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Chapter 7 

Introd uction 

In this part we define the formalisms we use to model and analyze sys
tems. The concepts are already introduced in part I. As said before, a 
formalism consists of a mathematical framework and a language. The 
mathematical framework is represented by a tuple of mathematical en
tities, called attributes, and a set of requirements to be fulfilled by the 
attributes. 

As an illustration we define the framework of an automaton. An 
automaton is a tuple 

(S,[, 0, T, B) 

where 

• S, I and ° are sets, called state space, input set and output set 
respectively, 

• T E S X I .... S X ° is called the transition function, 

• B C S is called the set of initial states. 

If we refer to an automaton, we give it a name, for instance A, and we 
may refer to an attribute of A by using the name of the automaton as 
a subscript for the attribute name. For instance SA denotes the state 
space of the automaton A. If we are considering only one automaton 
then we drop the dependency of the name. We refer for instance to the 
"state space S of the automaton" ifthere is only one (maybe arbitrary) 
automaton in the context. 

Note that a framework is in fact a set of functions with a common 
domain. Each function of a framework is called a model. The elements of 
the common domain are (traditionally) listed in a tuple. In the example 
above the framework is called "automaton" and it is formally defined 
by: 

{A I A is a function 1\ dom(A) = {S,[,O,T,B} 1\ 

A(S), A(I), A(O) are sets 1\ 

A(T) E A(S) X A(I) .... A(S) X A(O) 1\ 

A(B) c A(S)} 

83 

formalism 

framework 

model 



transition systems framework 

object framework 

actor framework 

However, we will use the shorter notation as given above: note that 
SA = A(S). In other situations we often write fr instead of f(x), but 
it will always be clear from the context what the function and what the 
argument is. 

We use a similar technique for specifying models in the specification 
language (cf. part V). There we use so-called schemas to specify models. 
The difference between a schema and a framework is, that in a schema 
each attribute has a type, Le. a set to which the (function) value of 
the attribute belongs. So if we would have used a schema to specify the 
automaton, we should have specified to which sets A(S), A(I) and A(O) 
belong. So schemas are "typed" and frameworks not. (Note that the 
term "tuple" is used in the specification language in a slightly different 
sense). 

The first framework we present is called the transition systems frame
work. It formalizes the concept of discrete dynamic systems and their 
properties. The second framework is called the object framework. It 
formalizes the concepts of simplexes and complexes. These are static 
concepts used for modeling state spaces (or data bases). The third 
framework is called the actor framework, because it formalizes the con
cepts of actors and networks of actors. It generalizes the framework of 
Petri nets. 

The three frameworks fit together, since the object framework is used 
to define the objects in the actor framework and the actor framework is 
used to model discrete dynamic systems. 
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Chapter 8 

Transition systems 
framework 

We start with some notations and preliminary definitions. Let N be the 
set 

{x C IN I Ifi Ex, j E IN : j < i ~ j EX} 

So N = {0, {O}, {O, I}, {O, 1, 2}, ... }. Also IN EN. 
A sequence p is a function such that dom(p) E N. The sequence 

is called infinite if dom(p) = IN, otherwise it is finite with length Ipl. 
The empty sequence with domain 0 is denoted c, other sequences with 
optional ( ) brackets. So 

(a,b,c) = {(O,a),(1,b),(2,c)}. 

Note that in fact f = 0. For i E dom(p) we write Pi instead of p(i). If p 

sequence 

is a sequence of length n > 0 and a is an arbitrary element, we define ( ; ) 

(p;a)= (po, ... ,Pn-l,a). 

For the sequence oflength 0 we define (c; a) = (a). 
Let A be a set. An A-sequence is a sequence with range A. An is the 

set of all A-sequences of length n, A* the set of all finite A-sequences 
and A"" the set of all infinite A-sequences. Further we define A+ as 
A* U A"". 

The prefixes of a sequence p are the sequences pi = (Po, ... , Pi-I) 
with i E dom(p). By convention pO = f and for finite p we have pipi = p. 
Note that (pi;pi) = pi+l. 

A set DCA + is called prefix-closed if and only if 

Ifp E D, i E dom(p) : pi ED 

It is called suffix-closed if and only if 

Ifp E A"" : (lfi E dom(p) : pi E D) ~ P E D 

It is called closed if it is both prefix- and suffix-closed. A prefix-closed 
set D contains all prefixes of its elements; if a suffix-closed set D contains 
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event set E 

transition law C 

trace 
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maximal aut. trace 

autonomous behavior 

maximal aut. behavior 

all prefixes of an infinite p, it contains p itself. Note that the empty set 
is closed, A* is prefix-closed and Aoo is suffix-closed. 

We shall define now what we call transition systems. Transition 
systems consist of possible events, from some set E. Elements of E+ 
are called traces. The important part of a transition system is a function 
C, the transition law, telling what events come next when a certain finite 
trace has occurred. 

Definition 8.1 A transition system is a pair (E, C), where 

• E is a set, called the event set, 

• £. E E* -+ IP(E), called transition law. 

A trace of (E,£.) is an element of E+. An autonomous trace of (E,£.) 
is a sequence p E E+, such that 

Vi E dom(p) : Pi E £.(pi) 

An autonomous trace p is called maximal if and only if it is infinite, or 
finite and such that £.(p) = 0. The set of all autonomous traces of (E, £.) 
is called its autonomous behavior. The set of all maximal autonomous 
traces is called its maximal autonomous behavior. 
o 

For a trace p the set £.(p) is the set of possible extensions of p. Note that 
f is an autonomous trace for any transition system. It is easy to prove 
that the autonomous behavior of a transition system is closed. (The 
proof is an exercise.) The next theorem shows that any non-empty 
closed set of sequences can be described as the autonomous behavior 
of some transition system. This result is important because it proves 
that the autonomous behavior of a transition system can be obtained by 
restricting the set of all possible traces by so-called dynamic constraints. 

Theorem 8.1 Let E be a set and let D C E+ be non-empty and 
closed. Then there is a transition system (E, £.) with D as autonomous 
behavior. 

Proof. Let p E E*. Then we set 

£.(p) = {e I (p;e) ED}. 

We shall prove that (E,C) has D as autonomous behavior. First let 
qED. We shall prove that q is an autonomous trace. Take i E dom(q). 
We have to prove that qi E £.( l). By the definition of £., 

qi E £.(qi) ¢=> (qi; qi) E D. 

Because (qi; qi) = qi+l we have 
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The last assertion is true by the prefix-closedness of D. So q is indeed 
an autonomous trace of (e, C). 
Conversely, let q be an autonomous trace of (E, C). We have to show 
that qED. Since D is non-empty and prefix-closed we have fED. 
Moreover qO = f, so 

lED. 

If qi E D for some i E dom(q), then qi E C(qi), because q is an au
tonomous trace. Hence, by the definition of C, we obtain (qi; qi) E D, 
i.e. qi+I E D. This proves 

'<Ii E dom(q) : qi E D ~ i+1 E D. 

By induction, either q (if finite) or all its prefixes (if infinite) are in D. 
By the suffix-closedness of D we conclude that qED. 
D 

As a corollary, every prefix-closed subset of E" is the intersection of E" 
with the autonomous behavior of some transition system. 

The maximal autonomous behavior of a transition system can be 
obtained by removing all sequences from the autonomous behavior that 
are prefixes of some autonomous trace. Conversely, the autonomous 
behavior is derived from the maximal autonomous behavior by adding 
all prefixes. A maximal autonomous trace has "maximal length" , which 
explains the term "maximal". We shall now define some properties of 
transition systems. 

Definition 8.2 An autonomous trace p of a transition system (E, C) 
is said to deadlock if and only if C(p) = 0. A transition system (E,C) 
is called deterministic if and only if its maximal autonomous behavior 
consists of a single sequence. 
D 

Often we deal with transition systems where only the last event of a 
finite trace determines the set of next events. Such transition systems 
are called memorylesB and their transition law can be characterized by 
a binary relation over E, called the transition law relation. We denote 
by i(p) the last event of a non-empty trace pEE", i.e. 

i(p) = Pili-I' 

Definition 8.3 Let (E, C) be a transition system. If 

'<Ip, q E E" : (p;e f /I q;e f /li(p) = i(q» ~ C(p) = C(q) 

then (E, C) is called memoryleBB. For such a memoryless transition 
system the binary relation T leE x E satisfying 

is called the transition law relation. 
D 
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state space 

monotonous transition system 

eager autonomous trace 

eager autonomous behavior 

;trongly memory less transition 
system 

Theorem 8.2 Let (E, C) be a memoryless transition system with tran
sition relation Ti. Then 

'1p E E* : C(p) = {e EEl (i(p), e) E Ti}. 

Proof. If e E C(p), then clearly (i(p), e) E Ti. Suppose that, con
versely, (i(p), e) E T t. Then there is a q E E* such that i(p) = i( q) and 
e E C(q). Since Cis memoryless, C(q) = C(p), so e E C(p). 
o 

Now we shall further elaborate our event set. Events have a time 
and state component; we assume that allowed event times are a subset 
of our standard time domain T, the non-negative real numbers. From 
now on, event sets have the shape St x T, where St is a set called a state 
space. Given an event e in some E, <1(e) will denote its state component 
and r(e) its time component, so e = (<1(e), r(e». We fix the start time 
of transition systems by setting for any transition law C 

'Ie E C(€) : r(e) = O. 

We introduce two behavioral properties of transition systems. 

Definition 8.4 A transition system is monotonous if and only if 

'1p E E*: 'Ie E C(p) : r(e) ;::: r(i(p». 

An autonomous trace p of a transition system is called eager autonomous 
trace eager if and only if 

'Ii E dom(p) : 'Ie E C(p') : r(p.) ::; r(e). 

The set of all eager autonomous traces is called the eager autonomous 
behavior. 
o 

From now on we will only consider monotonous transition systems. The 
eager autonomous behavior of (E, C) is the autonomous behavior of 
(E, C'), where £' is derived from C by deleting all elements from C(p) for 
which the time component is not minimal. Strange enough, a maximal 
autonomous trace of (E, C') does not have to be an eager maximal 
autonomous trace of (E, C), because it is possible to construct an C 
such that C(p) is an infinite set without minimal element for some p E 
dom(C). Then C'(p) is empty, so p has no eager continuation. However, 
if C(p) is finite and non-empty, then p has an eager continuation. 

Definition 8.5 A transition system is called strongly memoryless if and 
only if 

'1p, q E E* : <1(t(p» = <1(l(q»:} C(p) = C(q). 

o 
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Definition 8.6 Let (E, £) be a transition system. A livelock of (E, £) 
is an infinite autonomous trace p such that 

3t E T : 'Vi E dom(p) : r(p.) ~ t. 

o 

Our idea of a livelock is a trace that makes infinitely many transitions 
in finite time. 

We now defiue the path of a trace: the function giving the state for 
each point in time. A time point t is mapped to the state resulting from 
the last event that occurred before or at t. 

Definition 8.7 Let p be a non·empty trace of a transition system 
(St X T, C). The path of p is the function Wp E T ..... St satisfying 
Wp(t) = q(P')' where i is defined by 

i E dom(p) 1\ r(p.) ~ t 1\ 'Vj E dom(p): j > i => r(pj) > t. 

o 

Thus if a trace contains more events with the same time r(p.) the last 
one determines Wp. Note that a trace has no path if it livelocks, since 
it has no last event for every t E Tj we could define its path on a subset 
ofT. 

We conclude by defining some similarity relations on the set of tran· 
sition systems. They are used later to compare transition systems. For 
instance, if the events of two transition systems have different names 
but their autonomous behavior is the same after renaming the events, 
we would like to call them "similar". In fact they are isomorphic, which 
is the strongest form of similarity. 

Definition 8.8 Let A and B be transition systems. Further let X C 
EA X EB be a given binary relation. 

o 

• p E EA and q E EB are called X ·similar (notation ~ x) if and 
only if 

dom(p) = dom(q) 1\ 'Vi E dom(p): (P.,q.) E X. 

• A is called similar to B with respect to X if and only if 

'VPEEA,qEEB:P~X q=> 

'Vx E £A(p) : 3y E £B(q) : (x, y) E X 

• A and B are called bisimilar with respect to X if and only if A is 
similar to B with respect to X and B is similar to A with respect 
to 

X-I = iCy, x) I (x, y) EX}. 
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graph of function 

The following theorem establishes an obvious relationship between 
the autonomous behaviors of two similar transition systems. 

Theorem 8.3 Let A and B be two transition systems such that A is 
similar to B with respect to X C EA X EB. Further let PA and PB be 
the autonomous behaviors of A and B respectively. Then: 

'1p EPA: 3q E PB : P ~X q. 

Proof. Let P EPA. Clearly £ ~X £ and Po E £A(£)' SO 3qo E £B(£) : 
(Po, qo) EX. We apply induction on the length of an autonomous trace. 
Assume the assertion holds for autonomous traces oflength n in PA • Let 
P = (pnjPn) EPA. By the induction hypothesis we have the existence 
of an autonomous trace q E PB with length n such that pn ~ X q. Since 
Pn E £(pn) we have, by the similarity, the existence of qn E £( q) such 
that (Pn, qn) EX. Hence (pnj Pn) ~ X (qj qn) and (qj qn) E PB. 
o 

The next theorem establishes two important properties of similarity. 

Theorem 8.4 Similarity is reflexive and tmnsitive. 

Proof. Clearly a transition system (E, £) is similar to itself with respect 
to the relation {(x, x) I x E E}. This is the reflexivity. To prove the 
transitivity, let A, Band C be transition systems and let A be similar 
to B with respect to X and let B be similar to C with respect to Y. 
Further let Z = Y * X be defined by 

Z = {(x,z) 13y E EB: (x,y) E X A (y,z) E Y}. 

Finally let P E EA and r E Eo such that P ~ z r. Then there is a 
q E EiJ with P ~x q and q ~y r. From the two similarities we derive 

'Ix E £A(p) : 3z E Cdr) : 3y E £B(q) : (x, y) E X A (y, z) E Y. 

Hence 
'Ix E £A(p): 3z E £c(r) : (x, z) E Z. 

So A is similar to C with respect to Z. 
o 

Note that, under the assumptions of the theorem, there is for each 
autonomous trace P of A an autonomous trace q of B and an autonomous 
trace r of C such that P ~ X q and P ~ z r. Moreover there is an 
autonomous trace i' of C such that q ~y T. However, we may not 
conclude that q ~y r. If we know that there is only one r such that 
P ~z r, then this problem is solved. This is the case if the relations 
over the event sets are gmphs of functions, i.e. if there is a function f 
such that X = {(x,y) I x E EA A Y = f(x}) and a function g with 
Y = {(y, z) lyE EB A z = g(y)}. 

Symmetry is lacking in the similarity relation and therefore it is not 
an equivalence relation. Bisimilarity is symmetrical, so that relation 
should be an equivalence relation. 
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Theorem 8.5 Bisimilarity is an equivalence relation. 

Proof. The reflexivity is trivial. The symmetry follows from the fact 
that (X-1 )-1 = X. The transitivity follows from the fact that X-1 * 
y-1 = (Y * X)-1. 
o 

An important case is the situation where X C EA X EB is the graph 
of a bijective function f. Then bisimilarity of A and B means that 
A and B are isomorph and f induces a bijective function between the 
autonomous behaviors of the two transition systems. 

According to the definitions so far, similarity of transition systems 
establishes relations between autonomous traces of the same length only. 
However, if one transition system needs several transitions to simulate 
one transition of another transition system, then these transition sys
tems are not (bi)similar according to our definitions. In order to allow 
transition systems to be called "similar" in such cases we introduce the 
notion of an extended transition law. Let (E, £) be a transition system. 
The extended transition law C is defined by: 

C(p) = £(p) U {l(p)}. 

So we added "dummy" events, i.e. repetitions of events. We say transi
tion system A is weakly (bi}similar to B if the (bi)similarity holds with 
respect to the extended transition laws. In particular (E, £) and (E, C) 
are bisimilar with respect to the identity relation ({(x, x) I x E E}). 

A nice application of the similarity is that there is for each non
memoryless transition system a memoryless transition system that is 
similar to it. 

Theorem 8.6 Let an arbitrary transition system (E, £) be given. Then 
there is a memoryless transition system (E', £'), that is similar to (E, £) 
with respect to C, where 

• E' = E*, 

• C satisfies: (e',e) E C ~ i(e') = e. 

Proof. The proof is an exercise. 
o 
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Chapter 9 

Object framework 

In this chapter we introduce a framework to model complexes. Com
plexes will be used to define tokens and therefore to define the state 
space of a system. We start with the definition of a class model, which 
contains all information to define the structure of complex classes. A 
class model is an abstract syntax for class diagrams. (In the database 
literature the term database model is also used instead of class model.) 
Then we define the concept of an instance model, which contains the in
formation to define simplexes and complexes. Afterwards we introduce 
constraints. Constraints are used to define properties of complexes. Of
ten the systems engineer only wants to consider a subset of a complex 
class instead of the entire class. The transition law ofthe system should 
guarantee that in all reachable states the complexes in the tokens satisfy 
the constraints. So the constraints are the invariants for the transition 
law of the system. It is a proof obligation for the systems engineer to 
show that the constraints are indeed invariant. There are several kinds 
of constraints that occur frequently in models such as relationship, in
heritance and tree constraints. All constraints have a graphical notation 
in the class diagram. There are many other constraints possible (and of
ten necessary) in models, they can be expressed with predicate calculus 
(cf. part III). A complete object model consists of 

• a class model, 

• an instance model, 

• a set of constraints. 

Definition 9.1 A class model is a 7-tuple 

(CN, SN, RN, DM, RG, CB, CR) 

where 

• CN, SN and RN are mutually disjoint sets of names of complex 
classes, simplex classes and relationship classes respectively. There 
is one element in CN called the universal complex class. 
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instance model 

o 

• The functions 
DM ERN_SN 

and 

RG E RN - SN 

give a domain simplex class (DM) and a range simplex class (RG) 
to every relationship. 

• The functions 
CB E CN _ lP(SN) 

and 

CR E CN -lP(RN) 

determine the body simplex classes (CB) and the relationship 
classes (CR) contained in a complex class, such that 'In E CN : 
'IT E CR(n) : 

DM(r) E CB(n) 1\ RG(r) E CB(n). 

Further CB( universal) = SN and CR( universal) = RN. 

Note that the bodies of complex classes may overlap. All complex classes 
are subclasses of the universal complex class. A class model is (partly) 
defined in a class diagram as shown in part I. A class diagram may 
display constraints as well. Note that complex classes may share simplex 
classes and relationships. 

For the production/consumption example with class model X, the 
class diagram of figure 5.12 and the table of figure 5.13 show the follow· 
ing (we have written CN instead of CNx, etc.): 

CN = {Consumer, Machine, Order, PendingOrder, Operation} 
SN = {consumer, order, amount, machine, operation, duration, speed} 
RN = {p, q, T, s, t, u} 

DM = {(p, order), (q, order), (r, operation), (s, operation), ... } 
RG = {(p, consumer), (q, amount), (r, order), (s, machine), ... } 
CB = {( Consumer, {consumer}), (Machine, {machine, speed}), ... } 
CR = {( Comsumer, 0), (Machine, {u}), (Order, {q}), ... }. 

We shall now define the instance model of an object model. 

Definition 9.2 Let a class model be given. An instance model is a 
2·tuple (sim, com) where 

lim • sim is a set-valued function with dome sim) = SN and for n E SN 
sim( n) is the set of representations of all possible simplexes in the 
"world"; 
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• com is a set-valued function that assigns to all n E CN the set of com 

o 

representations of possible complexes, where 

com(n) = {c I c is a function /\ dom(c) = CB(n)U CR(n) /\ 

'<1m E CB(n) : c(m) C sim(m) /\ c(m) is finite /\ 

'<Ir E CR(r) : c(r) C c(DM(r)) x c(RG(r))} 

Note that if all pairs of complex classes differ at least in one simplex 
class or one relationship class, then we can determine the class of a 
given complex, because the domain of a complex contains the essential 
information. 

The function sim specifies which values are used to denote "atomic" 
entities of a certain kind in the world. The values have to come from a 
value universe U that will be defined in part V. Forinstance sim(chair) 
is the set of representations of all possible chairs in the world. Although 
two different simplex classes may have the same set of representations, 
we can always distinguish them because we assume the class of a simplex 
is always known. Given these representations, we can define complex 
classes by means of the function com that determines which "molecular" 
entities in the world belong to a certain complex class. A complex is 
defined as a function that assigns a finite set of simplexes to each name 
of a simplex class and a finite set of simplex pairs to each name of a rela
tionship class. As we have seen in part I, we can consider a complex as a 
graph with simplexes as nodes and relationships as edges, labeled with 
the names of the relationships; this is just another way of representing 
the function. The relationships may only connect simplexes that belong 
to the complex. The elements of simplex classes and complex classes 
are called instances of these classes. 

In the production/consumption example of figure 5.13 a possible 
instance (Le. a complex) c E com( Operation) is 

c = {( operation, { operationl} ), 

(machine, {machine3}), 

(order, {order123}), 

(amount, {10}), 

(speed, {35}), 

(q, {(order123, 10)}), 

(r, {( operationl, order123)}), 

(8, {( operationl , machine3)}), 

(u,{(machine3,35)}) 

}. 

In this example the second element of each pair is always a singleton. 
(This is because all relations are functional and total and because there 
is a root simplex class due to a tree constraint.) 
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representation function 

object universe OU 

Rr,c 

In specifications it is sometimes cumbersome to use the (function) 
representation of a complex class as defined above. Depending on the 
role of the complexes in processors the systems engineer can use a dif
ferent representation. If he does so, he needs to define for each complex 
class n a bijective representation function 

RFn E U -+ com(n). 

The next step in the definition of an object model is the definition 
of constraints. First we introduce, for notational convenience, some 
auxiliary functions and a set called the object universe, which contains 
all possible complexes in the universal complex class. 

Definition 9.3 Let a class model and an instance model be given . 

• au = UnECN com(n) is the object universe. 

• Rr•c is, for each complex c E au and relationship r, a func
tion with dom( Rr.c) = c( DM( r)), that assigns to a simplex x E 
c(DM(r)) the set of simplexes that have a relationship of class r 
with it: 

Rr.c(x) = {y lyE c(RG(r)) A (x,y) E c(rn. 

Dr., • Dr.c is a similar function with dom(Dr.c) = c(RG(r)), but it con-

constraint 

cerns the domain of a relationship. For a simplex y E c( RG( r)): 

Dr.c(Y) = {x I x E c(DM(r)) 1\ (x, y) E c(rn. 

o 

In general, a constraint is a Boolean function (i.e. a function with 
range {true, false}) over a complex class. A Boolean function is ex
pressed by a predicate with a free variable that denotes a complex. 

Constraints will be expressed in the specification language (cf. part 
V). Here we will give an example of a constraint. Regard the class 
model displayed in figure 4.16. There we required that the person to 
which the student refers by means of the relationships a and b and the 
person he refers to by c and e are the same. This can be expressed by 
following predicate with u as an arbitrary universal complex: 

'Ix E u(student) : Rb.u(R •• u(x)) = R •. u(Rc.u(x)). 

Here we silently extended the domain of R in order to apply the function 
to sets of complexes in the obvious way. Furthermore, we did not express 
that Rb.u(R •. u(x)) and Re.u(Rc.u(x)) should be singletons. There are 
more efficient notations possible, but in essence every constraint can be 
expressed like this one. A more efficient notation is used in part I, where 
the dependency on the complex u is deleted, where u( n) is replaced by 
n (for a simplex class n) and where the functions Rn•u and Dn•u are 
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replaced by nand n-1 respectively. With these conventions the formula 
above will read in the specification language: 

Itx: student 0 b(a(x» = e(c(x». 

There are several constraints that occur frequently in practice and 
therefore they have a representation in the class diagram, as shown 
in part I. We call them the standard constmint; they consist of rela
tionship, inheritance and tree constraints. The relationship constmint 
consist of cardinality, key and exclusion constraints. 

Definition 9.4 Let a class model and an instance model be given. The 
function 

FC ERN ->lP({total, functional, injective, surjective}) 

denotes the cardinality constraints. The cardinality constraints imply 
a set of requirements for a relationship r and each complex c with r E 
dom(c)n RN: 

o if total E FC( r) then: 

Itx E c(DM(r»: Rr,c(x) ~ 0 

o if functional E FC( r) then: 

Itx E c(DM(r»: #Rr,b) ~ 1 

o if injective E FC( r) then: 

Ity E c(RG(r»: #Dr,c(Y) ~ 1 

o if surjective E FC( r) then: 

Ity E c(RG(r»: Dr,c(Y) ~ 0 

o 

Definition 9.S Let a class model and an instance model be given. The 
functions 

DK E SN ->lP(lP(RN» 

RK E SN ->lP(lP(RN» 

DX E SN ->lP(lP(RN» 

RX E SN -> lP(lP(RN» 

respectively denote the domain key constraints, the mnge key con
straints, the domain exclusion constraints and the mnge exclusion con
straints. They should satisfy 
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relationship path 

"In E SN : "Ir E U DK(n) : DM(r) = n 

"In E SN : "Ir E U RK(n) : RG(r) = n 

"In E SN: "Ir E UDX(n): DM(r) = n 

"In E SN :"Ir E URX(n): RG(r) = n. 

A domain key constraint is an element of DK(s) and analogously for the 
other constraints. For an arbitrary complex c these constraints imply 
respectively: "In E SN: "IC E DK(n): "Ix,y E c(DM(r)): 

("Ir E C : R,.Ax) = Rr.c(Y) -10) '* x = y. 

"In E SN: "IC E RK(n): "Ix,y E c(RG(r)): 

("Ir E C : Dr,c(x) = Dr.c(Y) -10) '* x = y. 

"In E SN : "IC E DX(n) : 

"IT1' T2 E C: "Ix E c(DM(Tl)): Rr,Ax) = 0 V Rr"c(x) = 0. 

"In E SN : "IC E RX(n) : 

"IT!! T2 E C: "Ix E c(RG(rl)) : Dr"c(x) = 0 V Dr,Ax) = 0. 

o 

Note that totality and surjectivity are each other's counterparts and also 
functionality and injectivity, in the sense that the roles of Rand Dare 
exchanged. Further note that totality and injectivity together imply a 
domain key constraint and similarly surjectivity and functionality imply 
a range key constraint. 

For the production/consumption example the class diagram of figure 
5.12 and the table of figure 5.13 show the constraints as displayed in 
figure 9.1. 

The key constraints can be used to find representations for simplexes: 
we may choose as representation a combination of the representations 
of the simplexes involved in a key constraint. If for instance the simplex 
class operation is the domain simplex class of two relationships sand T 
with range simplex classes machine and order respectively and if s and 
r form a domain key constraint, then we can use the pairing of the rep
resentations of machine and order as the representation for operation. 
Note that we cannot combine domain and range key constraints into one 
"key constraint": if there is a relationship that connects a simplex class 
with itself, it is ambiguous if the domain or the range of this relationship 
should be used. 

The next kind of constraints we consider are the inheritance con
straints. First we introduce the notion of a relationship path. 

Definition 9.6 Let a class model and an instance model be given. A 
sequence of relationship class names (r!! . .. , rk) is called a relationship 
path if and only if all elements are different and 

'Vi E {I, ... , k - I} : RG(r,) = DM(r'+l)' 

o 
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FC {(p, {functional, total}), 
(q, {functional, total}), 
(r, {junctional, total}), 
(s, {junctional, total}), 
(t, {functional, total}), 
( u, {functional, total} ) 

} 
DK {( comsumer, O), 

(order, O), 
(amount,0), 
(machine, O), 
(operation, {{ r, s}}), 
(duration, O), 
(speed,0) 

} 
RK {(consumer, O), 
DX (order, O), 
RX (amount,0), 

(machine, O), 
(operation, O), 
(duration, 0), 
(speed,0) 

} 
IC ° TC {( Consumer, consumer), 

(Machine, machine), 
(Order, order), 
(PendingOrder, order), 
(Operation, operation) 

} 
PC ° 

Figure 9.1: Constraints for the production/consumption system. 
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inheritance relationship 

inheritance constraint IC 

cont(e) 

tree constraints TC 

Definition 9.7 Let a class model and an instance model be given. A 
relationship is called an inheritance relationship if it is total, functional 
and injective. An inheritance constraint Ie is a set of inheritance rela
tionships Ie c RN such that: 

o 

• the graph with nodes in SN and edges {(DM(r), RG(r)) IrE Ie} 
is a directed acyclic graph, 

• for all complexes c and all relationship paths (rl, ... , rk) and 
(Pl, ... ,PI) in dom(c) n Ie, with 

the following predicate should hold: '<Ix E c(DM(rl)) : 

An inheritance constraint Ie is a set of total, functional and injective 
relationships with the property that they form a directed acyclic graph. 
If we follow two different paths formed of inheritance relationships, going 
from one simplex to another, then it should hold for each complex, that 
if we start in the first simplex and we follow the paths, then both paths 
will end in the second simplex. 

An inheritance structure induces a partial order on the simplex 
classes. Sometimes it is useful to combine the inheritance constraint 
with the exclusion constraint. For instance, in the example of figure 
4.16 we might want to exclude the states in which a school person is a 
student and a teacher at the same time, therefore we could add the set 
{c, d} to RX(schoolperson). Note that an inheritance constraint may 
contain several different class hierarchies. Inheritance can be used to 
obtain efficient representations in a database. We will discuss this topic 
in chapter 13. 

The last kind of constraint we consider are the tree constraint. A 
tree constraint specifies that the complexes in a class have a tree-like 
structure, i.e. there is one simplex, called the root simplex, from which 
all the other simplexes can be reached by an undirected path of rela
tionships. Furthermore the complex may contain only one simplex of 
the root simplex class. For a complex c we define 

cont(c) = u c(k), 
kEdom(c)nSN 

the set of all simplexes enclosed in the complex c. 

Definition 9.8 A tree constraint is an element of the function 

TeE eN .... SN 

where '<In E dom( Te): 
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o 

• TC(n) E CB(n) is called the root simplex class, 

• "Ie E com( n) : #c( TC( n» = 1; this element is called the root 
simplex, 

• Vc E com(n) : "Ix E cont(c): 
there is a sequence of simplexes (zt, ... , Zk) in cont( c) such that: 

- Zl E c(TC(n» " Zk = x 

- Vi E {I, ... , k - I} : 3r E dom(c) n RN : 

(Zi' Zi+l) E c(r) V (Zi+l' Zi) E c(r) 

Note that Zl is the root simplex. 
Having defined the class model, instance model and constraints, we 

are now ready to define an object model. 

root simplex class 

root simplex 

Definition 9.9 An object model is a4-tuple (CM, 1M, SC, PC), where object model 

• CM is a class model, CM 

• 1M is an instance model, 1M 

• SC is a tuple of standard constraints, i.e. sc 

o 

SC = (FC, DK, RK, DX, RX, IC, TC) 

where (FC, DK, RK, DX, RX) denote the relationship con
straints, IC is an inheritance constraint and TC denotes the tree 
constraints, 

• PC is a Boolean function, called the free constraint, such that: 
dom(PC) = CN and 

"In E CN : PC(n) E com(n) -+ {true,false} 

Instead of the set of all complexes of a class n, com( n), we are 
often interested in the subset of complexes that satisfy the standard 
and free constraints. In the following chapter an object model is used 
to define the state space. Note that there may be constraints on states, 
that cannot be expressed as constraints on objects. For instance, the 
constraint that "no two tokens have a common simplex of a certain 
class", is such a global constraint. 
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Chapter 10 

Actor framework 

In the preceeding chapter we introduced the object framework as a layer 
on top of the (transition) systems framework to facilitate the model
ing of a state space. Here we introduce the actor framework to make 
the modeling of transition relations more easy. The actor framework 
may be regarded as a next layer, since it uses concepts from the ob
ject framework. However, the coupling between the two frameworks is 
rather loose, which implies that the systems engineer is free to start 
with object modeling or with actor modeling as he likes. 

First we introduce the concept of an actor. We distinguish flat nets 
and hierarchical actors. Inside a flat net all actors are processors, so 
there are no actors that represent a (sub)network. A hierarchical ac
tor is a network that contains also non-elementary actors and such a 
network can be transformed into a flat net. We first define a flat net 
model, which is in fact a formal definition of the actor networks (without 
hierarchy) as displayed in chapter 5. Secondly we define a hierarchical 
actor structure. Again this is a formal definition of the actor networks 
from chapter 5, now also including the non-elementary actors. Then 
we define the actor model, which encloses an object model and a flat 
net model. Subsequently we define how an actor model determines a 
transition relation. Finally we give some properties of actor models. 

Note that a hierarchical net model is an abstract syntax for the 
diagrams of actor networks we draw and that a flat net model is a 
special case of a hierarchical net model. The semantics is defined by the 
actor model, in particular the transition system defined by the actor 
model. 

Definition 10.1 A flat net model is a 6-tuple (L,P,C,I,O,M) where 

• L (locations) is a finite set of places, 

• P is a finite set of processors, 

• C is a finite set of connector names, 

• I E P --+ JP( C) assigns to a processor a set of input connectors, 

· ° E P --+ JP( C) assigns to a processor a set of output connectors, 
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M • M E P --+ (C - L) (match) assigns the connectors of each pro-

open actor 

closed actor 

hierarchical net model 

cessor to places, 

such that: 

o 

• L, P and C are mutually disjoint, 

• Vp E P : dom(Mp) C I(p) U O(p), 

• Vp E P: I(p) n O(p) = 0, i.e. no connector name is input and 
output for the same processor, 

• Vp E P: I(p) f. 0, i.e. each processor has at least one input 
connector, 

• UpEP(I(p) U O(p)) = C, i.e. there are no "dangling" connectors. 

It is easy to see how a flat net model can be represented graphically 
(cf. figure 5.5). Note that the same connector name may occur at differ
ent processors and that processors do not need to have output places. 
Further note that there may be processors with unconnected connec
tors. Such actors are called open actors while the others are called 
closed. Only closed (flat) actors will have a state space and a transition 
relation associated to them. Open actors are considered to be com
ponents out of which one can make closed actors. A single processor, 
without places, is an example of an open actor. A processor and a place 
may be connected by more than one input or output connector. Note 
that channels and stores are just special places and therefore we do not 
consider them here. 

We will now define the hierarchical net model; it is just a general
ization of the flat net model. 

Definition 10.2 A hierarchical net model is a IO-tuple 

(L,P,A,C,I,O, top, HA, HL,M) 

such that: 

L • L (locations) is a finite set of places, 

p • P is a finite set of processors, 

A • A is a finite set of actors, PeA, 

c • C is a finite set of connector names, 

I • I E A --+ IP( C) assigns to each actor a set of input connectors, 

o • 0 E A --+ IP( C) assigns to each actor a set of output connectors, 

top • top E A is called the top level actor, 

HA • HA E A \ {top} --+ A assigns every processor or actor to an (en-
closing) actor, except for top, 
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• HL E L -+ A assigns every place to an actor, HL 

• M E A\{top} -+ (C ..... L U C) (match) assigns connectors of M 

actors to places or connectors, 

such that 

o 

• L, A and C are mutually disjoint sets, 

• 'Va E A : I(a) n O(a) = 0, i.e. no connector name is input and 
output for the same actor, 

• 'Vp E P : I(p) i 0, i.e. all processors must have at least one input 
connector, 

• 'Va E A\{top} : dom(M.) = I(a) U O(a), i.e. all connectors of an 
actor (except for top) are connected, 

• C = U.EA(I(a) U O(a)), i.e. there are no dangling connectors, 

• 'Va E A\{top}: 3k E IN: HAk(a) = top, i.e. all actors are directly 
or indirectly mapped to the top level actor, 

• 'Vi E L : 3k E IN : HAk(HL(i)) = top, i.e. all places are directly or 
indirectly mapped to the top level actor, 

• 'Va E A\P: 

'Ve E I(a): 3b E A: 3d E I(b): Mb(d) = e 1\ 

'Ie E O( a) : 3b E A : 3d E O(b) : Mb( d) = e, 

so the connectors of a "high level" actor are internally connected 
to an actor: input to input and output to output, 

• 'Va E A\{top} : 'Ve ,E I(a) U O(a): 

M.(e) E L:} HL(M.(e)) = HA(a) 1\ 

Ma(e) E C 1\ e E I(a):} M.(e) E I(HA(a)) 1\ 

Ma(c) E C 1\ c E O(a):} Ma(c) E O(HA(a)), 

which means that if a connector is connected to a place then this 
place belongs to the same higher-level actor as the actor itself and 
if a connector of an actor is connected to another connector, then 
this last one is a connector of the higher-level actor and of the 
same kind. 

Note that the second last requirement of the above definition does not 
imply that a connector of a non-elementary actor a is internally con
nected to an actor enclosed in a: for this we also need the last require
ment. The top level actor (called top) is the only actor that may have 
unconnected connectors. An actor that has unconnected connectors is 
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called open, otherwise it is closed. Further note that we did not in
troduce stores yet. A store is just a special place in the sense that it 
is always connected to one input and one output connector for each 
processor to which it is connected. We consider it to be syntactical 
"sugar" . 

In figure 10.1 we display a hierarchical net model graphically. In 
figure 10.2 the same net model is presented in table format. It is easy 
to verify that all requirements are satisfied. 

~------------------------I 

I I 
~~x~ _____ .~ x 0 ~b~ ______________________ -r~~ 

B 

w w 

r----
,D , , 

• --------------------, 
x , , 

'4 ~.!!..-_..( • }-__ ..!!boj , , , , L _________________________ ~ I 

~------------------------~ 
Figure 10.1: A hierarchical net model. 

A I(a) O(a) HA(a) L HL(e) A C M.(c) 
top W,x V,z - Q top B a x 
B a x top R top x Q 
C V b,z top S D V Q 
D e,w d top c b V 
E X,V a D z R 
F b z D e R 

D W W 
d z 
x e 

E V W 
a S 

F b S 
z d 

Figure 10.2: A hierarchical net model, table format. 

Each hierarchical net model determines precisely one flat net model. 
In fact we define the transition system associated with a closed hierar
chical actor to be the one that is associated with (closed) flat net model. 
We formulate the transformation from a closed hierarchical net model 
to a flat net model as a theorem. 
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Theorem 10.1 Let (L, P,A,C,I,O, top, HA, HL, M) be a closed hier
archical net model. Let the function g E A \ { top} -> (C ...... L) be 
defined by Va E A: "Ie E I(a) U O(a) : 

Ma(e) E L:} ga(e) = Ma(e) " 

Ma(e) E C:} ga(e) = gHA(a)(Ma(e», 

where dom(ga) = I( a) U O( a). Then g is defined correctly and 

(L,P,C,j,O,M) 

forms a fiat net model, where C = UpEP(I(p) U O(p» and j = It P, 
0= ° t P, M = g t P. 

Proof. There are two properties to be proven: first that g is defined 
correctly by the recursive definition and secondly that the defined tuple 
is a correct fiat net model. The proof is an exercise. 
D 

Next we will define the concept of an actor model. It encompasses a 
fiat net model and an object model. The definition is given first and an 
elucidation afterwards. 

Definition 10.3 An actor model is an 8-tuple 

(FN, OM, CT, CA, T, ID, F, R) 

where 

actor model 

• FN is a closed flat net model (cf. definition 10.1), FN 

• OM is an object model (cf. definition 9.9), OM 

• CA E L -> CN is called the class assignment function, it deter- CA 
mines for each place a complex class, 

• CT E P -> (C .... CN) assigns to each connector of a processor a CT 
complex class such that 

Vp E P: dom(CTp) = I(p) U O(p) 

" "Ie E dom(Mp) : CTp(e) = CA(Mp(e», 

which means that a connector and the place to which it is con
nected have the same complex class, 

• T is a subset of the non-negative real numbers that contains 0, it 
is called the time domain, 

• ID is a countable set of identities, 

• F E ID .... ID is called the parent function and it satisfies: 

Vi E dom(F) : 3n E IN : Fn(i) E ID\dom(F), 
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o 

• REP -+ IP(C +> ID x OU x T), where Rp is called the processor 
relation of processor p and the elements of Rp are called firing 
rules. The processor relation should satisfy '1p E P : Rp ~ 0 and 
'1p E P : '1r E Rp : 

1. dom(r) C I(p) U O(p) 1\ dom(r) n I(p) ~ 0 

2. Va E dom(r): 1r2(r(a)) E com( CTp(a)) 

3. Va E I(p)ndom(r): Vb E O(p)ndom(r) : 1r3(r(a)) $ 1r3(r(b)) 

4. 3x E rng(r r I(p)): '1y E rng(r r O(p)): F(1rl(Y)) = 1rl(X) 

5. '1x,y E dom(r)nO(p): x ~ y:} 1rl(r(x)) ~ 1rl(r(y)) 

The sets T and ID are used to give a complex a time stamp and an 
identity, respectively. The function CA assigns a name of a complex 
class to each place. Objects in a place should always belong to the 
complex class assigned to the place. 

F The function F is used to "create" new identities out of old ones. 
This proceeds as follows; given an identity. i a new identity j should 
satisfy F(j) = i. If F-1 denotes the inverse of F then F-l(i) is the set 
of new identities, created out of i. We will only use a finite subset of 
this set. The requirement on F implies that no identity is a descendant 
of itself. The set ID\dom(F) is the set of start identities, they do not 
have ancestors. As an example of an identity set consider the set IN", 
the set of all sequences of natural numbers. The "children" created by 
an identity i E IN", are all sequences (i; j) where j E IN and ";" denotes 
concatenation. The function F applied to a non-empty sequence gives 
the sequence with the last element removed. It is also clear that there is 
an n E IN for every identity such that Fn applied to this identity gives 
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the empty sequence. Here dom(F) = lV·\ {f}. (Later we will derive 
some properties of F.) 

The definition of Rp is qnite complicated and requires some expla
nation. Informally, a firing rule in Rp contains connectors of p and 
"things" (tokens) produced or consumed for these connectors in a firing 
of p. Note that a firing rule contains "things" that are almost tokens, 
the only difference with tokens is, that the place of a token is replaced 
by a connector, and that the order of components is a bit different. This 
makes it possible to use the same processor relation in an actor several 
times, in combination with different places. A processor p executes or 
fires, according to one firing rule in Rp. 

The first requirement of Rp states, that only tokens are consumed 
from, or produced for connectors of p and that there is at least one input 
token (which is important for the activation of the processor and for the 
identification of new tokens). 

The second requirement states that consumed or produced tokens 
should have the right class. 

The third requirement says that all produced tokens should have a 
time stamp larger or equal to the time stamps of all consumed ones 
(which is important for the monotonicity of time, as will be seen later. 
Note that we usually do not specify the time stamps of the new tokens, 
but only a delay that has to be added to the time of the transition. 

The fourth and fifth requirement concern the identification of new 
tokens. Remember that we have approached the identification of tokens 
in a constructive way, by introducing a specific identification mechanism. 
All produced tokens get their identity from one consumed token: they 
get an identity i such that F( i) equals the identity of the consumed 
token that is selected for identification. So the new tokens get different 
identities, that are descendants of the identity of the selected token. 

Now we are ready to define the state space of an actor model. 

Definition 10.4 Let an actor model be given. The state space St is 
defined by 

St c ID .... au x T x L, 

where 

• au is the object universe (cf. definition 9.3), 

• "Is E St : Vi E dom(s) : 1I'1(8(i» E com( CA(1I'3(S(i»))) 

• "Is E St : 8 is finite, 

• "Is E St : Vi,j E dom(s) : i t= j =? ~3n E lV : i = Fn(j). 

state space St 

A state is an element of St; the elements of a state are called tokens. state 
o token 

So a state is a set of 4-tuples with a unique first component, denoting 
the identity, the complex, the availability time (time stamp) and the 
place of a token, respectively. The second requirement states that the 
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tokens in a place should carry a complex that belongs to the class of 
the place. The last requirement says that in a state no identity is the 
ancestor of another one. 

The next step is the introduction of the transition relation. The 
transition relation relates a state to a possible successor state. In the 
definition of a transition relation we use the concept of a firing assign
ment. A firing assignment assigns to a non-empty set of processors a 
firing rule, i.e. an element of Rp, for each processor in the set. So several 
processors may fire simultaneously, but no processor may fire simulta
neously with itself. (In other Petri net formalisms this is sometimes 
allowed too.) 

Definition 10.5 A firing assignment I is a function that satisfies: 

• IE P ..... (C ..... ID x OU x T), 

• dom(J) f. 0, 

• '1p E dom(J) : I(p) E Rp. 

o 

So I(p) is a firing rule of processor p. Each transition is caused by the 
firing of one firing assignment, that determines one or more firing rules. 

Note that a token is of the form (i,o,t,l) where i E ID, oE OU, t E 
T, l E L, while a firing rule is of the form (c, i, 0, t), with c E C. This 
is because in a processor relation the place is not known, but only the 
connector, to which the token corresponds. Further note that a state 
is a function of identities and a firing rule a function of connectors. 
Therefore the structure of a firing rule differs from the structure of a 
state. 

Definition 10.6 Let an actor model with state space St be given. fur
ther let FA be the set of all firing assignments. The transition relation 
Tr, with Tr cSt x St, satisfies '1(s,s') E Tr: 31 E FA : 

1. In(J) C s 

2. '1p,p' E dom(J) :pf.P'* in(p,/(p»nin(p',/(p'» = 0 

3. time( s) = tim(J) 

4. s' = (s\In(J» U Out(J) 

where '1p E P : '1r E Rp : 

in(p,r) = {(i,(x,t,l»13cEI(p)ndom(r):r(c)=(i,x,t)IIMp(c)=l} 

In(J) = U{in(p, I(p» I p E dom(J)} 
out(p, r) 

Out(J) 

tim(J) 

time(s) 

= 
= 
= 
= 

{( i, (x, t, l» I 3c E O(p) n dome r) : r( c) = (i, x, t) II Mp( c) = l} 

U{ out(p, I(p» I p E dom(J)} 

max{1l'3(x) I x E In(J)} 

min{tim(J) I I E FA II In(J) C s}. 

A firing assignment I is called applicable for state s if it satisfies the 
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requirements 1,2 and 3. 
D 

Each transition is the firing of a non-empty set of processors according 
to firing assignment f. For each processor p a firing rule in the processor 
relation is chosen (J(p)). The set of all tokens that are consumed by 
the firing is [n(J). This set of tokens should be available in the state 
s (requirement 1). Further no two processors may consume the same 
token (requirement 2). Requirement 3 states that the set of consumed 
tokens is the earliest possible set: tim(J) determines the maximal time 
stamp of the tokens in [n(J), requirement 3 says that we only may use 
firing assignment f if the maximal time stamp is minimal, so there is no 
transition possible at an earlier time. This property makes the transition 
law eager. Note that the function time assigns to each state the time 
of the first possible transition. We call this the transition time of the 
state. The definition of timet s) is subtle: it is the minimal firing time 
of a set of firing rules that consume only tokens from the given state, 
but we did not require that two different processors are not consuming 
the same tokens (as requirement 2 for the used firing rule). The reason 
is, that, even if two processors would consume a same token, we can 
delete one of them (from the domain of the firing assignment) without 
increasing the minimum time. Requirement 4 specifies how the new 
state is computed: first delete all consumed tokens, then add the newly 
produced tokens. 

Although we have defined a state space St and a transition relation 
Tr for an actor model, we did not define a transition law (cf. definition 
8.1). The transition law defines a transition system for an actor model. 
Here a set of initial states has to be given, because otherwise the tran
sition law is undefined. Note that the definition of a transition relation 
is independent of iuitial states. 

Definition 10.7 Let an actor model with state space St, transition 
relation Tr and set of initial states So C St be given. The transition 
law £ satisfies 

£ E (St X T)* -+ IP(St x T) 

such that 
£(£) = {(s,O) Is E So} 

and '</p E (St x T)*\{£}: 

£(p) = {(s,t) I (o-(l(p)),s) E Tr " t = time(o-(l(p)))}. 

We say the pair (St, Tr) induces the transition system (St x T,£). 
D 

Here l(p) denotes the last event of a non-empty trace p and o-(e) and 
r(e) denote the state and time coniPcomponentiPonent of an event e (as 
defined in chapter 8). Note that the event set (see definition 8.1) is 
St x T. Instead of giving a set of initial states for an actor model we 
may also give a transition law; from one we can derive the other. 
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actor model properties 

Theorem 10.2 Let an actor model with state space St and transition 
law C be given. The transition law is Btrongly memoryleBB. 

Proof. Consider two finite traces p and q. Let l(p) = l(q) = s. Then 
we have 

C(p) = C(q) = {(B', t) I (B,s') E Tr A t = time(<1(s))}. 

Hence only the last reached state determines the event set. So, according 
to definition 8.5, C is strongly memoryless. 
o 

Now we know that the transition law is (strongly) memoryless we can 
apply theorem 8.2, so the transition law C is generated by the transition 
law relation Tl defined in definition 8.3. The following relationship 
between Tr and T l exists: 

Tl = {«s, t), (s', t')) I (s, s') E Tr A t ~ time(s) = t'}. 

Now we have given the definition of the actor model, we will verify 
some general properties of the actor model and the autonomous behavior 
induced by it. For instance, it is not clear whether s' = (s\In(f)) U 
Out (f) is an element of the state space or not. (We will prove it is.) It 
obviously is a set of tokens, but it is not clear whether it satisfies all the 
requirements of a state space. Note that the definition of the transition 
law remains correct, because if s' is not an element of St, then the 
pair (s, s') does not belong to Tr. We also prove that s\In(f) and 
Out (f) are disjoint, which means that the produced tokens are indeed 
new. Further we will show that the transition relation Tr determines a 
monotonous and eager transition law. Another property, that appeals 
to our intuition, is that if processors may fire simultaneously, the next 
state can also be reached by firing all the processors individually in some 
arbitrary order. This property is called serializability. We also give a 
sufficient condition for a system to prevent livelock. These properties 
can be considered as proofs that the framework is "sound", in the sense 
that it corresponds to our intuition. 

In the definition of a state space (definition lOA) we required the 
property that in a state no identity is the ancestor of another one. 
We will show (in lemma 10.1) that this property is an invariant of the 
mechanism to create identities: when a processor fires, one input token 
is chosen and all new tokens get an identity that is derived from this 
one, i.e. their identity is mapped by F to the identity of the chosen 
input token. 

Lemma 10.1 Let the Boolean function q on IP(ID) be defined by VI E 
IP(ID) : 

q(I) = Vi,j E I, n E .hV\{0} : Fn(i) "# j 

(Function q means that no identity in I is the ancestor of another one.) 
If for some J C ID holds that q( J) = true then 

V j E J, i E ID : F( i) = j => i ~ J 
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and 
'Vj E J : q((J\{j}) U {i I F(i) = j}) = true. 

(So q still holds if one replaces an identity j by its "children" i.) 

Proof. Fix some j E J. We start with the first assertion. Assume 
for some i E ID with F( i) = j that i E J. This violates the property 
q(J) = true (with n = 1). So the first assertion holds. Next we consider 
the second assertion. Let, for some j E J, 

J' = (J\{j}) U {i I F(i) = j}. 

Assume that x,y E J' /I x f Y /I 3n E 1N\{0}: Fn(x) = y. We prove 
that this implies a contradiction: 

• if x, y E J\ {j} then the contradiction follows from q( J) = true, 

• if F(x) = F(y) = j then we have Fn+1(x) = F(y) = j and so 
Fn(F(x)) = F(x) which is a contradiction because of the property 
of F (see definition 10.3), 

• if F(x) = j /I F(y) f j then y E J\{j} and y = Fn(x) = pn-l(j) 
which is a contradiction because y,j E J and q(J) = true (if 
n = 1 we have y = F( x) = j, which is a contradiction because 
y E J\{j}), 

• if F(x) f j /I F(y) = j then Fn+l(x) = j and x E J\{j} which 
is also a contradiction because q( J) = true. 

So in all cases there is a contradiction, which proves the second assertion. 
o 

Theorem 10.3 Let an actor model with state space St be given. Let 
8 E St and let J be an applicable firing assignment. Then we have: 

• no two processors p and pi (p f pi) produce the same tokens, Le. 

out(p, J(p)) n out(p', J(p')) = 0 

• the produced tokens are different from the consumed tokens, Le. 

(8 \In(f)) n Out(f) = 0 

• consumption of In(f) and production of Out(f) gives a new state, 
i.e. 

(s\In(f)) U Out (f) ESt. 

Proof. We will prove the theorem for an J with #(f) = 2, Le. a 
firing assignment in which two processors fire. The case where only one 
processor fires and the general case are easily derived from this case. 
Let dom(f) = {PI, pz}. 

We will first prove: all newly produced tokens have a different iden
tity, which implies the first assertion. Note that tokens produced by one 
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monotonous 

processor have djfferent identities, because of property 5 of the proces
sor relation Rp (definition 10.3). Let the tokens, selected for creation 
of new identities in rng(J(pt)) and rng(J(P2)), have identities it and 
h respectively. Clearly it '" h (because of requirement 2 of the tran
sition relation, definition 10.6, and the fact that tokens in state shave 
different identities). Consider two arbitrary tokens in out(P1, !(pt)) and 
out(P2, !(P2)) with identities i1 and i2, respectively. Then i1 '" i2 be
cause F( i1) = it '" i2 = F( i2). 

Next we consider the second assertion. Let J be the set of all iden
tities in state s. It follows from the first assertion of lemma 10.1 that 
neither i1 nor i2 belongs to J\{it,h}. This proves the second assertion. 

To prove the last assertion note that s satisfies the constraints of the 
state space, which means that q( J) = true, where q is defined in lemma 
10.1. According to that lemma the set 

J1 = (J\{it}) U {i I F(i) = iJ} 

satisfies q( Jt) = true. And similarly satisfies the set 

h = (It\{h}) U {i I F(i) = h} 

also q( J2) = true. However the set of all identities of tokens in the new 
state is a subset of J2 (the proof of this is an exercise), so this set also 
has property q. This proves the last assertion. 
o 

The following assertion is an immediate consequence of this theorem: 

I/(s, s') E Tr ~ s '" 8'. 

The next theorem shows that the induced transition system is monotonous 
and that every autonomous trace is eager. In particular, if (s,s') E Tr, 
then 

time( s) :5 time( s'). 

Theorem 10.4 Let an actor model with state space St, transition re
lation Tr and transition law I:- be given. Then the induced transition 
system is monotonous and every autonomous trace is eager. 

Proof. We first prove the monotonicity. (Recall definition 8.4.) Let 
P = ((so, to), ... ) be an arbitrary autonomous trace. We will prove by 
induction that for n E IN: 

Note that T(Pn) = tn and that (by definition 10.7) time(u(Pn)) = 
time( sn) = tn+!, so we will prove tn :5 tn+!. 

We start with n = O. Since all tokens in So have non-negative time 
stamps, we have time( so) ~ O. On the other hand to = 0 by definition, 
so we have to :5 time(so) = t1. 
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Assume we have tn ::; tn+1' Then we consider tn+2 = time( Sn+1)' 
Note that, for some applicable firing assignment j it holds that 

where InU) C Sn. It follows from the definition of the processor relation 
(definition 10.3, property 3) that 

'1p E domU) : 'Ix E in(p,j(p)), y E out(p,j(p)): 1I"3(X) ::; 1I"3(Y)' 

Therefore: 

max{1I"3(X) I x E in(p,j(pm ::; min{1I"3(Y) lout(p,j(pm. 

Note that 

timU) = max{max{1I"3(x) I x E in(p, j(pm I p E domU)} 

and that timU) = time(sn). Hence 

'1p E dom{j): max{1I"3(x) I x E in(p,j(pm = time(sn), 

because otherwise we could delete a processor p from domU) in order 
to obtain an f E FA with a smaller maximum. So we have 

'1p E domU) : '1y E out(p, j(p)): 1I"3(y) ~ time(sn) 

and therefore 

We use this property to show that 

timU) = min{timU) I f E FA" InU) C Sn U QutU)}· 

Let f* E FA be defined by 

timU*) = min{timU) I f E FA /I InU) C Sn U OutU)}· 

Then timU) ~ tim(f*), because the set over which the minimum is 
taken for f*, is at least as large as the set for j. Assume 

timU) > timU*) 

which is equivalent to 

max{1I"3(X) I x E InU)} > max{1I"3(x) I x E InU*)}. 

This is only possible if InU*) n QutU) '" 0. However, then there is a 
y E OutU) n InU*) such that: 

1I"3(y)::; timU*) < timU) = max{1I"3(x) I x E InU)}. 
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This contradicts (*). So we have 

time(sn) = min{tim(f) I f E FA 1\ In(f) C sn} 

= 

min{tim(f) I f E FA 1\ In(f) C Sn U Outa)} 

$ 

min {tim (f) I f E FA 1\ In(f) C (sn \Ina)) U Out a)} 
= 

time(sn+l)' 

The inequality is justified by the fact that the minimum is taken over a 
larger set on the left-hand side. So this proves for all traces p: 

r(l(p)) $ time(q(£(p))). 

To verify the monotonicity we have to prove that for all events e in the 
set 

£(p) = {e I e = (s, t) 1\ (q(£(p)), s) E Tr 1\ t = time(q(£(p)))} 

the inequality r(e) ;:: r(£(p)) holds. This is the case because 

r(e) = time(q(£(p)));:: r(£(p)). 

To verify eagerness note that all events in £(p) have the same event 
time, which means that always one with minimal time stamp is chosen. 
D 

The next theorem gives the serializability property. 

Theorem 10.5 Let an actor model with state space St, transition re
lation Tr and set of firing rules FA be given. Let f E FA be applicable 
for state sand (s, 5") E Tr such that 

s" = (s\In(f)) U Out(f) 

If we divide f into two firing rules g, h E FA such that f = 9 U hand 
9 n h = 0, then: 

• 9 is an applicable firing rule for 5, 

• h is an applicable firing rule for s' = (s\In(g)) U Out(g), 

• time( 5') = time( s), 

• s" = (s'\In(h))U Out(h) = (s\(In(g)Uln(h)))U Out(g)U Out(h). 

Proof. Note first that In(g)nln(h) = 0, Out(g)n Out (h) = 0 and that 

In(f) = In(g)Uln(h) 1\ Out (f) = Out(g)uOut(h). (*) 

Further note that time(s) = tim (f) = tim(g) = tim(h). Hence 9 (and 
also h) is applicable in s. Since In(h) C s\In(g) we have In(h) C s', 
hence time(s') $ tim(h). By the former theorem we have time(s) $ 
time( s'). Hence h is applicable for s' and time( s') = time( s). The last 
assertion follows from (*). 
D 
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As a consequence of this theorem we may split every applicable firing as
signment into a sequence of elementary firing assignments with domains 
that contain only one processor. The order in whlch these processors 
fire is irrelevant for the final result. This property is used in the next 
theorem, which states that an actor model in which only one processor 
may fire in each transition, is similar to the same actor model in which 
several processors may fire simultaneously. 

Theorem 10.6 Let an actor model with state space St and a set of 
initial states be given. We consider two transition relations for this 
model: the "standard" transition relation Tr defined in definition 10.6 
and the transition relation Tr' defined by: 

Tr' = {(s,s') E Tr 13f E FA: #(f) = 1}. 

Let the transition systems induced by (St, Tr) and (St, Tr') be A and B 
respectively. Then B is similar to A with respect to the identity relation 
on St x T. 

Proof. It is obvious that B is similar to A , because each transition of 
B is also a transition of A. 
o 

Note that A is not similar to B. 
The next theorem gives a sufficient condition to avoid livelock. Re

member that a trace has livelock if it can make infinitely many transi
tions in a finite time interval. Hence no livelock means that the system 
makes progress. 

Theorem 10.7 Let an actor model and a transition law be given such 
that, for some f E 1R+, the processor relation satisfies "Ip E P : "Ir E Rp : 

max{1r3(r(a)) 1 a E I(p)ndom(r)} ~ f+min{1rk(b)) 1 b E O(p)ndom(r)} 

then the system is livelock free. 

Proof. Let p be an infinite autonomous trace. Note that U(Pi) contains 
only finitely many tokens for all i E IN, since all states are finite. Let, 
for n E IN, kn be defined by: 

kn = {i E dom(p) 1 0 ~ r(Pi) < nf} 

Hence k n is the set of (indexes of) events happening before nf. First we 
show kl is finite. Note that for all applicable firing rules f in the initial 
state 

because of the requirement on R. Hence all tokens, produced in events 
kl' have a time stamp greater or equal to f and cannot be consumed 
in an event during [0, f). So all events in kl are caused by tokens in 
u(Po) and this is a finite set. Suppose we have proven that kn is finite. 
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system composition 

external event 

composition of object models 

Hence the number of tokens produced before nE is finite. In all events 
occurring in [nE,(n+1)E) only tokens produced before nE are consumed, 
since tokens produced after nE are not available before (n + 1) •. Hence 
the number of events in [n., (n+ 1 )E) is finite and therefore kn+l is finite. 
So we have proven by induction that kn is finite for all n E IN. 
o 

1---------------, r--------r----' il 
1 All 1 
1 1 1 1 

i A I, i '~, i 'I B i 
1 1 1 1 
1 1 1 1 L ________ L ____ ~ 1 

L _______________ I 

Figure 10.3: The composition of two open systems. 

The next topic we consider in this chapter is the composition of two 
actor models. Composition of actor models is used to make complex 
systems out of more simple ones. As an example let us start with two 
open net models A and B. We add places and we connect the input and 
output connectors of A and B to these places. Then we have made the 
ciosures A and iJ of A and B respectively. The composition is denoted 
by A * iJ. In figure 10.3 we illustrate this. Here A and B both have two 
unconnected connectors. They are connected to two channels c and d. 
An event in which the contents of cord are changed by a processor of 
B, is called an external event for .A. In order to define the composition 
of two actor models we have to define the composition of two object 
models and the composition of two flat net models first, because an 
actor model encompasses these entities. 

Definition 10.8 Let A and B be two object models. They are com
posable if and only if 

• Vr E RNA n RNB : DMA(r) = DMB(r) " RGA(r) = RGB(r), 

• "In E CNA n CNB : CBA(n) = CBB(n) A CRA(n) = CRB(n), 

• "In E SNA n SNB : simA(n) = simB(n). 

Their composition, denoted by A*B, is defined as their component-wise 
union. (So if C = A * B then SNa = SNA U SNB, sima = simA U simB 
etc.). 
o 

Lemma 10.2 Let A and B be two composable object models and let 
C = A * B. Then: 

• C is a correct object model, i.e. it satisfies all requirements of 
definition 9.1 and 9.2, 
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• "In E CNA n CNB : comA(n) = comB(n). 

Proof. The proof is an exercise. (Check the appropriate definitions.) 
o 

Definition 10.9 Let A and B be two fiat net models. composition of 
flat net models They are composable if and only if 

• PA n PB = 0, 

• LA U LB, PA U PB, CA U CB are mutually disjoint. 

Their composition, denoted by A * B, is their component-wise union. 
(So if C = A * B then Le = LA U LB and Me = MA U MB etc.). 
o 

Lemma 10.3 Let A and B be two composable fiat net models and let 
C = A * B. Then C is a correct fiat net model. 

Proof. The proof is trivial because all requirements concern P and 
PA n PB = 0. So if the requirements hold for A and B they hold for C. 
o 

Definition 10.10 Let A and B be two actor models such that: 

• FNA and FNB are composable, 

• OMA and OMB are composable, 

• "Ii E LA n LB : CAA(i) = CAB(i), 

• TA = TB 1\ IDA = IDB 1\ FA = FB. 

Then A and Bare composable and their composition, denoted by A * B, 
is defined by: 

(FNA*FNB, OMA*OMB, CAAUCAB, CTAUCTB,TA, IDA, FA, RAURB). 

o 

Lemma 10.4 Let A and B be two composable actor models and let 
C = A * B. Then C is a correct actor model. 

Proof. We only have to verify the requirements for CT e and Re. For 
CTe the requirement follows from PA n PB = 0 and the composability 
of OMA and OM B. In order to verify the requirement for Re note that 

QUe = U come(n) = U come(n) U U come(n). 
nECNe nECNA nECNB 

By the second assertion of lemma 10.2 we have 

QUe = ~UA U QUB. 

Since IDA = IDB and TA = TB we have 

Re E Pe -+ IP(Ce"" IDe x OUe x Te). 

The rest of the requirements follow from the fact PA n PB = 0. 
o 
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The composition operators, all denoted by *, are associative and 
commutative. This is very important for the design of systems, because 
it gives us freedom in the way we want to decompose a complex system. 

Theorem 10.8 The composition operators * for object models, fiat net 
models and actor models are associative and commutative. 

Proof. The proof is an exercise. 
D 

Now we know how to compose actor models, we are interested in 
the relationship between the state spaces and transition relations of 
a composed system and its components. The next theorem gives an 
answer. 

Theorem 10.9 Let A and B be compos able actor models and let C = 
A * B. (The subscripts A, Band C are used to distinguish the model 
attributes.) If (s,s') E Trc then 3SA'S~ E StA,sB,sE E StB: 

• SA n SB = 0 /I S~ n SE = 0, 

• S = SA USB /I S' = S~ USE' 

• for i E {A, B}: Si 1 s: => (Si' sD E Tri /I timei( Si) = timec( s). 

Proof .. (For notational convenience we drop subscript C sometimes.) 
Let (s, s') E Trc and let lET Ac be applicable in s, such that 

s' = (s\In(J)) U Out(J). 

Further let Ii = I t Pi. The following assertions are easy to verify: 

1. IA n IB = 0 and I = fA U fB, 

2. In(J) = In(JA) U [n(JB) and Out(J) = Out(JA) U Out(JB), 

3. In(JA) n In(JB) = 0 and Out(JA) n Out(JB) = 0, 

4. [ni(Ji) = [n(Ji) and Out;(fi) = Out(Ji). 

So we have 

By assertion 3 and 4 and the fact that In(J) C s, we can find SA and 
SB such that 

• [ni(Ji) C Si· 
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Let s: = (Si\Ini(fi))U Outi(fi). Then clearly s' = sA USB and sA nSB = 
o which proves the first two assertions of the theorem. If Ii ~ 0 then 
(using the same arguments as in theorem 10.3) 

timec( s) = time (f) = time(J;) = tim;(fi) = timei( Si), 

which proves that Ii is applicable for Si and therefore (Si' sD E Tri. 
Finally note that Ii ~ 0 ¢} Si ~ s:, which completes the proof. 
o 

Note that the opposite of this theorem is not true: if each of the compo
nents of a system can have an event at a certain time, then it is not sure 
that they can do their event both (neither simultaneous, nor in some 
order). 

Next we consider the processor characteristics. They are important 
for the modeling of actors, because they are often known in an early 
stage of design, i.e. before the processor relation is specified. They 
are also important for the analysis of actors, because some analysis 
methods are only applicable for actors where the processors have specific 
processor characteristics. 

Definition 10.11 Let an actor model be given. The processor charac
teristics are defined by: 

• Totality, which means that a processor will be enabled if and only 
if there are enough input tokens, independent of their values. For
mally a processor p is total if and only if for all functions 9 with 

dom(g) c I(p) II Va E dom(g): g(a) E CA(Mp(a)) 

it holds that 

(3h E Rp : dom(h r I(p)) = dom(g r I(p))) 

=> 31 E Rp: n I(p) = 9 r I(p). 

• Input completeness, which means that the processor consumes in 
each event via all input connectors. Formally a processor p is input 
complete if and only if 

VIE Rp : dom(f) ::> I(p). 

• Output completeness, which means that the processor produces 
for every output connector in each event. Formally a processor p 
is output complete if and only if 

VIE Rp : dom(f) ::> O(p). 

We call a processor complete if it is both input and output com
plete. 
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stores 

channel 

o 

• Functionality, which means that the produced tokens are func
tionally dependent of the consumed ones. Formally a processor p 
is functional if and only if: 

V/,g E Rp: n I(p) C gt I(p) => /=g. 

Note that a total processor does not need to be input complete, however 
if it is enabled for some subset of input connectors it is enabled for all 
possible values of input objects. Functionality does not imply input 
completeness either; however if a "functional processor" is enabled for 
some set of input objects it is not enabled for any subset. Further 
functionality implies that two firing rules with the same input have the 
same output. 

As sald in the introduction, the actor framework is a generalization 
of the Petri net framework. With the processor characteristics we can 
express precisely in what sense it is a generalization: a (classical) Petri 
net can be defined as an actor model in which all processors are complete 
and total. In fact in classical Petri nets the identities, values and time 
stamps of tokens do not play any role. In classical Petri nets one is only 
interested in the number of tokens in a place of a state, whlch is called 
the marking of the state. In fact we may use trivial choices for the 
processor relations and the complex classes: all complex classes are the 
same and contaln only one complex and the processors give all produced 
tokens a delay equal to zero. 

We conclude this chapter with some remarks on stores. As sald 
before, from a formal point of view they are just places with some special 
properties, and therefore we did not consider them before in this chapter. 
A store always contalns exactly one token and will always be avallable 
which means that for all l E L, such that l is a store the following 
requirements hold: 

'Is E St: #{t E s 17l'3(t) = l} = 1 

fI 

'It E s : 7l'2(t) $ time(s). 

These requirements can be met if a consumed token of a store is replaced 
by a produced token with a delay O. 

If we assume that each processor has at least one input channel, 
Le. a non-store input place, then we may generalize theorem 10.7 by 
requiring that the processor relation R satisfies Vp E P : Vr E Rp : 

max{7l'3(r(a» I a E I(q) n dom(r) fI a is a channel} 

$ 
f + max{7l'3(r(a» I a E O(q) n dom(r) fI a is a channel}. 

The proof is an exercise. 
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References and Further Reading 

In the bibliography we have given already some references for the for
mal frameworks used in the book. Here we give some more specialized 
references. 

The theory of transition systems stands alone, although similar ideas 
can be found in literature. For example transition systems are studied in 
detail in [Hesselink, 1988]. Also the concept of similarity is considered 
there. The theory of traces is studied in detail in [Mazurkiewicz, 1984] 
and [Snepscheut, 1985]. There is related literature on process algebras as 
we have seen: [Hoare, 1985; Milner, 1980; Baeten and Weijland, 1990]. 
In process algebra similarity relations are studied as well. The timed 
transition systems are related to process algebraic formalisms with time, 
such as [Reed and Roscoe, 1988]. Another formalism that supports the 
notion of time is temporal logic, in which assertions about the behavior 
of a system can be proved. See [Pnueli, 1977] or a more general treatise 
on time in logic [van Benthem, 1983]. The idea of a transition law and 
the concept memoryless are borrowed from the theory of Markov chains, 
see [Revuz, 1975]. 

The object framework is closely related to the entity relationship 
model ([Chen, 1976]). There are many extensions of this framework, for 
example [Parent and Spaccapietra, 1985]. A survey is provided in [Spac
capietra, 1987]. Another important original framework is presented in 
[Abrial, 1974], it has only binary relations as we have here. Binary 
relations can be considered as set-valued functions and therefore our 
framework is also closely related to the functional data model of [Ship
man, 1981], see also [Buneman and Frankel, 1979]. (Note that we will 
use the term "functional data model" in a more restrictive sense later.) 
All these data models are often called semantic data models. How
ever there is an object framework that is called so, see [Hammer and 
McLeod, 1981]. A survey of semantic data models is given in [Hull and 
King, 1987]. The concept of complexes was first introduced in [van Hee 
and Verkoulen, 1991; van Hee and Verkoulen, 1992]. There are many 
other frameworks that have the notion of complex objects, for example 
the nested relational model, see [Schek and Scholl, 1986] and GOOD, 
see [Gyssens et al., 1990] 

The actor framework is the classical Petri net model extended with 
time, object identities and complex values for the tokens. It is not bor
rowed from other authors. A predecessor of this framework is presented 
in [van Hee et al., 1989a] and the first version of the actor framework can 
be found in [van Hee et al., 1989b; van Hee et al., 1991]. The framework 
has many similarities with others, for example with the colored Petri 
nets of [Jensen, 1992]. The differences are that in our framework tokens 
may have a value that belongs to an infinite type, that tokens have a time 
stamp and an identity, and that the transitions are defined by a proces
sor relation instead of arc and transition inscriptions. The colored Petri 
net model is an improvement of the predicate/transition nets of [Gen
rich, 1987; Genrich and Lautenbach, 1979]. The first ideas of Petri nets 
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with distinguishable tokens are found in [Schiffers and Wedde, 19781. 
Other frameworks of Petri nets with time can be found in [Sifakis, 1977; 
Sifakis, 1980; Ajmone Marsan et al., 19851. 

There is a large amount of papers on Petri nets and their analysis. 
The books of [Reisig, 1985; Jensen, 1992; Peterson, 19811 offer more 
detailed references. In [Pless and Pliinnecke, 19801 a bibliography is 
given of the literature till 80. There is a Petri news letter that gives up
to-date information of new articles; Petri Net Newsletter, Gesellschaft 
fiir Informatik Bonn (ISBN 0173-7473). 

The concept of serializability plays also an important role in dis
tributed databases, see [Ceri and Pelagatti, 19841. 
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Exercises 
1. Prove that the autonomous behavior of transition system is a 

closed set. 

2. Prove theorem 8.6. 

3. Prove theorem 10.1. 

4. Prove the assertion in theorem 10.3 that all identities of tokens in 
the new state are in J2 • 

5. Prove lemma 10.2. 

6. Prove theorem ?? 

7. Generalize theorem 10.7 to the following cases: 

• tokens in stores do not have a delay, 

• not all processors satisfy the requirement of the theorem, but 
in each cycle (Le. a cycle in the bipartite graph of a flat net 
model) there is at least one processor that gives its output 
tokens in the places of the cycle a positive delay. 

8. Consider an arbitrary transition system and transform it into a 
memoryless transition system, such that the systems are bisimilar. 

9. Give a formal description of the following actor model and list the 
behavior of this actor model (Le. the set of all possible processes 
starting in the initial state). The actor model has one processor 
p, two channels, called a and b and one store 8. The object classes 
of the three places are simple: there is only one complex class and 
the complexes can be represented by natural numbers. Channel 
a is an input channel and b an output channel. The processor 
relation of p is such that the value of the complex in store 8 is 
the sum of the values of the input of p modulo 4 and the output 
objects have a value that is 0 if the store value has become even 
in an event and 1 if it has become odd. In the initial state the 
store value is 0 and in channel a reside three objects with values 
2, 3 and O. All time stamps and all delays are O. 

10. A Turing machine is a finite state machine extended by an in
finite tape from which it can read symbols and on which it can 
write symbols. A Turing machine is characterized by a 4-tuple 
(M, I;, T, mol, where 

• M is the finite state space, not containing h the so-called halt 
state, 

• mo is the initial state, 

• I; is a set of symbols not including the characters Land R, 
which are used to direct the tape head to the left and right 
respectively, 
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• T is a transition function such that: 

TEMxI:--+(Mu{h})x(I:U{L,R}) 

If the machine is in state m, symbol a is read by the head and 
T(m,a) = (n,b) then the new state will be nand: 

• if b E I: then the symbol on the tape becomes b, 

• if the b E {L, R} the tape head will move to the left or right 
respectively. 

The machine stops if the state h is reached. (For more information 
of Turing machines see for instance [Lewis and Papadimitriou, 
1981)). 
A generally accepted definition of a computable function is, that 
for each domain value the function value can be computed by a 
Turing machine. A formalism to express computations is called 
Turing complete, if every computable function can be expressed 
in the formalism. 
Prove that the actor framework is Turing complete. (Hint: design 
an actor model for an arbitrary Turing machine.) 

11. Consider an arbitrary actor model N. Show there is another actor 
model M with the same object model and the same set of places, 
with only one processor p, such that Nand M are bisimHar with 
respect to the identity relation. (Hint: give p an input connector 
for every input connector occurring in N and connect it to the 
same place as in N, after some renaming to avoid name clashes. 
Further let the processor relation Rp be the (modified) union of 
the processor relations of the processors of N). 

12. A hierarchical net model is defined by: 

N.L 

N.P 

N.A 

N.C 

= 
= 
= 
= 

{p, q, T, 8, t, v, w} 
{C, D, E, F} 
{top, A, B} U N.P 
{p? ,pI, q?, q!, r?, r!,s?, 8!, t1, t!, v?, v!, w?, wI, x1, x!, y?, y!} 

Further the functions N.! and N.D are given by: 

I 0 
A p? q! 
B q? p! 
C x?, w? v! 
D v? y!,w! 
E s?, t? x!, r! 
F r?, y? sf, t! 
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The function N.M maps every connector with a ? or a ! to the 
place with the same name (without? or !) if it exists. Further: 

N.Mc(x?) = p! 

N.MD(Y?) = q? 

N.ME(X!) = p? 

N.MF(Y?) = q! 

And the functions H A and H L are given by: 
'Vi E {A, B} : H A(i) = top 
Vi E {e, D} : H A(i) = A 
Vi E {E, F} : H A(i) = B 
Vi E {p, q}: H L( i) = top 
ViE {v, w}:HL(i)=A 
Vi E is, r, t} : H L(i) = B 
Draw a diagram, determine the errors in this definition and give 
a correction. 

13. A data dictionary is a data base that stores the actor models 
(including object models) of a system. So in a data dictionary 
the processors are objects, and object classes and the relationship 
classes of the object models as well! 

• Make an object model for a data dictionary in which only 
fiat net models can be represented. 

• Extend this model to enable it to represent also hierarchical 
net models. 

• Make an object model in which an arbitrary object model 
can be represented including, the graphical expressible con
straints. 

• Integrate both object models to obtain a model for a "com
plete" data dictionary. 

14. Consider an arbitrary actor model. Introduce a store called time 
and connect it to a processor called clock, that triggers itself via 
one channel called step, that is both input and output channel for 
clock. The delay of the token in step is one time unit. The value 
ofthe object in time is a natural number that is increased by one 
in every firing. In the initial state the value in time is zero. 
Prove that in each state of an arbitrary trace, store time indicates 
the "right" time (with an error of at most one time unit). 
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