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PREFACE

Apart from an introductory chapter this thesis consists of the fol-

lowing five papers.

Nearaffine planes, Geom. Dedicata 12 (1), 53-62.

E%nité Minkowski planes, Geom. Dedicata ig 2y, 119-129,
Two-transitive Minkowski planes, Geom. Dedicata 12 (4), 383~ 395.

A oharacterization of the classical unitals, in: Pinite geometries,
N.L. Johnson, M.J. Kallaher & ¢.T. Long eds., Marcel Dekker, Lecture
notes in pure and applied mathematics 82, New York, 1983.

A characterization of twe classes of semi~partial geometries by their

parameters, to appear in Simon Stevin.

This last paper was written together with Andries Brouwer. The way we worked
together on this paper makes it impossible for me to decide what part of the
paper is his and what part is mine.

I would like to éxpress my gratitude to the publishers D. Reidel of
Geometriae Dedicata, Maréel Dekkexr of Pinite geometries and J.A. Thas of
Simon Stevin for their permission to include these papers in this thesis.

I would also like to thank my thesis supervisors Prof, dr. J.H. van Lint
and Prof. dr. J.J. Seidel for introducing me to combinatorcs and finite
geometry, and for more or less forcing me to write this thesis (I still
wonder how they did it). Finally, I have to thank the Mathematical Centre
and in particular Andries Brouwer and Arjeh Cohen, for their support and
interest in my work during the four fine years I spent there in which

period all five papers were written.
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INTRODUCTION

It is the pﬁrpose of this first chapter to introduce the nonexpert
mathematiclan to sbme of the results and techniques from finite geometry
in general, and to each of the five papers which constitute the main part
of this thesis, in particular. In each of these five papers a characteri-
zation of a finite “"incidence structure" is given. However, if one wants
to fully understand and appreciate a characterization of any object, it
is first necessary to get acquainted with the most basic properties of
that object. This is what we shall try to achieve here for the objects
discussed in the papers. In addition to this we shall take the opportunity
to say something about other theorems characterizing geometries of which
ours can be viewed as low dimensional cases.

Basically, characterization theorems in finite geometry fall into
four classes. First of all there are the purely geometric characteriza-
tions such as the theorem of Veblen and Young characterizing the
projective épaces (see section 2), or the Buekenhout-Shult theorem on
polar spaces {see section 3). Secondly, there are theorems which use some
kind of assumption on the automorphism group of the object in guestion.
The Ostrom-Wagner theorem which we shall discuss in section 1, is a
good example of this. Thirdly, there are the characterizations with the
help of a combinatorial property as is the case, for example, in the
Dembowski~Wagner theorem which we shall prove in section 2. Finally, it
is sometimes possible to characterize geometries if 6ne knows that they
are embedded in another geometry (see for example the theorem by
Buekenhout-Lefévre in [6]). -

Before we start our diséussion a word of warning: the geometries
that we shall consider are always assumed to be finite (although for

some of the results that we shall state this is really not essential).
1. PROJECTIVE PLANES AND AFFINE PLANES

Perhaps the most extensively studied objects in finite geometry

are the projective planes, There are several ways to give a definition



of a projective plane. Here we shall adopt one which excludes the
degenerate cases and which is easy to generalize to a definition for

projective spaces of arbitrary dimension.

DEFINITION. Let X be a set of points and £ a collection of distinguished

subsets of X called lires. Then (X,L) is called a projective plane if

131 2 2 and the following axioms are satisfied :

(P1} If x and y are distinct points, then there is a unique line L = Xy
such that x,v € L;

(P2) 1f L, and L., are distinct lines, then they meet in a unique point;

1 2
(P3} Every line contains at least 3 points.

The classical models of projective planes are obtained as follows,
Let ¥V be a 3-dimensional vector sbace over:Fq, the field of g elements.
For X take the set of all i-dimensional subspaces of V and for L the set
of all 2-dimensional subspaces of V (more precisely, since we have defined
lines to be subsets of X, a line is not a 2~dimensional subspace but the
set of all i1-dimensional subspaces contained in a 2~dimensional subspace).
It is easy to check that now (P1l), (P2) and (P3) are satisfied. Indeed, two
distinct l-spaces span a unique 2-space; two distinct 2-spaces in a 3-space
meet nontrivially and a 2-space over:?q contains (g*~1)/(q-1)=g+123
l~spaces. The guestion we are interested in is: are these the only examples
of projective planes ? The answer is no. In fact so many different kinds
of projective planes are known {see e.g. .[8]) that a complete classifica~
tion seems hopeless. Here we shall conteqt ourselves with one ‘example of
a class of projective planes which cannot be obtained from a 3-dimensional
vector space. To describe these planes it will be more convenient to work
with affine planes. By definition an affine plane is an incidence structure

of points and lines satisfying {Pl) and

{A2) For every point % and line L such th?t x € L, there is exactly one
“line through x which does not meet L;

{A3)} There exist three noncollinear points.

It is easy to establish the well-known correspondence between affine planes
and projective planes: deleting a line wafrom a projective plane gives an

affine plane and conversely every affine'plane can be extended to a



projective plane.by adding a line “at infinity". If we follow this procedure
for the projective plane associated with the 3-dimensional vector space
(Zqu)3 and with L defined by 2z=0, say, then every point not on Loo has a
unique representation <{x,y,1)> and can therefore be identified with
{(x,y) € (:wq)z. This gives us the familiar affine planes with point set
(:mq)’ and with the lines given by an equation y=ax+b or x=c. Now it is
possible in the above construction to replace the.field ]iq by other
algebraic structures. For example a quasifield will do as well. Here, a
(finite) quasifield is a set Q with two binary operations, + and « say,
such that
1} {Q,+) is a group with identity O,
2) ©~{0},+) is a loop with identity 1,
3) xe(y *+ 2) = xey + xez for all x,¥,2 € Q,
4) QOex = 0 for all x € Q.
It is not hard to show that every quasifield @ yields an affine plane with
point set Q' and lines given by an equation y=asxtb or x=c. We shall
describe a class of quasifields known as the André quasifields Por the set

g
group of field automorphisms of :Fqn fixing the subfield :mé of ZFqn

Q take T n (as a set) and define addition in Q as in T g Let A be the

elementwise, and let N:]Fén+ﬁma be the norm map defined by
N(x) =TT Xa,iXEJF*n
o€a a -
If ¢t is any map from :F; into A with U(1)=1, then we can define a multi-

plication * on Q to make Q into a quasifield as follows

X*y = xyu(N(X}} (x,y € Q),

where on the RHS multiplication is in Eap of course.
We shall now give some of the properties which chafacterize the-

projective planes associated with a 3-dimensional vector space. The first

one is probably the best known.

THEOREM 1. 4 projective plane is isomorphic to a projective plane
associated with a 3~dimensional vector space if and only if the following
condition holds:



(Desargues' theovem) If ayra,.ay and b, /b, b, are two triangles such that

the lines a,b,, ab, and ajb, are concurrent, then the points aja b b,

a1a3ﬂb1b3 and a2a3ﬂb2b are collinear (see Figure 1).

2

3

Figure 1.

Wé shall only indicate how Thecrem 1 can be proved {(for details see e.g.
[10] or [16]). The basic idea behind the proof of Theorem 1 is that
Desargues' theorem is equivalent to the existence of certain automorphisms
of the projective plane (an automorphism of a projective plane is a
permutation of the points which induces a permutation of the lines)., For
example, consider Figure 1 and suppose C is an automorphism fixing x and
all the points on L. Clearly, since every line through X intersects L,

all lines through x are also fixed. If © maps a1 to b then apparently

1'
2 is mapped onto b2 and a3 is mapped onto b3: in fact we can determine

the image of any point. It is easy to see that Desargues' theorem is

a

equivalent to the existence of this type of automorphisms. Now we have
already an algebraic structure associated with our projective plane,
namely the group generated by these automorphisms. The special properties
of these automorphisms allow us to reconstruct a field F and a 3-dimen~
sional vector space Vover F from this group in such a way that the
projective plane we started with is isomorphic to the projective plane
associated with V. Aprojective plane in which Desargues' theorem holds is

called a Desarguesian projective plane.



.Let us now look at a typical group theoretic characterization of the

Desarquesian projective planes.

THEOREM 2. (Ostrom & Wagner [11]) Let P = (X,£) be a projective plane. If
the automorphiem group T of P is S~traneitve on X, then P ig¢ a Desarguesian
projective plane.

Here, 2~-transitivity means that for all xl,xz,yi,y2 € X, %, %%

172!

yl*yz,‘there is a v € T such that x Yéyi, i=1,2. Again we only explain the

main ideas of the proof. The trick iere is to look at involutions, i.e.,
automorphisms of order 2. By the 2-transitivity, the even number |x|(lx|~1)
divides the order of I so the:e exist elements of order 2 in Tl (notice that
fiﬁiteness is really essential here). Let U be an involution. If x € X

and if x is nonfixed, i.e., if xctoc, then the line xxG is fixed for
(xx0)0=xgxcz=xax. Dually, if L is a nonfixed line, then L N LU is a fixed
point. From these considerations it follows that the éonfiguration

of fixed points and lines of ¢ is either

a) a subplane, or

b} o fixes all points on a line L and all lines through a point x.

The easy part of the proof is case b}, since here 0 is one of the auto-
morphisms whose existence is equivalent to Desafgues' theorem (the only
problem here is to show that there are sufficiently many of these auto~
morphisms) . The hard part is case a). Suffice it to say that here an
induction argument can be used to finish the proof.

We shall see later on that this technigue of looking at involutions

can also be used to characterize the 2~transitive Minkowski planes.
2. PROJECTIVE SPACES

Let V be a vector space of arbitrary dimension, Again we shall use
the projective terminology and call the 1~dimensional subspaces points
and the 2-dimensional subspaces Zines. Clearly, the points and lines
satisfy the axioms (P1) and (P3) of the previous section but (P2) is only
satisfied for those lines L, and L, which are contained in a plane (a 3~

1 2
dimensional subspace). In terms of points and lines only, this is expressed



in (P4).

(P4) (Pasch's axiom) If Ml'and M2 are lines

meeting in a point x and L1 and L2 are

lines both meeting Mi and M2 not in x,

then L1 and L2 meet.

DEFINITION. Let X be a set of points and £ a collection of distinguished
subsets of X called lines. Then (X,L) is called a projective space if (P1),
{P3) and (P4) are satisfied.

Clearly, every projective plane is a projective space. The following
theorem, due to Veblen & Young, shows that for higher dimensions there

is no analogue to the "nondesarguesian" planes.

THEOREM 3. Let (X,L) be a projective space containing two nonintersecting
lines. Then (X,L) is isomorphic to the geometry of 1~ and 2~ dimensional

subspaces of a vector space.

We explain the ma}n steps in the proof of this theofem. Let (X,f) be a
projective space. A subset Y © X is called a subgpace if every line which
meets Y in at least two points, is completely contained in Y. Clearly,
every subspace together with the lines it contains is also a projective
space., It is also easy to prove that if ¥ is any subspace and x is any
point not contained in ¥, then the set 2 of all points on lines through x
which meet ¥ (i.g., Z =ngxy) is also a subspace. If we take for Y a line,
the resulting 2 is easily seen to be a projective plane. Now look at
Figure 1, not as a‘cohfiguration in the plane but with x not in the plane
generated by a.a and aj, say. The points aiaj n bibj' 1£i<4§4£3, are all
3 and bl'bz'

b3, so Desargues' theorem holds in this case. In fact, Desargues' theorem

2
on the intersection line L of the planes generated by ag.a,,a

holds in all cases for, if x,al,az,a happen to be in a plane, we can always

3
view the configuration as the projection of a nonplanar configuration from

a point onto the plane generated by X2, ,8,/85. By Theorem 1 we now know

3
already that all projective planes which are properly contained in a

projective space are isomorphic to a projective plane associated with a



3-dimensional vector space {(this result is an example of a characterization
using an embeddability property). The rest of the proof consists in glueing
together these 3-dimensional vector spaces to one bilg vector space (see

e.g. [31,[12] or [16]for more details).

As a typical application of Theorem 3 we shall prove the Dembowski-«
Wagner théorem which is a combinatorial characterization of projective
spaces in terms of points and hyperplanes. For this we need some termi=-
nology which will also be useful later on. A t-design with parameters v,
k,A (or a t-(v,k,A) design) is a pair (X,B) where B is a collection of
k-subsets (called blocks) of a set X of v points such that every t-subset
of X is contained in exactly X blocks. For any two points x and y in a
2-design we define the lime through x and y as the intersection of the
blocks containing x and y. Notice that every two distinct points in a
2~-design are-on a unigque line. For example, let V be a vector space of
di@ension n over :Fq, X the set of all points of the projective space
associated with V and let B be the set of all hyperplanes of V. Then (X,B)

s a 2 (E1 gl gm2e i)
is a 2 ¥ y

‘ qg-1" g-1 q-1)
are precisely the lines in the projective space sense. This design has the

design and the lines in the 2-design sense

property that the total numbér of blocks is egual to the total number of
points. A 2-design with this property is called symmetric or projective.

THEOREM 4. (Dembowski-Wagner) Let (X,B) be a symmetric 2-(v,k,\)design.
Then (X,B) Zs the design of points and hyperplanes of a projective space
if and only if every line has at least (v-\)/{(k-\} points.

PROOF. Since !B!:V, every pdint is on k blocks. Let L be any line. Since
'i‘iscohtained in A blocks, every point x on L is on k-A blocks B such that
L N B = {x}.Therefore v-(A+|L| (k~)A)) blocks do not meet L. From our
hypothesis it follows that |L| = (v-A)/(k-A) and that every line meets
every block. Let x be any point not on L and suppose that p blocks contain
L and %. Then k-p blocks contain x but not L. This number also equals
}Li(l-p) {for each y € L there are A-p blocks B on x and y such that
L 0 B = {y}). Therefore k-p = |L|(A-p) and so p is a constant. Define

planes as the intersection of all blocks containing three noncollinear



points. Any three noncollinear points now determine a unique plane. i,et L
and M be two distinct lines in a plane E. Let B be a block containing L
Jbut not M. Then L=8BNE, so LNM=(BNE) NM=BN(ENM) =BNIM*{, i.e. any

two lines in a plane meet. This proves Pasch's axiom.

3. SYMPLECTIC. UNITARY AND ORTHOGONAL GEOMETRY

" We shall now turn to certain substructures of projective spaces for
which there is a characterization quite similar to the characterization of
veblen & Young for projective spaces. Let us start with an analytic des-
cription of these substructures. Suppose V is a vector space of dimension ~
n over IE‘q and let ¢ be an automorphism of ]Fq. We shall often write "X=)\°

for A €:E~‘q. A (o~-gesquilinear) form £ on V is a map £:Vxv :-ﬂFq satifying

i) £{Ax,y) =Xf(x,y) and £{x,Ay) = \f(x,y), X,v €V, )\E]E‘q;
i1y f(x,y+z) =£(x,y) +£(x,2) and f(x+y,z) = £(x,2) +£{y,2), X, ¥y,2€V.

The form £ is called reflexive if for all x,y€V, f(x,y) =0e=sf(y,x) =0
and f is called nondegenerate if f£(x,y) =0 for all x€V=y=0. If n22
and £ is a nondegenerate reflexive form on V, then there are only a few

possibilities for £ (see e.g. [2]) :

i} o=1 and £(x,x) =0 for all x€V.
In this case f is calleda symplectic form and it is possible to show
-that n has to be even and that w.r.t. tc a suitable basis vl'VZ'.“'Vn

of v,

EOOLY) =&y = BoNy #EgNy = &gy + e H By = ENy g e X2EE vy yeEn, Yy
ii) 0* =1 , 0% 1 and for some Ag E]Fq, Agfix,y) = XoE(y,x) for all x,vyEV.
‘ In this case A f is called hermitian and w.r.t. a suitable basis

VI'V2'“.'vn of Vv
£(x,y) =ZEn,, x=ZE v, ,y=Inv, .
iii) 0=1 and f(x,y) = £(y,x) for all x,y€V.
In this case f is called symmetiric. For even ¢, symmetric forms are

not very interesting and for odd ¢, symmetric forms are eguivalent

with quadratié forms which we shall now discuss.



A quadratic form Q on V is a map Q:V -']Fq such that

a) Q(Ax) = X*Q(x) for all X EIE‘q, x €V, and
b) £(x,y) :=Q(x+y) -0(x) - Q(y) defines a bilinear form on V.

Notice that f is symmetric and that f£(x,x) =Q(2x) - 2Q0(x) = 2Q(x). Conversely
if g is odd and f is any symmetric form on Vv, then Q(x):=3f(x,x) is a
quadratic form with associated bilinear form £, so for g odd, £ and Q
detexrmine each other. A quadratic form Q is called nondegenerate if Q(x)#0
for all x € v{0} which satisfy f(x,y)} =0 for all y€V (for odd q this is
equivalent to f is nondegenerate, but if g is even f can be degenerate
whereas Q is not (see type (I) below)). The standard forms for a non-
degenerate quadratic form w.r.t. a suitable basis are as follows. If n is

odd there is essentially one type:

(D) Q) = £, 8, + £, + oo +E E

d + 2 .
1 oegn, for some Oé€3Fq

If n is even there are two types:
() Qr) = BB, +EE, + v +E (£, ox

(W) Q%) = § 8+ EgBy+ ove +E & o+ &2 +QE  Eo4BEL,

where X+ 0X + B is irreducible over JFq.

Suppose £ is a reflexive form on V. If f(x,y) =0 we write xLy and say
that x and y are orthogonal. Since £ is reflexive, L is a symmetric rela-

tion. For XCV we set
1
X i= {vEV]vlx for all x€x}.

B subspace X of V is called totally Zsotropic if XC:X'L, i.e. if £f(x,y) =0
for all x,y€X. Similarly, if Q is a‘quadratic form on V, then any sub-

space X with Q(X) =0 is called totally singular. (If q is odd, then X is

totally singular if and only if X is totally isotropic w.r.t. the bilinear
form £ associated with Q.) A vector space V equipped with a nondegenerate
symplectic, hermitian or quadratic form is called a symplectic,unitary ‘
or orthogonal geometry. Especially the set of all totally isotropic (sin-
gular) points in symplectic, unitary and orthogonal geometry giives us all
kinds of interesting configurations. For example, take a quadgatic form of

type (II) with n=4 and work over IR for the moment with Q(x)'= 5152 +E~,’,g -;-F,z.v
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The set of totally singular points here is a sphere (put £1=]H +n2,
€2==n1-n2 and look in the affine B*Space defined by n2= 1}, so any three
totally singular points determine a plane which will intersect the sphere

" in a conic., Precisely the same is true over a finite field: let X be the
set of totally singular points and B={XNE|E a plane with |XNE|23},then
(X,B) is a 3-design. Keeping the picture of the sphere in miﬁd it is easy
to compute the parameters of the design. If P is any totally singular
point, then P is on g+ 1 tangent lines (all the lines in the plane tangent
to the sphere passing through P) which carry no other points of the sphere,
and therefore on (g?+qg+1) - (g+1) =¢* lines which intersect the sphere in
one other point, Hence |x|==q’+ 1, and a similar argument in the plane
shows that every conic contains g+ 1 points. Thus (X,B) is a 3-(q?+1,q+1,1)
design. A M6biue plane is by definition a 3-{(n*+1,n+l,1) design. The MSbius
planes that we have just constructed are characterized by the fact that
they satisfy the Theorem of Miquel (see [18]). They play a role similar to
that of the Desarguesian planes in the theory of projective planes. Here
also, "nonmiguelian" M8bius planes are known to exist (although not as
many as nondesarguesian projective planes). A similar story can be told by
starting off with a quadratic form Q(x) =€1£2«+€3£4 of type (II) . We then
arrive at the so-called Minkowski planes which we shall discuss in greater

detail in the next section.

There is a very satisfactory characterization of the symplectic,
S
unitary and orthogonal geometries which have totally isotropic or totally
singular subspaces of dimension at least three, known as the Buekenhout-

shult. theorem, which we shall now formulate.

i

DEFINITION. Let X be a set of points and £ a collection of distinguished
subsets of X called lines such that

i} the set of lines is nonempty and each line has at least three points,
ii) no point is collinear with all remaining points,
iii) for every point x and everyyline L not containing x, x is collinear

with either one or all points of L.

Then (X,L) is called a polar space.
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Every symplectic, unitary or orthogonal gecmetry containing totally
isotropic (totally singular) lines yields a polar space in the following
way: points are the totally isotropic (singular) points, lines are the
totally isotropié (singular)} lines, Let us check iii) for a symplectic or
unitary space V. Let <x> be a totally isotropic point and L a totally iso=-
tropic line, Since <x>l¥={y |f(x,y)==0} is a hyperplane of V, the 2«dimen~-
sional subspace I intersects <x:>'L nontrivially. If y*€1;ﬂ<x>l, y #0, then
f(Ax+Uy,px+0y) =0 since £(x,x) = f{y,y) =£f(x,y) =0, so the line <x,y> is’
totally isotropic,., If L ¢5<x>i, then <%> is collinear {in the polar space A
sense) with exactly one peint of L, if L¢:<x>l, then <x> is collinear with

all points of L.

THEOREM 5. Let (X,L) be a polar space. Then
a) (X,L) 18 Zsomorphic to the geometry of all totally isotropic or totally
singular points and lines of a symplectic, unitary or orthogonal
Qeometry, or -
b) (X,L) satisfies the following stronger version of 1ii):
iv) for every point x and every line L not containing x, x is collinear

with exactly one point of L.

The first characterization of polar spaces was obtained by Veldkamp [1?]
who used a more complicated set of axioms. This set of axioms was later
simplified by Tits (see [15]) and Buekenhout and Shult {see [5]).
A polar space which satisfies iv) is called a generalized quadrangle. Here
the generalized quadrangles play a role similar to that of the projective
planes in the theory of projective spaces. Again many generalized
. gquadrangles are known which are not isomorphic to the geometry of totally
isotropic or totally singular points and lines of a symplectic, unitary ox
orthogonal geometry. For example, the following geometry of ab points and

a+b lines as shown in Figure 2 is a generalized guadrangle.

1
2

.
-
"

ak vee b

Figure 2.
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However, since lines in a projective space over 3Fq carry q +1 points,
this can only be a geometry of totally isotropic or totally singular
points and lines if a=b=g+1 for some prime power g. The orthogonal

geometry over ]F(‘:I of type (X) for n=4 belonging to the quadratic form

Q(x) = glgz + £3£4~ yvields a generalized quadrangle of this type with a=b=

=g+ 1; the two sets of g+ 1 mutually disjoint lines correspond to the two
sets of rulings on the hyperboloid 5152 + 5354= 0. additional axioms are
necessary to characterize the classical generalized guadrangles. For

example, there is a theorem by Buekenhout & Lefévre (see [6]) which says

" that a generalized quadrangle which is embedded in a projective space is

classical. Characterizations using certain (transitivity) properties of
the automorphism group have been given by Tits [14] and Walker [19}. Thas

and Payne (see e.g. [13]) have given a number of characterizations based

on geometic and combinatorial assumptions.

4. SUMMARY OF THE FIVE PAPERS

The first paper {A] is on nearaffine planes. Nearaffine planes (and
more generally nearaffine spaces) were introduced by J. André (see e.g. [1])
to describe geometrically vector spaces over nearfields. By definition a
nearfield (F,+,+) is a quasifield (as defined in section 1) with the
additional property that (F~{0},-) is a group. Let (F,+,*} be & nearfield
and set V=F?, With addition and scalar multiplication on the left (by
elements of F) defined componentwise on V, V is called a vector space
of dimension 2 over F. For x,y€V, x#+y, define the line xlly from x to y
by

xly 2= F-(y—xi +X.

If F happens to be a field, then V is just the standard 2-dimensional
vector space over F and the lines xlly coincide with the ordinary lines
in the Desarguesian affine plane. If F i; a proper nearfield, then in |
general u,v€xlly does not imply xlly=ullv and a rather complicated set
of axioms is necessary to describe this geometry. The axioms for a near-

affine plane are chosen in such a way that we get the ordinary affine

" planes back if the additional property xii_jyéyl_]x holds for all x,y€V.
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What we do in this paper is to set up a theory for nearaffine planes which
generalizes the theory of translation planes, i.e. affine planes which can
be coordinatized by a quasifield in the sense as described in section 1.
This leads us to what we have called nearaffine translation planeg. Rs for
ordinary translation planes, it is possible to give equivalent algebraic,

v geometric and group theoretic descriptions of nearaffine translation planes.
For us nearaffine planes are especially important due to certain connections
with Minkowski planes, the subject of papers [B] and [c] which we shall :

now discuss.

Consider the hyperboloid in projective 3-space 6ver ]a. i.e. the set
of totally singular points of the guadratic form Q(x} = €1£2+ E3£4 on Egﬂ
The picture to keep in mind here is that of the hyperboloid x*- y?+ z?=1

{use the transformation £1=x—y, £ =x+y, £3=z-t, £4=z+t and take

2
t=1). There are two families £+ and £ of totally singular lines on the

hyperboloid. Explicitly these lines are (in E-coordinates)

2¥  := <(a,0,b,0),(0,b,0,-a)> and
a,b
. 2;,b:= <{a,0,0,b),(0,b,~a,0})>

wﬁere a,b€ E& ané at ieasi one of a and S‘is not equal to zero, We have
already pointed out that the totally singular lines form the rather trivial
structure of a {(g+ 1)x(g+ 1) grid {see Fig.2). To cobtain an interesting
geometry we proceed asg in the case of the M&bius planes and add the conic
intersections of the planes with the set of totally singular points as
objects to our geometry. These plane sections are called circles. Any
three distinct points on the hyperboloid with the property that no two are
on a totally singular line determine a unigue Qlane and thérefore a unigue
circle. In this way we arrive at an icidence structure with a set M of
points, two collections £ and £7 of subsets of M called lines, and a
collection € of subsets of M called eircles satisfying the following

‘axioms.

(M1) £+ and £ are partitions of M,
M2y |2 N8 =1 for a11 27 €g™, LTer”,

{M3) any three points,no two on a line,determine a unique circle c€C,
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(M4) |2Nc|=1 for a1l 2€LTULT, c€C,

(M5) there exist three points,no two of which are on a line.

Such an incidence stfuct&re is called a Minkowsgki plane. Let us prove some
elementary properties of Minkowski pianes. From (M1) and (M2) it follows
that |25 = |£7] for a1l 2 €L’ ana |27] = |£¥] for all 27 €L, By (M) and
(M4) we have i£+§ =le| and |£7] =|c| forallc€C. Since C#@ by (M3) and
(M5}, we have proved that !£+| = f£““= [%] = |e] for ali 2€£+U£_’, c€C,
The number ni= |c| -1 is called the order of the Minkowski plane. It is
often convenient to think of the points and lines of a Minkowski plane as

being arrvanged in an (n+1)x{n + 1) sguare grid.

P

Figure 3.

Every circle then corresponds to a transversal of this grid intersecting
each horizontal and vertical line exactly onc¢e. An important property

(which for infinite Minkowski planes is an additional axiom) is

i

(M6) given a circle ¢, a point P€c :and a point Q€c¢, P and Q not on a’
line, thére is a unique circle & such that P,Q€d and cNd={p}.

To prove this,note that the two noncollinear points P and @ are on n~1
circles {Figure 3 shows that there are (n=-1)? poin{:s not collinear with

P or Q; each circle through P and chontains n~1 of these), Since there
are n- 2 points on ¢ not equal to P ‘and noncollinear with @, there must be
exactly (n-1} - (n-2) =1 circle thfough ‘P and Q which does not intersect
¢ in a point distinct from P. With the help of (M6) it is not very hard to
see that with every point 2 of a Minkowski plane we caﬁ associate an affine

plane (the derived plane at Z) as follows. The points of the affine plane
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are the points which are not collinear with Z. The lines of the affiné
plane are the lines of the Minkowski plane missing % and the circles
containing Z. Axiom (A2} for affine planes now corresponds to (M6). In the
hyperboloid model this affine plane is clearly visible if we use stereo-
graphic projection from Z onto a plane.

It is possible to construct Minkowski planes which are not isomorphic
to a Minkowski plane associated with a quadratic form on xgt In [BI we
show that the known Minkowski planes are characterized by the fact that a
certain geometrical condition (called (D) in [B]) holds. The idea behind
the proof of this lies in the observation that with any point Z ©of one of
the known Minkowski planes we can also associate a nearaffine plane. The
points of the nearaffine plane are agaiﬁ the points which are not collinear
with Z. The lines of the nearaffine plane correspond to the lines and
circles missing 2. Viewed in this way, condition (D) is nothing but a
special case of Desargues' theorem in the nearaffine plane. One can show
that (D) implies that all nearaffine planes are nearaffine translation
planes. The automorphisms of the nearaffine planes extend to automorphisms
of the Minkowski plane. These in turn enable one to reconstruct the
algebraic representation of the known Minkowski planes.

in [c] we have generalized the thecrem of Ostrom & Wagner for pro-
jective planes {Theorem 2) and Hering's result for Mdbius planes (see [3])
to Minkowski planes: if the automorphism group of a Minkowski plane is
transitive on pairs of noncollinear points,'then the plane is one of the
known Minkowski planes. The technique used here is very much the same as
in the proof of the Ostrom & Wagner theorem. Again the basic tool is to
study involutions in the automorphism group. Here some rather deep group
theory is necessary to reduce to the case where there is an involution
which has a subplane as a set of fixed points. Once this is achieved,
induction is possible to finish the proof.

In [D] we have characterized the unitary geometry on ‘32 which we
shall now describe in some detail. Let g be a prime power and V= Igr

Define a nondegenerate hermitian form ( , )} on V by
Goy) =5 N + TN, +Eon,

for x = (51.52,53), y=(My.My0,) €v. gere X=29 for all A t’-.’]‘é‘q,.
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Let U be the set of totally isotropic points, i.e.
U={ <% l (x,x) =0, XEV\{O}} .

Let <x> €U and let <y> be any any other point. A point <Ax +y> on the line
<x,y> joining «<x> and <y> is in U if O= (Ax+y,Ax+y) =Tr{A(x,y)) + (y;y) .
where Tr: ]Fq‘ *E{‘; is the trace map given by Tr(x) =0 +0d, o €3an . We claim
that it is impossible that all points <Ax +y> are in U, i.e., that (x,y) =0
and (y,y) =0. Suppose on the contrary that (x,y) = (y,y) = 0. Take any point

<z> not on the line <x>—:i= {x* | x,x")=0 }. Then

u:_.(.dy—f—z-la{.y

{x,z}
satisfies (u,x) = (u,y) = (u,2) =0,s0 (u,v) =0 for all v€V, a contradiction.
This shows that <x> is the only point of U on the line <x>‘L and that every
other line through <x> contains g points # <x> of U (for Tr is an ]Fq—linear
map with a kernel of dimension 1, so Tr(A(x,y}) =-{y,y) has g solutions A
if {x,y) #0). Since there are g*+1 lines through <x>, one of which is <x>'|',
it follows that |U| =1+qgeqg* =1+q®. BAlso, every two distinct points of U
are on a unique line of g+ 1 U-points, 1.e.,we have constructed a
2-{(g®+1,9+1,1) design. A 2-(n*+1,n+1,1) design is called a unital (n €N).
For gq=2 the 2-(9,3,1) design is the unigue affine plane of order 3. But
already for g=3 numerous 2-(28,4,1) designs are known (see Brouwer [4])
and so we are left with the question what properties are characteristic
for the unitals associated with a unitary geometry. It is conjectured that‘

the following "anti-Pasch" axiom will do:
No four distinct points intersect in six distinct lines.

It is easy to show that this property holds for the classical unitals.
Suppose <xX>,<y>,<a>,<b>,<c>,<d> are six distinct points of U such that they

form the configuration of Figure 4.

Fitjure 4.
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Since a,b,c and d are linearly dependent, we may assume that

i
at+tb+tc+d=0

and therefore also that x=a+c, y=a+b. From (x,x) =0 it follows that
(a,?:) + {¢,a) = 0. Similarly, (a,b) + (b,a) =0 (from (y,y) =0) and
{b,c) + {¢,b) =0 (from (4,d8) =0 and the other relations). Since a,b and c

are linearly independent the Gram matrix

0 (a,b) (a,c)
(b,a) ¢ (b,c)
(c,a) {c,b) O

is nonsingular. Hence 0 *(a,b}(b,a){c,a}*—(a,c)(b,a)(c,b). This contradi;ts
the other relations,

in [D] we have characterized the classical unitals under additional
geometric assumptions. The basic steps in the proof are as follows. Using
nontrivial group theory it is easy to prove that once the automorphism
group of the unital is large enough, we can only have a classical unital.
The geometrical conditions we impose ensure the existence of such an ‘
automorphism group. More precisely, for the classical unital we have for

<x> €U that the linear transformation
vHeyv+a(x,vix, veEV

respects the hermitian form ( , ) if Tr(a) =0 and so acts as an auto-
morphism of the unital fixing all lines through <x>. These transformations
are called the unitary trangvectiong. The geometrical conditions imply the
existence of all possible unitary transvections and these generate a :

z—pransitive group of automorphisms.

We conclude with a discussion of the last paper [E] on semi-partial
geometries. The concept of generalized qguadrangle has been generalized in
a number of ways by repiacing the key axiom iv) as formulated in Theorem 5,

by a similar axiom. Most of these axioms can be formulated as:
For every point x and every line I, with x €L,
[{ y€L | x and y collinear }| € s,

where S is some finite subset of NU{Ol. By taking s={0,a} one gets the
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essential axiom for a semi-partial geometry {(for a complete definition see
[ely. In this paper we show that certain semi-partial geometries are al-
ready determined by some numerical data. There are two cases to consider,
namely H=0° and U=Q(0+1) in the notation of {E]. The line of proof in
both cases is essentially identical and roughly reads as follows. By
results of Debroey [7] it suffices to show that the points and lines of
such a semi-partial geometry satisfy the dual of the axiom of Pasch (for
obvious reasons called the diagonal axiom). For both the conditions U =a?
and U=0{0d+ 1) there is a straightforward geometric interpretation. The
hard part of the proaf consists in using this over and over again to show
that any two intersecting  lines generate a well-behaved "subspace". Once
this has been achieved it is no longer hard to show that the diagonal axiom

holds provided the semi-partial geometry properly contains such a subspace.
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H. A. WILBRINK

NEARAFFINE PLANES

ABsTRACT. In this paper we develop a theory for nearaffine planes analogous to the theory
of ordinary affine translation planes. 1n a subsequent paper we shall use this theory to give a
characterization of a certain class of Minkowski planes.

{. INTRODUCTION

Nearaffine spaces were introduced by J. André as a generalization of affine
spaces (see e.g., [1], [2], [3]). We shall restrict our attention to nearaffine
spaces of dimension 2, the nearaffine planes. Our set of axioms, defining
nearaffine planes is weaker than the one used by André. If, however, the so-
called Veblen-condition is assumed to hold (see Section 3), our definition
coincides with the one given by André in [2]. Our main goal will be to
generalize the theory of translation planes to the case of nearaffine planes.
In a second paper, we shall show the relationship between certain nearaffine
planes and Minkowski planes.

In Section 2 we give the definition of a near affine plane and some basic
results. Section 3 is devoted to the so-called Veblen-axiom. In Section 4 we
consider automorphisms of nearaffine planes, in particular translations and
dilatations. In Section 5 we show that translations exist whenever a certain
Desarguers configuration holds. In Section 6 we give an algebraic representa-
tion for nearaffine translation planes. Section 7 contains some information
on the relationship with Latin squares. Finally, in Section 8, we give a
construction of a class of nearaffine planes. More detailed information,
especially on the construction of nearaffine planes, can be found in [12].

2. DEFINITION AND BASIC RESULTS

Let X be a nonempty set of elements called points, L a set of subsets of X
called lines. Let|_Ibe an operation called join mapping the ordered pairs
(x,y), x, ye X, x & y,onto L (the join from x to y is denoted by xLly),and | an
eﬁuivalence relation called parallelism on L (I parallel to m is denoted by
L m). ;
We say that (X, L, L1,||) is a nearaffine plane if the following three groups
of axioms are satisfied.

Axioms on Lines:
(L) x,yexily forallx,yeX, x+y.
{L2) zexLIy\{x}&xL_Jy:xl_}z forall x,y,ze X, x # y.

Geometriae Dedicata 12 {1982) 53-62.  (0046-5755/82/0121-0053$01.50.
Copyright © 1982 by D. Reidel Publishing Co., Dordrecht, Holland, and Boston, U.S.A..
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(L3) xily=yllx=xllz=xldz=2zUx forall x,y,zeX,

yFxFz
The point x is called a basepoint of the line x Ll y. It is not difficult to show the
following proposition (see {2]). :
PROPOSITION 2.1. The following are equwalem
() x1_ly has a basepoint # x,

{ii) each point of x L ly is a base point of x 1y,

(i) xlJy=ylIx

Therefore we may define: a line x [ 1y is called straight iff xLly =yl Jx.
The set of all straight lines is denoted by G. The lines in L\G are called proper
lines.

Axioms of parallelism:
. (P for all Ie L, xe X there exists exactly one line with base point x

parallel to L.
We denote this line by (x || ).

(P2) xUy|lyLix forallx, yeX,x # y.
(P3) (g|h=>1eG forall gegG,leL.
Axioms on richness:
(R1) There exists at least two non-paraliel straight lines.
(R2) Every line | meets every straight line g with g |1 in exactly one
point.

We state some basic results which follow immediately from our axioms
(seee.g. [2]. [11]).
PROPOSITION 2.2. Two distinct lines with the same base point have no
other point in common.

PROPOSITION 2.3. Two distinct straight lines intersect in one point unless
they are parallel in which case they are disjoint.

THEOREM 24. A neardffine plane with commutative join is an affine plane.

We shall only consider finite nearaffine planes, i.e., nearaffine planes with a
finite number of points. The following result is easy to prove (see, e.g., [2],
L]

PROPOSITION 2.5. All lines of a nearaffine plane have the same number of
points.

The number of points on a line, which equals the number of parailel

straight lines in one equivalence class, is denoted by n and called the order
of the nearaffine plane.
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PROPOSITION 26. |X|=n?. \
?ROPOSITION 2.7. There are exactly n + 1 lines with « given base poini.

We denote by s + 1 the number of equivalence classes containing straight
lines. By (R1) we have s > 1.

PROPOSITION 28. Every point is on s+ 1 straight lines,
|L\,G‘ =n%n — ).

G|=n(s + 1},

3. THE VEBLEN-CONDITION

Many interesting examples of nearaffine planes {e.g., the nearaffine planes
associated with Minkowski planes) satisfy the following version of the
Veblen-condition (named (V') in {2]).

(Vi Let ¢ be a straight line, P, Q. R distinct points ong.! # g a line
with base point P and Se\{P}. Then (R||QLIS)n!+# ¥ (see

Figure 1).
<N
g

P 0 R

Fig |

Before we prove the main result on nearaffine planes which satisfy (V")
we prove a proposition valid in any nearaffine plane. Notice that until now
we have not used axiom (P2) and that the proof of this proposition only
requires the following weakened version of (P2) (this will be important in
our paper on Minkowski planes).

. {P2) Let g and /1 be two distinct parallel straight lines, x, xX'eg and
yoy'eh Then x Uyl X' [y <y L]y LIx.

PROPOSITION 3.1. Two paraliel lines which have their buse point on one
straight line are disjoint or identical.

Proof. Let ! and I' be two parallel lines with base points x and x' respec-
tively on the straight line g. If yeln{l’, y # x,x" then xUy =1|I'= x|y,
hence y LIx| yLIx" by (P2) and so yLix= v ix by (P1). Therefore x = x’
by (R2)and so I = I by (P1).

THEOREM 3.2. (André [2]). Let {1 =(X,L.LL|\) be a nearaffine plane
satisfving (V') and g a straight line of . {". Then the point set X and the line set
L, :={leL|l has base point on g} wiheGlh| g} constitute an affine plane
A =(X.L). ~ '
Proof. Let ImeL .14 m. I l]|m then [I~m|=0 by 23 and 3.1 1f I{m
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then |/~m| = 1. This follows from (R2) if I||g or m||g. Suppose, therefore,
that / and m have base points on g. The n line in L parallel to m partition
X by 3.1. Hence, at least one of these lines contains a point of I. Therefore,
by (V') and 2.5, each of these lines, so in particular m, contains exactly one
point of L Since |L | =n(n+1) and |I| = n for every leL, it follows from
[5, result 3.2.4c, p. 139] that .4, is an affine plane. ]

Remark. Notice that two lines of A" are parallel in A" (i.e., disjoint) iff they
are parallel in A"

4. AUTOMORPHISMS

In this section we generalize such notions as automorphism, dilatation etc.
to the case of nearaffine planes. Proofs which do not differ essentially from
the corresponding proofs for affine planes (see e.g., [4]) will be omitted.

DEFINITION 4.1. Let 4 =(X,L,L},|) and 4" =(X", L, L!,||') be two
nearaffine planes. A bijection a: X — X’ is called an isomorphism of A and
A
() (PLIQY =PI Q* forallP,QeX,P+0Q,
and
(i) || me>r|'m* forall I, meL.

If 4 =47, then « is called an automorphism of 4. A permutation o of the
points of A" is called a dilatation if PLIQ| P*L1Q*for all P # Q.

The automorphisms of a nearaffine plane form a group 7, the dilatations
form a group 9.

THEOREM 42 2« 4.

LEMMA 4.3. Suppose d€2P fixes PeX. Then Q%cPLIQ for all QeX,
X #£P.

THEOREM 4.4. Suppose €2 fixes two distinct points P and Q. Then 6 = 1.
Proof. Take ReX. IfR = Por R = (Q,then R* = R.if R # P, Q we have by
4.3: R°¢PLIR and R°c¢QLiR. By (R1) there is at least one straight line
g + PL1Q through P, so for Reg we have R°e(PLIR)N(QLIR) = {R}, ie,
R?= R. For an arbitrary R¢g we replace P by a point P’ in such a way that
P'LIR is straight and Q by some pomt Qeg\{P’}. It follows that R?e(P'LIR)
n(Q' LIR)={R}. O

COROLLARY 45. Let 6,,6,€9 and suppose P* =P% Q% =Q% for
distinct points P and Q. Then é, = §,.

DEFINITION 46. A dilatation t is called a transiation if t=1 or if
PLIP*||QLIQ" for all P, Qe X. The parallel class containing P |1 P* is called
the direction of © # 1. The translation t is straight if PLIP* is straight. We
denote by .7 the set of all translations.



25

NEARAFFINE PLANES

A translation t # 1 has no fixd point. Suppose P* = P ; then for any point
Q+ P wehave Q°# Q by4d4and Q°e P |Q by 4.3. Hence, if PL1Q is straight,
eUg'=prLIQ

This is a contradiction since there are at least two nonparallel straight
lines through P.

LEMMA 4.7. If ae o and 1€7, then ata™'e€Z . If in addition ac D and
t# 1, then t and ara™ ! have the same direction.

THEOREM 48. Let C be a parallel class consisting of straight lines and
T(C): = {reT |1 has direction C} v {1}. Then 7 (C) < D.

LEMMA 49. Let C and D be two distinct parallel classes consisting of
straight lines. Then 61 = 10 for all 6 T(C), te T(D).

LEMMA 4.10. Let C and D be two parallel classes containing straight lines,
o€7 (C)and te T{D). If o1+ 1, then o1 has no fixed points.

Proof. f C =D or if o or 7 == |, this is a consequence of 4.8. If C # D and
o,7 1, then P =P for some PeX implies PLIP°eC, PLIP* ‘D,

P°® = P*"', a contradiction.

For nearaffine planes the product of two translations need not be a
translation. For straight translations the following theorem holds.

THEOREM 4.11. Let C, D and E be three distinct parallel classes consisting
of straight lines. Suppose pe F(C}, 0T (D), 1€ 7 (E)and Pe X satisfy P*° = P".
Then po = 1.

Proof. If T =1, then P’ = P, hence po =1 by 4.10. If © + 1, then P* # P.

From 4.9 it follows that {P°)" = (P??)" = (P*}*°. Hence, 7 = po by 4.5. O
THEOREM 4.12. Let C and D be two distinct parallel classes consisting of
straight lines with | I (C)| = | T (D)| = n. Then

T = 7(C), T D)) =7(C)7 (D).

If in addition 7 (C) and T (D) are Abelian, then T = 7 (C)F (D).

Proof. By4.9,{ 7 (C), (D)) = T(C)7 (D)and | 7 (C)T (D)| = n*. By 4.10,
F(C)7 (D)is the Frobenius kernel of 2, hence it contains all fixed-points free
dilatations. Therefore 7 < 7{C).7 (D). Suppose 7 (C) and 7 (D) are Abelian.
Take pe7(C), se 7 (D) and P, Qe X. There exist p, €7 (C), 0,€F (D) such
that P#*°* = Q. Hence, ’

PLIP | (PLIPFp™: = prim ipriwe = 0Ligr™,
ie, poed . ]

A nearaffine plane having two distinct parallel classes C and D consisting
of straight lines such that | 7(C)| = | (D)[ = n is called a nearaffine transla-
tion plane. Notice that this definition is consistent with the deﬁmtlon of
translation plane.
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THEOREM 4.13. Let C, D and E be three distinct parallel classes consisting
of straight lines. If | 7 (C)| = | 7 (D)| = n, then

{a} JAE) is Abelian,

(b) 7(C)= T (D).

Proof. (a) Let 7,, 7,6 7(E). By 4.12 there exist p, €7(C), o €T (D) such
that z, = p,o,. By 4.9,

T e =Py 0T, =T1,p0, =1,1,.
{b) Define the automorphism ¢: .7 (C)— 7(D) as follows: Fix a line geE.
For each pe 7 (C) let ¢(p)e 7 (D) be determined by g°¢® = ¢, 1

COROLLARY 4.14. If in addition to the hypothesis of 4.13, | T(E)| = n, then
FT(C)= T (D) = F(E) and these groups are Abelian.

So far we have not used (P2) in this section. Using (P2) it is possible to
prove the following theorem.
THEOREM 4.15. The order n of a nearaffine translation plane is odd or a
power of 2.

Proof. Suppose n is even and let C and D be two distinct parallel classes
consisting of stralght lines such that |7(C)|=|7(D)| =n. There exists
peZ(C)such that p? = 1, p # 1. Take e 7 (D} and Pe X. Then,

PLIPP | PPt LI(PPoye = = PP~ LIP| PLIPP"~ L.

Therefore P??, PP°~'eP|JP*°¢D. Since P! and P* = (P** Y2 are on
the same straight line of D it follows that P77~ ! = P*? je, ¢® = 1. Hence.
Z (D) is an (elementary Abelian} 2-group. O

5. A DESARGUES CONFIGURATION

{ class consisting
of straight lines. Consider the following condition (cf. [2], [3]).

(D) Little Desargues configuration. If P,P,Q,0,R,R'eX are
distinct points such that PLIP, ¢l 1Q, RLIR’ are distinct
lines of C, then PLIQ||P'LIQ and PLIR|P'LIR 1mply
QUIR|| @ LIR’ (see Figure 2).

Analogous to the situation for affine planes, the validity of (D1) is seen to be
equivalent to the existence of all possible translations with direction C.

THEOREM 5.1. C satisfies (D1)<>|7(C)| = n.

The following theorem will be useful in our paper on Minkowski planes.
Again notice that we only make use of (P2').

THEOREM 5.2. Let A" =(X, L, L,||) be a nearaffine plane in which the
Veblen-condition holds, and let C be a parallel class of straight lines. Then
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(using the notation of 3.2), C satisfies (D1} in A < C satisfies (D1) in .V for
allgeC.

Proof. = : Every translation of . 4" with direction C is easily seen to induce
a translation of .4°_ with direction C for every geG.

<«: Let P, P, Q, (. R, R’ be distinct points such that PLI{P’, Q1 Q' and
RLIR’ are distinct straight lines of C and such that PLIQ|P'LIQ,
PLIR| P LIR'. Let S (resp. §’) be the base point of the line in 4" pup Dassing
through @ and R (resp. Q' and R’}, (see Figure 3). Application of (D1} in
N o vields S LIQ| S LIQ"

Fig. 3.

Let D be a parallel class of straight lines different from C, and let T (resp. T')
~ bethe point of intersection of P || P' and the straight line of D passing through
R (resp. R’). Application of (D1) in .47, . to the triangles TQR and T'Q'R’
yields TLIQ|| T'LIQ', hence QLIT | @ LIT". Finally apply (D1)in .4, .
to the triangle TQR and T’ Q' R’ to obtain QLR | Q' LIR". 0

6. ALGEBRAIC REPRESENTATION

In this section an algebraic representation is given of the nearaffine transla-
tion planes. The tedious but straightforward proofs are omitted. For details
see [12]. ‘

Let G and G’ be two groups of order n written additively. We do not assume
that G or G’ is Abelian or that G > G’ (although the same symbol + is used
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for addition in both groups). Let # be a set of (n ~ 1) mappings f,: G - G,
i=1,...,n— 1, such that the following conditions are satisfied.

(i) f;isabijection foralli=1,..,n~ L

(i) f,0)=0 foralli=1,.,n—1.
(i) fi@=—f(—o) foralli=1,.,n—1aeG.
(iv) flw#f for1<i<j<n-—1,0eG\{0}.
(v Foralli=1,...,n— 1 either,

Veearioy 3pec L@ + BY # fi@) +£,(B)]

or
Vases L@+ B) = f,@)+ £(B) ]
and f,— f; is a bijection for j=1,...,n— 1,j#1i.

Given such a set of mappings & it is possible to construct a nearaffine
translation plane in the following way. Put X:=G x G". For x,yeX,
x={( g = (. 1), x # y, define:
()G} ife=n,
xUyi= {{( &) aeG} =0,
{E+0 & +f|oeG) f#n ¢ +n'and
f(=&+m=—C+7.

The line set L is just the set of all x L1y, x# y. For any line I = x|y we let
dhe{0,1,....,n — 1, oo} be determined by

w fE=n,
di):=<0 f& =y,
i M #Fn, S Fnandfi(—c+m=—C+1.
Notice that d() only depends on [ and not on the special choice of x and y.
Define parallelism by

1 m:<>d(l) = d(m),

then 4 = (X, L, LI, ||)is a nearaffine translation plane. Conversely, every
nearaffine translation plane can be described in this way. The parallel classes
C,:={leL|d() =0}, C_:={leL|d(l)= o0} consist of straight lines. For
each «eG, the mapping (£, ') — (x + &, £') is a translation with direction C,,.
Foreach o' €G', themapping (£, {') — ({, o’ + {')is a translation with direction
C, Fori=1,.,n~1, C;:={leL|d(l)=1i} consists of straight lines iff i
satisfies the second alternative of (v).
The Veblen-condition (V') is satisfied iffor I Si<j<€n—1,

(@) f, —f;: G — G'is a bijection,

(b) f;—f,: G’ — G is a bijection,

(c) for all ke{l,...,n — 1} which satisfy the second alternative of (v) and
for all yeG there is a unique solution « of £, (v)=f,(y + &) — £, ().
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7. NEARAFFINE PLANES AND LATIN SQUARES

It is well known that the existence of an affine plane of order n is equivalent
to the existence of n — 1 mutually orthogonal Latin squares (MOLS) of order
n (see [5]). For nearaffine plane the following result holds.

THEOREM 7.1. If A is a nearaffine plane of order n with s+ 1 parallel
classes containing straight lines (s < n), then there exist s MOLS of order n.
Proof. The n{s + 1) lines in the s + 1 parallel classes consisting of straight
lines together with » lines from a parallel class consisting of proper lines,
all having their base points on a fixed straight line, constitute an (s + 2) - net
of order n. This is equlvalent to the existence of s MOLS of order n (see,

eg. [5]) a

Let N be an integer, N > 2, and suppose N has prime decomposition N =
= pi p3 ... pi Define

s(Ny:= min p¥—1.
1<i<k

It is well known (see, e.g., [ 5]) that there exist at least s(N) MOLS of order N
{the so-calied MacNeish bound). The following theorem shows therefore that,
as far as nearaffine translation planes are concerned, we cannot hope for
interesting applications of 7.1

THEOREM 7.2. Let A" be a nearaffine translation plane of arder nwiths+1
parallel classes containing straight lines. Then s < s(n).

Proof. Notice that s — 1 of the JSi’'s associated with A, say f,,/;,.-../,_ ,,
satisfy the second alternative of (v) of Section 6. Put ¢, : = f of,i=1,2,.
Then ¢, —~ ~¢;:G— G is a permutation of the elements of G, I<€i<j < s.
Hence, the Latin squares AV = [a{ ] defined by

affy:‘=¢i(x)+y, i=1,..,s x, yeG,

are mutually orthogonal. Since ¢,,¢,,...,¢,_, are automorphisms of G it
follows by a theorem of H. B. Mann (see [6] or [9]) that s — 1 < s(n). Suppose
s—1=sn)=p*—1, p a prime, aeN. It follows from the proof of Mann’s
theorem that the elements s 0 of a Sylow p-subgroup P of G are all in different
conjugacy classes. Thus — y + x + yeP=> — y + x + y = x for all xe P, yeG.
In particular, if ye Ny(P) then x +y = y + x for all xe P, i.e,, P < Z(N4(P)).
By a theorem of Burnside (see [ 7] or [8]), G contains a normal p-complement
N. Since |[G\N| and |N| are coprime, N is a characteristic subgroup of G.
Thus, the rows and columns of A™",...,4%" D which correspond to the
elements of N, yield mutually orthogonal Latin subsquares of order n/p™
By a theorem of Parker (seec [10]) such a set of s— 1 MOLS cannot be
extended to a set of s MOLS, a contradiction. Hence, s — 1 <s{n), ie.,
s < s(n). a0
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8. CONSTRUCT!ON OF NEARAFFINE PLANES

Using the representation of nearaffine translation planes of Section 6, we
treat a special case of the more general construction described in [127]. The
nearaffine planes thus obtained turn out to be associated with certain
Minkowski planes. Let p be a prime, 4 a positive integer and n = p*. For the
groups G and G’ of Section 6 we take the additive group of GF(n). Fix an
automorphlsm ¢ of GF(n), and for each ae GF(n)* define f, : GF(n) > GF (n)
by f,(0):=0and

f(x):=ax"", xeGFn)*, if ais a square,
L) =alx™ ), xeGF(n)*,ifa is a nonsquare.

The set #:={f,|acGF(n)*} is easily seen to satisfy the properties (i)....,(v)
of Section 6. The corresponding nearafline plane is of order n, and s= 1. It
is also not hard to show that the Veblen-condition holds in these nearaffine
- planes.
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FINITE MINKOWSKI PLANES

ABSTRACT. In this paper we give second characterizations of a certain class of finite Minkowski
planes.

1. INTRODUCTION

It is well known, see e.g. [ 5], that with each point of a Minkowski plane there
is associated an affine plane, its so-called derived plane. It is the purpose of
this paper to show that, under certain additional hypotheses, with each point
of a Minkowski plane there is also associated a nearaffine plane, its residual
plane. In addition we show that the ‘known” Minkowski plane are charac-
terized by the fact that these nearaffine planes are nearaffine translation
planes (see [9]). Using this result a configurational condition is obtained in a
completely natural way which characterizes the known Minkowski planes.

2. BASIC CONCEPTS

Let M be a set of points and £ *, ¥, ¥ three collections of subsets of M.
The elements of ¥:= 2+ L. ¥~ are called lines or generators, the elements
of € are called circles. We say that .4 =M, ¥*, %", %) is a Minkowski
plane if the following axioms are satisfied (cf. [5]):

(M1): &t and &~ are partitions of M.

- (M2): [I* Al |=1 foralll*e#™*,I"e¥".

(M3): Given any three points no two on a line, there is a unique circle
passing through these three points.

(M4): [lnec|=1 forallleZ, ce¥.

(MS5):  There exist three points no two of which are on one line.

.(M6): Given a circle ¢, a point Pec and a point Q¢c, P and Q not on

one line, there is a unique circle d such that P, Qedand cnd =
= {P}.

Two points P and Q are called plus-parallel (notation P||, Q) if P and Q are
onaline of £*, minus-parallel (P | _ Q)if P and Q are ona line of & ~. Parallel
(P | Q) means either P|, Q or-P|_Q. For PeM, e = +, — we denote by
[P]. the unique line in £* incident with P. If P, Q and R are (distinct) nonpar-
allel points, then we denote by (P, Q, R) the unique circle containing P, Q
and R. Two circles ¢ and d touch in a point P if cnd = {P}.

Fix a point Z and put

M,:=M\([Z].v[Z].)
L,:={c*|ce¥, Zec}u {I*|le\{[Z]. ,[Z]_}},

Geometriae Dedicata 12 (1982) 119-129. 0046-5755/82/0122-0119801. 65.
Copyright © 1982 by D. Reidel Publishing Co., Dordrecht, Holland, and Boston, U.S.A.
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where the * indicates that we have removed the point that the circle or line
has in common with [Z], w[Z]_. Then .#,:=(M,, L,)is an affine plane
with pointset M, and lineset L, (see, e.g, [5]). We call .#, the derived plane
- with respect to the point Z. We shall only consider finite Minkowski planes,
i.e., Minkowski planes with a finite number of points. For finite Minkowski
planes (M6) is a consequence of the other axioms (see [5]). It is easily seen
that [£*|=|Z"|=|l|=|c|=:n+1 for all le#,ce¥. The integer n is
called the order of the Minkowski plane. Notice that n is also the order of
the derived planes .#,.

Following Benz [1] we sketch the close relationship between (finite)
Minkowski planes and sharply 3-transitive sets of permutations. Let Qbe a
finite set, |Q| =n+1 >3, and G a subset of §°, the symmetric group on Q,
acting sharply triply transitively on Q.

Define

M =QxQ

L% = {{(p)|xeQ}| B},
#°:= ({@)|pe0}]eca),
¢ = {{(a,o?)|2eQ}|geG}.

Then #:=(Q,G):=(M,¥*,¥,%) is a Minkowski plane of order n.
Conversely, every Minkowski plane can be obtained in this way.

Two Minkowski planes # = (Q, G)=(M,Z*, ¥ G and 4 = (§),G)=
= (M, %", ¥~ ¥ are said to be isomorphic if there is a bijections : M - M’
such that

P=% and € =¢.

Since s maps the disjoint lines of #* onto disjoint lines there are only two
possibilities, either (% = %° or (£°) = £ % e = +,—. In the first case s
is called a positive isomorphism in the second case a negative isomorphism. If s
is a positive isomorphism then there exist bijections a, b:2 - Q' such that
{00, BY = (o, BB for all o, B, and G’ = a~Gb. If 5 is a negative isomorphism
then there exist bijections a,b:Q— Q' such that (x, B = (8%,0°), and G' =
= b1 G ta. It follows that we may assume w.lo.g thatideG.

A (positive, negative) automorphism of a Minkowski plane .# is a (positive,
negative) isomorphism of .# onto itself The automorphism group
Aut (©, G) < $%"% of the Minkowski plane (Q, G) is given by

- Aut(Q,G)={(a,b)la"'Gb=G}u{(ab)la'Gb=G"'}1
where t is the permutation which sends (x, ) to (8,).

3. THE RESIDUAL PLANE

Let # =M, Z*,#7,%) be a Minkowski plane. Fix a point ZeM and
define M, = M\([Z], u[Z]_). We have already remarked that the lines #
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[Z].,[Z]. together with the circles which are incident with Z are the lines
of an affine plane with pointset M,. We shall show that the lines # [Z]_,
[Z]. together with the circles not incident with Z are the lines of a nearaffine
plane with the same pointset if suitable conditions are assumed to hold in #.

For each point PeM,, we let the points P* and P~ be defined by P*: =
[Z], n[P).,P ™ :=[Z]_n[P], . The restriction of a line / or circle c to
Mjisdenoted by I* : = In M resp.c* : = ¢ " M,. For any two distinct points
P,Qe M, we define

PLIO: = * iff P,Qcle ¥,
Q:= {P}u(P*,P7,Q)* iff P and Q are nonparallel.

Since two circles can have at most two points in common it follows that
PLIQ=QLIP if and only if P| |Q = I* for some le &, provided the order
n of .# is at least 5. The verification of the axioms (L1), (L2) and (L3) (see [9])
is now straightforward. In order to define parallelism we have to require that
the following condition holds in .# for every point Z.

(A) LetP,,Q,,P,,Q,e M, and suppose that P, and Q,, P, and
Q,, P, and P, are nonparallel. If there exists a circle ¢ touching
(P;,P;,Q,)in P; and touching (P, P;,Q,) in P;, then
there also exists a circle d touching (P, P{,Q,) in P; and

touching (P;, P;, Q,) in P; (see Figure 1).

Fig. 1.

In the definition of P, L1Q, || P,LIQ, we have to distinguish several cases.
Case 1. P, and Q, parallel, say P, LIQ, = If for some |, e £*.

P, LIQ,|P,L1Q,:«P,L1Q, =1} forsomel,e <"
Case 2. P, and Q, nonparallel, P, P, parallel, say P, P,€l.#*. From [9],
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- proposition 3.1, it is clear that we have to define

P, LJQ‘l"PZ LiQ,: =P, L1Q,=P,L1Q,

(P1 UQ;)“(Pz UQ2}= Q-
Case 3. P, and Q, nonparallel and P, P, nonparallel. Put P, =[P,], N
n[P,]_ and P,:=[P,]_n[P,], (sce Figure 1). P,LIQ,||P,LIQ, =
<>There exists P, |Q; such that

(Pa LJQg,)(“(PtﬁQJ:gz(Pst;;)m(Pg,UQz)-

Notice that condition (4) is equivalent to: P, 1Q,|P,LIQ, implies
P,L1Q,||P,LIQ,, ie, parailelism is a symmetric relation. We prove that
parallelism is a transitive relation. Suppose P, LIQ, | P,11Q, and P, L IQ, |
P,L1Q, (with distinct P, P, , P,). We prove that P, | 1Q, | P,L1Q,.

Case (a). P,| Q, . Trivial

Case (b). P, }Q,.P,, P, el for some le£. The transitivity follows at once
from the following observation. If ¢, d, e, €% and ¢ and d touch in a point P, d
and e touch in the same point P, then ¢ and e touch in P. To show this suppose
Qecne,Q # P, then there are two circles through @, namely ¢ and ¢, touch-
ing 4 in P. This contradicts (M6).

Case (). P }Q,,P,€[P,],.P,e[P,]_, for some e= +, —. By definition
P,L1Q, | P,LIQ,.

Case(d). P, }Q,,P, | P, for some ¢=+,—,P,|P,,P,|P,. Put P :=
[P,1,n[P;]_,. Since P, LIQ, || P, LIQ, there exists Q, such that P, 1Q, |
P, L1Q,|P,LIQ,. Apply case (b) to find P, LIQ, || P, LIQ, and case (c) to
findP, L1Q, || P,L1Q,.

Case (). P, |Q,,P,| P; for some e= +,—,P,{P ,P,fP,. Put P, :=
=[P,],n[P,]_,. There exists Q, such that P, 11Q,|P,LIQ, and
P,L1Q,|P,LIQ,. Apply case (b). ‘ ‘

Case (f). P, }Q,, P, , P,, P, mutually nonparallel. Put P, : =[P, ], n[P,]_.
There exists Q, and that P, L1Q || P,L1Q, and P,LIQ,| P,L1Q,. Apply
case (d)tofind P, LI1Q, | P,LI1Q, andso P, LIQ, | P,LIQ,.

Let I* be the set of all PLIQ, P,QeM,, P+ Q. It is not hard to show
that #%:=(M_,1% 1] ||) satisfies all the axioms of a nearaffine plane
except possibly (P2) or (P2'). For (P2) to hold we have to require: '

(B) LetP,,Q,,P,,Q, be points as in (A). If P, (P}, P; ,Q,) and

P,e(P/,P,,Q,) Thencircles ¢ and d as described in (A) exist.
If we content ourself with the weaker (P2') we have to require:
(] Letzbe + or —, A and Btodistinct pointson[Z],, A+ Z+ B

or
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and ¢, and ¢, two circles touching in 4. Put(see F igure 2)
C;:=[Z]_,n¢, i=12,
P:=[A4]_,n[C],, i=12,
Q,:=[Bl.ne, i=12,
D;:=[Q),n[Z].,. i=12,
d;:=(P,D,B) i=1,2
Then d, and d, touch in B.

Fig. 2.

If .# is a Minkowski plane satisfying the conditions (A) and (B) or (A) and
(C) and Z a point of .#, then the nearaffine plane .#Z is called the residual
plane with respect to Z.

For the remainder of the section let 4 = (M, £+, ¥, ¥¢)be a Minkowski
plane satisfying the conditions (A) and (C). Since |_| and || are defined strictly
in terms of the incidence in .# it follows at once that an automorphism of
A fixing a point Z, induces an automorphism of .#7, ie., Aut (#), <
Aut (#?). In fact, Aut (H), > Aut (#?) as we shall see in a moment. The
crucial observation is the following lemma.

3.1. LEMMA. Let Z be a point of # . For any two nonparallel points A and B
of M, let [ A, B] be the set of points consisting of A, B, Z and the points Ce M ,,
nonparallel to A and B, for which there is no set P |IQ\{ P} containing A, B and
C. Then

[4.B}=(4, B, 2).

Proof. Clearly both [4,B] and (A, B, Z) contain A4, B,and Z. Let Ce
(A,B,Z), C+ A, B, Z then (4, B, C) = (A, B, Z). Suppose for some P,QeM,
we have A,B,CePlIQ\{P}. Then A,B,Ce(P*,P~,Q\{P*,P"}, s0
(4,B,C)=(P*,P~,C) a circle not passing through Z, a contradiction.
Conversely, let Ce[A4,B],C+# A,B,Z and suppose Ce&(A,B,Z). Then
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Z¢(A, B, C) and so (4,B,C) intersects [ Z], and [Z]_ in points P* and P~
respectively, different from Z. So, with P defined by P=[P*]_n[P7],,
A, B, C are on P|_IQ\{P}, a contradiction. U

The lemma just proved shows that the residual plane .#% completely
determines the Minkowski plane .#. The lines of .# can be recovered from
the straight lines of .#Z, the circles not containing Z from the proper lines
of MZ, and the circles containing Z-from the sets [4, B]. This proves the
following theorem.

| 32. THEOREM. Let Y and Z be the points of 4. Then

@) Y ~ M7 iff there exists pe Aut (H) such that Y= Z.

(b) Any automorphism of #Z can be extended to an automorphism of M
fixing z.

{c) Aut (#), = Aut (#£°).

It is not hard to show that for any point Z of .# the residual plane .#*
satisfies the Vebien-condition (V). In fact we can prove somewhat more.

3.3. THEOREM. Let ZeM,le %, 1+ [Z], . [Z]_ and let Y be defined by
Y=In([Z]),w[Z].). Then M}~ 4 , where I* is the straight line N{Y}
of .#% (notation as in [9]).

Proof. Define an isomorphism ¢: M, - M, of #Z% onto .#, as follows. For
PeM,, P¢l* we define P*: = P, and for PeMZ,PeI P*:=[P]_,n[Z],,
where ¢ is determined by ie £*.

As a direct consequence of this theorem we have the following resuit.

34. THEOREM. If the derived .# , is a translation plane for every ZeM,
then the residual plane #% is a nearaffine translation plane for every Ze M.
Proof. Apply 3.3 and 5.2 of [9]. : - d

As a converse to this theorem we mention the following theorem.

3.5. THEOREM. Let Z be a point of #. if #% is a nearaffine translation
plane, then # , is a translation plane and .#* and M , have the same translation
group.

Proof By32every automorplusm of 4% is also an automorphism of .#,,
and it is not hard to show that a straight translation of .#Z with a direction
corresponding to &* is also a translation of .#. Let 7, and . _ be the
translation groups of .#Z with directions £* and £~ respectively Since
7 , and & _ are also translation groups of .#, it follows that 7, and & _
are elementary abelian. Hence, by 4.12 of of [9} the set 7 of all translation
of #%isagroupand 7 = , 7 _ =the full translation group of M,. [



FINITE MINKOWSKI PLANES

4. CHARACTERIZATIONS OF THE KNOWN FINITE MODELS

Using the correspondence with sharply triply transitive sets of permutations
all known (finite) Minkowski planes can be described as follows, Let P be a
prime, k a positive integer, : = p* and ¢ an automorphism of GF(g). Let G(¢)
be the set of permutations acting on the projective line Q: = PG(1,q) = GFlg)v
w{oo} given by

ax+b A .
- ex + d’ asbsc;de GF(q), ad—ﬁc == (nonzero) Square in
GF(q),
ax®+b .
- i d a,b,c,de GF(g), ad-bc = nonsquare in GF(q),'

ie, Gl¢)=G,V¢G,, where G, : = PSL(2,q) and G, : = PG(2,g\PSL(2, ).
Then G(¢) is sharply triply transitive on Q (cf. [7], [8], [10]). The residual
planes of (€, G(¢)) are easily seen to be the nearaffine translation planes
described in [9], Section 8. We shall show that a Minkowski plane whose
residual planes are nearaffine translation planes, is isomorphic to an (Q, G(¢)).

Let ¢ be a circle of a Minkowski plane .# of order n and Z a point of
M, Z¢c. If A, is augmented to a projective plane, then the points of ¢* =
AN[Z],v[Z].) together with the two ideal points corresponding to
#* and ¥~ constitute an oval in this projective plane. In n is even, there
exists a point (the nucleus of the oval) in the projective plane such that the
n+ 1 lines incident with this point are the n+ 1 tangents of the oval. If
n is odd, each point of the projective plane is incident with 0 or 2 tangents
(see [3]). From this observation we deduce the following lemma.

4.1. LEMMA. Let # be a Minkowski plane of order n. If n is even, there can-
not exist 3 distinct circles ¢, ¢,,d such that ¢, and ¢, touch in a point Z and c,
touchesd in P, # Z,i=1,2. In any case there cannot exist 4 distinct circles
¢,,C;,Cy and d such that c,, c,, c, touch in a point Z and such that c, touches
dinapointpiaéz i=1,2,3

Proof. Case n is even. Suppose circles ¢, , ¢, and d as described exist. The
lines [[Z], nd]_ and [[Z]_ nd], are tangents to the oval corresponding
with d in the projective plane associated with .#,. They intersect in a point of
‘M. Also ¢, and c, are tangents to the oval. They intersect in an ideal point
of the projective plane, a contradiction.

Case n is odd. Now ¢, ¢, and ¢, correspond to tangents of the oval d in
the projective plane associated with .#,. They intersect in one (ideal) point,
a contradiction. O

42. THEOREM. Let # = (G)=(M, ¥, %", %) be a Minkowski of
order n 2 5. Suppose conditions (A) and (C) hold in # and that #% is a nearaf-
fine translation plane for every point Z. Then # ~(Q, G(¢)).
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Proof. Fix «, € For each point (x, , f)e M there is an elementary Abelian\
group 7 _(a,, ,8) of translations of .#“® and .4, ,,and I _(x,,p) <
Aut (#)(3.2,34,3.5). Bach 7 _ («,, f) fixes all lines of .Sf and one lines of
£ (namely the line {(o, ﬂ)]aeﬂ}) Using the notation of Section 2, each
J _{a,, B) consists of positive automorphisms of the form (1, b), where bes®
fixes f and Gb = G, i.e., for each < there is an elementary Abelian group |
B(f) which fixes g, acts regularly on Q\{B}, and for which GB(f) = G. Define
B:={B(f)|peQ), then B is doubly transitive on Q and GB = G. Therefore,
G is a union of cosets of B and in particular B < G. Hence, no nontrivial
permutation in B leaves 3 letters fixed. By a theorem of Feit ([4]), B contains
a normal subgroup of order # -+ 1 or there exists an exactly triply transitive
permutation group B, containing B such that [B,:B]<2. Suppose B
contains a normal subgroup of order n + 1, then B also contains a sharply
doubly transitive subgroup B*. The circles {(x, af)|aeQ}, ge B* together
with the lines le & now constitute an affine plane of order n + 1 and hence
configuration as described in 4.1 exist, a contradiction. Therefore B< B,
where B, is sharply 3-transitive, and [B,, : B] < 2. All sharply triply transitive
groups are known (see [6]). If n is even, then B, ~ PSL(2,n)and so B=G =
= PSL{2,n), i.e. # is the classical Minkowski plane of order n = 2*. Ifnis odd,
there are at most two sharply 3-transitive groups of degree n 4+ 1 and such a
group certainly contains PSL(2, n). The Sylow p-subgroups B(f) of B are the
Sylow p-subgroups of PSL(2,n). Therefore B < PSL(2,n) and since |B| >
= 1(}1 + D(n)(n - 1) it follows that B~ PSL(2, n). Thus, with G, : = PSL(2,n)
and G,: = PGL(2,n)\PSL(2, ),

G=G,V¢G,

for some ¢€S%. It remains to show that ¢ is an automorphism of GF(n). If
X, y and z are three distinct points of , then thereisa geG, such that x? = x4,
y = y‘ z%=12% for otherwise there exists heG, such that x*= x®,
y? =y 2% =2 ie, h=1, contradicting heG,. It follows that we may
assume w.l.o.g. that ¢ fixes 0, I and c0. If we do so it also follows that

x?

prae = square it GF(n) for all x, yeGF(n), x+ y,

for geG, determined by x® = x%, y® = )% o = 0¥ = o0? has determinant

{(x?— "')/(x y). By a theorem of Bruen and Levinger (see [2]) it follows that

¢ is an automorphism of GF(n). O
Using the previous theorems it is possible to give a geometric characteriza-

tion of the Minkowski planes (Q, G(¢)). Consider the following configuration-

al condition:

(D) Let ebe + or — ,le % and V, W to distinct points on . Suppose
¢ and ¢’ are to distinct circles touching in V. Let Y and Q be
two distinct points on ¢, Y| W, Q { W. Define
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Y’::c’n[Y]fg.
Q' :=¢nlol.,
d =Y, Q. W),
d =Y, QW)

Then d and &' touch in W (see Figure 3).

Flg 3.

Notice that (D) is nothing but a special case of the Desarques configuration
(D1) in .#% on the points P, Q,R, P, @', R".

4.3. THEOREM. Let .# be a Minkowski plane of order n 2 5, and suppose
(D) holds in # . Then A is isomorphic to one of the planes (Q, G(¢)).

Of course the proof of 43 is based on 4.2 and it is clear that {D) implies
(A). Also (C) is a consequence of (D).

44. LEMMA. Let # be a Minkowski plane of order n

(@) If nis even then (A) implies (B) (hence (C})).

(b) In any case (D) implies (C).

Proof. (a) The following statement is easily seen to be equivalent to (B):
If the circles ¢ and d as described in (A) exist, then P, e(P;,P;,Q,)<
<P,e(P/, P{, Q,). To prove this last statement, consider the configuration
of condmon (A) and suppose ¢ and 4 exist, P,e(P{,P[,Q) but P, ¢(P;,

P3,Q,) Let e be the circle through P, touchmg P;, Pz ,Q,)and cin P;,f
the circle through P, touching (P, P1 ,Q,)in P,. By (A) e and f touch in
P, . Similarly it follows that the circle g through P, touching (P}, P;,0,)
m P, touches f in P, . Therefore, g and e touch in P and so the circles g, e,
Py ,P ,@,) touch each other in P;, P2 , P, . This contradwts 4.1 since n is
even.

(b} Consider the configuration of condmon (C). Weclaim that (P,,Q,, Z)
and (P,,Q,, Z) touch in Z. If (P,, Q,, Z) touches ¢, in @, for i = 1, 2, this fol-
lows from (A). Suppose, therefore, that (P, @, , Z) does not touch ¢, in Q,,
i.e, suppose that (P ,Q,, Z) has another point E, # Q, in common with
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¢, Put E,:=[E]_,nc,. By (D) the circles (E,,(,,2Z) and (E|,Q,,2) =
—(PI,QI,Z)touchmZ Suppose(Ez,Q Z)intersects [4] _,inapoint P, # P,.
Let Y be the point of intersection of [Z], and (E,, P, Cz) If we apply (D)
twice it follows that (E,, P,, Y) and (E,, C,, Y) both touch (E,, P,,C,} in
Y. Hence (E,,P,, Y)=(E,,C,, Y) and impossibility because P l] C,. We
have proved P,e(E,, Q,,Z),ie, (P,,Q,,Z)and (P,,0,,Z) touch in Z So:
¢, and ¢, touch in A4 implies (P,,Q,,Z) and (P,,Q,,Z) touch in Z. It is
easily seen that the converse also holds. If we replace ¢, by d,,i=1,2, it
follows thatd, and d, touchin B. O

To finish the proof of 4.3 we have to show that all residual planes .#Z are
nearaffine translation planes. By 3.4 it suffices to show that all derived planed
M , are translation planes.

4.5. LEMMA. Let .# be a Minkowski plane satisfying (D), then 4, is a
translation plane for every point Z.

Proof. Let ZeM and P,Q,R,P,Q',R'eM, such that P|_P,Q|_Q
R| _R’, the line PQ (in .#,) is parallel to P’'Q’ and PR is parallel to P'R".
We have to show that QR is parallel to Q'R’, i.e, we have to show that the
circles (Z,Q,R) and (Z,Q',R’) touch in Z. We assume here that P,Q,R (and
also P, @', R’) are mutually nonparallel. The other cases follow from the
cases we do consider. Put Y =(P,Q,R)n[Z], . If we apply (D) to (P, 0, Z),
P,0,.2),(P,3,Y)=(P,Q,R) and (P,Q',Y), it follows that {P,Q,R) and
(P,Q',Y) touch in Y. Application of (D) to (P,R,Z),(P',R',Z),(P,R,Y)=
=(P,Q,R) and (P',R,Y) yields (P,Q,R) and (P',R,Y) touch in Y. Hence
(P,Q,Y)= (P R,Y)=(P, Q'.R). Finally we apply (D}to (Q,R, Y}Q, R, Y),
(Q.R,Z)and (Q', R', Z) and obtain the desired result. O

Notice that it is possible to give a proof of 4.3 without using the theory of
nearaffine planes. Show directly, using (D), that any translation of a desired
planes .#, extends to an automorphism of .# . Then argue as we did in4.2.
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TWO-TRANSITIVE MINKOWSKI PLANES

ABsTRACT. In this paper we determine all finite Minkowski planes with an automorphism
group which satisfies the following transitivity property: any ordered pair of nonparallel
points can be mapped onto any other orderéd pair of nonparallel points.

1. INTRODUCTION

All known finite inversive planes have a two-transitive group of automor-
phisms. Conversely, every inversive plane admitting an automorphism
group which is two-transitive on the points, is of a known type (cf. [9]).

For Minkowski planes the situation is quite similar. All known finite
Minkowski planes have an automorphism group acting two-transitively
on non-parallel points. In this note we shall show that this property is
characteristic for the known Minkowski planes. More precisely, we shall
prove the following theorem.

THEOREM. Let # be a finite Minkowski plane of odd order n, and suppose

that # admits an automorphism group T acting two-transitively on non-

parallel points. Then n is a prime power, # ~ # (n, §) for some field auto-
morphism ¢ of GF{(n), and I contains PSL(2, n) x PSL{2, n).

For a definition of .# (n, ¢) see Section 2. As Minkowski planes of even
order n only exist for n.a power of 2 and are unique for given order n =29
this result completes the classification of the Minkowski planes with an
automorphism group acting two-transitively on nonparallel points.

2. DEFINITIONS, NOTATION AND BASIC RESULTS

Let M be a set of points and £+, ¥, ¥ three collections of subsets of
M. The elements of ¥ =" ¥~ are called lines or generators, the
elements of € are called circles. We say that # = (M, %%, %™, %) is a Min-
kowski plane if the following axioms are satisfied (cf. [8]).

M1):  £* and & are partitions of M.

M2): |I*nl|=1 foralll*e ¥, le¥".

(M3):  Given any three points no two on a line, there is a unique circle
passing through these three points.

M4):  |lnc=1 forallle¥, ce¥.’

(M5):  There exist three points no twio of which are on one line.

Geomerriae Dedicata 12 (1982) 383-395.  0046-5755/82/0124-0383%01. 95.
Copyright © 1982 by D. Reidel Publishing Co., Dordrecht, Holland, and Beston, U.S.A.
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(M6):  Given a circle ¢, a point Pec and a point Q ¢c, P and Q not on
one line, there is a unique circle d such that P, 0ed and cnd =
{P}.

Two points P and Q are called plus-parallel (notation P|, Q) if P and Q
are on a line of £, minus-parallel (notation P||_Q)if P and Q are on a
line of £~ Parallel (notation P|/Q) means either P||,Q or P|_Q. For
PeM we denote by [P], (resp. [ P]_) the unique line in & * {resp. £ ") inci-
dent with P.If P, Q and R are (distinct) nonparallel points, then we denote by
(P, Q. R) the unique circle containing P, Q and R. Two circles ¢ and d touch
in a point Pif cnd = {P}.

We shall only consider finite Minkowski planes, i.c., Minkowski planes
with a finite number of points. For finite Minkowski planes (M6) is a conse-
quence of the other axiom (see [8]). It is easily seen that || = || =
[l =|c|= :n+1for all le &, ce'6. The integer n is called the order of the

~Minkowski plane. Fix a point P and put

M,:=M\([P], u[P].),
L,:={c*|ce¥, Pec}u{i*|le £\{[P],,[P].}},

where the * indicates that we have removed the point that the circle or line
has in common with [P], W[P]_. Then #,:=(M,, L,)is an affine plane
with point set M, and line set L, (see,e.g,, [8] The projective plane associat-
ed with .#, will be denoted by My We call A, the derived plane with
respect to the point P.

Following Benz [2], we sketch the close relationship between finite
Minkowski planes and sharply triply transitive sets of permutations. Let Q
be a finite set, |Q]=n+ 1, and let G be a subset of Sym (Q), the symmetrlc
group on £2, acting sharply triply transitively on 2. Define

M:=0QxQ,

ti={{{e f)| xeQ} | BeQ},
2= {{@§)| e} | 2e0),

%:={{(o, 09| xeQ}|geG}.

Then #:={(Q,G):=(M, &, ¥ ,%) is a Minkowski plane of order n.
Conversely, every Minkowski plane can be obtained in this way.

Two Minkowski planes A4 =(Q.GC)=(M, L, ¥, %) and & =
. G)=(M, 2", &', €) are said to be isomorphic if there is a bijection
$:M — M’ such that .

L= and =%
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Either (£*y =Y and (¥ P=ZL ' or (L =F"and (L F=%".In
the first case, s is called a positive isomorphism, in the second case, a negative
isomorphism. If s is a positive isomorphism then there exist bijections a, b:
Q- Q' such that (. ff = (o B for all «, feQ, and a™'Gb=G'. If s is a
negative isomorphism, then there exist bijections a,b:Q— € such that
e, P = (B, 0% and b™'G " 'a= G It follows that we may assume w.lo.g.
that G contains the identity permutation on Q.

A (positive, negative) automorphism of a Minkowski plane .# is a (positive,
negative) isomorphism of .# onto itself. The automorphism group

Aut (Q, G) < Sym (€ x Q) of the Minkowski plane (Q, G} is given by

Aut (Q, G) = {(a, b)eSym (©) x Sym (Q)]|a”'Gb =G}
w{(a, b)eSym (@) x Sym(Q)|a”'Gb=G "'}t

where 1€ Sym (2 x Q) is defined by (o, f)’ = (8, o) for all (¢, e x Q.
We shall now describe all known finite Minkowski planes (cf. [14]).
Let g be a prime power and let ¢ be a field automorphism of GF{g). We
shall denote by .#(g. ¢} the Minkowski plane (Q, G) with Q = PG(1, q). the
projection line of order g, and G the subset of Sym (Q) consisting of the
permutations

ng%z, ad — bc = a non-zero square of GF{g),
and
@ .
m, ad — bc = a nonsquare of GF(g).

Of course, if g is even, we always get G = PSL(2, ¢), and it can be shown
that these are the only Minkowski planes of even order (see [ 7]). For g odd, G
is a group if and only if ¢? =1 (see [10]), and nonisomorphic Minkowski
planes of the same order ¢ can exist. Notice that .#(g, ¢) has an automor-
phism group containing PSL(2, g) x PSL{2, g) which is two-transitive on
nonparallel points, ie., if P,Q, P', Q' are points such that P} Q and P'}Q’,
then there is an automorphism g satisfying P = P’ and Q7 = Q".

We conclude this section by listing some theorems on permutation groups
which will be fundamental in our investigations. For the more standard
results on (permutation) groups, the reader is referred to [11] or [17].

Result 1 (Gleason’s lemma). Let I be a permutation group of a finite set M
such that, for some prime p, every element of M is fixed by a permutation in
I" which has order p and fixes no other element. Then I is transitive on M
(see [5], 4.3.15, p.191).

A transitive permutation group which has the property that only the
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identity fixes more than one letter, but the subgroup fixing a letter is non-
trivial, is called a Frobenius group.

Result 2. In a Frobenius group the elements which fix no letter together with
the identity form a regular normal subgroup (see [11], p. 495).
The regular normal subgroup in Result 2 is called the Frobenius kernel.

Result 3. Let T be a 2-transitive permutation group on a finite set M with
an even number of letters such that only the identity fixes more than two
letters. Then either I contains a sharply 2-transitive normal subgroup and
|M|is a power of 2, or I contains PSL(2, g) as a normal subgroup of index <2
(see [6] and [12]).

Result 4. Let T be a 2-transitive permutation group on a finite set M. If
every element of I" which fixes an element of M has odd order, then either I"
is solvable (in which case I' is isomorphic to a subgroup of the group of
semilinear transformations of a Galois field of characteristic 2) or I" contains
as normal subgroup isomorphic to PSL(2, q) (see [1]).

3. PROOFOF THEOREM

For the proof of our theorem we require a number of lemmas. The first
lemma shows that we can assume without loss of generality that an auto-
morphism group which is two-transitive on nonparallel points, contains
positive automorphisms only.

LEMMA 1. Let #4/ =(M, &, % ~,%) be a Minkowski plane of odd order
n and let T'* be a group of automorphisms of # two-transitive on nonparallel
points. Then T':=T,. =T ,_ is also two-transitive on nonparallel points
(L' o+ is the set-wise stabilizer of & in T*).

Proof. Let P and Q be two points, P | Q. Then

[T FPQ] =[I}: r;Q] [F;Q : FPQ] [T3:T]170

Now [[%:T*)]=|M,|=n* (as before M,=M\([P],v[P] )=
{R|R|P}), and [T},:Tp,], [T§:T,]€{1,2} since [T*:T]e{l,2}. Since n
is odd it follows that [T ,:T'p,] = n?, ie., I'p is transitive on M,. Hence,
I is two-transitive on nonparallel points. O

From now on /4 =M, %%, ¥ ,%)=(Q,G) is a Minkowski plane of
odd order n= 5 with a group I' of positive automorphisms acting two-
transitively on nonparallel points. (For n =3 the theorem follows readily
from [4]) We denote by I'(#?) the subgroup of I fixing all lines of £,
¢ = +, —. Notice that I'(# %) has a faithful representation on the (n+ 1)
lines of £%,e= +, —.
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LEMMA 2. If T(#°) contains PSL(2, n) for ¢ = + or —, then 4 > #(n, ¢)
Jor some ¢€ AUT(GF(n)) and T contains PSL(2, n) x PSL{2, n).

Proof. For convenience we take e= — 1. As a permutation group on
M=QxQ T consists of permutations (a,, b )eSym(Q) x Sym(Q) satis-
fying a; 1Gb = @, yel. Clearly, Z<T(&"~ ) is equwalem to a, =1 for all
ogeX. Hence B:={b |ceZ} is a subgroup of Sym(Q) satxsfyxng GB=G.
Therefore G consists of a number of cosets of B, in particular B & G since
we are assuming that 1€G. If £~ B = G,:= PSL(2, n) then G = G, L ¢G,
for some ¢eSym(Q) where G,:= PGL(2 m\G (|G| =1+ l)n(n -1)
and |G|=|%|=@®+Dn(n—1)). Viewing Q as the projective line
GF(nju{w} in the appropriate way, we claim that we may take
PeAut(GF{n)). Let x, y and z be three distinct points of §. Since G is sharply
triply transitive on Q. there exists a geG such that x%=x9 y?=)*
and z% = 2%, Suppose ge$G,, i.e., g = ¢y, for some g,€G,, then x? = (x#)°?,

= (y*P2, 2% = (z%)*, and we get the contradiction 1 = gzeG

We have shown: for any three distinct x, y, zeQ there is a g, €G, such
that x* = x%, y? = ¥ and z% = z%. It follows that we may assume without loss
of generality that ¢ fixes 0, 1 and <. If we do so it also follows that

x¢ —
x—y
for g, €G, determined by x? = x5, y* = 3%, 00® = 0 = c0? is the permutation
(E((x® — y)(x — MIE—y)+)y*)€G,. By a theorem of Bruen and
Levinger (see [3]) it follows that ¢eAut (GF(n)). It remains to show that
" T(£") also contains PSL(2.n). Let y=(a,,b )T, then a~'b €a” 'Gb, =
G = PI'L(2, n). Hence,

Gi*<G"=a;'Ga,=a; '(a,Gb; Na,=Gla;'b) ' s PI'L(2, n).

Since G} is a two-transitive subgroup of PI'L(2,n), G contains G, so
G{*= G, . Therefore a e PT'L(2, n). Now {a ]yel‘} is a two-transitive sub-
group cf PrL{2, n), hence contains G,. Smce a, lb},eG G, v ¢G, and
a;'G,b,=GY(a;'b) =G, (a"‘b)elther a;'Gb,=G, or a“‘G b, ¢G
Since G does not contain a subgroup of Index 2, {a, l'yef‘ a; G b = ,}
contams G,. Let aeG, then there is a yeI” such that = (q, b}, -1 G, b=
G,. Since aeG also beG,. Hence (I, 5" YeTl and so (a, 1) =(a, b){1; b Ye
1"(3’ ). O

is a square in GF(n) for all x, ye GF(n), x # y.

LEMMA 3. Letebe +or —. If Z< (L") is transitive on £~ ° and I,
Jor all Lme L "1+ m, then |Z|<3 for all le L. If s, =1 for all
Lme L% then fl“(ff"’) | <3 forallle s

Proof. Let E < I(#°) be transitive on & ~*. Then G contains a subgroup
H =~ X (as permutation groups, see proof of Lemma 2). IfZ, = 1 for distinct
Lmin £7° then H, ,=1 for distinct o, Q. It fellows that the circles
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corresponding to the elements of H cannot intersect each other in more than
one point. Moreover, by Result 2, these circles fall into |H,| classes of n + 1
disjoint circles (each class corresponding to a coset of the Frobenius kernel
of H). Thus each point is on |H_| of these circles, one from each class, and
circles in distinct classes intersect in exactly one point. Now, if |Z,| = |H | > 3
we can find four circles ¢, , ¢,, ¢, and d such that the c, touch each other in a
point P not on d and such that the ¢, touch d in three distinct points. However,.
this means that in the projective plane .# p- the oval corresponding to d has
three tangents through a common point. As n, the other of .# . is odd, this
is'a contradiction. ' ,

Suppose I'(¥*), ,, = 1 for distinct [, me Z ~°. If I(£*) = | for some (hence
all) le & ~¢ there is nothing to prove. If |T'(£*)| > 1, then T(#*) is transitive
on £~ *by Result 1 and we can take £ = ['(.#*).

LEMMA 4. Let e be + or —. If [(#%) is two-transitive on %%, then n is a
prime power, # > M (n, @) for some pe Aut{GF (n))and I contains PSL (2. n x
PSL{2.n).

Proof. As G is sharply triply transitive on Q, I(£%),, .o = 1 for distinct
lines I, m, ne &£ ~°. By Result 3, either I'(#*} contains a sharply two-transi-
tive subgroup, or I'(.#*) contains PSL(2, n) as a normal subgroup of index < 2.
The first alternative is impossible by Lemma 3. Lemma 2 now completes the
proof. , M

LEMMA 5. If T(&*) contains a nontrivial élement fixing two lines of ¥7°
(e = +or —), then n is a prime power, ¥ = #(n, $) for some ¢ Aut{GF(n))
and T contains PSL(2, n) x PSL(2, n). ‘

Proof. Suppose 1 # yel'(Z*) fixes |, me & 7%, [ +# m. We may assume that
y has prime order. As remarked in the proof of Lemma 4, y fixes no other
lines of & ~° besides | and m. Since I'(¥®) is a normal subgroup of I',
{y*|ael,> ST(£%). By Result 1, it follows that {y*|aeI’,) is transitive on
ZL8\{1}. Hence {y*ael) is two-transitive on ¥ ~%. Now apply Lemma 4.

O

From the foregoing lemmas it is clear that our main objective will be to
show that I'(.#°) is nontrivial. For this it is necessary first to investigate how I
acts on ¥ and how I, acts on .4, Pe M. Define a pencil to be any maximal
set of mutually tangent circles through a common point P, called the carrier
of the pencil. Thus the pencils with given carrier P are essentially identical
with parallel classes of lines in the affine plane .#,. Every pencil contains

~ n circles. Every point is carrier of n — 1 pencils.

LEMMA 6. For every point P and pencil 2 with carrier P,T', , is transitive
on the n circles of 2.

Proof. Since I' is two-transitive on nonparallel points, I', is transitive on
the points of .4 ,. By Theorem 3 of [16] we are done. O
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Thus, if circles ¢ and d touch, then there exists yeI such that ¢” = d. This
shows that every I'-orbit on € consists of 2 number of components of the
touch-graph defined on € by:c, de € are adjacent iff ¢ and d touch.

LEMMA 7. The touch-graph has 1 or 2 components. If it has 2 components,
then each component contains 3(n+ 1)n(n — 1) circles and every point is
incident with $n(n — 1) circles of each component.

Proof. Letc,, c,and c, be three distinct circles and P a point, Péc,, c,, c;.
The ideal line of the affine plane ., consists of the ideal points (i.e., parallel
classes of # )2 \{[P], }, £~ \{| P]_} and the (n — 1) pencils with carrier
P. The circles ¢, ¢, and c, correspond to ovals intersecting the ideal line in
L*\{[P],} and £~\{[P]_}. Thus, since n is odd, for each c, there are
4n — 1) ideal points which are exterior with respect to , (i.e., are the point of
intersection of two tangents of ¢;) and 3(n — 1) ideal points which are interior
with respect to c;. This shows that at least two of ¢, ¢, and c, have an exterior
point on the ideal line in common, hence are in the same component of the
touch-graph. Therefore, the number of components is at most 2. If there are
2 components and ¢, and c,, say, are in distinct components, then the ideal
points corresponding to the pencils fall into two classes: 3(n — 1) are exterior
~with respect to ¢, and the other (n — 1) are exterior with respect to c,.
Hence P is incident with n(n — 1) circles of each component and an easy
counting argument shows that each component contains %(n + n(n — 1)
circles. O

- Remark. The touch-graph of .#(q, @), g odd, actually has two components.

By Lemmas 6 and 7, if ¢ is the number of I'-orbits on %, te{l,2} and
[T:T]=t""n+ n(n—1) for all ce¥. Using this result we can show the
transitivity properties stated in the next lemma.

LEMMA 8.

(i) If cis a circle, then T is two-transitive on c.
(i) If P is a point, then T, has t orbits of length t~'(n— 1) on the
pencils with carrier P.
(iii) If P and Q are distinct points, P I Q, then I’y o has t orbits of length
t~Y(n — 1) on the circles containing P and Q.
(iv) If P and Q are distinct points of the circle c, then |I'|=
=(m+1)%n*(n— l)t‘1|l"P,Q_c|.

Proof. Let P and Q be distinct points of the circle ¢, and let 2 be the
pencil with carrier P containing c. Denote by s the number of pencils in the
I'p-orbit containing #. Then [[,: T, ,]=sand [[,:T, ] = ns by Lemma
6. Hence,
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T ] |0y

IT] T [Tpl

_ 1

Tt i+ Dan—1)
stin+ 1) 2st

= p— =st+n_1.

Thus, st =4(n — 1)u with ueN, and so (n+ 1) = [F T, p] =30+ Dy, ie,
ue{l,2}. As s=%t"Yn—1u withu,te{l,2} and nis odd, (n, s) = |. There-
fore it follows from

Cm+ D[l ,]=

“(n+ 1y ns

o Tl [T 1T [Tyl
Tl ™ T Tl g,

1 n
=;l‘s“'n2'[rp,Q' P, 0, c] [FP Q- FP~Q’C]

that [T, ,:T ,,]=nand[I,, ]=s.Now from [[ ,:T, ,o]=n
it follows that I‘ pis transmve on c\% P}, hence, since P was an arbitrary
pointofc, I is two-transitive on c. Therefore (n + 1) = [T, p]=30+ 1,
sou=2and s=t"'(n — 1). Finally,

[ l [rrl |FP Q] 2,2 -1
r AT o =+ )20 — 1t Tpy |
] [ ]rPl [rp Ql IFPQC( e P

which proves (iv). O

LEMMA 9. Let P be a point. If T, has odd order, then n is a power of a prime,
M~ H(n, ¢) for some p€Aut{GF(n)) and T contains PSL{2, n) x PSL(2, n).

Proof. Fix a line Ie #™ and let A =T /(I(# )T} be the permutation
group on | induced by I',. As I' is two-transitive on the nonparallel points of
M, A is two-transitive on [. As I, has odd order, A, has odd order for all
Pel. By Result 4, either A is solvable or A contains PSL(Z2, n) as a normal
subgroup. If A is solvable, then A is isomorphic to a subgroup of the group
of semilinear transformations of & Galois field of characteristic 2,ie,n+ 1 =
2° for some aeN and |A||(n + Dna. If A contains PSL{2, n) as a normal
subgroup, then n = p® for some prime p and beN and A is a subgroup of
PI'L(2,n)ie, |A||(n+ Dn(n — 1)b. By Lemma 8(iv), the order of T, is
(n+ Dn*(n— e~ 1|T, 0.c|- In both cases it follows from n 2 5 that [[(# - }r\
I|=|T<Z")|>3.

By Lemma 3 there exists a nontrivial element of I' (£~ )ﬁxmg two distinct
lines of £*. Lemma 5 now completes the proof. O

By the previous lemma we may assume from now on that l"'P has even
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order. More in particular, I', contains involutions. Since n is odd, every
involution teI’, either induces a homology of the projective plane .7 7y
associated with the affine plane .4, or the t-fixed points and lines of .#,
constitute a Baer subplane of .# polcf. [5], p. 172). Our next lemma deals
with the case where I', contains a homology.

LEMMA 10. Let Pe M and suppose that t€ T, is an involution which, consider-
ed as a collineation of / p>isahomology. Thenn s a prime power, # ~ M (n, P)
Jor some ¢peAut(GF(n)) and T' contains PSL(2,n) x PSL(2,n). If ' has
even order and

(1) n is not a square, or
(i1) t=1{(i.e, I is transitive on €), then I, contains homologies.

Proof. We distinguish two cases:

Case (a). The axis of 7 is the ideal line of .#,. Now, since I',, is transitive
on M,, .#, is a translation plane and ', contains the full translation group
of # ,(see [5], p. 187, result 4.3.1). Let Z® be the subgroup of I', consisting
of those translations of .#, which fix all lines of & ~. Then £ is transitive
on L*\{[P], }. hence £: =<{ZP|PeM) is two-transitive on £~. Since
X £T(&7) we are done by Lemma 4.

Case (b). The axis of 7 is an affine line of .# . Clearly, the axis of 7 corres-
ponds to aline I # [P], ,[P]_ of #,sayle £*\{[P], }. Now 1 # 1eI'(¥")
and  fixes the two distinct lines [P], and | of £ *. By Lemma 5 we have
completed the proof of our first claim.

The order of a Baer subplane of .#, is \/n. Hence, if n is not a square,
every involution in I', acts as a homology of M p.Suppose t =1.Let Abea
Sylow 2-subgroup of I', and let 7 be an involution in the center of A. Suppose
the 7-fixed points and lines of .# p constitute a Baer subplane. The two ideal
points of .# , corresponding to ¥~ and £~ are fixed by I',, and by Lemma
8 (ii) T, is transitive on the remaining n — 1 ideal points. Let 2°|(n — 1).
By [17], Theorem 3.4, every A-orbit on these n — 1 ideal points has length
divisible by 2°. The ideal line of .# , is fixed by 7 and contains therefore, apart
from the ideal points corresponding to " and ,S,”‘,ﬁ — 1 fixed points.
Since te Z(A), A permutes these./n — 1 points. However, 2| (\/n — 1) with

b < a, contradicting the fact that each of these\/; — 1 points is in a A-orbit
with length divisible by 2°. O

For the proof of our main result we need one more definition and lemma.

DEFINITION. Suppose M, =M, %, c % ¢e=+, —; 4, <%. Put
Lx={IlnM,|leL}, e=+, —; €*:={cnM,|ce¥,}. If M, :=
(M, £* £ * €}) is a Minkowski plane with the property that any



51

HENNY WILBRINK

two circles which touch in .# ,, touch in .#, then .#  is called a subplane of
M (compare [5], p. 258).

LEMMA 11. Let A be a group of positive automorphisms of .#. Let M, be
the set of points left fixed by A ; £ (resp. &~ ) the set of linesof & (resp. & ”)
left fixed by A; and €, the set of circles left fixed by A. Then #,:
M, LY F*6Y)is a subplane of 4 if and only if M, contams, at least
© three mutually nonparallel points.

Proof. Straightforward verification. O

We are now ready to prove our main result.

THEOREM. Let # =M, %", ¥, %) be a finite Minkowski plane of odd
order n, and suppose that .# admits an automorphism group T two-transitive
on nonparallel points. Then n is a prime power, .# =~ # (n, §) for some d&
Aut{GF(n}) and T contains PSL(2, n) x PSL{2, n).

Proof. Suppose . is a counter example to the theorem of minimal order.
By Lemma 1 we may assume that I" contains positive automorphisms only.
By Lemma 9, T', has even order for all Pe M. By Lemma 10 every involution

in I', has (\/;z + 1)? fixed points. Hence, if A is a 2-subgroup of I' maximal
with respect to fixing at least three mutually nonparallel points, A # 1.
Let .#,=(M,, L * L * &%) be the subplane of .# consisting of the
A-ﬁxed points, lines and carcles of .# of order n,, say. Clearly n, is odd, and
since A # 1 we have n, <n. We claim that N (A), considered as an auto-
morphism group of .#, acts two-transitively on the nonparallel points of
M . To see this, let ce¥,. Then A < T, and A, considered as a permutation
group on c, is a 2-subgroup of I', maximal with respect to fixing at least
three points of ¢. By Lemma 8(i), I', is two-transitiveé on ¢, hence N (A)
is two-transitive on ¢*: = cn M, (see [1], Lemma 3.3). Now let 4,, 4, and
B,, B, be two pairs of nonparallel points of .4 . If 4, B,,i,j=1,2,and ¢,
is the unique circle containing Az, B,, B,, and c, is the unique circle contain-
ing 4,,B,,B,, then there is a yleN ( ) and a 7,€Nr, (A} such
that A}' = A,,A}'=B,,4}*=B,,B}*=B,. Hencey ylyzeNr(A) satisfi-
es A1 = B, and A =B, Repeated apphcatxon of this result in case 4, || B, for
some i and s proves our clalm Since .# was supposed to be a minimal counter
example, n, is a prime power, say n, = p* with p prime and aeN. If Pe M,
then the prOJectwe plane (.# Jp associated with (#), is a subplane of the
projective plane Jz‘ associated with .4, (thlS is why we required in the
definition of a subplane of 2 Minkowski plane that circles tangent in .#,
are also tangent in .#). In fact (j{ )p is a 2-subplane of ﬁ is the sense of
Ostrom and Wagner [15] By their Theorem 6,n=n} for some integer g.
Hence, also n is a prime power, n = p® with b = a2%. Let I be a Sylow p-sub-
group of I',, Pe M. Let = be an element in the centre of I1. Since = fixed the
two ideal points corresponding to £* and £~ of .#,, n also fixes an affine
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line L of .# . Suppose L intersects the ideal line of .#, in a point A. Then IT
fixes A for if A° # A for some o€ll, then L’ and L intersect in an affine point
@ of .# . Since I permutes the fixed objects of =, I” hence Q is fixed by =
Since I‘P, hence I1, is transitive on the n? affine points of .#,, every affine
point of .#, is fixed by 7, i.e., m = 1 a contradiction. By Theorem 3 of [16]
| PN hence I is transitive on the n affine lines through A. Therefore, n fixes
all lines through 4, i.e., m is an elation of .# , with centre A and axis the ideal
line of .4 . Suppose A is the ideal point correspondmg to¥ *fore= +or—,
then neF (%7 %)p).- By Lemma 5, I(# ™%, , =1 for distinct lines I, me 2",
so by Lemma 3, p < order of n < [I(& “)m |<3,ie,p=3 Also (£ 9is
.a Frobenuis group on the (n + 1) lines of ¥*, [(¥ %<l and T acts two-
transitively on #° hence the Frobenius kernel of I'(¥ %) is an elementary
abelian 2-group and in particular n + 1 = 2° for some ceN . However,n + | =
p* +1=23%" 4 1 =2(4) and so we have shown that 4 is an ideal point
corresponding to a pencil with carcier P. Let T be the group of translations
of .# , contained in I', and for each pencil 2 with carrier P let T(2?) be the
group of translations of T fixing all circles of . By Lemma 10 and Lemma

8(ii), ', has two orbits of length 1(n — 1) on the pencils with carrier P. Put
X = |T(9’)[ for # in the first, and y=|T(2)| for 2 in the second orbit. It
follows that

M) |T|=1+G=1Ddn- D+ = 1)dn=1)=
=14+3x+y-2n-1),

and one of x and y 2 p, so x + y 2 p + 1. Also, if 5 is the number of T-orbits
onM,,

@ 5| T| = n?.

Since x +y 2 p+ 124, it follows that |T| > n, hence s < n. From (1) and
(2) it also follows that s = l{mod%(n — 1)). Since T is not transitive on M,,
s> 1. Therefore s=n,|T|=n and p = 3. We list some properties of T.

(i) As a translation group containing translatlons in different directions,
T is clementary abelian,
(i} T<arlp,
(i} T acts regularly on the lines of Z°\{[P] }, e = +, —,
(iv) the subgroups {t),te Tarein 1 — 1 correspondence with the 1{n — 1)
pencils with carrier P in a I'p-orbit: 7« pencil 2 iff centre of 1 = 2;
I, acts on this orbit as T, acts on {{1>|7eT} by conjugation.

Take QeM,. By Lemma 8(iii), is still traasitive on the pencils with
carrier P in a I'-orbit, so T, acts %y conjugation transitively on the sub-
groups {t), ’L'E—T By (ii) and (iii), T is a regular normal subgroup of T,

considered as a permutation group on £ *\{[P], }. Since T, I“PV[Q]€



53

HENNY WILBRINK

[, o acts on L*\{[P] . [@].,} as it does on T\{1} by conjugation. It
follows that either I, , is transitive or has two orbits of length (n —1)
on £"\{[P],.[2]. } The former alternative is impossible: an involution
in the center of a Sylow 2-subgroup of T',, is a homology (see the last part of
the proof of Lemma 10). Therefore ', has 2 orbits of length 3(n — 1) on
£"\{[P]..[0].} and it acts on both orbits as it acts on the subgroups
{7>.1€T by conjugation. Let ¢ be a circle through P and Q in the pencil 2,
where 2 is the centre of {1 >, say. Then Ipg,. fixes 2, hence Iy, , fixes
{t) by conjugation and therefore also two distinct lines [, me ¥ *\{[P], .
[Q] }. Therefore also Inc and mc are fixed by I'p , .. By Lemma 11,
o.c hasasubplane .# , as a set of fixed points. Let n, be the order of .#, and

let c* be the set of pomts left fixed by T'p , .. With @ {c*|yel .} we get

a2—{(n+1,n,+1,1)design on ¢ (see [13] ). The number of blocks through
a point is n/n, = 3%/n,. Hence n, = 3 for some deN. The total number of
blocks equals (n + 1)n/(n, + Dn = (3* + 1/37 + 1)-3*~% Hence b/de2N + 1.
Since b is even, d is even 50 10sn, +1= 3%+ 1=2 (mod 4). However,
F.=N (', is sharply 2-transitive on the n, + 1 points of c*, and so
n, + 1 is a power of 2. This was our final contradiction. ]
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1. INTRODUCTION

A unital or unitary block design is a 2-(q3+1,q+1,1) design, i.e. an
incidence structure of q34~1 points, qz(q2~q+1) lines, such thatyeach‘line
contains g+ 1 points and any two distinct points are on a unique line. If g
is a prime power, the absolute points and non-absolute lines of a unitary
polarity of PG(Z,qz) form a unital (see [2]). These unitals are called class-
ical. =

In [6], O'NAN showed that a classical unital satisfies the following
condition.

{I}) No four distinct lines intersect in six distinct points (see Figure 1).

No:

Fig. 1

In [5], PIPER coﬁjectured that this property characterizes the clagsi~
cal unitals. Here we shall give a characterization for even g under the
assumption that also the following condition holds.

{(Ir) If L is a line, x a point not on L, M a line through x meeting L and
and ¥y # x a point on M, then there exists a line L' # M through y intersect-
ing all lines through x which meet L.

To achieve this result we shall give another characterization for all
q under the additional assumption that arthird condition holds. To formulate
this condition we need some notation.‘If x and y are distinct points, then
we denote by xy the line through x and y. Given a point x, two lines L and
L' missing x are called x-parallel {notation LﬂxL’} if and only if they in-
tersect the same lines through x. Clearly, |x is an equivalence relation on
the set of lines missing x, and by (I) and (II}, each equivalence class con-

sists of g disjoint lines., Our third condition now reads as follows.
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(I1I) Given a point x, three distinct lines Ml’ Mz, M, through x and points

3
Yir Z; on M, (1=1,2,3) such that (ylyz)ﬂ (zyz,) and (y1y3)“x(zlz3), then

also (yzyz)ﬂx(zzz3).

Clearly, the presence of unitary transvections in PPU(é,q) implies
that the classical unitals satisfy conditions (II) and (III).(in Section 2 we
shall study unitals satisfying (I) and (II). Section 3 is devoted to the
proof that unitals satisfying all three conditions are classical. Finally,
in Section 4, we shall show that for even ¢, (III) is a consequence of (I)
and (II). .

2. UNITALS SATISFYING (I) AND (II)

Throughout this section U is a unital on q3-+1 points with point set X
and line set L satisfying (I) and (II) above. If x ¢ X, then we denote by *
the set of lines incident with x, and Lx will be the set of lines missing x.
Furthermore, Cx will stand for the set of "x—equivalence classes on Lx’ From
[1] it is clear that we want to show that the incidence structure which has
L® as the set of points, Cx as the set of blocks and LIC (L ¢ ¥, c ¢ Cx)
iff L meets one (hence all) lines of C, is the residual of an inversive plane
of order q. We denote this incidence structure by *(x) = (Lx,Cx). Clearly,
T*(x) is a 2- (q2,q+1,q) design.

LEMMA 1. If x € X and L,L' € L such that L and L' both meet three distinct
lines My /M, /M, € L*, then 1l L', i.e. three distinct points of 7* (x) are in

at most one block of 1% (x).

PROOF. Let y € M1 n L' and let L" be the line through y which is x-parallel
to L, then L' # L" contradicts (I). O

If M and M' are two distinct lines through a point x, then an easy count-
ing argument shows that there are g -2 lines N1""'Nq-2 through x such that

no line of L meets M, M' and N, i = 1,...,q-2 Put c*(M,M") := {m,m° Tu

i
{Nl’Nz""'N }. We have to show that the c* (M,M') correspond to circles
which w111 make I (x) into an 1nversive plane. We have to show that
N,N' € c M,M") -'c M,M') = C (N,N'). Clearly, C (M,M') = C (M',M) and so

*
it suffices to show that M" ¢ C*(M,M') = C (M,M') = C*(M,M“). This is the
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contents of the next lemma.

LEMMA 2. Fix a line M ¢ L and two distinct points x and y in M. For

M' M e I*\IM} write M' ~M" iff no line of IY\{M}, intersects both M' and M"

or M' = M". Then ~ is an equivalence relation on L™\{M}.

PROOF. For u,v € M let A*(u,v) be the incidence structure with L"\{M} as
points, LY\{M} as lines, and incidence defined by PIB iff P and B meet

(? e L\(M}, B € L'\{M}). If u, v, w are distinct points of M, then clearly
the mapping :F:;,w: -‘\*(u',v) + A% (u,w) defined by

~u - u

Tkz,w(P) = P, Pel \{M},

"?3 (B) := u-parallel of B through w, B e LY\{m},
4

"is an isomorphism of A*(u,v} onto A* (u,w}. Now fix x,v ¢ X, x #y. If g > 2
and u, v are distinct points in M, u,v ¥ x,y, then \
DAL A A S
u,v VX u,¥y X%,v y,u
is an automorphism of A*(x,y) .
Now we claim that

(1) For all u,v ¢ M\{x,y}, u # v and for all P e L*\{uM}, 3:'
z

&Y p) ~p,
u,v , ‘
(ii) For all u,v,v' € M\{x,v}, u £ v # v’ # u and for all P ¢ Lx\{M},

~X,y ¥X, Y .Y ~ Ty
su'vtp) # 5u'v,(1>) and smv(?) Gu’v,(P).

V(p) # P and’

To prove these claims, write uP v for the u-parallel of P incident with
v. Then '52:5(19) = y{uPv)x. Suppose y{uPvix # P or y{uPv})x = P, Then there
is a line L incident with x intersecting P and y{uP v)x. Then L intersects
uPv in a point a, say. Since au intersects P, we now have an O'Nan config-
uration on the lines M, P, L and au, contradicting (I}.

Suppose Yy{uPv)x 4 yuPv')x or yluPv)x = y(uPv'ix. Let L be the
line through y intersecting y{(uPv)x and yluPv')x. Then L intersects uPv
and uPv' in points a and a‘', say. Since au intersects uPv', we have an

O'Nan configuration on M, L, uPv' and au, again in contradiction with (I).
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For a given P e L¥*\{M}, there are q-2 0 ¢ L*\{M}, QO # P such that Q ~ P.
Fixing u we can make q- 2 choices for v ¢ M\{x,y,u}. Thus, each Q ¢ Lx\{M},

. o XY - BV 0y Ve B oy e
Q # P can be written as Q Gu'v(P). If Q Gu'V(P) P and Q Gu,v,(P) P,
then Q ~ Q' by (ii). ]

Lemma 2 and its proof have a number of important corollaries.

COROLLARY 3., Let x € X and let “x be a néw symbol. Put .
C* = {ctoamt) v e} [ M e L¥, M4 W)

Then T(x) := (L* U {mx}, c*u Cx) is an inversive plane of order q with
point set ¥ u {wx} and block set C* v .Cx and incidence defined in the ob-

vious way.
PROOF. See the discussion preceding Lemma 2. 0

COROLLARY 4. For X,y € X, x # vy, the incidence structure A* (x,y) of Lemma 2
is igsomorphic to the derived design T(x)* with «  and the lines through <y
removed. The affine plane T(x)xy admits a dilatation group of order q- 1

with centre “x .

PROOF. The automorphisms %'3 of A*(x,y) induce g - 2 distinct nonidentity

r’
‘dilatations with centre =_on T (x)*Y. since I (x)*Y has order g, these are the
non-identity elements of the dilatation group with centre «, of order q- 1.0
COROLLARY 5. Let L ¢ L and let Xy rXpreearX
sible to partition the set of lines which meet L into classes Ai.,

1 21, £ gq+l, such that for all i and j

be the points on L. It is pos~

(i) IAijl = g-1

(ii) M e Ai. = x, € M,

(iii) every point x ¢ X\L is on exactly one line of Uk Akj '

(iv) - no line which meets L in a point # xi, meets two lines of Aij ’

(v) for all k, i', 1 s k,i* < g+l, Xk #i,i' and for all M ¢ Aij' the x -
parallel of M through %54 is in Ai'j '

(vi) if 1 S i' £ q+l, i' #i and M € Aij' M' € Ai' 3 then there exists a

r

unique k € {1,...,q+1} such that M and M' are x -parallel.
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PROOF. Consider I{xl). Number the circles of I(xi) through the two points
®xq and L of I(xi) from 1 upto g+l1. Apart from *x4 and L each such circle

1 These will be the sets Al o 3= 1,00 ,a4,
For i > 1 and 1 £ j £ g+l, let Ai 4 consist of the (g-1) llnes through x

which in I(x ) correspond to the (g-1) circles {not through wxl) in the pen-

contains {g~1) lines through x

eil with carrier L and which contains circle j through oy and L. Now (i)

1
and (ii) are trivially satisfied. For (iii)}, note that the g+l lines XX,

i=1,...,9+1 are in A, 's with distinct j since the circles in a pencil

with carrier L partitiig the set of points # L of T(xi). To prove the other
cases, observe that our subdivision of the set of lines meeting I into the
classes A 14 would have remained the same if we had started by considering
Im),i>limmwoffm).mm,mpm%(bﬁ,usﬁﬁwsmSMWma
no line M ¢ L 1\{L} can intersect two distinct lines N;,N, € 2y with i > 1.
This follows at once, since Ny and N2 correspond to tangent circles in
I(xl). Also (v) is clear if we take k = 1 for then M and the x -parallel of
M through X5 represent the same circle in T(xl). Finally (vi) follows from
(i), {(v) and the easily shown fact that two lines which meet L cannot be % ~

k
and x,-parallel for distinct k and . 0

Following PIPER [5], we are now able to associate with each line L of
U an incidence structure GQ{L) as follows. The points of GQ(L) are the points
x € X\L and the sets Aij' 1 <4i,j S g+l. The lines of GJ(L) are the lines M
of U meeting L, and 2(g+1) new lines, Al,Az,...,A

q+
dence in GQ(L) is defined as displayed in the following table.

1’ Bl’BZ""'Bq+1' Inci-

line of line of
type M type Ak or B£
po u:;:{f\fm xeM never
point of type - Mea,, i=k or j=
Aij i3 )

Incidence in GO (L)
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THEOREM 6. Let U = (X,l) be a unital with g+l points on a line satisfying
(I} and (II). Then for each line L ¢ L, GQ(L) 1s a generalized quadrangle
with g+l points on a line and g+i lines through a point. Moreover, any two
‘nonintersecting lines m, and m, of GQ(L) form a regular pair (in the sense
of [7]) provided m, and m, do not correspond to lines M, and M, of U such
that M, € Aij and M, € B, with i # k and j # £. In particular, the lines
A1,...,Aq+1,31,...,}3q+1 of GQ(L) are regular.

PROOF. Straightforward verification. i}

We shall see in Section 4 that if all lines of GJ(L) are regular, then

U is classical.
3. UNITALS SATISFYING (I), (II) AND (III)}

Let U = (X,0) be a unital satisfying (I), (II) and (III). Using (III)
it is easy to see that for any three distinct points %, vy, z on a line L
there is a unigque automorphism ‘t;:'z of U fixing % and all lines through x
and mapping y onto z: if u £ L then t;'z(u) is defined to be the point of
intersection of xu and the x-parallel of yu through z, if v ¢ L\{x}, fix a
point u ¢ VL and def:.ne 'ry (v} to be the point of intersection of L and

the x-—parallel of uy through TY 2 ().

THEOREM 7. Let U = (X,L} be a unital with g+l points on a line satisfying
(1), {II) and (IIX), and let G be the automorphism group of U generated by
the -r;f 2" Then U is classical, G is isomorphic to PSU(3,q2} and acts on U

r
in the usual way.

PROOF. Clearly G is transitive on X. We claim that G acts 2-transitively on

X if g > 2 {(the case gq = 2 is left to the reader}. To prove this, note that
the mappings TY z of Lemma 2 are induced by the automorphisms 'r§ 2z of U.
¥
Hence, also the mappings 5 ,y of Lemma 2 are induced by automorphisms
Gx'y
u,v % y
incidence in U, 8 ¥ induces an automorphism of I(x). By Corollary 4, this

is a dilatation of I(x)XY with centre ”x Therefore, it can also be viewed

€ G of U, since incidence in the inversive plane I{x) is determined by

as a dilatation of 7T(x) ®X with centre %xy. Thus in the affine plane I(x)“",

7
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each point is the centre of a dilatation. Hence I(x) ¥ is a translation
‘plane and the group generated by the éilatétions contains the full transla-
tion group of I(x)wx (£2, p.187]). Let T{x) be the normal subgroup of G,
‘consisting of elements which induce (possibly identity) translations of
T(x)wx. Then T{x) acts regularly on the points of l(x)mx, i.e. on Lx, and
for each line L € Lx, T(x)L acts regularly on L\{x}. Thus T{x) is a normal
subgroup of G acting regularly on #\{x}, and ¢ is 2-transitive. Applying
[4] we get that G has a normal subgroup M such that M < G < Aut M and M acts
on X as one of the following groups in its usual 2-transitive representation:

3/2) ' PSU(3.q2) ., Or a group of

a sharply 2-transitive group, PSL(Z,qB) . Szlq
Ree typé. Since q3+ 1 = {(g+1) (qz-qﬂ) is not a prime power for q > 2, the
first alternative will not occur, If H S G and x, y, z are three distinct
points of X, then the nygorbit of z is girzxtained in xy, so has length<q-1.
This excludes M = PSL(2,q”) and M = Sz(g™  "). Moreover, this argument shows
that if M = PSU(3,§2) then U is classical, for nxy has a unique orbit of -
length g-1 on X\{x,y}, all other orbits have length {qz-l)/(q+1,3) (fe, p.
4991). Now the rx,z can be identified with the unitary ‘transvections and it
follows that G ~ PSU {3,q2). Thus we are left with the case that M is a group
of Ree type. Since g = 323‘+1, G contains an involution § fixing at least two
points x,y € X (Corollary 4). By [4], Lemma 3.3(v) and (ix), § ¢ M and § fixes
g+1 points. Since § is a dilatation on“l(x)wx these must be the g+l points
of xy and so U is nothing but the Ree mjxital associated with M. Now, for

L e L, <6> x PSL(Z,q) ~ ML 26, and 80 ;iT;'z | ®,v,2 € L> £ Aut(PSL(2,q9))=
PIL(2,q), which shows that at least one, and hence all, ™ eM, i.e. G=M
of order (q3+1)q3 (g~1) . Now for a 3~Bylow group T{x) of G‘f';(x) fT(x}L {x on
L) is the elementary abelian translation group of T{x)“x. Hence, for the
derived group T(x) (1) of T{x) we find [T(x} (1)1

Lemma 3.3(iii) of [4]. o

£ lT(x}Ll = g, contradicting

4. MORE CHARACTERIZATIONS

et U = (%,l) be a unital satisfying (I) and (II). Consider the follow-
ing two conditions.

(I11') Given a point x and three distitict lines Ml' MZ 3 through x and

points y,, z, on M, (i =1,2,3) such that (ylyz)ﬂx(zlzz), ty, vl _(z,2)

M
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and one of the lines (Yiyj) or (zizj) meets all three of M then

(y2y3)|x(z2z3) .

1’ M2 and M3,

(IV) Given a point x and two distinct lines M1 and M2 through x and points
Yyr Y30 Zys 23 0m gi, Yor Y40 Zgs Z, On M, such that (ylyz)ﬂx(zlzz),
(y1y4)ﬂx(ziz4) and (y2y3)"x(zzz3), then also (y3y4)ﬂx(z3z4).

Clearly, (III) implies (III') and (IV}. The converse is also true.

LEMMA 8. Let U = (X,L) be a unital satisfying (I), (II), (III') and (IV),
then also (III) holds.

, PROOF. Let x, Mi’ Yo 240 i=1,2,3 be as in (III). Suppose that Ml’ M2 and

M3 detexrmine a circle in T(x) not containing Qx’ i.e. suppose there is a line

through ¥y intersecting M2 in u, and M, in U, say. Let v (v3) be the point

3
of intersection of the x-parallel of ¥qu, through z

2

1 and M2(M3). Using (III')

we find that (u2y3)ux(v2z3) and (u3y2)nx(v322\. Hence by (1V), (y2y3)“x(zzz3)
and (III) is shown to hold in this case. The remaining case is where Ml’ M2
and M, are on a circle of T(x) containing @+ i.e. no line of Lx meets all
three of Mi’ M

and M,. Since the two circles of I(x) corresponding to ¥¥oy

2 3
and ¥4¥3 cannot be tangent (for otherwise Y4¥y =Y

and M3), there is a line M

Y3 and there is a line

intersecting MI’ M through x which meets y

2 4 1Y2

in Yy and 2122 in Z,r SaAY, and which also meets ¥ ¥3 and Z,Zq. Now looking

1’ M3 and M4 are applying (III') we see that (y3y4)ﬂx(z3z4). Since M2,

M3 and M4 are not on a circle of I(x) (for otherwise this would be the circle

at M

determined by Ml' M, and M3), we can apply the previous case and conclude

2
that (y2y3)"x(z223). g

The reason for considering (III') and (IV) is that in both cases there
is a line Mi which is intersected by all lines mentioned in the condition.
Thus, both (III') and (IV) have a (no doubt awkward) equivalent formulation
(IIT") respectively (IV) into terms of GQ(Mi). Since the classical unital
satisfies (III') and (IV), the classical generalized quadrangle Q(4,g) on
the points and lines of a hyperquadric in éG(4,q) must satisfy (ITT') and
(IV). so, conversely, if a unital U satisfying (I) and (II) has the property
that GQ(L) is isomorphic to Q(4,q) for each line L of U, then U is classical.
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THEOREM 9. Let U be a unital with g+l points on a line satisfying (I) and
(II). If Ffor each line L of U, BQ(1) ~ Q(4,q), i.e. if every line of GQ(L)

" is regular, then U is classical.

We are now in a position to prove that for even ¢, (I} and (II) suffice
to characterize U.

'THEOREM 10. et U = (X,l) be a unital with g+l points on a line satisfying
(1) and {II). If q is even, then U is classical.

PROCF. lLet L be a line of U and let A,,, 1 £ i,j £ g+l and A, B, i=1,...

i3
ees g+l be defined as before. For each x € X\L put

clx) = {a 5 |3 line M ¢ Ay, incident with x}.

By Corollary 5, C(x) has exactly oné point on each of the lines Ai and Bi '

i=1,...,9+1. We claim that if x,v ¢ X\L, x # v, then lCcx)nc{y)| < 2.
First suppose xy 1s a line meeting L, xy € Aij
Cx) n Cly) = {Aij}. Now consider the case where xy is a line of U not meet-

, say. then by Corollary 5{iv),

ing L. Suppose Xyr X5 Xy are distinct points of L such that XX /¥¥%, € A1 1’
’

3

X, ,¥X, € A2,2 and xx3,yx3b € A .In I(x), L, yx. ¥YXgs YXg correspond to

circles with the following pro;'azties: yxi, ¥Xyr yx3 all go through the point
xy of I(x) and are tangent to L in respectively XXyy XX, and XX Since q
is even, there is a point # xy of 1(x) which is also on the circles YXs ¥Y¥oo
Y30 i.e. there is a line M#¥ xy through x intersecting Y% i=1,2,3. BY
Lemma 1, I"lyM and so xy intersects L, a contradiction. We have shown that
each triple Aj, j;s Aiy,j,r Biq,js With yl{ii.iz,igll = ‘l{ji.jz,:}?,}i =3 is
covered at most once by a C(x). Since there ave q3~—q C{x), each such triple

is covered exactly once. Thus, with the A,  as points, the A, and B, as lines

and the C(x) as circles, we have obtainedii Minkowski plane M{L) ofieven
order g. By [3], M(L} is isomorphic to the geometry of points, lines and
plane sections of a quadric of index two in PG(3,q). Since GQ(L) is deter-
mined by M(L) (the points of GQ(L) correspond to the points and circles of
M(L), the lines of GQ(L) correspond to the lines and pencils of M(L), etc.)

GG(L) is isomorphic to Q(4,q) and so U is classical. (]
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A characterization of two classes of semi partial geometries by their para-

meters

by

H.A, Wilbrink & A.E. Brouwer

ABSTRACT

We show that, under mild restrictions on the parameters, semi-partial

geometries with u = az or u = afa+l) are determined by their parameters.

KEY WORDS & PHRASES: Semi-partial geometry, partial gecmetry, strongly
‘ regular graph
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1. INTRODUCTION

ﬂet X be a {finite) nonempty set and L a set of subsets of X. Elements
of X are called points, elements of L are called limes. The pair (X,L) is
called a partial linear space if any two distinct points are on at most one
line.

Two distinct points x and y are called collinear if there exists L e L
such that x,y ¢ L, noncollinear otherwise. Two distinct lines L and M are
called concurvent if |L n M| = 1. i

We write x ~ vy (x # y) to denote that x and y are collinear (noncollin-
ear). Similarly L ~ M (L # M) means |L n M| = I(|L n M| = 0),

If x ~y (L ~ M) we denote by xy (IM) the line (point) incident with
x and vy (L and M).

For a nonincident point-line pair (x,L) we define:
[L,x] := {y e Xly e L, v ~ x},
fx,L] 2= {Me Ljx ¢ M, L ~ M}.

Given positive integers s,t,a,u, the partial linear space (X,L) is called a

semi-partial geometry (s.p.g) with parameters s,t,o,u if:

(i) every line contains s+! points,

(ii) every point is on t+l lines,

(iii) for all x ¢ X, L ¢ L, x ¢ L we have |[x,L]] ¢ {0,a},

(iv) for all x,y € X with x # y the number of points z such that x~ 2z ~y
equals u.

A semi-partial geometry which satisfies |[x,L]] = o for all x ¢ X, L e L

with x ¢ L, or equivalently which satisfies u = a(t+1), is also called a

‘partial geoﬁetry (p.g). ]

The point-graph of the partial linear space (X,L) is the graph with
vertex set X, two distinct vertices x and y being adjacent iff x ~ y. The
point—graph of a semi-partial geometry is easily seem to be strongly reg-
ular, Let (X,L) be a semi-partial geometry.

For x,y ¢. X, x ¥ y we define
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[x,y] = {L e Llx ¢ L, [[L,y]] = a}.

It is easy to see that a = s+l iff any two distinct points are collinear
iff (X,L) is a Steiner system ${2,s+1,]X]). We shall always assume s 2 a,
hence noncollinear points exist.

Let x,y ¢ X, x # y. Then u = {Ix,ylla and |[x,y]! 2 |[x,L]] = ¢ if
L e [y,x]. Hence, u 2 az and

a2 e VK ¢ [x,y], L ¢ ly,x]J: K~1L,

[}

(*) u

13

(x %) p = alo+l) e every line K € [x,y] intersect every line L ¢ [y,x]

but one.

This is the basic observation we use in showing that, under mild res-—
trictions on the parameters, semi partial geometries with u = a2 or p =
alo+l) satisfy the Diagonal Axiom (D).

(D) : Let x| 2%y, X be four distinct points no three on a line, such that

3°%4
x1~x2~x3~x4~xl~x3.
Then also KyVKy .
From DEBROEY [1], it then follows that such a semi-partial geometry is known.

2. SEMI-PARTTAL GEOMETRIES WITH u = 02.

Our first theorem deals with the case ¢ = 1, u = 1,

THEOREM 1. Every strongly regular graph with parameters (n,k,A,u = 1) <s the
point-graph of a 8.p.g. with s = A+l, t = X%T'- 1, a=1, p=1i.

PROOF. Let (X,E) be a strongly regular graph with u = 1, and let x ¢ X.
Since two nonadjacent points in I'(x) cannot have a common neighbour in I'(x),
the induced subgraph on T(x) in the union of cliques. This induced subgraph

has valency A, so it is the union of iéT~cliques of gize A+l [J

Next we deal with the case o = 2, u = 4,
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. THIOREM 2. Let (X,L) be a s.p.g. with parameters s,t, o = 2, u = 4. Then
(X,L) satisfies (D).

PROOF. Let X%y Xq X, be four distinct points no three on a line, such that
Xy VKN VHVE VR VK 1f x2¢x4, then we can apply (%) to the points X, and Xye
Since XX, € [x4,x2] and Ry € [xz,xal, x;x, and x,X, intersect in a point

¢ %)Xy, Now 3 < ifxi,x2x3]i £ a=2, a contradiction. 0O

Let U be a set containing t+3 elements, Then we denote by‘Uz’3 the
s.p.g. which has as points the 2-subsets of U, as lines the 3-subsets of U
together with the natural incidence.

The parameters are s=2, t, o=2, u=4,

DEBROEY [1] showed that a s.p.g. with t>1, a=2, u=4 satisfying (D) is

isomorphic to a U . Hence we have the following theorem.

2,3

THEOREM 3. 4 s.p.g. with t>1, a=2, p=4 <{g isomorphic to a U2 3 0
B s

REMARK. A s.p.g. with t=1, a=2, u=4 is isomorphic to the geometry of edges

and vertices of the complete graph Ks\’_Z

We now consider the case a>2., For the remainder of this sec fon let

(X,L) be a s.p.g with 0>2 and p = 32.

LEMMA 1. Let x € X, L € L, x £ L such that [L,x] = {zl,...,za}. Let M be a
line through z, intersecting xz, in a point u # X,2,. Suppose there exiets
yel, v¢ ZyseeesZ, with u ¢ yv. Then M intersects Xz, for all i = 1,...,0
(see figure 1).

Figure I,
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PROOF. By (*) applied to x and y, the o lines L = LisLysess,l of {y,x]

intersect the o lines xz seen X2 of [z,y]. In particular L ,...,La inter-

1
sect Xz,. Hence [y,ul = [y,x] = {Ll""’La}‘

1

Since M ¢ [u,y], M intersects Ll""’La in points V= Zps VgseeasV,
respectively, If x ~ vy for all 1, then‘the a+! points UsV Voseon sV OD M
are all collinear with x, a contradiction. Hence x % A for some i. Since
L, intersects XZ|seessXE, it follows that [x,vi] = [x,y] = {le,...,xza}.

Since M ¢ [vi,x], M intersects all lines in [x,vi]. O

LEMMA 2. Let x € X, L e L, x ¢ L such that [L,x] = {z)5..-52 }. Let M be a
line through z intersecting Xz, in a point u # X,2. If 8 > o, then M inter—
gsects xzi’fbr aZZti = 1yuuaylta

PROOF. Assume that M intersects Xz, 5 i=1,...,8 (2¢8<a) in points up =z,

u, = U,...su, respectively and does not intersect sz+],...,xza. Take

B
vyel,y# ZyseeesZ o By lemma | y ~ ug, i=1,...,8.

Since |[M,x]| = a, there is a v ¢ M such that v ~ x, v # CIPPRE

»

B

Also v ~ z for all z ¢ , Eyui,x], for if v 4 z for some z ¢ [yui,x], then

=
vx € [v,z] and yu; € [z:vﬁ. Hence vx ~ yuy and so yug intersects the a+l
lines xv, XZysees,XZ, through x, a contradiction. The points of igl Eyui,x]
are therefore on the o lines M = VZ(5VBg5e 05 VE of [v,yl.

Since s>a we can take v' € L such that y' # vy, ZiseeesZ -

Now if z € [yuz,x], then z ~ y'. Indeed, as shown z is on some vzi‘and
since’vzi intersects at most a~1 of the lines X2 yeee X2, it follows from
Lemma 1 that every point of intersectioq of vz, and a line xzj, so in part-
icular z, is tollinear with y°'.

But now we have [Eyuz,y’]l 2 l[yuzgx] U {y}| = a+l, a contradiction. [

LEMMA 3. Let x € X, L e L, x ¢ L such that [L,x] = {z ,...,2.}. If s > a,
then every line M not through x which intersects two linee of [x,L] =
{le,...,xza} aleo intersects L and all lines of [x,L].

PROOF. The number of pairs (u,v) # (zl,zz) such that v € xz., v € X2y,

1
u,v ¥ x, u ~ v equals s(a-1)~1., Every line M # X2 senesXZ which intersects
L and XZyyesesXZ gives rise to such a pair (u,v). By (%) and lemma 2 the

number of these lines equals (s+l-a)(a~1) + a(a~2) = s(a-1)~1. [J
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Let L ,L, € L intersect in a point x, If L is any line intersecting L,
and L, not in x, we let Ly,Lyse.,L, be the other lines in [x,L]. By lemma 3,
L3,L4,...,La are independent of the choice ¢f L. Put

L(L;sLy) 2= {Ly,Lo,ee, L} U {L € Ll ~ L sLy,IL, # x # LL,J,

X(L,Ly) = U L
LEMMA 4. et L ,L, € L, L, ~ L,. If s > a, then <L,,L,> = (X(Ej,Lz),L(Ll,Lz))
18 a partial geometry {in fact a dual design) with parameters s = s,

~ o~
t =a-1, o = a.

‘PROOF. Clearly two points are on at most one line and each line contains

s+1 points, Using (*) and Lemma 3 it follows immediately that every point

X € X(Li,Lz) is on a lines of L(L],Lz) so t+1 = o, It also follows immediat-~
ely that any two lines of L(Ll’Lz) intersect, hence o = t+! = o, [J

Notice that for M MZ € L(LI’LZ)’ M] ¢ Mz, M, ~ M, we have <MI’M2> =

1’ i 2

<L},L2>. Notice also that for any two noncollinear points x and y of <L1,L2>

there are ; = 3(E+l) = az =y points z ¢ X(LI’LZ) collinear with both x and
¥, i.e. the common neighbours of x and v in (X,L) are the common neighbours
of x and vy in <L1,L2>.

THEOREM 4. Let (X,L) be a e.p.g. with pavameters s,t,a(>2), u = o2, If

s >aand t 2a, then (X,l) satisfies (D).

PROQF. Let xl,xz,x3,x4;be four distinct points no three on a line, such that
R ac T T Shac S0
Suppose xzfxé. Since XyVE VK, it follows that

X} € < KRy X X> )

In (X,L) there are 2 = s~1 + (o~1)t points collinear with both X, and
Xy. In <x;X,,X,%,> there are A=5-1+ @1) T = (s-1) + (u-l)z points col-

linear with both X and Xye Since t 2 o = t + 1 it follows that A < A and

' so there exists x, € X\X(x&x3,x2x3) such that x . Now application of

5 e P

17573
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to xl,rxs,x?’,x4 yields x5~x&,
to xl,xz,x3,x5 yields x5~x2,

tO X, 5X; Xy s%s yields Rp™Ky . ]

DEBROEY [1] showed that a s.p.g. with parameters s,t,a(>2), p = o? sat-
isfying (D) is of the following type: the "points” are the lines of PG(d,q),
the "lines" are the planes in PG(d,q) for some prime power q and d ¢ N,

d 2 4, In this case 8 = q(g+l), t = (q—l)-}(qd_]~1)~l, o= qtl, g = (q+1)2.

THEOREM 5. Let (X,L) be a s.p.g. with parameters s,t,a(>2), u = az. Ifs>a
and t z a, then (X,L) 18 isomorphic to the s.p.g. comsisting of the lines
and planes in PG{d,q). In particular s = q(q+l1), t = (q—l)“l(qd'l—l)—l,

o = q+l,bu = (q+l}2.

The only interesting case remaining is s = a. Now if (X,E) is a Moore
graph of valency r, i.e. a strongly regular graph with A = 0, u = I, then
(X,{r(x)|x € X}) is easily seen to be a s.p.g. with parameters s = t = a =
= =1, u = (r-l)2 (here T'(x) = {y ¢ X[(x,y) € E}). The point graph of this
8.p.g. i8 the complement of (X,E). Such a s.p.g. does not satisfy (D) for
r > 2. From the following theorem follows immediately that a s.p.g. with

n o= az, 8 = g is necessarily of this type.
THEOREM 6. Let (X,L) be a s.p.g. witht 2 o, u = o? and s = a. Then t = a.

PROOF. lLet %,y ¢ X, x % y. Let [x,yl = {LI""’La}’ fy,ul = {Mi""’Maj and

put zij‘ﬂ LiMj’ i, = lyeav,0 (see figure 2).

Figure 2.
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The number of (z..,zkz} with i # k, j 2, z.j~zk£ equals az-(a—l)(a-2).
‘Now let K be a line through %, K ¢ LI,...,L , and let u be a point on K,

u ¥ x.
Then u is collinear with (a-1) of the o points Zy ysereaZp o for
1 s
i=1,...,0. Since u ¢ y, u is collinear with all of z, j""’za 3 or with
3 b4

none, for j = 1,...,a,

It follows that there are o lines through u intersecting (a-1) of the
o lines MI,...,M . Hence each point u # x on K gives rlse to afa-1)(a~2)
pairs (z. ’zkﬁ) as described, so K gives rise to all « (a-l)(a—2) pairs
(z. ’sz)

Suppose t > o, then we can find two such lines K and K'., It follows °
that for u ¢ K, the o lines through u intersecting (a~1) of the o lines

M, ,...,¥ also intersect K'. But now [[u,K'3| = a+l, a contradiction., [J
1 (v}
3. SEMI-PARTIAL GEOMETRIES WITH u = afa+l).

In this section (X,L) is a semi-partial geometry with parameters s,t,o
and ¢ = ao+l),
If x,y ¢ X, x * y we shall always denote the a+! lines in [x,y] by
Kl""’Ka+1’ and the (a+1) lines in [y,x] by Ll""’La+1
number these lines in such a way that Xi n Li =@, i=1,...,0+1 and

. By (#%) we can

K, n Lj # 0, i,j=1,.0.,0+%, 1 # j (see figure 3).

o+

o+l

y
Figure 3.
Again our aim will be to show that the diagonal axiom (D) holds. We first
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deal with the case a = 2.

LEMMA 5, If a = 2 and t > 8, then a get of 3 collinear points not on one
line can be extended to a set of 4 collinear points no 3 on a line.

PROOF, Let x, a and b be three distinct collinear points not on one line.

There are t-1 lines # xa,ab through a and on each of those lines there is

a point vy~ b, v #a, i=1,...,t=1. Suppose v % x for all i = 1,.,.,t~1.

Now for each i = 1,,..,t~1, ay; + xb (for otherwise |[a,xb]| = 3) and

byi + xa. Also xa,xb ¢ [x,yi] and ayi,byi € [yi,x]. Hence, by (**) there is

a third line through v intersecting xa and xb in points u; and v, respect-
ively. Clearly u, f uj if 14 j,vfor.ui = uj implies x,vi;vj € [ui,xb]. Thus

Xa contains t+! > s+1 points (namely xia’“i""’ut~1>’ a contradiction. [

LEMMA 6. Suppose o = 2. If X) 3%y 1Ky X, are four distinet collinear points,

no three on a line, then no point can be collinear with exactly three of

these four points.

EEQQE. Sup?ose Xg is collinear with Xy 3Xqs XK, and k] P Xg- Clearly X ¢ Xp¥q,
X)X, s XqX, . Hence {x]xz,x]x3,x]xa} = [xl?x5] and {x5x2,x5x3,x5x4}‘= [xS,xlj

173
. l{xz,xlxall > 2, a contradiction. [

80 XgX, has to intersect x,x, or X%, by (*%). But then l[xz,xlx3]| or

LEMMA 7. Same hypothesis as in lemma 6. Then the only points collinear with
exactly two points Qf‘{xl,xz,x3,x4} are the points on the lines X Xq i# 3.

PROOF. Suppose Xg ~ X5%, and g + X,y 5Xqs xs'é X%, (see figure 4).

d b
'X] \xz
X
5 AN
A
\
\\
X3 \
- x4 a \\
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Apply (x%x) to x5 and Xg to get a line ab through Xy with a ¢ XsX, s be KeX) o
Slmllarly (**) applied to Xg and X, gives us a 11ne cd through x, with

C € XX, de XsX o Clearly b # ¢ so we can apply (**) to b and c. It fol-
lows that ab n ed = ¢, Also %, + a and (**) applied to %, and a yields:
abnecd # ¢ or ab n LN # ¢. Hence ab n Xy, # @, a contradiction since

{xzfx4} = [x2x4’33]’ 0

THEOREM 7. If (X,L) 78 a 8.p.g with parameters s,t,o. = 2, u = 6 and t>s,
then (X,L) satisfies (D).

PROOF. Let X sXysXq and X, be four distinct points no three on a line such
that x4~x1~x2~x3~x&~x2. By Lemma 5 there exists x5~x2,x3;x4.

By Lemmas 6 and 7 X[ ~Kq5Xpe 0

REMARK., If (X,L) is a s.p.g but not a partial geometry, then t = 5 (see
DEBROEY & THAS [2]). Using the integrality conditions for the multiplicit-
ieg of the eigenvalues of a strongly regular graph it follows that a s.p.g
thh s=t, a=2 and u=6 satisfies (8s —24s+25)|{8{s+1)(25 -982+I9s—30)}

From this one easily deduces an upper bound for s. The remaining cases were
checked by computer and only s=t=28 survived. Thus, every s.p.g which is

not a partial geometry satisfies (D) or has s=t=28 (and 103125 points).

We now turn to the case a23. We shall make two additional assumptions
in this case, The first assumption is o # 3, the second assumption is
2 f(a) where f is defined in Lemma 9. Notice that this bound on § is used

only in the proof of Lemma 9.

LEMMA 8. Let x,y € X, xfy and suppose [x,y]l = CK,,...,Ka+1}, [y.x] =
[LI"“’La+1] such that Ki n Li =8, 1i=1,...,a+l. If M 1e a line inter-
secting o 2 1 lines of [x,y1, v 2 1 lines of Ly,x] and 0 < v, then o = a-1
arnd T = a.

PROOF. Since ¢ < 1, there exists a point of intersection u of M with a line
Li ¢ [y,x] such that u is not on one of the lines of [x,yl. Then ufx and
so, applying (*#) to u and x, it follows that M ¢ [u,x] intersects o~-l

of the o lines K Kz,...,K. 1,K1+1,...,K 4 € [x,ul. Thus a~1 £ 0 < T < a,
" which proves our claim. [
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LEMMA 9, ZLet x ¢ Xand L ¢ L such that x ¢ L and x is collinear with o points
ZysZysesssy,y ON L. Let M be a line through Z 41 meeting Xz in a point

u# X2 Suppose s 2 f(0) where £(4) = 12, £(5) = 16, £(6) = £(7) = 17,

£(8) = 18, £(9) = 19, £(10) = 21, £(11) = 23, £f(a) = 20 (2212). Then M inter—
sects at least a1 lines of [x,L].

PROOF. Suppose M does not meet at least two lines of [x,L], Xz, and XZ 4, sayf
Since s = 20 we can find y € L such that xfyfu. Let [x,v] = {KI,K2=x22,...,

L +1} and [y,g] = {L =L L2’L3""’La+l} with K, n L, = g.

Looking at u and y we find that M intersects a~] of the & lines L.,
i # o, Every point L, M which is collinear with x is on a line K., i#a. If
L, M ~ x for these u—l i's, we find that M meets at least o of the lines

ye00sK , hence at least a-1 of the 11nes Kyseea,K , a contradiction.
1 a1 2 a1

Let t = LiM be a point not collinear with x. Considering xft we see that M
intersects u~1 of the o lines in [x,y]\{Ki}. This shows that i = 2 or 3, so

l’Kﬁ’KS""’Ka+1'

Let V = {K4M,K5M,...,KGM} and count pairs (y,v), vy € L, y¥x, v € V, vy,

The number of such pairs is at least (s-o+1)(a-5) (first choose y,s-o+]

there are at most two such points t, and that M meets K

possibilities, then given y we can find a-3 points L;M~x as above, possibly

one on K](y), and one is z__.)}, and at most (u-3)(a-2) (first choose v,

then y). It follows that fgzla > 5, 8 £ 20-1 + {Egg .Let W=V u {q,q"} =
= {w ¢ Mlw~x} and count pairs (y,w), vy € L, y#x, w ¢ W, w ~ y. This yields
(s-a+1) (a-4) 5 (a-3)(a=2) + 2(a-1), hence s < 2a + la%l if o > 4. Above

we saw that for any y ¢ L with xfvitu, K1 = Kl(y) meets M, But if s+l > a +

+ (a-2) + 2(a~1) = 4o~4, we can find y ¢ L such that y#x, u,q and q', a
contradiction. Therefore we have s < 4o~4, We now have obtained a contradic~

tion for all a 2 4 and the lemma is proved. [

LEMMA 10. Some hypotheses as in Lemma 9. Then M intersects exactly a-~1 lines
of [x,L].

PROOF. Take y € L, y#x and let K. and L be defined as before. Put K := K
and let A(x,L) be the set of llnes # K,L through z

o+l
o+ intersecting at least
a~1 lines of [x,L], A(y,K) the set of lines # K,L through 2,00 intersecting
at least a—1 lines of [y,K]. Suppose a lines of A(x,L) intersects a~-I

lines of [x,L] and b lines of A(x,L) intersect o« lines of [x,L]. Counting
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the points u~z on KZ’K3""’KG’ such that u # KrZgsenesZ, vields

a(o-2) + b(cx---l(;w.=IB (a-1)(a-2). Hence a =0 and b=0a-20r a=g-1 and b = 0,
Thus |A{x,L)| = a~2 or a~1 according as every lime in A(x,L) intersects
all lines or all but one line in [x,L]. A similar result holds for A(ﬁ,K).
Now A(x,L) = A(y,K), for suppose N ¢ A(x,L) then by Lemma 8, N intersects
at least a~l lines of [y,x], so at least o-2 2 2 lines of [y,K]l. Hence

N ¢ A(y,K) by Lemma 9. Similarly, N ¢ A(y,k) implies N ¢ A(x,L). Suppose

|A(x,L)| = a~2, i.e. there are o~2 lines through z intersecting all lines

a+l
of [x%,L3 v [y,K]. It follows that K2La+l + Z,,q SO We can apply (*%) to
K2L 1 and 2z a1 This shows that La+1 € [K2L0+1,za+1] intersects all
N e A(3,K) & [z w1752 +]], a contradiction, for L4 ™N implies |[y,N1l>
zo+l, [

LEMMA 11. Let x ¢ X, L ¢ L such that x i collinear with o points

as] O L. Let M be a line through Zg 41 interseeting o~ limes of
[x,L] and Zet y ¢ L, yfx. Then, 2f [x,y]l = {K](y),K2=xz seeesK iy 3,
M intersects K, .

Zyseess?

=Xz

2 o+l

PROOF. Suppose M does not intersect K2, say. As shown in Lemma 10, M also
intersects o~1 lines of [y, Ko ] = {L =LyLyy sl }. So M intersects at

least one of L and L and gince a = 4, L # L L . Suppose M 1nter—

-1 a-1""a
sects L (L ) in a point v. If vfx then apply (x*) to v and x. It follows
that M ¢ [v,x] intersects Kl(y) ¢ [x,v] for M misses K, € [x,v]. If v~x
then v = L _ K. (v=LaKi) for some i, By Lemma 10 applied to x and La—l(La)
it follows that M intersects K!(y) € [x,La_ll (Kl(y) € [x,La]), for M does

not intersect K2 e‘[x,La_]] (K2 € [x,La]). ]
COROLLARY. The line Kl(y) i8 the same for all y e L, v ¢ x.

LEMMA 12, ZLet x € X, L € L such that x is collinear with o points
ZgsZgsesesZyy O L, Put Ki=xzi, i=2,...,a+1 and let K1 be defined by
K ,Kypeee,K = [x,y] foramy y e L, ¥ + x. Then every line which in-
tersects K, and a K, (i#1) not in x, intersects L and therefore exaetly

a lines 0;f‘ {Kl"”’K }.

PROOF. Fix i ¢ {2,...,0+1}, The number of pairs {(u,v) such .that
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u e KI\{X}, v e Ki\{x}, u~v equals s(a~1). If y ¢ L, y ¥ x and [y,x] =
{LlaL,Lz,...,La+]}, then each of the o—~1 lines LZ’L3""’Li-l’Li+l""’La+l
gives rise to such a pair (u,v). Each point zj, = 2,3,...,1"1,0+1, ... 0%]
is on a~1 lines # Kj?L which intersect o lines of {K],...,Ka+1}. They all
intersect K, by Lemma 1! and no two miss the same Kk since otherwise some
K£ would be hit oa+] times. Thus each point zj, 32,3, , 00 i i+, .. 0k
gives rise to (o~2) pairs (u,v). Finally there are (a-~1) pairs (u,v)

with v = z;. In all, the lines intersecting L contain (s+1-a){(a-1) +
(a~1)(x~2) + (o-1) = s{a~1), i.e. all, pairs (u,v). [J

If in Lemma 12 we replace L = L, by a line L, missing K., then it

follows that every line intersectingltwo lines of {KI""’Ka+1} not in x,
intersects exactly o lines of {Kl""’Ka+1}' Using this result and the
foregoing lemmas we can now proceed as in the case u = az. For any two
intersecting lines L,sL, we can define in an obvious way a partial geometry
<L],L2> = (X(L]’LZ)’L(Ll’LZ))’ now with parameters s = S, t = O, o =0 (so
<L1,L2> is an (a+1)-net of order s+l!). Again o= S(E+1) = a{a+l) = Yy, so

with the same proof as the proof of Theorem 4 we have the following theorem.

THEOREM 8. Let (X,l) be a s.p.g. with parameters s,t,o,n = afo+l). If o 2 4,
s 2 £(a) (f as in Lemma 9) ard t 2 o+l (i.e. if (X,L) i8 not a p.g.), then
(X,L) satisfies (D). '

Fix a (d~2)~dimensional subspace 8 of PG{(d,q), q a prime power, d ¢ N,
Then with the lines of PG(d,q) which have no point with § in common as
"points" and with the planes of PG(d,q) intersecting S in exactly one
point as “lines" and with the natural incidence relation, one obtains a
s.p.g. with parameters s = qz-], t o= (q-l)-l(qd-l'l)'lg a=q, p=qlg+l).

DEBROEY [1] showed that a s.p.g. with parameters s,t,a 2 2, u =
= q{o+1) and satisfying (D) is of this%type. Combining this result with

Theorems 7 and 8 we arrive at the following theorem.

THEOREM 9. Let (X,L) be a s.p.g. with parameters s,t,a,u = a{o+l) which
18 not a Puges If o =2 and not s = t = 28 or if o 2 4 and s = £(a), then
(X,1) 28 Zsomorphic to a 8.p.g. consisting of the lines in PG(d,q) miss—
ing a given (d-2)-dimensional subspace of PG(d,q) and the planes inter—
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seéting this subspace in one point. In particular s = qz-l,
t = (q—])-l{qd~]~1}-l, a =q, u = q{q+l) for some prime power q and d ¢ N
and any 8.p.g. with these parameters with q # 3 and d 2 4 is of this type.
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SAMENVATTING

Dit proefschrift bestaat uit vijf artikelen en een inleidend hoofd-
stuk. In elk van de vijf artikelen wordt een karakterisering gegeven van
‘een object uit de eindige meetkunde. Het inleidende hoofdsﬁuk bestaat uit
een overzicht van vergeliikbare resultaten uit de literatuur (de stelling
van Veblen & Young over projectieve~ruimt¢s, de stelling van Ostrom & Wagner
éver projectieve vlakken met een 2-transitieve automorfismengroep, de
stelling van Buekenhout & Shult over polaire ruimtes, etc,), en inleidingen
in elk van de vijf artikelen.

Het eerste artikel gaat over bijna affiene vlakken. Evenals bij gewone
affiene vlakken is het ook hier mogelijk het begrip translatie te definiéren.
-Aangetoond wordt dat het bestaan van translaties equivalent is met de
geldigheid van een "Stelling van Desargues", en dat bijna aﬁfiene vliakken
met een transitieve groep van translaties op een bepaalde algebraische
manier kunnen worden beschreven.

In het tweede artikel wordt aangetoond dat er een verband bestaat
tussen bijna affiene vlakken en Minkowski vlakken. Dit gegeven wordt gebruikt
om een meetkundige karaskterisering te geven van alle, tot nu toe bekende,
Minkowski vliakken. In essentie komt deze karakterisering neer op de eis dat
alle bijna affiene vlakken die met een Minkowski vlak zijn geassocieerd,
moeten voldoen aan de Stelling van Desargues. {

In het derde artikel wordt een tweede karakterisering gegeven van de
op dit moment bekende Minkowski vlakken. Het blijken precies die Minkowski
vlakken te zijn waarvan de automorfismengroep transitief is op paren niet-
collineaire punten.

Het vierde artikel geeft een meetkundige karakterisering van de
klassieke unital (dit is het 2-(g®+1,g+1,1) design van de absolute punten
en niet absolute lijnen van een unitaire polariteit van PG(2,g*)). De
gekozen meetkundige condities zijn zodanig dat een op de punten 2-transitieve
groep van automorfismen geconstrueerd kan worden, die vervolgens geidenti~
ficeerd wordt als PSU(3,4%).

Bet vijfde en laatste artikel geeft een karakterisering van twee
klassen van semi-partiéle meetkundes die geconstrueerd kunnen worden uit
projectieve ruimtes. Bij deze karakterisering wordt alleen uitgegaaﬁ van de
speciale vorm van de parameters. Het doel wordt hier bereikt door aan te
tonen dat in deze seﬁi-partiéle meetkundes de duale versie van het axioma

van Pasch geldt.
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1.

De bewijstechniek van [1] is mogelijkerwiijs ook te gebruiken om het niet

. bestaan van een sterk reguliere graaf op 99 punten van graad 14 aan te

o

tonen.

[1] #.A. Wilbrink & A.E. Brouwer, 4 (57,14,1) strongly regular graph
does not exist, Proc. KNAW A 86 (1), 1983.

Er bhestaat tenminste een (symmetrisch) 2~(49,16,5) design.

A.E. Brouwer & H.A. Wilbrink, 4 symmetrie design with parameters
2~(498,16,5), to appear.

De punten en lijnen die geheel buiten een niet ontaarde hyperkwadriek

in PG(2n-1,2) liggen, vormen een semi-partiéle meetkunde.

Veronderstel dat een rang 3 Zara graaf de volgende eigenschap heeft.
Voor ieder tweetal disjuncte vlakken bestaan er partities in lijnen
van die vlakken 2z dat iedere lijn van elke partitie in een vlak is
met een 1ijn uit de andere partitie. Dan vormen de vlakken en lijnen

met de natuurlijke incidentie de punten en lijnen van een bijna-~zeshoek.
A. Blokhuis, Few-distance sets, Proefschrift T.H.E., 1983,

E. Shult & A. Yanushka, Near n-gons & line systems, Geom. Dedicata 9
(1980), 1-72.

Vermoedelijk geldt de volgende stelling. Als n de orde is van een pro-
jectief vlak met een reguliere abelse automorfismengroep en p is een
priemdeler van n, dan is n=p of p* deelt n. Voor p=2 en p=3 is

dit bewezen.

 H.A. Wilbrink, A note on planar difference sets, to appear.

De grafen op de inwendige en uitwendige punten van een niet ontaarde ™
hyperkwadriek in PG{2n,5), met als kanten de paren onderling loodrechte
punten, zijn sterk regulier.

Veel bewijzen in de combinatoriek kunnen met 50% worden ingekort door
gebruik te maken van matrices. Vefqelijk: E. Artin, Geometric Algebra,

Interscience, New York, 1957, p 14.



8. Het adagium "een plaatje is geen bewijs” dient zeker niet te worden
geinterpreteerd als een aanbeveling tot het niet gebruiken van plaatjes

in de wiskunde.

9. Het gebruik van computers binnen de wiskunde kan een remmende invloed
hebben op de ontwikkeling van de wiskunde, en dient daarom met de nodige

terughoudendheid te gebeuren.



