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PREFACE 

Apart from an introductory chapter this thesis consists of the fol­

lowing five papers. 

Nearaffine p~nes, Geom. Dedicata ~ (1), 53-62. 

Fini te Minkowski p ~nes, Geom. Dedicata ~ ( 2) , 119-129 • 

Thlo-transitive Minkowski planes, Geom. Dedicata ~ (4), 383- 395. 

A· oharaoterization of the classioal unitals, in: Finite geometries, 

N.L. Johnson, M.J·. Kallaher & C.T. Long eds., Marcel Dekker, Lecture 

notes in pure and applied matbematics 82, New York, 1983. 

A oharaoterization of two olasses of semi-partial geometries by their 

parameters, to appear in Simon Stevin. 

'Ihis last paper was written together with Andries Brouwer. 'Ihe way we worked 

together on this paper makes it impossible for me to decide what part of the 

paper is his and what part is mine. 

I would like to express my gratitude to the publishers D. Reidel'of 

Geometriae Dedicata, Marcel Dekker of Flnite geometries and J.A. 'Ihas of 

Simon Stevin for their permiseion to include these papers in this thesis. 

I would also like to thenk mythesis supervisors Prof. dr. J.H. van Lint 

end Prof. dr. J.J. Seidel for introducing me to combinatoros and finite 

geometry, and for more or less forcing me to write this thesis (I still 

wonder how they did it). Finally, I have to thank the Mathematica! Centre 

and in particular Andries Brouwer and Arjeh Cohen, for their support end 

interest in my work during the four fine years I spant there in which 

period all five papers were written. 
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INTRODUeTION 

It is the purpose of this first chapter to introduce the nonexpert 

mathematician to some of the results and techniques from finite geometry 

in general, and to each of the five papers which constitute the main part 

of this thesis, in particular. In each of these five papers a characteri­

zation of a finite "incidence structure" is given. However, if one wants 

to fully understand and appreciata a characterization of any object, it 

is first necessary to get acquainted with the most basic properties of 

that object. This is what we shall try to achieve here for the objects 

discussed in the papers. In addition to this we shall take the opportunity 

to say something about other theorems characterizing geometries of which 

ours can be viawed as low dimensional cases. 

Basically, characterization theorema in finite geometry fall into 

four classes. First of all there are the purely geometrie characteriza­

tions such as the theorem of Veblen and Young characterizing the 

projective spaces (see section 2), or the Buekenhout-Shult theorem on 

polar spaces (see section 3). Secondly,there are theorema which use some 

kind of assumption on the automorphism group of the object in question. 

The Ostrom-Wagner theorem which we shall discuss in sectien 1, is a 

good example of this. Thirdly, there are the characterizations with the 

help of a combinatorial proparty as is the case, for example, in the 

Dembowski-Wagner theerem which we shall prove in sectien 2. Finally,it 

is sametimes possible to characterize geometries if one knows that they 

are embedded in another geometry (see for example the theerem by 

Buekenhout-Lefèvre in [6]). 

Before we start our discuesion a word of warning: the geometries 

that we shall consider are always assumed to be finite (although for 

some of the results that we shall state this is really not essential). 

1 • PROJECTIVE PLANES AND AFFINE PLANES 

Perhaps the most extensively studied objects in finite geometry 

are the projective planes. There are several ways to give a definition 
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of a projective plane. Here we shall adopt one Which excludes the 

degenerate cases and which is easy to generalize to a definition for 

projective spaces of arbitrary dimension. 

DEFINITION. Let X be a set of points and ! a collection of distinguished 

subsets of X called lineB. Then (X,!) is called a .vrojective plane if 

ltl ~ 2 and the following axioms are satisfied : 

(Pl) If x and y are distinct points, then there is a unique line L xy 

such that x,y E L; 

(P2) If L
1 

and L
2 

are distinct lines, then they meet in a unique point; 

(P3) Every line contains at least 3 points. 

The classical roodels of projective planes are obtained as fellows. 

Let V be a 3-dimensional vector space overF, the field of q elements. 
q 

For X take tbe set of all 1-dimensional subspaces of V and for l the set 

of all 2-dimensional subspaces of V (more precisely, since we have defined 

lines to be subsets of x, a line is not a 2-dimensional subspace but the 

set of all 1-dimensional subspaces contained in a 2-dimensional subspacel. 

It is easy to check that now (P1),(P2) and (P3) are satisfied. Indeed, two 

distinct 1-spaces span a unique 2-space; two distinct 2-spaces in a 3-space 

meet nontrivially and a 2-space overF contains (q2 -1}/(q-1)=q+1~3 
'q 

1-spaces. The question we are interested in is: are these the only examples 

of projective planes ? The answer is no. In fact so many different kinds 

of projective planes are known (see e.g. [8)) that a complete classifica­

tion seems hopeless. Here we shall content ourselves with one ·example of 

a class of projective planes which cannot be obtained from a 3-dimensional 

vector space. To describe these planes it will be more convenient to work 

with affine planes. By definition an affine plane is an incidence structure 

of points and lines satisfying (Pl) and 

{A2) For every point x and line L such that x ! L, there is exactly one 

line tbrough x which does not meet L; 

(A3) There exist three noncollinear points. 

It is easy to establish the well-known correspondence between affine planes 

and projective planes: deleting a line L
00 

from a projective plane gives an 

affine plane and conversely every affine plane can be extended to a 
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projective plane by adding a line "at infinity". If we follow this procedure 

for the projective plane associated with the 3-dimensional vector space 

( lF ) 3 and with L defined by z=O, say, then every point not on L has a q 00 00 

unique representation <{x,y,l)> and can therefore be identified.with 

(x,y) € ( lFqP. 

(JF ) 2 and with 
q 

This gives us the familiar affine planes with point set 

the lines given by an equation y=ax+b or x=c. Now it is 

possible in the above construction to replace the field lF by other 
q 

algebraic str~ctures. For example a quasifield will do as well. Here, a 

(finite) quasifield is a set Q with two binary operations, + and • say, 

such that 

1) (Q,+) is a group with identity 0, 

2) (Q·-....{0}, •) is a loop with identity 1, 

3) x•(y + z) = x•y + X•Z for all x,y,z E Q, 

4) O•x = 0 for all x E Q. 

It is not hard to show that every quasifield Q yields an affine plane with 

point set Q2 and lines given by an equation y=a•x+b or x=c. We shall 

describe a class of quasifields known as the André quasifielda For the set 

Q take lFqn (as a set) and define addition in Q as in lFqn· Let A be the 

group of field automorphisms of JF. n fixing the subfield lF of lF n 
q q q 

elementwise, and let N: lF*n-+ lF* be the norm map defined by 
q q 

(l 
N(x) =fix ,x€lF*n 

et€A q 

If ~ is any map from JF* into A with ~(1)=1, then we can define a multi­
q 

plication • on Q to make Q into a quasifield as fellows 

x•y ll(N(x)) xy (x,y € Q), 

where on the RHS multiplication is in lF n of course. 
q 

' We shall now give some of the properties which characterize the 

projective planes associated with a 3-dimensional vector space. The first 

one is probably the best known. 

THEOREM 1. A pro;jective planeis isomorphic toa projective plane 

associated with a J-dimensional vector space if and only if the following 

condition ho lds: 
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(Desapgues 1 theorem) If a 1,a2,a
3 

and b1,b2,b3 are two triangtes suah that 

the tines a 1b 1, a2b2 and a 3b3 are aonauPrent, then the points a 1a 2nb1h2, 

a
1
a

3
nb

1
b

3 
and a 2a

3
nb

2
b

3 
are aotlinear (see Figure 1). 

L 

Figure 1. 

we shall only indicate how Theerem 1 can be proved (for details see e.g. 

[10] or [16}). The basic idea behind the proof of Theerem 1 is that 

Desargues' theerem is equivalent to the existence of certain automorphisms 

of the projective plane (an automorphism of a projective plane is a 

permutation of the points which induces a permutation of the lines). For 

example, consider Figure 1 and suppose o is an automorphism fixing-x and 

all the points on L. Clearly, since every line through x intersacts L, 

all lines through x are also fixed. If o maps a 1 to b 1, then apparently 

a 2 is mapped onto b2 and a
3 

is mapped onto b
3

; in fact we can determine 

the image of any point. It is easy to see that Desargues' theerem is 

equivalent to the existence of this type of automorphisms. Now we have 

already an algebraic structure associated with our projective plane, 

namely the group generated by these automorphisms. The special properties 

of these automorphisms allow us to reconstruct a field F and a 3-dimen­

sional vector space V over F from this group in such a way that the 

projective plane we started with is isomorphic to the projective plane 

associated with V.Aprojective plane in which Desargues' theorem holds is 

called a Desarguesian projective plane. 



, Let us now look at a typical group theoretic characterization of the 

Desarguesian projective planes. 

5 

THEOREM 2. {Ostrom & Wagner [11]) Let P = (X,!) be a pPojeative plane. If 

the automoPphism gPoup r of Pis 2-tPansitve on x, then Pis a DesaPguesian 

pPojeative pZane. 

Here, 2-transitivity means that for all x 1,x2,y1,y2 EX, x 1~2 , 

y 1.;y2, there is a y Er such that xiy=yi, i=1,2. Again we only explain the 

main ideas of the proof. The trick here is to look at invoZutions, i.e., 

automorphisms of order 2. By the 2-transitivity, theeven number lxl<lxl-1) 
divides the order of r so there exist elements of order 2 in r (notice that 

finiteness is really essential here). Let 0 be an involution. If x EX 

and if x is nonfixed, i.e., if xa:J::,x, then the line xxa is fixed for 

(xx0)a=x0xa
2 

=xax. oually, if Lis a nonfixed line, then L n L0 is a fixed 

point. From these considerations it fellows that the configuration 

of fixed points and lines of a is either 

a) a subplane, or 

b) o fixes all points on a line L and all lines through a point x. 

The easy part of the proof is case b}, since hereais one of the auto­

morphi'sllls whose existence is equivalent to Desargues' theorem {the oniy 

problem here is to show that there are sufficiently many of these auto­

morphisms). The hard part is case ·a}. Suffice it to say that here an 

induction argument can be used to finish the proof. 

We shall see later on that this technique of looking at involutions 

can also be used to characterize the 2-transitive Minkowski planes. 

2. PROJECTIVE SPACES 

Let V be a ve.ctor space of arbitrary dimension. Again we shall use 

the projective terminology and call the 1-dimens,ional subspaces points 

and the 2-dimensional subspaces Zines. clearly, the points and lines 

satisfy the axioms (Pl) and (P3) of the previous .section but (P2) is only 

satisfied for those lines L1 and L2 which are contained in a plane (a 3-

dimensional subspace). In termsof points and lines only, this is expressed 
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in (P4). 

(P4) (Pasch's axiom) If M1 and M2 are lines 

meeting in a point x and L1 and L2 are 

lines both meeting M
1 

and M
2 

not in x, 

then L
1 

and L
2 

meet. 

DEFINITION. Let X be a set of points and t a colleetien of distinguished 

subsets of x called Zines. Then (X,!) is called a projective space if (P1), 

(P3) and (P4) are satisfied. 

Clearly, every projective plane is a projective space. The following 

theorem, due to Veblen & Young, shows that for higher dimensions there 

is.no analogue to the "nondesarguesian" planes. 

THEOREM 3. Let (X,!} be a projective space containing two nonintersecting 

Zines. Then (X,t) is isomorphic to the geometry of 1- and 2- dimensional 

subspaces of a vector space. 

We explain the main steps in the proof of this theorem. Let (X,!) be a 

projective space. A subset Y c X is called a subspace if every line which 

meets Y in at least two points, is completely contained in Y. Clearlyt 

every subspace together with the lines it contains is also a projective 

space. It is also easy to prove that if Y is any subspace and x is any 

point not contained in Y, then the set Z of all points on lines through x 

which meet Y (i.e., z = U xy) is also a subspace. If we take for Y a line, 
y€Y 

the resulting Z is easily seen to be a projective plane. Now look at 

Figure 1, not as a configuration in the plane but with x not in the plane 

generated by a 1,a
2 

and a
3

, say. The points a.a. n b.b., 1$i<j$3, are all 
l. J J. J 

on the intersectien line Lof the planes, generated by a
1
,a

2
,a

3 
and b 1,b2, 

b 3, so Desargues' theerem holds in this case. In fact, Desargues' theerem 

holds in all cases for,if x,a
1
,a

2
,a

3 
happen to be in a plane, we can always 

view the configuration as the projection of a nonplanar contiguration from 

a point onto the plane generated by x,a
1
,a

2
,a

3
• By Theerem 1 we now know 

already that all projective planes which. are properly contained in a 

projective space are isomorphic to a projective plane associated with a 
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3-dimensional vector space (this result is an example of a characterization 

using an embeddability property). The rest of the proef consistsin glueing 

together these 3-dimensional vector spaces to one big vector space (see 

e.g. [3],[12] or [16]for more details). 

As a typical application of Theerem 3 we shall prove the Dembowski• 

Wagner theerem Which is a combinatorial characterization of projective 

spaces in terms of points and hyperplanes. For this we need some termi­

nology which will also be useful later on. A t-design with parameters v, 

k,À (or a t-(v,k,À) design) is a pair (X,BJ where B is a colleetien of 

k-subsets (called bZoaks) of a set x of v points such that every t-subset 

of X is eontained in exaetly ~ bleeks. For any two points x and y in a 

2-design we define the Zine through x and y as the intersectien of .the 

blocks eontaining x and y. Notice that every two distinct points in a 

2-design are on a unique line. For example, let V be a vector space of 

dimension n over F , X the set of all points of the projective space 
. q 

assoeiated with V and let B be the set of all hyperplanes of V. Then (X,Bl 
· (qn- 1 qn-1_ 1 . ,..n-2_ 1j is a 2- --1, 1 ,";! 1 design and the lines in the 2-design sense q- q- q-

are precisely the lines in the projective space sense. This design has the 

proparty that the total number of bleeks is equal to the total number of 

points. A 2-design with this property is called symmetria or projeatibe. 

THEOREM 4. (Demqowski-Wagner) Let (X,B) be a symmetria 2-(v,k,À)design. 

Then (X,BJ is the design of points and hyperplanes of a projeative spaae 

if and onZy if every Zine has at Zeast (v-À)/(k-À) points. 

~· Since !B!=v, every point is on k bleeks. Let L be any line. Since 

Lis eontained in À bleeks, every point x on L is on k-À bleeks B sueh that 

L n B ~ {x}.Therefore v-(À+!LI (k-À)) blocks do notmeet L. From our 

hypothesis it fellows that IL! = (v-À)/(k-À) and that every line meets 

every bleek. Let x be any point not on L and suppose that p bleeks eontain 

L and x. Then k-p bleeks contain x but not L. This number also equals 

ILI(À-p) (for eaeh y € L there are À-P bleeksBon x and y such that 

L n B = {y}}. Therefore k-p ILI (À-p) and so p is a constant. Define 

pZanes as the intersectien of all bleeks eontaining three noncollinaar 
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points. Any three noncollinear points now determine a unique plane. Let L 

and M be two distinct lines in a plane E. Let B be a block containing L 

.but not M. Then L=BnE, so LnM= (BnE) nM BO (EOM) =BnM:j:(6, i.e. any 

two lines in a plane meet. This proves Pasch's axiom. 

3. SYMPLECTIC, UNITARY AND ORTHOGONAL GEOMETRY 

we shall now turn to certain substructures of prbjective spaces for 

which there is a characterization quite similar to the characterization of 

Veblen & Young for projective spaces. Let us start with an analytic des­

cription of these substructures. Suppose V is a vector space of dimension / 

n over F and let cr be an automorphism of F . We shall often write A= À 0 
q q 

for À E F . A {cr-sesquilinear) form f on V is a map f :VxV "+JF satifying 
q q 

i) f(Àx,y}=Af(x,y) and f{x,Ày) Àf(x,y), x,yEV,ÀEF; 
q 

ii) f{x,y+z) =f(x,y} +f(x,z) and f(x+y,z) =f(x,z) +f(y,z), x,y,zEV. 

The form fis called reflexive if for all x,y€V, f(x,y) :0-f(y,x) =0 

and fis called nondegenerate if f(x,y) =0 for all xEV=+y=O. If n~2 

and f is a nondegenerate reflexive ferm on V, then there are only a few 

possibilities for f (se'e e.g. [2]) 

i) cr= 1 and f(x,x) = 0 for all x€V. 

In this case fis called a syrrrpleatic farm and it is possible to show 

,that.n bas to be even and that w.r .. t. toa suitable basis v
1

,v
2

, .. •,vn 

of V, 

f(x,y)=i;1n2-!;2n1 +l;:3n4-1;4n3+•••+1;n-1nn-E:nnn-1' x=:ri;ivi,y=I:nivi. 

ii) 0 2 =1, 0*1 and forsome Ào EF, Àof{x,y) X0 f(y,x) for all x,yEV. 
q 

In this case Ànf is called hermitian and w.r.t. a suitable basis 

f(x,y) =L;ini, x=:rt; 1vi,y=I:n1vi.' 

iii) cr 1 and f {x,y) = f (y ,x) for all x,y € V. 

In this case f is called symmetrie. For even q, symmetrie farms are 

not very interesting and for odd q, symmetrie forms are equivalent 

with quadrati~ farms which we shall now discuss. 



A quadratio fom Q on V is a map Q:V -+JF such that 
q 

a) Q(Àx) = À2 Q(x) for all À E JF , x Ev, and 
q 

b) f(x,y): Q(x+y) -Q(x) -Q(y) defines a bilinear form on v. 

9 

Notice that f is symmetrie and that f(x,x) Q(2x)- 2Q(x) = 2Q(x). Conversely 

if q is odd and fis any symmetrie form on V, then Q(x):=!f(x,x) is a 

quadratic form with associated bilinear form f, so for q odd, f and Q 

determine each other. A quadratic form Q called nondegenerate if Q(x)*O 

for all x EV'-{O} which satisfy f(x,y) 0 for all y Ev (for odd q this is 

equivalent to f is nondegenerate, but if q is even f can be degenerata 

whereas Q is not (see type (I) below}). The standard forms fora non­

degenerata quadratic form w.r.t. a suitable basis are as fellows. If n is 

odd there is essentially one type: 

{I) Q (x) = F;, F;, + F;, F;, + • • • +Ë, Ç; + 
. 1 2 3 4 n-2 n-1 

If n is even there are two types: 

, for some a €JF • 
q 

{II) Q(x) = [,11';,2 + 1::31::4 + 

(m) Q(x) = 1';,1 1::2 + 1::31::4 + +' • + n +a' • ·+ srz 
"'n-3"'n-2 "'n-1 "'n-1 "'n "'n' 

where X2+ ax + S is irreducible over JF • 
q 

Suppose f is a reflexive form on v. If f(x,y) = 0 we write x.Ly and say 

that x and y are orthogonat. Since f is reflexive, .L is a symmetrie rela­

tion. For XcV we set 

.L 
X : = { v € V I v .L x for all x Ex}. 

.L A subspace x of v is called totatty isot!'opio if x c x , i.e. if f (x, y) 0 

for all x, y EX. Similarly, if Q is a quadratic form on V, then any sub­

space X with Q(X} = 0 is called totaUy singular. {If q is odd, then x is 

totally singular if and only if X is totally isotropie w.r.t. the bilinear 

form f associated with Q.) A vector space V equipped with a nondegenerata 

symplectic, hermitian or qUadratic ferm is called a sympleotio,unitary 

or orthogonat geometry. Especially the set of all totally isotropie (sin­

gular) points in symplectic, unitary and orthogonal geometry gives us all 

kinds of interesting configurations. For example, take a quad;atic form of 

type (m) with n 4 and work over lR for the moment with Q (x) = 1;: 1 t,2 + 
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The .set of totally singular points here is a sphere (put t.:1 = n1 + n2, 

n1- n2 and look in the affine 3-space defined by n2 = 1), so any three 

totally singular points determine a plane which will interseet the sphere 

in a conic. Precisely the same is true over a finite field: let X be the 

set of totally singular points and B = {x n EI E a plane with I x n EI ~ 3}, then 

(X,B) is a 3-design. Keeping the picture of the sphere in midd it is easy 

to compute the parameters of the design. If P is any totally singular 

point, then P is on q + 1 tangent lines (all the lines in the plane tangent 

to the sphere passing through P} which carry no ether points of the sphere, 

and therefore on (q2 + q + 1)- (q + 1) q2 lines which interseet the sphere in 

one ether point. Hence I X I = q' + 1 , and a similar argument in the plane 

shows that every conic contains q+ 1 points. Thus (X,B) is a 3-(q2 +1,q+1,1) 

design. A Möbius pZane is by definition a 3-(n2 +l,n+l,1) design. The Möbius 

planes that we have just constructed are characterized by the fact that 

they satisfy the Theerem of Miquel (see [18]). They play a rele similar to 

that of the Desarguesian planes in the theory of projective planes. Here 

also, "nonmiquelian" Möbius planes are known to exist (although net as 

many as nondesarguesian projective planes). A similar story can be told by 

starting off with a quadratic ferm Q(x) = + of type (E) . We then 

arrive at the so-called Minkowski planes which we shall discuss in greater 

detail in the next section. 

There is a very satisfactory characterization of the symplectic, 
' 

unitary and orthogonal geometries which have totally isotropie or totally 

singular subspaces of dimension at least three, known as the Buekenhout­

Shult theorem, which we shall now formulate. 

DEFINITION. Let X be a set of points an~ t a colleetien of distinguished 

subsets of x/called linea such that 

i) the set of lines is nonempty and each line bas at least three points, 

ii) no point is collinear with all remaining points, 

iii) for every point x and every line L not containing x, x is collinear 

with either one or all points of L. 

Then (X,t) is called apolar spaee. 
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Every symplectic, unitary or orthogonal geometry containing totally 

isotropie (totally singular) lines yields a polar space in the following 

way: points are the totally isotropie (singular) points, lines are the 

totálly isotropie (singular) lines. Let us check iii) for a symplectic or 

unitary space V. Let< x> he a totally isotropie point and La totally iso­

tropie line. Since < x>J.= {y I f(x,y) = 0} is a hyperplane of V, the 2-dimen­

sional subspace L intersects <x>J. nontrivially. If y € L n <x>J., y * 0, then 

f(ÀX+j.Jy,px+oy) =0 since f(x,x) =f(y,y) =f(x,y) =0, so the line <x,y> is· 

totally isotropic. If L ~<x>J., then <x> is collinear (in the polarspace 

sense) with exactly one point of L, if Lc<x>J., then <x> is collinear with 

all points of L. 

THEOREM 5. Let (X,!l be a polar apaoe. Then 

a) (X,!) ia iaomorphio to the geometry of all totally iaotropio or totally 

singular points and linea of a aympleotio, unitary or orthogonal 

geometry, Ol' 

b) (X,f) satisfies the ,following stronger version of iii}: 

iv) for every point x and every line L not oontaining x, x is oollinear 

with exaotly one point of L. 

The first characterization of polar spaces was obtained by Veldkamp [17] 

who used a more complicated set of axioms. This set of axioms was later 

simplified by Tits (see [15]) and Buekenhout and Shult {see [5]). 

A polar space which satisfies iv) is called a generalized quadrangle. Here 

the generalized quadrangles play a role similar to that of the projective 

planes in the theory of projective spaces. Again many generalized 

quadrangles are known which are not isomorphic ~o the geometry of totally 

isotropie or totally singular points and lines of a symplectic, unitary or 

orthogonal geometry. For example, the following geometry of ah points and 

a+ b lines as shown in Figure 2 is a generalized quadrangle. 

1~~~-r-T~r-T-;-, 

21--1--+-+ 

• 1--+--+-+-. 
·~~--~~-i--t--t--r-1 

Figure 2. 
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However, since lines in a projective space over JF carry q + 1 points, 
q 

this can only be a geometry of totally isotropie or totally singular 

points and lines if a b = q + 1 for some prime power q. The orthogonal 

geometry over JF of type (Ir) for n q 
4 belonging to the quadratic form 

Q (x) = t;
1 

t;
2 

+ yields a generalized quadrangle of this type with a= b 

= q + 1; the two sets of q + 1 mutually disjoint lines correspond te the two 

sets of rulings on the hyperbeleid t;
1

t;
2 

+ t;
3

t;
4 

0. Additienal axioms are 

necessary to characterize the classical generalized quadrangles. For 

example, there is a theerem by Buekenhout & Lefèvre (see [6]) which says 

that a generalized quadrangle which is embedded in a prejective space is 

classica!. Characterizatiens using certain (transitivity) properties of 

the automerphism group have been given by Tits [14] and Walker [19]. Thas 

and Payne (see e.g. [13]) have given a number of characterizations based 

on geometic and combinatorial assumptions. 

4. SUMMARY OF THE FIVE PAPERS 

The first paper [A] is on nearaffine planes. Nearaffine planes (and 

more generally nearaffine spaces) were introduced by J. André (see e.g. [1]) 

to describe geometrically vector spaces over nearfields. By definition a 

neaPfield (F,+,•} is a quasifield (as defined in sectien 1) with the 

additional property that (F"-{0},•} is a group. Let (F,+,•) be a nearfield 

and set V= F2
• With addition and scalar multiplication on the left (by 

elements of F) defined :componentwise on V, V is called a veatoP spaae 

of dimension 2 oveP F. For x,y€V, x:Fy, define tl;l.e line xUy from x toy 

by 

xUy •= F•(y-x) +x. 

If F happens to be a field, then V is just the standard 2-dimensional 

vector space over F and the lines xUy coincide with the ordinary lines 
I 

in the Desarguesian affine plane. If F is a proper nearfield, then in , 

general u,v:ExUy does not imply xUy=uUv and a rather complicated set 

of axioms is necessary to describe this geometry. The axioma for a naar­

affine plane are chosen in such a way that we get the ordinary affine 

planes back if the additional preperty xUy = y U x holds for all x,y EV. 
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What we do in this paper is to set up a theory for nearaffine planes which 

generalizes the theory of transZation planes, i.e. affine planes which can 

be coordinatized by a quasifield in the sense as described in sectien 1. 

This leads us to what we have called nearaffine transZation planee. As for 

ordinary translation planes, it is possible to give equivalent algebraic, 

geometrie and group theoretic descriptions of nearaffine translation planes. 

For us nearaffine planes are especially important due to certain connections 

with Minkowski planes, the subject of papers [B] and [c] which we shall 

now discuss. 

consider the hyperbeleid in projective 3-space over F, i.e. the set 
q 

of totally singular points of the quadratic form Q(x) = t;
1 

1;2 + t;:
3

t;
4 

on Fq". 

The picture to keep in mind here is that of the hyperbeleid x•- y 2 + z 2 = 1 

(use the transformation t;
1 

x- y, t;2 =x+ y, = z- t, t;4 = z + t and take 

t = 1). There are two families .C+ and .C- of totally singular linea on th~ 
hyperboloid. Explicitly these lines are (in t;-coordinates) 

!/_+ := 
a,b <(a,O,b,O),(O,b,O,-a)~ and 

-R, == a,b 
<(a,O,O,b),(O,b,-a,O)> 

where a,b € lF and at least one óf a and b ·is not equal to zero. We have q 
already p9inted out that the totally singular lines form the rather trivia! 

structure of a (q+ 1)x(q+ 1) grid (see Fig.2) .• To obtain an interesting 

geometry we preeeed as in the case of the Möbius planes and add the conic 

intersections of the planes with the set of totally singular points as 

objects to our geometry. These plane sections are called airalee. Any 

three distinct points on the hyperbeleid with the property that no two are 

on a totally singular line determine a unique plane and therefore a unique 

circle. In this way we arrive at an icidence structure with a set M of 

pointe, two collections .C+ and .C of subsets of Mcalled linea, and a 

colleetien C of subsets of M called airales satisfying the following 

·axioms. 

(M1} .C+ and .C are partitions of M, 

(M2) IR-+nR--1 = 1 for all R-+E.C+, R--€1:-, 

(M3) any three points, no, two on a line, determine a unique circle c E C, 
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(M4) IR, nel= 1 for Q,E.C+U.C-, c~C, 

(MS) there exist thre~ points,no two' of which are on a line. 

Such an incidence structure is called a Minkowaki plane. Let us prove some 

elementary properties of Minkowski planes. From (Ml) and (M2) it follows 

that \Q,+I l.c-1 for all R,+E.C+ and li-l= j.c+l for all Ce:.c-. By {M1) and 

(M4) we have l.c+l=lcl and I.C-I=Icl forallcEC. Since C*~by (M3) and 

(MS), we have proved that l.c+l = 1[1 lil= lel for all iE.C+u.c-:-, eEC. 

The number n:= lel -1 is called the order of the Minkowski plane. It is 

often convenient to think of the points and lines of a Minkowski plane as 

being arranged in an (n + 1) >< (n + 1) square grid. 

p 

Q 

Figure 3. 

Every eircle tben corresponds to a transversal of this grid interseeting 

eaeh horizontal and vertical line exactly onèe. An important property 

(which for infinite Minkowski planes is an additional axiom) is 

(M6) given a cirele c, a point PEe 'and a point Qflc, Pand Q not on a 

line, thère is a unique circle d suc;h that P ,Q E d and c n d = {p}. 

To prove this,note that the two noncollinaar points P and Q are on n- 1 

circles (Figure 3 shows that there are (n- 1) 2 points not collinear with 

P or Q1 each circle through P and Q :contains n- 1 of these) • Since there 

are n- 2 points on c. not equal to P 'and noncollinaar with Q, there must be 

exactly (n- 1) - (n- 2) = 1 circle through P and Q whieh does not interseet 

c in a point distinct from P. With the help of (M6) it is not very hard to 

see that with every point z of a Minkowski plane we can associate an affine 

plane (the derived plane at Z) as follows. The points of the affine plane 

/ 
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are the points which are not collinaar with z. The lines of the affine 

plane are the lines of the Minkowski plane missing Z and the circles 

containing~Z. Axiom (A2) for affine planes now corresponds to (M6). In the 

hyperboloid model this affine plane is clearly visible if we use stereo­

grapbic projection from z onto a plane. 

It is possible to construct Minkowski planes which 'ilre not,isomorphic 

to a Minkowski plane associated with a quadratic form on F~ In [B] we 
q 

show that the known Minkowski planes are characterized by the fact that a 

certain geometrical condition (called (D) in [B]) holds. The idea behind 

the proof of this lies in the observation that with any point Z of one of 

the known Minkowski planes we can also associate a nearaffine plane. The 

points of the nearaffine plane are again the points which are not collinaar 

with z. The lines of the nearaffine plane correspond to the lines and 

circles missing z. Viewed in this way, condition (D) is nothing but a 

special case of Desargues' theorem in the nearaffine plane. One can show 

that (D) implies that all nearaffine planes are nearaffine translation 

planes. The automorphisms of the nearaffine planes extend to automorphisms 

of the Minkowski plane. These in turn enable one to reconstruct the 

algebraic representation of the known Minkowski planes. 

In [c] we have generalized the theorem of Ostrom & Wagner for pro­

jective planes (Theorem 2) and Bering's result for Möbius planes (see [9]) 
to Minkowski planes: if the automorphism group of a Minkowski plane is 

transitive on pairs of noncollinaar points, then the plane is one of the 

known Minkowski planes. The technique used here is very much the same as 

in the proof of the Ostrom & Wagner theorem. Again the basic tool is to 

study involutions in the automorphism group. Here some rather deep group 

theory is necessary to reduce to the case where· there is an involution 

which has a subplane as a set of fixed points. Once this is achieved, 

induction is possible to finish the proof. 

In [D] we have characterized the unitary geometry on F~2 which we 

shall now describe in some detail. Let q be a prime power and V= F 3
2 • 

q 
Define a nondegenerata hermitian form ( , ) on V by 

(x,y) "'~1 Tl1 + ~2Tl2 + ~3Tl3 ' 

for x <t; 1 ,t;
2
,ç

3
), y= <n 1,n2 ,n

3
> Ev. Here A= Àq for all À €Fq2 • 
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Let u be tbe set of totally isotropie points, i,e, 

U= {<X> I (x,x) =0, xEV"-{0}}. 

Let <X> Eu and let <Y> be any any other point. A point <Àx + Y> on the line 

<x,y> joining <x> and <y> is in U if 0 (Àx+y,Àx+y) :=Tr(À(x,y)) + (y,y) , 

where Tr: lF 2 +JF is tbe trace map given by Tr(a) =a+ ä, a ElF 2 • We claim q q q 
tbat it is impossible tbat all points <Àx + Y> are in U, i.e., that (x,y) = 0 

and (y,y) = 0. Suppose on tbe contrary that (x,y) = (y,y) 0. Take any point 

<z> not on tbe line <x>J.: {x' I (x,x') =0 }. Then 

u _lxcl+y 
(x 1 z) 

satisfies (u,x) = (u,y) = (u,z) =O,so (u,v) =0 for all vEV, a contradiction. 

This shows tbat <x> is the only point of u on tbe line <x>J. and that every 

other line through <x> contains q points* <x> of U (for Tr is an JF-linear 
q 

map with a kernel of dimension 1, so Tr(À(x,y)) = -(y,y) has q solutions À 

if (x,y) *0), Since there are q 2 +1 lines through <X>, one of which is <X>J., 

it fellows that I U I 1 + q•q2 = 1 + q3 
• Also , every two distinct points of U 

are on a unique 1 ine of q + 1 u-points 1 i.e., we have constructed a 

2-(q3 + 1,q + 1,1) design. A 2-(n3 + 1,n + 1,1) design is called a unitaZ (n EJN). 

For q = 2 the 2- (9, 3,1) design is the unique af fine plane of order 3. But 

already for q=3 numerous 2-(28,4,1) designs are known (see Brouwer [4]) 

and so we are left with the question what properties are characteristic 

for the unitals associated with a unitary geometry. It is conjectured that 

the following "anti-Pasch" axiom will do: 

No four distinct points interseet in six distinct lines. 

It is easy to show that this property holds for the classica! unitals. 

Suppose <x>,<y>,<a>,<b>,<c>,<d> are six distinct points of U such that they 

farm the configuration of Figure 4. 

Figure 4. 



Since a,b,c and d are linearly dependent, we may assume that 

a+b+c+d=O 

and therefore also that x= a+ c, y a+ b. From (x,x) = 0 it follows that 

(a,c) + (c,a) = 0. Similarly, (a,b) + (b,a) = 0 (from (y,y) 0) and 

(b,c) + {c,b) = 0 (from (d,d) 0 and the other relations). Since a,b and c 

are linearly independent the Gram matrix 

( 

0 {a,b) (a,c)) 
(b,a) 0 (b,c) 

(c,a) {c,b) 0 
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is nonsingular. Hence 0 * (a,b) (b,c) (c,a) + (a,c) (b,a) (c,b). This contradiets 

the other relations. 

In [D] we have characterized the classical unitals under additional 

geometrie assumptions. The basic steps in the proof are as fellows. Using 

nontrivial group theory it is easy to prove that once the automorphism 

group of the unital is large enough, we can only have a classical unital. 

The geometrical conditions we impose ensure the existence of such an 

automorphism group. More precisely, for the classical unital we have for 

<X> Eu that the linear transformation 

v~+v+a(x,v)x, vEV 

respects the hermitian form ( , ) if Tr (a.) = 0 and so acts as an auto­

morphism of the unital fixing all lines through <x>. These transformations 

are called the unitary transveations. The geometrical conditions imply the 

existence of all possible unitary transvections and these generata a 

2-transitive group of automorphisms. 

We conclude with a discussion of the last paper [E] on semi-partial 

geometries. The concept of generalized quadrangle has been generalized in 

a number of ways by replacing the key axiom iv) as formulated in Theerem 5, 

by a similar axiom. MOSt of these axioms can be formulated as: 

For every point x and every line L with x f!L, 

j{ yEL I x and y collinear }j Es, 

where s is some finite subset of :N U{o}. By taking s = {O,a} one gets the 
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essential axiom for a semi-partial geometry (for a complete definition see 

[E]}. In this paper we show that certain semi-partial geometries are al­

ready determined by some numerical data. There are two cases to consider, 

namely 11 = ct2 and 11 =a (a+ 1) in the notatien of [E]. The line of proef in 

both cases is essentially identical and roughly reads as fellows. By 

results of Debroey [7) it suffices to show that the points and lines of 

such a semi-partial geometry satisfy the dual of the axiom of Pasch (for 

obvious reasans called the diagonal axiom). For bath the conditions 11 a 2 

and 11 =a (OL+ 1) there is a straightforward geometrie interpretation. The 

hard part of the proef consists in using this over and over again to show 

that any two intersecting· lines genera te a well-behaved "subspace". Once 

this bas been achieved it is no langer hard to show that the diagonal axiom 

holds provided the semi-partial geometry properly contains such a subspace. 
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H. A. WILBRINK 

NEARAFFINE PLANES 

ABSTRACT. In this paper we develop a theory for nearaffine planes analogous to the theory 
of ordinary affine translation planes. In a subsequent paper we shall use this theory to give a 
characterization of a certain class of Minkowski planes. 

I. INTRODUCTION 

Nearaffine spaces were introduced by J. André as a generalization of affine 
spaces (see e.g., [t], [2], [3]). We shall restriet our attention to nearaffine 
spaces of dimeosion 2, the nearaffine planes. Our set of axioms. defining 
nearaffine planes is weaker than the one used by André. If, however, the so­
called Veblen-condition is assumed to hold (see Sectión 3), our definition 
coincides with the one given by André in [2]. Our main goal will be to 
generalize the theory of translation planes to the case of nearaffine planes. 
In a second paper, we shall show the relationship between eertaio nearaffine 
planes and Minkowski planes. 

In Section 2 we give the definition of a near affine plane and some basic 
results. Section 3 is devoted to the so-called Veblen-axiom. In Section 4 we 
consider automorphisms of nearaffine planes, in particular translations and 
dilatations. In Section 5 we show that translations exist whenever a eertaio 
Desarguers contiguration holds. InSection 6 we give an algebraic representa­
tion for nearaffine translation planes. Section 7 contains some information 
on the relationship with Latin squares. Finally, in Section 8, we give a 
construction of a class of nearaffine planes. More detailed inform~tion, 
especially on the construction ofnearaffine planes, cao be found in [ 12]. 

2. DEFINITION AND BASIC RESUL TS 

Let X be a nonempty set of elements called points, L a set of subsets of X 
called lines. Let U be an opera ti on called join mapping the ordered pairs 
(x,y), x,yEX,x =f y,onto L (thejoin from x toy isdenoted by xUy),and 11 an 
equivalence relation called parallelism on L (l parallel to m is denoted by 
Lil m). 

We say that (X, L, U, 11) is a nearaffine plane if the following three groups 
of axioms are satisfied. 

Axioms on Lines: 

(Ll) x,ye;xUy foral!x,yEX,x=fy. 

(L2) zExUy\{x}Ç>xUy=xUz forallx,y,zEX,x=fy. 

Geometriae Dedicota 12 {1982) 53-62. 0046-5755/82/0121-0053$01.50. 
Copyright© 1982 by D. Reidel Publishing Co., Dordrecht, Holland, and Boston, U.S.A. 
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(L3) xUy=yUx=xUz=>xUz=zUx forallx,y,zeX, 

y +x =I= z. 
The point x is called a basepoint ofthe line x Uy. It is not difficult to show the 
following proposition (see [2] ). 

PROPOSITION 2.1. Thefollowing are equivalent. 
(i) x Uy has a basepoint =!=x, 

(ii) each point of x Uy is a base point of x Uy, 
(iii) xUy=yUx. 
Therefore we may define: a line x U y is called straight iff x U y = y U x. 

Thesetof all straight lines is denoted by G. The lines in L \Gare called proper 
lines. 

Axioms C!f parallelisrn: 

. (PI) for all/eL, xe X there exists exactly one line with base point x 
parallel to l. 
We denote this line by {x 11[). 

(P2) xUyllyUx forallx,yeX,x=/=y. 

(P3) <olll)=>leG forallgeG,leL. 

Axiorns on richness: 

(RI) There exists at least two non-parallel straight lines. 

(R2) Every line I meets every straight line g with g W I in exactly one 
point. 

We state some basic results which follow immediately from our axioms 
(see e.g. [2], [IJ]). 

PROPOSITION 2.2. Two distinct lines with the same base point have no 
other point in cornmon. 

PROPOSITION 2.3. Two distinct straight lines interseet in one point unless 
they are parallel in which case they are disjoint. 

TH EO REM 2.4. A nearaffine plane with commutative join is an a.lfine p/ane. 

We shall only consicter fini te nearaffine planes, i.e., nearaffine planes with a 
finite number of points. The following resolt is easy to prove (see, e.g., [2]. 
[11]). 

PROPOSITION 2.5. Alllines of a nearaffine plane have thesame nurnber of 
points. 

The number of points on a line, which equals the number of parallel 
straight lines in one equivalence class, is denoted by n and called the order 
of the nearaffine plane. 
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PROPOSITION 2.6. lXI 11
2

• 

PROPOSITION 2. 7. Th ere are exact(\" 11 + I /i nes with a yit•en base poilll. 

We denote by s + I the nurnber of equivalence classes (;Qntaining straight 
lines. By(RI) we have s~ I. 

PROPOSITION 2.8. Et>ery point is on s + l straiyht /i nes, IGI = n(s + I), 
IVGI 11

2
(11-$). 

3. THE VEBLEN-C<)NI)ITION 

Many interesting exarnples of nearaffine planes (e.g., the nearaffine planes 
associated with Minkowski planes) satisfy the following version of the 
Veblen-condition (named (V') in [2] ). 

(V') Let q be a straight line, P, Q, R distinct points on g, I=/= ga line 
with base pointPand SEf\;PJ. Then (R!IQLS)rd=/=0 (see 
Figure 1). 

p R 

Fig I 

Before we prove the main rcsult on nearaffine planes which satisfy (V'), 
we prove a proposition valid in any nearaffine plane. Notice that until now 
we have not used axiom (P2) and that the proof of this proposition only 
requires the following weakened version of (P2) (this will be important in 
our paper on Minkowski planes). 

(P2') Let g and h be two distinct parallel straight lines, x, x' Ey and 
y, y'eh. Then x U .ril x' L.r' -=.r U x ll.r' U x'. 

PROPOSITION 3.1. Two para/lel/ines ll'hich luwe their base point on one 
straight line are disjoint or identical. 

Pro(){: Let I and I' be two parallel lines with base points x and x' respec­
tively on the straight line ~/· If .rElnl' . .r =f x, x' then xUy 1!11' =x' Uy, 
hence rUx 11 r U x' by (P2') and so yUx = yUx' by (PI). Therefore x x' 
by (R2) and so I I' by (PI). 

THEOREM 3.2. (André [2] ). Let f · (X, L, , l1) he a nearaf(ine plane 
sati.~f)·ing ( V') and g a straight fine ()/'. i ·. T hen the point set X anti the line set 
L

9
: (leLII has base point on gJvUlEGihJ/g} constitute an ajfine plane 

. I (X,L ). 
Pro(Jf: Léqt I, mE L

9
, I =f m. lf lil m then ltnm I= 0 by 2.3 and 3.1. lf I~ m 
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then I! n mI I. This follows from (R2) if lil g or m 11 g. Suppose, therefore, 
that land m have basè points ong. The n line in L

9 
parallel to m partition 

X by 3.1. Hence, at least one of these lines contains a point of l. Therefore, 
by (V') and 2.5, each of these lines, so in particular m, contains exactly one 
point of I. Since IL

9
I = n(n + 1) and lil= n for every leL

9 
it follows from 

[ 5, result 3.2.4c, p. 139] that .% 
9 

is an affine plane. D 

Remark. Notice that two lines of .%
9 

are parallel in %
9 

(i.e., dis joint) iff they 
are parallel in Af'. 

4. AuTOMORPHISMS 

In this section we generalize such notions as automorphism, dilatation etc. 
to the case of nearaffine planes. Proofs which do not differ essentially from 
the corresponding proofs for affine planes (see e.g., [ 4]) wiJl he omitted. 

DEFINITION 4.1. Let % (X, L, U, 11) and .~11'' =(X', I.:, U, 11') be two 
nearaffine planes. A bijeetion ex: X __. X' is called an isomorphism of % and 
%'if 

(i) (PUQr=P"UQ" forallP,QeX,PjQ, 
and 

(i i) lil m<=> la 11' m" for all 1, me L. 

lf .N = .%', then cx is called an automorphism of . .#·. A permutation ex of the 
points of% is called a dilatation if P U Q 11 P" U(! for all P + Q. 

The automorphisms of a nearaffine plane form a group d, the dilatations 
forin a group ~. 

THEOREM 4.2. ~ ~ d. 

LEMMA 4.3. Suppose {Je~ fixes PeX. Then Q5eP UQ for all QeX, 
XjP. 

THEOREM 4.4. Suppose {Je~ fixes two distinct pointsPand Q. Then b= I. 
Proof Take ReX. IC R =Por R = Q,then Ró = R. if R + P,Q we have by 

4.3: R 6ePUR and R 6eQUR. By (Rl) there is at least one straight line 
g + P UQ through P, so for Reg we have R 6 e(P UR)n(Q UR) = {R}, i.e., 
R5 = R. For an arbitrary R~g we replac~ P by a point P' in such a way that 
P' UR is straight and Q by some point Qeg\{P'}. It follows that R;;e(P' UR) 
n(Q'UR) {R}. D 

COROLLARY 4.5. Let b1 , o2 e~ and suppose pó• = P62
, Q6' = Q6

' for 
distinct pointsPand Q. Then lJ1 = o2 • 

DEFINITION 4.6. A dilatation 1: is called a translation if t = 1 or if 
P UP'II Q U Q' for all P, Qe X. The parallel class containing PUP' is called 
the direction of t + I. The translation 1: is straight if PUP' is straight. We 
denote by :T the set of all translations. 



25 

NEARAFFINE PLANES 

A translation r :fo I bas nofixd point. Suppose P' = P; then for any point 
Q :foP wehaveQ< :fo Q by4.4 and Q'ePUQ by4.3. Hence,if PUQ is straight, 
QUQ'=PUQ. 

This is a cöntradiction since the~e are at least two nonparallel straight 
!i nes through P. 

LEMMA 4.7. If aed and re§', then ara-t e:T. lf in addition ae@ and 
r :fo 1, then rand ara- 1 have the same direction. 

THEOREM 4.8. Let C be a parallel class consisting of straight lines and 
:T(C): = {re:Tir has direction C} v {1}. Then:T(C)(J. D. 

LEMMA 4.9. Let C and D be two distinct parallel classes consisting of 
straight lines. Then ur = 1:u for all ue.Y(C), 7:E.Y(D). 

LEMMA 4.10. Let C and D be two parallel classes containing straight lines, 
ueff(C) and 7:E:T(D). lf u-c :fo I, then u-c has no fixed points. 

Proof If C = D or if u or 1: = I, this is a consequence of 4.8. If C =/= D and 
u,•:fol, then P'"=P forsome PeX implies PUP"eC, PUP'- 1ED, 
pa = pr- ',a contradiction. 

For nearaffine planes the product of two translations need not be a 
translation. For straight translations the following theorem holds. 

THEOREM 4.11. Let C, D and E be three distinct parallel classes consisting 
of straight lines.Suppose pe:T(C), ueff(D), -ce:T(E)and PeX satisfy ppa = P'. 
Then pu = -c. 

Proof. If -c = I, then P1"' = P, hence pu = l by 4.10. If -c :fo I, then P' :foP. 
From 4.9 it follows that (P')' = (PP"Y = (P')P". Hence, -c = pu by 4.5. D 

THEOREM 4.12. Let C and D be two distinct parallel classes consisting of 
straight lines with i:T(C)I = i:T(D)I = n. Then 

:T s; (!T(C), !T(D)) = :T(C):T(D). 

/fin addition :T(C) and :T(D) are Abelian, then Y = .Y(C)Y(D). 
Proof By4.9, (:T(C),ff(D)) = Y(C)ff(D)and IY(C)Y(D)j = n2

• By 4.10, 
Y(C)Y(D) is the Frobenius kemel of@, hence. it contains all fixed-points free 
dilatations. Therefore Y s; Y(C)Y(D). Suppose :T(C) and :T(D) are Abelian. 
Take peY(C), ue:T(D) and P, QeX. There exist p1 eff(C), u 1 eY(D) such 
that PP'"' = Q. Hence, 

PUpP"II (P UPP")P'"' = pP•"• UPP•"•P" = QUQP". 

i.e., pue:T. 

A nearaffine plane ha ving two distinct parallel classes C and D consisting 
of straight lines such that jY(C)I IY(D)I =nis called a nearaffine transla­
tion plane. Notice that this definition is consistent with the definition of 
translation plane. 
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THEOREM 4.13. Let C, D and E be three distinct parallel classes consisting 
of straight lines. Ifl ff(C)j == I ff(Dll = n, then 

(a) ff(E) is Abelian, 
(b) . .:Y(C)::::. ff(D). 
Proof (a) Let t 1 , r 2 Eff(E). By 4.12 there exist p1 eff(C), u

1 
Eff(D) such 

that r 1 p1 u 1 • By 4.9, 

rtrz=Pt 11 t'2 'zPtat=r2r1. 

(b) Define the automorphîsm <P: .Y(C)- .Y(D) as follows: Fix a line gEE. 
For each pEff(C) let <P(p)E.Y(D) be determined by gP<P<Pl = g. 0 

COROLLARY 4.14. /fin addition to the hypothesis of4.l3, I T(E)I = n, then 
. .:Y(C) ::::= .'?ï(D) ::::= .Y(E) and these groups are Abelian. 

So far we have not used (P2) in this section. Using (P2) it is possible to 
prove the following theorem. 

THEOREM 4.15. The order n of a nearaffine translation planeis odd or a 
power ~{2. 

Proof Suppose n is even and let C and D be two distinct parallel classes 
consisting of straight lines such that jff(C)j = 1-.:Y(D)I = n. There exists 
peff(C) such that p2 I, p =!= I. Take ue . .:Y(D} and PE X. Then, 

p UPP" 11 ppu-1 U(PP"ya-t = ppa-! UP 11 p UPP"-1. 

Therefore PP", PP"- 1 EPUPP"~D. Since PP"- 1 and PP" = (PP"- 1f 2 are on 
the same straight line of D it follows that pPG- 1 = PP", i.e., u2 = I. Hence. 
ff(D) is an (elementary Abelian) 2-group. D 

5. A DESARGUES CONFIGURATION 

Let .;V (X, L, U, 11 ) be a nearaffine plane and C a parallel class consisting 
of straight lines. Consider the following condition (cf. [2], [3] ). 

(Dl) Little Desargues configuration. If P,P',Q,Q',R,R'eX are 
distinct points such that PUP', Q Q', R UR' are distinct 
lines of C, then P QIIP'UQ' and PURIIP'UR' imply 
Q UR 11 Q: UR' (see Figure 2). 

Analogous to the situation for affine planes, the validity of (Dl) is seen to be 
equivalent to the existence of all possible translations with direction C. 

THEOREM 5.L C satisfies (Dll-lff(C)I n. 

The following theorem will be useful in our paper on Minkowski planes. 
Again notice that we only make use of (P2'). 

THEOREM 5.2. Let _Al'= (X, L, U, 11) be a nearaffine plane in which the 
Veblen-condition holds, and let C be a parallel class of straight lines. Then 
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Fig. 2. 

(using the notation of3.2), C satisfies (Dl) in% <=>C satisjies (Dl) in "'t'Jor 
all geC. 

Proof ~ : Every translation of. V with direction Cis easily seen to induce 
a translation of A '

9 
with direction C for every geG. 

<=: Let P, P', Q, Q', R, R' be distinct points such that PUP', Q Q', and 
RUR' are distinct straight lines of C and such that PUQIIP'UQ', 
PUR \1 P' UR'. LetS (resp. S') be the base point ofthe line in JV pup· passing 
through Q and R (resp. Q' and R'), (see Figure 3). Application of (Dl) in 
%pup·yieldsS UQI\ S' UQ'. 

Fig. 3. 

Let D be a parallel class of straight lines different from C, and let T (resp. T') 
be the point of intersection of PUP' and the straight line of D passing through 
R (resp. R'). Application of(Dl) in .A/'PuP' to the triangles TQR and T'Q' R' 
yields TU Q \\ T' U Q', hence Q UT 1\ Q' UT'. Finally apply (Dl) in A' ~u a· 
to the triangle TQR and T' Q' R' to obtain Q UR \1 Q' UR'. 0 

6. ALGEBRAIC REPRESENTATION 

In this section an algebraic representation is given of the nearaffine transla­
tion planes. The tedious but straightforward proofs are omitted. For details 
see [12]. 

Let G and G' be two groups of order n written additi vely. We do not assume 
that G or G' is Abe)ian or that G ~ G' (although the same symbol +is used 
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for actdition in both groups). Let§' be a set of (n l) mappings.t;: G ....... G', 
i= l, ... ,n- l, such that the following conditions are satisfied. 

(i) . .t; is a bijeetion for all i= l, .. . ,n I. 
(ii) /;(0)=0 foralli=l, ... ,n I. 

(iii) .t;(a) = - .t;(- rx) for all i= l, .. . ,n l, aeG. 
(iv) /;(rx) =I= ~(rx) for 1 ~i <j ~ n I, rxeG\{0}. 
(v) For all i= l , ... ,n- l either, 

\{ IXEG\{Ol3fleG [/;(rx + /J) =I= /;(rx) + /;(/J)] 
or 

"~a,{JeG [/;(rx + /J)= /;(rx)+ !;(fJ)] 

and.t;-~is a bijeetion for j = l, . .. ,n l,j =I= i. 

Given such a set of mappings §' it is possible to construct a nearaffine 
translation plane in the following way. Put X:= G x G'. For x, ye X, 
x= (Ç, Ç'),g = (,.,, '7'), x =I= y, define: 

x Uy: { (rx, Ç') I a eG} if Ç' = q', 
{

{(Ç,rl)jrx'eG'} ifÇ=,.,, , 

· { (Ç +a, Ç' + .t;(a)jaeG} if Ç =I=", Ç' =I= '1' and 
.t;(- ç + '!)= -Ç' +'I'· 

The line setLis just thesetof all x Uy, x+ y. For any line l =x Uy we let 
d(l)e { 0, I, ... ,n - l, oo} be determined by 

{ 

00 if ç ,.,, 
d(l): = 0 if ?,;' ",, 

i if Ç' =I=,.,,, Ç' =I= q' and.t;(- Ç + '1) = - Ç' +'I'· 

Notice that d(l) only depends on I and not on the special choice of x and y. 
Define parallelism by 

I 11 m :.;;.d(l) = d(m), 

then .K =(X, L, U, 11) is a nearaffine translation plane. Conversely, every 
nearaffine translation plane can bedescribed in this way. The parallel classes 
C0 : = {Ie Lid(/)= 0}, C"': = {leLjd(l) = oo} consist of straight lines. For 
each aeG, the mapping (Ç, Ç') ....... (a+ Ç, Ç'} is a translation with direction C0 • 

Foreacha' eG', themapping(Ç, Ç')-+ (Ç, a'+ Ç')isa translation withdirection 
C"'. For i= l, ... ,n -1, Ci: {leLjd(l)= i} consistsof straight lines itT i 
satisfies the second alternative of (v). 

The Veblen-condition (V') is satisfied iffor 1 ~i <j~ n- l, 

(a) .t; - f.: G -+ G' is a bijection, 
(b) J; ~ ~: G' ....... Gis a bijection, 
(c) for all ke { 1, . .. ,n I} which satisfy the second alternative of (v) and 

for all yeG there is a unique solution a off,.(y)= ~(y +a)-.t;(a). 
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7. NEARAFFINE PLANES AND LATIN SQUARES 

lt is well known that the existence of an affine plane of order n is equivalent 
to the existence of n- I mutually orthogonal Latin squares (MOLS) of order 
n (see [5] ~ For nearaffine plane the following result holds. 

THEOREM 7.1. IJ .;V is a nearaffine plane of order n with s + 1 parallel 
classes containing straight lines (s < n), then there exist s MOLS of order n. 

Proof The n(s + 1) lines inthes + 1 parallel classes consisting of straight 
lines together with n lines from a parallel class consisting of proper lines, 
all ha ving their base points on a fixed straight line, constitute an (s + 2) net 
of order n. This is equivalent to the existence of s MOLS of order n (see, 
e~~]~ 0 

Let N he an integer, N ;;J!: 2, and suppose N has prime decomposition N = 
= p~' p~2 

... p'f. Define 

s(N) : = min p~ - I. 
1 ~i~k 

It is well known (see, e.g., [5]) that there exist at least s(N) MOLS of order N 
(the so-called MacNeish bound). The following theorem shows therefore that, 
as far as nearaffine translation planes are concerned, we cannot hope for 
interesting applications of 7.1 

THEO REM 7 2. Let JV be a nearaffine translation plane of order n with s + I 
parallel classes containing straight lines. Then s" s(n). 

Proof Notice that s - I of the J;'s associated with JV, say /p/2 , ... ,f._ 1' 

satisfy the second alternative of (v) of Section 6. Put lP;: = J; oJ;, i= I, 2, ... ,s. 
then lP; -l/Ji: G _... G is a permutation of the elemènts of G, I" i <j" s. 
Hence, the Latin squares A<i) = [a~~y] defined by · 

are mutually orthogonal. Since l/J 1 , l/J2 , ... ,ljJ5
_ 1 are automorphisms of Git 

follows by a theorem of H. B. Mann ( see [ 6] or [9]) that s - 1 " s(n ). Suppose 
s- 1 = s(n) = p«- 1, p a prime, ae Flll. It follows from the proof of Mann's 
theorem that the elements =/= 0 of a Sylow p-su bgroup PofGare all in different 
conjugacyclasses. Thus- y +x+ yeP=:> y +x+ y = xforall xeP,yeG. 
In particular, if yeNG(P) then x+ y y +x for aiJ xE P, i.e., P" Z(N G(P)). 
By a theorem ofBurnside (see [7] or [8] ), G contains a normalp-complement 
N. Since IG\NI and INI are coprime, Nis a characteristic subgroup of G. 
Thus, the rows and columns of A<l), ... ,A<•- t) which correspond to the 
elements of N, yield mutually orthogonal Latin subsquares of order n/pa. 
By à theorem of Parker (see [10]) such a set of s-I MOLS cannot he 
extended to a set of s MOLS, a contradiction. Hence, s- 1 < s(n), i.e., 
s" s(n). 
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8. CONSTRUCTION OF NEARAFFINE PLANES 

Using the representation of nearaffine translation planes of Section 6, we 
treat a special case of the more general construction described in [12]. The 
nearaffine planes thus obtained turn out to be associated with eertaio 
Minkowski planes. Let p be a prime, ha positive integer and n =ph. For the 
groups G and G' of Section 6 we take the additive group of GF(n). Fix an 
automorphism ljJ of GF(n), and for each aE GF(n)* define fa: GF(n)--> GF(n) 
by /

0
(0): = 0 and 

fa(x): = ax- 1
, xeGF(n)*, if a is a square, 

fa(x): = a(x 1)'1>, xeGF(n)*,ifa is a nonsquare. 

The set :i':= {faiaeGF(n)*} is easily seen to satisfy the properties (i), ... ,(v) 
of Section 6. The corresponding nearaffine plane is of order n, and s = l. It 
is also nothard to show that the Veblen-condition holds in these nearaffine 
planes. 

REFERENCES 

1. André, J. · 'Eine Kennzeichung der Dilatationsgruppen desarguesscher aiTmer Räume 
als Permutationsgruppen'. Arch. Math. 25 ( 1974), 411-418. 

2. André, J.: 'Some New Results on lncidence Structures', Atti dei Convegni Lincei 17, 
Colloquio Internazionale sulle teorie combinatori 11 (1976), pp. 201-222. 

3. André. J.: 'On Finite Non-commutative Affine Spaces'. in M. Hall andJ. H. von Lint(eds.) 
Combinatorics Part I, Mathematica! CentreTracts 55(1974), 60-107. 

4. Artin, E.: GeofiU'tric Algebra, lnterscience, New Vork, London, 1957. 
5. Dembowski, P., Finitl? Geometries, Springer-Verlag, Berlin, Heidelberg, New Vork, 1968. 
6. Denes, J. and Keedwell, A. D.: Latin Squares and their App/ications, The English Uni-

versities Press Ltd., London, 1974. 
7. Hall, M.: The TheoryofGroups, MacMillan, NewYork, 1959. 
8. Huppert, B.: EndUche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York, 1967. 
9. Mann, H. B.: 'The Construction of Orthggonal Latin-Squares', Ann. Math. Stat. (1943), 

401-414. 
I 0. Park er, E. T.: 'Nonextendibility Conditions on M utually Orthogonal Latin-Squares', Proc. 

Amer. Math. Soc. 13 (1963), 219-221. 
11. Van der Schoot, J. and Wilbrink, H.: 'Nearaffiné Planes I' ,lndag. Math. 37 (1975), 137-143. 
12. Wilbrink, H.: 'Nearaffine Planes and Minkowski Planes', Master's thesis, Techn. Univ. 

Eindhoven, 1978. 

(Received February 29, 1980) 



31 

H. A. WILBRINK 

FINITE MINKOWSKI PLANES 

ABSTRACT. In this paper we give second characterizations of a eertaio class of fini te Minkowski 
planes. 

I. INTRODUCTION. 

It is well known, see e.g. [5], that with each point of a Minkowski plane there 
is associated an affine plane, its so-called derived plane. It is the purpose of 
this paper to show that, onder certain additional hypotheses, with each point 
of a Minkowski plane there is also associated a nearaffine plane, its residual 
plane. In addition we show that the 'known' Minkowski plane are charac­
terized by the fact that these nearaffine planes are nearaffine translation 
planes (see [9] ). Using this result a configurational condition is obtained in a 
completely natoral way which characterizes the known Minkowski planes. 

2. BASIC CONCEPTS 

Let M he a set of points and .!l'+, !l'-, <'C three collections of subsets of M. 
The elementsof ft':= !l'+ u .!l'- are called lines or generators, the elements 
of <'Care called circles. We say that .A= (M, !l'+, !l'-, <'C) is a Min/wwski 
plane if the following axioms are satisfied (cf. [5] ): 

(MI): !l'+ and .!l'- are partitions of M. 
(M2): 11+ n 1-1 = I for all/+ e.!l'+ ,I- e!l'-. 
(M3): Given any three points notwoon a line, there is a unique circle 

(M4): 
(M5): 
(M6): 

passing through these three points. 
llncl =I for allle!l', ce<'C. 
There exist three points no two of which are on one line. 
Given a circle c, a point Pee and a point Qfjc, Pand Q not on 
one line, there is a unique circle d such that P, Q e d and c n d = 
= {P}. 

Two points P and Q are called plus-parallel (notation P 11 + Q) if P and Q are 
on a lineof ft'+ ,minus-parallel (P 11- Q)if Pand Q areonalineof .!l'-. Parallel 
(P 11 Q) means either P 11 + Q or P 11- Q. For Pe M, e = +, - we denote by 
[P]e the unique line in .!l'e incident with P. If P, Q and Rare (distinct)nonpar­
allel points, then we denote by (P, Q, R) the unique circle containing P, Q 
and R. Two circles c and d touch in a point P if c n d = { P}. 

Fix a point Z and put 

Mz: = M\([ZL u [Z]_ ), 

Lz: = {c* I ce<'C, Zee} u {l* lle!l'\{ [Z]+, [Z]_} }, 

Geometriae Dedicata 12 (1982) 119-129. 0046-5755/82/0122-0119$01. 65. 
Copyright© 1982 by D. Reidel Publishing Co., Dordrecht, Holland, and Boston, V.S.A. 
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where the * indicates that we have removed the point that the circle or line 
has in common with [Z] + v [ZJ_. Then .11 z: = (M z• Lz) is an affine plane 
with pointset M zand lineset Lz (see, e.g., (5] ). We call.lt z the derived plane 
with respect to the point Z. We shall only consider finite Minkowski planes, 
i.e., Minkowski planes with a fini te number of points. For finite Minkowski 
planes (M6) is a consequence of the other axioms (see [ 5] ). lt is easily seen 
that IZ+I=IZ-I=Iil=icl= :n+l for aU leZ,cet'G. The integernis 
called the order of the Minkowski plane. Notice that n is also the order of 
the derived planes .11 z. 

Following Benz [1] we sketch the close relationship between (ftnite) 
Minkowski planes and sharply 3-transitive sets of permutations. Let 0 be a 
finite set, 101 = n + 1 ~ 3, and 0 a subset of SO, the symmetrie group on 0, 
acting sharply triply transitively on n. 

De fine 
M :=OxO, 

z+: { { (lX,P}IlXeO} IPeO}, 

z-: {{(lX,.P>IPeO}IlXeO}, 

CC : = { {(a,<X')jlXeO}IgeO}. 

Then .11: = (0, 0): = (M,z+ ,z-, CC) is a Minkowski plane of order n. 
Conversely, every Minkowski plane can be obtained in this way. 

Two Minkowski planes .11 = (Cl, 0) = (M,Z +, Z-, CC) and .11' = (0', 0') = 
= (M',z+•,z-•, CC') are said to beisomorphicifthereis a bijections: M ->M' 
such that 

zs = Z' and ces= <l'. 

Sinces maps the disjoint lines of z+ onto disjoint lines there are only two 
possibilities, either (.sf•)" = z• or (Z')" = z-•, e = +,-. In the first case s 
is called a positive isomorphism in the second case a negative isomorphism. If s 
is a positive isomorphism then there exist bijections a, b: 0 ..... 0' such that 
(a.,P'f = (cf,/f11}for all lX,peo, and 0' = a- 1ob. If sis a negative isomorphism 
then there exist bijections a,b:O .... 0' such that (a..PY = {P",cf), and 0' = 
= b- 1 o- 1 a. It follows that we may assume w.l.o.g that ideO. 

A (positive, negative) automorphism of a Minkowski plane .11 is a (positive, 
negative) isomorphism of .11 onto itself. The automorphism group 
Aut (0, 0) ~ S0 xn óf the Minkowski plane (0, 0) is given by 

Aut(O, 0) = {(a, b)la- 1 Ob= 0} u{(a, b)ja- 1 Ob a-t }r 

where t is the permutation which sends (lX,/f) to {P,lX). 

3. THE RESIDUAL PLANE 

Let .lt=(M,z+,z-.<l) be a Minkowski plane. Fix a point ZeM and 
define M, = M\([Z]+ u (ZJ_~ We have already remarked that the lines =/= 
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[Z] + , [Z]_ together with the circles which are incident with Z are the lines 
of an aff'me plane with pointset M z. We shall show that the lines + [ Z]+ , 
[Z]_ together with the circles not incident with Z are the lines of a nearaffine 
plane with the samepointset if suitable conditions are assumed to hold in Jf. 

For each point PeMz we let the points p+ and p- be defined by p+: = 
[Z]+ n[P]_,p-: = [Z]_ n[P]+. The restrietion of a line lor circle c to 
Mz isdenoted by I*:= lnMz resp. c*: = c nM z· For anytwodistinct points 
P,QeMz wedefine 

PUQ: ={I* iff P,Qeleft', . 
{P} u (P+ ,p- ,Q)* 1ff Pand Q are nonparallel. 

Since two circles can have at most two points in common it follows that 
PUQ= QUP ifand only if PUQ = l* forsome /eft', provided the order 
n of Jf is atleast 5. The verification ofthe axioms(Ll), (L2)and (L3)(see [9]) 
is now straightforward. In order to define parallelism we have to require that 
the following condition holds in Jf for every point Z. 

(A) Let PI' QpP2 , Q2 eMz and suppose that P 1 and QpP2 and 
Q2 , P 1 and P2 are nonparalleL Ifthereexistsacirclec touching 
(Pt, Pï, Q1) in Pï and touchirig (Pi, Pï, Q2) in Pi, then 
there also exists a circle d touching (Pt, Pï, Q1} in Pt and 

touching (P;, Pï, Q2) in Pï (see Figure I). 

Fig. l. 

In the definition of P 1 UQ 1 11 P 2 UQ2 we have to distinguish several cases. 

Case 1. P 1 and Q1 parallel, say P 1 UQ1 = lTfor some 11 eft'e. 

P1 UQ1 jjP2 UQ2 :-.P2 UQ2 =I! forsome 12 eft'•. 

Case 2. P 1 and Q1 nonparallel, P 1 , P2 parallel, say P 1 , P2 elft'". From [9], 
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proposition 3.1, it isclear that we have to define 

Pt UQtiiP2 UQ2 =-Pt UQt = Pz UQ2 
or 

(P 1 UQ1)n(P2 UQ2)= 0. 
Case 3. P 1 and Q 1 nonparallel and P 1' P 2 nonparalleL Put P 3 = [ P 1 ] + n 
n[P2]_ and P4 := [P1 ]_n[P2 ]+· (see Figure 1). P 1 UQ1 jiP2 UQ2:­
- There exists P 3 UQ3 such that 

(P3UQ3)n(Pt nQt)= 0 = (P3nQ3)n(P2UQz). 

Notice that condition (A) is equivalent to: P 1 UQ 1 II P2 UQ2 implies 
P 2 UQ2 II P 1 UQ 1 , i.e., parallelism is a symmetrie relation. We prove that 
parallelism is a transitive relation. Suppose P 1 UQ 1 II P 2 UQ2 and P 2 UQ2 II 
P 3 UQ3 (withdistinctPpP2 ,P3 ). We prove thatP1 UQ 1 IIP3 UQ3 • 

Case (a). P 1 11 Q1 . Trivial 

Case (b). P1 KQ1'P2 ,P3 el forsome leff. The transitivity follows at once 
from the following observation. If c, d, e, e,C(f and c and d touch in a point P, d 
and e touch in the samepoint P, then c and e touch in P. To show this suppose 
Qecne,Q 1= P, then there are two circles through Q, namely c and e, touch­
ing d in P. This contradiets (M6). 

Case (c). P 1 KQl'P1 e[P2].,P3e[P2]_. forsome B= +,-. By definition 
PtUQtiiP3UQ3. 

Case(d). P 1 WQ1'P 1 !I.P2 forsome e=+,-,P3 KPpP3 WP2 • Put P4 := 
[P2].n [P3]_ •• Since P2 UQ2 II P 3 UQ3 there exists Q4 such that P2 UQ2 II 
P 4 UQ4 II P 3 UQ3 • Apply case (b) to find P 1 UQ 1 II P4 UQ4 and case (c) to 
fmdP 1 UQ1 II P3 UQ>. 

Case (e). P 1 KQl'P1 II.P3 forsome e= +, -,P2 KP1'P2 KP3 • Put P4 := 
[P1],n[P2]_ •• There exists Q4 such that P 1 UQ1 IIP4 UQ4 and 

P 4 UQ4 II P 3 UQ3 • Apply case (b). 

Case (0. P1 KQ1'P1'P2 ,P3 mutuallynoQparallel. PutP4 : = [P1] + n [P2]_. 

There exists Q4 and that P1 UQ1 II P4 UQ4 and P4 UQ4 jiP2UQ2 • Apply 
case(d)tofindP4 UQ4 jjP3 UQ3 and soP1 UQ1 II P3 UQ3 • 

Let Lz be the set of all P UQ, P, QeM z• P + Q. It is not hard to show 
that .Az: = (M .. , L z, LJ, 11> satisfies all the axioms of a nearaffine plane 
except possibly (P2) or (P2'). F or (P2) to hold we have to require: 

(B) Let P 1' Ql' P2 , Q2 be points as in (A). If P 1 e(P;, Pi, Q2 ) and 
P 2 e(P i, P 1 , Q1 ). Th en circles c and das described in (A) exist. 

If we content ourself with the weaker (P2') we have to require: 

(C) Lets be + or -,A andBtodistinct points on [Z],,A + Z + B 
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and c1 and c2 two circles touching in A. Put (see Figure 2) 

c,:=[Z]_,nci' i=l,2, 
P1 : = [A]_,n[C.J,, i 1,2, 

Q1: = [B], nci' i= 1, 2, 

D;: = [QJ.n [Z)_,, i= l, 2, 

d1 : = (P1, Di, B), i = 1, 2. 

Then d1 and d2 touch in B. 

Fig. 2. 
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If J! is a Minkowski plane satisfying the conditions (A) and (B) or (A) and 
(C) and Za point of .,11, then the nearaffine plane Az is called the residual 
plane with respect to Z. 

For the remainder ofthe section let .,11 = (M, !f+, 2-, CC) be a Minkowski 
plane satisfying the conditions (A) and (C). Since U and 11 are defined strictly 
in terms of the incidence in A it follows at once that an automorphism of 
.,11 fixing a point Z, induces an automorphism of .,11z, i.e., Aut (A)z :;5 
Aut (.,llz~ In fact, Aut (.,ll)z :::::::- Aut (Az) as we shall see in a moment. The 
crucial observation is the following lemma. 

3.1. LEMMA. Let Z be a point of A. F or any two nonparallel points A and B 
of M z let [A, B] be the set of points consisting of A, B, Zand the points CE M z, 
nonparalleltoA and B,for which there is no set P UQ\{ P} containing A, Band 
C.Then 

[A,B] = (A,B,Z). 

Proof. Clearly both [A,B] and (A,B,Z) contain A,B,and Z. Let CE 
(A, B, Z~ C :f. A, B, Z then (A, B, C) =(A, B, Z). Suppose forsome P, QEM z 
we have A,B,CEPUQ\{P}. Then A,B,CE(P+,P-,Q1-.{P+,P-}, so 
(A, B, C) = (P+, p-, C) a circle not passing through Z, a contradiction. 
Conversely, let CE[A, B], C :f. A, B, Z and suppose CE(A, B, Z). Then 
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Z~(A, B, C) and so (A,B,C) intersects [Z]+ and [Z]_ in points p+ and p­
respectively, different from Z. So, with P defined by P = [P+ ]_ n [P-]+, 
A,B, Care on PUQ\{P}, a contradiction. 0 

The lemma just proved shows that the residual plane .Az completely 
determines the Minkowski plane .A. The lines of .A can be recovered from 
the straight lines of .Az, the circles not containing Z from the proper lines 
of Mz, and the circles containing Z from the ~>ets [A, B]. This proves the 
following theorem. 

3.2. THEOREM. Let Y and Z be the points of .A. Then 

(a) .Ar :::: .Az ijJ there exists fjle A ut (.A) such that y<t> = Z. 
(b) Any automorphism of Jtz can be extended to an automorphism of .A 

fixing z. 
(c) Aut (.A)z:::: Aut (.A'). 

It is not hard to show that for any point Z of .A the residual plane .Az 
satisfies the Veblen..condition (V'). In fact we can prove somewhat more. 

3.3. THEOREM. Let ZeM,le.'l', l :ri= [Z]+, [Z]_ and let Y be d4ined by 
Y = ln([Z]+ u[Z]_ ). Then .A~:::: .Ay. where l* is the straight line 1\{Y} 
of Jtz (notation as in [9] ). 

Proof. Define an isomorphism fjJ: M z - M r of .A~ onto .Ar as follows. F or 
PeMz, Pfjl* wedefine p</>; = P, and for PeMz,Pel*, p</>: = [P]_,n[Z] •• 
where eis determined by le.'l'•. 0 

As a direct consequence of this theorem we have the following result. 

3.4. TH EO REM. IJ the derived .A z is a translation plane for every Ze M, 
then the residual plane .;/fz is a nearaffine translation plane for every Ze M. 

Proof. Apply 3.3 and 5.2 of [9]. 0 

As a converse to this theorem we mention the following theorem. 

3.5. THEOREM. Let Z be a point of .A. if .Az is a nearaffine translation 
plane, then .A z is a translation plane and J(z and .A z have the same translation 
group. . 

Proof. By 3.2 every automorphism of .Az is also an automorphism of .A z• 
and it is not hard to show that a straight translation of .Az with a direction 
corresponding to .'l'" is also a translation of .A. Let 5" + and 5" _ be the 
translation groups of .Az with direction;i .'l'+ and .'l'- respectively. Since 
5" + and 5" _ are also translation groups of .A z it follows that 5" + and 5" _ 
are elementary abelian. Hence, by 4.12 of of [9], the set 5" of all translation 
of .Az is a group and 5" = 5" + ff _ = the full translation group of M z. 0 
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4. CHARACTERIZA TIONS OF THE KNOWN FINITE MODELS 

Using the correspondence with sharply triply transitive sets of permutations 
all known (finite) Minkowski planes can be described as follows. Let P be a 
prime, ha positive integer, q: =ph and 4> an automorphism of GF(q). Let G(4>) 
be thesetof permutations actingon theprojective line Cl: = PG(l,q) = GF(q) v 
v { oo} given by 

ax+b 
. x~ ex+ d' a,b,c,deGF(q), ad-hè= (nonzero) square in 

GF(q), 

ax<P+ b 
x~ cx<P + d' a,b,c,deGF(q), ad-bc = nonsquare in GF(q), 

i.e., G(4>)= G1 v4>G2 , where G1 : = PSL(2,q) and G2 : = PG(2,q)\PSL(2,q). 
Then G(4>) is sharply triply transitive on n (cf. [7], [8], [10]). The residual 
planes of (0, G(4>)) are easily seen to be the nearaffine translation planes 
described in [9], Section 8. We shall show that a Minkowski plane whose 
residual planes are nearaffine translation plan es, is isomorphic to an (Cl, G( 4>) ). 

Let c be a circle of a Minkowski plane Jl of order n and Z a point of 
Jl, Z,c. If Jl z is augmented to a projective plane, then the points of c* 
c\( [ZL v [Z]_) together with the two ideal points corresponding to 
!I!+ and !l!- constitute an oval in this projective plane. In n is even, there 
exists a point (the nucleus of the oval) in the projective plane such that the 
n + I Iines incident with this point are the n + 1 tangents of the oval. If 
n is odd, each point of the projective plane is incident with 0 or 2 tangents 
(see [3]). From this observation wededuce the following lemma. 

4.1. LEMMA. Let .Jt be a Minkowski plane of order n.Jfn is even, there can­
not exist 3 distinct circles c1 , c2 ,d such that c1 and c2 touch in a pointZand C1 

touches d in P1 + Z, i= 1, 2. In any case there cannot exist 4 distinct circles 
cl' c2 , c3 and d such that c 1' c2 , c3 touch in a pointZand such that c1 touches 
dinapoint p1 + Z, i= I, 2, 3. 

Proof. Casenis even. Suppose circles c1 , c2 and das described exist. The 
lines [[Z]+ f"'ld]_ and [[Z]_ nd]+ are tangents to the oval córresponding 
with d in the projective plane associated with .Jt z. They interseet in a point of 
Mz. Also c1 and c2 are tangents to the oval. They interseet in anideal point 
of the projective plane, a contradiction. 

Case n is odd. Now c 1 , c2 and c3 correspond to tangents of the oval d in 
the projeelive plane associated with .Jt z· They interseet in one (ideal) point, 
a contradiction. 0 

4.2. THEOREM. Let .Jt = (0, G) = (M, !l!+, !l!-, <i) be a Min/wwski of 
order n ~ 5. Suppose conditions (A) and (C) hold in Jl and that Jlz is a nearaf­
fine translation planefor every point Z. Then .Jt ~ (0, G(4>)). 
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Proof Fix a 1 en. For each point (a1 , {J)e M there is an elementary Abelian 
group ff _ (a1 , {J) of translations of Jt<a•.P> and A<a,,pp and ff _ (a1 , {J) ::S 
Aut (A) (3.2, 3.4, 3.5). Each ff _ (a 1 , {J) fues alllines of IR- and one lines of 
fR+ (namely the line {(a, {J)jaen}). Usîng the notation of Section 2, each 
ff _(a 1 , {J)consists ofpositive automorphisms ofthe form (1, b), where be!?­
fues {J and Gb = G, i.e., for each {Jen there is an elementary Abelian group , 
B({J) which fixes {J, acts regularly on n\{{J}, and for which GB({J) = G. Define 
B: = (B({J)I{Jen), then Bis doubly transitive on n and GB = G. Therefore, 
G is a union of cosets of B and in particular B s;; G. Hence, no nontrivial 
permutation in B leaves 3Ietters fixed. By a theorem of Feit ( [4]), B contains 
a normal subgroup of order n + 1 or there exists an exactly triply transitive 
permutation group B0 containing B such that [B0 :B] ~ 2. Suppose B 
contains a normal subgroup of order n + 1, then B also contains a sharply 
doubly transitive subgroup B*. The circles {(a,alf)laen},geB* together 
with the lines le.P now constitute an affine plane of order n + 1 and hence 
contiguration as described in 4.1 exist, a contradiction. Therefore B ~ B0 , 

where B0 is sharply 3-transitive, and [B0 : B] ~ 2. All sharply triply transitive 
groups are known (see [6]). If nis even, then B0 :::::: PSL(2, n) and so B = G 
= PSL(2,n~ i.e. A is the classical Minkowski plane of order n = 2h. If nis odd, 
there are at most two sharply 3-transitive groups of degree n + 1 and such a 
group certainly contains PSL(2, n). The Sylow p-subgroups B({J) of B are the 
Sylow p-subgroups of PSL(2, n). Therefore B ~ PSL(2, n) and since IBI ~ 
~ t<n + 1) (n )(n - 1) it follows that B:::::: PSL(2, n). Thus, with G 1 : = PSL(2, n) 
and G2 : = PGL(2, n)\PSL(2, n), 

G G1 uf/JG2 

forsome rpe!?-. It remains to show that fjJ is an automorphism of GF(n). If 
x, y and z are three distinct points of n, then there is a ge G 1 such that x<P = xY, 
yf' = y11, z<P z11 for otherwise there exists heG

2 
such that x<P = x<P\ 

y" = /"', z41 = z"h, i.e., h = 1, contradicting heG2 • It follows that we may 
assume w.I. o.g. that fjJ fixes 0, 1 and oo. If we do soit also follows that · 

x<P 
---=--=square in GF(n) for all x, yeGF(n), x i= y, 
x y i 

for geG1 determined by x'~> x 11, y" = y9 , oo = oo<P = oo 11 bas determinant 
(x"'- y'~>)j(x y). By a theorem ofBruen and Levinger (see [2]) it follows that 
4> is an automorphism of GF(n). 0 

Using the previous theorems it is possible to give a geometrie characteriza­
tion ofthe Minkowski plan es (0, G( 4>) ). Consider the following contiguration­
al condition: 

(D) Let e be + or , l e ,P• and V, W to distinct points on l. Suppose 
c and c' are to distinct circles touching in V. Let Y and Q be 
two distinct points on c, YW W, Q WW. Define 
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Y': = c' n [Y]_ •. 

Q': =c' n[Qh •. 
d : = (Y,Q, W), 

tl : = (Y', Q', W). 

Then d and d' touch in W (see Figu':'e 3). 

Fig. 3. 
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Notice that (D) is nothing but a special case of the Desarques contiguration 
(DI) in .llz on the points P, Q, R, P', Q', R'. 

4.3. THEOREM. Let .11 be a Min/wwski plane of order n ;;';ll 5, and suppose 
(D)holds in .lt. Then .11 is isomorphic to onet:fthe planes(O., G(<Pn 

Of course the proof of 43 is based on 4.2 and it is clear that (D) implies 
(A). Also (C) is a consequence of(D). 

4.4. LEMMA. Let .11 be a Minkowski plane of order n 
(a) lfn is even then (A) implies (B) {hence (C)). 
(b) In any case (D) implies (C). 
Proof. (a) The following statement is easily seen to be equivalent to (B): 

r If the circles c and d as described in (A) exist, then P 1 e(Pi ,Pi, Q2)-«> 
-«>P2 e(Pt, P~, Q1). To prove this last statement, consider the configuration 
of condition (A) and suppose c and d exist, P 2 e (Pt , P~ , Q) but P 1 f1 (Pi, 
Pi, Q2 ). Let e be the circle through P 1 touching (Pi, Pi, Q2 ) and c in Pi ,f 
the ch'Cle through P 1 touching (Pt, P~, Q1) in P 2 • By (A) e and f touch in 
P 1 • Similarly it follows that the circle g through P1 touching (P;, Pi, Q2) 

in P 2 touches f in P 1 • Therefore, g and e touch in P 1 and so the circles g, e, 
(Pi, Pi, Q2 ) touch each other in P;, Pï, P 1 • This contradiets 4.1 since n is 
even. 

(b) Consider the contiguration of condition (C). We claim that (P 1 , Q 1 , Z) 
and (P 2 , Q2 , Z) touch in Z. H (P1, Qi' Z) touches c1 in Q1 for i= l, 2, this fol­
lows from (A). Suppose, therefore, that (P 1 , Q1 , Z) does not touch c1 in Q1 , 

i.e., suppose that (P 1 , Q1 , Z) has another point E1 =I= Q1 in common with 
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c1 • Put E2 : = [EJ_. fîc2 • By (D) the circles (E2 , Q2 , Z) and (E1 , Q1 , Z) = 
= (P 1, Q

1
, Z) touch inZ. Suppose(E2, Q, Z)intersects [A]_,in a pointP~ f. P 2• 

Let Y be the point of intersection of [Z]. and (E2 , P'2 , C 2). If we apply (D) 
twice it follows that (E 1 , P 1 , Y) and (E1 , C 1 , Y) both touch (E2 , P'2 , C2 ) in 
Y. Hence (El'PI' Y)=(E1 ,C1 , Y) and impossibility because P 1 IIC1 • We 
have proved P 2 e(E2 , Q2 , Z), i.e., (P1 , Q1 ,Z) and (P2 , Q2 ,Z) touch inZ. So: 
c1 and c2 touch in A implies (Pt'Q.,Z) and (P2 ,Q2 ,Z) touch inZ. lt is 
easily seen that the converse also holds. If we reptace ei by di' i= 1, 2, it 
follows that d 1 and d2 touch in B. 0 

To finish the proof of 4.3 we have to show that all residual planes .Hz are 
nearaffine translation planes. By 3.4 it suffices to show that all derived planed 
.A z are translation planes. 

4.5. LEMMA. Let .A be a Minkowski plane satisfying (0), then .A z is a 
translation plane for every point Z. 

Proof. Let ZeM and P,Q,R,P',Q',R'eMz such that PII_P', Qll_ Q', 
RII_R', the line PQ (in .Hz) is parallel to P'Q' and PR is parallel to P'R'. 
We have to show that QR is parallel to Q'R', i.e., we have to show that the 
circles (Z,Q,R) and (Z,Q',R') touch inZ. We assume bere that P,Q,R (and 
also P', Q', R') are mutually nonparalleL The other cases follow from the 
cases we do consider. Put Y = (P,Q,R) fî [Z] +. If we apply (D) to (P, Q, Z1 
(P',Q',Z),(P,Q,Y)=(P,Q,R) and (P',Q',n it follows that (P,Q,R) and 
(P',Q',Y) touch in Y. Application of(D) to (P,R,Z).(P',R',Z),(P,R,Y)= 
= (P,Q,R) and (P',R', Y) yields (P,Q,R) and (P',R', Y) touch in Y. Hence 
(P',Q', Y) (P',R', Y) = (P', Q',R'). Finallyweapply(D)to(Q,R, Y)(Q',R', Y), 
(Q,R,Z)and(Q',R',Z)andobtainthedesiredresult. 0 

Notice that it is possible to give a proof of 4.3 without using the theory of 
Iiearaffine planes. Show direcdy, using (D), that any translation of a desired 
planes .Hz extends to an automorphism of .A. Th en argue as we did in 4.2. 

REFERENCES 

I. Benz, W.: Vorlesungen über Geometrie der AJgebren, Springer-Verlag, Berlin, New York, 
1973. 

2. Bruen, A. and Leviriger, B.: 'A Theorem on Permutations of a Finite Field', Can. J. Math. 
lS (1973), 1060-1065. 

3. Dembowski, P.: Finite Geometries, Springer-Verlag, Berlin, Heidel berg, New York, 1968. 
4. Feït, W.: 'On a Class of Doubly Transitive Permutation Groups, 111. J. Math. 4 (1960), 

170-186. 
5. Heise, W. and Kanel, H.: 'Symmetrische Minkowski-Ebenen', J. Geometry 3 (1973), 

S-20. 
6. Huppert, B.: 'Scharf Dreifach Transitive Permutationsgruppen', Arch. Math. 13 (1962), 

61-72. 



41 

FINITE MINKOWSKI PLANES 

7. Pedrini, C.: '3-reti (non immergibli) aventi dei piani duali ói quelli di Moulton quali sotto 
piani', Atti Accad. Naz. Lincei Rend. Sc.fls. mat. enat. 40(1966). 385-392. 

8. Quattrocchi. P.: 'Sugli insiemi di sostituiioni strettamenie 3-transitivifiniti', Atti Sem. 
mat .fiS. Univ. Modtma 24( 1975), 279-289 (1976). 

9 Wilbrink, H.: 'Nearaffine Planes', Geom. Dtdicata 12 (1982) 53-62. 
10. Wilbrink, H.: 'Nearaffine Planes and Minkowski Planes', Master's thesis, Tech Univ. 

Eindhoven, 1978. 

(Received February 29, 1980) 



42 

HENNY WILBRINK 

TWO-TRANSITIVE MINKOWSKI PLANES 

ABSTRACT. In this paper wedetermine all finite Minkowski planes with an automorphism 
group which satisfies the following transitivity property: any ordered pair of nonparallel 
points can be mapped onto any other ordered pair of nonparallel points. 

1. INTRODUCTION 

All known finite inversive planes have a two-transitive group of automor­
phisms. Conversely, every inversive plane admitting an automorphism 
group which is two-transitive on the points, is of a known type (cf. [9] ). 

For Minkowski planes the situation is quite similar. All known finite 
Minkowski planes have an automorphism group acting two-transitively 
on non-parallel points. In this note we shall show that this property is 
characteristic for the known Minkowski planes. More precisely, we shall 
prove the following theorem. 

THEOREM. Let .A be a fini te M inkowski plane of odd order n, and suppose 
that .A admits an automorphism group r acting two-transitively on non­
parallel points. Then n is a prime power, .A ::'!::: .A (n, ifJ) for some field auto· 

. morphism ifJ of GF(n), and r contains PSL(2, n) x PSL(2, n). 

Foi a definition of .A(n, ifJ) see Section 2. As Minkowski planes of even 
order n only exist for na power of 2 and are unique for given order n = 2", 
this result completes the classification of the Minkowski planes with an 
automorphism group acting two-transitively on nonparallel points. 

2. DEFINITIONS, NOTA TION AND BASIC RESUL TS 

Let M be a set of points and !l' +, !I!- /fJ three collections of subsets of 
M. The elements of !1!: = !J!+ u!l!- are called lines or generators, the 
elements of<iá' are called circles. We say that .A= (M, !I!+, !1!-, <iá') is a Min­
kowski plane if the following axioms are satisfied (cf. [8] ). 

(MI): 
(M2): 
(M3): 

(M4): 
(M5): 

!J!+ and !1!- are partitions of M. 
11+ f1 ~-~ = l for all[+ Efl!, [Efl!-. 

Given any three points no two on a line, there is a unique circle 
passing through these three points. 
llnci = 1 for allle!l!,ce<iá'. 
There exist three points no two of which are on one line. 

Geometriae Dedicata ll (1982) 383-395. 0046-575\5/82/0124-0383$01. 95. 
Copyright C 1982 by D. Reidel Publishing Co., Dordrecht, Holland, and Boston, U.S.A.. 
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(M6): Given a circle c, a point Pee and a point Q f=c, Pand Q not on 
one line, there is a unique circle d such that P, Qed and c lî d = 
{P). 

Two points P and Q are called plus-parallel (notation P 11 + Q) if P and Q 
are on a line of :i'+, minus-parallel (notation P 11- Q) if P and Q are on a 
line of :i'-. Parallel (notation P 11 Q) means either P 11 + Q or P 11 Q. For 
PeM we denote by [P] +(resp. [P]_) the unique line in :i'+ ~resp. :i'-) inci­
dent with P. If P, Q and R are (distinct) nonparallel points, then we denote by 
(P, Q, R) the unique circle containing P, Q and R. Two circles c and d touch 
in a point P if c n d { P} . 

We shall only consicter finite Minkowski planes, i.e., Minkowski planes 
with a fini te number of Points. F or fini te Minkowski planes (M6) is a conse­
quence of the other axiom (see [8] ). lt is easily seen that 12' +I = 12-1 = 
ltl = I c I = : n + 1 for all! e :i', c e rt;, The integer n is called the order of the 
Minkowski plane. Fix a point P and put 

M p : = M\( [ PL V [ PJ_ ), 

4: = {c* I cE"t, Pee} v {I* !Ie :i'\{ [PL, [P] } } , 

where the * indicates that we have removed the point that the circle or line 
has in common with [P]+ v[PJ_. Then .AP: = (M",L") is an affine plane 
with point set M" and line set L" (see, e.g., [8] ). The projective plane associat­
ed with J!t" will be denoted by .1t P. We call J!t P the derived plane with 
respect to the point P. 

Following Benz [2], we sketch the close relationship between finite 
Minkowski planes and sharply triply transitive sets of permutations. Let n 
be a fini te set, lOl = n + 1, and let G be a subset of Sym (!l), the symmetrie 
group on n, acting sharply triply transitively on !l. Define 

M: !lx!l, 

ft>+:={{(cx,f1)1cxe!l}j{Je!l}, 

ft>-:= { {(a, /1) I pen} I exen}, 

'ti:= { {(ex, o;9) I exen} I ge G}. 

Then .A:= (!l, G): = (M, ft>+, :i'-, 'ti) is a Minkowski plane of order n. 
Conversely, every Minkowski plane can be obtained in this way. 

Two Minkowski planes J!t = (Q, G) = (M, :i'+, :i'-, 'ti) and J!t' = 
(!l', G') (M', :i'+', :i'-', (I') are said to he isomorphic ifthere is a bijeetion 
s:M-+ M' such that 

:i'' = :i'' and 'tf• <t'. 
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Either (.!e+)s = .;e+• and (.!e7 = .ce-· or (.ce+r = .ce-• and (.!e7 .;e+•. In 
the first case, s is called a positive isomorphism, in the second case, a negative 
isomorphism. If s is a positive isomorphism then there exist bijections a, b: 
!l--+0' such that (oc. {3)' = (oca. fJb) for all oc, pen. and a- 1ab =a'. lf s is a 
negative isomorphism, then there exist bijections a, b :0--+ 0' such that 
(oc, fJ)' = (fJb, ~) and b-ta- 1a =a'. It follows that we may assume w.l.o.g. 
that a contains the identity permutation on n. 

A (positive, negative) automorphism of a Minkowski plane Jt is a (positive, 
negative) isomorphism of .~ onto itself. The automorphism group 

A ut (0, a)" Sym (Q x 0) of the Minkowski plane (Q, a) is given by 

Aut (Q, a)= {(a, b)eSym (Q) x Sym (Q) I a- 1ab =a} 
u {(a, b)ESym (Q) x Sym (Q) I a- 1ab = a- 1}t 

where tESym (Q x Q) is defined by (oc, {3)' = (fJ, oc) for all (oc, /J)e!l x Q. 
We shall now describe all known finite Minkowski planes (cf. [14]). 
Let q be a prime power and let 4> be a field automorphism of GF(q). We 

shall denote by -~(q. </>) the Minkowski plane (Q, a) with Q = PG(l, q), the 
projection line of order q, and G the subset of Sym (Q) consisting of the 
permutations 

ax+b 
ad- bc = a non-zero square of GF(q), 

and 

x ad- bc = a nonsquare of GF(q). 

Of course, if q is even, we always get G = PSL(2, q), and it can be shown 
that these are the only Minkowski planes of even order (see [7] ). F or q odd, a 
is a group if and only if </> 2 = 1 (see [10]), and nonisomorphic Minkowski 
planes of the sameorder q can exist. Notice that Jt(q, </>)bas an automor­
phism group containing PSL(2, q) x PSL(2, q) which is two-transitive on 
nonparallel points, i.e., if P, Q. P', Q' are points such that P X Q and P' ~ Q', 
then there is an automorphism g satisfying P11 = P' and Q11 = Q'. 

We conclude this section by Jisting some theorems on permulation groups 
which will be fundamental in our investigations. For the more standard 
results on (permutation) groups, the reader is referred to [11] or [ 17]. 

Result 1 (Gleason's lemma). Let r be a permutation group of a fini te set M 
such that, for some prime p, every element of M is fixed by a permulation in 
r which bas order p and fixes no other element. Then r is transitive on M 
(see [5], 4.3.15, p.l91). 

A transitive permutation group which bas the property that only the 



45 

HENNY WILBRINK 

identity fixes more than one letter, but the subgroup fixing a letter is non­
trivia!, is called a Frobenius group. 

Result 2. In a Frobenius group the elements which fix no letter together with 
the identity forma regular normal subgroup (see [ll], p. 495). 

The regular normal subgroup in Result 2 is called the Frobenius kernel. 

Result 3. Let r be a 2-transitive permutation group on a finite set M with 
an even number of letters such that only the identity fixes more than two 
letters. Then either r contains a sharply 2-transitive normal subgroup and 
IMI is a power of2, or r contains PSL(2, q) as a normal subgroup of index ~ 2 
(see [6] and [12]). 

Result 4. Let r be a 2-transitive permutation group on a finite set M. If 
every element of r which fixes an element of M has odd order, then either r 
is solvable (in which case r is isomorphic to a subgroup of the group of 
semilinear transformations of a Galois field of characteristic 2) or r contains 
as normal subgroup isomorphic to PSL(2, q) (see [I]). 

3. PROOF OF THEOREM 

For the proof of our theorem we require a number of lemmas. The first 
lemma shows that we can assume without loss of generality that an auto­
morphism group which is two-transitive on nonparallel points, contains 
positive automorphisms only. 

LEMMA I. Let .;/! = (M, ft'+, ft'-, 'l/) be a Minkowski plane of odd order 
n and let r* be a group of automorphisms of.;/! two-transitive on nonparallel 
points. Then r: = r !f'+ = r !l'- is also two-transitive on nonparallel points 
(r !f'+ is the set-wise stabilizer of ft'+ in r*). 

Proof LetPand Q be two points, P ~ Q. Then 

[r p: r PQJ = [r;:r;QJ [r;Q :r PQ] [r;: r p] -I, 

Now [r;:r;0 ]=1Mpl=n2 (as before Mp=M\([P]+u[P]_)= 
{RIR~P}), and [r;Q:rPQ], [r;:rP]e{1,2} since [r*:r]e{l,2}. Since n 
is odd it follows that [r p: r PQ] = n2

' i.e., r p is transitive on M p• Hence, 
ris two-transitive on nonparallel points. D 

From now on A= (M, ft'+, ft'-, 'l/) = (Q, G) is a Minkowski plane of 
odd order n ~ 5 with a group r of positive automorphisms acting two­
transitively on nonparallel points. (For n = 3 the theorem follows readily 
from [ 4].) We denote by r(ft'') the subgroup of r fixing all Iines of ft'•, 
e = +,-. Notice that r(ft'-•) has a faithful representation on the (n + 1) 
Iines of ft'', e = +,-. 
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LEMMA 2. Ifr(:l")containsPSL(2,n)jore= + or -,then.4t~Jt(n,<P} 
forsome (j>eAUT(GF(n)) and r contains PSL(2, n) x PSL(2, n). 

Proof For convenience we take e = - 1. As a permutation group on 
M = fJ x n, r consists of permutations (a

7
, b

7
)eSym(fJ) x Sym(!l) satis­

fying a; 1Gb
1 

= G, yer. Clearly, I:~ r(il'-) is equivalent toa"= 1 for all 
uel:. Hence B:= {b"juei:} is a subgroup of Sym(Q) satisfying GB= G. 
Therefore G consists of a number of cosets of B, in particular B ~ G since 
we are assuming that leG. If I:~ B = G1 : = PSL(2, n) then G = G1 u I/JG2 

for some 1/JeSym(fJ) where G2 :=PGL(2,n)\G1(jG1 I=t(n+1)n(n-1) 
and jGj = 1~1 = (n + l)n(n- 1)). Viewing fJ as the projective line 
GF(n) u { oo} in the appropriate way, we claim that we rnay take 
ljJeAut(GF(n)). Let x, y and z be three distinct points of!l. Since Gis sharply 
triply transitive on Q, there exists a gE G such that x"' = xg, l' ~ 
and z"' = z9 • Suppose ge 1/JG 2 , i.e., g = 1/Jg 2 for some g 2 eG 2 , then x<~> (x"'f 2

, 

y"' = (y<l>)e 2
, z"' = (z<1>)92

, and we get the con tradietion 1 = g 2 eG 
2

• 

We have shown: for any three distinct x,y,zeQ there is a g1 eG1 such 
that x<~> = x9 ', y"' = y9 ' and z<P = z9'.lt follows that we may assume without loss 
of generality that 4> fixes 0, 1 and oo. If we do so it also follows that 

x"' _ ___.:._is a square in GF(n) for all x, yeGF(n), x=/= y, 
x y 

for g1 eG 1 determined by x"'= xY, y4> = ~. oo4> = oo oo9 is the permutation 
(ÇH((x4>- y"')J(x- y))(Ç- y) + y4>)eG1 . By a theorem of Bruen and 
Levinger (see [3]) it follows that ljJeAut(GF(n)). 1t remains to show that 

· r(il'+) also contains PSL(2.n). Let y~(a1 ,b1)er, then a; 1b
1
ea,- 1Gb

1 
G ~ PrL(2, n). Hence, 

G~y ~Ga,= a; 1 Ga
1 
=a; 1 (a

1
Gb; 1)a

1 
= G(a; 1 b)- 1 ~ PrL(2, n). 

Si nee G~, is a two-transitive subgroup of PrL(2, n), G~' contains G 1 so 
G~" = G1 • Therefore a

7
ePrL(2, n). Now {a

7 
I yer} is a two-transitive sub­

group of PrL(2,n), hence contains G1 • Since a; 1b
7
EG=G1 ui/JG2 and 

a; 1G 1b1 = G'i(a; 1b1) = G 1 (a7 
1b7) either a; 1G 1 b7 

= G1 or a; 1G 1 br =t/JG2 • 

Si nee G 1 does not contain a subgroup1 of index 2, { a
1 

jye r, a; G 1 b 
1 

= G 1 } 

contains G1 • Let aeGl' then there is a yer such that y = (a,b), a_, 1 G
1 
b = 

G1 • Since aEG 1 also beG1 • Hence (1, b- 1)er and so (a, 1) =(a, b)(l, b- 1)e 
r(ll'+}. D 

LEMMA 3. Letebe + or-. If'E. ~ r(il'•) is transitive on g-• and I:1,., = 1 
for all I, meil'-•, I =I= m, then I:E,j ~ 3 for all lell'-•. Jf r(ll''),,m = 1 for all 
l, mell'-•, then jr(ll'"),l ~ 3 for alllell'-•. 

Proof Let I:~ r(il'") be transitive on g-•. Then G contains a subgroup 
H::: I: (as pentmtation groups, see proof of Lemma 2). Ifi:.1,., = 1 for distinct 
I, m in 2-•, then H •. fl = 1 for distinct rl, f3e!l. It follows that the circles 
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conesponding to the elementsof H cannot interseet each other in more than 
one point. Moreover, by Result 2, these circles fall into I Hal classes of n + 1 
disjoint circles (each class corresponding toa coset of the Frohenius kernel 
of H). Thus each point is on !Hal of these circles, one from each class, and 
circles in distinct classes interseet in exactly one point. Now, if !I:, I= IH«I > 3 
we can find four circles c 1 , c2 , c3 and d such thàt the c1 toucheach other in a 
point P not on d and such that the c; touch d in three distinct points. Ho wever, 
this meiins that in the projective plane j{ P, the oval conesponding to d bas 
three tangents through a common point. As n. the other of .K p· is odd, this 
is a contradiction. 

Suppose r(28)1,., = I for distinct I, me2-•. If r(2") = 1 forsome (hence 
all) le2-• there is nothing to prove. If lr(2")1 > l, then f(28) is transitive 
on 2-• by Result I and we can take I:= r(2"). 

LEMMA 4. Lets be + or . Ifr(2") is two-iransitive on 2-•, then nis a 
prime power, .A~ vlt(n, cp)for some cpeAut(GF(n))andr contains PSL(2. n x 
PSL(2.n). 

Proof. As G is sharply triply transitive on n, r(2")1,.,,n = 1 for distinct 
lines /, m, ne2-•. By Result 3, either r(2") contains a sharply two-transi­
tive subgroup, or r(2•) contains PSL(2, n) as a normal subgroup of index~ 2. 
The first alternative is impossible by Lemma 3. Lemma 2 now completes the 
proof. · 

LEMMA 5. Ij r(2') contains a nontrivial element fixing two lines of 2-• 
(s = + or- ), then nis a prime power • .A~ .,ll(n, 4>) forsome cpeAut(GF(n)) 
and r contains PSL(2, n) x PSL(2, n). · 

Proof. Suppose 1 1= ver(28) fixes /, me2-•, l 1= m. We may assume that 
v has prime order. As remarked in the proof of Lemma 4, v fixes no other 
lines of 2-• hesides l and m. Since r(ff•) is a normal subgroup of r .. 
( ya iae r,) ~ r(2•). By Result l, it follows that ( y« iae r,) is transitive on 
2-•\{1}. Hence (y"aer) is two-transitive on 2-•. Now apply Lemma 4. 

0 
From the foregoing lemmas it is clear that our main objective will he to 

show that r(ff") is nontrivial. For this it is necessary first to investigate how r 
acts on <IJ and how r P acts on .A P• PeM. Define a pencil to he any maximal 
set of mutually tangent circles through a common point P, called the carrier 
of the pencil. Thus the pencils with given carrier P are essentially identical 
with parallel classes of lines in the affine plane .A p· Every pencil contains 
n circles. Every point is carrier of n - 1 pencils. 

LEMMA 6. For every pointPand pencil f1i with carrier P, r P,fJ' is transitive 
on the n circles of Efi. 

Proof. Since r is two-transitive on nonparallel points, r P is transitive on 
the points of ,,11 p· By Theorem 3 of [16] we are done. 0 
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Thus, if circles c and d touch, then there exists }'Ef such that er= d. This 
shows that every f-orbit on<(} consists of ä number of components of the 
touch-graph defined on<(} by:c, dE<(} are adjacent iff c and d touch. 

LEMMA 7. The touch-graph has 1 or 2 components. lf it has 2 components, 
then each component contains t(n + 1)n(n- 1) circles and every point is 
incident with tn(n- 1) circles of each component: 

Proof. Let c 
1 

, c
2 

and c 
3 

be three distinct circles and Pa point, P~ c 1 , c2 , c3 • 

The idealline of the affine plane ..4l P consists of the ideal points (i.e., parallel 
classes of .11 p)2+ \ { [P] +}, 2-\ { [ P] _ } and the (n- 1) pencils with carrier 
P. The circles c 1 , c2 and c3 correspond to ovals intersecting the idealline in 
2+\ { [PL} and 2-\ { [PJ_ }. Thus, since n is odd, for each ei there are 
~n- 1) ideal points which are exterior with respect to ei (i.e., are the point of 
intersection oftwo tangentsof c) and ~n- 1) ideal points which are interior 
with respect to ei. This shows that at least two of c 1 , c2 and c3 have an exterior 
point on the idealline in common, hence are in the same component of the 
touch-graph. Therefore, the number of components is at most 2. If there are 
2 components and c 1 and c2 , say, are in distinct components, then the i deal 
points corresponding to the peneiJs fall into two classes: ~n - l) are exterior 
with respect to c1 and the other t(n- 1) are exterior with respect to c2 . 

Hence P is incident with tn(n- 1) circles of each component and an easy 
counting argument shows that each component contains !(n + 1)n(n- 1) 
~~ D 

· Remark. The touch-graph of .. .U(q, cj>), q odd, actually has two components. 

By Lemmas 6 and 7, if t is the number of f-orbits on <(}, tE{1, 2} and 
[r: rJ = t- 1(n + 1)n(n- 1) for all cE<(}. Using this result we can show the 
transitivity properties stated in the next lemma. 

LEMMA8. 

(i) 
(ii) 

(iii) 

(iv) 

lf c is a circle, then r, is two-transitive on c. 
IJ P is a point, then r P has t orbits of length t- 1(n - 1) on the 
pencils with carrier P. 
If Pand Q are distinct point~, P ~ Q, then r P, Q has torbits of length 
t- 1(n- 1) on the circles containing Pand Q. 
lf P and Q are distinct points of the circle c, then lfl = 

= (n + 1fn2(n- 1)t- 1lf P,Q.J 

Proof. Let P and Q be distinct points of the circle c, and let &> be the 
pencil with carrier P containing c. Denote by s the number of pen.cils in the 
r p-orbit containing &>. Then [r p: r P, 9'] = s and [r p: r P, c] = ns by Lemma 
6. Hence, 
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Thus, st= !<n- 1)u with u eN, and so (n + 1) ~ [r. :r •. PJ = t<n +I )u, i.e., 
ue{l, 2}. As s = !t- 1(n- l)u with u, tE {I, 2} and nis odd, (n, s) = I. There­
fore it follows from 

that [r •. P: rc,P,Q] = n and [r P,Q: r P.q . .J = s. Now from [r,,P: rc,P,Q] = n 
it follows that r •. P is transitive on c\ tP}, hence, since P was an arbitrary 
pointofc,r.istwo-transitive onc. Therefore(n + 1) [r,: r,,P] = !(n + l)u, 
sou= 2 and s = r 1(n- 1). Finally, 

lrl=llrll.llrPII.IIrP.QII.IrPQ l=<n+1)2n2(n l)t-l·lrP.Q,cl 
rp rP,Q rP,Q,c , ,c 

which proves (iv). D 

LEMMA 9. Let P be a point. Ij r P has odd order, then nis a power of a prime, 
.A~ J!t(n, 41) forsome 4JeAut(GF(n)) and r contains PSL(2, n) x PSL(2, n). 

Proof. Fix a line le.!f+ and let A~ r 1/(r(.!f-)llr1) be the permutation 
group on I induced by r 1• As ris two-transitive on the nonparallel points of 
.A, A is two-transitive on l. As r P has odd order, Ap has odd order for all 
Pel. By Result 4, either A is solvable or A contains PSL(2, n) as a normal 
subgroup. If A is solvable, then A is isomorphic to a subgroup of the group 
of semilinear transformations of a Galois field of characteristic 2, i.e., n + 1 = 
2" for some ae f\1 and IAII(n + l)na. If A contains PSL(2, n) as a normal 
subgroup, then n = pb for some prime p and beN and A is a subgroup of 
PrL(2, n), i.e., I All (n + 1)n(n- l)b. By Lemma 8(iv), the order of rl is 
(n + l)n2(n- 1)t- 1 ·lr P,Q.J In both cases it follows from n ~ 5 that lr<2-)ll 
r11 = lrc.!f-),1 > 3. 

By Lemma 3 there exists a nontri via! element of r (2-) fixing two distinct 
lines of .!f +. Lemma 5 now completes the proof. D 

By the previous lemma we may assume from now on that r P bas even 



50 

TWO-TRANSITIVE MINKOWSKI PLANES 

order. More in particular, r P contains involutions. Since n is odd, every 
involution tE f p either induces a homology of the projective plane .Ji.J' 
associated with the affine plane .A P' or the r-fixed points and lines of .A P 

constitute a Baer subplane of .À p( cf. [ 5], p. 172). Our next lemma deals 
with the case where r P contains a homology. 

LEMMA 10. Let Pe Mand suppose that tErP is an involution which, consider­
ed as acollineation of JlP, is a homology. Then nis a prime power,._$!~ .A(n, </J) 
for some </JeAut(GF(n)) and r contains PSL(2, n) x PSL(2, n). Ij r P has 
even order and 

(i) n is not a square, or 
(ii) t = l (i.e., r is transitive on '"C), then r p contains homo logies. 

Proof. We distinguish two cases: 
Case (a). The axis of t is the idealline of .A p· Now, since f Pis transitive 

on MP' .Apis a translation plane and r p contains the full translation group 
of .A p(see [5], p. 187, result 4.3.1). Let L<P) be the subgroup of r P consisting 
of those translations of .A P which fix alllines of g>-. Then L<P) is transitive 
on fi>+\ { [P]+}, hence L: = < L<P)I Pe M) is two-transitive on g>+. Since 
L ~ f(!f>-) we are done by Lemma 4. 

Case (b). The axis of t is an affine line of .A p· Clearly, the axis of t corres­
ponds to aline l f [P] +, [P] _ of .A, say lef!>+\ { [PL }. Now 1 f tEf(ff>-) 
and t fixes the two distinct lines [P]+ and lof ff>+. By Lemma 5 we have 
,completed the proof of our first claim. 

The order of a Baer subplane of .A P is Jn. Hence, if n is not a square, 
every involution in r P acts as a homology of Jt P. Suppose t = 1. Let A be a 
Sylow 2-subgroup of r Pand let t be an involution in the center of A. Suppose 
the t-fixed points and lines of Jt P constitute a Baer subplane. The two ideal 
points of .A P corresponding to g>+ and g>- are fixed by r P' and by Lemma 
8 (ii) r P is transitive on the remaining n- 1 ideal points. Let 2a 11 (n- 1). 
By [ 17], Theorem 3.4, every A-orbit on these n - 1 ideal points has length 
divisible by 2a. The idealline of .APis fixed by rand contains therefore, apart 
from the ideal points corresponding to g>+ and g>- ,Jn- l fixed points. 
Since tEZ(A), A permutes theseJn- l points. However, 2b 11 (jn- 1) with 

b < a, contradicting the fact that each of these Jn- I points is in a A-orbit 
with length divisible by 2a. 0 

For the proof of our main result we need one more definition and lemma. 

DEFINITION. Suppose M 1 ~ M; !f>~ ~ !f>•, a= +, - ; '"C 1 ~ '"C. Put 
ff>~*:={lnM,Ile!f>~}, a=+,-; '"Cf:";,{cnM 1 Ice'"C1 }. If A 1 := 
(M 1 , !f> t *, !f>; *, rti) is a Minkowski plane with the property that any 
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,two circles which touch in Jt 1 , touch in Jt, then Jt 1 is called a subplane of 
Jt (compare [5], p. 258). 

LEMMA ll. Let A be a group of positive automorphisms of Jt. Let M 1 be 
thesetof points leftfixed by A; !l'7 (resp. !l'-) the set oflines of !l'+ (resp. ft'-) 
left fixed by A; and ~1 the set of èircles left fixed by A. Then ,_/{1 : 

(M 1' !l'7*, !l'; *, ~j) is a subplane of Jt if and only if M 1 contains, at least 
three mutually nonparallel points. 

Proof. Straightforward verification. 0 

We are now ready to prove our main result. 

THEOREM. Let Jt = (M, !l'+, !l'-, ~) be afinite Minkowski plane of odd 
order n, and suppose that .~ admits an automorphîsm group r two-transitive 
on nonparallel points. Then n is a prime power, Jt ~ Jt(n, l'jJ) for some l'jJe 
Aut(GF(n)) and r contains PSL(2, n) x PSL(2, n). 

Proof. Suppose Jt is a counter example to the theorem of minimal order. 
By Lemma 1 we may assume that r contains :positive automorphisms only. 
By Lemma 9, r P has even order for all P eM. By Lemma 10 every involution 
in r P has (jn + l )2 fixed points. Hence, if A is a 2-subgroup of r maximal 
with respect to fixing at least three mutually nonparallel points, A =/= 1. 
Let Jt 1 = (M 1' ff'7*, !l';*, ~i> be the subplane of Jt consisting of the 
A-fixed points, lines and circles of Jt of order n1 , say. Clearly n1 is odd, and 
since A=/= 1 we have n1 < n. We claim that Nr(A), considered as an auto­
morphism group of Jt 1 , acts two-transitively on the nonparallel points of 
.Al. To see this, let CE~!' Then A~ re and A, considered as a permutation 
group on c, is a 2-subgroup of re maximal with respect to fixing at least 
three points of c. By Lemma 8(i), re is two-transitivè on c, hence N re( A) 
is two-transitive on c* : = c ("\ M 1 (see [ 1 ], Lemma 3.3). Now let A 1 , A2 and 
Bl' B2 be two pairs of nonparallel points of vit 1 • If AJ B1, i,j = 1, 2, and c 1 
i~ the uniq ue circle containing A 2 , B 1 , B 2 , and c 2 is the unique circle con tain­
ing A2 ,Bl'B2' then there is a }\ENr.,(A) and a y2 ENrc

2
(A) such 

that Ai'= A2 , Ai'= B1 , Ai 2 = B1 , Bp = B2 • Hence y = y1y2 ENr(A) satisfi­
es AI B1 and A~= B2 • Repeated application ofthis result in case A; 11 B1 for 
some i and j, proves qur claim. Since vit was supposed to be a minimal counter 
example, n1 is a prime power, say n1 =pa with p prime and aeN. If PeM1 , 

then the projective plane (Ji 1)p associated with (vit 1)p is a subplane of the 
projective plane Jt P associated with -~ P (this is why we required in the 
definition of a subplane of a Minkowski plane, that circles tangent in Jt 1 

are also tangent in vit). In fact (À 1 )p is a 2-subplane of Jt P is the sense of 
Ostrom and Wagner [15]. By their Theorem 6, n = nî" forsome integer g. 
Hence, also nis a prime power, n = pb with b = a29• Let ll be a Sylow p-sub­
group of r P, P eM. Let 1t be an element in the centre of ll. Since 1t fixed the 
two ideal points corresponding to !l'+ and ft'- or .41 P' n also fixes an affine 
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line L of .Jt r Suppose L intersects the idealline of .4 P in a point A. Then ll 
fixes A for if A"+ A forsome aEll, then L" and Linterseet in an affine point 
Q of .Jt r Since ll permutes the fixed objects of n, L" hence Q is fixed by n. 
Since r p• hence n, is transitive on the n2 affine points of j{ P' every affine 
point of .Jt P is fixed by n, i.e., n = 1 a contradiction. By Theorem 3 of [ 16] 
r p A' hence n is transitive on the n affine !i nes through A. Therefore, n; fixes 
aii'lines through A, i.e., n: is an elation of .liP with centre A and axis the ideal 
line of.4 p· SupposeA is the ideal pointcorrespondingtoff-•for e = + or-, 
then n:Er(2-•)rPJ,· By Lemma 5, r(ff-")1,m = 1 for distinct lines l,mE2', 
so by Lemma 3, p ~order of n ~ lr<2-")[PJ.I ~ 3, i.e., p = 3. Also r(2-•) is 

/a Frobenuis group on the (n + 1) lines of 2", r(2-·)~r and r acts two­
transitively on 2", hence the Frobenius kernel of r(ff-•) is an elementary 
abelian 2-group and in particular n + 1 = 2c forsome eEN. However, n + 1 = 
pb + 1 = 3"2" + I 2(4) and so we have shown that A is an ideal point 
corresponding to a pencil with carrier P. Let T be the group of translations 
of .Jt P contained in r P and for each peneil f!li with carrier P let T(tFI) be the 
group of translations of T fixing all circles of f!li. By Lemma 10 and Lemma 
8(ii), rP bas two orbits of length t<n- 1) on the peneiJs with carrier P. Put 
x = I T(f!li) I for f!li in the first, and y = I T(f!li)l for f!li in the second orbit. It 
follows that 

(1) I Tl= l +(x-l)·t(n-l)+(y-l)·!(n-1)= 

= I + te x + y - 2)(n - 1 ), 

and one of x and y ~ p, so x + y ~ p + I. Also, if s is the number of T -orbits 
·on MP, 

(2) si Tl n2 . 

Since x+ y ~ p + 1 ~ 4, it follows that I Tl~ n, hences ~ n. From (1) and 
(2) it also follows that s = 1(modt(n -1)). Since T is not transitive on MP, 
s >I. Therefore s = n, I Tl n and p = 3. We list some properties of T. 

(i) As a translation group containing translations in different directions, 
T is elementary abelian, · 

(ii) T <J r P' 

(iii) T acts regularly on the lines of ..2"'\{ [P].}, e = +, -, 
(iv) the subgroups < t ), tE Tare in 1 - 1 correspondence with the t<n- 1) 

peneiJs with carrier P in a r P-orbit: r +-+ pencil f!li iff centre of r = f!li; 
rP acts on this orbit as r P acts on { < r) Ir ET} by conjugation. 

Take Q E MP. By Lemma 8(iii), r P is still transitive on the peneiJs with 
carrier P in a r P-orbit, so r P, Q acts by conjugation transitively on the sub­
groups < r), rE T. By (ii) and (iii), T is a regular normal subgroup of r P 

considered as a permutation group on 2+\{[PL}. Since rP,Q~rP.[QJc' 
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rP,Q acts on 2"+\{[P]+, [Q]+} as it does on T\{1} by conjugation. lt 
follows that either r P,Q is transitive or has two orbits of length t(n 1) 
on 2"+\{ [P] +, [Q]+ }. The former alternative is impossible: an involution 
in the center of a Sylow 2-subgroup of r P is a homology (see the last part of 
the proof of Lemma 10). Therefore r P,Q has 2 orbits of length t(n 1) on 
2"+\{[ PL, [Q] J and it acts on both orbits as it acts on the subgroups 
< < ), <ET by conjugation. Let c be a circle through P and Q in the pencil f/1, 
where f!/' is the centre of (1:), say. Then rP,Q,c fixes f/1, hence rP,Q,c fixes 
(1:) by conjugation and therefore also two distinct lines l,mE2"+\{[P]+, 
[Q]+ }. Therefore also /î'lc and mî'lc are fixed by rP.Q,c' By Lemma 11, 
r P,Q,c has a subplane .A 2 as a set offixed points. Let n2 be the order of .A 2 and 
let c* be thesetof points left fixed by rP,Q,c' With fJI = {c*YiyEfc} we get 
a 2- (n + 1, n2 + 1, 1) design on c (see [13]). The number ofblocks through 
a point is n/n 2 = 3b/n2 • Hence n2 3d forsome dEN. The total number of 
blocks equals (n + l)n/(n2 + l)n = (3b + 1/3a + 1)·3b-d. Hence b/dE2N + l. 
Since b is even, d is even so 10 :o;; n

2 
+ 1 = 3a + 1 = 2 (mod 4). However, 

r <" = NrJr P,Q) is sharply 2-transitive on the n2 + 1 points of c*, and so 
n2 + 1 is a power of 2. This was our final contradiction. 0 
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1. INTRODOeTION 

A unital or unitarg block design is a 2- (q
3+1,q+1,1) design, i.e. an 

incidence structure of q3 +t points, q2 (q2-q+1) lines, such that each line 

contains q + 1 points and any two distinct points are on a unique line. If q 

is a prime power, the absolute points and non-absolute linea of a unitary 
2 polarity of PG(2,q) forma unital (see [2]). These unitals are called class-

ica]. 

In [6], O'NAN showed that a classica! unital satisfies the following 

condition. 

(I} No four distinct lines interseet in six distinct points {see Figure 1) • 

No: . A 
Fiçr. 1 

In ÇSJ, PIPER conjectured that this property characterizes the classi­

ca! unitals. Here we shall give a characterization for even q under the 

assumption that also the following condition holds. 

(II) If L is a line, x a point not on L, M a line through x meeting L and 

and y ~ x a point on M, then there exists a line L' ~ M through y intersect­

ing all lines through x which meet L. 

~ achieve this result we shall give another characterization for all 

q under the additional assumption that a third condition holds. To formulate 

this condition we need some notation. If x and y are distinct points, then 

We denote by xy the line through x and y. Gi ven a point x, two lines L and 

L' missing x are called x-parallel (notation LlxL') if and only if they in­

tersect the same lines through x. Clearly, I is an equivalence relation on 
x 

the set of linea missing x, and by (I) and (II) , each equivalence class con-

sista of q disjoint lines. Our third condition now reads as follows. 
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(III) Given a point x, three distinct lines M
1

, M2, M
3 

through x and points 

yi, zi on Mi (i=1,2,3) such that (y1y 2)Bx(z1z2) and (y1y 3)Ux(z1z3), then 

also (y2y 3)0x(z2z3). 

Clearly, the presence of unitary transvections in PfU(3,q} implies 

that the classical unitals satisfy conditions (II) and (III) ., In Sectien 2 we 

shall study unitals satisfying (I) and (II). Sectien 3 is devoted to the 

proef that unitals satisfying all three conditions are classical. Finally, 

in Sectien 4, we shall show that for even q, (III) is a consequence of (I) 

and (II). 

2. UNITALS SATISFYIOO (I) AND (II) 

Throughout t".his sectien U is a unital on q3 + 1 points with point set X 

and line set L satisfying (I) and (II) above. If x € X, then we denote by Lx 

the set of lines incident with x, and L will be the set of lines missing x. x 
Furthermore, C will stand for the set of 11 -equi valenee classes on Lx. From 
. x x 
[1] it is clear that we want to show that the incidence structure which has 

LX as thesetof points, C as thesetof bleeks and LIC (L € Lx, C € C ) 
x x 

iff L meets one (hence all) lines of c, is the residual of an inversive plane 

of order q. We denote this incidence structure by I*(x) = (Lx,C ). Clearly, x 
r* (x) is a 2- <l ,q+l ,q) design. 

LEMMA 1. If x € X and L,L 1 € L such 
x that L and L 1 both meet three dis ti net 

lines M1 ,M2 ,M3 € Lx, then LlxL 1
, 

' * i.e. three distinct points of I (x) are in 

at most one blockof r*(x). 

PROOF. Let y € M1 n L' and let L" be the line through y which is x-parallel 

to L, then L' 'I' L" contradiets (I). D 

If M and M1 are two distinct lines through a point x, then an easy count­

ing argument shows ·that there are q -2 lines N1 , ••• ,Nq_2 through x such that 

no line of Lx meets M, M' and Ni' i= l, ••• ,q-2. Put c*(M,M 1
) := {M1M'} u 

{N1,N2 , ••• ,Nq_2}. We have to show that the c*(M,M') correspond to circles 

* which will make 1 (x) into an inversive plane. We have to show that 

N,N 1 € c*(M,M') • c*(M,M 1 ) = c*(N,N'). Clearly, c*(M,M 1 ) = c*(M 1 ,M) and so 

it suffices to show that M" € c* (M,M 1 ) .. c* (M,M 1 ) = c* (M,M"). This is the 
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contents of the next lemma. 

LEMMA 2. Fix a line M € L and two distinct points x and y in M. For 

M' ,M" € Lx\{M} write M' ~M" iff no line of Ly\{M}, intersacts botll M' and M" 

or M' = M". Then ~ is an equivalence relation on Lx\{M}. 

PROOF. For .u,v € M let A*cu,v) be the incidence structure with Lu\{M} as 

points, Lv\{M} as lines, and incidence defined by PIB iff P and B meet 

(P € Lu\{M}, B € Lv\{M}). If u, v, ware distinct points of M, then clearly 

the mapping :;:-u : A* (u,v) + A* {u,w) defined by 
v,w 

:ru (P) := P, 
v,w 

Tu (B) := u-parallel of B through w, 
v,w 

is an isomorphism of A*cu,v) onto A*cu,w). Now fix x,y € x, x# y. If q > 2 

and u, vare distinct points in M, u,v # x,y, then 

is an automorphism of A*cx,y}. 

Now we claim that 

{i) For all u,v € M\{x,y}, u# v and for all P € Lx\{M} ~·Y(P) #Pand' 
I U,V 

~,y(P} ~ P. 
u,v 

For all u,v,v' € M\{x,y}, u # v # v' #u and for all P € Lx\{M}, (ii} 

~,y (P) '# ~·Y,{P) and ~,y (P) ~ ~·Y,(p). 
u,v u,v u,v u,v 

To prove these claims, write uP v for the u-parallel of P incident with 

v. Then ~,y(P) y(uPv)x. Suppose y(uPv)x f Por y(uPv)x = P, Then there 
u,v 

is a line L incident with x intersect!ng Pand y(uPv)x. Then Lintersacts 

uP v in a point a, say. Since au intersacts P, we now have an O'Nan config­

uration on the line·s M, P, L and au, contradicting (I). 

Suppose y(uPv)x f y(uPv')x or y(uPv)x = y(uPv')x. Let L be the 

line through y intersecting y(uPv)x and y(uPv')x. Then Lintersacts uPv 

and u P v' in points a and a • , say. Si nee au· intersacts u P v' , we have an 

O'Nan configuration on M, L, uPv' and au, again in contradietien with (I). 
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Fora given P e Lx\{M}, there are q- 2 Q e Lx\{M}, Q Y, P such that Q ~ P. 

Fixing u we can make q- 2 choices for v e M\{x,y,u}. Thus, each Q e Lx\{M}, 

Q Y, P can be written as Q ~,y(P). If Q = ~,y(P) ~Pand Q' = ~,y(P) ~ P, 
u,v u,v· u,v' 

then Q ~ Q' by (ii) • D 

Lemma 2 and its proof have a number of important corolla~ies. 

COROLLARY 3. Let x e X and let ~x be a new symbol. Put 

Then I(x) 

point set 

vious way. 

ex:= {c*(M~M') u {oo} I M,M' e Lx, M" M'}. 
x 

:= (Lx U {co }, ex u e > is an inversive plane x x 
LX u {oo } and block set eX u e and incidence x x 

PROOF. See the discussion preceding Lemma 2. D 

of order q 

defined in 

with 

the ob-

COROLLARY 4. For x,y eX, x Y. y, the incidence structure A*<x,y) of Lemma 2 

is i~omorphic to the derived design I(x)xy with oox and the lines through 00x 

removed. The af fine plane I (x) xy admi ts a dilatation group of order q- 1 

wi th cent re oo • 
x 

PROOF. The automorphisms ~,y of A* (x,y) induce q- 2 distinct nonidentity 
u,v 

dilatations with centre cox on I (x)xy. Since I (x) xy bas order q, these are the 

non-identi ty elements of the dilatation group wi th centre cox of order q- 1.0 

COROLLARY 5. Let L e Land let x1 ,x2 , .•• ,xq+l be the points on L. it is pos­

sible to partition the set of lines which meet L into classes A •. , 
l.J 

1 ~ i,j ~ q+1, such that for all i and j 

(i) JA J = q-1 ij 
(ii) M e Aij .. xi e M, 

(iii) every point x e X\L is on exactly one line of Uk ~j , 

(iv) no line which meets L in a point Y, xi, meets two lines of Aij , 

(v) for all k, i', 1 ~ k,i' ~ q+l, k Y, i,i' and for all Me A .. , the xk­
l.J 

(vi) 

parallel of M through xi, is in Ai'j , 

if 1 ~i' ~ q+1, i' Y, i and Me Ai]"' M' e A., . then there exists a 
l. ,] 

unique k e {1, ••• ,q+1} such that Mand M' are ~-parallel. 
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PROOF. Consider 1 Cx1) • NUlliber the ci.rcles of 1 (x1) through the two points 

"'xt and L of 1 (x1) from 1 upto q+l. Apart from ""x
1 

and L each such circle 

contains {q-1) lines through x1• These will bethesets Al,j' j = 1, ••• ,q+1. 

For i > 1 and 1 ~ j ~ q+l, let Ai,j co~ist of the (q-1) lines through xi 

which in 1(x
1

l correspond to the (q-1) circles (not through ~x1 > in the pen­

cil with carrier L and which contains circle j through ""xt ánd L. Now {i) 

and (ii) are trivially satisfied. For (iii), note that the q+1 lines xx1 , 

i= l, •.. ,q+l are in Aij's with distinct j since the circles in a pencil 

with carrier L partition the set of points {: L of 1 (x1l. To prove the other 

cases, observe that our subdivision of the set of lines meeting L into the 

classes A .. would have remained the same if we had started by considering 
l.J 

1{xi), i> 1 insteadof 1Cx1). Thus, to prove (iv), it suffices to show that 
xl no line M € L \{L} can interseet two distinct lines N1,N2 € Aij with i> 1. 

This follows at once, since N1 and N2 correspond to tangent circles in 

1Cx1}. Also (v) is clear if we take k = 1 forthenMand the ~-parallel of 

M through xi, repreaent the same circle in 1Cx1). Finally (vil follows from 

(i), (v) and the easily shown fact that two lines which meet L cannot be xk­

and xi-parallel for distinct k and i. D 

Following PIPER [5], we are now able to associate with each line L of 

U an incidence structure GQ.(L) as follows. The points of GQ{L) are the points 

x € X\L and the sets Aij' 1 ~ i,j ~ q+1. The lines of GQCL) are the lines M 

of U meeting L, and 2(q+1) new lines, A1,A2, ••• ,Aq+l' s 1,s2 , ••• ,Bq+l. Inci­

dence in GQ(L) is defined as displayed in the following table. 

line of line of 
type M type~ or Bt 

? 

point of type X€M never x €X\L 

point of type 
M€ Aij i=k or j=l 

A ij 

Incidence in GQ(L) 
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THEOREM 6. Let U = (X,L) be a unital with q+1 points on a line satisfging 

(I) and (II). Then for each line L Er L, GQ(L) is a generalized quadrangle 

with q+l points on a line a.nd q+1 lines through a point. Moreover, any two 

nonintersecting lines m1 and m2 of GQ(L) form a regular pair (in the sensé 

of [7]) provided m
1 

and m
2 

do not correspond to lines M
1 

and M
2 

of U such 

that M1 E Aij and M2 E ~ with i ~ k and j ~ t. In pa~ticular, the lines 

A1, ••• ,Aq+l'B1, ••• ,Bq+l of GQ(L) are regular. 

~· Straightforward verification. 0 

We shall see in Section 4 that if all lines of GQ(L) are regular, then 

U is classica!. 

3. UNITALS SATISFYI!'G (I), (II) AND (III) 

Let U= (X,L) be a unital satisfYing (I), (II) and (III). Using (III) 

it is easy to see that for any three distinct points x, y, z on a line L 

.there is a unique automorphism Tx of U fixinq x and all lines through x y,z 
and mapping y onto z: if u ;. L then Tx (u) is defined to be the point of y,z 
intersectien of XU and the x-parallel of yu through z, if V E': L\{x}, fix a 

point u i. L and define Tx (v) to be the point of intersectien of L and 
y,z x 

the x-parallel of uv through T (u). , y,z 

THEOREM 7. Let U= (X,L) be a unital with q+l points on a line satisfying 

(I}, (II) and (III), and let G be the automorphism group of U generateil by 

the Tx Then U is classical, G is isomorphic to PSU (3 ,q2
) and acts on U y,z 

in the usual way. 

PROOF. Clearly G is transitive on x. We claim that G acts 2-transitively on 

X if q > 2 (the case q = 2 is left to the reader). To prove this, note that 

the mappings ?' of Lemma 2 are induced by the automorphisms Tx of U. y,z y,z 
Hence, also the mappings ~,y of Lemma 2 are induced by automorphisms u,v 
~x,y eG of U. Since incidence in the inversive plane l(x) is determined by 
u,v 

incidence in U, ~x,y induces an automorphism of l(x}. By Corollary 4, this u,v 
is a dilatation of l(x)xy with centre ~ • Therefore, it can also be viewed 

~ X m 
as a dilatation of l(x) x with centre xy. Thus in the affine plane f(x) x, 
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each point is the centre of a dilatation. :a:ence 1 (x) ..,x is a translation 

plane and the group generated by the dilatations contains the full transla­

tion group of 1(x)
00

x ([2, p.187]). Let T(x) be the normal subgroup of Gx 

consisting of elements which induce (possibly identity) translations of 

1(x)®X, Then T(x) acts regularly on the points of I(x)
00

x, i.e. on Lx, and 

for each line L E Lxl T(x)L acts regularly on L\{x}. Thus T(x) is a normal 

subgroup of G acting regularly on X\{x}, and G is 2-transitive. Applying 
x 

[4] we get that G has a normal subgroup M such that M :s; G :s; Aut M and M acts 

on X as one of the following groups in its usual 2-transitive representation: 

a sharply 2-transitive group, PSL(2,q3), Sz(q3/ 2), PSU(3,q2), or a group of 

Ree type. Since q
3 

+ 1 = (q+1) (q2-q+1) is not a prime power for q > 2, the 

first alternative will not occur. If H :s; G and x, y, z are three distinct 

points of X, then the H -orb! t of z is contained in xy 1 so bas length S q-1. 
xy3 3/2 

This excludes M = PSL (2 ,q ) and M = Sz (q ) • MOreover, this argument shows 

that if M = PSU(3,q2) then U is classical, for M bas a unique orbit of 
. xy 2 

length q-1 on X\{x,y}, all other orbits have length (q -1)/(q+1,3) ([6, p. 

499]). Now the Tx can be identified with the unitary transvections and it 
y,z 2 

fellows that G :: PSU(3,q ) • Thus we are left with the case that M is a group 
2a+1 

of Ree type. Since q = 3 , G contains an involution ö fixing at least two 

points x,y€X (Corollary 4). By[4],Lemma 3.3(v) and(ix), ö € Mand ö fixes 

q+1 pOints. Since ö is a dilatation on'1(x)~X these must be the q+l points 

of xy and so U is nothing but the Ree unital associated with M. Now, for 

L € L, <ö> x PSL(2,q) :: M ~ GL and so <Tx I x,y,z € L> s Aut(PSL(2,q))= 
-~ y,z 

PrL (2 ,q) , which shows that àt least one, and hence all, Tx E M, i.e. G = M 
3 3 y,z 

of order (q +1)q (q-1). Now fora 3-Sylow group T(x) of G, T(x)/T(x)L (x on 

L) is the elementary abelian translation group of 1 (x) ""x. Hence, for the 

derived group T(x) (1) of T{x) we find JT(x) (l)l S IT(x)LJ = q, contradicting 

Lemma 3.3(iii) of [4]. D 

4. MORE CHARACTERIZATIONS 

Let U= (X,L) be a unital satisfYing (I) and (II). Consider the follow­

ing two conditions. 

(III') Given a point x and three distinct lines M
1

, M
2 1 M

3 
through x and 

points yi' zi on Mi (i= 1,2,3) such that (y1y 2)Dx(z
1

z 2), (y1y 3)1x(z1z3) 
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and one of the lines (yiyj) or (zizj) meets all three of M1, M2 and M3 , then 

(y2y3)lx(z2z3) • 

(IV) Given a point x and two distinct lines M1 and M2 through x and points 

y
1

, y
3

, z
1

, z
3 

on M1, y
2

, y4, z2 , z4 on M2 such that (y1y 2)Dx(z
1

z
2
), 

(y1y4)Hx(z1z4) and-(y2y 3)0x(z2z3), then also (y3y4)Ux(z3z4). 

Clearly, (III) implies (III') and (IV). The converse is also true. 

LEM-!A 8. Let U = (X,L) be a unital satisfging (I), (II), (III') and (IV), 

then also (III) holds. 

,PROOF. Let x, Mi' yi, zi, i= 1,2,3 be as in (III). Suppose that M1, M2 and 

M3 determine a circle in 1(x) not containing ""x' i.e. supposethere is a line 

through y 1 intersecting M2 in u2 and M3 in u3 , say. Let v2 (v3) be the point 

of intersectien of the x-parallel of y 1u2 through z
1 

and M2 (M3). Using (III') 

we find that (u2y 3)Dx(v2z3) and (u3y2)Dx(v3z2l. Hence by (IV), (y2y 3)Dx<z2z3) 

and (III) is shown to hold in this case. The remaining case is where M1, M2 
and M

3 
are on a circle of 1(x) containing co , i.e. no line of L meets all . x x 

three of M1, M2 an~M3 • Since the two circles of 1(x) corresponding to y 1y2 
and y

1
y

3 
cannot be tangent (for otherwise y 1y

2 
= y

1
y

3 
and there is a line 

intersecting M1, M2 and M3), there is a line M4 through x which meets y 1y2 
in y

4 
and z

1
z

2 
in z4 , say, and which alsomeets y

1
y 3 and z1z3 • Now looking 

at M1 , M3 and M4 are applying (III') we see that (y3y4)ftx(z
3

z4). Since M2, 

M3 and M4 are not on a circle of 1(x) (for otherwise this would be the circle 

determined by M1, M2 and M
3
), we can apply the previous case and conclude 

that (y2y 3)Hx<z2z3). 0 

The reason for considering (III') and (IV) is that in both cases there 

is a line Mi which is intersected by all lines mentioned in the condition. 

Thus, both (III') and (IV) have a (no doubt awkward) equivalent formulation 

(ÏÏÏ') respectively (IV) into termsof GQ(M.). Since the classical unital 
J. 

satisfies (III') and (IV), the classica! generalized quadrangle Q(4,q) on 

the points and lines of a hyperquadrie in PG(4,q) must satisfy (III') and 

(IV). So, conversely, if a unital U satisfying (I) and (II) bas the property 

that GQ(L) is isomorphic to Q(4,q) for each line L of U, then U is classica!. 
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THEOREM 9. Let U be a unital with q+1 points on a line satisEg~ng (I) and 

(II). IE Eor each line L oE U, GQ.(L) ::.- Q(4,q), i.e. i:f everg line oE GQ(L) 

is regular, then U is olassical. 

We are now in a position to prove that for even q, (I) and (II) suffice 

to characterize U. 

THEOREM 10. Let U = (X,L) be a unital with q+1 points on a line satisEging 

(I) and (II). I:f q is even, then U is classical. 

PROOF. Let L be a line of U and let Aij' 1 s .i,j S q+1 and Ai' Bi, i= 1, ••• 

• • • ,q+l be defined as before. For each x e X\L put 

C(x) :=· {Aij I 3 line M e Aij incident with x}. 

By corollary 5, C(x) has exactly one point on each of the lines Ai and Bi, 

i= 1, .•• ,q+1. we claim that if x,y e X\L, x:} y, then lc(x) nC(y)J s 2. 

First suppose xy is a line meeting L, xy e Aij' say. then by Corollary S(iv), 

C (x) n C (y) = {Ai.}. Now consider the case where xy is a line of U not meet-. . J 
ing L. Suppose x 1 , x

2
, x

3 
are distinat points of L such that xx1 ,yx1 € A1 ,

1
, 

xx2 ,yx2 € A
2

, 2 and xx3 ,yx3 e A
3

,
3

• In 1 (x), L, yx, yx2 , yx3 oorreapond to 

circles with the following properties: yx
1

, yx
2

, yx
3 

all go through the point 

xy of 1 (x) and are tangent to L in respectively xx1, xx
2 

and xx3 • Since q 

is even, there is a point :} xy of 1 (x) which is also on the circles yx
1 

, yx
2

, 

yx
3

, i.e. there is a line M:} xy through x interseating yxi, i = 1, 2, 3. By 

Lemma 1, Ll M and so xy intersacts L, a contradiction. we have shown that y 
each triple Ai1,j1 , Ai 2,h, A1

3
,j

3 
with l{i1 ,i2 ,i"'}l = l{j 1,j2 ,j

3
}! = 3 is 

covered at most once by a C (x) • Since there are q3 - q C (x} , each such triple 

is covered exactly once. Thus, with the Aij as points, the Ai and B
1 

as lines 

and the c (x) as circles) we have obtained a Minkowski plane M (L) of even 

order q. By [3], M(L) is isomorphic to the geometry of points, lines and 

plane sections of a quadrie of index two in PG(3,q). Since GQ(L) is deter­

mined by MCL) (the points of GQ(L) oorreapond to the points and airales of 

M(L), the lines of GQ(L) oorraspond to the lines and pencils of M(L), etc.) 

GQ(L) is isomorphic to Q(4,q) and so U is classica!. 0 
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A characterization of two classes of semi partial geometries by their para­

meters 

by 

H.A. Wilbrink & A.E. Brouwer 

ABSTRACT 

We show that, under mild restrictions on the parameters, semi-partial 

geometries with p = a 2 or p = a(a+l) are determined by their parameters. 

KEY WORDS & PHRASES: Semi-partial geometi'y,. partial geQmeti'y, sti'ongly 
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I . INTRODUCTION 

Let X be a {finite) nonempty set and L a set of subsets of X. Elements 

of X are called points, elements of L are called lines. The pair (X,L) is 

called a partial linear spaae if any two distinct points are on at most one 

line. 

Two distinct points x and y are called collinear if there exists L € L 

such that x,y e L, nonaollinear otherwise. Two distinct lines L and M are 

called aonaurrent if IL n MI • J. 

We write x - y (x 1 y) to denote that x and y are collinear (noncollin­

ear). Similarly L- M (L f M) means IL n MI ; I(IL n MI = 0). 

If x - y (L - M) we denote by xy (LM) the line (point) incident with 

x and y (Land M). 

For a nonincident point-line pair (x,L) we define: 

[L,x] := {y € X!y e L, y- x}, 

[x,L] :; {M € Lix e M, L- M}. 

Given positive integers s,t,a,~, the partial linear space (X,L) is called a 

semi-partial geometry (s.p.g) with parameters s,t,a,v if: 

(i) every line contains s+l points, 

(ii) every point is on t+l lines, 

(iii) for all x eX, LeL, x i L we have l[x,LJI e {O,a}, 

(iv) for all x,y € X with x 1 y the number of points z such that x - z - y 

equals l.!· 

A semi-partial geometry which satisfies l[x,L]I =a for all x € X, L € L 
with x i L, or equivalently which satisfies lJ = a(t+l), is also called a 

partial geometry (p. g). 

The point-graph of the partial linear space (X,L) is the graph with 

vertex set X, two distinct vertices x and y being adjacent iff x - y. The 

point-graph of a semi-partial geometry is easily seen to be strongly reg­

ular. Let (X,L) be a semi-partial geometry. 

For x,y e X, x f y we define 
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[x,y] := {L E Llx EL, f[L,y]j a}. 

It is easy to see that a = s+l iff any two distinct points are collinaar 

iff (X,L) is a Steiner system S(2,s+l,IXl}. We shall always assume s ~a, 

hence noncollinaar points exist. 

Let x,y EX, x f y. Then ~ = f[x,yJ!a and j[x,y]f ~ f[x,LJI =a if 
2 L E [y,x]. Hence, p ~ a and 

(*) 
2 

p = a - VK E [x,y], L E [y,x]: K ~ L, 

p = a(a+l)- every line K E [x,y] interseet every line L E [y,x] 

but one. 

This is the basic observation we use in showing that, under mild res­

trictions on the parameters, semi partial geometries with p = a2 or p 

a(a+l) satisfy the Diagonal Axiom (D). 

(D) Let x
1
,x2,x3 ,x4 be four distinct points no three on a line, such that 

xl~x2~3~4~1~x3. 

Then also x2~4 • 

From DEBROEY [1], it then follows that such a semi-partial geometry is known. 

2. SEMI-PARTIAL GEOMETRIES WITH i! 
2 a • 

Our first theerem deals with the case a= I, il = l. 

THEOREM 1. Eve~ strongty regular graph with paPameters (n,k,À,il 
k point-graph of a s. p.g. with s .. À+ I, t = !-+ 1 - I, a= I, J.1•1. 

I) is the 

PROOF. Let (X,E) be a strongly regular graph with p = I, and let x E X. 

Since two nonadjacent points in r(x) cannot have a common neighbour in r(x), 

the induced subgraph on r(x) in the union of cliques. This induced subgraph 

has valency À, soit is the union ~f À:l cliques of size À+l. 0 

Next we deal with the case a = 2, J.1 = 4. 
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;..;..;;;~..;;;_-
Let (X,L) be a s.p.g. with parameters s,t, ~ 2, p 4. Then 

(X,L) eatiefiee (D). 

PROOF. Let x1,x2,x3,x4 be four distinct points no three on a line, such that 

x
1
-x2-x3-x

4
-x

1
-x3• If x2+x

4
, then we can apply (*) to the points x2 and x

4 
•. 

Since x
1
x

4 
e [x

4
,x2J and x2x3 e [x2,x

4
J, x

1
x

4 
and x2x3 interseet in a point 

rf x2,x3• Now 3 ~ l[x1 ,x2x3J! s: a=2, a conti::adiction. D 

Let U be a set containing t+3 elements. Then we denote by u2, 3 the 

s.p.g. which has as points the 2-subsets of U, as lines the 37Subsets of U 

tagether with the natural incidence. 

The parameters are s=2, t, a•2, ~-4. 

DEBROEY [I] showed that a s.p.g. with t>l, a=2, ~·4 satisfying (D) is 

isomorphic to a u2, 3• Hence we have the following theorem. 

THEOREM 3. A s.p.g. with t>l, a=2, ~·4 is isomorphia to a u
2

,
3

• D 

REMARK. A s.p.g. with t=l, a=2, ~·4 is isomorphic to the geometry of edges 

and vertices of the complete graph K +' s i. 

We nw consider the case a>2. For the remainder of this sec_ ctot, iet 

(X,L) be a s.p.g with a>2 and p = a 2• 

LEMMA 1. Let x eX, LeL, x i L such that [L,x] = {z1, ••. ,za}. Let M be a 

Une thr>ough z 
1 

intereecting xz2 in a point u =f x, z2• Suppoee there e:r:iete 

y eL, y; z1, ••• ,z 'I.Vith u+ y. Then M intereeate xz. for all i= l, ••• ,a a ~ 

(eee figul'e I ) • 

L 

Figure I. 
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PROOF. By (*) applied to x and y, the a lines L = L1,L2, ••• ,La of [y,x] 

interseet the a lines xz1, ••• ,xza of [x,y]. In partieular L
1

, ••• ,La inter­

seet xz2• Henee [y,u] = [y,x] = {L 1, ••• ,La}. 

Sinee Me [u,y], M intersects L1, ••• ,La in points v
1 

= z 1, v2 , ••• ,va 

respeetively. If x~ vi for all i, then the a+l points u,v1v2 , ••• ,va on M 

are all collinear with x, a contradietion. Henee x+ v. for some i. Sinee 
J. 

L. interseets xz
1

, ••• ,xz it follows that tx,v.J = [x,y] = {xz
1

, ... ,xz }, 
L a J. a 

Sinee Me [v.,x], M intersects all lines in [x,v.J. D 
J. J. 

LEMMA 2. Let x eX, LeL, x i L euoh that [L,x] = {z 1, ••• ,za}. Let M be a 

Une through z
1 

intereeating xz2 in a point u + x,z
2

• If s > a .. then M inter­

secte xz. for aZZ i= l, ..• ,a. 
J.' \ 

PROOF. Assume that M intersects xzi' i= l, ••• ,e (2SS<a) in points u1 = z 1, 

u2 = u, ••• ,u8 respeetively and does not interseet xzB+l'''''xza. Take 

y eL, y + z 1, ••• ,za. By lemma 1 y ~ui' i= l, ••• ,s. 

Sinee I[M,x]l =a, there is ave M sueh that v-x, v + u1, ••• ,ue. 

Also v ~ z for all ze .B [yu.,x], for if v + z forsome ze [yu.,xJ, then 
J.=) J. J. 

vx e [v,z] and yu. e [z,v]. Hence vx - yu. and so yu. interseets the a+l 

linea xv, xz 1, ••• :xz through x, a contr~iction. Th~ points of .fl [yu.,x] 
a 1=! J. 

are therefore on the a lines M = vz 1' vz2 , ... , vz a of [ v, y]. 

Sinee s>a we can take y' eL sueh that y' + y, z 1, ••• ,za. 

Now if ze [yu2,xJ, then z ~ y'. Indeed, as shown z is onsome vzi and 

since vz. intersects at most a-1 of the linea xz
1

, ••• ,xz , it follows from 
L a 

Lemma 1 that every point of intersectien of vz. and a line xz., so in part-
1. J 

icular z, is èollinear with y'. 

But now we have J[yu2,y'JI ;;:: J[yu
2

,xJ U {y}l = a+1, a contradiction. D 

LEMMA 3. Let x eX, LeL, x i L such that [L,x] = {z 1, ••• ,za}. If s >a~ 

then every Une M not through x !iJhiah intereeate tliJo Zines of [x,L] = 

{xz 1, ••• ,xza} aZso interseate Land aZZ Zinee of [x,L]. 

PROOF. The number of pairs (u,v); (z 1,z2) such that u e xz 1, v e xz2, 

u,v +x, u~ v equals s(a-1)-1. Every line M + xz 1, ••• ,xz which intersects , a 
Land xz 1, ... ,xza gives rise to such a pair (u,v). By (*) and lemma 2 the 

number of these lines equals (s+J-a)(a-1) + a(a-2) = s(a-1)-1. D 
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Let L1,L2 ~ Linterseet in a point x. If Lis any line intersecting L1 
and t

2 
not in x, we let L

3
,L

4
, ••• ,La be the other lines in [x,L]. By lemma 3, 

L3 ,L4 , ••• ,La are independent of the choice of L. Put 

X(L
1 

,L
2

) :• U L 
L~L(L 1 ,L2

) 

LEMMA 4. Let Ll'LZ ~ L, L
1 
~ L

2
• If s > a_. then <L

1 
,12> := (X(Ll'Lz) ,L(L

1
,L2)) 

is a partial geometry (in fact a dual design) ü)ii;h parameters ';; = s, 

t • a-l, ~ = a. 

PROOF. Clearly two points are on at most one line and each line contains 

s+l points. Using (*) and Lemma 3 it follows immediately that every point 

x~ X(L
1

,L2) is on a lines of L(L
1

,L2) so t+l =a. It also follows immediat­

ely that any two lines of L(L
1

,L
2

) intersect, hence ~ = t+l =a. 0 

Notice that for M1,M2 ~ L(L1,L2), M1 ~ M2, M1 ~ M2 we have <M1 ,~> • 

<L
1

,L2>. Notice also that for any two noncollinear points x and y of <L
1

,L
2
> 

~ -- 2 ' there are~= a(t+l) =a • ~points ze X(L1,L2) collinear with both x and 

y, i.e. the common neighbours of x and y in (X,L) are the common neighbours 

of x and yin <L
1

,L
2

>. 

THEOREM 4. Let (X,L) be a s.p.g. ~th parameters s,t,a(>2), ~ 

s >a and t ~a_. then (X,L) satisfies (D). 

2 = a. • If 

PROOF. Let x1,x2,x3,x4 be four distinct points no three on a line, such that 

x1~2~3~4~1~3' 

Suppose x2+x4• Since x2~1~4 it follows that 

In (X,L) there are À = s-1 + (a-l)t points collinear with both x1 and 
- i"w !"'.# - 2 x3• In <x4x3,x2x3> there are À = s-1 + (a-1) t = (s-1) + (a-1) points col-

linaar with both x1 and x3• Since t ~ a = t + I it follows that À < À and 

so there exists x5 ~ X\X(x4x3,x2x
3

) such that x 1~5~3 • Now application of 
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(t) 

to x 1,x5 , x3, x
4 

yields x5 "'X4 , 

to x
1
,x2,x

3
,x

5 
yields x

5
"'X

2
, 

to x4,x1,x2,x5 yields x2"'X4. 0 

2 DEBROEY [I] showed that a s.p.g. with parameters s,t,a(>2), ll =a sat-

isfying (D) is of the following type: the "points" are the lines of PG(d,q), 

the "lines" are the planes in PG(d,q) for some prime power q and d € lf, 

d ~ 4. In this cases= q(q+l), t = (q-l)-1(qd-l_l)-1, a= q+l, 1.1 = (q+1) 2• 

THEOREM 5. Let (X,L) be a s.p.g. ~ith paPametePs s,t,a(>2), ll = a 2• If s >a 

and t ~ a 3 then (X,L) is isomorphio to the s.p.g. oonsisting of the Zines 
and pZanes in PG(d,q). In paPtiautar s = q(q+l), t = (q-1)-J(qd-l_l)-1, 

2 a= q+l, ll = (q+l) • 

The only interesting case remaining is s = a. Now if (X,E) is a Moore 

graphof valency r, i.e. a strongly regular graph with À= 0, ll = I, then 

(X,{r(x)lx € X}) is easily seen to be a s.p.g. with parameters s = t =a= 

= r-1, ll = (r-1) 2 (here r(x) = {y € Xl(x,y) € E}). The pointgraphof this 

s.p.g. is the complement of (X,E). Such a s.p.g. does not satisfy (D) for 

r > 2. From the following theerem follows immediately that a s.p.g. with 
2 • '1 f h' ].l = a , s = a 1s necessar1 y o t 1s type. 

THEOREM 6. Let (X,L) be a s.p.g. ~ith t ~ a, ll = a2 and s = a. Then t = a. 

PROOF. Let x,y € X, x f y. Let [x,y] ~ {L1, ••• ,La}' [y,u] = {M1, ••• ,Ma] and 

put z •• = L.M., i,j = l, ••• ,a (see figure 2). 
1J 1 J 

y 

Figure 2. 
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The number of (z .. ,z,_ 0 ) with i~ k, j + l, z •• -~ n equals a2•(a-l)(a-2), 
1J ~ 1J ~ 

Now let K be a line through x, K; t 1, ••• ,La' and let u be a point on K, 

u ; x. 

Then u is collinear with (a-1) of the a points z. 1, ••• ,z. , for 1, 1,a 
i l, ••• ,a. Since u f y, u is collinaar withall of zl,j'''''za,j or with 

none, for j = l,.,,,a, 

It follows that there are a lines through u intersecting (a-l) of the 

a lines M
1

, ••• ,Ma. Hence each point u; x on K gives rise to a(a-l)(a-2) 

pairs (z •. ,z._ 0 ) as described, soK gives rise to all a 2(a-l)(a-2) pairs 
1J ~ 

(zij'zkl). 
Suppose t >a, then we can find two such lines K and K'. It follows 

that for u e K, the a lines through u intersecting (a-l) of the a lines 

M
1

, ••• ,Ma also interseet K'. But now l[u,K'JI = a+l, a contradiction. D 

3. SEMI-PARTlAL GEOMETRIES WITH ~ = a(a+l). 

In this section (X,L) is a semi-partial geometry with parameters s,t,a 

and ~ = a(a+l). 

If x,y e X, x f y we shall always denote the a+l lines in [x,y] by 

K1, ••• ,Ka+l' and the (a+l) lines in [y,x] by L1, ••• ,La+l' By (**)we can 

number these lines in such a way that K. nL. = ~. i= l, ••• ,a+l and 
1 1 

Kin Lj; ~. i,j = l, ••• ,a+l, i; j (see figure 3). 
1a+l 

KI 

y 
Figure 3. 

Again our aim will be to show that the diagonal axiom (D) holds. We first 
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deal with the case a = 2. 

LEMMA 5. If a = 2 and t > s, then a set of 3 co'l"Unear points not on one 

Zine can be extended to a set of 4 coZZinear points no 3 on a Zine. 

PRPOF. Let x, a and b be three distinct collinaar points not on one line. 

There are t-1 lines ~ xa,ab through a and on each of those lines there is 

a point y. ~ b, y.; a, i= J, ••• ,t-1. Suppose y. 7 x for all i= l, ••• ,t-1. 
~ ~ ~ 

Now for each i= l, ••• ,t-1, ay. + xb (for otherwise l[a,xb]l ~ 3) and 
~ 

by. + xa. Also xa,xb E [x,y.] and ay.,by. E [y.,x]. Hence, by (**) there is 
~ ~ ~ ~ ~ 

a third line through y. intersecting xa and xb in points u. and v. respect-
~ ~ ~ 

ively. Clearly u. :1 u. if i of j, for u.= u. implies x,v.,v. E [u.,xb]. Thus 
~ J ~ J ~J ~ 

xa contains t+l > s+l points (namely x;a,uj•···•ut-l)' a contradiction. [] 

LEMMA 6. Suppose a = 2. If x1,x2 ,x3,x4 are four distinct coUinear points, 

no three on a 'line, then no point can be coZZinear with exactly three of 

these four points. 

PROOF. Suppose x5 is collinear with x2 ,x3,x4 and x1 7 x5• Clearly x5 i x2x3, 

x2x4,x3x4 •. Hence {x1x2,x1x3,x1x4} = [x1,x5J and {x5x2,x5x3,x5x4} = [x5,x1J 

so x5x2 has to interseet x1x3 or x1x4 by (**). But then l[x2,x1x3JI or 

l[x2,x1x4JI > 2, a contradiction. D 

LEMMA 7. Same hypothesis as in Zerrma 6. Then the only points coZZinear with 

exactZy two points of {x1,x2 ,x3,x4} are the points on the Zines x1xj' i of j. 

Figure 4. 
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Apply (**) to x3 and x5 to get a line ab through x3 with a e x5x4, b € x5x
1

• 

Similarly (**) applied to x5 and,x2 gives us a line cd through x2 with 

c e x5x4, de x
5
x

1
• Clearly b 7 c so we can apply (**) tob and c. It fel­

lows that ab n cd • ~. Also x2 7 a and (**) applied to x2 and a yields: 

ab n cd + ~ or ab, n x2x4 + ~. Hence ab n x2x4 + 0, a contradietien since 

{x
2

,x
4

} = [x
2
x
4

,x
3
J. D 

THEOREM 7. If (X,L) is a s.p.g with parameters s,t,a = 2, u 6 and t>s, 

then (X,L) satisfies (D). 

PROOF. Let x
1
,x2,x

3 
and x4 be four distinct points no three on a line such 

that x4~x 1~x2-x3-x4-x2 • By Lemma 5 there exists x
5
-x2,x

3
,x

4
• 

By Lemmas 6 and 7 x
1
-x

3
,x

5
• D 

REMARK. If (X,L) is a s.p.g but not a partial geometry, then t ~ s (see 

DEBROEY & THAS [2]). Using the integrality conditions for the multiplicit­

ies of the eigenvalues of a strongly regular graph it follows that a s.p.g 

with s•t, a=2 and J.l=6 satisfies (8s2-24s+25)1 {8(s+l)(2s3-9s 2+t9s-30)} 2• 

From this one easily deduces an upper bound for s. The remaining cases were 

checked by computer and only s=t=28 survived. Thus, every s.p.g which is 

not a partial geometry satisfies (D) or bas s=t=28 (and 103125 points). 

We now turn to the case a<i:J. We shall make two additional assumptions 

in this case. The first assumption is a + 3, the second assumption is 

s ~ f(a) where f is defined in Lemma 9. Notice that this bound on s is used 

only in the proof of Lemma 9. 

LEMMA 8. Let x,y € X, xfy and suppose [x,y] = [K1, ••• ,Ka+t]' [y,x] = 
[Ll' ••• ,La+IJ suah that Kin Li = 11, i= l, ... ,a+l. If Mis a Une inter­
seating cr ~ I tines of [x,yJ, T <1: I linea of [y,x] and cr < T~ then a= a-1 

and T = a. 

PROOF. Since cr < T, there exists a point of intersectien u of M with a line 

L. e [y,x] such that u is not on one of the lines of [x,y]. Then ufx and 
1 

so, applying (**) to u and x, it follows that M e [u,x] intersects a-t 

of the a lines K1,K2, ••• ,Ki-t'Ki+I'"""'Ka+l € [x,uJ. Thus a-t~ a< T ~a, 

which proves our claim. D 
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LEMMA 9. Let x .:: X a:nd L .:: L such that x ~ L a:nd x is col:Lineo:P with a points 

z2,z3, ••• ,za+l on L. Let M be a Zine through za+l meeting xza in a point 

u 1- x,z • Suppose s :::: f(a) where f(4) = 12, f(S) = 16, f(6) = f(7) = 17, 
a 

f(S) = 18, f(9) = 19, f(IO) = 21, f(ll) = 23, f(a) = 2a (a::::I2). Then M inter-

sects at least a-1 Zines of [x,L]. 

PROOF. Suppose M doesnotmeet at least two lines of [x,L], xz2 and xz3 , say. 

Sinces ~ 2a we can find y eL such that xfyfu. Let [x,y] = {K1,K2=xz2, ••• , 

Ka+l=xZa+l} and [y,x] = {L1=L,L2,L3, ••• ,La+l} with Ki n Li = ~. 

Looking at u and y we find that Mintersecte a-l of the a lines Li' 

i 1- a. Every point L.M which is collinear with x is on a line K., j 1- a. If 
1. J 

L.M ~x for these a-1 i's, we find that Mmeets at least a of the lines 
1. 

K1, ••• ,Ka+l' hence at least a-1 of the lines K2 , ••• ,Ka+l' a contradiction. 

Let t = L.M be a point not collinear with x. Consiclering xft we see that M 
1. 

intersecte a-1 of the a lines in [x,y]\{K.}. This shows tbat i = 2 or 3, so 
1. 

there are at most two sucb points t, and tbat Mmeets K1,K4 ,K5 , ••• ,Ka+l' 

Let V= {K4M,K5M, ••• ,KaM} and count pairs (y,v), y eL, yfx, v € V, v-y. 

Tbè number of sucb pairs is at least (s-a+l)(a-5) (first choose y,s-a+l 

possibilities, then given y we can find a-3 points Li~ as above, possibly 

one on K1(y), and one is za+l), and at most (a-3)~a-2) (first choose v, 

then y). It fellows that fora> 5, s ~ 2a-l + la-SJ . Let W =V u {q,q'} = 
= {w.:: MI~} and count pairs (y,w), y e L, yfx, w.;: W, w ~ y. This yields 

~s-a+l)(a-4) ~ (a-3)(a-2) + 2(a-1), hences s 2a + la~4 J if a> 4. Above 

we saw that for any y € L with xfyfu, K1 = K1(y) meets M. But if s+l >a+ 

+ (a-2) + 2(a-l) = 4a-4, we can find y eL such that yfx, u,q and q', a 

contradiction. Therefore we have s < 4a-4. We now have obtained a contradic- · 

tion for all a ~ 4 and the lemma is proved. 0 

LEMMA I 0 • Some hypotheses as in Lerrma 9. Then M intersecte exact Zy a-1 linea 

of [x,LJ. 

PROOF. Take y e L, yfx and let K. and L. be defined as before. Put K := K 
1 1. 1. ~ 

and let A(x,L) be·the set of lines 1- K,L through za+l intersecting at least 

a-1 lines of [x,L], A(y,K) the set of lines 1- K,L through z 
1 

intersecting a+ 
at least a-1 lines of [y,K]. Suppose a lines of A(x,L) intersects a-1 

lines of [x,L] and b lines of A(x,L) interseet a lines of [x,L]. Counting 
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the points u~za+l on K2,K3 , ••• ,Ka, such that u 1 x,z2, ••• ,za yields 

a(a-2) + b(a-1) a (a-l)(a-2). Hence a= 0 and b = a-2 or a= a-l and b = 0. 

Thus IA(x,L)I a a-2 or a-1 according as every line in A(x,L) intersecte 

all linea or all but one line in [x,L]. A similar result holds for A(y,K). 

Now A(x,L) = A(y,K),for suppose NE A(x,L) then by Lemma 8, N intersects 

at least a-1 lines of [y,x], so at least a.-2 ~ 2 lines of [y,K]. Hence 

N E A(y,K) by Lemma 9. Similarly, N E A(y,k) implies N E A(x,L). Suppose 

IA(x,L)I a a-2, i.e. there are a-2 lines through z 1 intersecting all lines a+ 
of [x,L] u [y,K]. It follows that K_L 

1 
f z 

1 
so we can apply (**) to --z a+ a+ 

K2La+l and za+l' This shows that La+l E [K2La+l'za+l] intersects all 
NE A(y,K) c [z 

1
,KnL 

1
J, a contradiction, for L +I-N implies l[y,N]I~ - a.+ '- a.+ a 

~ a+l. D 

LEMMA ll. Let x E X, L E L such that x is aoUinear u>ith a points 

z2, ••• ,za.+l on L. Let M be a line through za.+t interseating a.~l lines of 

[x,L] and Zet y EL, yfx. Then3 if [x,y] = {K1(y),K2=xz2, ••• ,Ka.+l=xza.+l}3 

M .interseats K1(y). 

PROOF. Suppose M does not interseet Kz• say. As shown in Lemma 10, M also 

intersects a.-1 lines of [y,Ka.+l] • {L 1=L,L2, ••• ,La}. SoM intersects at 

least one of L 
1 

and L and since a ~ 4, L2 + L 1,L • Suppose M inter-a.- a. a- a . 
sects L 

1 
(L ) in a point v. If vfx then apply (**) to v and x. It follows a.- a. 

that ME [v,x] intersecte K
1
(y) E [x,v] for M misses K2 E [x,v]. If v-x 

then v = L 
1
K. (v=L K.) forsome i. By Lemma 10 applied to x and L 1(L) a.- 1 a. 1 a.- a 

it follows that M intersects K1(y) E [x,La._
1
J (K

1
(y) E [x,La.J), for M does 

not interseet K2 E [x,La._ 1J (K2 E [x,La.]). D 

The Une K
1 

(y) is the same for all y E L, y f x. 

LEMMA 12. Let x E X, L E L 8UCh that x is aolZinear !JJith a. points 

z2,z3, ••• ,za+l on L, Put Ki=xzi' i=2, ••• ,a+l and Zet K1 be defined by 

{Kl'Kz•· .. ,Ka+1} = [x,y] for any y E L, y f x. Then every Une ûJhiah in­

tersects K1 and a Ki (i+ I) not in x, intersecte L and therefore exaatZy 

a. Zines of {K1, ••• ,Ka.+l}. 

Fix i E {2, ... ,a+O. The number of pairs (u,v) such .. that 
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u E K1\{x}, v E Ki\{x}, u-v equals s(a-1). If y EL, y f x and [y,x] = 

{L 1=L,L2, ••• ,La+l}, then each of the a-1 lines L2,L3, ••• ,Li-l'Li+l'''''La+l 
gives rise to such a pair (u,v). Each point z., j • 2,3, ••• ,i-l,i+l, ••• ,a+l 

J 
is on a-1 lines + K.,L which interseet a lines of {K

1
, ••• ,K +I}. They all 

J· a . 
interseet K1 by Lemma IJ and no two miss the same ~ since otherwise some 

Kt would be hit a+l times. Thus each point zj' j•2,3, ••• ,i-l,i+l, ••• ,a+l 

gives rise•to (a-2) pairs (u,v). Finally there are (a-1) pairs (u,v) 

with v = z .• In all, the lines intersecting L contain (s+l-a)(a-1) + 
l. 

(a-l)(a-2) + (a-1) = s(a-1), i.e. all, pairs (u,v). 0 

If in Lemma 12 we reptace L = 1 1 by a line L. missing K., then it 
J J 

follows that every line intersecting two lines of {K1, ••. ,Ka+l} not in x, 

intersects exactly a lines of {K1, ••• ,K 
1
}. Using this result and the 

a+ 2 
foregoing lemmas we can now proceed as in the case ~ = a • For any two 

intersecting lines L1,L2 we can define in an obvious way a partial geometry 

<L1,L2> = (X(L 1,L2),L(L1,L2)), now with parameters;= s, t =a, a= a (so 

<L
1

,L2> is an (a+l)-net of order s+l). Again ~ = ~(t+l) = a(a+l) = ~. so 

with the same proof as the proof of Theorem 4 we have the following theorem. 

THEOREM 8. Let (X,L) be a s.p.g. with ~eters s,t,a,~ = a(a+l). If a~ 4, 

s ~ f(a) (f as in Lemma 9) ~ t ~ a+l (i.e. if (X,L) is nota p.g.), then 

(X,L) satisfies (D). 

Fix a (d-2)-dimensional subspaceS of PG(d,q), q a prime power, dEN, 

Then with the lines of PG(d,q) which have no point with S in common as 

"points" and with the planes of PG(d,q) intersecting S in exactly one 

point as "lines" and with the natura! incidence relation, one obtains a 
2 -1 d-1 s.p.g. with parametets s = q -1, t • (q-1) (q -1)-1, a= q, ~ = q(q+l). 

DEBROEY [IJ showed that a s.p.g. ~ith parameters s,t,a ~ 2, ~ = 
= a(a+l) and satisfying (D) is of this type. Combining this result with 

Theorema 7 and 8 we arrive at the following theorem. 

THEOREM 9. Let (X,L) be a s.p.g. ~ith parameters s,t,a,~ = a(a+l) ~hiah 

is nota p.g •• If a = 2 a:nd not s = t = 28 or if a ~ 4 a:nd s ~ f(a)~ then 

(X,l) is isomorphia to a s.p.g. aonsistir11J of the linea in PG(d,q) miss­

irliJ a given (d-2)-dimensiona'l subspaae Of PG(d,q) a:nd the pl.a.nes inter-



se~ting this subspace in one point. In pa:vticula:r> s = q2-J, 

t = (q-l)-l(qd-l_l)-1, a= q, p • q(q+1) forsome prime p~er q and dE E 

and any s.p.g. with these paPameters ~ith q ~ 3 and d ~ 4 is of this type. 
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SAMENVATriNG 

Dit proefschrift bestaat uit vijf artikelen en een inleidend hoofd­

~tuk. In elk van de vijf artikelen wordt een karakterisering gegeven van 

een object uit de eindige meetkunde. Het inleidende hoofdstuk bestaat uit 

een overzicht van vergelijkbare resultaten uit de literatuur (de stelling 

van Veblen & Young over projectieve ruimtes, de stelling van Ostrom & Wagner 

over projectieve vlakken met een 2-transitieve automorfismengroep, de 

stelling van Buekenhout & Shult over polaire ruimtes, etc.), en inleidingen 

in elk van de vijf artikelen. 

Het eerste artikel gaat over bijna affiene vlakken. Evenals bij gewone 

affiene vlakken is het ook hier mogelijk het begrip translatie te defini~ren. 

Aangetoond wordt dat het bestaan van translaties equivalent is met de 

geldigheid van een "Stelling van Desargues", en dat bijna affiene vlakken 

met een transitieve groep van translaties op een bepaalde algebraïsche 

manier kunnen worden beschreven. 

In het tweede artikel wordt aangetoond dat er een verband bestaat 

tussen bijna affiene vlakken en Minkowski vlakken. Dit gegeven wordt gebruikt 

om een meetkundige karakterisering te geven van alle, tot nu toe bekende, 

Minkowski vlakken. In essentie komt deze karakterisering neer op de eis dat 

alle bijna affiene vlakken die met een Minkowski vlak zijn geassocieerd, 

moeten voldoen aan de Stelling van Desargues. 

In het derde artikel wordt een tweede karakterisering gegeven van de 

op dit moment bekende Minkowski vlakken. Het blijken precies die Minkowski 

vlakken te zijn waarvan de automorfismengroep transitief is op paren niet­

collineaire punten. 

Het vierde artikel geeft een meetkundige karakterisering van de 

klassieke unital (dit is het 2-(q3 +1,q+1,1) design van de absolute punten 

en niet absolute lijnen van een unitaire polariteit van PG(2,q")l. De 

gekozen meetkundige condities zijn zodanig dat een op de punten 2-transitieve 

groep van automorfismen geconstrueerd kan worden, die vervolgens geïdenti­

ficeerd wordt als PSU(3,q'). 

Het vijfde en laatste artikel geeft een karakterisering van twee 

klassen van semi-partiêle meetkundes die geconstrueerd kunnen worden uit 

projectieve ruimtes. Bij deze karakterisering wordt alleen uitgegaan van de 

speciale vorm van de parameters. Het doel wordt hier bereikt door aan te 

tonen dat in deze semi-partiêle meetkundes de duale versie van het axioma 

van Pasch geldt. 
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1. De bewijstechniek van [1] is mogelijkerwijs ook te gebruiken 0111 het niet 

bestaan van een sterk reguliere graaf op 99 punten van graad 14 aan te 

tonen. 

[1] H.A. Wilbrink & A.E. Brouwer, A (57,14,1) st'I'ongly rogu'La.P g'I'aph 

does not exist, Proc. KNAW A 86 (1), 1983. 

2: Er bestaat tenminste een (symmetrisch) 2-(49,16,5) design. 

A.E. Brouwer & H.A. Wilbrink, A symmetrie design with pavameters 

2-(49,16,5), to appear. 

3. De punten en lijnen die geheel buiten een niet ontaarde hyperkwadriek 

in PG(2n-1,2) liggen, vormen een semi-partiële meetkunde. 

4. Veronderstel dat een rang 3 Zara graaf de volgende eigenschap heeft. 

Voor ieder tweetal disjuncte vlakken bestaan er partities in lijnen 

van die vlakken zo dat iedere lijn van elke partitie in een vlak is 

met een lijn uit de andere partitie. Dan vormen de vlakken en lijnen 

met de natuurlijke incidentie de punten en lijnen van een bijna-zeshoek. 

A. Blokhuis, Few-distanae sets, Proefschrift T.H.E., 1983. 

E. Shult & A. Yanushka, Near n-gons & Zine €ystems, Geom. Dedicata 9 

(1980), 1-72. 

5. Vermoedelijk geldt de volgende stelling. Als n de orde is van een pro­

jectief vlak met een reguliere abelse automorfismengroep en p is een 

priemdeler van n, dan is n = p of p 2 deelt n. Voor p=2 en p=3 is 

dit bewezen. 

H.A. Wilbrink, A noteon pZanar diffe'I'enae sets, to appear. 

6. De grafen op de inwendige en uitwendige punten van een niet ontaarde ' 

hyperkwadriek in PG(2n,5), met als kanten de paren onderling loodrechte 

punten, zijn sterk regulier. 

7. Veel bewijzen in de combinatoriek kunnen met 50% worden ingekort door 

gebruik te maken van matrices. Vergelijk: E. Artin, Geometrie AZgebPa, 

Interscience, New York, 1957, p 14. 



8. Het adagium "een plaatje is geen bewijs" dient zeker niet te worden 

geinterpreteerd als een aanbeveling tot het niet gebruiken van plaatjes 

in de wiskunde. 

9. Het gebruik van computers binnen de wiskunde kan een remmende invloed 

hebben op de ontwikkeling van de wiskunde, en dient daarom met de nodige 

terughoudendheid te gebeuren. 


