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DISAPPEARING INTERFACES IN NONLINEAR DIFFUSION1M. Guedda, D. Hilhorst, and M. A. Peletier
AbstractWe study the large-time behaviour and the behaviour of the interfaces of the non-linear di�usion equation �(x)ut = �A(u)in one and two space dimensions. The function A is of porous media type, smooth butwith a vanishing derivative at some values of u, and � > 0 is supposed continuous andbounded from above. If � is not bounded away from zero, the large-time behaviourof solutions and their interfaces can be essentially di�erent from the case when �is constant. We extend results by Rosenau and Kamin [13] and derive the large-timeasymptotic behaviour of solutions, as well as a precise characterisation of the behaviourof the interfaces of solutions in one space dimension and in some cases in two spacedimensions. In one space dimension and when � is monotonic the result states thatthe interface �(t) = supfx 2 R : u(x; t) > 0g tends to in�nity in �nite time if and onlyif R10 x�(x) dx <1.1 IntroductionIn this article we study some properties of solutions of the nonlinear di�usion equation�(x)ut = �A(u) x 2 RN ; t > 0;(1.1)in one and two space dimensions. The nonlinearityA is such that A0 > 0 on (0; 1) and A0(0) =A0(1) = 0; the density function � : RN ! (0;1) is supposed bounded and continuous, andwe shall mostly be interested in the case where �(x) tends to zero for large jxj.Equations of type (1.1) arise in plasma physics [10, 13], and in hydrology [8, 2, 7], andin order to set the ideas we shall briey describe the hydrological model. In the interactionbetween fresh and salt water in underground aquifers, mixing of the two liquids occurs overlength scales much smaller than the size of the aquifer, and in modelling this situation itis therefore generally assumed that a sharp interface separates the liquids. In a horizontal1To appear in Advances in Mathematical Sciences and Applications1



aquifer of even thickness, and under the assumption that the slope of the interface is not toolarge, the movement of the interface is governed by the equation [8, 2]"(x; y)� @u@t � div��(x; y) u(1� u) ru1 + jruj2� = 0:(1.2)Here u(x; y) represents the height of the interface, scaled to take values between zero andone. The constants � and  represent the viscosity and the density di�erence between theuids, " is the porosity, and � is the permeability of the medium.Since we shall mainly be interested in solutions u with relatively small gradients, we re-place the quotient ru=(1+ jruj2) in (1.2) by ru. Furthermore, we shall mostly consider ei-ther one-dimensional or two-dimensional axially symmetric solutions. In the two-dimensionalcase with axial symmetry, equation (1.2) reduces to"(r)�ut � 1r (r�(r) u(1� u)ur)r = 0(1.3)where r2 = x2+y2 and subscripts denote di�erentiation. If we introduce a new space variable~r, de�ned by log ~r := Z r1 dss�(s)then (1.3) transforms into �(~r)ut � 1~r (~ru(1� u)u~r)~r = 0(1.4)in which ~r2�(~r) = (�=) r2"(r)�(r). In one space dimension, the equation becomes�(x)ut � (u(1� u)ux)x = 0:(1.5)Both (1.4) and (1.5) are of the form (1.1).We shall suppose that the degeneration of the nonlinearity A is such that at the valuesu = 0 and u = 1 interfaces can appear (we shall henceforth use the term `interfaces' in themathematical sense that is common in degenerate di�usion, instead of the physical senseused above). Such is the case for equations (1.4) and (1.5) above. Our main interest inthis paper lies in the behaviour of solutions of (1.1) and their interfaces for large time. Thisinterest was �red by previous works by Kamin and Rosenau [10, 13] on equation (1.1) withsingle degeneration (A0(0) = 0, A0(s) > 0 for all s > 0). Among other results they showedthat as time tends to in�nity the solution u converges uniformly on bounded sets to theweighted mean of the initial distribution u0, i.e. u! �u where �u is given by�u := R �(x)u0(x) dxR �(x) dx ;provided the numerator of this expression has a �nite value. This extends a known result inthe case of constant �, which states that a solution with �nite initial mass decays to zero.Recently an interesting result has been proved by Kamin and Kersner in [9]. Theyconsider equation (1.1) in RN with N � 3, again with single degeneration, and they proved2



that integrability of � on RN (� 2 L1(RN )) implies that even if the initial distribution hascompact support and therefore the solution also has compact support for small times, thereis a time 0 < T <1 such that for t > T the support is no longer compact. This behaviourdi�ers strongly from the case of constant �, in which the support of the solution is a compactset for all time t > 0. For the same equation a converse result has been proved in [12]: inthis paper the author exhibits an explicit supersolution that also has compact support forsmall time; in the case that � is radially symmetric and decreasing in r, the support of thissupersolution remains bounded for all time if and only if r�(r) 62 L1(0;1). By means ofthe comparison principle this implies that if r�(r) 62 L1(0;1), then a solution of (1.1) withbounded initial support has a bounded support at all �nite time.In this article we shall be interested in the Cauchy problem for (1.1) in one and two spacedimensions. This dimensional restriction is natural in the case of the hydrological model,and also the mathematical properties that we wish to examine are di�erent for dimensionsone and two on one hand and three and higher on the other. Since we will be interested insolutions with interfaces between the regions fu = 0g, f0 < u < 1g, and fu = 1g, we assumethat HA 8<:A 2 C1([0; 1]), A0 > 0 on (0; 1), A(0) = A0(0) = A0(1) = 0,Z0+ A0(s)s ds <1 and Z 1� A0(s)1� s ds <1:In addition, the density function � and the initial data u0 should satisfyH� � 2 C(RN ) \ L1(RN ); � > 0 on RN ;H0 u0 2 C(RN ); 0 � u0 � 1 on RN :Throughout this article we shall suppose that these hypotheses are satis�ed.To our knowledge, existence and uniqueness for the Cauchy problem associated with(1.1) have not yet been proved in the literature. We therefore include these proofs in theAppendix. The uniqueness is a consequence of the following Comparison Principle:Theorem 1.1 Let N be equal to either one or two, and suppose that u1 is a subsolution andu2 a supersolution of Problem (P). If �(u01�u02)+ 2 L1(RN ), then �(u1�u2)+(�; t) 2 L1(RN )for all t � 0 and ZRN �(u1 � u2)+(�; t) � ZRN �(u01 � u02)+for all t � 0.The de�nition of sub- and supersolutions is given in the Appendix.We prove the following theorems.Theorem 1.2 (Large-time behaviour) Let N be equal to either one or two, and let u bethe solution of (1.1) with initial data u0. If �u0 2 L1(RN ), thenu(t)! �u := ZRN �(x)u0(x) dxZRN �(x) dx as t!1;3



as t!1, uniformly on compact subsets of RN .Eidus has remarked in [5] that a similar result holds in the case of a single degeneration intwo space dimensions.Let the support of a function f (supp f) be de�ned as the closure of the set fx : f(x) > 0g.A solution u of (1.1) for N = 1 is said to exhibit �nite time blow-up if its support is boundedfrom above initially and there exists a time T such that supp u(t) is unbounded from abovefor all time t > T . For the formulation of Theorem 1.3 we shall need an auxiliary densityfunction � de�ned by �(x) = min0���x �(�);the reason being that the function � is monotonic while � need not be.Theorem 1.3 (Blow-up in one dimension) Let u be a solution of (1.1) for N = 1, withnon-zero initial data u0, such that the support of u is bounded from above at time t = 0.Then the following implications hold:(i) Z 10 x�(x) dx <1 =) �nite time blow-up;(ii) Z 10 x�(x) dx =1 =) no �nite time blow-up.If � is not decreasing, the two conditions above leave a small gap. In the class of decreasingfunctions �, however, the characterisation is complete:Corollary 1.4 Let the conditions of Theorem 1.3 be satis�ed, and suppose in addition that� is non-increasing on [K;1) for some K > 0. Then�nite time blow-up () Z 10 x�(x) dx <1:It follows from the inversion ~u = 1 � u that similar statements hold for the interface atu = 1. Note that the behaviour of � and u0 towards �1 has no inuence on the (qualitative)behaviour of the upper boundary of the support. We can apply these statements once tofx > 0g and once to fx < 0g with independent results.Using the Comparison Principle we can extend this result to a statement on a strip
 = R � (�1; 1) with Neumann boundary conditions, with a density function � that doesnot depend on the vertical coordinate: �(x; y) = �(x) on 
. Consider the problem8>><>>: �ut = �A(u) in QT = 
� (0; T ]@u@� = 0 on @
� (0; T ]u = u0 at t = 0:(1.6)The following result easily follows from the Comparison Prinicple:4



Theorem 1.5 (Blow-up in a 2d strip) Let the initial condition u0 be such that u0(x; y) =1 for small x and u0(x; y) = 0 for large x. Let �0(t) denote the interface between fu > 0gand fu = 0g at time t:�0(t) = supp u(t) \ f(x; y) 2 
 : u(x; y; t) = 0g:Then the following statements hold:(i) If Z 10 x�(x) dx <1 then the interface �0 will run o� to in�nity in �nite time;(ii) If Z 10 x�(x) dx =1 then the interface �0 will remain bounded for all �nite time.A similar statement holds for the interface �1 between the sets fu = 1g and fu < 1g.A di�erent way of extrapolating the one-dimensional results is by considering the two-dimensional radially symmetric problem and transforming the ensuing (one-dimensional)equation to an equation of the form (1.1). In this case the auxiliary density function � isdi�erent: �(r) = min0���r �2�(�):We prove the following result:Theorem 1.6 (Blow-up in 2d, radially symmetric case) Let u be a solution of (1.1)with initial condition u0. Suppose that both � and u0 are radially symmetric, and that supp u0is compact.(i) If Z 11 �(r)r log r dr < 1 and 0 2 Int(supp u0), then the support of u ceases to becompact in �nite time;(ii) If Z 11 �(r) log rr dr =1, then the support of u is compact for all time.Corollary 1.7 Suppose u0 has compact support and 0 2 Int(supp u0). If r 7! r2�(r) is adecreasing function of r on a neighbourhood of +1, then the support of u becomes unboundedin �nite time if and only if Z 11 �(r)r log r dr <1:Remark 1.1. The proof of part (ii) of Theorem 1.3 is based on the construction of asupersolution. This construction can be done in all dimensions N � 1 [12], leading to thefollowing theorem:Theorem 1.8 Let N � 1 and de�ne �(r) = minf�(x) : jxj � rg for 0 � r < 1. Supposethe solution u of Problem (P) has compact support initially. IfZ 10 r�(r) dr =1then supp u(t) will be bounded for all time t � 0.5



There is an interesting gap between the statements of Theorem 1.8 for N = 2 and Corollary1.7. Clearly, the condition r�(r) =2 L1(0;1) is too weak in the case of radially symmetricdensities. But if we take a density function � = �(x; y) on R2 that is only a function of x,i.e. �(x; y) = �(x), then in the same way as in Theorem 1.5 we can compare it with solutionsof the one-dimensional problem. The result of this comparison is that for convenient initialdistributions the blow-up of interfaces is equivalent with x�(x) 2 L1(0;1), which impliesthat the condition r�(r) =2 L1(0;1) is sharp. It is not clear what a general condition forblow-up of interfaces should be in a non-radially symmetric situation.Theorem 1.2 is proved in Section 2. The blow-up of interfaces in one space dimension(Theorem 1.3) is studied in Section 3, and in two space dimensions in Section 4 (Theorem1.6). Shortly before submitting the manuscript of this article to the editor, a manuscriptby V. A. Galaktionov, S. Kamin, and R. Kersner was brought to our attention, in whichTheorem 1.3 is also proved under more restrictive conditions on �.Acknowledgement. The authors wish to express their gratitude towards C. J. vanDuijn for his valuable contribution, and to J. L. V�azquez who has kindly suggested numerousimprovements of the manuscript.2 Proof of Theorem 1.2Theorem 1.2 was proved for the single-degeneration case in one dimension by Rosenau andKamin [13]. We give here a completely di�erent proof which also applies to the case studiedby Rosenau and Kamin.We shall use certain a priori estimates on the solution of Problem (P). The followingLemma is proved in Appendix A:Lemma 2.1 Let u be the solution of Problem (P) with initial function u0, and set v = A(u).Suppose that �u0 2 L1(RN ). Then the following statements hold.(i) ZRN �u(�; �) = ZRN �u0 for all � � 0 (conservation of mass);(ii) ZRN �B(v(�; �)) + Z �0 ZRN jrvj2 � ZRN �B(v0) for all � � 0;(iii) ZRN jrvj2(�; �) � c� for all � > 0.where B(s) = R s0 �� 0(�)d� with � = A�1 and c > 0 is a constant that does not depend on � .Remark 2.1. Estimates as given in Lemma 2.1 are well known in degenerate di�usionproblems. It should be noted, however, that the conservation of mass is only true in oneand two space dimensions; indeed, the main result in [9], which holds for N � 3 (see theIntroduction), is proved by obtaining a contradiction to this statement.6



Proof of Theorem 1.2. It follows from the uniform continuity of the function v (this isa consequence of [4], as is shown in the proof of Theorem A.2) that there exists a sequencetn !1 and a function �v 2 C(RN ), 0 � �v � A(1), such that v(tn)! �v as n!1, uniformlyon compact sets. Now let 
 be an arbitrary bounded set of RN . Then by Lemma 2.1, part(iii), v(tn)� 1j
j Z
 v(tn)L2(
) � Ckrv(tn)kL2(
) � cCtn ;where C is a constant that depends on 
, so that�v = 1j
j Z
 �vfor each bounded subset 
 � RN . Therefore �v is constant, and u(tn) = �(v(tn))! �u := �(�v)as tn !1, where � := A�1. The value of �u follows from the conservation of mass (part (i)of Lemma 2.1). The fact that this limit is uniquely de�ned implies the convergence of u(t)as t!1. This concludes the proof of Theorem 1.2. �3 Proof of Theorem 1.3The proof of Theorem 1.3 is based on the comparison principle. First we consider a specialcase.Lemma 3.1 Let u0 2 L1(R), u0 6� 0, and suppose that the support of u0 is bounded fromabove. If R10 x�(x) dx is �nite, then there exists a time T after which the support of thesolution u is unbounded from above.Proof. De�ne the upper interface function�(t) = supfx 2 R : u(x; t) > 0g:For the purpose of contradiction we suppose that �(t) < 1 for all t 2 [0;1). Let thesequence of smooth functions �n be such that supp�n is compact in (0;1), �n and jx�0n(x)jare bounded uniformly in x and n, and �nally �n ! 1 and �0n ! 0 pointwise on (0;1). Wesubstitute the test function  (x) = � x�n(x) if x > 0;0 if x � 0in equation (A.1). ThenZ 10 x�(x)u(x; T )�n(x) dx� Z 10 x�(x)u0(x)�n(x) dx = Z T0 Z 10 A(u)fx�ngxx dxdt= � Z T0 Z 10 A(u)xf�n + x�0ng dxdt:7



Note that the function A(u)x is well-de�ned by Lemma 2.1. Letting n ! 1 and applyingLebesgue's dominated convergence theorem we deduce thatZ 10 x�(x)u(x; T ) dx� Z 10 x�(x)u0(x) dx = � Z T0 Z �(t)0 A(u)x dxdt(3.1) = Z T0 A(u(0; t)) dt:If � 2 L1(R), then by Theorem 1.2, u(0; t) ! �u > 0 as t ! 1. Since the left-hand sideof (3.1) is bounded as T ! 1, there exists a sequence ftng, limn!1 tn = 1, such thatA(u(0; tn))! 0 as n!1, implying a contradiction. On the other hand, if � 62 L1(R), thenby Theorem 1.2 the function u(�; t) converges to zero pointwise on R as t ! 1. By thedominated convergence theorem we conclude that the �rst integral in (3.1) tends to zero asT !1. At some time T there will be a sign di�erence between the left and the right handside of (3.1), again implying a contradiction. �We now turn to the proof of Theorem 1.3. First consider the case in which R10 x�(x) dx <1. Let � : R ! R be a smooth cut-o� function such that �(x) = 1 for all x > 0, �(x) = 0for all x < �1 and 0 � � � 1 on R. De�ne v0(x) = u0(x)�(x + d) for such a value ofd > 0 that v0 is not identically equal to zero. Then v0 2 L1(R), and supp v0 is bounded fromabove. If we denote the solution of Problem (P) with initial data v0 by v, then Lemma 3.1implies that supp v will be unbounded from above in �nite time. Since by the comparisonprinciple u � v on R � R+ , the same holds for u.Now assume that R10 x�(x) dx = 1. In order to show that the support of u remainsbounded for all time, we compare the solution u with a supersolution with bounded support.A similar supersolution was discussed in [12].Suppose for the time being that u0(x) = 0 for all x � 0. Let the comparison function wbe de�ned by w(x; t) = ( 1 x � 0��1 �a �1� x2=g(t)2�� 0 < x < g(t)0 x � g(t),where �(s) = R s0 A0(�)=� d� , �(1) = a, and g : [0;1) ! [0;1) is a function to be speci-�ed later. By explicit calculation it follows that the following conditions are su�cient toguarantee that w is a weak supersolution in the sense of De�nition A.1:(3.2)(3.3)(3.4) �wt � A(w)xx for 0 < x < g(t); t > 0g0(t) � � 1�(g(t)) @@x�(w)(g(t); t) for all t > 0w(x; 0) � u0(x) for all x 2 R:This follows from the following argument: if P = f(x; t) 2 R � R+ : jxj < g(t)g and� = f(x; t) 2 R � R+ : jxj = g(t)g, then it follows from (A.1) that w is a supersolution if� ZPf�wt � A(w)xxg + Z�f�w�t � A(w)x�xg � 0(3.5) 8



for all appropriate test functions  . Here � = (�t; �x) is the unit vector normal to P thatpoints outward. If g is di�erentiable then �t = �g0(t)�x, and by conditions (3.2) and (3.3),condition (3.5) is met. The condition (3.4) is necessary to apply the comparison principle(Theorem 1.1).Inequality (3.4) is satis�ed due to our assumption that the support of u0 is contained infx � 0g. If we expand (3.2) we �ndx2��(x)g0(t)g(t) � 2ag(t)2� � �A0(w) for 0 < x < g(t); t > 0:(3.6)The right-hand side is non-positive and therefore it is su�cient to require that g satisfyg0(t) � 2ag(t)�(x) for all 0 < x < g(t); t > 0:With the de�nition of � in mind we de�ne g by setting8<: g0(t) = 2ag(t)�(g(t)) for all t > 0g(0) = 1:(3.7)Since @�(w)=@x takes the value �2a=g(t) in x = g(t), with this de�nition of g the functionw also satis�es (3.3).Now that the comparison function has been de�ned, we need to determine the behaviourof its interface f(x; t) : x = g(t)g. The solution g of the problem (3.7) is given byZ g(t)1 x�(x) dx = 2at:(3.8)From the initial assumption x�(x) 62 L1(0;1) it follows that g(t) remains �nite for all �nitetime t. By the comparison principle the same holds for u.We can relax the condition on the support of u0 by shifting the supersolution rightwardsuntil the initial distributions u0 and w(�; 0) are ordered. If w is shifted rightwards by adistance d > 0, then the ensuing condition on the behaviour of � is R1d (x� d)�(x) dx =1;since Z 1d (x� d)�(x) dx � Z 2dd (x� d)�(x) dx+ 12 Z 12d x�(x) dx =1;this condition is satis�ed. This concludes the proof of Theorem 1.3. �Remark 3.1. If the condition R10 x�(x) dx =1 is satis�ed, the proof of Theorem 1.3 notonly shows that the support of u stays bounded for all time, but also gives a (more or lessexplicit) bound: supp u(t) � fx 2 R : x � g(t)g, where the function g is given by (3.8).
9



4 Radial symmetry in two dimensionsTheorem 1.6 is proved by comparison with radially symmetric solutions of the same problem.Let v be a radially symmetric solution of Problem (P). Then�vt = 1r (rA(v)r)r for 0 < r <1; t > 0:By the change of variables s = log r we �nd�̂(s)vt = A(v)ss for �1 < s <1; t > 0;where �̂(s) = r2�(r). Note that �̂(s) := min0���s �̂(�) = �(r). Theorem 1.3 states thatthe behaviour of interfaces depends on the integrability of s�̂(s) and s�̂(s) at in�nity. Thistranslates in the following way:Z 10 s�̂(s) ds <1 () Z 11 �(r)r log r dr <1and Z 10 s�̂(s) ds =1 () Z 11 �(r) log rr dr =1:The statement of Theorem 1.6 then follows from Theorem 1.3. Note that the extra condition0 2 Int(supp u0) guarantees that we can �nd a subsolution with non-trivial support. �The result of Theorem 1.6 is made possible by the existence of a scaling of the independentvariable r (s = log r) that maps the point r = 1 to s = 1 and gives the equation a one-dimensional form. This same scaling maps the point r = 0 to s = �1, which implies thatby following exactly the same reasoning we can proveTheorem 4.1 Let u be a solution of Problem (P) with initial condition u0, let �(x) = �(jxj),and suppose that 0 =2 supp u0.(i) If Z 10 �(r)r log r dr <1, then after �nite time supp u(t) shall contain the point x = 0;(ii) If Z 10 �(r) log rr dr =1, then 0 =2 supp u(t) for all time t > 0.Example. In [1] the authors describe a so-called focusing solution of the N -dimensionalporous medium equation ut = �um in RN � R+ .(4.1)The support of this solution contains a hole that shrinks as time increases, disappearingtotally at some �nite time t�. The solution that they construct is radially symmetric andof self-similar form: if we set t� = 0, and let v denote the (scaled) pressure associated with(4.1), v = mum�1=(m� 1), then the solution is given byv(r; t) = r2�� '(�)�� ; r > 0; t < 0;10



where the self-similar variable � is given by � = tr��. The function ' and the exponent� 2 (1; 2) are obtained by solving the ensuing ordinary di�erential equation.In the caseN = 2 we can use this solution to construct an explicit example of disappearinginterfaces. Again we perform the change of variables s = log r, after which the solution ugiven by Aronson and Graveleau satis�es the equation�̂(s)ut = (um)ss on R,where �̂(s) = e2s. Initially|that is, at some �nite time before t = 0|supp u = [�a;1),where a is a positive number. The transformation s = log r maps r = 0 to s = �1, andthe closure of the hole in the support in the original variables therefore corresponds to adisappearing of the left interface, clearly in �nite time. Given the results of this paper, thisalso follows directly from the form of �̂. The interest of this solution lies in the fact thatthe interface is given explicitly. The location of the interface is given by r = c(�t)1=� in theoriginal variables; in terms of s and t, the interface lies ats = 1� log(�t) + c0; t < 0:Appendix A. Well-posedness and a priori estimatesThis appendix is devoted to the proofs of existence and uniqueness of the solution of the CauchyProblem (P)( �(x)ut = �A(u) in RN � R+u(x; 0) = u0(x) for x 2 RNin one and two space dimensions. We can write problem (P) in the equivalent form(P�)( �(x)�(v)t = �v in RN � R+v(x; 0) = A(u0(x)) for x 2 RNwhere v = A(u) and � = A�1.We borrow the de�nition of a weak solution from [3]. Set Q = RN � R+ , and QT = f(x; t) 2Q : t � Tg.De�nition A.1 The function u 2 C( �Q) is a weak solution of Problem (P) if(i) 0 � u � 1 on �Q;(ii) u satis�es the integral identityZ
 �(x)u(x; t) (x; t) dx � Z
 �(x)u0(x) (x; 0) dx =(A.1) Z t0 Z
 f�u t +A(u)� g dxd� � Z t0 Z@
A(u)@ @� dxd�for all smooth bounded domains 
 � RN , for all non-negative functions  2 C2;1(�
� [0; T ])that vanish on @
 for all t > 0.Weak sub- and supersolutions are de�ned similarly, after replacement in (A.1) of the equality signby `�' (for subsolutions) or `�' (for supersolutions).11



We establish the following result.Theorem A.2 Let N be equal to either one or two. There exists a weak solution of Problem (P).Proof. We prove the theorem for N = 2, the extension to N = 1 being straightforward. Weset 
n = fx 2 R2 : jxj < ng and QnT = 
n � (0; T ) and we consider the problem(A.2) (Pn)8>>><>>>: �n�n(v)t = �v (x; t) 2 QnT@v@� = 0 (x; t) 2 @
n � (0; T )v(x; 0) = v0n(x) x 2 
nin which(i) �n 2 C1(
n), �n > 0, and �n ! � pointwise in R2 ;(ii) �n 2 C1([0; A(1)]), �0n � b0 > 0 on [0; A(1)], �n ! � uniformly on [0; A(1)], and �0n ! �0 inL1(0; A(1));(iii) v0 = A(u0); v0n 2 C1(
n), 1=n � v0n � A(1) � 1=n, and v0n ! v0 almost everywhere onR2 .Problem (Pn) has a unique classical solution vn [11] and it follows from the comparison principlethat 1=n � vn � A(1)� 1=n on QnT .We conclude from [4] that there exists a function v 2 C( �Q) and a subsequence fvnkg such thatvnk ! v uniformly on fjxj � Rg � [0; T ] for all R. We deduce from a similar identity for vn that vsatis�es the integral identityZ
 �(x)�(v(x; t)) (x; t) dx � Z
 �(x)u0(x) (x; 0) dx =Z t0 Z
 f��(v) t + v� g dxd� � Z t0 Z@
 v@ @� dxd�for all smooth bounded domains 
 � R2 , for all functions  2 C2;1(�
� [0; T ]) which vanish on @
and for all t > 0. The function u = �(v) satis�es the assertion of the theorem. �The proof of Theorem 1.1 that we give here is an adaptation of the proof of a similar propertydue to Bertsch, Kersner, and L. A. Peletier [3]. It should be noted that although the techniquesare similar, there is an interesting e�ect in the change from one or two spatial dimensions to threedimensions and higher. This is further explained in Remark A.1.Proof of Theorem 1.1. Again we only prove the theorem for N = 2; the extension to N = 1 isstraightforward.De�ne the functions w = u1 � u2 and w0 = u01 � u02. They satisfyZ
 �w(�; t) (�; t) � Z
 �w0 (�; 0) �(A.3) � Z t0 Z
(w� t + (A(u1)�A(u2))� )� Z t0 Z@
(A(u1)�A(u2)) �12



for all appropriate domains 
 and test functions  . For the length of this proof we adopt thenotation  � = @ =@�. De�ne 
n = fx 2 R2 : jxj < ng and Qnt = 
n � (0; t], and the functionq(x; t) = 8<: A(u1)�A(u2)u1 � u2 if u1 6= u20 if u1 = u2Remark that q 2 L1(R2 � R+), and that kqkL1(R2�R+) � kA0kL1(0;1). We approximate q on Qntby functions qn such that n�2 � qn � kqkL1(R2�R+) + n�2 on Qnt;(A.4) k(qn � q)=pqnkL2(Qnt) ! 0 as n!1;(A.5)and introduce as test functions the solutions  n of8><>: � t + qn� = 0 in Qnt = 0 on @
n � [0; t] (x; t) = �(x) on 
n;(A.6)where � is a �xed function that belongs to C1c (
n) for n large enough and takes values in [0; 1].The density � is bounded from below on Qnt, so (A.6) has a unique solution  n 2 C2;1( �Qnt). Bymultiplying the equation for  with � =� we �nd thatZ t0 Z
n qn(� )2 � C(A.7)where C is a constant independent of n.Using  n as a test function in (A.3) we �nd thatZ
n ��w(�; t) dx � Z
n �w0 n(�; 0) dx � Z t0 Z
n(q � qn)� n � Z t0 Z@
n qw n�Denote the two integrals on the right-hand side I1 and I2. We shall now show that both tend tozero as n tends to in�nity. First consider I1:I21 � Z t0 Z
n ����q � qnpqn ����2 Z t0 Z
n qnj� nj2and the right-hand side of this expression tends to zero because of (A.7) and (A.5). To prove thatI2 tends to zero, we compare the function  n with the solution zn of8><>:�z = 0z = 0z = 1 r0 < jxj < njxj = njxj = r0where r0 is such that supp� � fjxj � r0g. The solution zn of this problem is zn(x) = (log n �log jxj)=(log n� log r0). Since both  n and zn are equal to zero on jxj = n, we have0 � � n� � �zn� on @
n:13



Explicitly this implies that j n� j � 1n(log n� log r0) :(A.8)We can then estimate I2 by jI2j � tkA0kL1(0;1) 2�log n� log r0and the right-hand side of this expression tends to zero as n tends to in�nity.Since by the comparison principle 0 �  n � 1 on QnT , we can deduce from (4) thatZR2 ��w(�; t) dx � I1 + I2 + Z
n �w0 n(�; 0) dx(A.9) � I1 + I2 + ZR2 �w0+ dx:The right-hand side of this expression is �nite by the hypothesis of the Theorem. Passing to thelimit in (A.9) yields ZR2 ��w(�; t) dx � ZR2 �w0+ dxfor all � 2 C1c (R2 ) such that 0 � � � 1. The theorem then follows immediately from this inequalityby letting � converge pointwise to the function sgn(w+). �Remark A.1. The absence of a uniform lower bound for � introduces an interesting e�ect in thewell-posedness of the Cauchy Problem for equation (1.1). If the proof of Theorem 1.1 is rewrittenfor spatial dimensions di�erent from N = 2, the only important di�erence lies in the explicitfunction zn. In one dimension, zn(x) = (n�x)=(n� r0), so that z0n(n) = �1=(n� r0) tends to zeroas n!1. This implies that I2 tends to zero as n!1, which is necessary to conclude. However,when N � 3, zn(r) = (r2�N �n2�N)=(r2�N0 �n2�N). In this case, R@
n jz0nj remains bounded awayfrom zero, and without an additional assumption on the solution in fact uniqueness does not hold([9], [5], [6]).Remark A.2. The proof of the comparison principle still holds when the condition A 2 C1([0; 1])is replaced by A 2 W 1;1(0; 1) and the condition u0 2 C(RN ), 0 � u0 � 1 by u0 2 L1(RN ),0 � u0 � 1 a.e. on RN .We conclude this appendix with the proof of Lemma 2.1.Proof of Lemma 2.1. We �rst prove the second part of the Lemma. By Theorems A.2 and 1.1we can obtain v as the limit of functions vn, which are de�ned for all jxj < n and 0 � t � � . First�x R > 0 and set BR = fx 2 RN : jxj < Rg. We multiply the di�erential equation in Problem (Pn)by vn and integrate on fjxj < ng � (0; �):ZBR �n(x)Bn(vn(x; �)) dx + Z �0 ZBR jrvnj2(A.10) � Zjxj<n �n(x)Bn(vn(x; �)) dx + Z �0 Zjxj<n jrvnj2= Zjxj<n �n(x)Bn(v0n) dx;14



where Bn(s) = R s0 ��0n(�)d� . The condition R �u0 <1 implies that the functions v0n can be chosensuch that R �n�n(v0n) is bounded independently of n. Since the function Bn � ��1n is Lipschitzcontinuous with a Lipschitz constant L that does not depend on n, the last term in (A.10) isbounded as n!1 and therefore we can extract a subsequence|without changing notation|suchthat rvn converges weakly in L2(BR� (0; �)). With the uniform convergence of vn we can identifythe limit as rv. Using the dominated convergence theorem and the weak convergence of rvn wecan pass to the limit in (A.10) to obtainZBR �(x)B(v(x; �)) dx + Z �0 ZBR jrvj2 � ZRN �(x)B(v0) dx:The result then follows from the monotone convergence theorem.To prove part (i), consider a monotonic cut-o� function � 2 C1(R) such that � = 1 on (�1; 1]and � = 0 on [2;1). Take  (x) = �(jxj=R) for some R > 0 as a test function in (A.1), givingZRN �u(�; �) = ZRN �u0 � Z �0 ZRN rvr (A.11)where we have used the fact that rv 2 L2(RN � (0; �)) by part (ii). We can estimate the lastintegral in (A.11) by RN=2�1maxR j�0j Z �0 ZR<jxj<2R jrvj2!1=2which tends to zero as R ! 1. The result then follows from an application of the monotoneconvergence theorem.To prove part (iii), multiply by tvnt the equation satis�ed by vn and integrate:Z �0 Zjxj<n t�n�0n(vn)v2nt = �12 Z �0 Zjxj<n t ddt jrvnj2= 12 Z �0 Zjxj<n jrvnj2 � �2 Zjxj<n jrvnj2(�; �);or � Zjxj<n jrvnj2(�; �) � Z �0 Zjxj<n jrvnj2;after which the result follows from the second part of the Lemma. �References[1] D. G. Aronson and J. Graveleau. A selfsimilar solution to the focusing problem for theporous medium equation. Euro. J. Appl. Math., 4:65{81, 1993.[2] J. Bear. Dynamics of Fluids in Porous Media. Dover Publications, Inc, New York, 1972.[3] M. Bertsch, R. Kersner, and L. A. Peletier. Positivity versus localization in degeneratedi�usion equations. Nonlinear Analysis, Theory, Methods & Applications, 9(9):987{1008, 1985. 15
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