ ∈ Σ. Then by Rule 〈grd-tick〉 check(b, σ) = true and

〈p, σ〉
∆
7→ 〈p′, σ′〉. Since (p, q) ∈ Spq, there exists a q′ ∈ P such

that 〈q, σ〉
∆
7→ 〈q′, σ′〉 and (p′, q′) ∈ Spq. By Rule 〈grd-tick〉 again,

〈b :→ q, σ〉
∆
7→ 〈q′, σ′〉. From (p′, q′) ∈ Spq and the definition of S

it follows that (p′, q′) ∈ S.

70 Chapter 5. Timed Silent Congruence

2. Let

R = S ∪ {(r · p̄, s · q̄) | (r, s) ∈ Rpq} ∪ {(r · q̄, s · p̄) | (r, s) ∈ Rpq} ∪ Rp̄q̄,

where S =
⋃∞
i=1 Si with Si, i > 1, defined by

S1 = {(r · p̄, s · q̄) | (r, s) ∈ Spq} ∪ {(r · q̄, s · p̄) | (r, s) ∈ Spq} ∪ Sp̄q̄,

and

Sn+1 = {(r + r̄, s+ s̄) | (r, s) ∈ Sn and (r̄, s̄) ∈ Sp̄q̄}.

First we show that S is a relation of strong pairs in R. Suppose
(x, y) ∈ S. Then (x, y) ∈ Sn, for some n > 1.

Cond. 〈str-term∆〉: Suppose 〈x, σ〉↓. We prove, by induction on n,
that 〈y, σ〉↓. Suppose first that n = 1. Then x = r · p̄ and
y = s · q̄ with (r, s) ∈ Spq, or (x, y) ∈ Sp̄q̄. In the first case, by
Rule 〈seq-term〉 we have 〈r, σ〉↓ and 〈p̄, σ〉↓. Since (r, s) ∈ Spq
and (p̄, q̄) ∈ Sp̄q̄, we have 〈s, σ〉↓ and 〈q̄, σ〉↓. By Rule 〈seq-term〉,
〈s · q̄, σ〉↓. In the second case, from (x, y) ∈ Sp̄q̄ we obtain 〈y, σ〉↓.

Suppose the statement holds for k 6 n and suppose (x, y) ∈ Sn+1.
Then x = r + r̄ and y = s+ s̄ where (r, s) ∈ Sn and (r̄, s̄) ∈ Sp̄q̄.
Rule 〈alt-term〉 is the final rule in any derivation with 〈r + r̄, σ〉↓
as conclusion, so either 〈r, σ〉↓ or 〈r̄, σ〉↓. If 〈r, σ〉↓, then since
(r, s) ∈ Sn, by the inductive hypothesis, 〈s, σ〉↓. If 〈r̄, σ〉↓, then
because (r̄, s̄) ∈ Sp̄q̄, we have 〈s̄, σ〉↓. In both cases, we obtain
〈s + s̄, σ〉↓ by Rule 〈alt-term〉.

Cond. 〈str-tran∆〉: Suppose now 〈x, σ〉
a
−→ 〈x′, σ′〉. We prove, by in-

duction on n, that 〈y, σ〉
a
−→ 〈y′, σ′〉 for some y′ ∈ P such that

(x′, y′) ∈ R. Suppose n = 1. Then x = r · p̄ and y = s · q̄ with
(r, s) ∈ Spq, or x = r̄ and y = s̄ with (r̄, s̄) ∈ Sp̄q̄.

Suppose first x = r · p̄ and y = s · q̄ for (r, s) ∈ Spq. The final rule

in any derivation with 〈r · p̄, σ〉
a
−→ 〈x′, σ′〉 as conclusion is either

Rule 〈seq-tran1〉 or Rule 〈seq-tran2〉. If Rule 〈seq-tran1〉 is the final
rule applied, we get 〈r, σ〉↓, 〈p̄, σ〉

a
−→ 〈p̄′, σ′〉 and x′ = p̄′ for some

p̄′ ∈ P . Since (r, s) ∈ Spq, we have 〈s, σ〉↓. Since (r̄, s̄) ∈ Sp̄q̄,

we have 〈q̄, σ〉
a
−→ 〈q̄′, σ′〉 and (p̄′, q̄′) ∈ Rp̄q̄ for some q̄′ ∈ P . By

Rule 〈seq-tran1〉, 〈s · q̄, σ〉
a
−→ 〈q̄′, σ′〉. From (p̄′, q̄′) ∈ Rp̄q̄, accord-

ing to the definition of R, we have (p̄′, q̄′) ∈ R. If Rule 〈seq-tran2〉
is the final rule applied, then 〈r, σ〉

a
−→ 〈r′, σ′〉 and x′ = r′ · p̄.

5.1. Timed silent congruence 71

Since (r, s) ∈ Rpq, 〈s, σ〉
a
−→ 〈s′, σ′〉 and (r′, s′) ∈ Rpq for some

s′ ∈ P . By Rule 〈seq-tran2〉, we obtain 〈s · q̄, σ〉
a
−→ 〈s′ · q̄, σ′〉.

That (r′ · p̄, s′ · q̄) ∈ R follows from (r′, s′) ∈ Rpq and the defini-
tion of R.

Suppose now that x = r̄ and y = s̄ with (r̄, s̄) ∈ Sp̄q̄. From

〈r̄, σ〉
a
−→ 〈r̄′, σ′〉 we obtain 〈s̄, σ〉

a
−→ 〈s̄′, σ′〉 and (r̄′, s̄′) ∈ Rp̄q̄ for

some s̄′ ∈ P . According to the definition of R, (r̄′, s̄′) ∈ R.

Suppose the statement holds for k 6 n and suppose (x, y) ∈ Sn+1.
Then x = r + r̄ and y = s + s̄ with (r, s) ∈ Sn and (r̄, s̄) ∈ Sp̄q̄.
Since Rule 〈alt-tran〉 must be the final rule in any derivation with
〈r + r̄, σ〉

a
−→ 〈x′, σ′〉 as conclusion, we obtain that either 〈r, σ〉

a
−→

〈r′, σ′〉 and x′ = r′ for some r′ ∈ P , or that 〈r̄, σ〉
a
−→ 〈r̄′, σ′〉

and x′ = r̄′ for some s̄′ ∈ P . In the first case, by the inductive
hypothesis, there exists an s′ ∈ P such that 〈s, σ〉

a
−→ 〈s′, σ′〉

and (r′, s′) ∈ R. By Rule 〈alt-tran〉, 〈s+ s̄, σ〉
a
−→ 〈s′, σ′〉. In the

second case, (r̄, s̄) ∈ Sp̄q̄, there exists an s̄′ ∈ P such that 〈s̄, σ〉
a
−→

〈s̄′, σ′〉 and (r̄′, s̄′) ∈ Rp̄q̄. By Rule 〈alt-tran〉, 〈s+ s̄, σ〉
a
−→ 〈s̄′, σ′〉.

Since (r̄′, s̄′) ∈ Rp̄q̄, according to the definition of R it follows that
(r̄′, s̄′) ∈ R.

Cond. 〈str-tick∆〉: Suppose now 〈x, σ〉
∆
7→ 〈x′, σ′〉. We prove, by in-

duction on n, that 〈y, σ〉
∆
7→ 〈y′, σ′〉 for some y′ ∈ P such that

(x′, y′) ∈ S. Suppose n = 1. Then x = r · p̄ and y = s · q̄ with
(r, s) ∈ Spq, or x = r̄ and y = s̄ with (r̄, s̄) ∈ Sp̄q̄.

Suppose first that x = r̄ and y = s̄ where (r̄, s̄) ∈ Sp̄q̄. Then there

exists an s̄′ ∈ P such that 〈s̄, σ〉
∆
7→ 〈s̄′, σ′〉 and (r̄′, s̄′) ∈ Rp̄q̄ and

(r̄′, s̄′) ∈ Rp̄q̄. According to the definition of S1, (r̄′, s̄′) ∈ S1 ⊆ S.

Suppose now that x = r · p̄ and y = s · q̄ with (r, s) ∈ Spq. Any of
the rules 〈seq-tick1〉, 〈seq-tick2〉, 〈seq-tick3〉 or 〈seq-tick4〉 can be

the final rule in a derivation with 〈r · p̄, σ〉
∆
7→ 〈x′, σ′〉 as conclu-

sion.

If Rule 〈seq-tick1〉 is the final rule applied, then 〈r, σ〉
∆
7→ 〈r′, σ′〉,

〈r, σ〉6↓ and x′ = r′ · p̄ for some r′ ∈ P . Since (r, s) ∈ Spq, we
have that 〈s, σ〉6↓ and that there exists an s′ ∈ P such that

〈s, σ〉
∆
7→ 〈s′, σ′〉 and (r′, s) ∈ Spq. By Rule 〈seq-tick1〉, 〈s · q̄, σ〉

∆
7→

〈s′ · q̄, σ′〉. Since (r′, s′) ∈ Spq, according to the definition of S,
(r′ · p̄, s′ · q̄) ∈ S.

If Rule 〈seq-tick2〉 is the final rule applied, then 〈r, σ〉
∆
7→ 〈r′, σ′〉,

72 Chapter 5. Timed Silent Congruence

〈p̄, σ〉6
∆
7→ and x′ = r′ · p̄ for some r′ ∈ P . Since (r, s) ∈ Spq, there

exists an s′ ∈ P such that 〈s, σ〉
∆
7→ 〈s′, σ′〉 and (r′, s′) ∈ Spq.

Since (r̄, s̄) ∈ Sp̄q̄, we have 〈q̄, σ〉6
∆
7→. Now, by Rule 〈seq-tick2〉,

〈s · q̄, σ〉
∆
7→ 〈s′ · q̄, σ′〉. From (r′, s′) ∈ Spq, by the definition of S,

(r′ · p̄, s′ · q̄) ∈ S.

If Rule 〈seq-tick3〉 is the final rule applied, then 〈r, σ〉↓, 〈r, σ〉6
∆
7→,

〈p̄, σ〉
∆
7→ 〈p̄′, σ′〉 and x′ = p̄′ for some p̄′ ∈ P . Since (r, s) ∈ Spq, we

have 〈s, σ〉↓ and 〈s, σ〉6
∆
7→. Since (p̄, q̄) ∈ Sp̄q̄, there exists a q̄′ ∈ P

such that 〈q̄, σ〉
∆
7→ 〈q̄′, σ′〉 and (p̄′, q̄′) ∈ Sp̄q̄. By Rule 〈seq-tick3〉,

〈s · q̄, σ〉
∆
7→ 〈q̄′, σ′〉 and from the definition of S1, (p̄′, q̄′) ∈ S1 ⊆ S.

If Rule 〈seq-tick4〉 is the final rule applied, then 〈r, σ〉↓, 〈r, σ〉
∆
7→

〈r′, σ′〉, 〈p̄, σ〉
∆
7→ 〈p̄′, σ′〉 and x′ = r·p̄+p̄′ for some r′, p̄′ ∈ P . Since

(r, s) ∈ Spq, we have that 〈s, σ〉↓ and that there exists an s′ ∈ P

such that 〈s, σ〉
∆
7→ 〈s′, σ′〉, (r′, s′) ∈ Spq. Since (p̄, q̄) ∈ Sp̄q̄, there

exists a q̄′ ∈ P such that 〈q̄, σ〉
∆
7→ 〈q̄′, σ′〉 and (p̄′, q̄′) ∈ Sp̄q̄. By

Rule 〈seq-tick4〉, 〈s · q̄, σ〉
∆
7→ 〈s′ · q̄ + q̄′, σ′〉. Since (r̄′, s̄′) ∈ Sp̄q̄,

by the definition of S1, (r′ · p̄, s′ · q̄) ∈ S1. Since (p̄′, q̄′) ∈ Sp̄q̄,
according to the definition of S2, (r′ · p̄+ p̄′, s′ · q̄ + q̄′) ∈ S2 ⊆ S.

Suppose the statement holds for k 6 n and suppose (x, y) ∈ Sn+1.
Then x = r + r̄ and y = s+ s̄ where (r, s) ∈ Sn and (r̄, s̄) ∈ Sp̄q̄.
Either Rule 〈alt-tick1〉 or Rule 〈alt-tick2〉 is the final rule in any

derivation with 〈r + r̄, σ〉
∆
7→ 〈x′, σ′〉 as conclusion. We treat the

two cases separately.

If Rule 〈alt-tick1〉 is the final rule applied, then either 〈r, σ〉
∆
7→

〈r′, σ′〉, 〈r̄, σ〉6
∆
7→ and x′ = r′ for some r′ ∈ P , or 〈r̄, σ〉

∆
7→ 〈r̄′, σ′〉,

〈r, σ〉6
∆
7→ and x′ = r̄′ for some r̄′ ∈ P . In the first case, by the in-

ductive hypothesis, there exists an s′ ∈ P such that 〈s, σ〉
∆
7→

〈s′, σ′〉 and (r′, s′) ∈ S. Since (r̄, s̄) ∈ Sp̄q̄, from the inductive

hypothesis and a simple contradiction it follows that 〈s̄, σ〉6
∆
7→.

By Rule 〈alt-tick1〉, 〈s + s̄, σ〉
∆
7→ 〈s′, σ′〉. In the second case, by

the inductive hypothesis, 〈s, σ〉6
∆
7→ and there exists an s̄′ ∈ P

such that 〈s̄, σ〉
∆
7→ 〈s̄′, σ′〉 and (r̄′, s̄′) ∈ Sp̄q̄. By Rule 〈alt-tick1〉,

〈s + s̄, σ〉
∆
7→ 〈s̄′, σ′〉. From (r̄′, s̄′) ∈ Sp̄q̄, we have (r̄′, s̄′) ∈ S1 ⊆ S.

If Rule 〈alt-tick2〉 is the final rule applied, then 〈r, σ〉
∆
7→ 〈r′, σ′〉,

5.1. Timed silent congruence 73

〈r̄, σ〉
∆
7→ 〈r̄′, σ′〉 and x′ = r′ + r̄′ for some r′, r̄′ ∈ P . By the

inductive hypothesis, there exists an s′ ∈ P such that 〈s, σ〉
∆
7→

〈s′, σ′〉 and (r′, s′) ∈ S. Since (r̄, s̄) ∈ Sp̄q̄, there exists an s̄′ ∈ P

such that 〈s̄, σ〉
∆
7→ 〈s̄′, σ′〉 and (r̄′, s̄′) ∈ Sp̄q̄. By Rule 〈alt-tick1〉,

〈s+ s̄, σ〉
∆
7→ 〈s′ + s̄′, σ′〉. From (r′, s′) ∈ S we have (r′, s′) ∈ Sm

for some m > 1. Since also (r̄′, s̄′) ∈ Sp̄q̄, according to the defini-
tion of S, we have (r′ + r̄′, s′ + s̄′) ∈ Sm+1 ⊆ S.

This completes the proof that S is a relation of strong pairs in R.

We now show that (S,R) satisfies the conditions of Definition 5.1.4. It
is enough to show that the pairs in R′ = {(r · p̄, s · q̄) | (r, s) ∈ Rpq} ∪
{(r · q̄, s · p̄) | (r, s) ∈ Rpq} satisfy 〈sl-term∆〉 and 〈sl-tick∆〉.

Cond. 〈sl-term∆〉: Suppose 〈r · p̄, σ〉↓. By Rule 〈seq-term〉, we have
〈r, σ〉↓ and 〈p̄, σ〉↓. Since (p̄, q̄) ∈ Sp̄q̄, we have 〈q̄, σ〉↓. Since
(r, s) ∈ Rpq, there is an s′ ∈ P such that 〈s, σ〉։ 〈s′, σ〉, 〈s′, σ〉↓

and (r, s′) ∈ Rpq. In addition, if 〈r, σ〉6
∆
7→, then also 〈s′, σ〉6

∆
7→. By

Rules 〈seq-tran2〉 and 〈seq-term〉 we have 〈s · q̄, σ〉 ։ 〈s′ · q̄, σ〉

and 〈s′ · q̄, σ〉↓. Suppose that 〈r · p̄, σ〉6
∆
7→. Because 〈r, σ〉↓, this

implies 〈r, σ〉6
∆
7→ and 〈p̄, σ〉6

∆
7→. From 〈r, σ〉6

∆
7→ we obtain 〈s′, σ〉6

∆
7→.

Since (p̄, q̄) ∈ Sp̄q̄, we have 〈q̄, σ〉6
∆
7→. From 〈s′, σ〉6

∆
7→ and 〈p̄, σ〉6

∆
7→

it follows that 〈s′ · q̄, σ〉6
∆
7→.

Cond. 〈sl-tick∆〉: Suppose 〈r · p̄, σ〉
∆
7→ 〈t, σ′〉 for some t ∈ P . There

are four rules with this transition as conclusion, namely 〈seq-tick1〉,
〈seq-tick2〉, 〈seq-tick3〉, 〈seq-tick4〉. We treat them separately.

If the final rule applied is Rule 〈seq-tick1〉, then 〈r, σ〉6↓, 〈r, σ〉
∆
7→

〈r′, σ′〉 for some r′ ∈ P , and t = r′ · p̄. There exist s′, s′′ ∈ P such

that 〈s, σ〉 ։ 〈s′′, σ〉
∆
7→ 〈s′, σ′〉, (r, s′′) ∈ Rpq and (r′, s′) ∈ Rpq.

Since 〈r, σ〉6↓, we also have that 〈s′′, σ〉6↓. By Rules 〈seq-tran2〉

and Rule 〈seq-tick1〉, 〈s · q̄, σ〉 ։ 〈s′′ · q̄, σ〉
∆
7→ 〈s′ · q̄, σ′〉. Since

(r, s′′) ∈ Rpq and (r′, s′) ∈ Rpq, by the definition of R, we have
(r · p̄, s′′ · q̄) ∈ R and (r′ · p̄, s′ · q̄) ∈ R. Note that 〈r · p̄, σ〉6↓, be-
cause otherwise we would have by Rule 〈seq-term〉 that 〈r, σ〉↓.
So, so we only need to show that 〈s′′ · q̄, σ〉6↓. This however follows
directly since 〈s′′, σ〉6↓.

If the final rule applied is Rule 〈seq-tick2〉, then 〈r, σ〉↓, 〈r, σ〉
∆
7→

〈r′, σ′〉 for some r′ ∈ P , and 〈p̄, σ〉6
∆
7→. Also t = r′·p̄. Then 〈s, σ〉։

74 Chapter 5. Timed Silent Congruence

〈s′′, σ〉
∆
7→ 〈s′, σ′〉, (r, s′′) ∈ Rpq and (r′, s′) ∈ Rpq for some s′, s′′ ∈

P . Since 〈r, σ〉↓, we also have 〈s′′, σ〉↓ and (r′, s′) ∈ Spq. Since

(p̄, q̄) ∈ Sp̄q̄, we have 〈q̄, σ〉6
∆
7→. By Rules 〈seq-tran2〉 and 〈seq-tick2〉,

we have 〈s · q̄, σ〉 ։ 〈s′′ · q̄, σ〉
∆
7→ 〈s′ · q̄, σ′〉. From (r, s′′) ∈ Rpq

and (r′, s′) ∈ Spq, according to the definition of R, it follows that
(r · p̄, s′′ · q̄) ∈ R and (r′ · p̄, s′ · q̄) ∈ S1 ⊆ S ⊆ R.

Now, suppose first that 〈r · p̄, σ〉↓. Then, by Rule 〈seq-term〉,
〈p̄, σ〉↓. Since (p̄, q̄) ∈ Sp̄q̄, we have 〈q̄, σ〉↓. Now from 〈s′′, σ〉↓ and
〈q̄, σ〉↓, by Rule 〈seq-term〉, we obtain 〈s′′ · q̄, σ〉↓. Suppose now
that 〈r · p̄, σ〉6↓. Since 〈r, σ〉↓, we have 〈p̄, σ〉6↓. From (p̄, q̄) ∈ Sp̄q̄,
it follows that 〈q̄, σ〉6↓, and therefore that 〈s′′ · q̄, σ〉6↓.

If the final rule applied is Rule 〈seq-tick3〉, then 〈r, σ〉↓, 〈r, σ〉6
∆
7→

and 〈p̄, σ〉
∆
7→ 〈p̄′, σ′〉 for some p̄′ ∈ P . Then also t = p̄′. Since

(p̄, q̄) ∈ Sp̄q̄, there is a q̄′ ∈ P such that 〈q̄, σ〉
∆
7→ 〈q̄′, σ′〉 and

(p̄′, q̄′) ∈ Sp̄q̄. From 〈r, σ〉↓ it follows that there exists an s′ ∈ P

such that 〈s, σ〉։ 〈s′, σ〉, 〈s′, σ〉↓ and (r, s) ∈ Rpq. Since 〈r, σ〉6
∆
7→,

it also follows that 〈s′, σ〉6
∆
7→. By Rules 〈seq-tran2〉 and 〈seq-tick3〉,

〈s · q̄, σ〉 ։ 〈s′ · q̄, σ〉
∆
7→ 〈q̄′, σ′〉. According to the definition

of R, from (r, s′) ∈ Rpq it follows that (r · p̄, s′ · q̄) ∈ R. From
(p̄′, q̄′) ∈ Sp̄q̄ it follows that (p̄′, q̄′) ∈ S ⊆ R. Suppose first that
〈r · p̄, σ〉↓. Then, by Rule 〈seq-term〉, 〈p̄, σ〉↓. Since (p̄, q̄) ∈ Sp̄q̄,
we have 〈q̄, σ〉↓. By Rule 〈seq-term〉, from 〈s′, σ〉↓ and 〈q̄, σ〉↓, we
obtain 〈s′ · q̄, σ〉↓. Suppose now that 〈r · p̄, σ〉6↓. Since 〈r, σ〉↓, we
have 〈p̄, σ〉6↓. From (p̄, q̄) ∈ Sp̄q̄, it follows that 〈q̄, σ〉6↓, and thus
〈s′ · q̄, σ〉6↓.

If the final rule applied is Rule 〈seq-tick4〉, then 〈r, σ〉↓, 〈r, σ〉
∆
7→

〈r′, σ′〉 for some r′ ∈ P , and 〈p̄, σ〉
∆
7→ 〈p̄′, σ′〉 for some p̄′ ∈

P . In addition, t = r′ · p̄ + p̄′. Since (p̄, q̄) ∈ Sp̄q̄, there is

a q̄′ ∈ P such that 〈q̄, σ〉
∆
7→ 〈q̄′, σ′〉 and (p̄′, q̄′) ∈ Sp̄q̄. Since

(r, s) ∈ Rpq, there exist a s′, s′′ ∈ P such that 〈s, σ〉 ։ 〈s′′, σ〉
∆
7→

〈s′, σ′〉, (r, s′′) ∈ Rpq and (r′, s′) ∈ Rpq. From 〈r, σ〉↓ we have
that 〈s′′, σ〉↓ and that (r′, s′) ∈ Spq. By Rule 〈seq-tran2〉 and

Rule 〈seq-tick4〉, 〈s · q̄, σ〉 ։ 〈s′′ · q̄, σ〉
∆
7→ 〈s′ · q̄ + q̄′, σ′〉. Since

(r, s′′) ∈ Rpq, according to the definition of R, (r · p̄, s′′ · q̄) ∈ R.
Since (r′, s′) ∈ Spq, from the definition of S1, (r′ · p̄, s′ · q̄) ∈ S1.
Because (p̄′, q̄′) ∈ Sp̄q̄, from the definition of S2 it follows that

5.1. Timed silent congruence 75

(r′ · p̄+ p̄′, s′ · q̄ + q̄′) ∈ S2 ⊆ S ⊆ R. Suppose first that 〈r · p̄, σ〉↓.
Then, by Rule 〈seq-term〉, 〈p̄, σ〉↓. Since (p̄, q̄) ∈ Sp̄q̄, we have
〈q̄, σ〉↓. From 〈s′, σ〉↓ and 〈q̄, σ〉↓, by Rule 〈seq-term〉, we ob-
tain 〈s′ · q̄, σ〉↓. Suppose now that 〈r · p̄, σ〉6↓. Since 〈r, σ〉↓, we
have 〈p̄, σ〉6↓. From (p̄, q̄) ∈ Sp̄q̄, it follows that 〈q̄, σ〉6↓, and thus
〈s′ · q̄, σ〉6↓.

3. Let R = S ∪Rpq ∪Rp̄q̄ with

S = Spq ∪ Sp̄q̄ ∪ {(r + r̄, s + s̄) | (r, s) ∈ Spq, (r̄, s̄) ∈ Sp̄q̄} .

We show that (S,R) is a timed stateless silent bisimulation. It is
enough to show that S is a relation of strong pairs in R. We only
need to check the conditions of Definition 5.1.3 for the pairs in the set
{(r + r̄, s+ s̄) | (r, s) ∈ Spq, (r̄, s̄) ∈ Sp̄q̄}.

Cond. 〈str-term∆〉: Suppose 〈r + r̄, σ〉↓. Rule 〈alt-term〉 must be the
final rule in a derivation with this as conclusion so 〈r, σ〉↓ or
〈r̄, σ〉↓. Since (r, s) ∈ Spq, we have that either 〈s, σ〉↓ or 〈s̄, σ〉↓.
By Rule 〈alt-term〉, 〈s + s̄, σ〉↓.

Cond. 〈str-tran∆〉: Suppose 〈r + r̄, σ〉
a
−→ 〈t, σ′〉 for some t ∈ P . Since

Rule 〈alt-tran〉 must be the final rule of any derivation of this
transition, it holds that 〈r, σ〉

a
−→ 〈r′, σ′〉 and t = r′ or that

〈r̄, σ〉
a
−→ 〈r̄′, σ′〉 and t = r̄′. Suppose 〈r, σ〉

a
−→ 〈r′, σ′〉 (the

proof in the other case is similar). Since (r, s) ∈ Spq, there ex-

ists s′ ∈ P such that 〈s, σ〉
a
−→ 〈s′, σ′〉 and (r′, s′) ∈ Rpq. Now, by

Rule 〈alt-tran〉, 〈s+ s̄, σ〉
a
−→ 〈s′, σ′〉. According to the definition

of R, from (r′, s′) ∈ Rpq we have (r′, s′) ∈ R.

Cond. 〈str-tick∆〉: Suppose 〈r + r̄, σ〉
∆
7→ 〈t, σ′〉 for some t ∈ P . The

final rule in any derivation with this transition as conclusion is
either Rule 〈alt-tick1〉 or Rule 〈alt-tick2〉. We treat these cases
separately.

If Rule 〈alt-tick1〉 is the last rule applied, then 〈r, σ〉
∆
7→ 〈r′, σ′〉

for some r′ ∈ P , 〈r̄, σ〉6
∆
7→ and t = r′ (or the symmetric case).

Since (r, s) ∈ Spq, there exists an s′ ∈ P such that 〈s, σ〉
∆
7→

〈s′, σ′〉 and (r′, s′) ∈ Spq. Since (r̄, s̄) ∈ Sp̄q̄, we have 〈s̄, σ〉6
∆
7→. By

Rule 〈alt-tick1〉, 〈s + s̄, σ〉
∆
7→ 〈s′, σ′〉. From (r′, s′) ∈ Spq and the

definition of S, it follows that (r′, s′) ∈ S.

76 Chapter 5. Timed Silent Congruence

If Rule 〈alt-tick2〉 is the last rule applied, then there exist r′, r̄′ ∈ P

such that 〈r, σ〉
∆
7→ 〈r′, σ′〉, 〈r̄, σ〉

∆
7→ 〈r̄′, σ′〉 and t = r′ + r̄′ (or

symmetrically 〈s, σ〉
∆
7→ 〈s′, σ′〉, 〈s̄, σ〉

∆
7→ 〈s̄′, σ′〉 and t = s′ +

s̄′ for some s′, s̄′ ∈ P . Since (r, s) ∈ Spq, there exists an s′ ∈

P such that 〈s, σ〉
∆
7→ 〈s′, σ′〉 and (r′, s′) ∈ Spq. Similarly, there

exists an s̄′ ∈ P such that 〈s̄, σ〉
∆
7→ 〈s̄′, σ′〉 and (r̄′, s̄′) ∈ Sp̄q̄.

By Rule 〈alt-tick1〉, 〈s+ s̄, σ〉
∆
7→ 〈s′ + s̄′, σ′〉. According to the

definition of S, (r′ + r̄′, s′ + s̄′) ∈ S.

4. Let

R = S ∪ {(r · p∗, s · q∗) | (r, s) ∈ Rpq} ∪ {(r · q∗, s · p∗) | (r, s) ∈ Rpq},

where S =
⋃∞
i=1 Si with Si, i > 1, defined by

S = {(p∗, q∗), (q∗, p∗)}

∪ {(r · p∗, s · q∗) | (r, s) ∈ Spq}

∪ {(r · q∗, s · p∗) | (r, s) ∈ Spq}, and

Sn+1 = Sn ∪ {(r + r̄, s + s̄) | (r, s) ∈ Sn, (r̄, s̄) ∈ Sn}.

First we show that S is a relation of strong pairs in R. Suppose
(x, y) ∈ S. Then (x, y) ∈ Sn, for some n > 1.

Cond. 〈str-term∆〉: Suppose 〈x, σ〉↓. We prove, by induction on n,
that 〈y, σ〉↓. Suppose first that n = 1. Since 〈p∗, σ〉↓ for all
σ ∈ Σ, we only need to observe the case when x = r · p∗ and
y = s · q∗ with (r, s) ∈ Spq. By Rule 〈seq-term〉, 〈r, σ〉↓. Since
(r, s) ∈ Spq, we have 〈s, σ〉↓. By Rule 〈seq-term〉, 〈s · q∗, σ〉↓.

Suppose the statement holds for k 6 n and suppose (x, y) ∈ Sn+1.
Then x = r + r̄ and y = s + s̄ where (r, s) ∈ Sn and (r̄, s̄) ∈ Sn.
Rule 〈alt-term〉 is the final rule in any derivation with 〈r + r̄, σ〉↓
as conclusion, so either 〈r, σ〉↓ or 〈r̄, σ〉↓. If 〈r, σ〉↓, then since
(r, s) ∈ Sn, by the inductive hypothesis, 〈s, σ〉↓. Similarly, if
〈r̄, σ〉↓, then 〈s̄, σ〉↓. In both cases, by Rule 〈alt-term〉, we ob-
tain 〈s+ s̄, σ〉↓.

Cond. 〈str-tran∆〉: Suppose now 〈x, σ〉
a
−→ 〈x′, σ′〉. We prove, by in-

duction on n, that 〈y, σ〉
a
−→ 〈y′, σ′〉 for some y′ ∈ P and that

(x′, y′) ∈ R. Suppose n = 1. Then either x = p∗ and y = q∗, or

5.1. Timed silent congruence 77

x = r · p∗ and y = s · q∗ with (r, s) ∈ Spq. We treat these case
separately.

The final rule in any derivation with 〈p∗, σ〉
a
−→ 〈x′, σ′〉 as con-

clusion must be Rule 〈rep-tran〉 and so, we obtain that 〈p, σ〉
a
−→

〈p′, σ′〉 and x′ = p′ · p∗. Since (p, q) ∈ Spq, there exists a q′ ∈ P

such that 〈q, σ〉
a
−→ 〈q′, σ′〉 and (p′, q′) ∈ Rpq. By Rule 〈rep-tran〉

we have 〈q∗, σ〉
a
−→ 〈q′ · q∗, σ′〉. Since (p′, q′) ∈ Rpq, according to

the definition of R, we have (p′ · p∗, q′ · q∗) ∈ R.

The final rule in any derivation with 〈r · p∗, σ〉
a
−→ 〈x′, σ′〉 as con-

clusion is either Rule 〈seq-tran1〉 or Rule 〈seq-tran2〉.

If Rule 〈seq-tran1〉 is the final rule applied, we get 〈r, σ〉↓, 〈p∗, σ〉
a
−→

〈t, σ′〉 and x′ = t for some t ∈ P . From this, by Rule 〈rep-tran〉,
〈p, σ〉

a
−→ 〈p′, σ′〉 and t = p′ ·p∗ for some p′ ∈ P . Since (r, s) ∈ Spq,

we have 〈s, σ〉↓. Since (p, q) ∈ Spq, there exists a q′ ∈ P such that

〈q, σ〉
a
−→ 〈q′, σ′〉 and (p′, q′) ∈ Rpq. By Rule 〈rep-tran〉, 〈q∗, σ〉

a
−→

〈q′ · q∗, σ′〉. Finally, by Rule 〈seq-tran1〉, 〈s · q
∗, σ〉

a
−→ 〈q′ · q∗, σ′〉.

From (p′, q′) ∈ Rpq and the definition of R, (p′ · p∗, q′ · q∗) ∈ R.

If Rule 〈seq-tran2〉 is the final rule applied, then 〈r, σ〉
a
−→ 〈r′, σ′〉

and x′ = r′ · p∗. Since (r, s) ∈ Rpq, we have that 〈s, σ〉
a
−→ 〈s′, σ′〉

and (r′, s′) ∈ Rpq for some s′ ∈ P . By Rule 〈seq-tran2〉, we obtain

〈s · q∗, σ〉
a
−→ 〈s′ · q∗, σ′〉. That (r′ · p∗, s′ · q∗) ∈ R follows from

(r′, s′) ∈ Rpq and the definition of R.

Suppose the statement holds for k 6 n and suppose (x, y) ∈ Sn+1.
We can assume that x = r + r̄ and y = s + s̄ where (r, s) ∈ Sn
and (r̄, s̄) ∈ Sn. Since Rule 〈alt-tran〉 must be the final rule in
any derivation with 〈r + r̄, σ〉

a
−→ 〈x′, σ′〉 as conclusion, we obtain

that either 〈r, σ〉
a
−→ 〈r′, σ′〉 and x′ = r′ for some r′ ∈ P , or that

〈r̄, σ〉
a
−→ 〈r̄′, σ′〉 and x′ = r̄′ for some s̄′ ∈ P . We only treat

the first case; the second one is symmetric. By the inductive
hypothesis, there exists an s′ ∈ P such that 〈s, σ〉

a
−→ 〈s′, σ′〉 and

(r′, s′) ∈ R. By Rule 〈alt-tran〉, 〈s+ s̄, σ〉
a
−→ 〈s′, σ′〉.

Cond. 〈str-tick∆〉: Suppose now 〈x, σ〉
∆
7→ 〈x′, σ′〉. We prove, by in-

duction on n, that 〈y, σ〉
∆
7→ 〈y′, σ′〉 for some y′ ∈ P such that

(x′, y′) ∈ S. Suppose n = 1. Then either x = p∗ and y = q∗, or
x = r · p∗ and y = s · q∗ with (r, s) ∈ Spq. We treat these case
separately.

The final rule in any derivation with 〈p∗, σ〉
∆
7→ 〈x′, σ′〉 as con-

clusion must be Rule 〈rep-tick〉 and so, we obtain that 〈p, σ〉
∆
7→

78 Chapter 5. Timed Silent Congruence

〈p′, σ′〉 and x′ = p′ · p∗. Since (p, q) ∈ Spq, there exists a q′ ∈ P

such that 〈q, σ〉
∆
7→ 〈q′, σ′〉 and (p′, q′) ∈ Spq. By Rule 〈rep-tick〉

we have 〈q∗, σ〉
∆
7→ 〈q′ · q∗, σ′〉. Since (p′, q′) ∈ Spq, according to

the definition of S, we have (p′ · p∗, q′ · q∗) ∈ S.

For the second case note that only Rules 〈seq-tick1〉, 〈seq-tick2〉
〈seq-tick3〉 or 〈seq-tick4〉 can be the final rules in a derivation with

〈r · p∗, σ〉
∆
7→ 〈x′, σ′〉 as conclusion. We treat them separately.

If Rule 〈seq-tick1〉 is the final rule applied, then 〈r, σ〉
∆
7→ 〈r′, σ′〉,

〈r, σ〉6↓ and x′ = r′ ·p∗ for some r′ ∈ P . Since (r, s) ∈ Spq, we have

〈s, σ〉6↓ and that there exists an s′ ∈ P such that 〈s, σ〉
∆
7→ 〈s′, σ′〉

and (r′, s′) ∈ Spq. By Rule 〈seq-tick1〉, 〈s · q∗, σ〉
∆
7→ 〈s′ · q∗, σ′〉.

Since (r′, s′) ∈ Spq, by the definition of S, (r′ · p∗, s′ · q∗) ∈ S.

If Rule 〈seq-tick2〉 is the final rule applied, then 〈r, σ〉
∆
7→ 〈r′, σ′〉,

〈p∗, σ〉6
∆
7→ and x′ = r′ ·p∗ for some r′ ∈ P . Since (r, s) ∈ Spq, there

exists an s′ ∈ P such that 〈s, σ〉
∆
7→ 〈s′, σ′〉 and (r′, s′) ∈ Spq. By

Rule 〈rep-tick〉, from 〈p∗, σ〉6
∆
7→ we have 〈p, σ〉6

∆
7→. Since (p, q) ∈ Spq,

we have 〈q, σ〉6
∆
7→ and then, by Rule 〈rep-tick〉, that 〈q∗, σ〉6

∆
7→. By

Rule 〈seq-tick2〉, 〈s · q
∗, σ〉

∆
7→ 〈s′ · q∗, σ′〉. From (r′, s′) ∈ Spq, ac-

cording to the definition of S, (r′ · p∗, s′ · q∗) ∈ S.

If Rule 〈seq-tick3〉 is the final rule applied, then we have 〈r, σ〉↓,

〈r, σ〉6
∆
7→, 〈p∗, σ〉

∆
7→ 〈u, σ′〉 and x′ = t for some t ∈ P . By

Rule 〈rep-tick〉, 〈p, σ〉
∆
7→ 〈p′, σ′〉 and t = p′ · p∗ for some p′ ∈ P .

Since (r, s) ∈ Spq, we have 〈s, σ〉↓ and 〈s, σ〉6
∆
7→. Since (p, q) ∈ Spq,

there exists a q′ ∈ P such that 〈q, σ〉
∆
7→ 〈q′, σ′〉 and (p′, q′) ∈ Spq.

By Rule 〈rep-tick〉, 〈q∗, σ〉
∆
7→ 〈q′ · q∗, σ′〉. By Rule 〈seq-tick3〉,

〈s · q∗, σ〉
∆
7→ 〈q′ · q∗, σ′〉. According to the definition of S, from

(p′, q′) ∈ Spq we have (p′, q′) ∈ S.

If Rule 〈seq-tick4〉 is the final rule applied, then 〈r, σ〉↓, 〈r, σ〉
∆
7→

〈r′, σ′〉, 〈p∗, σ〉
∆
7→ 〈t, σ′〉 and x′ = r · p∗ + t for some r′, t ∈ P . By

Rule 〈rep-tick〉, 〈p, σ〉
∆
7→ 〈p′, σ′〉 and u = p′ · p∗ for some p′ ∈ P .

Since (r, s) ∈ Spq, we have that 〈s, σ〉↓ and that there exists an

s′ ∈ P such that 〈s, σ〉
∆
7→ 〈s′, σ′〉, (r′, s′) ∈ Spq. Since (p, q) ∈ Spq,

there exists a q′ ∈ P such that 〈q, σ〉
∆
7→ 〈q′, σ′〉 and (p′, q′) ∈ Spq.

By Rule 〈rep-tick〉, 〈q∗, σ〉
∆
7→ 〈q′ · q∗, σ′〉. By Rule 〈seq-tick4〉,

5.1. Timed silent congruence 79

〈s · q∗, σ〉
∆
7→ 〈s′ · q∗ + q′ · q∗, σ′〉. Since (r′, s′) ∈ Spq, we have

(r′ · p∗, s′ · q∗) ∈ S1. Since (p′, q′) ∈ Spq, (p′ · p∗, q′ · q∗) ∈ S1. By
the definition of S, (r′ · p∗ + p′ · p∗, s′ · q∗ + q′ · q∗) ∈ S2 ⊆ S.

Suppose the statement holds for k 6 n and suppose (x, y) ∈ Sn+1.
Then x = r + r̄ and y = s + s̄ where (r, s) ∈ Sn and (r̄, s̄) ∈ Sn.
Rules 〈alt-tick1〉 and 〈alt-tick2〉 must be the final rules in any

derivation with 〈r + r̄, σ〉
∆
7→ 〈x′, σ′〉 as conclusion.

If Rule 〈alt-tick1〉 is the final rule applied, then 〈r, σ〉
∆
7→ 〈r′, σ′〉,

〈r̄, σ〉6
∆
7→ and x′ = r′ for some r′ ∈ P (or the symmetric case).

By the inductive hypothesis, there exist a s′ ∈ P such that

〈s, σ〉
∆
7→ 〈s′, σ′〉 and (r′, s′) ∈ S. Since (r̄, s̄) ∈ Sn, from the induc-

tive hypothesis and a simple contradiction it follows that 〈s̄, σ〉6
∆
7→.

By Rule 〈alt-tick1〉, 〈s+ s̄, σ〉
∆
7→ 〈s′, σ′〉.

If Rule 〈alt-tick2〉 is the final rule applied, then 〈r, σ〉
∆
7→ 〈r′, σ′〉,

〈r̄, σ〉
∆
7→ 〈r̄′, σ′〉 and x′ = r′ + r̄′ for some r′, r̄′ ∈ P . By the

inductive hypothesis, there exist a s′ ∈ P such that 〈s, σ〉
∆
7→

〈s′, σ′〉 and (r′, s′) ∈ S. Similarly, there exists an s̄′ ∈ P such that

〈s̄, σ〉
∆
7→ 〈s̄′, σ′〉 and (r̄′, s̄′) ∈ S. By Rule 〈alt-tick1〉, 〈s+ s̄, σ〉

∆
7→

〈s′ + s̄′, σ′〉. Suppose (r′, s′) ∈ Sm and (r̄′, s̄′) ∈ Sm̄ for some m >
1, m̄ > 1. By the definition of S, we have (r̄′, s̄′) ∈ Smax(m,m̄) ⊆ S.

We now prove that R satisfies the conditions of Definition 5.1.4. It is
enough to show that the pairs in {(r · p∗, s · q∗) | (r, s) ∈ Rpq} ∪ {(r ·
q∗, s · p∗) | (r, s) ∈ Rpq} satisfy 〈sl-term∆〉 and 〈sl-tick∆〉.

Cond. 〈sl-term∆〉: Suppose 〈r · p∗, σ〉↓. By Rules 〈seq-term〉, 〈r, σ〉↓.
Since (r, s) ∈ Rpq, there exists an s′ ∈ P such that 〈s, σ〉 ։

〈s′, σ〉, 〈s′, σ〉↓ and (r, s′) ∈ Rpq. In addition, if 〈r, σ〉6
∆
7→, then

〈s′, σ〉6
∆
7→. Using Rules 〈seq-tran2〉, 〈seq-term〉 and 〈rep-term〉, we

have 〈s · q∗, σ〉 ։ 〈s′ · q∗, σ〉 and 〈s′ · q∗, σ〉↓. Suppose now that

〈r · p∗, σ〉6
∆
7→. Because 〈r, σ〉↓, this is equivalent to 〈r, σ〉6

∆
7→ and

〈p∗, σ〉6
∆
7→. From 〈r, σ〉6

∆
7→ we obtain 〈s′, σ〉6

∆
7→. It easily follows, by

Rule 〈rep-tick〉, that 〈p, σ〉6
∆
7→. Since (p, q) ∈ Spq, we have 〈q, σ〉6

∆
7→.

From this 〈q∗, σ〉6
∆
7→. From 〈s′, σ〉6

∆
7→ and 〈p∗, σ〉6

∆
7→ it follows that

〈s′ · q∗, σ〉6
∆
7→.

80 Chapter 5. Timed Silent Congruence

Cond. 〈sl-tick∆〉: Suppose 〈r · p∗, σ〉
∆
7→ 〈t, σ′〉 for some t ∈ P . There

are four rules with this transition as conclusion, namely 〈seq-tick1〉,
〈seq-tick2〉, 〈seq-tick3〉, 〈seq-tick4〉. We treat them separately.

If the final rule applied is Rule 〈seq-tick1〉, then 〈r, σ〉6↓, 〈r, σ〉
∆
7→

〈r′, σ′〉 for some r′ ∈ P , and t = r′ · p∗. Then there exist

s′, s′′ ∈ P such that 〈s, σ〉 ։ 〈s′′, σ〉
∆
7→ 〈s′, σ′〉, (r, s′′) ∈ Rpq

and (r′, s′) ∈ Rpq. Since 〈r, σ〉6↓, we also have that 〈s′′, σ〉6↓. By
Rules 〈seq-tran2〉 and Rule 〈seq-tick1〉, we obtain 〈s · q∗, σ〉 ։

〈s′′ · q∗, σ〉
∆
7→ 〈s′ · q∗, σ′〉. Since (r, s′′) ∈ Rpq and (r′, s′) ∈ Rpq,

by the definition of R, (r · p∗, s′′ · q∗) ∈ R and (r′ · p∗, s′ · q∗) ∈ R.
Note that, since 〈r, σ〉6↓, by Rule 〈seq-term〉 we have 〈r · p∗, σ〉6↓,
and so we only need to show that 〈s · q∗, σ〉6↓. This however fol-
lows directly from 〈s, σ〉6↓.

If the final rule applied is Rule 〈seq-tick2〉, then 〈r, σ〉↓, 〈r, σ〉
∆
7→

〈r′, σ′〉 for some r′ ∈ P , and 〈p∗, σ〉6
∆
7→. Also t = r′ · p∗. Then

〈s, σ〉 ։ 〈s′′, σ〉
∆
7→ 〈s′, σ′〉, (r, s′′) ∈ Rpq and (r′, s′) ∈ Rpq for

some s′, s′′ ∈ P . Since 〈r, σ〉↓, we have 〈s′′, σ〉↓ and (r′, s′) ∈ Spq.

By Rule 〈rep-tick〉, 〈p, σ〉6
∆
7→. Since (p, q) ∈ Spq, we obtain 〈q, σ〉6

∆
7→

which implies 〈q∗, σ〉6
∆
7→. By Rule 〈seq-tran2〉 and Rule 〈seq-tick2〉,

〈s · q∗, σ〉 ։ 〈s′′ · q∗, σ〉
∆
7→ 〈s′ · q∗, σ′〉. Since (r, s′′) ∈ Rpq, by the

definition of R, (r · p∗, s′′ · q∗) ∈ R. Since (r′, s′) ∈ Spq, we have
that (r′ · p∗, s′ · q∗) ∈ S1 ⊆ S. Now, suppose first that 〈r · p∗, σ〉↓.
Note that, since 〈r, σ〉↓, and since, by Rule 〈rep-term〉, 〈p∗, σ〉↓, we
have 〈r · p∗, σ〉↓. From 〈s′′, σ〉↓ and 〈q∗, σ〉↓, by Rule 〈seq-term〉,
we obtain 〈s′′ · q∗, σ〉↓.

If the final rule applied is Rule 〈seq-tick3〉, then 〈r, σ〉↓, 〈r, σ〉6
∆
7→

and 〈p∗, σ〉
∆
7→ 〈u, σ′〉 for some u ∈ P . Then also t = u. By

Rule 〈rep-tick〉, we have that there exists a p′ ∈ P such that

〈p∗, σ〉
∆
7→ 〈p′, σ′〉 and u = p′ ·p∗. Since (p, q) ∈ Spq, there is a q′ ∈

P such that 〈q, σ〉
∆
7→ 〈q′, σ′〉 and (p′, q′) ∈ Spq. By Rule 〈rep-tick〉,

〈q∗, σ〉
∆
7→ 〈q′ · q∗, σ′〉. From 〈r, σ〉↓ it follows that there exists

an s′ ∈ P such that 〈s, σ〉 ։ 〈s′, σ〉, 〈s′, σ〉↓ and (r, s) ∈ Rpq.

From 〈r, σ〉6
∆
7→ it follows that 〈s′, σ〉6

∆
7→. By Rules 〈seq-tran2〉 and

〈seq-tick3〉, 〈s · q∗, σ〉 ։ 〈s′ · q∗, σ〉
∆
7→ 〈q′ · q∗, σ′〉. By the defi-

nition of R, from (r, s′) ∈ Rpq it follows that (r · p∗, s′ · q∗) ∈ R.
Since (p, q) ∈ Spq, by the definition of S, (p′ · p∗, q′ · q∗) ∈ S. As

5.1. Timed silent congruence 81

in the previous case we have that 〈r · p∗, σ〉↓ and that 〈s′ · q∗, σ〉↓.

If the final rule applied is Rule 〈seq-tick4〉, then 〈r, σ〉↓, 〈r, σ〉
∆
7→

〈r′, σ′〉 for some r′ ∈ P , and 〈p∗, σ〉
∆
7→ 〈u, σ′〉 for some u ∈ P .

In addition, t = r′ · p∗ + u. By Rule 〈rep-tick〉, we have that

there exists a p′ ∈ P such that 〈p∗, σ〉
∆
7→ 〈p′, σ′〉 and u = p′ · p∗.

Since (p, q) ∈ Spq, there is a q′ ∈ P such that 〈q, σ〉
∆
7→ 〈q′, σ′〉

and (p′, q′) ∈ Spq. By Rule 〈rep-tick〉, 〈q∗, σ〉
∆
7→ 〈q′ · q∗, σ′〉. Since

(r, s) ∈ Rpq, there exist a s′, s′′ ∈ P such that 〈s, σ〉։ 〈s′′, σ〉
∆
7→

〈s′, σ′〉, (r, s′′) ∈ Rpq and (r′, s′) ∈ Rpq. From 〈r, σ〉↓ we have
that 〈s′′, σ〉↓ and that (r′, s′) ∈ Spq. By Rule 〈seq-tran2〉 and

Rule 〈seq-tick4〉, 〈s · q∗, σ〉 ։ 〈s′′ · q∗, σ〉
∆
7→ 〈s′ · q∗ + q′ · q∗, σ′〉.

Since (r, s′′) ∈ Rpq, by the definition of R, (r · p∗, s′′ · q∗) ∈ R.
Since (r′, s′) ∈ Spq and (p′, q′) ∈ Spq, by the definition of S2, that
(r′ · p∗ + p′ · p∗, s′ · q∗ + q′ · q∗) ∈ S2 ⊆ S. Like in the previous
two cases we have 〈r · p∗, σ〉↓ and 〈s′ · q∗, σ〉↓.

5. Let

R = Rpq ∪Rp̄q̄ ∪ {(r ‖ r̄, s ‖ s̄) | (r, s) ∈ Rpq, (r̄, s̄) ∈ Rp̄q̄}

and

S = Spq ∪ Sp̄q̄ ∪ {(r ‖ r̄, s ‖ s̄) | (r, s) ∈ Spq, (r̄, s̄) ∈ Sp̄q̄} .

Note that in the proof of Theorem 4.3.7(5) we did not need to include
the relations Rpq and Rp̄q̄ in the definition of R. Here, however, we
have to because of Rule 〈par-tick1〉.

First we show that S is a relation of strong pairs in R. It is enough to
consider only the pairs from {(r ‖ r̄, s ‖ s̄) | (r, s) ∈ Spq, (r̄, s̄) ∈ Sp̄q̄}.

Cond. 〈str-term∆〉: Suppose 〈r ‖ r̄, σ〉↓ for some σ ∈ Σ. Because
Rule 〈par-term〉 is the final rule with this as conclusion, we have
〈r, σ〉↓ and 〈r̄, σ〉↓. Since (r, s) ∈ Spq and (r̄, s̄) ∈ Sp̄q̄, we ob-
tain 〈s, σ〉↓ and 〈s̄, σ〉↓, and hence, by Rule 〈par-term〉 again,
〈s ‖ s̄, σ〉↓.

Cond. 〈str-tran∆〉: Suppose 〈r ‖ r̄, σ〉
a
−→ 〈t, σ′〉 for some σ, σ′ ∈ Σ and

t ∈ P . The final rule of a derivation with this transition as
conclusion is either Rule 〈par-tran1〉 or Rule 〈par-tran2〉; we treat
these cases separately.

82 Chapter 5. Timed Silent Congruence

If the final rule applied is Rule 〈par-tran1〉, then 〈r, σ〉
a
−→ 〈r′, σ′〉

and t = r′ ‖ r̄; (or symmetrically 〈r̄, σ〉
a
−→ 〈r̄′, σ′〉 and t = r ‖

r̄′). Since (r, s) ∈ Spq, there exists s′ ∈ P such that 〈s, σ〉
a
−→

〈s′, σ′〉 and (r′, s′) ∈ Rpq. Hence, by Rule 〈par-tran1〉, 〈s ‖ s̄, σ〉
a
−→

〈s′ ‖ s̄, σ′〉. By the definition of R, since (r′, s′) ∈ Rpq, we have
(r′ ‖ r̄, s′ ‖ s̄) ∈ R.

If the final rule applied is Rule 〈par-tran2〉, we have that 〈r, σ〉
b
−→

〈r′, σ′′〉 and 〈r̄, σ〉
c
−→ 〈r̄′, σ′′〉, for some b, c ∈ A, σ′′, σ′′′ ∈ Σ with

a = act(comm(b, c), σ), σ′ = eff(a, σ) = σ′′≪σ′′′ = σ′′′≪σ′′ and
t = r′ ‖ r̄′. Since (r, s) ∈ Spq and (r̄, s̄) ∈ Sp̄q̄, there exist s′, s̄′ ∈ P

such that 〈s, σ〉
b
−→ 〈s′, σ′′〉 and 〈s̄, σ〉

c
−→ 〈s̄′, σ〉σ′′′, (r′, s′) ∈ Rpq

and (r̄′, s̄′) ∈ Rp̄q̄. By Rule 〈par-tran2〉, 〈s ‖ s̄, σ〉
a
−→ 〈s′ ‖ s̄′, σ′〉.

By the definition of R, from (r′, s′) ∈ Rpq and (r̄′, s̄′) ∈ Rp̄q̄ we
have (r′ ‖ r̄′, s′ ‖ s̄′) ∈ R.

Cond. 〈str-tick∆〉: Suppose 〈r ‖ r̄, σ〉
∆
7→ 〈t, σ′〉 for some σ, σ′ ∈ Σ and

t ∈ P . The final rule of any derivation with this transition as
conclusion is either Rule 〈par-tick1〉 or Rule 〈par-tick2〉; we treat
the cases separately.

If Rule 〈par-tick1〉 is the final rule applied, then 〈r, σ〉
∆
7→ 〈r′, σ′〉,

〈r̄, σ〉↓, 〈r̄, σ〉6
∆
7→ and t = r′ (or the symmetric case). Because

(r, s) ∈ Spq, there exists s′ ∈ P such that 〈s, σ〉
∆
7→ 〈s′, σ′〉 and

(r′, s′) ∈ Spq. Since (r̄, s̄) ∈ Sp̄q̄, we have 〈s̄, σ〉↓ and 〈s̄, σ〉6
∆
7→. By

Rule 〈par-tick1〉, we have 〈s ‖ s̄, σ〉
∆
7→ 〈s′, σ′〉. Since (r′, s′) ∈ Spq,

according to the definition of S, (r′, s′) ∈ S.

If Rule 〈par-tick2〉 is the final rule applied, then 〈r, σ〉
∆
7→ 〈r′, σ′〉,

〈r̄, σ〉
∆
7→ 〈r̄′, σ′〉 and t = r′ ‖ r̄′; (or the symmetric case). Since

(r, s) ∈ Spq, there exists an s′ ∈ P such that 〈s, σ〉
∆
7→ 〈s′, σ′〉

and (r′, s′) ∈ Spq. Since (r̄, s̄) ∈ Sp̄q̄, there exists an s̄′ ∈ P

such that 〈s̄, σ〉
∆
7→ 〈s̄′, σ′〉 and (r̄′, s̄′) ∈ Sp̄q̄. By Rule 〈par-tick2〉,

〈s ‖ s̄, σ〉
∆
7→ 〈s′ ‖ s̄, σ′〉. Since (r′, s′) ∈ Spq and (r̄′, s̄′) ∈ Sp̄q̄, ac-

cording to the definition of S, we have (r′ ‖ r̄, s′ ‖ s̄) ∈ S.

We now prove that R satisfies 〈sl-term∆〉 and 〈sl-tick∆〉. We check these
conditions only for the pairs in {(r ‖ r̄, s ‖ s̄) | (r, s) ∈ Rpq, (r̄, s̄) ∈ Rp̄q̄.

Cond. 〈sl-term∆〉: Suppose 〈r ‖ r̄, σ〉↓ for some σ ∈ Σ. Rule 〈par-term〉
must be the final rule with 〈r ‖ r̄, σ〉↓ as conclusion, so we have

5.1. Timed silent congruence 83

〈r, σ〉↓ and 〈r̄, σ〉↓. Since (r, s) ∈ Spq and (r̄, s̄) ∈ Sp̄q̄, there ex-
ist s′, s̄′ ∈ P such that 〈s, σ〉 ։ 〈s′, σ〉, 〈s′, σ〉↓, 〈s̄, σ〉 ։ 〈s̄′, σ〉,

〈s̄′, σ〉↓, (r, s′) ∈ Rpq and (r̄, s̄′) ∈ Rp̄q̄. In addition, 〈r, σ〉6
∆
7→ and

〈r̄, σ〉6
∆
7→ imply 〈s′, σ〉6

∆
7→ and 〈s̄′, σ〉6

∆
7→. By Rules 〈par-tran1〉 and

〈par-term〉, 〈s ‖ s̄, σ〉 ։ 〈s′ ‖ s̄, σ〉 ։ 〈s′ ‖ s̄′, σ〉 and 〈s′ ‖ s̄′, σ〉↓.
Since (r, s′) ∈ Rpq and (r̄, s̄′) ∈ Rp̄q̄, according to the definition

of R, (r ‖ r̄, s′ ‖ s̄′) ∈ R. Suppose 〈r ‖ r̄, σ〉6
∆
7→. Since 〈r, σ〉↓ and

〈r̄, σ〉↓, from Rules 〈par-tick1〉 and 〈par-tick2〉 we have that 〈r, σ〉6
∆
7→

and 〈r̄, σ〉6
∆
7→. From this, we obtain 〈s, σ〉6

∆
7→ and 〈s̄, σ〉6

∆
7→which im-

plies 〈s ‖ s̄, σ〉6
∆
7→.

Cond. 〈sl-tick∆〉: Suppose 〈r ‖ r̄, σ〉
∆
7→ 〈t, σ′〉 for some σ, σ′ ∈ Σ and

t ∈ P . The final rule of any derivation with this transition as
conclusion is either Rule 〈par-tick1〉 or Rule 〈par-tick2〉; we treat
these cases separately.

If Rule 〈par-tick1〉 is the final rule applied, then 〈r, σ〉
∆
7→ 〈r′, σ′〉,

〈r̄, σ〉↓, 〈r̄, σ〉6
∆
7→ and t = r′; (or the symmetric case). Since

(r, s) ∈ Rpq, there exist s′, s′′ ∈ P such that 〈s, σ〉 ։ 〈s′′, σ〉
∆
7→

〈s′, σ′〉, 〈s′, σ〉↓, (r, s′′) ∈ Rpq and (r′, s′) ∈ Rpq. In addition, if
〈r, σ〉↓, then 〈s′′, σ〉↓ and (r′, s′) ∈ Spq, and if 〈r, σ〉6↓, then 〈s′′, σ〉6↓.

From 〈r̄, σ〉↓ and 〈r̄, σ〉6
∆
7→ we have that there exists an s̄′ ∈ P

such that 〈s̄, σ〉։ 〈s̄′, σ〉, 〈s̄′, σ〉↓, 〈s̄′, σ〉6
∆
7→ and (r̄, s̄′) ∈ Rp̄q̄. By

Rule 〈par-tran1〉 and Rule 〈par-tick1〉, 〈s ‖ s̄, σ〉 ։ 〈s′′ ‖ s̄, σ〉 ։

〈s′′ ‖ s̄′, σ〉
∆
7→ 〈s′, σ′〉. Now, since (r, s′′) ∈ Rpq, (r̄, s̄′) ∈ Rp̄q̄ and

(r′, s′) ∈ Rpq, by the definition of R, we have (r ‖ r̄, s′′ ‖ s̄′) ∈ R
and (r′, s′) ∈ R. Suppose first that 〈r ‖ r̄, σ〉↓. By Rule 〈par-term〉,
〈r, σ〉↓. This implies that 〈s′′, σ〉↓ and (r′, s′) ∈ Spq. Since 〈s̄′, σ〉↓,
by Rule 〈par-term〉, 〈s′′ ‖ s̄′, σ〉↓. From (r′, s′) ∈ Spq it follows that
(r′, s′) ∈ S. Suppose now that 〈r ‖ r̄, σ〉6↓. Then 〈r, σ〉6↓. This im-
plies that 〈s′′, σ〉6↓. By Rule 〈par-term〉, 〈s′′ ‖ s̄′, σ〉6↓.

If Rule 〈par-tick2〉 is the final rule applied, then 〈r, σ〉
∆
7→ 〈r′, σ′〉,

〈r̄, σ〉
∆
7→ 〈r̄′, σ′〉 and t = r′ ‖ r̄′. From 〈r, σ〉

∆
7→ 〈r′, σ′〉 it follows

that there exists s′, s′′ ∈ P such that 〈s, σ〉 ։ 〈s′′, σ〉
∆
7→ 〈s′, σ′〉,

〈s′, σ〉↓, (r, s′′) ∈ Rpq and (r′, s′) ∈ Rpq. Moreover, it also follows
that if 〈r, σ〉↓, then 〈s′′, σ〉↓ and (r′, s′) ∈ Spq, and that if 〈r, σ〉6↓,

then 〈s′′, σ〉6↓. Similarly, from 〈r̄, σ〉
∆
7→ 〈r̄′, σ′〉, there exist s̄′, s̄′′ ∈

84 Chapter 5. Timed Silent Congruence

P such that 〈s̄, σ〉։ 〈s̄′′, σ〉
∆
7→ 〈s̄′, σ′〉, 〈s̄′′, σ〉↓, (r̄, s̄′′) ∈ Rp̄q̄ and

(r̄′, s̄′) ∈ Rp̄q̄. Also, 〈r̄, σ〉↓ implies 〈s̄′′, σ〉↓ and (r̄′, s̄′) ∈ Sp̄q̄, and
〈r̄, σ〉6↓ implies 〈s̄′′, σ〉6↓. By Rule 〈par-tran1〉 and Rule 〈par-tick1〉,

〈s ‖ s̄, σ〉 ։ 〈s′′ ‖ s̄, σ〉 ։ 〈s′′ ‖ s̄′′, σ〉
∆
7→ 〈s′ ‖ s̄′, σ′〉. According to

the definition of R, from (r, s′′) ∈ Rpq and (r̄, s̄′′) ∈ Rp̄q̄ it follows
that (r ‖ r̄, s′′ ‖ s̄′′) ∈ R; from (r′, s′) ∈ Rpq and (r̄′, s̄′) ∈ Rp̄q̄, it
follows that (r′ ‖ r̄′, s′ ‖ s̄′) ∈ R. Suppose now that 〈r ‖ r̄, σ〉↓. By
Rule 〈par-term〉, 〈r, σ〉↓ and 〈r̄, σ〉↓. From this, 〈s′′, σ〉↓, 〈s̄′′, σ〉↓,
(r′, s′) ∈ Spq, and (r̄′, s̄′) ∈ Sp̄q̄. From 〈s′′, σ〉↓ and 〈s̄′′, σ〉↓, by
Rule 〈par-term〉 we have 〈s′′ ‖ s̄′′, σ〉↓. Since (r′, s′) ∈ Spq and
(r̄′, s̄′) ∈ Sp̄q̄, by the definition of S, we have (r′ ‖ r̄′, s′ ‖ s̄′) ∈ S.
Suppose 〈r ‖ r̄, σ〉6↓. By Rule 〈par-term〉, either 〈r, σ〉6↓ or 〈r̄, σ〉6↓.
We only treat the first case; the second one is symmetric. From
〈r, σ〉6↓ we have 〈s′′, σ〉6↓. By Rule 〈par-term〉, 〈s′′ ‖ s̄′′, σ〉6↓.

6. Let

R = {(|[ς | r]|, |[ς | s]|) | (r, s) ∈ Rpq, ς ∈ Σ}

and

S = {(|[ς | r]|, |[ς | s]|) | (r, s) ∈ Spq, ς ∈ Σ}.

First we show that S is a relation of strong pairs in R. Suppose
(|[ς | r]|, |[ς | r]|) ∈ S.

Cond. 〈str-term∆〉: Suppose 〈|[ς | r]|, σ〉↓ for some σ ∈ Σ. Because
Rule 〈scp-term〉 must be the final rule with this as conclusion,
we have 〈r, ς≪σ〉↓. Since (r, s) ∈ Spq, we have 〈s, ς≪σ〉↓, and
hence, by Rule 〈scp-term〉, that 〈|[ς | s]|, σ〉↓.

Cond. 〈str-tran∆〉: Suppose 〈|[ς | r]|, σ〉
a
−→ 〈t, σ′〉 for some σ, σ′ ∈ Σ,

a ∈ A and t ∈ P . By Rule 〈scp-tran〉, as the final rule with
this transition as conclusion, we obtain 〈r, ς≪σ〉

a
−→ 〈r′, σ′′〉, t =

|[ς | r′]| and σ′ = σ≪σ′′/dom(σ)\dom(ς). Since (r, s) ∈ Spq, there ex-

ists an s′ ∈ P such that 〈s, ς≪σ〉
a
−→ 〈s′, σ′′〉 and (r′, s′) ∈ Rpq.

By Rule 〈scp-tran〉, 〈|[ς | s]|, σ〉
a
−→ 〈|[ς | s′]|, σ′〉. Since (r′, s′) ∈ Rpq,

according to the definition of R, (|[ς | r′]|, |[ς | s′]|) ∈ R.

Cond. 〈str-tick∆〉: Suppose 〈|[ς | r]|, σ〉
∆
7→ 〈t, σ′〉 for some σ, σ′ ∈ Σ

and t ∈ P . By Rule 〈scp-tick〉, as the final rule with this tran-

sition as conclusion, we obtain 〈r, ς≪σ〉
∆
7→ 〈r′, σ′′〉, t = |[ς | r′]|

and σ′ = σ≪σ′′/dom(σ)\dom(ς). Since (r, s) ∈ Spq, there exists an

5.1. Timed silent congruence 85

s′ ∈ P such that 〈s, ς≪σ〉
∆
7→ 〈s′, σ′′〉 and (r′, s′) ∈ Spq. By

Rule 〈scp-tick〉 again, 〈|[ς | s]|, σ〉
∆
7→ 〈|[ς | s′]|, σ′〉. From (r, s) ∈ Spq

and the definition of S, (|[ς | r′]|, |[ς | s′]|) ∈ S.

We now show that R satisfies Conditions 〈sl-term∆〉 and 〈sl-tick∆〉. Let
(|[ς | r]|, |[ς | s]|) be some pair from R.

Cond. 〈sl-term∆〉: Suppose 〈|[ς | r]|, σ〉↓ for some σ ∈ Σ. Because
Rule 〈scp-term〉 must be the final rule with this conclusion, we
have 〈r, σ≪ ς〉↓. This implies that there is an s′ ∈ P such that
〈s, σ≪ ς〉 ։ 〈s′, σ≪ ς〉, 〈s′, σ≪ ς〉↓ and (r, s′) ∈ Rpq. We also

have that 〈r, σ≪ ς〉6
∆
7→ implies 〈s′, σ≪ ς〉6

∆
7→. By Rules 〈scp-term〉

and 〈scp-tran〉, using that (σ≪ ς)/dom(ς) = ς and

σ≪(σ≪ ς)/(dom(σ)∪dom(ς))\dom(ς) = σ,

we have 〈|[ς | s]|, σ〉 ։ 〈|[ς | s′]|, σ〉 and 〈|[ς | s′]|, σ〉↓. Now, from
(r, s′) ∈ Rpq, by the definition of R, we have (|[ς | r]|, |[ς | s′]|) ∈ R.

Suppose now that 〈|[ς | r]|, σ〉6
∆
7→. By Rule 〈scp-tick〉, 〈r, σ≪ ς〉6

∆
7→.

This implies 〈s, σ≪ ς〉6
∆
7→, and that, by Rule 〈scp-tick〉, implies

〈|[ς | s]|, σ〉6
∆
7→.

Cond. 〈sl-tick∆〉: Suppose that 〈|[ς | r]|, σ〉
∆
7→ 〈t, σ′〉 for some σ, σ′ ∈

Σ and t ∈ P . By Rule 〈scp-tick〉, as the final rule with this

transition as conclusion, we obtain 〈r, σ≪ ς〉
∆
7→ 〈r′, σ′′〉, σ′ =

σ≪σ′′/dom(σ)\dom(ς) and t = |[ς | r′]| for some r′ ∈ P . Then there

exist s′, s′′ ∈ Σ such that 〈s, σ≪ ς〉 ։ 〈s′′, σ≪ ς〉
∆
7→ 〈s′, σ′′〉,

(r, s′′) ∈ Rpq and (r′, s′) ∈ Rpq. We also have that 〈r, σ≪ ς〉↓
implies 〈s′′, σ≪ ς〉↓ and (r′, s′) ∈ Spq, and that 〈r, σ≪ ς〉6↓ im-
plies 〈s′′, σ≪ ς〉6↓. By Rules 〈scp-tran〉 and 〈scp-tick〉, using that
(σ≪ ς)/dom(ς) = ς and σ≪(σ≪ ς)/(dom(σ)∪dom(ς))\dom(ς) = σ, we

have 〈|[ς | s]|, σ〉 ։ 〈|[ς | s′′]|, σ〉
∆
7→ 〈|[ς | s′]|, σ′〉. Since (r, s′′) ∈ Rpq

and (r′, s′) ∈ Rpq, by the definition of R, we have (r, s′′) ∈ R and
(r′, s′) ∈ R. Suppose first that 〈|[ς | r]|, σ〉↓. By Rule 〈scp-term〉,
we obtain 〈r, σ≪ ς〉↓. This implies 〈s′′, σ≪ ς〉↓ and (r′, s′) ∈ Spq.
By Rule 〈scp-term〉, 〈|[ς | s]|, σ〉↓. According to the definition of S,
we have (|[ς | r′]|, |[ς | s′]|) ∈ S. Suppose now that 〈|[ς | r]|, σ〉6↓. By
Rule 〈scp-term〉, 〈r, σ≪ ς〉6↓. This implies 〈s′′, σ≪ ς〉6↓, which in
turn, by Rule 〈scp-term〉, implies 〈|[ς | s]|, σ〉6↓.

86 Chapter 5. Timed Silent Congruence

7. Define

R = {(∂Ξ(r), ∂Ξ(s)) | (r, s) ∈ Rpq}

and

S = {(∂Ξ(r), ∂Ξ(s)) | (r, s) ∈ Spq}.

First we show that S is a relation of strong pairs in R. Suppose
(∂Ξ(r), ∂Ξ(s)) ∈ S.

Cond. 〈str-term∆〉: Suppose 〈∂Ξ(r), σ〉↓ for some σ ∈ Σ. Because
Rule 〈enc-term〉 must be the final rule with this predicate as con-
clusion, we have 〈r, σ〉↓. Since (r, s) ∈ Spq, we have that 〈s, σ〉↓,
and hence by Rule 〈enc-term〉, that 〈∂Ξ(q), σ〉↓.

Cond. 〈str-tran∆〉: Suppose 〈∂Ξ(r), σ〉
a
−→ 〈t, σ′〉 for some a ∈ A and

t ∈ P . By Rule 〈enc-tran〉, as the final rule with this transition
as conclusion, we obtain 〈r, σ〉

a
−→ 〈r′, σ′〉, t = ∂Ξ(r′) and a 6∈ Ξ.

Since (r, s) ∈ Spq, there exists s′ ∈ P such that 〈s, σ〉
a
−→ 〈s′, σ′〉

and (r′, s′) ∈ Rpq. By Rule 〈enc-tran〉, 〈∂Ξ(s), σ〉
a
−→ 〈∂Ξ(s′), σ′〉.

Since (r′, s′) ∈ Rpq, by the definition of R, (∂Ξ(r′), ∂Ξ(s′)) ∈ R.

Cond. 〈str-tick∆〉: Suppose 〈∂Ξ(r), σ〉
∆
7→ 〈t, σ′〉 for some t ∈ P . By

Rule 〈enc-tick〉, as the final rule with this transition as conclusion,

we obtain 〈r, σ〉
∆
7→ 〈r′, σ′〉 and t = ∂Ξ(r′). Because (r, s) ∈ Spq,

there exists an s′ ∈ P such that 〈s, σ〉
∆
7→ 〈s′, σ′〉 and (r′, s′) ∈ Spq.

By Rule 〈enc-tick〉, 〈∂Ξ(s), σ〉
∆
7→ 〈∂Ξ(s′), σ′〉. Since (r′, s′) ∈ Spq,

according to the definition of S, (∂Ξ(r′), ∂Ξ(s′)) ∈ S.

We now show that R satisfies Conditions 〈sl-term∆〉 and 〈sl-tick∆〉. Let
(∂Ξ(r), ∂Ξ(s)) be some pair from R.

Cond. 〈sl-term∆〉: Suppose 〈∂Ξ(r), σ〉↓. By Rule 〈enc-term〉, as the
final rule with 〈∂Ξ(r), σ〉↓ as conclusion, we obtain 〈r, σ〉↓. It
follows that there exist s′, s′′ ∈ P such that 〈s, σ〉 ։ 〈s′, σ〉,

〈s′, σ〉↓, (r, s′) ∈ Rpq and, if 〈r, σ〉6
∆
7→, then also 〈s′, σ〉6

∆
7→. By

Rules 〈enc-tran〉 and 〈enc-term〉, 〈∂Ξ(s), σ〉 ։ 〈∂Ξ(s′), σ〉 and

〈∂Ξ(s′), σ〉↓. Suppose 〈∂Ξ(r), σ〉6
∆
7→. Then by Rule 〈enc-tick〉,

〈r, σ〉6
∆
7→. From this we have 〈s′, σ〉6

∆
7→ and then, by Rule 〈enc-tick〉

again, that 〈∂Ξ(s′), σ〉6
∆
7→.

5.1. Timed silent congruence 87

Cond. 〈sl-tick∆〉: Suppose now that 〈∂Ξ(r), σ〉
∆
7→ 〈t, σ′〉 for some t ∈

P . By Rule 〈enc-tick〉, 〈r, σ〉
∆
7→ 〈r′, σ′〉 and t = ∂Ξ(r′) for some

r′ ∈ P . It follows that there exist s′, s′′ ∈ P such that 〈s, σ〉 ։

〈s′′, σ〉
∆
7→ 〈s′, σ′〉, (r, s′′) ∈ Rpq and (r′, s′) ∈ Rpq. Also, if 〈r, σ〉↓,

then 〈s′′, σ〉↓ and (r′, s′) ∈ Spq, and if 〈r, σ〉6↓, then 〈s′′, σ〉6↓. By

Rule 〈enc-tran〉 and Rule 〈enc-tick〉, 〈∂Ξ(s), σ〉 ։ 〈∂Ξ(s′′), σ〉
∆
7→

〈∂Ξ(s′), σ′〉. Since (r, s′′) ∈ Rpq and (r′, s′) ∈ Rpq, by the defini-
tion of R, (r, s′′) ∈ R and (r′, s′) ∈ R. Now, suppose first that
〈∂Ξ(r), σ〉↓. By Rule 〈enc-term〉, we have 〈r, σ〉↓. This implies
that 〈r, σ〉↓ and (r′, s′) ∈ Spq. From 〈r, σ〉↓, by Rule 〈enc-term〉,
we have 〈∂Ξ(s), σ〉↓. From (r′, s′) ∈ Spq, according to the defini-
tion of S, we obtain (∂Ξ(r′), ∂Ξ(s′)) ∈ S. Suppose that 〈∂Ξ(r), σ〉6↓.
It easily follows that then 〈r, σ〉6↓. This implies 〈s, σ〉6↓, and that
〈∂Ξ(s), σ〉6↓.

8. Define
R = {(τI(r), τI(s)) | (r, s) ∈ Rpq}

and
S = {(τI(r), τI(s)) | (r, s) ∈ Spq}.

First we show that S is a relation of strong pairs in R. Suppose
(τI(r), τI(s)) ∈ S.

Cond. 〈str-term∆〉: Suppose 〈τI(r), σ〉↓ for some σ ∈ Σ. Because
Rule 〈hide-term〉 must be the final rule with this as conclusion, it
follows that 〈r, σ〉↓. Since (r, s) ∈ Spq, we have 〈s, σ〉↓, and hence
by Rule 〈hide-term〉, 〈τI(q), σ〉↓.

Cond. 〈str-tran∆〉: Suppose 〈τI(r), σ〉
a
−→ 〈t, σ′〉 for some a ∈ A and

t ∈ P . Since Rules 〈hide-tran1〉 and 〈hide-tran2〉 are the final rules

with this transition as conclusion, we have 〈r, σ〉
b
−→ 〈r′, σ′〉 and

t = τI(r
′), for some b ∈ A such that either b ∈ I and a = τ

or b 6∈ I and a = b. Since (r, s) ∈ Spq, there exists s′ ∈ P such

that 〈s, σ〉
b
−→ 〈s′, σ′〉 and (r′, s′) ∈ Rpq. By Rules 〈hide-tran1〉

and 〈hide-tran2〉, 〈τI(s), σ〉
a
−→ 〈τI(s

′), σ′〉. Since (r′, s′) ∈ Rpq,
according to the definition of R, we have (τI(r

′), τI(s
′)) ∈ R.

Cond. 〈str-tick∆〉: Suppose 〈τI(r), σ〉
∆
7→ 〈t, σ′〉 for some t ∈ P . By

Rule 〈hide-tick〉, as the final rule with this transition as con-

clusion, we obtain 〈r, σ〉
∆
7→ 〈r′, σ′〉 and t = τI(r

′). Because

88 Chapter 5. Timed Silent Congruence

(r, s) ∈ Spq, there exists an s′ ∈ P such that 〈s, σ〉
∆
7→ 〈s′, σ′〉 and

(r′, s′) ∈ Spq. By Rule 〈hide-tick〉, 〈τI(s), σ〉
∆
7→ 〈τI(s

′), σ′〉. Since
(r′, s′) ∈ Spq, according to the definition of S, (τI(r

′), τI(s
′)) ∈ S.

We now show that R satisfies Conditions 〈sl-term∆〉 and 〈sl-tick∆〉. Let
(τI(r), τI(s)) be some pair from R.

Cond. 〈sl-term∆〉: Suppose 〈τI(r), σ〉↓. By Rule 〈hide-term〉, as the
final rule with 〈τI(r), σ〉↓ as conclusion, we obtain 〈r, σ〉↓. From
(r, s) ∈ Rpq it follows that there exist s′, s′′ ∈ P such that 〈s, σ〉։

〈s′, σ〉, 〈s′, σ〉↓, (r, s′) ∈ Rpq and, if 〈r, σ〉6
∆
7→, then also 〈s′, σ〉6

∆
7→.

By Rules 〈hide-tran1〉, 〈hide-tran2〉 and 〈hide-term〉, we have that

〈τI(s), σ〉 ։ 〈τI(s′), σ〉 and 〈τI(s′), σ〉↓. Suppose 〈τI(r), σ〉6
∆
7→.

Then by Rule 〈hide-tick〉, 〈r, σ〉6
∆
7→. From this we have 〈s′, σ〉6

∆
7→

and then, by Rule 〈hide-tick〉 again, that 〈τI(s
′), σ〉6

∆
7→.

Cond. 〈sl-tick∆〉: Suppose now that 〈τI(r), σ〉
∆
7→ 〈t, σ′〉 for some t ∈

P . By Rule 〈hide-tick〉, 〈r, σ〉
∆
7→ 〈r′, σ′〉 and t = τI(r

′) for
some r′ ∈ P . It follows that there exist s′, s′′ ∈ P such that

〈s, σ〉 ։ 〈s′′, σ〉
∆
7→ 〈s′, σ′〉, (r, s′′) ∈ Rpq and (r′, s′) ∈ Rpq. Also,

if 〈r, σ〉↓, then 〈s′′, σ〉↓ and (r′, s′) ∈ Spq, and if 〈r, σ〉6↓, then
〈s′′, σ〉6↓. By Rules 〈hide-tran1〉, 〈hide-tran2〉 and 〈hide-tick〉, we

have 〈τI(s), σ〉 ։ 〈τI(s
′′), σ〉

∆
7→ 〈τI(s

′), σ′〉. Since (r, s′′) ∈ Rpq
and (r′, s′) ∈ Rpq, by the definition of R, we have (r, s′′) ∈ R and
(r′, s′) ∈ R. Suppose first that 〈τI(r), σ〉↓. By Rule 〈hide-term〉,
we have 〈r, σ〉↓. This implies that 〈r, σ〉↓ and that (r′, s′) ∈ Spq.
From 〈r, σ〉↓, by Rule 〈hide-term〉, we have 〈τI(s), σ〉↓. Since
(r′, s′) ∈ Spq, by the definition of S, (τI(r

′), τI(s
′)) ∈ S. Suppose

that 〈τI(r), σ〉6↓. It easily follows that then 〈r, σ〉6↓. This implies
〈s, σ〉6↓, and that 〈τI(s), σ〉6↓. �

5.2 Adding maximal progress

Maximal progress in a system is the property that events must happen as
soon as they are enabled. In a model this means that action execution has
priority over the passage of time. The property is usually enforced by the
maximal progress operator πM where the parameter set M ⊆ A is the set of

5.2. Adding maximal progress 89

actions that are given priority over delaying. In this section we introduce a
variant of the maximal progress operator and show that ≈∆

s is a congruence
for it.

The standard semantics of the operator πM says that πM (p) ticks only if p
ticks and p cannot execute an action fromM . In the setting with termination
it is additionally required that πM (p) terminates iff p terminates. The first
condition is to weak to be used in our setting for two different reasons as
illustrated by the following example.

Example 5.2.1 Assume that eff(τ , σ) = {σ} for all σ ∈ Σ.

a. We have ∆1 + ε ≈∆
s ∆1 + τ · (∆1 + ε) + ε. However, putting the

maximal progress operator around these terms, with τ ∈M and with
the semantics from above, the left-hand side process behaves the same
but the right-hand side process looses the option to delay initially. This
gives us the situation from Example 5.1.1a and so, the two processes
are not timed silently congruent.

b. Clearly a+∆1 ≈∆
s ∆1+τ ·(a+∆1). By putting the maximal progress

operator πM , with a ∈M and τ 6∈M , around we get that the left-hand
side process cannot delay while the right-hand side process can. �

The problem in the first case is again due to the inseparability of termi-
nation and delaying. The solution is to forbid the maximal progress operator
to cut the tick transitions whenever the process can also terminate. In the
second case, the problem is that the execution of a is postponed by the
silent step. Since this would always impose problems, the only solution is
to require that M always contains the internal action τ .

Remark 5.2.2 It is, in general, possible to keep the standard semantics
of the maximal progress operator and to adapt timed silent congruence so
that it becomes compositional with respect to it. However, to solve the first
problem these adaptations are very complex, and for the second problem
they lead to a much stronger equivalence (see the definition of orthogonal
bisimulation from [16]). That is why we have decided to change the definition
of maximal progress itself. We believe that our decision does not have a big
practical disadvantage. �

The operational rules for the maximal progress operator are now given
in Table 5.2. We always assume that M ⊆ A and τ ∈M .

Note that, so far, the introduction of timing to the theory was indepen-
dent of divergence. For the maximal progress operator however, it is crucial

90 Chapter 5. Timed Silent Congruence

〈p, σ〉↓

〈πM (p), σ〉↓
〈mp-term〉

〈p, σ〉
a
−→ 〈p′, σ′〉

〈πM (p), σ〉
a
−→ 〈πM (p′), σ′〉

〈mp-tran〉

〈p, σ〉
∆
7→ 〈p′, σ′〉, 〈p, σ〉↓

〈πM (p), σ〉
∆
7→ 〈πM (p′), σ′〉

〈mp-tick1〉

〈p, σ〉
∆
7→ 〈p′, σ′〉, 〈p, σ〉6↓, 〈p, σ〉6

a
−→ for a ∈M

〈πM (p), σ〉
∆
7→ 〈πM (p′), σ′〉

〈mp-tick2〉

Table 5.3: Operational semantics for the maximal progress operator

that the divergence condition is imposed if ≈∆
s is to be a congruence. If we

ignore divergence, then ∆1 becomes timed silent congruent to τ∗ · ∆1, but
πM (∆1) and πM (τ∗ ·∆1) cannot be timed silent congruent. This is because
πM (∆1) can still do a tick while πM (τ∗ · ∆1) cannot.

We now prove that ≈∆
s is a congruence for maximal progress.

Theorem 5.2.3 For all p, q ∈ P , if p ≈∆
s q, then πM(p) ≈∆

s πM(q) for any
M ⊆ A such that τ ∈M . �

Proof Let p ≈∆
s q be witnessed by the timed stateless silent bisimulation

(Spq, Rpq). Define

S = {(πM (r), πM (s) | (r, s) ∈ Spq} and R = {(πM (r), πM (s) | (r, s) ∈ Rpq}.

We show that (S,R) is a timed stateless silent bisimulation. First, we show
that S is a relation of strong pairs in R.

Cond. 〈str-term∆〉: Suppose 〈πM (r), σ〉↓ for some σ ∈ Σ. Rule 〈mp-term〉
must be the final rule with this as conclusion, so it follows that 〈r, σ〉↓.
Since (r, s) ∈ Spq, we have 〈s, σ〉↓, and hence, by Rule 〈mp-term〉, we
have 〈πM (q), σ〉↓.

Cond. 〈str-tran∆〉: Suppose 〈πM (r), σ〉
a
−→ 〈t, σ′〉 for some a ∈ A and t ∈ P .

By Rule 〈mp-tran〉, as the final rule with this transition as conclu-
sion, we obtain 〈r, σ〉

a
−→ 〈r′, σ′〉 and t = πM (r′). Since (r, s) ∈ Spq,

there exists s′ ∈ P such that 〈s, σ〉
a
−→ 〈s′, σ′〉 and (r′, s′) ∈ Rpq. By

Rule 〈mp-tran〉, 〈πM (s), σ〉
a
−→ 〈πM (s′), σ′〉. Since (r′, s′) ∈ Rpq, ac-

cording to the definition of R, (πM (r′), πM (s′)) ∈ R.

5.2. Adding maximal progress 91

Cond. 〈str-tick∆〉: Suppose 〈πM (r), σ〉
∆
7→ 〈t, σ′〉 for some t ∈ P . The final

rule in a derivation with this as conclusion is either Rule 〈mp-tick1〉 or
Rule 〈mp-tick2〉.

If Rule 〈mp-tick1〉 is the final rule applied, we have 〈r, σ〉↓ and 〈r, σ〉
∆
7→

〈r′, σ′〉 for some r′ ∈ P , and t = πM (r′). Since (r, s) ∈ Spq, we have

that 〈s, σ〉↓ and that there exists an s′ ∈ P such that 〈s, σ〉
∆
7→ 〈s′, σ′〉

and (r′, s′) ∈ Spq. By Rule 〈mp-tick1〉, 〈πM (s), σ〉
∆
7→ 〈πM (s′), σ′〉. Ac-

cording to S, from (r′, s′) ∈ Spq we obtain (πM (r′), πM (s′)) ∈ S.

If Rule 〈mp-tick2〉 is the final rule applied, then we have 〈r, σ〉6↓, 〈r, σ〉6
a
−→,

〈r, σ〉
∆
7→ 〈r′, σ′〉 and t = πM (r′), for some r′ ∈ P and a ∈ M . Since

(r, s) ∈ Spq, we have that 〈s, σ〉6↓ and that there exists an s′ ∈ P

such that 〈s, σ〉
∆
7→ 〈s′, σ′〉 and (r′, s′) ∈ Spq. In addition, 〈s, σ〉6

a
−→.

By Rule 〈mp-tick1〉, 〈πM (s), σ〉
∆
7→ 〈πM (s′), σ′〉. According to S, from

(r′, s′) ∈ Spq we obtain (πM (r′), πM (s′)) ∈ S.

We now show that R satisfies the conditions of Definition 5.1.4. Let
(πM (r), πM (s)) be some pair from R.

Cond. 〈sl-term∆〉: Suppose 〈πM (r), σ〉↓. Since Rule 〈mp-term〉 is the fi-
nal rule with 〈πM (r), σ〉↓ as conclusion, we obtain 〈r, σ〉↓. It fol-
lows that there exist s′, s′′ ∈ P such that 〈s, σ〉 ։ 〈s′, σ〉, 〈s′, σ〉↓,

(r, s′) ∈ Rpq and, if 〈r, σ〉6
∆
7→, then also 〈s′, σ〉6

∆
7→. By Rules 〈mp-tran〉

and 〈mp-term〉, 〈πM (s), σ〉 ։ 〈πM (s′), σ〉 and 〈πM (s′), σ〉↓. Suppose

〈πM (r), σ〉6
∆
7→. Then, because 〈r, σ〉↓, by Rule 〈mp-tick1〉 we obtain that

〈r, σ〉6
∆
7→. From this we have 〈s′, σ〉6

∆
7→ and then, by Rules 〈mp-tick1〉 and

〈mp-tick1〉, that 〈πM (s′), σ〉6
∆
7→.

Cond. 〈sl-tran〉: Suppose 〈πM (r), σ〉
a
−→ 〈t, σ′〉 for some a ∈ A and t ∈ P .

Rule 〈mp-tran〉 is the final rule with this transition as conclusion,
so we obtain 〈r, σ〉

a
−→ 〈r′, σ′〉 and t = πM(r′). Since Rpq satis-

fies 〈sl-tran〉, there exist s′, s′′ ∈ P such that 〈s, σ〉 ։ 〈s′′, σ〉
(a)
−−→

〈s′, σ〉, (〈r, σ〉, 〈s′′, σ〉) ∈ Rpq and (〈r′, σ′〉, 〈s′, σ′〉) ∈ Rpq. Now, by Rule

〈mp-tran〉, 〈π(s0), σ〉 ։ 〈π(s′′), σ〉
(a)
−−→ 〈π(s′), σ′〉. Since (r, s′′) ∈ Rpq

and (r′, 〈s′, σ′〉) ∈ Rpq, by the definition ofR, we have (π(r), π(s′′)) ∈ R
and (π(r′), π(s′)) ∈ R.

Cond. 〈sl-div〉: Suppose that there exist t0, t1, t2, . . . ∈ P , such that t0 =
π(r), 〈t0, σ〉 −→ 〈t1, σ〉 −→ 〈t2, σ〉 −→ · · · and that (ti, π(s)) ∈ R for all

92 Chapter 5. Timed Silent Congruence

i > 0. According to the definition of R, there exist r0, r1, r2, . . . ∈
P such that ti = π(ri) for all i > 0. Since Rule 〈mp-tran〉 is the
only rule that has 〈π(ri), σ〉 −→ 〈π(ri+1), σ〉 as conclusion, we have
〈r0, σ〉 −→ 〈r1, σ〉 −→ 〈r2, σ〉 −→ · · · and (ti, π(s)) ∈ Rpq. Since Rpq
satisfies 〈div〉, there exist s′ ∈ P and k > 0 such that 〈s, σ〉 →

+
〈s′, σ〉

and (rk, s
′) ∈ Rpq. By Rule 〈mp-tran〉, 〈π(s), σ〉 →

+
〈π(s′), σ〉. Since

(rk, s
′) ∈ Rpq, according to the definition of R, (π(r), π(s′′)) ∈ R.

Cond. 〈sl-tick∆〉: Suppose now that 〈πM (r), σ〉
∆
7→ 〈t, σ′〉 for some t ∈ P .

The final rule in a derivation with this as conclusion must be either
Rule 〈mp-tick1〉 or Rule 〈mp-tick2〉.

If Rule 〈mp-tick1〉 is the final rule applied, we have 〈r, σ〉↓ and 〈r, σ〉
∆
7→

〈r′, σ′〉 for some r′ ∈ P , and t = πM(r′). It follows that there exist

s′, s′′ ∈ P such that 〈s, σ〉 ։ 〈s′′, σ〉
∆
7→ 〈s′, σ′〉, 〈s′′, σ〉↓, (r, s′′) ∈ Rpq

and (r′, s′) ∈ Rpq. By Rules 〈mp-tran〉 and 〈mp-tick1〉, 〈πM (s), σ〉 ։

〈πM (s′′), σ〉
∆
7→ 〈πM (s′), σ′〉. Since (r, s′′) ∈ Rpq and (r′, s′) ∈ Rpq , ac-

cording to the definition of R, (r, s′′) ∈ R and (r′, s′) ∈ R. Since 〈r, σ〉↓
and 〈s′′, σ〉↓, by Rule 〈mp-term〉, we have 〈πM (r), σ〉↓ and 〈πM (s′′), σ〉↓.

If Rule 〈mp-tick2〉 is the final rule applied, then 〈r, σ〉6↓, 〈r, σ〉6
a
−→ and

〈r, σ〉
∆
7→ 〈r′, σ′〉 for some r′ ∈ P and a ∈ M , and t = πM (r′). It

easily follows (see the proof of Lemma 2.6.2 - deadlock preservation;
this is the place where the divergence condition is used) that there
exists an s′′ ∈ P such that 〈s, σ〉 ։ 〈s′′, σ〉, 〈s′′, σ〉6

a
−→, 〈s′′, σ〉6↓ and

(r, s′′) ∈ Rpq. It follows that there exists an s′ ∈ P such that 〈s′′, σ〉
∆
7→

〈s′, σ′〉 and (r′, s′) ∈ Rpq. By Rule 〈mp-tran〉 and Rule 〈mp-tick2〉,

〈πM (s), σ〉 ։ 〈πM (s′′), σ〉
∆
7→ 〈πM (s′), σ′〉. Since 〈r, σ〉6↓ and 〈s′′, σ〉6↓,

by Rule 〈mp-term〉, we have 〈πM (r), σ〉6↓ and 〈πM (s′′), σ〉6↓. �

Chapter 6

Application: Translating χ to

Promela

The language χ [90] is a modeling language developed to detect design flaws
and to optimize performance of industrial systems (machines, manufacturing
lines, warehouses, factories, etc.) It allows for the specification of discrete-
event, continuous and probabilistic aspects of systems. Its simulator has
been successfully applied to a large number of industrial cases, such as a
car assembly line (NedCar [54]), a multi-product, multi-process wafer fab
(Philips [26]), a brewery (Heineken), a fruit juice blending and packaging
plant (Riedel [46]) and process industry plants ([12]). Simulation is a pow-
erful technique for performance analysis, like calculating throughput and
cycle time, but it is less suitable for verification.

To facilitate verification, either verification tools have to be developed
especially for χ, or existing verification tools and techniques have to be
made available for use with χ. Currently, the latter approach is pursued
[19, 18, 90, 95, 99]. The idea is to extend χ with facilities for model check-
ing by establishing a connection with other state-of-the-art verification tools
and techniques on the level of the specification language. That is, formal
verification of a χ model is done by first translating it into the input lan-
guage of some model checker and then performing the actual verification
there. Preferably, the translation closely resembles the original, so that
counterexamples produced by the model checker can be related to the origi-
nal specification. It should also use, as much as possible, the features of the
target language to ensure that the full power of the verification tool is used.

In [95] the translation of (a subset of) χ specifications into Promela,
the input language of the popular model checker Spin [65], is discussed

93

94 Chapter 6. Application: Translating χ to Promela

and presented in detail. The translation process explained there proceeds
in two phases. The first phase, which is called the preprocessing phase,
consists of a transformation of the χ model in an attempt to eliminate all
constructs that do not directly map to Promela constructs. For instance,
χ has an explicit construct for parallel composition which facilitates nested
parallelism, whereas Promela only allows implicit parallel composition of
process definitions; so in the preprocessing phase the nested parallelism in
the χ model is eliminated. If the result after the preprocessing phase is a χ
model that only has constructions with a direct translation into Promela,
then it can be translated to a Promela model; this phase is called the
translation phase.

The main difficulty for establishing the correctness of the whole transla-
tion is that the two languages do not have a formal semantics in common.
An advantage of the two-phase approach sketched above is that the prepro-
cessing phase of the translation, which is usually the most involved part,
takes place entirely within the realm of χ. Therefore, a correctness proof for
this phase only involves the formal semantics of χ. An additional advantage
of the two-phase approach is that the preprocessing phase (and its correct-
ness proof) is potentially reusable, e.g., when defining a translation from χ
to some other language.

In this chapter we present how silent congruence can be interpreted in the
χ setting and how it can be used to prove the correctness of the preprocessing
phase from [95].

6.1 The language χ

The variant of χ that we use is the subset of the language that is used for the
modeling of discrete-event aspects of systems only. We also do not consider
data types.

The language κ is based on χ so it is not surprising that the two languages
have many features in common. There are, however, also some differences.
First, the timing model in χ is dense, and not discrete like in κ. Next, χ
has the explicit notion of assignments. Also, χ has communication features
based on the process algebra CSP, i.e. the communication goes via channels
by send and receive statements, while in κ they are based on the process
algebra ACP. Finally, χ has no notion of explicit (successful) termination
(although the previous version of χ, called χσ, on which κ is based, had
successful termination). Other differences also appear in how repetition is
handled.

6.2. Embedding χ into Timed κ 95

Let us now give the syntax and semantics of χ. We start with atomic
processes. The process δ is the same as in κ, and the process skip corresponds
to τ (if τ does not change the state). The delay process ∆e delays the
number of ticks that is equal to the value of the expression e; the process ∆0
is equivalent to skip. The (multi)assignment process x1, . . . , xn := e1, . . . , en
assigns the value of the expression ei to the variable xi, 1 6 i 6 n. It does
not have the possibility to delay. The send process m!!e sends the value of
the expression e along the channel m and cannot delay. The delayable send
m!e behaves as m!!e but it can delay arbitrarily long. The receive process
m??x inputs a value over the channel m and assigns it to x. It cannot delay.
The delayable receive m?x is the same as m??x but can delay.

From the compound processes, χ has guards (b :→ p), sequential (;)
and alternative (8) composition, scopes (|[s | p]|), encapsulation (∂Ξ(p)), and
hiding (τI(p)). They all have the same semantics as in κ. There are also
other operators. The repetition operator ∗p behaves as p infinitely many
times. The guarded repetition process b

∗
→ p is interpreted as ‘while b do

(skip; p)’. Note that this makes true
∗
→p fundamentally different from ∗p; the

executability of true
∗
→p does not depend on the executability of p. The par-

allel composition operator ‖ executes p and q concurrently in an interleaved
fashion like in κ. In addition, if one of the processes can execute a send
action and the other one can execute a receive action on the same channel,
then they can also communicate, i.e. p ‖ q can also execute the communi-
cation action on this channel. So χ has a special communication function.
The urgent communication operator UH gives communication actions via
channels from H a higher priority over the passage of time.

6.2 Embedding χ into Timed κ

In this section we explain how χ can be interpreted in the Timed κ setting.
We presuppose a set M of channel names, a set V of variables, a set D of
data values, and a set E of data expressions that includes V and D. Since we
are working with the untyped subset of χ, we can, without loss of generality,
assume that D is the set of natural numbers.

We first define the set of actions associated with χ, and then we define the
functions eff and comm. Next, we define the set of action execution processes
and the function act. Finally, we define the set of atomic propositions and
the function check.

The set of actions that a χ process can perform contains the internal
action, assignment actions, send and receive actions, and communication

96 Chapter 6. Application: Translating χ to Promela

actions. Formally:

A = {τ}

∪ {asgn[(x1, d1), . . . , (xn, dn)] | xi ∈ V, di ∈ D}

∪ {snd(m,d) | m ∈M,d ∈ D}

∪ {rcv(m,x, d) | m ∈M,d ∈ D,x ∈ V }

∪ {comm(m,x, d) | m ∈M,d ∈ D,x ∈ V }.

The communication mechanism of χ is achieved by defining the commu-
nication function comm by

comm(snd(m,d), rcv(m,x, d)) = comm(m,x, d).

The set of action execution processes contains the multi assignments, the
skip process, and the undelayable send and receive processes. Formally:

Act = {x1, . . . , xn := e1, . . . , en | xi ∈ V, ei ∈ E, 1 6 i 6 n}

∪ {skip}

∪ {m!!e | m ∈M,e ∈ E}

∪ {m??x | m ∈M,x ∈ V }.

We define the function act. For the assignment process we let

act(x1, . . . , xn := e1, . . . , en, σ) = {asgn[(x1, d1), . . . , (xn, dn)]},

when σ(ei) = di for all 1 6 i 6 n, and let act(x1, . . . , xn := e1, . . . , en, σ) be
the empty set otherwise. The process skip in χ corresponds to the process
τ in κ, and so act(skip, σ) = {τ} for all σ ∈ Σ. For the undelayable send
process the observable actions are defined by: act(m!!e, σ) = {snd(m,d)} if
σ(e) = d, and act(m!!e, σ) = ∅ if σ(e) is undefined. For the undelayable
receive we have act(m??x, σ) = {rcv(m,x, d) | d ∈ D}. The receive process
in χ has an option to receive any value.

Assume Σ to be the set of valuations, i.e. of partial functions that assign
values to variables and expressions. We now define the effects of χ actions on
valuations. The τ action and the send action have no effect on the valuation.
Formally, for all σ ∈ Σ,

eff(τ, σ) = eff(snd(m,d), σ) = {σ}.

For the assignment action asgn[(x1, d1), . . . , (xn, dn)] we let

eff(asgn[(x1, d1), . . . , (xn, dn)], σ) = {σ≪{x1 7→ d1, . . . , xn 7→ dn}}.

6.2. Embedding χ into Timed κ 97

The receive action rcv(m,x, d) and the communication action comm(m,x, d)
both assign d to x and so, for all σ ∈ Σ, we have

eff(rcv(m,x, d), σ) = eff(comm(m,x, d), σ) = {σ≪{x 7→ d}}.

Note that χ actions can change the valuation only in one way, i.e., the effect
of every action is a singleton set.

To simplify the presentation we only consider Π = {x=e | x ∈ V, e ∈ E}
to be the set of atomic propositions (generalization to the full set of χ
propositions, including relations other than just equality, is easy). Let B be
the set of boolean expressions over the set Π and assume that B includes
the set of truth values {true, false}. We set check(x=e, σ) = true iff σ(x) =
d = σ(e) for some d ∈ D. Recall that the function check extends to B.

We now explain how χ process terms are mapped to κ.
The processes b :→ p, p ; q, p 8 q, |[s | p]|, ∂Ξ(p) and τI(p) map trivially.

Recall that infinite repetition ∗p is expressed in κ as p∗ · δ. The guarded
repetition b

∗
→ p is also easily interpreted as (b :→ p)∗ · (¬b :→ τ).

Timing in χ is dense and so cannot directly be embedded into κ. How-
ever, the delays in χ range over rational numbers and so there is always a
number that all can be multiplied by to obtain natural delays of the same
ratios. Therefore, there is no loss of expressivity if in a χ specification the
timing is discrete. The only difference between the delay operators in χ and
κ is that in χ delaying zero time units is equivalent to τ and not to ε like in
κ. This is resolved by taking the process ∆e · τ to be the κ interpretation
of the χ process ∆e.

The delayable versions of send and receive is obtained by m!e = (∆1)∗ ·
m!!e and m?x = (∆1)∗ ·m??x. To express the urgent communication oper-
ator in κ we can use the maximal progress operator with its parameter set
including the desired set of communication actions.

We denote the set of χ processes interpreted in κ by Pχ. The following
theorem shows an important property of this set. The processes in Pχ cannot
terminate immediately. Moreover, after an action the resulting process can
terminate only if it cannot do anything else, and after a tick the resulting
process cannot terminate. This property is crucial for the correctness of the
translation to Promela.

Theorem 6.2.1 For all p ∈ Pχ and all σ ∈ Σ, the following holds:

1. 〈p, σ〉6↓,

2. if 〈p, σ〉
a
−→ 〈p′, σ′〉 for some a ∈ A, p′ ∈ P , and σ′ ∈ Σ, then either

p′ ∈ Pχ or p′ ≈∆
s ε, and

98 Chapter 6. Application: Translating χ to Promela

3. if 〈p, σ〉
∆
7→ 〈p′, σ′〉 for some p′ ∈ P and σ′ ∈ Σ, then p′ ∈ Pχ. �

Proof Since ε is not in Pχ, since repetition in χ is either infinite or exited
with a τ , and since ∆e is always followed by τ , the theorem can now be
easily proven by the structural induction on Pχ. �

Since χ can be fully interpreted in κ, we have timed silent congruence
defined for Pχ as well. In the next section we show how it can be used to
establish the correctness of some syntactical reductions needed when trans-
lating χ to Promela.

6.3 Translation to Promela

In [95] it is pointed out that the translation of some χ constructs is straight-
forward (e.g., for assignments and alternative composition), since they also
exist in Promela. However, the translation of guards, nested scopes and
nested parallelism is less straightforward, since they have no direct equiva-
lents in Promela. We recall some results from [95].

Translation of guards A χ process b:→p cannot be directly translated to
Promela. The reason is that the guards in Promela act as statements that
are executable if they evaluate to true. This means that the executability
of a guard in Promela depends only on the validity of the guard. This is
different from χ which looks for both b to be true and for p to be executable
before taking the step. A typical example is the χ process true :→δ8 true :→
skip which can only perform the action τ and terminate, while its naive
translation to Promela could pass the first guard (because it is always
true) and deadlock. However, as explained in [95], if p is an atomic χ
process, i.e. if p ∈ {δ, ε,m??x,m!!e}, then b :→ p can be correctly translated
to Promela. If all guards are to be translated, a possible solution is to
push them down to the level of atomic processes. The preprocessing phase
of the translation process presented in [95] provides the rules to achieve that.
These rules are presented in Table 6.1. The first rule is meant to be applied
only when p is an atomic process. Its purpose is to ensure that all atomic
processes are guarded which is more convenient for implementation.

It is clear that, if a parallel composition does not appear in the process
p, then the rules from Table 6.1 are enough to construct a process q that is
equivalent to b :→ p and in which only atomic (sub)processes are guarded.

6.3. Translation to Promela 99

p true :→ p

b1 :→ b2 :→ p b1 ∧ b2 :→ p

b :→ (p 8 q) (b :→ p) 8 (b :→ q)

b :→ (p ; q) (b :→ p) ; q

b :→∗p (b :→ p) ; ∗p

b1 :→ b2
∗
→ p ((b1 ∧ b2 :→ skip) ; b2

∗
→ p) 8 (b1 ∧ ¬b2 :→ skip)

Table 6.1: Simplification of guards

Nested parallelism is a problem here, but also in other places. We will
discuss that problem later.

Timed silent congruence can serve as a correctness criterion for the guard
simplification rules. It is not hard to see that every process in the left column
of Table 6.1 is timed silent congruent to the corresponding process in the
right column. We only give a sketch of the proof that b:→∗p ≈∆

s (b:→p);∗p.
In κ terms this is expressed by the following theorem.

Theorem 6.3.1 For all p ∈ Pχ and all b ∈ B, b:→(p∗ ·δ) ≈∆
s (b:→p)·p∗ ·δ.�

Proof Let I be the identity relation on P . Let

S = I ∪ {(b :→ (p∗ · δ), (b :→ p) · p∗ · δ), ((b :→ p) · p∗ · δ), (b :→ (p∗ · δ))}

and R = S. It is not hard to show that (S,R) is a stateless timed silent
congruence. �

Note that for the simplification of guards we do not need to use the
full power of timed silent congruence. To show that the rules are correct
we do not need an equivalence that abstracts away from internal steps; the
original and the simplified process agree on every step they take (this is
why we could define R = S in the proof of the previous theorem). In the
next two paragraphs we show some reduction rules that rely on timed silent
congruence.

Elimination of nested scopes A Promela specification consists of
global variables and a sequence of process definitions. Every process defini-
tion allows for the declaration of local variables. Therefore, there are only
two scope levels, process-local, in process definitions, and global, outside of
them. It is not possible to introduce blocks inside the process declarations
with block-local variables. Since χ features the scope operator, local vari-
ables can be introduced anywhere. To translate a χ process to Promela

100 Chapter 6. Application: Translating χ to Promela

we must make sure that scopes are in proper places. Elimination of nested
scopes is in most cases trivial after some variables are properly renamed.
When a scope is in the context of a repetition, the elimination is more com-
plicated. Note that the process ∗|[s | p]| has different behavior than |[s | ∗p]|.
This is because p in ∗|[s | p]|, when it has finished executing, starts again
in the ‘fresh valuation’ s while p in |[s | ∗p]| starts from a possibly modified
valuation. A solution is to make p restore the old valuation when it is done.
The rules for nested scope elimination, also a part of the preprocessing phase
from [95], are given in Table 6.2. It is required that the free variables in
guards and in processes outside the scope of s are first renamed if needed
(i.e. if these variables also appear in s). In the last two cases we assume
that s = {x1 7→ d1, . . . , xn 7→ dn} and that I = {asgn[(x1, d1), . . . , (xn, dn)]}

|[− | p]| p

b :→ |[s | p]| |[s | b :→ p]|

|[s | p]| ; q |[s | p ; q]|
p ; |[s | q]| |[s | p ; q]|
|[s | p]| 8 q |[s | p 8 q]|
|[s | p]| ‖ q |[s | p ‖ q]|

|[s1 | |[s2 | p]|]| |[s1≪s2 | p]|
∗|[s | p]| |[s | ∗(p ; τI(x1, . . . , xn := d1, . . . , dn))]|

b
∗
→ |[s | p]| |[s | b

∗
→ (p ; τI(x1, . . . , xn := d1, . . . , dn))]|

Table 6.2: Elimination of nested scopes

Every process in the left column of Table 6.1 is timed silent congruent
to its corresponding process in the right column. Note that in the last two
rules we needed to introduce an additional action, that is an assignment, to
establish the proper reductions. The hiding operator renames these assign-
ments to τ ’s, and since they only change the local valuation, they give rise
to internal steps.

As we did for guards, we only prove one non-trivial rule in Table 6.2.
We choose to prove that ∗|[s | p]| ≈∆

s |[s | ∗(p ; x1, . . . , xn := d1, . . . , dn)]| and,
for clarity, only consider the special case when n = 1. In κ terms we have
the following:

Theorem 6.3.2 For all p ∈ Pχ, all x ∈ V , and all d ∈ D, |[{x 7→ d} | p]|∗ ·
δ ≈∆

s |[{x 7→ d} | (p · τI(x := d))∗ · δ]| with I = {asgn[(x, d)]}. �

Proof Let P εχ be the set of processes such that p ∈ P εχ iff p ∈ Pχ or p ≈∆
s ε.

6.3. Translation to Promela 101

Define

S = {(|[{x 7→ d} | p]|∗ · δ, |[{x 7→ d} | (p · τI(x := d))∗ · δ]|)}

∪ {(|[{x 7→ c} | r]| · |[{x 7→ d} | p]|∗ · δ,

|[{x 7→ c} | r · τI(x := d) · (p · τI(x := d))∗ · δ]|) | r ∈ Pχ, c ∈ D}

∪ . . . (symmetric pairs).

and

R = S

∪ {(|[{x 7→ c} | r]| · |[{x 7→ d} | p]|∗ · δ,

|[{x 7→ c} | r · τI(x := d) · (p · τI(x := d))∗ · δ]|) | r ∈ P εχ, c ∈ D}

∪ {(|[{x 7→ c} | r]| · |[{x 7→ d} | p]|∗ · δ,

|[{x 7→ d} | (p · τI(x := d))∗ · δ]| | r ≈∆
s ε, c ∈ D}

∪ . . . (symmetric pairs).

It is easy to show that (S,R) is a timed stateless silent congruence. �

Nested parallelism As we said before, a Promela specification consists
of a list of process definitions. There is no (explicit) operator for paral-
lel composition, and processes are either implicitly executed in parallel or
started by a special statement. This statement is always executable and,
therefore, can make a choice if executed in the context of alternative com-
position. Because of this, similar problems as in the naive translation of
guards appear. The solution is to eliminate nested parallelism on the χ
level, i.e. to move it to the outermost level. This, unfortunately, is rarely
possible.

Remark 6.3.3 In some cases it is possible to linearize χ specifications, that
is to eliminate all parallelism. This however is not a desired solution because
it would drastically move us away from the original specification, and we
would not be fully exploiting the Spin’s powerful verification mechanism.
Therefore, linearization should be performed only if it is the last option. �

Nested parallelism can be eliminated in the context of sequential com-
position and repetition. This is because a sequential composition can be
simulated by a parallel composition at the expense of introducing an extra
synchronization variable, and repetition can be distributed over a parallel
composition with a proper synchronization mechanism to restrict the pos-
sible additional behavior. This technique is introduced in [95] and shown

102 Chapter 6. Application: Translating χ to Promela

in Table 6.3. To apply these rules we must ensure that w is an unused
variable, i.e. that p, q and r cannot change its value, and similarly for the
channel s. The variable x is assumed not to be free in the whole speci-
fication; we could alternatively declare it locally, i.e., replace s?x by e.g.
|[x 7→ 0 | s?x]|. For the first rule we assume that I = {asgn[(w, 1)}. For
the second and the third rule we assume that I = {comm[(s, x, 0)]} and
Ξ = {snd(s, 0)} ∪ {rcv(s, x, d) | d ∈ D}. Note that the technique can be eas-
ily be extended from two to an arbitrary number of parallel components.

p ; (q ‖ r) |[{w 7→ 0} | p ; τI(w := 1) ‖ w = 1 :→ q ‖ w = 1 :→ r]|
(p ‖ q) ; r τI(∂Ξ(p ; s!0 ‖ q ; s!0 ‖ s?x ; s?x ; r))

∗(p ‖ q) τI(∂Ξ(∗(p ; s!0) ‖ ∗(q ; s?x))).

Table 6.3: Elimination of nested parallelism

As before, it can be proven that both rules in Table 6.3 are correct
modulo timed silent congruence. We only do this for the first rule.

Theorem 6.3.4 For all p, q, r ∈ Pχ, all x ∈ V and all d ∈ D, p · (q ‖ r) ≈∆
s

|[w 7→ 0 | p · τI(w := 1) ‖ w = 1 :→ q ‖ w = 1 :→ r]| with I = {asgn[(w, 1)}. �

Proof Let P εχ be the set of processes such that p ∈ P εχ iff p ∈ Pχ or p ≈∆
s ε.

Define

S = {(x · (q ‖ r),

|[{w 7→ 0} | x · τI(w := 1) ‖ w = 1 :→ q ‖ w = 1 :→ r]|) | x ∈ Pχ}

∪ . . . (symmetric pairs).

and

R = S

∪ {(x · (q ‖ r),

|[{w 7→ 0} | x · τI(w := 1) ‖ w = 1 :→ q ‖ w = 1 :→ r]|) | x ∈ P εχ}

∪ {(x · (q ‖ r), |[{w 7→ 1} | ε ‖ w = 1 :→ q ‖ w = 1 :→ r]|) | x ≈∆
s ε}

∪ {(x ‖ y, |[{w 7→ 1} | ε ‖ x ‖ w = 1 :→ y]|) | x, y ∈ P εχ}

∪ {(x ‖ y, |[{w 7→ 1} | ε ‖ w = 1 :→ x ‖ y]|) | x, y ∈ P εχ}

∪ {(x ‖ y, |[{w 7→ 1} | ε ‖ x ‖ y]|) | x, y ∈ P εχ}

∪ {(x ‖ y, |[{w 7→ 1} | x ‖ y]|) | x, y ∈ P εχ}

∪ {(x, |[{w 7→ 1} | x]|) | x ∈ P εχ}

∪ . . . (symmetric pairs).

6.3. Translation to Promela 103

It is tedious but straightforward to verify that (S,R) is a timed stateless
silent congruence. �

Note that it is not so convenient to, instead of the second rule in Ta-
ble 6.3, have the rule that transform (p ‖ q) ; r to, for example, the pro-
cess |[{w 7→ 0} | p ; w := w + 1 ‖ q ; w := w + 1 ‖ w = 2 :→ r]|. The reason is
that with this rule the set of rewriting rules is not terminating. We give
an example. The process ∗((p ‖ q) ; r) is first transformed to the process
∗|[{w 7→ 0} | p ; w := w + 1 ‖ q ; w := w + 1 ‖ w = 2 :→ r]|, and then further
to |[{w 7→ 0} | ∗((p ; w := w + 1 ‖ q ; w := w + 1 ‖ w = 2 :→ r) ; w := 0)]|. We
are back where we started. There is, of course, a way out, which is to push
the assignment w := 0 directly behind r. This however means that the sit-
uation ∗((p ‖ q) ; r) would then require its own rule which would make the
syntactic definition of the translatable subset even more complicated.

Remark 6.3.5 One simple extension to χ (and κ) would allow us to elimi-
nate nested parallelism in the context of guards. This is to let declaration of
local variables to be of the form x1 7→ e1, . . . , xn 7→ en where ei are arbitrary
expressions and not only data values as now. Then we would simply have
that x=d :→ (p ‖ q) is the same as |[x′ 7→ x, x 7→ d | x′ :→ p ‖ x′ :→ q]|. How-
ever, by allowing expression in local scopes we lose the option to translate
those scopes when they are inside a repetition. �

Conclusion to Part I

Our goal was to find an equivalence relation on process specifications that
preserves all relevant properties of the system being modeled, and that is
a congruence. The main correctness requirements was set to be the preser-
vation of deadlock and the validity of formulas of ctl∗−x temporal logic.
We also wanted the equivalence not to be too restrictive giving us sufficient
flexibility in establishing the correctness of symbolic transformations of the
specification.

It is usually convenient to have a behavioral equivalence pertaining to
the operational semantics, i.e. to define it as a bisimulation relation. In a
simple setting, the notion of branching bisimulation directly corresponds to
our criterion. In Part I we performed a sequence of extensions to adapt
branching bisimulation to the more complicated setting with data, termi-
nation, explicit divergence, and timing. The adaptation was a conservative
extension, assuring that the relevant properties are preserved. We proved
that the obtained relation was compatible for all the constructs of a typical
modeling language.

A proper treatment of divergence is crucial for certain interpretations
of the notion of ctl∗−x logic, and for timing. The addition of a divergence
condition to the bisimulation brought in several complications when proving
standard properties, such as transitivity and the stuttering property. We
successfully solved this problem by introducing alternative (but equivalent)
conditions, each more applicable in some situations than in others. Thereby
we also solved the open problem of showing that the notions of branching
bisimulation with explicit divergence of [53], and the stuttering equivalences
of [85, 50, 81], are equivalence relations.

The addition of data introduced only the expected and known congru-
ence problems; the standard solution could be easily adapted to our setting.
The addition of termination alone introduced no problems. However, its
combination with timing had the result that the bisimulation was no longer
compatible with the sequential composition operator. To keep the congru-

105

106 CONCLUSION TO PART I

ence property we refined the timing and termination conditions of timed
branching bisimulation. This solved the open problem of defining timed
branching bisimulation in the setting with successful termination.

To illustrate the power of the equivalence we demonstrated how (a part
of) the translation from the industrial modeling language χ to the popular
model checker Spin could be proved correct. Several syntactic simplifica-
tions were given, e.g. to eliminate nested parallelism, and each was shown
to be correct modulo our equivalence.

In the future we want to axiomatize our equivalence and to provide
minimization algorithms.

Part II

Transition Systems and

Bisimulations in Matrix

Theory

107

Chapter 7

Introduction

As we already mentioned in the introduction to Part I, labeled transition
systems (with termination) are a well established formalism for modeling
qualitative aspects of systems. We also said that there existed a full spec-
trum of different equivalences for labeled transition systems [52, 51], each
with a well-specified set of properties (usually represented as a set of tempo-
ral logic formulas) that it preserved. For example, if two systems agree on
every step they take, then they are equivalent modulo strong bisimulation
equivalence [84, 79]. If there is an action in the model, called the internal
action, which is unobservable, then systems are usually related by weak [79]
or by branching [53] bisimulation equivalence.

A popular method to obtain transition systems is by means of some
expression in a process algebraic language. This method enables the gen-
eration of large models from smaller components. When fully built, almost
all models of realistic systems suffer from the state explosion problem, i.e.
their analysis is hardly ever possible due to their size. One solution to this
problem is to reduce the model while keeping all relevant properties of the
system. That leads to a vast number of methods used to reduce a sys-
tem modulo the equivalences mentioned above. All methods are based on
dividing states into equivalence classes to obtain a quotient system.

The state explosion problem is also present in formalisms for quantitative
analysis of systems, such as in continuous time Markov chains. There the
notion of ordinary lumpability [67, 82, 23], which corresponds to the notion
of strong bisimulation, is used. The unobservable behavior in this setting
can be seen as performing an immediate, i.e. timeless, step and in Part III
we deal with this weaker form of lumping. The theory of Markov chains,
and therefore of lumpability too, is almost always presented in terms of

109

110 Chapter 7. Introduction

matrix theory. The well developed matrix apparatus has shown to be a
powerful method for reasoning about Markov chains. It increases clarity
and compactness, simplifies proofs, makes known results from linear algebra
applicable which leads to new insights, etc.

Recently, as a consequence of the appearance of many stochastic process
algebras and of their extensions of the Markov chain model, there has been
some work on establishing some of the notions from [52] in the setting of
Markov chains (see e.g. [10, 100]). We work here in the opposite direction
and approach the theory of labeled transition systems and bisimulations
from the setting of Markov chains, i.e. from matrix theory. We list some
points that speak in favor of the matrix approach.

• The approach sets the theory in a new algebraic setting, i.e. on a
boolean and relation algebra ground. It can be used as an alternative
to or in combination with the standard process algebraic approach.

• The notion of (bi)simulation has been, in some forms, extensively stud-
ied in graph and modal logic theory by the methods of boolean ma-
trices and relation algebras [91, 47]. Since relations on finite systems
can also be represented as matrices with elements in the set {0, 1}, the
extension of the known definitions to the setting of labeled transition
systems is natural and sometimes even trivial.

• We expect the new proofs of old and known results to be shorter and,
once one becomes used to the machinery, more readable and easier to
check. This is expected since it is the case for the theory of Markov
chains.

• The approach also has a didactical advantage in our case. We hope
that it enables a reader not familiar with Markov chains, but familiar
with the standard theory of labeled transition systems, to understand
Markov chains faster. And vice versa, we also hope that a reader ex-
perienced with matrix techniques of Markov chain theory will have
no problems understanding the labeled transition systems when pre-
sented in a similar way. That is why Part II has an important place
in this thesis.

• The more-or-less unified setting points to many similarities between
the theory of labeled transition systems and Markov chains, like e.g. it
directly indicates the known fact that strong bisimulation reduction is
the same as ordinary lumping. However, it also provides an automatic

111

way to obtain some unknown but useful notions. For example, we will
see that the notion of τ -lumping in Part III is just a weak bisimulation
interpreted in the Markov chain context.

• The new interface to labeled transition systems is a big step towards
a unified presentation of dynamical systems and to a unified theory
of bisimulation as a major behavioral equivalence on systems. The
new theory is initially rich since it combines the well-developed results
from different environments and communities.

The matrix approach also has some disadvantages.

• Although the proofs are shorter and easier to check for correctness,
they are obtained completely by algebraic reasoning and the usual
intuition that exists in standard proofs is lost. In many cases, as we
will see later, this is not a real problem and can also be seen as an
advantage. It is almost always clear how to proceed with the proof,
i.e. which algebraic formula to apply, and at the end the proof comes
out quickly and in a completely mechanical way. However, in some
cases a complicated formula must be applied and it is not always easy
to recognize these situations. This is where it would be helpful to have
some intuition. The conclusion is that the matrix approach works well
but sometimes it needs to be used in combination with the standard
one.

• The second big disadvantage of the approach is that it requests that the
set of states is ordered. This is an unnecessary restriction and it forces
us to, for each result, prove that it is independent of the ordering of
states, i.e. insensitive to permutation. Moving from matrices to linear
operators would make this problem disappear.

• Not every standard notion can be directly represented in terms of
matrix theory. An example of this case, as we will see later, is the
definition of branching bisimulation. The way out is to give a matrix
definition of a similar notion and then show that it corresponds, in
some sense, to the standard one.

Note that to use (special) matrices to represent different models of dy-
namic systems is not a novel approach. Matrices over a Kleene algebra
have been successfully applied in automata theory [34, 72]. In [47], matrices
over a boolean algebra were used to represent Kripke structures. There the

112 Chapter 7. Introduction

notion of (strong) bisimulation was defined in matrix terms (as a relation
between two structures). In [4], timed and stochastic event graphs were
given in terms of matrices over a max-plus algebra. In [33], a general ap-
proach to aggregation of systems was given in terms of matrix theory over
an idempotent semiring. Our notion of strong lumping is a special case of
the lumping in [33]. Petri-nets are also modeled as relation algebras [49, 14].

7.1 Outline

In this section we present our approach in more detail, explaining every
decision, and we show how the algebraic apparatus is put to work.

We work with finite state labeled transition systems with one starting
state and with (successful) termination. The reason we consider only the
case of finitely many states is just to simplify the presentation; there should
be no problems when extending the theory to (at least) the countable case
(due to the completeness property of boolean algebras). The reason for
incorporating successful termination is to point out the direct parallel with
the reward mechanism for Markov chains (they are dual).

We define a labeled transition system as a system of matrices. More
precisely, as a triple of an initial vector, which indicates which of the states
is the starting state, a transition matrix, which contains the actions that the
system performs when transiting from one state to another, and a termina-
tion vector, which indicates which states are the successfully terminating
ones. The starting state and the set of terminating states are modeled as
vectors, and not, for example, as sets of indices, to enable them to interact
with matrix T and to fully use the matrix algebraic approach.

We define standard operations on transition systems such as alternative,
sequential and parallel composition in matrix terms. This is only to justify
the approach more, that is to show its compactness, both in these definitions
themselves, and later in the proof that bisimulations are compositional with
respect to these operators. The representation of operators in terms of
matrices is a direct application of the powerful block-matrix representation
method common in every matrix setting.

In relation and boolean matrix algebras a relation is represented simply
as a 0–1 matrix that indicates which pairs are related. A strong bisimulation
is then a system of matrix inequalities involving a symmetric relation and the
matrices representing a system. We define these inequalities in particular for
our representation of labeled transition systems and show that the matrix
definition corresponds to the standard notion of strong bisimulation. We

7.1. Outline 113

treat strong bisimulation in this text because it is the most common relation
between transition systems, and because the notion already exists, in some
forms, in the relation algebra and graph theory.

There are many different aspects connected with strong bisimulation.
We decided to deal only with the following few.

1. Bisimilarity is the most commonly used equivalence on transition sys-
tems and is therefore often used as a correctness criterion for their
reduction. It is interesting to define this reduction in matrix terms
because it corresponds to the notion of ordinary lumping [67, 23] from
Markov chain theory. This is a known fact but is now directly seen
from the matrix representation.

2. Backward bisimulation was introduced in [75] as a dual to the stan-
dard, i.e. forward bisimulation. It requires that every backward step
in a system is simulated. The idea was introduced to Markov chains
first as a form of lumping in [23], and then as a bisimulation rela-
tion in [93]. To show that the ideas correspond, we decided to treat
backward bisimulation with our matrix techniques as well. Another
reason is that it turns out that its matrix definition is obtained just
by transposing the standard bisimulation conditions. This means that
when working with backward bisimulation we can reuse all the results
from strong bisimulation.

3. Bisimulation up-to techniques [79, 89] are often used to ease the def-
inition of a witnessing relation when proving two systems bisimilar.
Since the technique is very useful, we present it in our matrix setting
as well. The method is unknown in the Markov chain world and by
treating it in matrix terms we hope that in the future it will directly
lead to some application there.

From strong bisimulation we move to bisimulations that to a certain
degree ignore transitions labeled with the initial action τ , i.e. to those that
abstract away from internal steps. These equivalences fit well into the matrix
setting and their treatment there is shown to rely on many known complex
results from matrix theory.

We first deal with weak bisimulation [79] since it ignores silent transitions
in the most general way. It has a simple matrix characterization that uses
the standard matrix definition of reflexive-transitive closure [91, 68] from re-
lation algebra and boolean matrix theory. We also define the corresponding
notion of lumping by linking weak bisimulation with strong bisimulation.

114 Chapter 7. Introduction

Although the matrix definition of a weak bisimulation should be enough
to convince the reader that the matrix approach works well for equivalences
weaker than strong bisimulation, we decided to also incorporate branching
bisimulation [53] into our theory. The reason for this is not the known fact
that branching bisimulation preserves the branching structure of a system
more than weak bisimulation does, but the fact that it is not possible to
express its definition directly in matrix terms as it was the case for the
weak bisimulation (unless with a very strong requirement that bisimulation
is transitive). We give a similar definition and show that it is equivalent
to the standard one if the bisimulation relation is transitive. We also show
that our branching bisimulation satisfies the so-called stuttering property, a
property nicely expressible in matrix terms. We reestablish these results not
only to illustrate compactness again, but more because they feature several
direct applications of some of the important results from relational algebra,
such as the Dedekind formula.

Note that in Part II we mostly (re)prove old and known results. However,
there are some things that are new. For example, we provide an alternative
version of branching bisimulation, and we show that every bisimulation we
use can also be expressed as a strong bisimulation on a somehow transformed
system. This is an important property because it allows for the direct reuse
of all the results from the theory of strong bisimulation. This result is
known for weak bisimulation but the method has not been adapted before
for e.g. branching bisimulation. Moreover, for every bisimulation we provide
a corresponding notion of lumping and prove its soundness with respect to
the transformation of the system.

The structure of Part II is as follows.
In Chapter 8 we give an introduction to matrix theory over a boolean set

algebra and we state some notions and important results from relation alge-
bra. Next we define labeled transition systems and the standard operations
on them in matrix terms.

Chapter 9 is about strong bisimulation. We define it in matrix terminol-
ogy and prove that it coincides with the standard notion. We reprove some
standard results and give the notion of lumping. We also extend strong
bisimulation to a relation between two systems and use that to prove the
compatibility with the operators. In the last two sections we introduce
backward bisimulation and the bisimulation up-to technique.

In Chapter 10 we deal with systems with internal steps. We define weak
and branching bisimulation relations. As we did for strong, we show that the
new definitions match the standard ones, we reprove some standard results,
and for each bisimulation we introduce a corresponding notion of lumping

7.1. Outline 115

with its soundness proof. At the end we define the stuttering property and
show that branching bisimulation satisfies it.

Chapter 8

Transition Systems as

Matrices

A transition system is a directed graph in which each node represents a state
of a system, and each arrow is labeled by an action denoting that the system
can perform a transition from a state to another while executing that action.
One state of the system is the initial state, and some states are considered
successfully terminating. In this chapter we define finite state transition
systems with termination in terms of matrices over a boolean algebra that
is built from the set of actions.

First we give some preliminaries, mostly taken from [91] and [68].

8.1 Preliminaries

Let A be a set and let P(A) be the set of all subsets of A. Then
P(A) = (P(A),+, ·, ¯, 0, 1) is a boolean algebra with +, ·, ¯, 0 and 1 repre-
senting union, intersection, complement, the empty set and the full set A
respectively. We use +, ·, 0 and 1 instead of ∪, ∩, ∅ and A to emphasize
the connections with standard matrix theory and the theory of lumping in
Markov chains.

P(A)n×m denotes the set of all n × m matrices with elements in P(A).
Elements of P(A)1×n and P(A)n×1 are called vectors. 1n denotes the vector
in P(A)n×1 that consists of n 1’s. 0n×m denotes the n×m matrix consisting
entirely of zeroes. In denotes the n × n identity matrix. We omit the n
and m when they are clear from the context. A matrix A of which every
element is either 0 or 1, i.e. an element of {0, 1}n×m, is called a 0–1 matrix.
Sometimes we also call a 0–1 matrix R a relation. This is to emphasize

117

118 Chapter 8. Transition Systems as Matrices

the intuitive fact that R[i, j] = 1 iff the i-th and the j-th element are in a
relation.

We now introduce some operations on the set P(A)n×m.

Sum For A,B ∈ P(A)n×m, the sum A+B ∈ P(A)n×m is defined by:

(A+B)[i, j] = A[i, j] +B[i, j] for i = 1, . . . , n and j = 1, . . . ,m.

Scalar product For A ∈ P(A)n×m and α ∈ P(A), the element product
α · A ∈ P(A)n×m is defined by:

(α · A)[i, j] = α · A[i, j] for i = 1, . . . , n and j = 1, . . . ,m.

Product For A ∈ P(A)n×p and B ∈ P(A)p×m the product A ·B ∈ P(A)n×m

is defined by:

(A · B)[i, j] =

p∑

k=1

A[i, k] +B[k, j] for i = 1, . . . , n and j = 1, . . . ,m.

Intersection For A,B ∈ P(A)n×m, the intersection A ⊓ B ∈ P(A)n×m is
defined by:

(A ⊓B)[i, j] = A[i, j] ·B[i, j] for i = 1, . . . , n and j = 1, . . . ,m.

Complement For A ∈ P(A)n×m, the complement Ā ∈ P(A)n×m is defined
by:

Ā[i, j] = A[i, j] for i = 1, . . . , n and j = 1, . . . ,m.

Transpose For A ∈ P(A)n×m, the transpose AT ∈ P(A)m×n is defined by:

AT[i, j] = A[j, i] for i = 1, . . . , n and j = 1, . . . ,m.

Kronecker product and sum The notion of Kronecker product comes
from the standard matrix theory where it has many applications (see
e.g. [55]). For example, it has been successfully used for the decom-
position of Markov chains [24] into smaller parallel components. The
notion directly maps to our setting and it is the core of our definition
of parallel composition with synchronization for transition systems.

The Kronecker product of two matrices is a block matrix in which
every block is the scalar product of an element from the first matrix

8.1. Preliminaries 119

and the entire second matrix. We give the formal definition. For
A ∈ P(A)n1×n2 and B ∈ P(A)m1×m2 , the Kronecker product of A and
B is the matrix A⊗B ∈ P(A)n1m1×n2m2 defined by

(A⊗B)[(i− 1)m1 + k, (j − 1)m2 + ℓ] = A[i, j] ·B[k, ℓ]

for i = 1, . . . , n1, j = 1, . . . , n2, k = 1, . . . ,m1 and ℓ = 1, . . . ,m2.

The Kronecker sum of two (square) matrices A ∈ P(A)n×n and B ∈
P(A)m×m is the matrix (A⊕B) ∈ P(A)mn×mn defined by

A⊕B = A⊗ Im + In ⊗B.

We write AB instead of A · B. We assume that · and ⊗ bind stronger
than the intersection and sum, and that the intersection is stronger than
the sum. We also write

A 6 B for A+B = B.

We now list some properties of these operations assuming that the ma-
trices A,B,C and D are such that all the operations are well defined.

Properties of transpose:

ĀT = AT,

(AT)
T

= A,
A 6 B iff AT 6 BT,

(A+B)T = AT +BT,

(AB)T = BTAT,

(A ⊓B)T = AT ⊓BT,

Properties of sum:

A+A = A,
A+B = B +A,
(A+B) + C = A+ (B + C).

Properties of intersection:

A ⊓B = B ⊓A,
(A ⊓B) ⊓ C = A ⊓ (B ⊓ C),
A ⊓B 6 A,
if A 6 B, then A ⊓B = A.

120 Chapter 8. Transition Systems as Matrices

Properties of scalar and matrix product:

α(AB) = (αA)B = A(αB),
(AB)C = A(BC),
AI = IA = A,
A0 = 0A = 0,
if A 6 B and C 6 D, then AB 6 CD,
α(A+B) = αA+ αB,
A(B + C) = AB +AC, (A+B)C = AC +BC,
A(B ⊓ C) 6 AB ⊓AC, (A ⊓B)C 6 AC ⊓BC.

Schröder equivalences

AB 6 C iff ATC̄ 6 B̄ iff C̄BT
6 Ā.

Dedekind formula

AB ⊓C 6 (A ⊓ CBT)(B ⊓ATC).

Properties of Kronecker product and sum

(A⊗B)(C ⊗D) = AC ⊗BD
(A+B) ⊗ (C +D) = A⊗ C +A⊗D +B ⊗ C +B ⊗D
α(A⊗B) = (αA⊗B) = (A⊗ αB)
α(A⊕B) = (αA⊕ αB)
(A+B) ⊕ (C +D) = A⊕ C +B ⊕D

(A⊗B)T = AT ⊗BT

A relation R ∈ {0, 1}n×n is called reflexive if I 6 R, symmetric if RT = R
and transitive if R2 6 R. It is an equivalence relation if it is reflexive,
symmetric and transitive.

Given a relation R ∈ {0, 1}n×n, we call

R+ =

∞∑

n=1

Rn and R∗ =

∞∑

n=0

Rn

8.2. Transition systems 121

the transitive and the reflexive-transitive closure respectively of R. Note
that R+ = RR∗ and R∗ = I + R+. For the two closures we have the
following properties:

(R+)
T

= (RT)+, (R∗)T = (RT)∗,
(R+ S)+ = R+ + (R∗S)+R∗, (R+ S)∗ = (R∗S)∗R∗.

For an equivalence relation R we also have

(AR ⊓B)R = AR ⊓BR = (A ⊓BR)R.

A relation R ∈ {0, 1}n×m is called total if RRT > I. Note that a reflexive
relation is always total.

A relation P ∈ {0, 1}n×m is called an isomorphism if PPT = In and
PTP = Im. It can be shown that P is an isomorphism iff its every row and
every column contains exactly one nonzero entry. Note that this condition
implies that n = m, i.e. that P must be a square matrix. Clearly, if P is an
isomorphism, then so is PT. We say that two matrices A,B ∈ P(A)n×n are
equal modulo isomorphism if there exists an isomorphism P ∈ {0, 1}n×n such
that A = PBPT. Isomorphism corresponds to the notion of permutation
matrix in classical matrix theory.

8.2 Transition systems

A transition system (with the set of actions A and the set of states S) is
standardly defined as a quadruple (S,→, S0, ↓) where → ⊆ S × A × S is
called the transition relation, s0 ∈ S is the initial state and ↓⊆ S is the set
of (successfully) terminating states.

In matrix terms we define a transition system as a triple of a 0–1 row
vector that indicates which of the states is initial, a matrix over a subset of
actions that contains the actions that the system performs when transiting
from one state to another, and a 0–1 vector that indicates which states are
terminating.

Definition 8.2.1 (Transition system) A transition system (with the set
of actions A and of the dimension n) is a triple 〈σ,A, ρ〉 where:

• σ ∈ {0, 1}1×n is the initial vector ; its exactly one entry is 1,

• A ∈ P(A)n×n is the transition matrix, and

• ρ ∈ {0, 1}n×1 is the termination vector.

122 Chapter 8. Transition Systems as Matrices

The set of all transition systems with the set of actions A and of the dimen-
sion n is denoted TSn

A
. �

If S = {s1, . . . , sn}, our definition is obtained from the standard one by
putting:

A[i, j] = {a | si
a
→ sj}, σ[i] =

{
1, if si = s0
0, if si 6= s0

and ρ[i] =

{
1, if si↓
0, if si 6↓.

That is, for each two states si and sj, A[i, j] contains the set of actions that
the system can perform by going from si to sj. The i-th element of σ is 1 if
the state si is initial. The i-th element of ρ is either 0 or 1 depending if the
state si is terminating or not. It is clear that, given an ordered S, we can
obtain the standard definition from our definition easily.

Example 8.2.2 Figure 8.1 depicts a transition system and gives its matrix
representation. The set of states is S = {s1, s2, s3, s4}, the set of actions is
A = {a, b, c}. State s1 is the initial state; states s1 and s4 are terminating.�

GFED@ABCs1
↓

↓

a

��		
		

		
	

a

��5
55

55
55

GFED@ABCs2

b !!

c

��

GFED@ABCs3

b

GFED@ABCs4
↓

d

JJ

σ =
(
1 0 0 0

)

A =




0 {a} {a} 0
0 0 0 {b, c}
0 0 0 {b}
0 0 {d} 0


 ρ =




1
0
0
1


 .

Figure 8.1: Transition system and its matrix representation – Example 8.2.2

8.3 Operations on transition systems

In this section we define some special transition systems and some stan-
dard operations on transition systems, namely alternative and sequential
composition, repetition and parallel composition.

8.3. Operations on transition systems 123

Terminated system (ε) The transition system 〈σ,A, ρ〉 ∈ TS1
A

defined by

σ = ρ =
(
1
)

and A =
(
0
)

we call the terminated system and we denote it by ε. This system has
only one state in which it starts, terminates and cannot do an action.

Deadlocked system The transition system 〈σ,A, ρ〉 ∈ TS1
A

defined as

σ =
(
1
)

and ρ = A =
(
0
)

we call the deadlocked system and denote it by δ. This system has only
one state in which it starts and cannot do an action nor terminate.

Action execution Let a ∈ A. The transition system 〈σ,A, ρ〉 ∈ TS2
A

de-
fined as

σ =
(
1 0
)
, A =

(
0 {a}
0 0

)
and ρ =

(
0
1

)

is the action execution of a, and is denoted by a. This system starts
in the first state, performs the action a and goes to the second state
in which it terminates.

Before we define the operations on transition systems we explain some
of the matrix products that we will use. Let 〈σ,A, ρ〉 ∈ TSn

A
. The product

σA ∈ P(A)n×n is the row vector that contains for each state the actions
that can be performed initially while transiting to that state. The product
σρ ∈ {0, 1} is 1 iff the initial state is also terminating.

Sequential composition (·) Let 〈σA, A, ρA〉 ∈ TSn
A

and 〈σB , B, ρB〉 ∈
TSm

A
. Then 〈σA, A, ρA〉·〈σB , B, ρB〉 is the transition system 〈σ, T, ρ〉 ∈

TSn+m
A

defined by

σ =
(
σA 0

)
, T =

(
A ρAσBB
0 B

)
, ρ =

(
ρAσBρB
ρB

)
.

Sequential composition of two systems can perform everything that
the first system can perform and, in the case the first system is termi-
nating, also everything that the second systems can perform. In the
latter case the composition proceeds as the second system. This intu-
ition is captured by putting A and B on the diagonal and by the vector
ρAσBB which lets every terminating state of the system 〈σA, A, ρA〉

124 Chapter 8. Transition Systems as Matrices

perform an action that 〈σB , B, ρB〉 initially can. Sequential compo-
sition is terminated when both systems are terminated; the vector
ρAσBρB is either 0 or ρA depending if the initial state in 〈σB , B, ρB〉
is also terminating or not.

Alternative composition (+) Let 〈σA, A, ρA〉 ∈ TSn
A

and 〈σB , B, ρB〉 ∈
TSm

A
. Then 〈σA, A, ρA〉 + 〈σB, B, ρB〉 is the transition system

〈σ, T, ρ〉 ∈ TSn+m+1
A

defined by

σ =
(
1 0 0

)
, T =




0 σAA σBB
0 A 0
0 0 B


 , ρ =



σAρA + σBρB

ρA
ρB


 .

Alternative composition should describe the non-deterministic choice
between two systems. We achieve this by adding a new state, setting it
to be the initial one, and by letting it perform everything that the two
systems initially can and then transit to a state in one of these systems.
Note that we need this extra state to unwind a possible recursive
behavior in either system. Alternative composition terminates only if
one of the systems terminates. This is captured by having the σAρA+
σBρB ∈ {0, 1} as the first element of the termination vector.

Repetition (∗) Let 〈σ,A, ρ〉 ∈ TSn
A
. Then ∗〈σ,A, ρ〉 is the transition sys-

tem 〈σ′, A′, ρ′〉 ∈ TSn+1
A

defined by

σ′ =
(
1 0

)
, A′ =

(
0 σA
0 A+ ρσA

)
, ρ′ =

(
1
ρ

)
.

The repetition operator repeats the process zero or more times. The
vector ρσA captures the idea that terminating states can also per-
form actions of the initial state. We introduce an extra state again
for the possible unwinding. The system can repeat itself zero times,
which is considered successful termination, and so the new state is also
terminating state.

Parallel composition with synchronization (‖Ω) Let 〈σA, A, ρA〉 ∈
TSn

A
and 〈σB , B, ρB〉 ∈ TSm

A
. Let Ω ⊆ A. Then 〈σA, A, ρA〉 ‖Ω

〈σB , B, ρB〉 is the transition system 〈σ, T, ρ〉 ∈ TSnm
A

defined by

σ = σA ⊗ σB, T = Ω̄ · (A⊕B) + Ω · (A⊗B), ρ = ρA ⊗ ρB .

For α ⊆ P(A), the scalar product α ·A restricts A to the actions in α.
The Kronecker product corresponds to the idea of synchronization and

8.3. Operations on transition systems 125

the Kronecker sum captures the interleaving part. Note that we relied
on Ω ·A⊗Ω ·B = Ω · (A⊗B) and Ω̄ ·A⊕ Ω̄ ·B = Ω̄ · (A⊕B). The idea
that parallel composition terminates only if both systems terminate is
captured in the vector ρA ⊗ ρB.

For clarity, we choose to give only the CSP [64] style of parallel com-
position. Note that the more general ACP style [9] of parallel compo-
sition, can also be easily defined in matrix terms.

We give some examples now.

Example 8.3.1 a. We compute the process a∗ · δ. First

a∗ =

〈
(
1 0 0

)
,




0 0 {a}
0 0 {a}
0 0 {a}


 ,




1
0
1



〉
,

and so

a∗ · δ =

〈
(
1 0 0 0

)
,




0 0 {a} 0
0 0 {a} 0
0 0 {a} 0
0 0 0 0


 ,




0
1
0
1




〉
.

b. It easily follows that the process a + b is defined by

a + b =

〈
(
1 0 0 0 0

)
,




0 0 {a} 0 {b}
0 0 {a} 0 0
0 0 0 0 0
0 0 0 0 {b}
0 0 0 0 0



,




0
0
1
0
1




〉
.

c. We now compute a · b ‖{b} b. First we obtain

a · b =

〈
(
1 0 0 0

)
,




0 {a} 0 0
0 0 0 {b}
0 0 0 {b}
0 0 0 0


 ,




0
0
0
1




〉
.

126 Chapter 8. Transition Systems as Matrices

Then we have




0 {a} 0 0
0 0 0 {b}
0 0 0 {b}
0 0 0 0


⊗

(
0 {b}
0 0

)
=




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 {b}
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 {b}
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




and




0 {a} 0 0
0 {a} 0 {b}
0 0 0 {b}
0 0 0 0


⊕

(
0 {b}
0 0

)
=




0 {b} {a} 0 0 0 0 0
0 0 0 {a} 0 0 0 0
0 0 0 {b} 0 0 {b} 0
0 0 0 0 0 0 0 {b}
0 0 0 0 0 {b} {b} 0
0 0 0 0 0 0 0 {b}
0 0 0 0 0 0 0 {b}
0 0 0 0 0 0 0 0




From this, we obtain

a · b ‖{b} b =

〈
(
1 0 0 0 0

)
,




0 0 {a} 0 0 0 0 0
0 0 0 {a} 0 0 0 0
0 0 0 0 0 0 0 {b}
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 {b}
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




,




0
0
0
0
0
0
0
1




〉
.

�

Chapter 9

Strong bisimulation

Strong bisimulation is the most common relation on transition systems. In
this chapter we define strong bisimulation in terms of matrix theory. First
we define it as a relation on one system and, for the case when it is an equiva-
lence relation, we give the corresponding aggregation method called lumping.
We reprove some standard results, such that the biggest bisimulation is an
equivalence relation, in order to convince the reader of the notational bene-
fits of the approach. Then we extend the notion of strong bisimulation to a
relation between two systems. We use this to show that strong bisimulation
is compatible with the operators introduced in the previous chapter. In the
end, we introduce the concepts of backward bisimulation and bisimulation
up-to. We link the two notions with the standard bisimulation and give
corresponding lumping methods.

9.1 Strong bisimulation on a system

Strong bisimulation relation on a transition system relates states that behave
exactly in the same way. In other words, it relates states that can perform
the same actions and have equal termination behavior. In matrix terms,
the definition of strong bisimulation is just an extension of the notion of
simulation from relation algebra to transition systems [47, 91].

Definition 9.1.1 (Strong bisimulation) A symmetric relation R ∈
{0, 1}n×n is called a strong bisimulation on the transition system 〈σ,A, ρ〉 ∈
TSn

A
if

σ 6 σR, RA 6 AR and Rρ 6 ρ. �

127

128 Chapter 9. Strong bisimulation

Let us show that the new definition of strong bisimulation agrees with
the standard one. First note that σ 6 σR means that the initial state is
related to itself. Next, note that a ∈ (RA)[i, j] iff there is a k such that
R[i, k] = 1 and a ∈ A[k, j]. Similarly, a ∈ (AR)[i, j] iff there is an ℓ such
that a ∈ A[i, ℓ] and R[ℓ, j] = 1. The condition RA 6 AR then says that

si
R ___ sk

a
��
sj

implies

si

a
��
sℓ

R
___ sj.

This clearly corresponds to the standard definition of strong bisimulation.
Finally, note that (Rρ)[i] = 1 iff there is a j such that R[i, j] = 1 and
ρ[j] = 1. Thus, the condition Rρ 6 ρ says that:

si
R ___ sj↓ implies si↓.

This again matches with the standard definition.
We now give an example.

Example 9.1.2 Let 〈σ,A, ρ〉 with

σ =
(
1 0 0 0 0

)
, A =




0 {a} {a} 0 0
0 0 0 {b, c} 0
0 0 0 {b} {c}
0 0 {d} 0 0
0 0 {d} 0 0




and ρ =




0
0
0
1
1




be a transition system (see Figure 9.1). The relation

R =




1 0 0 0 0
0 1 1 0 0
0 1 1 0 0
0 0 0 0 1
0 0 0 1 0




depicted in Figure 9.1 is a strong bisimulation on it because

RA =




0 {a} {a} 0 0
0 0 0 {b, c} {c}
0 0 0 {b, c} {c}
0 0 {d} 0 0
0 0 {d} 0 0



6




0 {a} {a} 0 0
0 0 0 {b, c} {b, c}
0 0 0 {b, c} {b, c}
0 {d} {d} 0 0
0 {d} {d} 0 0




= AR

9.1. Strong bisimulation on a system 129

and

Rρ =




0
0
0
1
1



6




0
0
0
1
1




= ρ.

�

GFED@ABCs1

↓

a

��		
		

		
	

Rg
�

W

a

��5
55

55
55

GFED@ABCs2

R
2�

L

b !!

R ____

c

��

GFED@ABCs3

R

�
?r

b

 c
!!

GFED@ABCs4
↓

d

JJ

R
____ GFED@ABCs5

↓

d
aa

R =




1 0 0 0 0
0 1 1 0 0
0 1 1 0 0
0 0 0 0 1
0 0 0 1 0




Figure 9.1: Transition system and a strong bisimulation on it – Exam-
ple 9.1.2

We now prove some standard properties of strong bisimulation using the
new apparatus to get the reader accustomed with the notation and the way
of proving.

A union of bisimulations is a bisimulation.

Theorem 9.1.3 Let {Ri}i∈I be strong bisimulations on 〈σ,A, ρ〉 ∈ TSn
A
.

Then R =
∑

i∈I Ri is also a strong bisimulation on 〈σ,A, ρ〉. �

Proof Since σ 6 σRi, for all i ∈ I, by summing over all i ∈ I, we have
σ 6 σR. Next,

RA = (
∑

i∈I

Ri)A =
∑

i∈I

RiA 6
∑

i∈I

ARi = A(
∑

i∈I

Ri) = AR

and
Rρ = (

∑

i∈I

Ri)ρ =
∑

i∈I

Riρ =
∑

i∈I

ρ = ρ.
�

A state can always be related to itself in a bisimulation.

130 Chapter 9. Strong bisimulation

Theorem 9.1.4 If R is a strong bisimulation on 〈σ,A, ρ〉 ∈ TSn
A
, then so is

R′ = I +R. �

Proof We have σ 6 σR 6 σ(I +R) = σR′. Also,

R′A = A+RA 6 A+AR = A(I +R) = AR′

and R′ρ = Rρ+ ρ 6 ρ+ ρ = ρ. �

Transitive closure of a strong bisimulation is a strong bisimulation.

Theorem 9.1.5 If R be a strong bisimulation on 〈σ,A, ρ〉 ∈ TSn
A
, then so

is R+. �

Proof Note that R 6 R+ and so σ 6 σR 6 σR+. We now prove, by
induction on n, that RnA 6 ARn and Rnρ 6 ρ for all n > 1. For n = 1,
the statement holds by the definition of strong bisimulation. Suppose the
statement holds for n > 1. Then

Rn+1A = RRnA 6 RARn 6 ARRn = ARn+1

and Rn+1ρ = RRnρ 6 Rρ 6 ρ. Now,

R+A = (
∞∑

n=1

Rn)A =
∞∑

n=1

RnA 6
∞∑

n=1

ARn = A
∞∑

n=1

Rn = AR+,

and similarly R+ρ 6 ρ. �

Strong bisimulation is preserved under isomorphism. Note that this
property is vital; it says that the numbering we picked to represent the
system in matrix terms is irrelevant.

Theorem 9.1.6 Let R be a strong bisimulation on 〈σ,A, ρ〉 ∈ TSn
A
. Then,

for any isomorphism P , the relation R′ = PRPT is a strong bisimulation on
〈σ′, A′, ρ′〉 ∈ TSn

A
where σ′ = σPT, A′ = PAPT and ρ′ = Pρ. �

Proof First, we have

σ′ = σPT 6 σRPT = σPTPRPT = σ′R′.

Then,

R′A′ = PRPTPAPT = PRAPT
6 PARPT = PAPTPRPT = A′R′

and finally R′ρ′ = PRPTPρ = PRρ 6 Pρ = ρ′. �

Note that if R is an equivalence relation, then R′ is also an equivalence
relation; a strong bisimulation equivalence is therefore also preserved under
isomorphism.

9.2. Strong lumping 131

9.2 Strong lumping

Lumping is a process of obtaining a smaller system from a bigger one by
joining states that are bisimulation equivalent. In this section we define
lumping using matrices. First we need to introduce the concept of a collector
matrix.

A relation V ∈ P(A)n×N , n > N in which every row contains exactly
one 1 is called a collector. Note that V ·1 = 1. A matrix U ∈ P(A)N×n such
that U · 1 = 1 and UV = IN is a distributor for V . The matrix W = V T

is an example of a distributor for V ; it is called the maximal distributor for
V (no entry can be changed to 1 in W if it is to stay a distributor for V).

Example 9.2.1 The matrix V =

(
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

)
is a collector. The matrix U =

(1 0 0 0 0
0 {a,b} 1 0 0
0 0 0 1 0

)
, with a, b ∈ A, is an example of a distributor for V , and

V T =
(

1 0 0 0 0
0 1 1 0 0
0 0 0 1 1

)
is the maximal one. �

The following theorem shows that any equivalence relation can be de-
composed into a product of a collector and its transpose.

Theorem 9.2.2 Let R ∈ {0, 1}n×n be an equivalence relation. Then there
exists a unique (modulo isomorphism) matrix V ∈ P(A)n×N such that R =
V V T. Moreover, this V is a collector. �

Proof See [91]. �

We give an example of an equivalence relation and the collector associ-
ated to it.

Example 9.2.3 Let R =
(

1 0 0
0 1 1
0 1 1

)
. It is easy to show that R is an equiva-

lence relation. We obtain V =
(

1 0
0 1
0 1

)
.

Every block diagonal matrix with blocks consisting entirely of 1’s is an
equivalence relation. This example shows how the collector is obtained when
a relation is in this form. This automatically gives the general method for
obtaining the collector because it is not hard to show that every equivalence
relation can be permuted into the mentioned block form. �

We can think of a collector matrix as a matrix in which the rows represent
states, the columns represent the equivalence classes, and the entries indicate
which states belong to which classes.

132 Chapter 9. Strong bisimulation

Any system can be reduced modulo an equivalence relation as follows.
The states of the reduced system are the equivalence classes of the original
system. The initial state is the class that contains the initial state of the
original system. The set of terminating states consists of the classes that
contain at least one terminating state. The reduced system performs a
transition from one class to another if there is a state in the first class that
performs the same transition to some state in the other class. In matrix
terms, the reduction by some equivalence relation is formally given in the
following definition.

Definition 9.2.4 (Reduction by an equivalence relation) Let
〈σ,A, ρ〉 ∈ TSn

A
be a transition system and let R ∈ {0, 1}n×n be

some equivalence relation. If R = V V T for a collector V ∈ {0, 1}n×N , then
〈σ,A, ρ〉 reduces by R to the transition system 〈σ̂, Â, ρ̂〉 ∈ TSN

A
defined by:

σ̂ = σV, Â = V TAV and ρ̂ = V Tρ. �

We are particulary interested in reduction modulo a strong bisimulation
equivalence.

Definition 9.2.5 (Strong lumping) If 〈σ,A, ρ〉 ∈ TSn
A

reduces by an
equivalence relation R to 〈σ̂, Â, ρ̂〉 ∈ TSN

A
, and R is a strong bisimulation,

we say that it lumps (by R) to 〈σ̂, Â, ρ̂〉. �

We sometimes call 〈σ̂, Â, ρ̂〉 the lumped system assuming that R can be
obtained from the context.

Example 9.2.6 Consider the transition system and the strong bisimulation
from Example 9.1.2. By adding the identity matrix to R we get a strong
bisimulation R′ = I + R that is an equivalence relation. This situation is
depicted in Figure 9.2a. Since

R′ =




1 0 0 0 0
0 1 1 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 1 1




=




1 0 0
0 1 0
0 1 0
0 0 1
0 0 1







1 0 0 0 0
0 1 1 0 0
0 0 0 1 1


 = V V T,

the system 〈σ,A, ρ〉 from Example 9.1.2 lumps by R′ to

Â = V TAV =




0 {a} 0
0 0 {b, c}
0 {d} 0


 , σ̂ = σV = (1, 0, 0), ρ̂ = V Tρ =




0
0
1


 .

�

The lumped system is depicted in Figure 9.2b.

9.3. Strong bisimulation between systems 133

a) GFED@ABCs1

↓

a

��		
		

		
	

R′

g
�

W

a

��5
55

55
55

GFED@ABCs2

R′

2�
L

b !!

R′

c

��

GFED@ABCs3

R′

�
?r

b

 c
!!

GFED@ABCs4
↓

d

JJ

R′

2
�L R′

____ GFED@ABCs5
↓

R′

2
�L

d
aa

b) GFED@ABCs1

↓

a

��
GFED@ABCs2,3

b
��

c

GFED@ABCs4,5

d

OO

↓

Figure 9.2: Transition system, strong lumping and the lumped system –
Example 9.2.6

We now show that strong lumping coincides with the notion of ordi-
nary lumping [67, 82] from Markov chain theory where it is more usual to
define lumping conditions in terms of a collector and an arbitrary distrib-
utor associated to it. Given a bisimulation equivalence relation R = V V T,
we have that V V TA 6 AV V T and V V Tρ 6 ρ. Note that σ 6 σV V T

holds trivially because V V T > I. We show that the first inequality is
equivalent to V V TAV 6 AV . Note that V V TAV 6 AV is implied by
V V TA 6 AV V T by multiplying both sides of the equality on the right by
V . To prove the other implication, we have V V TA 6 V V TAV V T 6 AV V T.
Because V V T > I we also have AV 6 V V TAV and ρ 6 V V Tρ, and so
V V TAV = AV and V V Tρ = ρ. These conditions do not depend on the
particular choice of a distributor; in particular, it does not have to be the
maximal one. Suppose that there is some U such that UV = I. Then
V UAV = V UV V TAV = V V TAV 6 AV and similarly V Uρ = ρ. This is
exactly the same as the conditions for ordinary lumping of Markov reward
chains proposed in [82]. Note that the definition of the lumped process
〈σ̂, Â, ρ̂〉 is also independent on the particular distributor for U . This is
because Â = V TAV = V TV UAV = UAV and ρ̂ = V Tρ = V TV Uρ = Uρ
for any distributor U .

9.3 Strong bisimulation between systems

The notion of bisimulation naturally extends to a relation between two sys-
tems.

134 Chapter 9. Strong bisimulation

Definition 9.3.1 (Strong bisimulation between systems) A relation
R ∈ {0, 1}m×n is a strong bisimulation between the transition systems
〈σA, A, ρA〉 ∈ TSn

A
and 〈σB , B, ρB〉 ∈ TSm

A
if

RB 6 AR, RρB 6 ρA, and σB 6 σAR,

and symmetrically

RTA 6 BRT, RTρA 6 ρB , and σA 6 σBR
T. �

The following theorem shows that strong bisimulation between a system
and itself induces a strong bisimulation on that system. We could have
alternatively defined strong bisimulation on a system this way.

Theorem 9.3.2 Let 〈σ,A, ρ〉 ∈ TSn
A

be a matrix transition system. Let
R ∈ {0, 1}n×n be a strong bisimulation between 〈σ,A, ρ〉 and 〈σ,A, ρ〉. Then
R′ = R+RT is a strong bisimulation on 〈σ,A, ρ〉. �

Proof The relation R′ is clearly symmetric. We only prove that it satisfies
the first condition of Definition 9.1.1. We have R′A = (R + RT)A = RA+
RTA 6 AR+ART = A(R+RT) = AR′ and R′ρ = (R+RT)ρ = Rρ+RTρ 6
ρ+ ρ = ρ. �

Strong bisimulation between two systems can also be defined via a strong
bisimulation on a combined system.

Theorem 9.3.3 Let 〈σA, A, ρA〉 ∈ TSn
A

and 〈σB , B, ρB〉 ∈ TSm
A

be two
matrix transition systems. A relation R is a strong bisimulation on between
〈σA, A, ρA〉 and 〈σB , B, ρB〉 if the symmetric relation

R′ =




1 0 0
0 0 R
0 RT 0




is a strong bisimulation on the transition system 〈σ, T, ρ〉 defined by:

σ =
(
1 0 0

)
, T =




1 σA σB
0 A 0
0 0 B


 and ρ =




1
ρA
ρB


 .

�

9.3. Strong bisimulation between systems 135

Proof We have

R′T =




1 0 0
0 0 R
0 RT 0






1 σA σB
0 A 0
0 0 B


 =




1 σA σB
0 0 RB
0 RTA 0


 ,

TR′ =




1 σA σB
0 A 0
0 0 B






1 0 0
0 0 R
0 RT 0


 =




1 σBR
T σAR

0 0 AR
0 BRT 0




and

R′ρ =




1 0 0
0 0 R
0 RT 0






1
ρA
ρB


 =




1
RρB
RTρA


 .

From R′T 6 TR′ we get σA 6 σBR
T, σB 6 σAR, RB 6 AR and RTA 6

BRT. From R′ρ 6 ρ we get ρB 6 ρA and RTρA 6 ρB . These are the
conditions of Definition 9.3.1. �

The definition of a strong bisimulation between two systems allows us
to establish another relation between the original and the lumped process.

Theorem 9.3.4 Suppose 〈σ,A, ρ〉 lumps by R = V V T to 〈σ̂, Â, ρ̂〉. Then
V is a strong bisimulation between A and Â. �

Proof Since R = V V T is a bisimulation relation, we have V V TA 6 AV V T

and V V Tρ 6 ρ. Multiplying the first condition by V from the right we get
V V TAV 6 AV and thus V Â 6 AV . Moreover, since ρ̂ = V Tρ, it follows
from V V Tρ 6 ρ that V ρ̂ 6 ρ. We trivially have σV 6 σV and so, V satisfies
the first set of conditions in Definition 9.3.1. That it also satisfies the second
set of conditions follows directly from V V T > I. �

9.3.1 Compatibility with the operations

The following series of theorems show that strong bisimulation is compatible
with all the operations on transition systems that we defined in Section 8.3.
Note how the block matrix definitions of the operators give very compact
and readable proofs.

Theorem 9.3.5 (Alternative composition) Let RA be a strong bisim-

ulation between 〈σA, A, ρA〉 ∈ TSnA×mA

A
and 〈σ′A, A

′, ρ′A〉 ∈ TS
n′

A
×m′

A

A
. Let

136 Chapter 9. Strong bisimulation

RB be a strong bisimulation between the transition systems 〈σB , B, ρB〉 ∈

TSnB×mB

A
and 〈σ′B , B

′, ρ′B〉 ∈ TS
n′

B×m′

B

A
. Then

R =




1 0 0
0 RA 0
0 0 RB




is a strong bisimulation between 〈σA, A, ρA〉+〈σB, B, ρB〉 and 〈σ′A, A
′, ρ′A〉+

〈σ′B , B
′, ρ′B〉. �

Proof The relation R is symmetric because RA and RB are. We have

R




1 σ′AA
′ σ′BB

′

0 A′ 0
0 0 B′


 =




1 σ′AA
′ σ′BB

′

0 RAA
′ 0

0 0 RBB
′


 6




1 σARAA
′ σBRBB

′

0 RAA
′ 0

0 0 RBB
′




6




1 σAARA σBBRB
0 ARA 0
0 0 BRB


 =




1 σAA σBB
0 A 0
0 0 B


R

and

R



σ′Aρ

′
A + σ′Bρ

′
B

ρ′A
ρ′B


 =



σ′Aρ

′
A+σ′Bρ

′
B

RAρ
′
A

RBρ
′
B


 6

6



σARAρ

′
A + σBRBρ

′
B

RAρ
′
A

RBρ
′
B


 6



σAρA + σBρB

ρA
ρB


 . �

Note also that
(
1 0 0

)
R =

(
1 0 0

)
.

Similarly for the symmetric case.

Theorem 9.3.6 (Sequential composition) Let RA be a strong bisim-

ulation between 〈σA, A, ρA〉 ∈ TSnA×mA

A
and 〈σ′A, A

′, ρ′A〉 ∈ TS
n′

A×m′

A

A
.

Let RB be a strong bisimulation between 〈σB , B, ρB〉 ∈ TSnB×mB

A
and

〈σ′B , B
′, ρ′B〉 ∈ TS

n′

B
×m′

B

A
. Then

R =

(
RA 0
0 RB

)

is a strong bisimulation between 〈σA, A, ρA〉 · 〈σB , B, ρB〉 and 〈σ′A, A
′, ρ′A〉 ·

〈σ′B , B
′, ρ′B〉. �

9.3. Strong bisimulation between systems 137

Proof The relation R is symmetric because RA and RB are. We have

R

(
A′ ρ′Aσ

′
BB

′

0 B′

)
=

(
RAA

′ RAρ
′
Aσ

′
BB

′

0 RBB
′

)
6

(
RAA

′ RAρ
′
AσBRBB

′

0 RBB
′

)

6

(
ARA ρAσBBRB
0 BRB

)
=

(
A ρAσBB
0 B

)
R

and

R

(
ρ′Aσ

′
Bρ

′
B

ρ′B

)
=

(
RAρ

′
Aσ

′
Bρ

′
B

RBρ
′
B

)
6

(
RAρ

′
AσBRBρ

′
B

RBρ
′
B

)
6

(
ρAσBρB
ρB

)
.
�

Also
(
1 0

)
R =

(
1 0

)
.

Similarly for the symmetric case.

Theorem 9.3.7 (Repetition) Let R be a strong bisimulation between
〈σ,A, ρ〉 ∈ TSn×m

A
and 〈σ′, A′, ρ′〉 ∈ TSn

′×m′

A
. Then

R′ =

(
1 0
0 R

)

is a strong bisimulation between ∗〈σ,A, ρ〉 and ∗〈σ′, A′, ρ′〉. �

Proof The relation R′ is symmetric because R is. We have

R′

(
0 σ′A′

0 A′ + ρ′σ′A′

)
=

(
0 σ′A′

0 RA′ +Rρ′σ′A′

)
6

(
0 σRA′

0 AR+ ρσRA′

)
6

6

(
0 σAR
0 AR+ ρσAR

)
=

(
0 σA
0 A+ ρσA

)
R′

and

R′

(
1
ρ′

)
=

(
1
Rρ′

)
6

(
1
ρ

)
.

Also,
(
1 0

)
R′ =

(
1 0

)
. Similarly for the symmetric case. �

Parallel composition is the only operation that is not defined using block
matrices. The proof, however, goes smoothly by applying the equalities for
Kronecker product and Kronecker sum established in the preliminaries.

138 Chapter 9. Strong bisimulation

Theorem 9.3.8 (Parallel composition) LetRA be a strong bisimulation

between 〈σA, A, ρA〉 ∈ TSnA×mA

A
and 〈σ′A, A

′, ρ′A〉 ∈ TS
n′

A×m′

A

A
. Let RB be

a strong bisimulation between 〈σB , B, ρB〉 ∈ TSnB×mB

A
and 〈σ′B , B

′, ρ′B〉 ∈

TS
n′

B
×m′

B

A
. Then R = RA⊗RB is a strong bisimulation between 〈σA, A, ρA〉‖

〈σB , B, ρB〉 and 〈σ′A, A
′, ρ′A〉 ‖ 〈σ

′
B , B

′, ρ′B〉. �

Proof First, we have (RA ⊗RB)T = RA
T ⊗ RB

T = RA ⊗ RB and hence
RA ⊗RB is symmetric.

Next,

(RA ⊗RB)
(
Ω̄ · (A′ ⊕B′) + Ω · (A′ ⊗B′)

)

= Ω̄ · (RA ⊗RB)(A′ ⊕B′) + Ω · (RA ⊗RB)(A′ ⊗B′)
= Ω̄ · (RA ⊗RB)(A′ ⊗ I + I ⊗B′) + Ω · (RA ⊗RB)(A′ ⊗B′)
= Ω̄ · (RAA

′ ⊗RB) + Ω̄ · (RA ⊗RBB
′) + Ω · (RAA

′ ⊗RBB
′)

6 Ω̄ · (ARA ⊗RB) + Ω̄ · (RA ⊗BRB) + Ω · (ARA ⊗BRB)
= Ω̄ · (A⊗ I)(RA ⊗RB) + Ω̄ · (I ⊗B)(RA ⊗RB) + Ω · (A⊗B)(RA ⊗RB)
= Ω̄ · (A⊕B)(RA ⊗RB) + Ω · (A⊗B)(RA ⊗RB)
=

(
Ω̄ · (A⊕B) + Ω · (A⊗B)

)
(RA ⊗RB).

Also,

(RA ⊗RB)(ρ′A ⊗ ρ′B) = RAρ
′
A ⊗RBρ

′
B 6 ρA ⊗ ρB

and
σ′A ⊗ σ′B 6 σARA ⊗ σBRB = (σA ⊗ σB)(RA ⊗RB).

Similarly for the symmetric case. �

9.4 Backward bisimulation

Backward bisimulation as introduced in [75] is a dual to standard strong
bisimulation. It requests that two related states have the same set of actions
leading to them. In the setting with successful termination, it is natural to
also require that they must have the same termination behavior too. The
relation must be total to avoid the case when there is only one pair in the
relation, namely the one consisting of the initial state and itself.

Definition 9.4.1 (Backward strong bisimulation) A symmetric and
total relation R ∈ {0, 1}n×n is called a backward strong bisimulation on
the matrix transition system 〈σ,A, ρ〉 ∈ TSn

A
if

σR = σ, RAT 6 ATR and Rρ 6 ρ. �

9.4. Backward bisimulation 139

This definition corresponds to the original definition of backward strong
bisimulation because σR = σ says that the initial state is only related to
itself, and RAT 6 ATR says that:

sj

a
��

si
R ___ sk

implies

sℓ
R

a
��

sj.

si

The condition Rρ 6 ρ is the same as in the standard strong bisimulation.

Note that an alternative definition is to say that R is a backward strong
bisimulation on 〈σ,A, ρ〉 iff it is a total strong bisimulation on 〈σ,AT, ρ〉
that also satisfies σR 6 σ. From this it follows that an arbitrary sum of
backward strong bisimulations and the equivalence closure of a backward
strong bisimulation is again a backward strong bisimulation.

Example 9.4.2 Consider the transition system and the relation R from
Figure 9.3. We have

σ =
(
1 0 0

)
, A =




0 {a} {a}
{b, c} 0 0
{b} 0 0


 and ρ = 0.

The relation

R =




1 0 0
0 1 1
0 1 0




is a backward strong bisimulation on 〈σ,A, ρ〉 because

σR =
(
1 0 0

)
= σ, Rρ = 0 = ρ and

RAT =




0 {b, c} {b}
{a} 0 0
{a} 0 0


 6




0 {b, c} {b, c}
{a} 0 0
{a} 0 0


 = ATR.

Note that R is total because RRT = R2 =




1 0 0
0 1 1
0 1 1


 > I. �

To give more correspondence with the result of [75] we give a definition of
backward strong bisimulation between systems. We can apply the technique

140 Chapter 9. Strong bisimulation

GFED@ABCs1

↓

R

W
�

g

a

��

a

��
GFED@ABCs2R W

� g

b

88

c

??

GFED@ABCs3
R

_ _ _ _ _ _

b

TT
R =




1 0 0
0 1 1
0 1 0




Figure 9.3: Transition system and a backward strong bisimulation on it –
Example 9.4.2

of Theorem 9.3.3 and say that relation R is a backward strong bisimulation
between 〈σA, A, ρA〉 and 〈σB , B, ρB〉 if

R′ =




1 0 0
0 0 R
0 RT 0




is a backward strong bisimulation on the transition system

〈
(
1 0 0

)
,




1 σA σB
0 A 0
0 0 B


 ,




1
ρA
ρB


〉.

The requirement that R′ is total implies that both R and RT are total.
Also, because R′ satisfies the conditions of Definition 9.4.1, we obtain the
following conditions for the backward strong bisimulation between systems:

RBT
6 ATR, RρB 6 ρA, RσB

T
6 σA

T

and
RTAT 6 BTRT, RTρA 6 ρB , RTσA

T 6 σB
T.

Note that the condition on the initial vector is different than in the case of
strong bisimulation. It says that only the initial state of one system can be
related to the initial state of the other system.

We now define backward strong lumping.

Definition 9.4.3 (Backward Strong lumping) If 〈σ,A, ρ〉 ∈ TSn
A

re-
duces to 〈σ̂, Â, ρ̂〉 ∈ TSN

A
by a backward strong bisimulation equivalence

R = V V T we say that it backward lumps (by R) to 〈σ̂, Â, ρ̂〉. �

9.4. Backward bisimulation 141

a) GFED@ABCs1

↓

R′

W
�

g

a

��

a

��
GFED@ABCs2R′

W
� g

b

88

c

??

GFED@ABCs3 R′

W
�

gR′

_ _ _ _ _ _

b

TT
b) GFED@ABCs1

↓

a

��
GFED@ABCs2,3

↓

c

OO

b

TT

Figure 9.4: Backward strong lumping and the lumped system – Exam-
ple 9.4.4

Example 9.4.4 Consider again the transition system and the backward
strong bisimulation R from Example 9.4. By adding the identity matrix to
R we obtain a backward strong bisimulation R′ = I+R that is an equivalence
relation. This situation is depicted in Figure 9.4a. Since

R′ =




1 0
0 1
0 1



(

1 0 0
0 1 1

)
= V V T,

the system backward lumps by R′ to

Â = V TAV =

(
0 {a}

{b, c} 0

)
, σ̂ = σV =

(
1 0
)
, ρ̂ = V Tρ = 0.

The lumped system is depicted in Figure 9.4b. �

Definitions 9.4.3 and 9.4.1 give the following diagram:

〈σ,A, ρ〉
transpose //

backward
strong lumping

��

〈σ,AT, ρ〉

induced
strong lumping

��
〈σV, V TAV, V Tρ〉 〈σV, V TATV, V Tρ〉.

For the definition of backward strong lumping to be considered sound, we
have to show that the diagram can be closed, i.e. that

〈σV, V TAV, V Tρ〉
transpose // 〈σV, V TATV, V Tρ〉 .

This, however, is trivial because (V TATV)
T

= V T(AT)
T
V TT

= V TAV .

142 Chapter 9. Strong bisimulation

9.5 Strong bisimulation up-to

Definition 9.5.1 (Strong bisimulation up-to) A symmetric relation
R ∈ {0, 1}n×n is called a strong bisimulation up-to φ ∈ {0, 1}n×n on the
matrix transition system 〈σ,A, ρ〉 ∈ TSn

A
if

σ 6 φRφ, RA 6 AφRφ, and Rρ 6 ρ. �

Let us explain the definition using the standard terms. First, σ 6 φRφ
means that the initial state does not need to be related to itself but rather
that it is in relation φ with some k, ℓ that are related by R. The main idea of
the second condition is that every action must be simulated but the resulting
states are allowed to transform themselves by φ and then be related in R.
Formally, the condition RA 6 AφR means that:

si
R ___ sk

a
��
sj

implies

si

a
��
sℓ

φ
__ s′ℓ R

__ s′j φ
__ sj .

The condition on the termination vector is the same as in the standard
strong bisimulation.

Note that R is a strong bisimulation up-to the identity relation I iff it
is a strong bisimulation. Also, if R is a transitive bisimulation up-to φ and
φ 6 R, then RA 6 AφRφ 6 ARRR 6 AR and so, R is a strong bisimulation
on 〈σ,A, ρ〉.

We give an example.

Example 9.5.2 Consider the transition system and the relations R and φ
from Figure 9.5. We have

σ =
(
1 0 0 0

)
, A =




0 {a} {a} 0
0 0 0 {b}
0 0 0 {c}
0 0 0 0


 and ρ = 0.

We obtain

φRφ =




1 0 0 0
0 0 1 0
0 1 1 0
0 0 0 1







1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 0 1 0
0 1 1 0
0 0 0 1


 =




1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1


 .

9.5. Strong bisimulation up-to 143

Now we show that R is a bisimulation up-to φ on 〈σ, a, ρ〉. We have

σ =
(
1 0 0 0

)
= σφRφ, Rρ = 0 = ρ and

RA =




0 {a} {a} 0
0 0 0 0
0 0 0 {b, c}
0 0 0 0


 6




0 {a} {a} 0
0 0 0 {b}
0 0 0 {b, c}
0 0 0 0


 = AφRφ.

�

GFED@ABCs1

↓

a

����
��
��
�

a

��3
33

33
33

R W
� g

φ
W

�
g

GFED@ABCs2

b
��3

33
33

33

φ ____ GFED@ABCs3

c
����
��
��
�

R

�
?r

φ
L �

2

GFED@ABCs4

R

�? r
φ

L �
2

R =




1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1




φ =




1 0 0 0
0 0 1 0
0 1 1 0
0 0 0 1




Figure 9.5: Transition system and a bisimulation up-to on it – Example 9.5.2

The most common use of the up-to technique is when φ is also a bisim-
ulation relation (in most cases the maximal one). The following theorem
shows that in this case a strong bisimulation up-to φ can be transformed
into a standard strong bisimulation on the same system.

Theorem 9.5.3 Let φ be a strong bisimulation equivalence on 〈σ,A, ρ〉 ∈
TSn

A
. Then a symmetric relation R is a strong bisimulation up-to φ on

〈σ,A, ρ〉 iff R′ = φRφ is a strong bisimulation on 〈σ,A, ρ〉. �

Proof Suppose first that R is a strong bisimulation up-to φ on 〈σ,A, ρ〉.
Then R′T = (φRφ)T = φTRTφT = φRφ = R′, and so R′ is symmetric. Also,
we have

R′A = φRφA 6 φRAφ 6 φAφRφφ =

= φAφRφ 6 AφφRφ = AφRφ = AR′,

and R′ρ = φRφρ 6 φRρ 6 φρ 6 ρ.
Suppose now that φRφ is a strong bisimulation on 〈σ,A, ρ〉. Using that

I 6 φ we have RA 6 φRφA 6 AφRφ and Rρ 6 φRφρ 6 ρ. �

144 Chapter 9. Strong bisimulation

Using this theorem we can define strong lumping up-to.

Definition 9.5.4 (Strong lumping up-to) Let R be a strong bisimula-
tion up-to φ on 〈σ,A, ρ〉 ∈ TSn

A
. If φRφ is an equivalence relation, and

〈σ,A, ρ〉 reduces by φRφ to 〈σ̂, Â, ρ̂〉 ∈ TSNA , we say that 〈σ,A, ρ〉 lumps by
R up-to φ to 〈σ̂, Â, ρ̂〉. �

We give an example of a strong lumping up-to.

a) GFED@ABCs1

↓

a

����
��
��
�

a

��3
33

33
33

φRφ W
� g

GFED@ABCs2

b
��3

33
33

33
φRφ ____

φRφ

2�
L

GFED@ABCs3

c
����
��
��
�

φRφ

�
?r

GFED@ABCs4

φRφ
L �

2

b) GFED@ABCs1

↓

a

��
GFED@ABCs2,3

b

��
c

GFED@ABCs4

Figure 9.6: Lumping up-to and the lumped system – Example 9.5.5

Example 9.5.5 Let 〈σ,A, ρ〉 and the relations R and φ be as in Exam-
ple 9.5.2. We have that

φRφ =




1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1


 =




1 0 0
0 1 0
0 1 0
0 0 1







1 0 0 0
0 1 1 0
0 0 0 1


 = V V T

is an equivalence relation. The relation φRφ on 〈σ,A, ρ〉 is depicted in
Figure 9.6a. Now, the system 〈σ,A, ρ〉 lumps by R up-to φ to

Â = V TAV =




0 0 {a}
0 0 {b, c}
0 0 0


 , σ̂ = σV =

(
1 0 0

)
, ρ̂ = V Tρ = 0.

The lumped system is depicted in Figure 9.6b. �

Chapter 10

Bisimulations on systems

with silent steps

A silent step in a transition system is a step that is labeled by the internal
action τ . In this chapter we give matrix definitions of two most popu-
lar bisimulation relations that abstract away from silent steps, that is of
weak [79] and branching bisimulation [53].

Note that every matrix T ∈ P(A)n×n can be uniquely represented as
T = A+ {τ} ·S where τ ∈ A, and A,S ∈ P(A)n×n are such that {τ} ·A = 0
and S is a 0–1 matrix. To make this form of T more explicit we write
〈σ,A, S, ρ〉 instead of 〈σ, T, ρ〉. Note that the conditions imposed on T in all
bisimulation definitions from the previous chapter can be decomposed into
separate conditions on A and S. For example, for the strong bisimulation,
the condition RT 6 TR is valid if and only if the inequalities RA 6 AR and
RS 6 SR both hold.

10.1 Weak bisimulation

Weak bisimulation [79] ignores silent transitions in a very general way. It
requests that a transition labeled with an action is simulated by a transition
labeled with the same action but preceded and followed by a sequence of
transitions labeled by τ . This allows for a simple matrix characterization
using the known matrix definition of reflexive-transitive closure. It is known
that weak bisimulation can be interpreted as a strong bisimulation on a
system obtained by an operation we call τ -closure. We define this transfor-
mation in terms of matrices. We also introduce the notion of weak lumping,
that is the reduction modulo weak bisimulation, and prove its soundness

145

146 Chapter 10. Bisimulations on systems with silent steps

with respect to τ -closure. With soundness we mean the property that the
τ -closure followed by a strong lumping is the same as the induced weak
lumping followed by the τ -closure.

We now give a matrix definition of a weak bisimulation.

Definition 10.1.1 (Weak bisimulation on a system) A symmetric re-
lation R ∈ P(A)n×n is a weak bisimulation on 〈σ,A, S, ρ〉 ∈ TSn

A
if

σ 6 σR, RS 6 S∗R, RA 6 S∗AS∗R, and Rρ 6 S∗ρ. �

Clearly, if there are no silent steps, then S = 0, and so S∗ = I and R is
a strong bisimulation.

Our definition of weak bisimulation corresponds to the standard one. As
for the strong bisimulation we require that the initial state must be related
to itself. Note that S∗[i, j] = 1 iff there is an n > 0 such that Sn[i, j] = 1.
Furthermore, this is equivalent to saying that there exist i0, . . . , in such that
i0 = i, in = j and S[ik, ik+1] = 1 for all k = 0, . . . , n − 1. Recall that
S[i, j] = 1 means, in the standard theory, that si

τ
→ sj. Thus, S∗[i, j] = 1

means that we have si0
τ
→. . .

τ
→sin or that, in the standard notation, si ⇒ sj.

Therefore, RS 6 S∗R means that

si
R ___ sk

τ��
sj

implies

si

��
sℓ

R ___ sj.

As before, a ∈ (RA)[i, j] iff there is a k such that R[i, k] = 1 and a ∈ A[k, j].
Now, a ∈ (S∗AS∗R)[i, j] iff there exist 1 6 ℓ, ℓ′, ℓ′′ 6 n such that S∗[i, ℓ′] = 1,
a ∈ A[ℓ′, ℓ′′], S∗[ℓ′′, ℓ] = 1 and R[ℓ, j] = 1. Therefore, RA 6 S∗AS∗R means
that

si
R ___ sk

a

��
sj

implies

si

��
a��

��
sℓ

R ___ sj ,

for a 6= τ . Finally, Rρ 6 S∗ρ means that

si
R ___ sj↓ implies

si

��

sj.

sℓ↓
R

rrrr

This is the standard definition of weak bisimulation.

10.1. Weak bisimulation 147

Example 10.1.2 Consider the transition system and the relation R de-
picted in Figure 10.1. The transition system is defined by

σ =
(
1 0 0 0 0

)
, T =




0 {τ} {τ} 0 0
0 {c} 0 {τ} {a, b}
0 0 {c} {τ} {a}
0 0 0 0 {b}
0 0 0 0 0



, ρ =




0
1
1
0
0



.

We have

S =




0 1 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0




and A =




0 0 0 0 0
0 {c} 0 0 {a, b}
0 0 {c} 0 {a}
0 0 0 0 {b}
0 0 0 0 0



.

From this

S∗ =




1 1 1 1 0
0 1 0 1 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1



, S∗AS∗ =




0 {c} {c} {c} {a, b}
0 {c} 0 {c} {a, b}
0 0 {c} {c} {a, b}
0 0 0 0 {b}
0 0 0 0 0




and S∗ρ =




1
1
1
0
0



.

Now, since R =




1 1 0 0 0
1 1 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1




, we have σR =
(
1 1 0 0 0

)
> σ,

Rρ =




1
1
1
0
0




= S∗ρ, RS =




0 1 0 1 0
0 1 0 1 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0



6




1 1 1 1 0
1 1 1 1 0
0 1 0 1 0
0 0 0 1 0
0 0 0 0 1




= S∗R

and

RA =




0 {c} 0 0 {a, b}
0 {c} {c} 0 {a, b}
0 {c} 0 0 {a, b}
0 0 0 0 {b}
0 0 0 0 0



6




{c} {c} {c} {c} {a, b}
{c} {c} {c} {c} {a, b}
0 {c} 0 {c} {a, b}
0 0 0 0 {b}
0 0 0 0 0




= S∗AS∗R.

So, R is a weak bisimulation. �

148 Chapter 10. Bisimulations on systems with silent steps

GFED@ABCs1

↓

τ

����
��

��
��

τ

��9
99

99
99

9 R

W
�

g

GFED@ABCs2
↓c

88

R
2�

L

R

�

�
m

a

""

b

��

τ

��9
99

99
99

9
R ______ GFED@ABCs3

↓ c
ff

a

}}

τ

����
��

��
��

GFED@ABCs4 R

W
�

g

b
��

GFED@ABCs5

R

2
�L

R =




1 1 0 0 0
1 1 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1




Figure 10.1: Transition system and a weak bisimulation on it – Exam-
ple 10.1.2

10.1.1 Weak bisimulation as a strong bisimulation

We now prove that weak bisimulation can also be defined as a strong bisim-
ulation on a transformed system. First we introduce the notion of τ -closure.

Definition 10.1.3 (τ -closure) Let 〈σ,A, S, ρ〉 ∈ TSn
A

be a transition sys-
tem. The τ -closure of 〈σ,A, S, ρ〉 is the transition system 〈σ, S∗AS∗, S∗, ρ〉 ∈
TSn

A
. �

We give an example.

Example 10.1.4 Consider again the transition system from Exam-
ple 10.1.2, i.e. the one depicted in Figure 10.1. After τ -closing it becomes
the transition system depicted in Figure 10.2. �

We prove that a relation is a weak bisimulation on a transition system
iff it is a strong bisimulation on its τ -closure.

Theorem 10.1.5 A relation R ∈ P(A)n×n is a weak bisimulation on the
transition system 〈σ,A, S, ρ〉 ∈ TSn

A
iff it is a strong bisimulation on the

system 〈σ, S∗AS∗, S∗, ρ〉 ∈ TSn
A
. �

10.1. Weak bisimulation 149

GFED@ABCs1

↓

↓

b

uu

a

))

c

��

b

��

τ

((

c

��
τ

||
c

""

τ

��
GFED@ABCs2
↓

τ &&

c
88

a

b

��

c
""

τ

��

GFED@ABCs3
↓

τxx

c
ff

a

~~

b

��

c
||

τ

��
GFED@ABCs4

b

��

τ
rr

GFED@ABCs5

τ

hh

Figure 10.2: Transition system from Figure 10.1 after τ -closure

Proof Suppose R is a weak bisimulation on 〈σ,A, S, ρ〉. First we prove,
by induction on n, that RSn 6 S∗R. The base case follows from I 6 S∗.
Suppose the statement holds for n > 0. Since RS 6 S∗R, we have

RSn+1 = RSnS 6 S∗RS 6 S∗S∗R = S∗R.

Then,

RS∗ = R

∞∑

n=0

Sn =

∞∑

n=0

RSn 6

∞∑

n=0

S∗R = S∗R.

Using this and that RA 6 S∗AS∗R, we have

RS∗AS∗
6 S∗RAS∗

6 S∗S∗AS∗RS∗ =

= S∗AS∗RS∗ 6 S∗AS∗S∗R = S∗AS∗R.

Also, RS∗ρ 6 S∗Rρ 6 S∗ρ.

Suppose now that R is a strong bisimulation on 〈σ, S∗AS∗, S∗, ρ〉. Using
that I 6 S∗, we have RS 6 RS∗ 6 S∗R, RA 6 RS∗AS∗ 6 S∗AS∗R and
Rρ 6 RS∗ρ 6 S∗ρ. �

150 Chapter 10. Bisimulations on systems with silent steps

10.1.2 Weak lumping

We now introduce a notion of lumping that corresponds to weak bisimula-
tion.

Definition 10.1.6 (Weak lumping) If 〈σ,A, S, ρ〉 ∈ TSn
A

reduces by a
weak bisimulation equivalence R = V V T to 〈σ̂, Â, Ŝ, ρ̂〉 ∈ TSN

A
, then we say

that it weakly lumps (by R) to 〈σ̂, Â, Ŝ, ρ̂〉. �

An example follows.

Example 10.1.7 Consider the transition system and the weak bisimulation
from Example 10.1.2. By adding the identity matrix to R we get a weak
bisimulation R′ = I +R that is also an equivalence relation. This situation
is depicted in Figure 10.3a. Since

R′ =




1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 0
0 0 0 0 1




=




1 0 0
1 0 0
1 0 0
0 1 0
0 0 1







1 1 1 0 0
0 0 0 1 0
0 0 0 0 1


 = V V T,

the system from Example 10.1.2 weakly lumps by R′ to 〈σ̂, Â, ρ̂〉 defined by

σ̂ = σV =
(
1 0 0

)
, Â = V TAV =




0 0 {a, b}
0 0 {b}
0 0 0


 , ρ̂ = V Tρ =




1
0
0


 .

The weakly lumped system is depicted in Figure 10.3b. �

Definition 10.1.6 and Theorem 10.1.5 induce the following diagram:

Transition System
τ-closure //

weak
lumping

��

τ -closed
Transition System

induced
strong lumping

��
Weakly Lumped

Transition System
Strongly Lumped

τ -closed Transition System.

We can claim that our theory is sound only if we can show that the above
diagram can be closed, i.e. that also

Weakly Lumped
Transition System

τ-closure // Strongly Lumped
τ -closed Transition System.

10.1. Weak bisimulation 151

a) GFED@ABCs1

↓

τ

����
��

��
��

τ

��9
99

99
99

9

R′

2�
L

GFED@ABCs2
↓c

88

R′

2�
L

R′

�

�
m

a

""

b

��

τ

��9
99

99
99

9
R′

______ GFED@ABCs3
↓

R′

�
?r

R′

&

9
Q

c
ff

a

}}

τ

����
��

��
��

GFED@ABCs4 R′

W
�

g

b

��
GFED@ABCs5

R′

2
�L

b) ONMLHIJKs1,2,3

↓

↓

cvv

τ

��3
33

33
33

a

��

b

��

GFED@ABCs4

b
��

GFED@ABCs5

Figure 10.3: Transition system, weak lumping and the weakly lumped sys-
tem – Example 10.1.7

Closing the diagram means that the order of application of τ -closure and
lumping is irrelevant.

We prove a couple of lemmas first.

Lemma 10.1.8 For all n > 0, V TSnV 6 (V TSV)n 6 V TS∗V . �

Proof The proof is by induction on n. For n = 0, we have V TS0V =
V TIV = V TV = I = (V TSV)0 and (V TSV)0 = I = V TV 6 V TS∗V .
Suppose the lemma holds for n > 0. Then

V TSn+1V = V TSSnV 6 V TSV V TSnV 6 V TSV (V TSV)n 6 (V TSV)n+1.

By Theorem 10.1.5, we have V V TS∗ 6 S∗V V T implying V V TS∗V 6 S∗V .
Therefore,

(V TSV)n+1 = V TSV (V TSV)n 6 V TSV V TS∗V = V TSS∗V 6 V TS∗V.

�

Lemma 10.1.9 S∗V V T = S∗V V TS∗. �

Proof From I 6 S∗, we have S∗V V T = S∗V V TI 6 S∗V V TS∗. Since V V T

is a weak bisimulation relation, by Theorem 10.1.5, V V TS∗ 6 S∗V V T.
Multiplying by S∗ from the left we get S∗V V TS∗ 6 S∗S∗V V T = S∗V V T.�

152 Chapter 10. Bisimulations on systems with silent steps

We now prove the soundness theorem.

Theorem 10.1.10 If R = V V T is a weak bisimulation equivalence
on 〈σ,A, ρ〉, then (V TSV)∗ = V TS∗V , (V TSV)∗V TAV (V TSV)∗ =
V TS∗AS∗V and V TS∗ρ = (V TSV)∗V Tρ. �

Proof By Lemma 10.1.8 we have V TSnV 6 (V TSV)n 6 V TS∗V all n >
0. Summing over all n we get V TS∗V 6 (V TSV)∗ 6 V TS∗V and hence
(V TSV)∗ = V TS∗V .

By Theorem 10.1.5 we have that V V TS∗ 6 S∗V V T, V V TS∗AS∗ 6

S∗AS∗V V T and V V TS∗ρ 6 S∗ρ. These conditions imply (multiplying
by V from the right and using that I 6 V V T) that V V TS∗V = S∗V ,
V V TS∗AS∗V = S∗AS∗V and V V TS∗ρ = S∗ρ. Now, using Lemma 10.1.9
and the equality (V TSV)∗ = V TS∗V proven above, we have

(V TSV)∗V TAV (V TSV)∗ = V TS∗V V TAV V TS∗V =

= V TS∗V V TAS∗V = V TS∗V V TS∗AS∗V =

= V TS∗S∗AS∗V = V TS∗AS∗V

and

V TS∗ρ = V TS∗S∗ρ = V TS∗V V TS∗ρ = V TS∗V V Tρ = (V TSV)∗V Tρ. �

10.2 Branching bisimulation

Branching bisimulation [53] preserves the branching structure of a system
more than weak bisimulation by requiring that after the initial sequence of
τ steps the resulting state must again be bisimilar to the same state that
the starting state is bisimilar to. As we will see later the matrix approach
fails here because it cannot express this property directly unless we require
transitivity. The way out is to use a similar relation (not so uncommon,
see [35]) and prove that it is equivalent to the standard definition of branch-
ing bisimulation when it is transitive.

We first give our definition of branching bisimulation. Note that the
operation ⊓ becomes central. Then, we express branching bisimulation as a
strong bisimulation on a system closed under the sequence of τ -transitions
that connect related states (note that the closure now depends on the bisimu-
lation). Just as we did for weak, we introduce a notion of branching lumping

10.2. Branching bisimulation 153

and prove its soundness by showing that the corresponding diagram com-
mutes. At the end of this chapter we show that the stuttering property has
a nice matrix definition and we prove that branching bisimulation satisfies
it.

Definition 10.2.1 (Branching bisimulation) A symmetric relation R ∈
P(A)n×n is called a branching bisimulation on 〈σ,A, S, ρ〉 ∈ TSn

A
iff:

σ 6 σR, RS 6 (S∗⊓R)(I+S)R, RA 6 (S∗⊓R)AR and Rρ 6 (S∗⊓R)ρ. �

We now explain these conditions. As before, the initial state must be
related to itself. Note that ((S∗ ⊓ R)(I + S)R)[i, j] = 1 iff there exist k, ℓ
such that (S∗ ⊓ R)[i, k] = 1, (I + S)[k, ℓ] = 1 and R[ℓ, j] = 1. The first
equality is equivalent to S∗[i, k] = R[i, k] = 1; the second means that either
k = l or S[k, ℓ] = 1. So, RS 6 (S∗ ⊓R)(I + S)R says that

si
R ___ sk

τ

��
sj

implies

si

��
R

�
�
(

sℓ
R ___ sj

or

si

��
R

��
)

τ��
sℓ

R ___ sj.

Here is where our definition does not match the standard one. The standard
definition requires that the end state of the transition ⇒ is related to sk and
not to state si. Of course, this is equivalent if R is transitive but, in general,
it is not. The matrix approach we followed so far fails here, and we cannot
obtain the desired definition directly. The reason is that in a matrix equation
of the form RX 6 Y R the index k “appears” only on the left side and cannot
be referred to from the right side.

We now explain the other two conditions. The condition RA 6 (S∗ ⊓
R)AR expresses the following:

si
R ___ sk

a��
sj

implies

si

��
R

��
)

a��
sℓ

R ___ sj.

Finally, the last condition, Rρ 6 (S∗ ⊓R)ρ, means that

si
R ___ sj↓ implies

si

��
R

�
�
(

sj

sℓ↓

R

}
}

}
}

}

154 Chapter 10. Bisimulations on systems with silent steps

Note that, because (S∗⊓R) 6 S∗ = S∗(I+S), every branching bisimulation
equivalence is also a weak bisimulation.

Example 10.2.2 a. Consider the labeled transition system and the re-
lation R from Example 10.1.2. We have

S∗ ⊓R =




0 1 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1




and then

RS =




0 1 1 1 0
0 1 1 1 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0




�




1 1 1 1 0
1 1 1 1 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1




= (S∗ ⊓R)(I + S)R.

We conclude that R is not a branching bisimulation.

b. The problem in the previous example can be solved if we take

R+ =




1 1 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




instead of R. We have

S∗ ⊓R+ =




1 1 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




and

R+S =




0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0
0 0 0 0 0



6




1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
0 0 0 1 0
0 0 0 0 1




= (S∗ ⊓R+)(I + S)R+.

10.2. Branching bisimulation 155

However,

R+A =




0 {c} {c} 0 {a, b}
0 {c} {c} 0 {a, b}
0 {c} {c} 0 {a, b}
0 0 0 0 {b}
0 0 0 0 0




�

�




{c} {c} {c} 0 {a, b}
{c} {c} {c} 0 {a, b}
{c} {c} {c} 0 {a}
0 0 0 0 {b}
0 0 0 0 0




= (S∗ ⊓R+)AR+.

So, R+ is also not a branching bisimulation.

c. Consider now the transition system depicted in Figure 10.4. This
system is the same as the one from Example 10.1.2, i.e. the one from
Figure 10.1.2, but it can additionally do the action a when going from
state s3 to s5. We show that for this system the relation R+ is a
branching bisimulation.

The transition matrix is now

A =




0 0 0 0 0
0 {c} 0 0 {a, b}
0 0 {c} 0 {a, b}
0 0 0 0 {b}
0 0 0 0 0



,

and σ and ρ are as before. Now,

R+A =




0 {c} {c} 0 {a, b}
0 {c} {c} 0 {a, b}
0 {c} {c} 0 {a, b}
0 0 0 0 {b}
0 0 0 0 0



6

6




{c} {c} {c} 0 {a, b}
{c} {c} {c} 0 {a, b}
{c} {c} {c} 0 {a, b}
0 0 0 0 {b}
0 0 0 0 0




= (S∗ ⊓R+)AR+.

156 Chapter 10. Bisimulations on systems with silent steps

The conditions on the initial and the terminating vector also hold:

σ 6 σR 6 σR+ and R+ρ =




1
1
1
0
0




= (S∗ ⊓R)ρ.

We conclude that R+ is a branching bisimulation. �

GFED@ABCs1

↓

τ

����
��

��
��

τ

��9
99

99
99

9

R+

2�
L

GFED@ABCs2
↓c

88

R+

2�
L

R+

�

�
m

a

""

b

��

τ

��9
99

99
99

9
R+ ______ GFED@ABCs3

↓

R+

�
?r

R+

&

9
Q

c
ff

b

xx

a

��

τ

����
��

��
��

GFED@ABCs4 R+

W
�

g

b

��
GFED@ABCs5

R+

2
�L

R =




1 1 0 0 0
1 1 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1




R+ =




1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 0
0 0 0 0 1




Figure 10.4: Transition system and a branching bisimulation on it – Exam-
ple 10.2.2b

The following two theorems show that branching bisimulation is closed
under arbitrary union and under reflexive-transitive closure. This directly
implies that our definition of branching bisimulation corresponds to the stan-
dard one.

First we prove that a union of branching bisimulations is a branching
bisimulation.

Theorem 10.2.3 Let {Ri}i∈I be branching bisimulations on 〈σ,A, S, ρ〉 ∈
TSn

A
. Then R =

∑
i∈I Ri is also a branching bisimulation on 〈σ,A, S, ρ〉. �

10.2. Branching bisimulation 157

Proof Clearly, for some i ∈ I, σ 6 σRi 6 σR. We have

RS = (
∑

i∈I

Ri)S =
∑

i∈I

RiS 6
∑

i∈I

(S∗ ⊓Ri)(I + S)Ri 6

6
∑

i∈I

(S∗⊓Ri)(I+S)R = (S∗⊓
∑

i∈I

Ri)(I+S)R = (S∗⊓R)(I+S)R

and

RA =
∑

i∈I

RiA 6
∑

i∈I

(S∗ ⊓Ri)ARi 6
∑

i∈I

(S∗ ⊓Ri)AR = (S∗ ⊓R)AR.

Also,

Rρ = (
∑

i∈I

Ri)ρ =
∑

i∈I

(S∗ ⊓Ri)ρ = (S∗ ⊓R)ρ.
�

We now show that the reflexive-transitive closure of a branching bisim-
ulation is a branching bisimulation. The proof illustrates the usefulness of
the Dedekind formula when working with the operator ⊓.

Theorem 10.2.4 If R is a branching bisimulation on 〈σ,A, S, ρ〉 ∈ TSn
A
,

then so is R∗. �

Proof We have proven before that for any weak (and therefore also every
branching) bisimulation R we have RS∗ 6 S∗R. Using this we have

R(S∗ ⊓R∗) 6 RS∗ ⊓RR∗ = RS∗ ⊓R+
6 S∗R ⊓R∗.

Applying the Dedekind formula and using that RT = R we then have

S∗R⊓R∗
6 (S∗⊓R∗R)(R⊓S∗TR∗) = (S∗⊓R+)(R⊓S∗TR∗) 6 (S∗⊓R∗)R.

We prove, by induction on n, that RnS 6 (S∗ ⊓R∗)(I +S)R∗. The case
when n = 0 follows trivially because S∗ > I and R∗ > I. Suppose that the
statement holds for n > 0. Then

Rn+1S = RRnS 6 R(S∗ ⊓R∗)(I + S)R∗ 6

6 (S∗ ⊓R∗)R(I + S)R∗ = (S∗ ⊓R∗)R∗ + (S∗ ⊓R∗)RSR∗ 6

6 (S∗ ⊓R∗)R∗ + (S∗ ⊓R∗)(S∗ ⊓R)(I + S)R∗
6

6 (S∗ ⊓R∗)R∗ + (S∗ ⊓R+)(I + S)R∗
6

6 (S∗ ⊓R∗)R∗ + (S∗ ⊓R∗)(I + S)R∗ = (S∗ ⊓R∗)(I + S)R∗.

Similarly, we prove that RnA 6 (S∗ ⊓ R∗)AR∗ and Rnρ 6 (S∗ ⊓ R∗)ρ.
Now, by summing over all n > 0, we obtain that R∗ is also a branching
bisimulation. �

158 Chapter 10. Bisimulations on systems with silent steps

10.2.1 Branching bisimulation as a strong bisimulation

As we did for weak, we prove that branching bisimulation can also be de-
fined as a strong bisimulation on a transformed system. In the case of weak
bisimulation the transformed system was obtained by τ -closure. Note that
τ -closure is independent of the weak bisimulation. For the branching bisim-
ulation we need to define a similar transformation but that also depends on
the bisimulation relation itself. We call it τ,R-closure.

Definition 10.2.5 (τ, R-closure) Let 〈σ,A, S, ρ〉 ∈ TSn
A

be a transition
system and let R ∈ {0, 1} be a relation. The τ,R-closure of 〈σ,A, S, ρ〉 is
the transition system 〈σ, (S∗ ⊓R)A,S∗ ⊓R, (S∗ ⊓R)ρ〉 ∈ TSn

A
. �

We prove that R is a branching bisimulation iff it is a strong bisimulation
on the system obtained by τ,R-closure. Note that we require that R is an
equivalence.

Theorem 10.2.6 A relation R ∈ P(A)n×n is a branching bisimulation
equivalence on 〈σ,A, S, ρ〉 ∈ TSn

A
iff it is a strong bisimulation equivalence

on 〈σ, (S∗ ⊓R)A,S∗ ⊓R, (S∗ ⊓R)ρ〉 ∈ TSn
A
. �

Proof Suppose R ∈ P(A)n×n is a branching bisimulation equivalence on
〈σ,A, S, ρ〉 ∈ TSn

A
. Then

R(S∗ ⊓R)(I + S) 6 RR(I + S) = R+RS 6

6 R + (S∗ ⊓R)(I + S)R = (S∗ ⊓ R)(I + S)R.

We also have

R(S∗ ⊓R)A 6 RRA = RA 6 (S∗ ⊓R)AR

and R(S∗ ⊓R)ρ 6 Rρ 6 (S∗ ⊓R)ρ.
Suppose now that R is a strong bisimulation on the transition system

〈σ, (S∗ ⊓R)A,S∗ ⊓R, (S∗ ⊓R)ρ〉 ∈ TSn
A
. Then the statement follows di-

rectly from (S∗ ⊓R) > I. �

10.2.2 Branching lumping

The idea of lumping extends to branching bisimulation naturally.

Definition 10.2.7 (Branching lumping) If 〈σ,A, S, ρ〉 ∈ TSn
A

reduces to
〈σ̂, Â, Ŝ, ρ̂〉 ∈ TSN

A
by a branching bisimulation equivalence R = V V T we

say that it branching lumps (by R) to 〈σ̂, Â, Ŝ, ρ̂〉. �

10.2. Branching bisimulation 159

Definition 10.2.7 and Theorem 10.2.6 induce the following diagram:

Transition System
τ,R-closure //

branching
lumping

��

τ,R-closed
Transition System

induced
strong lumping

��

Branchingly Lumped
Transition System

Strongly Lumped
τ,R-closed

Transition System.

Similarly as we had for weak bisimulation, for the theory to be considered
sound we need to close the diagram. Note that V TRV = V TV V TV = I and
so we need to show that

Branchingly Lumped
Transition System

τ, I-closure //
Strongly Lumped

τ,R-closed
Transition System.

Since (V TSV)∗ ⊓ I = I, we only need to show the following:

Theorem 10.2.8 Let V , R, S, A, and ρ be as in Definition 10.2.7. Then
I + V TSV = V T(S∗ ⊓ R)(I + S)V , V TAV = V T(S∗ ⊓ R)AV and V Tρ =
V T(S∗ ⊓R)ρ. �

Proof We have

I + V TSV = V T(I + S)V 6 V T(S∗ ⊓R)(I + S)V

and

V T(S∗ ⊓R)(I + S)V = V T(S∗ ⊓ V V T)V + V T(S∗ ⊓ V V T)SV 6

6 V TS∗V ⊓ I + V TS∗V ⊓ V TSV = I + V TSV.

Clearly, V TAV 6 V T(S∗ ⊓R)AV . Also,

V T(S∗ ⊓R)AV 6 V TS∗AV ⊓ V TRAV = V TS∗AV ⊓ V TAV = V TAV.

Finally, we obtain V Tρ 6 V T(S∗ ⊓R)ρ and

V T(S∗ ⊓R)ρ 6 V TS∗ρ ⊓ V TRρ = V TS∗ρ ⊓ V Tρ = V Tρ. �

160 Chapter 10. Bisimulations on systems with silent steps

10.2.3 Stuttering property

Stuttering property is a very important property of branching bisimulation.
For example, it allows it to be identified with stuttering equivalence which
then induces its modal characterization. The property has a nice matrix
definition.

Definition 10.2.9 (Stuttering property) A relation R ∈ {0, 1}n×n sat-
isfies the stuttering property in the transition system 〈σ,A, S, ρ〉 ∈ TSn

A
iff

the following holds:
S∗ ⊓R 6 (S ⊓R)∗. �

In standard terms the stuttering property denotes that:

si

��

R

�
�

(

sj

implies

si

��R

�
1
...

��
R

��
0
sj

Note that the inverse of the stuttering property always holds because
(S⊓R)∗ =

∑∞
n=0(S⊓R)n 6

∑∞
n=0(S

n⊓Rn) =
∑∞

n=0 S
n⊓
∑∞

n=0R
n = S∗⊓R.

Example 10.2.10 Let 〈σ,A, S, ρ〉 ∈ TSn
A

be a transition system with

S =




1 1 0
0 0 1
0 0 0


 .

We obtain

S∗ =




1 1 1
0 1 1
0 0 1


 .

Define

R1 =




0 1 1
1 0 0
1 0 0


 and R2 =




0 1 1
0 0 1
0 0 1


 .

The relation R1 does not satisfy the stuttering property because

S∗ ⊓R1 =




0 1 1
0 0 0
0 0 0


 66




1 1 0
0 1 0
0 0 1


 = (S ⊓R1)

∗.

10.2. Branching bisimulation 161

The relation R2 however does satisfy the property. We have

S∗ ⊓R2 =




0 1 1
0 0 1
0 0 1


 6




1 1 1
0 1 1
0 0 1


 = (S ⊓R2)

∗.

�

Similarly as we did in Part I we define the notion of stuttering closure
as an extended relation that satisfies the stuttering property.

Definition 10.2.11 (Stuttering closure) The stuttering closure of a re-
lation R by S is a relation sttS(R) defied by

sttS(R) = S∗TRS∗T. �

In standard terms the stuttering closure is illustrated by:

if si
R

___ sj, then

si

����

sj

sk
sttS(R)

//____ sℓ.

OOOO

We give an example.

Example 10.2.12 Let S and R1 be as in Example 10.2.10. The stuttering
closure of R1 is calculated as follows:

R = sttS(R1) = S∗TR1S
∗T =




1 0 0
1 1 0
1 1 1






0 1 1
1 0 0
1 0 0






1 0 0
1 1 0
1 1 1


 =




1 1 1
1 1 1
1 1 1


 .

It is clear that R satisfies the stuttering property. �

The following theorem shows that the stuttering closure of a relation
always satisfies the stuttering property.

Theorem 10.2.13 For any relation R ∈ {0, 1}n×n, sttS(R) satisfies the
stuttering property in any transition system 〈σ,A, S, ρ〉 ∈ TSn

A
. �

Proof We first prove that Sn ⊓ S∗TRS∗T
6 (S ⊓ S∗TRS∗T)n for all n > 0.

The base case is trivial so suppose the statement holds for n > 0. By the
Dedekind formula, we have

Sn+1 ⊓ S∗TRS∗T = SnS ⊓ S∗TRS∗T
6

6 (Sn ⊓ S∗TRS∗TST)(S ⊓ SnTS∗TRS∗T).

162 Chapter 10. Bisimulations on systems with silent steps

Since S∗TST = (SS∗)T 6 S∗T and SnTS∗T = S∗SnT 6 S∗T, we have

(Sn⊓S∗TRS∗TST)(S⊓SnTS∗TRS∗T) 6 (Sn⊓S∗TRS∗T)(S⊓S∗TRS∗T) 6

6 (S ⊓ S∗TRS∗T)n(S ⊓ S∗TRS∗T) = (S ⊓ S∗TRS∗T)n+1.

The theorem now follows after summing over all n > 0. �

Note that if R is reflexive, then the relation R′ = S∗RS∗⊓S∗TRS∗T also
satisfies the stuttering property. This easily follows from Theorem 10.2.13
and the fact that Sn ⊓ S∗RS∗ = Sn for all n > 0. Note also that R′ is sym-
metric if R is symmetric (contrary to sttS(R) that might not be symmetric).
This is important because we mostly work with symmetric relations.

We now show that branching bisimulation can also be defined with stut-
tering steps.

Theorem 10.2.14 If R is a reflexive branching bisimulation on the transi-
tion system 〈σ,A, S, ρ〉 ∈ TSn

A
, then R′ = S∗RS∗ ⊓S∗TRS∗T is also branch-

ing bisimulation on 〈σ,A, S, ρ〉. �

Proof Note that R′ is symmetric because R is.
We first prove that R′ 6 (S∗ ⊓ R′)R. Using that RΠ 6 ΠR and the

Dedekind formula we have

R′ = S∗RS∗ ⊓ S∗TRS∗T
6 S∗R ⊓RS∗T

6

6 (S∗ ⊓RS∗TR)(R ⊓ S∗TRS∗T) 6 (S∗ ⊓RS∗T)R 6

6 (S∗ ⊓ S∗TRS∗T)R = (S∗ ⊓ S∗RS∗ ⊓ S∗TRS∗T)R 6 (S∗ ⊓R′)R.

Note that since S∗⊓R′ = (S ⊓R′)∗, we have (S∗⊓R′)2 = S∗⊓R′. Using
this, we have

R′S 6 (S∗ ⊓R′)RS 6 (S∗ ⊓R′)(S∗ ⊓R)(I + S)R 6

6 (S∗ ⊓R′)(S∗ ⊓ R′)(I + S)R′ = (S ⊓ R′)∗(I + S)R′

and

R′A 6 (S∗ ⊓R′)RA 6 (S∗ ⊓R′)(S∗ ⊓R)AR 6

6 (S∗ ⊓ R′)(S∗ ⊓ R′)AR′ = (S ⊓ R′)∗AR′.

Also, R′ρ 6 (S∗ ⊓R′)Rρ 6 (S∗ ⊓R′)ρ. �

Conclusion to Part II

We have presented the theory of labeled transition systems (with successful
termination) in terms of boolean matrices. We have covered the notion of
forward and backward strong bisimulation, of bisimulation up-to a relation,
and of weak and branching bisimulation. The powerful block structure ma-
trix representation method has provided a nice mechanism for expressing
the most common operations on transition systems as well. Matrix tech-
niques have allowed us to (re)establish the standard results in a clearer,
more concise, and uniform way.

By presenting results and notions from transition system theory in terms
of matrices we are also able to establish some connections with Markov
chain theory. First, the notion of minimization modulo strong bisimulation
equivalence, i.e. of strong lumping from Definition 9.2.5, is shown to coincide
with the notion of ordinary lumping [67] for Markov chains. As we will see
in Part III, weak bisimulation also has an important interpretation in the
Markov chain world (see Definition 13.2.1 of τ -lumping).

In the future, we plan to investigate how other equivalences from [52] can
be represented in matrix terms. In particular, we want to see how they fit in
the general aggregation scheme of [33]. We also want to investigate whether
matrix theory can be used as a unifying framework for the reasoning about
dynamic systems. We think that our result is a big step in that direction.

163

Part III

Aggregation of Markov

Reward Chains with Fast

and Silent Transitions

165

Chapter 11

Introduction

11.1 Motivation

Homogeneous continuous-time Markov chains (we will refer to them as
Markov chains for short) have established themselves as very powerful, yet
fairly simple models for performance evaluation. A Markov chain (see e.g.
[42, 28, 66]) is a finite-state continuous-time stochastic process of which the
(stochastic) behavior in every state is completely independent of the prior
states visited (i.e. the process satisfies the Markov property) and of the time
already spent in the state (i.e. the process is homogeneous in time). It is
known that, if some continuity requirement is met, a Markov chain can
be represented as a directed graph in which nodes represent states and la-
bels on the outgoing arrows determine the stochastic behavior in the state.
Some states are marked as starting and have initial probabilities associated
with them. For example, the behavior of the Markov chain depicted in Fig-
ure 11.1a is as follows. The process starts from state 1 with probability π
and from state 2 with probability 1− π (we do not depict the initial proba-
bility if it is zero). In state 1 it waits the amount of time determined by the
minimum of two exponentially distributed delays, one parameterized with
rate λ, the other with rate µ (note that this means that the process spends
in state 1 exponentially distributed time with rate λ+µ). After delaying the
process jumps to state 2 or state 3 depending on which of the two delays was
shorter. In these two states the process just stays forever, i.e. it is absorbed
there.

To increase modeling capability and obtain some very useful performance
measures, such as throughput and utilization of a system, Markov chains are
often equipped with rewards [66]. There are many types of rewards but we

167

168 Chapter 11. Introduction

a) ?>=<89:;1
λ

��

µ

��

π

?>=<89:;2
1−π ?>=<89:;3

b) ?>=<89:;1
λ

��

µ

��

π r1

?>=<89:;2
1−π r2 ?>=<89:;3

r3

Figure 11.1: a) A simple Markov chain and b) a Markov reward chain

consider only those that are associated to states. A (state) reward represents
the gain of a Markov chain while residing in some state. A Markov chain
with rewards is called a Markov reward chain (see Figure 11.1b).

A vast mathematical theory has been developed to support Markov
chains (as well as Markov reward chains). Efficient methods are available to
deal with Markov chains with millions of states making them very applicable
in practice. One of the main issues when using Markov chains is to find a
Markov chain that correctly represents the system being analyzed.

Over the past few years several performance modeling techniques have
been developed to enable high-level and compositional generation of Markov
chains (and more recently also Markov reward chains), i.e. to provide ways
of constructing big Markov chains from smaller components while staying on
the designer level. Some of the best known techniques are stochastic process
algebras [61, 63], (generalized) stochastic Petri nets [77, 76, 56], probabilistic
I/O automata [101], stochastic automata networks [86], etc. Most of the
formalisms first generate some intermediate models that are later used to
derive pure Markov chains for performance measuring. Typically, these
models are extensions of Markov chains with features to enable interaction
between components. These features are special transitions that sometimes
have undelayable behavior, i.e. they are instantaneous. In the literature
instantaneous transitions are referred to as internal or silent steps (in process
algebra) or as immediate transitions (in Petri nets). They are present in the
intermediate model but are eliminated in a derivation of a Markov chain.
We illustrate this approach in the fields of stochastic process algebra and
Petri nets.

Stochastic process algebras are process algebras that include features for
the modeling of exponentially distributed delays (e.g. [61, 63]). Stochastic
information is generally introduced in one of two ways: by adding a delay
parameter to actions, like e.g. in PEPA [63], or by adding delays as separate
constructs, like e.g. in Interactive Markov Chains [61]. In the later case

11.1. Motivation 169

silent transitions play a prominent role. For Interactive Markov Chains the
underlying Markov chain is obtained as follows. Under the assumption that
system does not interact with the environment any longer, all action infor-
mation can be discarded and the action labeled transitions are transformed
into internal τ -transitions. These transitions are considered instantaneous
and choices between them are made non-deterministically. To obtain a pure
Markov chain τ -transitions are eliminated (if possible) by using a relation on
transition systems called weak bisimulation, which is a combination of the
standard weak bisimulation for transition systems [79] and of the aggregation
method for Markov chains called ordinary lumping [67, 82, 23]. This weak
bisimulation always gives priority to τ -transitions over exponential delays
based on the intuitive fact that these transitions happen instantly. If there
are closed loops of τ -transitions, then the model is considered ill-defined
(here ‘closed’ means that there is no exit from the loop with a τ -transition).
We give an example of a reduction modulo this weak bisimulation.

Example 11.1.1 Consider the Interactive Markov chain depicted in Fig-
ure 11.2a. If we assume that the system is closed, i.e. that it does not
interact with the environment, then the actions a and b can be renamed
into the instantaneous transition τ and an equivalent (with respect to per-
formance) model is obtained. The intermediate model, consisting entirely of
internal transitions and rates, is depicted in Figure 11.2b. Now, assume that
the process in Figure 11.2b starts from state 1. There it exhibits a classical
non-determinism, i.e. the probability of taking the τ -transitions is undeter-
mined. However, if we observe the behaviors in states 2 and 3, we notice
that they are the same. No matter which transition is taken from state 1,
after performing a τ -transition and delaying exponentially with rate λ, the
process enters state 4. As τ -transitions are timeless, the process in b) is
equivalent to the Markov chain in c) according to weak bisimulation equiv-
alence. �

Generalized stochastic Petri nets are introduced in [77] to enable perfor-
mance modeling using Petri nets. A Petri net [29] is a bipartite graph with
two sets of nodes: places and transitions. Input arcs connect places with
transitions and output arcs connect transitions with places. Each place can
contain several tokens. A so-called marking represents the configuration of
the tokens in the places. A transition is enabled if there are tokens in all
places that have an input arc to the transition. Each transition in a gen-
eralized stochastic Petri net has a so-called firing time, which can be zero
(for immediate transitions) or exponentially distributed (for timed transi-
tions). If a marking enables some immediate transition, then the marking is

170 Chapter 11. Introduction

a) ?>=<89:;1
a

b

��
?>=<89:;2

λ ""

?>=<89:;3

λ||?>=<89:;4

µ

OO
b) ?>=<89:;1

τ

τ

��
?>=<89:;2

λ ""

?>=<89:;3

λ||?>=<89:;4

µ

OO
c) ?>=<89:;1

λ
��
?>=<89:;2

µ

TT

Figure 11.2: a) An Interactive Markov chain, b) the intermediate model
with τ -transitions, and c) the induced Markov chain – Example 11.1.1.

called vanishing. The process described by a generalized stochastic Petri net
is captured by a so-called extended reachability graph that represents the
particular intermediate model and that can be further reduced to a Markov
chain [29, 77, 76]. Of interest are the vanishing markings which exist in
the extended reachability graph, but are eliminated to give the resulting
Markov chain. It is common to assume that immediate transitions cannot
form closed loops, i.e. these loops are considered illegal. Also, usually it
is required to know the firing probabilities of multiple enabled immediate
transitions [76]. A typical elimination of vanishing markings is given in
Example 11.1.2.

Example 11.1.2 Figure 11.3 depicts a generalized stochastic Petri net with
its corresponding reachability graph and the underlying Markov chain. The
graph contains the markings of the only token placed initially in p1. The
vanishing place is p2 (thus, the vanishing marking is 0100) because of the
enabled immediate transitions t2 and t3 with probabilities p and 1 − p. In
the derived Markov chain the probabilities of the vanishing place split the
normal rate λ into two rates pλ and (1 − p)λ that reach the final places p3

and p4, respectively. �

To prove that the original model and the underlying Markov chain
have the same performance, the intermediate performance models from Fig-
ure 11.2b and Figure 11.3b must be defined as stochastic processes. The
reduction technique of stochastic Petri nets has been (stochastically) for-
malized in [3] by treating the reachability graphs as discontinuous Markov
chains [41] and eliminating the vanishing places by the aggregation approach
of [39, 32]. However, this method is only possible when immediate transi-

11.2. Our approach 171

Figure 11.3: a) A generalized stochastic Petri net, b) the corresponding
extended reachability graph, and c) the derived Markov chain – Exam-
ple 11.1.2.

tions are probabilistic, and the same method cannot be directly applied in
the case when they are non-deterministic (such as those in Figure 11.2b).

In this part we give a mathematical underpinning of the elimination of
both, probabilistic and non-deterministic, types of instantaneous transitions
in the above extensions to Markov (reward) chains. We define two methods
of aggregation that abstract away from these transitions while preserving
performance measures. The first method is based on lumping, i.e. joining
states with equivalent behavior into classes. The second method is an ex-
tension of [39] (and therefore also of [3]). It is based on the elimination
of stochastic discontinuity that arises from having instantaneous probabilis-
tic transitions. The method is very common, often applied in perturbation
theory, and this motivated us to extend it and adapt it to the setting with
non-determinism. By discussing both methods in a common framework, we
are able to compare them.

11.2 Our approach

We give an overview of the approach taken in this part.

Extensions of the Markov reward chain model To stochastically
formalize the phenomenon of instantaneous transitions we turn to a gener-
alization of standard Markov chain model that can perform infinitely many
transitions in a finite amount of time. This model is called a discontin-
uous Markov reward chain and it was initially studied (without rewards)
in [41, 32]. It is often considered pathological in the literature as it exhibits

172 Chapter 11. Introduction

stochastic discontinuity. However, as shown in [32, 3], it proves very use-
ful for explanation of results. In order to model probabilistic instantaneous
transitions we extend the standard Markov reward chain model with transi-
tions that are linearly parameterized with a real variable τ . This extension
is referred to as Markov reward chains with fast transitions. The intuition
comes from the dynamics of Markov chains. If there are fast transitions aτ
and bτ leading from a state, then the probability of taking aτ (resp. bτ) is
a
a+b (resp. b

a+b). Therefore, the numbers a and b, called speeds, completely
determine the probabilities of target states. We mathematically formalize
the idea that fast transitions take zero time by considering the limit process
as τ goes to infinity. Indeed, if there is a fast transition aτ leads from a
state, then the sojourn time in this state is of the form 1

aτ+... and it goes
to 0 when τ goes to infinity. The limit process is a discontinuous Markov
reward chain. Subsequently, we introduce Markov reward chains with silent
transitions as classes of Markov reward chains with fast transitions that
have the same structure, but different speeds assigned to the fast transi-
tions. Thus, a silent transition is a fast transition with unspecified speed,
i.e., with unspecified probability of choosing it. This is our way of modeling
non-determinism.

For each extension, we introduce two aggregation methods.

Aggregation by Lumping The first aggregation method is based on
lumping, i.e. on joining all states that exhibit the same behavior into classes.
We decided to consider the lumping method not only because it is the most
common method of aggregation for standard Markov chains, but also be-
cause it allows us to formalize the intuitive ideas behind weak bisimulation
for Interactive Markov chains. Extending the notion of ordinary lumping for
Markov reward chains, we first define a notion of lumping for discontinuous
Markov reward chains. Based on that, we define a notion of lumping for
Markov reward chains with fast transitions, called τ -lumping. We justify
the latter notion by showing that the following diagram commutes:

Markov Reward Chain
with Fast Transitions τ→∞

//

τ -lumping

��

Discontinuous
Markov Reward Chain

ordinary

lumping

��
τ -lumped

Markov Reward Chain
with Fast Transitions

τ→∞
//

lumped
Discontinuous

Markov Reward Chain

11.2. Our approach 173

Next, we define a notion of lumping, called τ∼-lumping, for Markov reward
chains with silent transitions, and show that it is a proper lifting of τ -
lumping to equivalence classes of Markov reward chains with fast transitions.
In other words, we show that τ∼-lumping induces a τ -lumping for each
element of the class, and moreover, that the induced τ -lumped process does
not depend on the representative from the class. That is, we show that the
following diagram commutes:

Markov Reward Chain
with Fast Transitions

induced
τ -lumping

��

∼ Markov Reward Chain
with Fast Transitions

induced
τ -lumping

��
τ -lumped

Markov Reward Chain
with Fast Transitions

∼
τ -lumped

Markov Reward Chain
with Fast Transitions.

Aggregation by Reduction It is straightforward to obtain (e.g. by
comparison of the matrix techniques used) that the methods for elim-
ination of vanishing markings in generalized stochastic Petri nets given
in [76, 56, 29, 77, 27] are equivalent to the reduction method in perturbation
theory (cf. [32, 38]). We recall the results from this setting that allow us to
reduce a discontinuous Markov chain to a Markov chain. Then we extend
this technique to discontinuous Markov reward chains and Markov reward
chains with fast transitions. The corresponding method for Markov reward
chains with fast transitions is referred to as τ -reduction and the following
diagram shows its structure:

Markov Reward Chain
with Fast Transitions τ→∞

//

τ -reduction

((RRRRRRRRRRRRRRRRRRRRRRRRRRRR

Discontinuous
Markov Reward Chain

reduction to

a Markov Reward Chain

��
Markov Reward Chain.

Subsequently, we extend the notion of τ -reduction to Markov reward chains
with silent transitions by lifting it to equivalence classes of Markov reward
chains with fast transitions. The obtained aggregation method is called τ∼-
reduction. The main requirement for a class to be τ∼-reducible is that its

174 Chapter 11. Introduction

every representative Markov reward chain with fast transitions τ -reduces
to a speed independent Markov chain. This is illustrated by the following
diagram:

Markov Reward Chain
with Fast Transitions

τ -reduction
$$J

JJJJJJJJJJJJJJ
∼ Markov Reward Chain

with Fast Transitions

τ -reduction
zzttttttttttttttt

Markov
Reward Chain.

Motivated by the fact that τ∼-reduction in general does not aggregate much,
we introduce a new concept, called total τ∼-reduction, that is a combination
of τ -reduction and standard ordinary lumping on the τ -reduced represen-
tative Markov reward chain with fast transitions. The idea is to eliminate
the effect of the speeds of fast transitions by lumping, and thus to aggregate
more. The following diagram clarifies the structure of the method:

Markov Reward Chain
with Fast Transitions

τ -reduction

��

total
τ∼-reduction

22

∼ Markov Reward Chain
with Fast Transitions

τ -reduction

��

total
τ∼-reduction

ll

Markov
Reward Chain

ordinary
lumping $$I

IIII
IIII

IIII
∼ Markov

Reward Chain

ordinary
lumpingzzuuuuu

uuuu
uuuu

Markov
Reward Chain.

Comparison of the methods Each of the reduction methods is com-
pared with its corresponding lumping method. We show that the reduction
and the lumping methods for discontinuous Markov chains and Markov re-
ward chains with fast transitions are incomparable but that the reduction
method is superior, i.e. it aggregates more, if combined with standard lump-
ing. We also show that, in case there are no silent transitions in the lumped
process, τ∼-reduction is a special case of τ∼-lumping, and that τ∼-lumping
coincides with total τ∼-reduction. Finally, we point out the differences be-
tween τ∼-lumping and the weak bisimulation for Interactive Markov chains.

11.3. Outline 175

11.3 Outline

The mentioned extensions to Markov chains, i.e. Markov reward chains,
discontinuous Markov reward chains, Markov reward chains with fast tran-
sitions and Markov reward chains with silent transitions, are introduced
in Chapter 12, and necessary theorems are provided to establish the con-
nections between them. In Chapter 13 we define the ordinary lumping for
discontinuous Markov chains, and the notions of τ - and τ∼-lumping. In
Chapter 14 we recall the reduction method for discontinuous Markov chains,
extend it to discontinuous Markov reward chains, and define τ -, τ∼- and to-
tal τ∼-reductions. The lumping and the reduction method are compared in
Chapter 15.

Chapter 12

Markov Reward Chains with

Discontinuities, and with

Fast and Silent Transitions

This chapter introduces several extensions of standard Markov chains. We
first recall the definition of a discontinuous Markov chain from [41, 32],
i.e. of a Markov chain that can also exhibit non-continuous behavior, and
extend it with rewards. Next, the standard Markov reward chain model is
extended with special transitions called fast transitions. As explained in
the introduction, this is to model probabilistic transitions. We show that
Markov reward chains with fast transitions are asymptotically equivalent to
discontinuous Markov reward chains. Finally, to model non-determinism we
introduce Markov reward chains with silent transitions as Markov reward
chains with fast transitions in which the speeds of the fast transitions are
unknown.

12.1 Discontinuous Markov reward chains

The standard theory of Markov chains [42, 28, 66] always assumes continuity,
i.e. that, when t → 0, the probability of the process occupying at time
t the same state as at time 0 is 1. However, as pointed out in [32], when
working with instantaneous transitions we need to drop this requirement and
work in the more general theory of discontinuous Markov chains introduced
in [41]. In this section we give a definition of the notion of discontinuous
Markov chain. We follow the approach of [32] but add initial probabilities
and rewards.

177

178 Chapter 12. Markov Reward Chains with Discontinuities, and with . . .

The exposition is in terms of matrices and we give some preliminaries
first. All vectors are column vectors if not indicated otherwise. 1n denotes
the vector of n 1’s. 0n×m denotes the n ×m zero matrix. In denotes the
n × n identity matrix. We omit the n and m when they are clear from the
context. We write A > 0 (resp. A > 0) when all elements of a matrix A are
greater than (resp. greater than or equal to) zero. A matrix A ∈ Rn×m is
called stochastic if A > 0 and A ·1 = 1. By diag (A1, . . . , An) we denote the
block matrix with blocks A1, . . . , An on the diagonal and 0’s elsewhere.

A discontinuous Markov chain is a time-homogeneous finite-state
stochastic process that satisfies the Markov property. The exact nature
of a state is not important and we can always assume that the state space
of a discontinuous Markov chain is the (linearly ordered) set S = {1, . . . , n}.
It is known (see [41, 28, 32]) that a discontinuous Markov chain is then
completely determined by a transition matrix function and a stochastic row
vector that gives the starting probabilities of the process for each state
(called the initial probability vector).

Definition 12.1.1 (Transition matrix function) A function
P : R>0 7→ Rn×n is called a transition matrix function iff, for all
t > 0,

1. P (t) > 0,

2. P (t) · 1 = 1 and

3. P (t+ s) = P (t) · P (s) for all s > 0.

If limt→0 P (t) is equal to the identity matrix, then P is called continuous,
otherwise it is discontinuous (it is shown in [42] that this limit always exists).
For any t > 0, we call the image P (t) a transition matrix. As is standard
practice, whenever we say transition matrix P (t) = . . . we actually mean
transition matrix function P defined by P (t) = �

The following theorem of [32, 62] gives a convenient characterization
(independent on t) of the notion of transition matrix.

Theorem 12.1.2 Let (Π, Q) ∈ Rn×n × Rn×n be such that:

1. Π > 0, Π · 1 = 1, Π2 = Π,

2. ΠQ = QΠ = Q,

3. Q · 1 = 0 and

12.1. Discontinuous Markov reward chains 179

4. Q+ cΠ > 0 for some c > 0.

Then P (t) = ΠeQt = Π
∑∞

n=0
Qntn

n! is a transition matrix. Moreover, the
converse also holds: For any transition matrix P (t) there exists a unique
pair (Π, Q) that satisfies Conditions 1–4 and such that P (t) = ΠeQt. �

Note that, since limt→0 P (t) = limt→0 ΠeQt = Π, it follows that P (t) is
continuous iff Π = I. In this case Q is a generator matrix, i.e. a square ma-
trix of which the non-diagonal elements are non-negative and each diagonal
element is the additive inverse of the sum of the non-diagonal elements of
the same row.

The discontinuous Markov chain determined by a transition matrix
P (t) = ΠeQt ∈ Rn×n and an initial probability vector σ ∈ R1×n is denoted
by (σ,Π, Q). Strictly speaking, different orderings on the set S give rise to
different discontinuous Markov chains, but we will not make a distinction
between them. This is because there is no real difference, the representing
matrices are permutation equivalent. All our results can be easily shown
to be insensitive to permutation. This allows us to always work with the
numbering that is most convenient at the moment.

In the case when Π = I, the discontinuous Markov chain (σ,Π, Q) has
no stochastic discontinuity and is a standard Markov chain. Since Q is then
a generator matrix, the process has the standard visual representation (like
in Figure 11.1a). We give an example.

Example 12.1.3 a. The matrix

P (t) =



e−(λ+µ)t λ

λ+µ(1−e−(λ+µ)t) µ
λ+µ(1−e−(λ+µ)t)

0 1 0
0 0 1


 ,

with λ, µ > 0 and λ + µ 6= 0, is a transition matrix. It is continuous
because limt→0 P (t) = I. We obtain

Π = I and Q =



−(λ+µ) λ µ

0 0 0
0 0 0


 .

As expected, in this case Q is a generator matrix. For σ =
(
π 1−π 0

)
,

the (standard) Markov chain (σ, I,Q) is visualized in Figure 11.1a from
the introduction.

180 Chapter 12. Markov Reward Chains with Discontinuities, and with . . .

b. Let 0 < p < 1 and λ > 0. Then

P (t) =




(1−p) · e−pλt p · e−pλt 1−e−pλt

(1−p) · e−pλt p · e−pλt 1−e−pλt

0 0 1




is a transition matrix. It is discontinuous because

Π = lim
t→0

P (t) =




1−p p 0
1−p p 0
0 0 1


 6= I.

We also obtain

Q =



−p(1−p)λ −p2λ pλ
−p(1−p)λ −p2λ pλ

0 0 0


 .

Note that Π deviates from the identity matrix only in the first two
rows. This is exactly where Q deviates from the form of a generator
matrix. �

It is a known result (see e.g. [32]) that there is a numbering of S in which
in a discontinuous Markov chain (σ,Π, Q), the matrix Π takes the following
form:

Π =




Π1 0 . . . 0 0
0 Π2 . . . 0 0
...

...
. . .

...
...

0 0 . . . ΠM 0

Π1 Π2 . . . ΠM 0



,

where for all 1 ≤ K ≤M , ΠK = 1 · µK , and ΠK = δK · µK for a row vector
µK > 0 such that µK · 1 = 1 and a vector δK ≥ 0 such that

∑M
i=1 δK = 1.

We now show that the form of Π divides the states into groups. First,
we formalize the notion of partitioning.

Definition 12.1.4 (Partitioning) Let S be a set. A set P = {S1, . . . , SN}
of subsets of S is called a partitioning of S if S = S1 ∪ . . . ∪ SN , Si 6= ∅
and Si ∩ Sj = ∅ for all i, j, with i 6= j. The partitionings P =

{
S
}

and
P =

{
{i} | i ∈ S

}
are called trivial. �

Given a set S and its partitioning P = {S1, . . . , SN}, it is sometimes
convenient to number the elements of S so that the elements from the same
partitioning class are grouped together. Formally, we require that, for all

12.1. Discontinuous Markov reward chains 181

i ∈ S, if i ∈ SK for some 1 6 K 6 N , then either i+ 1 ∈ SK or j 6∈ SK for
all j > i. Any such numbering of S is called the numbering that makes the
partitioning P explicit.

The form of Π induces a partitioning E = {E1, . . . , EM , T} of S =
{1, . . . , n} into ergodic classes, E1, . . . , EM , determined by Π1, . . . ,ΠM , and
into a class of transient states, T , determined by Π1, . . . ,ΠM . The partition-
ing E is called the ergodic partitioning and the used numbering is making
it explicit (not the additional requirement here; ergodic states must precede
transient states). For every ergodic class EK , the vector µK is the vector of
ergodic probabilities. If an ergodic class EK contains exactly one state, then
µK =

(
1
)
, and the state is called regular . The vector δK holds the trap-

ping probabilities from transient states to the ergodic class EK . Note that,
although µK and δK are not indexed by {1, . . . , n}, without introducing
confusion, we will always use the implicit indexing. In other words, for any
i ∈ EK , we will write µK [i] to refer to the element of µK that corresponds
to state i. Similarly, we write δK [i] for any i ∈ T .

Let us now explain the behavior of a discontinuous Markov chain as given
in [41, 32]. The discontinuous Markov chain (σ,Π, Q) starts in some state
with a probability that is determined by the initial probability vector σ. In
an ergodic class with multiple states the process spends a non-zero amount
of time switching rapidly (infinitely many times) among its elements. The
probability that it is found in some state of this class is determined by the
vector of ergodic probabilities of this class. The time the process spends in
the class is exponentially distributed and determined by the matrix Q. If
the ergodic class contains only one state i, i.e. if the process is in a regular
state, then the row of Q corresponding to i has the form of a row in a
generator matrix, and Q[i, j] for i 6= j is interpreted as the rate from i to j.
In a transient state the process spends no time (with probability one) and
goes immediately to some ergodic class (and stays trapped there for some
amount of time). Note that δK [i] > 0 iff i ∈ T can be trapped in the ergodic
class EK . A standard Markov chain is a discontinuous Markov chain that
has no transient states and only has regular (ergodic) states.

Sometimes we will also work with the matrix Π that is not in the above
form, i.e. we will work in a numbering that does not make the ergodic
partitioning explicit. Let us so explain the form of Π on the level of single
elements. Note first that Π[i, j] = 0 for all i ∈ S and all j ∈ T . Next, note
that if i ∈ EK , j ∈ EL and K 6= L, then Π[i, j] = 0. If i, j ∈ EK , then we
have Π[i, j] > 0 and Π[i, j] = Π[k, j] for all k ∈ EK . In this case we also
have that Π[i, j] = µK [j]. For transient states we have that if i ∈ T and
j ∈ EK , then Π[i, j] = δK [i] · Π[k, j] for any k ∈ EK .

182 Chapter 12. Markov Reward Chains with Discontinuities, and with . . .

We give examples of some discontinuous Markov chains and their ergodic
partitionings.

Example 12.1.5 a. Let (σ, I,Q) be the standard Markov chain from
Example 12.1.3a. Its ergodic partitioning is E = {E1, E2, E3} where
E1 = {1}, E2 = {2} and E3 = {3}. As expected, there are no transient
states and all ergodic classes are singletons.

b. Let (σ,Π, Q) be the discontinuous Markov chain from Exam-
ple 12.1.3b. This discontinuous Markov chain has two ergodic classes
E1 = {1, 2} and E2 = {3} and no transient states. The correspond-
ing ergodic probability vectors are µ1 =

(
1−p p

)
and µ2 =

(
1
)
. In

the first two states the process exhibits discontinuous behavior. It con-
stantly switches among those states and it is found in the first one with
probability 1−p and in the second one with probability p. The amount
of time the process spends switching is exponentially distributed with
rate pλ (we will see later how this follows from Q). Note that also
the rows of Q that correspond to states belonging to the same ergodic
classes are equal. This indicates that those states all have the same
behavior.

c. Let, for 0 < p < 1 and λ, µ, ν > 0, Π and Q be defined as:

Π =




0 p 1−p 0
0 1 0 0
0 0 1 0
0 0 0 1


 and Q =




0 −pλ −(1−p)µ pλ+ (1−p)µ
0 −λ 0 λ
0 0 −µ µ
ν 0 0 −ν


 .

Let σ be an arbitrary stochastic row vector. The ergodic partitioning
of the discontinuous Markov chain (σ,Π, Q) is E = {E1, E2, E3, T}
where E1 = {2}, E2 = {3}, E3 = {4} and T = {1} (note that the
numbering does not make the ergodic partitioning explicit since the
transient state precedes the ergodic states). We have µi =

(
1
)

for all
i = 1, 2, 3, and δ1 =

(
p
)
, δ2 =

(
1−p

)
and δ3 =

(
0
)
. If the process is in

state 1, then with probability p it is trapped in state 2, the only state
in the ergodic class E1, and with probability 1−p it is trapped in state
3, the only state in the ergodic class E2. �

12.1.1 Adding rewards

We now add (state) rewards to our model. As we said in the introduction,
this addition is of great practical importance. A reward is a number associ-
ated to a state that represents the rate at which gain is received while the

12.1. Discontinuous Markov reward chains 183

process is in that state. We define a discontinuous Markov reward chain as
a discontinuous Markov chain with an additional vector that holds a reward
for each state.

Definition 12.1.6 (Discontinuous Markov Reward Chain) A dis-
continuous Markov reward chain is a quadruple (σ,Π, Q, ρ) where (σ,Π, Q)
is a discontinuous Markov chain and ρ ∈ Rn×1 is the reward vector. �

The total reward (rate) of the process up to time t > 0, denoted R(t),
is calculated as R(t) = σP (t)ρ. It represents the core of the most impor-
tant performance measure, i.e. of the expected accumulated reward, which is
calculated by

∫ t
0 R(s)ds.

Note that the total reward remains unchanged if the reward vector ρ
is replaced by Πρ. To show this, note that P (t) = P (t)Π (cf. [32]), so
σP (t)Πρ = σP (t)ρ = R(t). Intuitively, the reward of an ergodic state
can be replaced by the sum of the rewards of all states inside its ergodic
class weighted according to their ergodic probabilities, and the reward in
a transient state can be replaced by the sum of the rewards of the ergodic
states that it can be trapped in weighted by the trapping probabilities. Note
that this means that the reward in a transient states is actually irrelevant.
This is expected since in a transient state the process spends no time nor
does it ever come back to it. The technique of replacing the reward vector
simplifies the reward structure which becomes important for the aggregation
methods in the latter chapters. We give an illustration in the following
example.

Example 12.1.7 a. Let (σ, I,Q, ρ) be the standard discontinuous
Markov reward chain where (σ, I,Q) is as in Example 12.1.3a and
ρ =

(
r1 r2 r3

)
. Recall that the transition matrix is

P (t) =



e−(λ+µ)t λ

λ+µ(1−e−(λ+µ)t) µ
λ+µ(1−e−(λ+µ)t)

0 1 0
0 0 1


 .

Then, we calculate the total reward:

R(t) = σP (t)ρ =
(
π 1−π 0

)
P (t)



r1
r2
r3


 =

= πr1e
−(λ+µ)t + π

λr2+µr3
λ+µ

(1−e−(λ+µ)t).

184 Chapter 12. Markov Reward Chains with Discontinuities, and with . . .

Note that all the rewards contribute to the total reward. This is be-
cause the process does not have transient states (cf. Example 12.1.5a).

b. Let (σ,Π, Q) be the discontinuous Markov chain from Example 12.1.3b
(with σ =

(
π 1−π 0

)
) and let ρ =

(
r1 r2 r3

)
. The total reward of

the discontinuous Markov reward chain (σ,Π, Q, ρ) is:

R(t) = σP (t)ρ = ((1−p)r1 + pr2 − r3) e
−pλt + r3.

The same total reward is obtained when ρ is replaced by the reward

vector ρ′ = Πρ =

(
(1−p)r1+pr2
(1−p)r1+pr2

r3

)
. Note that the first two elements of ρ′

are equal. This is because these two states belong to the same ergodic
class (cf. Example 12.1.5b). As in the previous example, there are no
transient states and hence all the rewards are important.

c. Let (σ,Π, Q) be the discontinuous Markov chain from Example 12.1.5c

(with σ =
(
1 0 0

)
) and let ρ =

(
r1 r2 r3 r4

)T
. The total reward of

the discontinuous Markov reward chain (σ,Π, Q, ρ) does not depend on
r1 because state 1 is transient (cf. Example 12.1.5c). This is confirmed

when ρ is replaced by ρ′ = Πρ =

(
pr2+(1−p)r3

r2
r3
r4

)
. �

12.2 Markov reward chain with fast transitions

We extend the standard Markov chain model by letting Markov chains con-
tain two types of transitions, slow and fast. The behavior of a Markov
reward chain with fast transitions is determined by a pair of generator ma-
trices: the first matrix represents the normal (slow) transitions, whereas the
second represents the (speeds of the) fast transitions. As we explained in the
introduction, the role of speeds is to determine the probabilistic behavior in
a state.

Definition 12.2.1 (Markov reward chain with fast transitions)
The Markov reward chain with fast transitions (σ,Qs, Qf , ρ), determined by
a stochastic row vector σ ∈ R1×n, generator matrices Qs, Qf ∈ Rn×n and
a vector ρ ∈ Rn×1, is the function that assigns to each τ > 0 the Markov
reward chain (σ, I,Qs + τQf , ρ). �

We depict a Markov reward chain with fast transitions (σ,Qs, Qf , ρ) as
the corresponding Markov reward chain (σ, I,Qs+ τQf , ρ) (see Figure 12.1).

12.2. Markov reward chain with fast transitions 185

The following theorem shows that when τ → ∞, i.e. when fast transitions
become instantaneous, a Markov reward chain with fast transitions behaves
as a discontinuous Markov reward chain.

Theorem 12.2.2 (Limit process) Let Pτ (t) = e(Qs+τQf)t. Then, for all
t > 0,

lim
τ→∞

Pτ (t) = ΠeQt

where Π = limt→∞ eQf t and Q = ΠQsΠ. In addition, Π and Q satisfy
Conditions 1–4 of Theorem 12.1.2. �

See [25] for the first proof of Theorem 12.2.2, or [69] for a proof written in
more modern terms. See [32] for the proof that convergence is also uniform.

If Q is a generator matrix, then Π = limt→∞ eQt is called the ergodic
projection of Q. It is proven in [42] that the limit always exists; moreover,
see e.g. [1] for the following result:

Theorem 12.2.3 The matrix Π ∈ Rn×n is the ergodic projection of a gen-
erator matrix Q ∈ Rn×n, iff

Π > 0, Π · 1 = 1, Π2 = Π, ΠQ = QΠ = 0,

and rank(Π) + rank(Q) = n. �

Theorem 12.2.2 shows that the limit behavior of a Markov reward chain
with fast transitions does not directly depend on the matrix that models
fast transitions but only on its ergodic projection. In general, there are
many generator matrices that have the same ergodic projection.

We say that the discontinuous Markov chain (σ,Π, Q,Πρ) is the limit
of (σ,Qs, Qf , ρ) as τ → ∞, and indicate that by writing (σ,Qs, Qf , ρ) →∞

(σ,Π, Q,Πρ). The initial probability vector and the reward vector are not
affected when τ → ∞ but it is convenient to replace the reward vector ρ
by Πρ because of the facilitated representation of the lumping conditions in
the following sections.

The ergodic partitioning of (σ,Π, Q,Πρ) is also said to be the ergodic
partitioning of (σ,Qs, Qf , ρ). It is known that this corresponds with the
partitioning induced by closed communicating classes of fast transitions.
We write i → j if Qf [i, j] > 0, i.e. if there is a direct fast transition from
i to j. Let ։ denote the reflexive-transitive closure of →. If i ։ j we
say that j is τ -reachable from i. If i ։ j and j ։ i we say that i and j
τ -communicate and write i և

։ j. In a slightly different context, it has been
shown (see e.g. [42]) that every ergodic class is actually a closed class of

186 Chapter 12. Markov Reward Chains with Discontinuities, and with . . .

τ -communicating states, closed meaning that for all i inside the class there
does not exist j outside the class such that i→ j. Moreover, for all states i
and all ergodic states j, i։ j iff Π[i, j] > 0.

a) ?>=<89:;1
1 r1

aτ

��

λ

��
?>=<89:;2

r2

µ
44 ?>=<89:;3

r3

b) ?>=<89:;1

aτ
��

π r1

?>=<89:;2
1−π r2

bτ

TT

λ
��

?>=<89:;3
r3

c) ?>=<89:;1
1 r1

aτ

bτ

��
?>=<89:;2

r2

λ ((

?>=<89:;3
r3

µ
vv?>=<89:;4
r4

ν

OO

Figure 12.1: Markov reward chains with fast transitions – Example 12.2.4

Example 12.2.4 a. Consider the Markov reward chain with fast tran-
sitions (σ,Qs, Qf , ρ) depicted in Figure 12.1a. It is defined with

σ =
(
1 0 0

)
, Qs =



−λ 0 λ
0 −µ µ
0 0 0


 , Qf =



−a a 0
0 0 0
0 0 0


 and ρ =



r1
r2
r3


 .

The transition from state 1 to state 2 is fast and has speed a. The
other two transitions are normal (slow).

The limit of (σ,Qs, Qf , ρ) is obtained as follows:

Π = lim
t→∞

eQf t =




0 1 0
0 1 0
0 0 1


 ,

Q = ΠQsΠ =




0 −µ µ
0 −µ µ
0 0 0


 and Πρ =



r2
r2
r3


 .

The ergodic partitioning is E1 = {2}, E2 = {3} and T = {1}. This is
because, as we see it in Figure 12.1a, state 2 and state 3 each form a
trivial τ -communicating class. The same can be obtained by observing
the form of Π.

12.3. Markov reward chains with silent transitions 187

b. Consider the Markov reward chain with fast transitions depicted in
Figure 12.1b. The limit of this Markov reward chain with fast transi-
tions is the discontinuous Markov reward chain (σ,Π, Q, ρ′) defined in
Examples 12.1.3b and 12.1.7b (with p = a

a+b). From Figure 12.1b we
can easily see that the process has two closed τ -communicating classes,
i.e. two ergodic classes E1 = {1, 2} and E2 = {3}, and no transient
states. The same was established in Example 12.1.5b.

c. The limit of the Markov reward chain with fast transitions in Fig-
ure 12.1c is the discontinuous Markov reward chain (σ,Π, Q, ρ′) defined
in Examples 12.1.5c and 12.1.7c (with p = a

a+b). From Figure 12.1c
we obtain that the ergodic partitioning is determined by E1 = {2},
E2 = {3}, E3 = {4} and T = {1}. This is confirmed by Exam-
ple 12.1.5c. �

12.3 Markov reward chains with silent transitions

In this section we define Markov reward chains that can exhibit non-
deterministic behavior and call them Markov reward chains with silent tran-
sitions. A Markov reward chain with silent transitions is a Markov reward
chain with fast transitions in which the speeds of the fast transitions are con-
sidered unspecified. In other words, we define a Markov reward chain with
silent transitions by abstracting from the speeds in a Markov reward chain
with fast transitions. For this, we need to introduce a special equivalence
relation on matrices.

Definition 12.3.1 (Matrix grammar) Two matrices A,B ∈ Rn×n are
said to have the same grammar, denoted by A ∼ B, if for all 1 6 i, j 6 n,
A[i, j] = 0 iff B[i, j] = 0. �

Example 12.3.2 The matrices

(
2 −3
−5 0

)
and

(
−1 2
−4 0

)
have the same

grammar while the matrices

(
2 −3
−5 0

)
and

(
−1 0
−4 0

)
do not. �

The abstraction from speeds is achieved by identifying generator matri-
ces with the same grammar. A Markov reward chain with silent transitions
is defined as a Markov reward chain with fast transitions but instead of one
matrix that models fast transitions we take the whole equivalence class in-
duced by ∼. Note that we do not take elements of the matrix to be sets, but

188 Chapter 12. Markov Reward Chains with Discontinuities, and with . . .

rather take the set of matrices instead. The consequence is that a Markov
reward chain with silent transitions is not allowed to choose different speeds
each time it enters some state. Our approach to resolving non-determinism
therefore corresponds to the one of probabilistic, history independent, sched-
ulers [92]. Having the quantification inside a matrix would lead to a much
more complicated theory because it would force us to move from Markov
chains to a model similar to Markov set chains [58].

Definition 12.3.3 (Markov reward chain with silent transitions)
A Markov reward chain with silent transitions is a quadruple (σ,Qs,Qf , ρ)
where Qf is an equivalence class of ∼ and, for every Qf ∈ Qf , (σ,Qs, Qf , ρ)
is a Markov reward chain with fast transitions. �

a) ?>=<89:;1
1 r1

τ

��

λ

��
?>=<89:;2

r2

µ
44 ?>=<89:;3

r3

b) ?>=<89:;1

τ
��

π r1

?>=<89:;2
1−π r2

τ

TT

λ
��

?>=<89:;3
r3

c) ?>=<89:;1
1 r1

τ

τ

��
?>=<89:;2

r2

λ ((

?>=<89:;3
r3

µ
vv?>=<89:;4
r4

ν

OO

Figure 12.2: Markov reward chains with silent transitions corresponding to
the Markov reward chains with fast transitions from Figure 12.1

A Markov reward chain with silent transitions (σ,Qs,Qf , ρ) is visual-
ized as the Markov reward chain with fast transitions (σ,Qs, Qf , ρ), where
Qf ∈ Qf , but omitting the speeds of fast transitions. Figure 12.2 shows the
Markov reward chains with silent transitions that correspond to the Markov
reward chains with fast transitions from Figure 12.1.

Note that the notions of τ -reachability, τ -communication, and ergodic
partitioning are speed independent, so they naturally carry over to Markov
reward chains with silent transitions.

Chapter 13

Aggregation by Lumping

Lumping [67, 23, 82] is an aggregation method based on joining together
states that exhibit equivalent behavior. In this chapter we introduce a no-
tion of lumping for each of the Markovian models from Chapter 12. We first
generalize the ordinary lumping method from standard Markov chains to
discontinuous Markov reward chains. Then we introduce a lumping method
for Markov reward chains with fast transitions, called τ -lumping, that as-
sures that the limit process of the lumped Markov reward chain with fast
transitions is the lumped version of the limit process of the original Markov
reward chain with fast transitions. Finally, we lift τ -lumping to Markov
reward chains with silent transitions and call it τ∼-lumping. We show that
τ∼-lumping induces a τ -lumping for all possible speeds of fast transitions
and, moreover, that the slow transitions in the induced τ -lumped process
do not depend on those speeds.

13.1 Ordinary lumping

Partitioning is a central notion in the definition of lumping, so recall Defi-
nition 12.1.4. To define lumping in matrix terms it is standard to associate,
with every partitioning P = {C1, . . . , CN} of S = {1, . . . , n}, the following
two matrices. A matrix V ∈ Rn×N defined as

V [i, j] =

{
0, i 6∈ Cj
1, i ∈ Cj

is called the collector matrix for P. Its j-th column has 1’s for elements
corresponding to states in Cj and has zeroes otherwise. Note that V ·1 = 1.
For the trivial partitionings P = {S} and P = {{i} | i ∈ S}, we have V = 1
and V = I respectively.

189

190 Chapter 13. Aggregation by Lumping

A matrix U ∈ RN×n such that U > 0 and UV = IN is a distributor
matrix for P. It can be readily seen that to satisfy these conditions U must
actually be a matrix of which the elements of the i-th row that correspond
to elements in Ci sum up to one while the other elements of the row are
0. For the trivial partitioning P =

{
S
}

a distributor is any stochastic row
vector; for the trivial partitioning P =

{
{i} | i ∈ S

}
there exists only one

distributor, viz. I.

Example 13.1.1 Let S = {1, 2, 3} and P =
{
{1, 2}, {3}

}
. Then V =(

1 0
1 0
0 1

)
is the collector for P and U =

(
1
3

2
3

0
0 0 1

)
is an example for a distribu-

tor. �

Aggregation by ordinary lumping partitions the state space into classes
such that in all the states that are lumped together the process behaves
in the same way when transiting to other partitioning classes. It is also
required that states in the same lumping class have the same reward. We
formalize this in matrix terms.

Definition 13.1.2 (Ordinary lumping) A partitioning P of {1, . . . , n}
is called an ordinary lumping of a discontinuous Markov reward chain
(σ,Π, Q, ρ) iff the following conditions hold:

V UΠV = ΠV, V UQV = QV, and V Uρ = ρ,

where V and U are respectively the collector and some distributor matrix
for P. �

The lumping conditions actually assure that the rows of ΠV (resp. QV
and ρ) that correspond to the states of the same partitioning class are equal.
Their representation in terms of a distributor matrix is convenient since
it allows us to write them as matrix equations. We show that, indeed,
the lumping conditions do not depend on the particular choice of the non-
zero elements of U . Suppose that V UΠV = ΠV and that U ′ > 0 is such
that U ′V = I. Then V U ′ΠV = V U ′V UΠV = V UΠV = ΠV . Similarly,
V U ′QV = QV and V U ′ρ = ρ.

The trivial partitioning P =
{
{1}, . . . , {n}

}
is always an ordinary lump-

ing. The other trivial partitioning P =
{
S
}
, however, is an ordinary lumping

only if the reward structure is trivial, i.e. if the reward vector ρ is comprised
of equal elements.

The following theorem characterizes the lumped process, i.e. the process
obtained after the aggregation by lumping.

13.1. Ordinary lumping 191

Theorem 13.1.3 (Lumped process) Let (σ,Π, Q, ρ) be a discontinuous
Markov reward chain and let P = {C1, . . . , CN} be an ordinary lumping of
(σ,Π, Q, ρ). Define

σ̂ = σV, Π̂ = UΠV, Q̂ = UQV, and ρ̂ = Uρ.

Then (σ̂, Π̂, Q̂, ρ̂) is a discontinuous Markov reward chain. �

Proof First, we have σ̂ · 1 = σV · 1 = σ · 1 = 1. Next, we show that the
four conditions of Theorem 12.1.2 hold for Π̂ and Q̂.

1. Since U > 0, V > 0 and Π > 0, we have Π̂ = UΠV > 0. Also,

Π̂ · 1 = UΠV · 1 = UΠ · 1 = U · 1 = 1

and, since V UΠV = ΠV , we have

Π̂2 = UΠV UΠV = UΠΠV = UΠV = Π̂.

2. Using the lumping conditions and that ΠQ = QΠ = Q, we have

Π̂Q̂ = UΠV UQV = UΠQV = UQV

and, similarly,

Q̂Π̂ = UQV UΠV = UQΠV = UQV = Q̂.

3. We have

Q̂ · 1 = UQV · 1 = UQ · 1 = U · 0 = 0.

4. Let c be such that Q+ cΠ > 0. Then

Q̂+ cΠ̂ = UQV + cUΠV = U(Q+ cΠ)V > 0. �

When the lumping conditions hold, then the definition of (σ̂, Π̂, Q̂, ρ̂)
also does not depend on a particular distributor U . To show this, let U ′

be another distributor matrix for P. Then U ′ΠV = U ′V UΠV = UΠV .
Similarly, U ′QV = UQV and U ′ρ = Uρ.

The trivial partitioning P =
{
{1}, . . . , {n}

}
leaves the original process

intact. The other trivial partitioning, i.e. P =
{
S
}

gives the absorbing, one
state, process as result.

192 Chapter 13. Aggregation by Lumping

If P is an ordinary lumping of (σ,Π, Q, ρ) and σ̂, Π̂, Q̂ and ρ̂ are defined
as in Theorem 13.1.3, then we say that (σ,Π, Q, ρ) lumps to (σ̂, Π̂, Q̂, ρ̂) with

respect to P and we write (σ,Π, Q, ρ)
P
 (σ̂, Π̂, Q̂, ρ̂).

Note that if (σ,Π, Q, ρ) is a Markov reward chain, then, since Π = I,
V UΠV = ΠV always holds. Moreover, in this case, also Π̂ = UΠV =
UIV = I and so, by Theorem 12.1.2, Q̂ is a generator matrix. Therefore,
when restricted to the continuous case, our notion of ordinary lumping co-
incides with the standard definition proposed in [82].

Before we give some examples of ordinary lumping we give two important
theorems that give the connection between the lumping and the transition
matrix. We prove a lemma first.

Lemma 13.1.4 Let (σ,Π, Q, ρ) be a discontinuous Markov reward chain
and let P be an ordinary lumping. Then,

1. ΠQn = Qn for all n > 1,

2. V UQnV = QnV for all n > 0, and

3. (UQV)n = UQnV for all n > 0. �

Proof We prove all the three cases by induction on n.

1. First we have ΠQ1 = ΠQ = Q = Q1 by definition. Assume that
ΠQn = Qn for n > 1. Then

ΠQn+1 = ΠQnQ = QnQ = Qn+1.

2. For n = 0 we have V UQ0V = V UV = V I = V = IV = Q0V . Assume
that V UQnV = QnV for n > 0. Then,

V UQn+1V = V UQnQV = V UQnV UQV =

= QnV UQV = QnQV = Qn+1V.

3. For n = 0 we have (UQV)0 = I = UV = UIV = UQ0V . Suppose
that (UQV)n = UQnV for n > 0. Then

(UQV)n+1 = (UQV)nUQV = UQnV UQV = UQnQV = UQn+1V.

�

The first theorem reflects the conditions of Definition 13.1.2 to the cor-
responding transition matrix.

13.1. Ordinary lumping 193

Theorem 13.1.5 Let (σ,Π, Q, ρ) be a discontinuous Markov reward chain
and let P (t) = ΠeQt (t > 0), be its transition matrix. Let P be an ordinary
lumping of (σ,Π, Q, ρ). Then

V UP (t)V = P (t)V. �

Proof We have

V UP (t)V = V UΠeQtV = V UΠ
∞∑

n=0

Qntn

n!
V =

= V UΠ

(
I +

∞∑

n=1

Qntn

n!

)
V = V UΠV +

∞∑

n=1

V UΠQnV tn

n!
.

By Lemma 13.1.4(1), we have ΠQn = Qn and so V UΠQnV = V UQnV .
Furthermore, by Lemma 13.1.4(2), we have V UQnV = QnV . Using this
and V UΠV = ΠV , we continue the derivation as

V UΠV +

∞∑

n=1

V UΠQnV tn

n!
= ΠV +

∞∑

n=1

QnV tn

n!
= ΠV +

∞∑

n=1

ΠQnV tn

n!
=

= Π

(
I +

∞∑

n=1

Qntn

n!

)
V = Π

∞∑

n=0

Qntn

n!
V = ΠeQtV = P (t)V. �

The second theorem shows that the transition matrix of the lumped pro-
cess can also be obtained directly from the transition matrix of the original
process.

Theorem 13.1.6 Let (σ,Π, Q, ρ)
P
 (σ̂, Π̂, Q̂, ρ̂). Let P (t) = ΠeQt and

P̂ (t) = Π̂eQ̂t (t > 0) be the transition matrices of (σ,Π, Q, ρ) and (σ̂, Π̂, Q̂, ρ̂)
respectively. Then

P̂ (t) = UP (t)V. �

Proof First we have

P̂ (t) = Π̂eQ̂t = UΠV eUQV t = UΠV

∞∑

n=0

(UQV)ntn

n!
.

By Lemma 13.1.4(3), we have (UQV)n = UQnV , and so

UΠV

∞∑

n=0

(UQV)ntn

n!
= UΠV

∞∑

n=0

UQnV tn

n!
= UΠ

∞∑

n=0

V UQnV tn

n!
.

194 Chapter 13. Aggregation by Lumping

Using Lemma 13.1.4(2), it further follows that

UΠ
∞∑

n=0

V UQnV tn

n!
= UΠ

∞∑

n=0

QnV tn

n!
=

= UΠ
(∞∑

n=0

Qntn

n!

)
V = UΠeQtV = UP (t)V. �

Now we can also prove that the lumped process has the same total reward
as the original process. Since the total reward is usually the most useful
performance measure, this is a very important property of lumping.

Corollary 13.1.7 Let (σ,Π, Q, ρ)
P
 (σ̂, Π̂, Q̂, ρ̂) and let R(t) and R̂(t) be the

total reward of (σ,Π, Q, ρ) and (σ̂, Π̂, Q̂, ρ̂) respectively. Then R̂(t) = R(t).�

Proof Using Theorems 13.1.6 and 13.1.5, we have

R̂(t) = σ̂P̂ (t)ρ̂ = σV UP (t)V Uρ = σP (t)V Uρ = σP (t)ρ = R(t). �

Remark 13.1.8 The definition of the lumped process must be correct ac-
cording to the standard probabilistic intuition. This means that we need to
show that the finite distribution of the lumped process is the same as the
sum of the finite distributions of the original process over the states in the
lumping classes. That is, we need to prove that the probability that the pro-
cess is in a finite sequence of classes in a given sequence of time instances, is
the same as the sum of the probabilities that the process is in the individual
sequences of states from these classes in that time sequence. This can be
easily proven (e.g. by induction on the length of the time sequence) using
Theorems 13.1.5 and 13.1.6. �

We now give some examples.

Example 13.1.9 a. Let (σ,Π, Q, ρ) be the discontinuous Markov reward
chain defined by

σ =
(
π 1−π 0

)
, Π = I, Q =



−(λ+µ) λ µ

0 0 0
0 0 0


 , and ρ =



r1
r
r


 .

This it the discontinuous Markov reward chain from Example 12.1.7a

but with r2 = r3
def
= r. We show that the partitioning P =

13.1. Ordinary lumping 195

{
{1}, {2, 3}

}
is an ordinary lumping. From P we obtain

V =




1 0
0 1
0 1


 and U =

(
1 0 0
0 α 1 − α

)
,

for some 0 6 α 6 1. Now, we have

V UQV =

(
−(λ+µ) λ+µ

0 0

)
= QV

and

V Uρ =




r1
αr + (1−α)r
αr + (1−α)r


 =



r1
r
r


 = ρ.

The lumped process (σ̂, Π̂, Q̂, ρ̂) is defined by

σ̂ =
(
1 0
)
, Π̂ = I, Q̂ =

(
−(λ+µ) λ+µ

0 0

)
and ρ̂ =

(
r1
r

)
.

The total reward of the process (σ,Π, Q, ρ) from Example 12.1.7a re-
duces to R(t) = r1e

−(λ+µ)t + r(1 − e−(λ+µ)t) when r2 = r3 = r. As
proven in Corollary 13.1.7, the same total reward can be calculated by

σ̂P̂ (t)ρ̂ = σ̂eQ̂tρ̂ =
(
1 0
)(e−(λ+µ)t 1−e−(λ+µ)t

0 1

)(
r1
r

)
=

= r1e
−(λ+µ)t + r(1 − e−(λ+µ)t).

This example illustrated an ordinary lumping of a standard Markov
chain.

b. Let (σ,Π, Q, ρ) be defined by σ =
(
π 1−π 0

)
and

Π =




1−p p 0
1−p p 0
0 0 1


 , Q =



−p(1−p)λ −p2λ pλ
−p(1−p)λ −p2λ pλ

0 0 0


 , and ρ =



r
r
r3


 .

This is the same discontinuous Markov reward chain as in Exam-
ple 12.1.7b but with r1 = r2

def
= r. We show that P =

{
{1, 2}, {3}

}

is an ordinary lumping. This easily follows after looking at the corre-
sponding rows of ρ and of the following matrices:

ΠV =




1 0
1 0
0 1


 , QV =



−pλ pλ
−pλ pλ

0 0


 .

196 Chapter 13. Aggregation by Lumping

The lumped process (σ̂, Π̂, Q̂, ρ̂) is defined by:

σ̂ =
(
1 0
)
, Π̂ =

(
1 0
0 1

)
, Q̂ =

(
−pλ pλ

0 0

)
and ρ̂ =

(
r
r3

)
.

Note that, in this case, the lumped process is a Markov reward chain.

By setting r1 = r2 = r in the total reward from Example 12.1.7b we
have R(t) = ((1−p)r1 + pr2 − r3) e

−pλt + r3 = (r − r3)e
−pλt + r3. We

calculate

R̂(t) = σ̂P̂ (t)ρ̂ = σ̂eQ̂tρ̂ =
(
1 0
)(e−pλt 1−e−pλt

0 1

)(
r
r3

)
=

= (r − r3)e
−pλt + r3 = R(t).

In this example a whole ergodic class constitutes a lumping class. It is
not hard to show that an ergodic class is always a correct lumping class
when the states inside all have the same reward. By lumping a whole
ergodic class we obtain a regular state in the lumped process. By
observing its entry in Q̂ we can see the time that the original process
spends switching among the states in this ergodic class. The time is
always exponential; in this example it is with rate pλ.

Note that we always obtain a reward vector with equal elements for
states belonging to the same ergodic class after multiplying the original
reward vector by Π (cf. Example 12.1.7b). Recall that nothing is lost
by this operation if only the total reward is to be calculated.

c. Let (σ,Π, Q, ρ) be defined by σ =
(
1 0 0

)
,

Π =




0 p 1−p 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Q =




0 −pλ −(1−p)µ pλ+ (1−p)µ
0 −λ 0 λ
0 0 −λ λ
ν 0 0 −ν


 ,

and

ρ =




r1
r
r
r4


 .

13.1. Ordinary lumping 197

The partitioning P =
{
{1}, {2, 3}, {4}

}
is an ordinary lumping and

(σ,Π, Q, ρ) lumps (with respect to P) to (σ̂, Π̂, Q̂, ρ̂) defined by:

σ̂ =
(
1 0 0

)
, Π̂ =




0 1 0
0 1 0
0 0 1


 , Q̂ =




0 −λ λ
0 −λ λ
ν 0 −ν


 and ρ̂ =



r1
r
r4


 .

This is an example when the lumped process is not a Markov reward
chain.

The partitioning P =
{
{1, 2, 3}, {4}

}
is also an ordinary lumping.

With respect to this partitioning (σ,Π, Q, ρ) lumps to (σ̂, Π̂, Q̂, ρ̂) de-
fined as:

σ̂ =
(
1 0
)
, Π̂ =

(
1 0
0 1

)
, Q̂ =

(
−λ λ
ν −ν

)
, and ρ̂ =

(
r
r4

)

which is a standard Markov reward chain.

This example shows how transient states are lumped together with
ergodic states. It is not hard to show that if a transient state can be
trapped only in one ergodic class, then it can always be lumped with
states from that ergodic class. Note that, when the reward vector is
multiplied by Π, the original reward on the transient state becomes
irrelevant because it becomes the same as the new reward of the ergodic
class. Also, if a transient state can be trapped in more than one
ergodic class, and if the lumping class that contains this transient
state also contains some states from one of these ergodic classes, then
this lumping class must contain states from all of these ergodic classes.

Note that (σ,Π, Q, ρ) is the discontinuous Markov reward chain from

Example 12.1.7c when λ = µ and r2 = r3
def
= r. We show that without

these restrictions, the discontinuous Markov reward chain from Exam-
ple 12.1.7c cannot be properly lumped. State 1 is transient and it can
be trapped in the ergodic states 2 and 3. This state can only be joined
with state 2 or with state 3 if these two states are both in the same
lumping class. States 2 and 3, however, cannot belong to the same
class because they either have different rates leading to state 4 or they
have different rewards. �

198 Chapter 13. Aggregation by Lumping

13.2 τ-lumping

In this section we introduce a notion of lumping for Markov reward chains
with fast transitions. This notion is based on the ordinary lumping for
discontinuous Markov reward chains: a partitioning is a lumping of a Markov
reward chain with fast transitions if it is an ordinary lumping of its limit.

Definition 13.2.1 (τ -lumping) A partitioning P of a Markov reward
chain with fast transitions (σ,Qs, Qf , ρ) is called a τ -lumping if it is an
ordinary lumping of the discontinuous Markov chain (σ,Π, Q, ρ), where
(σ,Qs, Qf , ρ) →∞ (σ,Π, Q, ρ). �

We give a definition of the lumped process by multiplying σ, Qs, Qf and
ρ with the collector matrix and a distributor matrix, similarly as we did
for discontinuous Markov chains. This technique ensures that the lumped
versions of Qs and Qf are also generator matrices and that, consequently,
we obtain a Markov reward chain with fast transitions as a result. However,
since the lumping condition does not hold for Qs and Qf (i.e. we do not
necessarily have that V UQsV = QsV and V UQfV = QfV , but only that
V UΠV = ΠV and V UQV = QV), we cannot guarantee that the definition
of the lumped process does not depend on the choice for a distributor. We
define a class of special distributors, called τ -distributors, that give a lumped
process of which the limit is the lumped version of the limit of the original
Markov reward chain with fast transitions.

Before we present the definition of τ -distributors, we state a lemma that
provides a connection between a τ -lumping and the ergodic classes. Intu-
itively, if two lumping classes contain states from a same ergodic class, then
whenever one of the lumping classes contains states from another ergodic
class, the other must also contain states from that ergodic class.

Lemma 13.2.2 Let (σ,Qs, Qf , ρ) be a Markov reward chain with fast tran-
sitions. Let E = {E1, . . . , EM , T} be its ergodic partitioning and let
P = {C1, . . . , CN} be a τ -lumping. Then, for all 1 ≤ I, J ≤ M and all
1 ≤ K,L ≤ N , if EI ∩ CK 6= ∅, EJ ∩ CK 6= ∅ and EI ∩ CL 6= ∅, then
EJ ∩ CL 6= ∅. �

Proof Suppose i, j and k are such that i ∈ EI , i ∈ CK , j ∈ EJ , j ∈ CK ,
k ∈ EI and k ∈ CL. Let Π be the ergodic projection of Qf . Note first,
because k is an ergodic state, from the form of Π, we have that Π[k, k] > 0.
Since k ∈ CL, this implies that (ΠV)[k, L] > 0. Now, let ℓ ∈ EJ . From the
form of Π again, it follows that (ΠV)[ℓ, L] = (ΠV)[j, L] because j and ℓ are

13.2. τ -lumping 199

in the same ergodic class. Since j and i belong to the same lumping class,
we have (ΠV)[j, L] = (ΠV)[i, L]. As before, by the form of Π, (ΠV)[i, L] =
(ΠV)[k, L]. We conclude that (ΠV)[ℓ, L] > 0. This means that there exists
an ℓ′ ∈ CL such that Π[ℓ, ℓ′] > 0. This is only possible if ℓ′ and ℓ are in the
same ergodic class, i.e. if ℓ′ ∈ EJ . We conclude that ℓ′ ∈ EJ ∩ CL. �

Now, we can give the definition of a τ -distributor and of a τ -lumped
Markov reward chain with fast transitions.

Definition 13.2.3 (τ -distributor) Let (σ,Qs, Qf , ρ) be a Markov reward
chain with fast transitions. Let P = {C1, . . . , CN} be its τ -lumping and E =
{E1, . . . , EM , T} its ergodic partitioning. Let Π be the ergodic projection of
Qf . Put e(K) = {L | CK ∩EL 6= ∅}. Let αKL > 0 if L ∈ e(K) be arbitrary,
subject only to

∑
L∈e(K) αKL = 1 and αKL = αK ′L. Let βKi > 0 for i ∈ CK

and e(K) = ∅ be also arbitrary, subject only to
∑

i∈CK
βKi = 1. Then a

τ -distributor W ∈ RN×n is defined as

W [K, i] =





0, i 6∈ CK

αKL|e(K)|
Π[i,i]

P
k∈CK

Π[k,k]
, i ∈ CK ∩ EL

0, i ∈ CK ∩ T, e(K) 6= ∅
βKi, i ∈ CK ∩ T, e(K) = ∅.

Define

σ̂ = σV, Q̂s = WQsV, Q̂f = WQfV, and ρ̂ = Wρ,

for some τ -distributor W . We say that (σ,Qs, Qf , ρ) τ -lumps to (σ̂, Q̂s, Q̂f , ρ̂)

with respect to P and write (σ,Qs, Qf , ρ)
P
 τ (σ̂, Q̂s, Q̂f , ρ̂). �

Note that W > 0. In the special case that αKL = 1/|eK | for all 1 6 L 6
M , it is clear thatW is indeed a distributor matrix for P. The proof that it is
a distributor also in the general case will be given later (see Theorem 13.2.8).

Let us explain the form of a τ -distributor. As a distributor, it is a
matrix that assigns weights to the rows of QsV and QfV , and then sums
them up. Because of Lemma 13.2.2 the lumping and the ergodic classes
can be grouped in such a way that every lumping class shares states with
every ergodic class of the group and no other. The group of ergodic classes
that have common states with the lumping class CK are given by e(K).
The weights αKL > 0, for L ∈ e(K), can be arbitrarily distributed amongst
the ergodic classes that share the same lumping classes. They must sum

200 Chapter 13. Aggregation by Lumping

up to one to ensure the form of a distributor. The condition αKL = αK ′L

assures that the states from the same ergodic class are treated in the same
way (it is because of this condition that Lemma 13.2.2 is crucial for the
correct definition of a τ -distributor). The weights are multiplied by |e(K)|
because the normalization constant

∑
k∈Ck

Π[k, k] is a sum over all states
of the |e(K)| shared ergodic classes. As transient states have no ergodic
probabilities (Π[i, i] = 0 when i ∈ T), they are assigned weight 0 when
lumped together with ergodic states. We can assign arbitrary weights when
lumping only transient states since by the lumping conditions their trapping
probabilities to lumped ergodic classes must be equal.

Note that because there are several choices for the parameters in the
definition of τ -distributors, there are, in general, several Markov reward
chains with fast transitions that the original Markov reward chain with
fast transitions τ -lumps to. We will show later that all these processes are
equivalent in the limit and, moreover, that in some special cases, they are
exactly equivalent.

We now give some examples; first some in which the τ -lumped process
is unique.

a) ?>=<89:;1
1 r1

aτ

��

λ

��
?>=<89:;2

r2

µ
44 ?>=<89:;3

r3

?>=<89:;1
1 r2

µ

��
?>=<89:;2

r3

b) ?>=<89:;1

aτ
��

π r1

?>=<89:;2
1−π r2

bτ

TT

λ
��

?>=<89:;3
r3

?>=<89:;1
1 br1+ar2

a+b

a
a+b

λ

��
?>=<89:;2

r3

c) ?>=<89:;1
1 r1

aτ

bτ

��
?>=<89:;2

r

λ ((

?>=<89:;3
r

λvv?>=<89:;4
r4

ν

OO
?>=<89:;1
1 r1

(a+b)τ
��

?>=<89:;2
r

λ
��

?>=<89:;3
r4

ν

YY
?>=<89:;1
1 r

λ
��
?>=<89:;2

r4

ν

TT

Figure 13.1: τ -lumpings with unique τ -lumped processes – Example 13.2.4

13.2. τ -lumping 201

Example 13.2.4 a. Consider the Markov reward chain with fast tran-
sitions depicted in Figure 13.1a on the left. Its ergodic partitioning
is E = {E1, E2, T} with E1 = {2}, E2 = {3} and T = {1}. We show
that P = {C1, C2}, with C1 = {1, 2} and C2 = {3}, is a τ -lumping
and that the process τ -lumps to the one in Figure 13.1a on the right.
To show that the lumping conditions hold we first obtain

Π =




0 1 0
0 1 0
0 0 1


 and V =




1 0
1 0
0 1


 .

Then

ΠV =




1 0
1 0
0 1


 , ΠQsΠV =



−µ µ
−µ µ
0 0


 , and Πρ =



r2
r2
r3


 .

It is clear that the conditions for τ -lumping hold (the rows correspond-
ing to states in the same lumping class are equal).

We now construct a τ -distributor. We have e(1) = {1} and e(2) = {2}.
From this, α11 = 1, α22 = 1, and there are no other parameters. We
now obtain the only τ -distributor

W =

(
0 1 0
0 0 1

)
.

The τ -lumped process is now defined by the following.

σ̂ = σV =
(
1 0
)
, Q̂s = WQsV =

(
−µ µ
0 0

)
,

Q̂f = WQfV =

(
0 0
0 0

)
, and ρ̂ = Wρ =

(
r2
r3

)
.

The process (σ̂, Q̂s, Q̂f , ρ) is indeed the one depicted in Figure 13.1a
on the right.

This example illustrates how, in transient states, fast transitions have
priority over slow transitions; the transition labeled with λ is irrele-
vant. Because there is only one τ -distributor, i.e. it does not depend
on the parameters, we have a unique τ -lumped process.

202 Chapter 13. Aggregation by Lumping

b. Consider the Markov reward chain with fast transitions depicted in
Figure 13.1b on the left. The limit of this process was calculated
in Example 12.2.4b, and in Example 13.1.9b we showed that P =
{C1, C2}, with C1 = {1, 2} and C2 = {3}, is an ordinary lumping of
the limit. By definition, P is then a τ -lumping.

We construct a τ -distributor. Recall that

Π =




b
a+b

a
a+b 0

b
a+b

a
a+b 0

0 0 1


 .

The ergodic partitioning is E = {E1, E2} where E1 = {1, 2} and E2 =
{3}. We have e(1) = {1} and e(2) = {2}. From this, α11 = 1 and
α22 = 1, and we first obtain

W =

(
b
a+b

a
a+b 0

0 0 1

)
,

and then

Q̂s =

(
− aλ
a+b

a λ
a+b

0 0

)
, Q̂f = 0, and ρ̂ =

(
br1+ar2
a+b

r3

)
.

The process τ -lumps to the one in Figure 13.1b on the right. As in
the previous case, we only have one τ -distributor, and hence only one
τ -lumped process.

This example shows that when two ergodic states with different slow
transition rates are lumped together, the resulting state is ergodic and
it can perform the same slow transition but with an adapted rate. The
example also shows that, in the limit, the Markov reward chain with
fast transitions of Figure 13.1b on the left spends an exponentially
distributed amount of time with rate aλ

a+b in the class {1, 2}. This is
the time that it spends switching between state 1 and state 2.

c. Consider the Markov reward chain with fast transitions depicted in
Figure 13.1c on the left. The limit of this process was calculated in
Example 12.2.4c. Example 13.1.9c then shows that the partitionings
P = {C1, C2, C3}, with C1 = {1}, C2 = {2, 3}, and C3 = {4}, and
P = {C1, C2}, with C1 = {1, 2, 3} and C2 = {4}, are τ -lumpings. The
ergodic partitioning of this Markov reward chain with fast transitions
is E = {E1, E2, E3, T} where E1 = {2}, E2 = {3}, E3 = {4} and
T = {1}.

13.2. τ -lumping 203

For the first partitioning we have e(1) = ∅, e(2) = {1, 2} and e(3) =

{3}. We then have α21
def
= α to be an arbitrary number between 0 and

1, α22 = 1 − α21 = 1 − α, and α33 = 1. This now gives the following
τ -distributor and the τ -lumped process:

W =




1 0 0 0
0 α 1−α 0
0 0 0 1


 , Q̂s =




0 0 0
0 −λ λ
ν 0 −ν


 ,

Q̂f =



−(a+b) a+b 0

0 0 0
0 0 0


 and ρ̂ =



r1
r
r4


 .

The τ -lumped process is depicted in Figure 13.1c in the middle. This
example shows that τ -lumping need not eliminate all silent transi-
tions. It also shows that even if there are several valid choices for the
parameters in τ -distributors, in some cases there is only one possible
τ -lumped process.

For the second partitioning we similarly obtain

W =

(
0 α 1−α 0
0 0 0 1

)
, Q̂s =

(
−λ λ
ν −ν

)
, Q̂f = 0, and ρ̂ =

(
r
r4

)
.

The lumped Markov reward chains with fast transitions is depicted in
Figure 13.1c on the right. This example shows how transient states
can be lumped with ergodic states, resulting in an ergodic state. �

In the previous example all the lumping classes always contained some
ergodic states, and moreover, there were not constructed from states of
different ergodic classes. This is why none of the τ -lumped Markov reward
chains with fast transitions depended on the particular choice of parameters
in the τ -distributor. The next example shows that this is not always the
case.

Example 13.2.5 a. Consider the left Markov reward chain with fast
transitions depicted in Figure 13.2a on the left. It is defined by

σ =
(
1 0 0 0

)
, Qs =




0 0 0 0
−λ 0 0 λ
0 0 0 0
0 0 0 0


 ,

204 Chapter 13. Aggregation by Lumping

a) ?>=<89:;1
1 r1

aτ
��

?>=<89:;2
r2

bτ

��

λ

��
?>=<89:;3

r3 ?>=<89:;4
r4

?>=<89:;1
1 (1−β)r1+βr2

βbτ

��

βλ

��
?>=<89:;2

r3 ?>=<89:;3
r4

b) ?>=<89:;1
1 r1

aτ

��

bτ

��
?>=<89:;2

cτ
��

r2 ?>=<89:;3
r2

2cτ
��

?>=<89:;4

dτ

TT

r3 ?>=<89:;5
r3

2dτ

TT

?>=<89:;1
1 r1

(a+b)τ
��

?>=<89:;2

(2−α)cτ
��

r2

?>=<89:;3

(2−α)dτ

TT

r3

Figure 13.2: τ -lumping where the τ -lumped process depends on the param-
eters in the τ -distributor – Example 13.2.5

Qf =




−a a 0 0
0 −b b 0
0 0 0 0
0 0 0 0


 and ρ =




r1
r2
r3
r4


 .

It is not hard to show that P = {{1, 2}, {3}, {4}} is a τ -lumping of
this Markov reward chain with fast transitions. We only show that it
τ -lumps to the Markov reward chain with fast transitions depicted in
Figure 13.2a on the right. We obtain

Π =




0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1


 and V =




1 0 0
1 0 0
0 1 0
0 0 1


 .

States 1 and 2 are both transient and constitute a lumping class. Be-

13.2. τ -lumping 205

cause of this we have

W =




1−β β 0 0
0 0 1 0
0 0 0 1


 for some 0 < β < 1,

and so

σ̂ = σV =
(
1 0 0

)
, Q̂s = WQsV =



−βλ 0 βλ

0 0 0
0 0 0


 ,

Q̂f = WQfV =



−βb βb 0
0 0 0
0 0 0


 , ρ̂ =




(1−β)r1 + βr2
r3
r4


 .

This Markov reward chain with fast transitions is indeed the right one
in Figure 13.2a. The reason why it depends on the parameters in W
is because there is a lumping class, in this case the first one, that
contains transient states only.

b. Consider now the Markov reward chain with fast transitions depicted
in Figure 13.2b on the left. It is defined by

σ =
(
1 0 0 0 0

)
, Qs = 0,

Qf =




−(a+b) a b 0 0
0 −c 0 c 0
0 0 −2c 0 2c
0 d 0 −d 0
0 0 2d 0 −2d




and ρ =




r1
r2
r2
r3
r3



.

It is not hard to show that P = {{1}, {2, 3}, {4, 5}} is a τ -lumping of
this Markov reward chain with fast transitions. We only show that it
τ -lumps to the Markov reward chain with fast transitions depicted in
Figure 13.2b on the right. We obtain

Π =




0 a d
(a+b) (c+d)

b d
(a+b) (c+d)

a c
(a+b) (c+d)

b c
(a+b) (c+d)

0 d
c+d 0 c

c+d 0

0 0 d
c+d 0 c

c+d

0 d
c+d 0 c

c+d 0

0 0 d
c+d 0 c

c+d



.

206 Chapter 13. Aggregation by Lumping

From Π and P we have

W =




1 0 0 0 0 0
0 α 1−α 0 0 0
0 0 0 α 1−α 0
0 0 0 0 0 1


 for some 0 < α < 1.

Note that the same parameter α appears, both in the row correspond-
ing to class {2, 3} and in the row corresponding to {4, 5}. This is
because these two classes belong to the same group, i.e. they share
states with the same ergodic classes.

Now, σ̂ =
(
1 0 0

)
, Q̂s = 0,

Q̂f =



−(a+b) a+b 0

0 −(2−α)c (2−α)c
0 (2−α)d −(2−α)d


 , and ρ̂ =



r1
r2
r3


 .

This Markov reward chain with fast transitions is indeed the one in
Figure 13.2b on the right. The reason why it depends on the param-
eters in W is because the second and the third lumping class contain
states from multiple ergodic classes, but do not contain complete er-
godic classes. �

The following example shows some Markov reward chains with fast tran-
sitions that are minimal in the sense that they only admit the trivial τ -
lumpings.

Example 13.2.6 We show that, in non-special cases, the Markov reward
chains with fast transitions from Figure 13.3 admit only the trivial τ -
lumpings regardless of the reward structure. For this reason the rewards
are omitted from the picture.

a. Consider the Markov reward chain with fast transitions depicted in
Figure 13.3a. Its limit was obtained in Example 12.1.7c and in Ex-
ample 13.1.9c we explained why the limit does not have a non-trivial
lumping when λ 6= µ. Therefore, by the definition of τ -lumping, the
Markov reward chain with fast transitions from Figure 13.3a has no
proper τ -lumpings when λ 6= µ.

b. Consider the Markov reward chain with fast transitions from Fig-
ure 13.3b. We show that states 1 and 2 cannot be in the same lumping

13.2. τ -lumping 207

class. Let P = {{1, 2}, {3}, {4}}. We obtain

Π =




0 0 a c+b (c+d)
(a+b) (c+d)

a d
(a+b) (c+d)

0 0 c
c+d

d
c+d

0 0 1 0
0 0 0 1


 and V =




1 0 0
1 0 0
0 1 0
0 0 1


 .

Then

ΠV =




0 a c+b (c+d)
(a+b) (c+d)

a d
(a+b) (c+d)

0 c
c+d

d
c+d

0 1 0
0 0 1


 .

In order for the lumping condition to hold for Π we must have
a d

(a+b) (c+d) = d
c+d which is impossible because a

a+b < 1 always.

States 3 and 4 can be in the same lumping class only if λ = µ. It is
also easy to see that states 2 and 3 cannot be in the same class because
otherwise c

c+d = 1 which is impossible.

c. Consider the Markov reward chain with fast transitions in Figure 13.3c.
This Markov reward chain with fast transitions has a nontrivial lump-
ing only when b = c (with the assumption that λ 6= µ). We show that
states 1 and 2 can be in the same lumping class only in this case. Let
P = {{1, 2}, {3}, {4}}. We obtain

Π =




0 0 a
a+b

b
a+b 0

0 0 a
a+c

c
a+c 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




and V =




1 0 0
1 0 0
0 1 0
0 0 1


 .

As in the previous example for the lumping condition to hold we must
have that a

a+b = a
a+c . This is only possible when b = c. �

208 Chapter 13. Aggregation by Lumping

a) ?>=<89:;1
1

aτ

��

bτ

��
?>=<89:;2

λ !!

?>=<89:;3

µ
}}

?>=<89:;4

ν

OO
b) ?>=<89:;1

1

aτ
��

bτ

��

?>=<89:;2
cτ

dτ

��
?>=<89:;3

λ

JJ

?>=<89:;4

µ

TT

c) ?>=<89:;1
π

aτ
��

bτ

""E
EE

EE
EE

EE
E

?>=<89:;2
1−π

cτ
��

aτ

||yyy
yy

yy
yy

y

?>=<89:;3

λ !!

?>=<89:;4

µ
}}

?>=<89:;5

Figure 13.3: Markov reward chains with fast transitions without non-trivial
τ -lumpings – Example 13.2.6

Definition 13.2.3 of τ -lumping and Definition 13.1.2 of ordinary lumping
induce the following diagram:

Markov Reward Chain
with Fast Transitions τ→∞

//

τ -lumping

��

Discontinuous
Markov Reward Chain

ordinary

lumping

��
τ -lumped

Markov Reward Chain
with Fast Transitions

lumped
Discontinuous

Markov Reward Chain

We now show that the diagram can be closed, i.e. that

τ -lumped
Markov Reward Chain
with Fast Transitions

τ→∞
//

lumped
Discontinuous

Markov Reward Chain

This property is very important since it proves the definition of τ -lumping
correct by showing that τ -lumping preserves limit behavior.

To establish correctness we first show that ΠV WΠ = ΠVW . Intuitively,
this equality states that W distributes the lumped ergodic states according
to their re-normalized ergodic probabilities. For a smooth proof of this prop-
erty we introduce a convenient numbering of states. This numbering also
allows us to prove that W is a distributor for any choice of the parameters.

By Lemma 13.2.2 we can introduce a convenient arrangement of the
ergodic and lumping classes.

13.2. τ -lumping 209

Let E = {E1, . . . , EM , T} and P = {C1, . . . , CN} be the ergodic parti-
tioning and a τ -lumping respectively of some Markov reward chain with fast
transitions. Let 1 6 L 6 N be the number of lumping classes that contain
ergodic states and let the lumping classes be arranged such that C1, . . . , CL
contain states from ergodic classes (and possibly some transient states too),
while CL+1, . . . , CN consist exclusively of transient states. Then, there exist
1 6 S 6 min(L,M), c1, . . . , cS , and e1, . . . , eS , such that L =

∑S
i=1 ci and

that C1, . . . , CL and E1, . . . , EM can be further arranged and divided into
S blocks Ei1, . . . , Eiei

and Ci1, . . . , Cici where, for all 1 ≤ j ≤ ei, 1 ≤ k ≤ ci,
Eij ∩ Cik 6= ∅, and that Eij has no common elements with other lumping
classes.

We further number the states to make the above arrangement explicit
(assuming the lexicographic order). Additionally, we divide transient states
into those that are lumped together with some ergodic states and those that
are lumped only with other transient states, and then number them so that
those that belong to the first group precede those from the second group.
We give an example of this (re)numbering.

a) ?>=<89:;1
1

aτ

����
��

��
�
bτ

��
cτ

��;
;;

;;
;;

?>=<89:;2

dτ
��

?>=<89:;3

fτ
��

?>=<89:;4

dτ
��

?>=<89:;5

eτ

TT

?>=<89:;6

gτ
��

?>=<89:;7

eτ

TT

?>=<89:;8

hτ

TT

b) ?>=<89:;8
1

aτ

����
��

��
�
bτ

��
cτ

��;
;;

;;
;;

?>=<89:;1

dτ
��

?>=<89:;7

fτ
��

?>=<89:;3

dτ
��

?>=<89:;2

eτ

TT

?>=<89:;5

gτ
��

?>=<89:;4

eτ

TT

?>=<89:;6

hτ

TT

Figure 13.4: Markov reward chain with fast transitions before and after the
renumbering of states – Example 13.2.7

Example 13.2.7 Consider the Markov reward chain with fast transitions
depicted in Figure 13.4a (we omit the reward structure, but assume that
the reward vector is permuted accordingly). Then E = {E1, E2, E3, T}, with
E1 = {2, 5}, E2 = {6, 8}, E3 = {4, 7} and T = {1, 3}, is its ergodic partition-
ing. It is not hard to show that the partitioning P = {C1, C2, C3, C4}, where
C1 = {1}, C2 = {2, 4}, C3 = {5, 7} and C4 = {3, 6, 8}, is a τ -lumping. Note

210 Chapter 13. Aggregation by Lumping

that the ergodic classes E1 and E3 share states from the lumping classes
C2 and C3, and that E2 shares states only with C4. So, L = 3 and S = 2.
We now renumber ergodic and lumping classes as E1 7→ E11, E3 7→ E12,
C2 7→ C11, C3 7→ C12, E2 7→ E21, C4 7→ C21 and C1 7→ C3. Note that the
transient state 3 lumps together with the ergodic states 6 and 8, and that
the transient state 1 lumps alone. We renumber states as 2 7→ 1, 5 7→ 2,
4 7→ 3, 7 7→ 4, 6 7→ 5, 8 7→ 6, 3 7→ 7, and 1 7→ 8. The permuted Markov
reward chain with fast transitions is depicted in 13.4b. �

We now present the matrices Π, V and W in the new numbering. First
we have

Π =




Π1 0 . . . 0 0 0
0 Π2 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . ΠS 0 0

Π1 Π2 . . . ΠS 0 0

Π̃1 Π̃2 . . . Π̃S 0 0




Πi = diag (Πi1, . . . ,Πiei
) Πij = 1|Eij | · µij

Πi =
(
Πi1 . . . Πiei

)
Πij = δij · µij

Π̃i =
(
Π̃i1 . . . Π̃iei

)
Π̃ij = δ̃ij · µij.

The matrices Πi correspond to the groups of classes that share states with
the same ergodic classes. The vector µij is the ergodic probability vector

for the ergodic class Eij. The matrices Πi and Π̃i respectively correspond
to the transient states that are lumped together with ergodic classes and to
those that are lumped only with other transient states. The vectors δij and

δ̃ij are the corresponding restrictions of the vector δij, the vector of trapping
probabilities for the ergodic class Eij .

The collector matrix V associated with P has the following form:

V =




V1 0 . . . 0 0
0 V2 . . . 0 0
...

...
. . .

...
...

0 0 . . . VS 0

V 1 V 2 . . . V S 0

0 0 . . . 0 Ṽ




Vi =



Vi1
...
Viei




Vij = diag
(
1|Eij∩Ci1|, . . . ,1|Eij∩Cici

|
)

V i = diag
(
1|T∩Ci1|, . . . ,1|T∩Cici

|
)

Ṽ = diag
(
1|T∩CL+1|, . . . ,1|T∩CN |

)
.

13.2. τ -lumping 211

Note that Vi and Ṽ are always collector matrices. The matrices V i are not
necessarily collectors; they are allowed to have zero columns.

Let µ
(k)
ij denote the restriction of µij to the elements of Cik. The vector

µ
(k)
ij is never empty because Cik ∩ Eij 6= ∅. Then we can express ΠiVi in

terms of these vectors as follows:

ΠiVi =




Πi1Vi1
...

Πiei
Viei


 =




1|Ei1| · µ
(1)
i1 · 1 . . . 1|Ei1| · µ

(ci)
i1 · 1

...
...

1|Eiei
| · µ

(1)
iei

· 1 . . . 1|Eiei
| · µ

(ci)
iei

· 1


 .

From the lumping condition it follows that the rows of ΠiVi that correspond
to the same lumping class are equal. This implies that

µ
(ℓ)
ij · 1 = µ

(ℓ)
ik · 1,

for all 1 ≤ j, k ≤ ei, 1 ≤ ℓ ≤ ci. Define a row vector φi ∈ R1×ci as

φi[ℓ] = µ
(ℓ)
ij · 1

(for any 1 ≤ j ≤ ei). Then

µijVij = φi for every 1 ≤ j ≤ ei, and ΠiVi = 1 · φi.

The matrix W of Definition 13.2.3 has the following form:

W =




W1 0 . . . 0 0 0
0 W2 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . WS 0 0

0 0 . . . 0 0 W̃




Wi =
(
Wi1 . . . Wiei

)

W̃ = diag (w̃L+1, . . . , w̃N)

where

Wij = diag

(
αijeiµ

(1)
ij∑ei

k=1 µ
(1)
ik · 1

, . . . ,
αijeiµ

(ci)
ij∑ei

k=1 µ
(ci)
ik · 1

)
.

and

w̃i =
(
βi1 . . . βi|Ci|

)
, 0 < βij < 1.

212 Chapter 13. Aggregation by Lumping

Using the definition of φi, we have:

Wij = diag

(
αijeiµ

(1)
ij∑ei

k=1 µ
(1)
ik · 1

, . . . ,
αijeiµ

(ci)
ij∑ei

k=1 µ
(ci)
ik · 1

)

= αijei · diag

(
µ

(1)
ij∑ei

k=1 φi[1]
, . . . ,

µ
(ci)
ij∑ei

k=1 φi[ci]

)

=
αijei
ei

· diag

(
µ

(1)
ij

φi[1]
, . . . ,

µ
(ci)
ij

φi[ci]

)

= αij · diag

(
µ

(1)
ij

φi[1]
, . . . ,

µ
(ci)
ij

φi[ci]

)
.

Let us now prove that every τ -distributor is a distributor.

Theorem 13.2.8 Let W be a τ -distributor as defined in Definition 13.2.3.
Then W is a distributor. �

Proof That W > 0 follows directly from Definition 13.2.3; we only prove
that WV = I. Using the above forms for W and V , we have

WV =




W1V1 0 . . . 0 0
0 W2V2 . . . 0 0
...

...
. . .

...
...

0 0 . . . WSVS 0

0 0 . . . 0 W̃ Ṽ



, WiVi =

∑ei

j=1WijVij

and

W̃ Ṽ = diag
(
w̃L+1 · 1

|T∩CL+1|, . . . , w̃N · 1|T∩CN |
)
.

We first have

WijVij = αij · diag

(
µ

(1)
ij

φi[1]
, . . . ,

µ
(ci)
ij

φi[ci]

)
· diag (1, . . . ,1)

= αij · diag

(
µ

(1)
ij · 1

φi[1]
, . . . ,

µ
(ci)
ij · 1

φi[ci]

)

= αij · diag

(
φi[1]

φi[1]
, . . . ,

φi[ci]

φi[ci]

)
= αijI.

13.2. τ -lumping 213

Now, using that
∑ei

j=1 αij = 1,

WiVi =

ei∑

j=1

WijVij =

ei∑

j=1

αijI = I.

Also, for all L+ 1 6 K 6 N ,

w̃K · 1|T∩CK | =

|CK |∑

k=1

βik = 1.
�

We now prove an important property of a τ -distributor.

Lemma 13.2.9 Let Π, V and W be as in Definition 13.2.3. Then

ΠVWΠ = ΠVW. �

Proof Using the structure of Π, V and W , after a simple block-matrix
calculation it follows that ΠVWΠ = ΠVW iff, for all 1 6 i 6 S,

XiViWiΠi = XiViWi for Xi ∈ {Πi,Πi, Π̃i}.

Going one level deeper in the matrix structure, we obtain that XiViWiΠi =
XiViWi iff

µijVijWikΠik = µijVijWik

for all 1 6 j, k 6 ei. Furthermore, from the definition of φi it follows that

µijVij =
(
µ

(1)
ij . . . µ

(ci)
ij

)
· diag

(
1|Eij∩Ci1|, . . . ,1|Eij∩Cici

|
)

=

=
(
µ

(1)
ij · 1|Eij∩Ci1| . . . µ

(ci)
ij · 1|Eij∩Cici

|
)

=
(
φi[1] . . . φi[ci]

)
= φi.

Therefore, the equality µijVijWikΠik = µijVijWik holds iff

φiWikΠik = φiWik

holds. We first calculate

φiWik = (φi[1] . . . φi[ci]) · αik · diag

(
µ

(1)
ik

φi[1]
, . . . ,

µ
(ci)
ik

φi[ci]

)
= αik · µik,

and then

φiWikΠik = αik · µik · 1 · µik = αik · 1 · µik = φiWik. �

214 Chapter 13. Aggregation by Lumping

It is not hard to show that the converse of this lemma also holds in a
special case. Any distributor W that has only non-zero elements associated
to the transient states that are lumped only with other transient states, and
that satisfies ΠVWΠ = ΠV W , is a τ -distributor.

The property ΠVWΠ = ΠVW is crucial in the proof that Q̂s and ρ̂ are
correctly defined. We now introduce some notions and prove a lemma that
plays an important role in the proof that Q̂f is also correctly defined.

A matrix G ∈ Rn×n such that G · 1 6 0 and G+ cI > 0 for some c > 0
is called a semi-generator (matrix). In other words, a semi-generator is a
matrix in which a negative element can only be on the diagonal, and the
absolute value of this element is bigger than or equal to the sum of the other
elements in the row. A semi-generator is called indecomposable if it cannot
be represented (after any permutation) as

(
Q 0

X Y

)
where Q is a generator

matrix.

Lemma 13.2.10 Let G ∈ Rn×n be an indecomposable semi-generator.
Then

a. G is invertible, i.e. of full rank; and

b. UGV ∈ RN×N is an indecomposable semi-generator for any collector
matrix V ∈ Rn×N and any distributor U ∈ RN×n associated to V
such that V [i,K] = 1 implies U [K, i] > 0, for all 1 6 i 6 n and
1 6 K 6 N . �

Proof a. Suppose that G is not invertible. We construct a numbering in
which G=

(
Q 0

X Y

)
and Q is a generator matrix. Let r1, . . . rn ∈ R1×n

be the row vectors that correspond to the rows of G. Let the rows
with elements that sum up to 0 precede those of which this sum is
less than 0, i.e. let the numbering of states be such that, for some
1 6 k 6 n, we have ri · 1 = 0, for 1 6 i 6 k, and ri · 1 < 0, for
k+1 6 i 6 n. Since G is not invertible, there exists an 1 6 ℓ 6 n such
that αℓrℓ = α1r1 + · · · + αℓ−1rℓ−1 + αℓ+1rℓ+1 + · · · + αnrn for some
α1, . . . , αn with αℓ = 1. We can now apply Theorem 2.1 of [45] which
imposes restrictions on rows of a singular diagonally-dominant matrix
G that are in the span of the other rows. By this theorem we directly
have that rℓ · 1 = 0, i.e. that ℓ 6 k, that αi = 0 for all k + 1 6 i 6 n,
and that G[i, j] = 0 for all 1 6 i 6 k and all k + 1 6 j 6 n. This

means that G =
(
Q 0

X Y

)
where Q =

(r1
...
rk

)
satisfies Q ·1 = 0 and hence

is a generator matrix.

13.2. τ -lumping 215

b. The proof is by contraposition. Suppose that in some numbering of
classes UGV =

(
Q 0

X Y

)
and Q is a generator matrix. Assume that

the states are numbered such that those that belong to classes that
correspond to Q precede the other states. Then

UGV =

(
U1 0
0 U2

)(
G11 G12

G21 G22

)(
V1 0
0 V2

)
=

(
Q 0
X Y

)
,

which in turn implies U1G11V1 = Q and U1G12V2 = 0.

We first prove that G12 = 0. Multiplying the equation U1G12V2 = 0
from the right by 1 we obtain U1G12 · 1 = 0. Define x ∈ Rn by
x = G12 · 1. Since G12 > 0, also x > 0. Suppose x[k] > 0 for some
1 6 k 6 n. Then from U1x = 0 it follows that U [K,k] = 0 for all
1 6 K 6 N . This is not possible because of the requirement that
U [K,k] > 0 for the index K such that V [k,K] = 1. We conclude that
x = 0 which implies G12 = 0.

We now prove that G11 is a generator matrix. Note that it is a semi-
generator, so we only need to show that G11 · 1 = 0. Multiplying
the equation U1G11V1 = Q from the right by 1 we obtain U1G11 · 1 =
Q ·1 = 0 because Q is a generator. Define x ∈ Rn by x = G11 ·1. Note
that x 6 0. Suppose x[k] < 0 for some 1 6 k 6 n. Since U1x = 0
it follows that U [K,k] = 0 for all 1 6 K 6 N . As in the previous
case, this is not possible because U [K,k] > 0 when V [k,K] = 1. We
conclude that x = 0 and, therefore, that G11 is a generator. �

The second notion we introduce is the notion of irreducible generator.
A matrix is called irreducible if there is no permutation after which it is
represented as

(
A′ A′′

0 B

)
for some (non-empty) square matrices A′ and B.

Lemma 13.2.11 Let Q ∈ Rn×n be an irreducible generator matrix. Then
UQV ∈ RN×N is also an irreducible generator matrix for any collector
matrix V ∈ Rn×N , and any distributor U ∈ RN×n associated to V such that
V [i,K] = 1 implies U [K, i] > 0, for all 1 6 i 6 n and 1 6 K 6 N . �

Proof The proof is by contraposition. Suppose that Q̂ = UQV is not

irreducible. Then Q̂ =
(
Q̂′

1 Q̂
′′

1

0 Q̂2

)
in some numbering of classes. After an

adequate renumbering of states we have

UQV =

(
U1 0
0 U2

)(
Q′

1 Q′′
1

Q′
2 Q′′

2

)(
V1 0
0 V2

)
=

(
Q̂′

1 Q̂′′
1

0 Q̂2

)

216 Chapter 13. Aggregation by Lumping

which implies that U2Q
′
2V1 = 0. Since Q′

2 > 0, after the same reasoning as
in the proof of Lemma 13.2.10, we obtain that Q′

2 = 0. From this it follows
that Q is not irreducible. �

We are now ready for the correctness proof.

Theorem 13.2.12 Let (σ,Qs, Qf , ρ) be a Markov reward chain with fast

transitions. Suppose (σ,Qs, Qf , ρ)
P
 τ (σ̂, Q̂s, Q̂f , ρ̂), (σ,Qs, Qf , ρ) →∞

(σ,Π, Q, ρ′) and (σ,Π, Q, ρ′)
P
 (σ, Π̂, Q̂, ρ̂′). Then

(σ,Qs, Qf , ρ) →∞ (σ, Π̂, Q̂, ρ̂′). �

Proof We need to show that Π̂ is the ergodic projection of Q̂f , that Π̂Q̂sΠ̂ =

Q̂ and that Π̂ρ̂ = ρ̂′.
For the second part, using the lumping conditions and the property

ΠV W = ΠV WΠ proven in Lemma 13.2.9, we have the following derivations:

Π̂Q̂sΠ̂ = UΠVWQsV UΠV = UΠVWΠQsΠV =

= UΠVWQV = UΠQV = UQV = Q̂,

and, since ρ′ = Πρ, we have Πρ′ = ρ′, and then

Π̂ρ̂ = UΠVWρ = UΠVWΠρ = UΠVWρ′ = UΠρ′ = Uρ′ = ρ̂′.

It remains to show that Π̂ is the ergodic projection of Q̂f . By The-

orem 12.2.3 it is enough to show that Π̂ > 0, Π̂ · 1 = 1, Π̂2 = Π̂,
Π̂Q̂f = Q̂f Π̂ = 0, and rank(Π̂) + rank(Q̂f) = N . In Theorem 13.1.3 we

showed that Π̂ satisfies the conditions of Theorem 12.1.2, so we have Π̂ > 0,
Π̂ · 1 = 1 and Π̂2 = Π̂. We also derive

Π̂Q̂f = UΠVWQfV = UΠVWΠQfV = 0

using that ΠQf = 0. Similarly,

Q̂f Π̂ = WQfV UΠV = WQfΠV = 0

because QfΠ = 0. We prove that rank(Π̂) + rank(Q̂f) = N .

First, we compute Π̂:

Π̂ = WΠV =




W1Π1V1 0 . . . 0 0
0 W2Π2V2 . . . 0 0
...

...
. . .

...
...

0 0 . . . WSΠSVS 0

W̃ Π̃1V1 W̃ Π̃2V2 . . . W̃ Π̃SVS 0




13.2. τ -lumping 217

where WiΠiVi = Wi · 1 · ρi = 1 · ρi.
Since Π̂ is idempotent, i.e. Π̂2 = Π̂, its rank is equal to its trace and so:

rank(Π̂) = trace(Π̂) =

S∑

i=1

trace(WiΠiVi) =

S∑

i=1

trace(1·ρi) = S·1 = S.

We now show that rank(Q̂f) = N − S.
It is well-known (cf. [39]) that, in a numbering that makes the ergodic

partitioning explicit (and our numbering is just a more refined one), Qf has
the following form:

Qf =




Q1 0 . . . 0 0 0
0 Q2 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . QS 0 0

Q1 Q2 . . . QS Q Q
′

Q̃1 Q̃2 . . . Q̃S Q̃ Q̃′




Qi = diag (Qi1, . . . , Qiei
) ,

where Qij are irreducible generators and
(
Q Q

′

eQ eQ′

)
is an indecomposable semi-

generator. Note that it follows that Q̃′ must also be an indecomposable
semi-generator.

We compute Q̂f :

Q̂f = WQfV =




W1Q1V1 0 . . . 0 0
0 W2Q2V2 . . . 0 0
...

...
. . .

...
...

0 0 . . . WSQSVS 0

W̃

(eQ1V1

+
eQV 1

)
W̃

(eQ2V2

+
eQV 2

)
. . . W̃

(eQSVS
+

eQV S

)
W̃ Q̃′Ṽ




and

WiQiVi =

ei∑

j=1

WijQijVij.

Since Qij is an irreducible generator, and since Wij and Vij satisfy the
conditions of Lemma 13.2.11, we obtain that WijQijVij is also an irreducible
generator. It is easy to prove that the sum of two irreducible generators is
again an irreducible generator. We conclude that WiQiVi is an irreducible
generator.

218 Chapter 13. Aggregation by Lumping

Since Q̃′ is an indecomposable semi-generator, and since W̃ and Ṽ satisfy
the conditions of Lemma 13.2.10, we obtain that W̃ Q̃′Ṽ is an indecompos-
able semi-generator matrix.

It is known that the rank of an irreducible generator of dimension n is
n − 1. We have also proven in Lemma 13.2.10a that an indecomposable
semi-generator matrix has full rank. Then rank(Q̂f) =

∑S
i=1(ci − 1) +N −

(L+ 1) + 1 = L− S +N − L = N − S. �

Recall that depending on the parameters in the τ -distributor there are, in
general, many processes to which a τ -lumpable Markov reward chain with
fast transitions τ -lumps to. The previous theorem showed that all these
processes have equal limits. The next theorem shows that they are actually
equal if all fast transitions were eliminated by τ -lumping, i.e., when the
matrix that models fast transitions aggregates to zero matrix.

Theorem 13.2.13 Suppose (σ,Qs, Qf , ρ)
P
 τ (σ̂, Q̂s, Q̂f , ρ̂), suppose W is

the τ -distributor used, and suppose Q̂f = 0. If W ′ is another τ -distributor

(with a different choice of parameters), then W ′QsV = Q̂s, W
′QfV = 0 and

W ′ρ = ρ̂. �

Proof Let (σ,Qs, Qf , ρ) →∞ (σ,Π, Q,Πρ). Since Q̂f = WQfV = 0, by
Theorem 13.2.12 we have WΠV = I. Multiplying by V from the left and
using that VWΠV = ΠV , we obtain ΠV = V . From Lemma 13.2.9, we
have that ΠVWΠ = ΠV W and ΠV W ′Π = ΠVW ′. Since ΠV = V , we have
VWΠ = VW and VW ′Π = VW ′. Multiplying by W from the left, we get
WΠ = W and W ′Π = W ′.

First, W ′QfV = W ′ΠQfV = 0 because ΠQf = 0 (as Π is the ergodic
projection of Qf). Next, using that UQV is the same for every distributor

U , we have Q̂s = WQsV = WΠQsΠV = WQV = W ′QV = W ′ΠQsΠV =
W ′QsV . Similarly, Wρ = WΠρ = W ′Πρ = W ′ρ. �

13.3 τ∼-lumping

In this section we introduce a notion of lumping for Markov reward chains
with silent transitions, called τ∼-lumping, by lifting τ -lumping to equiva-
lence classes induced by the relation ∼ (recall Definition 12.3.1). Intuitively,
we want a partitioning P of a Markov reward chain with silent transitions
(σ,Qs,Qf , ρ) to be a τ∼-lumping iff it is a τ -lumping for every Markov reward
chain with fast transitions (σ,Qs, Qf , ρ) with Qf ∈ Qf . Moreover, to have a

proper lifting, we also want that Q̂s = WQsV and ρ̂ = Wρ do not depend

13.3. τ∼-lumping 219

on the choice of representative from Qf . This is crucial for the definition of
slow transitions and rewards in the τ∼-lumped process. Finally, to be able
to define Q̂f , we need that WQfV ∼ W ′Q′

fV for all Qf , Q
′
f ∈ Qf , and that

the non-zero elements of WQfV range over all positive real numbers (with
Qf ranging through Qf).

Before we give a definition that satisfies the above requirements, we give
an example that shows that not every τ -lumping can be taken as τ∼-lumping.

Example 13.3.1 a. Consider the Markov reward chain with silent tran-
sitions depicted in Figure 13.5a. Example 13.2.4b shows that the par-
titioning P =

{
{1, 2}, {3}

}
is a τ -lumping for all possible speeds given

to the silent transitions. However, the slow transition in the τ -lumped
process always depends on those speeds (cf. Figure 13.1b).

b. Consider the Markov reward chain with silent transitions depicted in
Figure 13.5b. As Example 13.2.6c shows, if we assign the speeds a, b,
a and c to the four silent steps respectively, we cannot have a proper
τ -lumping. �

a) ?>=<89:;1

τ
��

π r1

?>=<89:;2
1−π r2

τ

TT

λ
��

?>=<89:;3
r3

b) ?>=<89:;1
rπ

τ
��

τ

##H
HHHHHHHHHH
?>=<89:;2

r1−π

τ
��

τ

{{vvvvvvvvvvv

?>=<89:;3
r1

λ ""

?>=<89:;4
r2

µ
vv?>=<89:;5
r3

Figure 13.5: Not every τ -lumping can be τ∼-lumping – Example 13.3.1

We define τ∼-lumping by carefully restricting to the cases when τ -
lumping is “speed independent”, i.e. forbidding the situations from Exam-
ple 13.3.1. For the definition we need to introduce some notation. We define
erg(i) = {j ∈ E | i ։ j} to be the set of all ergodic states reachable from
state i and, for X ⊆ {1, . . . , n}, we define erg(X) =

⋃
i∈X erg(i). Note that

j ∈ erg(i) iff Π[i, j] > 0. Let EL be some ergodic class. Then, for all i ∈ EL,
we have erg(i) = EL. Recall that δL[i] > 0 iff i ∈ T can be trapped in EL.
Therefore, δL[i] = 1 iff erg(i) = EL.

The definition of τ∼-lumping now follows.

220 Chapter 13. Aggregation by Lumping

Definition 13.3.2 (τ
∼
-lumping) Let (σ,Qs,Qf , ρ) be a Markov reward

chain with silent transitions. Let {E1, . . . , EM , T} be its ergodic partitioning
and let E =

⋃
16K6M EK be the set of ergodic states. A partitioning P is a

τ∼-lumping of (σ,Qs,Qf , ρ) iff:

1. for all C ∈ P at least one of the following holds:

(a) erg(C) ⊆ D, for some D ∈ P,

(b) erg(C) = EL, for some 1 ≤ L ≤M , or

(c) C ⊆ T and i→ i′, for exactly one i ∈ C, where i′ 6∈ C;

2. for all C ∈ P, for all i, j ∈ C ∩E, and for all D ∈ P such that D 6= C,∑
ℓ∈D

Qs[i, ℓ] =
∑
ℓ∈D

Qs[j, ℓ];

3. ρ[i] = ρ[j] for all i, j ∈ C ∩ E. �

Let us explain what these conditions mean. Condition 1 ensures that the
lumping condition holds for the ergodic projection Π of every matrix from
Qf . Condition 1a says that the ergodic states reachable by silent transitions
from the states in C are all in the same lumping class. Condition 1b says
that the ergodic states reachable by silent transitions from the states in C
constitute an ergodic class. Condition 1c says that C is a set of transient
states with precisely one (silent) exit. Note that Conditions 1a and 1b over-
lap when Ei ⊆ D. If, in addition, C contains only transient states and has
only one exit, all the three conditions overlap. Condition 1 forbids lumping
classes to contain parts of different ergodic classes in order to eliminate the
effect of the ergodic probabilities. It also forbids the case where transient
states of some lumping class lead to multiple ergodic classes that are not all
subsets of the same lumping class (except in the case where there are only
transient states in the lumping class and the class has only one exit). This is
to eliminate the effect of the trapping probabilities (in the above exceptional
case the trapping probabilities of the elements from the lumping class are
all equal). Note that Condition 1 was violated in Example 13.3.1b. This is
because states 3 and 4 were not in a lumping class nor in an ergodic class,
and because the lumping class {1, 2} had two exits.

Condition 2 says that every ergodic state in C must have the same
accumulative rate to every other τ∼-lumping class. This condition is needed
to avoid the situation in Example 13.3.1a where a slow transition in the
τ -lumped process depends on speeds. Condition 3 says that every ergodic
state that belongs to the same lumping class must have the same reward.

13.3. τ∼-lumping 221

The idea is the same as in Condition 2 but applied to the reward vector.
The condition ensures that the rewards in the lumped process do not depend
on speeds. Note that no condition is imposed on Qs and ρ that concerns
transient states.

We now show that the notion of τ∼-lumping from Definition 13.3.2 ex-
actly meets our requirements set in the beginning.

Theorem 13.3.3 Let (σ,Qs,Qf , ρ) be a Markov reward chain with silent
transitions and let P be a partitioning. Then P is a τ∼-lumping iff it is a
τ -lumping for every Markov reward chain with fast transitions (σ,Qs, Qf , ρ)
with Qf ∈ Qf , and, moreover, for every Qf , Q

′
f ∈ Qf , W

′QsV = WQsV and
W ′ρ = Wρ, where W and W ′ are τ -distributors for Qf and Q′

f respectively,
and have the same values for the parameters. �

Proof (⇒) We prove that if the conditions of Definition 13.3.2 hold, then
P is a τ -lumping for all representative matrices Qf ∈ Qf .

First we show that the lumping condition on Π holds (where Π is the
ergodic projection of Qf). Recall that V UΠV = ΠV iff the rows of ΠV that
correspond to states in the same partitioning class are equal. So it suffices
to prove that, for all C,D ∈ P,

∑
d∈D Π[i, d] =

∑
d∈D Π[j, d] for all i, j ∈ C.

Suppose first that Condition 1a holds, i.e. that erg(C) ⊆ C ′ for some
C ′ ∈ P. Then, for all i ∈ C, erg(i) ⊆ C ′. From this it easily follows (by
contradiction) that Π[i, d] = 0 for all d 6∈ C ′. Let D ∈ P be some lumping
class. If D 6= C ′, then

∑
d∈D Π[i, d] = 0. Since Π is a stochastic matrix, its

rows sum up to one, and so we also have
∑

d∈C′ Π[i, d] = 1. We conclude
that

∑
d∈D Π[i, d] does not depend on i ∈ C.

Suppose second that Condition 1b holds, i.e. that erg(C) = EL for
some 1 6 L 6 M . Then, for all i ∈ C, erg(i) ⊆ EL. From this it fol-
lows that Π[i, d] = 0 for all d 6∈ EL. Suppose first that i ∈ E. Then∑

d∈D Π[i, d] =
∑

d∈D∩EL
Π[i, d] =

∑
d∈D∩EL

Π[d, d]. Suppose next that
i ∈ T . Then from erg(i) ⊆ EL it follows that δL[i] = 1. Now,

∑
d∈D Π[i, d] =∑

d∈D∩EL
Π[i, d] =

∑
d∈D∩EL

δL[i]Π[d, d] =
∑

d∈D∩EL
Π[d, d]. We conclude

that
∑

d∈D Π[i, d] does not depend on i ∈ C.
Assume finally that Condition 1c holds. Let k ∈ C be the unique state

in C ⊆ T such that k → k′ for some k′ 6∈ C. Since C ⊆ T , we have i ։ k.
Note that this implies that δL[i] = δL[k], for all 1 6 L 6 M . Let D ∈ P.
We have

∑
d∈D Π[i, d] =

∑
d∈D∩E Π[i, d] =

∑
L:D∩EL 6=∅

∑
d∈D∩EL

Π[i, d] =∑
L:D∩EL 6=∅

∑
d∈D∩EL

δL[i]Π[d, d] =
∑

L:D∩EL 6=∅

∑
d∈D∩EL

δL[k]Π[d, d], and
so
∑

d∈D Π[i, d] does not depend on i ∈ C.
To show that V UΠQsΠV = ΠQsΠV and V UΠρ = Πρ we use matrix

manipulation. Let the numbering be such that it makes the division between

222 Chapter 13. Aggregation by Lumping

ergodic and transient states explicit. Moreover, let the lumping classes be
arranged so that the classes that contain ergodic states precede those that
contain only transient states. This numbering gives the following forms for
Π, Qs, ρ and V :

Π =

(
ΠE 0
ΠT 0

)
, Qs =

(
QE QET
QTE QT

)
, ρ =

(
ρE
ρT

)
, V =

(
VE 0
VTE VT

)
.

Note that

ΠQs =

(
ΠEQE ΠEQET
ΠTQE ΠTQET

)
= Π

(
QE QET
0 0

)
, Πρ =

(
ΠEρE
ΠTρE

)
= Π(ρE

0
)

and

ΠV =

(
ΠEVE 0
ΠTVE 0

)
= Π

(
VE 0

0 0

)
.

Condition 2 of Definition 13.3.2 imposes the lumping condition on the er-
godic states. It can be rewritten in matrix form as:

VEUE (QE QET)V = (QE QET)V,

where UE is a distributor matrix corresponding to (the collector matrix) VE .
Using that V UΠV = ΠV we compute:

V UQV = V UΠQsΠV = V UΠ
(
QE QET

0 0

)
ΠV =

= V UΠ
(
QE QET

0 0

)
V UΠV = V UΠ

(
VEUEQE VEUEQET

0 0

)
V UΠV =

= V UΠ
(
VE 0

0 0

) (
UEQE UEQET

0 0

)
V UΠV =

= V UΠV
(
UEQE UEQET

0 0

)
V UΠV = ΠV

(
UEQE UEQET

0 0

)
V UΠV =

= ΠQsΠV = QV.

Condition 3 of Definition 13.3.2 is written in matrix form as:

VEUEρE = ρE.

Similarly as we did for Q, we compute

V UΠρ = V UΠ(ρE

0
) = V UΠ

(
VEUEρE

0

)
= V UΠ

(
VE 0

0 0

) (
UEρE

0

)
=

= V UΠV
(
UEρE

0

)
= ΠV

(
UEρE

0

)
= Π

(
VEUEρE

0

)
= Π(ρE

0
) = Πρ.

We show that Q̂s does not depend on the representative Qf . Let Q̂s =
WQsV for some τ -distributor W . Suppose we take Q′

f ∼ Qf instead of Qf

13.3. τ∼-lumping 223

and let W ′ be the τ -distributor for Q′
f that has the same parameters as W

(note that the number of parameters depends only on the grammar of Qf).

We show that Q̂s = W ′QsV .
The matrices W and W ′ have the following form:

W =

(
WE 0
0 WT

)
and W ′ =

(
W ′
E 0

0 WT

)
.

Note that W and W ′ have the same block that corresponds to the classes
that contain only transient states. This is because this block only depends
on the parameters and not on Qf . Now,

W
(

0 0

QTE QT

)
= W ′

(
0 0

QTE QT

)
.

Since WE and W ′
E are distributors for VE, we also have

WE (QE QET)V = W ′
E (QE QET)V,

which implies
W
(
QE QET

0 0

)
V = W ′

(
QE QET

0 0

)
V.

We now compute:

Q̂s = WQsV = W
(
QE QET

QTE QT

)
V = W

(
QE QET

0 0

)
V+W

(
0 0

QTE QT

)
V =

= W ′
(
QE QET

0 0

)
V +W ′

(
0 0

QTE QT

)
V = W ′QsV = Q̂′

s.

To show that the reward vector of the lumped process does not depend on
the representative Qf note that VEUEρE = ρE . From this it follows that
WEρE = W ′

EρE which directly implies

Wρ =
(
WEρE

WT ρT

)
=
(
W ′

E
ρE

WT ρT

)
= W ′ρ.

(⇐) First we show that Condition 1 of Definition 13.3.2 must hold if
the lumping condition on Π is to hold for every Qf ∈ Qf . The proof is by
contraposition. Suppose Conditions 1a, 1b and 1c do not hold. Let C ∈ P.
We show that there is always a D ∈ P such that

∑
d∈D Π[i, d] is not the

same for every i ∈ C. We distinguish two cases, when C ∩E 6= ∅ and when
C ⊆ T .

Suppose C ∩ E 6= ∅. Let the ergodic classes be arranged so that there
is a 1 6 P 6 M such that EK ∩ C 6= ∅ for K 6 P , and EK ∩ C = ∅ for
K > P + 1. Since Condition 1b does not hold, we have P > 2. We show
that not EK ⊆ C for all 1 6 K 6 P .

224 Chapter 13. Aggregation by Lumping

Suppose not, i.e., that EK ⊆ C for all 1 6 K 6 P . We prove that then
erg(C) ⊆ C, which gives us contradiction because Condition 1a does not
hold. If C∩T = ∅, then C ⊆ E and so erg(C) ⊆ C follows directly. Suppose
now that C ∩ T 6= ∅ and let i ∈ C ∩ T . We show that erg(i) ⊆ C. Suppose
not. Then there is an k ∈ E such that i ։ k and k 6∈ (E1 ∪ · · · ∪ EP).
Let D ∈ P be such that k ∈ D and let ℓ ∈ EL for some 1 6 L 6 P .
Then

∑
d∈D Π[i, d] > 0 and

∑
d∈D Π[ℓ, d] = 0, and so the lumping condition

does not hold. We conclude that erg(i) ⊆ C. From this it follows that
erg(C) ⊆ C. We conclude that not EK ⊆ C for all 1 6 K 6 P .

Let 1 6 I, J 6 P be such that EI∩C 6= ∅, EJ∩C 6= ∅ and EI 6⊆ C. Then
there is a D ∈ P such that EI ∩ D 6= ∅. By Lemma 13.2.2 it follows that
EJ ∩ D 6= ∅. Let i ∈ C ∩ EI . Then

∑
d∈D Π[i, d] =

∑
d∈D Π[i, d] 6∈ {0, 1}.

Similarly, for some j ∈ C∩EI we have
∑

d∈D Π[j, d] =
∑

d∈D Π[j, d] 6∈ {0, 1}.
Now, we can always choose a Qf so that the ergodic probabilities of EI and
EJ are such that

∑
d∈D Π[i, d] 6=

∑
d∈D Π[j, d].

Suppose now that C ⊆ T . Let i1, . . . , ip ∈ C be such that, for all 1 6
k 6 p, we have ik → i′k for some i′k 6∈ C. Since Condition 1c does not hold,
we have p > 2. Let C1, . . . , CP ∈ P be all lumping classes such that erg(ik)∩
CK 6= ∅ for some 1 6 k 6 p and all 1 6 K 6 P . Note first that, because of
the lumping condition, erg(ik)∩CK 6= ∅ for all 1 6 k 6 p. Note second that
P > 2, because otherwise we would have erg(C) ⊆ C1 which does not hold
because Condition 1a does not hold. Let D ∈ {C1, . . . , CP }. We cannot find
Π and i, j ∈ {i1, . . . , ip} such that

∑
d∈D Π[i, d] 6=

∑
d∈D Π[j, d] only if there

exists an ergodic class EL such that erg(iK) ⊆ EL for all 1 6 k 6 p. This,
however, is not possible because it would imply that erg(C) ⊆ EL which
does not hold because Condition 1b does not hold.

We conclude that Condition 1 holds. Using this, we now only show that
Condition 3 holds. For Condition 2 the proof is essentially the same and is
omitted.

Let CK ∈ P, let i, j ∈ C ∩E and let i ∈ EI and j ∈ EJ for some ergodic
classes EI and EJ . From what we proved before it follows that EI ⊆ C and
EJ ⊆ C. We distinguish two cases, when I = J and when I 6= J .

Suppose I = J . Let W be a τ -distributors associated to Qf such that
the parameters αJL in Definition 13.2.3 are equal to 1

eJ
. Then

(Wρ)[K] =
∑

k∈CK

W [K,k]ρ[k] =
∑

k∈CK∩E

Π[k, k]∑
ℓ∈CK

Π[ℓ, ℓ]
ρk.

Define Π′ to be the same as Π but with Π′[ℓ, i] = Π[ℓ, i]+ε for all ℓ ∈ EI , and
Π′[ℓ, j] = Π[ℓ, j]−ε for all ℓ ∈ EJ , where 0 < ε < Π[j, j]. Clearly, Π′ is of the

13.3. τ∼-lumping 225

right form and it satisfies the lumping condition because EI = EJ ⊆ C. We
can always findQ′

f ∼ Qf such that Π′ is its ergodic projection. LetW ′ be a τ -
distributors associated to Q′

f again such that the parameters αJL are all the
same. After some simple calculation, we obtain that (W ′ρ)[K]− (Wρ)[K] =
ε(ρ[i] − ρ[j]). Therefore, if ρ[i] 6= ρ[j], then (Wρ)[K] 6= (W ′ρ)[K]. We
conclude that ρ[i] = ρ[j].

Suppose now that I 6= J . If |EI | = |EJ | = 1, then

(Πρ)[i] =
∑

k

Π[i, k]ρ[k] =
∑

k∈EI

Π[i, k]ρ[k] = ρ[i]

and similarly (Πρ)[j] = ρ[j]. Therefore, ρ[i] = ρ[j]. Suppose |EI | > 1. We
define a matrix Π′ to be the same as Π except that Π′[k, i] = Π[k, i] + ε for
all k ∈ EI , and Π′[ℓ, j] = Π[ℓ, j] − ε for all ℓ ∈ EJ , with 0 < ε < Π[j, j]. As
before it easily follows that the lumping condition still holds for Π′ and that
Π′ is of the right form. Now, since (Πρ)[i] = (Πρ)[j], (Π′ρ)[i] = (Π′ρ)[j] and
(Π′ρ)[j] = (Πρ)[j], we have (Π′ρ)[i] = (Πρ)[i]. From this it easily follows
that ρ[ℓ] = ρ[i] for all ℓ ∈ EI . Then, if |EJ | = 1, we have ρ[i] = ρ[ℓ]. If not,
with the same reasoning as for EI , we can obtain that ρ[ℓ] = ρ[j], for all
ℓ ∈ EJ . Now,

ρ[i] = ρ[i]
∑

k∈EI

Π[i, k] =
∑

k∈CK

Π[i, k]ρ[k] =

=
∑

k∈CK

Π[j, k]ρ[k] =
∑

k∈EJ

Π[j, k]ρ[k] = ρ[j]
∑

k∈EI

Π[j, k] = ρ[j]. �

As we said in the beginning, for the definition of τ∼-lumping to be con-
sidered correct we must also establish that WQfV ∼ W ′Q′

fV , and that the
non-zero elements of WQfV range over all positive real numbers. The proof
of this is easy (it follows from W ∼W ′ and the fact that non-zero elements
in Π can take any value less than 1), however cumbersome, and is therefore
omitted.

Now, if P is a τ∼-lumping and if (σ,Qs, Qf , ρ)
P
 τ (σ̂, Q̂s, Q̂f , ρ̂) for some

Qf ∈ Qf , then we say that (σ,Qs,Qf , ρ) τ∼-lumps (with respect to P) to

(σ̂, Q̂s, Q̂f , ρ̂) where Q̂f = [Q̂f]∼ and write (σ,Qs,Qf , ρ)
P
 τ∼ (σ̂, Q̂s, Q̂f , ρ̂).

Note that, as for τ -lumping, there can be several Markov reward chains with
silent transitions to which (σ,Qs, Qf ∼, ρ) τ∼-lumps to (unless there are no
fast transitions in the lumped process).

We give some examples of τ∼-lumpings.

226 Chapter 13. Aggregation by Lumping

a) ?>=<89:;1
1 r1

τ

��

λ

��
?>=<89:;2

r2

µ
44 ?>=<89:;3

r3

?>=<89:;1
1 r2

µ

��
?>=<89:;2

r3

b) ?>=<89:;1
1 r τ

**

λ ''

?>=<89:;2
r

λww

τ
jj

?>=<89:;3
r3

?>=<89:;1
1 r

λ
��

?>=<89:;2
r3

c) ?>=<89:;1
1 r

τ

��
?>=<89:;2

r

τ
44 ?>=<89:;3

r3

τ
aa

λ
��

?>=<89:;4

?>=<89:;1
1 r

τ
��
?>=<89:;2

r3

τ

TT

λ
��

?>=<89:;3
r4

d) ?>=<89:;1
r11

τ
��

?>=<89:;2
τ

		

r2

τ

��
?>=<89:;3

r3 λ

LL

?>=<89:;4
r4

µ

UU

?>=<89:;1
r21

τ

		

τ

��
?>=<89:;2

r3 λ

LL

?>=<89:;3
r4

µ

UU

Figure 13.6: τ∼-lumpings – Example 13.3.4

Example 13.3.4 Consider the Markov reward chains with silent transitions
depicted in Figure 13.6 on the left sides. For each of them we give a τ∼-
lumping and for each lumping class we show which option of Condition 1 of
Definition 13.3.2 holds. The corresponding lumped Markov reward chains
with silent transitions are depicted in Figure 13.6 on the right sides.

a. For the Markov reward chain with silent transitions depicted in Figure
13.6a the partitioning P =

{
{1, 2}, {3}

}
is a τ∼-lumping. For the

lumping class {1, 2} Condition 1a in Definition 13.3.2 is satisfied. For
the class {3} both Conditions 1a and 1b are satisfied.

b. For the Markov reward chain with silent transitions in Figure 13.6b
P =

{
{1, 2}, {3}

}
is a τ∼-lumping. For both lumping classes Condi-

tions 1a and 1b are satisfied.

c. For the Markov reward chain with silent transitions in Figure 13.6c
P =

{
{1, 2}, {3}, {4}

}
is a τ∼-lumping. For the lumping classes

{1, 2} and {4} both Conditions 1a and 1b are satisfied. For the
class {3} only Condition 1b is satisfied. Note that the partitioning
P =

{
{1, 2, 3}, {4}

}
is not a τ∼-lumping even when rr = r because it

violates Condition 2.

d. For the Markov reward chain with silent transitions in Figure 13.6d
P =

{
{1, 2}, {3}, {4}

}
is a τ∼-lumping. For the classes {3} and {4}

13.3. τ∼-lumping 227

both Conditions 1a and 1b are satisfied. Since {1, 2} contains only
transient states, for this class only Condition 1c is satisfied. �

Chapter 14

Aggregation by Reduction

In this chapter we first consider the specific aggregation (and disaggrega-
tion) method of [39, 32] and extend it with initial probabilities and rewards.
This method reduces a discontinuous Markov chain to a Markov chain, elim-
inating instantaneous states while keeping the same distributions on the set
of regular states. Then, we adapt this method for the setting of Markov
reward chains with fast transitions. We call this method τ -reduction as it
eliminates all fast transitions and reduces a Markov reward chain with fast
transitions to a Markov reward chain. We develop two corresponding meth-
ods in the setting of Markov reward chains with silent transitions; the first
is called τ∼-reduction and the second is total τ∼-reduction.

14.1 Reduction to a Markov reward chain

The reduction of a discontinuous Markov reward chain to a Markov reward
chain of [39, 32] requires the notion of canonical product decomposition.
Recall that

Π =




Π1 0 . . . 0 0
0 Π2 . . . 0 0
...

...
. . .

...
...

0 0 . . . ΠM 0

Π1 Π2 . . . ΠM 0




where ΠK = 1 · µK and ΠK = δK · µK for a row vector µK > 0 such that
µK · 1 = 1 and a vector δK ≥ 0 such that

∑M
i=1 δK = 1. The canonical

product decomposition decomposes Π into the product of two matrices; one
containing the µK ’s only, the other the δK ’s only.

229

230 Chapter 14. Aggregation by Reduction

Definition 14.1.1 (Canonical product decomposition) Let (σ,Π, Q)
be a discontinuous Markov chain with a numbering that makes the ergodic
partitioning explicit. The canonical product decomposition of Π is given by
the matrices L ∈ RM×n and R ∈ Rn×M , defined as follows:

L =




µ1 0 . . . 0 0
0 µ2 . . . 0 0
...

...
. . .

...
...

0 0 . . . µM 0


 R =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
δ1 δ2 . . . δM



.

The dimension of the K-th vector 1 in R is the same as the dimension of
its corresponding row vector µK ; the dimension of the K-th row vector 0
in L is the same as the dimension of its corresponding δK . Note that then
RL = Π and LR = I. �

In case the numbering does not make the ergodic partitioning explicit,
we need to renumber the states first, then construct L and R, and then
renumber back to the original numbering. An example follows.

Example 14.1.2 a. Let

Π =




1−p p 0
1−p p 0
0 0 1


 .

The numbering is as needed and we obtain

L =

(
1−p p 0
0 0 1

)
and R =




1 0
1 0
0 1


 .

b. Let now

Π =




0 p 1−p 0
0 1 0 0
0 0 1 0
0 0 0 1




This numbering does not make the ergodic partitioning explicit. We
renumber states to obtain

Π′ =




1 0 0 0
0 1 0 0
0 0 1 0
p 1−p 0 0


 .

14.1. Reduction to a Markov reward chain 231

From this,

L′ =




1 0 0 0
0 1 0 0
0 0 1 0


 and R′ =




1 0 0
0 1 0
0 0 1
p 1−p 0


 .

After renumbering back we have

L =




0 1 0 0
0 0 1 0
0 0 0 1


 and R =




p 1−p 0
1 0 0
0 1 0
0 0 1


 .

�

The method of [39, 32] masks the stochastic discontinuity in a discontin-
uous Markov chain and transforms it into a standard Markov chain that has
the same behavior in regular states. We extend this method with an initial
probability vector and with a reward vector. If (σ,Π, Q, ρ) is a discontinuous
Markov reward chain, then the reduced Markov reward chain (σ̂, I, Q̂, ρ̂) is
defined by

σ̂ = σR, Q̂ = LQR, and ρ̂ = Lρ.

The states of the simplified process are exactly the ergodic classes of the
original process. The transient states are eliminated. Intuitively, they are
split probabilistically between the ergodic classes according to their trapping
probabilities. In case a transient state is also an initial state, the initial state
probabilities are split according to their trapping probabilities. Similarly,
the joint reward is the sum of the individual rewards from the ergodic class
weighted by their ergodic probabilities.

Under certain conditions we can obtain the original process from the
reduced one. The transition matrix of the aggregated process has been
shown in [32] to satisfy P̂ (t) = eLQRt = LP (t)R, for t > 0. Since ΠP (t) =
P (t)Π = P (t), if Π of the original process is known, and if σΠ = σ and
Πρ = ρ, then there is a disaggregation procedure σ = σ̂L, P (t) = RP̂ (t)L
and ρ = Rρ̂.

Like lumping, the reduction procedure also preserves the total reward:

R̂(t) = σ̂P̂ (t)ρ̂ = σRLP (t)RLρ = σΠP (t)Πρ = σP (t)ρ = R(t).

In case the original process has no stochastic discontinuity, i.e. Π = I,
the aggregated process is equal to the original since then L = R = I.

We give an example.

232 Chapter 14. Aggregation by Reduction

Example 14.1.3 a. Consider the discontinuous Markov chain
(σ,Π, Q, ρ) defined by σ =

(
π 1−π 0

)
and

Π =




1−p p 0
1−p p 0
0 0 1


 , Q =



−p(1−p)λ −p2λ pλ
−p(1−p)λ −p2λ pλ

0 0 0


 , and ρ =



r1
r2
r3


 .

The matrix Π is the one from Example 14.1.2a which gives us L and
R. Now,

σ̂ = σR =
(
1 0
)
, ρ̂ = Lρ =

(
(1−p)r1 + pr2

r3

)

and

Q̂ = LQR =

(
−pλ pλ

0 0

)
.

The reduced Markov reward chain (σ̂, I, Q̂, ρ̂) is depicted in Fig-
ure 14.1a.

b. Let (σ,Π, Q, ρ) be defined by σ =
(
1 0 0

)
,

Π =




0 p 1−p 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Q =




0 −pλ −(1−p)µ pλ+ (1−p)µ
0 −λ 0 λ
0 0 −λ λ
ν 0 0 −ν


 ,

and ρ =
(
r1 r2 r3 r4

)T
. The matrix Π of this process is the one from

Example 14.1.2b which gives us L and R. We have

σ̂ =
(
p 1−p 0

)
, Q̂ =



−λ 0 λ
0 −µ µ
pν (1−p)ν −ν


 and ρ̂ =



r2
r3
r4


 .

The Markov reward chain (σ̂, I, Q̂, ρ̂) is depicted in Figure 14.1b. �

14.2 τ-reduction

Since we are interested only in the case when fast transitions are instanta-
neous, in the part on lumping we were justifying all operations only in the
limit. We do the same here for the reduction method. We adapt the aggre-
gation method from the previous section to reduce a Markov reward chain

14.2. τ -reduction 233

a) ?>=<89:;1
1 (1−p)r1+pr2

pλ
��

?>=<89:;2
r3

b) ?>=<89:;1
p r2

λ

��

?>=<89:;2
1−p r3

µ

		
?>=<89:;3

r4
pν

UU

(1−p)ν

MM

Figure 14.1: Markov reward chains obtained by reduction - Example 14.1.3

with fast transitions to an asymptotically equivalent Markov chain. The
τ -reduced Markov reward chain with fast transitions is naturally defined to
be the Markov chain obtained by reducing the limit discontinuous Markov
reward chain. The definition is clarified by the following diagram:

Markov reward chain
with fast transitions τ→∞

//

τ -reduction
))TTTTTTTTTTTTTTTTTTTTTTTTTTT

discontinuous
Markov reward chain

reduction to

a Markov reward chain
��

Markov reward chain.

We give a definition of τ -reduction.

Definition 14.2.1 (τ -reduction) Let (σ,Qs, Qf , ρ) be a Markov reward
chain with fast transitions and let (σ,Qs, Qf , ρ) →∞ (σ,Π, Q,Πρ). Assume
that Π = RL is the canonical product decomposition of Π. Then the τ -
reduct of (σ,Qs, Qf , ρ) is the Markov reward chain (σ̂, I, Q̂, ρ̂) defined by

σ̂ = σR, Q̂ = LQsR, and ρ̂ = Lρ. �

Note that the definition corresponds to the above diagram because

LQR = LΠQsΠR = LQsR and LΠρ = Lρ.

We give some examples.

Example 14.2.2 a. Let (σ,Qs, Qf , ρ) be the Markov reward chain with
fast transitions from Figure 14.2a on the left. The limit of this Markov
reward chain with fast transitions was calculated in Example 12.2.4a
and we had

Π = lim
t→∞

eQf t =




0 1 0
0 1 0
0 0 1


 .

234 Chapter 14. Aggregation by Reduction

a) ?>=<89:;1
1 r1

aτ

��

λ

��
?>=<89:;2

r2

µ
44 ?>=<89:;3

r3

?>=<89:;1
1 r2

µ

��
?>=<89:;2

r3

b) ?>=<89:;1

aτ
��

π r1

?>=<89:;2
1−π r2

bτ

TT

λ
��

?>=<89:;3
r3

?>=<89:;1
1 br1+ar2

a+b

a
a+b

λ

��
?>=<89:;2

r3

c) ?>=<89:;1
1 r1

aτ

bτ

��
?>=<89:;2

r2

λ ((

?>=<89:;3
r3

µ
vv?>=<89:;4
r4

ν

OO
?>=<89:;1

a
a+b

r2

λ

��

?>=<89:;2
b

a+b

r3

µ

		
?>=<89:;3

r4
a

a+b
ν

UU

b
a+b

ν

MM

Figure 14.2: τ -reduction – Example 14.2.2

From this

L =

(
0 1 0
0 0 1

)
and R =




1 0
1 0
0 1


 .

We obtain

σ̂ = σR =
(
1 0
)
, Q̂s = LQsR =

(
−µ µ
0 0

)
and ρ̂ = Lρ =

(
r2
r3

)
.

The Markov reward chain (σ̂, I, Q̂s, ρ̂) is depicted in Figure 14.2a on
the right.

b. Consider now the Markov reward chain with fast transitions from Fig-
ure 14.2b on the left. Note that the limit of this Markov reward chain
with fast transitions is the discontinuous Markov reward chain from
Example 14.1.3a when p = a

a+b . According to the definition of τ -
reduction, both of these processes reduce to the same Markov reward
chain. We depict the τ -reduced process in Figure 14.2b on the right.

14.3. τ∼-reduction and total τ∼-reduction 235

c. As in the previous case, the limit of the Markov reward chain with fast
transitions from Figure 14.2c on the left is the discontinuous Markov
reward chain from Example 14.1.3b for p = a

a+b . This automatically
gives us the τ -reduced process depicted in Figure 14.2c on the right.�

14.3 τ∼-reduction and total τ∼-reduction

In this section we extend the technique of τ -reduction to Markov reward
chains with silent transitions. Two methods for reduction are given. The
first, called τ∼-reduction, is a direct lifting of τ -reduction to the set of
Markov reward chains with fast transitions. The second method, called to-
tal τ∼-reduction, combines τ -reduction with ordinary lumping for standard
Markov reward chains to achieve better aggregation.

As we did for τ∼-lumping, we want to define τ∼-reduction by prop-
erly lifting the notion of τ -reduction. Intuitively, we want to say that
(σ,Qs,Qf , ρ) is τ∼-reducible iff σR, LQsR and Lρ do not depend on the
choice of the representative Qf ∈ Qf , where RL is the canonical product
decomposition of the ergodic projection of Qf . As Example 14.2.2 shows,
not every Markov reward chain with silent transitions is τ∼-reducible (cf.
Figure 14.2b and 14.2c).

We give a definition that characterizes τ∼-reduction.

Definition 14.3.1 (τ
∼
-reduction) Let (σ,Qs,Qf , ρ) be a Markov reward

chain with silent transitions, let {E1, E2, . . . , EM , T} be its ergodic parti-
tioning, and let E =

⋃
16K6M EK . Then (σ,Qs,Qf , ρ) is τ∼-reducible iff the

following conditions hold:

1. for all i ∈ T , either σ[i] = 0 or erg(i) = EL for some 1 6 L 6M ;

2. (a) for all j ∈ T , either Qs[i, j] = 0 for all i ∈ E, or erg(j) = EL for
some 1 6 L 6M ; and

(b) for all 1 6 K,L 6M and all i, j ∈ EK ,

∑

ℓ:erg(ℓ)=EL

Qs[i, ℓ] =
∑

ℓ:erg(ℓ)=EL

Qs[j, ℓ];

3. for all 1 6 K 6M and all i, j ∈ EK , ρ[i] = ρ[j]. �

236 Chapter 14. Aggregation by Reduction

Condition 1 makes sure that an initial transient state can be trapped
only in one ergodic class. Allowing it to be trapped in more classes would
cause the initial vector of the reduced process to depend on the trapping
probabilities, i.e., on speeds (cf. Example 14.2.2c). Condition 2a is the
same but instead of an initial state we consider a state that has a slow
transition leading to it. This is to forbid the situation where, due to the
state splitting, the transition rates in the reduced process depend on speeds
(see again Example 14.2.2c). Note that the reduction aggregates whole
ergodic classes and performs weighted summing of all rates that lead out of
the states in these classes. This sum is speed independent only if all these
rates are equal (otherwise we have the situation as in Example 14.2.2b).
This is ensured by Condition 2b. Finally, Condition 3 says that states from
the same ergodic class must have equal rewards. This is needed because, as
for the slow transitions, the new reward is a weighted sum of the rewards
from the ergodic class (see Example 14.2.2b).

We prove two lemmas that will help us prove that Definition 14.3.1 meets
all our requirements from the beginning, i.e., that τ∼-reduction induces a
speed independent τ -reduction for all representatives.

Lemma 14.3.2 Let A ∈ Rn×m be such that A > 0. Then the following two
statements are equivalent:

• µA is the same for any vector µ ∈ R1×n such that µ > 0 and µ ·1 = 1;

• A = 1 · a for some a ∈ R1×m. �

Proof (⇒) Let µ be such that µ > 0 and µ · 1 = 1. Let k, l ∈ {1, . . . , n}
be arbitrary and let ε be such that 0 < ε < µ[l]. Define µ′ ∈ R1×n as
µ′[k] = µ[k] + ε, µ′[l] = µ[l] − ε, and µ′[i] = µ[i] for all i 6= k, l. By
definition, µ′ > 0 and µ′ · 1 = 1. From µA = µ′A we obtain that, for all
j ∈ {1, . . . ,m}, εA[k, j] − εA[l, j] = 0. Since ε > 0, we have A[k, j] = A[l, j]
for all j ∈ {1, . . . ,m}. Because k and l were arbitrary, we conclude that all
rows in A are equal, i.e. that A = 1 · a for some a ∈ R1×m.

(⇐) Suppose A = 1 · a for some a ∈ R1×m. Clearly, µA = µ1a = a does
not depend on µ. �

Lemma 14.3.3 Let A ∈ Rm×n be such that A > 0. Let δ ∈ Rn×1 be such
that δ > 0 and δ−1 6 0. Then the following two statements are equivalent:

• Aδ = Aδ′ for all δ′ ∈ Rn×1 such that δ′ ∼ δ and (δ′ − 1) ∼ (δ − 1);

• for all 1 6 j 6 n, either A[i, j] = 0 for all 1 6 i 6 m, or δ[j] ∈ {0, 1}.�

14.3. τ∼-reduction and total τ∼-reduction 237

Proof (⇒) Let j ∈ {1, . . . , n} be such that δ[j] 6∈ {0, 1} (if such j does not
exists, the theorem vacuously holds). Define δ′ ∈ Rn×1 by δ′[k] = δ[k] for
all k 6= j, and by δ′[j] = δ[j] + ε, for some ε such that 0 < ε < 1 − δ[j].
Clearly, δ′ ∼ δ and (δ′ − 1) ∼ (δ − 1) because δ and δ′ are different only in
one element that is neither zero nor one. Now, from Aδ = Aδ′ we obtain
that A[i, j]δ[j] = A[i, j](δ[j] + ε) for all i ∈ {1, . . . ,m}. Since ε > 0, this
implies that A[i, j] = 0 for all i ∈ {1, . . . ,m}.

(⇐) Let δ′ ∈ Rn×1 be such that δ′ ∼ δ and (δ′ − 1) ∼ (δ − 1). Note
that this means that δ and δ′ have zeroes and ones on exactly the same
positions. Using that A[i, j] = 0 whenever δ[j] 6∈ {0, 1}, we have, for any
i ∈ {1, . . . ,m}, that

(Aδ′)[i] =
n∑

j=1

A[i, j]δ′[j] =
∑

j:δ[j]=0,1

A[i, j]δ′[j] =

=
∑

j:δ[j]=0,1

A[i, j]δ[j] =

n∑

j=1

A[i, j]δ[j] = (Aδ)[i]. �

We can now prove that Definition 14.3.1 induces exactly the notion that
we want.

Theorem 14.3.4 Let (σ,Qs,Qf , ρ) be a Markov reward chain with silent
transitions. It is τ∼-reducible iff, for all Qf , Q

′
f ∈ Qf ,

σR = σR′, LQsR = L′QsR
′, and Lρ = L′ρ,

where RL and R′L′ are canonical product decompositions of the ergodic
projections of Qf and Q′

f respectively. �

Proof The theorem is proven only from right to left but, as the proof is
based on Lemmas 14.3.2 and 14.3.3, the other direction can be constructed
easily.

Let the numbering be such that it makes the ergodic partitioning explicit.
Then

σ =
(
σ1 . . . σM σT

)
, Qs =




Q11 . . . Q1M X1
...

. . .
...

...
QM1 . . . QMM XM

Y1 . . . YM Z


 , ρ =




ρ1
...
ρM
ρT


 .

238 Chapter 14. Aggregation by Reduction

Let Qf ∈ Qf . We obtain

L =



µ1 . . . 0 0
...

. . .
...

...
0 . . . µM 0


 , R =




1 . . . 0
...

. . .
...

0 . . . 1
δ1 . . . δM


 .

We have σR =
(
(σ1 · 1 + σT · δ1) . . . (σM · 1 + σT · δM)

)
. Let δ′L be such

that δ′L ∼ δL and (δ′L− 1) ∼ (δL− 1). Let R′ be the same as R but with δ′L
instead of δL. From σR = σR′ we obtain σT · δL = σT · δ′L. We can always
find Q′

f ∼ Qf such that R′L is the canonical product decomposition of its
ergodic projection. This means that σT · δL = σT · δ′L actually holds for all
δ′L of the above form. Now, by Lemma 14.3.3 (with A = σT) this can only
be if, for all 1 6 i 6 n, either σT [i] = 0 or δL[i] ∈ {0, 1} for all 1 6 L 6 M .
Since R · 1 = 1, the latter is only possible when there exists an 1 6 K 6M
such that δK [i] = 1. Recall that δK [i] = 1 iff erg(i) = EK . This proves that
the first condition in Definition 14.3.1 holds.

We now show that Condition 2a holds. We have

LQsR =




µ1Q111 + µ1X1δ1 . . . µ1Q1M1 + µ1X1δM
...

. . .
...

µMQM11 + µMXMδM . . . µMQMM1 + µMXMδM


 .

From LQsR = LQsR
′ we obtain µKXKδL = µKXKδ

′
L. By Lemma 14.3.3, it

follows that, for all 1 6 K 6M and all 1 6 j 6 n, either (µKXK)[j] = 0 or
δL[j] ∈ {0, 1} for all 1 6 L 6 M . Note that, since µK > 0, (µKXK)[j] = 0
iff XK [i, j] = 0 for all i ∈ EK . As before, δL[j] ∈ {0, 1} for all 1 6 L 6 M
only if δL′ [j] = 1, i.e. if erg(i) = EL′ , for some 1 6 L′ 6M .

To prove Condition 2b let µ′K be a stochastic vector such that µ′K ∼ µK .
Let L′ be formed as L but with µ′K instead of µK . From LQsR = L′QsR we
have µK(QKL1 +XKδL) = µ′K(QKL1 +XKδL). As before, we can always
find Q′

f ∼ Qf such that RL′ is the canonical product decomposition of its
ergodic projection. By Lemma 14.3.2, it follows that QKL1 +XKδL = α · 1
for some constant α. In other words, it follows that the rows ofQKL1+XKδL
are all the same. From what we showed before (in the proof of Condition 2a)
(XKδL)[i] =

∑
ℓ:erg(ℓ)=EL

XK [i, ℓ]. Thus

∑

ℓ∈EL

QKL[i, ℓ]+
∑

ℓ∈T :erg(ℓ)=EL

XK [i, ℓ] =
∑

ℓ∈EL

QKL[j, ℓ]+
∑

ℓ∈T :erg(ℓ)=EL

XK [j, ℓ]

14.3. τ∼-reduction and total τ∼-reduction 239

for all i, j ∈ EK . Since erg(ℓ) = EL when ℓ ∈ EL, we have

∑

ℓ:erg(ℓ)=EL

Qs[i, ℓ] =
∑

ℓ:erg(ℓ)=EL

Qs[j, ℓ],

for all i, j ∈ EK . This is Condition 2b.

For the reward vector we have Lρ =

(µ1ρ1
...

µMρM
0

)
. From Lρ = L′ρ we

obtain µKρK = µ′KρK . From Lemma 14.3.2 it follows that ρK = 1 · xK for
some row vector xK . Note that this exactly means that ρ[i] = ρ[j] for all
i, j ∈ EK . This is Condition 3 of Definition 14.3.1. �

If (σ,Qs,Qf , ρ) is τ∼-reducible, then we say that it τ∼-reduces to the
Markov reward chain (σR, I, LQsR, ρR), where RL is the canonical product
decomposition of the ergodic projection of some Qf ∈ Qf . Theorem 14.3.4
guarantees that this definition is correct.

We now give some examples of τ∼-reductions.

a) ?>=<89:;1
π r1 τ

**

λ
''

?>=<89:;2
1−π r1

λ
ww

τ
jj

?>=<89:;3
r2

?>=<89:;1
1 r1

λ
��

?>=<89:;2
r2

b) ?>=<89:;1
π r1

τ

��

λ

��
?>=<89:;2

1−π r2

µ
44 ?>=<89:;3

r3

?>=<89:;1
1 r2

µ

��
?>=<89:;2

r3

Figure 14.3: τ∼-reduction – Example 14.3.5

Example 14.3.5 a. Consider the Markov reward chain with silent tran-
sitions depicted in Figure 14.3a on the left. This process can be τ -
reduced because it does not have transient states and because every
state in the ergodic class {1, 2} does λ to the other ergodic class {3}.
The process τ -reduces to the Markov reward chain depicted in Fig-
ure 14.3a on the right.

b. Consider the Markov reward chain with silent transitions depicted in
Figure 14.3b on the left. This process can be τ -reduced because its
ergodic classes are singletons, and because its only transient state,
i.e., state 1, gets trapped only in the state 2. The τ -reduced process
is depicted in Figure 14.3b on the right. �

240 Chapter 14. Aggregation by Reduction

We also give an example of Markov reward chains with silent transitions
that are not τ∼-reducible.

a) ?>=<89:;1
1 r1

τ

τ

��
?>=<89:;2

r2

λ ((

?>=<89:;3
r3

λvv?>=<89:;4
r4

ν

OO
b) ?>=<89:;1

τ
��

π r1

?>=<89:;2
1−π r2

τ

TT

λ
��

?>=<89:;3
r3

Figure 14.4: Markov reward chains with silent transitions that are not τ∼-
reducible – Example 14.3.6

Example 14.3.6 Consider the Markov reward chains with silent transitions
from Figure 14.3c and Figure 14.3d. These Markov reward chains with
silent transitions cannot be τ -reduced because they violate the first, resp.
the second and third, condition of Definition 14.3.1. �

Note that the conditions of Definition 14.3.1 are very restrictive, and
so not many Markov reward chains with silent transitions are τ∼-reducible.
The reason is that in most cases τ -reduction of a Markov reward chain with
fast transitions will produce a Markov reward chain in which transitions
do depend on the speeds of the fast transitions. The problem with the
parameterized slow transitions can however, in some cases, be “repaired”
by performing an ordinary lumping on the resulting Markov reward chain.
In other words, even if LQsR depends on Qf , it might be the case that its
lumped version ULQsRV does not. We give an example.

Example 14.3.7 Consider the Markov reward chain with silent transitions
from Figure 14.5a. First, we take a representative Markov reward chain with
fast transitions such as the one from Figure 14.5b. Note that this Markov
reward chain with fast transitions τ -reduces to the Markov reward chain in
Figure 14.5c. This Markov reward chain depends on the parameters a and b.
However, the states 1 and 2 can form a lumping class. The resulting lumped
Markov reward chain is in Figure 14.5d. Note that the lumping removed
the dependencies on the parameters. �

14.3. τ∼-reduction and total τ∼-reduction 241

a) ?>=<89:;1
1 r1

τ

��

τ

��
?>=<89:;2

r

λ
&&

?>=<89:;3
r

λ
xx?>=<89:;4
r4

ν

OO
b) ?>=<89:;1

1 r1

aτ

��

bτ

��
?>=<89:;2

r

λ
&&

?>=<89:;3
r

λ
xx?>=<89:;4
r4

ν

OO
c) ?>=<89:;1

a
a+b

r2

λ

��

?>=<89:;2
b

a+b

r3

λ

		
?>=<89:;3

r4
a

a+b
ν

QQ

b
a+b

ν

MM
d) ?>=<89:;1

1 r

λ
��
?>=<89:;2

r4

ν

TT

Figure 14.5: A total τ∼ reduction – Example 14.3.7

We define a reduction method that combines τ -reduction with lumping
and call it total τ∼-reduction. In the definition we need to use the function
called flat that gives a set of elements from a set of sets. Formally, if C ∈ P,
then flat(C) =

⋃
S∈C S.

Definition 14.3.8 (Total τ
∼
-reduction) Let (σ,Qs,Qf , ρ) be a Markov

reward chain with silent transitions. Let {E1, . . . , EM , T} be its ergodic
partitioning, and let E =

⋃
16K6M EK . Let P be a partitioning of

{E1, . . . , EM}. Then (σ,Qs,Qf , ρ) is totally τ∼-reducible (with respect to
P) if the following conditions hold:

1. for all i ∈ T , either σ[i] = 0 or erg(i) ⊆ flat(C) for some C ∈ P;

2. (a) for all j ∈ T , either Qs[i, j] = 0 for all i ∈ E, or erg(j) ⊆ flat(C)
for some C ∈ P;

(b) for all C,D ∈ P, C 6= D, and all i, j ∈ flat(C),

∑

ℓ:erg(ℓ)⊆flat(D)

Qs[i, ℓ] =
∑

ℓ:erg(ℓ)⊆flat(D)

Qs[j, ℓ];

3. ρ[i] = ρ[j] for every i, j ∈ flat(C). �

Note that the conditions for total τ∼-reduction are very similar to those
for τ -reduction. The only difference is that instead of an ergodic class EL we
work with the whole lumping class that contains it (that is why instead of
erg(i) = EL we have erg(i) ⊆ flat(C)). We note that in the trivial case when
LQsR already does not depend on the choice from Qf , it is sufficient to use
the trivial lumping induced by V = I. Then a total τ -reduction degrades to
a τ -reduction.

242 Chapter 14. Aggregation by Reduction

The following theorem gives a characterization of total τ∼-reduction, i.e.
it shows that total τ∼-reduction meets our requirements.

Theorem 14.3.9 Let (σ,Qs,Qf , ρ) be a Markov reward chain with silent
transitions, and let E = {E1, . . . , EM , T} be its ergodic partitioning. Let P
be a partitioning of {E1, . . . , EM}. Then (σ,Qs,Qf , ρ) is totally τ∼-reducible
with respect to P iff:

1. V ULQsRV = LQsRV and V ULρ = Lρ, for every Qf ∈ Qf ; and

2. σRV = σR′V , ULQsRV = UL′QsR
′V and ULρ = UL′ρ for every

Qf , Q
′
f ∈ Qf ,

where RL and R′L′ are canonical product decompositions of the ergodic
projections of Qf and Q′

f respectively, V is the collector for P, and U is a
distributor for V . �

Proof Let the numbering be such that the partitioning P = {C1, . . . , CN}
is made explicit and then, inside every class also the ergodic partitioning E
is made explicit. This is achieved by first numbering the ergodic classes as
E11, . . . , E1c1 , . . . , EN1, . . . , ENcN with CK = {EK1, . . . , EKcK} for 1 6 K 6
N . Then states are numbered to make the ergodic classes in each lumping
class explicit.

We obtain the following forms for σ, Qs, ρ, U and V :

σ =
(
σ1 . . . σN σT

)
, σK =

(
σK1 . . . σKcK

)
,

Qs =




Q11 . . . Q1N X1
...

. . .
...

...
QN1 . . . QNN XN

Y1 . . . YN Z


 , ρ =




ρ1
...
ρN
ρT


 , ρK =




ρ11
...

ρKcK


 ,

U =



u1 . . . 0
...

. . .
...

0 . . . uN


 , V =



v1 . . . 0
...

. . .
...

0 . . . vN


 ,

uK =
(
u11 . . . uKcK

)
,

vK =

(
1

...
1

)
.

14.3. τ∼-reduction and total τ∼-reduction 243

Let Qf ∈ Qf . Then

L =



µ1 . . . 0 0
...

. . .
...

...
0 . . . µN 0


 , R =




R1 . . . 0
...

. . .
...

0 . . . RN
δ1 . . . δN


 ,

µK =



µK1 . . . 0

...
. . .

...
0 . . . µKcK


 , RK =




1 . . . 0
...

. . .
...

0 . . . 1


 , δK =

(
δK1 . . . δKcK

)
.

Define

L̄ = UL =



m1 . . . 0 0
...

. . .
...

...
0 . . . mN 0


 , mK =

(
uK1µK1 . . . uKcKµKcK

)

and

R̄ = RV =




1 . . . 0
...

. . .
...

0 . . . 1
d1 . . . dN


 , dK = δKVK =

cK∑

ℓ=1

δKℓ.

(⇒) First, we show that the lumping condition holds. We do this by
showing that the rows of LQsR̄, resp. Lρ, that correspond to the elements
of the same class are equal.

It is not hard to show that Condition 2 of Definition 14.3.8 implies that,
for all 1 6 K,L 6 N , all elements of the vector QKL1 + XKdL are equal,
i.e. that QKL1 +XKdL = 1 · αKL for some αKL > 0. We obtain

LQsR̄ =




µ1 · (Q11 · 1 +X1d1) . . . µ1 · (Q1N · 1 +X1dN)
...

. . .
...

µN · (QN1 · 1 +XNdN) . . . µN · (QNN · 1 +XNdN)


 .

Now, since QKL1 +XKdL = αKL · 1 we have

µK · (QKL1 +XKdL) = µK · αKL · 1 =

= αKL



µK1 . . . 0

...
. . .

...
0 . . . µKcK


 ·




1
...
1


 = αKL



µK11

...
µKcK1


 = αKL · 1.

244 Chapter 14. Aggregation by Reduction

From Condition 3 we obtain that ρK = αK · 1 for some constant αK .
We also have

Lρ =




µ1ρ1
...

µNρN
0


 .

Now, since ρK = 1 · αK , with the same calculation as before, we obtain
µKρK = αK · 1. We conclude that the lumping condition holds.

Now suppose that R̄′ is defined in a similar way as R̄′. From σT δK =∑
i:dK [i]=1 σ[i] =

∑
i:d′

K
[i]=1 σ[i] it easily follows that σR̄′ = σR̄. That

L′QsR̄
′ = LQsR̄ follows from XKdL = XKd

′
L and µK · (QKL1 +XKdL) =

αKL · 1, both implied by Condition 2. Finally, that L′ρ = Lρ follows from
µKρK = αK · 1 = µ′KρK .

(⇐) Because of the lumping condition we can assume that uK > 0 for
all 1 6 K 6 N . Observe that the forms of L̄ and R̄ are very similar to the
forms of L and R. Let K ∈ {1, . . . , N}. Since uK > 0, we have mK > 0.
Since the elements of µK range over all positive numbers, also the elements
of mK range over all positive numbers. Clearly, 0 6 dK 6 1 and since the
elements of δK that are not in {0, 1} can take any value in (0, 1), the same
holds for the elements of dK . This allows us to proceed just as we did in the
proof of Theorem 14.3.4 but with the matrices L̄ and R̄ instead of L and R.

First, we have that for all 1 6 i 6 n, either σT [i] = 0 or there is a
K ∈ {1, . . . , N} such that dK [i] = 1. Now, note that dK [i] =

∑cK
L=1 δKL is

equal to 1 only if erg(i) ⊆ (EK1 ∪ · · · ∪ EKcK) = flat(CK). This gives us
Condition 1.

Second, we have that a) for all 1 6 j 6 n, either XK [i, j] = 0 for all
i ∈ CK , or dL[j] = 1 for some 1 6 L 6 N , and b) the rows of QKL1+XKdL
are all the same, i.e. (QKL1 + XKdL)[i] = (QKL1 + XKdL)[j] for all i, j.
Then

(QKL1)[i]+(XKdL)[i] =
∑

ℓ∈CL

QKL[i, ℓ]+
∑

ℓ : ℓ ∈ T

erg(ℓ) = flat(CL)

Qs[i, ℓ] =
∑

ℓ:erg(ℓ)=flat(CL)

Qs[i, ℓ].

Finally, for the reward vector, we have ρK = αK · 1 for some constant
αK . Note that this exactly means that ρ[i] = ρ[j] for all i, j ∈ flat(CK). �

If a Markov reward chain with silent transitions (σ,Qs,Qf , ρ) is totally
τ∼-reducible with respect to a partitioning P, we say that it totally τ∼-
reduces to (σRV, I, ULQsRV,ULρ), where RL is the canonical product de-

14.3. τ∼-reduction and total τ∼-reduction 245

composition of the ergodic projection of Qf , V is the collector for P, and U
is a distributor for V .

We give an example.

Example 14.3.10 Consider the Markov reward chain with silent transi-
tions from Figure 14.5a. Its ergodic partitioning is E = {E1, E2, E3, T}
where E1 = {2}, E2 = {3} and E3 = {4}. Define P = {C1, C2} where
C1 = {2, 3} and C2 = {4}. It is not hard to see that the conditions for total
τ∼-reducibility hold. The process totally τ∼-reduces to the Markov reward
chain depicted in Figure 14.5d. �

Chapter 15

Comparative Analysis

In this chapter we compare the lumping method with the reduction method.
As both methods are shown to preserve performance (e.g. the total reward),
we are interested in which of the two can aggregate more states with in-
stantaneous behavior. We show that the methods are in general incompa-
rable but that reduction combined with standard lumping (on the resulting
Markov reward chain) gives in general better results. The main result of the
chapter is that the notion of τ∼-lumping coincides with the notion of total
τ -reduction (in a particular non-degenerate case). At the end, we also show
how τ∼-lumping (and, hence, total τ -reduction too) compares with weak
bisimulation for Interactive Markov chains from [61].

15.1 Reduction vs. ordinary lumping

In general, the reduction of a discontinuous Markov reward chain to a
Markov reward chain and the ordinary lumping are incomparable. How-
ever, when reduction is combined with the standard ordinary lumping for
Markov reward chains it becomes a superior method. We give an example.

Example 15.1.1 Recall, from Example 14.1.3b, that the discontinuous
Markov reward chain (σ,Π, Q, ρ) defined by

σ =
(
1 0 0 0

)
, Π =




0 p 1−p 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

247

248 Chapter 15. Comparative Analysis

Q =




0 −pλ −(1−p)µ pλ+ (1−p)µ
0 −λ 0 λ
0 0 −µ µ
ν 0 0 −ν


 , and ρ =




r1
r2
r3
r4




was reduced to the Markov reward chain (σ̂, I, Q̂, ρ̂) defined by

σ̂ =
(
p 1−p 0

)
, Q̂ =



−λ 0 λ
0 −µ µ
pν (1−p)ν −ν


 and ρ̂ =



r2
r3
r4


 .

Note however that, if λ 6= µ, the process (σ,Π, Q, ρ) only has the trivial
lumping (cf. Example 13.1.9c) and so, in this case, reduction performs
better.

Ordinary lumping sometimes aggregates more than reduction. This is
because lumping classes can contain states from different ergodic classes
while reduction only aggregates whole ergodic classes and transient states.
Lumping also gives more flexibility in the sense that one can obtain the
(intermediate) lumped processes that are not necessarily Markov reward
chains. The intermediate lumping steps can e.g. be used in the construction
of algorithms. Consider again the same discontinuous Markov reward chain

(σ,Π, Q, ρ) but with λ = µ and r2 = r3
def
= r. In Example 13.1.9c we showed

that this process could be lumped to the discontinuous Markov reward chain

σ̌ =
(
1 0 0

)
, Π̌ =




0 1 0
0 1 0
0 0 1


 , Q̌ =




0 −λ λ
0 −λ λ
ν 0 −ν


 and ρ̌ =



r1
r
r4


 ,

or all the way to the Markov reward chain

σ̌ =
(
1 0
)
, Π̌ = I, Q̌ =

(
−λ λ
ν −ν

)
, and ρ̌ =

(
r
r4

)

These two processes cannot be obtained by reduction. �

Note that, although the last process in the previous example cannot be
directly obtained by reduction, it can be obtained from the reduced process
(σ̂, Π̂, Q̂, ρ̂) by the lumping {{1, 2}, {3}}. It is therefore interesting to com-
pare the ordinary lumping method for discontinuous Markov reward chains
with the combination of the reduction method and the standard lumping for
Markov reward chains. The following theorem shows that reducing a dis-
continuous Markov reward chain to a Markov reward chain first, and then
lumping it, produces, in general, better results then only doing the lumping
from the start.

15.1. Reduction vs. ordinary lumping 249

Theorem 15.1.2 Suppose (σ,Π, Q, ρ)
P
 (σ̂, Π̂, Q̂, ρ̂). If Π̂ = I, then there

exists a collector matrix VE such that

VEUELQRVE = LQRVE, VEUELρ = Lρ,

σ̂ = σRVE , Q̂ = UELQRVE and ρ̂ = UELρ,

where RL = Π is the canonical product decomposition of Π, and UE is a
distributor associated to VE . �

Proof Let V be the collector associated to P = {C1, . . . , CN} and let U be
its associated distributor. Let E = {E1, . . . , EM , T} be the ergodic parti-
tioning of (σ,Π, Q, ρ).

From UΠV = I, multiplying by V from the left and using that V UΠV =
ΠV , we obtain ΠV = V . Define VE = LV and UE = UR.

We fist show that VE is a collector matrix. Suppose not. Then there
exist 1 6 K 6 M and 1 6 L 6 N such that (LV)[K,L] 6∈ {0, 1}. From
(LV)[K,L] 6= 0 we have that there is a 1 6 i 6 n such that L[K, i] 6∈ {0, 1}
and V [i, L] = 1. This implies that i ∈ EK ∩ CL. From (LV)[K,L] 6= 1
we obtain that EK 6⊆ CL. Now, (ΠV)[i, L] =

∑n
j=1 Π[i, j]V [j, L] =∑

j∈EK∩CL
Π[i, j] 6∈ {0, 1}. Contradiction, because ΠV = V . We conclude

that VE is a collector.

That UE is a distributor associated to VE follows from U > 0, R > 0
and UEVE = URLV = UΠV = I. Now, using that ΠQ = QΠ = Q and that
V UQV = QV , we have

VEUELQRVE = LV URLQRLV = LV UΠQΠV =

= LV UQV = LQV = LΠQΠV = LQRLV = LQRVE.

Similarly, using that V Uρ = ρ, we have

VEUELρ = LV URLρ = LV UΠρ = LV UΠV Uρ = LΠV Uρ = LΠρ = Lρ.

In addition, σRVE = σRLV = σΠV = σV = σ̂,

UELQRVE = URLQRLV = UΠQΠV = UQV = Q̂

and

UELρ = URLρ = UΠρUΠV Uρ = UV Uρ = Uρ = ρ̂. �

250 Chapter 15. Comparative Analysis

From the proof we can also see when a reduction and a lumping coincide.
Clearly, this is only when LV = I and UR = I. The first equality implies
that lumping is performed such that each ergodic class is one partitioning
class. The second equality implies that there are no transient states that
are trapped to more than one ergodic class in the original process. This was
the case for the discontinuous Markov reward chain from Example 12.1.7b,
that was lumped (Example 13.1.9b) and reduced (Example 14.1.3b) to the
same Markov reward chain.

15.2 τ-reduction vs. τ-lumping

As τ -reduction and τ -lumping are based on reduction and ordinary lumping
respectively, it is not surprising that the two methods are again incompa-
rable. Moreover, as expected, τ -reduction combined with ordinary lumping
aggregates more than just τ -lumping.

We give an example that corresponds to Example 15.1.1.

Example 15.2.1 Consider the Markov reward chain with fast transitions
depicted in Figure 15.1a. Example 14.1.3c shows that this Markov reward
chain with fast transitions τ -reduces to the Markov reward chain from Fig-
ure 15.1b. This aggregation cannot be obtained by lumping. On the other
hand, if λ = µ, the process from Figure 15.1a τ -lumps to the Markov re-
ward chain in Figure 15.1c by the lumping {{1}, {2, 3}, {4}}, and to the one
Figure 15.1d by the lumping {{1, 2, 3}, {4}}. These aggregations cannot be
obtained by reduction. However, when λ = µ, the Markov reward chain
from Figure 15.1b lumps by the standard lumping to the Markov reward
chain in Figure 15.1d. Therefore, like in the case for reduction, although the
aggregation methods are incomparable, τ -reduction combined with standard
lumping is superior than just τ -lumping. �

Theorem 15.2.2 Suppose (σ,Qs, Qf , ρ)
P
 τ (σ̂, Q̂s, Q̂f , ρ̂). If Q̂f = 0, then

there exists a collector matrix VE such that

VEUELQsRVE = LQsRVE , VEUELρ = Lρ,

σ̂ = σRVE, Q̂s = UELQsRVE and ρ̂ = UELρ,

where RL = Π is the canonical product decomposition of Π, the ergodic
projection of Qf , and UE is a distributor associated to VE . �

15.2. τ -reduction vs. τ -lumping 251

Proof Since Q̂f = 0, we obtain Π̂ = UΠV = I. As in the proof of The-
orem 13.2.13, this implies ΠV = V and WΠ = W where W is the τ -
distributor used to define the τ -lumped process (σ̂, Q̂s, Q̂f , ρ̂). Let VE = LV
and UE = WR. That VE is a collector matrix and that UE is a distributor
associated to it is shown in the proof of Theorem 15.1.2.

Now, using that VWΠQsΠV = ΠQsΠV , we have

VEUELQsRVE = LVWRLQsRLV =

= LVWΠQsΠV = LΠQsΠV = LQsRLV = LQsRVE.

Similarly, using that VWΠρ = Πρ, we have

VEUELρ = LVWRLρ = LVWΠρ = LΠρ = Lρ.

In addition, σRVE = σRLV = σΠV = σV = σ̂,

UELQsRVE = WRLQsRLV = WΠQsΠV = WQV = Q̂s

and
UELρ = WRLρ = WΠρ = Wρ = ρ̂. �

a) ?>=<89:;1
1 r1

aτ

��

bτ

��
?>=<89:;2

r

λ
&&

?>=<89:;3
r

µ
xx?>=<89:;4
r4

ν

OO
b) ?>=<89:;1

p r

λ

��

?>=<89:;2
1−p r

µ

		
?>=<89:;3

r4
pν

UU

(1−p)ν

MM
c) ?>=<89:;1

1 r1

(a+b)τ
��

?>=<89:;2
r

λ=µ
��

?>=<89:;3
r4

ν

VV
d) ?>=<89:;1

1 r

λ=µ
��
?>=<89:;2

r4

ν

TT

Figure 15.1: τ -reduction vs. τ -lumping –Example 15.2.1

Both techniques can produce the same simplified process only in the case
when no transient states are trapped to more than one ergodic class. In this
case τ -lumping must be performed such that the lumping classes contain
complete ergodic classes together with all the transient states that lead to
them. The Markov reward chain with fast transitions from Figure 15.2a
reduces (Example 14.1.3b) and lumps (Example 13.2.4b) to the same Markov
reward chain in Figure 15.2b.

252 Chapter 15. Comparative Analysis

a) ?>=<89:;1

aτ
��

π r1

?>=<89:;2
1−π r2

bτ

TT

λ
��

?>=<89:;3
r3

b) ?>=<89:;1
1 br1+ar2

a+b

a
a+b

λ

��
?>=<89:;2

r3

Figure 15.2: τ -reduction sometimes coincides with τ lumping

15.3 τ∼-reduction vs. τ∼-lumping

In this section we compare τ∼-lumping with τ∼- and total τ∼-reduction. We
show that in non-degenerate cases τ∼-reduction is just a special instance
of τ∼-lumping, and that τ∼-lumping and total τ∼-reduction coincide when
lumping eliminates all silent transitions.

The following example shows that in some cases τ∼-lumping aggregates
more than τ∼-reduction.

Example 15.3.1 Consider the Markov reward chain with silent transitions
depicted in Figure 15.3a. This process τ∼-lumps to the Markov reward chain
in Figure 15.3b by the lumping {{1, 2, 3}, {4}}. However, the process in
Figure 15.3a cannot be τ -reduced because the state 1 violates the condition
that a transient state must lead to exactly one ergodic class. �

We now prove that τ∼-reduction is a special case of τ∼-lumping in case
the process does not have unreachable states.

Definition 15.3.2 A state i is a reachable state if there exists j0, . . . , jm
such that σ[j0] 6= 0, jm = i, and, for all 0 6 k 6 m, either Qs[jk, jk+1] > 0
or Qf [jk, jk+1] > 0. �

Theorem 15.3.3 Suppose (σ,Qs,Qf , ρ) τ∼-reduces to (σR, I, LQsR,Lρ). If
(σ,Qs,Qf , ρ) does not have unreachable states, then there exists a partition-

ing P such that (σ,Qs,Qf , ρ)
P
 τ∼ (σV,WQsV, {0},Wρ), where V is the

collector associated to P and W is a τ -distributor associated to Qf . More-
over, V = R and W = L. �

15.3. τ∼-reduction vs. τ∼-lumping 253

a) ?>=<89:;1
1 r1

τ

��

τ

��
?>=<89:;2

λ
''

r
?>=<89:;3

λ
ww

r

?>=<89:;4

ν

OO

r2

b) ?>=<89:;1
1 r

λ
��
?>=<89:;2

ν

TT

r2

Figure 15.3: The process in a) τ∼-lumps to the one in b) but cannot be
τ∼-reduced – Example 15.3.1

Proof Let E = {E1, . . . , ES , T} be the ergodic partitioning of the Markov
reward chain with silent transitions (σ,Qs, [Qf]∼, ρ). We first show that for
all t ∈ T there is a L ∈ {1, . . . , S} such that erg(t) = EL.

Since (σ,Qs, [Qf]∼, ρ) does not have unreachable states, we have that
there exist i0, . . . , im such that σ[i0] 6= 0, im = t, and, for all 0 6 k 6 m,
either Qs[ik, ik+1] > 0 or Qf [ik, ik+1] > 0. We first prove, by induction on
m, that erg(t) = EL for some L ∈ {1, . . . , S}.

Ifm = 0, then σ[i0] 6= 0 and the statement follows from the first condition
in Definition 14.3.1. Suppose the statement holds for all k 6 m. Now, if
Qf [ik, ik+1] > 0 then, because t = im+1 ∈ T also im ∈ T . By the inductive
hypothesis erg(im) = EL for some 1 6 L 6 S. Since erg(im+1) ⊆ erg(im),
we have erg(im+1) ⊆ EL and so erg(im+1) = EL. If Qs[ik, ik+1] > 0, then
the statement follows from Condition 2a of Definition 14.3.1.

We now construct the lumping partitioning. Define FI = EI ∪ {t |
t ∈ T, erg(t) = EI}, for 1 6 I 6 S and let P = {F1, . . . , FS}. Since
erg(FI) = EI and FI = {i | erg(i) = EI}, if follows that P satisfies the
conditions of Definition 13.3.2.

To show that the τ∼-lumped and the τ∼-reduced process coincide, we
show that R is always a collector matrix. Because P has S elements this
gives us V = R. Suppose thatR is not a collector. Then there are 1 6 K 6 S
and i such that δK [i] 6∈ {0, 1}. From this it follows that there is no 1 6 L 6 S
such that erg(i) ⊆ EL which is a contradiction.

The matrix L is a τ -distributor because LR = I and because, for Π =
RL, it satisfies ΠRLΠ = ΠΠΠ = ΠΠ = ΠRL. �

Note that, in the degenerate case when there are unreachable states it

254 Chapter 15. Comparative Analysis

can happen that τ∼-reduction can be applied but τ∼-lumping cannot. This
is because lumping must work for any initial vector. An example is given in
Figure 15.4 (states 1 and 3 are unreachable).

a) ?>=<89:;1
r1

τ

��

τ

��
?>=<89:;2
1

λ
''

r
?>=<89:;3

µ
ww

r

?>=<89:;4
r2

b) ?>=<89:;2
1

λ
''

r
?>=<89:;3

µ
ww

r

?>=<89:;4
r2

Figure 15.4: The process in a) τ∼-reduces to the one in b) but cannot be
(properly) τ∼-lumped

We now compare τ∼-lumping with total τ∼-reduction. The following two
theorems show that the notions coincide.

Theorem 15.3.4 Let (σ,Qs,Qf , ρ) be a Markov reward chain with silent
transitions and let be E = {E1, . . . , EM , T} be its ergodic partitioning. Sup-

pose (σ,Qs,Qf , ρ)
P
 (σ̂, Q̂s, {0}, ρ̂). Then there exists a partitioning PE of

{E1, . . . , EM} such that (σ,Qs,Qf , ρ) totally τ∼-reduces to (σ̂, I, Q̂s, ρ̂) with
respect to PE . �

Proof Since Q̂f = {0}, we have that for every C ∈ P and every i ∈ C,
erg(i) ⊆ C. This implies that if i ∈ C ∩ EK , for some 1 6 K 6 M ,
then EK ⊆ C. Intuitively, every lumping class must contain whole ergodic
classes. Define, for each C ∈ P, e(C) = {EK | EK ⊆ C} and define PE =
{e(C) | C ∈ P}. Clearly, PE is a partitioning of {E1, . . . , EM}. Observe
that flat(e(C)) =

⋃
EK⊆C EK = C ∩

⋃M
L=1EL. With this, the conditions of

Definition 13.3.2 directly imply the conditions of Definition 14.3.9.
To show that the results of the lumping and the reduction are the same

let V and VE be the collectors associated to P and PE respectively. We choose
a Qf and obtain Π, L, R and W . It is not hard to show that VE = LV . From

Q̂f = WQfV = 0 it follows, as before, that ΠV = V and that WΠ = W .
Define UE = WR > 0. Now UEVE = WRLV = WΠV = WV = I and
so UE is an distributor for VE . Finally, UEL = WRL = WΠ = W and
RVE = RLV = ΠV = V . �

15.4. τ∼-lumping vs. weak bisimulation for Interactive Markov chains 255

Theorem 15.3.5 Let (σ,Qs,Qf , ρ) be a Markov reward chain with silent
transitions that does not have unreachable states. Let E = {E1, . . . , EM , T}
be its ergodic partitioning and let PE be some partitioning of {E1, . . . , EM}.
If (σ,Qs,Qf , ρ) totally τ∼-reduces with respect to PE to (σ̂, I, Q̂s, ρ̂), then

there is a partitioning P such that (σ,Qs,Qf , ρ) τ∼-lumps to (σ̂, Q̂s, {0}, ρ̂)
with respect to P. �

Proof In the same way as we did in the proof of Theorem 15.3.3, we can
show that for all t ∈ T there is a C ∈ P such that erg(t) = flat(C).

We first define, for each C ∈ P, s(C) = {i | erg(i) ⊆ flat(C)}. Next, we
define P = {s(C) | C ∈ PE}. We show that P is a τ∼-lumping.

Let i ∈ s(C). Then erg(i) ⊆ flat(C) and so erg(s(C)) ⊆ flat(C) ⊆ s(C).
This proves Condition 1a of Definition 13.3.2. The other two conditions
follow directly from s(C) ∩ flat({E1, . . . , EM}) = flat(C).

We now show that the aggregated chains are the same.

We fix Qf and obtain Π, L and R. Let VE be the collector associated to
PE . Define V = RVE . From the definition of P it follows directly that V
is the collector for P. Let UE be a distributor for V such that VE [i, k] = 1
implies UE [k, i] > 0. Define W = UEL. That W is a τ -distributor follows
from WΠ = UELRL = UEL = W and Lemma 13.2.9. �

15.4 τ∼-lumping vs. weak bisimulation for Interac-

tive Markov chains

We have already mentioned that the aggregation method for the elimination
of vanishing markings in generalized stochastic Petri nets is a special instance
of τ -reduction. In this section we compare the τ∼-lumping method with the
weak bisimulation method for the elimination of τ transitions in Interactive
Markov chains [61].

Recall that Interactive Markov chains are extensions of Markov chains
with separate transitions that are labeled by actions. Weak bisimulation
is an equivalence relation on Interactive Markov chains that abstracts away
from transitions labeled by the internal τ action. For comparison, we assume
that there are no other actions but τ actions (note that weak bisimulation
works in the general case as well). We also assume that there are no rewards
associated to states. In addition, we do not allow silent transitions to lead
from a state to itself. As we treat them as exponential rates, they are
redundant. We now list the cases where τ∼-lumping (or τ∼-reduction) is
different from the reduction modulo weak bisimulation.

256 Chapter 15. Comparative Analysis

We give priority to silent transitions over exponential delays only in
transient states (see Example 13.3.4a) and not in ergodic states (see Example
13.3.1a). This leads to a different treatment of τ -divergence. For us, an
infinite avoidance of an exponential delay is not possible. The transition
must eventually be taken after an exponential delay (see Example 13.3.4b).
This can be considered as some kind of fairness incorporated in the model.
Due to the strong requirement that the lumping of Markov reward chains
with silent transitions is good if it is good for all possible speeds assigned
to silent transitions, τ∼-lumping does not always allow the aggregation of
states that lead to different ergodic classes (see Example 13.3.1b) unless
these ergodic classes are also inside some lumping class. This means that
we only disallow certain intermediate lumping steps while weak bisimulation
does not. In all other cases, the weak bisimilarity of Interactive Markov
chains and τ∼-lumping coincide.

Interactive Markov chain model is the underlying model of the process
algebra Interactive Markov Chains. Weak bisimulation is shown to be a
congruence, i.e. compatible with all the operators of this algebra. This is
a very important property because it allows for aggregation of the (usually
much smaller) components first, and then composing them into the aggre-
gated system. In our case, compositionality is not crucial. The purpose of
τ∼-lumping and τ∼-reduction is only to minimize final models, i.e. models
that no longer interact with the environment. However, it is not hard to
show that all the aggregation techniques that we introduced are compatible
with the parallel operator (or, in matrix terms, with Kronecker product and
sum [55]). This is very useful even if the parallel structure of the model
is not know. We can, for example, first decompose a very large Markov
reward chain with silent transitions into a set of independent parallel com-
ponents and then τ∼-reduce each component. The additional benefit is that
the solution techniques for Markov chains can also effectively exploit the
decomposition further [24].

Conclusion to Part III

We formalized the notion of fast and silent transitions in extensions of
continuous-time Markov reward chains arising from high-level specifications.
We treated fast transitions and silent steps as exponentially distributed de-
lays of which the rates tend to infinity with determined and undetermined
speeds, respectively. We introduced and compared two different aggregation
techniques for the elimination of these transitions, one based on reduction
and the other based on lumping.

In the case of fast transitions we showed that the techniques, in general,
produce incomparable Markov reward chains, and we identified when the
resulting processes coincide. The combination of reduction and ordinary
lumping proves to be superior by its ability to reduce a given Markov reward
chain with fast transitions. The analysis suggests that this combination can
be successfully used to handle probabilistic choices in Markov reward chain-
based extensions.

For the setting with silent steps the reduction method happens to be
weaker than the lumping method. However, when reduction is combined
with ordinary lumping, both aggregation techniques produce the same sim-
plified processes (provided that all silent steps are eliminated by lumping).

The reduction method always removes all fast transitions, whereas the
approach based on lumping does not. The advantage of reduction is its abil-
ity to split transient states. The lumping method provides more flexibility
in the sense that it is not mandatory to eliminate all fast/silent transitions
at once, so all intermediate processes can be obtained.

The reduction method in the setting with fast transitions coincides with
the method of elimination of vanishing markings in generalized stochastic
Petri nets. Our results can also be used to extend those methods by dropping
the requirement that the probabilities of the immediate transitions must be
stated explicitly. We also compared our techniques with the weak bisimula-
tion reduction method for Interactive Markov chains. We pointed out some
important differences and explained that in most cases the two approaches

257

258 CONCLUSION TO PART III

coincide.
We did not provide any algorithms nor real world examples. Algorithms

will be considered in future work. Since our main contribution is the theory
of elimination of instantaneous states coming from very popular Marko-
vian specification formalisms, examples where our results can be applied
are found elsewhere. However, still in the absence of tooling, we cannot
apply them in big case studies. This is not a serious drawback. One of
our results is that the lumping method in the non-deterministic setting only
differs from the weak bisimulation reduction method from [61] in cases that
we think will not appear in real world examples (presence of divergence).
This implies that the tooling for Interactive Markov chains is applicable in
our setting as well.

At last, let us provide a link between the theory presented in Part III
and the theory of labeled transition systems. In Part II we presented the no-
tions of strong and weak bisimulation for transition systems (with successful
termination) in terms of matrix equations. By comparing these equations
with the conditions for ordinary and for τ -lumping, we can conclude that
ordinary lumping coincides with strong bisimulation, and that τ -lumping
can be interpreted as weak bisimulation for Markov (reward) chains.

Bibliography

[1] R.P. Agaev and P.Y. Chebotarev. On determining the eigenprojection
and components of a matrix. Automated Remote Control, 63:1537–
1545, 2002.

[2] R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking in dense
real-time. Information and Computation, 104(1):2–34, 1993.

[3] H.H. Ammar, Y.F. Huang, and R.W. Liu. Hierarchical models for sys-
tems reliability, maintainability, and availability. IEEE Transactions
on Circuits and Systems, 34(6):629–638, 1987.

[4] F. Baccelli, G. Cohen, G. Olsder, and J.P. Quadrat. Synchronization
and Linearity. Wiley, 1992.

[5] J.C.M. Baeten and J.A. Bergstra. Global renaming operators in con-
crete process algebra. Information and Computation, 78(3):205–245,
1988.

[6] J.C.M. Baeten, J.A. Bergstra, and M.A. Reniers. Discrete time process
algebra with silent step. In Proof, language, and interaction: essays in
honour of Robin Milner, pages 535–569. MIT Press, Cambridge, MA,
USA, 2000.

[7] J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.

[8] J.C.M. Baeten and M.A. Reniers. Duplication of constants in process
algebra. Journal of Logic and Algebraic Programming, 70(2):151–171,
2007.

[9] J.C.M. Baeten and W.P. Weijland. Process Algebra. Number 18 in
Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press, 1990.

259

260 BIBLIOGRAPHY

[10] C. Baier, J.P. Katoen, H. Hermanns, and V. Wolf. Comparative
branching-time semantics for Markov chains. Information and Com-
putation, 200(2):149–214, 2005.

[11] T. Basten. Branching bisimilarity is an equivalence indeed! Informa-
tion Processing Letters, 58(3):141–147, 1996.

[12] D.A. van Beek, A. van der Ham, and J.E. Rooda. Modelling and con-
trol of process industry batch production systems. In 15th Triennial
World Congress of the International Federation of Automatic Control,
Barcelona, Spain, 2002.

[13] H.M.A. van Beek. Specification and analysis of Internet applications.
PhD thesis, Eindhoven University of Technology, 2005.

[14] R. Berghammer, B. von Karger, and C. Ulke. Relation-algebraic anal-
ysis of Petri nets with RELVIEW. In TACAS ’96: Proceedings of
the Second International Workshop on Tools and Algorithms for Con-
struction and Analysis of Systems, volume 1055 of LNCS, pages 49–69.
Springer, 1996.

[15] J.A. Bergstra and J.W. Klop. Algebra of communicating processes
with abstraction. Theoretical Computer Science, 37:77–121, 1985.

[16] J.A. Bergstra, A. Ponse, and M.B. van der Zwaag. Branching time and
orthogonal bisimulation equivalence. Theoretical Computer Science,
309(1):313–355, 2003.

[17] S. Blom, W. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser, and
J.C. van de Pol. µCRL: A toolset for analysing algebraic specifications.
In Computer Aided Verification, 13th International Conference (CAV
2001), Paris, France, July 18-22, 2001, volume 2102 of LNCS, pages
250–254. Springer, 2001.

[18] E. Bortnik, N. Trčka, A.J. Wijs, S.P. Luttik, J.M. van de Mortel-
Fronczak, J.C.M. Baeten, W.J. Fokkink, and J.E. Rooda. Analyzing
a χ model of a turntable system using Spin, CADP and UPPAAL.
Journal of Logic and Algebraic Programming, 65:51–104, 2005.

[19] V. Bos and J.J.T. Kleijn. Automatic verification of a manufacturing
system. Robotics and Computer Integrated Manufacturing, 17:185–198,
2001.

BIBLIOGRAPHY 261

[20] V. Bos and J.J.T. Kleijn. Formal Specification and Analysis of In-
dustrial Systems. PhD thesis, Eindhoven University of Technology,
2002.

[21] J. Bradfield and C. Stirling. Modal logics and mu-calculi: an introduc-
tion. In Handbook of Process Algebra, chapter 1, pages 3–99. Elsevier,
2001.

[22] M.C. Browne, E.M. Clarke, and O. Grumberg. Characterizing finite
Kripke structures in propositional temporal logic. Theoretical Com-
puter Science, 59:115–131, 1988.

[23] P. Buchholz. Exact and ordinary lumpability in finite Markov chains.
Journal of Applied Probability, 31:59–75, 1994.

[24] P. Buchholz and P. Kemper. Kronecker based matrix representations
for large Markov chains. In Validation of Stochastic Systems, volume
2925 of LNCS, pages 256–295, 2004.

[25] S.L. Campbell. Singular Systems of Differential Equations I. Pitman,
1980.

[26] E.J.J. van Campen. Design of a Multi-Process Multi-Product Wafer
Fab. PhD thesis, Eindhoven University of Technology, 2000.

[27] D. Cerotti, S. Donatelli, A. Horvath, and J. Sproston. CSL model
checking for generalized stochastic Petri nets. In Third International
Conference on the Quantitative Evaluation of Systems (QEST 2006),
September 2006, Riverside, California, USA, pages 199–210. IEEE
Computer Society, 2006.

[28] K.L. Chung. Markov Chains with Stationary Probabilities. Springer,
1967.

[29] G. Ciardo, J. Muppala, and K.S. Trivedi. On the solution of GSPN
reward models. Performance Evaluation, 12:237–253, 1991.

[30] E.M. Clarke and E.A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic. In Logic of Pro-
grams, Workshop, pages 52–71, London, UK, 1982. Springer-Verlag.

[31] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The
MIT Press, 2000.

262 BIBLIOGRAPHY

[32] M. Coderch, A.S. Willsky, S.S. Sastry, and D.A. Castanon. Hierarchi-
cal aggregation of singularly perturbed finite state Markov processes.
Stochastics, 8:259–289, 1983.

[33] G. Cohen, S. Gaubert, and J.P. Quadrat. Projection and aggregation
in maxplus algebra. In Current Trends in Nonlinear Systems and
Control, in Honor of Petar Kokotovic and Turi Nicosia. Birkhauser,
2006.

[34] J.H. Conway. Regular Algebra and Finite Machines. Chapman and
Hall; London, 1971.

[35] D. Dams. Abstract Interpretation and Partition Refinement for Model
Checking. PhD thesis, Eindhoven University of Technology, 1996.

[36] R. De Nicola and F.W. Vaandrager. Action versus state based logics
for transition systems. In LITP spring school on theoretical computer
science on Semantics of systems of concurrent processes, volume 469
of LNCS, pages 407–419. Springer-Verlag, 1990.

[37] R. De Nicola and F.W. Vaandrager. Three logics for branching bisim-
ulation. JACM, 42(2):458–487, 1995.

[38] F. Delebecque. A reduction process for perturbed Markov chains.
SIAM Journal of Applied Mathematics, 2:325–330, 1983.

[39] F. Delebecque and J.P. Quadrat. Optimal control of Markov chains ad-
mitting strong and weak interactions. Automatica, 17:281–296, 1981.

[40] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[41] W. Doeblin. Sur l’équation matricielle a(t+s) = a(t) a(s) et ses appli-
cations aux probabilités en chaine. Bull. Sci. Math., 62:21–32, 1938.

[42] J.L. Doob. Stochastic Processes. Wiley, 1953.

[43] E.A. Emerson. Temporal and modal logic. In Handbook of theoretical
computer science (vol. B): formal models and semantics, pages 995–
1072. MIT Press, Cambridge, MA, USA, 1990.

[44] E.A. Emerson and J.Y. Halpern. “Sometimes” and “not never” re-
visited: on branching versus linear time temporal logic. JACM,
33(1):151–178, 1986.

BIBLIOGRAPHY 263

[45] F.O. Farid. Criteria for invertibility of diagonally dominant matrices.
Linear Algebra and Applications, 215:63–93, 1995.

[46] J.J.H. Fey. Design of a Fruit Juice Blending and Packaging Plant.
PhD thesis, Eindhoven University of Technology, 2000.

[47] M. Fitting. Bisimulations and boolean vectors. In Advances in Modal
Logic, pages 97–126. King’s College Publications, 2002.

[48] W. Fokkink, J. Pang, and A. Wijs. Is timed branching bisimilarity
an equivalence indeed?. In Formal Modeling and Analysis of Timed
Systems, Third International Conference, FORMATS 2005, Uppsala,
Sweden, September 26-28, volume 3829 of LNCS, pages 258–272, 2005.

[49] A. Fronk. Using relation algebra for the analysis of Petri nets in a
CASE tool based approach. In SEFM ’04: Proceedings of the Software
Engineering and Formal Methods, Second International Conference
on (SEFM’04), pages 396–405, Washington, DC, USA, 2004. IEEE
Computer Society.

[50] R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order
approach to branching time logic model checking. Information and
Computation, 150(2):132–152, May 1999.

[51] R.J. van Glabbeek. The linear time – branching time spectrum II; the
semantics of sequential systems with silent moves. In Proceedings of the
4th International Conference on Concurrency Theory (CONCUR’93),
volume 715 of LNCS, pages 66–81. Springer, 1993.

[52] R.J. van Glabbeek. The linear time – branching time spectrum I; the
semantics of concrete, sequential processes. In Handbook of Process
Algebra, chapter 1, pages 3–99. Elsevier, 2001.

[53] R.J. van Glabbeek and W.P. Weijland. Branching time and abstrac-
tion in bisimulation semantics. JACM, 43(3):555–600, 1996.

[54] J.A. Govaarts. Efficiency in a lean assembly line: a case study at
NedCar Born. Master’s thesis, Stan Ackermans Institute, Eindhoven,
1997.

[55] A. Graham. Kronecker Products and Matrix Calculus With Applica-
tions. Ellis Horwood Lim., Chichester, 1981.

264 BIBLIOGRAPHY

[56] W.K. Grassmann and Y. Wang. Immediate events in Markov chains.
In Computations with Markov chains, pages 163–176. Kluwer, 1995.

[57] J.F. Groote and A. Ponse. Process algebra with guards: Combin-
ing Hoare logic with process algebra. Formal Aspects of Computing,
6(2):115–164, 1994.

[58] D.J. Hartfiel. Markov Set-Chains. Springer-Verlag, 1998.

[59] M.C.B. Hennessy and R. Milner. On observing nondeterminism and
concurrency. In Automata, Languages and Programming, 7th Collo-
quium, volume 85 of LNCS, pages 299–309, Noordweijkerhout, The
Netherland, 1980. Springer-Verlag.

[60] M.C.B. Hennessy and R. Milner. Algebraic laws for nondeterminism
and concurrency. JACM, 32(1):137–161, 1985.

[61] H. Hermanns. Interactive Markov Chains: The Quest for Quantified
Quality, volume 2428 of LNCS. Springer, 2002.

[62] E. Hille and R.S. Phillips. Functional Analysis and Semi-Groups.
AMS, 1957.

[63] J. Hillston. A Compositional Approach to Performance Modelling.
Cambridge University Press, 1996.

[64] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall,
Englewood Cliffs, 1985.

[65] G.J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.

[66] R.A. Howard. Semi-Markov and Decision Processes. London: Wiley,
1971.

[67] J.G. Kemeny and J.L. Snell. Finite Markov chains. Springer, 1976.

[68] K.H. Kim. Boolean Matrix Theory and Applications. Marcel Dekker,
1982.

[69] J.J. Koliha and T.D. Tran. Semistable operators and singularly per-
turbed differential equations. Journal of Mathematical Analysis and
Applications, 231:446–458, 1999.

[70] C.P.J. Koymans and J.L.M. Vrancken. Extending process algebra with
the empty process. Logic Group Preprint Series 1, State University of
Utrecht, 1985.

BIBLIOGRAPHY 265

[71] D. Kozen. Results on the propositional mu-calculus. Theoretical Com-
puter Science, 27:333–354, 1983.

[72] D. Kozen. A completeness theorem for Kleene algebras and the alge-
bra of regular events. Information and Computation, 110(2):366–390,
1994.

[73] B. Luttik. Choice Quantification in Process Algebras. PhD thesis,
University of Amsterdam, 2002.

[74] B. Luttik and N. Trčka. Stuttering congruence for χ. In SPIN’05, San
Francisco, California, USA, 2005.

[75] N. Lynch and F. Vaandrager. Forward and backward simulations
i.: untimed systems. Information and Computation, 121(2):214–233,
1995.

[76] M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.
Modelling with Generalized Stochastic Petri Nets. Wiley, 1995.

[77] M.A. Marsan, G. Conte, and G. Balbo. A class of generalized stochas-
tic Petri nets for the performance evaluation of multiprocessor sys-
tems. ACM Transactions on Computer Systems, 2(2):93–122, 1984.

[78] R. Milner. A Calculus of Communicating Systems. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1982.

[79] R. Milner. Operational and algebraic semantics of concurrent pro-
cesses. In Handbook of Theoretical Computer Science, Volume B: For-
mal Models and Sematics (B), pages 1201–1242. Elsevier and MIT
Press, 1990.

[80] M. Mousavi. Structuring Structural Operational Semantics. PhD the-
sis, Eindhoven University of Technology, 2005.

[81] S. Nejati. Refinement relations on partial specifications. Master’s
thesis, University of Toronto, 2003.

[82] V. Nicola. Lumping in Markov reward processes. IBM Research Re-
port RC 14719, IBM, 1989.

[83] H.R. Nielson and F. Nielson. Semantics with Applications: A Formal
Introduction. Wiley, 1992.

266 BIBLIOGRAPHY

[84] D. Park. Concurrency and automata on infinite sequences. In Pro-
ceedings of the 5th GI-Conference on Theoretical Computer Science,
volume 104 of LNCS, pages 167–183, London, UK, 1981. Springer-
Verlag.

[85] D. Peled. Partial order reduction: linear and branching temporal
logics and process algebras. In Proceedings of the DIMACS workshop
on Partial order methods in verification POMIV ’96, pages 233–257,
New York, NY, USA, 1997. AMS Press, Inc.

[86] B. Plateau and K. Atif. Stochastic automata network of model-
ing parallel systems. IEEE Transactions on Software Engineering,
17(10):1093–1108, 1991.

[87] G.D. Plotkin. A Structural Approach to Operational Semantics. Tech-
nical Report DAIMI FN-19, University of Aarhus, 1981.

[88] A. Pnueli. The temporal logic of programs. In 19th Annual Symposium
on Foundations of Computer Science (Providence, R.I.), pages 46–57,
Ney York, 1977. IEEE.

[89] D. Sangiorgi. On the bisimulation proof method. Mathematical Struc-
tures in Computer Science, 8(5):447–479, 1998.

[90] R.R.H. Schiffelers and K.L. Man. Formal Specification and Analysis
of Hybrid Systems. PhD thesis, Eindhoven University of Technology,
2006.

[91] G. Schmidt and T. Ströhlein. Relations and Graphs - Discrete Math-
ematics for Computer Scientists. EATCS Monographs on Theoretical
Computer Science. Springer, 1993.

[92] R. Segala and N. Lynch. Probabilistic simulations for probabilistic
processes. Nordic Journal of Computing, 2(2):250–273, 1995.

[93] J. Sproston and S. Donatelli. Backward stochastic bisimulation in CSL
model checking. In QEST ’04: Proceedings of the The Quantitative
Evaluation of Systems, First International Conference on (QEST’04),
pages 220–229, Washington, DC, USA, 2004. IEEE Computer Society.

[94] C. Stirling. Modal and Temporal Properties of Processes. Springer,
2001.

BIBLIOGRAPHY 267

[95] N. Trčka. Verifying χ models of industrial systems in Spin. In 8th In-
ternational Conference on Formal Engineering Methods, ICFEM 2006,
volume 4260 of LNCS, pages 132–148. Springer, 2006.

[96] Y.S. Usenko. Linearization in µCRL. PhD thesis, Eindhoven Univer-
sity of Technology, 2002.

[97] J.J. Vereijken. Discrete-time process algebra. PhD thesis, Eindhoven
University of Technology, 1997.

[98] J.L.M. Vrancken. The algebra of communicating processes with empty
process. Theoretical Computer Science, 177(2):287–328, 1997.

[99] A. Wijs. From χt to µCRL: Combining performance and functional
analysis. In ICECCS ’05: Proceedings of the 10th IEEE Inter-
national Conference on Engineering of Complex Computer Systems
(ICECCS’05), pages 184–193, Washington, DC, USA, 2005. IEEE
Computer Society.

[100] V. Wolf, M. Majster-Cederbaum, and C. Baier. Trace machines
for observing continous time Markov chains. In ENTCS - QAPL,
2005(2006).

[101] S.-H. Wu, S.A. Smolka, and E. Stark. Composition and behaviors
of probabilistic I/O automata. Theoretical Computer Science, 176(1–
2):1–38, 1997.

Index

0–1 matrix, 117
act function, 33
check function, 32
eff function, 33

atomic process, 31
atomic propositions, 16

backward strong bisimulation, 138
backward strong lumping, 140
boolean algebra, 117
branching bisimulation

as a strong bisimulation, 158
on a system, 153
with explicit divergence, 25

branching lumping, 158

χ-language, 93
canonical product decomposition, 230
collector matrix, 131, 189
communication function, 33
compound process, 31
condition

〈div1〉, 25
〈div2〉, 25
〈div3〉, 26
〈div”’〉, 25
〈sl-div〉, 46
〈div”〉, 24
〈div’〉, 17
〈div〉, 16
〈lab〉, 16
〈root-term〉, 51
〈root-tran1〉, 51
〈root-tran2〉, 51
〈str-term∆〉, 66
〈str-tick∆〉, 66

〈str-tran∆〉, 66
〈sl-term〉, 45
〈termstt〉, 24
〈term〉, 16
〈sl-term∆〉, 66
〈sl-tick∆〉, 67
〈sl-tran〉, 45
〈transtt〉, 24
〈tran〉, 16

configuration, 32

deadlock, 26
Dedekind formula, 120
discontinuous Markov chain, 178
discontinuous Markov reward chain, 183
distributor matrix, 131, 190

maximal, 131
divergence condition, 17
doubly-labeled transition system, 16

ergodic
class, 181
partitioning, 181
probability vector, 181
projection, 185
state, 181

fast transition, 184

generalized stochastic Petri net, 169
generator matrix, 179

identity matrix, 117, 178
initial probability vector, 178
initial vector, 121
Interactive Markov chain, 168, 255
irreducible matrix, 215

269

270 INDEX

κ-language, 29
Kronecker product, 119
Kronecker sum, 119

lumped process, 191
lumped system, 132

Markov chain
standard, 179

Markov reward chain with fast transi-
tions, 184

limit of, 185
Markov reward chain with silent transi-

tions, 188
matrix grammar, 187
maximal progress, 88

ordinary lumping, 190
vs. reduction, 247

partitioning, 180
Promela, 93

reduction, 231
vs. lumping, 247

regular state, 181
reward, 182
reward vector, 183
root condition, 51

Schröder equivalences, 120
semi-generator matrix, 214

indecomposable, 214
silent bisimulation, 16

on processes, 37
stateless, 45

silent congruence, 51
silent step, 145
silent transition, 187
slow transition, 184
state labeling function, 16
stateless relation, 44
stateless silent bisimulation, 45
stochastic matrix, 178
strong bisimulation

between systems, 133

on a system, 127
up-to a relation, 142

strong lumping, 132
up-to a relation, 144

strong pairs relation, 66
stuttering closure, 22, 161
stuttering equivalence, 26
stuttering property, 22, 160

τ -closure, 148
τ -communication, 185
τ -distributor, 199
τ -lumping, 198

vs. τ -reduction, 250
τ -reachability, 185
τ -reduction, 233

vs. τ -lumping, 250
τ, R-closure, 158
τ∼-lumping, 220

vs. τ∼-reduction, 252
vs. total τ∼-reduction, 254

τ∼-reduction, 235
vs. τ∼-lumping, 252

termination condition, 17
termination vector, 121
time determinism, 62
time-transition relation, 61
Timed χ, 93

embedding into Timed κ, 95
Timed κ, 61
Timed doubly-labeled transition system,

61
timed silent congruence, 67
timed stateless silent bisimulation, 66
total τ∼-reduction, 241

vs. τ∼-lumping, 254
total reward, 183
transfer condition, 17
transient state, 181
transition matrix, 121
transition matrix function, 178
transition relation, 16
transition system, 121
transpose, 118
trapping probability, 181

INDEX 271

valuation, 30
visible bisimulation, 26

weak bisimulation
as a strong bisimulation, 148
on a system, 146

weak lumping, 150

zero matrix, 178

Titles in the IPA Dissertation Series since 2002

M.C. van Wezel. Neural Networks for

Intelligent Data Analysis: theoretical and

experimental aspects. Faculty of Mathe-
matics and Natural Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Spec-

ification and Analysis of Industrial Sys-

tems. Faculty of Mathematics and Com-
puter Science and Faculty of Mechanical
Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understand-

ing Legacy Software Systems. Faculty of
Natural Sciences, Mathematics and Com-
puter Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in

Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2002-04

R.J. Willemen. School Timetable Con-

struction: Algorithms and Complexity.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Ver-

ification of Probabilistic, Real-time and

Parametric Systems. Faculty of Sci-
ence, Mathematics and Computer Science,
KUN. 2002-06

N. van Vugt. Models of Molecular Com-

puting. Faculty of Mathematics and Natu-
ral Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius:

Guiding and Cost-Optimality in Model

Checking of Timed and Hybrid Systems.
Faculty of Science, Mathematics and Com-
puter Science, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin

Packing. Faculty of Mathematics and Nat-
ural Sciences, UL. 2002-09

D. Tauritz. Adaptive Information Fil-

tering: Concepts and Algorithms. Faculty
of Mathematics and Natural Sciences, UL.
2002-10

M.B. van der Zwaag. Models and Log-

ics for Process Algebra. Faculty of Natural
Sciences, Mathematics, and Computer Sci-
ence, UvA. 2002-11

J.I. den Hartog. Probabilistic Exten-

sions of Semantical Models. Faculty of Sci-
ences, Division of Mathematics and Com-
puter Science, VUA. 2002-12

L. Moonen. Exploring Software Systems.
Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-13

J.I. van Hemert. Applying Evolution-

ary Computation to Constraint Satisfac-

tion and Data Mining. Faculty of Mathe-
matics and Natural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2002-15

Y.S. Usenko. Linearization in µCRL.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2002-16

J.J.D. Aerts. Random Redundant Stor-

age for Video on Demand. Faculty
of Mathematics and Computer Science,
TU/e. 2003-01

M. de Jonge. To Reuse or To Be

Reused: Techniques for component compo-

sition and construction. Faculty of Natu-
ral Sciences, Mathematics, and Computer
Science, UvA. 2003-02

J.M.W. Visser. Generic Traversal over

Typed Source Code Representations. Fac-
ulty of Natural Sciences, Mathematics, and
Computer Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-04

T.A.C. Willemse. Semantics and Veri-

fication in Process Algebras with Data and

Timing. Faculty of Mathematics and Com-
puter Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations of

Catalytic Reactions. Faculty of Mathemat-
ics and Computer Science, TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of

Tertiary Storage. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2003-07

H.P. Benz. Casual Multimedia Process

Annotation – CoMPAs. Faculty of Electri-
cal Engineering, Mathematics & Computer
Science, UT. 2003-08

D. Distefano. On Modelchecking the Dy-

namics of Object-based Software: a Foun-

dational Approach. Faculty of Electri-
cal Engineering, Mathematics & Computer
Science, UT. 2003-09

M.H. ter Beek. Team Automata – A

Formal Approach to the Modeling of Col-

laboration Between System Components.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-10

D.J.P. Leijen. The λ Abroad – A Func-

tional Approach to Software Components.
Faculty of Mathematics and Computer Sci-
ence, UU. 2003-11

W.P.A.J. Michiels. Performance Ra-

tios for the Differencing Method. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and

Terms and Their Use in Interactive Theo-

rem Proving. Faculty of Mathematics and
Computer Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Com-

puting – Splicing and Membrane systems.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-03

S. Maneth. Models of Tree Translation.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-04

Y. Qian. Data Synchronization and

Browsing for Home Environments. Fac-
ulty of Mathematics and Computer Science

and Faculty of Industrial Design, TU/e.
2004-05

F. Bartels. On Generalised Coinduction

and Probabilistic Specification Formats.
Faculty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real Analy-

sis: a Type-Theoretical Formalization and

Applications. Faculty of Science, Mathe-
matics and Computer Science, KUN. 2004-
07

E.H. Gerding. Autonomous Agents in

Bargaining Games: An Evolutionary In-

vestigation of Fundamentals, Strategies,

and Business Applications. Faculty of
Technology Management, TU/e. 2004-08

N. Goga. Control and Selection Tech-

niques for the Automated Testing of Reac-

tive Systems. Faculty of Mathematics and
Computer Science, TU/e. 2004-09

M. Niqui. Formalising Exact Arithmetic:

Representations, Algorithms and Proofs.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2004-10

A. Löh. Exploring Generic Haskell. Fac-
ulty of Mathematics and Computer Sci-
ence, UU. 2004-11

I.C.M. Flinsenberg. Route Planning

Algorithms for Car Navigation. Faculty
of Mathematics and Computer Science,
TU/e. 2004-12

R.J. Bril. Real-time Scheduling for Me-

dia Processing Using Conditionally Guar-

anteed Budgets. Faculty of Mathematics
and Computer Science, TU/e. 2004-13

J. Pang. Formal Verification of Dis-

tributed Systems. Faculty of Sciences, Di-
vision of Mathematics and Computer Sci-
ence, VUA. 2004-14

F. Alkemade. Evolutionary Agent-Based

Economics. Faculty of Technology Man-
agement, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position

Estimation Using a Single Base Station.

Faculty of Mathematics and Computer Sci-
ence, TU/e. 2004-16

S.M. Orzan. On Distributed Verification

and Verified Distribution. Faculty of Sci-
ences, Division of Mathematics and Com-
puter Science, VUA. 2004-17

M.M. Schrage. Proxima - A

Presentation-oriented Editor for Struc-

tured Documents. Faculty of Mathematics
and Computer Science, UU. 2004-18

E. Eskenazi and A. Fyukov. Quanti-

tative Prediction of Quality Attributes for

Component-Based Software Architectures.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Su-

pervisory Machine Control by Predictive-

Reactive Scheduling. Faculty of Mechani-
cal Engineering, TU/e. 2004-21

E. Ábrahám. An Assertional Proof Sys-

tem for Multithreaded Java -Theory and

Tool Support- . Faculty of Mathematics
and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodel-

ing in Bone Tissue. Faculty of Biomedical
Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights Con-

trol - Expression and Enforcement. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2005-03

H. Gao. Design and Verification of Lock-

free Parallel Algorithms. Faculty of Math-
ematics and Computing Sciences, RUG.
2005-04

H.M.A. van Beek. Specification and

Analysis of Internet Applications. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2005-05

M.T. Ionita. Scenario-Based System

Architecting - A Systematic Approach to

Developing Future-Proof System Architec-

tures. Faculty of Mathematics and Com-
puting Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analysis Tech-

niques in Security and Fault-Tolerance.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2005-07

I. Kurtev. Adaptability of Model Trans-

formations. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2005-08

T. Wolle. Computational Aspects of

Treewidth - Lower Bounds and Network

Reliability. Faculty of Science, UU. 2005-
09

O. Tveretina. Decision Procedures for

Equality Logic with Uninterpreted Func-

tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite

Populations in Dynamic Environments.
Faculty of Biomedical Engineering, TU/e.
2005-11

J. Eggermont. Data Mining using Ge-

netic Programming: Classification and

Symbolic Regression. Faculty of Mathe-
matics and Natural Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type Error

Messages. Faculty of Science, UU. 2005-
13

G.F. Frehse. Compositional Verification

of Hybrid Systems using Simulation Rela-

tions. Faculty of Science, Mathematics and
Computer Science, RU. 2005-14

M.R. Mousavi. Structuring Structural

Operational Semantics. Faculty of Math-
ematics and Computer Science, TU/e.
2005-15

A. Sokolova. Coalgebraic Analysis of

Probabilistic Systems. Faculty of Math-
ematics and Computer Science, TU/e.
2005-16

T. Gelsema. Effective Models for the

Structure of pi-Calculus Processes with

Replication. Faculty of Mathematics and
Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint

Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transformation

of Source Code by Parsing and Rewriting.
Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2005-19

M.Valero Espada. Modal Abstraction

and Replication of Processes with Data.
Faculty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2005-20

A. Dijkstra. Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y.W. Law. Key management and link-

layer security of wireless sensor networks:

energy-efficient attack and defense. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2005-22

E. Dolstra. The Purely Functional Soft-

ware Deployment Model. Faculty of Sci-
ence, UU. 2006-01

R.J. Corin. Analysis Models for Secu-

rity Protocols. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2006-02

P.R.A. Verbaan. The Computational

Complexity of Evolving Systems. Faculty
of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.
Formal Specification and Analysis of Hy-

brid Systems. Faculty of Mathematics and
Computer Science and Faculty of Mechan-
ical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications

of UML Models: Tool Support and Com-

positionality. Faculty of Mathematics and
Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed

Automata - Techniques and Applications.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewrit-

ing. Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in

tool-assisted verification of JML programs.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molecu-

lar Simulations. Faculty of Biomedical En-
gineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data.
Faculty of Mathematics and Natural Sci-
ences, UL. 2006-10

G. Russello. Separation and Adaptation

of Concerns in a Shared Data Space. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-11

L. Cheung. Reconciling Nondeterminis-

tic and Probabilistic Choices. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2006-12

B. Badban. Verification techniques for

Extensions of Equality Logic. Faculty
of Sciences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal meth-

ods and protocol standardization. Faculty
of Mathematics and Computer Science,
TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for

Hybrid Systems. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2006-15

M.E. Warnier. Language Based Secu-

rity for Java and JML. Faculty of Science,
Mathematics and Computer Science, RU.
2006-16

V. Sundramoorthy. At Home In Ser-

vice Discovery. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2006-17

B. Gebremichael. Expressivity of Timed

Automata Models. Faculty of Science,
Mathematics and Computer Science, RU.
2006-18

L.C.M. van Gool. Formalising Interface

Specifications. Faculty of Mathematics and
Computer Science, TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics

and Verification of Security Protocols. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Channels

for Exogenous Coordination of Distributed

Systems: Semantics, Implementation and

Composition. Faculty of Mathematics and
Natural Sciences, UL. 2006-21

H.A. de Jong. Flexible Heterogeneous

Software Systems. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2007-01

N.K. Kavaldjiev. A run-time reconfig-

urable Network-on-Chip for streaming DSP

applications. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2007-02

M. van Veelen. Considerations on Mod-

eling for Early Detection of Abnormalities

in Locally Autonomous Distributed Sys-

tems. Faculty of Mathematics and Com-
puting Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applications of

Process and Program Algebra. Faculty of
Natural Sciences, Mathematics, and Com-
puter Science, UvA. 2007-04

L. Brandán Briones. Theories for

Model-based Testing: Real-time and Cov-

erage. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2007-05

I. Loeb. Natural Deduction: Sharing by

Presentation. Faculty of Science, Mathe-
matics and Computer Science, RU. 2007-
06

M.W.A. Streppel. Multifunctional Geo-

metric Data Structures. Faculty of Math-
ematics and Computer Science, TU/e.
2007-07

N. Trčka. Silent Steps in Transition

Systems and Markov Chains. Faculty
of Mathematics and Computer Science,
TU/e. 2007-08

Curriculum Vitae

Nikola Trčka was born on the 5th of October 1977 in Belgrade, Serbia (then
Yugoslavia). He studied computer science at the Faculty of Mathematics,
University of Belgrade, and obtained the degree Graduated Mathematician
for Computer Science (equivalent to M.Sc.) in 2003. In July 2003 he became
a Ph.D student at the Formal Methods Group, Department of Mathematics
and Computer Science, Eindhoven University of Technology, The Nether-
lands.

	Preface
	Summary
	Table of contents
	List of figures
	I. Silent congruence and timed silent congruence
	1. Introduction
	2. Silent bisumulation
	3. The language kappa
	4. Silent congruence
	5. Timed silent congruence
	6. Application: translatine chi to Promela
	Conclusion to Part I
	II. Transition systems and bisimulations in matrix theory
	7. Introduction
	8. Transition systems as matrices
	9. Strong bisimulation
	10. Bisimulations on systems with silent steps
	Conclusion to Part II
	III. Aggregation of Markov reward chains with fast and silent transitions
	11. Introduction
	12. Markov reward chains with discontinuities, and with fast and silent transitions
	13. Aggregation by lumping
	14. Aggregation by reduction
	15. Comparitive analysis
	Conclusion of Part III
	Bibliography
	Index
	Curriculum Vitae

