

Interval timed Petri nets and their analysis

Citation for published version (APA):
Aalst, van der, W. M. P. (1991). Interval timed Petri nets and their analysis. (Computing science notes; Vol.
9109). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/fb8e2994-f905-4b2a-a67a-6c978cec2dc3

Interval Timed Petri Nets
and their analysis

by

W.M.P. van der Aalst

91/09

May, 1991

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 ME EINDHOVEN
The Netherlands
All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Interval Timed Petri Nets and their analysis

W.M.P. van der Aalst*
Eindhoven University of Technology

Dept. of Mathematics and Computing Science

Abstract

In this paper we present a new timed Petri Net model, called Interval Timed
Petri Net (ITPN). Tokens have a timestamp and the transitions determine a delay
described by an· interval. This model allows for the representation of time constraints.
A number of analysis methods are presented, all producing safe bounds for the time
behaviour of a net. With this approach it is possible to verify dynamic properties of
the systems modelled by these nets. TWs is very useful when modelling time-critical
systems, such as real-time (computer) systems and just-in-time manufacturing sys­
tems. We have developed a software packa:ge called ExSpect. This package contains
a tool, called IAT, to analyse these nets using the techniques presented in this paper.

'This research is supported by IPL-TUE/TNO

1

Contents

1 Introduction

2 Interval Timed Petri Nets
2.1 Semantics of an ITPN
2.2 Interesting questions

3 Method ATCFN

4 Method MTSRT

5 Other analysis methods
5.1 Method CFNRT.
5.2 Method SSPAT

6 Some examples
6.1 The reader/writers problem
6.2 A production/assembly system
6.3 A job-shop system

7 Concluding remarks

A Bags

B Assignment problem

C Relation between ITPN (ITEG) and activity networks

2

3

4
5
9

12

16

23
24
28

34
34
38
42

46

48

48

51

1 Introduction

Petri Nets ([Petri 80]) are often used to describe and analyse concurrent systems. Although
the basic Petri Net model does not incorporate the concept of time, many researchers tried
to include timing into their models. These models are called Timed Petri Nets (TPN)
models.
In nearly all of these models time is in transitions and the delay of such a transition is spec­
ified by some distribution. Nets belonging to these models are the so-called stochastic Petri
Nets. Two widespread models are the SPN model by Florin and Natkin ([Florin et al. 82])
and the GSPN model by Ajmone Marsan ([Marsan et al. 84]). They are mainly used for
performance analysis.
Analysis of stochastic Petri Nets is possible (in theory) because under certain conditions the
reachability graph can be regarded as a Markov chain or a semi-Markov process. However
these conditions are severe: all firing delays have to be sampled from an exponential
distribution or the topology of the net has to be of a special form ([Mars an et al. 85]).
This is the reason many researchers resorted to using simulation to study the behaviour
of the net. Other researchers use deterministic delays to model time (see for example
[Zuberek 80]).
In this paper we present a new model called the Interval Timed Petri Net model. In this
model firing delays are described by an interval and time is associated with tokens instead
of transitions. We restrict ourselves to specifying the upper and lower bounds of the firing
delays to overcome the disadvantages of stochastic Petri Nets. However the expressive
power is increased considerably compared to deterministic timed Petri Nets. A similar
approach was used in [Merlin 74] and [Berthomieu et al. 83], where the enabling time of a
transi tion is specified by a minimal and a maximal time.
The Interval Timed Petri Net model has a great descriptive power. Nevertheless the model
allows for various kinds of analysis. In this pa,per we present four new analysis techniques.
Our first analysis technique produces upper and lower bounds for the time it takes to reach
a certain place. There is some resemblance with calculating the critical path in an activity
network. The second analysis technique generates a "reduced" reachability tree to answer
a variety of questions such as liveness, boundedness and upper and lower bounds for the
arrival time of the n-th token in a place. .
The other two analysis techniques are used to analyse Interval Timed Event Graphs, a
subclass of ITP-nets.
Note that these analysis methods are used for performance evaluation and for the verifi­
cation for dynamic properties. Answering questions about the dynamic behaviour is very
important in a number of fields, for instance real-time computer systems and just-in-time
manufacturing systems. In this paper we will model and analyse three examples with
Interval Timed Petri Nets.
We have developed a software tool, called IAT (ITPN Analysis TooD, to analyse these nets.
At the moment IAT uses the first three analysis techniques. IAT is part of the CASE-tool
ExSpect ([Hee et al. 89], [Aalst et al. 91]), which is based on a high level Petri Net model
like the ePN-model ([Jensen 87]). We will often refer to this tool as ExSpect/IAT. The

3

ITPN-model is a subset of the ExSpect-model in the sense that tokens are colourless. One
of the advantages of this intergration is the fact that we can use the graphical interface of
ExSpect to construct or to generate Intervai Timed Petri Nets.

2 Interval Timed Petri Nets

Before we describe the analysis methods we give a formal description of the ITPN model
and the type of questions we want to answer for these nets.

A Petri Net is a directed labeled bipartite graph with two node types called places and
transitions. The nodes are connected via labelled arcs. Connections between two nodes of
the same type are not allowed. Places are represented by circles, transitions by bars and
directed arcs by lines. A place p is called an input place of a transition t if there exists a
directed arc from p to t. A place p is called an output place of a transition t if there exists
a directed arc from t to p. Places may contain zero or more tokens, drawn as black dots.
The number of tokens may change during the execution of the net. A transition is called
enabled if there are enough tokens on each of its input places. In other words a transition
is enabled if all input places contain (at least) the specified number of tokens. An enabled
transition can fire. Firing a transition means consuming tokens from the input places and
producing tokens on the output places.

The Interval Timed Petri Net model deviates from most existing models in two ways.
Unlike traditional Petri Nets we attach a timestamp to every token. This timestamp
indicates the time it becomes available. This timing concept has been adopted from
[Ree et a1. 89).
The enabling time of a transition is the maximum timestamp of the tokens to be consumed.
Because transitions are eager to fire, the transition with the smallest enabling time will fire
first. If, at any time, more than one transition is enabled, then any of the several enabled
transitions may be "the next" to fire. This leads to a non-deterministic choice if several
transitions have the same enabling time.
Firing is an atomic action, thereby producing tokens with a timestamp of at least the firing
time. The difference between the firing time and the timestamp of such a produced token
is called the firing delay.
The second difference with most existing net models is the fact that this delay is specified
by a non negative interval instead of a distribution or a fixed value. In other words the
delay of a token is sampled from the corresponding interval.

Our formalisms are based on bag theory, an extension of set theory. If you are not familiar
with bags, we suggest you read appendix A.

Definition 1 (ITPN)
An ITPN is defined by a five tuple, ITPN = (P, T, 1,0, T S) with:

4

• P, the set of places

• T, the set of transitions

• lET -t ID(P), the input places of transitions

• 0 E T -t ID(P x I NT), the output places of transitions with the corresponding
delay intervals

• TS, the time set (a subset of 1R+ U {OJ)

• I NT = {(tl, t2) E T S x T S I tl ::; t2}, the set of intervals

Function I gives the multiplicity of the input places for each transition. If P = {PI,P2,Pa},
It(PI) = 2, It(P2) = 1 and It(pa) = 0 (or It = (PI,PI,P2]) then transition t is enabled if
there are at least two tokens in PI and one in P2.
o is also a function over T. If t E T then Ot is the bag of tokens produced with the
associated delay interval. For example, if Ot = [CPt, (1, 2)), (P2, (2,4))], then t produces
two tokens: one for place PI with a delay between 1 and 2 and one for place P2 with a delay
between 2 and 4.
To simplify notations we sometimes use the .-operator. For all t E T and pEP: .t =
{k E PI k E I,}, t. = {k E P I 3xEINT(k,x) E Ot},.p = {v E T 13xEINT(p,X) E Ov} and
p. = {v E Tip E Iv}.

Pa
------~ .. ~----~

[0,0]

PI P4

Figure 1: An ITPN for a queuing system

Figure 1 shows an ITPN for a queuing system with two servers. Service times are between
2 and 3 minutes. In this example: P = {PI, P2,Pa, P4}, T = {tl, t 2 }, It, = (PI,Pa], It, = (P2]
and Ot, = [(p2,(2,3))], Ot, = [(Pa,(O,O)), (P4, (0,0))].

2.1 Semantics of an ITPN

We describe the semantics of an ITPN by a transition system. This transition system is
also used to prove the correctness of our second analysis method (see section 4),. This
brings on some heavy notation, so the casual reader is advised to skim through this section

5

and section 4. A transition system is a pair (8, R) where 8 is the state space and R ~ 8 x 8
the transition relation. If SI, Sz E 8 the SI Rsz means that a transition from state SI to S2

is possible.
In the transition system describing an ITPN we attach an unique label to every token (in
addition to the timestamp). I d is an infinite set of token labels. The state space of the
transition system is 8 = I d f> (P x T 8) 1. So, in fact, a state s E S is a set of triples
representing identity, location and timestamp, and the first one is unique. If s E S then
dome s) is the set of token labels corresponding to the tokens in the net. If i E dome s)
then sCi) is a pair representing the position and timestamp of the corresponding token.
Note that we speak about state rather than 'marking because a token has a position and a
timestamp.
To switch between the bag and the set representation, we introduce the functions BS and
S8.

Definition 2
If A is a set then we define BS E JB(A) --+ (Id f> A) and SB E (Id f> A) --+ JB(A) such
that:

V'Eldf.A SB(s) = A.EA#{i E domes) I sCi) = a}

V'EB(A)S8(8S(s» = s

It is easy to verify that these functions exist (' Axiom of Choice'). To sample a delay from
the delay interval specified by 0 we introduce the concept of specialisation. But let us start
with some useful notations; if q E P x TS then place(q) = 1!'1(q) Z and time(q) = 1!'z(q). If
71 E P x I NT then place(71) = 1!'1(71) and time(71) = 1!'z(71).

Definition 3 (Specialisation)
For s E Id f> (P x TS) and s E Id f> (P x INT):
s <l s == there exists a bijective function f E dome s) --+ domes) with: 3

ViEdom(,) place(s(i» = place(s(f(i») II time(s(i» E time(s(f(i»)

If s <lS then every token in s corresponds to a token in s (and vica versa) such that they are
in the same place and the timestamp of the token in s is an element of the time interval
of the token in s.

The transition system
An ITPN = (P,T,I,O,TS) defines a transition system (S,R), with a state space S and a
transition relation R:

• S = Id f> (P x TS), the state space

1 ArB is the set of aU partial functions from set A to set B.
2If", = ("'1,"'2, ""'n) E A, X A2 x .. X An then for all i E l..n 11';("') = "';.
3If", E TS and v E INT then'" E v '" 11'1(V) ::; "'::; 11'2(V).

6

• E = T x S x S, event set

• AE(s) =

{ (t, qin, qout) EEl qin ~ S /\

It = ApEP #{i E dOm(qin) I place(s(i)) == p} /\

'ViEdom(q'n) 'VjEdom(s)\dom(q'n) placer s(i)) == placer s(j)) => timer s(i)) :s; timer s(j))
dom(qou,) n domes) = 0 /\
qout <J 8S(Ot) }

, set of allowed events in state s E S

• et(e) = maX;Edom(~2(e)) time(1l"2(e)(i)), event time of e E E

• tt(s) == min"EAE(s) et(e), transition time in s E S

• scaler q, x) = AiEdom(q) (place(q(i)), timer q(i))) + x), scales timestamps in q E S with
x E TS

• Finally the transition relation R is defined by: 4

We call the firing of a transition an event. An event changes a state into a new state,
described by the transition relation. An event e is a triple indicating the transition that
fires (ll'l(e)), the tokens consumed (1l'2(e)) and the tokens produced (1l'3(e)). AE(s) is the
set of allowed events in state s. Such an event satisfies 5 conditions. The first conditions
is about the requirement that consumed tokens have to exist. The transition that fires
consumes the correct number of tokens from the input places (condition (2)). Tokens are
consumed in order of their timestamps (condition (3)). Produced tokens bear a unique
label, condition (4) checks whether the label of a produced token does not exist already.
The delay of a produced token is sampled from the corresponding delay interval (condition
(5)). Note that we use the specialisation concept to state that the delays are sampled from
the delay intervals of Ot. The function 8S is used to convert the bag Ot into a partial
function (i.e. 8S(O,) E S).
The event time of an event e is the maximal timestamp of the tokens consumed (et(e)).
The transition time of a state is the minimum of the event times of the allowed events. If
there are two or more events with an event time equal to the transition time, then these

4If f E A f+ B and X ~ A then frx =).;Exndom(l)f(i).

7

(1)
(2)

/\ (3)
(4)
(5)

events are in conflict. These conflicts are resolved non-deterministically. The timestamps
of the produced tokens are rescaled using the function scale.

Our model has a great descriptive power compared to other TPN-models. There are two
notable differences with conventional Timed Petri Net models.

The first difference is the fact that time is in tokens and each token bears an unique
label. This we adopted from [Hee et al. 91]. This results in a transparent semantics and
a very compact state representation. Firing is an atomic action; if a transition fires it is
immediately available for a new firing (if it is enabled). The produced tokens are unavailable
for some period specified by the delay interval, this can be interpreted as the time it takes
before a token arrives in the output place.
It is also possible to model a transition being busy for a while. We call such a transition a
timed transition, it removes tokens, withholds them for some time before tokens appear in
the output places (see [Zuberek 80]). Note that a busy (timed) transition cannot accept
new tokens. If we think of a timed transition as a single server in a queuing network
then a transition in the ITPN model represents an infinite server. Figure 2 shows how to
model a timed transition. The timed transition (represented by a box) is replaced by two
transitions and two places. Transition tstart removes tokens from the input places and puts
a token in the place t busy with a delay representing the time the transition is busy. There
is always a token in t busy or in t free (but not in both) indicating whether the transition is
busy of free. Transition tend represents the termination of the firing. Note that tokens in
the original places are always available (i.e. they have a timestamp smaller or equal to the
previous transition time).
This construction shows that time in tokens is a very powerful concept. A similar concept
was used in [Sifakis 78J where time is associated with places.

PI

t • t free

d

pz

Figure 2: Construction of a timed transition (left) using two ITPN transitions (right)

8

The second difference is the fact that the firing delay is non-deterministic and non-stochastic.
Specifying the delay by means of an interval rather than deterministic or stochastic vari­
ables allows for the representation of time constraints. This is very important when mod­
elling time-critical systems. Examples of such systems are real-time (computer) systems
and just-in-time manufacturing systems.

2.2 Interesting questions

Reachability is the basis for studying the behaviour of a system. Given a transition system
(S, R) describing the semantics of an ITPN, a state S2 is said to be immediate reachable
from SI if and only if slRs2.

Definition 4 (Reachability)
For s E S:
R(s) = {s E S I sRs} is the one step reachability set,
Rn(s) = {s E S I s~s} is the n-step reachability set of s E S.
RS(s) = UnElN Rn(s) 5 is the set of all states that are reachable from s.
ST = {s E S I R(s) = 0} is the set of terminal states.

The process of an ITPN is described by the set of all possible paths (given a set of initial
states). A path is a sequence of states such that any successive pair belongs to the transition
relation. A path starts in an initial state and either it is infinite or it ends in a terminal
state.

Definition 5 (Process)
If A c;;: S is a set of initial states then:

I1(A)={aElNftS I OEdom(a) II aoEA

II ViEdom(u)\{o} (i -1) E dom(a) II ai-lRai

II ViEdom(u) (VjEdom(u)i :s; i) '* ai E ST }

represents the process (or behaviour) of the ITPN. It is the set of all possible paths for
an ITPN with an initial state in A. TI is also defined for a single initial state s E S;
TI(s) = Il({s}).

For all paths a E Il(A) and n E IN; af {k E IN I 0 :s; k < n} is called a firing sequence (or
trace).
A path is a sequence of states. Consider the path so, S1, .. Si-l, Si, Si+l, ... At time tt(Si_l)
an event occurred transforming state Si-l into Si' At time ti(Si) an event occurred trans­
forming state Si into Si+1' Between tt(Si-l) and ti(Si) the system was in state Si. We are
often interested in the state at a certain moment in time.

"IN = {O, 1, 2, .. }

9

Definition 6 (State function)
If A ~ S and a E Il(A) then F(a) E TS ---+ !B(P) with

'IxETS F(a)(x) = amin{;Edom(u) I x~tt(Ui)}

is the state function of path a.

Figure 3 shows the relation between a path and the corresponding state function.

state

a4 •
a3

a2 *
a, ,-

ao

time

Figure 3: Relation between a path and the corresponding state function

Sometimes we are only interested in the position of a token and not in its timestamp. This
leads to the definition of the marking of a state. A marking is denoted as a multi set of
place indices. Function M E S ---+ !B(P) gives the marking of each state. If s E S then
M(s) = ApEP #{i E domes) I place(s(i» = p}. For example if s E Sand pEP then
M(s)(p) = 3 means that there are three toke)ls in place p.

If one models systems where time aspects are important one is often interested in char­
acteristics like throughput and response times. This is the reason we defined the earliest
and latest first arrival time for a place in the net. To define these we need the operation
place projection (t), returning the bag of timestamps of tokens in a certain place p given
a state s. For s E S, p E Pi s ~p = AxETS #{i E domes) I sCi) = (p,x)}. So, mines ~p) is
the smallest timestamp of all tokens in place p.

Definition 7 (EAT, .cAT)
Given an ITPN, a state s E S and a place pEP we define:

EAT(s,p)

.cAT(s,p)

minuEll(s)miI1;Edom(u) mine a; ~p)
- maxuEll(s)miI1;Edom(u) min(a; ~p)

for the earliest arrival time and the latest first arrival time respectively.

10

Note that EAT(s,p) and CAT(s,p) are only defined for the first token to arrive in p. It
is possible to generalise these arrival times for a set of initial states A ~ Sand n tokens:

EAT n(A,p) - min"ETI(A)miniEdom(d) minn(ai tp)

CAT n(A,p) = maxdEn(A)miIl;Edom(d) minn(ai tp)

where minnb = minbCb A #b=n(max b).
If a bag b E lB(T S) -contains at least n elements then minnb is the nth timestamp in the
bag (selected in ascending order) otherwise minnb is infinite.
If EATn(A,p) :s; x then there exists a path'starting in a state sEA that visits a state
with at least n tokens in p with a timestamp less or equal to x. If CATn(A,p) 2:: x then
there exists a path such that all states visited by this path do not have n tokens in p with a
timestamp smaller than x. If p is a sink place (i.e. p. = 0) then EAT n(A, p) is the earliest
nth arrival time and CATn(A,p) is the latest nth arrival time.
We use EAT and CAT to measure things like throughput times and response times.
Another interesting characteristic of a system is the utilisation of a resource; for example the
occupation rate of a machine or the stock level in a distribution centre. This characteristic
is closely related to the number of tokens in a certain place during the execution of the
net.

Sometimes it is useful to know the maximum number of tokens in a place. A place pEP is
K -bounded in s E S if the number of tokens in p cannot exceed an integer K. More formally
"IsERS(8) #(8 tp) :s; K. A net is called K-bounded in s E S if all places are K-bounded in
s. Nets that are I-bounded are called safe. Places are often used to represent buffers. By
verifying that the net is bounded or safe, it is guaranteed that there will be no overflows
of the buffers, no matter what firing sequenc~ is taken.

We are also interested in the average number of tokens in a place. Because our model is
non-deterministic we define the average number of tokens in a place given a path.

Definition 8 (U)
If s E S and a E II(s), pEP and t E TS then

U(a,p,t)(x) = ~ l M(F(a)(x»(p) A(dx)

is the average number of tokens in p during [0, tl, where A is the Lebesque measure.

Now we are able to define a lower and an upper bound for the occupation rate of a place.

Definition 9 (COn, HOn)
If s E S, PEP and t E TS then we define:

COn(s,p,t) = min"En(8) U(a,p,t)

HOn(s,p, t) = maXdEn(8) U(a,p, t)

for the lowest occupation rate and highest occupation rate respectively.

11

Given an initial state s the average number of tokens in p during [0, tJ is between COR(s, p, t)
and HOR(s, p, t). This allows us to analyse logistical concepts like machine utilisation and
stock levels.

A net is said to be monotonous for an initial state s E S if the time in the net is always
increasing. Sometimes this property is too strong. Thus, we relax the liveness condition
and define livelock free. A net is livelock free for an initial state if the time in the net is
increasing or a terminal state is encountered. If the execution of the net always stops after
a number of events then we say that the net is dead. A net is progressive if any time from
T S can and will be reached. Because progressiveness is a new concept we give a formal
definition.

Definition 10
For an initial state s E S an ITPN is said to be progressive in s if and only if

With Interval Timed Petri Nets one is able to model a large variety of systems. The major
strength of these nets is the natural representation of concurrency and timing aspects.
However modelling itself is of little use. Analysis of the modelled system should be the main
goal. Analysis techniques help the modeller to gain insight into the dynamic behaviour of
the system.
In this paper we will present four analysis techniques for ITPN.

3 Method ATCFN

The first analysis method we present is called Arrival Times in Conflict Free Nets (ATCFN).
Suppose we have a conflict free6 progressive ITPN where all input arcs have multiplicity 1.
In this case we give a linear time (in the size of the net) algorithm to find EAT and CAT
given a place p and an initial state s. If we consider an ITPN that does not satisfy these
restrictions (conflict free, progressive, multiplicity 1) then the results of this algorithm can
be interpreted as lower bounds for £AT and CAT.

There is some similarity with "the Dijkstra algorithm" to calculate the shortest path
([Dijkstra 59]) and the calculation of earliest event times in activity networks (CPM,PERT)
([Price 71]). It is in fact an extension with two node types: transitions and places. See
appendix C for more information on this subject.

To describe the algorithm we have to quantify the relation between a transition and an
output place.

6 A net is conflict free if for all pEP; #(po) ~ 1.

12

Definition 11 CDmin, Dmax)
Given an ITPN, a transition t and a place p:

Dmin(t,p) _ min{x I (p, (x,y)) E O,}

Dmax(t,p) _ min{y I (p, (x,y)) E Ot}

Dmin(t,p) (Dmax(t,p)) is the minimal (maximal) time between the firing of t and the
arri val of the first token in p corresponding to this firing. An interpretation of Dmin (t, p)
(Dmax(t,p)) is the minimal (maximal) distance between a transition t and a place p.

First we consider the algorithm to calculate fAT given an initial state s E S. In this
algorithm we assign a label to every place. There are two kinds of labels; permanent and
tentative labels. A label has a (time) value indicating the earliest arrival of the first token
in the corresponding place.
We represent the set of places bearing a permanent label by Xp and the set of places
bearing a tentative label by Xt. The value of a label is given by dmin . For a place p with a
permanent label, dmin(p) is the earliest arrival time of a token in p. If p EXt then dmin(p)
is the earliest arrival time found so far.

Algorithm

step 1 Assign a tentative label to every place (Xt == P, Xp == 0). For every place p, the
(time) value is set to the smallest timestamp of the tokens initially present in p. If,
initially, there are no tokens in p then the value of the label is set to 00. In other
words: amin(p) == mines tp).

step 2 If there are no places with a tentative label and a finite value then terminate.
Otherwise select a place p with a tentative label and the smallest value (p E X t and
dmin(p) == min{dmin(l) II E X,}). Declare the label of p to be permanent instead of
tentative.

step 3 Consider all transitions t satisfying the following conditions: p is an input place of
t and all input places bear a permanent label (t E p. and .t ~ Xp).

For every t consider all output places k that bear a tentative label (k E (t.) n Xt).
If the value of the label attached to k is greater then the sum of the value of the
label attached to p and Dmin(t, k) then change the value of the label attached to k
to dmin(p) + Dmin(t, k).

If all transitions t with the corresponding output places k have been considered go
to step 2.

Alternatively we can give a more compact description of the algorithm using pseudo-code.

13

input ITPN,8

X,:= P;
Xv:=0;
for pEP do dmin(p) = mindp end;

while min{ dmin(!) II EX,} < 00

do
select p E X, with dmin(p) = min{d"'in(!) lIE Xt};
X, := X, \ {p};
Xp :== Xv U {p};
for t E {v E p. I • v ~ Xv}

do
for k E (t.) n X,

do
dmin(k) :== dmin(k) min (dmin(p) + Dmin(t, k));
end;

end;
end;

output X" Xv, dmin

The algorithm to calculate £AT is similar: Dmin and dmin are replaced by Dmax and dmax.

Theorem 1
For a conflict free, progressive ITPN where all input arcs have multiplicity 1, a place pEP
and an initial state s E S:

d"'in(p) == EAT(s,p)
dmax(p) _ CAT(s,p)

Proof.
We prove this theorem by showing that there exists an invariant and a termination argu­
ment. The outer loop in the algorithm satisfies four invariant relations:

Q1: Xv U X, = P and Xv n X, == 0

Q2: VkEXp VIEX, dmin(k) ::; dmin(!)

Q3: VkEXp dmin(k) == EAT(s,k)

Q4: VkEX, dmin(k) == (min 8 h) min (min •• T maxIE.vdmin(l) + Dmin(v, k))
.-u~Xp

14

It is easy to show that these invariants hold after initialisation.
If an element p is transferred form X, to Xp then Q1 still holds and because p is a minimal
element Q2 also holds.
Q3 also holds because dmin(p) = EAT(s,p), this follows from Q2,Q3 and Q4. To prove
this observe the subexpression (minuET maxi Eo. dmin(l) + Dmin(v, k)) of Q4. Because all

.tJ~Xp

input places I are permanent, ~in(l) = EAT(s,l) (use Q3). It is sufficient to consider
only transitions with permanent input places because all transitions having a tentative
input place do not fire before dmin(p) (use Q2). Furthermore, a transition v will fire at its
enabling time because the net is conflict free and progressive. Therefore this subexpression
evaluates to the smallest possible timestamp of a token in p produced by any transition.
If the smallest possible timestamp of a token in p was not produced by a transition then it
was initially there; EAT(s,p) = (min s~p). Using Q4 this implies that dmin(p) = EAT(s,p)
(i.e. Q3 holds).
Invariant Q4 is violated by the transfer of p from X, to Xv. This is repaired by the two
inner for loops.
The algorithm terminates because the number of elements in X, is decreasing. The re­
maining places in X, are not reachable.
An analogous proof holds for the upper bound of the first arrival.
o

This theorem tells us that the algorithm can be used to calculate EAT and CAT for a
restricted class of nets. A serious restriction is the fact that conflicts between transitions
are not allowed. If there are conflicts in the net, for example to model shared resources,
the algorithm can give incorrect results. It is however possible to model certain kinds of
parallelism and synchronisation without having conflicts.
If the ITPN does not satisfy the conditions mentioned in theorem 1 then dmin(p) S
fAT(s,p) and dmax(p) S CAT(s,p) (for an arbitrary ITPN a place p and an initial state
s E S). In other words: the algorithm produces lower bounds for fAT and CAT. For an
arbitrary net, the first token in place p does not arrive before d>nin(p) and it is possible to
construct a firing sequence where the first token does not arrive before dmax(p).

The most serious drawback is that this approach only produces statements about the arrival
time of the first token in a place. In general we are interested how the system performs
under a specific workload and therefore equally interested in the subsequent tokens. We
also want to verify dynamic properties such as Iiveness and boundedness. This is the reason
we developed a more general solution described in the following section.

15

4 Method MTSRT

The second analysis technique we present is called Modified Transition System Reduction
Technique (MTSRT). In section 2.1 we saw that the semantics of an ITPN are described
by a transition system. In this transition system we attach an unique label to every token.
The state space of the transition system is t~erefore S = I d f+ (P x T S) (I d is the set of
token labels).
Calculating the set of reachable states is (generally) impossible because the firing delay of
a token is sampled from an interval. In general there is an infinite number of allowed firing
delays, all resulting in a different state.

For computational reasons we define a modified model; the IT P N model. The semantics
of this modified model are described by a modified transition system « S, R ». In this
tra:nsition system we attach a time interval to every token instead of a timestamp, S =
I d f+ (P x I NT). One can think of this transition system as some kind of generalisation
of the the original transition system describing the semantics of an ITPN.

After a formal definition of the modified transition system we will show how these two
transition systems relate to each other. We will see that we can use the modified transition
system to answer questions about the original transition system and, therefore, about the
behaviour of the ITPN.
Before giving a description of the modified transition system we define the relation (::;;) to
compare intervals.

Definition 12 (::;;)
Ifv,w E INT then: v::;; w == (lI"l(V)::; 1I"1(W)) 1\ (1I"2(V)::; 1I"2(W))

Note that ::;; defines a partial ordering becanse::;; is reflexive, antisymmetric and transitive.
Sometimes we use the notation v <; w to denote that v ::;; w and v i' w. If q E P x I NT
then place(q) = 11"1 (q), time(q) = 1I"2(q), timem;n(q) = 1I"1(time(q)) and timemaX(q) =
1I"2(time(q)).

The modified transition system

An ITPN = (P, T, I, 0, TS) defines a modified transition system (S, R), with a state space
S and a transition relation R:

• S = Id f+ (P x I NT), the state space

• E = T x S x S, event set

• AE(s) =

{ (t, q;n, qout) E E I q;n c; s 1\

It = ApEP #{i E dom(q;n) I place(s(i)) = p} 1\

16

(1)
(2)

ViEdom(qin) VjEdom(s)\dom(q;n) place(s(i)) = place(sU)) =} ~(time(sU)) <i time(s(ill (3)
dom(qou') n domes) = 0 1\ (4)
SI3(qou,) = 0, } (5)

, set of allowed events in state s E S

• etmin(e) = maxiEdom(~l(e)) timemin(1r2(e)(i»), lower bound event time of e E E

• etmax(e) = maxiEdom(~2(e)) timemax(1r2(e)(i»), upper bound event time of e E E

• ttmin(s) = mineEAE(s) etmin(e), lower bound transition time in s E S

• ttmox(s) = mineEAE(s) etmOX(e), upper bound transition time in s E S

• seale(q, x, y) = AiEdom(qL (p/aee(q(i»), (timemin(q(i» + x, timemox(q(i» + y}},
scales timestamps, q E S and x, yET S

• Finally the transition relation R is defined by:

Similar to R,RS and II we define R, RS and II. Symbols superimposed with a horizontal
line are associated with the modified transition system.

An event e is a triple indicating the transition that fires (1r1(e»), the tokens consumed
(1r2(e» and the tokens produced (1r3(e». AE(s) is the set of allowed events in state s.
Such an event satisfies 5 conditions. The first condition is about the requirement that
consumed tokens have to exist. The transition that fires consumes the correct number
of tokens from the input places (condition (2»). Tokens are consumed in order of their
timestamps (condition (3)). Produced tokens bear a unique label and their delay interval
is as specified (condition (4) and (5)).
The event time of an event e in isolation is between etmin(e) and etmax(e). The first event
in state 81 will occur betw.een ttmin(stJ and ttma"'(sd. An allowed event e in state S1

will occur between etmin(e) and ttmax(S1) (if it occurs). Therefore we have to rescale the
(relative) intervals of the produced tokens using the function scale. This function adds
etmin(e) to the lower bound of the delay interval and adds ttmax(sd to the upper bound of
the delay interval.

Note the resemblance with the original transition system described in section 2.1.

To give an impression of the modified transition system, consider the net shown in figure 4.
Initially there is one token in place pI with an interval of (0,3], there is one token in p2

17

pI p2 p3

Figure 4: An example used to describe the modified model

with an interval of [2,5] and there is one token in p3 with an interval of [4,6]. Note that
this state in the modified model corresponds to an infinite number of states in the original
model, for instance the state with a token in pI with timestamp 2.4 and a token in p2 with
timestamp 2.118 and a token in p3 with timestamp 5.22.
There are two allowed events; event e1 is the firing of t1 while consuming the tokens in pI
and p2, event e2 is the firing of t2 while consuming the tokens in p2 and p3. The event
time of e1 is between 2 (etmin(et)) and 5 (etmax(e1)), the event time of e2 is between 4
(eimin(e2)) and 6 (etmax(e2)). All events having a lower bound for the event time (etmin)
smaller or equal to the upper bound of the tr~nsition time (ttmax) can happen. If e1 occurs
it will be between 2 (etmin(e1)) and 5 (ttmax(s)), if e2 occurs it will be between 4 and 5. In
both cases a token is produced for place p4. There are two possible terminal states: one
with a token in p3 and p4 and one with a token in pI and p4. In the first case the time
interval of the token in p4 is [2,7], because the delay interval of a token produced by t1
is [0,2]. In the second case the time interval of the token in p4 is [5,8]. Using intervals
rather than timestamps prevented us from having to consider all possible delays between
[0,2] or [1,3], i.e. it suffices to consider upper and lower bounds.

The following theorem shows that the upper and lower bounds of the transition times are
'non-decreasing'. This property is called 'the monotonicity of time', i.e. time can only
move forward.

Theorem 2
For an ITPN with states S1, S2 E S such that S2 E R(S1); ttmin(st) < ttmin (S2) and
ttmax(S1) :s: ttmax(S2)'

Proof.
Because S2 E R(S1) there exists an event e E AE(S1) such that etmin(e) :s: ttmax (S1) and
S2 = S1 r(dom(st) \ 7r2(e)) U scale(7r3(e) , etmin(e), ttmax{st)). The definition of scale tells
us that the lower bound of the produced token is at least etmin(e) and the upper bound

18

is at least ttmax(sd. Therefore for all new events h E AE(S2) \ AE(stJ we find that
etmin(h) ~ etmin(e) ~ ttmin(stl and etmax(h) ~ ttmax(Sl). All events that where already
enabled also have a lower bound event time of at least ttmin(SI) and an upper bound
event time of at least ttmax(Sl). By the definition of ttmin and ttmax we conclude that
ttmin (SI) ::; ttmin (S2) and ttmax(stJ ::; ttmax (S2).
o

s 1

z

I(i)

Figure 5: Specialisation: s <I S

In section 2.1 we introduced the concept of specialisation, this allows us to compare states
of the original transition system with states of the modified transition system. Suppose
s E S, S E Sand s <IS then there exists a bijective function 1 E dom(s) -+ dom(s) such
that every token with label i E dom(s) corresponds to a token with label I(i) E dom(s)
that is in the same place and has an interval containing the timestamp of i (see figure 5).
The concept of specialisation also allows for the definition of soundness and completeness
01 the relation between the two transition systems. Soundness means that all transitions
possible in (S, R) are also possible in (8, R). Completeness means that all transitions
possible in (S, R) are also possible in (S,R).

p2

pI

.1----0-1

[0,1]

Figure 6: Non-completeness caused by dependencies

Completeness does not hold, this is caused by the fact that dependencies between tokens
are not taken into account. Consider for example the net shown in figure 6. Suppose there

19

is one token in pI with a time interval [0, 1) and the other places are empty. In this case
t fires between time 0 (etmin(e)) and time 1 (ttmax(s)). The next state in the modified
transition system will be the state with one token in p2 (with interval [1,3]) and one token
in p3 (with interval [3,5]). This suggests that it is possible to have a token in p2 with
timestamp 1 and a token in p3 with timestamp 5. However, this is not possible (in the
original transition system) because these timestamps are related (i.e. they where produced
at the same time).

Fortunately, soundness holds.

Theorem 3 (Soundness)
For all s, E Sand s, E S such that s, 4S,: 'i"ER(,,) 3',ER(Sl) S2 4S2

Proof.
Because s, 4 s, there exists a specialisation function f.
Suppose S2 E R(st), then there is an event e such that:

(i) e E AE(s,)

(ii) et(e) == tt(s,)

(iii) S2 == S, f (dom(S1) \ 11'2 (e)) U scale(11'3 (e), tt(s,))

Define: e == (11', (e), S, f f(dom(1I'2(e))), q) E E where q E S such that conditions (5) and (6)
hold and S2 == s, f(dom(s,) \ dom(1I'2(e))) U scale(1I'3(e), etmin(e), ttmax(s,))

Now we have to prove that:

(ii) etmin(e) ::::: ttmax(s,)

(iii) S2 4 S2

(i) Event e is an element of AE(s,) if it satisfies the five conditions stated in the definition
of AE. All conditions except condition (3) follow directly from the definition of e and the
fact that e E AE(s,). To prove the fact that condition (3) holds we have to impose
additional restrictions on f, however it is always possible to transform ("massage") f such
that (3) holds (see appendix B).
(ii) Because 1I'2(e) 411',(e) etmin(e) ::::: et(e):
etmin(e) = maxiEdom(",(e)) timem•n(1I',(e)(i)) ::::: maXiEdom(",(e)) time(1I',(e)(i)) == et(e)
It is also easy to verify that: tt(st) ::::: ttmax(st) because S1 4 s,.
Therefore: etm.n(e) ::::: et(e) == tt(s,) ::::: ttmax(s,).

(iii) From s, 4 S, and the definition of 1I',(e) we deduce that:
s, f(domh) \ dom(1I'2(e))) 4 s, f(dom(s,) \ dom(1I'2(e)))

20

Because etrnin(e) S tt(81) S ttm.xes,):
8cale(1r3(e), tt(8,» <l 8cale(1r3(e), etmin(e), ttm • x(8t))
This implies that 82 <l82.

D

This theorem tells us that if a transition is possible from 81 to 82 in the original transition
system, there is a corresponding transition in the modified transition system from every
state 81 that 'covers' 81'

How are the paths in the modified transition system related to the paths in the original
transi tion system? To investigate this we also define specialisation for paths (<l,,).

Definition 13 (Specialisation)
For 0" E IN -1+ S and a E IN -1+ S: 0" <1" a == (dom(O") = dom(a) /I 'v'iEdom(u) O"i <l ai)

Now it is possible to show that soundness also holds for the processes (II and II) generated
by the two transition systems.

Lemma 1
For all 81 E Sand 81 E S such that 81 <18,: 'v'uEn(S)) 30'Ei1(s,) 0" <1" a

Proof.
If 0" is an infinite path (i.e. dom(O") = IN), then we have to prove that there is an a such
that dom(a) = IN and 'v'iEdom(u) O"i <l ai. Because SI <l8, we find that 0"0 <1 ao. For all i 2: 0
take ai+' E R(ai) such that O"i+! <1 ai+!. This is possible because of soundness. If (T is a
finite path of length n, then we have to prove that an-l is a terminal state. We know that
R(O"n_l) = 0 and that O"n-l <lan_I' This implies that R(an_,) = 0 because if AE(O"n_') = 0
then AE(an _,) = 0 (R(an-l) = 0 implies that there is no transition with enough tokens
on its input places).
D

Despite of the non-completeness, the soundness property allows us to answer some of the
questions stated in section 2.2. We can prove that a system has a desired set of properties
by proving it for the modified transition system. For example:

Lemma 2
If the modified transition system indicates that an ITPN is K -bounded (or safe) for an
initial state with respect to the modified model then the net is K-bounded (or safe) for
that ini tial state with respect to the original model.

Proof.
Use theorem 3.
D

21

We also use the modified transition system to calculate bounds for the arrival times of
tokens in a place. In other words: the modified transition system gives us an indication
about the arrival times. Although these bounds are sound they do not have to be as rigid
as possible because of possible dependencies between tokens (non-completeness). First we
define the earliest and latest arrival time for the modified transition system, to do this we
need to define place projection (tmin and trmax) for S. For all s E S, pEP:
s~minp = AxETS #{i E dom(s) I place(s(i)) = p /\ timemin(s(i)) = x}
s~maxp = AXETS #{i E dom(s) I place(s(i)) =p /\ timemax(s(i)) = x}
(i.e. tmin (~max) gives the bag of lower (upper) bounds of the intervals of the tokens in p).
If A ~ Sand pEP then:

Lemma 3
If A ~ S,A ~ S,p E P and A <:;; f(A) then:

• EATn{A,p) ::; EATn(A,p)

• CATn(A,p) ~ CATn(A,p)

Proof.
Use lemma l.
o

We have demonstrated that we can use the modified model to answer all kinds of questions
about the original model. The reason we use a modified model is the fact that it is possible
to calculate the set of reachable states (or at least a subset) for this model. The soft­
ware tool IAT uses the modified transition system to generate (a part of) the reach ability
tree. Because reachability tree of the modified model is much smaller and more coarsely
grained than the original we call it the reduced reachability tree. Every state in the reduced
reachability tree corresponds to a (infinite) number of states in the reachability tree of the
original model. One can think of these states as equivalence classes.

A possible drawback of the analysis method MTSRT is the fact that answers are not always
as strict as possible because of dependencies between tokens. The computational efficiency
depends upon the size and the structure of the net ("conflicts are considered harmful").
A similar approach is described in [Berthomieu et al. 83J using Merlin's Timed Petri Nets
([Merlin 74]). We believe our method is more efficient for large nets because their method
involves solving linear equations to calculate state classes. The efficient implementation of
IAT allows the user to generate reachability trees with thousands of states in less than a
minute.

22

Figure 7: The reachability tree of the original model versus the reachability tree of the
modified model

5 Other analysis methods

In this section we discuss the two remaining analysis methods; method 3 and method 4.
These analysis methods can be applied to a subclass of ITP-nets, the so-called Interval
Timed Event Graphs (ITEG). The underlying net structure of such net is a Marked Graph 7.

Definition 14 (Interval Timed Event Graph)
An ITPN = (P, T,I, 0, TS) is an Interval Timed Event Graph iffor all pEP:

L I,(p) ::; 1

L L O,«p, v» ::; 1
'ET vEINT

i.e. the number of input arcs and the number of output arcs of a place is a or 1 and the
multiplicity of each arc is 1.

An ITEG can be seen as a generalisation of Timed Event Graph in the sense that we
use intervals to specify delays instead of a deterministic value. The dynamic behaviour of
Timed Event Graphs has been studied by a lot of people (see [Ramamoorthy et al. 80] and
[earlier et al. 87]). A lot of applications have been modelled using Timed Event Graphs
(especially in the field of flexible manufacturing, see [Silva 89]). Even though (Interval)
Timed Event Graphs allow the modelling of parallelism and synchronisation of events,
shared resources (i.e. competition relationships) cannot be modelled. Interval Timed
Event Graphs represent a generalisation of PERT/ePM graphs, allowing for the study of
repetitive schedules (see appendix e).
There exist a number of analysis techniques for Timed Event Graphs using the absence of
confusion in these nets. In this paper we present two alternative analysis techniques. The
first one is based on the analysis technique discussed in section 4. This analysis technique
calculates terminal states in a net very efficiently. The second one allows for evaluating the
steady-state performance of a system. It is a generalisation of the performance analysis
technique described in [Ramamoorthyet al. 80].

7 A Petri Net is a Marked Graph if and only if for each place pEP; 'p:s 1 and p. :s 1.

23

5.1 Method CFNRT

The third analysis technique we present is called Confusion Free Net Reduction Technique
(CFNRT). Method CFNRT uses the special network structure of an ITEG to calculate
the set of reachable states very efficiently. Because the origin and destination of a token is
known from the topology of the net we call these nets confusion free. A nice property of
confusion free nets is the fact that the order in which the transitions fire does not matter
when you are calculating the set of terminal states. Method CFNRT uses the modified
transition system described in the previous section in a slightly altered way. This way the
size of the (reduced) reachability tree is reduced considerably.
IAT detects the absence of confusion and uses this to calculate the results more efficiently.

First we formalise the concept confusion free, then we prove that a confusion free net has
a desirable property. Finally we show that under some conditions an ITEG is confusion
free. We start with some auxiliary definitions.

Definition 15 (Well-formed)
A state s E S is well-formed if and only if:

V;,jEdom(s) place(s(i)) = place(s(j)) =} (time(s(i)) ::;; time(s(j)) V time(s(j)) ::;; time(s(i)))

A state is well-formed if the time intervals of any pair of tokens in the same place are
comparable. In other words, of any two tokens in the same place having distinct intervals,
one interval is smaller than the other.

Definition 16 (Chronological)
An ITPN is chronological with respect to a state s E S if and only if:

1. s is well-formed

2. for all t E T, BS(at) is well-formed

3. VsERS(s) V sER(;) V;Edom(s) ViEdom(;)\dom(s) place(s(i)) = place(s(j)) =?
time(s(i)) ::;; time(s(j))

The third requirement says that the time intervals of the tokens arriving in each place have
to be ascending in the order of arrival. All produced tokens have an interval of at least
any interval of the tokens contained by the (corresponding) place until then.

Lemma 4
If an ITPN is chronological with respect to s E S then for all s E RS(s):
s is well-formed and the net is chronological with respect to s.

24

Proof.
If s E RS(s) then there exists an n E IN such that s E 1l" (s).
Let Pen) be the proposition that all s E 1l"(s) are well-formed and the net is chronological
w.r.t. s.
P(O) is trivial because s = 1f(s) = s is well-formed and the net is chronological w.r.t. s.
Suppose n > 0 and Pen - 1) (induction hypothesis).
For all s E 1l"(s) there exists a state s E 1l"-\s) such that s E R(s). Because the net
is chronological and well-formed (induction) with respect to s, the corresponding event e
which transforms s into s adds tokens to each output place such that the state remains
well-formed. This is guaranteed by the fact that the produced tokens are well-formed
and any produced token with interval v and any token (with interval w) contained by the
corresponding place until then, satisfy w :5i v.
The net is also chronological w.r.t. s, because s is well-formed, for all t E T, BS(0,) is
well-formed and the third requirement also holds (because RS(~) ~ RS(s».
o

Our definition of confusion free deviates of traditional definitions.

Definition 17 (Confusion free)
An ITPN is confusion free with respect to s E S if and only if ,the net is conflict free and
chronological with respect to s.

A confusion free net has the nice property that if it terminates, it always terminates in the
'same state'. This is expressed in the following theorem that holds after a minor alteration
of the modified transition system of section 4; replace scale(7r3(e), etmin(e), ttmax(s,» by
scale(7r3(e),etmin(e),etmax(e». This way the time intervals of the produced tokens do
not depend upon the other allowed events. This transition system satisfies all properties
mentioned in this section and the previous section (soundness, ..) because etmax(e) 2':
ttmax(s,).

Theorem 4
If an ITPN is confusion free and dead with respect to an initial state s E S then:

#{SB(s) loSE RS(s) " RCS) = 0} = 1

Proof.
Because the net is confusion free, all s E RS(s) are well-formed (see lemma 4). This implies
that e" e2 E AE(s) and ?r,(e,) = ?r,(e2) =? e, = e2 8, because there are no conflicts between
tokens on the input places (observe condition (3) in the definition of AE). If an event e
occurs the intervals of the produced tokens only depend upon e and not upon any other
event (see remark about the minor alteration of the modified transition system). Once an
event e is fir able: e E AE(s) and etmin(e) :5 ttmax(s), it remains lirable until it occurs.

sIf e" e2 E E then e, = e2 iff 7r, (ed = .. ,(e2) A SB("2(e,» = SB("2(e2» A SB("3(e,)) = SB("3(e2».

25

In other words an event will not be disabled by any other event. If another event, say h,
occurs in .§then e is still firable in: ~ = sf (dom(s) \ 7r2(h» U seal e(7r3(h), etmin (h), etmax (h»
because:

1. dom(7r2(h» n dom(7r2(e» = 0, because of the absence of conflicts (condition (1) in
the definition of AE holds)

2. ViEdom(",(e)) VjEdom(j)\dom(",(e)) place(~(i» = place(~(j» =? ~(timeO(j) ::;i timeO(i»)
because the net is chronological w.r.t. s, (condition (3) in the definition of AE holds)

3. The other conditions (2,4 and 5) in the definition of AE still hold for e (sometimes
7r3(e) has to be relabelled because some labels are already used)

4. etmin(e)::; ttmax(s)::; ttmaxO), see theorem 2

Because the net is dead, the set of allowed event becomes empty after a while. This and the
fact that an event will not be disabled implies that the ordering of event is not important,
i.e. #{S8(S) loSE RS(s) 1\ R(s) = 0} = 1.
o

This theorem tells us that it does not matter which events are chosen during the execution
of the net; all paths (firing sequences) lead to the same terminal state in the modified
transition system. Therefore this terminal state can be calculated very efficiently; resolve
all choices by selecting an arbitrary event.

One way to calculate the terminal state is a simulation using a coloured timed Petri Net.
Every place (transition) in the coloured net corresponds to a place (transition) in the ITPN
net. The value of a token in the coloured net is the time interval of the token in the ITPN
net. The delay of the token is some value in the delay interval. The value of a produced
token is calculated using the values of consumed tokens and the specified delay intervaL
We will not go into this subject because IAT calculates the terminal state more efficiently.

For an arbitrary net it is very difficult to verify whether the net is confusion free. However
there is an important class of nets for which we can prove that they are confusion free. This
is expressed by theorem 5. To prove theorem 5 we need the following lemma which tells us
that the maximal (interval) sequence of two ascending (interval) sequences is ascending.

Lemma 5
Ifn E lN, V"V2, .. ,Vn E INT and W"W2""Wn E INT sum that
ViE{1..n-l} (Vi ::;i Vi+I) 1\ (Wi::;i Wi+I) then: 9

ViE{1..n-l} (Vi max Wi) ::;i (Vi+l max Wi+,)
~~----~~------~~

9If v, WE INT then v max W = ('" (v) max "1(W), "2(V) maX "2(W»).

26

Proof.
For i E {l..n -I}, Vi :S;i Vi+l 1\ Wi:S;i Wi+1 implies that
1l"l(Vi) :s; 1l"l(Vi+1), 1l"l(Wi) :s; 1l"l(Wi+J), 1l"2(Vi) :s; 1l"2(Vi+J) and 1l"2(Wi) :s; 1l"2(Wi+1)'

1l"l(Vi max Wi) = 1l"l(Vi) max 1l"l(Wi) :s; 1l"l(Vi+l) max 1l"l(Wi+J) = 1l"l(Vi+l max Wi+l)

1l"2(Vi max Wi) = 1l"2(Vi) max 1l"2(Wi) :s; 1l"2(Vi+l) max 1l"2(Wi+d = 1l"2(Vi+l max Wi+l)

Therefore: (Vi max Wi) :S;i (Vi+l max Wi+l).
o

An ITEG is confusion free if the initial state is well-formed, all start places pS = {p E
PI. p = 0} contain tokens with an interval of at least any other token in a non-start
place and all tokens in non-start places have the same interval. This property of Interval
Timed Event Graphs is expressed in the following theorem.

Theorem 5
An Interval Timed Event Graph with an initial state s E S such that:

1. s is well-formed

2. Vi,jEdom(S) (p/ace(s(i)) = place(s(j)) 1\ p/ace(s(i)) E (P \ pS)) * time(s(i)) =
time(s(j))

3. V i ,jEdom(8) place(s(i)) E (P \ PS) 1\ place(s(j)) E pS * time(s(i)) :S;i time(s(j))

is confusion free with respect to s.

Proof.
By definition an ITEG is conflict free. Remains to prove that the net is chronological with
respect to s.
(i) s is well-formed.
(ii) V'ET 85(0,) is well-formed because the net is an ITEG
(iii) Remains to prove that:

V.ERS(8) V~ER(8) ViEdom(a) VjEdom(~)\dom(s) place(s(i)) = place(~(j)) * time(s(i)) :S;i time(~(j))

A first observation tells us that requirement (iii) holds for all tokens in a start place
(PS = {p E PI. p = 0}), because no event wiII add tokens to one of these places.
If t ETa transition such that the net is chronological in all input places of t (w.r.t. s),
then all output places are chronological too, because t is the only transition producing
tokens for these places, the tokens initially available satisfy (2.) and (3.) and lemma 5 tells
us that if the intervals of the tokens on the input places are ascending then the tokens on
the output places are also ascending.
Consider a place pEP with .p # 0. Suppose the net is not chronological in p w.r.t. s.
Then there exist(ed) two tokens in p with intervals V and w such that the token with in­
terval V existed before the token with interval1p and -,(v :S;i w) with overlapping intervals.
Suppose both tokens existed in the initial state s, this is not possible because then v = W

27

(see(3.)). Suppose that initially there was only one token in p (with interval v), then there
is a contradiction because all tokens produced by a transition have an interval w of at least
Vj i.e. v ::;i w. Otherwise both tokens are produced by some transition t (every place has
only one input transition). But this means that one of the input places of t contained a
token with interval v and a token with interval w such that the token with interval v existed
before the token with interval til and -,(v ::;iW), this follows from lemma 5. Continue this
reasoning until a contradiction is encountered, either because all input places of t have no
incoming arcs or because one reaches the initial state s which is well-formed.
o

This theorem tells us that under some conditions an ITEG is confusion free. If the net is
dead then there is just one terminal state in the modified transition system. This terminal
state can be calculated very efficiently. Because of the soundness properties stated in
section 4 we can answer a number of questions. For example we can calculate the earliest
arrival time (EAT) and the latest first arrival time (CAT) of a place p without outgoing
arcs. Note that because of the absence of confusion the produced bounds are as "rigid" as
possible.

5.2 Method SSP AT

The fourth analysis technique we present is called Steady State Performance Analysis
Technique (SSPAT). The analysis techniques described so far are based on the principle
of calculating the reachable states from one or more initial states. This approach allows
for the analysis of open systems and closed systems. An open system is system whose
environment is not modelled explicitly, the behaviour of an environment is modelled via the
initial state(s) (marking). Closed systems are systems where the environment is modelled
explicitly. In a closed system the initial state represents the available resources, not the
behaviour of the environment. The analysis methods presented so far are also capable
of analysing both kinds of systems, but in general we are also interested in the steady­
state functioning of the net and not only in the reachable states. Therefore we present an
analysis method to calculate the steady-state performance of a closed system. This is a
generalisation of th~ technique presented in [Ramamoorthy et al. 80J, which is based on
Timed Event Graphs with time in transitions. It is a generalisation in the sense that it
produces upper and lower bounds for the performance and in the sense that time is in
tokens allowing for the modelling of the two kinds of delay discussed in section 2.1.

The measure of performance we consider is the average time between two successive firings
of a transition. We start by giving some properties of (Interval) Timed Event Graphs.

Definition 18 (Directed path)
A directed path p is a sequence of places: p E IN f> P such that: 0 E dom(p) and for all
i E dom(p) \ {O}: (i -1) E dom(p) and Pi-l E .(.Pi).

28

A directed path starts in a place begin(p) = Po and ends in a place end(p) = Pj where
j = max dom(p). For any successive pair of places Pi-l and Pi in a directed path there
exists a transition t such that Pi-l is an input place of t and Pi is an output place of t
(Pi-l E .(.Pi).

Definition 19 (Np)

For a directed path P we define the number of tokens in the places contained by P for a
state s E S as follows: Np(s) = #{i E domes) I place(s(i)) E rng(p)}

Definition 20 (Directed circuit)
A directed circuit P is a directed path with begin(p) = end(p).

A directed circuit is called elementary if all elements (except the first one) differ:
lii,jEdom(p)\{O} i # j =? Pi # Pj'

Theorem 6
For an ITEG the number of tokens in a directed circuit P remains the same under any
firing sequence, more formally for all s E Sand s E RS(s): NAs) = Np(s).

Proof.
Tokens in a directed circuit can only be produced or consumed by a transition contained
by the circuit. Every place in a directed circuit has exactly one input transition and one
output transition. If such a transition fires, the number of tokens consumed from the cir­
cuit equals the number of tokens produced back into the circuit. Therefore, the number of
tokens in a directed circuit remains the same under any firing sequence.
D

Definition 21 (Gmin Gmax) p , p

For an ITEG having a directed path P we define G,;in and G,;ax: 10

G,;in = L dmin(Pi_l, Pi)
iEdom(p)\{O}

Gmp ax == '""'" dmax () L.. Pi-l, Pi
iEdom(p)\{O}

the upper and lower bound for the sum of the delays in a directed path p.

If every delay interval of an ITEG is a point interval (i.e. an interval of length 0) then
for all directed paths P; G,;in = G,;ax. In this case we speak about Gp, the length of an
directed path.

Definition 22 (Strongly connected)
A Petri Net (or ITPN) is strongly connected if and only if every pair of places is contained
in a directed circuit.

101ft E T such that P1 E.t and (P2, (x, V)) E 0, then dmin (P1,P2) = x and dmax (P1,P2) = y.

29

Definition 23 (Consistent)
An ITEG is called consistent with respect to an initial state s E S if and only if the net is
strongly connected, every circuit contains at least one token and the net is progressive.

Consistent ITEGs form the subclass of nets we are going to analyse. These nets have a
number of convenient properties.

Definition 24 (r)
For an ITPN with initial state s E S and a E II(s) we define r(a) E dom(a) \ {OJ -> T
such that for all i E dom(a) \ {OJ:

r(a)(i) = {1rl(e) leE AE(ai_l) II et(e) = tt(ai-l) II

ai = ai_d(dom(ai_l) \ 1r2(e» U scale(1r3(e),tt(ai_t}n

Note that r(a) (i) is a singleton if the net is an ITEG. In this case r (a) represents the
sequence of transitions that fired during the execution of a.

Definition 25 (8)
For an ITPN with initial state s E S, a E II(s), t E T and n E lN \ {OJ:

8(a,t,n) = miniEdom(o) tt(ai)
#{O<i$i I tEr(u)(j)}=n

S(a, t, n) is the time at which transition t initiates its nth execution under the firing sequence
(path) a.

Because we are interested in the upper and lower bound of the performance we define amin

and a max ,

Definition 26 (amin , amax)
For an ITEG with initial state s E 8 we define amin(s) (amax(s)) as a path where all delays
are equal to the lower (upper) bound of the corresponding delay interval.

It is easy to see that amin(s) and amax(s) represent two extreme behaviours of a net starting
in state s. This is expressed in the following theorem.

Theorem 7
For an ITEG with initial state s E 8 and a transition t E T:

V'nEN V'UEll(s) S(amin(s),t,n)::::: 8(a,t,n)::::: 8(amaX(s),t,n)

Proof.
Informal. Because of the absence of conflicts a transition is never disabled. Using mini­
mal delays results in a firing sequence where transitions fire as early as possible because a
non-minimal delay can only delay the firing of a transition. Using maximal delays results
in firing sequences where transitions fire as late as possible, because a non-maximal delay
can only result in an earlier firing. Furthermore, using minimal (maximal) delays results
in a 'valid' firing sequence.
D

30

Definition 27 (TEG)
An ITEG is a Timed Event Graph (TEG) if all delay intervals are point intervals, i.e. for
all t E T and (p,(x,y)) E Ot; X = y.

Definition 28 (Cycle time)
For a consistent Timed Event Graph with respect to s E S, 0' E II(s) and t E T we define:

C I· S(O',t,n)
t = 1m

n_oo n

the cycle time of a transition t.

This limit exists because a Timed Event Graph has a deterministic behaviour and the fact
that the net is consistent implies that its behaviour is even periodical. Note that Ct does
not depend upon 0' because of the absence of conflicts and the fact that all delays have
a fixed value. We interpret the cycle time of a transition as a performance measure. A
shorter cycle time corresponds to a better performance (shorter processing times, more
(production) throughput).

Theorem 8
For a consistent TEG with respect to s E S and a path 0' E II(s), all transitions t E T
have the same cycle time Ct

Proof.
Let t, i be two transitions, then there exists an elementary directed circuit containing both
transitions because the net is strongly connected. If we partition this circuit into two
directed paths; a path p from t to i and a path p from ito t. If t initiates its nth execution
in state 0'; then i has fired at least n - Np(O'i) times but no more than n + Np(O'i) times.
This implies that S(O',£, n - Np(O'i)) ::::: S(O', t, n) ::::: S(O', i, n + Np(O'i)). Because Np(0',) and
Np(0',) are finite if n -; 00:

C I
· S(O',i,n - Np(O',)) I· S(O',t,n) I· S(O',i,n + Np(O',)) C . = 1m < 1m < 1m = .

t n_oo n - n_oo n - n_oo n t

Therefore, C, = Ct.
o

This implies that we can speak about the cycle time of the net.

Theorem 9
For a consistent TEG with respect to s E S the cycle time is: 11

Gp

C = maxp Np(s)

11 Maximise for all (elementary) circuits p.

31

Proof.
We are able to speak about the cycle time of a net (C) because the delays are fixed and
the net is consistent with respect to s, therefore V'ET V"Eil(8) C,(a) = C.
First we show that C ~ maxp N~(8) by showing that for every circuit p, CNp(s) ~ Gp holds.
The cycle time C is the time between two successive firings of the same transition. Np(s)
is the number of tokens in the places of p. So, for all transitions contained by the circuit
p, the average time it takes to process all tokens once is C N p (s) units. But on the other
hand, if such a transition consumes a specific token then it takes at least G p time units
until this token is consumed again by the same transition. Therefore, C Np (s) ~ G p'

Remains to prove that there exists a circuit p such that CNp(s) = Gp. Consider a critical
circuit p (i.e. a circuit where N~(8) = C) in isolation; its cycle time is C. Consider another
circuit p containing one or more transitions of the critical circuit p in isolation. This circuit
p also has a cycle time C because it is blocked by the critical circuit but it cannot block
the transitions in the critical circuit (in steaqy state) because CNp(s) ::; Gp. continue this
process until all circuits have been considered.
o

This theorem implies that we can calculate C by evaluating every circuit. More formal
proofs of this theorem have been given in [Ramamoorthyet al. 80J and [Chretienne 83J.
This result is included here to show that it also holds for TEG's with time in tokens.

A drawback of this approach is that all circuits have to be considered. The number
of circuits grows very fast with the size of the net. More efficient procedures to ver-.
ify the performance of a Timed Event Graph have been suggested by several authors
([Ramamoorthyet al. 80J,[Hillion et al. 89]).' It is very easy to adapt these procedures for
our TEG-nets.

Definition 29 (cmin, cmax)
For a consistent ITEG with respect to an initial state S E S and a transition t E T we
define:

the minimal cycle time and the maximal cycle time of a transition t.

In a consistent TEG the cycle time of all transitions is the same, therefore we can speak
about cmin (cmax); the minimal (maximal) cycle time of the net.

Theorem 10
For a consistent ITEG with respect to S E S the minimum cycle time (maximal perfor­
mance) is given by:

. cmin
cmm = max -p-

p Np(s)

32

and the maximum cycle time (minimal performance) is given by:

where

Proof.

Gmax
cmax = max _P-

P Np(s)

Follows directly from the definition of emin and em ax and theorem 9.
o

Theorem 7 and theorem 10 tell us that we can calculate the upper and lower bound of
the steady state performance of an ITEG by enumerating all (elementary) circuits. For an
ITEG with initial state s E S, t ETa E II(s) and any n E IN:

S(amin(s), t, n) < S(a, t, n) < S(amax(s), t, n)
n - n - n

and
emax = lim S(amax(s),t,n)

n-+oo n n-+oo n

I.e. the "average" cycle time of a transition is between e min and e max.

33

6 Some examples

6.1 The reader/writers problem

The first example we consider is the application of the ITPN model to a variant of the
reader/writers problem ([Peterson 81]). Suppose we want to model a (computer) system
with a shared resource, lets say a disk. The disk can be used to read from or to write on.
There are two kinds of processes; reader processes and writer processes. Reader processes
are allowed to read simultaneously (maximal number of readers is n). Because a writer
process modifies the data on the disk it has to mutually exclude all other reader and writer
processes. Both types of processes are generated by jobs arriving at the computer system.
Each job comprises two read processes and one write process.

place jobsin;
place jobsout;
place me init 5;
place pI;
place p2;
place p3;
place p4;
place p5;
place p6;
trans start in jobsin out pl[l.O,2.0],pl[1.0,2.0j,p2[l.O,2.0j;
trans sr in pl,me out p3[2.5,3.0j;
trans sw in p2,me,me,me,me,me out p4[4.0,5.0j;
trans er in p3 out me,p5[O.O,l.Oj;
trans ew in p4 out me,me,me,me,me,p6[O.O,l.Oj;
trans complete in p5,p5,p6 out jobsout[l.O,2.0j;

Figure 8 shows the corresponding ITPN net. A textual specifica,tion is shown in the box
(n=5). Jobs arrive via place jobsin and leave the system via place jobsout. Initially there
are n tokens in place me. Because the input arc of transition ws has a multiplicity of n a
writer process mutually excludes all other processes.

We have analysed this system using lAT. Figure 9 shows a screendump of IAT in action.
Analysis shows that the system can handle at least 7.5 jobs per minute. Figure 10 shows
some results for the first 20 arrivals. The "static report" (reporting the results of method
ATCFNj is always available in a few seconds. The response time of "dynamic report"
(using method MTSRT) depends on the net and the initial state, in this case only a few
seconds (IAT generates about 2000 states per minute).

34

jobsin

.7;,......L-.... st art

----r_ sr

p3

[0,1]

'-""'-o--rc omp 1 et e

[1,2]

·obsout

p2

SloT

[4,5]

p4

eloT

[0,1]

p6

Figure 8: The Readers and Writers system

35

>"Ij
0<;.
~ ...
'" ~
:>
en
(") ...
'" '" ::>

'"
0-

'"
~

S
'1:i

S,
t<:I x
'" '1:i

'" (") ----.....
:>
>-l

states

STRATEGY

rw.tpn,-===== nLI. tps_

11 ne
clean f1eld
clean l1ne
)'et1!OV9 Une

Do you want to chop off ? show GuhfOl'tt
(YBs/no/sutmat ie): _autana C 'o&e I>uhtm'a

Is the net confusion frgel ? .:wong value
(yes/no/autmat1c) _no--wii~~m ••• ~.~~allialf-~

Do you want to remember the old even~ t t
(yes/no) _yes_ • or

Do you want to connect the chi ldren step
(yes/no) _yes cont

8t8t1 c .. aport
TERMINATION ARGLMENTS dyn_1c report

says all
J . 'save end ··states

..
'.' "Maxima ,_. m.mber,· of- generat ions

Maximal numbsr of states last generation
unti 1 time

MISCELLANEOUS

Trace file
Generation file

_nu11 . tracB __
__ null.tps-__

Number of generations
Number of states

_34EL­
_3456 __

Time _138.5_

46 "I

30 "I

20 I

10 "I
o f, 1 __ --'_..--...J .,
m~3~~_~_~._dOd2~~~~

>Tj
~.

" " '" """' ~
>-
'" " " '" '" " 0-

" S
'0
0
>-<
>-
>-3
~

"" " -J eo.
'<
'" s·

()q

<"+
i:l"

'"
~
~
0-

'" " --...
~
<"+

'" " '" '0

" 0
0-

" S

Number of generations
Number of states
Time

confl fct m.
pl
p2
p3
p4
p5
p6

_240 __
_2135 __
_160.000

0
1
2
3
4
5
6
7
8

Wm'U.,,*A§.I.!d
I number II m.mber of I I
II of II available II

place I I tokens II tokens II

place I I tokens II tokens II
Ilmin maKl1 min maH II EAT

16

1

jobs1n 0 20 0 1 0.000000

0
1
2
1
1
1
1
1
1

n.
clean field
clean l'lne
"emO'l6 11 He
shON sull fOI'tI
cHlse SIJIlf"OI"U
"l'ong 'fa hHI
send fOI"ll
start
step
con"t
stat1 c report

1
0
2
1
1
1
1
1
1

LAT I EAT

- U~ "0
6.000000
0.000000
1. 000000
1:000000
3.500000
5.000000
3.500000
5.000000

17
LAT I

rw.tpn ___ _
states rw.tps ___ _

Do you want to chop off ?
(yes/no/autmatfc) automatic_

Is the net confusion freel ?
(yes/no/autmatic) _no __ _

Do you want to remember the old events 1
(yes/no) _no __ _

Do you want to connect the children?
(y.s/no) _y.,g...._

0.000000 0 0
10.000000 0 complete complete, 0

0.000000 I 0 5
2.000000 0 start start 0

~ 2; 000000 0 start start 0
5.000000 0 sr sr 0
7.000000 0 0
6.000000 0 er er 0
8.000000 , 0 ew "'" 0

18 I 19
EAT LAT I EAT LAT I

120.000000128.000000 128.000000 136.000000 136.000000 144.000000 144.000000

I 2 3 I 4 5
LAT I EAT LAT I EAT LAT I EAT LAT I EAT LAT

0.000000 8.000000 8.000000 16.000000 IS.000000 24.000000 24.000000 32.000000 32.000000
jobsout 0 20 0 20 8.500000 13.000000 IS.500000 21.000000 24.500000 29.000000 32.500000 37.000000 40.500000 45.000000

me 0 5 0 5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
pl 0 2 0 2 1. 000000 2.000000 1. 000000 2.000000 INF INF INF INF INF INF
p2 0 1 0 1 1. 000000 2.000000 INF INF INF INF INF INF INF INF
p3 0 4 0 2 3.500000 5.000000 3.500000 5.000000 11.500000 13.000000 11.500000 13.000000 INF INF
p4 0 1 0 1 5.000000 7.000000 INF INF INF INF INF INF INF INF
p5 0 2 0 2 3.500000 S.OOOOOO 3.500000 S.OOOOOO INF INF INF INF INF INF

0 1 0 1 5.000000 8.000000 INF INF INF INF INF INF INF INF

I

6.2 A production/assembly system

In order to illustrate the power and accuracy of the techniques presented in the previous
sections, we consider a production system with two types of control; push control and pull
control.
Figure 11 shows the bill of material. The production system produces an item H using

Figure 11: The bill of material

raw materials A, Band C. There are three machines; MI transforms A into 1), M2
transforms 13 into £ and M3 transforms C into:F. There is one subassembly composing 1)

and £ into 9 and one final assembly composing 9 and :F into H.

Let us consider the net in figure 12. Places pl,p2, .. ,p1J represent the flow of products.
Raw materials A, Band C enter the system via places pl, p2 and pS respectively. Product
1) is stored in p6, £ in p7, :F in p8, 9 in p9 and H in plO. Finished products H leave the
system via place pll. The demand for product H arrives via the place demand.

Machine M3 transforms products C into:F and is modelled by a queuing system represented
by the subnetwork containing transitions tl and t2. Initially there is one token in place
freeS indicating that the machine is ready to operate.
Machines MI and M2 need a setup every time an item is processed. This setup is per­
formed by a person working on both machines. We can think of this person as a shared
resource. The setup of Ml is represented by transition t4, the setup of M2 is represented
by transition tS. The person is represented by a token in place h. There is a conflict be­
tween tS and t4 because they share the same input place h. The remaining parts of MI and
M2 are modelled similar to M3. Note that we use a push control to direct machines MI,
M2 and M3. Each time raw material is available and the machine is free, an operation is
started.
We use a pull control to direct the two assembly processes (i.e. assemble to order). In this
example a Kanban-like control technique is used to reduce the in-process inventory. This
technique has been developed in Japan to achieve a Just-in-Time production. Assembling

38

is allowed if the components needed for the assembly are available and if a certain card,
called Kanban, has been received. A new Kanban is supplied the moment an assembled
product is removed. This way one gets a demand-driven assembly process.
The subassembly and the final assembly are represented by t9 and t1 o. The delivery of item
H is modelled by transition til. Transition til fires if there is a demand and a finished
product. If tll fires a new Kanban is supplied to the final assembly process (tiO). If tiO
fires a new Kanban is supplied to the subassembly process (t9). Note that the maximum
amount of stored products g and H depend on the number of tokens initially available in
kanbanl and kanban2.
Figure 12 also shows the delay interval associated with every time consuming operation.

Lets assume that the production system receives a steady flow of raw materials (,A,B and
C). Every 20 minutes the system receives an order for one product H. Initially there
is one Kanban in kanbanl and one Kanban in kanban2. Now we are interested in the
arrival times of tokens in place pll. The table below shows some results obtained using
method MTSRT. For example the 10th order (generated after (10-1)*20 = 180 minutes)
was delivered between 229 (t',ATlO) and 265 (C,ATlO) minutes. Therefore the lead time of
this order is between 49 and 85 minutes.

ordernumber t',ATn C,ATn minimal maximal
(n) lead time lead time

1 49 67 49 67
2 69 89 49 69
3 89 III 49 71

10 229 265 49 85
50 1029 1145 49 165

The maximal lead time is increasing because the final assembly process sometimes needs
22 minutes per job and this is more than the interarrival time (=20 minutes). The minimal
lead time is constant because under ideal circumstances there is an abundance of capacity.
Figure 13 shows a screendump of IAT analysing the production system. It takes less than
a minute to generate the reachability tree for the first five arrivals.

39

pi

[2,3(

p2

p3

[5,6]

t4

(6,7j

t3

Machine 1

t7

{4,Sj

t5
Machine 2

Machine 3

(O,1(

t8

t6

sub
assembly

Figure 12: A production system

40

final
assembly

tID

transport

clean f1 eld

1 I 2 I j c ••• " line I EAT 4 LAT I min rna" II EAT LAT I EAT LAT I E
pi 0 4 0 1 0.000000 0.00000020.000000 20.00000040.0 I'et:love l1ne 000000 60.000000
p2 0 4 0 1 0.000000 0.00000020.000000 20.00000040.0 GIIOW Guhtoru 000000 60.000000

":I

~F"IIWltl
p3 0 4 0 1 0.000000 0.000000 20.000000 20.000000 40.0 clos(~ Gubfm'M 000000 60.000000

..... ~&..~ ... ~~.,:~. : p4 0 1 0 1 5.000000 11.000000 INF INF • IWl'on$l value oq' . .w~~l·.'i 'i'~' ,~i . . ,:i
'" ;*'#11; "'1 ,,'.'. >'~i p5 0 1 0 1 6.000000 10.000000 INF INF ... :.!&:~~1g~~~ .. ~.:' .. : ~,: :~~ .. ~ ~~:! p6 0 1 0 1 20.000000 29.000000 INF INF
" ili~~iMfi~W~~~~:~;'II!,i p7 0 1 0 1 23.00000030.000000 INF INF
>-' p8 0 2 0 2 12.000000 18.00000032.000000 38.000000 INF INF w ~!~t:j$:Mm::! .~:M~~. :~:::~~~: :~f.: p9 0 1 0 1 29.00000040.000000 INF INF INF INF INF
;.- ITPN Analysls Too' pl0 0 1 0 1 47.000000 62.000000 INF INF INF INF INF INF I

INPUT FILES pl1 0 4 0 4 49.000000 67.000000 69.000000 89.000000 89.000000 111.000000 109.000000 133.000000
en free1 0 1 0 1 0.000000 0.000000 INF INF INF INF INF INF
" ... Net free2 0 1 0 1 0.000000 0.000000 INF INF INF INF INF INF

" Initial states free3 0 1 0 1 0.000000 0.000000 INF INF INF INF INF INF " ::s busyl 0
0.-

1 0 1 20.000000 28.000000 INF INF INF INF INF INF

'" S SETTINGS
comments : results for net ------

" lnt;'
0 STRATEGY

remarks name place noL 1rLtrans ncLout_trans EAT LAT tentative symEAT symlAT
...... tart pi , 0 0 1 0.000000 0.000000 I 0
...... tart p2 , 1 0 1 0.000000 0.000000 , 0

i:3
Do you want tart p3 , 2 0 1 0.000000 0.000000 0

""
(yes/n p4 3 1 1 5.000000 6,000000 0 t4 t4

>-'

'"
-Is the net p5 4 1 1 6.000000 7.000000 0 t3 t3

::s (yes/n p6 5 1 1 20.000000 24.000000 0 t8 t8
eo.. Do you want p? 6 1 1 , 23.000000 27.000000 , 0 t6 t6 ,
'< (yes/n p8 , 7 1 1 12.000000 19.000000 I 0 t2 , t2 00 Do you want S· p9 8 1 1 28.000000 37.000000 0 t9 t9
()q

(yes/n pl0 9 1 1 46.000000 59.000000 0 tiD tiD ... TERMINATION A
end pll , 10 1 0 48.000000 64.000000 0 tl1 til

i:l" freel 11, I 1 0.000000 0.000000 0

" free2 12 , 1 1 0.000000 0.000000 0
Ma)<imal num ,

" free3 13 1 1 0.000000 0.000000 0 ... Maximal num busyl • 14 1 1 20.000000 23.000000 0 t7 t7 0 Until time 0.- busy2 • 15 1 1 23.000000 26.000000 0 tS tS

'" busy3 • 16 1 1 12.000000 17.000000 0 t1 tI

" MISCELLANEOUS ... confl ict h , 17, 2 2 0.000000 0.000000 , 0 O·
Trace file

kanbanl 18 , 1 1 0.000000 , 0.000000 0
::s

Generation
kanban2 J 19 1 1 0.000000 , 0.000000 0

00 tart demand . 20 0 1 0.000000 0.000000 0
'< en ...
" S

I
Number of generations 45 ____
Number of states 1191 ___
Time 107.000001Q-

6.3 A job-shop system

The third example we discuss is a job-shop system, with a cyclic production process and a
fixed product mix. In [Hillion et al. 89] such a job-shop was modelled using Timed Event
Graphs. We will show how to model this job-shop using an ITEG.
Let us consider a job-shop system with three machines, numbered 1,2 and 3. There are
3 different products (or jobs), denoted by A, Band C. The product mix consists of: 25
percent of product A, 50 percent of product Band 25 percent of product C.
The manufacturing process of a product is specified by a routing through the system (i.e.
a sequence of machines to visit with the corresponding processing times).
Product (or job-type) A starts with an operation on machine 1 (duration between 7 and
10 minutes), then an operation on machine 2 (duration between 15 and 16 minutes) and
finally an operation on machine 3 (duration between 5 and 15 minutes).
Product B starts with an operation on machine 2 (duration between 12 and 16 minutes)
and ends with an operation on machine 1 (duration between 10 and 13 minutes).
Product C starts with an operation on machine 1 (duration between 11 and 14 minutes)
and ends with an operation on machine 3 (duration between 10 and 21 minutes).
Figure 14 shows the routing of the products on the machines. The machines are represented
by timed transitions (square box). A timed transition corresponds to the subnetwork shown
in figure 2, see section 2.1 for more information. The repetitive functioning is modelled
by a number of circuits, called processing circuits (we use the same terminology as in
[Hillion et al. 89]). Because of the fixed production mix there are two processing circuits
for product B and only one processing circuit for A and one processing circuit for C.
There is fixed sequencing of the jobs (products) on the machines. In this example, machine
1 processes product A first, then product C then product B and finally product B again.
Machine 2 starts with processing product A,then product B twice. Machine 3 also starts
with product A, then C. The sequencing of products on the machines is modelled via the so­
called command circuits. A command circuit connects all timed transitions corresponding
to the same machine. Figure 15 shows the complete model.

Observing the net structure tells us that the net is in fact a consistent ITEG. Therefore
the analysis technique described in section 5.2 can be applied. This technique produces
the minimum (maximum) cycle time by considering all (elementary) circuits. The are
three types of circuits: processing circuits, command circuits and mixed circuits. These
latter circuits include places of both processjng and command circuits. If we supply (all
the places of) the processing circuits with sufficient tokens then the minimum (maximum)
cycle time is equal to minimum (maximum) cycle time of the command circuits. In this
case the job-shop functions at maximal rate. In [Hillion et al. 89] a method is presented
to minimise the jobs in-process (i.e. the tokens in the processing circuits).
In this particular example there are three command circuits: machine 1 (cycle time between
38 and 50 minutes), machine 2 (cycle time between 39 and 48 minutes) and machine 3 (cycle
time between 15 and 36 minutes). Therefore the the minimum cycle time is equal to 39
minutes and the maximum cycle time is equal to 50 minutes. Machine 1 and machine 2

42

Figure 14: The processing circuits

are the bottleneck machines.

It is also possible to model the job-shop as shown in figure 16. Now the job-shop is modelled
as an open system where supplies arrive via places pH, p21, p31 and p41. Products leave
the system via the places p14, p23, p33 and p43. This net is an ITEG which satisfies the
properties stated in theorem 5 (provided that all tokens initially available have a timestamp
0). Therefore we can analyse this net using IAT (method CFNRT) or a simulation with a
timed coloured net. Some results are shown in the following table.

ordernumber product A product B product C
line 1 line 2 line 3 line 4

(n) fATn CATn fATn CATn fATn CATn fATn CATn
1 27 41 56 71 44 55 37 62
2 83 112 112 142 100 126 93 133
3 139 183 168 213 156 197 149 204
5 251 325 280 355 268 339 261 346

10 531 680 560 710 548 694 541 701
100 5571 7070 5600 7100 5588 7084 5581 7091

Note that (in steady-state) the interarrival time of two finished products of the same type

43

1
achine achille

achine achine

I I

achine achine

4

~achine ~aChine

Figure 15: The job-shop system

is between 56 minutes and 71 minutes. This tells us that the job-shop is not functioning at
maximal rate (i.e. the critical circuit is not a command circuit). If we increase the number
of jobs in-process such that the places p12, p13, p22, p32 and p42 initially contain a token
then a simulation gives the following results.

44

Figure 16: The job-shop system revisited

ordernumber product A product B product C
line 1 line 2 line 3 line 4

(n) EATn .eATn EATn .eATn EATn .eATn EATn .eATn

1 5 15 38 50 28 37 15 36
2 20 51 76 100 66 87 30 72
3 59 87 114 150 104 137 69 108
5 137 175 190 200 180 237 147 196

10 332 415 380 500 370 487 342 445
100 3842 4910 3871 5000 3860 4987 3852 4945

A close observation of the results tells us that the behaviour is cyclic (the steady-state
functioning starts after about 30 cycles). The throughput of the jobshop is at least 60/50 =
1.20 items an hour, but no more than 60/39 = 1.54 items an hour (for each product). Note
that these figures match with the figures obtained by calculating the minimum (maximum)
cycle time.

Note that it is possible to incorporate other kinds of repetitive production processes, for

45

example the assembly of products.

7 Concluding remarks

In this paper a new Timed Petri Net model was introduced. Representing the time by
means of an interval rather than deterministic or stochastic variables is promising because
it allows for the representation of time constraints.
Four new analysis methods have been developed. The first one (ATCFN) answers a limited
set of questions for a restricted class of nets. The second analysis method (MTSRT) can
be used for several kinds of questions and for an arbitrary ITPN. It generates a reduced
reachability tree. The third one calculates the final state in an ITEG. The last one analyses
the steady-state performance of an ITEG.
The model is very useful when validating the dynamic behaviour of the system modelled.
It is not meant to replace existing Stochastic Petri Net models but to support them.
Especially in the field of time-critical systeIl)s our approach will prove to be useful.
We have developed a tool called ExSpect/IAT based on these analysis methods. Experience
with this tool shows that the analysis methods produce useful results.

References

[Aalst et al. 89] Aalst, W.M.P van der, M. Voorhoeve and A. W. Waltmans, The TASTE
project,
in: Proceedings of the lOth International Conference on Applications and Theory of
Petri Nets, Bonn 1989.

[Aalst et al. 90] Aalst, W.M.P van der A.W. Waltmans, Modelling Flexible Manufacturing
Systems with EXSPECT,
in: Proceedings of the 1990 European Simulation Multiconference, Nuremberg 1990.

[Aalst et al. 91] Aalst, W.M.P van der and A.W. Waltmans, Modelling logistic systems
with EXSPECT,
in: Dynamic Modelling of Information Systems, editors: H.G. Sol and K.M. van Hee,
North-Holland, 1991.

[Berthomieu et al. 83J Berthomieu B. and M. Menasche, An enumerative approach for
analyzing Time Petri Nets,
in: Information Processing 83, IFIP, North-Holland 1983.

[Carlier et al. 87] Carlier J., Ph. Chretienne and C. Girault, Modelling scheduling prob­
lems with Timed Petri Nets,
in: Petri Nets, central models and their properties, (LNCS 188, Springer, Berlin, 1987)
pp. 62-82.

46

[Chretienne 83] Chretienne P. Les reseaux de petri temporises,
Univ. Paris VI,These d'Etat, France, 1983.

[Dijkstra 59] Dijkstra E.W., A note on two problems in connection with graphs,
Numerische Mathematic, 1, 1959.

[Florin et al. 82] Florin G.,Natkin S., Evaluation based upon Stochastic Petri Nets of the
Maximum Throughput of a Full Duplex Protocol,
in: Informtik Fachberichte 52, Girealt C., Reisig W. eds, Springer-Verlag, 1982.

[Jensen 87] Jensen, K., Coloured Petri Nets,
in: Petri Nets, central models and their properties, (LNCS 188, Springer, Berlin, 1987)
pp. 248-299. .

[Hee et al. 89] Hee, K.M. van, L.J. Somers and M. Voorhoeve, Executable specifications
for distributed information systems,
in: Information System Concepts: An In-depth Analysis, North-Holland 1989.

[Hee et al. 91] Hee, K.M. van, P.A.C. Verkoulen, Intergration of a Data Model and Petri
Nets,
in: Proceedings of the 12th International Conference on Application and Theory of
Petri Nets, Aarhus 1991.

[Hillion et al. 89] Hillion H.P., J.P Proth, Performance Evaluation of Job-Shop Systems
Using Timed Event-Graphs,
in: IEEE Transactions of Automatic Control, vol. 34, no. 1, 1989.

[Mars an et al. 84] Ajmone Marsan M., G. Bablo and G. Conte, A Class of Generalised
Stochastic Petri Nets for the Performance Evaluation of Multiprocessor Systems,
in: ACM Transactions on Computer Systems, 2(2), May 1984.

[Marsan et al. 85] Ajmone Marsan M., G. Bablo, A. Bobbio, G. Chiola, G. Conte and A.
Cumani, On Petri Nets with Stochastic Timing,
in: proc. Int. Workshop on Timed Petri Nets, IEEE, Torino, Italy 1985.

[Merlin 74] Merlin P., A Study of the Recoverability of Computer Systems,
Ph.D. Thesis, University of California, Irvine, 1974.

[Peterson 81] Peterson J.L., Petri net theory and the modeling of systems,
Prentice Hall 1981.

[Petri 80] Petri, C. Introduction to general net theory,
in: Brauer, W. (ed.), Net theory and applications (LNCS' 84, Springer, Berlin, 1980)
pp. 1-20.

[Price 71] Price W.L., Graphs and networks, an introduction,
Butterworths, London, 1971.

47

[Ramamoorthyet al. 80] Ramamoorthy C.V., G.S Ho, Performance Evaluation of Asyn­
chronous Concurrent Systems Using Petri Nets,
in: IEEE Transactions of Software Engineering, vol. SE-6, no. 5, 1980.

[Sifakis 78] Sifakis, J., Performance Evaluation of Systems using Nets,
in: Brauer, W. (ed.), Net theory and applications (LNCS 84, Springer, Berlin, 1980)
pp. 307-319.

[Silva 89] Silva, M. and R. Valette, Petri Nets and Flexible Manufacturing,
in: Advances in Petri Nets, (LNCS 424, Springer, Berlin, 1989) pp. 374-417.

[Whitehouse 73] Whitehouse G.E., Systems analysis and design using network techniques,
Prentice Hall 1973.

[Zuberek 80] Zuberek, W.M., Timed Petri Nets and Preliminary Performance Evaluation,
in: Brauer, W. (ed.), The 7th Annual Symposium on Computer Architecture,
(1980),pp. 88-96.

A Bags

Intuitively a bag is the same as a set, except for the fact that a bag may contain multiple
occurrences of the same element. Another word for bag is multiset. A multiset is defined
over a set A which means that elements of this muItiset are taken from A. A multiset b
over A is defined by a function from A to IN; b E A ---+ IN. If a E A then b(a) is the
number of occurrences of a in the bag b. lI3(A) is the set of all multisets over A.
Most of the set operators can be applied to bags in a rather straightforward way.
We use square brackets to denote multisets by enumeration. Suppose A a set, n E IN and
qo,ql,oo,qn E A then [qo,ql,oo,qn] = AaEA #{i E {O,oo,n} I qi = a}. For example [a,a,b,a]
is the bag containing 3 elements a and one b.We use [] to denote the empty bag.

B Assignment problem

If s E S, s E Sand s <1S then there exists a function f E domes) ---+ domes) satisfying
the conditions presented in section 2.1. The following lemma shows that if such a function
f exists there also exists a function 9 satisfying the same constraints and the additional
constraint that 9 is 'order-preserving'. This function 9 is some kind of isomorphism satis­
fying some additional constraints. We need this lemma to prove theorem 3. To simplify
the notations we only consider the time of a token, not the position.

Lemma 6 (Assignment Problem)
If q E I d -1+ T Sand q E I d -1+ I NT such that there exists a function f E dome q) ---+ dom(q)
with:

(i) f is bijective

48

(ii) ViEdom(q) q(i) E q(f(i))

then there also exists a function g E dome q) -> dom(q) with:

(iii) g is bijective

(iv) ViEdom(q) q(i) E q(g(i))

(v) Vi,jEdom(q) q(i) ::::: q(j) =? ~(q(g(j)) <. q(g(i)))

Proof.
It is easy to find a function g that satisfies (iii) and (iv) because f is such a function. In
this proof we will show that it is possible to "transform" f until (v) holds (i.e. we give
an algorithm to calculate g). First we define a linear (total) ordering (:::::1) on dom(q) such
that i :::::1 j =? q(i) ::::: q(j). This is possible because q(i) ::::: q(j) defines a pre-ordering (a
pre-ordering (quasi-ordering) is reflexive and transitive).
Now we are able to define the conflict set of f:

C(f) = {(i,j) E dom(q) x dom(q) li:::::1 j II q(f(i)) >. q(f(j))}

Note that C(f) = 0 implies that V',jEdom(q) q(i) ::::: q(j) =? ~(q(f(i)) >i q(f(j))).
Consider the following program to transform f (in pseudo code):

while C(f) oj 0
begin

(i,j) E C(f)
{ select an i and j in conflict }
f:= (ft(dom(q) \ {i,j}) U {(i,f(j)), (j,!(i))}
{ swap i and j }

end

Because, C(f) = 0 implies (v), it is sufficient to prove that (iii) and (iv) are invariant and
that the program terminates.

First we prove that (iii) and (iv) are invariant. Initially both invariants hold because of
the definition of f. Suppose (iii) and (iv) hold and (i,j) E C(f) and
j := (f t (dom(q) \ {i, j}) U {(i,f(j)), (j,f(i))}
Now we have to show that both invariants hold for J.

If f bijective then j also bijective ((iii) holds).

To prove (iv) we have to show that for any k E dom(q); q(k) E q(}(k)).
(a) If k oj i and k oj j then q(k) E q(f(k)) = (j(}(k)).
(b) If k = i then q(i) E q(f(i)) = q(f(j)).
We also know that q(i) ::::: q(j) and q(f(i)) >i q(f(j)) because (i,j) E C(f).

49

The fact that q(!(i)) >i q(!U)) implies that (7rl(q(!(i))) ~ 7rl(q(!U)))) and
(7r2(q(!(i))) ~ 7r2(q(!U)))). This situation is shown in the following figure: ,

q(k)

q(k) ~ 7rl(q(!(k))) ~ 7rl(q(!U))) = 7rl(q(}(k)))
q(k) ::0 q(j) ::0 7r2(q(!U))) = 7rl(q(j(k)))
So q(k) E q(}(k)).
(c) A similar reasoning holds for k = j.

•

qU) 7r2(q(f(i))

Finally we have to prove that the program terminates. Observe that there are only a finite
number of bijective functions from dom(q) to dom(q) ((#dom(q))!).
U sing the linear ordering ::01 it is possible to construct a lexicographic ordering (::0/) on
the set of functions from dom(q) to dom(q): If I,J' E dom(q) -> dom(q) then:

I ::0/ I' = :JkEdom(q)('v',Edom(q) 1(1) = 1'(1)) II q(!(k)) <i q(!'(k))) V
l<l k

'v'kEdom(q) I(k) = I'(k)

This ordering is a partial ordering because ::Oi is a partial ordering. It is easy to verify that
::0/ is reflexive and anti symmetric (::Oi is antisymmetric). The ordering is also transitive:
I S/ I' and I' ::0/ f" implies that I ::Of f" (::Oi is transitive).

If I is the result of swapping i and j then I <, I, because 'v"Ed?m(q) 1(1) - 1(1) and
1<1'

q(j(i)) <i q(!(i))).

The fact that I is "descending" with respect to Sf and that the number of possible func­
tions is finite tells us that the algorithm will terminate. Therefore, there exists a function
9 that satisfies the conditions (iii),(iv) and (v).
o

50

C Relation between ITPN (ITEG) and activity net­
works

Network planning is an established technique for project planning. It is the logical step
when a project becomes too complex to plan it just on intuition. There are three basic
network types: activity networks, event networks and precedence networks.
In an activity networks, activities (or tasks) are represented by arcs each beginning and
ending in an identifiable point in the planning network. These points are called events and
are represented by circles. Events are instantaneous and activities are time consuming (i.e.
they have a time duration). Figure 17 shows an activity network.

TASK A
2 days

TASK C
1 day

TASK D
2 days

TASK E
5 days

Figure 17: An activity network

An event network has a similar network structure, however the interpretation differs from
an activity network. Arcs represent events, circles represent milestones. Now time is associ­
ated with events. Activity and event networks are frequently combined into activity/event
networks.
In a precedence network an activity is represented by a box and arrows are used to define
the relations between activities.

Two widespread network planning systems are the CPM (Critical Path Method) system
and the PERT (Program Evaluation and Review Technique). They are both based on
activity /event networks. In a PERT-network the time duration of an activity is specified
by: an optimistic estimate, a pessimistic estimate and a most likely estimate.

An event (or milestone) is called a start event if there is no input arc. Events without
output arcs are called end events. In general a planning network is acyclic and it has one
start event and one end event.
The critical path in a planning network is the longest path from the start event to the end
event. The project duration is given by the length of the critical path. The critical path
can be calculated using a forward calculation (an activity starts if all previous activities
have been completed) or backward calculation (an activity ends if one of next activities has

51

'.~

to start). A forward calculation produces the earliest event time of all events, a backward
calculation produces the latest event time of all events.
The term float time is used to describe the amount of extra time available for the completion
of an activity. There are various kinds of float time; total float, free float, independent float,
these are calculated using a forward and backward calculation. For more information on
network planning, see [Whitehouse 73].

Interval Timed Event Graphs are a generalisation of classical activity/event networks in
the sense that they allow for the definition of optimistic and pessimistic estimates of the
time durations and in the sense that they allow the study of repetitive schedulings.

An event (or milestone) in a planning network corresponds to a transition in an ITEG, an
activity (or event) corresponds to a place. In other words replace the circles by transition
bars and the arcs by places connecting two transitions. Figure 18 shows the ITEG net
corresponding to the the activity net shown in figure 17.

TASK A

[1,1

TASK D
[2,2]

TASKB

[5,5]

Figure 18: An ITEG representing an activity network

An ITEG constructed like this contains no circuits and has one transition without input
places (start event) and one transition without any output places (end event). The transi­
tion without the input places fires once (at time 0), this can be modelled by an input place
with initially one token with timestamp O. A forward calculation can be done by applying
method CFNRT, the results are upper and lower bounds for the earliest event time. By
redirection of all arcs in the ITEG such a simulation produces upper and lower bounds for
the latest event time. Therefore it is possible to calculate various kinds of float times.

Because circuits are allowed in an ITEG it is possible to study repetitive schedulings using
the concept of critical cycles, discussed in section 5.2.

Conflict free Interval Timed Petri Nets are also a generalisation of activity/event networks
with two node types: transition (and nodes) and places (or nodes). Because a place can

52

have multiple input transitions it is possible to define alternatives. In section 3 we presented
an algorithm to calculate upper and lower bounds for the length of a critical path.

53

89/1 E.Zs.Lepoeter-Molnar

89/2 R.H. Mak
P.Struik

89/3 H.MM. Ten Eike1der
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T. VeIilOeff
I.T.Udding

89/6 T.Verhoeff

89n P.Struik

89/8 E.H.L.Aans
AE.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 AT.M.Aens
K.M. van Hee

89/13 A.T.M.Aerts
K.M. van Hee
M.W.H. Hesen

89/14 H.C.Haesen

89/15 I.S.C.P. van
der Woude

89/16 AT.M.Aens
K.M. van Hee

89/17 MJ. van Diepen
K.M. van Hee

In this series appeared:

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a po1ymOlphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a paralell program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output
guards.

Algebraic specification and implementation of infinite
processes.

A concise formal framework for data modeling.

A program generator for simulated armealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a framework for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

90/1 W.P.de Roever-
H.Barringer-
C.Courcoubetis-D.Gabbay
RGerth-B.Jonsson-A.Poueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R Gerth

90/4 A. Peeters

90/5 J.A. BlZOzowski
J.C. Ebergen

90/6 A.J.J.M. Marcelis

90n A.J.J.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

90/10 M.J. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 K.R Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Formal methods and tools for the development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate netwOlxs, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. 15.

A formal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving termination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p.23.

On the asynchronous nature of communication in logic
logic languages: a fully abstract model based on
sequences, p. 29.

90/18 J.Coenen
E.v.d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A. C. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A. C. Verkoulen

91/01 D. Alstein

91/02 R.P. NedeIpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

Design and implementation aspects of remote procedure
calls, p. 15.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification framework, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ... ,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzichl, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

	Abstract
	Contents
	1. Introduction
	2. Interval Timed Petri Nets
	2.1 Semantics of an ITPN
	2.2 Interesting questions
	3. Method ATCFN
	4. Method MTSRT
	5. Other analysis methods
	5.1 Method CFNRT
	5.2 Method SSPAT
	6. Some examples
	6.1 The reader/writers problem
	6.2 A production / assembly system
	6.3 A job-shop system
	7. Concluding remarks
	References
	A: Bags
	B: Assignment problem
	C: Relation between ITPN (ITEG) and activity networks

