

Duplication of constants in process algebra

Citation for published version (APA):
Baeten, J. C. M., & Reniers, M. A. (2005). Duplication of constants in process algebra. (Computer science
reports; Vol. 0532). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/f2483878-0099-47c5-98b0-5eaf019e9987

Duplication of Constants in Process Algebra

J.C.M. Baeten and M.A. Reniers
Division of Computer Science, Eindhoven University of Technology

E-mail: J.C.M.Baeten@tue.nl, M.A.Reniers@tue.nl

December 9, 2005

Abstract

The constant 0 (or δ, nil) has different roles in process algebra: on the one hand, it serves
as the identity element of alternative composition, on the other hand, it stands for a blocked
atomic action or for livelock. When extensions with timing are considered, these roles diverge.
We argue that it is better to use two separate constants 0̇ and 0 for the different usages.

With respect to the termination constant 1 (or ε, skip), the situation is comparable: on
the one hand, it serves as the identity element of sequential composition, on the other hand, it
serves as the identity element of parallel composition, and stands for a skipped atomic action.
We have separate constants 1̇ and 1 for the different usages.

1 Introduction

In the design of a process algebra, both operational intuition and the resulting set of laws play an
important role. On the one hand, the operational intuition gives us what is observable about a
behavior: the execution of a (visible) action, termination, or (in theories with quantitative time)
the passage of time. On the other hand, the resulting set of laws turn the theory into an algebra,
and we look for instance for identity elements for the basic operators.

In a process algebra without quantitative timing, consider a process that starts with the ex-
ecution of an atomic action a. This means we observe the execution of a at some moment, and
then, the process continues with the remainder. Interpreting this in a theory with timing, we say
a occurs at some unspecified moment of time, i.e. we may observe some passage of time first,
and then the execution of a. Stated differently, we interpret a as a delayable action. Besides this
delayable a, a theory with timing will also contain undelayable actions.

Next, consider choice, e.g. consider a process a.x + b.y that either starts with the execution of
a or with the execution of b. In the process algebra ACP or CCS, the intuition is that the choice
is made by the execution of an action, and not at any time before. Interpreted in a timed theory,
a and b occur at unspecified moments of time, maybe a occurs after 2 time units and b occurs
after 3 time units. Then, after 1 unit of time, the choice is not made, and both options are still
open. This is called time-determinism or time factorization in timed process algebra: passage of
time as such does not make a choice.

Now, some theories with timing use so-called strong time-determinism: if b happens to occur
later than a, then b cannot be chosen, and a has to occur. We feel this is not in accordance
with untimed theories: a choice not to do b cannot be taken before any action execution, as this
is opposed to time-determinism. But then, we arrive at so-called weak time-determinism: it is
possible to delay past the execution time of a, but then a choice is made not to do a, and b will be
executed. To repeat, adherence to weak time-determinism means that passage of time is possible
in a choice context as long as at least one component allows this delay. This means adding an
option with more delay adds more options in a choice context, and the identity element for choice
should not be delayable at all.

The identity element of choice in untimed process algebra is the inaction process 0 (also called
δ or nil) that is characterized by no action execution and no termination. Interpreted in a timed

1

setting, the question is whether or not 0 allows passage of time. Since 0 stands for a blocked
atomic action (0 is the process a.x when execution of a is blocked), and a is delayable, we take
also 0 to be delayable. But on the other hand, we adopt weak time-determinism, and thus, the
identity element is a process that does not allow passage of time. We take a different constant 0̇
for this identity element. This was also done in [BB91, BM02], where the notation δ̇ was used for
this purpose.

The empty process 1 (also called ε or skip) denoting successful termination or skip has not
been studied nearly as well as the unsuccessful termination constant. The untimed theory was
investigated in [KV85, BG87, Vra97]. In the context of ACP-like process algebras the empty
process in a timed setting is mentioned in [Gro91, Ver97, BV97]. In [Ver97, BV97] a relative-
time, discrete-time process algebra has been extended with both a non-delayable and a delayable
successful termination constant. The hybrid process algebra HyPA from [CR05] contains a non-
delayable successful termination constant.

As is the case for 0 in the untimed theory, also the process 1 has more roles. On the one
hand, it serves as the identity element for sequential composition, on the other hand, it stands
for the process that executes no actions but terminates at some unspecified time, and as such
acts as the identity element of parallel composition. Assuming that we want the embedding of
untimed process algebra into timed process algebra where atomic actions and 0 are delayable timed
constants, it is impossible to use only one timed successful termination constant for both roles.
This is explained as follows. Suppose that we want to treat the untimed successful termination
constant as being non-delayable in the timed setting. Then, the timed interpretation of the
untimed identity 1 + 0 = 1 is not valid anymore as the left-hand side of the identity is delayable
and the right-hand side is not! Thus, the interpretation of 1 must be a delayable constant. Such a
delayable constant cannot act as an identity element for sequential composition: 1 followed by a
non-delayable a adds an arbitrary delay before the execution of a, so is not the same as the non-
delayable a. Hence, with timing, if 1 represents the successful termination constant that allows
passage of time, we introduce a new constant 1̇, called the terminated process, that is the identity
element for sequential composition. The delayable 1 can still act as the identity element of parallel
composition, as a delay can only occur in a parallel composition if all components allow this delay.

The process 1̇ denotes a terminated process: termination has taken place, so no parallel activity
can precede the termination. With this constant, we finally have a complete interpretation of the
constant process a of ACP in a timed setting: upon executing the action, what remains is 1̇.

In [Bae03], it was established that action constants make embedding of untimed into timed
theories difficult, and it was suggested to use action prefixing instead. This was subsequently
worked out in [BMR05, BB05, BBR06]. We follow this approach here, so we start out from the
theory TCP.

Thus, we have separated out two different roles of the basic constants 0 and 1. By having 0
stand for a blocked atomic action, and having 0̇ for the identity element of alternative composition,
and at the same time having 1 as the identity element of parallel composition, and 1̇ as the identity
element of sequential composition, it becomes easier to define timed extensions in different ways:
discrete time or dense time, relative time or absolute time. In all of these cases, the four basic
constants 0, 0̇, 1, and 1̇ keep their respective roles. As an example, we work out the theory in the
case of relative discrete time. We also worked out the variants for dense time and absolute time,
but do not present these in the current paper.

In Section 2, we present the untimed process algebra TCP. In Section 3, a discrete relative
timing extension of TCP, called TCPdrt, is presented. In Section 4, we sketch how absolute time
and dense time extensions of TCP can be obtained. Then, in Section 5, we introduce the extension
of TCP with the new constants 0̇ and 1̇. The resulting process algebra is called TCP•. In Section
6, a discrete relative timing extension of TCP• is given. It is called TCP•

drt.

2

2 Untimed Process Algebra

We start out from the Theory of Communicating Processes, TCP, of [BBR06], see also [BB05,
BMR05].

This process algebra is parameterized by a set A of (atomic) actions, and a communication
function γ on A. The function γ is a partial binary, commutative and associative function on A,
and when γ(a, b) = c, then a and b are matching actions, that when they synchronize yield the
resulting action c. The signature of TCP contains the following elements:

• inaction 0. This is the process that cannot perform any action and cannot terminate.
Operationally, it is characterized by having no operational rules at all. Inaction is the
identity element of alternative composition. It is often called deadlock and denoted δ in
ACP-style process algebra, and nil in CCS.

• termination 1. This is the process that cannot perform any action, but can only terminate
successfully. Termination is the identity element of sequential composition and at the same
time of parallel composition. This process is called the empty process or skip, and denoted
ε in ACP-style process algebra, and SKIP in CSP.

• for each action a ∈ A, the action prefix operator a. . The process a.x executes action a and
next continues with the execution of x.

• alternative composition +. The process x + y executes either x or y, but not both. The
choice is resolved upon execution of the first action.

• sequential composition ·. The process x ·y first executes x, and upon termination of x starts
the execution of y.

• parallel composition ‖. The process x ‖ y interleaves the actions of processes x and y
(denoted by auxiliary operator ‖) and synchronizes communicating actions and termination
(denoted by auxiliary operator |).

• encapsulation ∂H blocks the execution of actions from H ⊆ A, and is used to enforce com-
munication.

The axioms of TCP are presented in Table 1. Axioms A1-A10 are the axioms of the theory
TSP, Theory of Sequential Processes (see [BBR06]). Alternative composition is commutative,
associative, idempotent and has identity element 0. Sequential composition is associative and
has identity element 1. Sequential composition distributes over alternative composition from the
right, but not from the left. 0 is a left-zero for sequential composition, but not a right-zero. Action
prefixing always binds strongest, alternative composition always binds weakest. The subtheory
BSP of TSP is obtained by omitting sequential composition and the axioms involving it.

Axioms M, LM1-LM4 and CM1-CM6 axiomatize parallel composition. Parallel composition
is split up, using auxiliary operators left-merge (‖) and communication merge (|). The axioms
follow the structure of BSP-terms. Axioms SC1-SC8 are the axioms of Standard Concurrency:
they list useful properties of parallel operators, such as the commutativity and associativity of
parallel composition. 1 is the identity element of parallel composition.

Finally, D1-D5 axiomatize the encapsulation operator, again following the structure of BSP-
terms.

In [Bae03], by means of the operational rules of Table 2, an operational semantics is given for
closed TCP-terms defining binary relations a→ (for a ∈ A), and a unary relation (predicate)
↓. Intuitively, these have the following meaning:

• x
a→ x′ means that x evolves into x′ by executing atomic action a;

• x ↓ means that x has an option to terminate successfully.

The axioms introduced before are meant to identify processes that are strongly bisimilar.

3

Table 1: Axioms of TCP (a, b, c ∈ A, H ⊆ A)
x + y = y + x A1 x + 0 = x A6
(x + y) + z = x + (y + z) A2 0 · x = 0 A7
x + x = x A3 1 · x = x A8
(x + y) · z = x · z + y · z A4 x · 1 = x A9
(x · y) · z = x · (y · z) A5 a.x · y = a.(x · y) A10

x ‖ y = x‖ y + y‖ x + x | y M x | y = y | x SC1
x ‖ 1 = x SC2

0‖ x = 0 LM1 1 | x + 1 = 1 SC3
1‖ x = 0 LM2 (x ‖ y) ‖ z = x ‖ (y ‖ z) SC4
a.x‖ y = a.(x ‖ y) LM3 (x | y) | z = x | (y | z) SC5
(x + y)‖ z = x‖ z + y‖ z LM4 (x‖ y)‖ z = x‖ (y ‖ z) SC6

(x | y)‖ z = x | (y‖ z) SC7
0 | x = 0 CM1 x‖ 0 = x · 0 SC8
(x + y) | z = x | z + y | z CM2
1 | 1 = 1 CM3 ∂H(0) = 0 D1
a.x | 1 = 0 CM4 ∂H(1) = 1 D2
a.x | b.y = c.(x ‖ y) if γ(a, b) = c CM5 ∂H(a.x) = 0 if a ∈ H D3
a.x | b.y = 0 if γ(a, b) not defined CM6 ∂H(a.x) = a.∂H(x) otherwise D4

∂H(x + y) = ∂H(x) + ∂H(y) D5

Table 2: Deduction rules for TCP (a, b, c ∈ A, H ⊆ A)
a.x

a→ x 1 ↓

x
a→ x′

x + y
a→ x′

y
a→ y′

x + y
a→ y′

x ↓
x + y ↓

y ↓
x + y ↓

x
a→ x′

x · y a→ x′ · y
x ↓ y

a→ y′

x · y a→ y′
x ↓ y ↓

x · y ↓

x
a→ x′

x ‖ y
a→ x′ ‖ y

y
a→ y′

x ‖ y
a→ x ‖ y′

x
a→ x′ y

b→ y′ γ(a, b) = c

x ‖ y
c→ x′ ‖ y′

x ↓ y ↓
x ‖ y ↓

x
a→ x′

x‖ y
a→ x′ ‖ y

x
a→ x′ y

b→ y′ γ(a, b) = c

x | y c→ x′ ‖ y′
x ↓ y ↓

x | y ↓

x
a→ x′ a &∈ H

∂H(x) a→ ∂H(x′)
x ↓

∂H(x) ↓

4

Definition 2.1 (Strong bisimilarity) A symmetric, binary relation R on processes is called a
strong bisimulation relation if for all process terms p and q such that (p, q) ∈ R we have

• if p ↓ then q ↓;

• for all a ∈ A and process terms p′: if p
a→ p′, then there exists a process term q′ such that

q
a→ q′ and (p′, q′) ∈ R.

Two processes p and q are strongly bisimilar, notation p↔q, if there exists a strong bisimulation
relation R such that (p, q) ∈ R.

The notion of strong bisimilarity on closed TCP-terms is both an equivalence and a congruence
for all the operators of the process algebra TCP. As we have used the standard definition of strong
bisimilarity, congruence is for free (follows from the format of the deduction rules).

Theorem 2.2 (Equivalence) Strong bisimilarity is an equivalence relation.

Theorem 2.3 (Congruence) Strong bisimilarity is a congruence for the operators of the process
algebra TCP.

Proof. The deduction system is in path format and hence strong bisimilarity is a congruence
[Ver95, Fok94]. !

We establish that the structure of transition systems modulo strong bisimilarity is a model for
our axioms, or, put differently, that our axioms are sound with respect to the set of closed terms
modulo strong bisimilarity. We also prove that the axiomatization is complete.

Theorem 2.4 (Soundness) The process algebra TCP is a sound axiomatization of strong bisim-
ilarity on closed TCP-terms.

Theorem 2.5 (Completeness) The process algebra TCP is a complete axiomatization of strong
bisimilarity on closed TCP-terms.

Proof. For a proof of this theorem we refer to [BBR06]. !

The process algebra TCP is generic, in the sense that most features of commonly used process
algebras can be embedded in it. For details of this, see [BB05].

3 Discrete relative timing

Let us now first consider the timing extension with relative, discrete timing. We take this version
of a timed theory, as it is the easiest one to explain. The following syntax elements are added:

• Current time slice inaction 0. This process cannot execute any action, cannot terminate,
and cannot let time pass to the next time slice. The process 0 can now be called any time
inaction; this process allows any passing of time.

• Current time slice termination 1. This process cannot execute any action, cannot let time
pass, but can terminate in the current time slice. The process 1 is any time termination,
and allows passing of time.

• Current time slice action prefix a. . The process a.x executes a in the current time slice and
continues with x. It does not allow passing of time. The process a.x allows any passing of
time before the execution of a.

5

• Unit delay prefix σ. . The process σ.x can pass to the next time slice and there start the
execution of x.

• Unit time-out operator υ1. This is an auxiliary operator used in the axiomatization. Process
υ1(x) does not allow passage to the next time slice, and only allows an initial action or
termination of x in the current time slice.

Note that the unit delay prefix binds equally strong as action prefix.
The axioms of TCPdrt are given in Table 3. The interpretation of alternative composition

with respect to timing is called weak time-determinism: in x + y, if both components can let
time pass, then the process can let time pass and no choice is made, this is expressed in axiom
DRTF (Discrete Relative Time Factorization); if one component can let time pass, but the other
component cannot, then the process can let time pass; doing this, the other component is discarded.
To give an example, the process 1+0 can either terminate in the current time slice, or let time pass
and turn into 0. This implies that 0 is no longer the identity element of alternative composition
(it is only so for processes that allow an arbitrary initial delay). This role is taken over by 0, see
axiom A6DR.

The process 0 is a left-zero for sequential composition (A7DR). Although axiom A7 from TCP
that states that 0 is a left-zero for sequential composition is not present in TCPdrt, it is derivable
from the other axioms: TCPdrt (0 · x DT2= (1 · 0) · x A5= 1 · (0 · x) A7DR= 1 · 0 DT2= 0.

The interpretation of sequential composition is consistent with relative timing: x · y will start
y in the time slice in which x terminates. 1 is no longer the identity element of sequential
composition, 1 · x can start x in an arbitrary time slice. This role is taken over by 1, see axioms
A8DR and A9DR.

A parallel composition can let time pass if both components allow the delay. Termination of the
parallel composition only occurs in case both components can terminate successfully. Therefore,
1 still is the identity element.

The first 10 axioms A1-A5 and A6DR-A10DR now correspond to A1-A10 of TCP, substituting
double underlined elements for their untimed counterparts. Process 1 is characterized by the
recursive equation DT1: termination takes place in the current time slice, or a delay is executed
and we are back where we started. The process 1 in turn can be used to define the untimed
counterparts of 0 and a, see DT2 and DT3: 1·x will add an arbitrary delay to the start of x. All the
axioms of TCP involving 0, 1, or a can now be derived, using just some axioms for 1. The axioms
for parallel composition M, LM1DR-LM3DR, LM4, CM1DR, CM2, CM3DR-CM6DR, SC1, SC2,
SC3DR, and SC4-SC7 are like their untimed counterparts. Axioms LM5DR-LM7DR describe a
delay of left-merge: this can happen when both sides allow the delay (LM6DR, discarding the
part on the right-hand side that has to start in the current time slice). If the right-hand side does
not allow a delay, nothing can happen (LM5DR). Finally, LM7DR is added. This axiom allows
to derive a.x‖ y = a.(x ‖ y) for untimed y (i.e. processes with an arbitrary initial delay, that can
be written in the form 1 · y′ or even 1 · υ1(y′)). For communication merge, a delay is only possible
when both components allow this (CM7DR, CM8DR). Axiom CM9DR is needed to derive CM1
and CM3-CM6 of TCP for untimed processes.

Notice this approach to parallel composition with timing is slightly different from [BB05,
BMR05], but it is the same as in [BBR06]. Here, we allow a delay of a parallel composition
precisely when both components allow this delay. As a consequence, the process 1 is the identity
element of parallel composition. This makes the intuition and the operational semantics of parallel
composition simpler, and separates out different roles of 1.

The axioms of encapsulation are straightforward, and the axioms of the unit time-out operator
block any initial delay (RTO5, RTO6).

Definition 3.1 (Basic terms) Basic terms are defined inductively as follows:

• 0 and 1 are basic terms;

• 0 and 1 are basic terms;

6

Table 3: Axioms of TCPdrt (a, b, c ∈ A, H ⊆ A)
x + y = y + x A1 x + 0 = x A6DR
(x + y) + z = x + (y + z) A2 0 · x = 0 A7DR
x + x = x A3 1 · x = x A8DR
(x + y) · z = x · z + y · z A4 x · 1 = x A9DR
(x · y) · z = x · (y · z) A5 a.x · y = a.(x · y) A10DR
σ.(x + y) = σ.x + σ.y DRTF σ.x · y = σ.(x · y) DRA10
1 = 1 + σ.1 DT1 1 · 1 = 1 DT4
0 = 1 · 0 DT2 1 · σ.x = σ.(1 · x) DT5
a.x = 1 · a.x DT3 1 · (x + y) = 1 · x + 1 · y DT6

x ‖ y = x‖ y + y‖ x + x | y M
0‖ x = 0 LM1DR 0 | x = 0 CM1DR
1‖ x = 0 LM2DR (x + y) | z = x | z + y | z CM2
a.x‖ y = a.(x ‖ y) LM3DR 1 | 1 = 1 CM3DR
(x + y)‖ z = x‖ z + y‖ z LM4 a.x | 1 = 0 CM4DR
σ.x‖ υ1(y) = 0 LM5DR a.x | b.y = c.(x ‖ y) if γ(a, b) = c CM5DR
σ.x‖ (υ1(y) + σ.z) = σ.(x‖ z) LM6DR a.x | b.y = 0 if γ(a, b) not defined CM6DR
(1 · x)‖ (1 · υ1(y)) = σ.x | υ1(y) = 0 CM7DR

= 1 · (x‖ (1 · υ1(y))) LM7DR σ.x | σ.y = σ.(x | y) CM8DR
x | y = y | x SC1 (1 · x) | (1 · y) =
x ‖ 1 = x SC2 = 1 · (x | (1 · y) + (1 · x) | y) CM9DR
1 | x + 1 = 1 SC3DR (x‖ y)‖ z = x‖ (y ‖ z) SC6
(x ‖ y) ‖ z = x ‖ (y ‖ z) SC4 (x | y)‖ z = x | (y‖ z) SC7
(x | y) | z = x | (y | z) SC5

∂H(0) = 0 D1DR υ1(0) = 0 RTO1
∂H(1) = 1 D2DR υ1(1) = 1 RTO2
∂H(a.x) = 0 if a ∈ H D3DR υ1(a.x) = a.x RTO3
∂H(a.x) = a.∂H(x) otherwise D4DR
∂H(x + y) = ∂H(x) + ∂H(y) D5 υ1(x + y) = υ1(x) + υ1(y) RTO4
∂H(σ.x) = σ.∂H(x) D6DR υ1(σ.x) = 0 RTO5
∂H(1 · x) = 1 · ∂H(x) D7DR υ1(1 · x) = υ1(x) RTO6

7

• for a ∈ A and basic term p, a.p and a.p are basic terms;

• for basic term p, σ.p is a basic term;

• for basic terms p and q, p + q is a basic term.

Theorem 3.2 (Elimination) For closed TCPdrt-term p, there exists a basic term q such that
TCPdrt (p = q.

Proof. For the proof of this statement we refer to Appendix A.1. !

The operational semantics of TCPdrt can be given by just adding to the rules of TCP. We add
one relation 1)→ , executing a ‘tick’. Intuitively, there is the following meaning:

• x
1)→ x′ means that x delays to the next time slice and evolves into x′.

The rules are given in Table 4.

Table 4: Deduction rules for TCPdrt (a ∈ A and H ⊆ A)
a.x

a→ x 1 ↓ σ.x
1)→ x a.x

1)→ a.x 1 1)→ 1 0 1)→ 0

x
1)→ x′ y

1
&)→

x + y
1)→ x′

y
1)→ y′ x

1
&)→

x + y
1)→ y′

x
1)→ x′ y

1)→ y′

x + y
1)→ x′ + y′

x
1)→ x′ x &↓

x · y 1)→ x′ · y
x

1)→ x′ y
1
&)→

x · y 1)→ x′ · y
x

1)→ x′ x ↓ y
1)→ y′

x · y 1)→ x′ · y + y′

x
1
&)→ x ↓ y

1)→ y′

x · y 1)→ y′

x
1)→ x′ y

1)→ y′

x ‖ y
1)→ x′ ‖ y′

x
1)→ x′ y

1)→ y′

x‖ y
1)→ x′‖ y′

x
1)→ x′ y

1)→ y′

x | y 1)→ x′ | y′

x
1)→ x′

∂H(x) 1)→ ∂H(x′)

x
a→ x′

υ1(x) a→ x′
x ↓

υ1(x) ↓

Theorem 3.3 (Congruence) Strong bisimilarity is a congruence for the operators of the process
algebra TCPdrt.

Proof. The deduction system is stratifiable and in panth format and hence strong bisimilarity is
a congruence [Ver95]. !

Theorem 3.4 (Soundness) The process algebra TCPdrt is a sound axiomatization of strong
bisimilarity on closed TCPdrt-terms.

We establish that the structure of transition systems modulo strong bisimilarity is a model for
our axioms, or, put differently, that our axioms are sound with respect to the set of closed terms
modulo strong bisimilarity. We also prove that the axiomatization is complete.

Theorem 3.5 (Completeness) The process algebra TCPdrt is a complete axiomatization of
strong bisimilarity on closed TCPdrt-terms.

8

Proof. For a proof of this theorem we refer to Appendix A.2. !

Next, we compare the theories TCP and TCPdrt. TCPdrt is not an equationally conservative
extension1 of TCP since the axioms of TCP are not contained in the axioms of TCPdrt. However,
it is an equationally conservative ground-extension (see [MR05a] for a definition).

Theorem 3.6 (Equational Conservativity) TCPdrt is an equationally conservative ground-
extension of TCP, i.e., for all closed TCP-terms p and q, TCP (p = q if and only if TCPdrt (
p = q.

Proof. The proof is given using meta-theory from [MR05a] in Appendix A.3 !

4 Absolute timing and dense timing

We can set up a variant of the theory of the previous section for absolute timing instead of relative
timing. Instead of the relative timing syntax elements 0, 1, a. , and σ. , we have absolute timing
elements:

• First time slice inaction 0. This process cannot execute any action, cannot terminate, and
cannot let time pass to the second time slice.

• First time slice termination 1. This process cannot execute any action, cannot let time pass,
but can terminate in the first time slice.

• First time slice action prefix a. . The process a.x executes a in the first time slice and
continues with x in the first time slice.

• Unit time shift prefix σ. . The process σ.x will shift the time slices in x by 1. Thus, σ.a.σ.1
will execute a in the second time slice and terminate in the third time slice.

Many things will go as before, but there are some notable differences. Consider the term
σ.a.1 · b.1: the first component will execute a in the second time slice, followed by termination in
the second time slice. The second component wants to execute b in the first time slice, but this
is impossible, as we cannot go back in time. We see that upon termination in the second time
slice, there is a time inconsistency. We will assume that a process will deadlock immediately upon
encountering a time inconsistency. Different from the undelayable deadlock constant 0 from the
relative time theory from Section 3 or the undelayable deadlock constant 0 from the absolute timing
theory, this immediately deadlock will not even allow undelayable actions in a parallel component.
In [BB91, BM02], the notation δ̇ is introduced for this deadlocked process. Adding this process to
the current theory will necessitate that it becomes the identity element of alternative composition,
not 0 or 0.

We can integrate relative and absolute timing by going to parametric timing. We refer to
[BB96, BB97, BM02] for more information on parametric timing. We omit giving axioms and
operational rules of the absolute and parametric time theories, as these are not essential for the
discussion of this paper.

Next, we can also set up a variant of the theory TCPdrt of the previous section by replacing
discrete timing by dense timing. Instead of the discrete timing syntax elements 0, 1, a. , and σ. ,
we have dense timing elements:

• Current time point inaction
≈
0. This process cannot execute any action, cannot terminate,

and cannot let time progress beyond the current point of time. This process can be used as
the identity element of alternative composition in theories with dense time.

1For a definition of this notion we refer to [Ver94].

9

• Current time point termination
≈
1. This process cannot execute any action, cannot let time

progress beyond the current point of time, but can terminate at the current point of time.
This process can be used as the identity element of sequential composition in theories with
dense time.

• Current time point action prefix ≈
a . . This process must execute a at the current point of

time, and continues with the remainder at the current point of time.

• Relative delay prefix ≈
σ

t
. . The process ≈

σ
t
.x will delay for t time units beyond the current

point of time (t ∈ R≥0), and then continue with x.

Again, we omit giving axioms and operational rules of the relative time dense time theory.
Finally, we can set up a variant of the theory with dense timing for absolute timing instead of

relative timing. Instead of the relative timing syntax elements
≈
0,

≈
1, ≈a . , and ≈

σ. , we have absolute
timing elements:

• Inaction at time 0
∼
0. This process cannot execute any action, cannot terminate, and does

not allow delay to a point of time after 0.

• Termination at time 0
∼
1. This process cannot execute any action, cannot let time pass, but

can terminate at time 0.

• Action prefix at time 0 ∼
a . . The process ∼

a .x executes a at time 0 and continues with x at
time 0.

• Time shift prefix ∼
σ

t
. . The process ∼

σ
t
.x will shift the time points in x by t. Thus, ∼σt

.
∼
a .

∼
σ

s
.
∼
1

will execute a at time t and terminate at time t + s.

Again, timing inconsistencies can occur, as in the discrete time case. Embedding of the rel-
ative time theory into the absolute time theory can again be achieved by time parametrization.
Moreover, note that we can embed the discrete absolute time theory into the dense absolute time
theory:

0 = ∼
σ

[0,1)
.
∼
0

1 = ∼
σ

[0,1)
.
∼
1

a.x = ∼
σ

[0,1)
.
∼
a .x.

Here, the prefix operator ∼
σ

[0,1)
.x allows any delay t with 0 ≤ t < 1 before continuing with x.

Note that a similar embedding of the discrete relative time theory into the dense relative time
theory cannot be achieved because we do not know where the current point of time is within the
time slice, we do not know how far the end of the time slice is away. This embedding can only be
achieved by going via the parametric time theory. For further details, see [BM02].

5 Inconsistent states

We see that in the untimed, discrete time and dense time theories, each time there is a different
constant for the identity element of alternative composition (resp. 0, 0,

≈
0, 0, or

∼
0). Besides this,

there is a need for an additional constant 0̇ denoting a timing inconsistency, the deadlocked process.
It turns out we can take 0̇ to be the identity element of alternative composition in all of the cases.

A similar situation occurs with the identity element of sequential composition. We get constants
1 ,1,

≈
1, 1 or

∼
1 acting as this identity element in the untimed, discrete time and dense time theories.

It turns out we can take a new constant 1̇ to be this identity element in all of the cases.
In this section we show this can be achieved in the untimed process theory with the additional

constants 0̇ and 1̇. In the next section, we look at the discrete relative time process theory with

10

these so-called inconsistent processes. As mentioned in the introduction, it is also possible to
develop absolute time and dense time variants, but we do not present these here.

Starting out from the syntax of TCP, we add two additional constants:

• The deadlocked process 0̇. Identity element of alternative composition. In contrast, the
constant 0 stands for a blocked or encapsulated action (∂{a}(a.x)), and for livelock (not
discussed here).

• The terminated process 1̇. Identity element of sequential composition. In contrast, the
constant 1 stands for a skipped or abstracted action, and the identity element of parallel
composition.

The axioms of TCP• are presented in Table 5.

Table 5: Axioms of TCP•(a, b, c ∈ A, H ⊆ A)
x + y = y + x A1 x + 0̇ = x A6•
(x + y) + z = x + (y + z) A2 0̇ · x = 0̇ A7•
x + x = x A3 1̇ · x = x A8•
(x + y) · z = x · z + y · z A4 x · 1̇ = x A9•
(x · y) · z = x · (y · z) A5 a.x · y = a.(x · y) A10
1 + 1̇ = 1 DOT1 1 · 1 = 1 DOT3
0 = 1 · 0̇ DOT2 1 · a.x = a.x DOT4

1 · (x + y) = 1 · x + 1 · y DOT5

x ‖ y = x‖ y + y‖ x + x | y M
0̇‖ x = 0̇ LM1• 0̇ | x = 0̇ CM1•
1̇‖ x = 0̇ LM2• (x + y) | z = x | z + y | z CM2
a.x‖ (1 · y) = a.(x ‖ (1 · y)) LM3• 1̇ | 1̇ = 1̇ CM3•
(x + y)‖ z = x‖ z + y‖ z LM4 a.x | 1̇ = 0̇ CM4•
x‖ 0̇ = 0̇ LM5• a.x | b.y = c.(x ‖ y) if γ(a, b) = c CM5
x‖ (y + 1̇) = x‖ y LM6• a.x | b.y = 0 if γ(a, b) not defined CM6
0‖ (y + 0) = 0 LM7• 1 | 1̇ = 1̇ CM7•
1‖ (y + 0) = 0 LM8• 0 | (y + 0) = 0 CM1a
x | y = y | x SC1 0 | 1̇ = 0̇ CM1b
x ‖ 1 = x SC2 1 | 1 = 1 CM3
1̇ | x + 1̇ = 1̇ SC3• a.x | 1 = 0 CM4
(x ‖ y) ‖ z = x ‖ (y ‖ z) SC4 (x‖ y)‖ z = x‖ (y ‖ z) SC6
(x | y) | z = x | (y | z) SC5 (x | y)‖ z = x | (y‖ z) SC7

∂H(0̇) = 0̇ D1• ∂H(a.x) = 0 if a ∈ H D3
∂H(1̇) = 1̇ D2• ∂H(a.x) = a.∂H(x) otherwise D4
∂H(0) = 0 D1 ∂H(x + y) = ∂H(x) + ∂H(y) D5
∂H(1) = 1 D2

Note that any term except 0̇, 1̇ can be written in the form x+0 (see also Lemma B.3). Moreover,
any term that can be written without occurrence of 0̇ and 1̇ can be written in the form 1·x (see also
Lemma B.4). The difference is exhibited by the term of the form 0+1̇ that contains a 1̇ summand
that cannot be eliminated. Notice that in axiom LM6•, any possibly occurring 1̇ summand on the
right is removed: the left-merge will execute an action from the left component, if possible; by
doing so, the possibility of having terminated already is removed.

We state and prove that any closed TCP•-term is derivably equal to a so-called basic term. A
basic term is a term with a more restricted syntax than allowed by the signature of TCP•. Typ-
ically, sequential and parallel composition (and the auxiliary operators for parallel composition)
and encapsulation do not occur.

11

Definition 5.1 (Basic terms) Basic terms are defined inductively as follows:

• 0̇ and 1̇ are basic terms;

• 0 and 1 are basic terms;

• for a ∈ A and basic term p, a.p is a basic term;

• for basic terms p and q, p + q is a basic term.

Theorem 5.2 (Elimination) For closed TCP•-term p, there exists a basic term q such that
TCP• (p = q.

Proof. For the proof of this statement we refer to Appendix B.1. !

In the operational semantics, the term 0 + 1̇ needs to be distinguished from the term 1 (it
is possible to equate these terms: the algebra becomes simpler, but the semantics of parallel
composition is changed and the axiom cannot be maintained in extensions with timing). Both
are consistent, and have a termination option. But for the first term, this termination option has
already materialized at the current point of time, and for the second term, this termination option
can take place at some arbitrary time in the future. As will be made explicit in the next section,
when we add timing, by delaying, the first term evolves to 0 and the second term evolves to 1. In
this section, we do not look at timing, and phrase things differently: the consistent part of 0 + 1̇
is 0, and the consistent part of 1 is 1. When this process is placed in a parallel composition with
a process that starts with the execution of an atomic action a, then upon execution of a only the
consistent part of the other component is kept, since any option of having terminated before, is
past.

Operationally, we make the difference by means of an additional predicate 0)→: x
0)→ x′ will

mean that x is consistent, and that x′ is the TCP-part of x, i.e., x = 1 · x′ + x and x′ = 1 · x′.
Thus, the operational semantics is given by adding one extra relation to the operational semantics
of TCP: 0)→ .

The term deduction system for TCP• consists of the deduction rules for TCP (from Table 2)
except for the first two rules of parallel composition and the first rule for left-merge and additionally
the deduction rules from Table 6. The deduction rules for merge and left-merge that have been
omitted are replaced by similar rules where the action execution only takes place if the other
component is consistent. Upon action execution the inconsistent part of the component that does
not execute the action is removed.

Theorem 5.3 (Congruence) Strong bisimilarity is a congruence for the operators of the process
algebra TCP•.

Proof. The deduction system is stratifiable and in panth format and hence strong bisimilarity is
a congruence [Ver95]. !

Theorem 5.4 (Soundness) The process algebra TCP• is a sound axiomatization of strong bisim-
ilarity on closed TCP•-terms.

We establish that the structure of transition systems modulo strong bisimilarity is a model for
our axioms, or, put differently, that our axioms are sound with respect to the set of closed terms
modulo strong bisimilarity. We also prove that the axiomatization is complete.

Theorem 5.5 (Completeness) The process algebra TCP• is a complete axiomatization of strong
bisimilarity on closed TCP•-terms.

12

Table 6: Additional deduction rules for TCP• (a, b, c ∈ A, H ⊆ A)
a.x

0)→ a.x 0 0)→ 0 1 0)→ 1 1̇ ↓

x
0)→ x′ y

0)→ y′

x + y
0)→ x′ + y′

x
0)→ x′ y

0
&)→

x + y
0)→ x′

y
0)→ y′ x

0
&)→

x + y
0)→ y′

x
0)→ x′ x &↓

x · y 0)→ x′ · y
x

0)→ x′ y
0
&)→

x · y 0)→ x′ · y
x

0)→ x′ x ↓ y
0)→ y′

x · y 0)→ x′ · y + y′

x
0
&)→ x ↓ y

0)→ y′

x · y 0)→ y′

x
a→ x′ y

0)→ y′

x ‖ y
a→ x′ ‖ y′

x
0)→ x′ y

a→ y′

x ‖ y
a→ x′ ‖ y′

x
a→ x′ y

0)→ y′

x‖ y
a→ x′ ‖ y′

x
0)→ x′ y

0)→ y′

x ‖ y
0)→ x′ ‖ y′

x
0)→ x′ y

0)→ y′

x‖ y
0)→ x′‖ y′

x
0)→ x′ y

0)→ y′

x | y 0)→ x′ | y′

x
0)→ x′

∂H(x) 0)→ ∂H(x′)

Proof. For a proof of this theorem we refer to Appendix B.2. !

Next, we compare the theories TCP and TCP•. TCP• is not an equationally conservative
extension of TCP since the axioms of TCP are not contained in the axioms of TCP•. However, it
is an equationally conservative ground-extension.

Theorem 5.6 (Equational Conservativity) TCP• is an equationally conservative ground-ex-
tension of TCP, i.e., for all closed TCP-terms p and q, TCP (p = q if and only if TCP• (p = q.

Proof. The proof is given in Appendix B.3. !

With the addition of the new constants, it also becomes possible to embed the process algebra
ACP of [BK84, BW90] into TCP in such a way that timed extensions can be done conservatively.
The crux is to interpret the constant atomic actions a of ACP by a.1̇ in TCP•. Thus we have
achieved a theory TCP• into which ACP with termination can be embedded, as suggested above,
and which can be extended with timing in a conservative way as shown in the next section.
Operationally, ACP has a deduction rule a

a→
√

. Here, we have an extension of ACP, where
√

can be treated as a process (viz., 1̇).

6 Discrete relative timing with inconsistent state

TCP•
drt now is a conservative extension of TCP• (not just a conservative ground-extension), we

add the axioms from Table 7 to the axioms of TCP•. Most of these axioms are similar to or simple
reformulations of the axioms of TCPdrt. The use of axiom DR10 makes a lot of axioms derivable.
As an example, we have σ.x‖ (υ1(y) + 0) = σ.x‖ (υ1(y) + σ.0̇) = σ.(x‖ 0̇) = σ.0̇ = 0. Another
example: from DR1 we can derive 0 = σ.0, so υ1(0) = υ1(σ.0) = σ.0̇ = 0.

We state and prove that any closed TCP•-term is derivably equal to a so-called basic term. A
basic term is a term with a more restricted syntax than allowed by the signature of TCP•. Typ-
ically, sequential and parallel composition (and the auxiliary operators for parallel composition)
and encapsulation and unit time-out do not occur.

13

Table 7: Additional axioms of TCP•
drt (a, b, c ∈ A, H ⊆ A)

1 = 1 + σ.1 DT1 1 · σ.x = σ.(1 · x) DR7•
0 = 1 · 0̇ DR2• 1 · 1 = 1 DR8
a.x = 1 · a.x DR3• 1 · a.x = a.x DR9
1 · 1 = 1 DR4a• 0 = σ.0̇ DR10
1 · 1 = 1 DR4b• 1 + 1̇ = 1 DR11
1 · σ.x = σ.x DR5• a.x · y = a.(x · y) A10DR
1 · (x + y) = 1 · x + 1 · y DR6• σ.x · y = σ.(x · y) DRA10
σ.(x + y) = σ.x + σ.y DRTF

1‖ (x + 0) = 0 LM2DR• 1 | 1 = 1 CM3DR
a.x‖ (1 · y) = a.(x ‖ (1 · y)) LM3DR• a.x | 1 = 0 CM4DR
σ.x‖ (υ1(y) + σ.z) = σ.(x‖ z) LM6DR a.x | b.y = c.(x ‖ y) if γ(a, b) = c CM5DR
1 | x + 1 = 1 SC3DR a.x | b.y = 0 if γ(a, b) not defined CM6DR

σ.x | (υ1(y) + σ.z) = σ.(x | z) CM7DR•
υ1(1) = 1 RTO2 0 | 1̇ = 0̇ CM8DR•
υ1(a.x) = a.x RTO3 a.x | 1̇ = 0̇ CM9DR•
υ1(x + y) = υ1(x) + υ1(y) RTO4 σ.x | 1̇ = 0̇ CM10DR•
υ1(σ.x) = 0 RTO5 ∂H(1) = 1 D2DR
υ1(0̇) = 0̇ RTO1• ∂H(a.x) = 0 if a ∈ H D3DR
υ1(1̇) = 1̇ RTO2• ∂H(a.x) = a.∂H(x) otherwise D4DR

∂H(σ.x) = σ.∂H(x) D6DR

Definition 6.1 (Basic terms) Basic terms are defined inductively as follows:

• 0̇ and 1̇ are basic terms;

• 0 and 1 are basic terms;

• 0 and 1 are basic terms;

• for a ∈ A and basic term p, a.p and a.p are basic terms;

• for basic term p, σ.p is a basic term;

• for basic terms p and q, p + q is a basic term.

Theorem 6.2 (Elimination) For closed TCP•
drt-term p, there exists a basic term q such that

TCP•
drt (p = q.

Proof. For the proof of this statement we refer to Appendix C.2. !

Table 8: Additional reduction rules for TCP•
drt (a ∈ A)

0 0)→ 0 1 0)→ 1 a.x
0)→ a.x σ.x

0)→ σ.x
x

0)→ x′

υ1(x) 0)→ υ1(x′)

0 1)→ 0̇ 1 1)→ 0̇ a.x
1)→ 0̇

x
1)→ x′

υ1(x) 1)→ 0̇

14

The term deduction system for TCP•
drt consists of the deduction rules for TCP•, the deduction

rules from Table 4, and additionally the deduction rules from Table 8. Note that, as in the case
of TCP•, the first two deduction rules for parallel composition and the first deduction rule for
left-merge from Table 2 are not part of the deduction rules of TCP•

drt.

Theorem 6.3 (Congruence) Strong bisimilarity is a congruence for the operators of the process
algebra TCP•

drt.

Proof. The deduction system is stratifiable and in panth format and hence strong bisimilarity is
a congruence [Ver95]. !

Theorem 6.4 (Soundness) The process algebra TCP•
drt is a sound axiomatization of strong

bisimilarity on closed TCP•
drt-terms.

We establish that the structure of transition systems modulo strong bisimilarity is a model for
our axioms, or, put differently, that our axioms are sound with respect to the set of closed terms
modulo strong bisimilarity. We also prove that the axiomatization is complete.

Theorem 6.5 (Completeness) The process algebra TCP•
drt is a complete axiomatization of

strong bisimilarity on closed TCP•
drt-terms.

Proof. For a proof of this theorem we refer to Appendix C.3. !

Theorem 6.6 (Equational Conservativity) TCP•
drt is an equationally conservative extension

[Ver94] of TCP•, i.e., the axioms of TCP• are contained in the axioms of TCP•
drt and for all

closed TCP•-terms p and q, TCP• (p = q if and only if TCP•
drt (p = q.

Proof. The proof is given in Appendix C.4. !

Theorem 6.7 (Equational Conservativity) TCP•
drt is an equationally conservative ground-

extension of TCPdrt, i.e., for all closed TCPdrt-terms p and q, TCPdrt (p = q if and only if
TCP•

drt (p = q.

Proof. The proof is given in Appendix C.5. !

As was the case for the equation 1 = 0 + 1̇ in TCP•, an interesting additional equation for
TCP•

drt is 1 = 0 + 1̇. If we add this equation, then we have to remove axiom LM6•, so we change
the semantics of parallel composition. Also, further extensions of the theory, for instance with
dense timing, become more difficult. On the other hand, both the algebra and the operational
semantics become simpler. The axioms DR2•, DR4a•-DR6•, DR8, DR11, CM3DR, CM4DR,
RTO2 and D2DR become derivable from the other axioms. Operationally, we do not need the
additional relation 0)→.

7 Concluding remarks

We have introduced process algebras TCP• and TCP•
drt with both successful and unsuccessful

termination constants in which, on the one hand, the roles of the identity element for alternative
composition and livelock, and on the other hand the identity elements for sequential and parallel

15

composition are separated. The different timed process algebras are now equationally conservative
ground-extensions of TCP.

The main difference between the process algebras presented in this paper and the ACP-like
process algebras from literature is that here explicit termination (i.e., action prefix) is used instead
of action constants.

The approach to parallel composition with timing is slightly different from [BB05, BMR05], but
it is the same as in [BBR06]. Here, we allow a delay of a parallel composition precisely when both
components allow this delay. As a consequence, the process 1 is the identity element of parallel
composition. This makes the intuition and the operational semantics of parallel composition
simpler, and separates out different roles of 1. This is also a major difference with the timed
ACP-like process algebras of [Ver97, BV97].

References

[AFV01] L. Aceto, W.J. Fokkink, and C. Verhoef. Structural operational semantics. In J.A.
Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra, Chapter 3,
pages 197–292. Elsevier Science, Dordrecht, The Netherlands, 2001, 2001.

[Bae03] J.C.M. Baeten. Embedding untimed into timed process algebra: the case for explicit
termination. Math. Struct. in Comp. Science, 13:589–618, 2003.

[BB91] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects of Com-
puting, 3(2):142–188, 1991.

[BB96] J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra. Formal Aspects of
Computing, 8(2):188–208, 1996.

[BB97] J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra: absolute time, relative
time and parametric time. Fundamenta Informaticae, 29:51–76, 1997.

[BB05] J.C.M. Baeten and M. Bravetti. A generic process algebra. In L. Aceto and A.D.
Gordon, editors, Algebraic process calculi : the first twenty five years and beyond :
short contributions from the workshop, PA’05, Bertinoro, Forli, Italy, August 1-5, 2005,
volume NS-05-3 of BRICS Notes Series, pages 24–29. University of Aarhus, 2005.

[BBR06] J.C.M. Baeten, T. Basten, and M.A. Reniers. Process Algebra: Equational Theories of
Communicating Processes. Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 2006. To appear, 2006.

[BG87] J.C.M. Baeten and R.J. van Glabbeek. Merge and termination in process algebra.
In K.V. Nori, editor, Foundations of Software Technology and Theoretical Computer
Science VII, volume 287 of Lecture Notes in Computer Science, pages 153–172, Pune,
1987. Springer-Verlag.

[BK84] J. A. Bergstra and J. W. Klop. The algebra of recursively defined processes and the
algebra of regular processes. In J. Paredaens, editor, Proceedings 11th ICALP, volume
172 of Lecture Notes in Computer Science, pages 82–95. Springer-Verlag, 1984.

[BM02] J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing. Monographs in
Theoretical Computer Science, An EATCS Series. Springer-Verlag, Berlin, 2002.

[BMR05] J.C.M. Baeten, M.R. Mousavi, and M.A. Reniers. Timing the untimed: Terminating
successfully while being conservative. volume 3838 of Lecture Notes in Computer Sci-
ence, pages 281–309. Springer-Verlag, 2005.

[BV97] J.C.M. Baeten and J.J. Vereijken. Discrete-time process algebra with empty process. In
M. Bruné, A. van Deursen, and J. Heering, editors, Dat is dus heel interessant, pages
5–24. CWI, 1997. Liber Amicorum dedicated to Paul Klint.

16

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge, 1990.

[CR05] P.J.L. Cuijpers and M.A. Reniers. Hybrid process algebra. Journal of Logic and Alge-
braic Programming, 62(2):191–245, 2005.

[Fok94] W.J. Fokkink. The tyft/tyxt format reduces to tree rules. In M. Hagiya and J.C.
Mitchell, editors, Proc. 2nd Symposium on Theoretical Aspects of Computer Software
— TACS’94, volume 789 of Lecture Notes in Computer Science, pages 440–453, Sendai,
1994. Springer-Verlag.

[FV98] W.J. Fokkink and C. Verhoef. A conservative look at operational semantics with variable
binding. Information and Computation, 146:24–54, 1998.

[Gro91] J.F. Groote. Process Algebra and Structured Operational Semantics. PhD thesis, Uni-
versity of Amsterdam, 1991.

[KV85] C.P.J. Koymans and J.L.M. Vrancken. Extending process algebra with the empty process
ε. Technical Report Logic Group Preprint Series 1, University Utrecht, Department of
Philosophy, 1985.

[Mid01] C.A. Middelburg. Variable binding operators in transition system specifications. Journal
of Logic and Algebraic Programming, 47(1):15–45, 2001.

[Mou05] M.R. Mousavi. Structuring Structural Operational Semantics. PhD thesis, Department
of Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands,
2005.

[MR05a] M.R. Mousavi and M.A. Reniers. Orthogonal extensions in structural operational se-
mantics. In Proceedings of the 32nd International Colloquium on Automata, Languages
and Programming (ICALP’05), volume 3580 of Lecture Notes in Computer Science,
pages 1214–1225, Lisbon, Portugal, 2005. Springer-Verlag, Berlin, Germany.

[MR05b] M.R. Mousavi and M.A. Reniers. Orthogonal extensions in structural operational se-
mantics. Technical Report CSR 05-16, Eindhoven University of Technology, Department
of Computing Science, 2005.

[Ver94] C. Verhoef. A general conservative extension theorem in process algebra. In E.-R.
Olderog, editor, Programming Concepts, Methods and Calculi (PROCOMET’94), vol-
ume 56 of IFIP Transactions A: Computer Science and Technology, pages 149–168.
Elsevier Science Publishers B.V., 1994.

[Ver95] C. Verhoef. A congruence theorem for structured operational semantics with predicates
and negative premises. Nordic Journal of Computing, 2(2):274–302, 1995.

[Ver97] J.J. Vereijken. Discrete-time process algebra. PhD thesis, Eindhoven University of
Technology, 1997.

[Vra97] J.L.M. Vrancken. The algebra of communicating processes with empty process. Theo-
retical Computer Science, 177(2):287–328, 1997.

A Theorems for TCPdrt

A.1 Proof of elimination theorem for TCPdrt

In this appendix we prove that any closed TCPdrt-term is derivably equal to a basic term.

Theorem A.1 (Elimination of sequential composition) For basic terms p1 and p2, there
exists a basic term q such that TCPdrt (p1 · p2 = q.

17

Proof. By induction on the structure of basic term p1.

1. p1 ≡ 0. Then TCPdrt (p1 · p2 ≡ 0 · p2
A7DR= 0.

2. p1 ≡ 1. Then TCPdrt (p1 · p2 ≡ 1 · p2
A8DR= p2.

3. p1 ≡ 0. Then TCPdrt (p1 · p2 = 0 · p2
DT2= (1 · 0) · p2

A5= 1 · (0 · p2)
A7DR= 1 · 0 DT2= 0.

4. p1 ≡ 1. By induction on the structure of basic term p we prove that there exists a basic
term r such that TCPdrt (1 · p = r.

(a) p ≡ 0. Then TCPdrt (1 · p ≡ 1 · 0 DT2= 0.

(b) p ≡ 1. Then TCPdrt (1 · p ≡ 1 · 1 A9DR= 1.

(c) p ≡ 0. Then TCPdrt (1 · p ≡ 1 · 0 DT2= 1 · (1 · 0) A5= (1 · 1) · 0 DT4= 1 · 0 DT2= 0.

(d) p ≡ 1. Then TCPdrt (1 · p ≡ 1 · 1 DT4= 1.

(e) p ≡ a.p′ for some a ∈ A and basic term p′. Then TCPdrt (1 · p ≡ 1 · a.p′
DT3= a.p′.

(f) p ≡ a.p′ for some a ∈ A and basic term p′. Then TCPdrt (1 · p ≡ 1 · a.p′
DT3=

1 · (1 · a.p′) A5= (1 · 1) · a.p′
DT4= 1 · a.p′

DT3= a.p′.
(g) p ≡ σ.p′ for some basic term p′. By induction we have the existence of a basic term r′

such that TCPdrt (1 · p′ = r′. Then, TCPdrt (1 · p ≡ 1 · σ.p′
DT5= σ.(1 · p′) = σ.r′.

(h) p ≡ p′ + p′′ for some basic terms p′ and p′′. By induction we have the existence of
basic terms r′ and r′′ such that TCPdrt (1 · p′ = r′ and TCPdrt (1 · p′′ = r′′. Then
TCPdrt (1 · p ≡ 1 · (p′ + p′′) DT6= 1 · p′ + 1 · p′′ ih= r′ + r′′.

Using this lemma we have the existence of a basic term r such that TCPdrt (1 · p2 = r.
Then TCPdrt (p1 · p2 ≡ 1 · p2

lemma= r.

5. p1 ≡ a.p′1 for some a ∈ A and basic term p′1. By induction we have the existence of a basic

term q′ such that TCPdrt (p′1 ·p2 = q′. Then TCPdrt (p1 ·p2 ≡ (a.p′1) ·p2
A10DR= a.(p′1 ·p2)

ih=
a.q′.

6. p1 ≡ a.p′1 for some a ∈ A and basic term p′1. By induction we have the existence of a basic
term q′ such that TCPdrt (p′1 ·p2 = q′. Then TCPdrt (p1 ·p2 ≡ a.p′1 ·p2

DT3= (1 ·a.p′1) ·p2
A5=

1 · (a.p′1 · p2)
A10DR= 1 · a.(p′1 · p2)

ih= 1 · a.q′
DT3= a.q′.

7. p1 ≡ σ.p′1 for some basic term p′1. By induction we have the existence of a basic term q′ such

that TCPdrt (p′1 · p2 = q′. Then TCPdrt (p1 · p2 ≡ (σ.p′1) · p2
DRA10= σ.(p′1 · p2)

ih= σ.q′.

8. p1 ≡ p′1 + p′′1 for some basic terms p′1 and p′′1 . By induction we have the existence of
basic terms r′ and r′′ such that TCPdrt (p′1 · p2 = r′ and TCPdrt (p′′1 · p2 = r′′. Then
TCPdrt (p1 · p2 ≡ (p′1 + p′′1) · p2

A4= p′1 · p2 + p′′1 · p2 = r′ + r′′.

Observe that in each of the above cases the last term in the derivation is indeed a basic term. !

We define | | for basic terms p and q as follows:
∣∣0

∣∣ =
∣∣1

∣∣ = |0| = |1| = 1,
∣∣a.p

∣∣ = |a.p| =∣∣σ.p
∣∣ = |p| + 1, and |p + q| = |p| + |q|. We define p ≤ q as |p| ≤ |q| and p < q as |p| < |q|.

Lemma A.2 (Representation) For basic term p,

1. TCPdrt (p = υ1(p′) for some basic TCPdrt-term p′, or

18

2. TCPdrt (p = υ1(p′) + σ.p′′ for some basic TCPdrt-terms p′ and p′′ such that p′′ ≤ p.

Proof. By induction on the structure of basic term p.

1. p ≡ 0. Then TCPdrt (p ≡ 0 RTO1= υ1(0).

2. p ≡ 1. Then TCPdrt (p ≡ 1 RTO2= υ1(1).

3. p ≡ 0. Then TCPdrt (p ≡ 0 DT2= 1 · 0 DT1= (1 + σ.1) · 0 A4= 1 · 0 + σ.1 · 0 A8DR,DRA10=

0 + σ.(1 · 0) RTO1,DT2= υ1(0) + σ.0.

4. p ≡ 1. Then TCPdrt (p ≡ 1 DT1= 1 + σ.1 RTO1= υ1(1) + σ.1.

5. p ≡ a.p′ for some a ∈ A and basic term p′. Then TCPdrt (p ≡ a.p′
RTO3= υ1(a.p′).

6. p ≡ a.p′ for some a ∈ A and basic term p′. Then TCPdrt (p ≡ a.p′
DT3= 1 · a.p′

DT1=

(1 + σ.1) · a.p′
A4= 1 · a.p′ + σ.1 · a.p′

A8DR,DRA10= a.p′ + σ.(1 · a.p′) RTO3,DT3= υ1(a.p′) + σ.a.p′.

7. p ≡ σ.p′ for some basic term p′. Then TCPdrt (p ≡ σ.p′
A6DR,A1= 0 + σ.p′

RTO1= υ1(0) + σ.p′.

8. p ≡ p′ + p′′ for some basic term p′ + p′′. By induction, for both p′ and p′′ we have two cases.
This results in the following four cases:

(a) TCPdrt (p′ = υ1(p′1) for some closed TCPdrt-term p′1 and TCPdrt (p′′ = υ1(p′′1) for
some closed TCPdrt-term p′′1 . Then TCPdrt (p ≡ p′ + p′′ = υ1(p′1) + υ1(p′′1) RTO4=
υ1(p′1 + p′′1).

(b) TCPdrt (p′ = υ1(p′1) + σ.p′2 for some closed TCPdrt-term p′1 and basic term p′2 and
TCPdrt (p′′ = υ1(p′′1) for some closed TCPdrt-term p′′1 . Then TCPdrt (p ≡ p′ + p′′ =
(υ1(p′1) + σ.p′2) + υ1(p′′1) A1,A2= (υ1(p′1) + υ1(p′′1)) + σ.p′2

RTO4= υ1(p′1 + p′′1) + σ.p′2.

(c) TCPdrt (p′ = υ1(p′1) for some closed TCPdrt-term p′1 and TCPdrt (p′′ = υ1(p′′1)+σ.p′′2
for some closed TCPdrt-term p′′1 and basic term p′′2 . Then TCPdrt (p ≡ p′ + p′′ =
υ1(p′1) + (υ1(p′′1) + σ.p′′2) A2= (υ1(p′1) + υ1(p′′1)) + σ.p′′2

RTO4= υ1(p′1 + p′′1) + σ.p′′2 .

(d) TCPdrt (p′ = υ1(p′1) + σ.p′2 for some closed TCPdrt-term p′1 and basic term p′2 and
TCPdrt (p′′ = υ1(p′′1)+σ.p′′2 for some closed TCPdrt-term p′′1 and basic term p′′2 . Then

TCPdrt (p ≡ p′ + p′′ = (υ1(p′1) + σ.p′2) + (υ1(p′′1) + σ.p′′2) A1,A2= (υ1(p′1) + υ1(p′′1)) +

(σ.p′2 + σ.p′′2) RTO4,DRTF= υ1(p′1 + p′′1) + σ.(p′2 + p′′2) and note that p′2 + p′′2 ≤ p.

!

For the elimination of ‖ , in the case where the left-hand side is delayable, we need a represen-
tation lemma. Note the subtle difference with the previous representation lemma where the term
following the delay operator was allowed to be of equal size. Here it is not!

Lemma A.3 (Representation) For basic term p,

1. TCPdrt (p = υ1(p′) for some basic TCPdrt-term p′,

2. TCPdrt (p = υ1(p′) + σ.p′′ for some basic TCPdrt-terms p′ and p′′ such that p′′ < p, or

3. TCPdrt (p = 1 · υ1(p′) for some basic term p′ such that p′ ≤ p.

Proof. By induction on the structure of basic term p.

19

1. p ≡ 0. Then TCPdrt (p ≡ 0 RTO1= υ1(0).

2. p ≡ 1. Then TCPdrt (p ≡ 1 RTO2= υ1(1).

3. p ≡ 0. Then TCPdrt (p ≡ 0 DT2= 1 · 0 RTO1= 1 · υ1(0). Note that 0 ≤ 0.

4. p ≡ 1. Then TCPdrt (p ≡ 1 A9DR= 1 · 1 RTO2= 1 · υ1(1). Note that 1 ≤ 1.

5. p ≡ a.p′ for some a ∈ A and basic term p′. Then TCPdrt (p ≡ a.p′
RTO3= υ1(a.p′).

6. p ≡ a.p′ for some a ∈ A and basic term p′. Then TCPdrt (p ≡ a.p′
DT3= 1 · a.p′

RTO3=
1 · υ1(a.p′). Note that a.p′ ≤ a.p′.

7. p ≡ σ.p′ for some basic term p′. Then TCPdrt (p ≡ σ.p′
A6DR,A1= 0 + σ.p′

RTO1= υ1(0) + σ.p′.
Observe that indeed p′ < p.

8. p ≡ p′ + p′′ for some basic term p′ + p′′. By induction, for each of p′ and p′′ we have three
cases. This results in the following cases:

(a) TCPdrt (p′ = υ1(p′1) for some closed TCPdrt-term p′1 and TCPdrt (p′′ = υ1(p′′1) for
some closed TCPdrt-term p′′1 . Then TCPdrt (p ≡ p′ + p′′ = υ1(p′1) + υ1(p′′1) RTO4=
υ1(p′1 + p′′1).

(b) TCPdrt (p′ = υ1(p′1)+σ.p′2 for some closed TCPdrt-term p′1 and basic term p′2 such that
p′2 < p′ and TCPdrt (p′′ = υ1(p′′1) for some closed TCPdrt-term p′′1 . Then TCPdrt (p ≡
p′+p′′ = (υ1(p′1)+σ.p′2)+υ1(p′′1) A1,A2= (υ1(p′1)+υ1(p′′1))+σ.p′2

RTO4= υ1(p′1 +p′′1)+σ.p′2.
Note that p′2 < p.

(c) TCPdrt (p′ = 1 · υ1(p′1) for some basic term p′1 such that p′1 ≤ p′ and TCPdrt (p′′ =
υ1(p′′1) for some closed TCPdrt-term p′′1 . Then TCPdrt (p ≡ p′ + p′′ = 1 · υ1(p′1) +
υ1(p′′1) DT1,A4,A8DR,DRA10= υ1(p′1)+σ.(1 ·υ1(p′1))+υ1(p′′1) A1,A2,RTO4= υ1(p′1 +p′′1)+σ.(1 ·
υ1(p′1)) = υ1(p′1 + p′′1) + σ.p′. Note that p′ < p.

(d) TCPdrt (p′ = υ1(p′1) for some closed TCPdrt-term p′1 and TCPdrt (p′′ = υ1(p′′1)+σ.p′′2
for some closed TCPdrt-term p′′1 and basic term p′′2 such that p′′2 < p′′. Similar to the
second case.

(e) TCPdrt (p′ = υ1(p′1) + σ.p′2 for some closed TCPdrt-term p′1 and basic term p′2 such
that p′2 < p′ and TCPdrt (p′′ = υ1(p′′1)+σ.p′′2 for some closed TCPdrt-term p′′1 and basic
term p′′2 such that p′′2 < p′′. Then TCPdrt (p ≡ p′ + p′′ = (υ1(p′1) + σ.p′2) + (υ1(p′′1) +

σ.p′′2) A1,A2= (υ1(p′1) + υ1(p′′1)) + (σ.p′2 + σ.p′′2) RTO4,DRTF= υ1(p′1 + p′′1) + σ.(p′2 + p′′2) and
note that p′2 + p′′2 < p.

(f) TCPdrt (p′ = 1 · υ1(p′1) for some basic term p′1 such that p′1 ≤ p′ and TCPdrt (
p′′ = υ1(p′′1) + σ.p′′2 for some closed TCPdrt-term p′′1 and basic term p′′2 such that

p′′2 < p′′. Then TCPdrt (p ≡ p′ + p′′ = 1 · υ1(p′1) + υ1(p′′1) + σ.p′′2
DT1,A4,A8DR,DRA10=

υ1(p′1)+σ.(1 ·υ1(p′1))+υ1(p′′1)+σ.p′′2
A1,A2,RTO4,DRTF= υ1(p′1 +p′′1)+σ.(1 ·υ1(p′1)+p′′2) =

υ1(p′1 + p′′1) + σ.(p′ + p′′2). Note that p′ + p′′2 < p.

(g) TCPdrt (p′ = υ1(p′1) for some closed TCPdrt-term p′1 and TCPdrt (p′′ = 1 ·υ1(p′′1) for
some basic term p′′1 such that p′′1 ≤ p′′. Similar to the third case.

(h) TCPdrt (p′ = υ1(p′1) + σ.p′2 for some closed TCPdrt-term p′1 and basic term p′2 such
that p′2 < p′ and TCPdrt (p′′ = 1 · υ1(p′′1) for some basic term p′′1 such that p′′1 ≤ p′′.
Similar to the sixth case.

20

(i) TCPdrt (p′ = 1 · υ1(p′1) for some basic term p′1 such that p′1 ≤ p′ and TCPdrt (
p′′ = 1 · υ1(p′′1) for some basic term p′′1 such that p′′1 ≤ p′′. Then TCPdrt (p′ + p′′ =
1 ·υ1(p′1)+1 ·υ1(p′′1) DT6= 1 ·(υ1(p′1)+υ1(p′′1)) RTO4= 1 ·υ1(p′1 +p′′1). Note that p′1 +p′′1 ≤ p.

!

Theorem A.4 (Elimination of parallel composition operators) For basic terms p1 and p2,

1. there exists a basic term q such that TCPdrt (p1‖ p2 = q;

2. there exists a basic term q such that TCPdrt (p1 | p2 = q;

3. there exists a basic term q such that TCPdrt (p1 ‖ p2 = q.

Proof. These three statements are proven simultaneously using induction on the number of
symbols of basic terms p1 and p2. When we apply an induction hypothesis we indicate to which
statement it refers.

First we give the proof for statement (1), the elimination of ‖ . We use case distinction on the
structure of basic term p1.

1. p1 ≡ 0. TCPdrt (p1‖ p2 ≡ 0‖ p2
LM1DR= 0.

2. p1 ≡ 1. TCPdrt (p1‖ p2 ≡ 1‖ p2
LM2DR= 0.

3. p1 ≡ 0. According to Lemma A.3 we can distinguish three cases for p2. In the proofs below,
we may use TCPdrt (0 DT2= 1 · 0 DT1= (1 + σ.1) · 0 A4= 1 · 0 + σ.1 · 0 A8DR= 0 + σ.1 · 0 A2,A6DR=

σ.1 · 0 DRA10= σ.(1 · 0) DT2= σ.0 (*).

(a) TCPdrt (p2 = υ1(p′2) for some basic term p′2. Then, TCPdrt (p1‖ p2 ≡ 0‖ p2 =

0‖ υ1(p′2)
(*)
= σ.0‖ υ1(p′2)

LM5DR= 0.

(b) TCPdrt (p2 = υ1(p′2) + σ.p′′2 for some basic term p′2 and basic term p′′2 such that
p′′2 < p2. By induction hypothesis (1) we have TCPdrt (0‖ p′′2 = q′′ for some basic term

q′′. Then, TCPdrt (p1‖ p2 ≡ 0‖ p2 = 0‖ (υ1(p′2)+σ.p′′2)
(*)
= σ.p‖ (υ1(p′2)+σ.p′′2) LM6DR=

σ.(0‖ p′′2)
ih(1)
= σ.q′′.

(c) TCPdrt (p2 = 1 · υ1(p′2) for some basic term p′2. Then TCPdrt (p1‖ p2 ≡ 0‖ p2 =
0‖ (1 · υ1(p′2))

DT2= (1 · 0)‖ (1 · υ1(p′2))
LM7DR= 1 · (0‖ (1 · υ1(p′2)))

LM1DR= 1 · 0 DT2= 0.

4. p1 ≡ 1. According to Lemma A.3 we can distinguish three cases for p2.

(a) TCPdrt (p2 = υ1(p′2) for some basic term p′2. Then, TCPdrt (p1‖ p2 ≡ 1‖ p2
DT1=

(1 + σ.1)‖ p2
LM4= 1‖ p2 + σ.1‖ p2

LM1DR,A6DR= σ.1‖ p2 = σ.1‖ υ1(p′2)
LM5DR= 0.

(b) TCPdrt (p2 = υ1(p′2) + σ.p′′2 for some basic term p′2 and basic term p′′2 such that
p′′2 < p2. By induction hypothesis (1) we have TCPdrt (0‖ p′′2 = q′′ for some basic term
q′′. Then, TCPdrt (p1‖ p2 ≡ 1‖ p2

DT1= (1 + σ.1)‖ p2
LM4= 1‖ p2 + σ.1‖ p2

LM1DR,A6DR=

σ.1‖ p2 = σ.1‖ (υ1(p′2) + σ.p′′2) LM6DR= σ.(1‖ p′′2) = σ.q′′.

(c) TCPdrt (p2 = 1 · υ1(p′2) for some basic term p′2. Then TCPdrt (p1‖ p2 ≡ 1‖ p2
A9DR=

(1 · 1)‖ p2 = (1 · 1)‖ (1 · υ1(p′2))
LM7DR= 1 · (1‖ (1 · υ1(p′2)))

LM2DR= 1 · 0 DT2= 0.

21

5. p1 ≡ a.p′1 for some a ∈ A and basic term p′1. By induction hypothesis (3) there exists a basic

term q′ such that TCPdrt (p′1 ‖ p2 = q′. Then, TCPdrt (p1‖ p2 ≡ a.p′1‖ p2
LM3DR= a.(p′1 ‖

p2)
ih(3)
= a.q′.

6. p1 ≡ a.p′1 for some a ∈ A and basic term p′1. According to Lemma A.3 we can distinguish
three cases for p2. In the proofs below, we may use TCPdrt (a.p′1

DT3= 1 · a.p′1
DT1= (1 +σ.1) ·

a.p′1
A4= 1 · a.p′1 + σ.1 · a.p′1

A8DR= a.p′1 + σ.1 · a.p′1
DRA10= a.p′1 + σ.(1 · a.p′1)

DT3= a.p′1 + σ.a.p′1
(*).

(a) TCPdrt (p2 = υ1(p′2) for some basic term p′2. By induction hypothesis (3) we have
the existence of basic term q′ such that TCPdrt (p′1 ‖ p2 = q′. Then, TCPdrt (
p1‖ p2 ≡ a.p′1‖ p2

(*)
= (a.p′1 + σ.a.p′1)‖ p2

LM4= a.p′1‖ p2 + σ.a.p′1‖ p2
LM3DR= a.(p′1 ‖

p2) + σ.a.p′1‖ p2
ih(3)
= a.q′ + σ.a.p′1‖ p2 = a.q′ + σ.a.p′1‖ υ1(p′2)

LM5DR= a.q′ + 0 A6DR= a.q′.

(b) TCPdrt (p2 = υ1(p′2) + σ.p′′2 for some basic term p′2 and basic term p′′2 such that
p′′2 < p2. By induction hypothesis (1) we have the existence of basic term q′′ such that
TCPdrt (p1‖ p′′2 = q′′. By induction hypothesis (3) we have the existence of basic

term q′ such that TCPdrt (p′1 ‖ p2 = q′. Then, TCPdrt (p1‖ p2 ≡ a.p′1‖ p2
(*)
=

(a.p′1 + σ.a.p′1)‖ p2
LM4= a.p′1‖ p2 + σ.a.p′1‖ p2

LM3DR= a.(p′1 ‖ p2) + σ.a.p′1‖ p2
ih(3)
=

a.q′ + σ.a.p′1‖ p2 = a.q′ + σ.a.p′1‖ (υ1(p′2) + σ.p′′2) LM6DR= a.q′ + σ.(a.p′1‖ p′′2) = a.q′ +

σ.(p1‖ p′′2)
ih(1)
= a.q′ + q′′.

(c) TCPdrt (p2 = 1 · υ1(p′2) for some basic term p′2 such that p′2 ≤ p2. By induction
hypothesis (3) we have the existence of basic term q′ such that TCPdrt (p′1 ‖ p′2 = q′.
Then TCPdrt (p1‖ p2 ≡ a.p′1‖ p2

DT3= (1 · a.p′1)‖ p2 = (1 · a.p′1)‖ (1 · υ1(p′2))
LM7DR=

1 · (a.p′1‖ (1 · υ1(p′2))) = 1 · (a.p′1‖ p2)
LM3DR= 1 · a.(p′1 ‖ p2)

ih(3)
= 1 · a.q′

DT3= a.q′.

7. p1 ≡ σ.p′1 for some basic term p′1. According to Lemma A.2 we can distinguish two cases for
p2.

(a) TCPdrt (p2 = υ1(p′2) for some basic term p′2. Then TCPdrt (p1‖ p2 ≡ σ.p′1‖ p2 =

σ.p′1‖ υ1(p′2)
LM5DR= 0.

(b) TCPdrt (p2 = υ1(p′2) + σ.p′′2 for some basic terms p′2 and p′′2 such that p′′2 ≤ p2. By
induction hypothesis (1) we have the existence of basic term q′ such that TCPdrt (
p′1‖ p′′2 = q′. Then TCPdrt (p1‖ p2 ≡ σ.p′1‖ p2 = σ.p′1‖ (υ1(p′2) + σ.p′′2) LM6DR=

σ.(p′1‖ p′′2)
ih(1)
= σ.q′.

8. p1 ≡ p′1 + p′′1 . By induction hypothesis (1) there exist basic terms q′ and q′′ such that
TCPdrt (p′1‖ p2 = q′ and TCPdrt (p′′1‖ p2 = q′′. Then TCPdrt (p1‖ p2 ≡ (p′1+p′′1)‖ p2

LM4=

p′1‖ p2 + p′′1‖ p2
ih(1)
= q′ + q′′.

Then we prove statement (2), the elimination of | . We use case distinction on the structure
of basic terms p1.

1. p1 ≡ 0. TCPdrt (p1 | p2 ≡ 0 | p2
CM1DR= 0.

2. p1 ≡ 1. We use case distinction on the structure of basic term p2.

(a) p2 ≡ 0. TCPdrt (p1 | p2 ≡ p1 | 0 SC1= 0 | p1
CM1DR= 0.

(b) p2 ≡ 1. TCPdrt (p1 | p2 ≡ 1 | 1 CM3DR= 1.

22

(c) p2 ≡ 0. TCPdrt (p1 | p2 ≡ 1 | 0 DC1= 0 | 1 DT2= (1 · 0) | 1 DT1= ((1 + σ.1) · 0) | 1 A4=

(1 · 0 + σ.1 · 0)‖ 1 CM2= (1 · 0) | 1 + (σ.1 · 0) | 1 A8DR,DRA10= 0 | 1 + σ.(1 · 0) | 1 CM1DR,RTO2=

0 + σ.(1 · 0) | υ1(1) CM7DR= 0 + 0.

(d) p2 ≡ 1. TCPdrt (p1 | p2 ≡ 1 | 1 SC1= 1 | 1 DT1= (1 + σ.1) | 1 CM2= 1 | 1 + σ.1 | 1 CM3DR,RTO2=

1 + σ.1 | υ1(1) CM7DR= 1 + 0 A6DR= 1.

(e) p2 ≡ a.p′2 for some a ∈ A and basic term p′2. TCPdrt (p1 |p2 ≡ 1|a.p′2
SC1= a.p′2 |1 CM4DR=

0.

(f) p2 ≡ a.p′2 for some a ∈ A and basic term p′2. TCPdrt (p1 | p2 ≡ 1 | a.p′2
SC1=

a.p′2 | 1 DT3,DT1,A4,CM2= (1 · a.p′2) | 1 + (σ.1 · a.p′2) | 1 A8DR,DRA10= a.p′2 | 1 + σ.(1 ·
a.p′2) | 1 CM4DR,RTO2= 0 + σ.(1 · a.p′2) | υ1(1) CM7DR= 0 + 0.

(g) p2 ≡ p′2 + p′′2 for some basic terms p′2 and p′′2 . By induction we have the existence of
basic terms q′ and q′′ such that TCPdrt (p1 | p′2 = q′ and TCPdrt (p1 | p′′2 = q′′. Then

TCPdrt (p1 |p2 ≡ p1 |(p′2+p′′2) SC1= (p′2+p′′2)|p1
CM2= p′2 |p1+p′′2 |p1

SC1= p1 |p′2+p1 |p′′2
ih(2)
=

q′ + q′′.

3. p1 ≡ 0. According to Lemma A.3 we can distinguish three cases for p2. In the proofs below,
we may use TCPdrt (0 DT2= 1 · 0 DT1= (1 + σ.1) · 0 A4= 1 · 0 + σ.1 · 0 A8DR= 0 + σ.1 · 0 A1,A6DR=

σ.1 · 0 DRA10= σ.(1 · 0) DT2= σ.0 (DD).

(a) TCPdrt (p2 = υ1(p′2) for some basic term p′2. Then, TCPdrt (p1 | p2 ≡ 0 | p2
(*)
=

σ.0 | p2 = σ.0 | υ1(p′2)
CM7DR= 0.

(b) TCPdrt (p2 = υ1(p′2)+σ.p′′2 for some basic term p′2 and basic term p′′2 such that p′′2 < p2.
By induction hypothesis (2) we have the existence of basic term q′′ such that TCPdrt (
p1 |p′′2 = q′′. Then, TCPdrt (p1 |p2 ≡ 0 |p2

DD= σ.0 |p2 = σ.0 |(υ1(p′2)+σ.p′′2) SC1,CM2,SC1=

σ.0 | υ1(p′2) + σ.0 | σ.p′′2
CM7DR,CM8DR= 0 + σ.(0 | p′′2) = 0 + σ.(p1 | p′′2)

ih(2)
= 0 + σ.q′′.

(c) TCPdrt (p2 = 1 · υ1(p′2) for some basic term p′2 such that p′2 ≤ p2. Then TCPdrt (
p1 | p2 ≡ 0 | p2

DT2= (1 · 0) | p2 = (1 · 0) | (1 · υ1(p′2))
CM9DR= 1 · (0 | (1 · υ1(p′2)) + (1 ·

0)|υ1(p′2))
CM1DR,DT2= 1·(0+0|υ1(p′2))

DD= 1·(0+σ.0|υ1(p′2))
CM7DR= 1·(0+0) A3= 1·0 DT2= 0.

4. p1 ≡ 1. We use case distinction on the structure of basic term p2. We omit the cases where
p2 is of the form 0, 1, 0, or p′2 + p′′2 since these are symmetrical to previous cases.

(a) p2 ≡ 1. We already have shown before that TCPdrt (1 | 1 = 1 (*). TCPdrt (p1 | p2 ≡
1 | 1 A9DR= (1 · 1) | (1 · 1) CM9DR= 1 · (1 | (1 · 1) + (1 · 1) | 1) SC1,A3= 1 · (1 | (1 · 1)) A9DR=

1 · (1 | 1)
(*)
= 1 · 1 A9DR= 1.

(b) p2 ≡ a.p′2 for some a ∈ A and basic term p′2. TCPdrt (p1 | p2 ≡ 1 | a.p′2
DT1,CM4=

1 | a.p′2 + σ.1 | a.p′2
SC1,CM4DR,A6DR= σ.1 | a.p′2

RTO3,CM7DR= 0.
(c) p2 ≡ a.p′2 for some a ∈ A and basic term p′2. We already have shown before that

TCPdrt (1 | a.p′2 = 0 (*) and TCPdrt (1 | a.p′2 = 0 (**). Then, TCPdrt (p1 | p2 ≡
1 | a.p′2

A9DR,DT3= (1 · 1) | (1 · a.p′2)
CM9DR= 1 · (1 | (1 · a.p′2) + (1 · 1) | a.p′2)

DT3,A9DR=

1 · (1 | a.p′2 + 1 | a.p′2)
(*),(**)

= 1 · (0 + 0) A3,DT2= 0.
(d) p2 ≡ σ.p′2 for some basic term p′2. We already have shown before that TCPdrt (

1 |σ.p′2 = 0 (*). By induction hypothesis (2) we have the existence of basic term q′ such

23

that TCPdrt (1 |p′2 = q′. Then, TCPdrt (p1 |p2 ≡ 1 |σ.p′2
DT1,CM2= 1 |σ.p′2+σ.1 |σ.p′2

(*)
=

0 + σ.(1 | p′2)
A6DR,ih(2)

= σ.q′.

5. p1 ≡ a.p′1 for some a ∈ A and basic term p′1. We use case distinction on the structure of
basic term p2. We omit the cases where p2 is of the form 0, 1, 0, 1 or p′2 + p′′2 since these are
symmetrical to previous cases.

(a) p2 ≡ b.p′2 for some b ∈ A and basic term p′2. By the induction hypothesis for statement
(3) we have the existence of basic term q′ such that TCPdrt (p′1 ‖ p′2 = q′. In case
γ(a, b) is not defined, TCPdrt (p1 | p2 ≡ a.p′1 | b.p′2

CM6DR= 0. In case γ(a, b) = c,

TCPdrt (p1 | p2 ≡ a.p′1 | b.p′2
CM5DR= c.(p′1 ‖ p′2)

ih(3)
= c.q′.

(b) p2 ≡ b.p′2 for some b ∈ A and basic term p′2. We use TCPdrt (a.x
DT3,DT1,A4,A8DR,DRA10=

a.x + σ.a.x (DAP). By the induction hypothesis for statement (3) we have the exis-
tence of basic term q′ such that TCPdrt (p′1 ‖ p′2 = q′. In case γ(a, b) is not de-
fined, TCPdrt (p1 | p2 ≡ a.p′1 | b.p′2

DAP,SC1,CM2= a.p′1 | b.p′2 + a.p′1 | σ.b.p′2
CM6DR,A6DR=

a.p′1 | σ.b.p′2
SC1,RTO3= σ.b.p′2 | υ1(a.p′1)

CM7DR= 0. In case γ(a, b) = c, TCPdrt (p1 | p2 ≡

a.p′1 | b.p′2
DAP,SC1,CM2= a.p′1 | b.p′2 + a.p′1 | σ.b.p′2

CM5DR= c.(p′1 ‖ p′2) + a.p′1 | σ.b.p′2
ih(3)
=

c.q′ + a.p′1 | σ.b.p′2
SC1,RTO3= c.q′ + σ.b.p′2 | υ1(a.p′1)

CM7DR= c.q′ + 0 A6DR= c.q′.

(c) p2 ≡ σ.p′2 for some basic term p′2. TCPdrt (p1 | p2 ≡ a.p′1 | σ.p′2
SC1= σ.p′2 | a.p′1

RTO3=

σ.p′2 | υ1(a.p′1)
CM7DR= 0.

6. p1 ≡ a.p′1 for some a ∈ A and basic term p′1. We use case distinction on the structure of
basic term p2. We omit the cases where p2 is of the form 0, 1, 0, 1, b.p′2 or p′2 + p′′2 since
these are symmetrical to previous cases.

(a) p2 ≡ b.p′2 for some b ∈ A and basic term p′2. In case γ(a, b) is not defined, we have
already proved before that TCPdrt (a.p′1 | b.p′2 = 0 (*) and TCPdrt (a.p′1 | b.p′2 = 0

(**). Then, TCPdrt (p1 | p2 ≡ a.p′1 | b.p′2
DT3= (1 · a.p′1) | (1 · b.p′2)

CM9DR= 1 · (a.p′1 | (1 ·

b.p′2) + (1 · a.p′1) | b.p′2)
DT3= 1 · (a.p′1 | b.p′2 + a.p′1 | b.p′2)

(*),(**)
= 1 · (0 + 0) A3,DT2= 0.

In case γ(a, b) = c, we have already proved before that TCPdrt (a.p′1 |b.p′2 = c.(p′1 ‖ p′2)
(*) and TCPdrt (a.p′1 | b.p′2 = c.(p′1 ‖ p′2) (**). By the induction hypothesis for
statement (3) we have the existence of basic term q′ such that TCPdrt (p′1 ‖ p′2 = q′.
Then, TCPdrt (p1 | p2 ≡ a.p′1 | b.p′2

DT3= (1 · a.p′1) | (1 · b.p′2)
CM9DR= 1 · (a.p′1 | (1 · b.p′2) +

(1 ·a.p′1) | b.p′2)
DT3= 1 · (a.p′1 | b.p′2 +a.p′1 | b.p′2)

(*),(**),A3
= 1 · c.(p′1 ‖ p′2)

ih(3)
= 1 · c.q′ DT3= c.q′.

(b) p2 ≡ σ.p′2 for some basic term p′2. By induction hypothesis (2) there exists a basic
term q′ such that TCPdrt (p1 | p′2 = q′. We have already proved before that TCPdrt (
a.p′1 | σ.p′2 = 0. TCPdrt (p1 | p2 ≡ a.p′1 | σ.p′2

DT3,DT1,A4,CM2, A8DR, DRA10= a.p′1 | σ.p′2 +

σ.a.p′1 | σ.p′2
(*),A6DR

= σ.a.p′1 | σ.p′2
CM8DR= σ.(a.p′1 | p′2)

ih(2)
= σ.q′.

7. p1 ≡ σ.p′1 for some basic term p′1. We use case distinction on the structure of basic term p2.
We omit the cases where p2 is of the form 0, 1, 0, 1, a.p′2, a.p′2 or p′2 + p′′2 since these are
symmetrical to previous cases.

(a) p2 ≡ σ.p′2 for some basic term p′2. By induction hypothesis (2) we have the existence of

basic term q′ such that TCPdrt (p′1 |p′2 = q′. Then TCPdrt (p1 |p2 ≡ σ.p′1 |σ.p′2
CM8DR=

σ.(p′1 | p′2)
ih(2)
= σ.q′.

24

8. p1 ≡ p′1 + p′′1 for some basic terms p′1 and p′′1 . By the induction hypothesis for statement
(2), we have the existence of basic terms q′ and q′′ such that TCPdrt (p′1 | p2 = r′ and

TCPdrt (p′′1 | p2 = r′′. Then TCPdrt (p1 | p2 ≡ (p′1 + p′′1) | p2
CM2= p′1 | p2 + p′′1 | p2

ih(2)
= r′ + r′′.

Finally, statement (3) follows straightforwardly from the previous statements: By induc-
tion on statements (1) and (2) we have the existence of basic terms q1, q2, and q3 such that
TCPdrt (p1‖ p2 = q1, TCPdrt (p2‖ p1 = q2, and TCPdrt (p1 | p2 = q3. Then TCPdrt (p1 ‖
p2

M= p1‖ p2 + p2‖ p1 + p1 | p2
ih(1),ih(2)

= q1 + q2 + q3. !

Theorem A.5 (Elimination of encapsulation) For basic terms p and H ⊆ A, there exists a
basic term q such that TCPdrt (∂H(p) = q.

Proof. Trivial, by induction on the structure of basic term p and the derivable equalities 0 = 1 ·0,
1 = 1 · 1, and a.x = 1 · a.x. !

Theorem A.6 (Elimination of time-out operator) For basic terms p, there exists a basic
term q such that TCPdrt (υ1(p) = q.

Proof. Trivial, by induction on the structure of basic term p and the derivable equalities 0 = 1 ·0,
1 = 1 · 1, and a.x = 1 · a.x. !

A.2 Completeness of TCPdrt

Note that the term deduction system for TCPdrt is such that all action and time transitions that
can be derived starting from a basic term always result in a basic term. We do not prove this
statement formally, and will use it silently in the remainder.

Lemma A.7 (Towards completeness) For arbitrary basic TCPdrt-terms p and p′ and arbi-
trary action a ∈ A

1. if p ↓, then TCPdrt (p = 1 + p;

2. if p
a→ p′, then TCPdrt (p = a.p′ + p;

3. if p
1)→ p′, then p′ ≡ p or p′ < p;

4. if p
1)→ p′, then TCPdrt (p = σ.p′ + p;

5. if p
1)→ p, then TCPdrt (p = 1 · p.

Proof. Easy; by induction on the structure of basic TCPdrt-term p. !

Theorem A.8 The process algebra TCPdrt is a complete axiomatization of strong bisimilarity on
closed TCPdrt-terms.

Proof. By the elimination theorem for TCPdrt it suffices to prove this theorem for basic terms
only. We use induction on the structure of basic terms p and q and use case analysis on the
structure of basic term p to prove that p + q↔q implies TCPdrt (p + q = q.

25

1. p ≡ 0. Then TCPdrt (p + q ≡ 0 + q
A1,A6DR= q.

2. p ≡ 1. Then p+q ↓, and since p+q↔q also q ↓. By Lemma A.7.1, we have TCPdrt (q = 1+q.
Then, TCPdrt (p + q ≡ 1 + q = q.

3. p ≡ 0. Then p
1)→ p, and therefore also p + q

1)→ and since p + q↔q also q
1)→. By Lemma

A.7.3, we can distinguish two cases:

(a) q
1)→ q. By Lemma A.7.5 we have TCPdrt (q = 1 · q. Then TCPdrt (p + q = 0 + q

DT2=
1 · 0 + q = 1 · 0 + 1 · q DT6= 1 · (0 + q) A1,A6DR= 1 · q = q.

(b) q
1)→ q′ for some q′ < q. Then p + q

1)→ p + q′ and therefore, since p + q↔q, we need
to have p + q′↔q′. By induction we then have TCPdrt (p + q′ = q′. By Lemma
A.7.4 we have TCPdrt (q = σ.q′ + q. Then TCPdrt (p + q = 0 + q

DD= σ.0 + q =

σ.0 + σ.q′ + q
A2,DRTF= σ.(0 + q′) + q = σ.(p + q′) + q = σ.q′ + q = q.

4. p ≡ 1. From p ↓ we have q ↓. Therefore, by Lemma A.7.1, we have TCPdrt (q = 1 + q.

Then p
1)→ p, and therefore also p + q

1)→ and since p + q↔q also q
1)→. By Lemma A.7.3, we

can distinguish two cases:

(a) q
1)→ q. By Lemma A.7.5 we have TCPdrt (q = 1 ·q. Then TCPdrt (p+q = 1+q

A9DR=
1 · 1 + q = 1 · 1 + 1 · q DT6= 1 · (1 + q) = 1 · q = q.

(b) q
1)→ q′ for some q′ < q. Then p + q

1)→ p + q′ and therefore, since p + q↔q, we need to
have p + q′↔q′. By induction we then have TCPdrt (p + q′ = q′. By Lemma A.7.4
we have TCPdrt (q = σ.q′ + q. Then TCPdrt (p + q = 1 + q

A9DR= 1 + σ.1 + q
A1,A2=

σ.1+q+1 = σ.1+q = σ.1+σ.q′+q
A2,DRTF= σ.(1+q′)+q = σ.(p+q′)+q = σ.q′+q = q.

5. p ≡ a.p′ for some a ∈ A and basic term p′. Then p + q
a→ p′, and since p + q↔q we have

q
a→ q′ for some q′ such that p′↔q′. Then due to soundness of axiom A3 and congruence

of bisimilarity w.r.t. alternative composition we also have p′ + q′↔q′ and q′ + p′↔p′. By
induction we then have TCPdrt (p′ + q = q′ and TCPdrt (q′ + p′ = p′. Therefore, we also
have TCPdrt (p′ = q′ + p′ = p′ + q′ = q′. By Lemma A.7.2, we have TCPdrt (q = a.q′ + q.

Then, TCPdrt (p + q ≡ a.p′ + q
ih= a.q′ + q = q.

6. p ≡ a.p′ for some a ∈ A and basic term p′. Then p + q
a→ p′, and since p + q↔q we have

q
a→ q′ for some q′ such that p′↔q′. Then due to soundness of axiom A3 and congruence

of bisimilarity w.r.t. alternative composition we also have p′ + q′↔q′ and q′ + p′↔p′. By
induction we then have TCPdrt (p′ + q = q′ and TCPdrt (q′ + p′ = p′. Therefore, we also
have TCPdrt (p′ = q′ + p′ = p′ + q′ = q′. By Lemma A.7.2, we have TCPdrt (q = a.q′ + q.

Also p
1)→ p, and therefore also p + q

1)→ and since p + q↔q also q
1)→. By Lemma A.7.3, we

can distinguish two cases:

(a) q
1)→ q. By Lemma A.7.5 we have TCPdrt (q = 1·q. Then TCPdrt (p+q = a.p′+q

DT3=
1 · a.p′ + q = 1 · a.p′ + 1 · q DT6= 1 · (a.p′ + q) = 1 · (a.q′ + q) = 1 · q = q.

(b) q
1)→ q′′ for some q′′ < q. Then p + q

1)→ p + q′′ and therefore, since p + q↔q, we need to
have p+q′′↔q′′. By induction we then have TCPdrt (p+q′′ = q′. By Lemma A.7.4 we
have TCPdrt (q = σ.q′ + q. Then TCPdrt (p+ q = a.p′ + q

DT3= 1 ·a.p′ + q
DT1,A4,A8DR=

a.p′+σ.1 ·a.p′+q
DRA10,DT3= a.p′+σ.a.p′+q = a.p′+σ.p+q = a.p′+σ.p+σ.q′′+q

DRTF=
a.p′ + σ.(p + q′′) + q = a.p′ + σ.q′′ + q = a.p′ + q = a.q′ + q = q.

26

7. p ≡ σ.p′ for some basic term p′. From p
1)→ p′, and the fact that p+q↔q it follows that there

is some q′ such that q
1)→ q′ and p′+q′↔q′. By induction we then have TCPdrt (p′+q′ = q′.

Also, by Lemma A.7.4 we have TCPdrt (q = σ.q′ + q. Then TCPdrt (p + q = σ.p′ + q =

σ.p′ + σ.q′ + q
DRTF= σ.(p′ + q′) + q = σ.q′ + q = q.

8. p ≡ p′ + p′′ for some basic terms p′ and p′′. From p+ q↔q it follows that both p′ + q↔q and
p′′ + q↔q. Then, by induction it follows that TCPdrt (p′ + q = q and TCPdrt (p′′ + q = q.
Then, TCPdrt (p + q ≡ (p′ + p′′) + q

A2= p′ + (p′′ + q) ih= p′ + q
ih= q.

!

A.3 Proof of conservativity of TCPdrt w.r.t. TCP

We cannot apply the meta-theorems for equational conservativity from the literature that rely on
the operational conservativity of the term deduction systems (see [Ver94, FV98, AFV01, Mid01])
since there is a new transition relation that can be derived for some old terms.

Using Theorem 6 of [MR05b] (or [Mou05, Theorem 6.51]), to conclude that TCPdrt is an
equationally conservative ground-extension of TCP in case we already know that both TCP and
TCPdrt are sound and complete, it suffices to prove that the term deduction system for TCPdrt is
an orthogonal extension of the term deduction system for TCP.

For the term deduction system for TCPdrt to be an orthogonal extension of the term deduc-
tion system of TCP, we need to prove that (1)the derivability of all old transition relations and
predicates for old terms in the two term deduction systems coincides, and (2) that bisimilarity on
old terms in the two term deduction systems coincides.

For the first proof obligation we have the following reasoning. All derivations in the term
deduction system for TCP are also derivations in the term deduction system for TCPdrt since the
deduction rules of the first are contained in the latter. For the other implication, note that all
new deduction rules are either about the new transition relation 1)→ or about new syntax. Hence
these can also not contribute to new facts about old terms and transition relations or predicates.

For the second proof obligation we have the following reasoning. First, note that with respect
to the old transition relations and predicates, i.e. the action transitions and termination relation,
the two term deduction systems coincide as reasoned before. Thus it remains to prove that also
the new time transitions cannot discriminate between old terms.

We can prove (but won’t do so explicitly) the following facts: (1) every closed TCP-term has
a time transition, (2) for any time transition p

1)→ p′ of an old term p, it holds that p↔p′ w.r.t.
the term deduction system for TCPdrt. For this latter statement we need to prove the statement
that p ↓ implies p↔p + 1 for closed TCP-terms.

B Theorems for TCP•

B.1 Proof of elimination theorem for TCP•

In this appendix we prove that any closed TCP•-term is derivably equal to a so-called basic term.
A basic term is a term with a more restricted syntax than allowed by the signature of TCP•.
Typically, sequential composition, parallel composition (and the auxiliary operators for parallel
composition) and encapsulation do not occur in such basic terms.

Definition B.1 (Basic terms) Basic terms are defined inductively as follows:

1. 0̇ and 1̇ are basic terms;

2. 0 and 1 are basic terms;

27

3. for a ∈ A and basic term p, a.p is a basic term;

4. for basic terms p and q, p + q is a basic term.

Theorem B.2 (Elimination of sequential composition) For basic terms p1 and p2, there ex-
ists a basic term q such that TCP• (p1 · p2 = q.

Proof. By induction on the structure of basic term p1.

1. p1 ≡ 0̇. Then TCP• (p1 · p2 ≡ 0̇ · p2
A7•= 0̇.

2. p1 ≡ 1̇. Then TCP• (p1 · p2 ≡ 1̇ · p2
A8•= p2.

3. p1 ≡ 0. Then TCP• (p1 · p2 = 0 · p2
DOT2= (1 · 0̇) · p2

A5= 1 · (0̇ · p2)
A7•= 1 · 0̇ DOT2= 0.

4. p1 ≡ 1. By induction on the structure of basic term p we prove that there exists a basic
term r such that TCP• (1 · p = r.

(a) p ≡ 0̇. Then TCP• (1 · p ≡ 1 · 0̇ DOT2= 0.

(b) p ≡ 1̇. Then TCP• (1 · p ≡ 1 · 1̇ A9•= 1.

(c) p ≡ 0. Then TCP• (1 · p ≡ 1 · 0 DOT2= 1 · (1 · 0̇) A5= (1 · 1) · 0̇ DOT3= 1 · 0̇ DOT2= 0.

(d) p ≡ 1. Then TCP• (1 · p ≡ 1 · 1 DOT3= 1.

(e) p ≡ a.p′ for some a ∈ A and basic term p′. Then TCP• (1 · p ≡ 1 · a.p′
DOT4= a.p′.

(f) p ≡ p′ + p′′ for some basic terms p′ and p′′. By induction we have the existence of
basic terms r′ and r′′ such that TCP• (1 · p′ = r′ and TCP• (1 · p′′ = r′′. Then
TCP• (1 · p ≡ 1 · (p′ + p′′) DOT5= 1 · p′ + 1 · p′′ ih= r′ + r′′.

Using this lemma we have the existence of a basic term r such that TCP• (1 · p2 = r. Then
TCP• (p1 · p2 ≡ 1 · p2

lemma= r.

5. p1 ≡ a.p′1 for some ∈ A and basic term p′1. By induction we have the existence of a basic
term q′ such that TCP• (p′1 · p2 = q′. Then TCP• (p1 · p2 ≡ a.p′1 · p2

A5= a.(p′1 · p2)
ih= a.q′.

6. p1 ≡ p′1 + p′′1 for some basic terms p′1 and p′′1 . By induction we have the existence of
basic terms r′ and r′′ such that TCP• (p′1 · p2 = r′ and TCP• (p′′1 · p2 = r′′. Then
TCP• (p1 · p2 ≡ (p′1 + p′′1) · p2

A4= p′1 · p2 + p′′1 · p2 = r′ + r′′.

Observe that in each of the above cases the last term in the derivation is indeed a basic term. !

Lemma B.3 (Representation I) For basic term p, TCP• (p = 0̇, TCP• (p = 1̇, or TCP• (
p = p + 0.

Proof. By induction on the structure of basic term p.

1. p ≡ 0̇. Trivial.

2. p ≡ 1̇. Trivial.

3. p ≡ 0. Then TCP• (p ≡ 0 A3= 0 + 0 ≡ p + 0.

4. p ≡ 1. Then TCP• (p ≡ 1 A9•= 1·1̇ A6•= 1·(1̇+0̇) DOT5= 1·1̇+1·0̇ A9•= 1+1·0̇ DOT2= 1+0 ≡ p+0.

5. p ≡ a.p′ for some a ∈ A and basic term p′. Then TCP• (p ≡ a.p′
DOT4= 1 · a.p′

A6•=
1 · (a.p′ + 0̇) DOT5= 1 · a.p′ + 1 · 0̇ DOT4= a.p′ + 1 · 0̇ DOT2= a.p′ + 0 ≡ p + 0.

28

6. p ≡ p′ + p′′ for some basic terms p′ and p′′. By induction we have TCP• (p′ = 0̇, TCP• (
p′ = 1̇, or TCP• (p′ = p′ + 0. By induction we have TCP• (p′′ = 0̇, TCP• (p′′ = 1̇, or
TCP• (p′′ = p′′ + 0. Obviously, the following cases are to be considered:

(a) TCP• (p′ = 0̇ and TCP• (p′′ = 0̇. Then TCP• (p ≡ p′ + p′′ = 0̇ + 0̇ A3= 0̇.

(b) TCP• (p′ = 0̇ and TCP• (p′′ = 1̇. Then TCP• (p ≡ p′ + p′′ = 0̇ + 1̇ A1,A6•= 1̇.

(c) TCP• (p′ = 0̇ and TCP• (p′′ = p′′ + 0. Then TCP• (p ≡ p′ + p′′ = p′ + (p′′ + 0) A2=
(p′ + p′′) + 0 ≡ p + 0.

(d) TCP• (p′ = 1̇ and TCP• (p′′ = 0̇. Similar to case 2.

(e) TCP• (p′ = 1̇ and TCP• (p′′ = 1̇. Then TCP• (p ≡ p′ + p′′ = 1̇ + 1̇ A3= 1̇.
(f) TCP• (p′ = 1̇ and TCP• (p′′ = p′′ + 0. Similar to case 3.

(g) TCP• (p′ = p′+0. Then TCP• (p ≡ p′+p′′ = (p′+0)+p′′
A2,A1,A2= (p′+p′′)+0 ≡ p+0.

!

We define |p| for basic terms p as follows:
∣∣0̇

∣∣ =
∣∣1̇

∣∣ = |0| = |1| = 1 and |a.p| = |p| + 1. We
define p < q as |p| < |q|.

Lemma B.4 (Representation II) For basic term p, TCP• (p = 0̇, TCP• (p = 1̇, TCP• (
p = 1 · p, or TCP• (p = q + 1̇ for some basic term q such that q < p.

Proof. By induction on the structure of basic term p.

1. p ≡ 0̇. Trivial.

2. p ≡ 1̇. Trivial.

3. p ≡ 0. Then TCP• (p ≡ 0 DOT2= 1 · 0̇ DOT3= (1 · 1) · 0̇ A5= 1 · (1 · 0̇) DOT2= 1 · 0 ≡ 1 · p.

4. p ≡ 1. Then TCP• (p ≡ 1 DOT3= 1 · 1 ≡ 1 · p.

5. p ≡ a.p′ for some ∈ A and basic term p′. Then TCP• (p ≡ a.p′
DOT4= 1 · a.p′ ≡ 1 · p.

6. p ≡ p′ + p′′ for some basic terms p′ and p′′. Then, by induction we have TCP• (p′ = 0̇,
TCP• (p′ = 1̇, TCP• (p′ = 1 · p′ or TCP• (p′ = q′ + 1̇ for some q′ such that q′ < p′.
Also by induction we have TCP• (p′′ = 0̇, TCP• (p′′ = 1̇, TCP• (p′′ = 1 · p′′, or
TCP• (p′′ = q′′+1̇ for some q′′ such that q′′ < p′′. The following cases can be distinguished

1 TCP• (p′ = 0̇ and TCP• (p′′ = 0̇. Then TCP• (p ≡ p′ + p′′
ih= 0̇ + 0̇ A3= 0̇.

2 TCP• (p′ = 0̇ and TCP• (p′′ = 1̇. Then TCP• (p ≡ p′ + p′′
ih= 0̇ + 1̇ A2= 1̇ + 0̇ A6•= 1̇.

3 TCP• (p′ = 0̇ and TCP• (p′′ = 1 · p′′. Then TCP• (p ≡ p′ + p′′
ih= 0̇ + 1 · p′′

A1=
1 · p′′ + 0̇ A6•= 1 · p′′ A6•= 1 · (p′′ + 0̇) A2= 1 · (0̇ + p′′) ih= 1 · (p′ + p′′) ≡ 1 · p.

4 TCP• (p′ = 0̇ and TCP• (p′′ = q′′ + 1̇ for some q′′ such that q′′ < p′′. Then TCP• (
p ≡ p′ + p′′

ih= 0̇ + (q′′ + 1̇) A1,A2= (0̇ + q′′) + 1̇ A1,A6•= q′′ + 1̇. Observe that q′′ < p follows
from q′′ < p′′.

5 TCP• (p′ = 1̇ and TCP• (p′′ = 0̇. Similar to case (2).

6 TCP• (p′ = 1̇ and TCP• (p′′ = 1̇. Then TCP• (p ≡ p′ + p′′
ih= 1̇ + 1̇ A3= 1̇.

7 TCP• (p′ = 1̇ and TCP• (p′′ = 1 · p′′. Then TCP• (p ≡ p′ + p′′
ih= 1̇ + 1 · p′′

A1=
1 · p′′ + 1̇ = p′′ + 1̇. Observe that p′′ < p.

29

8 TCP• (p′ = 1̇ and TCP• (p′′ = q′′ + 1̇ for some q′′ such that q′′ < p′′. Then TCP• (
p ≡ p′ + p′′

ih= 1̇ + (q′′ + 1̇) A1-A3= q′′ + 1̇. Observe that q′′ < p follows from q′′ < p′′.
9 TCP• (p′ = 1 · p′ and TCP• (p′′ = 0̇. Similar to case (3).
10 TCP• (p′ = 1 · p′ and TCP• (p′′ = 1̇. Similar to case (7).

11 TCP• (p′ = 1 ·p′ and TCP• (p′′ = 1 ·p′′. Then TCP• (p ≡ p′+p′′ = 1 ·p′+1 ·p′′ DOT5=
1 · (p′ + p′′) ≡ 1 · p.

12 TCP• (p′ = 1 · p′ and TCP• (p′′ = q′′ + 1̇ for some basic term q′′ such that q′′ < r′′.
Then TCP• (p ≡ p′ + p′′ = p′ + (q′′ + 1̇) A2= (p′ + q′′) + 1̇. Note that p′ + q′′ < p′ + p′′

follows from q′′ < p′′.
13-16 TCP• (p′ = q′ + 1̇ for some basic term q′ such that q′ < p′. Then TCP• (′ p ≡

p′ + p′′ = (q′ + 1̇) + p′′
A1,A2= (q′ + p′′) + 1̇. Note that q′ + p′′ < p′ + p′′ follows from

q′ < p′.

!

Theorem B.5 (Elimination of parallel composition operators) For basic terms p1 and p2,

1. there exists a basic term q such that TCP• (p1‖ p2 = q;

2. there exists a basic term q such that TCP• (p1 | p2 = q;

3. there exists a basic term q such that TCP• (p1 ‖ p2 = q.

Proof. These three statements are proven simultaneously using induction on the number of
symbols of basic terms p1 and p2. When we apply an induction hypothesis we indicate to which
statement it refers.

First we give the proof for statement (1), the elimination of ‖ . We use case distinction on the
structure of basic term p1.

1. p1 ≡ 0̇. TCP• (p1‖ p2 ≡ 0̇‖ p2
LM1•= 0̇.

2. p1 ≡ 1̇. TCP• (p1‖ p2 ≡ 1̇‖ p2
LM2•= 0̇.

3. p1 ≡ 0. According to Lemma B.3 we can distinguish three cases for p2:

(a) TCP• (p2 = 0̇. Then TCP• (p1‖ p2 = p1‖ 0̇ LM5•= 0̇.

(b) TCP• (p2 = 1̇. Then TCP• (p1‖ p2 = p1‖ 1̇ A6•,A1= p1‖ (0̇ + 1̇) LM6•= p1‖ 0̇ LM5•= 0̇.

(c) TCP• (p2 = p2 + 0. Then TCP• (p1‖ p2 ≡ 0‖ p2 = 0‖ (p2 + 0) LM8•= 0.

4. p1 ≡ 1. According to Lemma B.3 we can distinguish three cases for p2:

(a) TCP• (p2 = 0̇. Then TCP• (p1‖ p2 = p1‖ 0̇ LM5•= 0̇.

(b) TCP• (p2 = 1̇. Then TCP• (p1‖ p2 = p1‖ 1̇ A6•,A2= p1‖ (0̇ + 1̇) LM6•= p1‖ 0̇ LM5•= 0̇.

(c) TCP• (p2 = p2 + 0. Then TCP• (p1‖ p2 ≡ 1‖ p2 = 1‖ (p2 + 0) LM9•= 0.

5. p1 ≡ a.p′1 for some a ∈ A and basic term p′1. According to Lemma B.4 we can distinguish
four cases for p2:

(a) TCP• (p2 = 0̇. Then TCP• (p1‖ p2 = p1‖ 0̇ LM5•= 0̇.

(b) TCP• (p2 = 1̇. Then TCP• (p1‖ p2 = p1‖ 1̇ A6•,A1= p1‖ (0̇ + 1̇) LM6•= p1‖ 0̇ LM5•= 0̇.

30

(c) TCP• (p2 = 1 · p2. By induction there exists a basic term q′ such that TCP• (p′1 ‖
p2 = q′. Then TCP• (p1‖ p2 ≡ a.p′1‖ p2 = a.p′1‖ (1 · p2)

LM3•= a.(p′1 ‖ (1 · p2)) = a.(p′1 ‖
p2)

ih(3)
= a.q′.

(d) TCP• (p2 = p′2 +1̇ for some basic term p′2 such that p′2 < p2. By induction there exists
a basic term q′ such that TCP• (p1‖ p′2 = q′. Then TCP• (p1‖ p2 = p1‖ (p′2+1̇) LM6•=

p1‖ p′2
ih(1)
= q′.

6. p1 ≡ p′1+p′′1 . By induction there exist basic terms q′ and q′′ such that TCP• (p′1‖ p2 = q′ and

TCP• (p′′1‖ p2 = q′′. Then TCP• (p1‖ p2 ≡ (p′1 + p′′1)‖ p2
LM4= p′1‖ p2 + p′′1‖ p2

ih(1)
= q′ + q′′.

Then we prove statement (2), the elimination of | . We use case distinction on the structure
of basic terms p1.

1. p1 ≡ 0̇. TCP• (p1 | p2 ≡ 0̇ | p2
CM1•= 0̇.

2. p1 ≡ 1̇. We use case distinction on the structure of basic term p2.

(a) p2 ≡ 0̇. TCP• (p1 | p2 ≡ p1 | 0̇ SC1= 0̇ | p1
CM1•= 0̇.

(b) p2 ≡ 1̇. TCP• (p1 | p2 ≡ 1̇ | 1̇ CM3•= 1̇.

(c) p2 ≡ 0. TCP• (p1 | p2 ≡ 1̇ | 0 SC1= 0 | 1̇ CM1b= 0̇.

(d) p2 ≡ 1. TCP• (p1 | p2 ≡ 1̇ | 1 SC1= 1 | 1̇ CM7•= 1̇.

(e) p2 ≡ a.p′2 for some a ∈ A and basic term p′2. TCP• (p1 |p2 ≡ 1̇ |a.p′2
SC1= a.p′2 | 1̇ CM4•= 0̇.

(f) p2 ≡ p′2 + p′′2 for some basic terms p′2 and p′′2 . By induction we have the existence of
basic terms q′ and q′′ such that TCP• (p1 | p′2 = q′ and TCP• (p1 | p′′2 = q′′. Then

TCP• (p1 |p2 ≡ p1 |(p′2 +p′′2) SC1= (p′2 +p′′2) |p1
CM2= p′2 |p1 +p′′2 |p1

SC1= p1 |p′2 +p1 |p′′2
ih(2)
=

q′ + q′′.

3. p1 ≡ 0. By Lemma B.3 we can distinguish three cases for p2.

(a) TCP• (p2 = 0̇. TCP• (p1 | p2 ≡ 0 | p2 = 0 | 0̇ SC1= 0̇ | 0 CM1•= 0̇.

(b) TCP• (p2 = 1̇. TCP• (p1 | p2 ≡ 0 | p2 = 0 | 1̇ CM1b= 0̇.

(c) TCP• (p2 = p2 + 0. TCP• (p1 | p2 ≡ 0 | p2 = 0 | (p2 + 0) CM1a= 0.

4. p1 ≡ 1. We use case distinction on the structure of basic term p2.

(a) p2 ≡ 0̇. TCP• (p1 | p2 ≡ p1 | 0̇ SC1= 0̇ | p1
CM1•= 0̇.

(b) p2 ≡ 1̇. TCP• (p1 | p2 ≡ 1 | 1̇ CM7•= 1̇.

(c) p2 ≡ 0. We may use TCP• (1+0 A9•= 1·1̇+0 DOT2= 1·1̇+1·0̇ DOT5= 1·(1̇+0̇) A6•= 1·1̇ A9•= 1

(*). TCP• (p1 | p2 ≡ 1 | 0 SC1= 0 | 1 (*)
= 0 | (1 + 0) CM1a= 0.

(d) p2 ≡ 1. TCP• (p1 | p2 ≡ 1 | 1 CM3= 1.

(e) p2 ≡ a.p′2 for some a ∈ A and basic term p′2. TCP• (p1 | p2 ≡ 1 |a.p′2
SC1= a.p′2 | 1 CM4= 0.

(f) p2 ≡ p′2 + p′′2 for some basic terms p′2 and p′′2 . By induction we have the existence of
basic terms q′ and q′′ such that TCP• (p1 | p′2 = q′ and TCP• (p1 | p′′2 = q′′. Then

TCP• (p1 |p2 ≡ p1 |(p′2 +p′′2) SC1= (p′2 +p′′2) |p1
CM2= p′2 |p1 +p′′2 |p1

SC1= p1 |p′2 +p1 |p′′2
ih(2)
=

q′ + q′′.

5. p1 ≡ a.p′1 for some a ∈ A and basic term p′1. We use case distinction on the structure of
basic term p2.

31

(a) p2 ≡ 0̇. TCP• (p1 | p2 ≡ p1 | 0̇ SC1= 0̇ | p1
CM1•= 0̇.

(b) p2 ≡ 1̇. TCP• (p1 | p2 ≡ a.p′1 | 1̇ CM4•= 0̇.

(c) p2 ≡ 0. We can derive TCP• (a.x
DOT4= 1·a.x

A6•= 1·(a.x+0̇) DOT5= 1·a.x+1·0̇ DOT4,DOT2=

a.x + 0 (*). Then, TCP• (p1 | p2 ≡ a.p′1 | 0 SC1= 0 | a.p′1
(*)
= 0 | (a.p′1 + 0) CM1a= 0.

(d) p2 ≡ 1. TCP• (p1 | p2 ≡ a.p′1 | 1 CM4= 0.
(e) p2 ≡ b.p′2 for some b ∈ A and basic term p′2. By the induction hypothesis for statement

(3) we have the existence of basic term q′ such that TCP• (p′1 ‖ p′2 = q′. In case
γ(a, b) is not defined, TCP• (p1 | p2 ≡ a.p′1 | b.p′2

CM6•= 0. In case γ(a, b) = c, TCP• (
p1 | p2 ≡ a.p′1 | b.p′2

CM5= c.(p′1 ‖ p′2)
ih(3)
= c.q′.

(f) p2 ≡ p′2 + p′′2 for some basic terms p′2 and p′′2 . By induction we have the existence of
basic terms q′ and q′′ such that TCP• (p1 | p′2 = q′ and TCP• (p1 | p′′2 = q′′. Then

TCP• (p1 |p2 ≡ p1 |(p′2 +p′′2) SC1= (p′2 +p′′2) |p1
CM2= p′2 |p1 +p′′2 |p1

SC1= p1 |p′2 +p1 |p′′2
ih(2)
=

q′ + q′′.

6. p1 ≡ p′1 + p′′1 for some basic terms p′1 and p′′1 . By the induction hypothesis for statement
(2), we have the existence of basic terms q′ and q′′ such that TCP• (p′1 | p2 = r′ and

TCP• (p′′1 | p2 = r′′. Then TCP• (p1 | p2 ≡ (p′1 + p′′1) | p2
CM2= p′1 | p2 + p′′1 | p2

ih(2)
= r′ + r′′.

Finally, statement (3) follows straightforwardly from the previous statements: By induc-
tion on statements (1) and (2) we have the existence of basic terms q1, q2, and q3 such that
TCP• (p1‖ p2 = q1, TCP• (p2‖ p1 = q2, and TCP• (p1 | p2 = q3. Then TCP• (p1 ‖ p2

M=

p1‖ p2 + p2‖ p1 + p1 | p2
ih(1),ih(2)

= q1 + q2 + q3. !

Theorem B.6 (Elimination of encapsulation) For basic terms p and H ⊆ A, there exists a
basic term q such that TCP• (∂H(p) = q.

Proof. Trivial, by induction on the structure of basic term p. !

B.2 Completeness of TCP•

Note that the term deduction system for TCP• is such that all action and consistency transitions
that can be derived starting from a basic term always result in a basic term. We do not prove this
statement formally, and will use it silently in the remainder.

Lemma B.7 (Towards completeness) For arbitrary closed TCP•-terms p and p′ and arbitrary
action a ∈ A

1. if p ↓, then TCP• (p = 1̇ + p;

2. if p
a→ p′, then TCP• (p = a.p′ + p;

3. if p
0)→ p′, then p′ ≡ p or p′ < p;

4. if p
0)→ p′, then TCP• (p = 1 · p′ + p.

Proof. Easy; by induction on the structure of basic TCP•-term p. !

32

Theorem B.8 The process algebra TCP• is a complete axiomatization of strong bisimilarity on
closed TCP•-terms.

Proof. By the elimination theorem for TCP• it suffices to prove this theorem for basic terms only.
We use induction on the structure of basic term p to prove that p+q↔q implies TCP• (p+q = q.

1. p ≡ 0̇. Then TCP• (p + q ≡ 0̇ + q
A1= q + 0̇ A6•= q.

2. p ≡ 1̇. Then p+q ↓, and since p+q↔q also q ↓. By Lemma B.7.1, we have TCP• (q = 1̇+q.
Then, TCP• (p + q ≡ 1̇ + q = q.

3. p ≡ 0. Then p+q
0)→, and since p+q↔q also q

0)→ q′ for some basic term q′. By Lemma B.7.4
we have TCP• (q = 1 ·q′+q. Then, TCP• (p+q ≡ 0+q

DOT2= 1 · 0̇+q = 1 · 0̇+1 ·q′+q
DOT5=

1 · (0̇ + q′) + q
A6•= 1 · q′ + q = q.

4. p ≡ 1. Then p+q ↓, and since p+q↔q also q ↓. By Lemma B.7.1, we have TCP• (q = 1̇+q.
Also, p+q

0)→, and since p+q↔q also q
0)→. Based on Lemma B.7.3 we distinguish the following

two cases.

(a) q
0)→ q. By Lemma B.7.4 we have TCP• (q = 1 · q + q. Then TCP• (p + q ≡ 1 + q =

1 + 1 · q + q
A9•= 1 · 1̇ + 1 · q + q

DOT5= 1 · (1̇ + q) + q = 1 · q + q = q.

(b) q
0)→ q′ for some basic term q′ < q. We have p + q′↔q′ and by induction we therefore

obtain TCP• (p + q′ = q′. Also, by Lemma B.7.4, we have TCP• (q = 1 · q′ + q.
Then, TCP• (p + q ≡ 1 + q

DOT3= 1 · 1 + q = 1 · 1 + 1 · q′ + q
DOT5= 1 · (1 + q′) + q =

1 · (p + q′) + q = 1 · q′ + q = q.

Then, TCP• (p + q ≡ 1 + q
A1= q + 1 = q.

5. p ≡ a.p′ for some a ∈ A and basic term p′. Then p + q
a→ p′, and since p + q↔q we have

q
a→ q′ for some q′ such that p′↔q′. Then due to soundness of axiom A3 and congruence

of bisimilarity w.r.t. alternative composition we also have p′ + q′↔q′ and q′ + p′↔p′. By
induction we then have TCP• (p′ + q = q′ and TCP• (q′ + p′ = p′. Therefore, we also
have TCP• (p′ = q′ + p′ = p′ + q′ = q′. By Lemma B.7.2, we have TCP• (q = a.q′ + q.
Then, TCP• (p + q ≡ a.p′ + q = a.q′ + q = q.

6. p ≡ p′ + p′′ for some basic terms p′ and p′′. From p+ q↔q it follows that both p′ + q↔q and
p′′ + q↔q. Then, by induction it follows that TCP• (p′ + q = q and TCP• (p′′ + q = q.
Then, TCP• (p + q ≡ (p′ + p′′) + q

A2= p′ + (p′′ + q) ih= p′ + q
ih= q.

!

B.3 Proof of conservativity of TCP• w.r.t. TCP

Again, using Theorem 6 of [MR05b] (or [Mou05, Theorem 6.51]), to conclude that TCP• is an
equationally conservative ground-extension of TCP in case we already know that both TCP and
TCP• are sound and complete, it suffices to prove that the term deduction system for TCP• is an
orthogonal extension of the term deduction system for TCP.

For the term deduction system for TCP• to be an orthogonal extension of the term deduction
system of TCP, we need to prove that (1)the derivability of all old transition relations and predi-
cates for old terms in the two term deduction systems coincides, and (2) that bisimilarity on old
terms in the two term deduction systems coincides.

For the first proof obligation we have the following reasoning. First, all derivations in the term
deduction system for TCP are also derivations in the term deduction system for TCP•. This can

33

be seen as follows: We can easily prove that for any closed TCP-term p there is some term p′ such
that p

0)→ p′ is derivable in the term deduction system for TCP•. As a consequence, the deduction
rules defining action transitions in Table 6 reduce to the deduction rules that were omitted from
the term deduction system of TCP. Thus all derivations from the term deduction system of TCP
can be mimicked in the term deduction system for TCP•.

For the other implication, note that all new deduction rules are either about the new transition
relation 0)→ or about new syntax or for closed TCP-terms reduce to rules from the term deduction
system for TCP. Hence these can also not contribute to new facts about old terms and transition
relations or predicates.

For the second proof obligation we have the following reasoning. First, note that with respect
to the old transition relations and predicates, i.e. the action transitions and termination relation,
the two term deduction systems coincide as reasoned before. Thus it remains to prove that also
the new consistency transitions cannot discriminate between old terms.

We can prove (but won’t do so explicitly) the following facts: (1) every closed TCP-term has
a consistency transition, (2) for any consistency transition p

0)→ p′ of an old term p, it holds that
p↔p′ w.r.t. the term deduction system for TCP•. For this latter statement we need to prove the
statement that p ↓ implies p↔p + 1̇ for closed TCP-terms.

C Theorems for TCP•
drt

C.1 Useful identities for TCP•
drt

Lemma C.1 The following identities are derivable from TCP•
drt.

1. TCP•
drt (0 · x = 0 (LU1);

2. TCP•
drt (0 · x = 0 (LU2);

3. TCP•
drt (1 = 1 + 0 (U1);

4. TCP•
drt (a.x = a.x + 0 (U2);

5. TCP•
drt (0 = σ.0 (DD);

6. TCP•
drt (a.x = a.x + σ.a.x (DAP);

7. TCP•
drt (σ.x | σ.y = σ.(x | y) (CM7DR•′);

Proof.

1. TCP•
drt (0 · x DR2•= (1 · 0̇) · x A5= 1 · (0̇ · x) A7•= 1 · 0̇ DR2•= 0;

2. TCP•
drt (0 · x DOT2= (1 · 0̇) · x A5= 1 · (0̇ · x) A7•= 1 · 0̇ DOT2= 0;

3. TCP•
drt (1 DR4b•= 1 · 1 A6•= 1 · (1 + 0̇) DR6•= 1 · 1 + 1 · 0̇ DR4b•= 1 + 1 · 0̇ DR2•= 1 + 0;

4. TCP•
drt (a.x

DR3•= 1 · a.x
A6•= 1 · (a.x + 0̇) DR6•= 1 · a.x + 1 · 0̇ DR3•= a.x + 1 · 0̇ DR2•= a.x + 0;

5. TCP•
drt (0 DOT2= 1 · 0̇ DT1= (1+σ.1) · 0̇ A4= 1 · 0̇ +σ.1 · 0̇ DR2•= 0+σ.1 · 0̇ DR10= σ.0̇ +σ.1 · 0̇ DRA10=

σ.0̇ + σ.(1 · 0̇) DRTF= σ.(0̇ + 1 · 0̇) A1,A6•= σ.(1 · 0̇) DOT2= σ.0;

6. TCP•
drt (a.x

DR9= 1 · a.x
DT1= (1 + σ.1) · a.x

A4= 1 · a.x + σ.1 · a.x
DR3•= a.x + σ.1 · a.x

DRA10=

a.x + σ.(1 · a.x) DR9= a.x + σ.a.x;

7. TCP•
drt (σ.x | σ.y

A6•,A1= σ.x | (0̇ + σ.y) RTO1•= σ.x | (υ1(0̇) + σ.y) CM7DR•= σ.(x | y);

34

!

Lemma C.2 The following identity is derivable from TCP•
drt for basic terms p

1. TCP•
drt (1 · υ1(p) = υ1(1 · p) (TN).

Proof. The statement is proven by induction on the structure of basic term p. !

C.2 Proof of elimination theorem for TCP•
drt

In this appendix we prove that any closed TCP•
srt-term is derivably equal to a basic term.

Theorem C.3 (Elimination of sequential composition) For basic terms p1 and p2, there ex-
ists a basic term q such that TCP•

drt (p1 · p2 = q.

Proof. By induction on the structure of basic term p1.

1. p1 ≡ 0̇. Then TCP•
drt (p1 · p2 ≡ 0̇ · p2

A7•= 0̇.

2. p1 ≡ 1̇. Then TCP•
drt (p1 · p2 ≡ 1̇ · p2

A8•= 1̇.

3. p1 ≡ 0. Then TCP•
drt (p1 · p2 ≡ 0 · p2

LU1= 0.

4. p1 ≡ 1. By induction on the structure of basic term p we prove that there exists a basic
term r such that TCP•

drt (1 · p = r.

(a) p ≡ 0̇. Then TCP•
drt (1 · p ≡ 1 · 0̇ DR2•= 0.

(b) p ≡ 1̇. Then TCP•
drt (1 · p ≡ 1 · 1̇ A9•= 1.

(c) p ≡ 0. Then TCP•
drt (1 · p ≡ 1 · 0 DR2•= 1 · (1 · 0̇) A5= (1 · 1) · 0̇ DR4b•= 1 · 0̇ DR2•= 0.

(d) p ≡ 1. Then TCP•
drt (1 · p ≡ 1 · 1 DR4b•= 1.

(e) p ≡ 0. Then TCP•
drt (1 · p ≡ 1 · 0 DOT2= 1 · (1 · 0̇) A5= (1 · 1) · 0̇ DR4a•= 1 · 0̇ DOT2= 0.

(f) p ≡ 1. Then TCP•
drt (1 · p ≡ 1 · 1 DR4a•= 1.

(g) p ≡ a.p′ for some a ∈ A and basic term p′. Then TCP•
drt (1 · p ≡ 1 · (a.p′) DR3•= a.p′.

(h) p ≡ a.p′ for some a ∈ A and basic term p′. Then TCP•
drt (1 · p ≡ 1 · a.p′

DR9=

1 · (1 · a.p′) A5= (1 · 1) · a.p′
DR4a•= 1 · a.p′

DR9= a.p′.

(i) p ≡ σ.p′ for some basic term p′. Then, TCP•
drt (1 · p ≡ 1 · σ.p′

DR5•= σ.p′.
(j) p ≡ p′ + p′′ for some basic terms p′ and p′′. By induction we have the existence of

basic terms r′ and r′′ such that TCP•
drt (1 · p′ = r′ and TCP•

drt (1 · p′′ = r′′. Then

TCP•
drt (1 · p ≡ 1 · (p′ + p′′) DR6•= 1 · p′ + 1 · p′′ ih= r′ + r′′.

Using this lemma we have the existence of a basic term r such that TCP•
drt (1 · p2 = r.

Then TCP•
drt (p1 · p2 ≡ 1 · p2

lemma= r.

5. p1 ≡ 0. Then TCP•
drt (p1 · p2 = 0 · p2

LU2= 0.

35

6. p1 ≡ 1. By induction on the structure of basic term p we prove that there exists a basic
term r such that TCP•

drt (1 · p = r.

(a) p ≡ 0̇. Then TCP•
drt (1 · p ≡ 1 · 0̇ DOT2= 0.

(b) p ≡ 1̇. Then TCP•
drt (1 · p ≡ 1 · 1̇ A9•= 1.

(c) p ≡ 0. Then TCP•
drt (1 · p ≡ 1 · 0 DR2•= 1 · (1 · 0̇) A5= (1 · 1) · 0̇ DR8= 1 · 0̇ DOT2= 0.

(d) p ≡ 1. Then TCP•
drt (1 · p ≡ 1 · 1 DR8= 1.

(e) p ≡ 0. Then TCP•
drt (1 · p ≡ 1 · 0 DOT2= 1 · (1 · 0̇) A5= (1 · 1) · 0̇ DOT3= 1 · 0̇ DOT2= 0.

(f) p ≡ 1. Then TCP•
drt (1 · p ≡ 1 · 1 DOT3= 1.

(g) p ≡ a.p′ for some a ∈ A and basic term p′. Then TCP•
drt (1 · p ≡ 1 · a.p′

DR9= a.p′.

(h) p ≡ a.p′ for some a ∈ A and basic term p′. Then TCP•
drt (1 · p ≡ 1 · a.p′

DOT4= a.p′.
(i) p ≡ σ.p′ for some basic term p′. By induction we have the existence of a basic term r′

such that TCP•
drt (1 · p′ = r′. Then, TCP•

drt (1 · p ≡ 1 · σ.p′
DR7•= σ.(1 · p′) = σ.r′.

(j) p ≡ p′ + p′′ for some basic terms p′ and p′′. By induction we have the existence of
basic terms r′ and r′′ such that TCP•

drt (1 · p′ = r′ and TCP•
drt (1 · p′′ = r′′. Then

TCP•
drt (1 · p ≡ 1 · (p′ + p′′) DOT5= 1 · p′ + 1 · p′′ ih= r′ + r′′.

Using this lemma we have the existence of a basic term r such that TCP•
drt (1 · p2 = r.

Then TCP•
drt (p1 · p2 ≡ 1 · p2

lemma= r.

7. p1 ≡ a.p′1 for some a ∈ A and basic term p′1. By induction we have the existence of a basic

term q′ such that TCP•
drt (p′1·p2 = q′. Then TCP• (p1·p2 ≡ a.p′1·p2

A10DR= a.(p′1·p2)
ih= a.q′.

8. p1 ≡ a.p′1 for some a ∈ A and basic term p′1. By induction we have the existence of a basic
term q′ such that TCP•

drt (p′1 ·p2 = q′. Then TCP•
drt (p1 ·p2 ≡ a.p′1 ·p2

A10= a.(p′1 ·p2)
ih= a.q′.

9. p1 ≡ σ.p′1 for some basic term p′1. By induction we have the existence of a basic term q′ such

that TCP•
drt (p′1 · p2 = q′. Then TCP• (p1 · p2 ≡ σ.p′1 · p2

DRA10= σ.(p′1 · p2)
ih= σ.q′.

10. p1 ≡ p′1 + p′′1 for some basic terms p′1 and p′′1 . By induction we have the existence of
basic terms r′ and r′′ such that TCP•

drt (p′1 · p2 = r′ and TCP•
drt (p′′1 · p2 = r′′. Then

TCP•
drt (p1 · p2 ≡ (p′1 + p′′1) · p2

A4= p′1 · p2 + p′′1 · p2
ih= r′ + r′′.

Observe that in each of the above cases the last term in the derivation is indeed a basic term. !

Lemma C.4 (Representation) For basic term p,

1. TCP•
drt (p = 0̇,

2. TCP•
drt (p = 1̇,

3. TCP•
drt (p = 1 · p, or

4. TCP•
drt (p = 1 · p + 1̇.

Proof. Trivial, by induction on the structure of basic term p. !

36

Lemma C.5 (Representation) For basic term p,

1. TCP•
drt (p = 0̇,

2. TCP•
drt (p = 1̇, or

3. TCP•
drt (p = p + 0.

Proof. According to Lemma C.4 we can distinguish four cases for basic term p.

1. TCP•
drt (p = 0̇. Trivial.

2. TCP•
drt (p = 1̇. trivial.

3. TCP•
drt (p = 1 ·p. Then TCP•

drt (p = 1 ·p A6•= 1 ·(p+0̇) DR6•= 1 ·p+1 · 0̇ DR2•= 1 ·p+0 = p+0.

4. TCP•
drt (p = 1 ·p+1̇. Then TCP•

drt (p = 1 ·p+1̇ A6•= 1 · (p+0̇)+ 1̇ DR6•= 1 ·p+1 · 0̇+ 1̇ DR2•=

1 · p + 0 + 1̇ A1,A2= 1 · p + 1̇ + 0 = p + 0.

!

We define | | for basic terms p and q as follows:
∣∣0̇

∣∣ =
∣∣1̇

∣∣ =
∣∣0

∣∣ =
∣∣1

∣∣ = |0| = |1| = 1,∣∣a.p
∣∣ = |a.p| =

∣∣σ.p
∣∣ = |p| + 1, and |p + q| = |p| + |q|. We define p ≤ q as |p| ≤ |q| and p < q as

|p| < |q|.

Lemma C.6 (Representation) For basic term p,

1. TCP•
drt (p = 0̇,

2. TCP•
drt (p = 1̇, or

3. TCP•
drt (p = υ1(p′) + σ.p′′ for some basic TCP•

drt-terms p′ and p′′ such that p′′ ≤ p.

Proof. By induction on the structure of basic term p.

1. p ≡ 0̇. Trivial.

2. p ≡ 1̇. Trivial.

3. p ≡ 0. Then TCP•
drt (p ≡ 0 A6•,A1= 0̇ + 0 RTO1•,DR10= υ1(0̇) + σ.0̇. Note that 0̇ ≤ 0.

4. p ≡ 1. Then TCP•
drt (p ≡ 1 U1= 1 + 0 RTO1,DR10= υ1(1) + σ.0̇. Note that 0̇ ≤ 1.

5. p ≡ 0. Then TCP•
drt (p ≡ 0 DOT2= 1 · 0̇ DT1= (1 + σ.1) · 0̇ A4= 1 · 0̇ + σ.1 · 0̇ DR2•,DR7•=

0 + σ.(1 · 0̇) RTO5,DOT2= υ1(σ.0̇) + σ.0. Observe that 0 ≤ 0.

6. p ≡ 1. Then TCP•
drt (p ≡ 1 DT1= 1 + σ.1 RTO2= υ1(1) + σ.1. Observe that 1 ≤ 1.

7. p ≡ a.p′ for some a ∈ A and basic term p′. Then TCP•
drt (p ≡ a.p′

U2= a.p′ + 0 RTO3,DR10=
υ1(a.p′) + σ.0̇. Observe that 0̇ ≤ a.p′.

8. p ≡ a.p′ for some a ∈ A and basic term p′. Then TCP•
drt (p ≡ a.p′

DAP= a.p′ + σ.a.p′
RTO3=

υ1(a.p′) + σ.a.p′. Note that a.p′ ≤ a.p′.

9. p ≡ σ.p′ for some basic term p′. Then TCP•
drt (p ≡ σ.p′

A6•,A1= 0̇ + σ.p′
RTO1•= υ1(0̇) + σ.p′.

Note that p′ ≤ σ.p′.

37

10. p ≡ p′+p′′ for some basic term p′+p′′. By induction, for both p′ and p′′ we have three cases.
In case TCP•

drt (p′ = 0̇ or TCP•
drt (p′′ = 0̇, the proof is trivial and therefore omitted. The

following are the remaining cases:

(a) TCP•
drt (p′ = 1̇ and TCP•

drt (p′′ = 1̇. Then TCP•
drt (p ≡ p′ + p′′ = 1̇ + 1̇ A3= 1̇.

(b) TCP•
drt (p′ = υ1(p′1) + σ.p′2 for some basic TCPdrt-terms p′1 and p′2 such that p′2 ≤ p′

and TCP•
drt (p′′ = 1̇ . Then TCP•

drt (p ≡ p′+p′′ = (υ1(p′1)+σ.p′2)+1̇ RTO2•= (υ1(p′1)+

σ.p′2) + υ1(1̇) A1,A2= (υ1(p′1) + υ1(1̇)) + σ.p′2
RTO4= υ1(p′1 + 1̇) + σ.p′2 = υ1(p′1 + p′′) + σ.p′2.

Note that p′2 ≤ p.
(c) TCP•

drt (p′ = 1̇ and TCP•
drt (p′′ = υ1(p′′1)+σ.p′′2 for some basic TCPdrt-terms p′′1 and

p′′2 such thatp′′2 ≤ p′′. Similar to the previous case.
(d) TCP•

drt (p′ = υ1(p′1) + σ.p′2 for some basic TCPdrt-terms p′1 and p′2 such that p′2 ≤ p′

and TCP•
drt (p′′ = υ1(p′′1) + σ.p′′2 for some basicTCPdrt-terms p′′1 and p′′2 such that

p′′2 ≤ p′′. Then TCP•
drt (p ≡ p′ + p′′ = (υ1(p′1) + σ.p′2) + (υ1(p′′1) + σ.p′′2) A1,A2=

(υ1(p′1) + υ1(p′′1)) + (σ.p′2 + σ.p′′2) RTO4,DRTF= υ1(p′1 + p′′1) + σ.(p′2 + p′′2) and note that
p′2 + p′′2 ≤ p.

!

Lemma C.7 (Representation) For basic term p,

1. TCP•
drt (p = 0̇,

2. TCP•
drt (p = 1̇,

3. TCP•
drt (p = υ1(p′) + σ.p′′ for some basic TCP•

drt-terms p′ and p′′ such that p′′ < p or
p′′ ≡ 0̇, or

4. TCP•
drt (p = 1 · υ1(p′) for some basic term p′ such that p′ ≤ p.

Proof. By induction on the structure of basic term p.

1. p ≡ 0̇. Trivial.

2. p ≡ 1̇. Trivial.

3. p ≡ 0. Then TCP•
drt (p ≡ 0 A6•,A1= 0̇ + 0 RTO1•,DR10= υ1(0̇) + σ.0̇.

4. p ≡ 1. Then TCP•
drt (p ≡ 1 U1= 1 + 0 RTO1,DR10= υ1(1) + σ.0̇.

5. p ≡ 0. Then TCP•
drt (p ≡ 0 DOT2= 1 · 0̇ RTO1•= 1 · υ1(0̇). Note that 0̇ ≤ 0.

6. p ≡ 1. Then TCP•
drt (p ≡ 1 DR8= 1 · 1 RTO2= 1 · υ1(1). Note that 1 ≤ 1.

7. p ≡ a.p′ for some a ∈ A and basic term p′. Then TCP•
drt (p ≡ a.p′

U2= a.p′ + 0 RTO3,DR10=
υ1(a.p′) + σ.0̇.

8. p ≡ a.p′ for some a ∈ A and basic term p′. Then TCP•
drt (p ≡ a.p′

DT3= 1 · a.p′
RTO3=

1 · υ1(a.p′). Note that a.p′ ≤ a.p′.

9. p ≡ σ.p′ for some basic term p′. Then TCP•
drt (p ≡ σ.p′

A6•,A1= 0̇ + σ.p′
RTO1•= υ1(0̇) + σ.p′.

Observe that indeed p′ < p.

38

10. p ≡ p′ +p′′ for some basic term p′ + p′′. By induction, for both p′ and p′′ we have four cases.
In case TCP•

drt (p′ = 0̇ or TCP•
drt (p′′ = 0̇, the proof is trivial and therefore omitted. The

following are the remaining cases:

(a) TCP•
drt (p′ = 1̇ and TCP•

drt (p′′ = 1̇. Then TCP•
drt (p ≡ p′ + p′′ = 1̇ + 1̇ A3= 1̇.

(b) TCP•
drt (p′ = υ1(p′1) + σ.p′2 for some basic TCPdrt-terms p′1 and p′2 such that p′2 < p′

or p′2 ≡ 0̇ and TCP•
drt (p′′ = 1̇ . Then TCP•

drt (p ≡ p′ + p′′ = (υ1(p′1) + σ.p′2) +

1̇ RTO2•= (υ1(p′1) + σ.p′2) + υ1(1̇) A1,A2= (υ1(p′1) + υ1(1̇)) + σ.p′2
RTO4= υ1(p′1 + 1̇) + σ.p′2 =

υ1(p′1 + p′′) + σ.p′2. Note that p′2 < p or p′2 ≡ 0̇.

(c) TCP•
drt (p′ = 1 ·υ1(p′1) for some basic term p′1 such that p′1 ≤ p′ and TCP•

drt (p′′ = 1̇.
Then TCP•

drt (p ≡ p′+p′′ = 1 ·υ1(p′1)+ 1̇ DT1,A4,DRA10= 1 ·υ1(p′1)+σ.(1 ·υ1(p′1))+ 1̇ TN=

υ1(p′1) + σ.(1 · υ1(p′1)) + 1̇ RTO1•,RTO3= υ1(p′1 + 1̇) + σ.(1 · υ1(p′1)) = υ1(p′1 + p′′) + σ.p′.
Note that p′ < p.

(d) TCP•
drt (p′ = 1̇ and TCP•

drt (p′′ = υ1(p′′1)+σ.p′′2 for some basic TCPdrt-terms p′′1 and
p′′2 such thatp′′2 < p′′ or p′′2 ≡ 0̇. Similar to the second case.

(e) TCP•
drt (p′ = υ1(p′1) + σ.p′2 for some basic TCPdrt-terms p′1 and p′2 such that p′2 < p′

or p′2 ≡ 0̇ and TCP•
drt (p′′ = υ1(p′′1) + σ.p′′2 for some basicTCPdrt-terms p′′1 and p′′2

such that p′′2 < p′′ or p′′2 ≡ 0̇. Here we only consider the case where p′2 < p′ and
p′′2 < p′′. Then TCP•

drt (p ≡ p′ + p′′ = (υ1(p′1) + σ.p′2) + (υ1(p′′1) + σ.p′′2) A1,A2=

(υ1(p′1) + υ1(p′′1)) + (σ.p′2 + σ.p′′2) RTO4,DRTF= υ1(p′1 + p′′1) + σ.(p′2 + p′′2) and note that
p′2 + p′′2 < p.

(f) TCP•
drt (p′ = 1 · υ1(p′1) for some basic term p′1 such that p′1 ≤ p′ and TCP•

drt (
p′′ = υ1(p′′1) + σ.p′′2 for some basic TCPdrt-terms p′′1 and p′′2 such that p′′2 < p′′ or
p′′2 ≡ 0̇. Here we only consider the case that p′′2 < p′′. Then TCP•

drt (p ≡ p′ + p′′ =
1 · υ1(p′1) + υ1(p′′1) + σ.p′′2

DT1,A4,DRA10= 1 · υ1(p′1) + σ.(1 · υ1(p′1)) + υ1(p′′1) + σ.p′′2
TN=

υ1(p′1) + σ.(1 · υ1(p′1)) + υ1(p′′1) + σ.p′′2
RTO3,DRTF= υ1(p′1 + p′′1) + σ.(1 · υ1(p′1) + p′′2) =

υ1(p′1 + p′′1) + σ.(p′ + p′′2). Note that p′ + p′′2 < p.

(g) TCP•
drt (p′ = 1̇ and TCP•

drt (p′′ = 1 · υ1(p′′1) for some basic TCPdrt-term p′′1 such
that p′′1 ≤ p′′. Similar to the third case.

(h) TCP•
drt (p′ = υ1(p′1)+σ.p′2 for some basic TCPdrt-terms p′1 and p′2 such that p′2 < p′ or

p′2 ≡ 0̇ and TCP•
drt (p′′ = 1 · υ1(p′′1) for some basic TCPdrt-term p′′1 such that p′′1 ≤ p′′.

Similar to the sixth case.
(i) TCP•

drt (p′ = 1 · υ1(p′1) for some basic term p′1 such that p′1 ≤ p′ and TCP•
drt (p′′ =

1 · υ1(p′′1) for some basic TCPdrt-term p′′1 such that p′′1 ≤ p′′. Then TCP•
drt (p ≡

p′ + p′′ = 1 · υ1(p′1) + 1 · υ1(p′′1) DOT5= 1 · (υ1(p′1) + υ1(p′1))
RTO4= 1 · υ1(p′1 + p′′1). Note

that p′1 + p′′1 ≤ p.

!

Lemma C.8 (Representation) For basic term p,

1. TCP•
drt (p = 0̇,

2. TCP•
drt (p = 1̇,

3. TCP•
drt (p = υ1(p′) + σ.p′′ for some basic TCP•

drt-terms p′ and p′′ such that p′′ < p or
p′′ ≡ 0̇, or

39

4. TCP•
drt (p = p + 0.

Proof. By Lemma C.7, we can distinguish four cases:

1. TCP•
drt (p = 0̇. Trivial.

2. TCP•
drt (p = 1̇. Trivial.

3. TCP•
drt (p = υ1(p′) + σ.p′′ for some basic TCP•

drt-terms p′ and p′′ such that p′′ < p or
p′′ ≡ 0̇. Trivial.

4. TCP•
drt (p = 1 · υ1(p′) for some basic term p′ such that p′ ≤ p. Then TCP•

drt (p =
1 · υ1(p′) A6•= 1 · (υ1(p′) + 0̇) DOT5= 1 · υ1(p′) + 1 · 0̇ = p + 1 · 0̇ DOT2= p + 0.

!

Theorem C.9 (Elimination of parallel composition operators) For basic terms p1 and p2,

1. there exists a basic term q such that TCP•
drt (p1‖ p2 = q;

2. there exists a basic term q such that TCP•
drt (p1 | p2 = q;

3. there exists a basic term q such that TCP•
drt (p1 ‖ p2 = q.

Proof. These three statements are proven simultaneously using induction on the number of
symbols of basic terms p1 and p2. When we apply an induction hypothesis we indicate to which
statement it refers.

First we give the proof for statement (1), the elimination of ‖ . We use case distinction on the
structure of basic term p1.

1. p1 ≡ 0̇. TCP•
drt (p1‖ p2 ≡ 0̇‖ p2

LM1•= 0̇.

2. p1 ≡ 1̇. TCP•
drt (p1‖ p2 ≡ 1̇‖ p2

LM2•= 0̇.

3. p1 ≡ 0. TCP•
drt (p1‖ p2 ≡ 0‖ p2. Based on Lemma C.6, we can distinguish three cases for

basic term p2.

(a) TCP•
drt (p2 = 0̇. Then TCP•

drt (p1‖ p2 = p1‖ 0̇ LM5•= 0̇.

(b) TCP•
drt (p2 = 1̇. Then TCP•

drt (p1‖ p2 = p1‖ 1̇ A6•,A1= p1‖ (0̇ + 1̇) LM6•= p1‖ 0̇ LM5•= 0̇.
(c) TCP•

drt (p2 = υ1(p′2) + σ.p′′2 for some basic terms p′2 and p′′2 such that p′′2 ≤ p2. Then

TCP•
drt (p1‖ p2 ≡ 0‖ p2

DR10= σ.0̇‖ p2 = σ.0̇‖ (υ1(p′2) + σ.p′′2) LM6DR= σ.(0̇‖ p′′2) LM1•=
σ.0̇.

4. p1 ≡ 1. According to Lemma C.5 we can distinguish three cases for p2:

(a) TCP•
drt (p2 = 0̇. Then TCP•

drt (p1‖ p2 = p1‖ 0̇ LM5•= 0̇.

(b) TCP•
drt (p2 = 1̇. Then TCP•

drt (p1‖ p2 = p1‖ 1̇ A6•,A1= p1‖ (0̇ + 1̇) LM6•= p1‖ 0̇ LM5•= 0̇.

(c) TCP•
drt (p2 = p2 + 0. Then TCP•

drt (p1‖ p2 ≡ 1‖ p2 = 1‖ (p2 + 0) LM2DR•= 0.

5. p1 ≡ 0. According to Lemma C.8 we can distinguish four cases for p2:

(a) TCP•
drt (p2 = 0̇. Then TCP•

drt (p1‖ p2 = p1‖ 0̇ LM5•= 0̇.

(b) TCP•
drt (p2 = 1̇. Then TCP•

drt (p1‖ p2 = p1‖ 1̇ A6•,A2= p1‖ (0̇ + 1̇) LM6•= p1‖ 0̇ LM5•= 0̇.

40

(c) TCP•
drt (p2 = υ1(p′2) + σ.p′′2 for some basic terms p′2 and p′′2 such that p′′2 < p2 or

p′′2 ≡ 0̇. Then, TCP•
drt (p1‖ p2 ≡ 0‖ p2

DD= σ.0‖ p2 = σ.0‖ (υ1(p′2) + σ.p′′2) LM6DR=

σ.(0‖ p′′2). In case p′′2 ≡ 0̇ we have TCP•
drt (σ.(0‖ p′′2) ≡ σ.(0‖ 0̇) LM5•= σ.0̇. In case

p′′2 < p2, by induction hypothesis (1) we have the existence of basic term q′′ such that
TCP•

drt (0‖ p′′2 = q′′. So in this case we have TCP•
drt (σ.(0‖ p′′2) = σ.q′′.

(d) TCP•
drt (p2 = p2 + 0. Then TCP•

drt (p1‖ p2 ≡ 0‖ p2 = 0‖ (p2 + 0) LM7•= 0.

6. p1 ≡ 1. According to Lemma C.8 we can distinguish four cases for p2:

(a) TCP•
drt (p2 = 0̇. Then TCP•

drt (p1‖ p2 = p1‖ 0̇ LM5•= 0̇.

(b) TCP•
drt (p2 = 1̇. Then TCP•

drt (p1‖ p2 = p1‖ 1̇ A6•,A2= p1‖ (0̇ + 1̇) LM6•= p1‖ 0̇ LM5•= 0̇.
(c) TCP•

drt (p2 = υ1(p′2) + σ.p′′2 for some basic terms p′2 and p′′2 such that p′′2 < p2 or
p′′2 ≡ 0̇. According to the fourth case we have the existence of basic term q′ such that
TCP•

drt (1‖ p2 = q′. Then, TCP•
drt (p1‖ p2 ≡ 1‖ p2

DT1,LM4= 1‖ p2 + σ.1‖ p2 =

q′ + σ.1‖ (υ1(p′2) + σ.p′′2) LM6DR= q′ + σ.(1‖ p′′2). In case p′′2 ≡ 0̇ we have TCP•
drt (

q′ + σ.(1‖ p′′2) ≡ q′ + σ.(1‖ 0̇) LM5•= q′ + σ.0̇. In case p′′2 < p2, by induction hypothesis
(1) we have the existence of basic term q′′ such that TCP•

drt (1‖ p′′2 = q′′. so then

TCP•
drt (q′ + σ.(1‖ p′′2)

ih(1)
= q′ + σ.q′′.

(d) TCP•
drt (p2 = p2 + 0. Then TCP•

drt (p1‖ p2 ≡ 1‖ p2 = 1‖ (p2 + 0) LM8•= 0.

7. p1 ≡ a.p′1 for some a ∈ A and basic term p′1. According to Lemma C.4 we can distinguish
four cases for p2:

(a) TCP•
drt (p2 = 0̇. Then TCP•

drt (p1‖ p2 = p1‖ 0̇ LM5•= 0̇.

(b) TCP•
drt (p2 = 1̇. Then TCP•

drt (p1‖ p2 = p1‖ 1̇ A6•,A1= p1‖ (0̇ + 1̇) LM6•= p1‖ 0̇ LM5•= 0̇.
(c) TCP•

drt (p2 = 1 · p2. By induction hypothesis (3) there exists a basic term q′ such

that TCP•
drt (p′1 ‖ p2 = q′. Then TCP•

drt (p1‖ p2 ≡ a.p′1‖ p2 = a.p′1‖ (1 · p2)
LM3DR•=

a.(p′1 ‖ (1 · p2)) = a.(p′1 ‖ p2)
ih(3)
= a.q′.

(d) TCP•
drt (p2 = 1 · p2 + 1̇. By induction hypothesis (3) there exists a basic term q′ such

that TCP•
drt (p′1 ‖ p2 = q′. Then TCP•

drt (p1‖ p2 ≡ a.p′1‖ p2 = a.p′1‖ (1 · p2 + 1̇) LM6•=

a.p′1‖ (1 · p2)
LM3DR•= a.(p′1 ‖ (1 · p2)) = a.(p′1 ‖ p2)

ih(3)
= a.q′.

8. p1 ≡ a.p′1 for some a ∈ A and basic term p′1. According to Lemma C.7 we can distinguish
four cases for p2:

(a) TCP•
drt (p2 = 0̇. Then TCP•

drt (p1‖ p2 = p1‖ 0̇ LM5•= 0̇.

(b) TCP•
drt (p2 = 1̇. Then TCP•

drt (p1‖ p2 = p1‖ 1̇ A6•,A1= p1‖ (0̇ + 1̇) LM6•= p1‖ 0̇ LM5•= 0̇.
(c) TCP•

drt (p2 = υ1(p′2)+σ.p′′2 for some basic terms p′2 and p′′2 such that p′′2 < p2 or p′′2 ≡ 0̇.
By the previous case we have the existence of a basic term q′ such that TCP•

drt (
a.p′1‖ p2 = q′. Then TCP•

drt (p1‖ p2 ≡ a.p′1‖ p2
DAP,LM4= a.p′1‖ p2 + σ.a.p′1‖ p2 =

q′ + σ.a.p′1‖ p2 = q′ + σ.p1‖ (υ1(p′2) + σ.p′′2) LM6DR= q′ + σ.(p1‖ p′′2). In case p′′2 ≡ 0̇

we have TCP•
drt (q′ + σ.(p1‖ p′′2) ≡ q′ + σ.(p1‖ 0̇) LM5•= q′ + 0̇. In case p′′2 < p2, by

induction hypothesis (3) there exists a basic term q′′ such that TCP•
drt (p1‖ p′′2 = q′′.

Then TCP•
drt (q′ + σ.(p1‖ p′′2) ih= q′ + σ.q′′.

41

(d) TCP•
drt (p2 = 1 · υ1(p′2) for some basic term p′2 such that p′2 ≤ p2. By induction

hypothesis (3) there exists a basic term q′ such that TCP•
drt (p′1 ‖ p′2 = q′. Then

TCP•
drt (p1‖ p2 ≡ a.p′1‖ p2

a= .p′1‖ (1 · υ1(p′2))
LM3•= a.(p′1 ‖ (1 · υ1(p′2))) = a.(p′1 ‖

p2)
ih(3)
= a.q′.

9. TCP•
drt (p1 ≡ σ.p′1 for some basic term p′1. Based on Lemma C.6, we can distinguish three

cases for basic term p2.

(a) TCP•
drt (p2 = 0̇. Then TCP•

drt (p1‖ p2 = p1‖ 0̇ LM5•= 0̇.

(b) TCP•
drt (p2 = 1̇. Then TCP•

drt (p1‖ p2 = p1‖ 1̇ A6•,A1= p1‖ (0̇ + 1̇) LM6•= p1‖ 0̇ LM5•= 0̇.
(c) TCP•

drt (p2 = υ1(p′2) + σ.p′′2 for some basic terms p′2 and p′′2 such that p′′2 ≤ p2. By in-
duction hypothesis (1) we have the existence of basic term q′′ such that TCP•

drt (
p′1‖ p′′2 = q′′. Then TCP•

drt (p1‖ p2 ≡ σ.p′1‖ p2 = σ.p′1‖ (υ1(p′2) + σ.p′′2) LM6DR=

σ.(p′1‖ p′′2)
ih(1)
= σ.q′′.

10. p1 ≡ p′1 + p′′1 . By induction there exist basic terms q′ and q′′ such that TCP•
drt (p′1‖ p2 = q′

and TCP•
drt (p′′1‖ p2 = q′′. Then TCP•

drt (p1‖ p2 ≡ (p′1 + p′′1)‖ p2
LM4= p′1‖ p2 + p′′1‖ p2

ih(1)
=

q′ + q′′.

Then we prove statement (2), the elimination of | . We use case distinction on the structure
of basic term p1.

1. p1 ≡ 0̇. TCP•
drt (p1 | p2 ≡ 0̇ | p2

CM1•= 0̇.

2. p1 ≡ 0. By Lemma C.6 we can distinguish three cases for p2.

(a) TCP•
drt (p2 = 0̇. Similar to case (1) using SC1.

(b) TCP•
drt (p2 = 1̇. Then TCP•

drt (p1 | p2 ≡ 0 | 1̇ CM8DR•= 0̇.

(c) TCP•
drt (p2 = υ1(p′2)+σ.p′′2 for some basic TCP•

drt-terms p′2 and p′′2 such that p′′2 ≤ p2.

Then TCP•
drt (p1 |p2 ≡ 0 |p2

DR10= σ.0̇ |p2 = σ.0̇ | (υ1(p′2)+σ.p′′2) CM7DR•= σ.(0̇ |p′′2) CM1•=
σ.0̇.

3. p1 ≡ 0. By Lemma C.8 we can distinguish four cases for p2.

(a) TCP•
drt (p2 = 0̇. Similar to case (1) using SC1.

(b) TCP•
drt (p2 = 1̇. Then TCP•

drt (p1 | p2 ≡ 0 | p2 = 0 | 1̇ CM1b= 0̇.
(c) TCP•

drt (p2 = υ1(p′2)+σ.p′′2 for some basic TCP•
drt-terms p′2 and p′′2 such that p′′2 < p2 or

p′′2 ≡ 0̇. Then TCP•
drt (p1|p2 ≡ 0|p2

DD= σ.0|p2 = σ.0|(υ1(p′2)+σ.p′′2) = σ.(0|p′′2). In case

p′′2 ≡ 0̇, we have σ.(0 |p′′2) ≡ σ.(0 | 0̇) SC1= σ.(0̇ |p) CM1•= σ.0̇. In case p′′2 < p2, by induction
hypothesis (2) we have the existence of basic term q′′ such that TCP•

drt (0 | p′′2 = q′′.
Then TCP•

drt (σ.(0 | p′′2) ih= σ.q′′.

(d) TCP•
drt (p2 = p2 + 0. Then TCP•

drt (p1 | p2 ≡ 0 | p2 = 0 | (p2 + 0) CM1a= 0.

4. p1 ≡ p′1 + p′′1 for some basic terms p′1 and p′′1 . By the induction hypothesis for statement
(2), we have the existence of basic terms q′ and q′′ such that TCP•

drt (p′1 | p2 = r′ and

TCP•
drt (p′′1 | p2 = r′′. Then TCP•

drt (p1 | p2 ≡ (p′1 + p′′1) | p2
CM2= p′1 | p2 + p′′1 | p2

ih(2)
= r′ + r′′.

5. p1 ≡ 1̇. We use case distinction on the structure of basic term p2.

(a) p2 ≡ 0̇. Similar to case (1) using axiom SC1.

42

(b) p2 ≡ 1̇. TCP•
drt (p1 | p2 ≡ 1̇ | 1̇ CM3•= 1̇.

(c) p2 ≡ 0. Similar to case (2b) using axiom SC1.

(d) p2 ≡ 1. TCP•
drt (p1 | p2 ≡ 1̇ | 1 SC1= 1 | 1̇ DR11= (1 + 1̇) | 1̇ CM2= 1 | 1̇ + 1̇ | 1̇ CM3•= 1 | 1̇ + 1̇ SC1=

1̇ | 1 + 1̇ SC3•= 1̇.
(e) p2 ≡ 0. Similar to case (3b) using axiom SC1.

(f) p2 ≡ 1. TCP•
drt (p1 | p2 ≡ 1̇ | 1 SC1= 1 | 1̇ CM7•= 1̇.

(g) p2 ≡ a.p′2 for some a ∈ A and basic term p′2. TCP•
drt (p1|p2 ≡ 1̇|a.p′2

SC1= a.p′2|1̇
CM9DR•=

0̇.
(h) p2 ≡ a.p′2 for some a ∈ A and basic term p′2. TCP•

drt (p1 |p2 ≡ 1̇|a.p′2
SC1= a.p′2 |1̇

CM4•= 0̇.

(i) p2 ≡ σ.p′2 for some basic term p′2. TCP•
drt (p1 | p2 ≡ 1̇ | σ.p′2

SC1= σ.p′2 | 1̇ CM10DR•= 0̇.
(j) p2 ≡ p′2 + p′′2 for some basic terms p′2 and p′′2 . Similar to case (4) using axiom SC1.

6. p1 ≡ 1. We use case distinction on the structure of basic term p2. We omit the cases that
are similar to a previous case using axiom SC1.

(a) p2 ≡ 1. TCP•
drt (p1 | p2 ≡ 1 | 1 CM3DR= 1.

(b) p2 ≡ 1. TCP•
drt (p1 | p2 ≡ 1 | 1 SC1= 1 | 1 DT1,CM2= 1 | 1 + σ.1 | 1 CM3DR= 1 + σ.1 | 1 A1,SC1=

1 | σ.1 + 1 SC3DR= 1.

(c) p2 ≡ a.p′2 for some a ∈ A and basic term p′2. TCP•
drt (p1 |p2 ≡ 1|a.p′2

SC1= a.p′2 |1 CM4DR=
0̇.

(d) p2 ≡ a.p′2 for some a ∈ A and basic term p′2. TCP•
drt (p1 | p2 ≡ 1 | a.p′2

SC1= a.p′2 | 1 DAP=

(a.p′2 + σ.a.p′2) | 1 CM2= a.p′2 | 1 + σ.a.p′2 | 1 CM4DR= 0 + σ.a.p′2 | 1 RTO2= 0 + σ.a.p′2 | υ1(1) =

0 + σ.a.p′2 | (υ1(1) + σ.0̇) CM7DR•= 0 + 0.

(e) p2 ≡ σ.p′2 for some basic term p′2. TCP•
drt (p1 | p2 ≡ 1 | σ.p′2

SC1= σ.p′2 | 1 RTO2=

σ.p′2 | υ1(1) = σ.p′2 | (υ1(1) + σ.0̇) CM7DR•= 0.

7. p1 ≡ 1. We use case distinction on the structure of basic term p2. We omit the cases that
are similar to a previous case using axiom SC1.

(a) p2 ≡ 1. TCP•
drt (p1 | p2 ≡ 1 | 1 CM3= 1.

(b) p2 ≡ a.p′2 for some a ∈ A and basic term p′2. TCP•
drt (p1 | p2 ≡ 1 | p2

DT1,CM2=

1 | p2 + σ.1 | p2
SC1= p2 | 1 + σ.1 | p2 = a.p′2 | 1 + σ.1 | a.p′2

CM4DR,RTO3= 0 + σ.1 | υ1(a.p′2) =

0 + σ.1 | (υ1(a.p′2) + σ.0̇) CM7DR•= 0 + 0.

(c) p2 ≡ a.p′2 for some a ∈ A and basic term p′2. TCP•
drt (p1 |p2 ≡ 1 |a.p′2

SC1= a.p′2 |1 CM4= 0.
(d) p2 ≡ σ.p′2 for some basic term p′2. By induction hypothesis (2) we have the existence

of basic term q′ such that TCP•
drt (1 | p′2 = q′. Then TCP•

drt (p1 | p2 ≡ 1 | σ.p′2
SC1=

σ.p′2 |1
DT1= σ.p′2 |(1+σ.1) RTO2= σ.p′2 |(υ1(1)+σ.1) CM7DR•= σ.(p′2 |1) SC1= σ.(1|p′2)

ih(2)
= σ.q′.

8. p1 ≡ a.p′1 for some a ∈ A and basic term p′1. We use case distinction on the structure of
basic term p2. We omit the cases that are similar to a previous case using axiom SC1.

(a) p2 ≡ b.p′2 for some b ∈ A and basic term p′2. By induction hypothesis (3) we have the
existence of basic term q′ such that TCP•

drt (p′1 ‖ p′2 = q′. Then, TCP•
drt (p1 | p2 ≡

a.p′1 | b.p′2. In case γ(a, b) = c we have TCP•
drt (a.p′1 | b.p′2

CM5DR= c.(p′1 ‖ p′2)
ih= c.q′. In

case γ(a, b) is not defined, we have TCP•
drt (a.p′1 | b.p′2

CM6DR= 0.

43

(b) p2 ≡ b.p′2 for some b ∈ A and basic term p′2. According to the previous item we have the
existence of a basic term q′ such that TCP•

drt (a.p′1 |b.p′2 = q′. Then, TCP•
drt (p1 |p2 ≡

a.p′1 | b.p′2
SC1= b.p′2 | a.p′1

DAP= (b.p′2 + σ.b.p′2) | a.p′1
CM2,SC1= a.p′1 | b.p′2 + σ.b.p′2 | a.p′1 =

q′ + σ.b.p′2 | a.p′1
RTO3= q′ + σ.b.p′2 | υ1(a.p′1) = q′ + σ.b.p′2 | (υ1(a.p′1) + σ.1̇) CM7DR•= q′ + 0.

(c) p2 ≡ σ.p′2 for some basic term p′2. Then TCP•
drt (p1 | p2

SC1= p2 | p1 ≡ σ.p′2 | a.p′1
RTO3=

σ.p′2 | υ1(a.p′1) = σ.p′2 | (υ1(a.p′1) + σ.0̇) CM7DR•= 0.

9. p1 ≡ a.p′1 for some a ∈ A and basic term p′1. We use case distinction on the structure of
basic term p2. We omit the cases that are similar to a previous case using axiom SC1.

(a) p2 ≡ b.p′2 for some b ∈ A and basic term p′2. By induction hypothesis (3) we have
the existence of basic term q′ such that TCP•

drt (p′1 ‖ p′2 = q′. In case γ(a, b) is not
defined, TCP•

drt (p1 | p2 ≡ a.p′1 | b.p′2
CM6= 0. In case γ(a, b) = c, TCP•

drt (p1 | p2 ≡
a.p′1 | b.p′2

CM5= c.(p′1 ‖ p′2)
ih(3)
= c.q′.

(b) p2 ≡ σ.p′2 for some basic term p′2. By induction hypothesis (2) there exists a basic term

q′ such that TCP•
drt (p1 | p′2 = q′. Then TCP•

drt (p1 | p2
SC1= p2 | p1 = σ.p′2 | a.p′1

DAP=

σ.p′2 | (a.p′1 +σ.a.p′1)
RTO3= σ.p′2 | (υ1(a.p′1)+σ.a.p′1)

CM7DR•= σ.(p′2 |a.p′1) = σ.(p′2 |p1)
SC1=

σ.(p1 | p′2)
ih(2)
= σ.q′.

10. p1 ≡ σ.p′1 for some basic term p′1. We use case distinction on the structure of basic term p2.
We omit the cases that are similar to a previous case using axiom SC1.

(a) p2 ≡ σ.p′2 for some basic term p′2. By induction hypothesis (2) there exists a basic

term q′ such that TCP•
drt (p′1 | p′2 = q′. then, TCP•

drt (p1 | p2 = σ.p′1 | σ.p′2
CM7DR•′=

σ.(p′1 | p′2)
ih(2)
= σ.q′.

Finally, statement (3) follows straightforwardly from the previous statements: By induc-
tion on statements (1) and (2) we have the existence of basic terms q1, q2, and q3 such that
TCP•

drt (p1‖ p2 = q1, TCP•
drt (p2‖ p1 = q2, and TCP•

drt (p1 | p2 = q3. Then TCP•
drt (p1 ‖

p2
M= p1‖ p2 + p2‖ p1 + p1 | p2

ih(1),ih(2)
= q1 + q2 + q3. !

Theorem C.10 (Elimination of encapsulation) For basic terms p and H ⊆ A, there exists a
basic term q such that TCP•

drt (∂H(p) = q.

Proof. Trivial, by induction on the structure of basic term p. !

Theorem C.11 (Elimination of time-out operator) For basic terms p, there exists a basic
term q such that TCP•

drt (υ1(p) = q.

Proof. Trivial, by induction on the structure of basic term p. !

C.3 Completeness of TCP•
drt

Note that the term deduction system for TCP•
drt is such that all action and time transitions that

can be derived starting from a basic term always result in a basic term. We do not prove this
statement formally, and will use it silently in the remainder.

44

Lemma C.12 (Towards completeness) For arbitrary basic TCP•
drt-terms p and p′ and arbi-

trary action a ∈ A

1. if p ↓, then TCP•
drt (p = 1̇ + p;

2. if p
a→ p′, then TCP•

drt (p = a.p′ + p;

3. if p
1)→ p′, then p′ ≡ p or p′ < p;

4. if p
1)→ p′, then TCP•

drt (p = σ.p′ + p;

5. if p
1)→ p, then TCP•

drt (p = 1 · p;

6. if p
0)→ , then TCP•

drt (p = 1 · p + p.

Proof. Easy; by induction on the structure of basic TCP•
drt-term p. !

Theorem C.13 The process algebra TCP•
drt is a complete axiomatization of strong bisimilarity

on closed TCP•
drt-terms.

Proof. By the elimination theorem for TCP•
drt it suffices to prove this theorem for basic terms

only. We use induction on the structure of basic terms p and q and use case analysis on the
structure of basic term p to prove that p + q↔q implies TCP•

drt (p + q = q.

1. p ≡ 0̇. Then TCP•
drt (p + q ≡ 0̇ + q

A1,A6•= q.

2. p ≡ 1̇. Then p + q ↓, and since p + q↔q also q ↓. By Lemma C.12.1, we have TCP•
drt (q =

1̇ + q. Then, TCP•
drt (p + q ≡ 1̇ + q = q.

3. p ≡ 0. Then p
1)→ 0̇, and therefore also p + q

1)→ and since p + q↔q also q
1)→. By Lemma

C.12.4 we have TCP•
drt (q = σ.q′ + q. Then TCP•

drt (p + q ≡ 0 + q
DR2•= σ.0̇ + q =

σ.0̇ + σ.q′ + q
DRTF= σ.(0̇ + q′) + q

A1,A6•= σ.q′ + q = q.

4. p ≡ 1. Then p + q ↓, and since p + q↔q also q ↓. By Lemma C.12.1, we have TCP•
drt (q =

1̇ + q. Also, p
0)→ , and therefore also p + q

0)→ and since p + q↔q also q
0)→ . By Lemma

C.12.6, we have TCP•
drt (q = 1 · q + q. Then, TCP•

drt (p + q ≡ 1 + q
A9•= 1 · 1̇ + q =

1 · 1̇ + 1 · q + q
DR6•= 1 · (1̇ + q) + q = 1 · q + q = q.

5. p ≡ 0. Then p
1)→ p, and therefore also p + q

1)→ and since p + q↔q also q
1)→. By Lemma

C.12.3, we can distinguish two cases:

(a) q
1)→ q. By Lemma C.12.5 we have TCP•

drt (q = 1·q. Then TCP•
drt (p+q = 0+q

DOT2=
1 · 0̇ + q = 1 · 0̇ + 1 · q DOT5= 1 · (0̇ + q) A1,A6DR= 1 · q = q.

(b) q
1)→ q′ for some q′ < q. Then p + q

1)→ p + q′ and therefore, since p + q↔q, we need
to have p + q′↔q′. By induction we then have TCP•

drt (p + q′ = q′. By Lemma
C.12.4 we have TCP•

drt (q = σ.q′ + q. Then TCP•
drt (p + q = 0 + q

DD= σ.0 + q =

σ.0 + σ.q′ + q
DRTF= σ.(0 + q′) + q = σ.(p + q′) + q = σ.q′ + q = q.

6. p ≡ 1. From p ↓ we have q ↓. Therefore, by Lemma C.12.1, we have TCP•
drt (q = 1̇ + q.

Then p
1)→ p, and therefore also p + q

1)→ and since p + q↔q also q
1)→. By Lemma C.12.3, we

can distinguish two cases:

45

(a) q
1)→ q. By Lemma C.12.5 we have TCP•

drt (q = 1 · q. Then TCP•
drt (p+ q = 1+ q

A9•=
1 · 1̇ + q = 1 · 1̇ + 1 · q DOT5= 1 · (1̇ + q) = 1 · q = q.

(b) q
1)→ q′ for some q′ < q. Then p + q

1)→ p + q′ and therefore, since p + q↔q, we need to
have p+ q′↔q′. By induction we then have TCP•

drt (p+ q′ = q′. By Lemma C.12.4 we
have TCP•

drt (q = σ.q′+q. Then TCP•
drt (p+q = 1+q

DT1= 1+σ.1+q
A1,A2= 1+q+σ. =

q + σ.1 A1= σ.1 + q = σ.1 + σ.q′ + q
DRTF= σ.(1 + q′) + q = σ.(p + q′) + q = σ.q′ + q = q.

7. p ≡ a.p′ for some a ∈ A and basic term p′. Then p + q
a→ p′, and since p + q↔q we have

q
a→ q′ for some q′ such that p′↔q′. Then due to soundness of axiom A3 and congruence

of bisimilarity w.r.t. alternative composition we also have p′ + q′↔q′ and q′ + p′↔p′. By
induction we then have TCP•

drt (p′ + q = q′ and TCP•
drt (q′ + p′ = p′. Therefore, we also

have TCP•
drt (p′ = q′ + p′ = p′ + q′ = q′. By Lemma C.12.2, we have TCP•

drt (q = a.q′ + q.

Then, TCP•
drt (p + q ≡ a.p′ + q

ih= a.q′ + q = q.

8. p ≡ a.p′ for some a ∈ A and basic term p′. Then p + q
a→ p′, and since p + q↔q we have

q
a→ q′ for some q′ such that p′↔q′. Then due to soundness of axiom A3 and congruence

of bisimilarity w.r.t. alternative composition we also have p′ + q′↔q′ and q′ + p′↔p′. By
induction we then have TCP•

drt (p′ + q = q′ and TCP•
drt (q′ + p′ = p′. Therefore, we also

have TCP•
drt (p′ = q′ + p′ = p′ + q′ = q′. By Lemma C.12.2, we have TCP•

drt (q = a.q′ + q.

Also p
1)→ p, and therefore also p + q

1)→ and since p + q↔q also q
1)→. By Lemma C.12.3, we

can distinguish two cases:

(a) q
1)→ q. By Lemma C.12.5 we have TCP•

drt (q = 1 · q. Then TCP•
drt (p + q =

a.p′ + q
DR9= 1 · a.p′ + q = 1 · a.p′ + 1 · q DOT5= 1 · (a.p′ + q) = 1 · (a.q′ + q) = 1 · q = q.

(b) q
1)→ q′′ for some q′′ < q. Then p + q

1)→ p + q′′ and therefore, since p + q↔q, we need to
have p + q′′↔q′′. By induction we then have TCP•

drt (p + q′′ = q′. By Lemma C.12.4
we have TCP•

drt (q = σ.q′ + q. Then TCP•
drt (p + q = a.p′ + q

DAP= a.p′ + σ.a.p′ + q =

a.p′ + σ.p + q = a.p′ + σ.p + σ.q′′ + q
DRTF= a.p′ + σ.(p + q′′) + q = a.p′ + σ.q′′ + q =

a.p′ + q = a.q′ + q = q.

9. p ≡ σ.p′ for some basic term p′. From p
1)→ p′, and the fact that p+q↔q it follows that there

is some q′ such that q
1)→ q′ and p′+q′↔q′. By induction we then have TCP•

drt (p′+q′ = q′.
Also, by Lemma C.12.4 we have TCP•

drt (q = σ.q′ + q. Then TCP•
drt (p + q = σ.p′ + q =

σ.p′ + σ.q′ + q
DRTF= σ.(p′ + q′) + q = σ.q′ + q = q.

10. p ≡ p′ + p′′ for some basic terms p′ and p′′. From p+ q↔q it follows that both p′ + q↔q and
p′′ + q↔q. Then, by induction it follows that TCP•

drt (p′ + q = q and TCP•
drt (p′′ + q = q.

Then, TCP•
drt (p + q ≡ (p′ + p′′) + q

A2= p′ + (p′′ + q) ih= p′ + q
ih= q.

!

C.4 Proof of conservativity of TCP•
drt w.r.t. TCP•

We cannot apply the meta-theorems for equational conservativity from the literature that rely on
the operational conservativity of the term deduction systems (see [Ver94, FV98, AFV01, Mid01])
since there is a new transition relation that can be derived for some old terms; e.g. a.x

1)→ a.x.
Using Theorem 6 of [MR05b] (or [Mou05, Theorem 6.51]), to conclude that TCP•

drt is an
equationally conservative ground-extension of TCP• in case we already know that both TCP• and

46

TCP•
drt are sound and complete, it suffices to prove that the term deduction system for TCP•

drt is
an orthogonal extension of the term deduction system for TCP•.

For the term deduction system for TCP•
drt to be an orthogonal extension of the term deduction

system of TCP•, we need to prove that (1)the derivability of all old transition relations and
predicates for old terms in the two term deduction systems coincides, and (2) that bisimilarity on
old terms in the two term deduction systems coincides.

For the first proof obligation we have the following reasoning. All derivations in the term
deduction system for TCP• are also derivations in the term deduction system for TCP•

drt since
the deduction rules of the first are contained in the latter. For the other implication, note that all
new deduction rules are either about the new transition relation 1)→ or about new syntax. Hence
these can also not contribute to new facts about old terms and transition relations or predicates.

For the second proof obligation we have the following reasoning. First, note that with respect
to the old transition relations and predicates, i.e. the action transitions and termination relation,
the two term deduction systems coincide as reasoned before. Thus it remains to prove that also
the new time transitions cannot discriminate between old terms.

We can prove (but won’t do so explicitly) the following facts: (1) for any closed TCP•-term
p we have p

0)→ iff p
1)→, (2) for any time transition p

1)→ p′ of an old term p, it holds that
TCP•

drt (p = p′. For this latter statement we need to prove the statement that p ↓ implies
TCPdrt (p = p + 1̇ for closed TCP-terms.

Since we have shown that TCP•
drt is an equationally conservative ground-extension of TCP•

and the axioms of TCP• are contained in the axioms of TCP•
drt, it follows that TCP•

drt is an
equationally conservative extension of TCP• as well.

C.5 Proof of conservativity of TCP•
drt w.r.t. TCPdrt

For the proof of this theorem we cannot even use the notion of orthogonal extension of [MR05b]
since the term deduction system for TCP•

drt allows for the derivation of action transitions between
old terms that the term deduction system for TCPdrt does not allow to derive: a.1 ‖ (1 · 1) a→ 1 ‖
(1 · 1 + 1).

However, a weaker statement about the relation between the term deduction systems at hand
is possible: for all closed TCPdrt-terms p and q

1. if p
a→ q can be derived from the term deduction system for TCPdrt, then p

a→ q′ can be
derived from the term deduction system for TCP•

drt for some closed TCPdrt-term q′ such
that q↔q′;

2. if p
a→ q can be derived from the term deduction system for TCP•

drt, then p
a→ q′ can be

derived from the term deduction system for TCPdrt for some closed TCPdrt-term q′ such
that q↔q′;

For time transitions between closed TCPdrt-terms and termination predicates on closed TCPdrt-
terms the term deduction systems coincide.

Hence we can say that the derivability of all old transition relations and predicates for old
terms in the two term deduction systems coincides upto bisimilarity in the right-hand side of
action transitions.

Next we need to consider whether bisimilarity on old terms in the two term deduction systems
coincides. As mentioned before, for the old transition relations and predicates on old terms this is
not a problem. So, what about the new transition relation 0)→ and about time transitions between
an old and a new term (e.g., 0 1)→ 0̇)?

We can prove (but won’t do so explicitly) the following facts: (1) every closed TCPdrt-term
has a consistency transition, (2) for any consistency transition p

0)→ p′ of an old term p, it holds
that p↔p′. Therefore, the new transition relation 0)→ does not change bisimilarity on closed
TCPdrt-terms.

47

We can (but won’t) prove that (1) for any closed TCPdrt-term p we have p
1)→ from the term

deduction system for TCP•
drt, and (2) for any closed TCPdrt-term p and any closed TCP•

drt-term
q such that we can derive p

1)→ q from the term deduction system for TCP•
drt that q↔0̇. Hence,

also these transitions do not change bisimilarity.
From the above observations and the completeness of the theories TCPdrt and TCP•

drt it follows
that TCP•

drt is an equationally conservative ground-extension of TCPdrt.

48

