

A type inference algorithm for pure type systems

Citation for published version (APA):
Severi, P. G. (1995). A type inference algorithm for pure type systems. (Computing science reports; Vol. 9505).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/ff4d6486-abf8-44bb-92a5-4525f8adc36a

Eindhoven University of Technology

Department of Mathematics and Computing Science

A Type Inference Algorithm for Pure Type Systems

by

Paula Severi
95/05

ISSN 0926-4515

All rights reserved
editors: prof.dr. J.C.M. Baeten

prof. dr. M. Rem

Computing Science Report 95/05
Eindhoven, March 1995

A Type Inference Algorithm for Pure Type Systems

Paula Severi

University of Eindhoven - The Netherlands

Abstract

A large class of typed lambda calculi can be described. in a uniform way as Pure Type
Systems(PTS's). This includes for instance ~he second-order lambda calculus and the Cal
culus of Constructions. There are several implementations of PTS's such as COQ, LEGO or
CONSTRUCTOR. It is important to know that these implementantions are actually correct.

In this paper we present an efficient algorithm for infering types for singly sorted Pure
Type Systems and prove its correctness.

1 Introduction

For the implementations of PTS's it is important to consider the following two questions (see
[Bar91]):

1. Given a context r and terms band B, is it true that r I- b : B ?

2. Given a context r and a term b, does it exist B such that r I- b : B ?

These two problems are called Type Checking and Typability and are denoted as r I- b : B?
and r I- b :? respectively.

Notice that from a solution to the second problem we can easily find a solution to the first one.
It is known that for some PTS's, e.g .. h, these problems are undecidable.
In [vBJ93] it is shown that if a PTS is normalizing and has a finite set of sorts then these two

problems are decidable. In the algorithm they construct it is necessary to compute the normal
form of types and this makes it inefficient.

Most of the attempts to construct algorithms for type checking and type inference (see for
example [vBJMP93]) pass through the consideration of typing rules for which the type deduction
is determined by the shape of the term b and of the context r.

A set of rules for a typing relation I- are called syntax directed if given a context r and a term
b there exists B such that there is at most one derivation of r I- b : B.

A syntax directed set of rules defines a partial function r, b 1-+ B. The algorithm to compute
the corresponding function r, b 1-----+ B is called a. type inference algorithm.

As the conversion and the weakening rules can be used at any point in the derivation, it is
clear that the rules for PTS:s are not syntax directed.

Unfortunately for the sy'ntax directed system presented in [vBJMP93], even though it is very
natural, Completeness has not been proved. The main problem seems to be the impossibility to
apply the inductive hypothesis to the type premise in the abstraction rule.

The authors of [vBJMP93] solve the problem presenting other syntax directed systems with a
more liberal type premise in the abstraction rule', But in this case the new typing relations do not
seem to be natural.

In [PoI93] a type inference algorithm for bijective PTS's is presented. The class of bijective
PTS's includes all systems of the A-cube and is a proper subclass of the class we study here, the
class of singly sorted PTS's.

In this paper we will present an efficient type inference algorithm for singly sorted Pure Type
Systems. It can briefly be described as follows:

1. Infer the type of the term in a system allowing illegal abstractions, i.e. in a system without
the type premise in the abstraction rule.

2. Check - separately - if the abstractions in the term are not illegal.

For the step 1) of this algorithm we will consider Pure Type Systems without the type premise
"r I- (II",:A. B): 8" in the abstraction rule (PTSW,s). We study the methatheory ofPTSw,s in
detail.

First we prove that if a PTS is weakly normalizing then the corresponding PTSw is weakly
normalizing too.

Second we prove that the set of typable terms of a PTS and the corresponding PTSw are
the same iff the specification is a completion of itself. In other words we characterize those
specifications for which the type premise in the abstraction rule is redundant.

Also we prove that for certain specifications, if a PTS is strongly normalizing then the corre
sponding PTSw is strongly normalizing.

We finish this introduction by mentioning the following results (that will not be proved in this
paper). The PTSw,s are closely related to Pure Type Systems with definitions (see [SP94j) and
to KPTS's 1. The following open problems are equivalent for single sorted PTS's:

• For any specification, if a PTS is ,B-strongly normalizing then the corresponding DPTS
extended with definitions is ,Bo-strongly normalizing.

• For any specification, if a PTS is ,B-strongly normalizing then the corresponding KPTS is
,Bk-strongly normalizing.

• For any specification, if a PTS is ,B-strongly normalizing then the corresponding PTSw
IS

,B-strongly normalizing.

2 Pure Type Systems

We define the concept of Pure Type System as in [Bar92J.

Definition 2.1. The specification of Pure Type System (PTS) is a triple S = (8, A, R) such
that

• 8 <;; C is the set of sons.

• A <;; c x S is the set of axioms

• R <;; 8 x 8 x S is the set of rules

Definition 2.2. The set T of pseudoterms and the set C of contexts are defined as follows:

T
C

v I C I (T T) I ("\v:T. T) I (IIV:T. T)
< 1< C, V:T >

where V is the set of variables and C is the set of constants.

The ,B-reduction is defined as usual by the rule ('\",:A. alb ->p a[", := bJ. The ",-equality is
defined as usual and a-equal terms are identified.

l'f-a,A l'f-b,B
1 A KPTS is a PTS extended with the following typing rule: r I- (K a b) : A and the following reduction

n.tle: (K a b) -k a

2

Definition 2.3. The PTS determined by the specification 5 = (8, A, R) is denoted as >'5 =
>.(8, A, R) and defined by the notion of type derivation r 1->8 b : B (or r I- b : B) given by the
following axioms and rules:

(axiom)

(start)

(weakening)

(formation)

(abstraction)

(application)

(conversion)

fl-C:S

r1-A:8
r,x:Al-x:A

rl-b:B rl-A:.
r,x:Al-b:B

r I- A : s, r, x : A I- B : 82

r I- (IIx:A.B) : .3

r, x: A I- b : B r I- (IIx:A. B) : 8

r I- (>.x:A. b) : (IIx:A. B)

r I- b : (IIx:A. B) r I- a : A
r I- (b a): B[x := a]

rl-b:B rl-B':s B-pB'
rl-b:B'

where s ranges over sorts, i.e. s E S.

for (c,s) E A

where x is r -fresh

for (." .2, .3) E R

The following results are well-known (see for example [Bar92]).

Theorem 2.4. (Church Rosser for ,a-reduction) Let r E C and a E T be such that a -+p b
and a -+p c. Then there exists a term dE T such that b -+p d and c -+p d.

Theorem 2.5. (Correctness of Types) Let r E C and d,d',D E T be such that r I- d: D.
Then r I- D : s or D ;: s.

Theorem 2.6. (Subject Reduction Theorem) Let r E C and d, d', D E T be such that
r I- d : D. If d -+p d' then r I- d' : D

Definition 2.7. The specification 5 = (8, A;R) is called singly sorted if

1. (c, st), (c, 82) E A implies s, ;: S2

2. (81,82,83), (81 J 82, S;) E R implies 53 == s;

Theorem 2.8. (Uniqueness of Types) Let 5 be a singly sorted specification, r E C and
a,A,B E T such that r I- a: A and r I- a: B. Then A =p B.

Definition 2.9'. Let),S be a PTS. A sort s in S is called a topsort if there is no So E 8 such
that (s, so) E A.

Definition 2.10.
The specification 5 = (8, A, R) is called full if for all s" S2 E 8 there exists S3 such that
(S"S2,S3) E R

Definition 2.11. The),-cube is a cube of eight systems defined by the same set of sorts 8 = {o, D}
and the same set of axioms A = {(o, D)}. They differ in the set of rules R.

System R
),~ (0,0)
>'2 (0,0) (0,0)
>'P (0, *) (0,0)

>'P2 (0,0) (0,0) (0,0)

>.'" (0,0) (0,0)
>.w (0,0) (0,0) (0,0)

>'P", (*,0) (*,0) (0,0)
>'Pw =).C (0, *) (0,0) (0,0) (0,0)

3

The rule (8\,82) is an abbreviation for (8\,82,82).

Note that the system)'C is the Calculus of Constructions and this system is full.
All the systems of the).-cube have only one topsort that is o.

Definition 2.12. The Calculus of Constructions extended with an infinite type hierarchy can
be described by the following PTS: .

S_ N
),Coo A = {(n, n + l)ln E N}

R= {(m,O,O)1 mEN}U{(m,n,r)1 m,nEN &maz(m,n) <r}

The system),Coo extended with strong ~-types and cumulativity is the system ECC(see [Lu089]).
We can see that),Coo is an extension of)'C writing * instead of 0, 0 instead of 1.
Note that there is no topsort in),Coo '

Definition 2.13. Let).S be a PTS. Then),5 is {3-strongly normalizing if a and A {3-strongly
normalize for all a, A E T and r E C such that r I-,s a : A.

The system),Coo and the systems of the).-cube are {3-strongly normalizing. Howewer not all
PTS's are .a-strongly normalizing as next example shows:

Example 2.14. The PTS)'o determined by the specification (S,A,R) where S = {*}, A =
{Co, oj} and R = {(o, *J) is not {3-strongly normalizing.

3 Pure Type Systems with Weakened Abstraction Rule

In this section we consider Pure Type Systems without the type premise r I- (llz:A. B) : s in the
abstraction rule (PTSW,s or ()'S)W). The abstraction rule for these systems will be as follows:

r I-w ().x:A. b) : (llx:A. B)

The notion of type derivation in PTSw will be written as r I-w a : A or r I-,s- a : A. Note
that),5 ~),SW, i.e. if r I-,s a : A then r I-w a : A. The following example shows that)'SW has
more typable terms than)'C, i.e.)'C C)'Cw •

Example 3.1. The following term is typable in)'Cw:

A: * he-).x:A.(* --> *) : (A --> 0)

But it is not typable in)'C because A --> 0 does not have type.

Properties like Subject Reduction, Substitution Lemma and Strengthening for PTSw,s are easy
to prove. Note that the property of Correctness of Types does not hold for PTSw,s.

3.1 Description of Toptypes

In this section we will define the notion of toptype and prove that toptypes have a very special
form. This will give us an idea of the form of the 'new' terms that we are adding to)"S whe'n we
do not consider the type premise of the abstraction rule.

Notation 3.2.
From now on r liw A : - will denote that A is not typable in r. i.e. Jj 8[r I-w A : s1.

TCwill be'importantto consider the terms A such that r I-w a : A and r liw A : - and hence
we define:

4

Definition 3.3. We say that A is a toptype if there exist r, a such that r I-w a A and
r Ifw A :-.

One could say that toptypes are 'types' which do not have 'type'.

Example 3.4.

a) In (ACW
) we can derive

A : * I-ew A",:A.(* --+ *) : (A --+ 0)
The term (A --+ 0) has no type in ACw and is a toptype.

b) In (A~)W we can derive
I-(~)W (A",..,\",:".",): IT",.." --+"

The term IT":'.a --+ " has no type in (A --+)W and is a toptype.

Notice that the notion of toptype makes sense for both, PTS's and PTSw,s. For PTS's, the
only toptypes are the topsorts. For example in),C there is only one toptype that is o.

Now we study the form of the toptypes. For systems with full specification, a toptype has the
form IT"'I :AI ... ITxn :An·so with So a topsort. For example, any toptype in ACw has the form:
(ITx:A I. ITx2:A2 ... ITxn:An. 0).

The description of toptypes for any PTSw is a little more complicated: the toptype is not
typable either because the main branch of the product is a topsort or because the rule we need to
type the product is not in the set of rules R.

Theorem 3.5. (Description Theorem)
Suppose A is a toptype, i.e. r I-w a : A and r Ifw A : -. Then the following two properties

hold:

a) A == IT"'I:A I ... IT"'n:An.B where

either B is a topsort So

b) a --+p AXI:A I ... '\xn:An.b and r,xI:AI .. . xn:An I-w b: B.

Proof: By induction on the derivation of r I-w a: A.

Corollary 3.6. (Toptypes) Let r I-w a : A.

r Ifw A: - iff A == ITxI:A I ... ITxn:An.B where
either B is a topsort So

Q. E. D.

or "181,82 r,xl:AI . .. xn_I:An_Il-w An: 81, } =} J!S[(SI,S2,S) E R]
r,Xl:Al ... Xn-l:An-l,Xn:An ~w B: 82

Proof: Immediate. Q. E. D.

Theorem 3.7. (;1-Closure of Toptypes) 2 Let S be a full or a singly sorted specification.

If r I-w a : A, r Ifw A : - and A --+p A' then r Ifw A' : -

Proof: It follows from the description theorem. Q. E. D.

Corollary 3.S. Let S be a full or singly sorted specification and r I-w b : B.
If 3s E S[r I-w B' : s] and B' =~ B then 3s' E S[r I-w B : s'].

Proof: By the theorem of Church-Rosser there exists Do a common redex of Band B'. By the
subject reduction theorem we have that r I-w Do : s. By the ;1-closure of toptypes we have that
r I-w B : s' for some s'. Q. E. D.

2We call this theorem .a-closure of toptypes even though it is not completly right because we do not prove that
A' is inhabited.

3.2 Normalization for ,B-reduction

In this section we prove for general PTS's that:

If r f-w a : A : s then r' r J..S a' : A' for some
such that

ai, A', r'
a -+/J a', A -+fJ A', r -+13 r/.

In the case of full or functional specifications, we have more: we define a mapping C such that
if r f-w a : A : 8 then C(r) f- C(a) : C(A) and a -+p C(a), A -+p C(A) and r -+p C(r).

Then we prove that weak normalization of)'S implies weak normalization of).SW .

Definition 3.9. We say that an abstraction .l.x:A.b is illegal w.r.t. the context r if for all D
such that r f-w)'x:A.b : D we have that r Ifw D: -.

Definition 3.10. A redex ().x : A. b)a is called an illegal redex w.r.t. the context r if its
abstraction ().x:A. b) is illegal.

We define a mapping C that contracts all the illegal redexes of a term.

Definition 3.11. Given r f-w a : A we define Cr on the typable terms as follows:

Cr(x) x

{

ao[x:= Crtb)] if crta) =)'x:A.ao is an illegal abstraction w.r.t. r

(Cr(a) Cr(b)) otherwise
Cda b) =

Cd).x:A. a) =
Cr(IIx:A. B)

(.l.x:Cr(A). Cr,d(a))

(IIx:Cr(A). Cr,xA(B))

We write C(a) instead of Cr(a).

Lemma 3.12.

1. Suppose r f-w a: A. Then a --+p C(a).

2. Suppose that S is singly sorted or full. Tben C(b)[x := C(a)] == C(b[" := aJ).

Proof: They are proved by induction on the structure of the term. Q. E. D.

Next example shows that if the specification is not singly sorted C(b[x .- aJ) may not be
syntactically equal to C(b)[x:= C(a)].

Example 3.13. The following specification is not singly sorted:

S
)'S A

R

0,1,2
0:1,0:2,1:2

(2,2)

We take r == x : 1, z : x, b == ().y:x.y)z and a == O. Note that b contains illegal abstractions but
b[x:= 0] does not. Hence C(b[,,:= OJ) '" C(b)[,,:= C(O)].

Lemma 3.14.

1. If r f-w A: sand r f- a: A then r I- A: S' for some sort S'.

2. Suppose S be a singly sorted specification.
If r f-w A : sand r f- a : A then r I- A : s

Proof:

6

1. By the lemma of correctness of types, we have that r I- A : 8' or A == 8'.
If A == 8' then s' : s is an axiom.

2. It follows from the previous part.

Q. E. D.

Lemma 3.15.

1. Let S be a singly sorted specification.
If r I-w F : (IIx:A. B), r I-w B[x := aJ : 8 and r I-w a : A then 382 r, x:A I-w B : 82.

2. Suppose S is full. If r I-w a: A, r I-w F : (IIx:A. B) and r I-w B[x := aJ : 8 then,
r I-w (IIx:A. B) : 8' for some 8'.

3. If r liw B[x := aJ : - then r liw (IIx:A. B) : -.

Proof:

1. It is proved using the description theorem.

2. Suppose towards a contradiction that IIx:A. B == IIx, :A, IIxn:An .80 with So a topsort.
Then B[x := aJ == IIx, :A,[x := aJ IIxn :An[x := aJ.80 . It follows from the topsort
theorem that B[x := aJ is a toptype. This is a contradiction.

3. Suppose r I-w (IIx:A. B) : 8'. By the generation lemma we have that r, x:A I-w B : s. By
the substitution lemma we have that r I-w B[x := aJ : 8.

Theorem 3.16. Let S be a full or singly sorted specification.
If r I-w a : A then

1. If A is not a toptype then

C(r) 1-'8 C(a) : C(A).

2. If A is a toptype then

C(r,x,:A, ... xn:An) hs a': C(B)
where A == IIx,:A, ... IIxn:An.B and

C(a) == Ax,:C(A,) .. . AXn:C(An).a'

Proof: This property is proved by induction on the derivation of r I-w a : A.
Note that if A == 8 then C(r) hs C(a) : 8.

We consider 3 cases:

(b
.) r, x: A I-w b : B

• a stractlOn r I-w (Ax:A. b) : (IIx:A. B)

1. Suppose r I-w (IIx:A. B) : 8. By the generation lemma we have that:
r,x:Al-w B: 82, rl-w A: 8, and (8,,82,8) E R.
By the IH we have that

C(r) I- C(A): 8, and C(r,x: A) I- C(b) : C(B).

Q. E. D.

If the specification is full by lemma 3.14 we have that c(r, x : A) I- C(B) : 8~ and there
exists 8a such that (81, s~, 83) E R.
If the specification is singly sorted by lemma 3.14, we have that 82 == s~ and we know
that (8,,82,8) E R.
In any case (81, s;, 83) E R for some 83.

We obtain the following derivation:

7

c(r,,,,: A) I- C(b): C(B) c(r) I- C(A): 81 c(r,,,,: A) I- C(B): .;
c(r) I- C(IT",:A. B) : 83

c(r) I- C(A"':A. b) : c(IT",:A. B)

2. Suppose r Ifw (IT",:A. B) : -. There are two possibilities:

(a) r,,,,:A I-w B: 8.

By the IH we have that:

c(r, ",:A) I-w C(b) : C(B)
where C(A",:A. b) == (A",:C(A). C(b))

(b) r,x:A Ifw B:-.
It follows from the IH that

C(r, x:A, "'I:AI ... "'n:An) 1-'8 b' : C(B')
where B == IT"'I:AI ... IT"'n:An.B',

C(b) == AXI:C(A,) .. . AXn:C(An).b'

(I. t·) r I-w b: (ITx:A. B) r I- a : A
• app Ica Ion r I-w (b a): B[x :_ a]

J. Suppose r I-w B[x := a] : 8.

(a) If the specification is singly sorted then there are two cases:
i. Suppose r I-w (ITx:A. B) : 8'.

By the IH we have that

c(r) I- C(b) : C(ITx:A. B)
Note that r I-w A : 81. By the IH we have that C(f) I- C(a) : C(A).
Hence we have the following derivation:

C(f) I- C(b) : C(ITx:A. B) c(r) I- C(a) : C(A)
c(r) I- C(b a): C(B)[x :- C(a)]

By lemma 3.12 we have that C(B)[x := C(a)] == C(B[x := aJ).
ii. Suppose r Ifw (ITx:A. B) : -.

Note that r I-w A : 81. By the IH we have that C(r) I- C(a) : C(A).
By lemma 3.15 we have that r, x: A I-w B : 82. By the IH we have that
C(r, x:A) I- b' : C(B) with C(b) == Ax:A'.b'.
Due to the J1-closure of toptypes we have that C(b) == AX: A'.b' is an illegal
abstraction and then C(b a) == b'[x := C(a)].
By the substitution lemma,

c(r) I- b'[x := C(a)] : C(B)[x := C(a)]

By lemma 3.12, we have that C(B)[x := C(a)] == C(B[x := aJ).

(b) If the specification is full then by lemma 3.15 we have that r I-w (ITx:A. B) : 8'.
The proof proceeds as in case l(a)i.

2. Suppose r Ifw B[x := a] : -.

It follows from lemma 3.15 that r Ifw (IIx:A. B) : -.
By the description theorem we have that (ITx:A. B) == IIx:A.ITx!:AI ... IIxn:An.Bo.
By the IH we have that C(r) I- C(a) : C(A) and that

c(r, x:A, x!:A!, . .. , xn:An) hs b' : C(Bo)
where C(b) == Ax:C(A). AX!:C(Ad .. . Axn:C(An).b'

Due to the J1-closure of toptypes we have that C(b) is an illegal abstraction and then
the value of C(b a) is computed as follows:

8

C(b a) AX1:C(A,)[x:= C(a)] .. . AXn:C(An)[x := C(a)].b'[x:= Crall

By the substitution lemma we have that:

C(r), xl:C(A,)[x := C(a)], ... , xn:C(An)[x := C(a)]) I-~s b'[x := Crall : C(Bo)[x := Crall

By lemma 3.12 we have that: C(Bo)[x := Crall = C(Bo[x := all.

(.) r I-w b : B r I-w A: s B =p A
• converSIOn r ~w b : A

By corollary 3.6, we have that r I-w B : 8'. By the IH we have that C(r) I- C(b) : C(B). By
the IH we also have that C(r) I- C(A) : 8. By conversion rule C(r) I- C(b) : C(A).

Q.E.D.

In [vBJ93] the set T is partitioned into sets Tv and Ts such that terms in Tv have a unique
type and terms in Ts may have more than one type in a PTS. The same property holds for PTSw ' •.

Definition 3.17.

Tv
Ts

v
C

Tvs .. - Tv

Theorem 3.18. Let a E Ts.

I (Tv Tvs) I (AV:Tvs . Tv)
I (Ts Tvs) I (>.V:Tvs. Ts) I (IIV:Tvs . Tvs)
ITs

r I-w a: A, A -->p II"I:A1 .. . xn:An.s
r I- a: IIXl:Al ... xn:An.s'

Then

Proof: By induction on the derivation of r I-w a : A.
Q. E. D.

Corollary 3.19. If r I-w A: sand r I- A : 5' then r I- A : s.

Proof:
Suppose A E Tv. By the uniqueness of types theorem for PTSw,s, we have that 5 ;: .' .

Suppose A E Ts. By the previous theorem we have that r I- A : s.
Q. E. D.

Corollary 3.20. If r I-w A : 8 and r I- a : A then r I- A : s.

Proof: It follows from lemma 3.14 that r I- A : S' for some 5'. By the previous corollary we have
that r I- A : s. Q. E. D.

For an arbitrary specification we prove a weaker statement than theorem 3.16:

Theorem 3.21. Let r I->.sw a : A.

1. If 3. E S[r I-w A : s] then

r' I- >'8 a' : A' for a -+[J a', A --+13 A' and r -+{3 r'

2. Ifr i;fw A: - then

9

r', zl:A~ .. . zn:A~ ~"'S a' : B
where A", IIxI:AI .. . IIxn:An.B,

a -+/3 AZl:Ai ... AZn:A~.a'
r -+p r', B -+p B', Ai -+/3 Ai for all i.

Note that if A", 8 then r' I-~s a': 8 for a _p a' and r _p r'.

Proof: This theorem is proved by induction on the derivation of r I-~s. a : A. We consider only
2 cases:

• (abstraction) r,x: A I-w 6: B
r I-w (Ax:A. 6) : (IIx:A. B)

Suppose r I-w (IIx:A. B) : s. '

1. By the generation lemma r,x:A I-w B: '2, r I-w A :81 and (81,S2,S) E R
By the IH and corollary 3.20 we have that

r', x : A' I- b' : B' : 82 for b -+/3 b', B -+13 B' and r, x:A -+p r', z:A'.

By the IH we have that r' I- A' : 81. 3

Since (SI, 52, 5) E R we obtain the following derivation:

r' I- A' : 81 r', x : A' I- B' : 82 r', x : A' I- b' : B' r'l- (IIx:A'. B') : 8

r'l- (Ax:A'. 6') : (IIx:A'. B')

2. Suppose r Ifw (IIx:A. B) : -. There are two possibilities:

(a) r,x:A I-w B: 5.

By the IH we have that:
r',x:A'l-w b': B' : s where r,x:A -+/3 r',x:A',

6 _p 6',B _p B'
(b) r,x:Alfw B:-

It follows from the IH that
r'lX:A',Xl:A~ ... xn:A~ 1-),5 b': B'

where

(I
. .) r I-w b : (IIx:A. B) r I- a : A

• app IcatlOn r I-w (6 a): B[x := a]

1. Suppose r I-w B[x := a] : 8.

There are two cases:

(a) Suppose r I-w (IIx:A. B) : 5'.
By the IH we have that

B", IIxI:AI ... IIxn:An.Bo,
6 _p AXI:A, ... Axn:A~.6'
r _p r'
Eo -+p B'
Ai -p A: for all i.

r'l- 6' : (IIx:A'. B') for 6 _p 6', A _p A', B _p B' and r _p r'
Note that r I-w A : 51. By the IH we have that

r'l- a' : A' : 8i for A -+/3 A' and a -+/3 a'.
Hence we have the following derivation:

r'l- 6' : (IIx:A'. B') r' I- a' : A'
r'l- (6' a'): B'[x := a']

3 Actually we deduce r" I- An : 81 and by the Church Rosser theorem we can always find A common reduct of
A' and AU and of r ' and r". We omit this kind of det~ls.

10

(b) Suppose r liw (n,,:A. B) :-.
Hence B '" n",:A, ... "n:An.Bo. It follows from lemma 3.15 that Bo cannot be a
topsort. Then

3n,sl,82 f,z:A,Zl:Al ... Xn_l:An_l rw An: 81

f, x:A, xl:A1 ... Xn_l:An _ 1, Xn:An I-w Bo : 82

Moreover, we have that:
b -+(3 Ax:A'. AXl:A~ ... AXn:A~.b' and r/, x:A', xl:Ai ... , xn:~ I- hi : B'

By the IH we have that r' I- a' : A' for a --+~ a' .
By the substitution lemma we have that:

r', ",:Ai[" := a'l···, "n:A~[" := a'l I- b'[" := a'l: B'[" := a'l

Note that r I-w B[" := al : 8 and

B[:r:= aJ '" n:r,:A,[" := aJ .. . "n:An[,,:= aJ.Bo[":= aJ
--+p n",:Ai[":= a'J .. . "n:A~[,,:= a'l·B'[,,:= a'l

By the subject reduction theorem we have that:

r' I-w n",:Ai[":= a'l·· ."n:A~[x := a'l·B'[x:= a'l : s

We can easily construct a derivation of

r' I- n:r,:Ai[:r := a'l .. . xn:A~[z:= a'l.B'[x := a'l : s in a PTS.
Applying Abstraction Rule n-times we obtain a derivation of:

r'l- (-,x,:Ai ... Axn:A~.b')[z:= a'l: (nx,:Ai.· .xn:A~.B')[x:= a'l

with (b a) -->p (Ax:A'. Ax,:Ai ... >'zn:A~.b')a'
-p >.z,:Ai·· .Axn:A~.b'[x:= a'l

2. Suppose r liw B[z := al : -.
It follows from lemma 3.15 that r liw (nz:A. B) : -.
By description theorem we have that (nz:A. B) '" nz:A.nx,:A, ... nzn:An.Bo.
By the IH we have that

r/,X:A',Xl:A~J ... ,xn:A~ I-).s b': B'
where b --+p Ax:A. ",:A , ... >,xn:An.b'

f,x:A,Xl: Al, ... ,xn:An -+fJ r/,x:A/JXl:Ai,···,xn:A~
Bo -->p B'

By the IH we have that

r' r a' : A' for a -+f3 ai, A -+/1 A', r -+/J r'
Then

(b a) -->p (>.z:A. AX,:A, ... >'''n:An.b')a'
-->p A:r,:A,[z := a'l .. . Azn:An[x:= a'l·b'[z:= a'l
--+p Ax,:Ai[z := a'l·· .Axn:A~[z:= a'l·b'[z:= a'l

By the substitution lemma we have that

r', x,:Ai [x := a'], ... , xn:A~[x := a'11-.\5 b'[x := a'l : B'[z := a'l

() r I-w b : B r I-w A : 8 B =p A
• conversion

rl-w b : A

1. Suppose r I-w B : 8' By the IH we have that r'l- b' : B' for B --+~ B'. By the theorem
of Church Rosser there exists B" such that A, B' -+/3 B".
Hence r' I- b' : B" .

11

2. Suppose f Ifw B: -. Hence B,= TI",,:A, ... TI"'n:An.Bo. Note that Bo cannot be a
topsort. Then

3n,SI,S2 r,zl:Al' "xn-l:An- 1 ~w An: 81

r, Xl:Al .. ,xn_l:An _ b Zn:An t-w Bo : 82

By the IH we have that:

r', xl:Ai ... ,xn:A~ I- b' : B'
with Bo -+~ B' and b -+p >.",,:A\ ... >''''n:A~.b'

By the IH we have that fl f- A' : 8 with A -+p A' and f -+p f'.
By the theorem of Church-Rosser, A' and nXl:A~ ... xn:A~.B' reduces to

By subject reduction theorem we have that:

By subject reduction theorem and conversion rule we have that:

Applying Abstraction Rule n-times we obtain a derivation of:

r'f- AXl:Al" .. ,>.xn:An".b': IIXl:A1" ... zn:An".B"

Q. E. D.

Corollary 3.22. (Normalization)
If >'S is weakly normalizing then >'Sw is weakly normalizing too.

Proof: Suppose f f-w a: A. We have two possibilities:

1. Suppose f f-w A: 8. By the previous theorem there exists fl, a' and A' such that f' f- a' : A'
and a -+f3 a', Since).,S is weakly normalizing, we have that a' -(J n!(a') where nf(a') is
the ~-normal form of a' . Then a is weakly normalizing.

2. Suppose f Ifw A : -. By previous theorem we have that

r/,xl:A~ ... xn:A~ 1->'8 a': B
where A '= TI",,:A, ... TI"'n:An.B,

a -p).xl:Ai ... '\xn:A~.a'
f -+~ f'
B -+p B'
Ai -+p A; for all i.

Since)"S is weakly normalizing in particular a' and A~ for all i are weakly normalizing.
Hence

Then a is weakly normalizing.

'\xl:Ai·· . ..\xn:A~.a'
>''''' :nl(A\) ... >''''n :nl(A~).nl(a')
nl(a)

Corollary 3.23. Let >'S be a PTS extending -'2.
If there is a proof of TI" : •. " in >'SW then there is also a proof of TI" : •. " in >'S.

Q. E. D.

Proof: Suppose there exist rand p such that f f-w p : TI" : •. ". The type TI" : •. " is not a topsort
in (>'2)w. By previous theorem we have that there exist fl and p' such that fl f-w p' : TI" : '.n.

Q. E. D.

12

3.3 Strong Normalization for /9-reduction

In this section we define the notion of 'completion' and we prove that >'S = >'8'" if and only if S
is a completion of itself. We also prove that if S' is a completions of S, strong normalization of
>'S' implies strong normalization of >'8'" .

First we define the notion of completion as in [SP94j:

Definition 3.24. Let S = (S,A,R) and S' = (S',A',R') be such that

I. S~ S', A~ A', and R~ R'

2. S' is full, i.e. for all 81,82 E S' there exists 83 such that (B1, 82, 8.) E R.

3. for all 8 E S there is a sort 8' E S' such that (B, B') E A' (Le. the sorts of S are not topsorts
in S').

Then the specification S' is called a completion of S.

Example 3.25. The system >'Coo is a completion of >'C and of itself.

Lemma 3.26. Let S' be a completion of S.

If rl->8w a: A then r 1->8'. A : B for some sort 8.

Theorem 3.27. Let S' be a completion of S.
i

If r 1->8w a: A then r h8' a : A and r 1->8' A : 8 for some B.

Corollary 3.28. Let S be a completion of itself.

r 1->8w a : A iff r 1->8 a : A

A consequence of this corollary is that (,\Coo)W = >'Coo . Hence it is redundant to write the
type premise in the abstraction rule for >'Coo .

Next we will prove that the set of legal terms in)"S is equal to the set of legal terms in)"SW if
and only if S is a completion of itself. We refer to the set of legal terms of >'S as £(>'S).

Theorem 3.29. (Redundancy of the type premise)
£(>'S) = £(>'SW) iff S is a completion of itself.

Proof: Corollary 3.28 is one of the implications of this theorem.
Conversely, we will prove that S is full and has no topsorts.
Suppose there is a topsort 80. There is at least one axiom c : BO. Hence I-w >."':c. C : (c --> BO)'

Since £(>'S) = £(>'8'"), we have that

r I- (c --> so) : B for some 8 and r
,

Hence So cannot be a topsort.
Given the sorts 81,82 we prove that there exists a sort 8 such that (81,82,8) E R. Since S has

no topsorts we have that 81 : s~ and 82 : 8 2 for some s~ and 82' Hence we have that:

I-w (>,,,: 81.>.f3: 82.>'y: f3.>'",:". y) : IT,,: B1.ITf3: 82.(" --> (3)

The type of this term is a legal term in >'S then:

r I- IT,,: 81.ITf3: 82.(Ot (3): 8

Hence there exists s such that (SI, 82, 8) E R.

Theorem 3.30. Strong Normalization
Let S' be a completion of S.
If >'S' is f3-strongly normalizing then >'8'" is f3-strongly normalizing too.

13

Q. E. D.

3.4 Strong Normalization for the illegal reduction

In this section we will show that the ,8-reduction restricted to illegal redexes is strongly normalizing.

Definition 3.31. Given r such that r f-w ('\z:A. b)o : D.
We define the illegal reduction w.r.t. the context r as:

('\z:A. b)a ->PI b[z:= oj if ('\z:A. b)o is an illegal red ex w.r.t. r.

Of course we have to add all the compatibility rules to this rule.
Recall that a development is a reduction sequence in which only descendents of redexes that

are present in the initial term may be contracted. In a development one is not allowed to contract
red exes that are created along the way.

An extension of the notion of development, called superdeve/opments, was introduced and
proved to be finite in [Raa93J. In that paper the notion of development was extended to include
reduction sequences in which one can contract not only redexes that descend from the initial term
but also some redexes that are created during reduction.

There are three ways of creating new redexes (see [Lev78]):

1. «,\z:A.,\y:B.d)e)f ->P (,\y:B.d[x:= e])f

2. ('\z:A.z)('\y:B.d)e ->P (,\y:B.d)e

3. ('\,,:A.C[z dJ)(,\y:B.e) ->~ C'[(,\y:B.e)d'J where C' and d' are obtained from C and d
replacing all free occurrences of" by (,\y:B.e).

The first two ways of creating red exes are 'innocent' and they may be contracted in a BU

perdevelopment. The result that all superdevelopments are finite shows that infinte ,8-reduction
sequences are due to the presence of the third type of redexes.

New redexes containing illegal abstractions can be created only with case 1). This is because
the type of a variable cannot be a toptype. In case 2) and 3) a variable z is substituted by (,\y:B.e)
and this abstraction is not illegal. Hence the illegal abstractions of a term constitute an initial
labelling of a superdevelopment. All the redexes with illegal abstractions that are created along
this superdevelopment are labelled.

Hence we have the following result:

Theorem 3.32. The reduction ->~I is strongly normalizing.

Proof: It follows from the finite superdevelopments theorem (see [Raa93]) and the considerations
above. Q. E. D.

Since all superdevelopmimts are finite we can get rid of all the illegal abstractions occuring in
a term in a finite number of steps. Note that the last term of a complete superdevelopment of
illegal abstractions is computed using C.

3.5 A Type Inference Algorithm for PTSw

Next we define a system that is nearly syntax qirected for Pure Type Systems without the type
premise in the abstraction rule. It is nearly syntax directed because given band r the term B
such that r rwn"d b : B is not unique.

Notation 3.33. We write r f-w",d a : A for r f-wn,d a : Ao and Ao ->p A.
We write r rwn"d A :----++wh A for r rwn"d a : Ao and Ao weak-head reduces to A.

Definition 3.34. The Syntax Directed Pure Type System PTS~'d determined by the specification
S = (5, A, R) is denoted as AS;:',d and defined by the notion of type derivation r f-wn,d b : B
given by the following axioms and rules:

14

(aziom)

(start)

f I-wn.td c : s

r rwn,d A :~ 8

r) z : A I-wn,d z : A

for (c, s) E A

where z is r -fresh

(weakening) r I-wn.td b : B r I-wn • d A :"""'* 8

r, x : A I-wn.d b : B
where z is r -fresh and b E C U V

(formation)

(abstraction)

(application)

r I-wn,d A :"""* 81 f, x: A I--wn6d B :-.. 82

r I-wn •d (IIz:A.B) : 83

r,z: A I-wnod b: B
r I-wn•d (Az:A. b) : (IIz:A. B)

r I-wn,d b :'--»wh (IIz:A. B) r I-wn.d a : A'
r I-wn,d (b a): B[z :_ a]

where s ranges over sorts, i.e. s E S.

for (Sl, S2, 83) E R

A =p A'

Note that when the specification is singly sorted, this set of rules is syntax directed.
The proof of the following theorems will be omitted because they are direct.

Theorem 3.35. (Soundness) If r I-wn•d a: A then r I-w a: A.

Theorem 3.36. (Completness) If r I-w a : A then r I-wn•d a: A' for A =p A'.

Next we define a type inference algorithm for PTSw,s:

Primitives

N:F : T _ T computes the normal form,

W1f.N:F : T -> T computes the weak-head normal form,

E Q : TxT -> Bool yields true if two terms are p-equal.

Type Inference Algorithm for arbitrary rTSw'8

We define a mappingIN:Fw : exT -> P(T) as follows:

IN:Fw«;C) {s I (C,8) E A}

IN:Fw« r,z: A >;x) {A} if 8 EN:F(IN:Fw« r;A»

IN:Fw«r,x:A>;v) = IN:Fw(r;v) if[8EN:F(IN:Fw(r;A))]Av;fz

IN:Fw« r,z:A >;c) = IN:Fw(r;c) if(sEN:F(IN:Fw(r;A»)

IN:Fw(r; (IIz:A.B)) {83 I [s, E N:F(IN:Fw(r; A»] A [82 E N:F(IN:Fw(r, z : A;B))]
A(SI,82,83) E R}

IN:Fw(r;(AX:A. b» {(IIx:A. B) I BE IN:Fw(r,x: A;b)}

IN:Fw(r;(b a)) = {B[x:= a]1 [(IIx:A. B) E W1f.N:F(IN:Fw(r;b))]A
[A' E IN:Fw(r; a)] A EQ(A; A')}

Note that if the term a has no type under the context r then IN:Fw(r,a) = 0.
In case of singly sorted PTS's we write IN:Fw(r,a) = A instead ofIN:Fw(r,a) = {A}.

Theorem 3.37. Given iven r E C and a E T, IN:Fw(r, a) = {A I r I-w a : A}I =p.

Proof: It is proved by induction on (r, a).

15

Q. E. D.

4 Typability for PTS '8

We compare several syntax directed systems and we discuss which system would yield 'the best
algorithm for type inference' :

• In section 4.1, we present the syntax directed system PTS.d (see [vBJMP93j). All attempts
to prove completeness for this algorithm have been unsuccesfull. The main difficulty seems to
be the impossibility to apply the inductiv~ hypothesis to the type premise in the abstraction
rule.

We consider variations of this system by changing the type premise of the abstraction rule.

• In section 4.2, we present another syntax directed system PTSn /. The PTSn / and PTS.d
differ only in the abstraction rule. The type in the abstraction rule of PTSnJ is reduced to
the normal form.

We can prove Soundness and Completeness of this algorithm with respect to PTS's.

• In section 4.3, we define a type inference algorithm for singly sorted PTS's. We consider
the syntax directed system PTS';'d for Pure Type Systems without the type premise in the
abstraction rule. This system allows "illegal abstractions" and it is not yet a type inference
algorithm for PTS's. We will turn the type inference algorithm for Pure Type Systems
without the type premise in the abstraction rule into a type inference algorithm for Pure
Type Systems checking separately that the term does not contain illegal abstractions.

Given r, a, the type inference algorithm for PTS's can be described as follows:

1. Find A such that r I-w a : A.

2. The algorithm yields A if the abstractions in a and in r are not illegal.

This type inference algorithm for singly sorted PTS's is efficient and it is also simple as the
one presented in section 4.1.

4.1 The simplest Type Inference Algorithm

Next we define the syntax directed system as in [vBJMP93j.

Notation 4.1. We write r I-,d a:_ A for r I-. d a: AD and AD -~ A.
We write r I-,d A :-wh A for r I-,d a: AD and AD weak-head reduces to A.

Definition 4.2. The Pure Type System PTS,d determined by the specification S = (S, A, R)
is denoted as >'S,d and defined by the notion of type derivation r I-,d b : B given by the following
axioms and rules:

(axiom)

(start)

(weakening)

(formation)

(abstraction)

(application)

!r"dC:S

r r,d A:_ 8

r, x: A I-,d x : A

rl-,db:B rl-,d A :- s
r,x: A I-,d b: B

r r"d A :- 81 f, x:A rsd B:_ 82

r I-. d (IIx:A.B) : sa

r,x:A I-,d b: B
r I-.d (IIx:A.B) : s

r I-,d (>.x:A. b) : (IIx:A. B)

r I-,d b :-wh (IIx:A. B) r I-,d a : A'
r I-,d (b a): B[x :- a]

16

for (c,s) E A

where x is r-fresh

where x is r-fresh and bEe u V

for (s" S2, S3) E R

A' =~A

where s ranges over sorts, i.e. s E S.

Note that the shape of a term together with the context determines the rule to be applied:

• The wekening rule is now deterministic because it has been restricted to variables and con
stants .

• The conversion rule has been spread in the rest of the rules adding reduction to some rules.

Note that when the specification is singly sorted, PTS,4 is syntax directed.
It is easy to prove Soundness of these systems with respect to PTS's:

Theorem 4.3. (Soundness)

If r I- ,d a : A then r I- a : A.

Next example shows that completeness is not true for non-singly sorted PTS's.

Example 4.4. The following specification is not singly sorted:

S
>'5 A

R

0, I, 2
0:1,0:2,1:2

(2,2)

We take A == (>'y:l.y)O. We can derive x : A I- (>.z : O.x) : (0 ~ 0). Howewer there is no D such
that x: A 1-,4 (>.z: O.x): D.

For singly sorted PTS's, Completeness has not been possible to prove:

(Completeness) Suppose 5 is singly sorted. If r I- a: A then there exists A' such that A =~ A'
and r I-,d a: A'.

4.2 A Simple But Inefficient Type Inference Algorithm

Next we define a syntax directed set of rules for normalizing Pure Type Systems. The type
derivation for these systems is denoted as rn!.

This system is defined from the previous one changing just the abstraction rule. The type of
the abstraction (IIx:A.B) is reduced to its normal form.

The new abstraction rule is as follows:

r, x: A I-nJ b: B r I-nJ (IIx:Ao.Bo) : s
r I-nJ (>.x:A. b) : (IIx:Ao. Bo)

where (IIx:Ao. Bo) is the normal form of (IIx:A. B).

We called these systems)"Sn! because the normal form is computed in the abstraction rule.
The proof of the following theorem will be omitted because it is direct.

Theorem 4.5. (Soundness) If r I-nJ a : A then r I-w a : A.

Theorem 4.6. (Completeness) If r I- a: A then r I-nJ a: A' for A =~ A'.

Note that for these systems we can prove subject reduction and completeness. This is because
the type premise remains invariant under reduction.

If the specification is singly sorted then these systems are syntax directed.
Howewer the type inference algorithm associated to these systems is not efficient because it

computes the normal form of (IIx:A.B) in the case of the abstraction rule.

17

4.3 A More efficient Type Inference Algorithm

Restricting the system PTS::'.d' we obtain a type inference algorithm for singly sorted PTS's.
First notice that the mapping C defined in 3.11 can be adapted to the system PTS::'.d' We call

this mapping C'. This mapping contracts the illegal redexes of a term with respect to),s:'d' The
notions of illegal abstraction and illegal redex for),s:'d are defined similarly to definition 3.9 and
definition 3.10.

Contraction of illegal redexes

Next we define a mapping that contracts the illegal redexes of a term. Suppose that the
specification is singly sorted and that r f-,., a : A. We define C'r on the typable terms as
follows:

C'r(x) x

C'r(a b)

J ao[x := C'r(b)]

1 (C'r(a) C'r(b))

if (C'r(a) =)'x:A.ao) /I (IN.r,.,(r;),x:A.ao) = B)/\
(IN.r,.,(r, B) = 0)

otherwise

C'r(),x:A. a) = ().x:C'r(A). C'r,xA(a))

C'r(ITx:A. B) = (ITx:C'r(A). C'r,xA(B))

We write C'(a) instead of C'r(a).

Type Inference Algorithm

We define a mapping IN.r : C x T T U 1. that given r E C and a E T, IN.r(r, a) yields
A if r f- a : A and 1. otherwise. as follows:

IN.r(r, a) let A = IN.rw(r; a) in
if (A = 8 V N.r(IN.r,.,(r; A)) = 8) /I

(C'(a) = a) /I (C'(r) = r)
then C'(A)
else 1.

Note that this algorithm is more efficient than the previous one because it does not compute
the normal form.

We will prove some lemmas which are necessary to prove Completeness. First we show that C
and C' are the same function on the typable terms of),s;"d:

Lemma 4,7. Let S be a full or singly sorted specification. If r f-wn.d a: A then Cr(a) = C'r(a).

Proof: Due to theorem 3.35, r f-,., a : A. Hence Cr is defined for a. We prove that Cr(a) = C'r(a)
by induction on the structure of a.

Suppose a == (d e) and C'(a) = (Ax : A.f) is an illegal abstraction of a w.r.t. (),S)"'. By
theorem 3.36 it is also an illegal abstraction w.r.t. (),S)~d' Q. E. D.

Theorem 4,8. (Soundness) Let S be a full or functional specification.
If the following conditions hold:

1. r I-wn,d a : A,

2. r I-w""d A :_ 8 or A == s

3. C'(r) = rand C'(a) = a.

then r f- a : A.

18

Proof: By theorem 3.35 we have that r I-w a : A. By theorem 3.16 we have that c(r) I- C(a) :
C(A). By previous lemma, C'(r) I- C'(a) : C'(A). Hence r I- a : C'(A).

Q. E. D.

Theorem 4.9. (Completeness)
If r I- a : A then the following holds:

1. r I-wn• d a : A

2. r I-wn6d A :_ s or A == 8

3. C'(r) = r, C'(a) = a and C'(A) = A.

Proof: It is a direct verification. Q. E. D.

Acknowledgements. I would like to thank Herman Geuvers for his suggestions and various
comments to a preliminary version of this paper specially for a better formulation of the results
of section 3.2.

I would also like to thank Erik Poll and Femke van Raamsdonk, Erik for his assistance on Pure
Type Systems and their type checking algorithms and Femke for our conversations on superdevel
opments.

References

[Bar91]

[Bar92]

[Lev78]

[Luo89]

[Po193]

[Raa93]

[SP94]

[vBJ93]

Henk Barendregt. Introduction to generalised type systems. Journal of Functional
Programming, 1:124-154,1991.

Henk Barendregt. Lambda calculi with types. In D. M. Gabbai, S. Abramsky, and
T. S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 1. Oxford
University Press, 1992.

J. J. Levy. Reductions correctes et optimales dans Ie lambda-calcul. PhD thesis,
Universite de Paris VII, 1978.

Z. Luo. ECC, the Extended Calculus of Constructions. In Logic in Computer Science,
pages 386-395. IEEE, 1989.

Erik Poll. A type checker for bijective pure type systems. Computing Science Note
(93/22), Eindhoven University of Technology, 1993.

Femke Van Raamsdonk. Confluence and superdevelopment. In Claude Kirchner,
editor, Proceedings of the RTA, pages 168-183, 1993.

Paula Severi and Erik Poll. Pure ~ype systems with definitions. In A. Nerode and
Yu.V. Matiyasevich, editors, Logical Foundations of Computer Science: Proceedings
of the Third International Symposium, number 813, pages 316-328. LFCS'94, St.
Petersburg Russia, Springer-Verlag, Berlin, New York, 1994.

Bert van Benthem Jutting. Typing in pure type systems. Information and Computa.
tion, 105:30-41, 1993.

[vBJMP93] Bert van Benthem Jutting, James McKinna, and Randy Pollack. Checking algorithms
for pure type systems. LNCS, 806, 1993.

19

Contents

1 Introduction

2 Pure Type Systems

3 Pure Type Systems with Weakened Abstraction Rule
3.1 Description of Toptypes
3.2 Normalization for J3-reduction
3.3 Strong Normalization for J3-reduction
3.4 Strong Normalization for the illegal reduction
3.5 A Type Inference Algorithm for PTSw

.

4 Typability for PTS's
4.1 The simplest Type Inference Algorithm
4.2 A Simple But Inefficient Type Inference Algorithm
4.3 A More efficient Type Inference Algorithm

20

1

2

4
4
6

13
14
14

16
16
17
18

Computing Science Reports

In this series appeared:

93/0 I R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J .H.M. Korst
PJ. Zwietering

93/05 J .C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

93/14 J.C.M. Baeten
J .A. Bergstra

93/15 J.C.M. Baeten
J .A. Bergstra
R.N. Bol

93/16 H. Schepers
J. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-J. Houben

93{20 F.S. de Boer

Department or Mathematits and Computing Science
Eindhoven University or Technology

Deriving the Aho-Corasick algorithms: a case study into the
synergy of programming methods. p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists. p. 8.

Deterministic and randomized local search. p. 78.

A congruence theorem for structured operational
semantics with predicates. p. 18.

On the Wlavoidability of metastable behaviour. p. 29

Exercises in Multiprogramming. p. 97

A Formal Deterministic Scheduling Model for Hard Real-Time
Executions in DEDOS. p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts. p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks. p. 44.

Systems ~ngineering: a Formal Approach
Part III: Modeling Methods. p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods. p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language. p. 89.
On Sequential Composition. Action Prefixes and
Process Prefix. p. 21.

A Real-Time Process Logic. p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems. p. 27

Hard Real-Time Reliable Multicast in the DEDOS system.
p.19.

A congruence theorem for structured operational
semantics with predicates and negative premises. p. 22.

The Design of an Online Help Facility for ExSpect. p.21.

A Process Algebra of Concurrent Constraint Programming. p. 15.

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93{22 E.Poll

93/23 E. de Kogel

93{24 E. Poll and Paula Severi

93{25 H. Schepers and R. Gerth

93{26 W.M.P. van der Aalst

93f27 T. Kloks and D. Kratsch

93{28 F. Karnareddine and
R. Nederpelt

93(29 R. Post and P. De Bra

93/30 J. Deogun
T. Kloks
D. Kratsch
H. Milller

93/31 W. Korver

93/32 H. ten Eikelder and
H. van Geldrop

93/33 L. Loyens and J. Moonen

93/34 J .C.M. Baeten and
J .A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 J.C.M. Baeten and
J .A. Bergstra

93/37 J. Brunekreef
J-P. Katoen
R. Koymans
S.Mauw

93/38 C. Verhoef

93/39 W.P.M. Nuijten
E.H.L. Aarts

Freeness Analysis for Logic Programs - And Correct
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Defmitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real-Time
Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a fine A-calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. II.

Derivation of delay insensitive and speed independent CMOS
circuits, using directed commands and
production rule sets, p. 40.

On the Correctness of some Algorithms to generate Fmite
Automata for Regular Expressions, p. 17.

!LIAS, a sequential language for parallel matrix computations, p.
20.

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process algebra, p.
17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

D.A.A. van Erp Taalman Kip
K.M. van Hee

93/40 P.D.V. van der Stok
M.M.M.P.J. Claessen
D. Alstein

93/41 A. Bijlsma

93/42 P.M.P. Rarnbags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.J. Luit
JM.M. Martin

93/46 T. Kloks
D. Kratsch
J. Spinrad

93/47 W. v.d. Aalst
P. De Bra
GJ. Houben
Y. Kornatzky

93/48 R. Gerth

94/01 P. America
M. van der Kammen
R.P. Nederpelt
O.S. van Roosmalen
H.C.M. de Swart

94/02 F. Kamareddine
R.P. Nederpelt

94/03 L.B. Harunan
K.M. van Hee

94/04 J.C.M. Baeten
J .A. Bergstra

94/05 P. Zhou
J. Hooman

94/06 T. Basten
T. Kunz
J. Black
M. Coffm
D. Taylor

94/07 K.R. Apt
R. Bol

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers,
p. 11.

Automatic Verification of Regular Protocols in P{f Nets, p. 23.

A taxomomy of finite automata construction algorithms, p. 87.

A taxonomy of finite automata minimization algorithms, p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the 'Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

The object-oriented paradigm, p. 28.

Canonical typing and ll-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Formal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

94ft)8 O.S. van Roosmalen

94ft)9 J .C.M. Baeten
J .A. Bergstra

94/10 T. verhoeff

94/11 J. Peleska
C. Huizing
C. Petersohn

94/12 T. Kloks
D. Kratsch
H. Millier

94/13 R. Seljee

94/14 W. Peremans

94/15 R.J .M. Vaessens
E.H.L. Aarts
J.K. Lenstra

94/16 R.C. Backhouse
H.Doombos

94/17 S. Mauw
M.A. Reniers

94/18 F. Kamareddine
R. Nederpelt

94/19 B.W. Watson

94{20 R. Bloo
F. Kamareddine
R. Nederpelt

94/21 B.W. Watson

94{22 B.W. Watson

94/23 S. Mauw and M.A. Reniers

94/24 D. Darns
O. Grumberg
R. Gerth

94{25 T. Kloks

94{26 R.R. Hoogerwoord

A Hierarchical Diagrammatic Representation of Class
Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

The testing Paradigm Applied to Network Structure.
p.31. .

A Comparison of Ward & Mellor's Transformation
Schema with State- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in Deductive
Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refining Reduction in the Lambda Calculus, p. 15.

The performance of single-keyword and multiple-keyword pattern
matching algorithms, p. 46.

Beyond p-Reduction in Church's A->, p. 22.

An introduction to the Fire engine: A C++ toolkit for Finite
automata and Regular Expressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts, p. 43.

Abstract interpretation of Reactive Systems:
Abstractions Preserving \fCn *, 3C1L * and C1L *, p. 28.

K,,-free and W.-free graphs, p. 10.

On the foundations of functional programming: a programmer's
point of view, p. 54.

94(27 S. Mauw and H. Mulder

94/28 C.W.A.M. van Overveld
M. Verhoeven

94/29 J. Hooman

94/30 J .C.M. Baeten
J .A. Bergstra
Gh. ~tefanescu

94/31 B.W. Watson
R.E. Watson

94/32 JJ. Vereijken

94/33 T.Laan

94/34 R. Bloo
F. Kamareddine
R. Nederpelt

94/35 J.C.M. Baeten
S. Mauw

94/36 F. Kamareddine
R. Nederpelt

94/37 T. Basten
R. Bol
M. Voorhoeve

94/38 A. Bijlsma
C.S. Scholten

94/39 A. Blokhuis
T. Kloks

94/40 D. Alstein

94/41 T. Kloks
D. Kratsch

94/42 J. Engelfriet
J.J. Vereijken

94/43 R.C. Backhouse
M. Bijsterveld

94/44 E. Brinksma J. Davies
R. Gerth S. Graf
W. Janssen B. Jonsson
S. Katz G.Lowe
M.Poel A. Poueli
C. Rump J. Zwiers

94/45 GJ. Houben

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of finite and
transfinite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Timed Process AJgebra, p. 38.

A formalization of the Ramified Type Theory, pAO.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and II-conversion in the Barendregt
Cube, p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point-free substitution, p. 10.

On the equivalence covering number of splitgraphs, p. 4.

Distributed Consensus and Hard Real-Time Systems,
p.34.

Computing a perfect edge without vertex elimination
ordering of a chordal bipartite graph, p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice
Theory: An Illustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Adrninistratieve Logis
tiek", p. 43.

94/46 R. Bloo
F. Kamareddine
R. Nederpelt

94/47 R. Bloo
F. Kamareddine
R. Nederpelt

94/48 Mathematics of Program
Construction Group

94/49 J.C.M. Baeten
J .A. Bergstra

94/50 H. Geuvers

94/51 T. K10ks
D. Kratsch
H. Milller

94/52 W. Penczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D. Peled
W. Penczek

95/01 JJ. Lukkien

95/02 M. Bezem
R. Bol
J.F. Groote

95/03 J.C.M. Baeten
C. Verhoef

The A-cube with classes of tenns modulo conversion,
p.16.

On IT-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Nonnalazation
for the Calculus of Constructions, p. 27.

Listing simplicial vertices and recognizing
diamond-free graphs, p. 4.

Traces and Logic, p. 81

A Partial Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a Small CommWlication Library,
p.16.

Formalizing Process Algebraic Verifications in the
Calculus of Constructions, p. 49.

Concrete process algebra, p. 134.

	Abstract
	1. Introduction
	2. Pure Type Systems
	3. Pure Type Systems with Weakened Abstraction Rule
	3.1 Description of Toptypes
	3.2 Normalization for bèta-reduction
	3.3 Strong Normalization for bèta-reduction
	3.4 Strong Normalization for the illegal reduction
	3.5 A Type Inference Algorithm for PTS-o-mega
	4. Typability for PTS's
	4.1 The simplest Type Inference Algorithm
	4.2 A Simple But Inefficient Type Inference Algorithm
	4.3 A More efficient Type Inference Algorithm
	References
	Contents

