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Linear Image Reconstruction by Sobolev Norms
on the Bounded Domain�

Bart Janssen, Remco Duits, and Bart ter Haar Romeny

Eindhoven University of Technology, Dept. of Biomedical Engineering
{B.J.Janssen,R.Duits,B.M.terHaarRomeny}@tue.nl

Abstract. The reconstruction problem is usually formulated as a vari-
ational problem in which one searches for that image that minimizes a
so called prior (image model) while insisting on certain image features
to be preserved. When the prior can be described by a norm induced by
some inner product on a Hilbert space the exact solution to the varia-
tional problem can be found by orthogonal projection. In previous work
we considered the image as compactly supported in L2(R2) and we used
Sobolev norms on the unbounded domain including a smoothing para-
meter γ > 0 to tune the smoothness of the reconstruction image. Due
to the assumption of compact support of the original image components
of the reconstruction image near the image boundary are too much pe-
nalized. Therefore we minimize Sobolev norms only on the actual image
domain, yielding much better reconstructions (especially for γ � 0). As
an example we apply our method to the reconstruction of singular points
that are present in the scale space representation of an image.

1 Introduction

One of the fundamental problems in signal processing is the reconstruction of
a signal from its samples. In 1949 Shannon published his work on signal recon-
struction from its equispaced ideal samples [17]. Many generalizations [16,18]
and applications [3,13] followed thereafter.

Reconstruction from differential structure of scale space interest points, first
introduced by Nielsen and Lillholm [15], is an interesting instance of the re-
construction problem since the samples are non-uniformly distributed over the
image they were obtained from and the filter responses of the filters do not nec-
essarily coincide. Several linear and non-linear methods [10,12,14,15] appeared
in literature which all search for an image that (1) is indistinguishable from its
original when observed through the filters the features were extracted with and
(2) simultaneously minimizes a certain prior. We showed in earlier work [10]
that if such a prior is a norm of Sobolev type on the unbounded domain one
can obtain visually attractive reconstructions while retaining linearity. However,
boundary problems degrade the reconstruction quality.
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Fig. 1. An illustration of the bounded domain problem: Features that are present in
the center of the image are lost near its border, since they, in contrast to the original
image f are not compactly supported on Ω

The problem that appears in the unbouded domain reconstruction method
is best illustrated by analyzing Figure 1 . The left image is a reconstruction
from differential structure obtained from an image that is a concatenation of
(mirrored) versions of Lena’s eye. One can clearly observe that structure present
in the center of the image does not appear on the border. This can be attributed
to the fact that, when features are measured close to the image boundary, they
partly lay outside the image and are “penalized” by the energy minimization
methods that are formulated on the unbounded domain. This is illustrated by
the right image in Figure 1 . We solve this problem by considering bounded
domain Sobolev norms instead. An additional advantage of our method is that
we can enforce a much higher degree of regularity than the unbounded domain
counter part (in fact we can minimize semi-norms on the bounded domain).
Furthermore we give an interpretation of the 2 parameters that appear in the
reconstruction framework in terms of filtering by a low-pass Butterworth filter.
This allows for a good intuition on how to choose these parameters.

2 Theory

In order to prevent the above illustrated problem from happening we restrict
the reconstruction problem to the domain Ω ⊂ R

2 that is defined as the support
of the image f ∈ L2

(
R

2
)

from which the features {cp(f)}P
1 , cp(f) ∈ R are

extracted. Recall that the L2 (Ω)-inner product on the domain Ω ⊂ R
2 for

f, g ∈ L2 (Ω) is given by

(f, g)
L2(Ω) =

∫

Ω

f(x)g(x)dx . (1)

A feature cp(f) is obtained by taking the inner product of the pth filter ψp ∈
L2 (Ω) with the image f ∈ L2 (Ω),

cp(f) = (ψp, f)
L2(Ω) . (2)
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An image g ∈ L2 (Ω) is equivalent to the image f if they share the same features,
{cp(f)}P

1 = {cp(g)}P
1 , which is expressed in the following equivalence relation

for f, g ∈ L2 (Ω).

f ∼ g ⇔ (ψp, f)
L2(Ω) = (ψp, g)

L2(Ω) for all p = 1, . . . , P. (3)

Next we introduce the Sobolev space of order 2k on the domain Ω,

H
2k (Ω) = {f ∈ L2 (Ω) | |Δ|kf ∈ L2 (Ω)} , k > 0 . (4)

The completion of the space of 2k-differentiable functions on the domain Ω that
vanish on the boundary of its domain ∂Ω is given by

H
2k
0 (Ω) = {f ∈ H

2k (Ω) | f |∂Ω = 0} , k >
1
2

. (5)

Now H
2k,γ
0 (Ω) denotes the normed space obtained by endowing H

2k
0 (Ω) with

the following inner product,

(f, g)
H
2k,γ
0 (Ω)=(f, g)

L2(Ω) + γ2k
�
|Δ|

k
2 f, |Δ|

k
2 g
�

L2(Ω)
=(f, g)

L2(Ω) + γ2k
�
|Δ|kf, g

�
L2(Ω)

,

(6)
for all f, g ∈ H

2k
0 (Ω) and γ ∈ R.

The solution to the reconstuction problem is the image g of minimal H
2k,γ
0 -

norm that shares the same features with the image f ∈ H
2k,γ
0 (Ω) from which

the features {cp(f)}N
1 were extracted. The reconstruction image g is found by

an orthogonal projection, within the space H
2k,γ
0 (Ω), of f onto the subspace V

spanned by the filters κp that correspond to the ψp filters,

arg min
f∼g

||g||2
H

2k,γ
0 (Ω)

= PV f , (7)

as shown in previous work [10]. The filters κp ∈ H
2k,γ
0 (Ω) are given by

κp =
(
I + γ2k|Δ|k

)−1
ψp . (8)

As a consequence (κp, f)
H

2k,γ
0 (Ω) = (ψp, f)

L2(Ω) for (p = 1 . . . P ) for all f . Here
we assumed that f ∈ H

2k (Ω) however, one can get away with f ∈ L2 (Ω) if ψ
satisfies certain regularity conditions. The interested reader can find the precise
conditions and further details in [7].

The two parameters, γ and k, that appear in the reconstruction problem allow
for an interesting interpretation. If Ω=R the fractional operator

(
I + γ2k|Δ|k

)−1

is equivalent to filtering by the classical low-pass Butterworth filter [2] of order
2k and cut-off frequency ω0 = 1

γ . This filter is defined as

B2k

(
ω

ω0

)
=

1
1 + | ω

ω0
|2k

. (9)

A similar phenomena was recently observed by Unser and Blu [20] when study-
ing the connection between splines and fractals. Using this observation we can



58 B. Janssen, R. Duits, and B. ter Haar Romeny
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Fig. 2. The filter response of a Butterworth filter. On the left γ is kept constant and
the filter responses for different k > 0 are shown. On the right the order of the filter,2k,
is kept constant and the filter responses for different γ > 0 are shown.

interpret equation (7) as finding an image, constructed by the ψp basis functions
that, after filtering with the Butterworth filter of order 2k and with a cut-off
frequency determined by γ, is equivalent (cf. equation (3)) to the image f . The
filter response of the Butterworth filter is shown in Figure 3. One can observe
the order of the filter controls how well the ideal low-pass filter is approximated
and the effect of γ on the cut-off frequency.

2.1 Spectral Decomposition

For now we set k = 1 and investigate the Laplace operator on the bounded
domain: Δ : H

2
0 (Ω) �→ L2 (Ω) which is bounded and whose right inverse is given

by the minus Dirichlet operator, which is defined as follows.

Definition 1 (Dirichlet Operator). The Dirichlet operator D is given by

g = Df ⇔
{

Δg = −f
g|∂Ω = 0 (10)

with f ∈ L2 (Ω) and g ∈ H
2
0 (Ω).

The Green’s function G : Ω × Ω �→ R
2 of the Dirichlet operator is given by

{
ΔG(x, ·) = −δx
G(x, ·)|∂Ω = 0 (11)

for fixed x ∈ Ω. Its closed form solution reads

G (x,y) = − 1
2π

log

∣
∣∣
∣
∣
sn(x1 + ix2, k̃) − sn(y1 + iy2, k̃)

sn(x1 + ix2, k̃) − sn(y1 + iy2, k̃)

∣
∣∣
∣
∣

. (12)

Here x = (x1, x2),y = (y1, y2) ∈ Ω and k̃ ∈ R is determined by the aspect
ratio of the rectangular domain Ω , sn denotes the well know Jacobi-elliptic
function [9]. In Appendix A we derive equality (12), and show how to obtain k̃.
Figure 3 shows a graphical representation of this non-isotropic Green’s function
for a square domain (k̃ ≈ 0.1716). Notice this function vanishes at its boundaries



Linear Image Reconstruction by Sobolev Norms on the Bounded Domain 59

and is, in the center of the domain, very similar to the isotropic fundamental
solution on the unbounded domain [5]. In terms of regularisation this means
the Dirichlet operator smoothens inwards the image but never “spills” over the
border of the domain Ω.

Fig. 3. From left to right plots of the graph of x �→ Gx,y, isocontours G(x,y) = c and

isocontours of its Harmonic conjugate H(x,y) = −1
2π

arg
�

sn(x1+ix2,k̃)−sn(y1+iy2,k̃)

sn(x1+ix2,k̃)−sn(y1+iy2,k̃)

�

When the Dirichlet operator as defined in Definition 1 is expressed by means
of its Green’s function, which is presented in equation (12),

(Df) (x) =
∫

Ω

G(x,y)f(y)dy, f ∈ L2 (Ω) , Df ∈ H
2
0 (Ω) (13)

one can verify that it extends to a compact, self-adjoint operator on L2 (Ω). As
a consequence, by the spectral decomposition theorem of compact self-adjoint
operators [21], we can express the Dirichlet operator in an orthonormal basis of
eigen functions. The normalized eigen functions fmn with corresponding eigen
values λmn of the Laplace operator Δ : H

2
0 (Ω) �→ L2 (Ω) are given by

fmn(x, y) =

√
1
ab

sin(
nπx

a
) sin(

mπy

b
) λmn = −

((nπ

a

)2
+

(mπ

b

)2
)

(14)

with Ω = [0, a] × [0, b]. Since ΔD = −I, the eigen functions of the Dirichlet
operator coincide with those of the Laplace operator (14) and its corresponding
eigen values are the inverse of the eigen values of the Laplace operator.

2.2 Scale Space on the Bounded Domain

The spectral decomposition presented in the previous subsection, by (14), will
now be applied to the construction of a scale space on the bounded domain [6] .
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Before we show how to obtain a Gaussian scale space representation of an image
on the bounded domain we find, as suggested by Koenderink [11], the image
h ∈ H

2 (Ω) that is the solution to Δh = 0 with as boundary condition that
h = f restricted to ∂Ω. Now f̃ = f − h is zero at the boundary ∂Ω and can
serve as an initial condition for the heat equation (on the bounded domain). A
practical method for obtaining h is suggested by Georgiev [8] . Now fmn(x, y) is
obained by expansion of

f̃ =
∑

m,n∈N

(fmn, f̃)L2(Ω)fmn , (15)

which effectively exploits the sine transform.
The (fractional) operators that will appear in the construction of a Gaussian

scale space on the bounded domain can be expressed as

|Δ|2kfmn = (λmn)k
fmn , e−s|Δ|fmn = e−sλmnfmn . (16)

We also note that the κp filters, defined in equality (8), are readily obtained by
application of the following identity

(
I + γ2k|Δ|k

)−1
fmn =

1

1 + γ2k (λmn)k
fmn . (17)

Consider the Gaussian scale space representation1 on bounded domain Ω

uΩ
f̃

(x, y, s) =
∑

m,n∈N

e−(λmn)s(fmn, f̃)L2(Ω)fmn(x, y) (18)

where the scale parameter s ∈ R
+. It is the unique solution to

⎧
⎨

⎩

∂u
∂s = Δu
u(·, s)|∂Ω = 0 for all s > 0
u(·, 0) = f̃

. (19)

The filter φp that measures differential structure present in the scale space rep-
resentation uΩ

f̃
of f̃ at a point p with coordinates (xp, yp, sp), such that

(
DnpuΩ

f̃

)
(xp, yp, sp) =

(
φp, f̃

)

L2(Ω)
, (20)

is given by (writing multi-index np = (n1
p, n

2
p))

φp(x, y) =
∑

m,n∈N

e−(λmn)sp (Dnpfmn)(xp, yp) fmn(x, y) , (21)

where we note that

(Dnpfmn) (xp, yp)=

√
1
ab

(mπ

b

)n2
p
(nπ

a

)n1
p

sin
(mπyp

b
+

π

2
n2

p

)
sin

(nπxp

a
+

π

2
n1

p

)
,

x = (x, y) ∈ Ω, xp = (xp, yp) ∈ Ω and np = (n1
p, n

2
p) ∈ N × N.

1 The framework in this paper is readily generalized to α-scale spaces in general (see
e.g. [6]) by replacing (−λmn) by (−λmn)2α.
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2.3 The Solution to the Reconstruction Problem

Now we have established how one can construct a scale space on the bounded
domain and shown how to measure its differential structure we can proceed to
express the solution to the reconstruction problem (recall equations (7) and (8))
in terms of eigen functions and eigen values of the Laplace operator:

PV f̃ =
P∑

p,q=1

Gpq(φp, f̃)L2(Ω)κq =
P∑

p,q=1

Gpqcp(f̃)κq , (22)

where Gpq is the inverse of the Gram matrix Gpq = (κp, κq)H
2k,γ
0 (Ω) and the

filters κp satisfy

κp(x, y) =
∑

m,n∈N

e−(λmn)sp

1 + γ2k(λmn)k
(Dnpfmn)(xp, yp) fmn(x, y) . (23)

This is the unique solution to the optimization problem

arg min
f̃∼g

||g||2
H

2k,γ
0 (Ω)

, (24)

which was introduced in equation (7). Instead of Dirichlet boundary conditions
one can impose Neumann-boundary conditions. In this case the eigenvalues λmn

are maintained, the eigen functions are given by

fmn(x, y) =

√
1

ab(1 + δm0)(1 + δn0)
cos(

nπx

a
) cos(

mπy

b
) . (25)

3 Implementation

The implementation of the reconstruction method that was presented in a contin-
uous Hilbert space framework is completely performed in a discrete framework
in order to avoid approximation errors due to sampling, following the advice:
“Think analog, act discrete!” [19].

First we introduce the discrete sine transform FS : l2(IDN ) �→ l2(IDN ) on a
rectangular domain IDN = {1, . . . , N − 1} × {1, . . . , M − 1}

(FSf) (u, v) = − 2√
MN

M−1�
i=1

N−1�
j=1

sin
�

iuπ

M

�
sin

�
jvπ

N

�
� �� 	

(ϕi⊗ϕj)(u,v)

f(i, j) , (26)

with (u, v) ∈ IDN . Notice that this unitary transform is its own inverse and that

(ϕi, ϕj)l2(ID
N ) = δij , (27)

so {ϕi ⊗ ϕi | i = 1, . . . , M − 1
j = 1, . . . , N − 1 } forms an orthonormal basis in l2(IDN ).
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The Gaussian scale space representation u
ID

N

f (i, j, s) of an image f ∈ l2(IDN )
introduced in the continuous domain in equality (18) now reads

u
ID

N

f (i, j, s)=
(
esΔf

)
(i, j)=− 2√

MN

M−1∑

u=1

N−1∑

v=1

f̂(u, v)e−s
�

u2

M2 + v2

N2

�
π2

(ϕu ⊗ ϕv) (i, j)

where f̂(u, v) = (FSf) (u, v). Differential structure of order np = (n1
p, n

2
p) ∈

N × N at a certain position (ip, jp) ∈ IDN and at scale sp ∈ R
+ is measured by

�
Dnpu

ID
N

f

�
(ip, jp, sp) = − 2√

MN

M−1�
u=1

N−1�
v=1

f̂(u, v)e
−sp

�
u2

M2 + v2

N2

�
π2

�uπ

M

�n1
p
�vπ

N

�n2
p

sin
�

ipuπ

M
+

π

2
n1

p

�
sin

�
jpvπ

N
+

π

2
n2

p

�
.

The filters φp, with p = (ip, jp, sp,np) a multi-index, are given by

φp(i, j, s) = − 2√
MN

M−1�
u=1

N−1�
v=1

e
−sp

�
u2

M2 + v2

N2

�
π2

(ϕu ⊗ ϕv) (i, j)

�uπ

M

�n1
p
�vπ

N

�n2
p

sin
�

ipuπ

M
+

π

2
n1

p

�
sin

�
jpvπ

N
+

π

2
n2

p

� (28)

and the filters κp corresponding to φp read

κp(i, j, s) = − 2√
MN

M−1�
u=1

N−1�
v=1

e
−sp

�
u2

M2 + v2

N2

�
π2

1 + γ2k
�

u2

M2 + v2

N2

�k
(ϕu ⊗ ϕv) (i, j)

�uπ

M

�n1
p
�vπ

N

�n2
p

sin
�

ipuπ

M
+

π

2
n1

p

�
sin

�
jpvπ

N
+

π

2
n2

p

�
.

(29)

An element Gpq = (φp, φq)l2(ID
N ) of the Gram matrix can, because of the

orthonormality of the transform, be expressed in just a double sum,

Gpq = − 2√
MN

M−1�
u=1

N−1�
v=1

e
−(sp+sq)

�
u2

M2 + v2

N2

�
π2

1 + γ2k
�

u2

M2 + v2

N2

�k

�uπ

M

�n1
p
�vπ

N

�n2
p

sin
�

ipuπ

M
+

π

2
n1

p

�

sin
�

jpvπ

N
+

π

2
n2

p

��uπ

M

�n1
q
�vπ

N

�n2
q
sin

�
iquπ

M
+

π

2
n1

q

�
sin

�
jqvπ

N
+

π

2
n2

q

�
.

In order to gain accuracy we implement equality (3) by summing in the reverse
direction and multiplying by γ2k. Then we compute

g̃ =
P∑

p,q=1

Gpqγ2kcp(f)φq (30)
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and find the reconstruction image g by filtering g̃ by a discrete version of the 2D
Butterworth filter of order 2k and with cut-off frequency ω0 = 1

γ .
The implementation was written using the sine transform as defined in equal-

ity (26) where we already explicitly mentioned the transform can be written as

(FSf) (u, v) = − 2√
MN

M−1∑

i=1

N−1∑

j=1

(ϕi ⊗ ϕj) (u, v)f(i, j) . (31)

Now we define the cosine transform FS : l2(INN ) �→ l2(INN ) on a rectangular
domain INN = {0, . . . , N + 1} × {0, . . . , M + 1} in a similar manner

(FCf) (u, v) =
M+1∑

i=0

N+1∑

j=0

(ϕ̃i ⊗ ϕ̃j) (u, v)f(i, j) . (32)

where(ϕ̃i ⊗ ϕ̃j) (u, v) = cos
(

π(i+ 1
2 )u

M

) √
2−δu0

M cos
(

π(j+ 1
2 )v

M

)√
2−δv0

N . These co-

sine basis functions {ϕ̃i ⊗ ϕ̃j | i = 0, . . . , M + 1
j = 0, . . . , N + 1 } form an orthogonal basis in

l2(INN ) and can thus be used to transform the reconstruction method that was
explicitly presented for the Dirichlet case into a reconstruction method based on
Neumann boundary conditions.

4 Experiments

We evaluate the reconstruction by applying our reconstruction method to the
problem that was presented in the introduction. The upper row of Figure 4 shows,
from left to right, the image from which the features were extracted, a recon-
struction by the unbounded domain method [10] (parameters: γ = 50, k = 1)
and a reconstruction by the newly introduced bounded domain method using
Dirichlet boundary conditions (parameters: γ = 1000, k = 1). Features that
were used are up to second order derivatives measured at the singular points
[4] of the scale space representation of f . One can clearly see that the struc-
ture that is missing in the middle image does appear when the bounded domain
method is used. The bottom row of Figure 4 shows reconstructions from sec-
ond order differential structure obtained from the singular points of the scale
space of the laplacian of f . On the left the unbounded domain method was
used with γ = 100 and k = 1, this leads to a reconstructed signal that has
“spilled” too much over the border of the image and therefore is not as crisp
as the reconstruction obtained by our newly proposed method using Dirichlet
boundary conditions (parameters: γ = 1000 and k = 1). Due to this spilling the
Gram matrix of the bounded domain reconstruction method is harder to invert
since basis functions start to become more and more dependent, this problem
gets worse when γ increases. Our bounded domain method is immune to this
problem.
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Fig. 4. Top left: The image f from which the features were extracted. Top center and
right: reconstruction from second order structure of the singular points of f using the
unbounded domain method[10] (parameters: γ = 50, k = 1) and the bounded domain
method (parameters: γ = 1000, k = 1). Bottom row: unbounded domain (left) and
bounded domain (right) reconstruction from singular points of the laplacian of f with
k = 1 and γ set to 100 and 1000 respectively.

5 Conclusion

In previous work we considered the image as compactly supported in L2(R2)
and we used Sobolev norms on the unbounded domain including a smoothing
parameter γ > 0 to tune the smoothness of the reconstruction image. Due to
the assumption of compact support of the original image components of the
reconstruction image near the image boundary are too much penalized. There-
fore we proposed to minimize Sobolev norms only on the actual image domain,
yielding much better reconstructions (especially for γ � 0). We also showed
an interpretation for the parameter γ and the order of the Sobolev space k in
terms of filtering by the classical Butterworth filter. In future work we plan to
exploit this interpretation by automatically selecting the order of the Sobolev
space.
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A Closed from Expression of the Green’s Function of the
Dirichlet Operator

The Green’s function G : Ω × Ω �→ R
2 of the dirichlet operator D (recall De-

finition 1) can be obtained by means of conformal mapping2. To this end we
first map the rectangle to the upper half space in the complex plane. By the
Schwarz-Christoffel formula the derivative of the inverse of such a mapping is
given by

dz

dw
= −1

k̃
(w − 1)−

1
2 (w + 1)−

1
2 (w − 1

k̃
)−

1
2 (w +

1
k̃

)−
1
2 =

1√
1 − w2

1
√

1 − k̃2w2
,

where w(±1/k̃) = ±a + ib. As a result

z(w, k̃) =
∫ w

0

dt
√

1 − t2
√

1 − k̃2t2
⇔ w(z) = sn(z, k̃),

where sn denotes the well-known Jacobi-elliptic function. We have sn(0, k̃) = 0,
sn(±a, k̃) = ±1, sn(±a + ib, k̃) = ±(1/k̃) and sn(i(b/2), k̃) = i/

√
k̃, where the

elliptic modulus k̃ is given by

(b/a)z(1, k̃) = z(1,

√
1 − k̃2).

For example in case of a square b/a = 2 we have k̃ ≈ 0.1715728752.
The next step is to map the half plane onto the unit disk B0,1. This is easily

done by means of a linear fractional transform

χ(z) =
z − sn(y1 + i y2, k̃)

z − sn(y1 + i y2, k̃)
.

To this end we notice that |χ(0)| = 1 and that the mirrored points sn(y1+i y2, k̃)
and sn(y1 + i y2, k̃) are mapped to the mirrored points χ(sn(y1 + i y2, k̃)) = 0
and χ(sn(y1 + i y2, k̃)) = ∞.

Now define F : C → C and F : Ω → B0,1 by

F = χ ◦ sn(·, k̃), i.e. F (x1 + i x2) = sn(x1+i x2,k̃)−sn(y1+i y2,k̃)

sn(x1+i x2,k̃)−sn(y1+i y2,k̃)
F(x1, x2) = (Re(F (x1 + i x2)), Im(F (x1 + i x2)))T ,

(33)

then F is a conformal mapping of Ω onto B0,1 with F(y) = 0. As a result we
have by the Cauchy-Riemann equations

ΔF(x) = |F′(x)|−1Δx, (34)

2 Our solution is a generalization of the solution derived by Boersma in [1]
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where the scalar factor in front of the right Laplacian is the inverse Jacobian:

|F′(x)|−1 = (detF′(x))−1 =

((
∂F1

∂x
(x)

)2

+
(

∂F2

∂x
(x)

)2
)−1

= |F ′(x1 + ix2)|,

for all x = (x1, x2) ∈ Ω.
Now G̃(u,0) = −1

2π log ‖u‖ is the unique Greens function with Dirichlet bound-
ary conditions on the disk B0,1 = {x ∈ R

2 | ‖x‖ ≤ 1} with singularity at 0 and
our Green’s function is given by G = G̃ ◦ F, i.e.

G(x,y)=− 1
2π

log |(χ ◦ sn(·, k̃))(x1 + i x2)|=− 1
2π

log






sn(x1 + i x2, k̃) − sn(y1 + i y2, k̃)

sn(x1 + i x2, k̃) − sn(y1 + i y2, k̃)






 .
(35)
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