

Systems engineering : a formal approach. Part II. Frameworks

Citation for published version (APA):
Hee, van, K. M. (1993). Systems engineering : a formal approach. Part II. Frameworks. (Computing science
notes; Vol. 9310), (Systems engineering : a formal approach; Vol. 2). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/82468125-4da2-4890-bb05-665be46f89ba

Eindhoven University of Technology

Department of Mathematics and Computing Science

Systems Engineering: a Fonnal Approach

Part II: Frameworks

by

K.M. van Hee

Computing Science Note 93/10
Eindhoven, April 1993

93/10

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Information Systems Engineering:

a Formal Approach

by

K.M. Van Hee

March 30, 1993

This report is part of a preliminary version of a book that will
be published.

Contents

I System concepts

1 Introduction

2 Application domains

3 Transition systems

4 Objects

5 Actors

6 Specification language
6.1 Values, types and functions
6.2 Value and function construction.
6.3 Predicates......
6.4 Schemas and scripts

II Frameworks

7 Introduction

8 Transition systems framework

9 Object framework

10 Actor framework

III Modeling Methods

11 Introduction

12 Actor modeling
12.1 Making an actor model after reality
12.2 Characteristic modeling problems .
12.3 Structured networks
12.4 Net transformations ..

1

9

11

15

23

33

47

63
63
68
71
72

81

83

85

93

103

129

131

135
135
146
162
167

13 Object Modeling
13.1 Making an object model after reality
13.2 Characteristic modeling problems ..
13.3 Transformations to other object frameworks

14 Object oriented Modeling

IV Analysis Methods

15 Introduction

16 Invariants
16.1 Place invariants.
16.2 Computational aspects .
16.3 Transition invariants

17 Occurrence graph

18 Time analysis

19 Simulation

V Specification Language

20 Introduction

21 Semantic concepts
21.1 Values and types
21.2 Functions

22 Constructive part of the language

23 Declarative part of the language
23.1 Predicates and function declarations
23.2 Schemas and scripts

24 Methods for function construction
24.1 Correctness of recursive constructions
24.2 Derivation of recursive constructions

25 Specification methods
25.1 Value types for complex classes
25.2 Specification of processors

A Mathematical notions

B Syntax summary

C Toolkit

2

173
175
188
199

217

231

233

235
238
252
260

263

271

283

295

297

301
301
309

313

329
329
333

339
339
344

351
351
357

365

371

375

Chapter 7

Introd uction

In this part we define the formalisms we use to model and analyze sys
tems. The concepts are already introduced in part I. As said before, a
formalism consists of a mathematical framework and a language. The
mathematical framework is represented by a tuple of mathematical en
tities, called attributes, and a set of requirements to be fulfilled by the
attributes.

As an illustration we define the framework of an automaton. An
automaton is a tuple

(S,[, 0, T, B)

where

• S, I and ° are sets, called state space, input set and output set
respectively,

• T E S X I S X ° is called the transition function,

• B C S is called the set of initial states.

If we refer to an automaton, we give it a name, for instance A, and we
may refer to an attribute of A by using the name of the automaton as
a subscript for the attribute name. For instance SA denotes the state
space of the automaton A. If we are considering only one automaton
then we drop the dependency of the name. We refer for instance to the
"state space S of the automaton" ifthere is only one (maybe arbitrary)
automaton in the context.

Note that a framework is in fact a set of functions with a common
domain. Each function of a framework is called a model. The elements of
the common domain are (traditionally) listed in a tuple. In the example
above the framework is called "automaton" and it is formally defined
by:

{A I A is a function 1\ dom(A) = {S,[,O,T,B} 1\

A(S), A(I), A(O) are sets 1\

A(T) E A(S) X A(I) A(S) X A(O) 1\

A(B) c A(S)}

83

formalism

framework

model

transition systems framework

object framework

actor framework

However, we will use the shorter notation as given above: note that
SA = A(S). In other situations we often write fr instead of f(x), but
it will always be clear from the context what the function and what the
argument is.

We use a similar technique for specifying models in the specification
language (cf. part V). There we use so-called schemas to specify models.
The difference between a schema and a framework is, that in a schema
each attribute has a type, Le. a set to which the (function) value of
the attribute belongs. So if we would have used a schema to specify the
automaton, we should have specified to which sets A(S), A(I) and A(O)
belong. So schemas are "typed" and frameworks not. (Note that the
term "tuple" is used in the specification language in a slightly different
sense).

The first framework we present is called the transition systems frame
work. It formalizes the concept of discrete dynamic systems and their
properties. The second framework is called the object framework. It
formalizes the concepts of simplexes and complexes. These are static
concepts used for modeling state spaces (or data bases). The third
framework is called the actor framework, because it formalizes the con
cepts of actors and networks of actors. It generalizes the framework of
Petri nets.

The three frameworks fit together, since the object framework is used
to define the objects in the actor framework and the actor framework is
used to model discrete dynamic systems.

84

Chapter 8

Transition systems
framework

We start with some notations and preliminary definitions. Let N be the
set

{x C IN I Ifi Ex, j E IN : j < i ~ j EX}

So N = {0, {O}, {O, I}, {O, 1, 2}, ... }. Also IN EN.
A sequence p is a function such that dom(p) E N. The sequence

is called infinite if dom(p) = IN, otherwise it is finite with length Ipl.
The empty sequence with domain 0 is denoted c, other sequences with
optional () brackets. So

(a,b,c) = {(O,a),(1,b),(2,c)}.

Note that in fact f = 0. For i E dom(p) we write Pi instead of p(i). If p

sequence

is a sequence of length n > 0 and a is an arbitrary element, we define (;)

(p;a)= (po, ... ,Pn-l,a).

For the sequence oflength 0 we define (c; a) = (a).
Let A be a set. An A-sequence is a sequence with range A. An is the

set of all A-sequences of length n, A* the set of all finite A-sequences
and A"" the set of all infinite A-sequences. Further we define A+ as
A* U A"".

The prefixes of a sequence p are the sequences pi = (Po, ... , Pi-I)
with i E dom(p). By convention pO = f and for finite p we have pipi = p.
Note that (pi;pi) = pi+l.

A set DCA + is called prefix-closed if and only if

Ifp E D, i E dom(p) : pi ED

It is called suffix-closed if and only if

Ifp E A"" : (lfi E dom(p) : pi E D) ~ P E D

It is called closed if it is both prefix- and suffix-closed. A prefix-closed
set D contains all prefixes of its elements; if a suffix-closed set D contains

85

prefix p'

prefix-closed

suffix·closed

transition system

event set E

transition law C

trace
autonomous trace

maximal aut. trace

autonomous behavior

maximal aut. behavior

all prefixes of an infinite p, it contains p itself. Note that the empty set
is closed, A* is prefix-closed and Aoo is suffix-closed.

We shall define now what we call transition systems. Transition
systems consist of possible events, from some set E. Elements of E+
are called traces. The important part of a transition system is a function
C, the transition law, telling what events come next when a certain finite
trace has occurred.

Definition 8.1 A transition system is a pair (E, C), where

• E is a set, called the event set,

• £. E E* -+ IP(E), called transition law.

A trace of (E,£.) is an element of E+. An autonomous trace of (E,£.)
is a sequence p E E+, such that

Vi E dom(p) : Pi E £.(pi)

An autonomous trace p is called maximal if and only if it is infinite, or
finite and such that £.(p) = 0. The set of all autonomous traces of (E, £.)
is called its autonomous behavior. The set of all maximal autonomous
traces is called its maximal autonomous behavior.
o

For a trace p the set £.(p) is the set of possible extensions of p. Note that
f is an autonomous trace for any transition system. It is easy to prove
that the autonomous behavior of a transition system is closed. (The
proof is an exercise.) The next theorem shows that any non-empty
closed set of sequences can be described as the autonomous behavior
of some transition system. This result is important because it proves
that the autonomous behavior of a transition system can be obtained by
restricting the set of all possible traces by so-called dynamic constraints.

Theorem 8.1 Let E be a set and let D C E+ be non-empty and
closed. Then there is a transition system (E, £.) with D as autonomous
behavior.

Proof. Let p E E*. Then we set

£.(p) = {e I (p;e) ED}.

We shall prove that (E,C) has D as autonomous behavior. First let
qED. We shall prove that q is an autonomous trace. Take i E dom(q).
We have to prove that qi E £.(l). By the definition of £.,

qi E £.(qi) ¢=> (qi; qi) E D.

Because (qi; qi) = qi+l we have

86

The last assertion is true by the prefix-closedness of D. So q is indeed
an autonomous trace of (e, C).
Conversely, let q be an autonomous trace of (E, C). We have to show
that qED. Since D is non-empty and prefix-closed we have fED.
Moreover qO = f, so

lED.

If qi E D for some i E dom(q), then qi E C(qi), because q is an au
tonomous trace. Hence, by the definition of C, we obtain (qi; qi) E D,
i.e. qi+I E D. This proves

'<Ii E dom(q) : qi E D ~ i+1 E D.

By induction, either q (if finite) or all its prefixes (if infinite) are in D.
By the suffix-closedness of D we conclude that qED.
D

As a corollary, every prefix-closed subset of E" is the intersection of E"
with the autonomous behavior of some transition system.

The maximal autonomous behavior of a transition system can be
obtained by removing all sequences from the autonomous behavior that
are prefixes of some autonomous trace. Conversely, the autonomous
behavior is derived from the maximal autonomous behavior by adding
all prefixes. A maximal autonomous trace has "maximal length" , which
explains the term "maximal". We shall now define some properties of
transition systems.

Definition 8.2 An autonomous trace p of a transition system (E, C)
is said to deadlock if and only if C(p) = 0. A transition system (E,C)
is called deterministic if and only if its maximal autonomous behavior
consists of a single sequence.
D

Often we deal with transition systems where only the last event of a
finite trace determines the set of next events. Such transition systems
are called memorylesB and their transition law can be characterized by
a binary relation over E, called the transition law relation. We denote
by i(p) the last event of a non-empty trace pEE", i.e.

i(p) = Pili-I'

Definition 8.3 Let (E, C) be a transition system. If

'<Ip, q E E" : (p;e f /I q;e f /li(p) = i(q» ~ C(p) = C(q)

then (E, C) is called memoryleBB. For such a memoryless transition
system the binary relation T leE x E satisfying

is called the transition law relation.
D

87

deadlock

deterministic transition system

l(p)

memoryless transition system

transition law relation Tl

time domain T

state space

monotonous transition system

eager autonomous trace

eager autonomous behavior

;trongly memory less transition
system

Theorem 8.2 Let (E, C) be a memoryless transition system with tran
sition relation Ti. Then

'1p E E* : C(p) = {e EEl (i(p), e) E Ti}.

Proof. If e E C(p), then clearly (i(p), e) E Ti. Suppose that, con
versely, (i(p), e) E T t. Then there is a q E E* such that i(p) = i(q) and
e E C(q). Since Cis memoryless, C(q) = C(p), so e E C(p).
o

Now we shall further elaborate our event set. Events have a time
and state component; we assume that allowed event times are a subset
of our standard time domain T, the non-negative real numbers. From
now on, event sets have the shape St x T, where St is a set called a state
space. Given an event e in some E, <1(e) will denote its state component
and r(e) its time component, so e = (<1(e), r(e». We fix the start time
of transition systems by setting for any transition law C

'Ie E C(€) : r(e) = O.

We introduce two behavioral properties of transition systems.

Definition 8.4 A transition system is monotonous if and only if

'1p E E*: 'Ie E C(p) : r(e) ;::: r(i(p».

An autonomous trace p of a transition system is called eager autonomous
trace eager if and only if

'Ii E dom(p) : 'Ie E C(p') : r(p.) ::; r(e).

The set of all eager autonomous traces is called the eager autonomous
behavior.
o

From now on we will only consider monotonous transition systems. The
eager autonomous behavior of (E, C) is the autonomous behavior of
(E, C'), where £' is derived from C by deleting all elements from C(p) for
which the time component is not minimal. Strange enough, a maximal
autonomous trace of (E, C') does not have to be an eager maximal
autonomous trace of (E, C), because it is possible to construct an C
such that C(p) is an infinite set without minimal element for some p E
dom(C). Then C'(p) is empty, so p has no eager continuation. However,
if C(p) is finite and non-empty, then p has an eager continuation.

Definition 8.5 A transition system is called strongly memoryless if and
only if

'1p, q E E* : <1(t(p» = <1(l(q»:} C(p) = C(q).

o

88

Definition 8.6 Let (E, £) be a transition system. A livelock of (E, £)
is an infinite autonomous trace p such that

3t E T : 'Vi E dom(p) : r(p.) ~ t.

o

Our idea of a livelock is a trace that makes infinitely many transitions
in finite time.

We now defiue the path of a trace: the function giving the state for
each point in time. A time point t is mapped to the state resulting from
the last event that occurred before or at t.

Definition 8.7 Let p be a non·empty trace of a transition system
(St X T, C). The path of p is the function Wp E T St satisfying
Wp(t) = q(P')' where i is defined by

i E dom(p) 1\ r(p.) ~ t 1\ 'Vj E dom(p): j > i => r(pj) > t.

o

Thus if a trace contains more events with the same time r(p.) the last
one determines Wp. Note that a trace has no path if it livelocks, since
it has no last event for every t E Tj we could define its path on a subset
ofT.

We conclude by defining some similarity relations on the set of tran·
sition systems. They are used later to compare transition systems. For
instance, if the events of two transition systems have different names
but their autonomous behavior is the same after renaming the events,
we would like to call them "similar". In fact they are isomorphic, which
is the strongest form of similarity.

Definition 8.8 Let A and B be transition systems. Further let X C
EA X EB be a given binary relation.

o

• p E EA and q E EB are called X ·similar (notation ~ x) if and
only if

dom(p) = dom(q) 1\ 'Vi E dom(p): (P.,q.) E X.

• A is called similar to B with respect to X if and only if

'VPEEA,qEEB:P~X q=>

'Vx E £A(p) : 3y E £B(q) : (x, y) E X

• A and B are called bisimilar with respect to X if and only if A is
similar to B with respect to X and B is similar to A with respect
to

X-I = iCy, x) I (x, y) EX}.

89

livelock

path Wp

X-similar x

similar

bisimilar

graph of function

The following theorem establishes an obvious relationship between
the autonomous behaviors of two similar transition systems.

Theorem 8.3 Let A and B be two transition systems such that A is
similar to B with respect to X C EA X EB. Further let PA and PB be
the autonomous behaviors of A and B respectively. Then:

'1p EPA: 3q E PB : P ~X q.

Proof. Let P EPA. Clearly £ ~X £ and Po E £A(£)' SO 3qo E £B(£) :
(Po, qo) EX. We apply induction on the length of an autonomous trace.
Assume the assertion holds for autonomous traces oflength n in PA • Let
P = (pnjPn) EPA. By the induction hypothesis we have the existence
of an autonomous trace q E PB with length n such that pn ~ X q. Since
Pn E £(pn) we have, by the similarity, the existence of qn E £(q) such
that (Pn, qn) EX. Hence (pnj Pn) ~ X (qj qn) and (qj qn) E PB.
o

The next theorem establishes two important properties of similarity.

Theorem 8.4 Similarity is reflexive and tmnsitive.

Proof. Clearly a transition system (E, £) is similar to itself with respect
to the relation {(x, x) I x E E}. This is the reflexivity. To prove the
transitivity, let A, Band C be transition systems and let A be similar
to B with respect to X and let B be similar to C with respect to Y.
Further let Z = Y * X be defined by

Z = {(x,z) 13y E EB: (x,y) E X A (y,z) E Y}.

Finally let P E EA and r E Eo such that P ~ z r. Then there is a
q E EiJ with P ~x q and q ~y r. From the two similarities we derive

'Ix E £A(p) : 3z E Cdr) : 3y E £B(q) : (x, y) E X A (y, z) E Y.

Hence
'Ix E £A(p): 3z E £c(r) : (x, z) E Z.

So A is similar to C with respect to Z.
o

Note that, under the assumptions of the theorem, there is for each
autonomous trace P of A an autonomous trace q of B and an autonomous
trace r of C such that P ~ X q and P ~ z r. Moreover there is an
autonomous trace i' of C such that q ~y T. However, we may not
conclude that q ~y r. If we know that there is only one r such that
P ~z r, then this problem is solved. This is the case if the relations
over the event sets are gmphs of functions, i.e. if there is a function f
such that X = {(x,y) I x E EA A Y = f(x}) and a function g with
Y = {(y, z) lyE EB A z = g(y)}.

Symmetry is lacking in the similarity relation and therefore it is not
an equivalence relation. Bisimilarity is symmetrical, so that relation
should be an equivalence relation.

90

Theorem 8.5 Bisimilarity is an equivalence relation.

Proof. The reflexivity is trivial. The symmetry follows from the fact
that (X-1)-1 = X. The transitivity follows from the fact that X-1 *
y-1 = (Y * X)-1.
o

An important case is the situation where X C EA X EB is the graph
of a bijective function f. Then bisimilarity of A and B means that
A and B are isomorph and f induces a bijective function between the
autonomous behaviors of the two transition systems.

According to the definitions so far, similarity of transition systems
establishes relations between autonomous traces of the same length only.
However, if one transition system needs several transitions to simulate
one transition of another transition system, then these transition sys
tems are not (bi)similar according to our definitions. In order to allow
transition systems to be called "similar" in such cases we introduce the
notion of an extended transition law. Let (E, £) be a transition system.
The extended transition law C is defined by:

C(p) = £(p) U {l(p)}.

So we added "dummy" events, i.e. repetitions of events. We say transi
tion system A is weakly (bi}similar to B if the (bi)similarity holds with
respect to the extended transition laws. In particular (E, £) and (E, C)
are bisimilar with respect to the identity relation ({(x, x) I x E E}).

A nice application of the similarity is that there is for each non
memoryless transition system a memoryless transition system that is
similar to it.

Theorem 8.6 Let an arbitrary transition system (E, £) be given. Then
there is a memoryless transition system (E', £'), that is similar to (E, £)
with respect to C, where

• E' = E*,

• C satisfies: (e',e) E C ~ i(e') = e.

Proof. The proof is an exercise.
o

91

isomorph

92

Chapter 9

Object framework

In this chapter we introduce a framework to model complexes. Com
plexes will be used to define tokens and therefore to define the state
space of a system. We start with the definition of a class model, which
contains all information to define the structure of complex classes. A
class model is an abstract syntax for class diagrams. (In the database
literature the term database model is also used instead of class model.)
Then we define the concept of an instance model, which contains the in
formation to define simplexes and complexes. Afterwards we introduce
constraints. Constraints are used to define properties of complexes. Of
ten the systems engineer only wants to consider a subset of a complex
class instead of the entire class. The transition law ofthe system should
guarantee that in all reachable states the complexes in the tokens satisfy
the constraints. So the constraints are the invariants for the transition
law of the system. It is a proof obligation for the systems engineer to
show that the constraints are indeed invariant. There are several kinds
of constraints that occur frequently in models such as relationship, in
heritance and tree constraints. All constraints have a graphical notation
in the class diagram. There are many other constraints possible (and of
ten necessary) in models, they can be expressed with predicate calculus
(cf. part III). A complete object model consists of

• a class model,

• an instance model,

• a set of constraints.

Definition 9.1 A class model is a 7-tuple

(CN, SN, RN, DM, RG, CB, CR)

where

• CN, SN and RN are mutually disjoint sets of names of complex
classes, simplex classes and relationship classes respectively. There
is one element in CN called the universal complex class.

93

class model

eN, SN, RN

universal complex class

DM, RG

CB, CR

instance model

o

• The functions
DM ERN_SN

and

RG E RN - SN

give a domain simplex class (DM) and a range simplex class (RG)
to every relationship.

• The functions
CB E CN _ lP(SN)

and

CR E CN -lP(RN)

determine the body simplex classes (CB) and the relationship
classes (CR) contained in a complex class, such that 'In E CN :
'IT E CR(n) :

DM(r) E CB(n) 1\ RG(r) E CB(n).

Further CB(universal) = SN and CR(universal) = RN.

Note that the bodies of complex classes may overlap. All complex classes
are subclasses of the universal complex class. A class model is (partly)
defined in a class diagram as shown in part I. A class diagram may
display constraints as well. Note that complex classes may share simplex
classes and relationships.

For the production/consumption example with class model X, the
class diagram of figure 5.12 and the table of figure 5.13 show the follow·
ing (we have written CN instead of CNx, etc.):

CN = {Consumer, Machine, Order, PendingOrder, Operation}
SN = {consumer, order, amount, machine, operation, duration, speed}
RN = {p, q, T, s, t, u}

DM = {(p, order), (q, order), (r, operation), (s, operation), ... }
RG = {(p, consumer), (q, amount), (r, order), (s, machine), ... }
CB = {(Consumer, {consumer}), (Machine, {machine, speed}), ... }
CR = {(Comsumer, 0), (Machine, {u}), (Order, {q}), ... }.

We shall now define the instance model of an object model.

Definition 9.2 Let a class model be given. An instance model is a
2·tuple (sim, com) where

lim • sim is a set-valued function with dome sim) = SN and for n E SN
sim(n) is the set of representations of all possible simplexes in the
"world";

94

• com is a set-valued function that assigns to all n E CN the set of com

o

representations of possible complexes, where

com(n) = {c I c is a function /\ dom(c) = CB(n)U CR(n) /\

'<1m E CB(n) : c(m) C sim(m) /\ c(m) is finite /\

'<Ir E CR(r) : c(r) C c(DM(r)) x c(RG(r))}

Note that if all pairs of complex classes differ at least in one simplex
class or one relationship class, then we can determine the class of a
given complex, because the domain of a complex contains the essential
information.

The function sim specifies which values are used to denote "atomic"
entities of a certain kind in the world. The values have to come from a
value universe U that will be defined in part V. Forinstance sim(chair)
is the set of representations of all possible chairs in the world. Although
two different simplex classes may have the same set of representations,
we can always distinguish them because we assume the class of a simplex
is always known. Given these representations, we can define complex
classes by means of the function com that determines which "molecular"
entities in the world belong to a certain complex class. A complex is
defined as a function that assigns a finite set of simplexes to each name
of a simplex class and a finite set of simplex pairs to each name of a rela
tionship class. As we have seen in part I, we can consider a complex as a
graph with simplexes as nodes and relationships as edges, labeled with
the names of the relationships; this is just another way of representing
the function. The relationships may only connect simplexes that belong
to the complex. The elements of simplex classes and complex classes
are called instances of these classes.

In the production/consumption example of figure 5.13 a possible
instance (Le. a complex) c E com(Operation) is

c = {(operation, { operationl}),

(machine, {machine3}),

(order, {order123}),

(amount, {10}),

(speed, {35}),

(q, {(order123, 10)}),

(r, {(operationl, order123)}),

(8, {(operationl , machine3)}),

(u,{(machine3,35)})

}.

In this example the second element of each pair is always a singleton.
(This is because all relations are functional and total and because there
is a root simplex class due to a tree constraint.)

95

instance

representation function

object universe OU

Rr,c

In specifications it is sometimes cumbersome to use the (function)
representation of a complex class as defined above. Depending on the
role of the complexes in processors the systems engineer can use a dif
ferent representation. If he does so, he needs to define for each complex
class n a bijective representation function

RFn E U -+ com(n).

The next step in the definition of an object model is the definition
of constraints. First we introduce, for notational convenience, some
auxiliary functions and a set called the object universe, which contains
all possible complexes in the universal complex class.

Definition 9.3 Let a class model and an instance model be given .

• au = UnECN com(n) is the object universe.

• Rr•c is, for each complex c E au and relationship r, a func
tion with dom(Rr.c) = c(DM(r)), that assigns to a simplex x E
c(DM(r)) the set of simplexes that have a relationship of class r
with it:

Rr.c(x) = {y lyE c(RG(r)) A (x,y) E c(rn.

Dr., • Dr.c is a similar function with dom(Dr.c) = c(RG(r)), but it con-

constraint

cerns the domain of a relationship. For a simplex y E c(RG(r)):

Dr.c(Y) = {x I x E c(DM(r)) 1\ (x, y) E c(rn.

o

In general, a constraint is a Boolean function (i.e. a function with
range {true, false}) over a complex class. A Boolean function is ex
pressed by a predicate with a free variable that denotes a complex.

Constraints will be expressed in the specification language (cf. part
V). Here we will give an example of a constraint. Regard the class
model displayed in figure 4.16. There we required that the person to
which the student refers by means of the relationships a and b and the
person he refers to by c and e are the same. This can be expressed by
following predicate with u as an arbitrary universal complex:

'Ix E u(student) : Rb.u(R •• u(x)) = R •. u(Rc.u(x)).

Here we silently extended the domain of R in order to apply the function
to sets of complexes in the obvious way. Furthermore, we did not express
that Rb.u(R •. u(x)) and Re.u(Rc.u(x)) should be singletons. There are
more efficient notations possible, but in essence every constraint can be
expressed like this one. A more efficient notation is used in part I, where
the dependency on the complex u is deleted, where u(n) is replaced by
n (for a simplex class n) and where the functions Rn•u and Dn•u are

96

replaced by nand n-1 respectively. With these conventions the formula
above will read in the specification language:

Itx: student 0 b(a(x» = e(c(x».

There are several constraints that occur frequently in practice and
therefore they have a representation in the class diagram, as shown
in part I. We call them the standard constmint; they consist of rela
tionship, inheritance and tree constraints. The relationship constmint
consist of cardinality, key and exclusion constraints.

Definition 9.4 Let a class model and an instance model be given. The
function

FC ERN ->lP({total, functional, injective, surjective})

denotes the cardinality constraints. The cardinality constraints imply
a set of requirements for a relationship r and each complex c with r E
dom(c)n RN:

o if total E FC(r) then:

Itx E c(DM(r»: Rr,c(x) ~ 0

o if functional E FC(r) then:

Itx E c(DM(r»: #Rr,b) ~ 1

o if injective E FC(r) then:

Ity E c(RG(r»: #Dr,c(Y) ~ 1

o if surjective E FC(r) then:

Ity E c(RG(r»: Dr,c(Y) ~ 0

o

Definition 9.S Let a class model and an instance model be given. The
functions

DK E SN ->lP(lP(RN»

RK E SN ->lP(lP(RN»

DX E SN ->lP(lP(RN»

RX E SN -> lP(lP(RN»

respectively denote the domain key constraints, the mnge key con
straints, the domain exclusion constraints and the mnge exclusion con
straints. They should satisfy

97

standard constraint

relationship constraint

cardinality constraint Fe

totality

functionality

injectivity

8urjectivity

domain key constraint DK

range key constraint RK
domain exclusion constraint DX
range exclusion constraint RX

relationship path

"In E SN : "Ir E U DK(n) : DM(r) = n

"In E SN : "Ir E U RK(n) : RG(r) = n

"In E SN: "Ir E UDX(n): DM(r) = n

"In E SN :"Ir E URX(n): RG(r) = n.

A domain key constraint is an element of DK(s) and analogously for the
other constraints. For an arbitrary complex c these constraints imply
respectively: "In E SN: "IC E DK(n): "Ix,y E c(DM(r)):

("Ir E C : R,.Ax) = Rr.c(Y) -10) '* x = y.

"In E SN: "IC E RK(n): "Ix,y E c(RG(r)):

("Ir E C : Dr,c(x) = Dr.c(Y) -10) '* x = y.

"In E SN : "IC E DX(n) :

"IT1' T2 E C: "Ix E c(DM(Tl)): Rr,Ax) = 0 V Rr"c(x) = 0.

"In E SN : "IC E RX(n) :

"IT!! T2 E C: "Ix E c(RG(rl)) : Dr"c(x) = 0 V Dr,Ax) = 0.

o

Note that totality and surjectivity are each other's counterparts and also
functionality and injectivity, in the sense that the roles of Rand Dare
exchanged. Further note that totality and injectivity together imply a
domain key constraint and similarly surjectivity and functionality imply
a range key constraint.

For the production/consumption example the class diagram of figure
5.12 and the table of figure 5.13 show the constraints as displayed in
figure 9.1.

The key constraints can be used to find representations for simplexes:
we may choose as representation a combination of the representations
of the simplexes involved in a key constraint. If for instance the simplex
class operation is the domain simplex class of two relationships sand T
with range simplex classes machine and order respectively and if s and
r form a domain key constraint, then we can use the pairing of the rep
resentations of machine and order as the representation for operation.
Note that we cannot combine domain and range key constraints into one
"key constraint": if there is a relationship that connects a simplex class
with itself, it is ambiguous if the domain or the range of this relationship
should be used.

The next kind of constraints we consider are the inheritance con
straints. First we introduce the notion of a relationship path.

Definition 9.6 Let a class model and an instance model be given. A
sequence of relationship class names (r!! . .. , rk) is called a relationship
path if and only if all elements are different and

'Vi E {I, ... , k - I} : RG(r,) = DM(r'+l)'

o

98

FC {(p, {functional, total}),
(q, {functional, total}),
(r, {junctional, total}),
(s, {junctional, total}),
(t, {functional, total}),
(u, {functional, total})

}
DK {(comsumer, O),

(order, O),
(amount,0),
(machine, O),
(operation, {{ r, s}}),
(duration, O),
(speed,0)

}
RK {(consumer, O),
DX (order, O),
RX (amount,0),

(machine, O),
(operation, O),
(duration, 0),
(speed,0)

}
IC ° TC {(Consumer, consumer),

(Machine, machine),
(Order, order),
(PendingOrder, order),
(Operation, operation)

}
PC °

Figure 9.1: Constraints for the production/consumption system.

99

inheritance relationship

inheritance constraint IC

cont(e)

tree constraints TC

Definition 9.7 Let a class model and an instance model be given. A
relationship is called an inheritance relationship if it is total, functional
and injective. An inheritance constraint Ie is a set of inheritance rela
tionships Ie c RN such that:

o

• the graph with nodes in SN and edges {(DM(r), RG(r)) IrE Ie}
is a directed acyclic graph,

• for all complexes c and all relationship paths (rl, ... , rk) and
(Pl, ... ,PI) in dom(c) n Ie, with

the following predicate should hold: '<Ix E c(DM(rl)) :

An inheritance constraint Ie is a set of total, functional and injective
relationships with the property that they form a directed acyclic graph.
If we follow two different paths formed of inheritance relationships, going
from one simplex to another, then it should hold for each complex, that
if we start in the first simplex and we follow the paths, then both paths
will end in the second simplex.

An inheritance structure induces a partial order on the simplex
classes. Sometimes it is useful to combine the inheritance constraint
with the exclusion constraint. For instance, in the example of figure
4.16 we might want to exclude the states in which a school person is a
student and a teacher at the same time, therefore we could add the set
{c, d} to RX(schoolperson). Note that an inheritance constraint may
contain several different class hierarchies. Inheritance can be used to
obtain efficient representations in a database. We will discuss this topic
in chapter 13.

The last kind of constraint we consider are the tree constraint. A
tree constraint specifies that the complexes in a class have a tree-like
structure, i.e. there is one simplex, called the root simplex, from which
all the other simplexes can be reached by an undirected path of rela
tionships. Furthermore the complex may contain only one simplex of
the root simplex class. For a complex c we define

cont(c) = u c(k),
kEdom(c)nSN

the set of all simplexes enclosed in the complex c.

Definition 9.8 A tree constraint is an element of the function

TeE eN SN

where '<In E dom(Te):

100

o

• TC(n) E CB(n) is called the root simplex class,

• "Ie E com(n) : #c(TC(n» = 1; this element is called the root
simplex,

• Vc E com(n) : "Ix E cont(c):
there is a sequence of simplexes (zt, ... , Zk) in cont(c) such that:

- Zl E c(TC(n» " Zk = x

- Vi E {I, ... , k - I} : 3r E dom(c) n RN :

(Zi' Zi+l) E c(r) V (Zi+l' Zi) E c(r)

Note that Zl is the root simplex.
Having defined the class model, instance model and constraints, we

are now ready to define an object model.

root simplex class

root simplex

Definition 9.9 An object model is a4-tuple (CM, 1M, SC, PC), where object model

• CM is a class model, CM

• 1M is an instance model, 1M

• SC is a tuple of standard constraints, i.e. sc

o

SC = (FC, DK, RK, DX, RX, IC, TC)

where (FC, DK, RK, DX, RX) denote the relationship con
straints, IC is an inheritance constraint and TC denotes the tree
constraints,

• PC is a Boolean function, called the free constraint, such that:
dom(PC) = CN and

"In E CN : PC(n) E com(n) -+ {true,false}

Instead of the set of all complexes of a class n, com(n), we are
often interested in the subset of complexes that satisfy the standard
and free constraints. In the following chapter an object model is used
to define the state space. Note that there may be constraints on states,
that cannot be expressed as constraints on objects. For instance, the
constraint that "no two tokens have a common simplex of a certain
class", is such a global constraint.

101

free constraint PC

global cODstraint

Chapter 10

Actor framework

In the preceeding chapter we introduced the object framework as a layer
on top of the (transition) systems framework to facilitate the model
ing of a state space. Here we introduce the actor framework to make
the modeling of transition relations more easy. The actor framework
may be regarded as a next layer, since it uses concepts from the ob
ject framework. However, the coupling between the two frameworks is
rather loose, which implies that the systems engineer is free to start
with object modeling or with actor modeling as he likes.

First we introduce the concept of an actor. We distinguish flat nets
and hierarchical actors. Inside a flat net all actors are processors, so
there are no actors that represent a (sub)network. A hierarchical ac
tor is a network that contains also non-elementary actors and such a
network can be transformed into a flat net. We first define a flat net
model, which is in fact a formal definition of the actor networks (without
hierarchy) as displayed in chapter 5. Secondly we define a hierarchical
actor structure. Again this is a formal definition of the actor networks
from chapter 5, now also including the non-elementary actors. Then
we define the actor model, which encloses an object model and a flat
net model. Subsequently we define how an actor model determines a
transition relation. Finally we give some properties of actor models.

Note that a hierarchical net model is an abstract syntax for the
diagrams of actor networks we draw and that a flat net model is a
special case of a hierarchical net model. The semantics is defined by the
actor model, in particular the transition system defined by the actor
model.

Definition 10.1 A flat net model is a 6-tuple (L,P,C,I,O,M) where

• L (locations) is a finite set of places,

• P is a finite set of processors,

• C is a finite set of connector names,

• I E P --+ JP(C) assigns to a processor a set of input connectors,

· ° E P --+ JP(C) assigns to a processor a set of output connectors,

103

flat net model

L

p

c

I

o

M • M E P --+ (C - L) (match) assigns the connectors of each pro-

open actor

closed actor

hierarchical net model

cessor to places,

such that:

o

• L, P and C are mutually disjoint,

• Vp E P : dom(Mp) C I(p) U O(p),

• Vp E P: I(p) n O(p) = 0, i.e. no connector name is input and
output for the same processor,

• Vp E P: I(p) f. 0, i.e. each processor has at least one input
connector,

• UpEP(I(p) U O(p)) = C, i.e. there are no "dangling" connectors.

It is easy to see how a flat net model can be represented graphically
(cf. figure 5.5). Note that the same connector name may occur at differ
ent processors and that processors do not need to have output places.
Further note that there may be processors with unconnected connec
tors. Such actors are called open actors while the others are called
closed. Only closed (flat) actors will have a state space and a transition
relation associated to them. Open actors are considered to be com
ponents out of which one can make closed actors. A single processor,
without places, is an example of an open actor. A processor and a place
may be connected by more than one input or output connector. Note
that channels and stores are just special places and therefore we do not
consider them here.

We will now define the hierarchical net model; it is just a general
ization of the flat net model.

Definition 10.2 A hierarchical net model is a IO-tuple

(L,P,A,C,I,O, top, HA, HL,M)

such that:

L • L (locations) is a finite set of places,

p • P is a finite set of processors,

A • A is a finite set of actors, PeA,

c • C is a finite set of connector names,

I • I E A --+ IP(C) assigns to each actor a set of input connectors,

o • 0 E A --+ IP(C) assigns to each actor a set of output connectors,

top • top E A is called the top level actor,

HA • HA E A \ {top} --+ A assigns every processor or actor to an (en-
closing) actor, except for top,

104

• HL E L -+ A assigns every place to an actor, HL

• M E A\{top} -+ (C L U C) (match) assigns connectors of M

actors to places or connectors,

such that

o

• L, A and C are mutually disjoint sets,

• 'Va E A : I(a) n O(a) = 0, i.e. no connector name is input and
output for the same actor,

• 'Vp E P : I(p) i 0, i.e. all processors must have at least one input
connector,

• 'Va E A\{top} : dom(M.) = I(a) U O(a), i.e. all connectors of an
actor (except for top) are connected,

• C = U.EA(I(a) U O(a)), i.e. there are no dangling connectors,

• 'Va E A\{top}: 3k E IN: HAk(a) = top, i.e. all actors are directly
or indirectly mapped to the top level actor,

• 'Vi E L : 3k E IN : HAk(HL(i)) = top, i.e. all places are directly or
indirectly mapped to the top level actor,

• 'Va E A\P:

'Ve E I(a): 3b E A: 3d E I(b): Mb(d) = e 1\

'Ie E O(a) : 3b E A : 3d E O(b) : Mb(d) = e,

so the connectors of a "high level" actor are internally connected
to an actor: input to input and output to output,

• 'Va E A\{top} : 'Ve ,E I(a) U O(a):

M.(e) E L:} HL(M.(e)) = HA(a) 1\

Ma(e) E C 1\ e E I(a):} M.(e) E I(HA(a)) 1\

Ma(c) E C 1\ c E O(a):} Ma(c) E O(HA(a)),

which means that if a connector is connected to a place then this
place belongs to the same higher-level actor as the actor itself and
if a connector of an actor is connected to another connector, then
this last one is a connector of the higher-level actor and of the
same kind.

Note that the second last requirement of the above definition does not
imply that a connector of a non-elementary actor a is internally con
nected to an actor enclosed in a: for this we also need the last require
ment. The top level actor (called top) is the only actor that may have
unconnected connectors. An actor that has unconnected connectors is

105

open actor

closed actor
stores

called open, otherwise it is closed. Further note that we did not in
troduce stores yet. A store is just a special place in the sense that it
is always connected to one input and one output connector for each
processor to which it is connected. We consider it to be syntactical
"sugar" .

In figure 10.1 we display a hierarchical net model graphically. In
figure 10.2 the same net model is presented in table format. It is easy
to verify that all requirements are satisfied.

~------------------------I

I I
~~x~ _____ .~ x 0 ~b~ ______________________ -r~~

B

w w

r----
,D , ,

• --------------------,
x , ,

'4 ~.!!..-_..(• }-__ ..!!boj , , , , L _________________________ ~ I

~------------------------~
Figure 10.1: A hierarchical net model.

A I(a) O(a) HA(a) L HL(e) A C M.(c)
top W,x V,z - Q top B a x
B a x top R top x Q
C V b,z top S D V Q
D e,w d top c b V
E X,V a D z R
F b z D e R

D W W
d z
x e

E V W
a S

F b S
z d

Figure 10.2: A hierarchical net model, table format.

Each hierarchical net model determines precisely one flat net model.
In fact we define the transition system associated with a closed hierar
chical actor to be the one that is associated with (closed) flat net model.
We formulate the transformation from a closed hierarchical net model
to a flat net model as a theorem.

106

Theorem 10.1 Let (L, P,A,C,I,O, top, HA, HL, M) be a closed hier
archical net model. Let the function g E A \ { top} -> (C L) be
defined by Va E A: "Ie E I(a) U O(a) :

Ma(e) E L:} ga(e) = Ma(e) "

Ma(e) E C:} ga(e) = gHA(a)(Ma(e»,

where dom(ga) = I(a) U O(a). Then g is defined correctly and

(L,P,C,j,O,M)

forms a fiat net model, where C = UpEP(I(p) U O(p» and j = It P,
0= ° t P, M = g t P.

Proof. There are two properties to be proven: first that g is defined
correctly by the recursive definition and secondly that the defined tuple
is a correct fiat net model. The proof is an exercise.
D

Next we will define the concept of an actor model. It encompasses a
fiat net model and an object model. The definition is given first and an
elucidation afterwards.

Definition 10.3 An actor model is an 8-tuple

(FN, OM, CT, CA, T, ID, F, R)

where

actor model

• FN is a closed flat net model (cf. definition 10.1), FN

• OM is an object model (cf. definition 9.9), OM

• CA E L -> CN is called the class assignment function, it deter- CA
mines for each place a complex class,

• CT E P -> (C CN) assigns to each connector of a processor a CT
complex class such that

Vp E P: dom(CTp) = I(p) U O(p)

" "Ie E dom(Mp) : CTp(e) = CA(Mp(e»,

which means that a connector and the place to which it is con
nected have the same complex class,

• T is a subset of the non-negative real numbers that contains 0, it
is called the time domain,

• ID is a countable set of identities,

• F E ID ID is called the parent function and it satisfies:

Vi E dom(F) : 3n E IN : Fn(i) E ID\dom(F),

107

time domain T

ID

parent function F

o

• REP -+ IP(C +> ID x OU x T), where Rp is called the processor
relation of processor p and the elements of Rp are called firing
rules. The processor relation should satisfy '1p E P : Rp ~ 0 and
'1p E P : '1r E Rp :

1. dom(r) C I(p) U O(p) 1\ dom(r) n I(p) ~ 0

2. Va E dom(r): 1r2(r(a)) E com(CTp(a))

3. Va E I(p)ndom(r): Vb E O(p)ndom(r) : 1r3(r(a)) $ 1r3(r(b))

4. 3x E rng(r r I(p)): '1y E rng(r r O(p)): F(1rl(Y)) = 1rl(X)

5. '1x,y E dom(r)nO(p): x ~ y:} 1rl(r(x)) ~ 1rl(r(y))

The sets T and ID are used to give a complex a time stamp and an
identity, respectively. The function CA assigns a name of a complex
class to each place. Objects in a place should always belong to the
complex class assigned to the place.

F The function F is used to "create" new identities out of old ones.
This proceeds as follows; given an identity. i a new identity j should
satisfy F(j) = i. If F-1 denotes the inverse of F then F-l(i) is the set
of new identities, created out of i. We will only use a finite subset of
this set. The requirement on F implies that no identity is a descendant
of itself. The set ID\dom(F) is the set of start identities, they do not
have ancestors. As an example of an identity set consider the set IN",
the set of all sequences of natural numbers. The "children" created by
an identity i E IN", are all sequences (i; j) where j E IN and ";" denotes
concatenation. The function F applied to a non-empty sequence gives
the sequence with the last element removed. It is also clear that there is
an n E IN for every identity such that Fn applied to this identity gives

108

processor I

firing rule!

the empty sequence. Here dom(F) = lV·\ {f}. (Later we will derive
some properties of F.)

The definition of Rp is qnite complicated and requires some expla
nation. Informally, a firing rule in Rp contains connectors of p and
"things" (tokens) produced or consumed for these connectors in a firing
of p. Note that a firing rule contains "things" that are almost tokens,
the only difference with tokens is, that the place of a token is replaced
by a connector, and that the order of components is a bit different. This
makes it possible to use the same processor relation in an actor several
times, in combination with different places. A processor p executes or
fires, according to one firing rule in Rp.

The first requirement of Rp states, that only tokens are consumed
from, or produced for connectors of p and that there is at least one input
token (which is important for the activation of the processor and for the
identification of new tokens).

The second requirement states that consumed or produced tokens
should have the right class.

The third requirement says that all produced tokens should have a
time stamp larger or equal to the time stamps of all consumed ones
(which is important for the monotonicity of time, as will be seen later.
Note that we usually do not specify the time stamps of the new tokens,
but only a delay that has to be added to the time of the transition.

The fourth and fifth requirement concern the identification of new
tokens. Remember that we have approached the identification of tokens
in a constructive way, by introducing a specific identification mechanism.
All produced tokens get their identity from one consumed token: they
get an identity i such that F(i) equals the identity of the consumed
token that is selected for identification. So the new tokens get different
identities, that are descendants of the identity of the selected token.

Now we are ready to define the state space of an actor model.

Definition 10.4 Let an actor model be given. The state space St is
defined by

St c ID au x T x L,

where

• au is the object universe (cf. definition 9.3),

• "Is E St : Vi E dom(s) : 1I'1(8(i» E com(CA(1I'3(S(i»)))

• "Is E St : 8 is finite,

• "Is E St : Vi,j E dom(s) : i t= j =? ~3n E lV : i = Fn(j).

state space St

A state is an element of St; the elements of a state are called tokens. state
o token

So a state is a set of 4-tuples with a unique first component, denoting
the identity, the complex, the availability time (time stamp) and the
place of a token, respectively. The second requirement states that the

109

firing assignment J

FA
transition relation Tr

applicable firing assignment

tokens in a place should carry a complex that belongs to the class of
the place. The last requirement says that in a state no identity is the
ancestor of another one.

The next step is the introduction of the transition relation. The
transition relation relates a state to a possible successor state. In the
definition of a transition relation we use the concept of a firing assign
ment. A firing assignment assigns to a non-empty set of processors a
firing rule, i.e. an element of Rp, for each processor in the set. So several
processors may fire simultaneously, but no processor may fire simulta
neously with itself. (In other Petri net formalisms this is sometimes
allowed too.)

Definition 10.5 A firing assignment I is a function that satisfies:

• IE P (C ID x OU x T),

• dom(J) f. 0,

• '1p E dom(J) : I(p) E Rp.

o

So I(p) is a firing rule of processor p. Each transition is caused by the
firing of one firing assignment, that determines one or more firing rules.

Note that a token is of the form (i,o,t,l) where i E ID, oE OU, t E
T, l E L, while a firing rule is of the form (c, i, 0, t), with c E C. This
is because in a processor relation the place is not known, but only the
connector, to which the token corresponds. Further note that a state
is a function of identities and a firing rule a function of connectors.
Therefore the structure of a firing rule differs from the structure of a
state.

Definition 10.6 Let an actor model with state space St be given. fur
ther let FA be the set of all firing assignments. The transition relation
Tr, with Tr cSt x St, satisfies '1(s,s') E Tr: 31 E FA :

1. In(J) C s

2. '1p,p' E dom(J) :pf.P'* in(p,/(p»nin(p',/(p'» = 0

3. time(s) = tim(J)

4. s' = (s\In(J» U Out(J)

where '1p E P : '1r E Rp :

in(p,r) = {(i,(x,t,l»13cEI(p)ndom(r):r(c)=(i,x,t)IIMp(c)=l}

In(J) = U{in(p, I(p» I p E dom(J)}
out(p, r)

Out(J)

tim(J)

time(s)

=
=
=
=

{(i, (x, t, l» I 3c E O(p) n dome r) : r(c) = (i, x, t) II Mp(c) = l}

U{ out(p, I(p» I p E dom(J)}

max{1l'3(x) I x E In(J)}

min{tim(J) I I E FA II In(J) C s}.

A firing assignment I is called applicable for state s if it satisfies the

110

requirements 1,2 and 3.
D

Each transition is the firing of a non-empty set of processors according
to firing assignment f. For each processor p a firing rule in the processor
relation is chosen (J(p)). The set of all tokens that are consumed by
the firing is [n(J). This set of tokens should be available in the state
s (requirement 1). Further no two processors may consume the same
token (requirement 2). Requirement 3 states that the set of consumed
tokens is the earliest possible set: tim(J) determines the maximal time
stamp of the tokens in [n(J), requirement 3 says that we only may use
firing assignment f if the maximal time stamp is minimal, so there is no
transition possible at an earlier time. This property makes the transition
law eager. Note that the function time assigns to each state the time
of the first possible transition. We call this the transition time of the
state. The definition of timet s) is subtle: it is the minimal firing time
of a set of firing rules that consume only tokens from the given state,
but we did not require that two different processors are not consuming
the same tokens (as requirement 2 for the used firing rule). The reason
is, that, even if two processors would consume a same token, we can
delete one of them (from the domain of the firing assignment) without
increasing the minimum time. Requirement 4 specifies how the new
state is computed: first delete all consumed tokens, then add the newly
produced tokens.

Although we have defined a state space St and a transition relation
Tr for an actor model, we did not define a transition law (cf. definition
8.1). The transition law defines a transition system for an actor model.
Here a set of initial states has to be given, because otherwise the tran
sition law is undefined. Note that the definition of a transition relation
is independent of iuitial states.

Definition 10.7 Let an actor model with state space St, transition
relation Tr and set of initial states So C St be given. The transition
law £ satisfies

£ E (St X T)* -+ IP(St x T)

such that
£(£) = {(s,O) Is E So}

and '</p E (St x T)*\{£}:

£(p) = {(s,t) I (o-(l(p)),s) E Tr " t = time(o-(l(p)))}.

We say the pair (St, Tr) induces the transition system (St x T,£).
D

Here l(p) denotes the last event of a non-empty trace p and o-(e) and
r(e) denote the state and time coniPcomponentiPonent of an event e (as
defined in chapter 8). Note that the event set (see definition 8.1) is
St x T. Instead of giving a set of initial states for an actor model we
may also give a transition law; from one we can derive the other.

111

transition time

transition law

induced transition system

actor model properties

Theorem 10.2 Let an actor model with state space St and transition
law C be given. The transition law is Btrongly memoryleBB.

Proof. Consider two finite traces p and q. Let l(p) = l(q) = s. Then
we have

C(p) = C(q) = {(B', t) I (B,s') E Tr A t = time(<1(s))}.

Hence only the last reached state determines the event set. So, according
to definition 8.5, C is strongly memoryless.
o

Now we know that the transition law is (strongly) memoryless we can
apply theorem 8.2, so the transition law C is generated by the transition
law relation Tl defined in definition 8.3. The following relationship
between Tr and T l exists:

Tl = {«s, t), (s', t')) I (s, s') E Tr A t ~ time(s) = t'}.

Now we have given the definition of the actor model, we will verify
some general properties of the actor model and the autonomous behavior
induced by it. For instance, it is not clear whether s' = (s\In(f)) U
Out (f) is an element of the state space or not. (We will prove it is.) It
obviously is a set of tokens, but it is not clear whether it satisfies all the
requirements of a state space. Note that the definition of the transition
law remains correct, because if s' is not an element of St, then the
pair (s, s') does not belong to Tr. We also prove that s\In(f) and
Out (f) are disjoint, which means that the produced tokens are indeed
new. Further we will show that the transition relation Tr determines a
monotonous and eager transition law. Another property, that appeals
to our intuition, is that if processors may fire simultaneously, the next
state can also be reached by firing all the processors individually in some
arbitrary order. This property is called serializability. We also give a
sufficient condition for a system to prevent livelock. These properties
can be considered as proofs that the framework is "sound", in the sense
that it corresponds to our intuition.

In the definition of a state space (definition lOA) we required the
property that in a state no identity is the ancestor of another one.
We will show (in lemma 10.1) that this property is an invariant of the
mechanism to create identities: when a processor fires, one input token
is chosen and all new tokens get an identity that is derived from this
one, i.e. their identity is mapped by F to the identity of the chosen
input token.

Lemma 10.1 Let the Boolean function q on IP(ID) be defined by VI E
IP(ID) :

q(I) = Vi,j E I, n E .hV\{0} : Fn(i) "# j

(Function q means that no identity in I is the ancestor of another one.)
If for some J C ID holds that q(J) = true then

V j E J, i E ID : F(i) = j => i ~ J

112

and
'Vj E J : q((J\{j}) U {i I F(i) = j}) = true.

(So q still holds if one replaces an identity j by its "children" i.)

Proof. Fix some j E J. We start with the first assertion. Assume
for some i E ID with F(i) = j that i E J. This violates the property
q(J) = true (with n = 1). So the first assertion holds. Next we consider
the second assertion. Let, for some j E J,

J' = (J\{j}) U {i I F(i) = j}.

Assume that x,y E J' /I x f Y /I 3n E 1N\{0}: Fn(x) = y. We prove
that this implies a contradiction:

• if x, y E J\ {j} then the contradiction follows from q(J) = true,

• if F(x) = F(y) = j then we have Fn+1(x) = F(y) = j and so
Fn(F(x)) = F(x) which is a contradiction because of the property
of F (see definition 10.3),

• if F(x) = j /I F(y) f j then y E J\{j} and y = Fn(x) = pn-l(j)
which is a contradiction because y,j E J and q(J) = true (if
n = 1 we have y = F(x) = j, which is a contradiction because
y E J\{j}),

• if F(x) f j /I F(y) = j then Fn+l(x) = j and x E J\{j} which
is also a contradiction because q(J) = true.

So in all cases there is a contradiction, which proves the second assertion.
o

Theorem 10.3 Let an actor model with state space St be given. Let
8 E St and let J be an applicable firing assignment. Then we have:

• no two processors p and pi (p f pi) produce the same tokens, Le.

out(p, J(p)) n out(p', J(p')) = 0

• the produced tokens are different from the consumed tokens, Le.

(8 \In(f)) n Out(f) = 0

• consumption of In(f) and production of Out(f) gives a new state,
i.e.

(s\In(f)) U Out (f) ESt.

Proof. We will prove the theorem for an J with #(f) = 2, Le. a
firing assignment in which two processors fire. The case where only one
processor fires and the general case are easily derived from this case.
Let dom(f) = {PI, pz}.

We will first prove: all newly produced tokens have a different iden
tity, which implies the first assertion. Note that tokens produced by one

113

monotonous

processor have djfferent identities, because of property 5 of the proces
sor relation Rp (definition 10.3). Let the tokens, selected for creation
of new identities in rng(J(pt)) and rng(J(P2)), have identities it and
h respectively. Clearly it '" h (because of requirement 2 of the tran
sition relation, definition 10.6, and the fact that tokens in state shave
different identities). Consider two arbitrary tokens in out(P1, !(pt)) and
out(P2, !(P2)) with identities i1 and i2, respectively. Then i1 '" i2 be
cause F(i1) = it '" i2 = F(i2).

Next we consider the second assertion. Let J be the set of all iden
tities in state s. It follows from the first assertion of lemma 10.1 that
neither i1 nor i2 belongs to J\{it,h}. This proves the second assertion.

To prove the last assertion note that s satisfies the constraints of the
state space, which means that q(J) = true, where q is defined in lemma
10.1. According to that lemma the set

J1 = (J\{it}) U {i I F(i) = iJ}

satisfies q(Jt) = true. And similarly satisfies the set

h = (It\{h}) U {i I F(i) = h}

also q(J2) = true. However the set of all identities of tokens in the new
state is a subset of J2 (the proof of this is an exercise), so this set also
has property q. This proves the last assertion.
o

The following assertion is an immediate consequence of this theorem:

I/(s, s') E Tr ~ s '" 8'.

The next theorem shows that the induced transition system is monotonous
and that every autonomous trace is eager. In particular, if (s,s') E Tr,
then

time(s) :5 time(s').

Theorem 10.4 Let an actor model with state space St, transition re
lation Tr and transition law I:- be given. Then the induced transition
system is monotonous and every autonomous trace is eager.

Proof. We first prove the monotonicity. (Recall definition 8.4.) Let
P = ((so, to), ...) be an arbitrary autonomous trace. We will prove by
induction that for n E IN:

Note that T(Pn) = tn and that (by definition 10.7) time(u(Pn)) =
time(sn) = tn+!, so we will prove tn :5 tn+!.

We start with n = O. Since all tokens in So have non-negative time
stamps, we have time(so) ~ O. On the other hand to = 0 by definition,
so we have to :5 time(so) = t1.

114

Assume we have tn ::; tn+1' Then we consider tn+2 = time(Sn+1)'
Note that, for some applicable firing assignment j it holds that

where InU) C Sn. It follows from the definition of the processor relation
(definition 10.3, property 3) that

'1p E domU) : 'Ix E in(p,j(p)), y E out(p,j(p)): 1I"3(X) ::; 1I"3(Y)'

Therefore:

max{1I"3(X) I x E in(p,j(pm ::; min{1I"3(Y) lout(p,j(pm.

Note that

timU) = max{max{1I"3(x) I x E in(p, j(pm I p E domU)}

and that timU) = time(sn). Hence

'1p E dom{j): max{1I"3(x) I x E in(p,j(pm = time(sn),

because otherwise we could delete a processor p from domU) in order
to obtain an f E FA with a smaller maximum. So we have

'1p E domU) : '1y E out(p, j(p)): 1I"3(y) ~ time(sn)

and therefore

We use this property to show that

timU) = min{timU) I f E FA" InU) C Sn U QutU)}·

Let f* E FA be defined by

timU*) = min{timU) I f E FA /I InU) C Sn U OutU)}·

Then timU) ~ tim(f*), because the set over which the minimum is
taken for f*, is at least as large as the set for j. Assume

timU) > timU*)

which is equivalent to

max{1I"3(X) I x E InU)} > max{1I"3(x) I x E InU*)}.

This is only possible if InU*) n QutU) '" 0. However, then there is a
y E OutU) n InU*) such that:

1I"3(y)::; timU*) < timU) = max{1I"3(x) I x E InU)}.

115

serializability

This contradicts (*). So we have

time(sn) = min{tim(f) I f E FA 1\ In(f) C sn}

=

min{tim(f) I f E FA 1\ In(f) C Sn U Outa)}

$

min {tim (f) I f E FA 1\ In(f) C (sn \Ina)) U Out a)}
=

time(sn+l)'

The inequality is justified by the fact that the minimum is taken over a
larger set on the left-hand side. So this proves for all traces p:

r(l(p)) $ time(q(£(p))).

To verify the monotonicity we have to prove that for all events e in the
set

£(p) = {e I e = (s, t) 1\ (q(£(p)), s) E Tr 1\ t = time(q(£(p)))}

the inequality r(e) ;:: r(£(p)) holds. This is the case because

r(e) = time(q(£(p)));:: r(£(p)).

To verify eagerness note that all events in £(p) have the same event
time, which means that always one with minimal time stamp is chosen.
D

The next theorem gives the serializability property.

Theorem 10.5 Let an actor model with state space St, transition re
lation Tr and set of firing rules FA be given. Let f E FA be applicable
for state sand (s, 5") E Tr such that

s" = (s\In(f)) U Out(f)

If we divide f into two firing rules g, h E FA such that f = 9 U hand
9 n h = 0, then:

• 9 is an applicable firing rule for 5,

• h is an applicable firing rule for s' = (s\In(g)) U Out(g),

• time(5') = time(s),

• s" = (s'\In(h))U Out(h) = (s\(In(g)Uln(h)))U Out(g)U Out(h).

Proof. Note first that In(g)nln(h) = 0, Out(g)n Out (h) = 0 and that

In(f) = In(g)Uln(h) 1\ Out (f) = Out(g)uOut(h). (*)

Further note that time(s) = tim (f) = tim(g) = tim(h). Hence 9 (and
also h) is applicable in s. Since In(h) C s\In(g) we have In(h) C s',
hence time(s') $ tim(h). By the former theorem we have time(s) $
time(s'). Hence h is applicable for s' and time(s') = time(s). The last
assertion follows from (*).
D

116

As a consequence of this theorem we may split every applicable firing as
signment into a sequence of elementary firing assignments with domains
that contain only one processor. The order in whlch these processors
fire is irrelevant for the final result. This property is used in the next
theorem, which states that an actor model in which only one processor
may fire in each transition, is similar to the same actor model in which
several processors may fire simultaneously.

Theorem 10.6 Let an actor model with state space St and a set of
initial states be given. We consider two transition relations for this
model: the "standard" transition relation Tr defined in definition 10.6
and the transition relation Tr' defined by:

Tr' = {(s,s') E Tr 13f E FA: #(f) = 1}.

Let the transition systems induced by (St, Tr) and (St, Tr') be A and B
respectively. Then B is similar to A with respect to the identity relation
on St x T.

Proof. It is obvious that B is similar to A , because each transition of
B is also a transition of A.
o

Note that A is not similar to B.
The next theorem gives a sufficient condition to avoid livelock. Re

member that a trace has livelock if it can make infinitely many transi
tions in a finite time interval. Hence no livelock means that the system
makes progress.

Theorem 10.7 Let an actor model and a transition law be given such
that, for some f E 1R+, the processor relation satisfies "Ip E P : "Ir E Rp :

max{1r3(r(a)) 1 a E I(p)ndom(r)} ~ f+min{1rk(b)) 1 b E O(p)ndom(r)}

then the system is livelock free.

Proof. Let p be an infinite autonomous trace. Note that U(Pi) contains
only finitely many tokens for all i E IN, since all states are finite. Let,
for n E IN, kn be defined by:

kn = {i E dom(p) 1 0 ~ r(Pi) < nf}

Hence k n is the set of (indexes of) events happening before nf. First we
show kl is finite. Note that for all applicable firing rules f in the initial
state

because of the requirement on R. Hence all tokens, produced in events
kl' have a time stamp greater or equal to f and cannot be consumed
in an event during [0, f). So all events in kl are caused by tokens in
u(Po) and this is a finite set. Suppose we have proven that kn is finite.

117

livelock free

system composition

external event

composition of object models

Hence the number of tokens produced before nE is finite. In all events
occurring in [nE,(n+1)E) only tokens produced before nE are consumed,
since tokens produced after nE are not available before (n + 1) •. Hence
the number of events in [n., (n+ 1)E) is finite and therefore kn+l is finite.
So we have proven by induction that kn is finite for all n E IN.
o

1---------------, r--------r----' il
1 All 1
1 1 1 1

i A I, i '~, i 'I B i
1 1 1 1
1 1 1 1 L ________ L ____ ~ 1

L _______________ I

Figure 10.3: The composition of two open systems.

The next topic we consider in this chapter is the composition of two
actor models. Composition of actor models is used to make complex
systems out of more simple ones. As an example let us start with two
open net models A and B. We add places and we connect the input and
output connectors of A and B to these places. Then we have made the
ciosures A and iJ of A and B respectively. The composition is denoted
by A * iJ. In figure 10.3 we illustrate this. Here A and B both have two
unconnected connectors. They are connected to two channels c and d.
An event in which the contents of cord are changed by a processor of
B, is called an external event for .A. In order to define the composition
of two actor models we have to define the composition of two object
models and the composition of two flat net models first, because an
actor model encompasses these entities.

Definition 10.8 Let A and B be two object models. They are com
posable if and only if

• Vr E RNA n RNB : DMA(r) = DMB(r) " RGA(r) = RGB(r),

• "In E CNA n CNB : CBA(n) = CBB(n) A CRA(n) = CRB(n),

• "In E SNA n SNB : simA(n) = simB(n).

Their composition, denoted by A*B, is defined as their component-wise
union. (So if C = A * B then SNa = SNA U SNB, sima = simA U simB
etc.).
o

Lemma 10.2 Let A and B be two composable object models and let
C = A * B. Then:

• C is a correct object model, i.e. it satisfies all requirements of
definition 9.1 and 9.2,

118

• "In E CNA n CNB : comA(n) = comB(n).

Proof. The proof is an exercise. (Check the appropriate definitions.)
o

Definition 10.9 Let A and B be two fiat net models. composition of
flat net models They are composable if and only if

• PA n PB = 0,

• LA U LB, PA U PB, CA U CB are mutually disjoint.

Their composition, denoted by A * B, is their component-wise union.
(So if C = A * B then Le = LA U LB and Me = MA U MB etc.).
o

Lemma 10.3 Let A and B be two composable fiat net models and let
C = A * B. Then C is a correct fiat net model.

Proof. The proof is trivial because all requirements concern P and
PA n PB = 0. So if the requirements hold for A and B they hold for C.
o

Definition 10.10 Let A and B be two actor models such that:

• FNA and FNB are composable,

• OMA and OMB are composable,

• "Ii E LA n LB : CAA(i) = CAB(i),

• TA = TB 1\ IDA = IDB 1\ FA = FB.

Then A and Bare composable and their composition, denoted by A * B,
is defined by:

(FNA*FNB, OMA*OMB, CAAUCAB, CTAUCTB,TA, IDA, FA, RAURB).

o

Lemma 10.4 Let A and B be two composable actor models and let
C = A * B. Then C is a correct actor model.

Proof. We only have to verify the requirements for CT e and Re. For
CTe the requirement follows from PA n PB = 0 and the composability
of OMA and OM B. In order to verify the requirement for Re note that

QUe = U come(n) = U come(n) U U come(n).
nECNe nECNA nECNB

By the second assertion of lemma 10.2 we have

QUe = ~UA U QUB.

Since IDA = IDB and TA = TB we have

Re E Pe -+ IP(Ce"" IDe x OUe x Te).

The rest of the requirements follow from the fact PA n PB = 0.
o

119

composition of 1Iat net models

composition of' actor models

The composition operators, all denoted by *, are associative and
commutative. This is very important for the design of systems, because
it gives us freedom in the way we want to decompose a complex system.

Theorem 10.8 The composition operators * for object models, fiat net
models and actor models are associative and commutative.

Proof. The proof is an exercise.
D

Now we know how to compose actor models, we are interested in
the relationship between the state spaces and transition relations of
a composed system and its components. The next theorem gives an
answer.

Theorem 10.9 Let A and B be compos able actor models and let C =
A * B. (The subscripts A, Band C are used to distinguish the model
attributes.) If (s,s') E Trc then 3SA'S~ E StA,sB,sE E StB:

• SA n SB = 0 /I S~ n SE = 0,

• S = SA USB /I S' = S~ USE'

• for i E {A, B}: Si 1 s: => (Si' sD E Tri /I timei(Si) = timec(s).

Proof .. (For notational convenience we drop subscript C sometimes.)
Let (s, s') E Trc and let lET Ac be applicable in s, such that

s' = (s\In(J)) U Out(J).

Further let Ii = I t Pi. The following assertions are easy to verify:

1. IA n IB = 0 and I = fA U fB,

2. In(J) = In(JA) U [n(JB) and Out(J) = Out(JA) U Out(JB),

3. In(JA) n In(JB) = 0 and Out(JA) n Out(JB) = 0,

4. [ni(Ji) = [n(Ji) and Out;(fi) = Out(Ji).

So we have

By assertion 3 and 4 and the fact that In(J) C s, we can find SA and
SB such that

• [ni(Ji) C Si·

120

Let s: = (Si\Ini(fi))U Outi(fi). Then clearly s' = sA USB and sA nSB =
o which proves the first two assertions of the theorem. If Ii ~ 0 then
(using the same arguments as in theorem 10.3)

timec(s) = time (f) = time(J;) = tim;(fi) = timei(Si),

which proves that Ii is applicable for Si and therefore (Si' sD E Tri.
Finally note that Ii ~ 0 ¢} Si ~ s:, which completes the proof.
o

Note that the opposite of this theorem is not true: if each of the compo
nents of a system can have an event at a certain time, then it is not sure
that they can do their event both (neither simultaneous, nor in some
order).

Next we consider the processor characteristics. They are important
for the modeling of actors, because they are often known in an early
stage of design, i.e. before the processor relation is specified. They
are also important for the analysis of actors, because some analysis
methods are only applicable for actors where the processors have specific
processor characteristics.

Definition 10.11 Let an actor model be given. The processor charac
teristics are defined by:

• Totality, which means that a processor will be enabled if and only
if there are enough input tokens, independent of their values. For
mally a processor p is total if and only if for all functions 9 with

dom(g) c I(p) II Va E dom(g): g(a) E CA(Mp(a))

it holds that

(3h E Rp : dom(h r I(p)) = dom(g r I(p)))

=> 31 E Rp: n I(p) = 9 r I(p).

• Input completeness, which means that the processor consumes in
each event via all input connectors. Formally a processor p is input
complete if and only if

VIE Rp : dom(f) ::> I(p).

• Output completeness, which means that the processor produces
for every output connector in each event. Formally a processor p
is output complete if and only if

VIE Rp : dom(f) ::> O(p).

We call a processor complete if it is both input and output com
plete.

121

processor characteristics

totality

input completeness

output completeness

functionality

stores

channel

o

• Functionality, which means that the produced tokens are func
tionally dependent of the consumed ones. Formally a processor p
is functional if and only if:

V/,g E Rp: n I(p) C gt I(p) => /=g.

Note that a total processor does not need to be input complete, however
if it is enabled for some subset of input connectors it is enabled for all
possible values of input objects. Functionality does not imply input
completeness either; however if a "functional processor" is enabled for
some set of input objects it is not enabled for any subset. Further
functionality implies that two firing rules with the same input have the
same output.

As sald in the introduction, the actor framework is a generalization
of the Petri net framework. With the processor characteristics we can
express precisely in what sense it is a generalization: a (classical) Petri
net can be defined as an actor model in which all processors are complete
and total. In fact in classical Petri nets the identities, values and time
stamps of tokens do not play any role. In classical Petri nets one is only
interested in the number of tokens in a place of a state, whlch is called
the marking of the state. In fact we may use trivial choices for the
processor relations and the complex classes: all complex classes are the
same and contaln only one complex and the processors give all produced
tokens a delay equal to zero.

We conclude this chapter with some remarks on stores. As sald
before, from a formal point of view they are just places with some special
properties, and therefore we did not consider them before in this chapter.
A store always contalns exactly one token and will always be avallable
which means that for all l E L, such that l is a store the following
requirements hold:

'Is E St: #{t E s 17l'3(t) = l} = 1

fI

'It E s : 7l'2(t) $ time(s).

These requirements can be met if a consumed token of a store is replaced
by a produced token with a delay O.

If we assume that each processor has at least one input channel,
Le. a non-store input place, then we may generalize theorem 10.7 by
requiring that the processor relation R satisfies Vp E P : Vr E Rp :

max{7l'3(r(a» I a E I(q) n dom(r) fI a is a channel}

$
f + max{7l'3(r(a» I a E O(q) n dom(r) fI a is a channel}.

The proof is an exercise.

122

References and Further Reading

In the bibliography we have given already some references for the for
mal frameworks used in the book. Here we give some more specialized
references.

The theory of transition systems stands alone, although similar ideas
can be found in literature. For example transition systems are studied in
detail in [Hesselink, 1988]. Also the concept of similarity is considered
there. The theory of traces is studied in detail in [Mazurkiewicz, 1984]
and [Snepscheut, 1985]. There is related literature on process algebras as
we have seen: [Hoare, 1985; Milner, 1980; Baeten and Weijland, 1990].
In process algebra similarity relations are studied as well. The timed
transition systems are related to process algebraic formalisms with time,
such as [Reed and Roscoe, 1988]. Another formalism that supports the
notion of time is temporal logic, in which assertions about the behavior
of a system can be proved. See [Pnueli, 1977] or a more general treatise
on time in logic [van Benthem, 1983]. The idea of a transition law and
the concept memoryless are borrowed from the theory of Markov chains,
see [Revuz, 1975].

The object framework is closely related to the entity relationship
model ([Chen, 1976]). There are many extensions of this framework, for
example [Parent and Spaccapietra, 1985]. A survey is provided in [Spac
capietra, 1987]. Another important original framework is presented in
[Abrial, 1974], it has only binary relations as we have here. Binary
relations can be considered as set-valued functions and therefore our
framework is also closely related to the functional data model of [Ship
man, 1981], see also [Buneman and Frankel, 1979]. (Note that we will
use the term "functional data model" in a more restrictive sense later.)
All these data models are often called semantic data models. How
ever there is an object framework that is called so, see [Hammer and
McLeod, 1981]. A survey of semantic data models is given in [Hull and
King, 1987]. The concept of complexes was first introduced in [van Hee
and Verkoulen, 1991; van Hee and Verkoulen, 1992]. There are many
other frameworks that have the notion of complex objects, for example
the nested relational model, see [Schek and Scholl, 1986] and GOOD,
see [Gyssens et al., 1990]

The actor framework is the classical Petri net model extended with
time, object identities and complex values for the tokens. It is not bor
rowed from other authors. A predecessor of this framework is presented
in [van Hee et al., 1989a] and the first version of the actor framework can
be found in [van Hee et al., 1989b; van Hee et al., 1991]. The framework
has many similarities with others, for example with the colored Petri
nets of [Jensen, 1992]. The differences are that in our framework tokens
may have a value that belongs to an infinite type, that tokens have a time
stamp and an identity, and that the transitions are defined by a proces
sor relation instead of arc and transition inscriptions. The colored Petri
net model is an improvement of the predicate/transition nets of [Gen
rich, 1987; Genrich and Lautenbach, 1979]. The first ideas of Petri nets

123

with distinguishable tokens are found in [Schiffers and Wedde, 19781.
Other frameworks of Petri nets with time can be found in [Sifakis, 1977;
Sifakis, 1980; Ajmone Marsan et al., 19851.

There is a large amount of papers on Petri nets and their analysis.
The books of [Reisig, 1985; Jensen, 1992; Peterson, 19811 offer more
detailed references. In [Pless and Pliinnecke, 19801 a bibliography is
given of the literature till 80. There is a Petri news letter that gives up
to-date information of new articles; Petri Net Newsletter, Gesellschaft
fiir Informatik Bonn (ISBN 0173-7473).

The concept of serializability plays also an important role in dis
tributed databases, see [Ceri and Pelagatti, 19841.

124

Exercises
1. Prove that the autonomous behavior of transition system is a

closed set.

2. Prove theorem 8.6.

3. Prove theorem 10.1.

4. Prove the assertion in theorem 10.3 that all identities of tokens in
the new state are in J2 •

5. Prove lemma 10.2.

6. Prove theorem ??

7. Generalize theorem 10.7 to the following cases:

• tokens in stores do not have a delay,

• not all processors satisfy the requirement of the theorem, but
in each cycle (Le. a cycle in the bipartite graph of a flat net
model) there is at least one processor that gives its output
tokens in the places of the cycle a positive delay.

8. Consider an arbitrary transition system and transform it into a
memoryless transition system, such that the systems are bisimilar.

9. Give a formal description of the following actor model and list the
behavior of this actor model (Le. the set of all possible processes
starting in the initial state). The actor model has one processor
p, two channels, called a and b and one store 8. The object classes
of the three places are simple: there is only one complex class and
the complexes can be represented by natural numbers. Channel
a is an input channel and b an output channel. The processor
relation of p is such that the value of the complex in store 8 is
the sum of the values of the input of p modulo 4 and the output
objects have a value that is 0 if the store value has become even
in an event and 1 if it has become odd. In the initial state the
store value is 0 and in channel a reside three objects with values
2, 3 and O. All time stamps and all delays are O.

10. A Turing machine is a finite state machine extended by an in
finite tape from which it can read symbols and on which it can
write symbols. A Turing machine is characterized by a 4-tuple
(M, I;, T, mol, where

• M is the finite state space, not containing h the so-called halt
state,

• mo is the initial state,

• I; is a set of symbols not including the characters Land R,
which are used to direct the tape head to the left and right
respectively,

125

• T is a transition function such that:

TEMxI:--+(Mu{h})x(I:U{L,R})

If the machine is in state m, symbol a is read by the head and
T(m,a) = (n,b) then the new state will be nand:

• if b E I: then the symbol on the tape becomes b,

• if the b E {L, R} the tape head will move to the left or right
respectively.

The machine stops if the state h is reached. (For more information
of Turing machines see for instance [Lewis and Papadimitriou,
1981)).
A generally accepted definition of a computable function is, that
for each domain value the function value can be computed by a
Turing machine. A formalism to express computations is called
Turing complete, if every computable function can be expressed
in the formalism.
Prove that the actor framework is Turing complete. (Hint: design
an actor model for an arbitrary Turing machine.)

11. Consider an arbitrary actor model N. Show there is another actor
model M with the same object model and the same set of places,
with only one processor p, such that Nand M are bisimHar with
respect to the identity relation. (Hint: give p an input connector
for every input connector occurring in N and connect it to the
same place as in N, after some renaming to avoid name clashes.
Further let the processor relation Rp be the (modified) union of
the processor relations of the processors of N).

12. A hierarchical net model is defined by:

N.L

N.P

N.A

N.C

=
=
=
=

{p, q, T, 8, t, v, w}
{C, D, E, F}
{top, A, B} U N.P
{p? ,pI, q?, q!, r?, r!,s?, 8!, t1, t!, v?, v!, w?, wI, x1, x!, y?, y!}

Further the functions N.! and N.D are given by:

I 0
A p? q!
B q? p!
C x?, w? v!
D v? y!,w!
E s?, t? x!, r!
F r?, y? sf, t!

126

The function N.M maps every connector with a ? or a ! to the
place with the same name (without? or !) if it exists. Further:

N.Mc(x?) = p!

N.MD(Y?) = q?

N.ME(X!) = p?

N.MF(Y?) = q!

And the functions H A and H L are given by:
'Vi E {A, B} : H A(i) = top
Vi E {e, D} : H A(i) = A
Vi E {E, F} : H A(i) = B
Vi E {p, q}: H L(i) = top
ViE {v, w}:HL(i)=A
Vi E is, r, t} : H L(i) = B
Draw a diagram, determine the errors in this definition and give
a correction.

13. A data dictionary is a data base that stores the actor models
(including object models) of a system. So in a data dictionary
the processors are objects, and object classes and the relationship
classes of the object models as well!

• Make an object model for a data dictionary in which only
fiat net models can be represented.

• Extend this model to enable it to represent also hierarchical
net models.

• Make an object model in which an arbitrary object model
can be represented including, the graphical expressible con
straints.

• Integrate both object models to obtain a model for a "com
plete" data dictionary.

14. Consider an arbitrary actor model. Introduce a store called time
and connect it to a processor called clock, that triggers itself via
one channel called step, that is both input and output channel for
clock. The delay of the token in step is one time unit. The value
ofthe object in time is a natural number that is increased by one
in every firing. In the initial state the value in time is zero.
Prove that in each state of an arbitrary trace, store time indicates
the "right" time (with an error of at most one time unit).

127

Index

! decoration, 49, 73
I decoration, 49, 73
(;), 85
=,65
? decoration, 49, 73
An,A*,Aoo,A+, 85
X -similar ~ x, 89
II ... , 66
.L, 65
·,69
U,66
€, 24, 85
Ell, 67
1I"e,66
<7,88
T, 88
k-bounded net, 167

A,104
absolute time, 272
abstract simplex, 177
Ackermann function, 346
active domains, 172
active objects, 217
activity network, 166
actor, 15,47
actor framework, 84
actor model, 107
actor model properties, 112
actor modeling steps, 137
actor roles, 147
aggregate, 194
antithetic variates technique, 290
applicable firing assignment, 110
applicative order reduction, 321
association simplex class, 178
attribute domain, 203
attribute simplex class, 178
automated systems, 21
autonomous behavior, 25, 86

395

autonomous trace, 86

base, 253
basic type, 63, 301
bisimilar, 89
bounded nets, 167
bounded occurrence, 317
breadth-first search, 264
broadcasting, 152
business systems, 16

C, 103,104
CA,107
cancellation token, 158
canonical form, 247
cardinality constraint, 41, 97
cat, 67
CB,94
channel, 47, 122
class diagram, 37
class model, 93
classical Petri nets, 47, 163
client-server, 219
closed actor, 54, 104, 106
CM,101
CN,93
com, 95
complex class, 35
components, 302
composition of actor models, 119
composition of object models, 118
compound object, 177
concrete simplex, 177
conflict free, 164, 279
congruential method, 287
connector, 47
constants, 301
constraint, 96
constraints, 28, 40
construction model, 11

consumption function, 237
cont, 100
context actor, 137, 139
continuous processes, 159
control variates technique, 289
CR,94
critical path method, 279
CT,107

Dr,c, 96
data oriented, 134
dead set, 242
deadlock, 25, 87, 242
decomposition guidelines, 140, 145
defined predicate, 72
delay, 272, 277
depth-first search, 264
deterministic transition law, 26
deterministic transition system,

87
direct addressing, 152
discrete dynamic systems, 12
DK,97
DM,94
domain class, 39
domain exclusion constraint, 97
domain key constraint, 43, 97,

353
domain type, 310
DX,97
dynamic programming, 345

E,86
eager autonomous behavior, 27,

88
earliest arrival time, 278
empty row, 302
empty sequence, 302
empty set, 302
empty tuple, 302
entity simplex class, 178
entity-relationship schema, 208
environment, 161
evaluation function, 315, 321
event, 24, 86
exclusion constraint, 43, 97, 354
executable specifications, 297,298
expressive comfort, 297

396

expressive power, 297
extendible language, 298
external events, 27, 118

F, 107, 108
J,110
FA, 110
factorial function, 349
fairness, 155
FC,97
file as one token, 149
file as set of tokens, 151
filter, 236
finite mathematical value, 298
finite state machine, 165
firing assignment, 110
firing rules, 108
firing variable, 248
flat net model, 103
flow balance, 238
flow function, 237
flow matrix, 235, 238
FN,107
formalism, 13, 83
framework,83
free choice nets, 164
free constraint, 101
free value universe, 303
free variable occurrence, 318
function application, 68
function declaration syntax, 331
function definition syntax, 323
function graph, 325
function signature, 310
function universe, 309
functional dependencies, 204
functional equation, 249
functional model, 11
functional object model, 201
functionality, 43,51,97, 122
functions, 65

global constraint, 46, 101, 173
graph of function, 90
graphical representation, 52
guidelines, 133

HA,104
head, 67

hierarchical net model, 104
history, 192
HL,105

I, 103, 104
i subscript, 73
Ie, 100
ID,107
identity filter, 237
if then else fi, 66
IM,101
independent place invariants, 244
induced transition system, 111
information preservation, 200
information simplex, 177
information system, 18, 137
inheritance constraint, 43, 100,

354
initial event, 24
injectivity, 43, 97
input completeness, 51, 121
ins, 67
instance, 38, 94, 95, 199, 204
intelligent information systems,

20
inter-organizational information

systems, 20
interval-timed actor model, 271
invariance properties, 61
invariant place property, 240
inverse transformation method,

287
irreducible data model, 203
isomorph, 91, 209
iterated application, 342

join D<I, 64

key constraint, 43, 97
knowledge, 217, 218

C,86
L, 103, 104
l(p), 87
lambda calculus, 298
latest arrival time, 278
lazy function, 311
lexicographical ordering, 306
life cycle, 28, 217

397

limit of a monotonous sequence,
341

linear recursive functions, 342
live processor, 241
livelock, 25,89,117,280
local constraint, 173

M, 104, 105
m-complex class, 218
map construction, 69
map term, 316
marking, 236
maximal autonomous behavior,

86
maximal autonomous trace, 86
maximal exclusion constraints, 180
measurement actors, 139
memoryless transition system, 87
message, 217
meta syntax, 313
method, 131, 217
method of successive approxima-

tions, 342
minimal key constraint, 180
minimal support invariant, 254
model, 83, 199
model making, 61, 131
model transformation, 131
modeling language, 298
molecular object, 177
monitoring information systems,

19, 197
monomorphic function, 65, 310
monotonous function, 341
monotonous sequence, 341
monotonous transition system, 88,

114
multi-valued dependencies, 204
mutual exclusion, 155

N,85
negative correlation, 289
nested relational schema, 212
New, 60, 73
Newton-Raphson method, 346
non-deterministic transition law,

26
non-elementary actor, 47

non-negative place invariant, 242
non-strict function, 311
normal form, 203
normal form of a set, 307

0,103,104
o-actor, 218
o-complex class, 218
o-object method, 219
object, 15
object framework, 84, 199
object life cycle, 154
object model, 35, 101, 199
object oriented, 134
object oriented frameworks, 200
object oriented modeling, 217
object roles, 146
object universe, 96
occurrence graph, 263
office information systems, 20
OM,107
open actor, 53, 104, 106
OU,96
output completeness, 51, 121
overloading, 68, 309

P, 103, 104
pair,302
parent function, 107
partial functions, 68
path, 24, 89
PC, 101
Petri filter, 237
pick,67
place invariant, 144, 234, 238
planning, 192
polling, 168
polymorphic function, 65, 310
positive place invariant, 243
predicate, 71
predicate syntax, 330
prefix pi, 85
prefix of a trace, 24
prefix-closed, 85
primary key, 203, 208
primitive recursive function con

struction, 344
process oriented, 133

398

processing time, 156
processor, 47
processor characteristics, 51, 121
processor axecution rules, 54
processor relation, 49, 108
product type, 304
product type constructor, 304
production function, 237
protocol, 219, 263
prototype, 283

Qwcoverability tree, 264

Rp , 108, 109
Rr,c, 96
range class, 39
range exclusion constraint, 97
range key constraint, 43, 97
range type, 310
reach ability, 263
reachable states, 25
realizable, 261
recursion, 322
recursion operator, 340
recursive functions, 70
referential integrity, 204
regression analysis, 286
regular values, 308
relation, 204
relational data model, 200
relational data modl, 203
relational instance, 203
relational schema, 203
relationship constraint, 97
relationship path, 98
relative time, 272
representation function, 96
rest, 67
RG,94
RK,97
RN,93
root simplax class, 101
root simplex class, 101
row, 64
row constructor, 302
RX,97

safe net, 167
SC,101

schema, 50, 72, 73, 199
schema definition semantics, 336
schema definition syntax, 334
schema equality, 336
schema expression syntax, 333,

334
schema operator, 74
schema universe, 333
scope, 317
script, 75, 337
sequence, 64, 85, 302
sequence constructor, 302, 304
sequential process, 153
serializability, 116
set, 64
set constructor, 302
set restriction, 68
set theory, 298
set type, 304
signature, 66, 323
sim,94
similarity, 89,274,275
simple singular value, 308
simplex class, 34
simulation, 233
singular value, 308
SN,93
specification, 61
specification language, 298
St, 109
stable function, 341
stage, 219
standard constraint, 97
standard term, 318
standardizing, 318
state, 23, 39, 109, 219
state machine, 153, 165, 218
state space, 23, 88, 109
static type system, 297
store, 47, 106, 122
strict function, 311
strongly memoryless transition law,

28, 88
successive approximations, 341
suffix-dosed, 85
support, 254
surjectivity, 43, 97
synchronization, 154

399

syntactical transformation func
tion 5, 335

syntax base, 313
system composition, 30, 118

T, 88,107
t subscript, 73
tail, 67
target system, 137
TC,100
terms, 69, 317
time, 111
time dependent, 192
time domain, 24, 88, 107
time-out, 157
timed colored Petri nets, 49
timeless actor models, 163
Tl,87
token, 15,35, 109
token identification, 55
token priority, 159
token time, 54, 145
top, 104
totality, 43, 51, 97, 121
tr, 110
trace, 24, 86
transaction, 219
transition balance, 260
transition invariant, 234, 260
transition law, 25, 86, 111
transition relation, 87, 110
transition system, 86
transition systems framework, 84
transition time, 55, 111
TronsTime, 60, 73
trap, 242
tree constraint, 45, 100, 353
tuple, 64, 204, 302
tuple compatibility, 307
tuple equivalence, 307
tuple join, 307
tuple type constructor, 304
type, 39
type and value constructors, 64
type checking, 233
type definition syntax, 314
type definitions, 68
type function, 318

type universe, 304
type variable, 65
typed lambda expression, 316
typed set theory, 298

universal complex class, 37, 93
universal constraint, 173

validation, 132
value, 39·
value simplexes, 218
value universe, 305
valueless actor models, 162
verification, 61, 132

Wp,89
weights, 238
well- typed function declaration,

332
well-typed function definition, 324
well-typed predicates, 330
well-typed schema, 334

400

In this series appeared:

91101 D. Alstein

91102 R.P. Nederpelt
H.C.M. de Swart

91103 J.P. Katoen
L.A.M. Schoenmakers

91104 E. v.d. Sluis
A.F. v.d. Stappen

91105 D. de Reus

91106 K.M. van Hee

91107 E.Poll

91108 H. Schepers

91109 W.M.P.v.d.Aalst

91110 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91111 R.C. Backhouse
PJ. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91112 E. van der Sluis

91113 F. Rietman

91/14 P. Lemmens

91115 A.T.M. Aerts
K.M. van Hee

91116 AJJ.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ... ,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFlCATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

91118 Rik van Geldrop

91119 Erik Poll

91120 A.E. Eiben
R.V. Schuwer

91121 J. Coenen
W.-P. de Roever
J.Zwiers

91122 G. Wolf

91123 K.M. van Hee
LJ. Somers
M. Voorhoeve

91124 A.T.M. Aerts
D. de Reus

91125 P. Zhou
J. Hooman
R. Kuiper

91126 P. de Bra
G.J. Houben
J. Paredaens

91127 F. de Boer
c. Palamidessi

91128 F. de Boer

91129 H. Ten Eikelder
R. van Geldrop

91130 J.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91132 P. Stroik

91133 W. v.d. Aalst

91134 J. Coenen

91135 F.S. de Boer
J.W. K10p
C. Palamidessi

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

92/01 I. Coenen
I. Zwiers
W.-P. de Roever

92/02 I. Coenen
I. Hooman

92/03 I.C.M. Baeten
I.A. Bergstra

92/04 I.P.H.W.v.d.Eijnde

92/05 I.P.H.W.v.d.Eijnde

92/06 I.C.M. Baeten
I.A. Bergstra

92/07 R.P. Nederpelt

92/08 R.P. Nederpelt
F. Kamareddine

92/09 R.C. Backhouse

92/10 P.M.P. Rambags

92/11 R.C. Backhouse
I.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 I.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Selj6e

92/17 W.M.P. van der Aalst

92/18 R.Nederpelt
F. Kamareddine

92/19 I.C.M.Baeten
I.A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

92/21 F.Kamareddine

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra. p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra. p.45.

The fme-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the WarshalllFloyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refmed
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

92122 R. Nederpelt
F.Kamareddine

92123 F.Kamareddine
E.Klein

92124 M.Codish
D.Dams
Eyal Yardeni

92125 E.Poll

92126 T.H.W.Beelen
WJ.J.Stut
P.A.C.Verkoulen

92127 B. Watson
G.Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
PJ. Zwietering

93/05 J.C.M. Baeten
c. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p.33.

A Programming Logic for Fro, p. 15.

A modelling method using MOVlE and SimConlExSpect,
p. 15.

A taxonomy of keyword pattern matching algorithms,
p.50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

	Contents
	7. Introduction
	8. Transition systems framework
	9. Object framework
	10. Actor framework
	References and Further Reading
	Excercises
	Index

