

Deductive database systems and integrity constraint checking

Citation for published version (APA):
Seljée, R. R. (1995). Deductive database systems and integrity constraint checking. (Computing science reports;
Vol. 9511). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/334a352c-d1e5-4fbd-94b0-04db6d01b900

Eindhoven University of Technology

Department of Mathematics and Computing Science

ISSN 0926-4515

All rights reserved
editors: prof.dr. J.C.M. Baeten

prof.dr. M. Rem

Deductive Database Systems

and integrity constraint checking

by

Ron Seljee

Computing Science Report 95/11
Eindhoven. April 1995

95/11

Deductive Database Systems
and integrity constraint checking

Ron Seljee
Co-operation Centre Tilburg and Eindhoven Universities

PO 90153
5000 LE Tilburg
The Netherlands

E-mail: R.R.seljee@kub.nlorseljee@win.tue.ni
FAX: +31 13 66 28 92

April 3, 1995

1

Contents

1 Introduction
1.1 Integrity Checking in Deductive Databases
1.2 ANew Method based on Inconsistency Rules

2 Integrity Constraint Checking in Deductive Databases
2.1 Inconsistency Indicator versus Integrity Constraint
2.2 Induced Update Method versus Potential Update Method
2.3 Method Based on Inconsistency Rules .

2.3.1 Potential Update Trees
2.3.2
2.3.3

Inconsistency Trees .
Inconsistency Rules

3 Redundancies in Integrity Checking Methods
3.1 Redundancy of the First Type .
3.2 Redundancy of the Second Type
3.3 Redundancy of the Third Type .

4 Proposed Method Based on Inconsistency Rules
4.1 Improving the Method based on Inconsistency Rules
4.2 AND/OR Potential Update Trees.
4.3 Revised Inconsistency Trees

5 Recursion in Integrity Checking Methods

6 The Implementation
6.1 Example A: Potential but no Induced Updates
6.2 Example B: Few Potential Updates, many Induced Updates
6.3 Example C: Update Relevant for Inconsistency Indicator.
6.4 Example D: Recursiveness in Inconsistency Indicators

7 Conclusions

8 Future Directions

9 Acknowledgements

1

2
3
4

5

6
6
8
8

10
12

14
14
15
15

17
17
19
19

21

24
25
28
30
30

32

33

33

Abstract

Today, relational database systems have been extended in several ways. One way
to extend the relational database model is by adding rules. These rules can make
a lot of information implicit. In other words, a lot of intensional facts Sle stored
in the database through rules. Consequently, when one updates such a database, a
lot of implicit updates may appear by the presence of rules. When also integrity
constraints on data in the database ale allowed, the checking of these constraints
becomes a problem because an update can cause some implicit updates which in
turn may violate some of the constraints. The search for inconsistencies is a time
consuming task which must therefore be done primarily at compile time. This paper
presents a new method for checking integrity constraints in databases extended with
rules. A special kind of database is used, namely a deductive database, which is
a logical database that handles deductive rules. The goal of this paper is to find
the causes of efficiency defects in existing methods. A classification of redundant
evaluations in existing methods is given. On th~ basis of this analysis an improvement
ofthe method based on inconsistency rules, which I have developed at an earlier stage
(see [26]), is proposed. Compared to existing methods it follows a completely different
approach. Inconsistency rules are meta~rules which describe for all possible updates
the integrity constraint check that has to be done. Further, the check is mimimal
from the redundancy types point of view. Several types of redundancy in integrity
checking methods are described in this paper. These redundancies have to be avoided
to provide that we only have to access a relevant part of the database that is affected
by the update. The improved version of the method based on inconsistency rules
is compared to other existing methods, i. e., methods based on induced update6 and
methods based on potential update •.
keywords: logic programming, deductive databa.e" integrity con.trainb, con6i,tency.

1 Introduction

The available integrity checking methods in deductive databases are often criticized for
their lack of efficiency. One of the goals of this paper is to present a new integrity checking
method which eliminates that How. In the first section a short introduction to integrity
checking in deductive databases is given. In Section 2 methods for integrity checking in
deductive databases are described. In Section 3 several redundant evaluation types in the
inconsistency check are distinguished.

After this section a revised method based on inconsistency rules is proposed and com
pared to some existing methods, i. e, methods based on induced updates and methods
based on potential updates. The methods are compared by using a lot of examples show
ing the specific redundancy problems for each existing method. These examples will give
the reader a thorough insight in the problems in checking integrity constraints in deductive
databases. Section 5 shows the problems occurring in the case of recursion. This section
shows that the proposed method handles recursion well. The methods in this paper were
implemented and tested. Section 6 shows the tests and the results.

As the results show, the database state, consisting of the facts and the rules of a

2

database, has a great influence on the performance of the check. This paper intends to
show that in all cases the proposed method performs better than all other methods. First,
a short introduction to integrity checking in databases is given.

1.1 Integrity Checking in Deductive Databases

A lot of today's commercially available database systems are based on the relational
database modeL In this relational model facts are stored in tables. Tables contain explicit
data. A relational database management system (RDBMS) handles the fast retrieval of
information from a database. Besides explicit information tables also contain implicit
information. In conventional relational systems the derivation of implicit from explicit
information is left to the user. There is a growing need to delegate such derivations to the
system. Therefore, a relational database is exterided with deductive rules. For this reason
deductive databases are studied. This implicit information is made explicit by using rules.

In the deductive database community one distinguish two kinds of facts, i. e., the facts
that are extensional and the facts that are intensional. The extensional facts, i. e., the
base facts, are all facts that are really present in the database. The intensional facts are
those that are not present in the database but which can be deduced from the extensional
facts using one or more database rules. Because updates of the intensional database (also
known as view updates) will cause too many semantical difficulties (see [11 J and [21]) only
updates in the extensional database are allowed.

Integrity constraints do not make implicit information explicit but dictate the information
the database is allowed to store. Under no circumstances is the database allowed to give
erroneous or contradictory information, therefore such information must be kept from the
database. In order to do this, integrity constraints are stated in order to monitor the
consistency of the database. However, in most cases the check of such constraints still is
a user's responsibility. In the future this becomes a system's responsibility. Relational
database management systems have some automated integrity checks, such as referential
integrity checks, domain integrity checks, etc .. But here all kinds of integrity constraints
are allowed as long as they are expressible in our language.

Checking the consistency of the database by checking all constraints each time the database
is changed is not feasible. Therefore the methods presently available make use of the as
sumption that before each update a database is consistent with respect to the specified
integrity constraints. Having made this assumption it is possible to focus on only those
constraints that are affected by a certain change of the database. In the relational case an
update can directly influence a constraint. In the deductive case, a new problem caused
by rules occurs. With respect to some update,the rules may generate several induced
updates, which in turn can cause an inconsistent database state. Another issue is "how
is the integrity of the database restored after an update causing an inconsistent database" .

3

This is called the issue of integrity maintenance. Here, in this article, only the issue of
integrity checking is important. This means that we are only interested in how to detect
in the most efficient manner that the database is inconsistent. Therefore, if an update
causes an inconsistent database state, then the update is simply rejected.

1.2 A New Method based on Inconsistency Rules

When analyzing the way updates can lead to violation of integrity constraints, we want
to know which updates influence directly or indirectly an integrity constraint. Therefore,
we try to find out which and how general updates lead via which rules to which integrity
constraints. This will be illustrated by an example. For, more information about this way
of integrity checking see [26].

Suppose a database consists of a patient table, a medicine dispensation table and an
integrity constraint that says "do not dispensate medicine A to babies". Now there are
no facts in the extensional database that express the concept of baby. But suppose there
is some rule that states that "babies are patients with an age less than 1 year". So, the
insertion of the patient's age of three months inlluences the integrity constraint, because
the rule links the integrity constraint to the patient table, in particularly to the attribute
"age" with value less than one year. Note also that the dispensation table is linked di
rectly to the integrity constraint and that the link from a (part of a) table to an integrity
constraint can go via a lot of rules. '

In the example, two links to the integrity constraint "do not dispensate medicine A to
babies" appear; the link frOIn the value of the age of a patient which is less than 1 year in
the patient table and the link from the dispensated medicine in the medicine dispensation
table. Inconsistency Mlles express these links in order to instantiate an integrity constraint
directly after an update that influences that constraint. So, for instance, in our example
the inconsistency rule says that if a patient with an age of less than 1 year is inserted
we have to check if medicine A is dispensated to this patient. When a patient's age is
set to 16, no inconsistency rules that correspond to this update are found. Therefore, no
check needs to be made. However, when a patient's age is set to 10 months, then the
inconsistency rule is applied which results in an evaluation of the statement that medicine
A is dispensated to this patient. And, if an update of the medicine dispensation table
"give patient Y medicine A" reaches the database, then "Y is a baby" must be evaluated.
If "Y is a baby" is true, then an inconsistent state is reached.

This example illustrates the advantages of the proposed method. Instead of a full evalu
ation of the integrity constraint only an instantiation is evaluated which can be found in
just one step after an update. If an update does not inlluence any integrity constraint,
no evaluation or computation of any kind is needed, so the update can be accepted directly.

4

The new method is based on a new concept called "inconsistency rules". These rules
are derived using the rules and the integrity constraints, and are asserted to the deductive
database in order to be fired if an appropriate update passes.

2 Integrity Constraint Checking in Deductive Databases

In a deductive database one distinguishes facts, rules and integrity constraints. These
facts, rules and constraints are expressed in a logical language, that of first-order logic. A
lot offormal work in this area has been done by Nicolas, Lloyd and others (see [17J, [18],
[19J, [22J, [23]).

Throughout this paper updates are represented by ground literals. Let U represent
an update to a deductive database D. U is called an insertion (resp. a deletion) if it
is a positive (resp. negative) literal. If U is an insertion (resp. deletion) to a deductive
database D, then the database resulting from inserting (resp. deleting) U is denoted by
Du. A set of updates is called a transaction. These updates are presented to a database
at the same time. Let T be a transaction, then the database D, which is the result of all
updates in the set, is denoted by DT. Du (resp. DT) represents the database D extended
by U (resp. T).

More about definitions and logical concepts in this section can be found in [16J. Now,
a short overview of the concepts used is given. From a logical point of view, a relational
or deductive database can be looked at in two different ways (see [7]).

First, there is the model theoretic view. Here, the facts (resp. all facts and deducible
facts) of the relational database (resp. deductive database) are looked at as an interpre
tation (or model) of the set of logical formulas corresponding to the integrity constraints.
Here, the interpretation assigns truth values to these logical formulas by the database
state. If they are true, then the database is a m~del for the formulas (i. e. , an interpreta
tion in which all formulas are satisfied). A database is called consistent with respect to
its specified integrity constraints iff it is a model for the logical formulas corresponding to
the integrity constraints.

Second, there is the proof theoretic view in which the database can be seen as a first
order theory from which integrity constraints can be derived. In this case the database
is called consistent with respect to the specified integrity constraints. Now, suppose a
database transaction, which can be any collection of updates, additions and/or deletions
of facts, takes place. Then the consistent database state can change into an inconsistent
one. Proof theoretically, the integrity of the database is preserved if all the integrity
constraints are still derivable from the first order theory respesenting the new database
state.

In this paper the latter appoach is followed.

5

2.1 Inconsistency Indicator versus Integrity Constraint

An inconsistency indicator is a statement which becomes true if the database becomes
inconsistent by a transaction. An inconsistency indicator is the negation of an integrity
constraint. For example, the following constraint which is true in the world we are mod
eling:

• a child must be at least 15 years younger than both its parents

can be reformulated as the inconsistency indicator:

• there exists a child that is less than 15 years younger than one of its parents.

As we have stated earlier, the system only deals with universally quantified rules and
integrity constraints. Note that the integrity constraint is universally quantified; for we
can reformulate the constraint as:

• for all children it holds that they are at least 15 years younger than both its parents.

So, as a consequence the inconsistency indicator is existentially quantified. Inconsistency is
no longer looked upon as a violation of the integrity constraints but as the true occurrence
of an inconsistency indicator in the updated database state.

More formally, constraints are of the form ..,F, where F is some closed existentially
quantified formula expressed in the underlying language of the theory. So, the indicators
are closed as well. In this article the theory is built using F instead of ..,F. F is called the
inconsistency indicator with respect to the constraint. The new proposed method is easier
to describe with the concept of inconsistency indicator than with the concept of integrity
constraint. An inconsistency indicator F indicates whether the database is inconsistent or
not. If F is true, the database is inconsistent. Therefore, the database is consistent if there
is no specified inconsistency indicator that is true in the database. Inconsistency indicators
play a crucial role in the proposed method. Namely, from these indicators inconsistency
rules are built which are asserted to the database in order to detect inconsistent states of
the database.

2.2 Induced Update Method versus Potential Update Method

In this subsection two existing classes of methods for checking the consistency of databases
are described. For an comparison of several of these methods ([1], [2], [4], [6], [8], [10],
[12], [15], [17], [20], [24], [25], [26]) we refer to [5], [9], [26].

First, methods based on induced updates have the common feature that from the up
date all new deducible facts are generated. Next the set of induced updates is seen as a
transaction for which the integrity constraints must be satisfied. Note that a lot of red un
dant induced updates could be generated, i. e. , induced updates that do not influence any
inconsistency indicator.

6

Example 2.1 Consider a database with the following rules and facts:

RULES

Rl: mother(X,Y) <- husband(Z,X),father(Z,Y)

R2: parent(X,Y) <- father(X,Y)

R3: parent(X,Y) <- mother(X,Y)

FACTS

Fl: father(1,10)

F2: father(1,1l)

F3: father(1,12)

Note that the deducible facts are parent(1,10), parent(1,1l) and parent(1,12). Suppose
the update to this database is husband(1,2). The facts mother(2,10), mother(2,1l) and
mother(2,12) are directly induced by husband(1,2) by using rule Rl and facts Fl, F2. and
F3. In turn, mother(2,10), mother(2,1l) and mother(2,12) directly induce parent(2,10),
parent(2,1l) and parent(2,l2), respectivily. So, all induced updates with respect to hus
band(1,2) are husband(1,2) itself, mother(2,1O), mother(2,1l), mother(2,12), parent(2,10)
parent(2,1l) and parent(2,12). Suppose an inconsistency indicator expresses the fact that
an age difference of less than 15 years between parent and child is prohibited:

Ill: 3X 3Y parent(X,Y), age-diff(X,Y,N), N < 15.

Now, given the update husband(1,2), the induced instances of III are derived from all
induced updates relevant to Ill, i.e., parent(2,10), parent(2,1l) and parent(2,12). These
instances, which are called the induced instances of that inconsistency indicator, are just
the simplified instances of III with respect to the corresponding induced updates, i. e. ,
parent(2,lO), age-diff(2,lO,N), N < 15; parent(2,1l), age-diff(2,1l,N), N < 15; parent(2,1l),
age-diff(2,12,N), N < 15 respectivily. D

Secondly, the methods based on potential updates first generate all possible updates, which
are called potential updates. From the update a forward reasoning process is started. We
look for relations that might be updated by the initial update. Potential updates express
these possible updates without checking if they represent real updates. So, the evaluation
phase is postponed. Next these potential updates are matched with inconsistency indi
cators. Then the resulting instantiated indicators, which are called potential instances of
those inconsistency indicators, are evaluated. This situation is illustrated in Example 2.2.

Example 2.2 Consider the database with the rules, facts and inconsistency indicator of
Example 2.1. Suppose the update to this database is husband(1,2). The literal mother(2,Y)
directly depends on husband(1,2) by using rule Rl. In turn, parent(2,Y) directly depends
on mother(2,Y). So, all potential updates with respect to husband(1,2) are husband(1,2)

7

itself, mother(2,Y) and parent(2,Y). Now, given the update, the potential instances of III
are derived from the potential updates relevant to Ill, i. e., parent(2,Y). This resulting
potential instance of III is just the simplified instance of III with respect to parent(2,Y),
i. e., parent(2,Y), age-diff(2,Y,N), N < 15. 0

Note that each induced update is an instance of some potential update. Therefore, also
each instance of an inconsistency indicator is an instance of some potential instance of this
indicator. However, it is possible that some potential instance of an inconsistency indicator
does not have any corresponding induced instance. This follows from the fact that some
potential updates may not have an instance corresponding to an induced update.

Each of these methods has some drawbacks. In the first class a lot of induced updates
may be generated even those which are not affecting any constraint. These induced up
dates are redundant for checking the inconsistency of the database. In the second class of
methods the forward reasoning process is continued as long as there are applicable rules
which contain a potential update in its body, even if the potential update does not corre
spond to any induced update. In that case, these potential updates are redundant. The
method proposed in this paper is based on a different approach and does not have these
drawbacks. The existing methods reason forward from the rules, facts and update in order
to find some instantiated constraints that have to be evaluated in the database.

2.3 Method Based on Inconsistency Rules

In this paper the method based on inconsistency rules ([26]) will be improved. The main
feature of methods based on inconsistency rules is that the consistency check itself is
completely goal driven. The knowledge how an arbitrary update may influence the incon
sistency indicators is represented by so called inconsistency rv.les which are asserted to
the deductive database. By using these rules, from any update the relevant instantiated
inconsistency indicators, that have to be evaluated in the deductive database, are found in
just one step. Therefore, it does not have the disadvantage of generating induced updates
or potential updates that are not relevant to any inconsistency indicator.

2.3.1 Potential Update Trees

The new method is based on a new concept called "inconsistency rv.les". These rules
are constructed using the rules and the inconsistency indicators, and are asserted to the
deductive database. The inconsistency rules are derived from potential update trees. Each
potential update tree is derived from a relevant literal in an inconsistency indicator. A
literal relevant for an indicator is a literal that corresponds to a relation which belongs
to the domain of the database. Therefore, literals expressing some computation or COID

parison without accessing the database are not interesting in the construction of potential
update trees.

Definition 2.1 A relation is called an updatable relation if the database allows an explicit
update in that relation. 0

8

Note that an updatable relation can be a relation that is also derived. In the next definition
a strict distinction between up datable relations and derived relations is not made yet.
Hence, updates in views are allowed.

Definition 2.2 Let L be a relevant literal that occurs in an inconsistency indicator. Lit
eral L is the root of a potential update AND/OR tree, say TL. L is called the root literal
of TL. If Lis updatable then the only child node of L, which is an AND-node, is L itself.
If not, then we start with L as the first constructed node. Let N be a constructed node,
then the following construction rules are applied:

1. If N is updatable then N does not have any child node,i. e. , the construction stops.

2. If N is unifiable with the head of any rule, then the construction of TL is a top-down
construction which proceeds as follows:
Let R : H <-- Bl A· .. A Bm be a rule, where H is a positive literal which is unifiable
with N and where B1 , ... , Bm are literals. Let (1" be the most general unifier of
N and H; then Bl (1", ••• , Bl (1" are AND-nodes with respect to rule R of N iff it
is not redundant. If more than one rule is applicable than for each rule there is
an OR-branch for the literal N, where each OR-branch ends in a group of related
AND-nodes corresponding to the body of the applied rule. A child node is redundant
if:

• it is syntactically the same as some other node in the constructed potential
update AND/OR tree so far, or

• it is syntactically the same as some other node in the constructed potential
update AND/OR tree so far, except that both nodes ouly differ with respect
to some variables that do not occur in the root literal.

For each child node the construction rules are applied until none of these rules can be
applied anymore. Note that for each literal relevant for some inconsistency indicator a
potential update AND/OR tree is created. 0

In real world databases one distinguishes derived relations (views) and base relations. A
derived relation is described by some predicate which is defined in terms of one or more
other predicates. A base relation is not defined by other relations. In most cases, updates
in derived relations are in most cases not allowed. Also comparison relations <, >, >=,
<=, =, ... are not updatable. In the remaining part of this paper this distinction between
relations will be made. So, from here derived relations are not updatable.

Example 2.3 Consider the database consisting of the rules, facts and inconsistency in
dicator of Example 2.1. Now, parent(X,Y), which is a relevant literal in the inconsistency
indicator, is the root literal of the potential update tree Tparent(X,y). Note that parent
is a derived relation and therefore, by assumption, not updatable. As a consequence,
parent(X,Y) is not a child node of itself. The last construction rule of Definition 2.2 is

9

applicable. The left child node of parent(X.Y) consists of mother(X.Y) and the right child
node of parent(X.Y) consists of child node father(X.Y). By applying the mother-rule to
mother(X. Y) two subnodes corresponding to the literals in the body of the mother-rule re
sult, i. e., husband(Z.X) and father(Z.Y) (See Figure 2.1 for the complete potential update
tree for parent(X.Y». Of course there also is a potential update tree for age-diff. 0

parent(X.Y)

A
mother(X.y) father(X.Y)

A
husband(Z.X) father(Z.Y)

Figure 2.1 Potential Update Tree for E",ample 2.3.

Note that for each literal relevant for some inconsistency indicator a potential update tree
is created.

2.3.2 Inconsistency Trees

Only the updatable relations of nodes in the potential update trees are interesting from the
perspective of the method based on inconsistency rules. Relations that are not updatable
are therefore not responsible for any change in the consistency of the database. Any
success of an inconsistency indicator can only be caused by an updatable node.

Definition 2.3 Let II be an Inconsistency Indicator. A node in a potential update tree
of II is called an updatable node if it corresponds to an updatable relation. 0

Here, as we have supposed, a node is up datable if and only if it corresponds to a base rela
tion. Therefore only the leaf nodes in the potential update tree corresponds to updatable
nodes and are relevant for deriving the relevant instances of the inconsistency indicators.
Figure 2.2 shows how in our example the concepts of potential update tree and inconsis
tency indicator interact. An update may instantiate a leaf node of some potential update
tree. By instantiating the leaf node of a potential update tree the root literal of this
potential update tree is instantiated. The instantiated root literal of this potential update
tree instantiates the inconsistency indicator. All nodes "between" the root and these leaf
nodes are not relevant. Instantiation can be done in just one step. To express this we
construct inconsistency trees. They are defined using the definition of potential update
trees.

10

III: parent(X,y), age_diff(X,Y,N), N < 15

1t
parent(X,y)

A
mother(X,y) father(X,y)

A
husband(Z,X) father(Z,y)

1t
husband(I,2)

Figure 2.2 Updatable leaf nodes in the Potential Update Tree for parent leading to II1.

Definition 2.4 Let II be an inconsistency indicator. The root of an inconsistency tree
(also called a one-level inconsistency tree, see [26]) TIl is II. N is a child node of the root
(i. e. , II) of TIl if it is an updatable node of a potential update tree, TL, for some literal
L in II. From N no other nodes are derived. 0

Note that from each potential update tree at least one inconsistency tree can be derived
because, by definition, the top level literal of a potential update tree is a literal of an
inconsistency indicator. Because L can be a literal which occurs in more than one incon
sistency indicator, several inconsistency trees can be derived from a potential update tree
of which L is the root literal.

An instantiation of a node implied by some update leads directly to an instantiation
of the inconsistency indicator. Although in our method updating derived relations is not
forbidden, the one-level inconsistency trees are constructed only for base relations. So,
the updatable nodes correspond to base relations.

Example 2.4 Consider the database of Example 2.3, and the potential update tree
Tparent(X,Y). For, inconsistency indicator II1 an inconsistency tree is derived. Because
this inconsistency indicator contains two literals, i. e., parent(X,Y) and age_diff(X,Y,N), the
inconsistency tree is built from the potential update trees T parent(X,Y) and Tag • ..di! !(X,Y,N)'

Each updatable node in the potential update tree Tparent(X,Y) , i.e., each node correspond
ing to the base relations father or husband, is a node in the inconsistency tree TIll. Suppose
we have the following rule which defines the age_diff relation

11

RI: agdiff(X,Y,N) <- age(X,N1), age(Y,N2), N = N1 - N2,

then the corresponding complete inconsistency tree for III can be found in Figure 2.3. 0

111: paren~X.Y).age_diff(X.Y.N),N < 15

husband(Z.X) father(Z. Y) fathe~X,Y) age(X.N1) age(Y,N2) • husband(1.2)

Figure 2.3 Inconsistency Tree for II1 in Example 2.4.

Note that here age is a base relation. In real database applications the relation age as
well as the relations father and husband may be linked to a database table. If so, they are
derived relations and not updatable.

Example 2.5 For instance, the relations could be derived from a CITIZEN table from a
register ollice database as follows:

RI: age_diff(X,N) <- CITIZEN(X,_,_,_,_,D,_,_), date_to_age(D,N)

R2: father(X,Y) <- C1TIZEN(X,_,_,L,_,_,_,male), member(Y,L), CITIZEN(Y,_,_,_,_,_,_,_)

R3: husband(X,Y) <- CITIZEN(X,_,Y,_,_,_,_,male)

where CITIZEN(_,_,_,_,_,_,_,_) corresponds to a table of which the first argument is the
citizen's identifier, the third argument is the identifier of the one he or she is married
with, the fourth argument is a list of identifiers of children of that citizen, the sixth
argument is the citizen's date of birth and the last argument is for the citizen's sex. All
other arguments are not relevant. Note that date_to_age and member are not updatable
relations because they were only meant to compute a new value instead of defining a new
relation. 0

From now age, husband and father are the only base relations.

2.3.3 Inconsistency Rules

From the inconsistency trees inconsistency rules are constructed, which express the check
that has to be performed for all kinds of updates. The actual check is a set of indicators
that are instantiated by the update.

12

Definition 2.5 Let U be an update. Let N be an updatable node of an inconsistency
tree TIl, which is unifiable with U. Let IT be a most general unifier of Nand U. Then
II IT is called a relevant instance of I I with respect to U. 0

The next proposition states that it is sufficient to evaluate (in the updated database) only
those instantiations of inconsistency indicators which are derived from the update and the
relevant leaf nodes of inconsistency trees. If such an instance is true, then the update is
rejected. If not, the updated database is consistent.

Proposition 1 Let U be an update. Suppose D is consistent. Then Du is consistent
iff for every inconsistency indicator II, it holds that each existing relevant instance of II
with respect to U is false in Du.

For a proof we refer to [26J.
The next definition shows how the inconsistency rules, which are meta-rules expressing

the goals that have to be evaluated after a certain update of the database, are derived
from inconsistency trees.

Definition 2.6 Let II be an inconsistency indicator. Now, inconsistent(A) ~ II is
called an inconsistency rule if A is a leaf node of the inconsistency tree TIl. 0

All derivable inconsistency rules for each inconsistency indicator are asserted to the database.
An update triggers the evaluation of the instantiated indicators. The concept of inconsis
tency rules can be easily implemented in Prolog.

Example 2.6 Consider the situation as in Example 2.1. The rules in this example are
converted to Prolog as follows.

parent(X,Y) :
father(X,Y).

parent (X, Y) :

mother(X,Y).
mother (X, Y) :

husband(Z,X) ,
father(Z,Y).

The inconsistency indicator which states that parents must be at least 15 years old is in
Prolog:

parent(X,Y), age_diff(X,Y,N), N < 15.

From the rules and the indicator the following inconsistency rules are derived:

inconsistent(father(X,Y» :-
parent(X,Y), age_diff(X,Y,N), N < 15.

inconsistent(father(Z,Y» :-

13

parent(X,Y), age_diff(X,Y,N), N < 15.
inconsistent(husband(Z,X» :-

parent(X,Y), age_diff(X,Y,N), N < 15.

For instance, an update husband(1,2) will lead to the application of the inconsistency rule
with argument husband(Z,X) and the proper instantiation of the variables Z and X, i. e. ,
application of the third inconsistency rule and substitution {Z = 1, X = 2}. 0

The main advantage of these rules is that with some fixed number of deductive rules and
inconsistency indicators, the inconsistency rules only have to be generated once and can
be used over and over again for updates of facts. It is rather easy to implement a gen
erator for inconsistency rules, which generates from the set of rules and indicators the
"optimized" inconsistency rules. For each example previously mentioned the optimized
inconsistency rules can be automatically generated in a few seconds from the set of rules
and inconsistency indicators.

The first paper on this new method ([26]) shows the advantages of the method based on
inconsistency rules when comparing it to methods based on induced updates and meth
ods based on potential updates. However, the proposed method can be improved further.
Section 4 shows that this improvement is fundamental. Before discussing the new version
of this method redundancies in existing methods are studied and classified.

3 Redundancies in Integrity Checking Methods

This section will show some redundancies in the methods mentioned above. Three types
of redundancy are distinguished. Some type may be typical for a method while the other
types does not appear in this method. Nevertheless, the types are presented as general
kinds of redundancy.

3.1 Redundancy of the First Type

First, the redundancy of the first kind concerns all computations not directly necessary for
the consistency check. In other words, computations of which you can say beforehand that
they do not influence an inconsistency indicator directly. For instance, the computation
of all such induced updates is an example of this redundancy. Also the computation of all
such potential updates is an example of this redundancy. Returning to Example 2.1, we
see that any computation of the mother-relation is an example of this kind of redundancy.
As we can see in Figure 3.1, the computation of all mother-facts induced by the update
is redundant because there is no inconsistency indicator that directly corresponds to the
mother-relation. Note that the redundancy of the first type does not appear in the method
based on inconsistency rules.

14

111: parent(X.V). age_diff(X.Y.N). N < 15

t
parent(2,10)} ,
''''''12,11) parent(X.V)

co:,:::, parent(2,12)J A • / '" mother(2,'0J}
m'~'"2,11) mother(X.V) father(X.V)
m'~'"2'12A

husband(Z.X) father(Z.V) fa~'"f,l1)
{

'BtI"t8r(1.10) 'I f'~'"f,12)

husband(I.2)

Figure 3.1 Redundancy of the first type.

3.2 Redundancy of the Second Type

The redundancy of the second type is the redundant computation and evaluation of a par
tially instantiated inconsistency indicator that contains a partial relation which is empty.
So, no instantiation in this relation is possible beforehand. For instance, although in
Example 2.2 the update husband(1.2) can influence the inconsistency indicator II1, the
extensional database in this case does not have to imply mother-facts and therefore also no
new parent-facts. If the father-relation does not contain facts for person 1, then no induced
updates with respect to the mother-relation are found. Therefore, there are also no new
parent-facts derivable in the database. This means that the evaluation of II1 is a redun
dant evaluation because the evaluation of parent(X.Y) in II1 does not involve parent-facts
which were not present before the update. This situation is illustrated in Figure 3.2.

Note that the occurrence of this type of redundancy is highly dependent on the partic
ular database state and can therefore only be determined at run-time. Therefore, during
an inconsistency check it is important to find out as soon as possible if this situation
occurs.

3.3 Redundancy of the Third Type

The third kind of redundancy is the evaluation of inconsistency indicators, implied by
some update, that involves a redundant evaluation of parts of the database not affected
by that update. For instance, in the method based on potential updates the update

15

111: parent(X.y). age_diff(X.Y.N). N < 15

II
parent(X.y)

....
0- -. .. " . .. - -.. ..•. " .

• 0 eo

mother(X.Y) father(X.y)

'. / ...•..
' . .•...

husband(Z.X) father(Z.y) f'~'"',31)
{

fath8r(3.30l I f.~.""",)

husband(1.2)

Figure 3.2 Redundancy of the second type.

husband(1.2) may cause an implicit update in the parent-relation because the mother
relation has changed. The resulting evaluation of parent(2.Y). age_diff(2.Y.N). N < 15 will
lead to a search for a change of the mother-relation as well as the father-relation. But the
father-relation did not change by the update. Therefore, the evaluation of the indicator by
going into the right branch of our tree is redundant. This situation is shown in Figure 3.3.
This type of redundancy also exists in the first version of my method based on inconsistency
trees ([26]). Also note that this kind of redundancy can lead to an enormous overhead in
case of trees that are deeply and widely branched. Besides a check of an updated branch
of a potential update tree, this could lead to a check of branches which are unchanged.
This is represented in Figure 3.4. The continuo!,s lines in Figure 3.4 show the influence
of the update, i. e. , the relations that are updated by the update. The dotted lines show
the part of the database that does not change. But evaluating the expression in the top
node means that all the branches will be searche4, even the dotted branches. Note further
that in this situation, when we have a combination of redundancy of the second and third
kind, the overhead can become extremely large (see the second picture in Figure 3.4).

There are some other redundancies, which are not studied here. For instance, an update
as well as resulting induced updates may be already present in the old database state. In
other words other derivation paths may already exist for an induced update. Therefore,
any resulting check is redundant. This can be prevented by a check for existing derivation
paths (see [3J, [13]). Some other redundancies with respect to evaluative predicates and
instantiated integrity constraints are described in [14].

16

111: parent(X,y), age_diff(X,Y,N), N < 15

I
parent(X,y)

~' ..•. ,.~

mother(X,Y) father(X,y)

A
husband(Z,X) father(Z,y)

husband(1,2)

Figure 3.3 Redundancy of the third type.

4 Proposed Method Based on Inconsistency Rules

As the previous section shows the existing methods all have to deal with redundancies of
one or more types. This is also true for the method based on inconsistency rules although
it is already in most cases an improvement of existing methods based on induced updates
and potential updates (see [26]). This section presents an improved version of the method
based on inconsistency rules that does not contain the redundancy of the third type, while
reducing the redundancy of the second type to a minimum. Before presenting the proposed
method an example is given to make the improvement clear.

4.1 Improving the Method based on Inconsistency Rules

In the case of a relation which is defined in terms of several other relations, the first version
of my proposed method will check a part of the database, which may be unnecessary
(in the potential update method this is also a drawback which cannot be solved in a
straightforward manner). In order to eliminate this redundancy of the third type we
have adjusted the definition of inconsistency rules. We illustrate the improvement by an
example.

Consider Example 2.6 and suppose the update to the database is husband(1,2); then
the evaluation of the following instantiated. inconsistency indicator is necessary:

parent(2.Y).age_diff(2.Y.N).N < 15.

17

Inc. Ind.

1]

,/ i '"
/i

./ i

,.A
/

Inc. Ind.

l'

/ ,
/' ! ",.-' !

A
- -----

/ ~, A',
•• <...f->

~.~ t ".

Figure 3.4 Overview of redundancy of type three in case of a large potential update tree;
the update is relevant to an inconsistency indicator.

In fact, what we really want to know is if there exists a parent in the new database
state, which was not present in the previous database state, for which the age difference
to his/her children is less than 15. Note that the update husband(1,2) only changes the
database through the second parent-rule. In other words, only new mothers can contribute
to the change of the parent-relation. But when evaluating the instantiated indicator, the
subgoal parent(2,Y) will try to find all parents of this form; so, the mother- as well as
the father-part of the parent-rule is searched. But it is known from the update that the
father-relation has not changed. The idea is to incorporate the knowledge of which part
of the relation in the inconsistency rule has changed by the update, into the inconsistency
rule. In order to do this the relation parent is unfolded until the update of concern is met.
The literal parent(X,Y) in the inconsistency rule is replaced by an expression which give
a precise description of the change in parent. In general, if husband(Z,X) is an update for
some binding of Z and X, the mother-rule states that mother(X,Y) is a new instance if
there exist fathers of the format father(Z,Y) in the database. So, instances of father(Z,Y)
will give new instances of mother(X,Y) and consequently new instances of parent(X,Y). So,
only an instance of father(Z,Y) determines a new instance of parent. Therefore, in our
example in the inconsistency rule with respect to husband, parent(X,Y) can be replaced by
father(Z,Y). The revised inconsistency rule is:

inconsistent(husband(Z,X» :-
father(Z,Y),age_diff(X,Y,N),N < 15.

18

This revision of existing inconsistency rules can be generalized. In the next section
AND lOR trees built from the rules are introduced which turn out to be very helpful
in optimizing the inconsistency rules.

4.2 AND/OR Potential Update Trees

In order to formulate the revised inconsistency rules, the definitions of potential update
trees and inconsistency trees are revised. First, the definition of a potential update tree
is revised. The distinction between this revised definition and the previous definition is
that now we represent the potential update tree as an AND/OR tree. The construction
of AND/OR trees results from dividing goals into subgoals by the application ofrules. By
each application of a rule we get several related AND-nodes, one for each literal in the
body ofthe rule. The branches to related AND-nodes are joined by arcs. If n rules can be
applied to a (sub)goal, then n groups of related AND-nodes originate from that (sub)goal.
These groups are called OR-groups. OR-groups are not linked to each other.

The resemblence between the potential update tree and the potential update AND/OR
tree is illustrated by an example.

Example 4.1 Consider the database with the rules, facts and inconsistency indicator of
Example 2.1. Now, parent(X,Y), which is a literal in the inconsistency indicator, is the
root literal of the potential update tree Tpa .. n.(X,Y). There exist two OR-branches of
parent{X,Y), i. e., a branch which ends in AND-node mother(X,Y) and a branch which
ends in AND-node father(X,Y). Now, by applying the mother-rule to mother(X,Y) two
related AND-nodes corresponding to the literals in the body of the mother-rule are derived,
i. e., husband{Z,X) and father{Z,Y). An arc between the branches to husband{Z,X) and
father(Z,Y) expresses the fact that they are related AND-nodes (see Figure 4.1 for the
complete potential update AND/OR tree for parent(X,Y)). 0

4.3 Revised Inconsistency Trees

From the AND/OR potential update trees the revised inconsistency trees are derived.
First, Definition 2.3 is reformulated for potential update AND/OR trees.

Definition 4.1 A node in a potential update AND/OR tree of II is called an updatable
node if the database allows an update in the relation corresponding to that node. 0

In the previous definition of inconsistency tree, the root of that tree is an inconsistency
indicator. For each inconsistency indicator exactly one tree exists. Now, for each updatable
node in the previous inconsistency tree a separate inconsistency tree is constructed. For
such trees the root corresponds to an optimized inconsistency indicator. It is optimized
because it checks only that part of the database which is influenced by the updatable
node. To clarify this situation the following definition and Example 4.2 are helpful.

19

111: parent(X,y),age_diff(X,Y,N),N < 15

A =AND t
parent(X,y)

A=OR A
mother(X,y) father(X,y)

A
husband (Z,X) father(Z,y)

I
husband(l,2)

Figure 4.1 Potential Update AND/OR Tree for Example 4.l.

Definition 4.2 Let II be an inconsistency indicator, let L be a literal in II and let N be
an updatable node from the potential update AND/OR tree TL' A revised inconsistency
tree (also called a one-level inconsistency tree, See [26]) with subnode N is constructed as
follows. In. order to determine the root of the revised inconsistency tree with subnode N
TL is used. Begin by taking N as the current node in TL .

• If the parent node P of N is positive, then collect all related AND nodes, if any (not
N itself), and go to the parent node P of N in TL'

• If the parent node P of N is negative, then replace all collected AND nodes in an
early stage by P, and go to the parent node P of N in TL •

Continue this algorithm until the root of TL is reached. The root of the revised in
consistency tree consists of the optimized inconsistency indicator ,i. e., the inconsistency
indicator in which L is replaced by the conjunction of all AND-nodes, which were found
by applying this algorithm. Up datable nodes, which belong to the same potential update
tree and have the Same root, belong to the Same inconsistency tree. 0

Example 4.2 Consider Example 2.4. From the inconsistency tree in this example, now
five revised inconsistency trees can be derived. The revised one-level inconsistency trees
with respect to the inconsistency indicator III are presented in Figure 4,2. 0

20

lila: fathe~Z.Y). ago_diff(X, Y.N). N < 15 IIlc: ago_diff(X.Y.N). N < 15 lila: paren~X, V). age(X.Nl). Nl - N2 < 15

IIlb: husband(Z.X). ago_diff(X,Y.N). N < 15 IIld: paren~x' Y). ago(Y.N2). Nl - N2 < 15

I I
husband(Z.X) fathor(Z. Y) fatho~X.Y) ago(X.Nl) ago(Y.N2)

1]
husband(1.2)

Figure 4.2 Revised Inconsistency Trees for Ezample 2.4.

5 Recursion in Integrity Checking Methods

The last condition in Definition 2.2 for potential update trees allows the application
of recursive rules without getting infinite branches in such trees. Note that deductive
databases only contain a finite number of rules with a finite number of arguments. Hence,
the potential update tree is finite. The next example shows this finiteness in case of line air
recursion.

Example 5.1 Suppose a(X,Y) is the root literal of some potential update tree T.(X,Y).

Let R: a(X,Y) <-- b(X,I), a(I,Y) be the only rule. The left branch of T.(x,y) consists of
b(X,I) and the right branch of T.(x,Y) consists of a branch with top literal a(I,Y). Now
by applying R to a(I,Y) only one subnode b(l,ll) is derived. A subnode a(ll,Y) differs
only in the first argument from a(I,Y), but these arguments are variables that do not
occur in the root literal. So, a(ll,Y) is redundant (redundant in the sense that there is
no difference in instantiating root literal a(X,Y) if we instantiate either a(I,Y) or a(ll,Y);
in both cases an update only binds variable V). In Figure 5.1 the redundant branches of
the potential update tree are indicated by the dotted arrows. 0

The improvement of the first version of my proposed method (see [26]) with respect to
recursion can best be clarified by an example.

Example 5.2 Suppose we have the following parent-facts and the following definition of
the ancestor-relation in terms of the parent-relation:

parent(l,10).
parent (I,ll) .
parent(10,100).
parent(11,110) .
parent (11 ,111) .
parent(2,20).
parent(20,200).
parent(20,201).

ancestor(I,Y) :
parent(I,Y).

ancestor(X,Y) :
parent (I,Z),

ancestor(Z,Y).

21

/',
b(X,Z) /',

b(Z,Z1) /1"

b(Z1,Z2) a(Z2,Y)

Figure 5.1 Redundancy in the Potential Update Tree for Example 5.1.

The relations are presented as trees (see Figure 5.2). A person is a parent of someone if
there is an arrow from that person to the other. A person is an ancestor of someone if there
is a path from that person to the other. Suppose there is an update to the parent-relation,

2

J
10 11 20

/ /, /,
100 110 111 200 201

Figure 5.2 The parent relation for Example 2.6.

say,

update(parent(110.2».

What does this mean for the ancestor-relation? The ancestor-relation is updated by the
update in the parent-relation too. This is represented in Figure 5.3. The two parent trees
in Figure 5.3 are connected by the update. The update in this tree is depicted as an
outlined arrow. The begin node of the outlined arrow, representing the new parent-fact,
is marked with X and the end node with Y. The update in the ancestor-relation can be
described by the begin and end node of all paths from one node to another that have the
outlined arrow in its path. In Figure 5.3 all possible begin nodes are marked with a Z,
i.e., the node marked X or an ancestor of that node, and all possible end nodes with a Zl,
i. e. , the node marked Y or a node that has that node as an ancestor. Because all paths
from a node marked with Z to a node marked with Zl go through the outlined arrow, all
new ancestors can be computed for each update in the parent-relation by

22

10

/
100

Figure 5.3 The updated parent relation.

update(ancestor(Z,Zl»
update(parent(X,Y»,
(ancestor(Z,X) ; Z = X),
(ancestor(Y,Zl) ; Zl = Y).

Now, evaluating update(ancestor(Z,Zl)) gives all new ancestors implied by an update in
the parent-relation. When the ancestor predicate appears in an inconsistency indicator an
update in the parent-relation will affect the ancestor-relation. Suppose that this inconsis
tency indicator is:

ancestor(X,Y), age_diff(X,Y,N), N < 15.

o

In the first version of my method (see [26]) the inconsistency rules, which were generated
to monitor the state of the database with respect to updates of the parent-relation, were:

inconsistent(parent(X,Y»
ancestor(X,Y), age_diff(X,Y,N), N < 15

inconsistent (parent(X,Z»
ancestor(X,Y), age_diff(X,Y,N), N < 15

inconsistent(parent(Z,Y»
ancestor(X,Y), age_diff(X,Y,N), N < 15

inconsistent (parent(Z,Zl» '-

ancestor(X,Y), age_diff(X,Y,N), N < 15

Note that the last inconsistency rule subsumes all other rules, for this rule corresponds to
a full check of the inconsistency rule. The reason for stating the other rules is that this

23

they could lead to an early detection of some inconsistency. Instead of a full check of the
inconsistency indicator:

ancestor(I,Y), age_diff(I,Y,N), N < 15

we can restrict ourselves to only the new instances of ancestor(X,Y). By using the results
above the inconsistency rules can be replaced by the single rule:

inconsistent(parent(I,Y» :-
(ancestor(Z,I) ; Z = I),
(ancestor(Y,Zl) ; Zl = Y),
age_diff(Z,Zl,N), N < 15.

Note that ancestor(Z,ZI) is replaced by (ancestor(Z,X) ; Z = X), (ancestor(Y,ZI); ZI = V),
where X and Y are variables which are instantiated by the update in parent. This method
is applicable to any kind of lineair recursive rule. This is a considerable gain in efficiency
compared to other existing methods. In case of methods based on potential updates the
check of constraints with lineair recursive parts will lead to a full check of inconsistency
indicators. In the examples of Das and Williams ([9]) the use of recursive relations is
permitted in rules but avoided in the inconsistency indicators itself. Hence, a full check
of inconsistency indicators with recursion is avoided.

In the next section I have implemented and tested several examples of Das and
Williams. I also implemented and tested an example with recursion in indicators based
on the examples of Das and Williams in order to show the advantages of my method
compared to others in case of recursion.

6 The Implementation

In general the coupling between a programming language and a database system can be
achieved in two ways:

Loose Coupling: The programming language can obtain facts from the database by first
copying these facts from the database in the working space memory of the language.

Tight Coupling: The programming language uses the facts in the database directly.
This means from the database's point ofview that it looks as ifthe programming lan
guage is an ordinary user, i. e. , facts are retrieved from and stored to the database di
rectly. Operations performed by the programming language on data of the database
correspond directly to operations that are available in the database management
system. In other words, the data are completely transparent to the programming
language.

This last coupling enables the user to get all the functionalities a DBMS offers.
In order to test the methods presented in this paper, I have implemented these meth

ods in Prolog. The tests were done in main memory of Prolog. So, a real coupling of

24

Prolog to a DBMS is not used here. The examples in the tests have been taken from Das
and Williams ([9]). The examples used here all contain the following rules:

RULES

R1: mother(X,Y) <- husband(Z,X),father(Z,Y)

R2: parent(X,Y) <- father(X,Y)

R3: parent(X,Y) <- mother(X,Y)

R4: ancestor(X,Y) <- parent(X,Y)

R5: ancestor(X,Y) <- parent(X,Z), ancestor(Z,Y)

R6: wife(X,Y) <- husband(Y,X)

R7: married(X,Y) <- husband(X,Y)

R8: married(X,Y) <- wife(X,Y)

R9: employed(X) <- occupation(X,service)

R10: student(Y) <- occupation(Y,student)

R11: dependent(Y,X) <- parent(X,Y), employed(X), student(Y)

R12: dependent(Y,X) <- married(X,Y), employed(X), not employed(Y)

R13: self(X) <- married(Y,X), not employed(Y)

R14: guardian(X,Y) <- dependent(Y,X)

Each example contains a number of facts and one or more inconsistency indicators. The
results of the tests confirm the considerations about different types of redundancy. Another
example based on one of Das and Williams was introduced to test the performance of these
methods when recursion is introduced in the inconsistency indicators.

6.1 Example A: Potential but no Induced Updates

In the following example a database is described for which no induced update can be
generated from the update. However, applying the method based on potential updates,
several potential updates are generated. Therefore, in this case, there is no instantiated
inconsistency indicator generated in the method based on induced updates, while in the
potential update method there are inconsistency indicators that have to be checked.

Suppose the database contains

1085 facts which do not involve constants 1 and 2:

177 father-facts,
229 husband-facts,
620 occupation-facts,
59 sponsor-facts,

25

and a list of facts which do involve constants 1 and 2:

occupation(l,service),
occupation(2,service).

Suppose the database is consistent with respect to the following inconsistency indicators:

Ill: 3 X 3 Y guardian(X,Y), not sponsor(X,Y),

112: 3 X 3 Y 3 Z sponsor(Z,Y), guardian(X,Y), not parent(Z,Y).

Consider the update: married(1,2).

Note that the relation married is supposed to be updatable. Note also that in this case
there is no redundant evaluation of any type for the method based on induced updates. In
the other methods, even instantiated inconsistency indicators are generated and evaluated;
this is a typical example of redundancy of the second type. By evaluating the instantiated
indicators, subtrees are searched for inconsistencies while they are not updated. Hence,
here also redundancy of the third type appears. Because redundancy of the third kind
does not exist anymore in the proposed method based on revised inconsistency rules, the
performance is better than the previous method based on inconsistency rules. As one
would expect, Table 1 shows that the method of potential updates does not perform well
compared to the other methods and that the proposed method performs as well as the in
duced update method in this particular case. It is important to note that in this example,

Method Time
Induced 0.055
Potential 0.17

Inconsistency Rules 0.11
Inconsistency Rules (Proposed) 0.055

Table 1 Timings of several methods for Ezample A.

applying the method of induced updates, there will be no evaluation of an inconsistency
indicator, while in the case of the proposed method evaluation of instantiated indicators
is necessary. However, these two methods perform equally well. In the construction of
the inconsistency rules, the body of the inconsistency rule is determined by a bottom-up
development of potential update trees. For instance, when a literal guardian(X,Y) appears
in an inconsistency indicator, the potential update tree for guardian(X,Y), see Figure 6.1,
is used for deriving the inconsistency rules. When looking at this construction procedu
rally, the order of the literals in the body of the inconsistency rule is important. First,
the literal, for which the potential update tree is used, is put in front of the inconsistency

26

112: sponsor(Z.Y). guardian(X.Y) • not parent(Z.Y)

married(X.Y) employed(X) not employed(Y)

Ao=pmL.seM~) I
mother(X.y) husband(X,y) wife(X,y) not occupation(Y,service)

A o=pmion(Y.student) I • husband(Z.X) falher(Z.Y) husband(Y.X)

Figure 6.1 Potential Update Tree for rruardian(X, Y).

indicator. This literal is replaced by a conjunction of literals. So, the resolvent is always
at front. In the conjunction itself a literal appears in front of another if it corresponds to
a descendent node in the potential update tree. By maintaining the order of appearance,
the order of evaluation of the body of the inconsistency rule corresponds to the way the
induced updates are computed. Therefore, the evaluation of an inconsistency rule stops
just when no more induced updates can be computed.

For instance, suppose we are only interested in the inconsistency rule for II2 with
respect to an update in occupation(Y,student) for some Y. Then guardian(X,Y) in, for ex
ample, the indicator 3 X 3 Y 3 Z sponsor(Z,Y), guardian(X,Y), not parent(Z,Y) is put in front
of the indicator and replaced by parent(X,Y), employed(X). The variable Y in parent(X,Y),
employed(X) is instantiated by the update and gives all new instances of dependent(Y,X)
and by applying rule Rll all new instances of guardian(X, V). The inconsistency rule with
respect to this indicator and update is therefore:

inconsistent(occupation(Y,student)) :-
parent(X,Y), employed(X), sponsor(Z,Y), not parent(Z,Y)

Remember that an update occupation(Y,student) implies always an induced update stu
dent(Y). Possibly this leads to several induced updates dependent(Y,X) depending of the
true evaluation of parent(X,Y), employed(X) in rule Rll. For each induced update depen-

27

dent(Y,X) there will always be an induced update guardian(X,Y) by the application ofrule
R14. So, by putting parent(X,Y), empJoyed(X) in front, first the induced updates in the
relation guardian are computed. This is shown in Figure 6.2. In the construction only
the continuous lines are important. Nodes that are ancestor nodes of the updated node
are not mentioned in the body of the inconsistency rule. Only the and-nodes of these
ancestor nodes are collected and are collected in the order of appearance. Note that in the

parent(X.Y). employed(X). sponsor(Z.Y). not parent(Z.y)

• 9uardirX ,y)

dependent(Y,X)

ftl"':""

~"
"':"I"''''

. ~ .. ;'''''''."",,",
1. ~... ""'" . '1:.... ••••••

'\ I,.,... , •••••••• ,'.,1
,,~ """ .. ,.." '"""",,,.,,,,,.,

employed(X) student(X Y) married(X. Y) employed(X) not employed(Y)

." :

" .. v'.... :: .. "," 'lJ, ,§ ," . , . "C~....! I
*,,,,,, ~ occupalion(X,service) i

husband(X,y) wHelx.Y) not occupation(Y.s9fVice)

!/',o; ' ,," occupation(X,service)
mother(X,Y) fathe~X,Y)

occupation(Y,student)

• § ... ~ " .. ~.;.,
"

husband(Z,X) fathe~Z.Y) husband(Y.X)

Figure 6.2 Construction of an inconsistency rule for an update occupation(Y,student).

check of the proposed method, induced updates that do not require any computation, like
for instance induced updates student(Y) and guardian(X,Y) when induced updates occu
pation(Y,student) and dependent(Y,X) respectivily are already computed, are not involved
in the evaluation.

6.2 Example B: Few Potential Updates, many Induced Updates

In this example a database state is created which shows that the redundancy of the first
type can be disastrous in the case of methods based on induced updates.

Suppose the database contains

1058 facts which do not involve constants 1,2 and 3:

28

184 father-facts,
226 husband-facts,
600 occupation-facts,
48 sponsor-facts,

and a list of facts which do involve constants 1,2 and 3:

occupation(2 ,service),
occupation(3,student),
father(l,3).

Suppose the database is consistent with respect to the following inconsistency indicator:

Ill: 3X 3Y 3Z father(X,Z), father(Y,Z), not X = Y.

Consider the update: husband(l,2).

In this example, the update does not influence the inconsistency indicator. So, the up
date should be accepted immediately. The method proposed here does accept the update
immediately, since no inconsistency rule exists for which the update is relevant. But what
happens when all induced updates are generated? Because of the list of ten facts under
the predicate father with 1 as first argument, rules Rl, R3, R4, R6, R7, R8 and possibly
also R5, Rll-R14 produce a considerable number of induced facts. None of them are
relevant with respect to the indicator. In this case the method based on induced updates
performs poorly because redundancy of the first type has a great influence.

In the case of potential updates the redundancy ofthe first kind is less influential. Note
that the update causes many induced mother-updates, while only one potential mother
update is generated. Each rule produces at most one potential update. That is why the
method based on potential updates performs relatively well compared to the method based
on induced updates. Table 2 shows the results of the tests for this example. In this case,
the full check of the inconsistency indicator, known as the naive method, is more efficient
than the method based on induced updates.

6.3 Example C: Update Relevant for Inconsistency Indicator

Consider Example B where the inconsistency i"dicator is replaced by an inconsistency
indicator which will be influenced by the update: Suppose the database contains

1058 facts which do not involve constants 1 and 3:

175 father-facts,
228 husband-facts,
620 occupation-facts,
72 sponsor-facts,

29

Method
Naive

Induced
Potential

Inconsistency Rules
Inconsistency Rules (Proposed)

Table 2 Timings of several methods faT Ezample B.

and a list of facts which do involve constants 1 and 3:

occupation(l,service),
occupation(3,student),
father(l,3).

Time
1.86
3.35
0.27

< 0.01
< 0.01

Suppose the database is consistent with respect to the following inconsistency indicator:

Ill: 3 X 3 Y 3 Z guardian(X,Z), guardian(Y,Z), not X = Y.

Consider the update: husband(l,2). The indicator expresses the fact that a person has

Method Time
Induced 0.60
Potential 0.87

Inconsistency Rules 0.27
Inconsistency Rules (Proposed) 0.11

Table 3 Timings of several methods for Ezample C.

ouly one guardian. This example is not used in [9]. The results of this test is presented in
Table 3. It is intended to show that when updates influence inconsistency indicators, the
improvement of the proposed method based on inconsistency rules is significant, because
the redundancy of the third type does not exist in this method.

6.4 Example D: Recursiveness in Inconsistency Indicators

Suppose the database contains a list of facts based on the situation in Example 5.2, where
the parent-relation is replaced by the father-relation. Suppose the database contains

1085 facts which do not involve constants 1,10,11,100,110,111,2,20,200 and 201:

30

177 father-facts,
229 husband-facts,
620 occupation-facts,
59 sponsor-facts,

and a list of facts which defines two families,

father(l,10),
father(l,l1),
father(10,100),
father(ll,llO),
father(ll,lll),
father(2,20),
father(20,200),
father(20,201).

Suppose the database is consistent with respect to the following inconsistency indicator:

Ill: :3 X :3 Y ancestor(X,Y),aneestor(Y,X)

Consider the update: father(1l0,2).

In this example the proposed method based on inconsistency rules performs better than
any other method. Note, that the method based on induced updates is also a good alter
native. This has two causes. First, the update is generating mainly new ancestor-facts.
which are all relevant to the inconsistency indicator. So, here the redundancy of the first
type does not have a great influence. The second cause is that the induced updates in the
ancestor-relation have been computed by using the expression

update(ancestor(Z.Zl)) :
update(parent(X.Y)).
(ancestor(Z.X);Z = X).
(ancestor(Y,Zl);Zl = V).

This is a considerable improvement compared to a more conventional appoach. This is
showed by the results in Table 4. Note that in some particular cases methods based
on induced updates and potential updates perform very poorly compared to the proposed
method. Analysing the database rules, facts and constraints together with the test results,
I was able to find the causes of these bad performances. These results were very helpful
for the development of the revised method based on inconsistency rules. In all cases, the
revised method will perform better than the other methods.

31

Method Time
Induced 5.7
Potential 165.1

Inconsistency Rules 41.3
Inconsistency Rules (Proposed) 5.0

Table 4 Timings of severnl methods for Example D.

7 Conclusions

The main goal of this paper was to show that the proposed method is minimal when the
types of redundancy are considered. In section 6 some integrity checking methods for
deductive databases were applied and tested. As the results show the proposed method is
efficient compared to the other existing methods.

Although the response time is rather high, some notes must be made. As the results
show, the access time to the database contributes a lot to the overall performance. The
efficiency can be improved by optimising techniques applied to rules and inconsistency
rules such as indexing, parallel processing, etc.. The tests were done on a PC with a
386-processor; so, the response time for the tests can be reduced using larger and faster
computers.

This method is also very suitable for parallel processing because all inconsistency rules are
independent of each other. Because the inconsistency rules are known before the transac
tions are performed, the inconsistency rules can be optimized at compile time. It is even
possible to translate the inconsistency rules to SQL-expressions which are executed in the
database directly after each transaction. Therefore, I am optimistic about the applicabil
ity of this method even when the databases are bigger than the ones which were used in
the tests.

The proposed method can be implemented in a straightforward manner in Prolog. A
meta-interpreter in order to be able to reason forward is not necessary, because the in
consistency rules are Prolog rules. For a deductive database consisting of a fixed set of
rules and constraints the set of inconsistency rules has to be computed once. When this
set of rules and constraints is not changed the inconsistency rules can be used for each
transaction consisting of facts. By an update in the rule and constraint set ouly a slight
change in inconsistency rule set is needed, namely, the new inconsistency rules affected by
the rule resp. constraint update. This is an issue for further research, but seems to be one
of the major advantages of the use of inconsistency rules.

32

Another strong point of the new method is that it is conceptually as clear as in the
relational case, i. e. , after an update the real checking of the constraints is started.

All these advantages makes this new method very promising for checking the consistency
of the fact base in expert database systems.

8 Future Directions

A lot of other work still needs to be done. Several issues for further investigation are:

• allowing a more general set of inconsistency indicators; for instance, indicators with
universal quantifiers as well or database functions such as counting,

• allowing more general updates such as rule updates and determining if the rule
update violates a database constraint,

• the possibility of indexing the inconsistency rules in order to make the matching of
the update with these rules more efficient,

• the time complexity when varying the number of facts, rules and/or inconsistency
indicators or the density2 of the database facts compared to the other methods.

• the growth of the number of generated inconsistency rules and space complexity
issues when increasing the number of rules and/or inconsistency indicators. Also
the space complexity of the other methods have to be compared.

As far as I can judge at this moment, the results are encouraging with respect to the
complexity issues. Technically, extensions to more general updates seem to be no problem
at all. It seems that this new method is a big step towards a fast integrity checking module
for expert database systems.

9 Acknowledgements

I would like to thank Professor H. de Swart of Tilburg University and Dr. P. de Bra of
the university of Eindhoven for their comments on the earlier versions of this paper. Their
remarks contributed to the final version of this paper.

2the density is called high if there are a lot of deducible facts compared to the existing facts in the
database

33

References

[1] P. Asirelli, P. Inverardi, , and A. Mustaro. Improving integrity constraint checking
in deductive databases. In M. Gyssens, J. Paredaens, and D. van Gucht, editors,
Proceedings of the 2nd International Conference on Database Theory, volume 326 of
Lecture Notes in Computer Science, pages 72-86, Bruges, Belgium, August-September
1988.

[2] P[atricia] Asirelli, Michele de Santis, and Maurizio Martelli. Integrity constraints in
logic databases. J. of Logic programming, 3:221-232, 1985.

[3J Petra Bayer. Update propagation for integrity checking, materialized view mainte
nance and production rule triggering. Technical Report 92-10, ECRC GMBH, Ara
bellastr. 17 D-8000 Miinchen 81, Germany, 1992.

[4] Fransois Bry, Hendrik Decker, and Rainer Manthey. A uniform approach to constraint
satisfaction and constraint satisfiability deductive databases. In J. W. Schmidt, S. Ceri,
and M. Missikoff, editors, Advances in Databases Technology, EDBT '88; Proceedings
of the International Conference on Extending Database Technology, volume 303 of
Lecture Notes in Computer Science, pages 488-505, Venice, Italy, 7 Nov. 1987. also:
ECRC Technical Report KB-16.

[5] M. Celma, C. Garda, L. Mota, and H. Decker. Comparing and synthesizing integrity
checking methods for deductive databases. In Proceedings of the Tenth International
Conference on Data Engineering, pages 214-222, Houston, Texas, february 1994.
IEEE Computer Society Press.

[6] Matilde Ce1ma, Juan Carlos Casamayor, and Hendrik Decker. Improving integrity
checking by compiling diravation paths. In Proceedings of the 4th Australian Database
Conference, pages 145-160,1993.

[7] Upen S. Chakravarthy, John Grant, and Jack Minker. Logic-based approach to se
mantic query optimization. 15(2):160-207, June 1990.

[8] S.K. Das and M. Howard Williams. A path finding method for constraint checking
in deductive databases. Data (3 Knowledge Engineering, 4:223-244, 1989.

[9] S.K. Das and M.H. Williams. Integrity checking methods in deductive databases: A
comparative evaluation. In M.H. Williams, editor, Proceedings of the Seventh British
National Conference on Databases, pages 85-116. Cambridge University Press, 1989.

[10] H. Decker. Integrity enforcement on deductive databases. In Larry Kerschberg, editor,
Expert Database Systems: Proceedings from the First International Conference, pages
271-285. Charleston, Sc., 1987.

34

[11] Hendrik Decker. Drawing updates from derivations. In S. Abiteboul and P.C. Kanel
lakis, editors, Proceedings of the third International Conference on Database Theory,
volume 470 of Lecture Notes in Computer Science, pages 437-451, Paris, France,
December 1990.

[12] Robert Kowalski, Fariba Sadri, and Paul Soper. Integrity checking in deductive
databases. In Peter M. Stocker and William Kent, editors, Proceedings of the Thir
teenth Conference on Very Large Data Bases, pages 61-69, Brighton, England, August
1987.

[13] V. Kiichenhoff. On the efficient computation of the difference between consecu
tive database states. In C. Delobel, M. Kifer, and Y. Masunaga, editors, Deductive
and Object-Oriented Databases; Proceedings of the Second International Conference,
DOOD'91, volume 566 of Lecture Notes in Computer Science, pages 478-502, Munich,
Germany, December 1991.

[14] Sin Yeung Lee and Tok Wang Ling. Improving integrity constraint checking for strati
fied deductive databases. In Dimitris Karagiannis, editor, Lecture Notes in Computer
Science, volume 856, pages 591-600, Athens,Greece, september 1994. Springer Verlag.

[15] Tok-Wang Ling. Integrity constraint checking in deductive databases. Data (3 Knowl
edge Engineering, 2, 1994.

[16] J.W. Lloyd. Foundations of Logic Programming; 2nd, Extended Edition. Springer
Verlag, 1987.

[17] J.W. Lloyd, E.A. Sonenberg, and R.W. Topor. lutegrity constraint checking in strat
ified databases. J. of Logic Programming, 4:331-343, 1987.

[18] J.W. Lloyd and R.W. Topor. A basis for deductive database systems. J. of Logic
Programming, 2:93-109, 1985.

[19] J.W. Lloyd and R.W. Topor. A basis for deductive database systems ii. J. of Logic
Programming, 3(1):55-67, 1986.

[20] Bern Martens and Maurice Bruynooghe. Integrity constraint checking in deductive
databases. In Larry Kerschberg, editor, Expert Database Systems: Proceedings from
the First International Work shop, pages 567-601. Charleston, Sc., 1986.

[21] Amihai Motro. Using integrity constraints to provide intensional answers to relational
queries. In Peter M. G. Apers and Gio Wiederhold, editors, Proceedings of the Fifteenth
International Conference on Very Large Data Bases, pages 237-246, Amsterdam, The
Netherlands, 1989.

[22] J .M. Nicolas. Logic for improving integrity checking in relational databases. Acta
Informatica, 18(3):227-253,1982.

35

[23] J .M. Nicolas and K. Yazdanian. Integrity checking in deductive data bases. In
H. Gallaire and J. Minker, editors, Logic and Databases, pages 325-346, New York,
1978. Plenum Press NY.

[24] Antoni Olive. Integrity constraint checking in deductive databases. In Guy M.
Lohman, Almicar Sernadas, and Rafael Camps, editors, Proceedings of the Seven
teenth Conference on Very Large Data Bases, page 513, Barcelona, Spain, September
1991.

[25] Fariba Sadri and Robert Kowalski. A theorem-proving approach to database integrity.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 313-362, Los Altos, 1988. Morgan Kaufmann.

[26] Ron R. Seljee. A new method for integrity constraint checking in deductive databases.
Data & Knowledge Engineering, pages -, 1995.

36

Computing Science Reports

In this series appeared:

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.HL. Aarts
J .H.M. Korst
PJ. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M.van Hee

93/10 K.M. vanHee

93/11 K.M. vanHee

93/12 K.M.van Hee

93/13 K.M.vanHee

93/14 J.C.M. Baeten
J.A. Bergstra

93/15 J.C.M. Baeten
J .A. Bergstra
R.N.Bol

93/16 H. Schepers
J.Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-J.Houben

93/20 F.S. de Boer

Department of Mathematics and Computing Sdence
Eindhoven University of Technology

Deriving the Aho-Corasick algorithms: a case study into the synergy
of progrannning methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the UI]llVoidahility of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real-Time
Executions in DEDOS, p. 32.

Systerus Engineering: a Formal Approach
Pan I: System Concepts, p. 72.

Systerus Engineering: a Formal Approach
Part ll: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part 1lI: Modeling Methods, p. 10 1.

Systems Engineering: a Formal Approach
Pan IV: Analysis Methods, p. 63.

Systerus Engineering: a Formal Approach
Part V: Specification Language, p. 89.
On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p.19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect. p.21.

A Process Algebra of Concurrent Constraint Programming, p. 15.

93/21 M. Codish
D.Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E.Poll and Paula Severi

93/25 H. Schepers and R. Gerth

93/26 W .M.P. van der Aalst

93/27 T. Kloks and D. Kratsch

93/28 F. Kamareddine and
R. Nederpelt

93/29 R. Post and P. De Bra

93/30 J. Deogun
T.Kloks
D. Kratsch
H. Muller

93/31 W.Ktirver

.93/32 H. ten Eikelder and
H. van Geldrop

93/33 L. Loyens and J. Moonen

93/34 J.CM. Baeten and
J.A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 J.C.M. Baeten and
J.A. Bergstra

93/37 J. Brunekreef
J-P. Katoen
R.Koymans
S.Mauw

93/38 C. Verhoef

93/39 W.P.M. Nuijten
E.H.L. Aarts
D.A.A. van Erp Taalrnan Kip
K.M.van Hee

Freeness Analysis for Logic Programs - And Correct
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with DefInitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real-Time Disttibu
ted Systems, p. 31.

Multi-dimensional Petti nets, p. 25.

Finding all minimal separators of a graph, p. II.

A Semantics for a fme ;>.-calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p.11.

Derivation of delay insensitive and speed independent CMOS cir
cuits, using directed commands and
production rule sets, p. 40 .

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

!LIAS, a sequential language for parallel mattix computations, p. 20.

Real Time Process Algebra with InfInitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynantic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

93/40 P.D.V. van der Stok A Hierarchical Membership Protocol for Synchronous
M.M.M.P J. Claessen Distributed Systems, p. 43.
D. Alstein

93/41 A. Bijlsma Temporal operators viewed as predicate transformers,
p.ll.

93/42 P.M.P. Rambags Automatic Verification of Regular Protocols in PIT Nets, p. 23.

93/43 B.W. Watson A taxomomy of finite automata construction algorithms, p. 87.

93/44 B.W. Watson A taxonomy of fntite autOmata ntinintization algorithms, p. 23.

93/45 EJ.Luit A precise clock synchronization protocol,p.
J.M.M. Martin

93/46 T. Kloks Treewidth and Patwidth of Cocomparability graphs of
D. Kratsch Bounded Dimension, p. 14.
J.Spinrad

93/47 W. v.d. Aalst Browsing Semantics in the "Tower" Model, p. 19.
P. De Bra
GJ. Houben
Y. Kornatzky

93/48 R. Gerth Verifying Sequentially Consistent Memory using Interface
Refmement, p. 20.

94/01 P. America The object-<lriented paradigm, p. 28.
M. van der Kanunen
R.P. Nederpelt
O.S. van Roosmalen
H.C.M. de Swart

94/02 F. Kamareddine Canonical typing and II-conversion, p. 51.
R.P. Nederpelt

94/03 L.B. Hartman Application of Marcov Decision Processe to Search
K.M. vanHee Problems, p. 21.

94/04 J.C.M. Baeten Graph Isommphism Models for Non Interleaving Process
J .A. Bergslra Algebra, p. 18.

94/05 P.Zhou Formal Specification and Compositional Verification of
J.Hooman an Atmnic Broadcast ProtOCOl, p. 22.

94/06 T. Basten Time and the Order of Abstract Events in Distributed
T.Kunz ComputatiOlts, p. 29.
J. Black
M.Coffm
D. Taylor

94/07 K.R. Apt Logic Programming and Negation: A Survey, p. 62.
R. Bol

94/08 O.S. van Roosmalen A Hierarchical Diagrammatic Representation of Class
Structure, p. 22.

94/09 J.C.M. Baeten
J .A. Bergstra

94/10 T. verhoeff

94/11 J. Peleska
C. Huizing
C. Petersohn

94/12 T.Kloks
D. Kratsch
H. Milller

94/13 R. Selj<!e

94/14 W.Peremans

94/15 RJ .M. Vaessens
E.H.L. Aarts
J .K. Lenstra

94/16 R.C. Backhouse
H.Doombos

94/17 S.Mauw
M.A. Reniers

94/18 F. Kamareddine
R. Nederpelt

94/19 B.W.Watson

94/20 R. Bloo
F. Kamareddine
R. Nederpelt

94/21 B.W. Watson

94/22 B.W. Watson

94/23 S. Mauw and M.A. Reniers

94/24 D.Dams
O.Grumberg
R. Gerth

94/25 T.Kloks

94/26 R.R. Hoogerwoord

94/27 S. Mauw and H. Mulder

94/28 C.W.A.M. van Overveld
M. Verhoeven

Process Algebra with Partial Choice, p. 16.

The testing Paradigm Applied to Network Structure.
p.31.

A Comparison of Ward & Mellor's Transformation
Schema with State- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Me!hod for Integrity Constraint checking in Deductive Data
bases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refuting ~eduction in !he Lambda Calculus, p. 15.

The performance of single-keyword and multiple-keyword pattern
matching algorilhms, p. 46.

Beyond P-Reduction in Church's J.-, p. 22.

An introduction to !he Fire engine: A C++ toolkit for Firtite automata
and Regular Expressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Firtite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts, p. 43.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving 'lfCTL', 3CTL' and CTL', p. 28.

K13-free and W,-free graphs, p. 10.

On the foundations of functional prograntrUing: a progrannner's point
of view, p. 54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of fInite and
transfutite techniques for surface modelling, p. 20.

94/29 J.Hooman

94/30 J.C.M. Baeten
J .A. Bergstra
Gh. ~tefanescu

94/31 B.W.Watson
R.E. Watson

94/32 JJ. Vereijken

94/33 T.Laan

94/34 R. Bloo
F. Kamareddine
R. Nederpelt

94/35 J.CM. Baeten
S.Mauw

94/36 F. Kamareddine
R. Nederpelt

94/37 T. Basten
R.Bol
M. V oorhoeve

94/38 A. Bijlsma
C.S. Scholten

94/39 A. Blokhuis
T. Kloks

94/40 D. Alstein

94/41 T.KJoks
D. Kratsch

94/42 J. Engelfriet
JJ. Vereijken

94/43 R.C. Backhouse
M. Bijsterveld

94/44 E. Brinksma
R. Gerth S. Graf
W.Janssen
S.Katz
M.Poel
C.Rump

94/45 GJ.Houben

94/46 R. Bloo
F. Kamareddine
R. Nederpelt

J. Davies

B. Jonsson
G.Lowe
A.Pnueli
J. Zwiers

Correcmess of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A formalization of the Ramified Type Theory, p.40.

The Barenctregt Cube with DefInitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and ll-conversion in the Barenctregt
Cube, p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point-free substitution, p. 10.

On the equivalence covering number of splitgraphs, p. 4.

Distributed Consensus and Hard Real-Time Systems,
p.34.

Computing a perfect edge without vertex elimination
ordering of a chordal bipartite graph, p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice
Theory: An lllustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Adrninistratieve Logis
tiek", p. 43.

The .,-cube with classes of terms modulo conversion,
p.16.

94/47 R. Bloo
F. Kamareddine
R. Nederpelt

94/48 Mathematics of Program
Construction Group

94/49 J.C.M. Baeten
J .A. Bergstra

94/50 H. Geuvers

94/51 T. Kloks
D. Kratsch
H. Muller

94/52 W.Penczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D.Peled
W.Penczek

95/01 JJ.Lukkien

95/02 M.Bezem
R.Bol
JF.Groote

95/03 J.CM. Baeten
C. Verhoef

95/04

95/05 P. Severi

95/06 T.W.M. Vossen
M.GA. Vehoeven
H.M.M. ten Eikelder
E.H.L. Aarts

95107 G .A.M. de Bruyn
O.S. van Roosmalen

95/08 R.Bloo

95/09 J.C.M. Baeten
J .A. Bergstra

95/10 R.C. Backhouse
R. Verhoeven
O. Weber

On IT-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Normalazation
for the Calculus of Constructions, p. 27.

Listing simplicial vertices and recognizing
diamond-free graphs, p. 4.

Traces and Logic, p. 81

A Partial Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a small CommunicationLibrary, p.l6.

Formalizing Process Algebraic Verifications in the Calculus
of Constructions, p.49.

Concrete process algebra, p. 134.

A Type Inference Algorithm for Pnre Type Systems, p.20.

A Quantitative Analysis of Iterated Local Search, p.23.

Drawing Execution Graphs by Parsing, p. 10.

Preservation of Strong Normalisation for Explicit Substitution, p. 12.

Discrete Time Process Algebra, p. 20

Mathl pad: A System for On-Line Prepararation of Mathematical
Documents, p. 15

	Contents
	Abstract
	1. Introduction
	1.1 Integrity Checking in Deductive Databases
	1.2 A New Method based on Inconsistency Rules
	2. Integrity Constraint Checking in Deductive Databases
	2.1 Inconsistency Indicator versus Integrity Constraint
	2.2 Induced Update Method versus Potential Update Method
	2.3 Method Based on Inconsistency Rules
	2.3.1 Potential Update Trees
	2.3.2 Inconsistency Trees
	2.3.3 Inconsistency Rules
	3. Redundancies in Integrity Checking Methods
	3.1 Redundancy of the First Type
	3.2 Redundancy of the Second Type
	3.3 Redundancy of the Third Type
	4. Proposed Method Based on Inconsistency Rules
	4.1 Improving the Method based on Inconsistency Rules
	4.2 AND/OR Potential Update Trees
	4.3 Revised Inconsistency Trees
	5. Recursion in Integrity Checking Methods
	6. The Implementation
	6.1 Example A: Potential but no Induced Updates
	6.2 Example B: Few Potential Updates, many Induced Updates
	6.3 Example C: Update Relevant for Inconcictency Indicator
	6.4 Example D: Recursiveness in Inconsistency Indicators
	7. Conclusions
	8. Future Directions
	9. Acknowledgements
	References

