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GLOBAL OPTIMIZAnON AND SIMULATED ANNEALING

Anton Dekkers1) and Emile Aartsl- 2)

Abstract .
In this paper we are concerned with global optimization, which can be defined as the
problem of finding points on a bounded subset of IRn in which some real valued
functionf assumes its optimal (i.e. maximal or minimal) value.

We present a stochastic approach which is based on the simulated annealing
algorithm. The approach closely follows the formulation of the simulated annealing
algorithm as originally given for discrete optimization problems. The mathematic
formulation is extended to continuous optimization problems and we prove asymp
totic convergence to the set of global optima. Furthermore, we discuss an implemen
tation of the algorithm and compare its performance with other well known algo
rithms. The performance evaluation is carried out for a standard set of test functions
from the literature.

keywords: global optimization, continuous variables, simulated annealing.

1. INTRODUCI10N

A global minimization problem can be formalized as a pair (Sf), where S c IRn is a bounded set

on IRn and f: S ~ IR an n-dimensional real-valued function. The problem now is to find a point

x . E S such thatf(x .) is globally minimal on S. More specifically find an x . E S with
min min min

"if S: f(x .) $.f(x).
X E min

(1.1 )

Here we restrict ourselves to minimization. This can be done without loss of generallity, since a

global maximum can be found the same way by reversing the sign off.

Global optimization problems arise in many practical appplication areas such as for instan

ce economics and technical sciences. Despite its importance and the efforts invested sofar, the

situation with respect to algorithms for solving global minimization problems, is still unsatisfac

tory. Only for relatively simple functions f, where f is differentiable and the zero points of the

derivative can be computed analytically, the situation is satisfactory.
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For the minimization of more complicated functions one usually resorts to numerical solution

methods. Many of these numerical methods cannot produce exact results, but merely approxi

mate a global minimum by a local minimum that is 'close to' it, where 'close to' can be formali-

zed by the following definitions:

Definition 1.1: For E> 0, BiE) is the set of points close to a minimal point, Le.

BiE) = { xeS I 3x . : Ilx - xminll < E}. 0
mm

Definition 1.2: For E> 0, BIE) is the set of points with a value close to the minimal value, i.e.

BIE)={xeS 1 3x .: 1!(x)-!(xmin)1 <E}. 0 (1.3)
mm

Definition 1.3: For E> 0, a point xeS is near minimal if

where

X e B(E)

B(E) =BIE) U Bx(E). 0

(1.4)

Numerical global optimization methods can be divided into two classes: (i) deterministic and (ii)

stochastic methods. In stochastic methods, the minimization process depends partly on probabil-

istic events, whereas in deterministic methods no probabilistic information is used.

The disadvantage of deterministic methods is, that they find the global minimum only

after an exhaustive search over S and additional assumptions on f The faster among these

methods have the additional disadvantage that even more assumptions must be made about!, or

that there is no guarantee for success (Rinnooy Kan & Timmer [1984]).

Stochastic methods, on the contrary, can be proved to find a global minimum with an

asymptotic convergence guarantee in probability, Le. these methods are asymptotically success

ful with probability 1. Furthermore, the computational results of the stochastic methods are, in

general, far better than those of the deterministic methods (Gomulka [1978a]). For this reason

we concentrate on stochastic methods.

An important problem in global minimization is to recognize a local minimum. To quantify this

problem we need the following definition:
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Definition 1.4: A region of attraction B is defined as a subset of S, surrounding a localxloc

minimum xloc E S, containing no point with a lower function value than xloc' Le.

'VxEB : f(xloc)Sf(x). 0 (15)
xloc

Clearly, applying a strict descending local search procedure to each point of B
xloc

will yield

xloc·

Local minimality is no guarantee for global minimality. So a fundamental concern in

global minimization is to avoid getting stuck in a local minimum.

Up to now, there are two classes of methods known to overcome this difficulty in stochas

tic minimization: the first class constitutes the so-called two-phases methods; the second class is

based on simulated annealing.

In two-phases methods, the search for a global minimum is divided into two steps: firstly,

a number of points is sampled (randomly) from S; secondly, for each of these points a local

minimum is detected, i.e. for each point, the local minimum is detennined of the region of

attraction to which the point belongs, and each of these local minima is considered as a candi

date for a global minimum. Detennination of a local minimum is done by a local search proce-

dure. Reviews of two-phases methods are given by Dixon & Szego [1978] and Rinnooy Kan &

Timmer [1984]. Local search procedures are reviewed by Scales [1985]. As examples of two-

phase methods we mention:

-Pure Random Search (Rinnooy Kan & Timmer [1984,1987a]);

-Controlled Random Search (Price [1978]);

-Multistart (Rinnooy Kan & Timmer [1984,1987a]);

-Clustering methods (Torn [1978], Rinnooy Kan & Timmer [1987a], De Biase & Frontini

[1978], Gomulka [1978b]);

-Multi Level Single Linkage (Rinnooy Kan & Timmer [1984,1987a,1987b]).

Methods based on simulated annealing apply a probabilistic mechanism that enables to

search procedures to escape from local minima. This approach is extensively discussed in the

remainder of this paper.
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This paper is organized as follows: In Sections 2 and 3 a simulated annealing method, which is

known from discrete minimization, is transformed into a global minimization method for real

valued functions; Section 2 contains the mathematical model of the algorithm and the proof of

the asymptotic convergence to a global minimum; Section 3 describes a detailled implementa

tion of the algorithm, which fits into the theoretical framework of Section 2. In Section 4 the

simulated annealing algorithm is compared to some well-known methods by using a set of test

functions from the literature. Section 5 concludes the paper with some inferences and remarks.

2. SIMULATED ANNEALING: THEORY

2.1 Origin of the Algorithm

Simulated annealing is a stochastic method to avoid getting stuck in local, non global, minima,

when searching for global minima. This is done by accepting, in addition to points correspon

ding to a decrease in function value, points corresponding to an increase in function value. The

latter is done in a limited way by means of a stochastic acceptance criterion. In the course of the

minimization process, the probability of accepting deteriorations descends slowly towards zero.

These 'deteriorations' make it possible to 'climb' out of local minima and explore S entirely.

Eventually, this procedure will lead to a (near) global minimum.

Simulated annealing originates from the analogy between the physical annealing process

and the problem of finding (near) minimal solutions for discrete minimization problems. The

physical annealing process is known in condensed matter physics as a thermal process for

obtaining low energy states of a solid in a heat bath. As far back as 1953, Metropolis, Rosen

bluth, Rosenbluth, Teller & Teller [1953] proposed a method for computing the equilibrium

distribution of a set of particles in a heat bath using a computer simulation method. In this

method, a given state with energy E1 is compared to a state that is obtained by moving one of

the particles of the state to another location by a small displacement. This new state, with

energy E2, is accepted if E2 - E1 :S 0, i.e. if the move brings the system in a state of lower

energy. If E2 - E1 ~ 0, the new state is not rejected, buto exp( -{E2 - El)/k*T) where k is the
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Boltzmann constant and T the temperature of the heat bath. So a move to a state of higher

energy, a 'deterioration', is accepted in a limited way. By repeating this process for a large

enough number of moves, Metropolis, Rosenbluth, Rosenbluth, Teller & Teller assumed that the

canonical distribution, known as the Boltzmann distribution, is approached at a given tempera

ture.

The ftrst authors that linked the simulated annealing of solids with combinatorial minimi

zation were Kirkpatrick, Gelatt & Vecchi [1983]. They replaced the energy by a cost function,

and the states of a physical system by solutions of a combinatorial minimization problem. The

perturbation of the particles in the physical system then becomes equivalent to a trial in the

combinatorial minimization problem. The minimization is done by ftrstly 'melting' the solution

space at a high effective temperature, (temperature now simply being a control parameter), and

then lowering slowly the temperature until the system is 'frozen' into a stable solution.

This algorithm, when applied to combinatorial minimization problems, can be proved to

converge to a global minimum with a guarantee in the probabilistic sense. It is generally applic

able because no speciftc information about the cost function or solution space is needed a priori.

Furthermore it is easy to implement and has a good performance, altough some applications

may require large computational efforts. For an overview of the applications of the simulated

annealing algorithm to combinatorial optimization problems the reader is referred to Aarts &

Korst [1988] and Van Laarhoven & Aarts [1987].

Because of the success of the simulated annealing algorithm in combinatorial minimiza

tion problems, we have been investigating its potential for solving continuous minimization

problems.

2.2 Simulated Annealing for Continuous Minimization

Application of simulated annealing to the minimization of a continuous valued function has

been addressed by a number of authors. The proposed approaches can be divided into the fol

lowing two classes.

- In the ftrst class, applications of the algorithm are described that follow closely the

original physical approach introduced by Kirkpatrick, Gelatt & Vecchi [1983]. For example
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Vanderbilt & Louie [1983] use a covariance matrix for controlling the transition probability.

This matrix should in some way reflect the topology of the search space and the acceptance

criterion. Khachaturyan [1986] presents a method that is closely related to a physical system as

described by Metropolis, Rosenbluth, Rosenbluth, Teller & Teller [1953]. Bohachevsky, Johnson

& Stein [1986] present a simple and easy to implement method in which the length of a genera

tion step was a constant. Kushner [1987] describes an appropriate method for cost functions, for

which the values only can be sampled via a Monte Carlo method. If no sampling noise exists,

this method is a regular version of the simulated annealing algorithm.

- In the second class of approaches, the annealing process is described by Langevin

equations, and proven to converge to the set of global minima. A global minimum is then found

by solving stochastic differential equations. Aluffi-Pentini, Parisi & Zirilli [1985] propose to

compute global minima by following the paths of a system of stochastic differential equations.

They use a time-dependent function for the acceptance criterium which tends to zero in a suit

able way. Their method finds a global minimum for all test functions that were used. The papers

of Geman & Hwang [1986] and Chiang, Hwang & Sheu [1987] consider the same concept. A

continuous path seeking a global minimum will in general be forced to 'climb hills', with a

standard n-dimensional Brownian motion, as well as follow down-hill gradients. The Brownian

motion is controlled by a time dependent factor, tending to zero as time goes to infinity. The

convergence proof given by Geman & Hwang is based on Langevin equations. They make use

of an inhomogeneous Markov chain and the probability distribution function they use is the

same as probability distribution function used in Theorem 2.2 (see below).

The simulated annealing algorithm, as described in this paper, fits in neither of these two

classes. Our algorithm is a transformation of the simulated annealing method for discrete mini

mization to one for continuous minimization. The definition and the convergence proof of the

algorithm are analogous to the ones given for the algorithm when applied to discrete optimiza

tion problems, and are based on the equilibrium distribution of Markov chains (see Aarts &

Korst [1988] and Van Laarhoven & Aarts [1987]).
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2.3 The Mathematical Model of the Algorithm

We now present a mathematical model of the simulated annealing algorithm for continuous

optimization based on the ergodic theory of Markov chains.

Definition 2.1: X(k) is a random variable denoting the outcome of the k-th trial by simulated

annealing. The outcome of a trial is a point xeS and depends only on the outcome of the pre

vious trial. A Markov chain in the simulated annealing algorithm then is a sequence of trials. 0

Definition 2.2: g.xy(c) is the generation probability distribution function, Le. the probability

distribution function for generating a point y from point x at a fixed value of the control para

meter c e IR+. 0

Definition 2.3: A.xy(c) is the acceptance probability, Le. the probability for accepting point y if

x is the current point in a Markov chain and y is generated as a possible new point. 0

Definition 2.4: The transition probability of transforming xeS into a point yeT c S is the

probability of generating and accepting a point in T if x e: T. Thus if x is the current point of the

Markov chain then the probability that an element out of T is the next point of the Markov chain

IS

P(Tlx;c) =

J pxy(c)dy
yeT

for x e: T

(2.1)

where

and

J pxy(c)dy + (1- J P (c)dy) for x e T
yeT yeS xy

P(Tlx;c) = Pr{ X(l) e T I X(l-I) = x;c}. 0

(2.2)

(2.3)

Note that Pxy(c) is no proper probability distribution function, for

J p.xy(c)dY:l: 1. (2.4)
yeS

Therefore hereafter Pxy is called the quasi probability distribution function.

In this paper, the acceptance probability Axy(c) is chosen equal to the Metropolis criterion,

Le.

A.xy(c) = min{ 1, exp( -(f(y) - f(x»/c) }. (25)
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2.4 Asymptotic Convergence of the Algorithm

In this section it will be shown that the procedure given above converges asymptotically to a

point x, where x e B!e) (definition 1.2), i.e we prove that:

'v'e>O: I im lim Pr{ X(k) e B!e) I c } ~ 1 - e
clOk~

for all starting points X(O).

(2.6)

The proof is based on the convergence proof of the simulated annealing algorithm when applied

to the discrete minimization problem (see Aarts & Korst [1988] and Van Laarhoven & Aarts

[1987]).

Essential to the convergence proof of the algorithm is the fact that under certain condi

tions there exists a unique stationary probability distribution function of a homogeneous Markov

chain.

Definition 2.5: A probability distribution function r(x,c) is stationary if

'v'x e S: r(x,c)= f r(y,c)p (c)dy + r(x,c)(l- J p (c)dy) (2.7)
yeS yx yeS xy

and J r(y,c)dy = 1. 0 (2.8)
xeS

Definition 2.6: The probability to transform a point xeS into a point yeT c S in k trials is

J p(k)(c)dy forxeT
yeT xy

(2.9)

J p(k)(c)dy + (l - J pxy(C)dy)k for x e T
yeT xy yeS

where

pxy(k)(C) = J p(k-1)(c)p (c)dz + p(k-1)(c)(1 - J p (c)dz)
zeS xz zy xy zeS yz

+ (l - J p (c)dz)k-l p (c) (2.10)
zeS xz xy

i.e. p~)(C) is the quasi probability distribution function of transforming x into y in k trials and

hence p~)(C) is equal to the summation of three terms:

(i) the fIrst term is the quasi probability distribution function of transforming x into z in

(k-1) trials and from z to y in the next trial integrated over all z;

(ii) the second term is the quasi probability distribution function of transforming x into y in
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(k-l) trials and then reject the k-th trial;

(iii) the third term is the quasi probability distribution function of transforming x into y in

one trial after (k-l) rejected trials from x. 0

Lemma 2.1: For the Markov chain, given by definition 2.1, S is the only ergodic set and S has

no cyclically moving subsets (Doob [1953]), if

'Vx e S'VTcS: m(T) > 0 => I gx i c) dy > 0,
o yeT ~

where meT) is the Lebesgue measure of the set T (Weir [1973]).

Proof: For each X o e S we have

'VTcS: m(T) < m(S) =>

1 =p(k)(S Ixo;c) = p(k)(T Ixo;c) + p(k)(S\T Ixo;c).

Condition (2.11) assures that p(k)(S\Tlxo;c) > 0, and hence

'V
x

'V
TcS

: p(k)(TI xo; c) < 1.
o

(2.12)

(2.13)

(2.15)

So S is the only consequent of x and S is the only invariant set (Doob [1953]).o

Now S has to be decomposed into disjoint invariant sets and a transient set (Doob [1953]),

but S is the only invariant set and the complement of S is empty and therefore S is the only

ergodic set.

Furthermore S cannot be divided into t disjunct sets Tl'".,T
t

such that

'V T: P(T·+1Ix ;c) = 1, 1 SiS t, (2.14)x e. I 0
o l

(where Tt+1 is interpreted as T1) (Doob [1953]), because of (2.11). Hence S has no cyclically

moving subsets. This completes the proof of lemma 2.7. 0

Theorem 2.1: (A continuous analogon of Feller's theorem (Feller [1957], pp. 356-357))

The stationary probability distribution function of a homogeneous Markov chain as in definition

2.1 exists if S is the only ergodic set and has no cyclically moving subsets. Moreover this proba

bility distribution function q is defined as

q(x,c) = lim p(k)(c)
k-"lOO yx

and is uniquely determined by the following equations:

(i) 'VxeS: q(x,c) > 0; (2.16)
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(ii) J q(x,c)dx =1,. (2.17)
xeS

(iii) 'VxeS: q(x,c) = J q(y,c)p 'X(c)dy + q(x,c)(1- J p (c)dy). (2.18)
yeS Y yeS xy

Refonnulation: If the above holds, then for an arbitrary initial probability distribution function

(u
x

)' we obtain as k --7 00:

u(k) = J u..p(k)(c)dy + u (1- I P (c)dyl--7 q(x,C).
X yeS Y yx x yeS xy

Proof: Note that for all n > 0 we have

which implies that

p(n)(Slx,c)= I p(n)(c)dy+(l- J p (c)dy)n=l,
yeS xy yeS xy

(2.20)

I p(n)(c)dy S 1. (2.21)
yeS xy

Since S is the only ergodic set and S has no cyclically moving subsets, lim p(n)(c) exists as an
n-1CO xy

ordinary limit and is independent of x (Doob [1953]). Hence we obtain

J q(y,c)dy = I lim pxy(n)(C)dy = lim J p(n)(c)dy S 1. (2.22)
yeS yeS n-1CO n-1CO yeS xy

Furthermore, we have

p(m+1)(c) = J p(m)(c)p (c)dz + p(m)(c)(1 - I p (c)dz)
xy zeS XZ zy xy zeSYZ

+ (1- J Px (C)dz)mpxy(c). (2.23)
zeS z

Now, as m --7 co we obtain

q(y,c) = lim p(m+1)(c)
m-1CO xy

= lim J px(m)(C)p (c)dz + lim p(m)(c)(1- J p (c)dz) + lim (1- I p (c)dz)mp (c)
S z zy xy yz xz xy .m-1CO ze m-1CO zeS m-1CO zeS

= J q(z,C)p (c)dz + q(y,c)(1 - J p (c)dz) + O. (224)
zeS zy zeS yz

Note that I q(y,c)dy S 1.
yeS

Next, define

r(y,c) = q (y ,c )
I q(z, c )dz'

zeS

then

(i) r(y,c) > 0, because S is the only ergodic set;

(2.25)

(2.26)
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J q(y,c)dy
(ii) J t(y,c)dy = yeS = 1;

yeS J q(z,c)dz
zeS

J q(x,c)pxy(c)dx + q(y,c)(I- J pyx(c)dx)
(iii) r(y,c) = = xeS xeS

J q(z,c)dz J q(z,c)dz
zeS zeS

= J r(x,c)p (c)dx + r(y,c)(I- J p (c)dx)
xeS xy xeS yx

(2.27)

(2.28)

Hence, at least one stationary probability distribution function exists.

Lemma 2.2: Let r(z,e) be any distribution satisfying Definition 25. Then we have

r(z,e) = J r(x,e)p(k)(e)dx + r(z,e)(l- J p (e)dx/. (2.29)
xeS xz xeS zy

Proof: By induction.

For k = 1 (2.29) holds. Now assume (2.29) is correct for k. Then multipling (2.29) by pzy(c)

and integrating over z e S yields

J r(z,c)p (c)dz = J J r(x,c)p(k)(c)p (c)dx dz
zeS zy zeS xeS xz zy

+ J r(z,c)p (c)(1- J p (c)dx)kdz. (2.30)
zeS zy xeS zy

Next, using Definition 2.5 and (2.10) we obtain

r(y,c) - r(y,c)(1- J Py (c)dx)
xeS x

= J r(x,c){pxy(k+1)(C) - pxy(k)(C)(l- J p /c)dz) - (1- J PxiC)dZ)kpxy(C)}dX
xeS zeS y zeS

+ J {r(z,c)p (c)(I- J p (c)dxlldz. (2.31)
zeS zy xeS zx

So, using (2.29) for k:

r(y,c)

= J r(x,c)p(k+1)(c)dx - (1- f p (C)dZ){r(y,c) -r(y,c)(1- f p (c)dxl}
xeS xy zeS yz xeS yx

+ r(y,c)(1- J pyx(c)dx)
xeS

= J r(x,c)p(k+1)(c)dx + r(y,c)(I- J p (c)dzl+1.
xeS xy zeS yz

Thus (2.29) is correct for k+1. This completes the proof of Lemma 2.2. 0

We now complete the proof of Theorem 2.1. As k -l 00, (2.29) transforms into

(2.32)
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lim r(z,c) = lim { I r(x,c)p(k)(c)dx + r(z,c)(l- I p (c)dxl}
k~ k~ xeS xz xeS zy

= I r(x,c)dx + 0 = q(z,C)( f r(x,c)dx)= q(z,c). (2.33)
xeS xeS

Hence any distribution satisfying Definition 2.5 is equal to the probability distribution function

q. So q is unique. This completes the proof of Theorem 2.1. 0

Theorem 2.2: Let pxy(c) be given by Definition 2.4 and let S be the only ergodic set not having

any cyclically moving subsets for the Markov chain induced by P(Tlx;c) (Definition 2.4). Fur

thermore, let the following conditions be satisfied:

(i) 'ix,yeS: gxy(c) =gyic);

(ii) gxy(c) is not depending on c (and can therefore be written as gxy).

Then the stationary probability distribution function is given by:

(2.34)

(2.35)

exp(-(f(x)-f . )/c)
q(x,c) = mln (2.36)

J exp(-(f(y)-f . )/c)dy
yeS mln

where! . is the minimal function value, i.e! . =f(x . ) for all x . (see (1.1)).mzn mzn mm mzn

Proof: If q(x,c) satisfies (2.16), (2.17) and (2.18), it is the unique stationary probability distribu-

tion function (Theorem 2.1):

I exp(-(f(x)~ . )/c)dx
(i) 'i

xeS
: q(x,c) = xeS mln > 0;

J exp(-(f(y)-f . )/e)dy
yeS mln

J exp(-(f(x)-fmin)/c)dx

(ii) I q(x,e)dx = xeS = 1;
xeS I exp(-(f(y)-f . )/c)dy

yeS mln

(iii) Let N(e), S-(x) and S+(x) be defined as follows:

N(e) = J exp(-if(y)-f. . )/e)dy;
yeS mzn

S-(x) ={yeS I fey) '5:f(x) };

s+(x) = { yeS If(y) >f(x) }.

Then

J q(y,c)pyx(e)dy
yeS

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)
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= J_ Nk exp(-(f(y)-fmin)!c)gyxmin{ l,exp(-(f(x)-f(y»/c) }dy
yeS (x)

+ J+ Nb) exp(-(f(y)-fmi )/c)~'Xmin{ l,exp(-(f(x)-f(y»/c)}dy
yeS (x) ,c) n -y

= J_ N~c) exp(-(f(x)-fmin)/c)gxydy + J+ N~c) exp(-(f(y)-fmin)/c)gxydy
yeS (x) yeS (x)

= q(x,c) J_ gxydy + J+ q(y,c)gxydy, (2.42)
yeS (x) yeS (x)

and

q(x,c)(l- J pxy(c)dy)
yeS

=q(X,C){l- J_ gxymin{l,exp(-(f(y)-f(x»/c) }dy - J+ gxymin{ l,exp(-{f(y)-f(x»/c) }dY}
yeS (x) yeS (x)

= q(x,c) - q(x,c) J g dy
yeS-ex) xy

- J+ N~c )exp(-(f(x)-fmin)/c)gxymin{ l,exp(-{f(y)-f(x»fc) }dy
yeS (x)

=q(x,c)-q(x,c) J_ gxydy- J+ q(y,c)gxydy. (2.43)
yeS (x) yeS (x)

Combining (2.42) and (2.43) yields

'VxeS: J Pyic)gyxdy + q(x,c)(l- J pxy(c)dy) = q(x,c). (2.44)
yeS yeS

This completes the proof of Theorem 2.2. 0

We now proof that the simulated annealing algorithm converges to a near minimal solu

tion if the stationary probability ditribution fraction is given by (2.36).

Theorem 2.3:

'V£>O: lim J q(y,c)dy > 1 - E

dO yeB/E)

if the number of local minima is finite and f is uniformly continuous.

Proof: Since the number of local minima is finite we have:

(2.45)

3E >0: V(xI ) -f· I > £1' (2.46)1 oc mzn

3£ >0 'Vx .: II xloc - xmin II > £2' (2.47)
2 mzn

wherefmin =f(xmin) for all xmin (see (1.1) and xloc is a local, non global, minimum.

Now choose E, such that

0<£ < min{ aEi' aE2}. (2.48)

(If all minima are global then £ should be chosen such that 3 S: f(x) -f· > E).xe mzn
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Because f is unifonnly continuous we have:

3
01

>O'Vx,yeS: II x - y II S; 01 ::} vex) - fey) I < !E.

Let 0 be chosen as follows:

(2.49)

0= min{ !01' E }. (250)

Then we have

'VyEE (0): fey) - fmin < !E,
x

where Bx(O) is given by Definition 1.1.

Now take a point

(251)

with (252)

f(x ) -f· =E.o mzn
(This is possible, because f is continuous.)

Then

1

exp(-(f(xo)-fmin)/c)
limq(x ,c) = lim---------
c~O 0 c~O J exp(-(f(y) -f . )/c)dy

yeS mIn
1exp(-E/C)

= lim---- ------=lim----------
c~O J exp(-(f(y)-f . )/c)dy c~O J exp«E-(f(y)-f in»/c)dy

yeS mzn yeS m

lim 1
= c~O J exp«E-(f(y)-f . »/c)dy + J exp«E-(f(y)-f· »/c)dy

yeS\B (0) mIn yeB (0) mIn
x x

1
S; lim S; ----------

c~O J exp«E-(f(y)-f· »/c)dy lim J exp«E-!E)/c)dy
yeBx(O) mIn c~O yeBx(O)

1
= ~O.

lim exp(!E/C) m(B (0»
c~O x

So, with m(S) as before the Lebesgue measure of S,

3c >0 'Vc<c : q(xo'c) <~.
o 0

(253)

(254)

Hence

(2.55)
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and

'V 'V S-( ): jiYx ) -f . < E
C<C xe x ' mzn 'o 0

- +where S (x ) and S (x ) as in (2.40) and (2.41).o 0

Now for all c < c we haveo

(2.56)

1 = J q(y,c)dy = J_ q(y,c)dy + J+ q(y,c)dy
yeS yeS (xo) yeS (xo)

< J q(y,c)dy + 1+ m(S)dy ~ I q(y,c)dy + E. (2.57)
yeBfE) yeS (xo) yeBfE)

Note that BfE) = S-(xo) and that there is no local minimum in BfE) because of (2.47) and

(2.48).

Hence we have

I im I q(y,c)dy > 1 - E,
c.1o yeBfE)

which completes the proof of Theorem 2.3. 0

(2.58)

In conclusion, we have shown in this section that the simulated annealing algorithm for conti

nuous minimization, modeled as a Markov chain with the following transition probability

(Definition 2.4):

P(TI x;c) =

I pxy(c)dy
yeT

for x e T

where

and

J p (c)dy + (1- f p (c)dy) for x e T
yeT xy yeS xy

P(Tlx;c) = Pr{ X(l) e T I X(l-I) = x;c},

converges to the set of minimal points of a function f : S ~ lit

Thus

~i~ ~~Pr{ X(l) e BfE) I c} > l-E

if the following conditions are met:

(i) f: S ~ IR is uniform continuous;

(259)
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(ii) S is a bounded subset of IRn and all the minima are interior points of S;

(iii) the number of minima is finite;

(iv) the acceptance criteion Axy(c) is «(2.5)):

Axy(c) =min {l,exp(-(f(y)-f(x))/c)};

(v) the generation probability distribution function gxy(c) induces:

'fix eS'fITcS: m(T) > 0 =, I g (c)dy > 0 «(2.11));
o yeS XeY

gxy(c) =~x(c) «(2.34));

gxy(c) does not depend on c «(2.35)).

Finally, we mention that these conditions are sufficient but not necessary.

3. SIMULATED ANNEALING: PRACITCE

3.1 Cooling schedule

The simulated annealing algorithm described in the previous section can be viewed as an infini

te number of homogeneous Markov chains of infinite length. This is due to the two limits of

(2.59), i.e. 1im and 1im. Clearly an implementation of the algorithm according to this prescrip
k-+oo c~O

tion is impractible. In this section a more explicit and practicable approach is given, which is

similar to the approach given by Aarts & Van Laarhoven [1985] for discrete minimization. This

approach realizes a finite-time implementation of the simulated annealing algorithm by genera

ting homogeneous Markov chains of finite length at a finite sequence of (descending) values of

the control parameter. To achieve this, a set of parameters must be specified that governs the

convergence of the algorithm. This set of parameters constitutes a so-called cooling schedule.

Definition 3.1: A cooling schedule specifies:

- An initial value of the control parameter c ;o

- A decrement function for decreasing the value of the control parameter;

- A final value of the control parameter, i.e. a stop criterion;

- A finite length, L, of each Markov chain. 0
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The above leads to the following simulated annealing algorithm in pseudo- PASCAL:

PROCEDURE SIMULATED ANNEALING; (3.1)

begin "initialize (c,x)";

stopcriterion := false;

while stopcriterion = false do

begin for i :=1 to L do

begin "generate y from x";

if 6.fxy s: 0 then accept

else if exp(-41'x/c) > random [0,1) then accept;

if accept then x:= y

end;

"lower cIt

end

end.

Below, we elaborate these parameters in more detail. We mention beforehand that the guarantee

that this finite-time implementation of the simulated annealing algorithm will eventually suc

ceed in finding a global minimum no longer holds; this is because of the finite length and finite

number of Markov chains. However, the probability of finding a global minimum is still large

and can be raised by using longer Markov chains and/or a more careful decrease of the control

parameter. This will however effect the efficiency and therefore a compromise has to be made

between reliability and efficiency.

We now briefly summarize the cooling schedule as introduced by Aarts & Van Laarhoven.

For a detailed description see Aarts and Van Laarhoven [1985].

- initial value of the control parameter

The basic assumption underlying the calculation of the initial value of the control parameter is

that Co should be sufficiently large, such that approximately all transitions are accepted at this

value. This can be achieved by generating a number of trials, say m , and requiring that the
o

initial acceptance ratio Xo = X(co) is close to 1 (X(c) is defined as the ratio between the number

of accepted transitions and the number of proposed transitions). The initial value of Co is then

obtained from the following expression:
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]

-1+ fi2
c = fJ.f [In (l) (3.2)o fi2X -X fi1

where m1 and m2 denote the number of trials (m1 + m2 = mo) with Dofxy SO and Dofxy > 0,

respectively, and fJ.f+ the average value of those Dofxy-values for which Dofxy > 0 (Dofxy =f(x) 

fey)).

-decrement of the control parameter

The new value of c, say c', is calculated from the following expression:

c' =c [ 1 + c In(l + 8) ] -1 (3.3)
3 cr(c) ,

where cr(c) denotes the standard deviation of the values of the cost function of the points in the

Markov chain at c, and 8 is a small positive real number. The constant 8 is called the distance

parameter and determines the speed of the decrement of the control parameter.

-final value of the control parameter

The stop criterion is based on the idea that the average function value 1 of a Markov chain is an

increasing function of c, i.e. if c is lowered then 1 will lower too, such that l(c) converges to

!(xmin) as c.tO.

The algorithm is terminated if:

dls (c) c
< Es' (3.4)

dc l(co)

where l(co) is the mean value of the points found in the initial Markov chain, lic) is the

smoothed value of lover a number of chains in order to reduce the fluctuations of l(c) and Es is

a small positive real number, called the stop parameter.

-len~th of the Markov chains

The length of the Markov chains is based on the assumption that they should be sufficiently

large in order to enable the algorithm to exploire the neighbourhood of a given point in all

directions. A straightforward choice therefore is given by the following relation
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L =L ·n,o
(3.5)

where n denotes the dimension of Sand L a constant called the standard length. Note that this
o

choice leads to a chain length which is constant for a given problem instance.

3.2 Generation of Points

There are several possibilities for generating new points from a given point. The only require

ment is that the generation mechanism should satisfy (2.11), (2.34) and (2.35). We discuss two

alternatives.

Altenative A: A uniform ditribution on S, Le.

1
gxy(c) =iii(S)' (3.6)

Clearly this alternative satisfies conditions (2.11), (2.34) and (2.35). An obvious disadvantage of

this choise is that no structural information about function values is used. This disadventage can

be circumvented by introducing an additional mechanism that uses descent directions. For each

new generation there are two possibilities, a point is drawn from a uniform distribution over S or

(3.7)
if w s: tAlternative B:

a step is made into a descent direction from the current point, Le.

{

I
g (c) = iii(S)

xy LS(x) ifw > t

where t is a fixed number in the interval [0,1) and w a random number drawn from U[O,I).

LS(x) is a Local Search procedure that generates a point y in a descent direction of x, thus with

fly) S:f(x) (y is not necessarily a local minimum). This generation mechanism seems more

efficient, because of its local search steps. There is one drawback to this generation mechanism:

gxy(c) :F- ~x(c) and thus (2.34) is no longer satisfied. It can be shown however that this method

still converges to Blc) (Definition 1.2).

Theorem 3.1: Let P denote the transition probability associated with the simulated annealing

algorithm (Definition 2.4), and let the random variables X(k) and Y(k) be defined as the out-

comes of the trials in the simulated annealing algorithm using alternative A and alternative B,

respectively. Then

'Vc>o: lim lim Pr{ Y(k) E Blc) Ic} ~ lim lim Pr{ X(k) E Blc) Ic} > 1 - c. 0 (3.8)
cto k...,oo C!O k...,oo



-20-

Proof:

Pr{Y(k) E BfE) IY(k-1) E BfE);c} = t Pr{X(k) E BfE) IX(k-1) E BfE);c}

+ (1-t) Pr{LS(Y(k-1» E Bf£) IY(k-1) E BfE);c}

= t Pr{X(k) E Bf£)!X(k-1) E BfE);c} + (1-t);

Pr{Y(k) E Bf£) IY(k-1) E BfE);c} = t Pr{X(k) E BfE) IX(k-1) E BfE);c}

+ (1-t) Pr{LS(Y(k-1» E BfE)IY(k-1) E BfE);c}

m(R (£»
= t mfs) + (l-t) Pr{LS(Y(k-1» E Bf£) IY(k-1) E BfE);c};

Pr{Y(k) E BfE)IY(k-1) E BfE);c} =tPr{X(k) E BfE)IX(k-1) E BfE);c}

+ (1-t) Pr{LS(Y(k-1» E Bf£)IY(k-1) E BfE);c}

= t (1-Pr{X(k) E BfE)!X(k-1) E BfE);cD,

Pr{Y(k) E BfE)! Y(k-1) E BfE);c} = t Pr{X(k) E BfE) IX(k-l) E BfE);c}

+ (1-t) Pr{LS(Y(k-1» E BfE) IY(k-1) E BfE);c}

[
m(R (E»]

= t 1- mfs) +(l-t)(1 - Pr{LS(Y(k-1» E BfE) IY(k-l) E BfE);CD.

Consequently using

PB(c) = Pr{ X(k) E BfE) I X(k-1) E BfE);c},

PLS(c) = Pr{ LS(Y(k-l» E BfE) I Y(k-1) E BfE);c}:

E(waiting time of Y(k) in BfE);c)
00

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

= k~O k Pr{ 'VO-5:i$k: Y(i) E Bf£) and Y(k) E BfE) I YeO) E BfE);C}

= L k (t*PB(c) + (l-t)/-l (t (1 - PB(c») = t (l - PB(c» L k (t*PB(c) + (1-t»k-1
k=O k=O

= t (1 - PB(c» 1 - 1 (3.15)
(t (l - PB (c) ) )2 - t (l - PB (c) )

Similarly:

1
E(waiting time ofY(k) in MfE);c) = t m(~f(E» + (1-t)PLS(c)'

ms)
E(waitingtime ofX(k)in BfE);c) = (l ~ PB(c»'

E(waiting time of X(k) in MfE);c) = m(~~~~»"

From Theorem 2.2 we have

'VE>o: lim limPr{ X(k) E BfE) I X(O) E S;c} > 1-E,
c~O k-lOO

(3.16)

(3.17)

(3.18)

(3.19)
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Furthermore we have

= E(wal t mg tIme 0

Hence

1im Pr{ X(k) E B1E) I X(O) E S;c}
k-lCO r

E(waiting time of X(K) in B
In Bj E ;c +E(waltlng tIme 0

1
=_-----:;__("-l_-_PB....,,(-,;c)>.f)-.

1 + m(S)
(1 - PB(c» m(Bj(E»

1

(3.20)

(l - PB(c»'V.,.....0: lim ---...--->--'-----=.~~-..,.......,,- > 1 - E.
<;;....- c~O 1 + m(S)

(l - PB(c» m(Bj(E»

Finally, we obtain

'VE>O: ~1~~: Pr{ Y(k) E Bi E) I YeO) E S;c}

E(waiting time of Y(k) in B (E);C)

(3.21)

= E(wal t mg tIme 0 Y(k m j E); c )+E(wal t mg time 0 Y(k)

1 1
t (1 - PB(c» > t (1 - PB(c»

1 - -:I m(S) ] 1
+ (1-t) PLS (c) + t (l - PB (c) ) t lm(Bj (E) ) + t (l - PB (c) )

1
(l - PB(c»=-----.l---->----'-m""""'(,..,.S")- > 1 - E .

..,...(1r--~PB,.....,,(--.c)C"'t"") + m(Bj( E) )

So

'VE>O: ~1~~: Pr{ Y(k) E BfE) I YeO) E S;c } > 1 - E.

This completes the proof of the theorem. 0

4. NUMERICAL RESULTS

(3.22)

(3.23)

The performance of the simulated annealing algorithm presented in Sections 2 and 3 is compa

red with the performance of a number of two-phase methods known from literature. There are

three criteria that determine the performance of an algorithm: (i) the number of function evalua

tions, (ii) the running time and (iii) the quality of the final result. The latter criterion can be
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quantified by the difference in the value of the cost function between the obtained minimum and

the global minimum. Our performance analysis is carried out for a set of test functions known

from the literature. The test functions are taken from Dixon & Szego [1978b] and from Aluffi- 

Pentini, Parisi & Zirilli [1985] (see Appendix A and Appendix B, respectively). Because all

methods were implemented on different machines we used the standard unit of time as introdu

ced by Dixon & Szego [1978b]. One unit of time then is the running time needed for 1000

evaluations of the Shekel 5 function in the point (4,4,4,4) (see Appendix A).

It should be mentioned that a comparison between the various methods never will be

entirely fair. The implementation of the methods is done by different persons on different

machines and this always gives rise to some discrepancies in the results. Furthermore, different

implementations emphasize different aspects, i.e: a compromise is made between efficiency and

reliability, (where reliability refers to the probability of obtaining a (near) global minimum).

Choosing for efficiency will affect the reliability and vice-versa.

4.1 Implementation of the simulated annealing algorithm

The simulated annealing algorithm is implemented on the Burroughs B7900 of the Eindhoven

University of Technology using the programming language PASCAL. For the cooling schedule

we used the following parameters (see Section 3.1): X =0.9, 0 =0.1, E = 10"4 and L = 10.
o s 0

Generation of points was done according to alternative B where t =0.75.

The local search procedure is taken as a combination of steepest descent in the. early

stages of the optimization and Quasi-Newton in the latter stages. The Quasi-Newton procedure

is implemented as the Broyden-Fletcher-Goldfarb-Shanno procedure as presented in Scales

[1985]. This local search is done along one descent direction.

4.2 Results

In this section the computational results of the methods listed in table 4.1 are summarized.
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table 4.1 Listing of different methods used in the comparison:

method name reference

A Multistart Rinnooy Kan &Timmer [1984]

B Controlled Random Search Price [1978]

C Density clustering Torn [1978]

D Clustering with distribution De Biase &Frontini [1978]

funct ion

E Mult i Level Single Linkage Rinnooy Kan &Timmer [1987b]

F Simulated Annealing thi s paper

G Simulated Annealing based on Aluffi-Pentini, Parisi &
stochastic differential Zirilli [1985]

equations

In tables 4.2 and 4.3 the results are given of methods A - F for the set of test functions

proposed by Dixon & Szego [1978b] (see Appendix A). For method G no results for this set of

test functions are available. Table 4.2 gives the number of function evaluations and table 4.3

gives the running time in units of standard time.

table 4.2 Number of function evaluations:

function GP BR H3 H6 S5 S7 SlO

method

A 4400 1600 2500 6000 6500 9300 11000

B 2500 1800 2400 7600 3800 4900 4400

C 2499 1558 2584 3447 3649 3606 3874

D 378 597 732 807 620 788 1160

*E 148 206 197 487 404 432 564

*F 563 505 1459 4648 365 558 797

* the global minimum was not found in one of the four runs.
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table 4.3 Running time in units of standard time:

function GP BR H3 H6 S5 S7 SlO

method

A 4.5 2 7 22 13 21 32

B 3 4 8 46 14 20 20

C 4 4 8 16 10 13 15

D 15 14 16 21 23 20 30

*E 0.15 0.25 0.5 2 1 1 2

*F 0.9 0.9 5 20 0.8 1.5 2.7

* the global minimum was not found in one of the four runs.

It should be mentioned that for most methods the number of function evaluations and the run-

ning time used for the generation of the initial random sample are not taken into account. This

benefits some methods. The Multi Level Single Linkage method for instance uses 1000 function

evaluations for the random sample, and consequently the correspoding running time is not

negligible; whereas for simulated annealing the initialization uses m = 10· n function evalua-
o

tions (see (3.2), where n is the dimension. This number is clearly less than in the Multi Level

Single Linkage method.

Tables 4.2 and 4.3 shows that Multi Level Single Linkage is the best method, and that our

simulated annealing algorithm is a good alternative. However, the Multi Level Single Linkage

algorithm is implemented in an efficient dynamic way: the data are handled without extra cost

in running time. Simulated annealing, on the other hand, is tested using a rather primitive imple

mentation, which is not fully optimized. Hence, we may anticipate an increase in efficiency of

the latter algorithm by using a more sophisticated implementation.

In table 4.4 the results of methods F and G are given for some of the test functions used

by Aluffi-Pentini, Parisi & Zirilli [1985] (see Appendix B). For method F, both the running time

and the number of function evaluations are given; for method G only the number of function

evaluations is presented. Table 4.4 shows a striking difference in the number of function evalua-
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tions used by both methods. Unfortunately, no figures are available on the running time of

method G, which disables us to draw any further conclusions. Though it seems that our simula

ted annealing method is much faster.

table 4.4 Results for methods F and G

F G
function

** **# Le. running time # Le.

* *P 3 780 3.5 241 215

P 8 2 667 7 72 851

P 16 9 018 33 66 365

P 22 1 677 2.3 74 194

* the global minimum was not found in one of the four runs;

** # f.e. is the number of function evaluations.

The effectivity of all methods seems acceptable for this set of test functions we have been

investigating. These functions (especially those of Dixon & Szego [1978b]) have only a few

local minima and their dimensions range from 2 to 6. For functions with more local minima or

higher dimensions the performance may be worse: Multistart, both clustering methods, and

Multi Level Single Linkage have to store all minima found during execution of the algorithm,

(this can be as many as 30n for some functions, where n is the dimension, see for instance

Aluffi-Pentini, Parisi & Zirilli [1985], problem 12). For higher dimensions this number is too

large to handle and this will cause those methods to fail. Simulated annealing has the advantage

that Markov chains are used, for which only the last point has to be stored. But the convergence

of simulated annealing may become slow for these kind of functions.
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5. CONCLUSION AND DISCUSSION

The problem discussed in this paper concerns the global minimization of real valued functions

on IRn. There are several methods available from the literature to solve this problem. The best

method, up to now, is the Multi Level Single Linkage method developed by Rinnooy Kan &

Timmer [1987a, 1987b]. This method is capable of finding the global minimum with a high

probability in a reasonable amount of computer time, as long as the function has a moderate

number of minima and the dimension of the search space is small. For higher dimensional

spaces, problems occur due to the enormous amount of data that has to be stored; to cope with

this problem a different approach seems to be necessary. Simulated annealing is proposed as

such an approach. The amount of data that has to be stored while running the simulated annea

ling algorithm is negligible; only the current point in a Markov chain and some data used for

updating some parameters are needed. Furthermore, if the number of local minima or the dimen

sion increases, this has no effect on the amount of data stored. Therefore simulated annealing is

a method that can cope with such problems. The simulated annealing algorithm performs slight

ly worse than the Multi Level Single Linkage method in the sense that, for most functions, a

slightly larger running time is required. However, there is evidence that the total running time

(including the initialization overheads) compares favourably.

The simulated annealing algorithm presented in this paper should be seen as a first step.

Preliminary results show that the method is rather effective and efficient. However, further

research may yield more efficient generation mechanisms. Perhaps a more sophisticated step

than a uniform distributed one can be found, in which information gathered during the minimi

zing is used. It also might be possible to make local search steps at more suitable moments, to

avoid that a relatively expensive local search step is followed by the acceptation of a large

deterioration.

It is certainly possible to improve the implementation, (the local search procedure was

implemented in a rather primitive way), remedying this will influence the performance positi

vely.
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It can be concluded that there are several stochastic algorithms for global minimization that

perform satisfactorily, but none of these algorithms is perfect. Global optimization, therefore,

remains a challenging research topic.

APPENDIX A

Test functions proposed by Dixon & Szego [1978b] (x. denotes the i-th coordinate of x):
I

GF (Goldstein and Price):

f(xl'x2) = [1 + (xI + x2 + 1)2 (19 - 14xI + 3x~ - 14x2 + 6xIX2 + 3x~)]*
2 2 2[30 + (2xI - 3x2) (18 - 32xI + 12xI + 48x2 - 36xl x2 + 27x2)].

s = { X E lit I -2 ~ x. ~ 2, i = 1, 2}, x . = (O,-I),f(x .) = 3. There are four local minima.
I ~n ~n

BR (Branin):

2 2
f(xl'x2) =a (x2 - bxI + CXI - d) + e (1 - f) cos xI + e

2where a = 1, b = 5.1/(4n ), c = 51n, d = 6, e = 10, f = 1/(8n).

S = { X E lit I -5 ~ xl ~ 10 and 0 ~ x2 ~ 15 }, x . = (-n,12.275); (n,2.275); (3n,2.475),
min

f(xmin) = 5/(4n). There are no more minima.

H3 and H6 <Hartmann's family):

m n 2
f(x)=-:E c.exp(-:E a.. (x.-p ..) )

i = 1 I j = 1 IJ I lJ

H3 (n = 3 and m = 4):

1 a .. c. p ..
IJ I IJ

1 3 10 30 1 0.3689 0.1170 0.2673

2 0.1 10 35 1.2 0.4699 0.4387 0.7470

3 3 10 30 3 0.1091 0.8732 0.5547

4 0.1 10 35 3.2 0.03815 0.5743 0.8828



-28 -

H6 (n =6 and m =4):

i a· . c·IJ I

1 10 3 17 3.5 1.7 8 1

2 0.05 10 17 0.1 8 14 1.2

3 3 3.5 1.7 10 17 8 3

4 17 8 0.05 10 0.1 14 3.2

and

i p ..
IJ

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

s = { X E IRn I 0 ~ Xi ~ 1, 1 ~ i ~ n}. These functions both have four local minima,

x/oc =:: (Pir ..,Pin),f(x/oc) =::-er

S5. S7 and S10 (Shekel's family):

m 1
f(x) = - L T. 1 (x - a.) (x - a.) + C.

1= I I I
Twith the dimension n = 4, m = 5, 7, 10 for S5, S7, 10 respectively, x = (xl'''''xn) and

T
ai = (ail,· ..,ain) .
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i a .. c.
IJ I

1 4 4 4 4 0.1

2 1 1 1 1 0.2

3 8 8 8 8 0.2

4 6 6 6 6 0.4

5 3 7 3 7 0.4

6 2 9 2 9 0.6

7 5 5 3 3 0.3

8 8 1 8 1 0.7

9 6 2 6 2 0.5

10 7 3.6 7 3.6 0.5

s = {X E 1R4 I 0 :5; xj :5; 10, 1:5; j :5; 4}. These functions have 5, 7 and 10 local minima for S5,

S7 and SlO respectively, xl "" a.,f(x
Z

) "" --! (l :5; i :s; m).oc I oc ci

APPENDIXB

In this appendix, 4 of the 24 test functions used by Aluffi-Pentini, Parisi & Zirilli [1985] are

given. These functions contain a penalty term, for Aluffi-Pentini, Parisi & Zirilli minimized over

IRn. For simulated annealing the minimization is done on S, where S just contains all unpenalized

points. The penalty function is defined by

[

kO (x i - a)mm' xi > a,
u(xi , a, k, m) = -a :5; xi :5; a,

k(-xi-a), Xi <-a.

Problem 3 (Two-Dimensional Penalized Shubert Function):

!(xj ,x2) ={.i i cos[(i+1)x j + 1J}{.i i cos[(i+1)x2 + I]} + u(x j ,10,100,2) + u(x2,10,100,2).
1=1 1=1
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S = { x e IRn I -lO~i::::;;lO, i = 1,2}. This function has 760 local minima, 18 of them are global.

Problem 8:

{
. 2 n-l 2 _ . 2 2} n

f(x) =(1t/n) kj sm (1tYj) + i : /Yj-k2) [1+kj sm (1tYi+j)] + (yn-k2) + i:lu(xi,1O,100,4).

where Yi = 1 + (xi + 1)/4, k j =10 and k2 = l.

S = { x e ~ I -10 ~.::::;;1O, i = 1,2,3}, x . = (1,1,1), f(x .) =O. This funtion has roughly 53
I ~n ~n

local minima.

Problem 16:

{
n-l }

f(x) =k3 sin2
(1tk4x j ) + i : 1(xi-kS )2 [1+k6sin2(1tk4xi+j)] + (xn-kS )2 [1+k6sin2

(1tk7xn)]

n
+ 1: u(x.,5,100,4)

. 1 I1=

with k3 = 0.1, k4 =3, kS = 1, k6 = 1, k7 = 2.

S = { x e ~ I -5~.::::;; 5, i = I, ...,5}, x . =(1,1,1,1,1), f(x .) =O. This function has roughly
I min min

15n local minima.

Problem 22:

k2 2 2 22 12 24 .
f(x) = 10 x j + x2 - (x j+x2) + 10 (x j+x2) WIth k =5 and I =-5.

S = { X E ~ I -20~.::::;;20, i = 1,2}, x . =(0,15); (0,-15), f(x .) "= -24 775. The origin is a
I min min

local minimum.
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