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A Type Inference Algorithm for Pure Type Systems 

Paula Severi 

University of Eindhoven - The Netherlands 

Abstract 

A large class of typed lambda calculi can be described. in a uniform way as Pure Type 
Systems(PTS's). This includes for instance ~he second-order lambda calculus and the Cal
culus of Constructions. There are several implementations of PTS's such as COQ, LEGO or 
CONSTRUCTOR. It is important to know that these implementantions are actually correct. 

In this paper we present an efficient algorithm for infering types for singly sorted Pure 
Type Systems and prove its correctness. 

1 Introduction 

For the implementations of PTS's it is important to consider the following two questions (see 
[Bar91]): 

1. Given a context r and terms band B, is it true that r I- b : B ? 

2. Given a context r and a term b, does it exist B such that r I- b : B ? 

These two problems are called Type Checking and Typability and are denoted as r I- b : B? 
and r I- b :? respectively. 

Notice that from a solution to the second problem we can easily find a solution to the first one. 
It is known that for some PTS's, e.g .. h, these problems are undecidable. 
In [vBJ93] it is shown that if a PTS is normalizing and has a finite set of sorts then these two 

problems are decidable. In the algorithm they construct it is necessary to compute the normal 
form of types and this makes it inefficient. 

Most of the attempts to construct algorithms for type checking and type inference (see for 
example [vBJMP93]) pass through the consideration of typing rules for which the type deduction 
is determined by the shape of the term b and of the context r. 

A set of rules for a typing relation I- are called syntax directed if given a context r and a term 
b there exists B such that there is at most one derivation of r I- b : B. 

A syntax directed set of rules defines a partial function r, b 1-+ B. The algorithm to compute 
the corresponding function r, b 1-----+ B is called a. type inference algorithm. 

As the conversion and the weakening rules can be used at any point in the derivation, it is 
clear that the rules for PTS:s are not syntax directed. 

Unfortunately for the sy'ntax directed system presented in [vBJMP93], even though it is very 
natural, Completeness has not been proved. The main problem seems to be the impossibility to 
apply the inductive hypothesis to the type premise in the abstraction rule. 

The authors of [vBJMP93] solve the problem presenting other syntax directed systems with a 
more liberal type premise in the abstraction rule', But in this case the new typing relations do not 
seem to be natural. 

In [PoI93] a type inference algorithm for bijective PTS's is presented. The class of bijective 
PTS's includes all systems of the A-cube and is a proper subclass of the class we study here, the 
class of singly sorted PTS's. 

In this paper we will present an efficient type inference algorithm for singly sorted Pure Type 
Systems. It can briefly be described as follows: 



1. Infer the type of the term in a system allowing illegal abstractions, i.e. in a system without 
the type premise in the abstraction rule. 

2. Check - separately - if the abstractions in the term are not illegal. 

For the step 1) of this algorithm we will consider Pure Type Systems without the type premise 
"r I- (II",:A. B): 8" in the abstraction rule (PTSW,s). We study the methatheory ofPTSw,s in 
detail. 

First we prove that if a PTS is weakly normalizing then the corresponding PTSw is weakly 
normalizing too. 

Second we prove that the set of typable terms of a PTS and the corresponding PTSw are 
the same iff the specification is a completion of itself. In other words we characterize those 
specifications for which the type premise in the abstraction rule is redundant. 

Also we prove that for certain specifications, if a PTS is strongly normalizing then the corre
sponding PTSw is strongly normalizing. 

We finish this introduction by mentioning the following results (that will not be proved in this 
paper). The PTSw,s are closely related to Pure Type Systems with definitions (see [SP94j) and 
to KPTS's 1. The following open problems are equivalent for single sorted PTS's: 

• For any specification, if a PTS is ,B-strongly normalizing then the corresponding DPTS 
extended with definitions is ,Bo-strongly normalizing. 

• For any specification, if a PTS is ,B-strongly normalizing then the corresponding KPTS is 
,Bk-strongly normalizing. 

• For any specification, if a PTS is ,B-strongly normalizing then the corresponding PTSw 
IS 

,B-strongly normalizing. 

2 Pure Type Systems 

We define the concept of Pure Type System as in [Bar92J. 

Definition 2.1. The specification of Pure Type System (PTS) is a triple S = (8, A, R) such 
that 

• 8 <;; C is the set of sons. 

• A <;; c x S is the set of axioms 

• R <;; 8 x 8 x S is the set of rules 

Definition 2.2. The set T of pseudoterms and the set C of contexts are defined as follows: 

T 
C 

v I C I (T T) I ("\v:T. T) I (IIV:T. T) 
< 1< C, V:T > 

where V is the set of variables and C is the set of constants. 

The ,B-reduction is defined as usual by the rule ('\",:A. alb ->p a[", := bJ. The ",-equality is 
defined as usual and a-equal terms are identified. 

l'f-a,A l'f-b,B 
1 A KPTS is a PTS extended with the following typing rule: r I- (K a b) : A and the following reduction 

n.tle: (K a b) -k a 
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Definition 2.3. The PTS determined by the specification 5 = (8, A, R) is denoted as >'5 = 
>.( 8, A, R) and defined by the notion of type derivation r 1->8 b : B (or r I- b : B) given by the 
following axioms and rules: 

(axiom) 

(start) 

(weakening) 

(formation) 

(abstraction) 

(application) 

(conversion) 

fl-C:S 

r1-A:8 
r,x:Al-x:A 

rl-b:B rl-A:. 
r,x:Al-b:B 

r I- A : s, r, x : A I- B : 82 

r I- (IIx:A.B) : .3 

r, x: A I- b : B r I- (IIx:A. B) : 8 

r I- (>.x:A. b) : (IIx:A. B) 

r I- b : (IIx:A. B) r I- a : A 
r I- (b a): B[x := a] 

rl-b:B rl-B':s B-pB' 
rl-b:B' 

where s ranges over sorts, i.e. s E S. 

for (c,s) E A 

where x is r -fresh 

for (." .2, .3) E R 

The following results are well-known (see for example [Bar92]). 

Theorem 2.4. (Church Rosser for ,a-reduction) Let r E C and a E T be such that a -+p b 
and a -+p c. Then there exists a term dE T such that b -+p d and c -+p d. 

Theorem 2.5. (Correctness of Types) Let r E C and d,d',D E T be such that r I- d: D. 
Then r I- D : s or D ;: s. 

Theorem 2.6. (Subject Reduction Theorem) Let r E C and d, d', D E T be such that 
r I- d : D. If d -+p d' then r I- d' : D 

Definition 2.7. The specification 5 = (8, A;R) is called singly sorted if 

1. (c, st), (c, 82) E A implies s, ;: S2 

2. (81,82,83), (81 J 82, S;) E R implies 53 == s; 

Theorem 2.8. (Uniqueness of Types) Let 5 be a singly sorted specification, r E C and 
a,A,B E T such that r I- a: A and r I- a: B. Then A =p B. 

Definition 2.9'. Let),S be a PTS. A sort s in S is called a topsort if there is no So E 8 such 
that (s, so) E A. 

Definition 2.10. 
The specification 5 = (8, A, R) is called full if for all s" S2 E 8 there exists S3 such that 
(S"S2,S3) E R 

Definition 2.11. The ),-cube is a cube of eight systems defined by the same set of sorts 8 = {o, D} 
and the same set of axioms A = {(o, D)}. They differ in the set of rules R. 

System R 
),~ (0,0) 
>'2 (0,0) (0,0) 
>'P (0, *) (0,0) 

>'P2 (0,0) (0,0) (0,0) 

>.'" (0,0) (0,0) 
>.w (0,0) (0,0) (0,0) 

>'P", (*,0) (*,0) (0,0) 
>'Pw =).C (0, *) (0,0) (0,0) (0,0) 
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The rule (8\,82) is an abbreviation for (8\,82,82). 

Note that the system )'C is the Calculus of Constructions and this system is full. 
All the systems of the ).-cube have only one topsort that is o. 

Definition 2.12. The Calculus of Constructions extended with an infinite type hierarchy can 
be described by the following PTS: . 

S_ N 
),Coo A = {(n, n + l)ln E N} 

R= {(m,O,O)1 mEN}U{(m,n,r)1 m,nEN &maz(m,n) <r} 

The system ),Coo extended with strong ~-types and cumulativity is the system ECC(see [Lu089]). 
We can see that ),Coo is an extension of )'C writing * instead of 0, 0 instead of 1. 
Note that there is no topsort in ),Coo ' 

Definition 2.13. Let).S be a PTS. Then ),5 is {3-strongly normalizing if a and A {3-strongly 
normalize for all a, A E T and r E C such that r I-,s a : A. 

The system ),Coo and the systems of the ).-cube are {3-strongly normalizing. Howewer not all 
PTS's are .a-strongly normalizing as next example shows: 

Example 2.14. The PTS)'o determined by the specification (S,A,R) where S = {*}, A = 
{Co, oj} and R = {(o, *J) is not {3-strongly normalizing. 

3 Pure Type Systems with Weakened Abstraction Rule 

In this section we consider Pure Type Systems without the type premise r I- (llz:A. B) : s in the 
abstraction rule (PTSW,s or ()'S)W ). The abstraction rule for these systems will be as follows: 

r I-w ().x:A. b) : (llx:A. B) 

The notion of type derivation in PTSw will be written as r I-w a : A or r I-,s- a : A. Note 
that ),5 ~ ),SW, i.e. if r I-,s a : A then r I-w a : A. The following example shows that )'SW has 
more typable terms than )'C, i.e. )'C C )'Cw • 

Example 3.1. The following term is typable in )'Cw: 

A: * he- ).x:A.(* --> *) : (A --> 0) 

But it is not typable in )'C because A --> 0 does not have type. 

Properties like Subject Reduction, Substitution Lemma and Strengthening for PTSw,s are easy 
to prove. Note that the property of Correctness of Types does not hold for PTSw,s. 

3.1 Description of Toptypes 

In this section we will define the notion of toptype and prove that toptypes have a very special 
form. This will give us an idea of the form of the 'new' terms that we are adding to )"S whe'n we 
do not consider the type premise of the abstraction rule. 

Notation 3.2. 
From now on r liw A : - will denote that A is not typable in r. i.e. Jj 8[r I-w A : s1. 

TCwill be'importantto consider the terms A such that r I-w a : A and r liw A : - and hence 
we define: 
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Definition 3.3. We say that A is a toptype if there exist r, a such that r I-w a A and 
r Ifw A :-. 

One could say that toptypes are 'types' which do not have 'type'. 

Example 3.4. 

a) In (ACW
) we can derive 

A : * I-ew A",:A.( * --+ *) : (A --+ 0) 
The term (A --+ 0) has no type in ACw and is a toptype. 

b) In (A~)W we can derive 
I-(~)W (A",..,\",:".",): IT",.." --+" 

The term IT":'.a --+ " has no type in (A --+)W and is a toptype. 

Notice that the notion of toptype makes sense for both, PTS's and PTSw,s. For PTS's, the 
only toptypes are the topsorts. For example in ),C there is only one toptype that is o. 

Now we study the form of the toptypes. For systems with full specification, a toptype has the 
form IT"'I :AI ... ITxn :An·so with So a topsort. For example, any toptype in ACw has the form: 
(ITx:A I. ITx2:A2 ... ITxn:An. 0). 

The description of toptypes for any PTSw is a little more complicated: the toptype is not 
typable either because the main branch of the product is a topsort or because the rule we need to 
type the product is not in the set of rules R. 

Theorem 3.5. (Description Theorem) 
Suppose A is a toptype, i.e. r I-w a : A and r Ifw A : -. Then the following two properties 

hold: 

a) A == IT"'I:A I ... IT"'n:An.B where 

either B is a topsort So 

b) a --+p AXI:A I ... '\xn:An.b and r,xI:AI .. . xn:An I-w b: B. 

Proof: By induction on the derivation of r I-w a: A. 

Corollary 3.6. (Toptypes) Let r I-w a : A. 

r Ifw A: - iff A == ITxI:A I ... ITxn:An.B where 
either B is a topsort So 

Q. E. D. 

or "181,82 r,xl:AI . .. xn_I:An_Il-w An: 81, } =} J!S[(SI,S2,S) E R] 
r,Xl:Al ... Xn-l:An-l,Xn:An ~w B: 82 

Proof: Immediate. Q. E. D. 

Theorem 3.7. (;1-Closure of Toptypes) 2 Let S be a full or a singly sorted specification. 

If r I-w a : A, r Ifw A : - and A --+p A' then r Ifw A' : -

Proof: It follows from the description theorem. Q. E. D. 

Corollary 3.S. Let S be a full or singly sorted specification and r I-w b : B. 
If 3s E S[r I-w B' : s] and B' =~ B then 3s' E S[r I-w B : s']. 

Proof: By the theorem of Church-Rosser there exists Do a common redex of Band B'. By the 
subject reduction theorem we have that r I-w Do : s. By the ;1-closure of toptypes we have that 
r I-w B : s' for some s'. Q. E. D. 

2We call this theorem .a-closure of toptypes even though it is not completly right because we do not prove that 
A' is inhabited. 



3.2 Normalization for ,B-reduction 

In this section we prove for general PTS's that: 

If r f-w a : A : s then r' r J..S a' : A' for some 
such that 

ai, A', r' 
a -+/J a', A -+fJ A', r -+13 r/. 

In the case of full or functional specifications, we have more: we define a mapping C such that 
if r f-w a : A : 8 then C(r) f- C(a) : C(A) and a -+p C(a), A -+p C(A) and r -+p C(r). 

Then we prove that weak normalization of )'S implies weak normalization of ).SW . 

Definition 3.9. We say that an abstraction .l.x:A.b is illegal w.r.t. the context r if for all D 
such that r f-w )'x:A.b : D we have that r Ifw D: -. 

Definition 3.10. A redex ().x : A. b)a is called an illegal redex w.r.t. the context r if its 
abstraction ().x:A. b) is illegal. 

We define a mapping C that contracts all the illegal redexes of a term. 

Definition 3.11. Given r f-w a : A we define Cr on the typable terms as follows: 

Cr(x) x 

{ 

ao[x:= Crtb)] if crta) = )'x:A.ao is an illegal abstraction w.r.t. r 

(Cr(a) Cr(b)) otherwise 
Cda b) = 

Cd).x:A. a) = 
Cr(IIx:A. B) 

(.l.x:Cr(A). Cr,d(a)) 

(IIx:Cr(A). Cr,xA(B)) 

We write C(a) instead of Cr(a). 

Lemma 3.12. 

1. Suppose r f-w a: A. Then a --+p C(a). 

2. Suppose that S is singly sorted or full. Tben C(b)[x := C(a)] == C(b[" := aJ). 

Proof: They are proved by induction on the structure of the term. Q. E. D. 

Next example shows that if the specification is not singly sorted C(b[x .- aJ) may not be 
syntactically equal to C(b)[x:= C(a)]. 

Example 3.13. The following specification is not singly sorted: 

S 
)'S A 

R 

0,1,2 
0:1,0:2,1:2 

(2,2) 

We take r == x : 1, z : x, b == ().y:x.y)z and a == O. Note that b contains illegal abstractions but 
b[x:= 0] does not. Hence C(b[,,:= OJ) '" C(b)[,,:= C(O)]. 

Lemma 3.14. 

1. If r f-w A: sand r f- a: A then r I- A: S' for some sort S'. 

2. Suppose S be a singly sorted specification. 
If r f-w A : sand r f- a : A then r I- A : s 

Proof: 
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1. By the lemma of correctness of types, we have that r I- A : 8' or A == 8'. 
If A == 8' then s' : s is an axiom. 

2. It follows from the previous part. 

Q. E. D. 

Lemma 3.15. 

1. Let S be a singly sorted specification. 
If r I-w F : (IIx:A. B), r I-w B[x := aJ : 8 and r I-w a : A then 382 r, x:A I-w B : 82. 

2. Suppose S is full. If r I-w a: A, r I-w F : (IIx:A. B) and r I-w B[x := aJ : 8 then, 
r I-w (IIx:A. B) : 8' for some 8'. 

3. If r liw B[x := aJ : - then r liw (IIx:A. B) : -. 

Proof: 

1. It is proved using the description theorem. 

2. Suppose towards a contradiction that IIx:A. B == IIx, :A, . ... IIxn:An .80 with So a topsort. 
Then B[x := aJ == IIx, :A,[x := aJ ... . IIxn :An[x := aJ.80 . It follows from the topsort 
theorem that B[x := aJ is a toptype. This is a contradiction. 

3. Suppose r I-w (IIx:A. B) : 8'. By the generation lemma we have that r, x:A I-w B : s. By 
the substitution lemma we have that r I-w B[x := aJ : 8. 

Theorem 3.16. Let S be a full or singly sorted specification. 
If r I-w a : A then 

1. If A is not a toptype then 

C(r) 1-'8 C(a) : C(A). 

2. If A is a toptype then 

C(r,x,:A, ... xn:An) hs a': C(B) 
where A == IIx,:A, ... IIxn:An.B and 

C(a) == Ax,:C(A,) .. . AXn:C(An).a' 

Proof: This property is proved by induction on the derivation of r I-w a : A. 
Note that if A == 8 then C(r) hs C(a) : 8. 

We consider 3 cases: 

( b 
.) r, x: A I-w b : B 

• a stractlOn r I-w (Ax:A. b) : (IIx:A. B) 

1. Suppose r I-w (IIx:A. B) : 8. By the generation lemma we have that: 
r,x:Al-w B: 82, rl-w A: 8, and (8,,82,8) E R. 
By the IH we have that 

C(r) I- C(A): 8, and C(r,x: A) I- C(b) : C(B). 

Q. E. D. 

If the specification is full by lemma 3.14 we have that c(r, x : A) I- C(B) : 8~ and there 
exists 8a such that (81, s~, 83) E R. 
If the specification is singly sorted by lemma 3.14, we have that 82 == s~ and we know 
that (8,,82,8) E R. 
In any case (81, s;, 83) E R for some 83. 

We obtain the following derivation: 
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c(r,,,,: A) I- C(b): C(B) c(r) I- C(A): 81 c(r,,,,: A) I- C(B): .; 
c(r) I- C(IT",:A. B) : 83 

c(r) I- C(A"':A. b) : c(IT",:A. B) 

2. Suppose r Ifw (IT",:A. B) : -. There are two possibilities: 

(a) r,,,,:A I-w B: 8. 

By the IH we have that: 

c(r, ",:A) I-w C(b) : C(B) 
where C(A",:A. b) == (A",:C(A). C(b)) 

(b) r,x:A Ifw B:-. 
It follows from the IH that 

C(r, x:A, "'I:AI ... "'n:An) 1-'8 b' : C(B') 
where B == IT"'I:AI ... IT"'n:An.B', 

C(b) == AXI:C(A,) .. . AXn:C(An).b' 

( I. t· ) r I-w b: (ITx:A. B) r I- a : A 
• app Ica Ion r I-w (b a): B[x :_ a] 

J. Suppose r I-w B[x := a] : 8. 

(a) If the specification is singly sorted then there are two cases: 
i. Suppose r I-w (ITx:A. B) : 8'. 

By the IH we have that 

c(r) I- C(b) : C(ITx:A. B) 
Note that r I-w A : 81. By the IH we have that C(f) I- C(a) : C(A). 
Hence we have the following derivation: 

C(f) I- C(b) : C(ITx:A. B) c(r) I- C(a) : C(A) 
c(r) I- C(b a): C(B)[x :- C(a)] 

By lemma 3.12 we have that C(B)[x := C(a)] == C(B[x := aJ). 
ii. Suppose r Ifw (ITx:A. B) : -. 

Note that r I-w A : 81. By the IH we have that C(r) I- C(a) : C(A). 
By lemma 3.15 we have that r, x: A I-w B : 82. By the IH we have that 
C(r, x:A) I- b' : C(B) with C(b) == Ax:A'.b'. 
Due to the J1-closure of toptypes we have that C( b) == AX: A'.b' is an illegal 
abstraction and then C(b a) == b'[x := C(a)]. 
By the substitution lemma, 

c(r) I- b'[x := C(a)] : C(B)[x := C(a)] 

By lemma 3.12, we have that C(B)[x := C(a)] == C(B[x := aJ). 

(b) If the specification is full then by lemma 3.15 we have that r I-w (ITx:A. B) : 8'. 
The proof proceeds as in case l(a)i. 

2. Suppose r Ifw B[x := a] : -. 

It follows from lemma 3.15 that r Ifw (IIx:A. B) : -. 
By the description theorem we have that (ITx:A. B) == IIx:A.ITx!:AI ... IIxn:An.Bo. 
By the IH we have that C(r) I- C(a) : C(A) and that 

c(r, x:A, x!:A!, . .. , xn:An) hs b' : C(Bo) 
where C(b) == Ax:C(A). AX!:C(Ad .. . Axn:C(An).b' 

Due to the J1-closure of toptypes we have that C(b) is an illegal abstraction and then 
the value of C(b a) is computed as follows: 
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C(b a) AX1:C(A,)[x:= C(a)] .. . AXn:C(An)[x := C(a)].b'[x:= Crall 

By the substitution lemma we have that: 

C(r), xl:C(A,)[x := C(a)], ... , xn:C(An)[x := C(a)]) I-~s b'[x := Crall : C(Bo)[x := Crall 

By lemma 3.12 we have that: C(Bo)[x := Crall = C(Bo[x := all. 

( .) r I-w b : B r I-w A: s B =p A 
• converSIOn r ~w b : A 

By corollary 3.6, we have that r I-w B : 8'. By the IH we have that C(r) I- C(b) : C(B). By 
the IH we also have that C(r) I- C(A) : 8. By conversion rule C(r) I- C(b) : C(A). 

Q.E.D. 

In [vBJ93] the set T is partitioned into sets Tv and Ts such that terms in Tv have a unique 
type and terms in Ts may have more than one type in a PTS. The same property holds for PTSw ' •. 

Definition 3.17. 

Tv 
Ts 

v 
C 

Tvs .. - Tv 

Theorem 3.18. Let a E Ts. 

I (Tv Tvs) I (AV:Tvs . Tv) 
I (Ts Tvs) I (>.V:Tvs. Ts) I (IIV:Tvs . Tvs) 
ITs 

r I-w a: A, A -->p II"I:A1 .. . xn:An.s 
r I- a: IIXl:Al ... xn:An.s' 

Then 

Proof: By induction on the derivation of r I-w a : A. 
Q. E. D. 

Corollary 3.19. If r I-w A: sand r I- A : 5' then r I- A : s. 

Proof: 
Suppose A E Tv. By the uniqueness of types theorem for PTSw,s, we have that 5 ;: .' . 

Suppose A E Ts. By the previous theorem we have that r I- A : s. 
Q. E. D. 

Corollary 3.20. If r I-w A : 8 and r I- a : A then r I- A : s. 

Proof: It follows from lemma 3.14 that r I- A : S' for some 5'. By the previous corollary we have 
that r I- A : s. Q. E. D. 

For an arbitrary specification we prove a weaker statement than theorem 3.16: 

Theorem 3.21. Let r I->.sw a : A. 

1. If 3. E S[r I-w A : s] then 

r' I- >'8 a' : A' for a -+[J a', A --+13 A' and r -+{3 r' 

2. Ifr i;fw A: - then 
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r', zl:A~ .. . zn:A~ ~"'S a' : B 
where A", IIxI:AI .. . IIxn:An.B, 

a -+/3 AZl:Ai ... AZn:A~.a' 
r -+p r', B -+p B', Ai -+/3 Ai for all i. 

Note that if A", 8 then r' I-~s a': 8 for a _p a' and r _p r'. 

Proof: This theorem is proved by induction on the derivation of r I-~s. a : A. We consider only 
2 cases: 

• (abstraction) r,x: A I-w 6: B 
r I-w (Ax:A. 6) : (IIx:A. B) 

Suppose r I-w (IIx:A. B) : s. ' 

1. By the generation lemma r,x:A I-w B: '2, r I-w A :81 and (81,S2,S) E R 
By the IH and corollary 3.20 we have that 

r', x : A' I- b' : B' : 82 for b -+/3 b', B -+13 B' and r, x:A -+p r', z:A'. 

By the IH we have that r' I- A' : 81. 3 

Since (SI, 52, 5) E R we obtain the following derivation: 

r' I- A' : 81 r', x : A' I- B' : 82 r', x : A' I- b' : B' r'l- (IIx:A'. B') : 8 

r'l- (Ax:A'. 6') : (IIx:A'. B') 

2. Suppose r Ifw (IIx:A. B) : -. There are two possibilities: 

(a) r,x:A I-w B: 5. 

By the IH we have that: 
r',x:A'l-w b': B' : s where r,x:A -+/3 r',x:A', 

6 _p 6',B _p B' 
(b) r,x:Alfw B:-

It follows from the IH that 
r'lX:A',Xl:A~ ... xn:A~ 1-),5 b': B' 

where 

( I
. . ) r I-w b : (IIx:A. B) r I- a : A 

• app IcatlOn r I-w (6 a): B[x := a] 

1. Suppose r I-w B[x := a] : 8. 

There are two cases: 

(a) Suppose r I-w (IIx:A. B) : 5'. 
By the IH we have that 

B", IIxI:AI ... IIxn:An.Bo, 
6 _p AXI:A, ... Axn:A~.6' 
r _p r' 
Eo -+p B' 
Ai -p A: for all i. 

r'l- 6' : (IIx:A'. B') for 6 _p 6', A _p A', B _p B' and r _p r' 
Note that r I-w A : 51. By the IH we have that 

r'l- a' : A' : 8i for A -+/3 A' and a -+/3 a'. 
Hence we have the following derivation: 

r'l- 6' : (IIx:A'. B') r' I- a' : A' 
r'l- (6' a'): B'[x := a'] 

3 Actually we deduce r" I- An : 81 and by the Church Rosser theorem we can always find A common reduct of 
A' and AU and of r ' and r". We omit this kind of det~ls. 
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(b) Suppose r liw (n,,:A. B) :-. 
Hence B '" n",:A, ... "n:An.Bo. It follows from lemma 3.15 that Bo cannot be a 
topsort. Then 

3n,sl,82 f,z:A,Zl:Al ... Xn_l:An_l rw An: 81 

f, x:A, xl:A1 ... Xn_l:An _ 1, Xn:An I-w Bo : 82 

Moreover, we have that: 
b -+(3 Ax:A'. AXl:A~ ... AXn:A~.b' and r/, x:A', xl:Ai ... , xn:~ I- hi : B' 

By the IH we have that r' I- a' : A' for a --+~ a' . 
By the substitution lemma we have that: 

r', ",:Ai[" := a'l···, "n:A~[" := a'l I- b'[" := a'l: B'[" := a'l 

Note that r I-w B[" := al : 8 and 

B[:r:= aJ '" n:r,:A,[" := aJ .. . "n:An[,,:= aJ.Bo[":= aJ 
--+p n",:Ai[":= a'J .. . "n:A~[,,:= a'l·B'[,,:= a'l 

By the subject reduction theorem we have that: 

r' I-w n",:Ai[":= a'l·· ."n:A~[x := a'l·B'[x:= a'l : s 

We can easily construct a derivation of 

r' I- n:r,:Ai[:r := a'l .. . xn:A~[z:= a'l.B'[x := a'l : s in a PTS. 
Applying Abstraction Rule n-times we obtain a derivation of: 

r'l- (-,x,:Ai ... Axn:A~.b')[z:= a'l: (nx,:Ai.· .xn:A~.B')[x:= a'l 

with (b a) -->p (Ax:A'. Ax,:Ai ... >'zn:A~.b')a' 
-p >.z,:Ai·· .Axn:A~.b'[x:= a'l 

2. Suppose r liw B[z := al : -. 
It follows from lemma 3.15 that r liw (nz:A. B) : -. 
By description theorem we have that (nz:A. B) '" nz:A.nx,:A, ... nzn:An.Bo. 
By the IH we have that 

r/,X:A',Xl:A~J ... ,xn:A~ I-).s b': B' 
where b --+p Ax:A. ",:A , ... >,xn:An.b' 

f,x:A,Xl: Al, ... ,xn:An -+fJ r/,x:A/JXl:Ai,···,xn:A~ 
Bo -->p B' 

By the IH we have that 

r' r a' : A' for a -+f3 ai, A -+/1 A', r -+/J r' 
Then 

(b a) -->p (>.z:A. AX,:A, ... >'''n:An.b')a' 
-->p A:r,:A,[z := a'l .. . Azn:An[x:= a'l·b'[z:= a'l 
--+p Ax,:Ai[z := a'l·· .Axn:A~[z:= a'l·b'[z:= a'l 

By the substitution lemma we have that 

r', x,:Ai [x := a'], ... , xn:A~[x := a'11-.\5 b'[x := a'l : B'[z := a'l 

( ) r I-w b : B r I-w A : 8 B =p A 
• conversion 

rl-w b : A 

1. Suppose r I-w B : 8' By the IH we have that r'l- b' : B' for B --+~ B'. By the theorem 
of Church Rosser there exists B" such that A, B' -+/3 B". 
Hence r' I- b' : B" . 
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2. Suppose f Ifw B: -. Hence B,= TI",,:A, ... TI"'n:An.Bo. Note that Bo cannot be a 
topsort. Then 

3n,SI,S2 r,zl:Al' "xn-l:An- 1 ~w An: 81 

r, Xl:Al .. ,xn_l:An _ b Zn:An t-w Bo : 82 

By the IH we have that: 

r', xl:Ai ... ,xn:A~ I- b' : B' 
with Bo -+~ B' and b -+p >.",,:A\ ... >''''n:A~.b' 

By the IH we have that fl f- A' : 8 with A -+p A' and f -+p f'. 
By the theorem of Church-Rosser, A' and nXl:A~ ... xn:A~.B' reduces to 

By subject reduction theorem we have that: 

By subject reduction theorem and conversion rule we have that: 

Applying Abstraction Rule n-times we obtain a derivation of: 

r'f- AXl:Al" .. ,>.xn:An".b': IIXl:A1" ... zn:An".B" 

Q. E. D. 

Corollary 3.22. (Normalization) 
If >'S is weakly normalizing then >'Sw is weakly normalizing too. 

Proof: Suppose f f-w a: A. We have two possibilities: 

1. Suppose f f-w A: 8. By the previous theorem there exists fl, a' and A' such that f' f- a' : A' 
and a -+f3 a', Since).,S is weakly normalizing, we have that a' -(J n!(a') where nf(a') is 
the ~-normal form of a' . Then a is weakly normalizing. 

2. Suppose f Ifw A : -. By previous theorem we have that 

r/,xl:A~ ... xn:A~ 1->'8 a': B 
where A '= TI",,:A, ... TI"'n:An.B, 

a -p ).xl:Ai ... '\xn:A~.a' 
f -+~ f' 
B -+p B' 
Ai -+p A; for all i. 

Since )"S is weakly normalizing in particular a' and A~ for all i are weakly normalizing. 
Hence 

Then a is weakly normalizing. 

'\xl:Ai·· . ..\xn:A~.a' 
>''''' :nl(A\) ... >''''n :nl(A~).nl(a') 
nl(a) 

Corollary 3.23. Let >'S be a PTS extending -'2. 
If there is a proof of TI" : •. " in >'SW then there is also a proof of TI" : •. " in >'S. 

Q. E. D. 

Proof: Suppose there exist rand p such that f f-w p : TI" : •. ". The type TI" : •. " is not a topsort 
in (>'2)w. By previous theorem we have that there exist fl and p' such that fl f-w p' : TI" : '.n. 

Q. E. D. 
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3.3 Strong Normalization for /9-reduction 

In this section we define the notion of 'completion' and we prove that >'S = >'8'" if and only if S 
is a completion of itself. We also prove that if S' is a completions of S, strong normalization of 
>'S' implies strong normalization of >'8'" . 

First we define the notion of completion as in [SP94j: 

Definition 3.24. Let S = (S,A,R) and S' = (S',A',R') be such that 

I. S~ S', A~ A', and R~ R' 

2. S' is full, i.e. for all 81,82 E S' there exists 83 such that (B1, 82, 8.) E R. 

3. for all 8 E S there is a sort 8' E S' such that (B, B') E A' (Le. the sorts of S are not topsorts 
in S'). 

Then the specification S' is called a completion of S. 

Example 3.25. The system >'Coo is a completion of >'C and of itself. 

Lemma 3.26. Let S' be a completion of S. 

If rl->8w a: A then r 1->8'. A : B for some sort 8. 

Theorem 3.27. Let S' be a completion of S. 
i 

If r 1->8w a: A then r h8' a : A and r 1->8' A : 8 for some B. 

Corollary 3.28. Let S be a completion of itself. 

r 1->8w a : A iff r 1->8 a : A 

A consequence of this corollary is that (,\Coo)W = >'Coo . Hence it is redundant to write the 
type premise in the abstraction rule for >'Coo . 

Next we will prove that the set of legal terms in )"S is equal to the set of legal terms in )"SW if 
and only if S is a completion of itself. We refer to the set of legal terms of >'S as £(>'S). 

Theorem 3.29. (Redundancy of the type premise) 
£( >'S) = £( >'SW) iff S is a completion of itself. 

Proof: Corollary 3.28 is one of the implications of this theorem. 
Conversely, we will prove that S is full and has no topsorts. 
Suppose there is a topsort 80. There is at least one axiom c : BO. Hence I-w >."':c. C : (c --> BO)' 

Since £(>'S) = £(>'8'"), we have that 

r I- (c --> so) : B for some 8 and r 
, 

Hence So cannot be a topsort. 
Given the sorts 81,82 we prove that there exists a sort 8 such that (81,82,8) E R. Since S has 

no topsorts we have that 81 : s~ and 82 : 8 2 for some s~ and 82' Hence we have that: 

I-w (>,,,: 81.>.f3: 82.>'y: f3.>'",:". y) : IT,,: B1.ITf3: 82.(" --> (3) 

The type of this term is a legal term in >'S then: 

r I- IT,,: 81.ITf3: 82.(Ot ..... (3): 8 

Hence there exists s such that (SI, 82, 8) E R. 

Theorem 3.30. Strong Normalization 
Let S' be a completion of S. 
If >'S' is f3-strongly normalizing then >'8'" is f3-strongly normalizing too. 
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3.4 Strong Normalization for the illegal reduction 

In this section we will show that the ,8-reduction restricted to illegal redexes is strongly normalizing. 

Definition 3.31. Given r such that r f-w ('\z:A. b)o : D. 
We define the illegal reduction w.r.t. the context r as: 

('\z:A. b)a ->PI b[z:= oj if ('\z:A. b)o is an illegal red ex w.r.t. r. 

Of course we have to add all the compatibility rules to this rule. 
Recall that a development is a reduction sequence in which only descendents of redexes that 

are present in the initial term may be contracted. In a development one is not allowed to contract 
red exes that are created along the way. 

An extension of the notion of development, called superdeve/opments, was introduced and 
proved to be finite in [Raa93J. In that paper the notion of development was extended to include 
reduction sequences in which one can contract not only redexes that descend from the initial term 
but also some redexes that are created during reduction. 

There are three ways of creating new redexes (see [Lev78]): 

1. «,\z:A.,\y:B.d)e)f ->P (,\y:B.d[x:= e])f 

2. ('\z:A.z)('\y:B.d)e ->P (,\y:B.d)e 

3. ('\,,:A.C[z dJ)(,\y:B.e) ->~ C'[(,\y:B.e)d'J where C' and d' are obtained from C and d 
replacing all free occurrences of" by (,\y:B.e). 

The first two ways of creating red exes are 'innocent' and they may be contracted in a BU

perdevelopment. The result that all superdevelopments are finite shows that infinte ,8-reduction 
sequences are due to the presence of the third type of redexes. 

New redexes containing illegal abstractions can be created only with case 1). This is because 
the type of a variable cannot be a toptype. In case 2) and 3) a variable z is substituted by (,\y:B.e) 
and this abstraction is not illegal. Hence the illegal abstractions of a term constitute an initial 
labelling of a superdevelopment. All the redexes with illegal abstractions that are created along 
this superdevelopment are labelled. 

Hence we have the following result: 

Theorem 3.32. The reduction ->~I is strongly normalizing. 

Proof: It follows from the finite superdevelopments theorem (see [Raa93]) and the considerations 
above. Q. E. D. 

Since all superdevelopmimts are finite we can get rid of all the illegal abstractions occuring in 
a term in a finite number of steps. Note that the last term of a complete superdevelopment of 
illegal abstractions is computed using C. 

3.5 A Type Inference Algorithm for PTSw 

Next we define a system that is nearly syntax qirected for Pure Type Systems without the type 
premise in the abstraction rule. It is nearly syntax directed because given band r the term B 
such that r rwn"d b : B is not unique. 

Notation 3.33. We write r f-w",d a : ..... A for r f-wn,d a : Ao and Ao ->p A. 
We write r rwn"d A :----++wh A for r rwn"d a : Ao and Ao weak-head reduces to A. 

Definition 3.34. The Syntax Directed Pure Type System PTS~'d determined by the specification 
S = (5, A, R) is denoted as AS;:',d and defined by the notion of type derivation r f-wn,d b : B 
given by the following axioms and rules: 
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(aziom) 

(start) 

f I-wn.td c : s 

r rwn,d A :~ 8 

r) z : A I-wn,d z : A 

for (c, s) E A 

where z is r -fresh 

(weakening) r I-wn.td b : B r I-wn • d A :"""'* 8 

r, x : A I-wn.d b : B 
where z is r -fresh and b E C U V 

(formation) 

(abstraction) 

(application) 

r I-wn,d A :"""* 81 f, x: A I--wn6d B :-.. 82 

r I-wn •d (IIz:A.B) : 83 

r,z: A I-wnod b: B 
r I-wn•d (Az:A. b) : (IIz:A. B) 

r I-wn,d b :'--»wh (IIz:A. B) r I-wn.d a : A' 
r I-wn,d (b a): B[z :_ a] 

where s ranges over sorts, i.e. s E S. 

for (Sl, S2, 83) E R 

A =p A' 

Note that when the specification is singly sorted, this set of rules is syntax directed. 
The proof of the following theorems will be omitted because they are direct. 

Theorem 3.35. (Soundness) If r I-wn•d a: A then r I-w a: A. 

Theorem 3.36. (Completness) If r I-w a : A then r I-wn•d a: A' for A =p A'. 

Next we define a type inference algorithm for PTSw,s: 

Primitives 

N:F : T _ T computes the normal form, 

W1f.N:F : T -> T computes the weak-head normal form, 

E Q : TxT -> Bool yields true if two terms are p-equal. 

Type Inference Algorithm for arbitrary rTSw'8 

We define a mappingIN:Fw : exT -> P(T) as follows: 

IN:Fw«;C) {s I (C,8) E A} 

IN:Fw« r,z: A >;x) {A} if 8 EN:F(IN:Fw« r;A» 

IN:Fw«r,x:A>;v) = IN:Fw(r;v) if[8EN:F(IN:Fw(r;A))]Av;fz 

IN:Fw« r,z:A >;c) = IN:Fw(r;c) if(sEN:F(IN:Fw(r;A») 

IN:Fw(r; (IIz:A.B)) {83 I [s, E N:F(IN:Fw(r; A»] A [82 E N:F(IN:Fw(r, z : A;B))] 
A(SI,82,83) E R} 

IN:Fw(r;(AX:A. b» {(IIx:A. B) I BE IN:Fw(r,x: A;b)} 

IN:Fw(r;(b a)) = {B[x:= a]1 [(IIx:A. B) E W1f.N:F(IN:Fw(r;b))]A 
[A' E IN:Fw(r; a)] A EQ(A; A')} 

Note that if the term a has no type under the context r then IN:Fw(r,a) = 0. 
In case of singly sorted PTS's we write IN:Fw(r,a) = A instead ofIN:Fw(r,a) = {A}. 

Theorem 3.37. Given iven r E C and a E T, IN:Fw(r, a) = {A I r I-w a : A}I =p. 

Proof: It is proved by induction on (r, a). 
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4 Typability for PTS '8 

We compare several syntax directed systems and we discuss which system would yield 'the best 
algorithm for type inference' : 

• In section 4.1, we present the syntax directed system PTS.d (see [vBJMP93j). All attempts 
to prove completeness for this algorithm have been unsuccesfull. The main difficulty seems to 
be the impossibility to apply the inductiv~ hypothesis to the type premise in the abstraction 
rule. 

We consider variations of this system by changing the type premise of the abstraction rule. 

• In section 4.2, we present another syntax directed system PTSn /. The PTSn / and PTS.d 
differ only in the abstraction rule. The type in the abstraction rule of PTSnJ is reduced to 
the normal form. 

We can prove Soundness and Completeness of this algorithm with respect to PTS's. 

• In section 4.3, we define a type inference algorithm for singly sorted PTS's. We consider 
the syntax directed system PTS';'d for Pure Type Systems without the type premise in the 
abstraction rule. This system allows "illegal abstractions" and it is not yet a type inference 
algorithm for PTS's. We will turn the type inference algorithm for Pure Type Systems 
without the type premise in the abstraction rule into a type inference algorithm for Pure 
Type Systems checking separately that the term does not contain illegal abstractions. 

Given r, a, the type inference algorithm for PTS's can be described as follows: 

1. Find A such that r I-w a : A. 

2. The algorithm yields A if the abstractions in a and in r are not illegal. 

This type inference algorithm for singly sorted PTS's is efficient and it is also simple as the 
one presented in section 4.1. 

4.1 The simplest Type Inference Algorithm 

Next we define the syntax directed system as in [vBJMP93j. 

Notation 4.1. We write r I-,d a:_ A for r I-. d a: AD and AD -~ A. 
We write r I-,d A :-wh A for r I-,d a: AD and AD weak-head reduces to A. 

Definition 4.2. The Pure Type System PTS,d determined by the specification S = (S, A, R) 
is denoted as >'S,d and defined by the notion of type derivation r I-,d b : B given by the following 
axioms and rules: 

(axiom) 

(start) 

(weakening) 

(formation) 

(abstraction) 

(application) 

!r"dC:S 

r r,d A:_ 8 

r, x: A I-,d x : A 

rl-,db:B rl-,d A :- s 
r,x: A I-,d b: B 

r r"d A :- 81 f, x:A rsd B:_ 82 

r I-. d (IIx:A.B) : sa 

r,x:A I-,d b: B 
r I-.d (IIx:A.B) : s 

r I-,d (>.x:A. b) : (IIx:A. B) 

r I-,d b :-wh (IIx:A. B) r I-,d a : A' 
r I-,d (b a): B[x :- a] 
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where x is r-fresh 

where x is r-fresh and bEe u V 

for (s" S2, S3) E R 

A' =~A 



where s ranges over sorts, i.e. s E S. 

Note that the shape of a term together with the context determines the rule to be applied: 

• The wekening rule is now deterministic because it has been restricted to variables and con
stants . 

• The conversion rule has been spread in the rest of the rules adding reduction to some rules. 

Note that when the specification is singly sorted, PTS,4 is syntax directed. 
It is easy to prove Soundness of these systems with respect to PTS's: 

Theorem 4.3. (Soundness) 

If r I- ,d a : A then r I- a : A. 

Next example shows that completeness is not true for non-singly sorted PTS's. 

Example 4.4. The following specification is not singly sorted: 

S 
>'5 A 

R 

0, I, 2 
0:1,0:2,1:2 

(2,2) 

We take A == (>'y:l.y)O. We can derive x : A I- (>.z : O.x) : (0 ~ 0). Howewer there is no D such 
that x: A 1-,4 (>.z: O.x): D. 

For singly sorted PTS's, Completeness has not been possible to prove: 

(Completeness) Suppose 5 is singly sorted. If r I- a: A then there exists A' such that A =~ A' 
and r I-,d a: A'. 

4.2 A Simple But Inefficient Type Inference Algorithm 

Next we define a syntax directed set of rules for normalizing Pure Type Systems. The type 
derivation for these systems is denoted as rn!. 

This system is defined from the previous one changing just the abstraction rule. The type of 
the abstraction (IIx:A.B) is reduced to its normal form. 

The new abstraction rule is as follows: 

r, x: A I-nJ b: B r I-nJ (IIx:Ao.Bo) : s 
r I-nJ (>.x:A. b) : (IIx:Ao. Bo) 

where (IIx:Ao. Bo) is the normal form of (IIx:A. B). 

We called these systems )"Sn! because the normal form is computed in the abstraction rule. 
The proof of the following theorem will be omitted because it is direct. 

Theorem 4.5. (Soundness) If r I-nJ a : A then r I-w a : A. 

Theorem 4.6. (Completeness) If r I- a: A then r I-nJ a: A' for A =~ A'. 

Note that for these systems we can prove subject reduction and completeness. This is because 
the type premise remains invariant under reduction. 

If the specification is singly sorted then these systems are syntax directed. 
Howewer the type inference algorithm associated to these systems is not efficient because it 

computes the normal form of (IIx:A.B) in the case of the abstraction rule. 
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4.3 A More efficient Type Inference Algorithm 

Restricting the system PTS::'.d' we obtain a type inference algorithm for singly sorted PTS's. 
First notice that the mapping C defined in 3.11 can be adapted to the system PTS::'.d' We call 

this mapping C'. This mapping contracts the illegal redexes of a term with respect to ),s:'d' The 
notions of illegal abstraction and illegal redex for ),s:'d are defined similarly to definition 3.9 and 
definition 3.10. 

Contraction of illegal redexes 

Next we define a mapping that contracts the illegal redexes of a term. Suppose that the 
specification is singly sorted and that r f-,., a : A. We define C'r on the typable terms as 
follows: 

C'r(x) x 

C'r(a b) 

J ao[x := C'r(b)] 

1 (C'r(a) C'r(b)) 

if (C'r(a) = )'x:A.ao) /I (IN.r,.,(r; ),x:A.ao) = B)/\ 
(IN.r,.,(r, B) = 0) 

otherwise 

C'r(),x:A. a) = ().x:C'r(A). C'r,xA(a)) 

C'r(ITx:A. B) = (ITx:C'r(A). C'r,xA(B)) 

We write C'(a) instead of C'r(a). 

Type Inference Algorithm 

We define a mapping IN.r : C x T ..... T U 1. that given r E C and a E T, IN.r(r, a) yields 
A if r f- a : A and 1. otherwise. as follows: 

IN.r(r, a) let A = IN.rw(r; a) in 
if ( A = 8 V N.r(IN.r,.,(r; A)) = 8 ) /I 

(C'(a) = a) /I (C'(r) = r) 
then C'(A) 
else 1. 

Note that this algorithm is more efficient than the previous one because it does not compute 
the normal form. 

We will prove some lemmas which are necessary to prove Completeness. First we show that C 
and C' are the same function on the typable terms of ),s;"d: 

Lemma 4,7. Let S be a full or singly sorted specification. If r f-wn.d a: A then Cr(a) = C'r(a). 

Proof: Due to theorem 3.35, r f-,., a : A. Hence Cr is defined for a. We prove that Cr(a) = C'r(a) 
by induction on the structure of a. 

Suppose a == (d e) and C'(a) = (Ax : A.f) is an illegal abstraction of a w.r.t. (),S)"'. By 
theorem 3.36 it is also an illegal abstraction w.r.t. (),S)~d' Q. E. D. 

Theorem 4,8. (Soundness) Let S be a full or functional specification. 
If the following conditions hold: 

1. r I-wn,d a : A, 

2. r I-w""d A :_ 8 or A == s 

3. C'(r) = rand C'(a) = a. 

then r f- a : A. 

18 



Proof: By theorem 3.35 we have that r I-w a : A. By theorem 3.16 we have that c(r) I- C(a) : 
C(A). By previous lemma, C'(r) I- C'(a) : C'(A). Hence r I- a : C'(A). 

Q. E. D. 

Theorem 4.9. (Completeness) 
If r I- a : A then the following holds: 

1. r I-wn• d a : A 

2. r I-wn6d A :_ s or A == 8 

3. C'(r) = r, C'(a) = a and C'(A) = A. 

Proof: It is a direct verification. Q. E. D. 
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