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Abstract 

Today, relational database systems have been extended in several ways. One way 
to extend the relational database model is by adding rules. These rules can make 
a lot of information implicit. In other words, a lot of intensional facts Sle stored 
in the database through rules. Consequently, when one updates such a database, a 
lot of implicit updates may appear by the presence of rules. When also integrity 
constraints on data in the database ale allowed, the checking of these constraints 
becomes a problem because an update can cause some implicit updates which in 
turn may violate some of the constraints. The search for inconsistencies is a time
consuming task which must therefore be done primarily at compile time. This paper 
presents a new method for checking integrity constraints in databases extended with 
rules. A special kind of database is used, namely a deductive database, which is 
a logical database that handles deductive rules. The goal of this paper is to find 
the causes of efficiency defects in existing methods. A classification of redundant 
evaluations in existing methods is given. On th~ basis of this analysis an improvement 
ofthe method based on inconsistency rules, which I have developed at an earlier stage 
(see [26]), is proposed. Compared to existing methods it follows a completely different 
approach. Inconsistency rules are meta~rules which describe for all possible updates 
the integrity constraint check that has to be done. Further, the check is mimimal 
from the redundancy types point of view. Several types of redundancy in integrity 
checking methods are described in this paper. These redundancies have to be avoided 
to provide that we only have to access a relevant part of the database that is affected 
by the update. The improved version of the method based on inconsistency rules 
is compared to other existing methods, i. e., methods based on induced update6 and 
methods based on potential update •. 
keywords: logic programming, deductive databa.e" integrity con.trainb, con6i,tency. 

1 Introduction 

The available integrity checking methods in deductive databases are often criticized for 
their lack of efficiency. One of the goals of this paper is to present a new integrity checking 
method which eliminates that How. In the first section a short introduction to integrity 
checking in deductive databases is given. In Section 2 methods for integrity checking in 
deductive databases are described. In Section 3 several redundant evaluation types in the 
inconsistency check are distinguished. 

After this section a revised method based on inconsistency rules is proposed and com
pared to some existing methods, i. e, methods based on induced updates and methods 
based on potential updates. The methods are compared by using a lot of examples show
ing the specific redundancy problems for each existing method. These examples will give 
the reader a thorough insight in the problems in checking integrity constraints in deductive 
databases. Section 5 shows the problems occurring in the case of recursion. This section 
shows that the proposed method handles recursion well. The methods in this paper were 
implemented and tested. Section 6 shows the tests and the results. 

As the results show, the database state, consisting of the facts and the rules of a 
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database, has a great influence on the performance of the check. This paper intends to 
show that in all cases the proposed method performs better than all other methods. First, 
a short introduction to integrity checking in databases is given. 

1.1 Integrity Checking in Deductive Databases 

A lot of today's commercially available database systems are based on the relational 
database modeL In this relational model facts are stored in tables. Tables contain explicit 
data. A relational database management system (RDBMS) handles the fast retrieval of 
information from a database. Besides explicit information tables also contain implicit 
information. In conventional relational systems the derivation of implicit from explicit 
information is left to the user. There is a growing need to delegate such derivations to the 
system. Therefore, a relational database is exterided with deductive rules. For this reason 
deductive databases are studied. This implicit information is made explicit by using rules. 

In the deductive database community one distinguish two kinds of facts, i. e., the facts 
that are extensional and the facts that are intensional. The extensional facts, i. e., the 
base facts, are all facts that are really present in the database. The intensional facts are 
those that are not present in the database but which can be deduced from the extensional 
facts using one or more database rules. Because updates of the intensional database (also 
known as view updates) will cause too many semantical difficulties (see [11 J and [21]) only 
updates in the extensional database are allowed. 

Integrity constraints do not make implicit information explicit but dictate the information 
the database is allowed to store. Under no circumstances is the database allowed to give 
erroneous or contradictory information, therefore such information must be kept from the 
database. In order to do this, integrity constraints are stated in order to monitor the 
consistency of the database. However, in most cases the check of such constraints still is 
a user's responsibility. In the future this becomes a system's responsibility. Relational 
database management systems have some automated integrity checks, such as referential 
integrity checks, domain integrity checks, etc .. But here all kinds of integrity constraints 
are allowed as long as they are expressible in our language. 

Checking the consistency of the database by checking all constraints each time the database 
is changed is not feasible. Therefore the methods presently available make use of the as
sumption that before each update a database is consistent with respect to the specified 
integrity constraints. Having made this assumption it is possible to focus on only those 
constraints that are affected by a certain change of the database. In the relational case an 
update can directly influence a constraint. In the deductive case, a new problem caused 
by rules occurs. With respect to some update,the rules may generate several induced 
updates, which in turn can cause an inconsistent database state. Another issue is "how 
is the integrity of the database restored after an update causing an inconsistent database" . 
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This is called the issue of integrity maintenance. Here, in this article, only the issue of 
integrity checking is important. This means that we are only interested in how to detect 
in the most efficient manner that the database is inconsistent. Therefore, if an update 
causes an inconsistent database state, then the update is simply rejected. 

1.2 A New Method based on Inconsistency Rules 

When analyzing the way updates can lead to violation of integrity constraints, we want 
to know which updates influence directly or indirectly an integrity constraint. Therefore, 
we try to find out which and how general updates lead via which rules to which integrity 
constraints. This will be illustrated by an example. For, more information about this way 
of integrity checking see [26]. 

Suppose a database consists of a patient table, a medicine dispensation table and an 
integrity constraint that says "do not dispensate medicine A to babies". Now there are 
no facts in the extensional database that express the concept of baby. But suppose there 
is some rule that states that "babies are patients with an age less than 1 year". So, the 
insertion of the patient's age of three months inlluences the integrity constraint, because 
the rule links the integrity constraint to the patient table, in particularly to the attribute 
"age" with value less than one year. Note also that the dispensation table is linked di
rectly to the integrity constraint and that the link from a (part of a) table to an integrity 
constraint can go via a lot of rules. ' 

In the example, two links to the integrity constraint "do not dispensate medicine A to 
babies" appear; the link frOIn the value of the age of a patient which is less than 1 year in 
the patient table and the link from the dispensated medicine in the medicine dispensation 
table. Inconsistency Mlles express these links in order to instantiate an integrity constraint 
directly after an update that influences that constraint. So, for instance, in our example 
the inconsistency rule says that if a patient with an age of less than 1 year is inserted 
we have to check if medicine A is dispensated to this patient. When a patient's age is 
set to 16, no inconsistency rules that correspond to this update are found. Therefore, no 
check needs to be made. However, when a patient's age is set to 10 months, then the 
inconsistency rule is applied which results in an evaluation of the statement that medicine 
A is dispensated to this patient. And, if an update of the medicine dispensation table 
"give patient Y medicine A" reaches the database, then "Y is a baby" must be evaluated. 
If "Y is a baby" is true, then an inconsistent state is reached. 

This example illustrates the advantages of the proposed method. Instead of a full evalu
ation of the integrity constraint only an instantiation is evaluated which can be found in 
just one step after an update. If an update does not inlluence any integrity constraint, 
no evaluation or computation of any kind is needed, so the update can be accepted directly. 
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The new method is based on a new concept called "inconsistency rules". These rules 
are derived using the rules and the integrity constraints, and are asserted to the deductive 
database in order to be fired if an appropriate update passes. 

2 Integrity Constraint Checking in Deductive Databases 

In a deductive database one distinguishes facts, rules and integrity constraints. These 
facts, rules and constraints are expressed in a logical language, that of first-order logic. A 
lot offormal work in this area has been done by Nicolas, Lloyd and others (see [17J, [18], 
[19J, [22J, [23]). 

Throughout this paper updates are represented by ground literals. Let U represent 
an update to a deductive database D. U is called an insertion (resp. a deletion) if it 
is a positive (resp. negative) literal. If U is an insertion (resp. deletion) to a deductive 
database D, then the database resulting from inserting (resp. deleting) U is denoted by 
Du. A set of updates is called a transaction. These updates are presented to a database 
at the same time. Let T be a transaction, then the database D, which is the result of all 
updates in the set, is denoted by DT. Du (resp. DT) represents the database D extended 
by U (resp. T). 

More about definitions and logical concepts in this section can be found in [16J. Now, 
a short overview of the concepts used is given. From a logical point of view, a relational 
or deductive database can be looked at in two different ways (see [7]). 

First, there is the model theoretic view. Here, the facts (resp. all facts and deducible 
facts) of the relational database (resp. deductive database) are looked at as an interpre
tation (or model) of the set of logical formulas corresponding to the integrity constraints. 
Here, the interpretation assigns truth values to these logical formulas by the database 
state. If they are true, then the database is a m~del for the formulas (i. e. , an interpreta
tion in which all formulas are satisfied). A database is called consistent with respect to 
its specified integrity constraints iff it is a model for the logical formulas corresponding to 
the integrity constraints. 

Second, there is the proof theoretic view in which the database can be seen as a first 
order theory from which integrity constraints can be derived. In this case the database 
is called consistent with respect to the specified integrity constraints. Now, suppose a 
database transaction, which can be any collection of updates, additions and/or deletions 
of facts, takes place. Then the consistent database state can change into an inconsistent 
one. Proof theoretically, the integrity of the database is preserved if all the integrity 
constraints are still derivable from the first order theory respesenting the new database 
state. 

In this paper the latter appoach is followed. 
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2.1 Inconsistency Indicator versus Integrity Constraint 

An inconsistency indicator is a statement which becomes true if the database becomes 
inconsistent by a transaction. An inconsistency indicator is the negation of an integrity 
constraint. For example, the following constraint which is true in the world we are mod
eling: 

• a child must be at least 15 years younger than both its parents 

can be reformulated as the inconsistency indicator: 

• there exists a child that is less than 15 years younger than one of its parents. 

As we have stated earlier, the system only deals with universally quantified rules and 
integrity constraints. Note that the integrity constraint is universally quantified; for we 
can reformulate the constraint as: 

• for all children it holds that they are at least 15 years younger than both its parents. 

So, as a consequence the inconsistency indicator is existentially quantified. Inconsistency is 
no longer looked upon as a violation of the integrity constraints but as the true occurrence 
of an inconsistency indicator in the updated database state. 

More formally, constraints are of the form ..,F, where F is some closed existentially 
quantified formula expressed in the underlying language of the theory. So, the indicators 
are closed as well. In this article the theory is built using F instead of ..,F. F is called the 
inconsistency indicator with respect to the constraint. The new proposed method is easier 
to describe with the concept of inconsistency indicator than with the concept of integrity 
constraint. An inconsistency indicator F indicates whether the database is inconsistent or 
not. If F is true, the database is inconsistent. Therefore, the database is consistent if there 
is no specified inconsistency indicator that is true in the database. Inconsistency indicators 
play a crucial role in the proposed method. Namely, from these indicators inconsistency 
rules are built which are asserted to the database in order to detect inconsistent states of 
the database. 

2.2 Induced Update Method versus Potential Update Method 

In this subsection two existing classes of methods for checking the consistency of databases 
are described. For an comparison of several of these methods ([1], [2], [4], [6], [8], [10], 
[12], [15], [17], [20], [24], [25], [26]) we refer to [5], [9], [26]. 

First, methods based on induced updates have the common feature that from the up
date all new deducible facts are generated. Next the set of induced updates is seen as a 
transaction for which the integrity constraints must be satisfied. Note that a lot of red un
dant induced updates could be generated, i. e. , induced updates that do not influence any 
inconsistency indicator. 
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Example 2.1 Consider a database with the following rules and facts: 

RULES 

Rl: mother(X,Y) <- husband(Z,X),father(Z,Y) 

R2: parent(X,Y) <- father(X,Y) 

R3: parent(X,Y) <- mother(X,Y) 

FACTS 

Fl: father(1,10) 

F2: father(1,1l) 

F3: father(1,12) 

Note that the deducible facts are parent(1,10), parent(1,1l) and parent(1,12). Suppose 
the update to this database is husband(1,2). The facts mother(2,10), mother(2,1l) and 
mother(2,12) are directly induced by husband(1,2) by using rule Rl and facts Fl, F2. and 
F3. In turn, mother(2,10), mother(2,1l) and mother(2,12) directly induce parent(2,10), 
parent(2,1l) and parent(2,l2), respectivily. So, all induced updates with respect to hus
band(1,2) are husband(1,2) itself, mother(2,1O), mother(2,1l), mother(2,12), parent(2,10) 
parent(2,1l) and parent(2,12). Suppose an inconsistency indicator expresses the fact that 
an age difference of less than 15 years between parent and child is prohibited: 

Ill: 3X 3Y parent(X,Y), age-diff(X,Y,N), N < 15. 

Now, given the update husband(1,2), the induced instances of III are derived from all 
induced updates relevant to Ill, i.e., parent(2,10), parent(2,1l) and parent(2,12). These 
instances, which are called the induced instances of that inconsistency indicator, are just 
the simplified instances of III with respect to the corresponding induced updates, i. e. , 
parent(2,lO), age-diff(2,lO,N), N < 15; parent(2,1l), age-diff(2,1l,N), N < 15; parent(2,1l), 
age-diff(2,12,N), N < 15 respectivily. D 

Secondly, the methods based on potential updates first generate all possible updates, which 
are called potential updates. From the update a forward reasoning process is started. We 
look for relations that might be updated by the initial update. Potential updates express 
these possible updates without checking if they represent real updates. So, the evaluation 
phase is postponed. Next these potential updates are matched with inconsistency indi
cators. Then the resulting instantiated indicators, which are called potential instances of 
those inconsistency indicators, are evaluated. This situation is illustrated in Example 2.2. 

Example 2.2 Consider the database with the rules, facts and inconsistency indicator of 
Example 2.1. Suppose the update to this database is husband(1,2). The literal mother(2,Y) 
directly depends on husband(1,2) by using rule Rl. In turn, parent(2,Y) directly depends 
on mother(2,Y). So, all potential updates with respect to husband(1,2) are husband(1,2) 
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itself, mother(2,Y) and parent(2,Y). Now, given the update, the potential instances of III 
are derived from the potential updates relevant to Ill, i. e., parent(2,Y). This resulting 
potential instance of III is just the simplified instance of III with respect to parent(2,Y), 
i. e., parent(2,Y), age-diff(2,Y,N), N < 15. 0 

Note that each induced update is an instance of some potential update. Therefore, also 
each instance of an inconsistency indicator is an instance of some potential instance of this 
indicator. However, it is possible that some potential instance of an inconsistency indicator 
does not have any corresponding induced instance. This follows from the fact that some 
potential updates may not have an instance corresponding to an induced update. 

Each of these methods has some drawbacks. In the first class a lot of induced updates 
may be generated even those which are not affecting any constraint. These induced up
dates are redundant for checking the inconsistency of the database. In the second class of 
methods the forward reasoning process is continued as long as there are applicable rules 
which contain a potential update in its body, even if the potential update does not corre
spond to any induced update. In that case, these potential updates are redundant. The 
method proposed in this paper is based on a different approach and does not have these 
drawbacks. The existing methods reason forward from the rules, facts and update in order 
to find some instantiated constraints that have to be evaluated in the database. 

2.3 Method Based on Inconsistency Rules 

In this paper the method based on inconsistency rules ([26]) will be improved. The main 
feature of methods based on inconsistency rules is that the consistency check itself is 
completely goal driven. The knowledge how an arbitrary update may influence the incon
sistency indicators is represented by so called inconsistency rv.les which are asserted to 
the deductive database. By using these rules, from any update the relevant instantiated 
inconsistency indicators, that have to be evaluated in the deductive database, are found in 
just one step. Therefore, it does not have the disadvantage of generating induced updates 
or potential updates that are not relevant to any inconsistency indicator. 

2.3.1 Potential Update Trees 

The new method is based on a new concept called "inconsistency rv.les". These rules 
are constructed using the rules and the inconsistency indicators, and are asserted to the 
deductive database. The inconsistency rules are derived from potential update trees. Each 
potential update tree is derived from a relevant literal in an inconsistency indicator. A 
literal relevant for an indicator is a literal that corresponds to a relation which belongs 
to the domain of the database. Therefore, literals expressing some computation or COID

parison without accessing the database are not interesting in the construction of potential 
update trees. 

Definition 2.1 A relation is called an updatable relation if the database allows an explicit 
update in that relation. 0 

8 



Note that an updatable relation can be a relation that is also derived. In the next definition 
a strict distinction between up datable relations and derived relations is not made yet. 
Hence, updates in views are allowed. 

Definition 2.2 Let L be a relevant literal that occurs in an inconsistency indicator. Lit
eral L is the root of a potential update AND/OR tree, say TL. L is called the root literal 
of TL. If Lis updatable then the only child node of L, which is an AND-node, is L itself. 
If not, then we start with L as the first constructed node. Let N be a constructed node, 
then the following construction rules are applied: 

1. If N is updatable then N does not have any child node,i. e. , the construction stops. 

2. If N is unifiable with the head of any rule, then the construction of TL is a top-down 
construction which proceeds as follows: 
Let R : H <-- Bl A· .. A Bm be a rule, where H is a positive literal which is unifiable 
with N and where B1 , ... , Bm are literals. Let (1" be the most general unifier of 
N and H; then Bl (1", ••• , Bl (1" are AND-nodes with respect to rule R of N iff it 
is not redundant. If more than one rule is applicable than for each rule there is 
an OR-branch for the literal N, where each OR-branch ends in a group of related 
AND-nodes corresponding to the body of the applied rule. A child node is redundant 
if: 

• it is syntactically the same as some other node in the constructed potential 
update AND/OR tree so far, or 

• it is syntactically the same as some other node in the constructed potential 
update AND/OR tree so far, except that both nodes ouly differ with respect 
to some variables that do not occur in the root literal. 

For each child node the construction rules are applied until none of these rules can be 
applied anymore. Note that for each literal relevant for some inconsistency indicator a 
potential update AND/OR tree is created. 0 

In real world databases one distinguishes derived relations (views) and base relations. A 
derived relation is described by some predicate which is defined in terms of one or more 
other predicates. A base relation is not defined by other relations. In most cases, updates 
in derived relations are in most cases not allowed. Also comparison relations <, >, >=, 
<=, =, ... are not updatable. In the remaining part of this paper this distinction between 
relations will be made. So, from here derived relations are not updatable. 

Example 2.3 Consider the database consisting of the rules, facts and inconsistency in
dicator of Example 2.1. Now, parent(X,Y), which is a relevant literal in the inconsistency 
indicator, is the root literal of the potential update tree Tparent(X,y). Note that parent 
is a derived relation and therefore, by assumption, not updatable. As a consequence, 
parent(X,Y) is not a child node of itself. The last construction rule of Definition 2.2 is 
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applicable. The left child node of parent(X.Y) consists of mother(X.Y) and the right child 
node of parent(X.Y) consists of child node father(X.Y). By applying the mother-rule to 
mother(X. Y) two subnodes corresponding to the literals in the body of the mother-rule re
sult, i. e., husband(Z.X) and father(Z.Y) (See Figure 2.1 for the complete potential update 
tree for parent(X.Y». Of course there also is a potential update tree for age-diff. 0 

parent(X.Y) 

A 
mother(X.y) father(X.Y) 

A 
husband(Z.X) father(Z.Y) 

Figure 2.1 Potential Update Tree for E",ample 2.3. 

Note that for each literal relevant for some inconsistency indicator a potential update tree 
is created. 

2.3.2 Inconsistency Trees 

Only the updatable relations of nodes in the potential update trees are interesting from the 
perspective of the method based on inconsistency rules. Relations that are not updatable 
are therefore not responsible for any change in the consistency of the database. Any 
success of an inconsistency indicator can only be caused by an updatable node. 

Definition 2.3 Let II be an Inconsistency Indicator. A node in a potential update tree 
of II is called an updatable node if it corresponds to an updatable relation. 0 

Here, as we have supposed, a node is up datable if and only if it corresponds to a base rela
tion. Therefore only the leaf nodes in the potential update tree corresponds to updatable 
nodes and are relevant for deriving the relevant instances of the inconsistency indicators. 
Figure 2.2 shows how in our example the concepts of potential update tree and inconsis
tency indicator interact. An update may instantiate a leaf node of some potential update 
tree. By instantiating the leaf node of a potential update tree the root literal of this 
potential update tree is instantiated. The instantiated root literal of this potential update 
tree instantiates the inconsistency indicator. All nodes "between" the root and these leaf 
nodes are not relevant. Instantiation can be done in just one step. To express this we 
construct inconsistency trees. They are defined using the definition of potential update 
trees. 

10 



III: parent(X,y), age_diff(X,Y,N), N < 15 

1t 
parent(X,y) 

A 
mother(X,y) father(X,y) 

A 
husband(Z,X) father(Z,y) 

1t 
husband(I,2) 

Figure 2.2 Updatable leaf nodes in the Potential Update Tree for parent leading to II1. 

Definition 2.4 Let II be an inconsistency indicator. The root of an inconsistency tree 
(also called a one-level inconsistency tree, see [26]) TIl is II. N is a child node of the root 
(i. e. , II) of TIl if it is an updatable node of a potential update tree, TL, for some literal 
L in II. From N no other nodes are derived. 0 

Note that from each potential update tree at least one inconsistency tree can be derived 
because, by definition, the top level literal of a potential update tree is a literal of an 
inconsistency indicator. Because L can be a literal which occurs in more than one incon
sistency indicator, several inconsistency trees can be derived from a potential update tree 
of which L is the root literal. 

An instantiation of a node implied by some update leads directly to an instantiation 
of the inconsistency indicator. Although in our method updating derived relations is not 
forbidden, the one-level inconsistency trees are constructed only for base relations. So, 
the updatable nodes correspond to base relations. 

Example 2.4 Consider the database of Example 2.3, and the potential update tree 
Tparent(X,Y). For, inconsistency indicator II1 an inconsistency tree is derived. Because 
this inconsistency indicator contains two literals, i. e., parent(X,Y) and age_diff(X,Y,N), the 
inconsistency tree is built from the potential update trees T parent(X,Y) and Tag • ..di! !(X,Y,N)' 

Each updatable node in the potential update tree Tparent(X,Y) , i.e., each node correspond
ing to the base relations father or husband, is a node in the inconsistency tree TIll. Suppose 
we have the following rule which defines the age_diff relation 
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RI: agdiff(X,Y,N) <- age(X,N1), age(Y,N2), N = N1 - N2, 

then the corresponding complete inconsistency tree for III can be found in Figure 2.3. 0 

111: paren~X.Y).age_diff(X.Y.N),N < 15 

husband(Z.X) father(Z. Y) fathe~X,Y) age(X.N1) age(Y,N2) • husband(1.2) 

Figure 2.3 Inconsistency Tree for II1 in Example 2.4. 

Note that here age is a base relation. In real database applications the relation age as 
well as the relations father and husband may be linked to a database table. If so, they are 
derived relations and not updatable. 

Example 2.5 For instance, the relations could be derived from a CITIZEN table from a 
register ollice database as follows: 

RI: age_diff(X,N) <- CITIZEN(X,_,_,_,_,D,_,_), date_to_age(D,N) 

R2: father(X,Y) <- C1TIZEN(X,_,_,L,_,_,_,male), member(Y,L), CITIZEN(Y,_,_,_,_,_,_,_) 

R3: husband(X,Y) <- CITIZEN(X,_,Y,_,_,_,_,male) 

where CITIZEN(_,_,_,_,_,_,_,_) corresponds to a table of which the first argument is the 
citizen's identifier, the third argument is the identifier of the one he or she is married 
with, the fourth argument is a list of identifiers of children of that citizen, the sixth 
argument is the citizen's date of birth and the last argument is for the citizen's sex. All 
other arguments are not relevant. Note that date_to_age and member are not updatable 
relations because they were only meant to compute a new value instead of defining a new 
relation. 0 

From now age, husband and father are the only base relations. 

2.3.3 Inconsistency Rules 

From the inconsistency trees inconsistency rules are constructed, which express the check 
that has to be performed for all kinds of updates. The actual check is a set of indicators 
that are instantiated by the update. 
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Definition 2.5 Let U be an update. Let N be an updatable node of an inconsistency 
tree TIl, which is unifiable with U. Let IT be a most general unifier of Nand U. Then 
II IT is called a relevant instance of I I with respect to U. 0 

The next proposition states that it is sufficient to evaluate (in the updated database) only 
those instantiations of inconsistency indicators which are derived from the update and the 
relevant leaf nodes of inconsistency trees. If such an instance is true, then the update is 
rejected. If not, the updated database is consistent. 

Proposition 1 Let U be an update. Suppose D is consistent. Then Du is consistent 
iff for every inconsistency indicator II, it holds that each existing relevant instance of II 
with respect to U is false in Du. 

For a proof we refer to [26J. 
The next definition shows how the inconsistency rules, which are meta-rules expressing 

the goals that have to be evaluated after a certain update of the database, are derived 
from inconsistency trees. 

Definition 2.6 Let II be an inconsistency indicator. Now, inconsistent(A) ~ II is 
called an inconsistency rule if A is a leaf node of the inconsistency tree TIl. 0 

All derivable inconsistency rules for each inconsistency indicator are asserted to the database. 
An update triggers the evaluation of the instantiated indicators. The concept of inconsis
tency rules can be easily implemented in Prolog. 

Example 2.6 Consider the situation as in Example 2.1. The rules in this example are 
converted to Prolog as follows. 

parent(X,Y) :
father(X,Y). 

parent (X, Y) :

mother(X,Y). 
mother (X, Y) :

husband(Z,X) , 
father(Z,Y). 

The inconsistency indicator which states that parents must be at least 15 years old is in 
Prolog: 

parent(X,Y), age_diff(X,Y,N), N < 15. 

From the rules and the indicator the following inconsistency rules are derived: 

inconsistent(father(X,Y» :-
parent(X,Y), age_diff(X,Y,N), N < 15. 

inconsistent(father(Z,Y» :-
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parent(X,Y), age_diff(X,Y,N), N < 15. 
inconsistent(husband(Z,X» :-

parent(X,Y), age_diff(X,Y,N), N < 15. 

For instance, an update husband(1,2) will lead to the application of the inconsistency rule 
with argument husband(Z,X) and the proper instantiation of the variables Z and X, i. e. , 
application of the third inconsistency rule and substitution {Z = 1, X = 2}. 0 

The main advantage of these rules is that with some fixed number of deductive rules and 
inconsistency indicators, the inconsistency rules only have to be generated once and can 
be used over and over again for updates of facts. It is rather easy to implement a gen
erator for inconsistency rules, which generates from the set of rules and indicators the 
"optimized" inconsistency rules. For each example previously mentioned the optimized 
inconsistency rules can be automatically generated in a few seconds from the set of rules 
and inconsistency indicators. 

The first paper on this new method ([26]) shows the advantages of the method based on 
inconsistency rules when comparing it to methods based on induced updates and meth
ods based on potential updates. However, the proposed method can be improved further. 
Section 4 shows that this improvement is fundamental. Before discussing the new version 
of this method redundancies in existing methods are studied and classified. 

3 Redundancies in Integrity Checking Methods 

This section will show some redundancies in the methods mentioned above. Three types 
of redundancy are distinguished. Some type may be typical for a method while the other 
types does not appear in this method. Nevertheless, the types are presented as general 
kinds of redundancy. 

3.1 Redundancy of the First Type 

First, the redundancy of the first kind concerns all computations not directly necessary for 
the consistency check. In other words, computations of which you can say beforehand that 
they do not influence an inconsistency indicator directly. For instance, the computation 
of all such induced updates is an example of this redundancy. Also the computation of all 
such potential updates is an example of this redundancy. Returning to Example 2.1, we 
see that any computation of the mother-relation is an example of this kind of redundancy. 
As we can see in Figure 3.1, the computation of all mother-facts induced by the update 
is redundant because there is no inconsistency indicator that directly corresponds to the 
mother-relation. Note that the redundancy of the first type does not appear in the method 
based on inconsistency rules. 
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111: parent(X.V). age_diff(X.Y.N). N < 15 
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Figure 3.1 Redundancy of the first type. 

3.2 Redundancy of the Second Type 

The redundancy of the second type is the redundant computation and evaluation of a par
tially instantiated inconsistency indicator that contains a partial relation which is empty. 
So, no instantiation in this relation is possible beforehand. For instance, although in 
Example 2.2 the update husband(1.2) can influence the inconsistency indicator II1, the 
extensional database in this case does not have to imply mother-facts and therefore also no 
new parent-facts. If the father-relation does not contain facts for person 1, then no induced 
updates with respect to the mother-relation are found. Therefore, there are also no new 
parent-facts derivable in the database. This means that the evaluation of II1 is a redun
dant evaluation because the evaluation of parent(X.Y) in II1 does not involve parent-facts 
which were not present before the update. This situation is illustrated in Figure 3.2. 

Note that the occurrence of this type of redundancy is highly dependent on the partic
ular database state and can therefore only be determined at run-time. Therefore, during 
an inconsistency check it is important to find out as soon as possible if this situation 
occurs. 

3.3 Redundancy of the Third Type 

The third kind of redundancy is the evaluation of inconsistency indicators, implied by 
some update, that involves a redundant evaluation of parts of the database not affected 
by that update. For instance, in the method based on potential updates the update 
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111: parent(X.y). age_diff(X.Y.N). N < 15 
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Figure 3.2 Redundancy of the second type. 

husband(1.2) may cause an implicit update in the parent-relation because the mother
relation has changed. The resulting evaluation of parent(2.Y). age_diff(2.Y.N). N < 15 will 
lead to a search for a change of the mother-relation as well as the father-relation. But the 
father-relation did not change by the update. Therefore, the evaluation of the indicator by 
going into the right branch of our tree is redundant. This situation is shown in Figure 3.3. 
This type of redundancy also exists in the first version of my method based on inconsistency 
trees ([26]). Also note that this kind of redundancy can lead to an enormous overhead in 
case of trees that are deeply and widely branched. Besides a check of an updated branch 
of a potential update tree, this could lead to a check of branches which are unchanged. 
This is represented in Figure 3.4. The continuo!,s lines in Figure 3.4 show the influence 
of the update, i. e. , the relations that are updated by the update. The dotted lines show 
the part of the database that does not change. But evaluating the expression in the top 
node means that all the branches will be searche4, even the dotted branches. Note further 
that in this situation, when we have a combination of redundancy of the second and third 
kind, the overhead can become extremely large (see the second picture in Figure 3.4). 

There are some other redundancies, which are not studied here. For instance, an update 
as well as resulting induced updates may be already present in the old database state. In 
other words other derivation paths may already exist for an induced update. Therefore, 
any resulting check is redundant. This can be prevented by a check for existing derivation 
paths (see [3J, [13]). Some other redundancies with respect to evaluative predicates and 
instantiated integrity constraints are described in [14]. 

16 



111: parent(X,y), age_diff(X,Y,N), N < 15 
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Figure 3.3 Redundancy of the third type. 

4 Proposed Method Based on Inconsistency Rules 

As the previous section shows the existing methods all have to deal with redundancies of 
one or more types. This is also true for the method based on inconsistency rules although 
it is already in most cases an improvement of existing methods based on induced updates 
and potential updates (see [26]). This section presents an improved version of the method 
based on inconsistency rules that does not contain the redundancy of the third type, while 
reducing the redundancy of the second type to a minimum. Before presenting the proposed 
method an example is given to make the improvement clear. 

4.1 Improving the Method based on Inconsistency Rules 

In the case of a relation which is defined in terms of several other relations, the first version 
of my proposed method will check a part of the database, which may be unnecessary 
(in the potential update method this is also a drawback which cannot be solved in a 
straightforward manner). In order to eliminate this redundancy of the third type we 
have adjusted the definition of inconsistency rules. We illustrate the improvement by an 
example. 

Consider Example 2.6 and suppose the update to the database is husband(1,2); then 
the evaluation of the following instantiated. inconsistency indicator is necessary: 

parent(2.Y).age_diff(2.Y.N).N < 15. 
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Figure 3.4 Overview of redundancy of type three in case of a large potential update tree; 
the update is relevant to an inconsistency indicator. 

In fact, what we really want to know is if there exists a parent in the new database 
state, which was not present in the previous database state, for which the age difference 
to his/her children is less than 15. Note that the update husband(1,2) only changes the 
database through the second parent-rule. In other words, only new mothers can contribute 
to the change of the parent-relation. But when evaluating the instantiated indicator, the 
subgoal parent(2,Y) will try to find all parents of this form; so, the mother- as well as 
the father-part of the parent-rule is searched. But it is known from the update that the 
father-relation has not changed. The idea is to incorporate the knowledge of which part 
of the relation in the inconsistency rule has changed by the update, into the inconsistency 
rule. In order to do this the relation parent is unfolded until the update of concern is met. 
The literal parent(X,Y) in the inconsistency rule is replaced by an expression which give 
a precise description of the change in parent. In general, if husband(Z,X) is an update for 
some binding of Z and X, the mother-rule states that mother(X,Y) is a new instance if 
there exist fathers of the format father(Z,Y) in the database. So, instances of father(Z,Y) 
will give new instances of mother(X,Y) and consequently new instances of parent(X,Y). So, 
only an instance of father(Z,Y) determines a new instance of parent. Therefore, in our 
example in the inconsistency rule with respect to husband, parent(X,Y) can be replaced by 
father(Z,Y). The revised inconsistency rule is: 

inconsistent(husband(Z,X» :-
father(Z,Y),age_diff(X,Y,N),N < 15. 

18 



This revision of existing inconsistency rules can be generalized. In the next section 
AND lOR trees built from the rules are introduced which turn out to be very helpful 
in optimizing the inconsistency rules. 

4.2 AND/OR Potential Update Trees 

In order to formulate the revised inconsistency rules, the definitions of potential update 
trees and inconsistency trees are revised. First, the definition of a potential update tree 
is revised. The distinction between this revised definition and the previous definition is 
that now we represent the potential update tree as an AND/OR tree. The construction 
of AND/OR trees results from dividing goals into subgoals by the application ofrules. By 
each application of a rule we get several related AND-nodes, one for each literal in the 
body ofthe rule. The branches to related AND-nodes are joined by arcs. If n rules can be 
applied to a (sub)goal, then n groups of related AND-nodes originate from that (sub )goal. 
These groups are called OR-groups. OR-groups are not linked to each other. 

The resemblence between the potential update tree and the potential update AND/OR 
tree is illustrated by an example. 

Example 4.1 Consider the database with the rules, facts and inconsistency indicator of 
Example 2.1. Now, parent(X,Y), which is a literal in the inconsistency indicator, is the 
root literal of the potential update tree Tpa .. n.(X,Y). There exist two OR-branches of 
parent{X,Y), i. e., a branch which ends in AND-node mother(X,Y) and a branch which 
ends in AND-node father(X,Y). Now, by applying the mother-rule to mother(X,Y) two 
related AND-nodes corresponding to the literals in the body of the mother-rule are derived, 
i. e., husband{Z,X) and father{Z,Y). An arc between the branches to husband{Z,X) and 
father(Z,Y) expresses the fact that they are related AND-nodes (see Figure 4.1 for the 
complete potential update AND/OR tree for parent(X,Y)). 0 

4.3 Revised Inconsistency Trees 

From the AND/OR potential update trees the revised inconsistency trees are derived. 
First, Definition 2.3 is reformulated for potential update AND/OR trees. 

Definition 4.1 A node in a potential update AND/OR tree of II is called an updatable 
node if the database allows an update in the relation corresponding to that node. 0 

In the previous definition of inconsistency tree, the root of that tree is an inconsistency 
indicator. For each inconsistency indicator exactly one tree exists. Now, for each updatable 
node in the previous inconsistency tree a separate inconsistency tree is constructed. For 
such trees the root corresponds to an optimized inconsistency indicator. It is optimized 
because it checks only that part of the database which is influenced by the updatable 
node. To clarify this situation the following definition and Example 4.2 are helpful. 

19 



111: parent(X,y),age_diff(X,Y,N),N < 15 

A =AND t 
parent(X,y) 

A=OR A 
mother(X,y) father(X,y) 

A 
husband (Z,X) father(Z,y) 

I 
husband(l,2) 

Figure 4.1 Potential Update AND/OR Tree for Example 4.l. 

Definition 4.2 Let II be an inconsistency indicator, let L be a literal in II and let N be 
an updatable node from the potential update AND/OR tree TL' A revised inconsistency 
tree (also called a one-level inconsistency tree, See [26]) with subnode N is constructed as 
follows. In. order to determine the root of the revised inconsistency tree with subnode N 
TL is used. Begin by taking N as the current node in TL . 

• If the parent node P of N is positive, then collect all related AND nodes, if any (not 
N itself), and go to the parent node P of N in TL' 

• If the parent node P of N is negative, then replace all collected AND nodes in an 
early stage by P, and go to the parent node P of N in TL • 

Continue this algorithm until the root of TL is reached. The root of the revised in
consistency tree consists of the optimized inconsistency indicator ,i. e., the inconsistency 
indicator in which L is replaced by the conjunction of all AND-nodes, which were found 
by applying this algorithm. Up datable nodes, which belong to the same potential update 
tree and have the Same root, belong to the Same inconsistency tree. 0 

Example 4.2 Consider Example 2.4. From the inconsistency tree in this example, now 
five revised inconsistency trees can be derived. The revised one-level inconsistency trees 
with respect to the inconsistency indicator III are presented in Figure 4,2. 0 
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lila: fathe~Z.Y). ago_diff(X, Y.N). N < 15 IIlc: ago_diff(X.Y.N). N < 15 lila: paren~X, V). age(X.Nl). Nl - N2 < 15 
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1] 
husband(1.2) 

Figure 4.2 Revised Inconsistency Trees for Ezample 2.4. 

5 Recursion in Integrity Checking Methods 

The last condition in Definition 2.2 for potential update trees allows the application 
of recursive rules without getting infinite branches in such trees. Note that deductive 
databases only contain a finite number of rules with a finite number of arguments. Hence, 
the potential update tree is finite. The next example shows this finiteness in case of line air 
recursion. 

Example 5.1 Suppose a(X,Y) is the root literal of some potential update tree T.(X,Y). 

Let R: a(X,Y) <-- b(X,I), a(I,Y) be the only rule. The left branch of T.(x,y) consists of 
b(X,I) and the right branch of T.(x,Y) consists of a branch with top literal a(I,Y). Now 
by applying R to a(I,Y) only one subnode b(l,ll) is derived. A subnode a(ll,Y) differs 
only in the first argument from a(I,Y), but these arguments are variables that do not 
occur in the root literal. So, a(ll,Y) is redundant (redundant in the sense that there is 
no difference in instantiating root literal a(X,Y) if we instantiate either a(I,Y) or a(ll,Y); 
in both cases an update only binds variable V). In Figure 5.1 the redundant branches of 
the potential update tree are indicated by the dotted arrows. 0 

The improvement of the first version of my proposed method (see [26]) with respect to 
recursion can best be clarified by an example. 

Example 5.2 Suppose we have the following parent-facts and the following definition of 
the ancestor-relation in terms of the parent-relation: 

parent(l,10). 
parent (I,ll) . 
parent(10,100). 
parent(11,110) . 
parent (11 ,111) . 
parent(2,20). 
parent(20,200). 
parent(20,201). 

ancestor(I,Y) :
parent(I,Y). 

ancestor(X,Y) :
parent (I,Z), 

ancestor(Z,Y). 
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Figure 5.1 Redundancy in the Potential Update Tree for Example 5.1. 

The relations are presented as trees (see Figure 5.2). A person is a parent of someone if 
there is an arrow from that person to the other. A person is an ancestor of someone if there 
is a path from that person to the other. Suppose there is an update to the parent-relation, 

2 

J 
10 11 20 

/ /, /, 
100 110 111 200 201 

Figure 5.2 The parent relation for Example 2.6. 

say, 

update(parent(110.2». 

What does this mean for the ancestor-relation? The ancestor-relation is updated by the 
update in the parent-relation too. This is represented in Figure 5.3. The two parent trees 
in Figure 5.3 are connected by the update. The update in this tree is depicted as an 
outlined arrow. The begin node of the outlined arrow, representing the new parent-fact, 
is marked with X and the end node with Y. The update in the ancestor-relation can be 
described by the begin and end node of all paths from one node to another that have the 
outlined arrow in its path. In Figure 5.3 all possible begin nodes are marked with a Z, 
i.e., the node marked X or an ancestor of that node, and all possible end nodes with a Zl, 
i. e. , the node marked Y or a node that has that node as an ancestor. Because all paths 
from a node marked with Z to a node marked with Zl go through the outlined arrow, all 
new ancestors can be computed for each update in the parent-relation by 
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Figure 5.3 The updated parent relation. 

update(ancestor(Z,Zl» 
update(parent(X,Y», 
(ancestor(Z,X) ; Z = X), 
(ancestor(Y,Zl) ; Zl = Y). 

Now, evaluating update(ancestor(Z,Zl)) gives all new ancestors implied by an update in 
the parent-relation. When the ancestor predicate appears in an inconsistency indicator an 
update in the parent-relation will affect the ancestor-relation. Suppose that this inconsis
tency indicator is: 

ancestor(X,Y), age_diff(X,Y,N), N < 15. 

o 

In the first version of my method (see [26]) the inconsistency rules, which were generated 
to monitor the state of the database with respect to updates of the parent-relation, were: 

inconsistent(parent(X,Y» 
ancestor(X,Y), age_diff(X,Y,N), N < 15 

inconsistent (parent(X,Z» 
ancestor(X,Y), age_diff(X,Y,N), N < 15 

inconsistent(parent(Z,Y» 
ancestor(X,Y), age_diff(X,Y,N), N < 15 

inconsistent (parent(Z,Zl» '-

ancestor(X,Y), age_diff(X,Y,N), N < 15 

Note that the last inconsistency rule subsumes all other rules, for this rule corresponds to 
a full check of the inconsistency rule. The reason for stating the other rules is that this 
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they could lead to an early detection of some inconsistency. Instead of a full check of the 
inconsistency indicator: 

ancestor(I,Y), age_diff(I,Y,N), N < 15 

we can restrict ourselves to only the new instances of ancestor(X,Y). By using the results 
above the inconsistency rules can be replaced by the single rule: 

inconsistent(parent(I,Y» :-
(ancestor(Z,I) ; Z = I), 
(ancestor(Y,Zl) ; Zl = Y), 
age_diff(Z,Zl,N), N < 15. 

Note that ancestor(Z,ZI) is replaced by (ancestor(Z,X) ; Z = X), (ancestor(Y,ZI); ZI = V), 
where X and Y are variables which are instantiated by the update in parent. This method 
is applicable to any kind of lineair recursive rule. This is a considerable gain in efficiency 
compared to other existing methods. In case of methods based on potential updates the 
check of constraints with lineair recursive parts will lead to a full check of inconsistency 
indicators. In the examples of Das and Williams ([9]) the use of recursive relations is 
permitted in rules but avoided in the inconsistency indicators itself. Hence, a full check 
of inconsistency indicators with recursion is avoided. 

In the next section I have implemented and tested several examples of Das and 
Williams. I also implemented and tested an example with recursion in indicators based 
on the examples of Das and Williams in order to show the advantages of my method 
compared to others in case of recursion. 

6 The Implementation 

In general the coupling between a programming language and a database system can be 
achieved in two ways: 

Loose Coupling: The programming language can obtain facts from the database by first 
copying these facts from the database in the working space memory of the language. 

Tight Coupling: The programming language uses the facts in the database directly. 
This means from the database's point ofview that it looks as ifthe programming lan
guage is an ordinary user, i. e. , facts are retrieved from and stored to the database di
rectly. Operations performed by the programming language on data of the database 
correspond directly to operations that are available in the database management 
system. In other words, the data are completely transparent to the programming 
language. 

This last coupling enables the user to get all the functionalities a DBMS offers. 
In order to test the methods presented in this paper, I have implemented these meth

ods in Prolog. The tests were done in main memory of Prolog. So, a real coupling of 
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Prolog to a DBMS is not used here. The examples in the tests have been taken from Das 
and Williams ([9]). The examples used here all contain the following rules: 

RULES 

R1: mother(X,Y) <- husband(Z,X),father(Z,Y) 

R2: parent(X,Y) <- father(X,Y) 

R3: parent(X,Y) <- mother(X,Y) 

R4: ancestor(X,Y) <- parent(X,Y) 

R5: ancestor(X,Y) <- parent(X,Z), ancestor(Z,Y) 

R6: wife(X,Y) <- husband(Y,X) 

R7: married(X,Y) <- husband(X,Y) 

R8: married(X,Y) <- wife(X,Y) 

R9: employed(X) <- occupation(X,service) 

R10: student(Y) <- occupation(Y,student) 

R11: dependent(Y,X) <- parent(X,Y), employed(X), student(Y) 

R12: dependent(Y,X) <- married(X,Y), employed(X), not employed(Y) 

R13: self(X) <- married(Y,X), not employed(Y) 

R14: guardian(X,Y) <- dependent(Y,X) 

Each example contains a number of facts and one or more inconsistency indicators. The 
results of the tests confirm the considerations about different types of redundancy. Another 
example based on one of Das and Williams was introduced to test the performance of these 
methods when recursion is introduced in the inconsistency indicators. 

6.1 Example A: Potential but no Induced Updates 

In the following example a database is described for which no induced update can be 
generated from the update. However, applying the method based on potential updates, 
several potential updates are generated. Therefore, in this case, there is no instantiated 
inconsistency indicator generated in the method based on induced updates, while in the 
potential update method there are inconsistency indicators that have to be checked. 

Suppose the database contains 

1085 facts which do not involve constants 1 and 2: 

177 father-facts, 
229 husband-facts, 
620 occupation-facts, 
59 sponsor-facts, 
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and a list of facts which do involve constants 1 and 2: 

occupation(l,service ), 
occupation(2,service ). 

Suppose the database is consistent with respect to the following inconsistency indicators: 

Ill: 3 X 3 Y guardian(X,Y), not sponsor(X,Y), 

112: 3 X 3 Y 3 Z sponsor(Z,Y), guardian(X,Y), not parent(Z,Y). 

Consider the update: married(1,2). 

Note that the relation married is supposed to be updatable. Note also that in this case 
there is no redundant evaluation of any type for the method based on induced updates. In 
the other methods, even instantiated inconsistency indicators are generated and evaluated; 
this is a typical example of redundancy of the second type. By evaluating the instantiated 
indicators, subtrees are searched for inconsistencies while they are not updated. Hence, 
here also redundancy of the third type appears. Because redundancy of the third kind 
does not exist anymore in the proposed method based on revised inconsistency rules, the 
performance is better than the previous method based on inconsistency rules. As one 
would expect, Table 1 shows that the method of potential updates does not perform well 
compared to the other methods and that the proposed method performs as well as the in
duced update method in this particular case. It is important to note that in this example, 

Method Time 
Induced 0.055 
Potential 0.17 

Inconsistency Rules 0.11 
Inconsistency Rules (Proposed) 0.055 

Table 1 Timings of several methods for Ezample A. 

applying the method of induced updates, there will be no evaluation of an inconsistency 
indicator, while in the case of the proposed method evaluation of instantiated indicators 
is necessary. However, these two methods perform equally well. In the construction of 
the inconsistency rules, the body of the inconsistency rule is determined by a bottom-up 
development of potential update trees. For instance, when a literal guardian(X,Y) appears 
in an inconsistency indicator, the potential update tree for guardian(X,Y), see Figure 6.1, 
is used for deriving the inconsistency rules. When looking at this construction procedu
rally, the order of the literals in the body of the inconsistency rule is important. First, 
the literal, for which the potential update tree is used, is put in front of the inconsistency 
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112: sponsor(Z.Y). guardian(X.Y) • not parent(Z.Y) 

married(X.Y) employed(X) not employed(Y) 
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mother(X.y) husband(X,y) wife(X,y) not occupation(Y,service) 

A o=pmion(Y.student) I • husband(Z.X) falher(Z.Y) husband(Y.X) 

Figure 6.1 Potential Update Tree for rruardian(X, Y). 

indicator. This literal is replaced by a conjunction of literals. So, the resolvent is always 
at front. In the conjunction itself a literal appears in front of another if it corresponds to 
a descendent node in the potential update tree. By maintaining the order of appearance, 
the order of evaluation of the body of the inconsistency rule corresponds to the way the 
induced updates are computed. Therefore, the evaluation of an inconsistency rule stops 
just when no more induced updates can be computed. 

For instance, suppose we are only interested in the inconsistency rule for II2 with 
respect to an update in occupation(Y,student) for some Y. Then guardian(X,Y) in, for ex
ample, the indicator 3 X 3 Y 3 Z sponsor(Z,Y), guardian(X,Y), not parent(Z,Y) is put in front 
of the indicator and replaced by parent(X,Y), employed(X). The variable Y in parent(X,Y), 
employed(X) is instantiated by the update and gives all new instances of dependent(Y,X) 
and by applying rule Rll all new instances of guardian(X, V). The inconsistency rule with 
respect to this indicator and update is therefore: 

inconsistent(occupation(Y,student)) :-
parent(X,Y), employed(X), sponsor(Z,Y), not parent(Z,Y) 

Remember that an update occupation(Y,student) implies always an induced update stu
dent(Y). Possibly this leads to several induced updates dependent(Y,X) depending of the 
true evaluation of parent(X,Y), employed(X) in rule Rll. For each induced update depen-
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dent(Y,X) there will always be an induced update guardian(X,Y) by the application ofrule 
R14. So, by putting parent(X,Y), empJoyed(X) in front, first the induced updates in the 
relation guardian are computed. This is shown in Figure 6.2. In the construction only 
the continuous lines are important. Nodes that are ancestor nodes of the updated node 
are not mentioned in the body of the inconsistency rule. Only the and-nodes of these 
ancestor nodes are collected and are collected in the order of appearance. Note that in the 

parent(X.Y). employed(X). sponsor(Z.Y). not parent(Z.y) 

• 9uardirX ,y) 

dependent(Y,X) 

ftl"':"" 

~"
"':"I"'''' 

. ~ .. ;'''''''."",,", 
1. ~... ""'" . '1:.... •••••• .. ....... 

'\ I,.,... , •••••••• ,'.,1 
,,~ """ .. ,.." '"""",,,.,,,,,., 

employed(X) student(X Y) married(X. Y) employed(X) not employed(Y) 

." .... : 

" .. v'.... :: .. "," 'lJ, ,§ ," . , . "C~....! I 
*,,,,,, ~ ........ occupalion(X,service) i 

husband(X,y) wHelx.Y) not occupation(Y.s9fVice) 

!/',o; ' .... ,," ..... occupation(X,service) 
mother(X,Y) fathe~X,Y) 

occupation(Y,student) 

• § ... ~ " .. ~.;., 
" ...... .. . 

husband(Z,X) fathe~Z.Y) husband(Y.X) 

Figure 6.2 Construction of an inconsistency rule for an update occupation(Y,student). 

check of the proposed method, induced updates that do not require any computation, like 
for instance induced updates student(Y) and guardian(X,Y) when induced updates occu
pation(Y,student) and dependent(Y,X) respectivily are already computed, are not involved 
in the evaluation. 

6.2 Example B: Few Potential Updates, many Induced Updates 

In this example a database state is created which shows that the redundancy of the first 
type can be disastrous in the case of methods based on induced updates. 

Suppose the database contains 

1058 facts which do not involve constants 1,2 and 3: 
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184 father-facts, 
226 husband-facts, 
600 occupation-facts, 
48 sponsor-facts, 

and a list of facts which do involve constants 1,2 and 3: 

occupation(2 ,service), 
occupation(3,student ), 
father(l,3). 

Suppose the database is consistent with respect to the following inconsistency indicator: 

Ill: 3X 3Y 3Z father(X,Z), father(Y,Z), not X = Y. 

Consider the update: husband(l,2). 

In this example, the update does not influence the inconsistency indicator. So, the up
date should be accepted immediately. The method proposed here does accept the update 
immediately, since no inconsistency rule exists for which the update is relevant. But what 
happens when all induced updates are generated? Because of the list of ten facts under 
the predicate father with 1 as first argument, rules Rl, R3, R4, R6, R7, R8 and possibly 
also R5, Rll-R14 produce a considerable number of induced facts. None of them are 
relevant with respect to the indicator. In this case the method based on induced updates 
performs poorly because redundancy of the first type has a great influence. 

In the case of potential updates the redundancy ofthe first kind is less influential. Note 
that the update causes many induced mother-updates, while only one potential mother
update is generated. Each rule produces at most one potential update. That is why the 
method based on potential updates performs relatively well compared to the method based 
on induced updates. Table 2 shows the results of the tests for this example. In this case, 
the full check of the inconsistency indicator, known as the naive method, is more efficient 
than the method based on induced updates. 

6.3 Example C: Update Relevant for Inconsistency Indicator 

Consider Example B where the inconsistency i"dicator is replaced by an inconsistency 
indicator which will be influenced by the update: Suppose the database contains 

1058 facts which do not involve constants 1 and 3: 

175 father-facts, 
228 husband-facts, 
620 occupation-facts, 
72 sponsor-facts, 
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Method 
Naive 

Induced 
Potential 

Inconsistency Rules 
Inconsistency Rules (Proposed) 

Table 2 Timings of several methods faT Ezample B. 

and a list of facts which do involve constants 1 and 3: 

occupation(l,service ), 
occupation(3,student ), 
father(l,3). 

Time 
1.86 
3.35 
0.27 

< 0.01 
< 0.01 

Suppose the database is consistent with respect to the following inconsistency indicator: 

Ill: 3 X 3 Y 3 Z guardian(X,Z), guardian(Y,Z), not X = Y. 

Consider the update: husband(l,2). The indicator expresses the fact that a person has 

Method Time 
Induced 0.60 
Potential 0.87 

Inconsistency Rules 0.27 
Inconsistency Rules (Proposed) 0.11 

Table 3 Timings of several methods for Ezample C. 

ouly one guardian. This example is not used in [9]. The results of this test is presented in 
Table 3. It is intended to show that when updates influence inconsistency indicators, the 
improvement of the proposed method based on inconsistency rules is significant, because 
the redundancy of the third type does not exist in this method. 

6.4 Example D: Recursiveness in Inconsistency Indicators 

Suppose the database contains a list of facts based on the situation in Example 5.2, where 
the parent-relation is replaced by the father-relation. Suppose the database contains 

1085 facts which do not involve constants 1,10,11,100,110,111,2,20,200 and 201: 
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177 father-facts, 
229 husband-facts, 
620 occupation-facts, 
59 sponsor-facts, 

and a list of facts which defines two families, 

father(l,10), 
father(l,l1), 
father(10,100), 
father(ll,llO), 
father(ll,lll), 
father(2,20), 
father(20,200), 
father(20,201 ). 

Suppose the database is consistent with respect to the following inconsistency indicator: 

Ill: :3 X :3 Y ancestor(X,Y),aneestor(Y,X) 

Consider the update: father(1l0,2). 

In this example the proposed method based on inconsistency rules performs better than 
any other method. Note, that the method based on induced updates is also a good alter
native. This has two causes. First, the update is generating mainly new ancestor-facts. 
which are all relevant to the inconsistency indicator. So, here the redundancy of the first 
type does not have a great influence. The second cause is that the induced updates in the 
ancestor-relation have been computed by using the expression 

update(ancestor(Z.Zl)) :
update(parent(X.Y)). 
(ancestor(Z.X);Z = X). 
(ancestor(Y,Zl);Zl = V). 

This is a considerable improvement compared to a more conventional appoach. This is 
showed by the results in Table 4. Note that in some particular cases methods based 
on induced updates and potential updates perform very poorly compared to the proposed 
method. Analysing the database rules, facts and constraints together with the test results, 
I was able to find the causes of these bad performances. These results were very helpful 
for the development of the revised method based on inconsistency rules. In all cases, the 
revised method will perform better than the other methods. 
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Method Time 
Induced 5.7 
Potential 165.1 

Inconsistency Rules 41.3 
Inconsistency Rules (Proposed) 5.0 

Table 4 Timings of severnl methods for Example D. 

7 Conclusions 

The main goal of this paper was to show that the proposed method is minimal when the 
types of redundancy are considered. In section 6 some integrity checking methods for 
deductive databases were applied and tested. As the results show the proposed method is 
efficient compared to the other existing methods. 

Although the response time is rather high, some notes must be made. As the results 
show, the access time to the database contributes a lot to the overall performance. The 
efficiency can be improved by optimising techniques applied to rules and inconsistency 
rules such as indexing, parallel processing, etc.. The tests were done on a PC with a 
386-processor; so, the response time for the tests can be reduced using larger and faster 
computers. 

This method is also very suitable for parallel processing because all inconsistency rules are 
independent of each other. Because the inconsistency rules are known before the transac
tions are performed, the inconsistency rules can be optimized at compile time. It is even 
possible to translate the inconsistency rules to SQL-expressions which are executed in the 
database directly after each transaction. Therefore, I am optimistic about the applicabil
ity of this method even when the databases are bigger than the ones which were used in 
the tests. 

The proposed method can be implemented in a straightforward manner in Prolog. A 
meta-interpreter in order to be able to reason forward is not necessary, because the in
consistency rules are Prolog rules. For a deductive database consisting of a fixed set of 
rules and constraints the set of inconsistency rules has to be computed once. When this 
set of rules and constraints is not changed the inconsistency rules can be used for each 
transaction consisting of facts. By an update in the rule and constraint set ouly a slight 
change in inconsistency rule set is needed, namely, the new inconsistency rules affected by 
the rule resp. constraint update. This is an issue for further research, but seems to be one 
of the major advantages of the use of inconsistency rules. 
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Another strong point of the new method is that it is conceptually as clear as in the 
relational case, i. e. , after an update the real checking of the constraints is started. 

All these advantages makes this new method very promising for checking the consistency 
of the fact base in expert database systems. 

8 Future Directions 

A lot of other work still needs to be done. Several issues for further investigation are: 

• allowing a more general set of inconsistency indicators; for instance, indicators with 
universal quantifiers as well or database functions such as counting, 

• allowing more general updates such as rule updates and determining if the rule 
update violates a database constraint, 

• the possibility of indexing the inconsistency rules in order to make the matching of 
the update with these rules more efficient, 

• the time complexity when varying the number of facts, rules and/or inconsistency 
indicators or the density2 of the database facts compared to the other methods. 

• the growth of the number of generated inconsistency rules and space complexity 
issues when increasing the number of rules and/or inconsistency indicators. Also 
the space complexity of the other methods have to be compared. 

As far as I can judge at this moment, the results are encouraging with respect to the 
complexity issues. Technically, extensions to more general updates seem to be no problem 
at all. It seems that this new method is a big step towards a fast integrity checking module 
for expert database systems. 
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