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Cost Optimization in the (S − 1, S) Lost Sales
Inventory Model with Multiple Demand Classes
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Technische Universiteit Eindhoven,
Eindhoven, The Netherlands

September 29, 2005

Abstract

For the (S − 1, S) lost sales inventory model with several demand classes that have different

lost sale penalty cost, three accurate and efficient heuristic algorithms are presented that, at a

given base stock level, aim to find optimal values for the critical levels, i.e., values that minimize

inventory holding and penalty cost.

Keywords: inventory, multiple demand classes, customer differentiation, rationing,

lost sales

1 Introduction

In this paper, we study the (S− 1, S) lost sales inventory model with multiple demand classes that

have different penalty cost values. A penalty is incurred if a demand is not fulfilled from stock,

and it can represent e.g. contractual penalty cost, (additional) cost of emergency transportation

and/or loss of goodwill of a customer. Within this setting, we aim to minimize the total inventory

holding and penalty cost, and we distinguish between different classes by introducing critical levels.

A demand from a certain class is only fulfilled if the physical stock is above the critical level for

this class.

The problem of multiple demand classes has been introduced by Veinott [13]. He also introduced

the concept of critical level policies. After that, the problem has been studied in a number of

variants, and these papers can be distinguished in two different streams of research.
∗Corresponding author. Department of Technology Management, Technische Universiteit Eindhoven, P.O. Box

513, 5600 MB Eindhoven, The Netherlands. Phone: +31 40 247 2637, Fax: +31 40 246 4531, E-mail address:
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The first stream studies the structure of the optimal policy. Within this stream, there are

interesting studies that derive the optimality of critical level policies for single-item models with

multiple customer classes. Topkis [12] considers a periodic-review model with generally distributed

demand and zero lead time. In that situation, the optimal critical levels are dependent on the

remaining time in a period. Ha [7] has studied a continuous-review model with Poisson demand

processes, a single exponential server for replenishments, and lost sales. He derives the optimality

of critical level policies, and in this situation both the base stock levels and critical levels are time-

independent. De Véricourt, Karaesmen, and Dallery [14] studied the same model as Ha but with

backordering of unsatisfied demand, and obtained the same results.

The second stream consists of studies that consider evaluation and optimization within a given

class of policies. Within this stream, there are interesting contributions by Dekker, Hill, Kleijn, and

Teunter [3], Melchiors, Dekker, and Klein [10], and Deshpande, Cohen, and Donohue [4]. Dekker

et al. [3] derive exact and heuristic procedures for the generation of an optimal critical level policy

for a continuous-review model with multiple customer classes, Poisson demands, ample supply, and

lost sales. For the case with two customer classes, Melchiors et al. [10] extend this work for fixed

quantity ordering. In this model, the fixed order quantity, the base stock level, and a single critical

level are optimized in order to minimize the sum of fixed ordering, inventory holding, and lost sales

cost. Deshpande et al. [4] consider a similar model but with backordering of unsatisfied demand. In

that situation one also must decide in which order backordered demands are satisfied, which leads

to additional complications. For further contributions, see the references in the above papers.

In this paper, we study a single-item, continuous-review model with multiple customer classes,

Poisson demand processes, lost sales, and ample supply. The ample supply represents that the

supplier can deliver as much as desired within a given replenishment lead time. We limit ourselves to

the class of critical level policies with time-independent critical and base stock levels. Critical levels

are easy to explain in practice, and the results on optimal policies in the first stream of research

suggest that this class is at least close-to-optimal (and maybe even optimal under exponential

replenishment leadtimes). Under the given class of critical level policies, our problem is to optimize

|J | critical levels and one base stock level simultaneously, where J is the set of demand classes. By a

projection of the (|J |+1)-dimensional total cost function on the dimension of the base stock level and

the definition of appropriate convex lower and upper bound functions, the full (|J |+1)-dimensional

optimization problem may be reduced to solving a series of |J |-dimensional subproblems. Here,

each |J |-dimensional subproblem concerns the optimization of the |J | critical levels at a given base

stock level. This reduction has been described by Dekker et al. [3]. By this reduction and applying

enumeration for the |J |-dimensional subproblems, an exact solution method is obtained for the

full problem. Enumeration, however, is expensive from a computational point of view, especially

when the number of demand classes is larger than two. Therefore, there is a clear need for efficient
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heuristics for the |J |-dimensional subproblems.

The main contribution of this paper is that three heuristic algorithms are presented for the |J |-
dimensional subproblems. An extensive computational experiment is performed, and, surprisingly,

in this experiment all three algorithms always end up in an optimal solution. The size and settings

for the computational experiment give us a reason to believe that the algorithms are either very

good (i.e., find an optimal solution in many cases) or exact (i.e., always find an optimal solution).

We conjecture the latter, but for practical application, even if our conjecture does not hold, we

still have obtained an important result. Computation times of the three heuristic algorithms are

small, and far less than of explicit enumeration. So, the three heuristics are accurate and efficient.

The three heuristics directly lead to three accurate and efficient heuristics for the full (|J | + 1)-

dimensional problem, and that may be key to obtain efficient solution methods for real-life, multi-

item spare parts problems with multiple demand classes and aggregate fill rate or availability

constraints. These problems may be solved by a Dantzig-Wolfe decomposition framework, under

which multiple instances of a single-item problem with inventory holding and penalty cost have

to be solved as column generation subproblems. Our algorithms may be used for these column

generation subproblems in all but the last iteration, while an exact algorithm may be used in the

last iteration. That avoids the use of an expensive exact method in all iterations and decreases

the order of computation time considerably without losing the property that the Dantzig-Wolfe

method is exact; see the companion paper [9].

The paper is organized as follows. In Section 2, the model is described, followed by the derivation

of a few elementary properties in Section 3. Next, the exact method for the full (|J |+1)-dimensional

problem is briefly described in Section 4. After that, in Section 5, we present our three efficient

heuristic algorithms for the |J |-dimensional subproblem, and we show that these algorithms always

lead to an optimal solution in an extensive computational experiment. In Section 6, we apply these

algorithms in the original full problem and we compare them to a heuristic described by Dekker et

al. [3]. Finally, we conclude in Section 7.

2 Model

Consider an item (or stock-keeping unit, SKU) that is demanded by a number of demand classes

or customer groups. Let J denote the set of demand classes, with |J | ≥ 1. For each class j ∈ J ,

demands are assumed to occur according to a Poisson process with constant rate mj (> 0). If an

item is not delivered to class j upon request, the demand is lost and a penalty cost pj (> 0) is to

be paid. Classes are numbered 1, 2, . . . , |J | and such that p1 ≥ p2 ≥ . . . ≥ p|J |.

The item’s stock is controlled by a continuous-review critical level policy. This means that the

total stock is controlled by a base stock policy with base stock level S (∈ N0 := N∪ {0}), and that

3



there is a critical level cj (∈ N0) per class j ∈ J , with c1 ≤ . . . ≤ c|J | ≤ S. The ordering for the

critical levels is assumed because of the opposite ordering in the penalty cost parameters. We call

this ordering of the critical levels the monotonicity constraint. A critical level policy is denoted by

vector (c, S), with c := (c1, . . . , c|J |). If a class j demand arrives at a moment that the physical

stock is larger than cj , then this demand is satisfied. Otherwise, the demand is lost. At and below

level cj , physical stock can be seen as stock that is reserved for more important classes (having a

lower index and higher shortage penalty cost). (Intuitively, it seems optimal to choose c1 = 0 as

there is not a more important class than class 1; in Section 3, we derive this formally.) For ease

of notation, we define c0 ≡ 0 and c|J |+1 ≡ S. Replenishment lead times are i.i.d. with mean t

(following an arbitrary distribution). Holding cost per unit per unit time are h. Without loss of

generality, we assume that holding cost is also charged for items in replenishment (see also Remark

1 at the end of this section).

Let βj(c, S) denote the fill rate for class j ∈ J under critical level policy (c, S), i.e., the expected

percentage of requests by class j that will be delivered. An expression for βj(c, S) can be derived

as follows. If the number of parts in the pipeline is k ∈ {0, . . . , S}, and thus the number of parts in

the physical stock is S − k, then the demand rate equals µk =
∑

j|k<(S−cj)
mj , k ∈ {0, . . . , S − 1}.

Our inventory model can be described by a closed queueing network with S customers and two

stations: (i) an ample server with mean service time t, which represents the pipeline stock; (ii)

a load-dependent, exponential, single server with first-come first-served service discipline, which

represents the physical stock. The service rates of the load-dependent server are given by the µk.

This network belongs to the class of so-called BCMP networks and thus has a product-form solution;

see Baskett et al. [2]. By applying the theory of [2], we find that the steady state probabilities qk

for having k parts in the pipeline are equal to:

qk =

{
k−1∏
i=0

µi

}
tk

k!
q0, k ∈ {1, . . . , S}, (1)

q0 =

(
S∑

k=0

{
k−1∏
i=0

µi

}
tk

k!

)−1

,

with the convention that
∏k−1

i=0 µi = 1 for k = 0 (this result also follows from Gnedenko and

Kovalenko [6], pp. 250–252). By these steady state probabilities, we obtain the fill rates:

βj(c, S) =
S−cj−1∑

k=0

qk, j ∈ J, (2)

with the convention that this sum is empty if S − cj − 1 < 0 (i.e., βj(c, S) = 0 if cj = S). Notice

that 1 ≥ β1(c, S) ≥ . . . ≥ β|J |(c, S) ≥ 0.

The objective is to minimize the average inventory holding and penalty cost per time unit. The
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average cost of a policy (c, S) is

C(c, S) := hS +
∑
j∈J

pjmj(1− βj(c, S)).

Our optimization problem is a nonlinear integer programming problem and is stated as follows:

(P ) min hS +
∑

j∈J pjmj(1− βj(c, S))

subject to c1 ≤ . . . ≤ c|J | ≤ S,

cj ∈ N0, j ∈ J, S ∈ N0.

An optimal policy for Problem (P ) is denoted by (c∗, S∗) and the corresponding optimal cost is

C(c∗, S∗).

For the situation with a fixed base stock level S ∈ N0, let Problem (P (S)) denote the problem

of finding the critical levels such that the average cost C(c, S) is minimized. Problem (P (S)) is

stated as:
(P (S)) min hS +

∑
j∈J

pjmj(1− βj(c, S))

subject to c1 ≤ . . . ≤ c|J | ≤ S,

cj ∈ N0, j ∈ J.

An optimal policy for Problem (P (S)), S ∈ N0, is denoted by (c∗(S), S) and the corresponding

optimal cost is C(c∗(S), S). Obviously, (c∗(S∗), S∗) = (c∗, S∗). Note that in Problem (P (S)), the

holding cost term hS constitutes a constant factor. It is included in the formulation of Problem

(P (S)), however, to ease later reference.

Remark 1 We assume that holding cost is charged for both items in stock and in the replenishment

pipeline. If we only charge holding cost for items in stock, the holding cost expression would be hS−∑
j∈J htmjβj(c, S) since, according to Little’s law, the expected number of parts in the pipeline is∑
j∈J tmjβj(c, S). The holding cost expression in this case can be rewritten as hS +

∑
j∈J htmj(1−

βj(c, S))−
∑

j∈J htmj. From this, it follows that the problem of finding an optimal policy at penalty

cost parameters pj, j ∈ J , with no holding cost charged for pipeline inventory, corresponds to a

problem where holding cost is charged for pipeline inventory and the penalty cost parameters are set

as p̂j := pj + ht, j ∈ J . The cost of both problems will differ a constant factor
∑

j∈J htmj. Notice

that the assumed monotonicity of the penalty cost parameters is not violated by this transformation.

3 Elementary properties

In this section, we derive a few elementary properties. Let ej denote a row vector of size |J | with

the j-th element equal to 1 and all other elements equal to 0. The following monotonicity properties
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hold for the fill rates when comparing policy (c + ej , S) to policy (c, S).

Lemma 1 For any j ∈ J with cj < cj+1,

(i)
∑

k∈J mkβk(c + ej , S) <
∑

k∈J mkβk(c, S),

(ii) βk(c + ej , S) > βk(c, S), k ∈ J , k 6= j,

(iii) βj(c + ej , S) < βj(c, S).

Proof: Let j ∈ J with cj < cj+1. Parts (i)-(iii) are obtained as follows:

(i) Theorem 1 of Dekker et al. [3] implies that Chold(c + ej , S) > Chold(c, S), with Chold(c, S) :=∑S
k=0 h(S − k)qk. Chold(c, S) represents holding cost for items that are not in the pipeline.

As stated in our Remark 1, Chold(c, S) is also given by hS −
∑

k∈J htmkβk(c, S), and thus∑
k∈J mkβk(c + ej , S) <

∑
k∈J mkβk(c, S).

(ii) Lemma 1 in Dekker et al. [3] states that under policy (c+ej , S), the steady state probabilities

for states 0, . . . , S−cj−1 are strictly larger than those under policy (c, S), and that the steady

state probabilities for states S − cj , . . . , S are strictly smaller. For classes k > j, it follows

that βk(c + ej , S) > βk(c, S) because in both policies the same states are included in the

calculation of βk(c+ej , S) and βk(c, S) (see (2)), and all these states have larger probabilities

under policy (c + ej , S). For classes k < j, it follows that βk(c + ej , S) > β(c, S) because in

both policies the same states are excluded in the calculation of βk(c+ ej , S) and βk(c, S), and

all these states have smaller probabilities under policy (c + ej , S).

(iii) By parts (ii) and (i), respectively, we find that

mj(βj(c + ej , S)− βj(c, S)) <
∑

k∈J,k 6=j

mk(βk(c, S)− βk(c + ej , S)) < 0,

and thus βj(c + ej , S) < βj(c, S).

(Q.E.D.)

Lemma 1 states that, if allowed, increasing the critical level for demand class j with one unit

leads to a lower fill rate for class j itself and to higher fill rates for all other demand classes. Further,

a decrease is obtained for the weighted sum
∑

k∈J mkβk(·). By Lemma 1, we can prove that for

all demand classes with the highest penalty cost parameter, the optimal critical levels are equal

to 0, both within Problem (P (S)) and Problem (P ). This is stated in Lemma 2. This lemma

implies that all optimal critical levels are equal to 0 if the penalty cost parameter is the same for

all demand classes.
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Lemma 2 Let k = max{j ∈ J |pj = p1}. It holds that c∗j (S) = 0 for all j ≤ k and S ∈ N0, and

that c∗j = 0 for all j ≤ k.

Proof: Let k = max{j ∈ J |pj = p1} and let policy (c, S) be such that cj > cj−1 for some j ≤ k

(as c0 = 0, this inequality reduces to c1 > 0 if j = 1). It holds that

C(c, S) = hS +
∑
i∈J

pimi(1− βi(c, S))

= hS + p1

∑
i∈J

mi(1− βi(c, S))−
∑

i∈J,i>k

(p1 − pi)mi(1− βi(c, S)),

and similarly for C(c−ej , S). By Lemma 1,
∑

i∈J miβi(c, S) <
∑

i∈J miβi(c−ej , S)) and βi(c, S) >

βi(c − ej , S) for all i > k, and thus via the above expression for C(c, S) we find that C(c, S) >

C(c − ej , S). In other words, policy (c, S) is suboptimal. This implies the properties for optimal

critical levels, both for Problem (P (S)) and Problem (P ). (Q.E.D.)

4 Exact method for Problem (P )

A method to solve Problem (P ) exactly has been described by Dekker et al. [3]. This method

exploits convex lower and upper bound functions for the function C(c∗(S), S). First, a lower bound

Sl is determined for the optimal base stock level. Next, starting at this lower bound, Problem

(P (S)) is solved by enumeration for increasing values of S, until a stopping criterium is met that

implies that an optimal policy has been found. In this section, the method is summarized. For

proofs, the reader is referred to Dekker et al. [3]. Notice that our notation and our indices of

critical levels deviate from theirs. Furthermore, notice that they do not account holding cost for

items in pipeline, but as we stated in Remark 1, this is equivalent to the same problem with a

transformation of penalty cost parameters.

An upper bound for the function C(c∗(S), S) is obtained by taking all critical levels equal to

0 for each S. This gives the upper bound function Cu(S) = C(0, S). This function is convex,

which follows from the convex behavior of the Erlang loss probability for all S ∈ N0; for a proof

of this latter result, see Appendix (Dekker et al. [3] refer to Smith [11], who indeed claim that it

can be seen by algebraic manipulation that the Erlang loss probability is convex, but Smith [11]

does not prove it). A lower bound function for C(c∗(S), S) is obtained by replacing all penalty

cost parameters pj by the lowest penalty cost parameter p|J | in Problem (P (S)). Under an optimal

policy for this modified problem all critical levels are zero (cf. Lemma 2). The resulting cost are

denoted by Cl(S), and also for this function the convexity follows from the convexity of the Erlang

loss probability.
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The exact algorithm for Problem (P ) is as follows. First, define S′ as a minimizing point for the

upper bound function Cu(S). Next, Sl is defined as the lowest S ∈ N0 for which Cl(S) ≤ Cu(S′).

This Sl is a lower bound for the optimal base stock level S∗. Then, for S = Sl, Problem (P (S)) is

solved using explicit enumeration, and the current best solution is set equal to (c∗(S), S). Hereafter,

S is increased by one, (P (S)) is solved using explicit enumeration, and the current best solution is

adapted if (c∗(S), S) provides a better one. This is done repeatedly until Cl(S + 1) > Cl(S) and

Cl(S + 1) is larger than or equal to the current best solution (these two conditions imply that for

any base stock level greater than the current base stock level no better solution can be found than

the current best solution). At this point, the current best solution constitutes an optimal solution

for Problem (P ).

5 Algorithms for Problem (P (S))

The exact method uses enumeration to solve Problem (P (S)) for multiple values of S and thus

is time consuming, in particular for problems with 3 or more demand classes. Therefore, in this

section, we describe and test fast heuristics for Problem (P (S)). The heuristics that we consider are

(a kind of) local search algorithms. We test the accuracy in an extensive computational experiment,

and we find that all three heuristics produce an optimal solution in all instances. Unfortunately,

there is no proof of exactness for any of these heuristics.

Before we formulate the heuristics, we show the typical behavior of the function C(c, S) for a

fixed S. In Figure 1, the costs C(c, S) are shown for an example with |J | = 3 demand classes. In

this example, the critical level for class 1 is fixed at 0, as that is known to be optimal (by Lemma 2).

We see in this figure that −C(c, S) is unimodal in c3 for any fixed c2, and vice versa. This means

that the sign of the first order difference of the cost terms changes at most once. If it changes,

it changes from minus into plus. In all examples that we considered in detail, we observed this

unimodal behavior.

Intuitively, the observed unimodality increases the chances for local search type algorithms to

find an optimal solution, but a guarantee cannot be given. Proving that a local search algorithm

is exact for an optimization problem with a multi-dimensional, discrete state space is known to be

very hard. Under a continuous solution space, local search would be exact for convex functions,

but proving convexity can be difficult. The property that a local minimum is a global minimum is

not obtained for direct extensions of the concept of convexity to discrete spaces, but it is obtained

for multimodular functions, as introduced by Hajek [8]; see Altman et al. [1] for a whole theory

based on multimodularity. This concept seems not applicable to our problem, however (the cost

function in Figure 1 for the example with |J | = 3 demand classes seems not multimodular).
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Figure 1: Cost C(c, S) as function of c2 and c3 for c1 = 0 and S = 11 at input parameters |J | = 3,

m1 = m2 = m3 = 1, t = 1, h = 1, p1 = 10000, p2 = 100, p3 = 10.

5.1 Description of the heuristics

In this subsection, we formulate the three heuristic algorithms for Problem (P (S)). Algorithms 1

and 2 are rather straightforward algorithms. Algorithm 3 is similar to a heuristic of Dekker et al.

[3] for Problem (P ) (their Algorithm 3). The difference with their heuristic is that we assume a

constant base stock level (and thus solve Problem (P (S))), while they also incorporate optimization

of the base stock level. The algorithms are as follows (in all three algorithms the critical levels for

the demand classes 1, . . . , k, with k = max{j ∈ J |pj = p1}, are fixed at 0 as that is optimal, cf.

Lemma 2):

Algorithm 1 Start with an arbitrary choice for cj , j ∈ J , j > k, that satisfies the monotonicity

constraint. Define the neighborhood of this current policy (c, S) as all policies that still

satisfy the monotonicity constraint and that have critical levels that differ at most one from

the corresponding critical level in the original policy. This gives at most 3|J |−k − 1 neighbors,

but usually much less because of the monotonicity constraint. If the cost of the cheapest

neighbor is smaller than the cost of the current solution, then select this neighbor and set this

policy as the current solution, and repeat the process of evaluating all neighbors for this new

policy. Otherwise, stop and take the current solution as the solution found by the algorithm.

Algorithm 2 Start with an arbitrary choice for cj , j ∈ J , j > k, that satisfies the monotonicity

constraint. For i = |J |, find ci ∈ {ci−1, . . . , ci+1} with the lowest cost, at fixed values of

the other critical levels, and change ci accordingly (recall that c|J |+1 = S). Repeat this

optimization for one critical level at a time for i = |J | − 1 down to k + 1. After that,

optimize again for i = |J |. Continue this iterative process until for none of the i-values

(∈ {k + 1, . . . , |J |}) an improvement is found. This is the solution found by the algorithm.

9



Algorithm 3 Start with all critical levels equal to zero. Next we start iteration 1. We first consider

increasing c|J | by one (if allowed by the monotonicity constraint), and accept this increase if

it has lower cost than the current solution. Then, the critical levels c|J |−1 down to ck+1 are

increased with 1 (one critical level at a time), and each time an increase of a critical level is

accepted if lower cost are obtained. If c|J | was increased with 1 in this first iteration, then

we execute another interation, and so on. The process stops as soon as c|J | has not been

increased in an iteration (but the last iteration is executed completely, i.e., it is possible that

some of the critical levels cj , k < j < |J |, are increased in the last iteration, while c|J | stayed

at the same level). The policy found at the end of the last iteration is the solution found by

the algorithm.

5.2 Computational experiment

We test the performance of the Algorithms 1, 2, and 3 in an extensive computational experiment.

In this experiment, the settings are chosen as described in Table 1. As seen in this table, we study

instances with different numbers of classes. For demand rates, we have 5 values, small and large,

and with difference factors of 2, 5, 10, 20, 50, and 100. We study any combination of these demand

rates. At |J | classes, this implies 5|J | choices. Both the mean replenishment lead time and the

holding cost parameter are fixed at 1, which we may do w.l.o.g.. For the penalty cost parameters,

we have varied both the relative weight compared to the (fixed) holding cost parameter and the

ratio between the penalty cost parameters for different classes. For the penalty cost parameters,

we have 9 different settings, independent of |J |. If |J | < 5, only the first |J | values are used. From

Table 1, we obtain 225 instances with 2 classes, 1125 instances with 3 classes, and 28125 instances

with 5 classes. The number of instances studied increases with the number of classes. This is in line

with our intention, since if an algorithm would fail to reach an optimal solution, it is generally more

likely that this occurs in situations with more degrees of freedom and therefore it is recommendable

to study this kind of instances more thoroughly.

For each choice of settings from Table 1, we study values for base stock level S from 1 up to a

value that depends on the settings. This maximum base stock level is determined as the smallest S

for which it holds that βj(c, S) ≥ 1− 10−12, for all j ∈ J , where c is taken equal to c = (0, . . . , 0).

We have chosen to use this variable number of base stock levels since in this way, for all parameter

settings from Table 1, we study as many different base stock levels as relevant. Notice that, by

Lemma 1, for larger base stock levels than the maximum base stock level, the cost decrease of

applying rationing (i.e., using non-zero critical levels) is at most 10−12
∑

j∈J,j 6=|J | pjmj compared

to a pure base stock policy (with all critical levels zero). For all parameter settings we use, this

expression is always less than 10−6, and thus the excluded cases are not really of interest. Maximum

base stock levels vary between 7 and 67. On average, the number of base stock levels considered
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Parameter Values

|J | 2, 3, 5

mj 0.05, 0.1, 0.5, 1, 5

(p1, p2, p3, p4, p5) (5000, 4000, 3000, 2000, 1000)

(50, 40, 30, 20, 10)

(0.5, 0.4, 0.3, 0.2, 0.1)

(16000, 8000, 4000, 2000, 1000)

(160, 80, 40, 20, 10)

(1.6, 0.8, 0.4, 0.2, 0.1)

(10000, 1000, 100, 10, 1)

(100, 10, 1, 0.1, 0.01)

(1, 0.1, 0.01, 0.001, 0.0001)

t 1

h 1

Table 1: Parameter settings for numerical experiment (for penalty cost values, only values

p1, . . . , p|J | are used)

per choice of the other parameters, is 30, and the total number of instances is 883845.

For all 883845 instances, we compared the solutions obtained by Algorithms 1, 2, and 3 to

the optimal solution obtained by explicit enumeration. Algorithms 1 and 2 were evaluated with

different starting points c = (0, . . . , 0) and c = (0, S, . . . , S), respectively denoted by (i) and (ii).

Additionally, for |J | = 3, we considered starting point c = (0, 0, S), and for |J | = 5, we considered

starting point c = (0, 0, 0, S, S). This additional starting point is denoted by (iii). For Algorithm

3, the starting point is always c = (0, . . . , 0). The results of the numerical experiment are given in

Table 2. Notice that the number of instances considered at starting point (iii) for Algorithms 1 and 2

is smaller than 883845, since the instances with two classes do not have this additional starting point.

In Table 2, the second column (the number of instances for which the algorithm did find an optimal

solution) denotes the number of instances for which the cost of the obtained solution was within

10−12% of the solution found by enumeration (i.e., (C(c(S), S)−C(c∗(S), S))/C(c∗(S), S) ≤ 10−12).

Mostly, exactly the same solution was found, but in some cases (number given between parentheses),

the obtained policy was slightly different from the one found by enumeration. In those cases, the cost

differences between both solutions were smaller than or of the same size as the numerical precision

in the calculation of the cost, and thus both may be considered as optimal. (The maximum absolute

difference, i.e. the maximum value for C(c(S), S)− C(c∗(S), S), was 2.64 · 10−11.)

As we see, Algorithm 1 (with different starting points), Algorithm 2 (with different starting

points), and Algorithm 3, all result in an optimal solution in all instances in the computational
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Algorithm Numbers of instances Times (in milliseconds)

optimum found no optimum found average maximum

Enumeration 883845 95 7050

Algorithm 1 (i) 883845 (129) 0 0 30

Algorithm 1 (ii) 883845 (2432) 0 3 50

Algorithm 1 (iii) 879624 (1186) 0 1 31

Algorithm 2 (i) 883845 (828) 0 0 11

Algorithm 2 (ii) 883845 (2635) 0 0 11

Algorithm 2 (iii) 879624 (592) 0 0 11

Algorithm 3 883845 (899) 0 0 11

Table 2: Results from numerical experiment for Problem (P (S))

experiment. This can be seen from the third column in Table 2, where the numbers of instances

are indicated for which each of the methods did not find an optimal solution. As discussed above,

there is no proof for the exactness of (one of) these algorithms. However, based on the size and

results of the numerical experiment, we believe that Algorithms 1, 2, and 3 always will find an

optimal solution, i.e., we conjecture that Algorithms 1, 2, and 3 are exact for Problem (P (S)).

Especially for Algorithm 3, it is interesting that it always ends up in an optimal solution,

since the number of policies considered in this algorithm is much lower than under the other two

algorithms, and the search procedure does give the impression that a specific underlying structure

is present with respect to cost as a function of the critical levels.

With respect to computation time, we can report the following. We have run our numerical

experiment on a Pentium 4 PC, with algorithms implemented in Delphi 7.0. Per instance, the

computation time was measured in milliseconds (i.e., in integer numbers of milliseconds). Average

and maximum computation times are given in Table 2. The listed computation times show that

each of the proposed algorithms strongly outperforms explicit enumeration.

6 Algorithms for Problem (P )

For Problem (P ), an exact method was presented in Section 4. In the exact method, Problem

(P (S)) has to be solved multiple times, and this is done by explicit enumeration. However, Section

5 shows that Problem (P (S)) can be solved more efficiently by either one of the proposed heuristic

algorithms. In this section, we replace the explicit enumeration for Problem (P (S)) by the algo-

rithms from Section 5, show that also in this setting the algorithms perform well, and compare

them to a heuristic formulated by Dekker et al. [3]. This heuristic is the only good heuristic for

Problem (P ) that is available in the literature. Below, we describe the algorithms for Problem (P )
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in Subsection 6.1, and we evaluate their performance in Subsection 6.2.

6.1 Description

The Algorithms 1, 2, and 3 for Problem (P (S)) can be plugged into the exact method for Problem

(P ), thus replacing the explicit enumeration. The resulting algorithms are called Algorithms 4, 5,

and 6, where now for Algorithms 4 and 5 the choice for the starting point is fixed at c = (0, . . . , 0).

The heuristic by Dekker et al. [3] (p. 605, Algorithm 3) is denoted as Algorithm 7 and works as

follows (again the critical levels for the demand classes 1, . . . , k, with k = max{j ∈ J |pj = p1} are

fixed at 0):

Algorithm 7 Start with all critical levels equal to zero and determine the optimal base stock level

for these given critical levels. Next we start iteration 1. We first consider increasing c|J |

by one (if allowed by the monotonicity constraint), and optimize the base stock again. We

accept this increase in c|J | if it has lower cost than the current solution. Then, the critical

levels c|J |−1 down to ck+1 are increased with 1 (one critical level at a time), and each time

an increase of a critical level is accepted if lower cost are obtained. Also here, in each step

the base stock level is optimized. If c|J | was increased with 1 in this first iteration, then we

execute another interation, and so on. The process stops as soon as c|J | has not been increased

in an iteration. The policy found at the end of the last iteration is the solution found by the

algorithm.

We obtained the code from Dekker et al., and used that code to ensure that we had the same code

as they used in their experiments.

6.2 Computational experiment

We implemented Algorithms 4, 5, 6, and 7 in Delphi 7.0 to test the performance of the algorithms.

We use the test instances as mentioned in Table 1. The difference with the experiment in Section

5 is that in the current section, base stock level S is part of the optimization. In total we study

29475 instances: 225 instances with 2 classes, 1125 instances with 3 classes, and 28125 instances

with 5 classes.

For all instances, we compared the solutions obtained by Algorithms 4, 5, 6, and 7 to the

optimal solution obtained by the exact method. The results of the computational experiment are

given in Table 3. The second column in this table (the number of instances for which the algorithm

did find an optimal solution) denotes the number of instances for which exactly the same solution

was found as in the exact method. The third column denotes the number of instances for which

the algorithm did not find an optimal solution.
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Algorithm Numbers of instances Times (in milliseconds)

optimum found no optimum found average maximum

Exact Method 29475 86 8812

Algorithm 4 29475 0 0 11

Algorithm 5 29475 0 0 11

Algorithm 6 29475 0 0 11

Algorithm 7 28735 740 0 11

Table 3: Results from numerical experiment for Problem (P )

As we expected, Algorithms 4, 5, and 6 perform well. They result in an optimal solution

for all considered instances, but require much less computation time than the exact method. The

heuristic of Dekker et al., however, does not find an optimal solution in 2.5% of the cases. The

relative difference between the cost of the obtained solution and the cost of the optimal policy,

(C(c, S) − C(c∗, S∗))/C(c∗, S∗), in these 740 instances is 25% on average and 313% in the worst

case. Although Dekker et al. did not claim optimality, they observed that their heuristic always

found an optimal solution in their numerical experiment. Our experiment clearly shows that their

heuristic can perform poorly. Recall that Algorithm 3 and 7 show similarity, since the only dif-

ference is that in Algorithm 7 the base stock level is variable while it is fixed in Algorithm 3.

Apparently, incorporation of the base stock level as variable in the algorithm is not always a good

choice.

Remark 2 Dekker et al. conjecture that for each option (increase of one of the critical levels), in

the optimization of the base stock level, it suffices to consider S (the current value) and S − 1. We

found the following counterexample for this conjecture: |J | = 2, m1 = m2 = 1, t = 14, h = 1,

p1 = 10000, and p2 = 100. In this example, for c2 = 0, the best choice for S is 48, while for c2 = 1,

the best choice for S is 46. (Recall that Dekker et al. do not incur holding cost for items in the

pipeline but that this is just a transformation in the penalty cost parameters, see Remark 1).

7 Conclusion

In this paper, an (S − 1, S) lost sales inventory model with priority demand classes and controlled

by critical level policies has been considered. We distinguished two problems. In Problem (P ), the

base stock level and critical levels are optimized in order to obtain minimal inventory holding and

penalty cost. In a subproblem, Problem (P (S)), the base stock level is fixed and only the critical

levels are optimized. The main contribution of this paper consists of the formulation of three

heuristic algorithms for Problem (P (S)) that, in an extensive computational experiment, all three
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always end up in an optimal solution. Our algorithms are much faster than explicit enumeration,

and thus are an welcome alternative for enumeration in an exact algorithm for Problem (P ) in

which Problem (P (S)) has to be solved many times as subproblem.

The size and settings for the numerical experiment give us reason to believe that the algorithms

are either very good (i.e., find an optimal solution in many cases) or exact (i.e., find an optimal

solution always). We conjecture the latter, but for practical application, even if our conjecture does

not hold, we still have obtained an important result. In multi-item spare parts inventory problems

with customer differentiation, Problem (P ) is a column generation subproblem in a Dantzig-Wolfe

decomposition framework. This subproblem has to be solved multiple times. Even if our algo-

rithms are not exact, a large reduction in computation time is obtained without losing optimality

in the Dantzig-Wolfe method. This is done by using one of our algorithms for the column gen-

eration subproblem instead of explicit enumeration in all but the last iteration in Dantzig-Wolfe

decomposition; see the results in the companion paper [9].
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Appendix

In this appendix, it is proved that Cu(S) = C(0, S) is convex in S. To show that, it suffices to show that

β1(0, S) is concave as a function of S ∈ N0.

Under policy (0, S), the behavior of our inventory system is identical to the behavior of a closed queueing

network with S customers and two stations: (i) an ample server with mean service time t; (ii) an exponential,

load-independent single server. We are interested in the throughput of the network. Because the steady-state

distribution for the number of jobs per station and the throughput are independent of the distribution of the

service times at the ample server, in the rest of this proof we may assume w.l.o.g. that the service times at the

ample server are exponential. The ample server then may be seen as a load-dependent, exponential, single

server, with a service rate that is linear with the number of jobs. Hence, we can apply a result of Dowdy et al.

[5]. They prove that the throughput in a closed queueing network with one load-independent, exponential,

single server and one load-dependent, exponential, single server, whose load-dependent service rates are

nondecreasing and concave (of which our linearly increasing service rate is a special case), is concave as a

function of the number of customers in the network. It is easily verified that in our network the throughput

is equal to βj(0, S)
∑

j∈J mj . The property that βj(0, S)
∑

j∈J mj is concave in S implies that βj(0, S) is

concave as a function of S ∈ N0.
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