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Abstract

The unidirectional failure properties of some recently developed semi-
conductor large scale integrated non-volatile memories and magnetic
recording systems have provided the basis for a new direction of study
in coding theory.

Modeling these memories and systems as ideal binary asymmetric chan-
nels, the research reported in this dissertation focuses on the characteri-
zation and bounds as well as constructions of error correcting block codes
used for these channels.

Starting from the notion of asymmetric distance — a metric suitable for
ideal binary asymmetric channels, upper and lower bounds on the maxi-
mum cardinality of a block code of length n which corrects up to ¢ asym-
metric errors are presented. Most of them extend the results which were
known before to a larger area with respect to the length n and the error cor-
recting capability ¢, and some of them are improvements of those published
in the existing literature.

Considering the same area of length n and error correcting capability ¢
for codes capable of correcting asymmetric errors, the improved upper and
lower bounds on maximum cardinalities of block codes capable of correcting
up to t unidirectional errors are also established. The observation of the
differences between asymmetric error-correcting codes and unidirectional
error-correcting codes gives constructions of the latter codes based on the
constructions of the former ones by considering some comparable codewords
if it is necessary.

The uniqueness of binary block codes of length less than 9 and minimum
asymmetric distance 2 is thoroughly investigated. It is shown that up
to permutation, the codes of maximum cardinalities for even lengths are
unique, and the numbers of the non-isomorphic codes for odd lengths are
simultaneously given.

Using the asymmetric distance metric, the notion of the minimum dis-
tance from a certain codeword to all other codewords is introduced. Upper
bounds on such distance for maximum size codes are provided. For the
trivial case and for codes which are unique up to permutation, all such
distances are equal to the minimum distance of the code. This also holds
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for all maximum size codes of length n and minimum distance 2 when n is
not congruent to 1 or 3 modulo 6. For the remaining cases of length n, the
same conclusion is suggested and it is left as a conjecture.

With the properties of perfect codes for the binary symmetric channel in
mind, natural definitions of perfect, weakly perfect and uniformly weakly
perfect binary block codes for correcting asymmetric errors are introduced
and their properties are studied.

The analysis of the information rate of the weakly perfect codes which
are nontrivial shows that the only binary block codes of length n and mini-
mum distance greater than 2, which correspond to a partition of the whole
vector space of dimension n, are the repetition code for the ideal binary
asymmetric channel. Further study of such codes leads to the fact that any
weakly perfect code can always be enlarged to a bigger code.

Special attention is paid to the uniformly weakly perfect codes for cor-
recting asymimetric errors. Some properties with respect to the weight dis-
tribution of such codes are discussed. As the results, explicit constructions
for the uniformly weakly perfect codes which are nontrivial of length less.
than 15 and of minimum asymmetric distance 2 are presented. A family
of uniformly weakly perfect codes is generated by exploiting the Hamming
codes.
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Chapter 1

Introduction

Coding theory is still a young subject.

J. H. van Lint [{9]

1.1 Channel models and errors

A digital communication system can be regarded as a block diagram which,
in principle, consists of five parts: source, encoder, noisy channel, decoder
and sink. The source information is usually composed of binary or decimal
digits or alphabetic information in some form. The encoder transforms
these messages into signals acceptable to the channel. These signals enter
the channel and are perturbed by noise. The output is received by the
decoder, which makes a decision concerning which message was sent and
then delivers this message to the sink.

Error control coding has shown itself to be a powerful tool in obtaining
efficient and reliable transmission of messages over a noisy channel (see
e.g. [35] [42]). Throughout this dissertation we restrict ourselves to binary
noisy channels, The binary symmetric channel (BSC) is a practical and
simple model for random errors that occur in a transmitted word with equal
probability p of a 1-to-0 error and a 0-to-1 error, as shown in Figure 1.1.
Also, the noise is random in the sense that it affects each bit independently
in the transmitted word.

The 1-to-0 error and the 0-to-1 error are termed as I-error and 0-error
respectively, adopted from Kim and Freiman [31]. If the errors in a word
(or vector) are independent of each other and both 1-errors and 0-errors
are equally probable, then these errors are said to be symmetric errors.

A great deal of research has been devoted to finding efficient schemes by
which digital information can be coded for reliable transmission through
a binary noisy channel after the appearance of coding theory, whose birth
is marked by the fundamental work of Shannon [46] in 1948. Codes for
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correcting symmetric errors have extensively been studied for use on a
BSC. We only mention the book written by MacWilliams and Sloane [36],
in which a list of more than 1400 references is included.

In this dissertation, two other channel models will often be considered,
namely the ideal binary asymmetric channel (IBAC) and the ideal binary
unidirectional channel (IBUC). The binary asymmetric channel (BAC) is
modeled in Figure 1.2, with a probability p of a 1-error and a probability ¢
of a O-error, where e # p, 0 < ¢,p< 1.

Transmitted Received
symbol symbol
l-p
0 0
P
p
1. 1
l-p

Figure 1.1: The binary symmetric channel (BSC) where 0 < p < 1/2.

Transmitted Received
symbol symbol
1—c¢
0 0
P
€
1 1
1-p

Figure 1.2: The binary asymmetric channel (BAC) where e # p, 0 < ¢,p <
1.

For the special case when p is much greater than ¢, it is possible to
assume ¢ to be zero. Then we arrive at the model of IBAC, which is often
called Z-channel too (see Figure 1.3). It is totally error-free for 0’s and
noisy for 1’s. The model of IBUC behaves either like the Z-channel or like
the inverted Z-channel, which is error-free for 1’s and noisy only for 0’s.

2



Transmitted Received

symbol symbol
1
0 0
p
1 1
l-p

Figure 1.3: The ideal binary asymmetric channel (IBAC or Z-channel)
where 0 <p <1,

From the foregoing, in an IBAC either 0-errors or 1-errors can occur in
the received words but not both. These errors are referred to as asymmetric
errors. If both 0-errors and l-errors can occur in the received words, but
in any particular received word, all errors are of one type, then these errors
are characterized as unidirectional errors.

In the last two decades, a lot of attention has been paid to the study of
codes which are capable of correcting asymmetric or unidirectional errors.
Such codes apply to, for instance, some data storage systems or optical
communication [2] [4] [8] - [11] [38] - [41] [44]. For this, the reader is
also referred to the references listed in Chapter 7 of [42] and the bibli-
ography of [34]. As an example, we quote a statement from [9] below.
After analyzing the failures in the cells of semiconductor large scale inte-
grated (LSI) non-volatile memories and metal-nitride-oxide semiconductor
(MNOS) memories, Constantin et al. come to the following conclusion:

“The LSI and MNOS memeories thus ezhibit a unidirectional
failure property. Although the rest of the memory system - --- - -
is not dependent on power shutoffs and is subject to symmetric
failures, for the overall memory system, the probability of 1 — 0
crossover failure is significantly greater than the 0 — I crossover
failure,”

The asymmetric or unidirectional failure properties of these memories have
provided the basis for a new direction of study in coding theory. In the
symmetric error model (BSC), both 0-errors and 1-errors may occur in a
received word. In an IBAC, if there are multiple errors, their type is known.
A more formal definition of error types with an example will be given at
the end of this section. ‘



Let Vy denote the n-dimensional vector-space over GF(2) which is the
field containing only two elements 0 and 1, i.e.

Vi = {(alaa%' ")aﬂ)lai € {011}:i = 1,2,-",72}.

We use the words vector or word to denote the n-tuples from Vy (n is called
the block length or word length). The cardinality of a finite set A is denoted
by |A|. For any x = (21,22,++,2s) € Vp and y = (¥1,¥2,***»Yn) € Vn,
put

N(x,y) = [{ilsi=1Ayp: = 0,1 <i<n}],

the number of coordinates of x and y withz; =l and y; = 0for 1 <i < n.
If N(x,y)=0,i.e.,forall i, z; = 1 implies y; = 1, we say that the vector x
is covered by the vector y. This can be writtenasx < yory 2 x. Iix £y
and y £ x, the vector x and the vector y are said to be incomparable. If
x <y ory £ x, then we say that they are comparable.

Example 1.1 Let n = 8 and

(10101011),
(00101011),
(10100000).

oo

X
h
z
Then N(x,y) =1 and N(y,x) =0, which shows that x and y are compa-

rable and y < x. Similarly, z < x. Also, N(y,z) =3, N(z,y)=1. Soy
and z are incomparable.

Definition 1.1 Assume that a vector x € Vy, is transmitted and a vector
Y € Vy is received.

1. We say that x has suffered t symmetric or random errors if
N(x,y)+ N(y,x)=1t.
2. We say that x has suffered t asymmetric errors if
(NGoy) =1) A (N(y,%) = 0).

3. We say that x has suffered t unidirectional errors if

(N(x,y)=t A N(y,x)=0)V(N(x,y)=0 A N(y,x)=1).



Example 1.2 Let n = 12 and

x (111111000000)
y1 = (110000100000)
y2 = (111100000000)
ys = (111111000001).

a) When sending x over a channel which may cause errors of the sym-
metric type, it is possible to receivey; (t =5),y: (t =2), y3 (t =1).

b) When sending x over a channel which may cause errors of the asym-
metric type, it is possible to receive y; (t = 2) but impossible to receive y,
or ys.

c) When sending x over a channel which may cause errors of the unidirec-
tional type, it is possible to receive y; (t = 2) or ys (¢ = 1) but impossible
to receive y;.

1.2 Binary block codes

Codes are designed to detect and/or correct errors in the channels. A code
is called a block code if the coded information can be divided into blocks of
length n (> 1). In the binary case, these blocks are the vectors of the vector
space Vy, defined in Section 1.1, over the finite field with only two elements
0 and 1, on which the addition and the multiplication are defined by a + b
(mod 2) and ab where a,b € {0,1}. For a vector x = (21,22, -, 25) in Vp,
z; is called the ith coordinate of x. The Hamming weight of x (also called
the weight of x), denoted by w(x), is the number of nonzero coordinates of
X.

One of the most important parameters of a code is its distance. Ac-
cording to what we have mentioned previously, three different distances
between two vectors of Vy are introduced in this dissertation.

Definition 1.2 Let a € V, and b € V. Define
di(a,b) = N(a,b)+ N(b,a),

d,(a,b) = maz{N(a,b), N(b,a)},

and
dn(a,b), if a and b are comparable

du(a,b) = { 2d.(a,b), otherwise.

dn(a,b) is the well known Hamming distance between a and b which
indicates the number of different coordinates in the two vectors. The Ham-
ming distance is utilized for the study of BSC. It is replaced, in the present
dissertation, by the asymmiric distance d,(a,b) or by the unidirectional
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distance d,(a,b) which were introduced by Rao and Chawla [41], Ander-
son [1] as well as Bose and Rao [4] respectively. An embryonic form of the
asymmetric distance and the statement of the error-correcting capability
of codes with this distance function can be found in earlier literature, for
instance in [52].

It is clear that, for all a, b € V,:

di(a,b) < d,(a,b) < 2d,(a,b)

and
2d,(a,b) = dy(a,b)+ | w(a) — w(b) | . (L.1)

Both the Hamming distance and the asymmetric distance are two legitimate
distance functions, or metrics, on Vg, Hence, the name of the asymmetric
distance may be confusing since of course the metric is symmetric. In fact,
the word “asymmetric” only refers to Z-channels. However, the unidirec-
tional distance is not a metric on Vy. This is because it does not satisfy
the triangle inequality, as can be seen by taking the vectors in Example 1.1:

du(y,2) =2x3=6>d,(y,x)+du(x,2)=1+3=4.

A binary symmetric error-correcting block code of length n and minimum
Hamming distance d, indicated by Ci(n,d), is a nonempty proper subset
of the vector space Vy in which any two distinct vectors are at Hamming
distance at least d apart and this distance is realized at least once. Similar
definitions and notations apply to asymmetric cases (and C,(n,d)) or uni-
directional cases (and C,(n,d)) instead of symmetric cases (and Ch(n,d)).
The vectors in a block code are called codewords. The minimum distance
(often simply called distance) of a code is defined as the minimum of the
distances between all pairs of codewords. Hence for a Cy(n,d) code C, we

define
d = min{ds(a,b)|la,b € C Aa # b}

where f can be taken as h, v and a. If C' can correct up to t (¢t > 1)
syminetric errors, we sometimes say that C is a {-SyEC code. Similar
notations can also be applied in asymmetric cases or unidirectional cases.
Hence we have the so-called ¢-AsEC or t-UEC codes. In accordance with
our notation, we restate the following well known results which give the
necessary and sufficient conditions for the error-correcting capability of a
block code in terms of the above three distance functions (see e.g. [36], [31]

and [4]).

Theorem 1.1 Let C be a code of length n and distance d; (f = h,a,u).
Then

1) C is a t-SyEC code if and only if (iff) dn > 2t + 1.
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2) C is at-AsEC code iff d, >t + 1.
3) Cisat-UEC code iff d, > 2t + 1.

To avoid unnecessary complications in the discussions, we will make
two conventions on the codes: the minimum asymmetric distance is always
assumed to be greater than or equ-1 to 2 (a code is called trivial if its car-
dinality is less than or equal to 2) and none of the coordinates is identically
zero or identically one. It is easy to show that a C,(n,d) code, if n < 24,
contains at most two codewords; therefore, it is a trivial code.

Let A; denote the number of codewords of weight ¢ in a code C of
length n, i.e., A; = |{c € C | w(c) = i}| for i = 0,1,---,n. The numbers
Ag, Ay, -+, A, are termed as the weight distribution of C. The weight of
C, indicated by w(C), is defined as the sum of the weights of all codewords
of C. The rate of C, defined by (loga|C|)/n, is a measure for the efficiency
of C.

In general, codes should be designed not only with a high rate (‘ef-
ficiency’) but also with a large distance (‘reliability’, see Theorem 1.1).
Regrettably, these are conflicting goals. Very often what we are concerned
with in this respect is the following function:

Ag(n,d) : the maximum number of codewords of a Cy(n,d) code

where f stands for &, a or u. The bounds on Ax(n,d) have been established
extensively (see e.g. [36] [5]). In this dissertation, we will discuss the lower
and upper bounds on A,(n,d) and A,(n,d). We often use the same notation
d for both Cy(n,d) codes and C,(n,d) codes. Usually, this will not lead
to confusion. When the best (smallest) known upper bound meets the
best (largest) known lower bound, the exact value of A,(n,d) or Au(n,d)
has been determined. If a Cy(n,d) code C contains Ay(n,d) codewords
(f = h,a,u), the code C is called optimal or we say that C is of maximum
size (or cardinality).

Evidently, any t-SyEC code is also a t-UEC code, and any t-UEC code
is also a t-AsEC code. This yields

Ap(n,2t +1) < A,(n,2t + 1) < Ag(n,t + 1) (1.2)

for n > t > 1. Further, it was proved that An(n,3) = A,(n,3) forn > 1
(see e.g. [57]), namely, a single symmetric error must be unidirectional.

A code in which all the codewords are of the same weight w is called a
constant weight code of weight w. A(n,d,w), which represents the max-
imum number of binary n-tuples of weight w with minimum Hamming
distance > d, is a well known function for constant weight codes. The
bounds on A(n,d,w) are well documented in [5]. A linear code of length n
is a linear subspace of V,. A k-dimensional linear code of length n with
minimum Hamming distance d is called a [n, k, d] code.

7



Two codes are called equivalent if they differ only in the order of the
coordinates. Thus, equivalent codes have the same parameters, namely
the same length, the same number of codewords and the same minimum
distance.

Finally, some notations are introduced here for further use. To save
space, vectors are sometimes expressed in hexadecimal representation
(right justified), that is, we put 0=0000, 1=0001, ---, 9=1001, A=1010,
---, F=1111, and usually erase leading zeros. For example, 001010=0A,
10011110=9E, etc.. Bars indicate complements of binary vectors or ma-
trices. The all-one vector and the all-zero vector respectively are abbrevi-
ated to 1 and 0. a' denotes the all-a vector of length ! (¢ = 0,1). The
Greek letter 7 indicates the transpose of matrices and vectors. For a vector
a = (a1, +-,a,) € Vp, circ(a) is used to represent the successive cyclic
shifts of the vector a, namely a square matrix of size n by n with top row
a. The support of a is the set of indices ¢ with a; # 0, and is denoted by
supp(a). Sometimes vectors will be identified by their supports.

1.3 Motivation of performed research, a
brief survey of prior work

The theory of codes for correcting asymmetric or unidirectional errors has
been developed less fully than that of codes for correcting symmetric errors;
either this is because of the difficulty raised in nonsymmetric channels or
because it is a new developing field in coding theory. But, on the other
hand, many of the concepts developed for BSC can now be carried over,
with slight modifications, to the new model IBAC. The asymmetric dis-
tance plays an essential role for codes employed in IBAC. Its relationship
with Hamming distance is shown in (1.1). Hence for any a and b in Vp,
d.(a,b) > |(dr(a,b) +1)/2]. Here, |r| denotes the largest integer not ex-
ceeding the real number r. We also use [r] to denote the smallest integer
not less than the real number r. According to Theorem 1.1, it is easy to
see then, that for equivalent error-correcting capability, the Hamming dis-
tance imposed on a code for BSC is more restrictive than the asymmetric
distance imposed on a code for IBAC.

For.instance, a binary code having asymmetric distance 2, is capable of
correcting any single 1-error. Since di(a,b) > 3 implies dy(a,b) > 2, any
1-SyEC code is of course a 1-AsEC code. However, it would be ineflicient
to use single error-correcting codes designed for BSC as codes for IBAC.
One should hope, for any given n, to come up with a 1-AsEC code of length
n having more codewords, i.e., a higher information rate, than the single
error-correcting Hamming code of length n. And indeed, Kim and Freiman
[31] have succeeded in giving a constructive proof of this contention for
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most length n codes. The superiority of the codes of [31] lies in the fact
that they are of larger size (and hence can represent a greater number of
different messages) than the optimal symmetric codes of equivalent length
which meet the same minimum reliability requirement in IBAC.

Even higher information rates were achieved by Varshamov [55] [53], and
generalizations to multiple error-correcting codes for IBAC were also given
by Varshamov [54] and McEliece [37] in which they encounter problems
that are presently unsolved in number theory.

Constantin and Rao [9] introduced a class of codes suitable for asym-
metric channels, which are referred to as group-theoretic codes. As their
name shows, the development of such codes relies mainly on the theory of
Abelian groups, and their structure is evidently inherited from the structure
of the Abelian group that generated them. These codes are of minimum
asymmetric distance 2 and have been shown to be superior in their infor-
mation rates over the previously known 1-AsEC codes of Kim-Freiman and
Varshamov.

Early in the eighties, some good bounds on A,(n,d) were derived by
Delsarte and Piret [12] as well as by Klgve [33], which are better than those
given by Varshamov [51] and Goldbaum [24] previously. An interesting
construction method for some 1-AsEC codes was also developed by Delsarte
and Piret in their paper using Steiner systems. Further, they constructed
2-AsEC codes by using the Nordstrom-Robinson code which is applied for
BSC.

More recent papers on this subject and on unidirectional codes, which
were available to me, are [58] — [60], [45] and [14]. In [58] - [60], Weber et
al. constructed codes mainly by using a general ‘expurgating/puncturing’
construction method by means of some good well known symmetric error-
correcting codes. Saitoh et al. [45] found some better codes, in the sense
that they have higher information rates, due to a good computer search.
Some improved results were recently announced in [14], in which three
methods were applied by Etzion, namely the partitioning method which is
a generalization of a method used to construct constant weight codes (see
e.g. [5]), the method of combining codes from a few existing codes, and the
method which is called shortening by weights. The codes found in [45] and
[14] result in numerous new lower bounds of the size of ¢-AsEC codes and
the size of -UEC codes in the area of length n < 23 and error correcting
capability ¢ < 6.

For later use, we recall the concept of ¢-designs. A design (Q2,B) is a set 2
(of ‘points’) together with a collection B of subsets of 2 (called ‘blocks’). A
t-(v, k, A) design is a design in which || = v, |B] = & for any block B € B
such that any set of ¢ distinct points of {) belongs to exactly A blocks. A
Steiner system S(t, k,v} is a t-(v, k,1) design. A balanced incomplete block
design is a 2-(v, k, A) design, which is also often denoted by D(v,b,r, k,\)



where b indicates the number of blocks in the design and r the number of
blocks containing a given point. A symmetric design (or square 2-design)
is a 2-design with as many blocks as objects. For further background, see
[25], [13] or [36].

An ingenious construction method for asymmetric error-correcting codes
is shown in [50], in which Van Lint et al. presented a 3-AsEC code of length
14 and size 30. The construction depends on well known block designs. Its
description is worth giving here briefly.

Let C be a 3-AsEC code of length 14. Without loss of generality, we
may assume that the all-one vector 1 and the all-zero vector 0 are in C.
Using Klgve’s result [33] with some combinatorial arguments leads to the
weight distribution of C satisfying: A4 < 3, As+ As+ As < 12 and A; < 8.

To construct the required code, let C' contain eight codewords of weight
7,1.e., A7 = 8. In so doing, Van Lint et al. had proved that these codewords
of weight 7 form a 2-(8,4,3) design. Let A = circ¢(1101000) be the incidence
matrix of a projective plane P4 of order 2. Then we can take the vector
(1,0) of length 14 together with the rows of the matrix (A, J—A) (J denotes
the all-one matrix) as the incidence matrix of the 2-(8,4,3) design formed by
the words of weight 7in C. Let B = ¢ir¢(0001011) be the incidence matrix
of another projective plane Py of order 2. Since the minimum asymmetric
distance of C is 4, and the planes P4 and Pp have no lines in common,
we can take the rows of the matrix (B, B) as the codewords of weight 6
and the complements of them as the codewords of weight 8 in C'. Further
analysis on the planes P4 and Pg provides three words of weight 4 and
three words of weight 10 to add to C. This gives a 3-AsEC code of length
14 containing 30 codewords.

Traditional coding theory is mainly focussed on codes for correcting
and/or detecting errors of the symmetric types. Nevertheless, some codes
can now be made for multiple types of error corrections/detections. A
code is called t,-SyEC t,-UEC #5-AsEC d;-SyED d;-UED d3-AsED (0 <
th Sty 3,0 < dy <dy €d3, t; < d;)if it can correct up to ¢
symmetric errors, up to ¢, unidirectional errors, and up to t3 asymmetric
errors, as well as detect from ¢; + 1 to d; symmetric errors that are not
of the unidirectional type, from ¢; + 1 to d, unidirectional errors that are
not of the asymmetric type, and from t3 + 1 to d3 asymmetric errors. The
conditions that are necessary and sufficient for a code to be t1-SyEC t2-UEC
t3-AsEC dy-SyED d,-UED ds-AsED have been generally derived by Weber
[57]. But it seems to be difficult to study these kinds of codes in general.
Much research has been done for codes with two different types of error
corrections and/or detections [42]. In the present dissertation, we shall
restrict ourselves to codes for correcting errors of only one type, namely

t-AsEC codes and t-UEC codes.
The race to develop better and better codes, that started in 1948 as a re-
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sult of Shannon’s theory, is still in progress and this dissertation represents
a ticket to this race.

1.4 Objectives and research outline

We are basically concerned with bounds and constructions of codes for cor-
recting asymmetric or unidirectional errors, and with studies of properties
of codes for correcting asymmetric errors.

Bounds on the maximum cardinality of codes for correcting less than
5 asymmetric/unidirectional errors have been studied by several authors,
as mentioned in Section 1.3, and they have been tabulated for codes of
length < 23. The first goal in this research is to give better bounds
on the maximum cardinality of codes for correcting ¢ or fewer asymmet-
ric/unidirectional errors with 5 <t < 8, and to extend the existing tables
of bounds to codes of length < 27.

The study for perfect codes and weakly perfect codes which are capable
of correcting asymmetric errors is the second goal. According to the defini-
tions of such codes, there are many questions one can conceivably address
with respect to those codes. However, in this dissertation we are mainly
concerned with the following two questions:

1. Which notion of t-asymmetric-error-correcting perfect codes of length
n corresponds to a partition of the binary n-dimensional vector space?

2. Does a nontrivial asymmetric-error-correcting perfect (weakly perfect
or uniformly weakly perfect) code exist that reaches the highest in-
formation rate among all codes of the same length with the same
error-correcting capability?

We will present the answers to the above two questions.

The investigations on uniqueness of optimal block codes for correcting
single asymmetric errors and on properties of uniformly weakly perfect
codes are additional interests in this research.

This dissertation is organized as follows.

In Chapter 2 some basic results are given in preparation for obtaining
bounds on the maximum sizes of codes for correcting asymmetric errors,
which will be used in the following two chapters. It will be seen that most
of these results can be applied to codes for correcting unidirectional errors.

Chapter 3 is devoted to bounds on the maximum size of binary block t-
AsEC codes of length < 27 with 5 < ¢ < 8. The improved upper bounds are
based on analyses of finding better solutions in a set of linear inequalities
on the weight distribution derived from Theorem 1 of [33] (generalizing the
result of Delsarte and Piret [12]) and subject to Theorem 2 of [59]. Using

11



further combinatorial arguments, stronger relations on the weight distribu-
tion of such codes have been found. Since it is difficult to explain these ar-
guments in general, they will be demonstrated in each concrete case. Lower
bounds follow virtually from the constructions of codes. Some constructions
described in this dissertation depend on the well known 2-designs or good
constant weight codes, and some are based on known codes with smaller
lengths and lesser distances. Trial-and-error is also used to construct some
special codes according to the restrictions on their weight distributions.
All the resulting codes have either a nicer description or better parameters.
Furthermore, some improved bounds on maximum cardinalities of 4-AsEC
codes of length < 23 are presented. Since the corresponding codes have
not been found yet, their maximum sizes were taken from the literature.
One miscellaneous result included in this chapter is the new upper bound
on the maximum size of 1-AsEC codes of length 10.

Along the same lines, we develop bounds on the maximum size of bi-
nary block t-UEC codes of length < 27 with 5 < ¢ < 8 in Chapter 4.
On the construction side, most of the unidirectional error-correcting codes
were obtained by modifying the asymmetric error-correcting codes, found
in Chapter 3, with the same length and the same error correcting capability.

Chapter 5 deals with uniqueness of optimal 1-AsEC codes of length less
than 9. It is shown that up to permutation, the optimal C,(n,2) codes for
n = 2,4,6 and 8 are unique, and there exist exactly four non-isomorphic
C.(3,2) codes containing 2 codewords, four non-isomorphic C,(5,2) codes
with 6 codewords and twelve non-isomorphic C,(7,2) codes with 18 code-
words.

A different direction taken in the dissertation points to codes with some
‘perfect’ conditions, treated in Chapter 6. For the asymmetric distance
metric, the notion of the minimum distance r(c) from a certain codeword
¢ to all other codewords is introduced. We then present the bounds on
r(c) for all codewords of an optimal code. After introducing the defini-
tion of perfect codes, weakly perfect codes and uniformly weakly perfect
codes, some properties of such codes are discussed. Consequently, the two
questions stated above on such codes are answered. As a special interest,
uniformly weakly perfect codes are considered at the end of this chapter.

In Appendix A, five tables are given. The bounds obtained in Chapter
3 lead to Table A.3, and those revealed in Chapter 4 are summarized in
Table A.5. All the updated best bounds on the maximum size of codes of
length < 23 and error correcting capability < 4 respectively are listed in
Tables A.1, A.2 and A.4 for the sake of completeness. Finally, Appendix
B shows how to reconstruct the codes mentioned in Chapters 3 and 4.
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Chapter 2

(General results

2.1 Some combinatorial bounds

Since the techniques used in this dissertation will improve on previous meth-
ods, it will be necessary to quote some of the existing results.

Theorem 2.1 Let C be a C,(n,d) code for n > d > 2. Then the weight
distribution of C salisfies

Al(s,2d,w — j)A; € A¥(n + 5,2d,w
j

Je=w—3

where A*(n,d,w) and A'(n,d, w) denote any upper resp. lower bound on
A(n,d,w), w=0,1,---,nand s =0,---,w.

Theorem 2.1 is due to Klgve [33]. Since any t-UEC code is also a t-AsEC
code, Theorem 2.1 holds for C,(n,d) codes as well. Tables of bounds on
A(n,d,w) can be found in [5] and [6]. Sometimes the upper bounds on
Ay(n,d) obtained with Theorem 2.1 can be improved by using additional
combinatorial arguments. We cite the following theorem.

Theorem 2.2 Let C be a C,(n,d) code. Let ! and i be integers such that
0<l1<i<n. Define

D = 2§=(-3 "fl.‘;)
E = ;‘:i—a‘]AJs
g = |E/n],
T frosind E —inq,
S, = Z;ﬁ}:f—l A;, fork=1,2--- 1,
S = i Si(Si—1).
Then |
ng(g—1) +2rq+ S < D(D - 1)(i — d). (2.1)
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Theorem 2.2 is from Weber et al. [59]. Note that (2.1) always holds no
matter whether ¢ > d or not. Obviously, Theorem 2.2 also holds for Cy(n, d)
codes. The non-existence of a code can be derived from the constraints
on the weight distribution by using Theorem 2.2. The key to this is to
contradict (2.1) by choosing suitable integers ¢ and [ when a code is assumed
with a certain weight distribution. However, in practice, it has been found
that Theorem 2.2 is useful only when 7 and [ are taken to be relatively
small, since (2.1) holds when 7 and [ are large. How we use Theorem 2.2
to sharpen the upper bounds on the maximum size of codes will be shown
in the following chapter.

The next theorem provides a concatenation technique for constructing
Ca(n,d) or Cy(n,d) codes using known codes of smaller length and distance.

Theorem 2.3 Form>1and1<d; <n;,1=1,---,m,
min{A;(n;,dg)(i = 1,~ . ,m} < A;(n, d)

wheren =30 n;, d=3 2, d; and f = a,u.

Proof: When m = 1, the assertion is obviously true. Suppose that m =
2. Let Cy be a Cy(ni1,dy) code of size v = Ay(ny,dy), and C; a Cy(n,,d;)
code of size p = Af(ns,d;). Without loss of generality, we may assume
that ¥ < p. Put the elements of C; ¢ = 1,2 in order of non-decreasing
weight. So C; = {ai,a,,---,a,} with w(a;) < w(ay) < -++ € w(a,), and
Cy = {by,by,-+,b,} with w(by) < w(b;) < -+ < w(b,). Now the code
Cj5 consisting of the v words (a;,b;) 1 <1 < v, is a C¢(ny+n2,dy+d3) code
of cardinality ». This proves that As(ny + ng,dy + d3) 2 v. The theorem
follows by induction, o

Theorem 2.3 is usually applied by using the two following corollaries.

Corollary 2.1 For any integerr > 1 and f = a,u
Ags(n,d) < Af(rn,rd).
Proof: Apply Theorem 2.3 repeatedly with Cy = C,. O
Corollary 2.2 Foreach 0 < s<n and 0 <t <d,
min{As(s,t), Ag(n — s,d — )} £ Ag(n,d)

where f stands for a or u.
Proof: This is the case m = 2 in Theorem 2.3. O

The next three theorems give the exact value of A,(n,d) when d is large.

Theorem 2.4 Let [n/2| <d < n. Then Ay(n,d) =2.

14



Proof: If on the contrary C is a Cy(n,d) code with |n/2] < d and
|C| = 3, then, without loss of generality, the three words 1, 0 and 1°0*
may be assumed to be the codewords of C where ¢ > d and b > d. This
implies that n = a + b > 2d > n, which is not possible. o

Theorem 2.5 Let n be even. Then A,(n,n/2) = 4.

Proof: Tt even takes little effort to prove that such a code is unique and
consists of 0,1 and two complementary words of weight n /2. a

Theorem 2.6 Let n be odd. Then

8 ifn=23;
Aq(n, [n/2]) = { 6 ifn=25;
4 ifn>T.

Proof: The conclusion is obviously true for the case of n = 3, since
Au(n,d) = Au(3,1) = |[V3| = 2® = 8. Also, it is easy to show that
any optimal Cy(5,2) code has size 6 (see Theorem 5.1 in Chapter 5), i.e.,
Ay(5,2) = 6. Finally, when n > 7, we may write n = 2d+1 since n is an odd
number. From Theorem 2.5 and the fact that A,(n,d) is non-decreasing in
n, it follows that 4 = A,(n —1,d) < A.(n, d). On the other hand, it can be
readily shown that

d-1 n
A<, Y A<l and Ag+ A <2
1=0 f=n~d4-1

Therefore, Aq(n,d) < 4, which yields that A.(n,d) = 4. ' o

The well known Singleton bound is used for estimating the function
Ap(n,d). Applying the same techniques (see e.g. [49]) to Cu(n,d) codes,
we can obtain the following similar result for the function A.(n,d).
Theorem 2.7 For n > 2d, A,(n,d) < 22442,

Proof: It is easy to see that A4(n,d) < 24,(n—1,d). Using the inequality
n — 2d times and then using Theorem 2.5, one will arrive at A,(n,d) <
2n=2 A, (2d, d) = 22442, O
Theorem 2.8 Let C be a C,(n,d) code with weight distribution
Ap, Ay, -+, An. Let s and i be integers such that 0 < s < ¢ < n. De-
fine

T = Z‘: A;A(s,2d,i — §) (2.2)
Then
d(n + 3) g . 5
TS[(d—i)(n%—s)ﬂ—in’ if ¥ > (i —d)(n+s). (2.3)
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Proof: Choose a subcode C of C suchthat Cy = {c € C' | i—s < w(c)
i}. Fori—s < j <14, let T; be a constant weight code of length s, minimum
Hamming distance 2d, constant weight i — j, containing A'(s,2d,: — )
words. Put

L}
X=lJ {(e,x)|ceCiAw(c) =jAx€T;}.
J=i—s

Then X is a code of length n + s, minimum Hamming distance 2d and
constant weight ¢, containing T' words. We list the code X asa T by n + s
matrix and let P be the sum of the inner products between all ordered
pairs of distinct rows of X. Since any two different codewords in X are of
Hamming distance at least 2d, and of the same weight ¢, their inner product
is at most 1 — d. This leads to P < T(T — 1)(i — d).

On the other hand, if we take y; as the number of 1’s in the jth column
for j =1,2,---,n + s, then the sum E;‘:i’ y; is the total number of 1’s in
X which equals :T. Hence, from the Cauchy-Schwartz inequality, it follows

nts n+a 2 n+s
P = Y yilyi—1) =2y — 2 v
=1 = =1
i n+s n+3 i2T2
> o ;= — T
2 n-}-s(g%) j_;y} n+s ?
Therefore,
T(T-1)i-d)> P> L _iT
i 2 P2 ——-—il.
This is equivalent to (2.3). o

Corollary 2.3 Let C be a C,(n,d) code with weight distribution
Ao, A1,-++,An. Let s and © be integers such that 0 < s < ¢ < n, and
T be defined as in (2.2). Then

(n+s)glg—1)+2r¢ <T(T-1)(z—-d)

where ¢ = [iT/(n + s)| and r =T — (n + 3)q.
Proof: 1t is known [59] that the minimum of 3737 22 subject to 3747 z; =
(n + s)g + r and the 2;’s being nonnegative integers, is attained when

zZy=z3=---=2z =¢+1and 2,41 = zr42 = -+ = 2,4, = ¢. Hence, from
the proof of Theorem 2.8, it follows that

n+-g n4s

T(T-1)(i-d) 2 Z:rxf—;y,s

> (r@g+ 1)+ (n+s—7)g") —((n+5)g+7)
= (n+s)g(g~1)+ 2rq.
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This completes the proof. ]

For larger values of n and d, (2.3) in Theorem 2.8 is possibly more useful
than Theorem 2.1 since it does not require any knowledge of A(n,d,w) and
is easy to compute for large values of n if the condition shown in (2.3) is
satisfied. As an example of applications of Theorem 2.8, we show

Theorem 2.9 A,(3d,d) < 13 ifd £ 0 (mod 3); As(3d,d) <14 ifd=0
(mod 3).

Proof: Let C be a Ch(3d,d) code with  weight distribution
Ao, Ay, -+, Asq. Without loss of generality, we may assume that Ay =
Asq = 1. First, suppose that d # 0 {mod 3). Sor = |d/3]| < d/3. Consider
Ag, -+, Ayg. From Theorem 2.1, it follows that

Ag+ ..+ Agpr SABd+1,2d,d + 1) = A(3d + 1, 2d, 2d). (2.4)

Since A(n,d,w) > 4 iff n > maz{3d - 2w,d+2w/3,w +d/2} (see e.g. [5]),
(2.4) results in Ay + --- + Agyr < 3. By symmetry, one also has Az, +

-+ Ayq < 3. It now suffices to prove that g = Agpry +-- -+ A24r1 < 5.
This is guaranteed by Theorem 2.8:

< d(3d+d —2r —2)
Y= 2d+r+1)@d—2r-2)+(2d—r-1)

7 =2d/(r+1) <6.

Therefore, |C| < 1+3+5+3+1 = 13. This implies that A,(3d,d) < 13 if
d # 0 (mod 3). Similarly, when 3 | d, one has that A+ .-+ Ag_g/3-1 < 3
and Agyass + - + Asa_asz < 6. Hence, A,(3d,d) <14if3 | d. O

2.2 Some results related to code construc-
tions

If the largest known lower bound on A,(n,d) is less than the least known
upper bound, then it is possible to find a larger code to increase the lower
bound, or to lower the upper bound, or both. For all options, investigation
with the constraints on the weight distribution should be helpful in view of
the constructions of codes. In this respect, the concept of t-designs provides
tools for us. The following result is due to Van Lint et al. [50].

Theorem 2.10 Let M be a (0,1)-matriz of size v by n with row sums > r.
Suppose the inner product of any two distinct rows of M is < X with

P (3’1 - 1) .
v—11\n
Then M is the incidence matriz of a 2-design D(v,n,r, k,A) with k =

(vr)/n.
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The proof of Theorem 2.10 is an interesting application of the Cauchy-
Schwartz inequality. It will be seen in Chapter 3 that Theorem 2.10 is also
useful in improving the upper bounds obtained by Theorem 2.1.

Note that for a Cy(n,d) (f = e,u) code, the inner product of any two
distinct codewords of weight i ( > d) is certainly less than or equal to i —d.
Thus, as a consequence of Theorem 2.10, one corollary is given by

Corollary 2.4 Let C be a Cy(n,d) code (f = a,u), and A; the number of
codewords of C of weight . If

i—d < —" (ﬂ’-l),

n

then the codewords of C of weight © form the incidence matriz of a 2-design
D(Ai,n,i,k, i — d) with k = (1A;)/n.
Proof: Replace v by A;, r by 7 and A by 7 -~ d in Theorem 2.10. 0
The following theorem will allow us sometimes to add some codewords
to an already constructed asymmetric error-correcting code.
Theorem 2.11 Let C be a C,(n,d) code containing 0 and 1, and let
b € V, such that d < w(b) < w(a) for all nonzero codewords a € C.
Then both b and its complement b can be added to C iff for any nonzero
codeword a € C with a # b, the inner product between a and b satisfies
<a,b> < w(a)—d and
w(@)+wb)+d—mn, ifn>w(a)+wb)

>
<a,b>2 { d, otherwise.

Proof: “==" Suppose that both b and b can be added to C. Let a be
any nonzero codeword of C different from b. From (1.1) and w(b) < w(a),
it follows that

2d 2d,(a,b) = di(a,b)+ | w(a) — w(b) |

dp(a,b) + w(a) — w(b)

w(a) + w(b) — 2 < a,b > +w(a) — w(b)

2w(a) —2 < a,b>.

So < a,b > < w(a) —d. On the other hand, by replacing b by b in (1.1),
we find

[ VAN

2d < 2d,(a,b) =d(a,b)+ | w(a) — w(b) |
= dy(a,b)+ | w(a)+w(b)—n]|.
Hence, if n > w(a) 4+ w(b) one has
2d < dy(a,b)—w(a) —wb)+n
w(a) +w(b) -2 < a,b > —w(a) — w(b) +n
= w(a)+n—w(b) —2(w(a)- < a,b>)+w(a)+wb)-—n
= 2<a,b>+2n - 2w(a) - 2w(b),

i
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while otherwise

dn(a,b) + w(a) + w(b) — n

w(a) + w(b) -2 < a,b > +w(a) + wb)—n

w(a) + n — w(b) — 2(w(a)— < a,b >) + w(a) + w(b) — n
= 2<ab>.

2d

A

“=" Let a be a nonzero codeword of C and a # b such that < a,b ><
w(a) — d. Suppose that b € C and b ¢ C. Assuming that

w(a) +w(b)+d—n, ifn>w(a)+ wlb)
) otherwise.

<a,b>2{

one can reverse the arguments above and obtain d < d,(a,b) (independent
of n > w(a) + w(b) or not). Moreover, since 1 € C, n — w(a) > d, also

d.(b,0) = n —w(b) > n — w(a) > d.

Therefore also b can be added to C.

If both b € C and b ¢ C, then the inequalities satisfied by the inner
product between a and b guarantee that d < d,(a,b) and d < d.(a,b).
Furthermore, we have

du(b,0) = w(b) > d,
d.(b,0) = n—w(b)>n—w(a)>d,
d.(b,b) = maz{w(b),n—w(b)} > w(b) > d.

Together these inequalities imply that both b and b can be added to C. O
A corollary to Theorem 2.11 is the following.

Corollary 2.5 Let M be the v x n incidence matriz of a 2-design
D(v,n,r k,A). If n > 3r —2X and r < nf2, then all the rows of M and
the complement of them together form a binary asymmetric error-correcting
code of length n and distance r — A.

Proof: By definition each row of M has weight r and the inner product
of each pair of distinct rows equals A. Since n > 3r — 2}, every pair of
distinct rows a and b of M satisfies A = <a,b> 2> r4+r+(r—X)—n.
Let d =r — ), then

w(a)~d = <a,b>2> w(@)+wb)+d-—n

Also, r < n/2 implies that n > w(a)+w(b). Therefore the assertion follows
from Theorem 2.11 immediately. a

Now we are ready to establish the bounds for C,(n,d) and C,(n, d) codes
with which the following two chapters will be concerned.
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Chapter 3

Bounds and constructions for
codes capable of correcting
asymmetric errors

3.1 Bounds and constructions for 5-AsEC
codes

This section is devoted to the bounds on A,(n,6) for length n < 27. From
Theorems 2.4, 2.5 and 2.6, it is only necessary to consider C,(n,6) codes
for n > 14. All proofs in this section consist of two parts: an upper bound
on the cardinality of such a code is derived and an actual construction is
given. Because of the lengths of the proofs and their similarities, we shall
only give the complete proofs of some of the theorems. For the other cases
only some information is given. The interested reader can find the complete
proofs in [17].

Throughout this chapter, it will be assumed that any C,(n,d) code
contains the all-one vector 1 and the all-zero vector 0. That assumption
is valid without loss of generality, according to Klgve [33]. It follows that
Aj=Ap;=0fori=1,2,--.,d~1.

Theorem 3.1 A,(14,6) = 4.

Proof: Let C be an optimal C,(14,6) code. From Theorem 2.1 (s=2,
w=8) it follows that A + A7 + As < 2. Hence
i4
IC] = Au(14,6) =D A; <1+2+41=4

1=0

On the other hand, one can even construct a C,(14,7) code: take 0, 1 and
two complementary words of weight 7. a

Theorem 3.2 A,(15,6) = 6.
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Proof: Let C be an optimal C,(15,6) code. From Theorem 2.1 (s=1,
w="1,9), it follows that A¢ + A7 <2 and Ag + A < 2. So

IC| = Aq(15,6) = ZA 1+42+2+1=6.
t=0
On the other hand, a C,(15,6) code of size 6 can be obtained by applying
Corollary 2.1 with r = 3 to a C,(5,2) code of size 6. 0

Theorem 3.3 A,(16,6) = 7.
Proof: Let C be an optimal C,(16,6) code. From Theorem 2.1 (s=2,
w=8; s=1, w=10), it follows that Ag + A7 + Az < 3 and Ay + A < 2.

Hence
16

IC] = Aa(16,6) =Y A;<1+3+241=T7.
=0

On the other hand, a code with this cardinality can be found by applying
Corollary 2.1 with r = 2 to a C,(8,3) code of size 7 (which can be found
in [12]). m]
Theorem 3.4 A,(17,6) =8

Proof: Let C be an optimal C,(17,6) code. From Theorem 2.1 (s=2,
w=8,11), it follows that As + A7 + As < 3 and Ag + Ao + A < 3, which
leads to

IC| = A(17,6) = ZA,-§1+3+3+1=8.

A code of this size is given by 00000, 1F800, 007EQ, 1861E, 071DC, 13CF3,
0CB6F and 1FFFF. } o

Theorem 3.5 A,(18,6) = 12.

Proof: Let C be an optimal C,(18,6) code. From Theorem 2.1 (s=1,
w=T,12; s=2, w=10), it follows that A + A7 <3, As+ As + A10 < 6 and
An+ A; <3. So

18
10| = A,(18,6) =Y A <143 +6+3+1 =14

=0

Next, we shall lower this upper bound to 12.

(a) Suppose that |C|=14. Then As + A7 = 3 and Ag + Ag + Ajp = 6.
From Theorem 2.1 (s=1, w=10), it follows that Ag + A;o < 4. This
means that Ag must be greater than or equal to two. Obviously,
the pair (Ag, A7) only has four possible values: (3,0),(0,3),(1,2) and
(2,1). However, it is easy to see that A¢ = 3 or A7 = 3 implies
As = 0, and that A, = 2 will lead to Az < 1. Since the triple
(As, A7, Ag) cannot be (2,1,2) or (1,2,2), according to Theorem 2.2
(¢=8, I=2) and Theorem 2.1 (s=1, w=8), we get a contradiction with
the assumptions. So Ag + Ay = 3 implies that As + Ag + A0 < 5.
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(b) Similarly, for reasons of symmetry, the assumption A;; + A1z =
implies that As + Ag + Ao < 5.

(C) Suppose that Ae + A? = 3, A11 + A12 = 3 and Ag + Ag + AIO = 5,
Then, from Theorem 2.1 (s=1, w=10), it follows that Ag + A;o < 4.
Hence As > 1. But Ag must be less than 2, as shown in (a). So
As = 1. Therefore, by symmetry, A;o = 1 and thus Ag = 3. This is
not possible by Theorem 2.2 (:=10, I=2).

1t follows from (a) to (c) that

' 18
IC] = A.(18,6) =3 A, < 1+10+1=12.
=0
The existence of a C,(18,6) code of size 12 follows from Corollary 2.1
applied with r = 3 to an optimal C,(6,2) code (of size 12). o

The next cases will involve deeper analysis of the weight structures
of these codes. Only in the first case this more detailed analysis will be
demonstrated. For the other cases we refer the reader to [17].

Theorem 3.6 A,(19,6) = 16.

Proof: Let C be an optimal C,(19,6) code. From Theorem 2 (s=2,
w=8,13; s=1, w=10), it follows that Ag + A7 + Ag < 5, Ag + Ao £ 6 and
A+ Az + Az € 5. These inequalities yield .

19
IC] = A.(19,6) =S A <1+5+6+5+1=18.
=0
A further analysis on the weight distribution of C shows that the upper
bound on |C] is 16 rather than 18.

(a) Let C' be a C,(19,6) code satisfying Ag + A;p = 6. We extend
these six words with an overall parity check symbol. Without loss of
generality, they may be listed as in Figure 3.1.

10
: | Codewords of C” of weight 10

0

6 1
i | Codewords of C" of weight 9

1

\

Figure 3.1: The six extended codewords in the proof of Theorem 3.6.

From Theorem 2.10 (r=10, v=6, n=20, X < 4), it follows that Fig-
ure 3.1 will form the incidence matrix of a 2-design D(86, 20, 10,3,4).
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This implies that every column in Figure 3.1 will contain exactly
three ones. Therefore, Ag = A9 = 3, which concludes that Ag = 0.
Indeed, if the opposite holds, let b represent a codeword of weight 8,
then, without loss of generality, the word b may be assumed in such
a way that its first eight coordinates are all ones and the remaining
eleven positions are zeros, as listed in the last row of Figure 3.2. Be-
cause the distance > 6, there are at most three ones in the first eight
positions for the codewords of weight 9, and four ones in the first
eight positions for the codewords of weight 10 respectively. So they
may be arranged as in Figure 3.2. There R; indicates the remaining
11 coordinates of codewords of weight ¢ for i=9,10. Counting the
number of ones in the first eight coordinates of the six codewords of
weight 9 and weight 10 rowwise and columnwise in Figure 3.2 leads
to 24 =8 x3 <3 Xx3+3 x4 =21, which is a contradiction.

Welght S 4 Rlo
Weight <3| Ry
11111111 |G --- 0

Figure 3.2: Illustration figure when Ag # 0 in the proof of Theorem 3.6.

(b)

Proceeding in the same way, one has Ay; = 0. On the other hand,
Theorem 2.1 (s=1, w="7,13) shows that Ag+A7 < 3and A12+A13 < 3.
So

19
0= Ai<1+3+6+3+1=14
=0
This produces that the maximum size of any C,(19,6) code with
Ag + Ajo = 6 never exceeds 14. Thus we can conclude that

19
[C] = A.(19,6) =Y A, <1+45+5+5+1=1T.

=0

Suppose that |C| = 17. This will, from (a), result in Ag+ A7+ As = 5,
Ag+ Ao = 5 and Ayy + A2+ Az = 5. Also, from Theorem 2.1 (s=0,
w=6,7,8,9,10; s=1, w="7,8,9), it follows that A¢ < 3, A7 <3, A5 < 3,
Ag <4, Ao <4, Ag+ A7 < 3, A7+ Ag < 5 and Ag + Ag < 5. Since
Ag = 3 or A7 = 3 implies that Ag = 0, the triple (A, A7, Ag) can only
have five possible values: (2,1,2), (2,0,3), (1,2,2), (1,1,3), (0,2,3), while
the pair (Ag, A1) can only have three alternatives: (1,4), (3,2), (2,3).
But, by Theorem 2.2 (:=10, I=2), the triple (As, Ag, A10) cannot take
any of these possible values; consequently, either Ag + A7 + Ag < 4
or Ag + Ajp < 4, which contradicts the assumption of |C| = 17.
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Finally, from (a) and (b), it follows that

19
|Cl=A,(19,6) =Y A <1+14+1=16.
1==0
From previous analyses, we are now inspired to find how the weight
distribution of C can be if C' contains 16 codewords. Suppose that |C| = 16,
then it follows from the statements in (b) that Ag+A10 = 4, As+A7+Az =5
and Ay + A1z + A1z = 5 due to symmetry. So the pair (Ag, Ajp) can only
take the values (2,2),(3,1) or (1,3). According to symmetry again, we
only need to consider two pairs (2,2) and (3,1). From Ag + Ag < 5 and
Theorem 2.2 (1=9,10, [=2), it follows that the triple (A7, Ag, Ag) cannot be
(1,2,3), (2,2,3) or (2,2,2), and the triple (As, Ao, A1g) cannot be (3,2,2).
Therefore, the weight distribution of C will be uniquely determined if 1
and 0 are codewords, and it is given by

{ AS: AT, AB; AQ: Alf)a Alla Al?; A13 }

{2 1, 2 2 2 2 1, 2 ) G

In Appendix B, a C,(19,6) code which contains 16 codewords and satisfies
(8.1) is presented. It is denoted by Ciq. o
Theorem 3.7 22 < A,(20,6) < 23.

Proof: The standard inequalities of Theorem 2.1 (s=2, w=8,11,14) yield

20
Au(20,6) =3 A;<1+6+124+6+1=26.

1=0
In [17] it is shown how a more careful analysis of the weight structure results
in the upper bound A4,(20,6) < 23.

A construction of a C,(20,6) code C3p with 22 codewords will now be
given. The codewords of weight 9 and 10 depend on a projective plane of
order 2. Let P be the 7 x 7 circulant with top row (1101000). Then P is
the incidence matrix of a projective plane of order 2. So the inner product
between any two distinct rows of P is equal to 1. Let J be a 7 by 7 matrix
in which all entries are equal to 1. Evidently, the inner product between
any two different rows of J — P equals 2. Put

M:(P" P J—P)

where P* is the punctured version of P by deleting the first column of P.
To the seven rows of M we add 1, 0 and the following thirteen

54112, 082C7, A0878, O07F40, 79488, 3F983, DF624,
E2F98, 03TEF, ACA3F, 5DCF9, F3976, BETDS5.

These words form the C,(20,6) code Cy of cardinality 22. O
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Theorem 3.8 32 < A4,(21,6) < 34.

Proof: The standard inequalities of Theorem 2.1 (s=2, w=8,15; s=1,
w=10,12) yield .

21
Au(21,6) = A <1+46+11+114+6+1=36.

1220

This upper bound can be further improved to A,(21,6) < 34 (see [17]).

In the following construction of a C,(21,6) code of size 32, we again
start with 2-designs to construct most of the codewords and then add other
words while keeping the distance at 6. Let Cy; be a C,(21, 6) code satisfying
Ao+ Ay = 12, Then, Theorem 2.10 shows that all the codewords of weight
10 and weight 11 are nothing but a punctured version obtained by deleting
one block from a 2-design D(12,22,11,6,5). Let A = ¢irc(10000110101)
and B = circ(11010001101). Set

M= 11111111111 00000000000
- A B
Then M is the incidence matrix of a 2-design D(12,22,11,6,5). Let M,
be the matrix obtained by deleting the first column of M. The rows of M,

will be the six codewords of weight 10 and the six codewords of weight 11
in Cy;. Consider the five following words of weight 9:

000100111000110101100
001110100001011000011
010001001100001101011
101000100110000110101°
110100010011000011010

M,

It can easily be checked that the rows of the matrix M;, together with the
rows of the matrix M; of weight 10 form a punctured version of the incidence
matrix of a 2-design D(11,22, 10, 5,4) (by omitting one of the blocks). Each
row of M, satisfies the inequalities in Theorem 2.11 when compared with
the rows of M;. So the rows of M,, together with their complements,
denoted by the matrix M3, can be added to Cy; as the codewords of weight
9 and weight 12.

To these 22 words of C; (made from all the rows of M; for i = 1,2,3),
the rows of the following matrix can be added

000000001101010010110
000010010010100100011
1111000000000101060000
000001100000101011000

M4=
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as the codewords of weight 6 and weight 7, and the rows of

000000111011111111111
011111100101010111110
101111010110101101111
111101111101111010001

M; =

can be added as the codewords of weight 14 and weight 15. Also 1 and 0
can be included. Obviously, Cy; is now the desired Co(21,6) code of size
32. : o

Theorem 3.9 48 < A4,(22,6) < 60.
Proof: Theorem 2.1 (s=0, w=11; s=1, w=10; s=2, w=8) shows

22
Au(22,6) =3 A; <1+49+16+12+16 +9+1 =64.

1=0

A more careful analysis reduces this bound further to A,(21,6) < 60 (see
[17]). For a construction of a C,(22,6) code of size 48, we start with the
(n = 23,d = 12, w = 10) optimal, constant weight code mentioned in [5].
This code contains 16 codewords in which six begin with 1 and ten with 0.
Let M contain these codewords punctured on the first coordinate. It is a
Ca(22,6) code with Ag = 6 and Ao = 10. To M, add all the complements
of words of M (using Theorem 2.11). Also add 0 and 1 as well as the
fourteen following words

2FEBC7, 0BFDTA, 15779F, 3C8EFB, 36F374,
0DA4DA, 169649, 2A58F8, 31648B, 090D07,
321324, 028478, 145084, 00A381.

This gives a C;(22,6) code of size 48. It is denoted by Cj,. o

Theorem 3.10 66 < A,(23,6) < 110.
Proof: Theorem 2.1 (s=2, w=1; s=8, w=10; s=0, w=11) shows

2(23,6) = ZA 1+10+24+23+23+24+10+1=116.

1=0

This upper bound can be lowered further to A,(23,6) < 110 (see [17]).
Next, we shall present a C,(23,6) code containing 66 codewords. Let M =
¢ire(00101001100110101111000). Then, M is the incidence matrix of a
symmetric 2-design D(23,23,11,11,5). Thus, the inner product of any
two distinct rows of M will equal 5. From Corollary 2.4, it follows that
all the rows of M and their complements will form a C,(23,6) code. Let
Ca3 tepresent the code consisting of these 46 words. To C,3, we add the
following words
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a, = (00000000000000000000000),
a, = (00001100010010000100010),
as = (00110001000100000010001),
a, = (10100010000000011001100),
as = (00000000000011110011011),
as = (00000000011101001100101),
a7 = (00000111101000000111000),
as = (00011010100100101000010),
ap = (01011101000001010000100),
a;0 = (11100001110010100000000),

and their complements (using Theorem 2.11). It is easy to see that we have
obtained now a (,(23,6) code with 66 codewords, denoted by Cas. O

Theorem 3.11 91 < A,(24,6) < 210.

Proof: Theorem 2.1 (s=0, w=13; s=1, w=10,12,15; s=2, w=8,18) guar-
antees

24
A,(24,6) = 3 A; < 2(1 413 + 39) + 70 + 34 = 210.

1=0

We are going to construct a Co(24, 6) code of size 91 in which the codewords
of weight 11 and weight 12 depend upon a symmetric conference matrix
of 26 by 26. In Table 7 of [7], four inequivalent symmetric conference
matrices of order 26 are listed. Take the first one and denote it by A. By
its symmetry, only the upper triangular part of A has to be presented. In
octal form, this is '

77770000760176014606074414146300606367256126535052461
+ 3254436345616654423264351275077024726631463453615600

Put B = A + I where A is the matrix made from the complements of the
rows of A and I the identity matrix. Then, all rows of A and B together
form a (n = 25,d = 12, w = 12) constant weight code (cf. [47]). Delete the
first column of both A and B, and add the 39 other words listed in Appendix
B, plus 1 and 0. All the words mentioned above form a C,(24,6) code,
indicated by Cyy, of size 91. |

Theorem 3.12 124 < A,(25,6) < 380.
Proof: From Theorem 2.1 (s=0, w=10; s=1, w="7,9,12), it follows that

25
A.(25,6) =Y Ai < 2(1+45+ 28+ 39+ 117) = 380.

1=0
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On the other hand, a C,(25,6) code of size 124 will be constructed below.
Honkala [28] constructed a (n = 26,d = 12,w = 13) constant weight code
of size 58 in the following way. Let B be the circulant with top row

(0 41 -1 41 +1 -1 =1 =1 =1 41 41 -1 +1).

This is a Jacobsthal matrix of order 13. Let B; and B; be the 13 by
26 matrices obtained from B by encoding its rows according to the rules
0 - 01, 41 — 11, -1 — 00 and rules 0 — 01, 41 — 00, —1 — 11
respectively. Also, let Bs be the 32 by 26 matrix made by encoding the
codewords of the binary code (n = 13, M = 32,d = 6) in [36] according to
rules 0 — 01, 1 — 10. Put D = (B}, B}, B})". Deleting the first column of
D will yield the words of weight 12 and weight 13 in a code. Adding the
64 words listed in Appendix B plus 1 and 0 will result in a C,(25,6) code,
called Csqs, of size 124. O

Theorem 3.13 173 < A,(26,6) < 721.

Proof: 1t follows from Theorem 2.1 (s=0, w=6,7,8,13; s=1, w=8,10,12;
s=2, w=8) and one additional argument (see [17]) that

26
Aa(26,6) =3 A < 2(1 + 17+ 75+ 209) + 117 = 721.

1220

In Appendix B, a C,(26,6) code of size 173, denoted by Css, is presented in
which the 58 codewords of weight 13 are the rows of the matrix D defined
in the proof of Theorem 3.12. o

Theorem 3.14 249 < A4,(27,6) < 1350.
Proof: It follows from Theorem 2.1 (s=1, w=7,9,11) that

27
As(27,6) =3 A < 2(1 + 8+ 46 + 109 + 430) = 1350.

1=0

On the other hand, by omitting the first coordinate from all the codewords
of the (n = 28,d = 12,w = 14) constant weight code of cardinality 106 as
described in [5], 53 words of weight 13 and 53 words of weight 14 are ob-
tained. To them (together with 1 and 0), the 141 other words in Appendix
B can be added. This gives a C;(27,6) code, denoted by Cor, of size 249.
0

In this section, the upper bounds on A,(n,6) for length n < 27 have
been derived. And for each of these lengths, a code has been constructed,
that leads to the lower bound of A,(n,6). All the results produced in this
section are listed in the second column of Table A.3 in Appendix A. In the
next section, we shall present similar results for A,(n,7),n < 27.
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3.2 Bounds and constructions for 6-AsEC
codes

From Theorems 2.5 and 2.6, it immediately follows that A;(14,7) =4 and
A,(15,7) = 4. The remaining cases will be shown in detail in the following
theorems.

Theorem 3.15 A,(14,7) = A,(15,7) = A,(16,7) = A,(17,7) = 4

Proof: From Theorem 3.1 it follows that A,(14,7) > 4. So it remains
to prove that A,(17,7) < 4. Let C be an optimal C,(17,7) code. From
Theorem 2.1 (s=3, w=10), it follows that A7 + Ag + Ag + A;p < 2. So
Cl=A17,7) S T+2+1=4. 0

Theorem 3.16 A,(18, 7) = 6.

Proof: Applying Theorem 2.1 (3—2 w=9; s=1,w=11) to the present
case leads to A,;(18,7) <1+2+2+1=6. A C,(18,7) code, denoted by
X8, of size 6 can be constructed by means of Corollary 2.2 with s=5 and
t=2, where Cj is an optimal C,(5,2) code and C}3 is the optimal C,(13, 5)
code in [59].

Theorem 3.17 A,(19,7) =T.

Proof: Exploiting Theorem 2.1 (s=1,w=8,10,12) with a minor improve-
ment (see [17]) results in A,(19,7) < 1+ 5+ 1 = 7. Since A;(11,4) = 8
and A,(8,3) = 7, the assertion follows from Corollary 2.2 by taking s=8
and ¢=3. o

Theorem 3.18 A,(20,7) =9.

Proof: From Theorem 2.1 (s=3, w=10; s=2, w=13), it follows that
A (20,7) €14443+1=9. A Cs(20,7) code, indicated by Xy, of size 9
is given by 00000, 038C3, 1C30C, E03F0, FFC00, 325AF, 5BBD6, AD67D,
FFFFF. m]

Theorem 3.19 A,(21,7) = 12.

Proof: From Theorem 2.1 (s=2, w=9,14; s=1, w=11), it follows that
A,(21,7) €14 3+4+43+1 =12 The construction of a C,(21,7) code
of size 12 follows from Corollary 2.2 with s=6 and ¢=2 (since A4,(6,2) =
Ay(15,5) = 12). A Ci(21,7) code, denoted by Xz, of cardinality 12 is
made by juxtaposing an optimal C,(6,2) code on the optimal C,(15, 5)
code in [59], and listed in Appendix B.

From now on we shall not indicate the values of the parameters s and
w when using Theorem 2.1. The reader should have no problem finding
them.

Theorem 3.20 A,(22,7) = 14 and 19 < A,(23,7) < 20.
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Proof: The standard inequalities of Theorem 2.1 yield A,(22,7) < 2(1+
4)+6 =16 and A.(23,7) < 2(1+3+7) = 22. Both can be further reduced
(see [17]) to Aa(22,7) < 14 and Aa(23,7) < 20 respectively. In Appendix
B, a C,(22,7) code, denoted by Xj;, of size 14 can be found, and Saitoh
et al. [45] found a C,(23,7) code of size 19. This completes the proof. O

Theorem 3.21 27 < A,(24,7) <30 and 40 < A,(25,7) < 46.

Proof: From Theorem 2.1, it follows that A,(24,7) < 2(1+6+7)+6 = 34
and A,(25,7) < 2(1 + 6+ 10) + 14 = 48. Further analyses (see [17]) on
weight structures lower these bounds to A,(24,7) < 30 and A,(25,7) < 46.

In order to construct a code of length 24 and distance 7, we start with
two 2-designs: D(8,14,7,4,3) and D(11,11,5,5,2), both are taken from
Table L1 in [25]. Erase the last three rows from the incidence matrix of
the second design and then juxtapose it to the first design. This yields
a (n = 25,d = 14,w = 12) constant weight code of size 8. Deleting the
first coordinate from these codewords results in four words of weight 12
and four words of weight 11. To these eight words, nineteen other words
(see Appendix B) can be added in such a way that they together form a
C.(24,7) code, denoted by Xaq4, of size 27.

A C4(25,7) code, denoted by Xs5, containing 40 codewords is given in
Appendix B too. The fourteen codewords of weight 12 and weight 13 in
this code are obtained in the following way: take the complements of all the
rows of the incidence matrix of the symmetric 2-design D(27,27,13,13,6)
from Table 1.1 of [25], denoted by D, then delete the first coordinate of
the words in D and those 13 words starting with 0. In addition, the six
codewords of weight 14 are chosen as the complements of the six codewords
of weight 11 (using Theorem 2.11). 0

Theorem 3.22 58 < A,(26,7) < 80 and 80 < A,(27,7) < 144.

Proof: From Theorem 2.1, it follows that 4,(26,7) < 2(1 + 7+ 13 +
13) + 14 = 82 and Aq(27,7) < 2(1 + 7+ 21 +43) = 144. The first bound
can be further lowered (see [17]) to A,(26,7) < 80.

A C,(26,7) code, denoted by Xz, can be constructed in the following
way: the 14 codewords of weight 13 and the 13 codewords of weight 14 are
obtained from the rows of D as defined in the proof of Theorem 3.21 by
deleting the first column. The complements of codewords of weight 14 will
give the codewords of weight 12 (using Theorem 2.11), and finally, based
on these 40 codewords, the 18 words listed in Appendix B are added. This
will be the code X6 of size 58.

Take all the rows of D (defined in Theorem 3.21) and their complements
(using Corollary 2.4). Based on these 54 words, the 26 other words pre-
sented in Appendix B can be added to form the set X37. Clearly, X7 1s a
C.(27,7) code containing 80 codewords. Q
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All the results produced in this section are summarized in the third
column of Table A.3 in Appendix A for an asymmetric distance = 7.

3.3 Bounds and constructions for 7-AsEC
and 8-AsEC codes

This section explains the lower and upper bounds on A,(n,d) for d=8 and
9, and for n < 27. Since the constructions for C,(n,d) codes are trivial
if Corollary 2.1 or Corollary 2.2 is used, it is not necessary to present the
codewords for every code, we only need to show its upper bound. From
Theorems 2.4, 2.5 and 2.6, it follows directly that

Ay(n,8)=2, forn=3§,---,15,
Ai(n,9)=2, forn=9,.--,17,
A(16,8) =4, A, (17,8) =4,
A.(18,9) = 4, A.(19,9) = 4.

Furthermore, by using Theorem 2.1, with a little effort it can be proved

that
A,(18,8) = A,(19,8) =4,
Aq(20,9) = A,(21,9) = A.(22,9) = 4.

Below we show the remaining cases.

Theorem 3.23 A4,(20,8) = 4,(21,8) = 6.

Proof: On one hand, from Theorem 2.1, it follows that A,(21,8) <
142+4+2+1=6. On the other hand, a C,(20,8) code containing six
codewords can be constructed by applying Corollary 2.1 to an optimal
C.(10,4) code of size 6. O

Theorem 3.24 A,(22,8) = 8, A,(23,8) = 9 and A,(24,8) = 12.

Proof: From Theorem 2.1, it follows that 4,(22,8) <1+3+3+1=8.
The lower bound follows from A,(11,4)=8 [59] and Corollary 2.1 with r = 2.

Similarly, one can get (see [17]) that A,(23,8) < 9 (additional argument
with Theorem 2.1) and A.(24,8) < 12. The lower bounds respectively
follow from the C,(23,8) code by Honkala [29):

11111111 11111111 1111111
00000000 11111111 1111111
11111111 00000000 1111111
00000000 00000000 0000000
11000000 11100000 0111000 (3.2)
00111000 00011000 0000111
10100110 10010110 1100100
01010101 01001101 1010010
10101011 01101011 0001001
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and from A,(12,4) = 12 [59] by applying Corollary 2.1 with r = 2. o

Theorem 3.25 13 < A,(25,8) < 14, 18 < A,(26,8) < 19 and 23 <
A.(27,8) < 26.
Proof: From Theorem 2.1, it follows that

Al(25,8) <1+5+44+5+1 =16,
Al(26,8) <2(1+4)+5+7=22
A, (27,8) <2(1+6+7) =28

In [17] one can find how these upper bounds can be refined to A4,(25,8) <
14, A,(26,8) < 19 and A,(27,8) < 26. In Appendix B, a Co(25,8) code
containing 13 codewords is presented. It is denoted by Yi;. Again, in
Appendix B, a C;(27,8) code containing 23 codewords and denoted by Yz,
is shown. The second lower bound immediately follows from A,(13,4) = 18
[59] and Corollary 2.1 with r = 2. ]

Bounds on A.(n,9) for n < 27 can be obtained more readily.

Theorem 3.26 A,(23,9) =6, A.(24,9) = 7 and A.(25,9) = 8.

Proof: Theorem 2.1 (see [17]) yields A4,(23,9) < 6, A,(24,9) < 7 and
A,(25,9) < 8. The lower bounds respectively follow from A,(13,5) =
A,(10,4) = 6 [59] and Corollary 2.2 with s=10 and t=4, from A,(8,3) =7
[12] and Corollary 2.1 with r=3, and from A,(14,5) = A,(11,4) = 8 [59]
and Corollary 2.2 with s=11 and t=4. ]

Theorem 3.27 A,(26,9) =9 and A,(27,9) = 12.

Proof: Theorem 2.1 with further analyses on weight distributions
(see [17]) derives that A,(26,9) < 9 and A.(27,9) < 12. On the other
hand, it is known that A,(20,7) = 9 (Theorem 3.18) and A,(6,2) = 12.
Hence, A,(26,9) = 9 according to Corollary 2.2. Also, since A.(15,5) =
A(12,4) = 12, it follows from Corollary 2.2 with s=12 and t=4 that
Al(27,9) = 12. 0

The results of the bounds on A,(n, d) in this section can be found in the
last two columns of Table A.3 in Appendix A. In the next section, some
improved bounds on A,(n,5) for n < 23 are given.

3.4 Some improvements on 4-AsEC codes

The exact values of all the bounds on A4(n,5) for length n < 17 are already
known [59]. Here we only consider values of n with 18 < n < 23. However,
we want to point out that some optimal C,y(n,5) codes can be constructed
by Theorem 2.3. For instance, an optimal C,;(13,5) code can be constructed
by concatenating an optimal C,(10,4) code with Vg; an optimal C,(14,5)
code can be obtained by concatenating an optimal C,(11,4) code with V3
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again, and an optimal C,(15,5) code can be formed by concatenating an
optimal C,(9,3) code with an optimal C,(6,2) code, and so on.

To obtain better lower bounds on A,(n,5) for 18 < n < 23, the same
techniques as used in the previous sections are applied. So one starts with
a 2-design D(v,n+1,r, k, ) with d = r — X or with a good constant weight
code of size A'(n + 1,2d,w) where often w will be chosen as [(n + 1)/2],
after which some puncturing or shortening techniques are applied, to get a
set of legitimate words. Finally, one tries to add as many words as possible.

Theorem 3.28 A4,(18,5) > 40.

Proof: Take the (n = 20,d = 10, w = 8) optimal constant weight code of
size 17 from [5], and shorten this code with respect to the first coordinate,
leading to twelve words of length 19, asymmetric distance 5 and constant
weight 8. Deleting the first coordinates of these twelve words yields eight
words of weight 8 and four words of weight 7 which are at distance 5 apart
mutually. Let Zjg consist of those twelve words, and let a;, a2 and b be
chosen from Z;g so that w(a;) = w(az) = 8 and w(b) = 7. Then, it can
be easily shown that < aj,a2 >= 3 and 2 << aj;,b >< 3 which satisfy
the inequalities in Theorem 2.11. Hence, the complements of all the words
of Zs, as well as the following sixteen can be added to Z;s while keeping
d, = 5:

SFFFF, 1FF56, 2FFA9, 323FF, 09CFF, O1F A6,
08F59, 1630F, 263F0, 3B056, 3D0A9, 39C00,
07300, 10059, 20046, 00000.

The enlarged set will again be denoted by Z;s. It is a C,(18,5) code con-
taining 40 codewords. o

Theorem 3.29 A,(20,5) < 128.

Proof: From Theorem 2.1 and a result by Béinck (mentioned in [57]), it
follows that A5+ Ag+ A7 < 15, Ag+Ag < 39, Ajo+ A1 < 44, A2+ A13<21
and A4+ A5 < 7. So

20
A (20,5) =) A;<1+4+15+39+44+21+7+1=128
1=0

By using combinatorial arguments, we obtained a C,(20,5) code of size
68, that is easy to construct. Start with the incidence matrix M of the
symmetric 2-design D(19,19,9,9,4) in Table 1.1 of [25], that is the circulant
with top row (0100111101010000110) (rows corresponding to blocks), then
putting the vector 1 of length 20 as the top row together with the matrix
(1"M) forms a Hadamard matrix of order 20 if all its zeroes are changed
into minus ones. Let Zyy contain all the rows of such a matrix apart from
the first row, then Zy is a constant weight code of length 20, asymmetric
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distance 5 and constant weight 10. Since the inner product of any two
different words in Zag is 5, the size of Zy can be enlarged by adding the
complements of all its words to itself according to Corollary 2.5. To the 38
words of Z39, the 15 following words are added

00000, 0C007, 20360, 9A048, A2481, 000FE,
00F0B, 07151, O0EAA0, 19524, 6380C, 74182,
A9212, (4644, DO831.

Again, adding their complements (using Theorem 2.11) will keep the dis-
tance unchanged. 'One gets the Cy(20,5) code Zz¢ of size 68. Recently,
Etzion [14] found a C;(20,5) code containing 71 words. O

Theorem 3.30 104 < A,(21,5) < 228.

Proof: Tt follows from a small improvement to Theorem 2.1 (see [17])
that A;(21,5) < 2(1 419 + 21 + 73) = 228. A C,(21,5) code of size 104
can be constructed as follows. Consider the rows of the circulants with
top rows: (100100100011110101000) and (101000111001101110000). Add 1
and 0, and the 60 words given in Appendix B to obtain the C;(21,5) code
Zay of size 104. 0O

Theorem 3.31 A,(22,5) > 163 and A,(23,5) > 243.

Proof: Let Z,, consist of 1 and 0, the 98 words presented in Appendix
B, the rows of the circulants with top rows (000001010110011101111) and
(000011111010110001001) with a zero appended to them and the rows of
the circulant with top row (000101001111100100011), with a one appended
to them. Then Zy, is a C4(22,5) code of cardinality 163.

Take the (n = 24,d = 10, w = 12) constant weight code of size 96 from
[5] (Table XI). Deleting the first coordinate will yield forty-eight words of
length 23 and weight 11, and forty-eight words of length 23 and weight 12.
To these 96 words, 1, 0 and the 145 words listed in Appendix B can be
added. This yields a C,(23,5) code, denoted by Z,3, of cardinality 243. O

3.5 A new upper bound on A,(10,2)

As a miscellaneous result, an improved upper bound on the maximum size
of 1-AsEC codes of length 10 will be given here.

Let C be a 1-AsEC code of length 10 and size 4,(10,2). Also let 0 and
1 be the codewords of C. From Theorem 2.1, it follows that the weight
distribution of the code C satisfies A, < 5, A3 + 44 < 35, A < 36,
Ag + A7 < 35 and Ag < 5. Combining of those inequalities yields

IC| = Aa(10,2) < 2(1+ 5+ 35) + 36 = 118.

Weber et al. [57] improved this upper bound A,(10,2) < 117 using a linear
programming approach. A lower bound on A4,(10,2) was taken as the size
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of the C,(10,2) code constructed by Delsarte and Piret [12], which shows
that A,(10,2) > 108. Below we claim

Theorem 3.32 111 < A4,(10,2) < 115.

The proof of Theorem 3.32 is very tedious and can be found in [17].
The lower bound comes from the construction of such a code due to Etzion
[15]. This code has the weight distribution: Ag =1,4; = 5,43 =11, Ay =
22, A5 = 33,45 = 22,A7 = 11,As = 5 and A;o = 1. For the improved
upper bound it suffices to show that for a C,(10,2) code,

1) A+ Az + Ay =40 or Ag + A7 + As = 40 implies that A5 < 30;
2) Ajs = 36 forces A3 + A4 <30 and A + A7 < 30.

The proof of these two statements is presented in [17].
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Chapter 4

Bounds and constructions for
codes capable of correcting
unidirectional errors

In this chapter, we shall be concerned with bounds on the maximum size of
t-UEC codes of length n for 5 <t < 8, namely, the bounds on A,(n,2t+1)
for 5 <t < 8. It follows from (1.2) that each value A,(n,2t+1) is bounded
above by the upper bound on A,(n,t + 1), while, the latter has already
been produced in the previous chapter; therefore, the emphasis here will
be put on the constructions of t-UEC codes.

However, the constructions of such codes (n < 27,11 < 2t +1 < 17) do
not require as much effort as in Chapter 3 for t-AsEC codes, even though
the unidirectional distance seems to be a more complicated feature than
the asymmetric distance. It was found that most of the t-UEC codes that
we constructed would be obtained simply by modifying some comparable
pairs of codewords in the corresponding t-AsEC codes of the same length.
Essentially, if C is a Cy(n,t + 1) code in which any pair of codewords is
incomparable, then C is certainly a Cu(n,2t + 1) code by the definition.

In addition, if a Cyu(n,2t + 1) code C contains 0 or 1, then the weight
distribution of C must satisfy A; = 0, for ¢ = 1,---,2t or Ax—; = 0, for
1 =1,---,2t. Therefore, it seems that an optimal C,(n,d,) code which is
nontrivial cannot contain the all-one vector 1 or the all-zero vector 0. It is
worthwhile noting that, for a t-UEC code of length n, the sum "¢ A; < 1,
and also the sum Y} g An; < 1, just like any t-AsEC code of length n.
In Appendix B, the words which are specifically underlined indicate those
which have to be erased when constructing codes for correcting unidirec-
tional errors.
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4.1 Bounds and constructions for 5-UEC
codes

We shall start with n=13.

Theorem 4.1 A,(13,11) = A.(14,11) =4
Proof: Tt follows from A,(13,11) < A4(14,11) < A,(14,6) = 4 that we

only have to construct a C,(13,11) code of size 4. The four words are given
by 1800, 07E0, 0C1F and 13FF. D
Theorem 4.2 A,(15,11) = 4, A,(16,11) = 6 and A,(17,11) = 8.

Proof: 1t follows from Theorem 2.1 that A,(15,11) <1+2+2+1=6.
With some extra effort [17] this upper bound can be lowered to 4,(15,11) <
4. A construction of a code of size 4 follows from the previous theorem.

Let C be an optimal Cy(16,11) code. Then it follows from Theorem 2.1,
that |C]| €1 +3+2+1 = 7. In [17] it is shown how this bound can be
improved to A,(16,11) < 6. A C,(16,11) code of cardinality 6 is given by
0001, FC00, 03F0, E38E, 1C7E and F9FF.

A C,(17,11) code of size 8 is given by 00007, 1F800, 007EO,
1861E, 071DC, 0EB33, 15CEB and 1BFDD. So the result follows from
A, (17,11) € A,(17,6) = 8. O

For the remaining cases, we shall only give the constructions of these
codes, since the corresponding upper bounds will be simply those on
Au(n,d). All the Cx (k = 19,---,27) codes mentioned in the following
theorem have been defined in Theorem 3.6 to Theorem 3.14 in Section 3.1
respectively.

Theorem 4.3 A,(18,11) > 10, A.(19,11) > 14, A,(20,11) > 22,
AL21,11) > 30, A,(22,11) > 46, A,(23,11) > 63, A,(24,11) > 86,
Au(25,11) > 119, A,(26,11) > 167 and A4(27,11) > 239.

Proof: Take the 2-AsEC code of length 9, denoted by Cy in [12], and
delete 0, 1 and the two words of weight 6. Now add the two words 00405
and 36FDB. This gives a C,(18,11) code of size 10.

Deleting 1 and 0 from the code Cyo gives a C,(19,11) code of size 14.

Erase 1 and O from the code Cy, and add the words 83080 and TFF2F,
giving a C,(20,11) code of size 22.

Erase 1 and O from the code C3; and change the third row of the matrix
M5 in the proof of Theorem 3.8 into the vector 17BC6F. This leads to a
Cu(21,11) code of size 30.

Remove 1 and 0 and the five words 2FEBCT, 321324, 028478, 14508A
and 00A381 from the code Cyy, and add the following five words: 27BFED,
005AA1, 068470, 22310A and 0100CC. Then a Cy(22,11) code of size 46 is
obtained.
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From the code Cy3, delete 1, 0 and the three words of weight 8 (i.e.,
as, a7 and a;p) and add the following two words of weight 8: 636011 and
681528. Then a C,(23,11) code of size 63 is obtained.

From the code Cy4, delete 0 and 1, and the codewords 773FEB, BODDF7,
E35B7E, FAASEE, 7TD753A and BDB9CY, then add the following three
vectors: FF99DA, 6F5FF5 and B1BDFF. One gets a C,(24,11) code of
size 86.

From the code Cjs, delete the eleven words 0, 1, 0BB5FFD, 1IEEFEB3,
07FA3F7, 127FDTE, 1B773AB, 1IECOFEF, 12C6240, 1521441 and 0E28200,
then add the following six words: 17F7AF9, 0B737BF, 167CDT7F,
1EE2BE7, 0122051 and 12840A0. One gets a C,(25,11) code of size 119.

Delete 0 and 1 from the code Cy and also the following fifteen
words: 0F7TDBF7, 3BB7DDE, 2DCFCT7F, 36FD779, 3F726EF, 37T5FB9A,
3BCY9FAD, 0FF7E2A, 13F8AFE, 287B5FE, 3F65A5D, 1E091E0, 004D601,
008229C and 1821050. Then add the following eleven words: 3FF-
BBC7, 2BB77FB, 36EFD7D, 13DCFFE, 357FE9B, 0F6FE6E, 38797FD,
3FC5BAD, 3FB1ADA, 008D205 and 00614C0. A C,(26,11) code of size
167 is constructed.

From the code Cyy, erase the twenty-seven words: 0, 1, 6F9BBF7,
TBF7ESE, 556FAFF, 7T8DCFBF, TEA7T5FD, 1AEBF77, 1FF59BE, 6DB-
DEEC, 3ATDAF9, 3DAFSEE, 3DAEE1F, 4DE47TF7, 56 FACBB, 62EFBCE,
33D6B9B, 35B54FB, T8FE4DC, 7TC3A3EB, TDEBF80, 020B8E1, 09E0502,
41500C9, 0288215, 2C04188 and 0091940. Then add the following seventeen
words: 1FF7B3F, 6EEFDED, 52BEFF7, TD3FAF9, 3DEBCTE, 6DBC-
FAE, 78CD7DF, 3AFEABA, 3B65BED, 3DA67F3, 5SEB5CFC, T47TB1EB,
7TDEFD80, 0148183, 54D0200, 0424488 and 0809A40. This results in a
Cu(27,11) code of size 239. ]

4.2 Bounds and constructions for 6-UEC
codes

It is easy to show that A,(13,13) = A,(14,13) = 2 and A.(15,13) = 4.
Also from (1.2), it follows that A,(16,13) = A,(17,13) = 4. For the
remaining cases, we again only give lower bounds by means of explicit code
constructions.

Theorem 4.4 A,(18,13) = 6 and A,(19,13) = 7.

Proof: The words 0000F, 3F800, 007F0, 3C78E, 078F7 and 3BF79 give a
C.(18,13) code of size 6, while the upper bound comes from A,(18,7) = 6.
The words 00015, 7F000, 00FEQ, 70E1E, 3C1E7, 4F799 and 3BF7F form a
C.(19,13) code of size 7, while the upper bound comes from 4,(19,7) = 7.
0
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All the X (k = 20,---,27) codes mentioned in the following theorem
have been defined in Theorem 3.18 to Theorem 3.22 in Section 3.2.

Theorem 4.5 A4,(20,13) = 9, A,(21,13) > 10, A.(22,13) > 13,
A(23,13) > 19, Au(24,13) > 27, A.(25,13) > 39, A.(26,13) > 58 and
A,(27,13) > 80. :

Proof: From the optimal C;(20,7) code X3q, delete 0 and 1, and add
the two words 40420 and FEDFB to obtain a C,(20,13) code of size 9. The
upper bound follows from (1.2).

Delete 0 and 1 from the code X3, to obtain a Cy(21,13) code of size
10.

Delete 0 and 1, as well as the word 324418 from the code X3, and add
3FEEFE and 321418 to give a C,(22,13) code of size 13.

Saitoh et al. [45] gives the following C,(23,7) code of size 19: 000000,
00007F, 003F80, 1FC000, 21C387, 22DC38, 3C21D8, 472661, 187A66,
053C9F, 4A85EE, 5B4B19, 14D7F1, 67F942, 2BAAF5, 76663E, 39DD2F,

4E7FCD and TFFFFF. In this code, erase 0, 1 and 003F80, and add 202300,
501D82 and TDFAFA. One gets a C,(23,13) code of size 19.

In the code X34, delete 0, 1 and the word 4DBBAF, then add B20040,
59BDAF and 3FEFFE to obtain a C,(24, 13) code of size 27.

Remove from the code X;5 the words 0, 1, 0177DAF and 1AFC3CE
and add 0001812, 0B34DEF and OD7FFFB. A C,(25,13) code of size 39 is
obtained.

From the code Xy, delete 0, 1, 0FAAFBF, 24BFFC3 and 0253044
and add 14BFF9F, 3D9BBE1, 2053044, 0200228 and 3FE7FF6. So
A,(26,13) > 58.

From the code X37, delete 0, 1, 0AC8013, 2DEFBAD and 7TAD6BF6,
and add 4AC8012, 5DEF3F4, 7TADEF2E, 6D7DFBF and 2030042. So
Au(27,13) > 80. O

4.3 Bounds and constructions for 7-UEC
and 8-UEC codes

It is easy to show that A,(7,15) = 2 for 13 <1 < 16, and A,(17,15) = 4.
Hence, from A,(19,8) = 4, it follows that A,(18,15) = A,(19,15) = 4.
Other trivial bounds are

A (2,17) =2, fori=13,---,18;
A.(7,17) =4, for j =19,-.-,22.

We shall now discuss the remaining cases.

Theorem 4.6 A,(20,15) = 5.
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Proof: Let C be an optimal Cy(20,15) code. From Theorem 2.1, it
follows that As < 2 and Ag + Ay + A + A1 < 2. But, if Az = 2, then
Ag = Ao = Aj; = 0. On the other hand, Ag = 2 and A;; = 2 will result
in o7 oA; = 0 and ¥2,,4; = 0. So it follows that |C| < 5. On the
other hand, The words 00018, FF000, 80FF0, 3CFOF and F31F7 form a
C.(20,17) code of size 5. o

Theorem 4.7 A,(21,15) = 6.

Proof: On one hand, the upper bound comes from A,(21,8) = 6, and
on the other hand the words 000003, 1FE000, 001FEO, 1E1E1E, 01E1FE
and 1FDDEI1 form a C,(21,15) code of size 6. m]

Theorem 4.8 A,(22,15) = 7.

Proof: Let C be an optimal C,(22,15) code. From Theorem 2.1, it
follows that Ag + Ag+ Ao <3 and Ajy+ A+ Aiz+A14 <3 If Ag+ Ao+
Ajp = 3, then the triple (Ag, Ag, A1) only has three alternatives: (2,0,1),
(1,1,1) and (1,0,2). It can be readily shown that each of those three values
will make the sum Y°7_, A; equal to zero. Hence |C| < 7. On the other
hand the words 000031, 3FC000, 003FCO0, 38383E, 37B7B0, OF4ESF and
3BFBEF form a C,(22,15) code of size 7. O

Theorem 4.9 A,(23,15) =9.

Proof: The upper bound comes from A,(23,8) = 9. On the other
hand, in Theorem 3.24, changing 0 and 1 from the code shown in (3.2)
respectively to the following two vectors: 061081106 and 110120120 results
in a Cy(23,15) code of size 9. =]

Theorem 4.10 A,(24,15) > 10.
Proof: Consider the following matrices:

{0000 1 1)

001100

110000

A=|010101{,

101001

100110

\0 1101 0/
0011 1\ /1111 0
Bi=|11 11, By=1]11 1),
1111 0 ) \0 01111
111100 /110011
B;,=(001111, &:111100)
110011/ \0 01111
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Then, the rows in

A A A A
B, B, Bs B4
form a C,(24,15) code of size 10. o

Theorem 4.11 A,(25,15) > 13, A,(26,15) > 18 and A,(27,15) > 23.

Proof: Delete 0, 1 and 18DFDF8 from the code Y35 (see Theorem 3.25),
and add the following three vectors: 0000214, 18DFDF4 and OF77FFB to
show A,(25,15) > 13.

Weber et al. (cf. Table VI of [59]) presented an optimal C,(13,4) code.
With the same notation used by Weber, put

C= {(c;[c;)]i =2, 15} U {(0161017), (c17|c16), a, b}

in which: a = 0800C01 and b= 1EBFFFF. Then, C is a C,(26,15) code
of size 18.

Delete 0, 1 and 6041613 from the code Y37 (see Theorem 3.25), and add
the following three vectors to it: 2441612, 4800041 and 5F7BFFF. This
shows that A,(27,15) > 23. 0

Theorem 4.12 A,(23,17) = 6, A.(24,17) = 6, A,(25,17) = 8§,
Au(26,17) = 9 and A,(27,17) > 10.

Proof: The first fact follows from the bound A4,(23,9) = 6 and the
C.(23,17) code consisting of the words: 000007, 7FC000, 003FEQ, 7C3ELE,
07C3FB and 7TBFDFD.

Let C be an optimal Cy(24,17) code. From Theorem 2.1, it follows that
|C| £ 7. This upper bound can be further lowered to |C| < 6 (see [17]).
From A,(23,17) = 6 it now follows that A,(24,17) = 6.

The third statement follows from the bound A,(25,9) = 8 and the
Cu(25,17) code consisting of the words: 000000B, 1FF0000, 000FF80,
1COEQTE, 03C1E79, 18FCT78D, 07379E7 and 1BFBFFE.

Let D, consist of the rows (in the same order) of X5 after deletion of 0
and 1, and let D; be the following matrix

110000 \
001100
000011
101010
100101
011001
010110 )

D,
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Then all the rows of the matrix (Dy | D,), together with 0010003 and
3DAFFFE will form a C, (26, 17) code of size 9. It follows from A,(26,9) =
9 that A,(26,17) = 9.

Concatenate Cy5 minus 0 and 1 with two appropriate subcodes of
optimal C,(6,2) codes to get the C,(27,17) code containing 7C00C30,
03E030C, 421E0C3, 3199AAA, 0C75965, 696A659, 36A6596, 4F8DF33,
54FBAAF and 3B573FA. Q

All the results presented in this chapter are combined into Table A.5 in
Appendix A. '
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Chapter 5

Uniqueness of optimal 1-AsEC
codes of length less than 9

In this Chapter, it is shown that up to permutation the optimal C,(n,2)
codes for n = 24,6 and 8 are unique and there exactly exist four non-
isomorphic C,(3,2) codes containing two codewords, four non-isomorphic
C.(5,2) codes with six codewords and twelve non-isomorphic C,(7,2) codes
with eighteen codewords.

5.1 Optimal 1-AsEC codes of length less
than 8

From Table A.1 in Appendix A, one can find that A.(2,2)=2, A.(3,2)=2,
Aq(4,2)=4, As(5,2)=6 and A,(6,2) = 12. With a little effort, one will
immediately arrive at the conclusions for the cases of n = 2,3,4,5 and 6,
which are exhibited in the following Theorems 5.1 and 5.2.

Theorem 5.1 Let a,b € {0,1}. For 2 < n < 4, any optimal Cy(n,2)
code is equivalent to one of the following sets: {(00),(11)} (n = 2),
{(00a),(118)} (n = 3) and {(0000),(1100),(0011),(1111)} (n = 4). And
any optimal C,(5,2) code is equivalent to one of the following four matrices:

Ca(5,2)[a, b] =

- OO OO
D e D e O
- O OO
b et OO DO
o = LD DR

So there are four optimal C,(3,2) codes and four optimal C,(5,2) codes
which are not equivalent. All permutations which map every word in a
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code C to a word of C form the automorphism group of C which is denoted
by Aut(C). Denote the identity by I. Then we found

Aut(C4(5,2)[0,0]) = Aut(Co(5,2)[0, 1]) {1, (12)(34), (13)(24), (14)(23)};
Aut(Co(5,2)[1,0]) = Aut(Co(5,2)[1, 1]) {1, (13)(45), (14)(35), (15)(34)}.

Since A,(5,2) = 6 and the minimum distance is 2, an optimal C,(6,2)
code must satisfy that half of its codewords is made from the rows of a
matrix with the form C,(5,2)[0,0] with a zero appended to them, and the
remaining half of the codewords from the rows of a matrix with the form
C.(5,2)[1,1] with a one appended to them. Hence the weight distribution
of the code satisfies Ao = Ag = 1, A; = A4 = 3 and A3 = 4. Thus one can
readily show the following theorem.

Theorem 5.2 Up to permutation, optimal Co(6,2) codes look like (the
columns are codewords)

000101100111
000110010111
001001011011
001010101011
010000111101
010011001101

(5.1)

The elements of the automorphism group acting on the rows of (5.1) are
the following 24 permutations:

I, (34)(56),  (35)(46),  (36)(45),

(12)(56),  (12)(34),  (12)(3546), (12)(3645),
(13)(24),  (1324)(56), (135)(246), (136)(245),
(1423)(56), (14)(23),  (146)(235), (145)(236),
(153)(264), (154)(263), (15)(26),  (1526)(34),
(163)(254), (164)(253), (16)(25),  (1625)(34).

By means of exhaustive search by computer it was found that there exist
exactly twelve non-isomorphic binary 1-AsEC codes of length 7 containing
eighteen codewords. They are optimal and are listed in (5.2), (5.3) and
(5.4) respectively where a,b € {0,1} (the codewords are the columns).

( a11111111000000005
111110000111100000
111101000100011100
C1(7,2)[a, 8] £ | 110010110110011000 (5.2)
110001101011010010

101010101001110100

101001110101000110
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a11111111000000006 \
111110000111100000
111001100110011000
C2(7,2)[a, 5] £ | 110101010101010100 (5.3)
110010101011000110
100110110100001110
\ 100101101010101100 /

/ a11111111000000005 \
111110000111100000

111001100110011000

Cs(7,2)[a, 8] 2 | 110101010101010100 (5.4)
110010101011000110
100111001010101100
\ 100011110100001110

From (5.2), (5.3) and (5.4), it follows that optimal C,(7,2) codes satisfy
Ay =3,A3 = Ay = 5 and Aj = 3. The automorphism groups acting on the
rows of (5.2), (5.3) and (5.4) are shown below:

Aut(C1(7,2)[a, b]) = {I}, for all a,b € {0,1};

Aut(Cy(7,2)[0,0]) = Aut(C3(7,2)[0,1]) = {I,(14)(23)(57)};
Aut(C(7,2)[1,0]) = Aut(C2(7,2)[1,1]) = {1, (27)(35)(46)};
Aut(C3(7,2)[0,0]) = Aut(C5(7,2)[0,1]) = {I,(12)(36)(47)};
Aut(C5(7,2)[1,0]) = Aut(C5(7,2)[1,1]) = {I,(27)(34)(56)}.

5.2 Optimal 1-AsEC codes of length 8

Using the properties of optimal C,(7, 2) codes shown in the previous section,
we can prove

Theorem 5.3 Up to permutation, optimal C,(8,2) codes are of the same
form.

Proof: Let C be an optimal C,(8,2) code. Then |C| = 36 by Table A.1in
Appendix A. Arrange C as a 36 by 8 matrix. Every column of C contains
exactly 18 ones and 18 zeros because A,(7,2) is 18. Further analysis shows
that half of the codewords of (' is made from the rows of a matrix with the
form C;(7,2)[0,0] appended a zero to them, and the remaining words from
the rows of a matrix with the form Ci(7,2)[1,1] appended a one to them
where ¢,7 € {1,2,3}. This results in 0,1 € C,A; = A¢ = 4,A3 = A5 = 8
and A4 = 10. Without loss of generality, we may assume that

{1,2}, {3,4}, 15,6}, {7,8) (5.5)
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are the supports of the codewords of weight 2. Kalbfleisch et al. [30] proved
that a maximal (8,3) system has eight triples containing every pair exactly
once except the four pairs of (5.5) which do not occur. The eight triples
are uniquely determined up to permutation when (5.5) is fixed. They are
taken as the codewords of C of weight 3, and are listed below:

3 = {1’3a 7}1 3= {134a5}! 33 = {136’8}1 34 = {21 3, 6}1 (5 6)
35 = {214a8}’ 36 = {2a517}1 3 = {3’5?8}$ 33 = {4, 6';7} '
Now we consider the ten codewords of weight 4 which form a 10 by 8
submatrix of C', denoted by @ = (¢i;). Because of the special types of the
words of weight 3 and weight 4 in (5.2) to (5.4), each column of @ involves
exactly five ones and five zeros. Without loss of generality, divide @) into two
submatrices: (17Q;) and (07Q);) where @); and @ are two 5 by 7 matrices,
and @; comes from the codewords of weight 3 in an optimal Cy(7,2) code
and @ from the codewords of weight 4 in an optimal C,(7,2) code. Also
from (5.2) to (5.4), it follows that in ¢; only one column has three ones and
the others all have two ones exactly, and in @; only one column has two
ones and the others three ones each. Since {1,3,7},{1,4,5} and {1,6,8}
are codewords, the first column of @; must have three ones, and so the first
column of ¢}; must have two ones. With the distance d, > 2 in mind, we
may, without loss of generality, take the first three columns of @ as follows:

1111100000 \~
1110011000 (5.7)
1001010110

and we may also assume that g7 = ¢s7 = 1 since {1,3,7} is a codeword.
Let 4; (i = 1,2,--,10) denote the rows of @ in the ordered of (5.7) from
top to bottom. By using (5.6), one can show that ¢14 = 1,¢15 = 1 or
q1s = 1 for the first row of Q. First suppose that ¢;4 = 1. In the following
we shall abbreviate the statement “that the condition A holds implies that
the result B holds” by “A = B”. Using this notation we get

(da(36742) Z 2 A da(41,42) Z 2) == (t}za =1V Qg = l).
However, ¢25 = 1 = ¢35 = qas = 1, which gives rise to

Qa4 = ] = d,,(41,44) < 2,
qrr=1 => du(31,44) < 2;
Qas = qas =1 = d.(43,44) < 2;
Qs =qus =1 = do(37,44) <2
Qe =qu=1 = da(aa, 44) < 2.

This implies that g6 = 1 and gp5 = 0, hence ¢35 = gas = 1. In this case, we
find
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(da(41,44) Z 2 A da(33,44) 2 2 A da(37, 44) 2 2) == 45 = Q48 = 1

Proceeding in the same way, we can evaluate the entries: gsq = gs7 = ¢s8 =
1,967 = ges = 1 and ¢74 = g5 = ¢r¢ = 1. Moreover if we ignore the
order of 43 and 49, then the supports of the last three rows of  must be
{3,4,5,7},{3,4,6,8} and {5,6,7,8}. All the supports of the rows of @
when qi4 = 1 are listed in the first column of (5.8).

g4 =1 g5 = 1 g8 =1
11,2,3,41 | {1,2,3,5) | {1,2,3.8)
(1,2,5,8) | {1,2,7,8} | {1,2,4,7}
(1,2,6,7} | {1,2,4,6} | {1,2,5,6)
{1,3,5,6} | {1,3,4,8} | {1,3,4,6}
{1,4,7,8} | {1,5,6,7} | {1,5,7,8} (5.8)
(2,3,7,8) | {2.3,4,7} | {2.3,4,5)
(2,4,5,6} | {2,5,6,8) | {2,6,7,8}
(3,4,5,7) | {3,4,5,6} | {3,4,7,8)
(3,4,6,8) | {3,6,7,8} | {3,5,6,7}
(5.6,7.8) | {4,5,7,8} | {4,5,6,8)

Other two different sets of quadruples when ¢15 = 1 or qyg = 1 are derived
also and shown in the second and the third columns of (5.8) respectively.
Let D; (i = 1,2,3) be the sets consisting of the words in (5.5), (5.6) and
the ith column of (5.8). Then the permutation (37)(48)(56) acting on the
coordinates of Dy changes D, into D;. On the other hand, D; can be
obtained by permuting the coordinates of D3 with (358)(467). This means
that Dy, D, and D3 are equivalent. Therefore, without loss of generality,
we may take the first column of (5.8) as the ten codewords of C of weight
4,

Next we determine the codewords of weight 5. Since Ag = 4 and the
length is 8, each column of the submatrix formed by the four codewords of
weight 6 has exactly three ones and one zero. It turns out that each column
of the submatrix formed by the eight codewords of weight 5, denoted by
F = (fi;), involves exactly five ones and three zeros. Divide F into (17F})
and (0"F,;) where F; and F; are 5 by 7 and 3 by 7 matrices resp. For
the same reason as mentioned for Q; (i = 1,2), one comes to the claim:
in F; only one column contains two ones and the others involve exactly
three ones each; in F; exactly one column is of weight 3 and the remaining
columns are of weight 2. Furthermore, the first column of F} cannot have
three ones and the inner product of the first two columns of F} must be
equal to 1. So, without loss of generality, the first three columns of F' may
be read as below:
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11111000 \ "
11000111
10110110

Let 5; (: = 1,2,---,8) be the rows of F from top to bottom. Evi-
dently, there are only two possible choices for 5,, namely {1,2,3,5,7} or
{1,2,3,6,8}. It is trivial to prove that the second choice is impossible.
Thus 5, = {1,2,3,5,7}. In this case, one has that foy = fog = fos = 1.
Moreover if the order of 53 and 54 is ignored, they must be {1,3,4, 5,8} and
{1,3,6,7,8}. From the properties of Fy, It follows that fss = fs5 = fs6 =
fs7 = 1. Consequently, 5¢ and 5; equal {2,3,4,6,7} and {2,3,5,6,8} resp.
(if we ignore the order of them). It turns out to be faq = fas = far = fas =1
because of the properties of F,. This uniquely completes the construction
of F. The rows of F are the following eight 5-tuples:

{1,2,3,5,7}, {1,2,4,6,8}, {1,3,4,5,8},
{1,3,6,7,8}, {1,4,5,6,7}, {2,3,4,6,7}, (5.9)
{2,3,5,6,8}, {2,4,5,7,8}.

To complete the proof, we need to determine the four codewords of
weight 6. This can be done by investigating the complements of (5.9):

{4,6,8}, {3,5,7}, {2,6,7}, {2,4,5},

{2,3,8}, {1,5,8}, {1,4,7}, {1,3,6}. (5.10)

Since (5.10) does not contain the four disjoint pairs in (5.5), the comple-
ments of (5.5) can be uniquely taken as the required codewords of weight
6. 0

The optimal C,(8,2) code shown in the proof of Theorem 5.3 can be
written in the following standard form (the columns are codewords):

111111111111111111000000000000000000
111111111100000000111111110000000000
111110000011110000111100001111100000
111101000010001110100011101111010000
110010110011001100010011011100101100
110001101001101001111010001010011100
101010101000111010100101011100011010
101001110010100011010101101010101010

(5.11)

The elements of the automorphism group acting on the rows of (5.11) are

(1324)(5768), (1423)(5867), (1526)(3847), (12)(34)(56)(78),
(1625)(3748), (1728)(3546), (1827)(3645), I.
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One can check that if the first row of (5.11) is deleted, then the first 18
punctured words will form the optimal C,(7,2) code shown in (5.2) with
a = b =1, and the remaining 18 punctured words will be equivalent to the
optimal Cy(7,2) code of (5.2) with a = b = 0. The results in this chapter
lead to Table 5.1.

n |2]3|4]5]6]7]8
A(n,2) [2]2]4[6] 121836
T [L|4[1]4]1]12]1

Figure 5.1: The numbers of non-isomorphic optimal C,(n, 2) codes for n <

8.
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Chapter 6

Weakly perfect codes for
correcting asymmetric errors

6.1 Introduction

Perfect codes for correcting symmetric errors have received a lot of atten-
tion since the celebrated Hamming codes were discovered for the binary
symmetric channel (BSC) in 1950, two years after Shannon [46] published
the foundation of information theory that was the impetus to the research
on error-correcting codes. An excellent exposition on the existence of non-
trivial perfect codes was given by Van Lint [48] (including many references).
For additional results on perfect codes, one is also referred to [49] and [36].
For later comparisons, we indicate two main properties of binary perfect
codes for BSC below: /

¢ A binary perfect block code of length n and minimum Hamming
distance 2t + 1 (capable of correcting up to ¢ symmetric errors) cor-
responds to a partition of V. This partition consists of a collection
of spheres all with the same radius ¢ centered around the codewords.
That is to say, all such packing spheres are mutually disjoint and
together cover the whole space. So a perfect code can correct all
(symmetric) errors of weight < ¢, but none of weight greater than ¢.

¢ A binary perfect block code has the highest information rate (or max-
imum size) among all codes of the same length and error-correcting
capability. Therefore, in this sense it can be said that the whole
vector space is packed optimally by a perfect code.

The study of perfect codes used for BSC has been generalized in several di-
rections which are mentioned in the comments of Chapter 7 of [49]. Though
in the last two decades, a lot of attention has been paid to the study of
codes which are capable of correcting asymmetric errors as mentioned in
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Chapter 1, no literature, as far as we know, discusses perfect asymmetric-
error-correcting codes, and the definition of such codes has not even been
given yet. Most of previous works on t-AsEC codes have had very little
impact on the material presented in this chapter.

For decoding of a code, one should realize that through a binary asym-
metric channel, a possibly received word, say y, only comes from the code-
words covering it. The strategy of a maximum likelihood decoder is of
course to decode the received word y to one of the codewords of lowest
weight covering y. Therefore in view of sphere packing, the set to be packed
in asymmetric cases is, in general, not the whole vector space anymore as
in symmetric cases. It will consist of all possibly received words that can
be obtained from all codewords by introducing asymmetric errors. In fact,
in asymmetric cases the set to be packed is the whole vector space if and
only if the all-one vector is a codeword (when only 1-errors are considered).
Generally, this set will depend on the specific code. A partition of this set
by using the packing spheres defined in (6.2) for a given code generates
some condition of perfect packing and weakly perfect packing.

The study of perfect codes and weakly perfect codes which are capable
of correcting asymmetric errors is the main goal of this chapter, which
warrants additional investigation on ASEC codes at a fundamental level.
We shall first be concerned with the same two properties, as stated above
for perfect codes used for BSC, for C,(n,d) codes. In other words, we shall
answer the two questions raised in Section 1.4.

Below, we define perfect, weakly perfect and uniformly weakly perfect
binary block codes for correcting asymmetric errors. The following notions
will be used throughout the present chapter.

Definition 6.1 Let C be a Cy(n,d,) code. For any codeword ¢ € C, r(c)
will be used to denote the asymmelric distance to the nearest codeword to
c, namely

r(c) = min{ds(x,¢)lc # x Ax € C} = dy(c,C\{c}) (6.1)

Evidently, r(c) > d, for any codeword c in Definition 6.1. The idea
behind Definition 6.1 is that for a C,(n,d,) code C, there may exist a
codeword ¢ € C such that r(c) > d,, which means that the word ¢ can
be protected against more errors than other codewords x with r(x) = d,.
Codes with this property do exist. For instance, in a 1-AsEC linear code
of maximum dimension and length n (n # 2,4), any nonzero codeword
will have a weight greater than the minimum asymmetric distance of the
code [57]. Therefore at least r(0) is larger than the minimum asymmetric
distance of the code.

The sphere with radius ¢ and center ¢ is defined by
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Sa(e,t) = {x € Vu | dae,x) <t A ¢ 2> x}. (6.2)

In other words, S,(c,t) consists of all vectors that can be obtained from
¢ by introducing up to t l-errors. Therefore, the cardinality of the sphere
Sa(c,t) equals

| Salest) = 3 ( w(e) ) '

=0

Unlike in Hamming space, this number relies not only on the radius ¢ but
also on the weight of the word ¢.

Definition 6.2 Let C be a C,4(n,d,) code. Also, let E denote the set of all
possibly received words, i.e. E = {x € Vy| 3¢ec[c > x]}. The code C is
called a weakly perfect code, for short WP code, if

E = | Si(c,r(c) - 1). | (6.3)

ceC

In particular, if all v(c) are equal to d, in (6.8), then C is called a uniformly
weakly perfect code, for short, UW P code. If E = Vy in (6.3), then C is
called a perfect code.

Obviously, | C |[<| E |€| Va |= 2", and E = Vg if and only if 1 € C.
From Definition 6.2, it follows that any UW P C,(n,d,) code is also a WP
Ca(n, d;) code. The definition given for perfect C;(n,d,) codes is consistent
with that given for the perfect codes used for BSC. Define:

Wa(n,d,) : the maximum number of codewords
ina WP C,(n,d,) code;

Ua.(n,d;) : the maximum number of codewords

ina UWP Cy(n,d,) code.

Of course
Us(n,ds) € Wo(n,d,) < Au(n,ds). (6.4)

To illustrate the existence of WP Ci(n,d,) codes, we present some
examples.

Example 6.1 Let C be the repetition code of length n. Then E = Vj,
S.(0,n—1) = {0} and S,;(1,n —1) = V,\{0}. Hence the condition stated
in (6.3) is satisfied, and C is a perfect code.

Example 6.2 Let C consist of the three words: 00000, 11000 and 00111.
Then, C is a nontrivial WP C.(5,2) code and r(00111) = 3, whereas
r(0) = r(11000) = 2.
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Example 6.3 Let C be the code obtained from the optimal C,(6,2) code
in (5.1) by deleting the all-one vector 1. Then, it can be checked that C is a
nontrivial UW P code of size 11 by Definition 6.2. From Theorem 5.2, (6.4)
and Theorem 6.8 (see Section 6.3), it follows that U,(6,2) = W,(6,2) = 11.
This code is unique up to permutation.

Theorem 2.3 shows that concatenating two C,(n,d,) codes gives a
C.(2n,2d,) code. However, concatenating two weakly perfect codes does
not necessarily result in a weakly perfect code. For instance, concatenating
the code C in Example 6.3 with itself does not yield a WP C,(12,4) code.

If Cisa WP Cy(n,d,) code, then the code obtained by deleting one
of the largest weight codewords of C' will be a WP code of length n as
well. The proof is easy. Let x be one of the largest weight codewords of C,
and C' = C\{x}. Also, let r(c) = d,(c,C\{c}) and r'(c) = d,(c,C'\{c})
for any ¢ € C'. Then r(c) < r(¢) for any ¢ € C’'. Let E’ denote the set
consisting of all possibly received words corresponding to C’,i.e. E' = {y €
Vil acecc > y]}. Now we need to show that E' C Jeeer Sa(e, r'(c) — 1).
Let z € E’. Since C is a WP code and E' C F, one has

z€ |J Sale,r(e) - 1)U Sa(x,r(x) —1).

ceCt

Note that d,(z,x) > r(x). So z & S,(x,r(x) — 1). Hence

z€ |J Sule,r(c) = 1) C | Sa(c,r'(c) = 1).

ceC! ceC’!

Thus C’ is a WP code of length n (but possibly with a larger minimum
distance than d,).

Example 6.4 Let C be the code defined in Example 6.3. The set
{x | (x,1) € C} gives a UWP C,(5,2) code of size 5 by Definition 6.2.
From Theorem 5.1, (6.4) and Theorem 6.8 (see Section 6.3), it follows that
Ua(5,2) = W,(5,2) = 5.

Example 6.5 For any integer number w (0 < w < n), the set of all words
of length n and weight at most w together with the all-one vector 1 is a
perfect Cy(n,1) code.

The probability of error, or the word error rate, P.,,, for a particular de-
coding rule is the probability that the decoder produces a wrong codeword.
Assume that ¢, ¢y, -+, ¢p are codewords of a code C which are used with
equal probability, then the probability of incorrect decoding of a received
word is

M
Por(C) = % >P (6.5)
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where P, is the probability of making an incorrect decision given that c; is
transmitted for : = 1,2,--- , M.

For a C,(n, d,) code C, our decoding rules are based on two assumptions.
First of all, it is assumed that all codewords are transmitted equally likely
during communication. Furthermore, the decoding strategy is that if x is
received, then x is decoded into a codeword ¢ where ¢ > x and w(c) =
min{w(y)ly € C Ay 2 x}. This decoding rule results in mazimum-
likelihood-decoding.

Section 6.2 will present some basic results derived from the above defi-
nitions which will be needed to prove the main conclusions, which will be
presented in Section 6.3. It is shown that any perfect code defined in Defi-
nition 6.2 has a trivial form. To be more precise, it must be the repetition
code, This answers the first question listed in Section 1.4. It follows that
any asymmetric error-correcting code for which all the Goldbaum inequal-
ities [24] are sharp must have a trivial form too. Further analysis shows
that any weakly perfect code which is nontrivial can always be enlarged to
a bigger code of the same length and distance, which answers the second
question in Sectionl.4. A general look on UW P C,(n,d,) codes is given in
Section 6.4. In Section 6.5, we discuss UW P codes of length < 15 capable
of correcting single errors. Some explicit constructions of codes are given.

6.2 Some results related to C,(n,d,) codes

In this section we shall derive several results regarding C,(n, d,) codes that
are interesting in their own right but are also necessary for deriving the
results in the next section. :

Lemma 6.1 Let C be a Cy(n,d,) code. Then the following properties hold:
1. if C is nontrivial, then r(c) < n —d, for any codeword c € C.

2. for any two different codewords c; and cq,

Sa(er,r(er) — 1) N Sp(eg,r(ez) — 1) = 2.

Proof: The proof of the first assertion is straightforward and omitted.
In order to prove the second assertion, take r = maz{r(c;),r(cs)}. Since
d.(c1,¢;) 2 r, without loss of generality, we may assume that N(ci,¢3) > r.
If there exists a vector x such that x € Sa(cy,r(c1) — 1) N Sa(ez,7(c2) — 1),
then from (6.2) one has that x < ¢, x < ¢; and N(ey,x) < r(cy) —1. This
implies that

r—12r(c;) =12 N(ey,x) 2 N(ey,e3) 2y

which is a contradiction. 0
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Theorem 1.1 shows that C,(n, d,) codes can correct up to d,—1 asymmet-
ric errors. However, possibly there exists a codeword ¢ such that r(c) > d,.
It follows that the minimum distance criterion of judging capabilities of
correcting errors of codes can be generalized. This motivates us to intro-
duce the average error-correcting capability of a code. The average error-
correcting capability of a C,(n,d,) code C is defined:

H(C) = o1 L(r(e) D). (6.6)

]CI ceC
For the average error-correcting capability of the code C, one remark needs
to be given here, namely if ¢ is a codeword of C of weight less than d,, then
the error-correcting capability of ¢ may be referred as any number which
is greater than w(c). Hence in the sense of error-correcting capability, r(c)
does not give an appropriate measure, nor does 7(C). However, this will
not give much additional scope in the error-correcting capability of the code
C, so we still adopt the definition in (6.6) as the average error-correcting
capability of C. Another thing which should be noticed is that sometimes
a codeword ¢ may correct more than r(¢) — 1 errors. The following Theo-
rem 6.1 shows that if a C,(n,d,) code does not contain the all-one vector 1,
then changing a maximal weight codeword into 1 may increase the average

error-correcting capability of such code.

Theorem 6.1 Let C be a Cy(n,d,) code with average error-correcting ca-
pability 7(C), and x be a mazimum weight codeword of C. If x # 1,
then the code C' = (C\{x}) U {1} has average error-correcting capability
#C') > 7(C).

Proof: Without loss of generality, let C contain M codewords:
{e1,- -, em} with w(e;)) € w(e;) for ¢ € j and 4,5 = 1,2,---, M
(x = em). Let C' = {c1,---,em-1,1}. From (6.1), it is clear that
da(ei,enr) < do(ei,1) for all £ £ M — 1. This implies the assertion. o

Lemma 6.2 If C is a Cy(n,d,) code with the property: w(C) < w(C") for
any Cq(n,d,) code C" with |C'| = |C|, then r(c) = d, for any c € C.

Proof: Without loss of generality, we may assume that C consists of the
M codewords: ¢q,---,cp with nondecreasing weight order, i.e., w(c;) <
w(c;) for 1 £i < j < M. Since C is of minimum weight, the codeword ¢;
must be the all-zero vector 0. If r(¢;) > d, + 1, then any 1 — 0 change
in ¢z can be introduced such that the resulting code is still a Cy(n,d,)
code, which contradicts the assumption on the weight of C. Similarly, if
r(c) > d, + 1 for ¢ # ¢;, then introducing any 1 — 0 change in ¢ will give
the same contradiction. 0

. Theorem 6.2 A Cy(n,d,) code C can always be transformed into another
Ca(n,d,) code C' so that r(c) = d, for any codeword ¢ of C'.
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Proof: Without loss of generality, we may assume that 0 € C. The same
argument used in the proof of Lemma 6.2 can be applied here. Note that
the weight of C is finite. Therefore, the process of making 1 — 0 changes
must terminate in a finite number of steps. 0

Theorem 6.2 admits the following heuristic interpretation. Given a
Co(n,d,) code C. From Lemma 6.1, it follows that all the packing spheres
centered at the codewords of C are disjoint in the space Vy. If there is r{c)
which is greater than d,, then the corresponding center ¢ can be replaced by
a word y so that S,(y,d, —1) is a proper subset of S,(c,r(c) — 1), keeping
it disjoint from the other packing spheres. Thus, by this technique, all the
packing spheres with larger radii (> d,) can be reduced to smaller packing
spheres that are still disjoint.

Theorem 6.2 also shows that any C,(n,d,) code of maximum size can
be assumed to satisfy that for any codeword, it has distance d, to the set
of all other codewords. An interesting question is whether this condition is
necessary for any nontrivial Cy(n,d,) code of maximum size. From Theo-
rem 6.2, it follows that the answer is positive for codes which are unique
up to permutation. But, in general, it is not true. Two counterexamples
are shown below.

Example 6.6 The four words: 0000000, 1110000, 0001110 and 1111111
form an optimal C,(7,3) code. However, the minimum distance from the
codeword 1 to the other three codewords is 4 which is greater than the
minimum distance of the code.

For Example 6.6, one has that A,(6,3) = A.(7,3) = 4 (see Table A.1 in
Appendix A). In the following, we shall give another example which shows
that C,(n, d,) codes of size A,(n,d,) exist so that at least one codeword is
of minimum distance greater than d, to all other codewords, even though
the relation A,(n — 1,d,) < Aa{n,d,) holds.

Example 6.7 The C,(17,6) code consisting of the following eight words:

00000000000000000
11111100000000000
00000011111100000
11000011000011110
00111000111011100
10011110010110011
01100101101101011
11111111111111111

is optimal. From Table A.3 in Appendix A, it follows that A,(16,6) =
7 < A,(17,6) = 8. However, the minimum asymmetric distance from the
codeword 1 to the other codewords is 7. '

59



Lemma 6.3 Let C be a Cy(n,d,) code. If w(c) < r(c) for a certainc € C,
then c is of minimum weight in C, i.e, w(c) < min{w(x)|x € C Ax # c}.

Proof: Suppose that there is a codeword x in C such that w(x) < w(c).
Then d,(x,c) < w(c) < r(c), which contradicts the definition of r(c). O

Lemma 6.4 For an optimal Cy(n,d,) code C, r(c) < 2d, — 1 for any
codeword ¢ € C.

Proof: Suppose that there exists a codeword ¢ such that r(c) > 2d,.
Let y be any word with distance d, from c. Since C is of maximum size,
y cannot be added to C as a codeword without affecting the minimum
distance d,. Hence, y has distance < d, — 1 to a codeword in C, say X.
From the triangle inequality, we get the following contradiction:

2d, < do(x,¢) < do(x,y) + do(y,c) < dys —14+d, =2d, — 1.

[

From Examples 6.6 and 6.7, it follows that for an optimal C,(n,d,)
code, the bound 2d, — 1 shown in Lemma 6.4 certainly is not tight but also
cannot be replaced by d,. The following theorem strengthens this bound.

Theorem 6.3 Let C be an optimal C,(n,d,) code. Ifn < 2d,, then r(c) =
d, for any codeword ¢ of C. If n > 2d, and c € C, then

2d, — w(c), for 0 <w(c) <d,;
r(c) < § 3d./2, for dy <w(c) < n—dy;
2d, —n+w(c), for n—d, <w(c)<n.

Proof: When n < 2d,, C is the repetition code. So the assertion holds.
If n = 2d,, the following four words: 0% Q% 19aQ% Q%1% and 1%1% form
an optimal C,(2d,,d,) code, which is unique up to permutation. Hence,
r(c) =d, foranyc € C. Let n > 2d, and ¢ € C. Without loss of generality,
we may assume that ¢ = 1¥0""" where w is the weight of the codeword c.
Since C' is optimal, it must contain a unique codeword which has weight
less than d,. Suppose that ¢ is such codeword. Because n — w > d, and
r(c) < 2d, (using Lemma 6.4), we can put

a= lwlr(c)—daon—w—(r(c)—da).

From the triangle inequality, the asymmetric distance from a to any code-
word other than ¢ must be at least d,. Moreover, the weight of the word
a must be less than d,, otherwise a C,(n,d,) code with larger size can
be obtained by replacing ¢ with a and 0 (if ¢ = 0, then one can simply
add a into C), which contradicts the assumption on the size of C. There-
fore w(a) = w + r(c) — do < d,. This means that r(c) < 2d, — w(c).
Similarly, one can prove that for the unique highest weight codeword ¢
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(n—d, < w(c) € n), r(c) < 2d; — n+ w(c). For any other codeword ¢, by
using Lemma 6.3, w(c) 2> r(c). Put

a = lwl'r(c)—dqon-w-(r(c)—da)
b = Or(c)~d¢lw-('r(c)—da)on-w.

Hence from the triangle inequality, it follows that for any ¢’ € C and ¢’ # c,
d.(a,c) 2 d,(c',c) — du(c,a) 2 r(c) = (r(c) — d;) = d,

Similarly, d,(b,¢’) > d,. Thus, the asymmetric distance between a and b
must be less than d,. Indeed, if this is not the case, replacing ¢ by a and
b in C will result in a Cy(n,d,) code of larger size, which is not possible.
Therefore d,(a,b) = 2(r(c) — d,) < do. This leads to r(c) < 3d,/2. o

Theorem 6.3 tells us that in an optimal C,(n, d,) code there are at most
two codewords at asymmetric distance greater than or equal to 3d,/2 to
all other codewords. Specifically, one has that »(0) < 2d, and r(1) < 2d
if 0 and 1 are these codewords. Furthermore, applying Theorem 6.3 to the
case d, = 2 presents some interesting results. In fact, if C' is an optimal
Ca(n,2) code with 1 < w(c) < n—1for all ¢ € C, then from Theorem 6.3,
it follows that r(c) = 2 for all ¢ € C. Though, in general all r(c) are
not necessary equal to d, for a nontrivial C,(n,d,) code of maximum size,
it is at least necessary for many optimal C,(n,d,) codes, as shown in the
following theorem.

Theorem 6.4 Let C be an optimal Co(n,2) code. If n £1 or 3 (mod 6),
thenr(c) =2 forallc e C.

Proof: Without loss of generality, the all-zero vector 0 may be assumed
to be a codeword. By Theorem 6.3 and for reasons of symmetry, we only
need to prove that r(0) = 2. Assume r(0) > 2. Then from Theorem 6.3 it
follows that r(0) = 3. This means that apart from the all-zero vector 0, all
the other codewords of C have weight at least three. If the length n is not
congruent to 1 or 3 modulo 6, then the set of codewords of C of weight 3
cannot form a Steiner triple system [32]. Hence, there exists at least one
word of weight 2 which has asymmetric distance greater than or equal to
2 to all codewords of weight 3 and trivially is at distance greater than or
equal to 2 to all codewords of weight greater than 3 as well as to 0. So
this word of weight 2 can be added to C without decreasing the minimum
distance, which contradicts the assumption that the code C' is optimal. O

The question whether any optimal C,(n,2) code C must satisfy that
r(c) = 2 for any ¢ € C is still open. From the proof of Theorem 6.4,
one only needs to prove that no optimal C,(n, 2) code exists that contains
0, and in which the codewords of weight 3 form a Steiner triple system
S(2,3,n). At the present, we could only check this for n = 7 and one case
for n = 9 (based on the known results). Therefore, we are left with
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Conjecture: Any optimal C,(n,2) code C satisfies r(c) =2 for allc € C.

We shall now investigate the significance of taking the all-one vector 1
as a codeword in a C,(n, d,) code (this will come back when WP C,(n,d,)
codes will be discussed in the next section). It is well known (Klgve’s ob-
servation) that the all-one vector 1 and the all-zero vector 0 may always
be assumed to be codewords in a C,(n,d,) code. This is useful in code
constructions as shown in Chapter 3. However, for a fixed length n and
distance d,, two or more C,(n,d;) codes may exist, all of maximum size
but not equivalent to each other. In this case, their performance cannot be
judged by simply comparing their average error-correcting capabilities and
their information rates, since both parameters may be equal. For example,
with the same notations as used in Theorem 5.1, we let C} = C,(5,2)[0,1]
and C; = C,(5,2)[0,0]. Then |Cy]| = |C2| = Au(5,2) = 6. So they have
the same information rate. Also, for both codes the minimum distance
from a certain codeword to all other codewords is 2 by Theorem 6.4. Hence
they have the same average error-correcting capability. To distinguish their
performance we shall study their respective probabilities of erroneous de-
coding.

When error probability is taken into account, one arrives at the following
question: let C be an optimal C,(n,d,) code without the word 1 and let
C' = (C\{f}) U {1} where f is one of the maximal weight codewords of C,
does the inequality Pm(C') < P,,.(C) hold ? This question was essentially
solved by Weber [56] (unpublished), which shows that if f is a codeword of C
of weight w(f) = n—j (1 < j < d,—1), then P.,.(C') < P..,(C). Therefore,
for the above two codes C) and (3, we have that P.,,,.(C1) € Perr(C2). In
fact, one can show that P..,.(Cy) < Per(C;). Thus, C; can be said to be
better than C in the sense that it has a lower error probability. Below, a
slightly more general result than that obtained by Weber will be presented
in Theorem 6.5 for which the proof is essentially due to Weber.

For the decoding of a C,(n, d,) code C, it is known that a received word
y only comes from the codewords covering it. In other words, the received
set F depends on the specific code C, which is not the case for the BSC
where any word in Vy can be a possibly received word. The strategy of
a maximum likelihood decoder is of course to decode the received word y
to one of the codewords of lowest weight covering y. This fact is stated
in Lemma 6.5. We denote the probability of receiving y given that x is
transmitted as P(y|x).
Lemma 6.5 Let C be ¢ Cy(n,d,) code and let y be a received word. If
X1,X2 € C with x; 2 y (i = 1,2} and w(xz) > w(x1), then P(y|x;) >
P(y[x2).
Theorem 6.5 Let C be a nontrivial Cy(n, d,) code and let f be a codeword
of C of mazimum weight. Then, Per(C') < Perr(C) where C' = (C\{f})U
{g} andg > f.
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Proof: Obviously, €’ is still an AsEC code of length » and minimum
distance at least d,. Without loss of generality, it is sufficient to consider
the case: f = 0°1"7 and g = 0’117+ for a certain j > 1. Define:

A={a€Vn | f2a A veeoyn)c # al}.

If a € A, we denote a’ as the word obtained by changing the jth coordinate
of a (which is 0 because f > a) to 1, and further define the set consisting
of all such words a' by A’. Without loss of generality, we may assume
that only the words of A are decoded into the codeword f (clearly, if there
is more than one codeword of the same maximum weight, then according
to the decoding rule, some words other than the words of A might be
decoded into f as well. But the assumption does not change the overall
error probability). Let P{correct|x} denote the probability of making the
correct decoding decision given that x is transmitted. According to (6.5)
and Lemma 6.5, we only need to consider two probabilities: P{correct|f}
and P{correct|g}. Note that AN A’ = @. One obtains

P(correct|g) > Yaca P(alg) + Zaren P(2]8)
= Taca pritl-u(a) (1 -py*@4
Care P @(1 - p)e)
(p+ (1 = p) Taca "7 7® (1 - p)@

= Y aeca P(a|f) = P(correct|f).

il

Thus, Pe,.,.(O') < P, (C) which completes the proof. a

Weber’s original result is a particular case of Theorem 6.5 by taking
g = 1 and f a codeword of weight greater than n — d,. From Theorem 6.5
and Theorem 6.1 together with the observation by Klgve, it follows that the
all-one vector 1 should always be included in a C,(n,d;) code. However,
in the next section it will be shown that the all-one vector 1 cannot be a
codeword in any nontrivial W P code for correcting asymmetric errors.

6.3 On the rate of weakly perfect codes

In this section, we will present the answers to the two questions stated in
Section 1.4. We shall show that any perfect C,(n,d,) code must have a
trivial form. This implies that for binary asymmetric channels only the
repetition code gives rise to a partition of V. Furthermore, it will be
shown that any nontrivial WP C,(n,d,) code of maximum size cannot be
optimal, i.e., Wy(n,d,) < As(n,d,) for nontrivial cases for any n and d,.
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Lemma 6.6 Let C be a WP C,(n,d,) code containing the all-one vector
1. Then C must be the repetition code,

Proof: Since 1 € C, the received set E corresponding to C equals the
whole space V. From (6.3) in Definition 6.2, it follows that

Va = Sale,r(c) - 1). (6.7)
ceC
Let r = r(1). Obviously, r > d, > 2 and the weight distribution of C
satisfies A,y = Ap_2 = --- = A, _,41 = 0. Furthermore, one has

n—r

An_,=( " ) (6.8)

Otherwise, there would exist at least one word of weight n — r which does
not belong to the right-hand side of (6.7), which is not possible. If n—r >1
in (6.8), there must be two different codewords of weight n — r such that
they are at asymmetric distance 1 apart, which disagrees with d, > 2. So
n—r = 0, that is, n = r. This shows that the code C is the repetition code
which is trivial. o

Theorem 6.6 A C,(n,d,) code C is perfect if and only if C is the repeti-
tion code.

Proof: Because any perfect C,(n,d,) code contains the all-one vector 1,
the assertion directly follows from Lemma 6.6 and Example 6.1. a

Instead of applying the sphere packing concept to the whole space Vy,
Goldbaum [24] derives an upper bound on the maximum size of an asym-
metric error-correcting code which is only based on the constraints on the
vectors of length n having a certain weight i. He shows that the weight
distribution Ao, Ay, ..., A, of a C,(n,d,) code satisfies

dil(i-;j)Ai+jS(?) (6.9)

Jj=0
for: =0,1,...,n. According to Lemma 6.6, we can conclude that

Theorem 6.7 The only C,(n,d,) code (n > d, > 2) for which all the
Goldbaum inequalities (6.9) are sharp is the the repetition code.

Proof: By taking i = n and ¢ = n — d, respectively in (6.9), one will be
in the same situation as described in the proof of Lemma 6.6. So the result
is the same as there. a

Theorem 6.6 shows that no nontrivial C,(n,d,) code exists such that the
union of all packing spheres centered at the codewords covers the whole
space V. However, in practice, we are only interested in those words
which are in the received set E corresponding to C instead of the whole
space Vp. In general, the cardinality of E is greater than that of the union
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S of all packing spheres centered at the codewords. But for W P codes, both
sets are equal, i.e., E = §, by Definition 6.2. Therefore, in this case any
possibly received word can always be decoded to a unique codeword (maybe
incorrectly). Specifically, a UW P C,(n,d,) code can correct all errors of
weight < d, — 1, and none of weight greater than or equal to d,. Of course,
we expect that the cardinality (or information rate) of a WP code is as
large as possible. Thus, one question arises, namely, whether a nontrivial
WP C,(n,d,) code exists such that it contains A,(n,d,) codewords. In the
following, we shall show that the answer to this question is negative.

Theorem 6.8 If n > 2d,, then Wa(n,ds) < Aa(n, dy).

Proof: Let C be a WP C,(n,d,) code with cardinality W,(n,d,) and
with n > 2d,. Let Aq,---, A, be the weight distribution of C. Note that
enedas1 A S LI YT, 14 A = 0, then the all-one vector 1 can be
always added to C such that this enlarged code is still a C,(n,d,) code. So
the claim is ture in this case. If A, = 1, then from Lemma 6.6 it follows
that C is the repetition code. Because A,(n,d,) > 4 when n > 2d,, the

assertion holds for this trivial case too. Now, suppose that

n—1
> Ai=1. (hence A, =0)

t=n—da+1

Then, there will be an index j (1 < 7 <d, —1) such that A,_; = 1. Let a
represent the codeword of weight n — 7, and without loss of generality, the
word a may be assumed to be a = 07177, If |C| = W,(n,ds) = Au(n,d.),
then from Theorem 6.3 it follows that w(a) — r(a) > n — 2d, + 1. Since
n > 2d, and w(a) = n — j, one has that n — j — r(a) > 1. Define the
following three words of length n (note that 2 < d, < r(a)):

x; = 07 17i-r@)-1 190 or(@)-2)
Xy = 0F 1mi=r(@)-1 919 0r(®)-2,
x3 = 0O/ 17-i-r@)-1 gp] ora)-2,

Obviously, the above three words are all of weight n — j — r(a). Therefore,
none of them can be contained in the sphere S,(a,r(a) — 1). Since C is
weakly perfect, every word of weight n — j — r(a) covered by a must be
covered by one of the codewords of C' of weight ¢ where n — 3 —r(a) <¢ <
n — r(a). Note that the minimum asymmetric distance from the codeword
a to the other codewords is r(a) and a is of the highest weight. With this in
mind, one will arrive at the fact that the three words x;, x; and x3 must be
covered uniquely by three different other codewords of C respectively, and
these three codewords are necessarily of the following forms respectively:

a; = by 1777-7(@-1 100 0r(a)-2,
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a; = b2 ln—j—r(a)—-l 010 0r(a)—2,
ag = by 17~i-7(@)-1 gg1 or(a)-2,

where by, b, and bj are of length j. However, since d,(ay, a;) > d, and the
length of b; and b; is j < d, — 1, one must have w(by) = j = d, — 1 and
w(by) = 0 (or vice versa). Then w(bs) must equal zero by d,(a;,a3) > d,.
This results in d,(a;,a3) = 1 which is a contradiction. Hence, |C| <
A(n,d;) if n > 2d,. O

Since a C,y(n,d,) code, if n < 2d,, is trivial, Uy(n,d,) = Wa(n,d,) =
As(n,d;) = 2 when n < 2d,. Hence, Theorem 6.8 states that the rate of
a nontrivial Co(n,d,) code of maximum size is always greater than that of
WP C,(n,d,) codes. Two direct corollaries to Theorem 6.8 are

Corollary 6.1 Ifn > 2d,, then any nontrivial WP C,(n,d,) code cannot
contain a codeword of weight greater than n—d,. Therefore, a WP Cy(n,d,)
code with n > 2d, can always be enlarged with the all-one vector 1 to a
bigger Ca(n,d,) code.

Proof: From Lemma 6.6, we only need to show the assertion in the corol-
lary is true for A, = 0 and n > 2d,. Let C be a nontrivial WP C,(n,d,)
code containing the codeword a shown in the proof of Theorem 6.8. From
Lemma 6.3, it follows that w(a) > r(a). If w(a) > r(a) + 1, the same
contradiction stated in the proof of Theorem 6.8 will be obtained. On the
other hand, one can readily verify that the relation w(a) = r(a) will lead
to |C] £ 2 which is trivial, which contradicts the assumption that C is
nontrivial. O

Corollary 6.2 U,(n,d,) < As(n,d;) forn > 2d,.

6.4 Properties of UWP C,(n,d,) codes

From Theorem 6.6, we know that the vector 1 cannot be a codeword of a
nontrivial UW P C,(n,d,) code. How about the vector 07 Evidently, 0 is
always a possibly received word. This means that 0 is always an element of
E. One may think that the all-zero vector 0 should always be chosen as a
codeword in a C,(n,d,) code, since it cannot be distorted by the channel.
However, it will be shown that for a UWP C,(n,d,) code, whether 0 is a
codeword or not depends on the length n and the asymmetric distance d,.
We start with the following theorem.

Theorem 6.9 Let C be a nontrivill UWP Co(n,d,) code. Define r by
n=r (modd,) 0 <r<d,—1). Then A, =1, Ay, = (n —r)/d, and
Ai=0fori#rand0<i<d, —1.

Proof: For UW P C,(n,d,) codes, the sum S %! A; = 1 (since 0 € E)
and Ay, must be greater than zero (consider the weight one vectors in E).
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Also, that C is nontrivial means that 2 < d, < n—d,. Therefore, n = qd,+r
withg > 2and 0 < r <d, -1, and A; = 1 for some j € {0,---,d, — 1}.
Let a denote this codeword of weight j. Then, without loss of generality,
the vector a and the A4, codewords of weight d, may look like

a = 1---1 0---0 0---0 0---0 0---0
¢ = 0---0 1.-1 0---0 0---0  0---0

= 0---0 0---0 0---0 1-.--1 0---0

C
Ada ] ‘-_V_,J R e~ R e, joes”
J da da (Q—Ada )da‘l‘r'j

If (¢ — A4, )da + 7 — j i3 not equal to 0, then any of other codewords of C
cannot have ones in the last (¢ — Ag,)d, + r — j positions, otherwise there
would exist a possibly received word of weight 1 which is not contained in
the union .o Sa(€,ds — 1). This violates the assumption that the code
C is a UWP code. Therefore, we conclude that (¢ — Ag,)d, +r—37 =0
(note the conventions stated in the paragraph after Theorem 1.1). Since
r— 3 < d,, it follows that ¢ — Ay, = 0 and r = j, which gives A, =1 and
A4, = ¢ = (n —r)/d,. Since the minimum distance is d,, A4; = 0 for i # r
and 0 <1 <d, ~-1. 0

Three corollaries to Theorem 6.9 are

Corollary 6.3 Under the hypotheses of Theorem 6.9, n =0 (mod d,) if
and only if 0 € C, in which case Aq, =n/d,.

Corollary 6.4 Let C be a nontrivial UW P C,(n,d,) code, and let n be a
prime number. Then 0 & C.

Corollary 6.5 Let C be a nontrivial UW P Cy(n, d,) code withn = qd,+r
0<r<d,—1). Ifr=0and dy(ds + 1) > n, then Ag4y = 0. Also, if
r #0 and &% > n, then Agq,q1 = 0 as well.

Proof: Suppose that r = 0. From Corollary 6.3, it follows that Ay, =
n/d,. Hence, in the code C there are n/d, codewords of weight d, with
disjoint supports G; (i = 1,-- -, Aq4,) that partition the set of n coordinates.
Let ¢ be a codeword of weight d, + 1. Since the minimum distance is d,,
|supp(e) NG| <1 foralléi=1,--+,Aqg,. This yields that d, + 1 < Ay, =
n/d,. It follows that d,(d, + 1) < n if Ag4,41 is not equal to zero, which
is equivalent to the first assertion. Similarly, if r # 0, it follows from
Theorem 6.9 that d, +1 < ¢+ 1 when Ay, 41 # 0, which leads to the second
claim. o

In Example 6.4, it is shown that a UW P code of smaller length can be
obtained from a UWP code with a larger length. The following presents a
simple construction method the other way around.

Theorem 6.10 Forn > d, > 1, U,(n,d,) S U,(n+1,d,). Ifn+1=0
(mod d,), then Uy(n,d,) + 1 < Us(n +1,d,).
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Proof: Assume that C is a UWP C,(n,d,) code with U,(n,d,) code-
words. From Theorem 6.9, it follows that if A, = 1for 0 < r < d, — 2,
then a UWP C,(n +1,d,) code Cy can be obtained by extending C in the
following way

Ci={(a1)}U{(c,0) |[c£aAceC}
where a is the codeword of C of weight r. Moreover, when r = d, — 1, then
={0,(a,1)}U{(c,0) |[c #aAceC}

is a UWP Cu(n +1,d,) code. Clearly, | Cy |=| C | and | C; |=| C | +1
which leads to the conclusions of the theorem.

To obtain bounds on the size of UW P codes, it turns out to be helpful
to derive bounds on suitable combinations of the coefficients of the weight
enumerator of such a code.

Theorem 6.11 A nontriviel UWP C, (n da) code C with A; # 0 for n —
do > j 2 dy +1 satisfies (] )< $IZ] . A

Proof: Let ¢ be a codeword of C such that w(c) =jandn—-d, >j >
d, +1. Let E(c)={e|e<c A w(e)=j—d,}. Thus, for any e € E(c),
e & S,(c,ds — 1). Since C is a UWP C,(n,d,) code, for any e € E(c)
exactly one codeword of C, say y, exists such that w(y) < j—land e <y.
Set

(c)={y€C|w(y)<j—1/\e<yAe€E(c)}. (6.10)
Then, (§ )= |E(c)| =| ¥(c) < £}, =

Example 6.8 Let C be a nontrivial UWP C,(n,d,) code satisfying
Ad,+1 # 0. Then it follows from Theorem 6.11 (taking j = d, + 1), that
(d“+1)< Y4, A;, which implies d, + 1 < Aq, + 1. So Az, > d,. More-
over, if 0 € C, then Ay, > d, + 1. We conclude from Theorem 6.9 that
n> d (da + 1), in accordance with Corollary 6.5.

In fact, from (6.10) one can easily see that the number of the codewords
of weight j — d, in the set Y(c) is less than or equal to A(j,2d,,j — da) =
| ). This yields

Corollary 6.6 Under the same assumptions as in Theorem 6.11, one has

that ( ) [-LJ < Zf:; do41 Ai. In particular, if d, = 2, then ()—[1_1
i-1- :

If A; > 2 in Theorem 6.11 and if for the codewords of weight j, the inner

product between any pair of them is less than j — d,, then Theorem 6.11

can be generalized as follows.
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Theorem 6.12 If under the assumptions of Theorem 6.11 there are k dis-
tinct codewords cy,---,cx such that w(c;) = 7 for all i = 1,---,k, and
< €5, >L j—dy—1 fors #t, and s,t =1,.-- k, then k(;a) < ):f-;-‘_da A;.

Proof: For 1 < i<k, let E(¢;) ={e| e <c;Aw(e)=j~d,}. Since
< €40 >< j—dy—1for s # ¢, the sets E(c,) and E(c,) are disjoint. Also,
it is clear that E(e;) N Sa(ci,d, —1) =@ for alli =1,---, k. Suppose that
there is a vector x such that x € E(c,) N S,(cy,da — 1) where s # ¢t. Then

j—-d,,:w(x) £< ¢, 6 >Sj_da"]-

yields a contradiction. Thus when s # ¢, one also has that E(e,)NS,(ct, do—
1) = @. As in the proof of Theorem 6.11, define:

V()= {xeClwx)<j-1Ae<xAec E()}

for i = 1,--,k. Now we want to prove that Y(c,) and Y(c,) are disjoint
when s # t. Suppose the contrary holds, and let z € Y(c,) N Y(e;) with
s # t. Then there must exist a € E(c,) and b € E(c;) such that a < z
and b € z. The condition < ¢,,¢; >< j—d, — 1 results in < a,b ><<
Csy, € >K j — dy — 1, which leads to

i—-1 =2 w(z) > w(a)+wb)-<ab>
> 2(j-dy)—-(j—-2d,—1)=3+1.

This is again a contradiction. Therefore, Y(c,) N Y(c;) = @ when s # .
Thus, the required result is obtained

k k
| U E(e) =31 E(e) |

i=1 =1

k k =1
= Y IVe) =l UVe) s X A

=] f==1 i=j~dg

?gu
PN
S,
e
|

]

Theorem 6.11 corresponds to the case ¥ = 1 in Theorem 6.12. The
following corollary is the corresponding generalization of Corollary 6.6.

Corollary 6.7 Under the same hypotheses as in Theorem 6.12, let S; de-
note the support of ¢; (i=1,--+,k) and let m =| Sy UJ---USk |- Then

. i-1
k(d? )—A(m,zda,j—d.,)g Y A

t=j—da+1

In particular when d, = 2,

d

o S,

) - A(ma47j —'2) < Aj~l°
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Theorem 6.13 Let C be a nontrivial UWP C,(n,d,) code with 0 € C.

Then
i jAda—1 k
( .)A,.s ( > ( )A) Al — 5,2d0yi — 5)
J k=d, 7

fori=d,+1,---,n—d, (mdj-l I

Proof: Since 0 € C, %7 4; = 0. Also, from Corollary 6.3, it follows
that Ag, = n/d,. Let ¢ be a codeword of weight i ford, +1 <: < n —d,,
and let e < ¢ be a possibly received word of weight j for 1 < j < i —4d,.
From the assumption on C, it follows that the word e must be covered by
at least one of the codewords of weight k where j <k < j+d, — 1.

Given the codeword ¢, there are (ﬁ) choices for the word e. On the other
hand, the number of words of weight j covered by a codeword of weight
k equals (k) for k = j,---,j+d, — 1. In C, there are A; codewords of
weight Ifor l=1,3,7 +1 .3+ d; — 1, and every such a j-tuple e from n
coordinates can sxmultaneously occur in no more than A(n — j,2d,,i ~ j)
codewords of weight ¢. This gives us the desired estimate

i V j+da—1 k
(J)A:S Z (j)Ak A(n_])zda)z_.?)
k=da

fori=d,+1,---,n—d;and j=1,---,i—d,. O
Example 6.9 Take i =d, + 1 and j = 1 in Theorem 6.13. Then

(da -+ I)Ad¢+l S da X Ada X A(n - 1,2da,da)
= d; x & x A(n —1,2d,,d,)

nA(n —1,2d,,d,) = n | 22|,

that is

n n-—1
tar < 755 ]

This is the well known expression for constant weight codes.

Corollary 6.8 Let C be a nontrivial UWP C,(n,2) code with 0 € C.
Then

( ; ) Ai < (A4 + G+ DA A - 5,40~ 7)

fori=3,---.n—-2andj=1,---,1 - 2.
Proof: Apply Theorem 6.13 with d, = 2. 0

A similar argument as stated in the proof of Theorem 6.13 can be applied
to verify the following claim (the proof is omitted here).
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Theorem 6.14 Let C be a nontrivial UW P Cy(n,d,) code withn = gd,+r
(0 <r<d,). Then

(Do) E () o) s

fori=dy+1,--,n—dsandj=1,-,i—d,.

6.5 Some constructions of UWP Cy(n,?2)
codes

In this section attention will be given to the constructions of UW P C,(n,2)
codes. For later use, we need

Theorem 6.15 Let C be a nontrivial UW P C,(n,2) code with weight dis-
tribution Ag, A1+, An, and let j = maz{i | A; # 0,i = 2,--- )n — 2}.
Then A; > 1 for2 €1 <5,

Proof: Evidently, the set {1 | A; # 0,i = 2,---,n — 2} is not empty
and j > 2. Moreover, in A;, As, -+, A;, any two consecutive numbers,
A; and Ay (¢ = 1,---,7 — 1), cannot be equal to zero simultaneously.
Indeed, suppose the contrary holds, then a possibly received word of weight
1 would exist. This word can be obtained from a codeword of weight j by
introducing j — ¢ (> 2) l-errors, and it does not belong to Ueec Sa(c, 1).
This contradicts the assumption that C is a UW P code.

Next, we prove that among the numbers A, - -+, A;, none is zero. From
Theorem 6.9, it follows that A; > 1. Suppose there is an index s with
3 < s <€ j—1such that A, = 0. Then both A,.; and Ay are not equal
to zero due to the previous argument. Let ¢ be a codeword of weight s + 1.
All the possibly received words that can be obtained from ¢ by introducing
two 1-errors make up the set By = {x € Vy |w(x) =s-1 A x < ¢},
which has cardinality (:ﬁ) = (8;1). Since the minimum distance of C is
2, the words in Ey cannot all be codewords of weight s — 1. So at least
one vector of Eg will exist that is not in the set Uqec Sa(c,1). This is not

possible. Hence, 4; > 1for 2 <: <. O

Theorem 6.16 Let C be a nontrivial UW P C,(n,2) code with even length.
Then the number of codewords of weight 3 of C, i.e. As, is less than or
equal to (n® — 2n)/6.

Proof: From Theorem 2.1, it follows that A, + A3 < A(n + 1,24,,3).
However, it is known that A(n+1,2d,,3) < n(n+1)/6 (see e.g. [5]). From
Corollary 6.3 it follows that A, = n/2, and therefore, A3 < n(n +1)/6 —
n/2 = (n? — 2n)/6. O
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1t is known that A(n + 1,2d,,3) < n(n + 1)/6 with equality if and only
if a Steiner system S(2,3,n + 1) exists (cf. [5]). When n +1 =1 (mod 6)
or n+1 =3 (mod 6), Steiner triple systems S(2,3,n + 1) do exist [43].
Therefore, if N is the b x (n+1) incidence matrix of a Steiner triple system
S(2,3,n + 1) where b represents the number of blocks in such a system,
then deleting one of the columns of N leads to an UWP C3(n,2) code if
the all-zero vector 0 is added. For the case n = 4 (mod 6), we show

Theorem 6.17 Let C be a nontrivial UWP Cy(n,2) code with n > 4 and
n =4 (mod 6). Then A3 < (n® —2n — 8)/6.

Proof: From Corollary 6.3, it follows that 0 € C and A; = n/2. Without
loss of generality, let {1,2}, {3,4}, {5,6}, {7,8}, -+, {n — 1,n} be the
(supports of the) codewords of weight 2, and assume that n = 6k + 4
(k > 1). In [30], it was shown that the size of a maximal (n,3) system is
(n? — 2n — 2)/6, and for such a system, up to permutation, 3k + 3 pairs
{1,2}, {1,3}, {1,4}, {5,6}, {7,8}, - -+, {n—1,n} do not occur in any triple,
while every other pair appears exactly once. Hence, the triple looking like
{3,4,a} will occur once for a certain a € {2,---,n}. Deleting this triple
from such a maximal (n, 3) system, one gets that A3 < (r?—2n—2)/6—1 =
(n? — 2n — 8)/6. O

Corollary 6.9 Let C be a nontriviel UWP C,(n,2) code. Ifn >4, n=4
(mod 6), and if C contains the (n® — 2n — 8)/6 codewords of weight 8
described in the proof of Theorem 6.17, then no codeword of C of weight ¢
(i > 4) can cover any of the four pairs {1,3}, {1,4}, {3,a} end {4,a}.

Theorem 6.18 Let C be a nontriviel UWP C,(n,2) code withn =0 or 2
(mod 6). If As = (n® —2n)/6, then Ay < n(n?® — 5n + 6)/24.

Proof: Hanani [27] showed that Steiner quadruple systems S(3,4,n +2)
exist for n + 2 = 2 or 4 (mod 6). For such systems, the number of blocks
(quadruples) equals b = n{n + 1)(n + 2)/24. Also, Theorem 2.1 shows that
A+ As+As £ A(n+2,2d,,4). With the same argument as in Theorem 6.16
the assertion follows. o

Remark 6.1 Theorem 6.18 also provides a construction for UW P C,(n, 2)
codes. Using the same notation as in Theorem 6.18, let A be the bx (n+2)
incidence matrix of a Steiner quadruple system S(3,4,n + 2). Then, every
column of A will contain exactly r ones, where r equals n(n+1)/6. Without
loss of generality, we may take the matrix A such that the first r rows of A
all start with 1 and the remaining b — r rows all begin with 0. If we delete
the first column of A, then the first » rows will form the incidence matrix of
a Steiner triple system S(2,3,n+1) and the inner product between any two
distinet columns of A is equal to n/2. Therefore, we may further assume
that A looks like Figure 6.1, in which A;; contains n/2 disjoint pairs and Ao
contains (n? —2n)/6 triples for which every pair from the set {1,---,m—2}
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occurs exactly once, except for those in Aj;. The number of words in Agg
equals b—r—(n*—2n)/6. So Ago yields n(n?—5n+6)/24 words of weight 4.
Clearly, the words in these three submatrices (A1, Ao1 and Agp) together
with 0 form a UW P C,(n,2) code of size 1 + n(n? —n + 10)/24.

11

: Ay, rowweight=2
111

110

i | | Ag, rowweight=3
1

01

: Aoy, rowweight=3
01

0

: | ¢ | Ago, rowweight=4
010

Figure 6.1: Illustration figure for Remark 6.1.

A construction of a UWP C,(8,2) code of size 23. By wusing Theo-
rem 6.18, we get a nontrivial UW P code, denoted by Cs, of length 8 and
size 23 that can correct a single error. The code consists of the words listed
in (5.5), (5.6) and in the first column of (5.8). It is easy to compute that

HROR

4
(g)—A3=482A4(3)=40.

Therefore, there exist eight triples which do not occur in the code Cs. They
are

and

{1) 3? 8}, {1,4? 6}’ {]‘? 5? ?}5 {2) 375}7
{2,4,7},{2,6,8},{3,6,7},{4,5,8}.
It can be shown that any of the words of weight 5 at distance 2 to all the
codewords of Cs must cover one of the triples in (6.11). This shows that

none of the words of weight 5 can be added to the code Cg, further, none of
weight greater than 5 can be added to Cs either according to Theorem 6.15.

A construction of a UW P C,(7,2) code of size 11. Of course, taking all .
the codewords starting with 1 in Cs mentioned previously, and then deleting

(6.11)
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all the first coordinates, results in a UWP C,(7,2) code of size 9. It
can be proved that no other word can be added then. Nevertheless, a
UW P (C,(7,2) code Cy of size 11 can be obtained by using the construction
method indicated in the proof of Theorem 6.10. This code is

Cr = {(0,1)} U {(c,0)[c#£0Ac€C}

where C is the UW P C,(6,2) code of maximum size given in Example 6.3.

A construction of a UW P C,(10,2) code of size 30. Below, we will con-
struct a nontrivial UW P code of length 10 and size 30 for correcting single
errors. Best [3] found that there are exactly 11 optimal non-isomorphic bi-
nary constant weight codes containing 35 words of length 11, weight 4 and
minimum Hamming distance 4. These 11 non-isomorphic codes determine
35 x 11 matrices. In [17], it was shown that only three sets consisting of
five disjoint words of weight 2, twelve words of weight 3 and twenty-three
words of weight 4 can be found by deleting one column from those eleven
matrices, and furthermore the three sets are all equivalent. In other words,
if a C,(10,2) code satisfies Ay + A3+ A4 = 40, then these 40 codewords are
determined uniquely. Without loss of generality, they look like

weight=2: {1,5},{2,7}, {3,9}, {4, 8}, {6,10};

Weight:& {1341 10}, {1’ 6, 7}1 {118a9}3 {23336}1 {2)5,9}1 {2?83 10}7
{3,5,10},43,7,8}, {4,5, 7},{4,6,9}, {5,6,8}, {7,9,10};

weight=4: {1,2,3,7},{1,2,4,9},{1,2,5,10},{1,3,4,6},{1,3,5,8},
{1)359710}) {1349 7) 8}7 {1) 5) ?3 g}’ {1) 6’ 87 10}?{2)354)5}3
{2,3,8,9}, {2,4,6,8},{2,4,7,10},{2,5,6,7}, {2,6,9,10},
{3,4,7,9},{3,4,8,10},{3,5,6,9}, {3,6, 7,10}, {4,5,6,10},
{4,5,8,9,{5,7,8,10},{6,7,8,9}.

Since

A3+(3)A3=5+3x12=41 and (120)=45,

only four pairs do not occur in the codewords of weight 2 and weight 3.
They are {1,2}, {1,3}, {2,4} and {3,4}. According to Corollary 6.9, the
above eleven quadruples which are underlined have to be erased. Therefore,
the remaining words plus the all-zero vector form a UW P C,(10,2) code
of size 30. We denote it by Cie.

Now, we show that Ag = 0 for Cjo. Assume that Ag # 0. From Theo-
rem 6.15 and Corollary 6.6, it follows that As # 0 and A5 > (i) —A(6,4,4) =

15 = 3 = 12. This results in A5 = 12 because 12(;):(1;)2 120. It implies
that every triple from the set {1,---,10} occurs exactly once in one of the
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codewords of weight 5, which contradicts the construction of Cis. Hence,
Ag must be zero. Furthermore, one can also prove that As equals 0 for Cyg
by checking all the possibilities. Therefore, from Theorem 6.15, it follows
that any word of weight greater than 4 cannot be added to the code Ci,.

From the binary Hamming codes, a class of nontrivial UW P C,(n,2)
codes can be derived. This is described by the following theorems.

Theorem 6.19 Let H, (r > 2) denote a binary Hamming code of length
n=2"—1,ie, H, isa[2"—1,2" —1—r,3] code. Let C be the union of
the following three types of words

1. The all-zero vector of length n — 1 =27 — 2;

2. All the words obtained by deleting the first coordinate from each of
the codewords of H, of weight 3;

3. All the words obtained by taking all the codewords of weight { in H,
which begin with 0, and then by omiltting the first coordinate from
each of them.

Then C is a UW P C,(n—1,2) code of cardinality (n® —4n?+15n+12)/24.

Proof: For r = 2 the statement is trivial. So suppose that r > 3. Let
W; (: =0,1,-+-,n) be the coefficients of weight enumerator of H,. Since
2" =2or 4 (mod 6), 2" —1 =1 or 3 (mod 6). Thus, Steiner triple systems
5(2,3,2" — 1) will exist for all r > 3 [43]. On the other hand, the weight
distribution of H, satisfies the following recurrence [49]: Wy =1, W) = 0,
and

:

(‘“‘.’1)m+1=(?)-m—(n_i+1)m_l. (6.12)

Therefore, W3 and W; are related to each other by the following equalities

(3)m=(3) = (3)m=(3)-m

They express that every pair involving 1,---,n — 1 or n appears exactly
once in the codewords of weight 3, while, every triple from the set {1,--- ,n}
occurs exactly once, either in a codeword of weight 3 or in a codeword of
weight 4. Thus, all the codewords of weight 3 form a Steiner triple system
S(2,3,n) with W3 blocks, and all the codewords of weight 4 present a 2-
design containing W, blocks. Let M; and M, represent the W3 x n and
W, x n incidence matrices of those two designs respectively. Then every
column of M contains exactly 3Ws/n = (n —1)/2 ones, and every column
of M, exactly 4Wy/n = (n — 1)(n — 3)/6 ones. So the assertion follows the
statements described in Remark 6.1, i.e., C is a UWP C,(n — 1,2) code
with size
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—1)n— 3 _ dn? 4 15n + 12
1+W3+(W4—(n l)ﬁ(n 3))=n n;—45n+ .

This completes the proof. ]

Let the codewords in H, of weight i form the W; x n matrix M; (3 <
i < n—3). Since the automorphism group of H, is doubly-transitive, it
follows that all the codewords of weight 7 in a binary Hamming code, form a
2-design with W; blocks. From the point of view of Theorem 6.19, the code
C constructed in Example 6.3 in Section 6.1 is just a simple example of
Theorem 6.19 using the binary {7,4,3] Hamming code. For the UW P code
established in Theorem 6.19, we naturally want to know whether any other
words can be added to it in order to enlarge its size. The next theorem will
provide the answer to that question. Due to Example 6.3, the proof only
needs to be given for the case r > 4.

Theorem 6.20 Let the hypotheses of Theorem 6.19 apply. If n = 15 (i.e.
r = 4), then no word of weight greater than 4 can be added to C. Ifn > 31
(viz. r > 5), then the number of words of weight 5 that can be added to
C, while keeping the enlarged code uniformly weakly perfect, is equal to
(n—1)(n —3)(n — T)(n — 15)/120.

Proof: Let W; (i = 0,---,n) be defined as before. Since there are exactly
(n — 1)/2 codewords of weight 3 which start with 1 and since they come
from a Steiner triple system S(2,3,n), without loss of generality, those
words may look as follows:

{1,2,3},{1,4,5},---,{1,n — 1,n}. (6.13)

On the other hand, by (6.12) the number of the codewords in H, of weight
4 starting with 1 equals r4 = (n — 1}{(n — 3)/6, and the number of the
codewords of weight 5 starting with 1 is r5 = 5Ws/n = (n — 1)(n — 3)(n —
7)/24. The construction of C implies that it contains Wy — ry = (n —
1)(n — 3)(n — 4)/24 words originating from the codewords of H, of weight
4 starting with 0 by deleting the first coordinates. Also, W5 — rs = (n —
1)(n—=3)(n—>5)(n—="T)/(5x24) gives the number of the codewords of weight
5 beginning with 0 in H,. These are the words that have to be checked
to see if some of them can be added to C or not after erasing the first
coordinate from each.

Let ¢ be a codeword of H, of weight 4 beginning with 1. Since H, is
a linear code with minimum Hamming distance 3, (n — 7)/2 codewords
of weight 5 starting with 0 can be obtained by adding ¢ to each of the
(n —1)/2 codewords of weight 3 in (6.13). In other words, every codeword
of weight 4 starting with 1 corresponds to exactly (n — 7)/2 codewords of
weight 5 starting with 0. This leads to
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Wy —rs (n—=1)(n—=3)(n—-5)(n—-"7)/(5x24)

> ra(n—1)/2 = (n — 1)(n — 3)(n — 7)/12.

Subtracting the right-hand side from the left-hand side in the above in-
equality results in the difference

(n—=1)(n=3)(n— T)(n —15)
‘ 120

When n = 15 (r = 4), one gets D = 0, which shows that no other words
of weight 5 can be added to C. Therefore, in this case, the size of code C
cannot be enlarged anymore according to Theorem 6.15. However, when
n > 31 (i.e. » 2 5), D is a positive integer, and these D codewords of
weight 5 satisfy the property that each triple occurring in them can be
covered by exactly one of the codewords of weight 4 in C. That is to say,
if we add those D words to C, then any possibly received word of weight 3
obtained from them by introducing two l-errors will be covered exactly by
one of the codewords of C of weight 4. This completes the proof. O

D= > 0. (6.14)

Remark 6.2 The results stated in Theorem 6.20 can also be interpreted
geometrically. Since all the nonzero points in a projective geometry PG(r—
1,2) form the columns of the parity check matrix of the Hamming code
H,, each line in PG(r — 1,2) corresponds to precisely one codeword of
H, of weight 3. Let & = {1,2,---,2" — 1} be the non-zero point set
of PG(r — 1,2). Each point corresponds to a binary vector of length .
Without loss of generality, we may regard {2 as the parity check matrix
of H, in the same order. Let @ = {p1, p2,Ps,ps,ps} be a subset of 0 for
which p; # 1 (i = 1,--+,5) and ¥5, p; = 0. Apparently, Q corresponds
to a codeword of H, of weight 5 starting with 0. Suppose that there are
two points p, and p; in @ such that p, + p; = 1. Then the remaining three
points (or a triple) of ) must be covered by a codeword of H, of weight 4
starting with 1. Hence, finding the number of codewords of weight 5 which
can be added in the code C in Theorem 6.19 is equivalent to finding the
number of five-point sets as () such that any line through a pair of points
of @ does not pass through the point 1. The solution to this problem can
be found in the next theorem, the proof of which is given at the end of this
section.

Theorem 6.21 Let P be a PG(r — 1,2) with nonzero point set Q =
{1,2,--+,2" — 1} (each point can be regarded as a binary vector of length
r) and r > 4. Also let Q = {p1,p2,p3,Pa,ps} C Q with the properties:

1. Pi-’;épj fOTZ.#j andi\)j:l’"'a5;
2.pi#1l fori=1,---,5
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8. 3, pi = 0 (when the five points are represented by binary vectors of
length r);

4. Any line through two distinct points from @ does not pass through the
point 1.

Then the number of five-point sets defined above as Q equals

(27 —16)(2" — 2)(2" — 4)(2" — 8)

(24— 1)(20 —2)(2t - 4)(2* - 8) 168. (6.15)

This number is equal to the number D in (6.14).

Finding words of weight 6 which can be added to C defined in Theo-
rem 6.19 becomes more difficult. Here we just give an upper bound on the
number of such words.

Theorem 6.22 Let the hypotheses of Theorem 6.19 apply. Also, let C
contain D codewords of weight 5 as defined in (6.14). Then the number of
words of weight 6, indicated by D', which can be added to C while keeping
C uniformly weakly perfect, is bounded by

D' < |(n —4)/2)D/15.

Proof: From Theorems 6.15 and 6.19, it follows that D’ must be zero
when n = 15. For n > 31, we only need to consider the codewords of H, of
weight 6 beginning with 0. Since the number of codewords of H, of weight
6 starting with 1 equals rg = (6Ws)/n, the number of codewords of H, of
weight 6 starting with 0is Wg—re. Let F consist of those Wg—rg words, and
let a be a word of F' that can be added to C while keeping C uniformly
weakly perfect. Then, any quadruple obtained from a by introducing 2
l-errors cannot be a codeword of C of weight 4, since the code H, has
the minimum Hamming distance 3. Therefore, such quadruple must be
covered by exactly one of the codewords of C of weight 5. The number of
quadruples chosen from a word of F'is (i)= 15. In addition, each quadruple
can simultaneously occur in no more than A(n—4,4,2) = |{(n—4)/2| words
of F. This gives us the following estimate

(i)p’ <D x |(n—4)/2).

Hence, the statement follows. 0

Table 6.1 shows the sizes of the nontrivial UW P C,(n,2) codes which
are constructed in this chapter with length n in the region 1 < n < 15.
The entries are marked as follows:

a) Examples 6.3 and 6.4 shown in Section 6.1.
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b) Code being able to be constructed by using Theorem 6.10.
c¢) Code being able to be constructed by using Theorem 6.18;
d) Code obtained by taking r = 4 in Theorem 6.19.

e) Code constructed in Section 6.5.

f) Trivial.

Us(n,2) || n | Up(n,2)
27 9 23°
2f 10 30¢
3/ 11 30
52 12 72¢
11@ 13 72b
11° 14| 1134
23¢ 15| 113°

O -3 O O s L Ol 3

Table 6.1: Lower bounds on U,(n,2) for 1 <n < 15.

The proof of Theorem 6.21. It will be presented in three steps corre-
sponding to the cases r =4, r =5 and r > 6.

(a) If r = 4, then P is a projective geometry PG(3,2) with as point set
the binary expressions of the elements of = {1,---,15}. Without loss of
generality, we may regard ) as the parity check matrix of H, in the same
order. Suppose that B is a five-point set which satisfies the conditions 1),
2) and 3) of the set @ defined in Theorem 6.21. Clearly, B corresponds to
a codeword of H4 of weight 5 starting with 0. It is obvious that any three
points of B cannot be on one line, otherwise the remaining two points of
B would be the same, which is not possible. Hence, the five points of B
determine ten different lines in P. Each of these lines must pass through
exactly one of the points of the set B = 2\ B. However, no pair of these
lines has a point of B in common since none of points in B is zero. That
is to say, there must be two points of B which, when joined, form a line
incident with the point 1. Thus, the number of five-point sets defined as Q
equals zero. So the assertion is true for the case r = 4.

(b) If r = 5, then P is a projective geometry P(G(4,2) with 31 nonzero
points. So P has 31 different hyperplanes which are all PG(3,2). Each
hyperplane contains 15 nonzero points. Each nonzero point of P must be
contained in exactly 15 hyperplanes. Specifically, the point 1 is contained in
15 hyperplanes. As observed in case (a) previously, in those 15 hyperplanes
containing the point 1, no such a five-point set () as defined in the theorem
exists. Therefore, we only need to consider the remaining (31 — 15) =
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16 hyperplanes which don’t include the point 1. Since in a hyperplane
PG(3,2), there are 168 different five-point sets which satisfy the condition
1) and 3) in the theorem (using (6.12)), the number of five-point sets as @
is equal to 16 x 168 which is in accordance with (6.15).

(c) When r > 6, the number of PG(3,2)’s contained in PG(r —1,2) (see
Appendix B of [36]) is
(27 =1)(2r -2)(2r — 4)(2" - 8)
F D -2 - )@ —8)

X =

Let A be a hyperplane PG(r — 2,2) which does not contain the point 1,
and let B be a PG(3,2) which contains the point 1. We want to show that
the intersection of A and B is a projective plane of order 2, i.e., PG(2,2).
Since

dim(A) + dim(B) = d&im(A+ B) + dim(ANB)
and since the whole space PG(r — 1,2) has dimension r, we find that
4 = dim(B) 2 dim(ANB) = dim(A) + dim(B) — dim(A + B)
= r—1+4—dim(A+B)>r—1+4—r=3

If dim(ANB) =4, then B C A. This contradicts the assumptions of A and
B. Hence, dim(ANB) =3. Thus, ANBis a PG(2,2). In PG(r — 1,2),
the number of PG(3,2)’s containing the point 1 is equal to the number of
PG(2,2)’s in a hyperplane PG(r — 2,2) which does not contain the point
1. The later number equals

y o @7 DET - pE -4
(23 —1)(23 - 2)(2% - 4)
Therefore, the number of five-point sets as defined in the theorem is

(2 — 16)(2" — 2)(2" — 4)(2" - 8)
(24— 1)(2* — 2)(2% — 4)(2* — 8)

168(X — Y) = 168

which equals the number D in (6.14) after replacing 2" — 1 with n.
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Appendix A

Tables of bounds on Ag(n,d)

Five tables are presented in this appendix. Tables A.1, A.2 and A.4 give the
previously known lower and upper bounds on maximum sizes of asymmet-
ric/unidirectional error-correcting codes for length < 23 and error correct-
ing capability < 4. They are summarized here for the sake of completeness.
Tables A.3 and A.5 extend Tables A.1, A.2 and A .4 to code lengths up to 27
and error correcting capabilities up to 8, making use of the results obtained
in Chapters 3 and 4. All the lower bounds are constructive. All bounds,
except the upper bounds in Table A.3, have been indexed by letters, ex-
plained below. All the bounds which can be derived from Theorems 2.4,
2.5 or 2.6 are presented without index. All the upper bounds in Table A.3
follow from the results shown in Chapter 3. They are new and unmarked.
Since Ap(n,3) = Au(n,3) for n 2> 1, the bounds on A,(n,3) have not been
included here, but they can be found in [36] and [5].

Lower bounds:

a: Codes mentioned or obtained by Weber et al. [59] and [60].
b: Codes obtained by Saitoh et al. [45].

c: Codes obtained by Etzion [14].

Codes obtained by Delsarte and Piret [12].

Codes obtained in Section 3.1.

Codes obtained in Section 3.2.

> RS <

Codes obtained in Section 3.3.
Codes obtained in Section 3.4.
j: Codes obtained in Chapter 4.
v: Codes obtained by Honkala [29].

[
e
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z: Codes obtained by Etzion [15].
Upper bounds:

k: Ap(n,2t +1) < Au(n, 2t +1) < As(n,t+ 1) for 1 <t < n. (see (1.2)
in Section 1.2). For example, from Table II of [5], we can find 4096 <
An(23,7). So 4096 < A.(23,4) (t=3). Also, from Table A.3 of this
dissertation, we can find A,(18,6) = 12, this leads to A,(18,11) < 12

I:

mi

o

q: Delsarte and Piret [12], by integer linear programming.

I

8

(t=5).
Section 3.5.

Van Lint et al. [50].
: Weber et al. [58], [59] or [60], by asymmetric/unidirectional integer

linear programming and combinatorial arguments.

: from Section 3.4.

: from Chapter 4.

n d=2 d=3

4 4 2

5 261 2

6 ®12¢ 4

7 €18¢ 4

8 €369 €79

9 Q2P €12¢

10 2111 — 115 £18¢

11 €180 — 2107 €30 — 32¢

12 €336 — 4107 254 — 637

13 652 — 7867 €98 - 1144
14 €1228 — 1500¢ ©186 — 218¢
15 €2240 — 28287 2266 — 398¢
16 “4280 — 54307 €386 — 7397
17 ©8280 — 10374* °738 — 12799
18  ©15762 — 19898 €1347 — 23807
19 ©29236 - 380087 °2404 — 42427
20 °56144 — 731747 £3650 — 80697
21 €107212 — 140798 <5834 — 143747
22 ©198336 — 2719537 <8616 — 266797
23 ©353512 — 5235867 °16450 — 502007

Table A.1: Bounds on A,(n,d) for 4 <n <23 and d = 2,3.
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n d=14 d=>5
4 2 1
5 2 2
6 2 2
7 2 2
8 4 2
9 4 2
10 i 4
11 e84 4
12 €124 e44
13 418 a6e
14 %30 — 32™ a8
15 344 - 507 a12¢
16 °72 - 90P a16P
17 °130 — 1687 3267

18  °238 — 3207 40 — 447
19  °458 — 6167  °54 — 74P
20 °860 — 11447 <71 — 128"
21 °1628 — 21347 104 — 228"
22 23072 — 41167 ‘163 — 4237
23 %4096 — 73467 243 — 7547

Table A.2: Bounds on A,(n,d) for 4 <n <23 and d =4,5.
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n d=6 d=7 d=8 d=9
8 2 2 2 1
9 2 2 2 2
10 2 2 2 2
11 2 2 2 2
12 4 2 2 2
13 4 2 2 2
14 bfg 4 2 2
15 big 4 2 2
16 bi7 by 4 2
17 b.fg b94 hy 2
18 512 bag hg 4
19 i16 be hy hy

20 f22-23 bag hg hg
21  /32-34 912 kg hy
22  148-60 b914 kg hg
23  766-110  *19-20 vg kg
24 191-210  927-30 k12 h7
25 7124-380  940-46 *13-14 8
26 f173-721  958-80 *18-19 %9
27 7249-1350 980-144 *23-26 12

Table A.3: Bounds on A,(n,d) for 8 <n <27 and 6 <d < 9.
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n d=5 d=17 d=9

4 2 1 1

5 2 2 1

6 2 2 2

7 agp 2 2

8 agp a4p 2

9 a10? a4p 2

10 a16 — 18* a4p 2

11 396 — 32k a7p a4p

12 352 — 617 a1QP agk

13 992 — 114* °16 — 18% agh

14 2184 —218* 504 — 32k agk

15 9256 — 3407 542 — 50% 310 — 12F
16 ©384 — 6807 562 — 90F €14 — 16*

17 °736 — 12777 °114 — 168  ©24 — 26*
18 ©1344 — 23747 ©201 — 320  °37 — 44*
19 <2080 — 40967 %376 — 616  °51 — 74*
20 °3423 — 69427 9737 — 1142  °69 — 133*
21 4672 — 13774  *1474 — 2134%  °102 — 229%
22 °8544 — 24106 °2588 — 41147 °154 — 423
23 *16384 — 482127 %4096 — 7346F 229 — T45*

Table A.4: Bounds on A,(n,d) for 4 <n <23 and d =5,7,9.
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n d=11 d=13 d=15 d=17
8 2 2 1 1
9 2 2 2 1
10 2 2 2 2
11 2 2 2 2
12 2 2 2 2
13 igk 2 2 2
14 bigk 2 2 2
15 bigs 4 2 2
16 igs bigk 2 2
17 gk bigk gk 2
18 510 —12*% 16k igk 2
19 714 — 16* ik igk igk
20 722 — 93k igk i5s gk
21 730 —34F 10— 12F gk 4k
22 46 —60F 713 — 14* irs i4k
23 763 —110F 719 —20F igk igk

24 i86 —210F 27 —30F 10— 12% i6*
25 7119 — 380 739 —46F 713 — 14 igk
2 7167 —721% 58 —80F 18— 19% igk
27 7239 — 1350% 780 — 144% 723 - 26* 10 — 12F

Table A.5: Bounds on A,(n,d) for 8 <n <27 and d =11,13,15,17.
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Appendix B

Some codes mentioned in
Chapters 3 and 4

B.1 Codes mentioned in Section 3.1

C1s consists of the following codewords:

00000, 7E000, 01F80, 4107C, 30C63, 0C31B, 2AAD4, 165AC, 79D18, 75287,
6E762, 1BOFB, 64CFD, 5FBCC, 33F37, 7TFFFF.

The 39 other codewords for Cay:

773FEB, BODDF7, 5DEB5F, AEF3BB, CTF4DD, DBFF21, DC1EBF, E35B7E,
FAASEE, 7D753A, 7FA2B5, BDB9C9, BF6E46, C5AFF2, 28FEFC, 33CF9B,
0F976F, 1679F7, 06F460, 1187A4, 124B58, 2C00FC, 4429A3, 481653, 4BA814,
715024, 80CCOF, 8D5A80, B8A 142, F60205, 1A9089, 230CC2, 25C111, 812269,
821136, D06490, 08C222, 343800, 40054C.

~ The 64 other codewords for Cys:

0BB5FFD, 1EEFEB3, 07FA3F7, 127FD7E, 1F9F6CE, 19F9E57, 1B773AB,
1D2EFF8, 1ECOFEF, 1FDD9B4, 08FB9F9, 0F3CA9F, 0FD6C73, OFEBF0A,
11EEAEF, 1587B3F, 16F57D2, 1733DCD, 1ABE735, 024EFBB, 02F7A4F,
053977B, 056F9D6, 05F4FA5, 0992FDE, 0BSD3E7, OE5B6D5, 0FA74BC,
13BBAB2, 17DE368, 1B61B7C, 1C79CAE, 1ES8DD59, 0019F26, 006ACTS,
00763A1, 00865D6, 008DACY, 032721A, 03A08A7, 0AEC10C, 0C75842,
0D09195, 0E90278, 171AA80, 1C42613, 015314C, 02D1491, 04BA00B, 05046AC,
05E0B10, 06481E2, 0B06D01, 181C065, 18219A8, 0603834, 0988432, 1030296,
12C6240, 1521441, 001C918, 004122B, 0840CC4, 0E28200.

Cy6 comprises 0, 1 and all the rows of D given in the proof of Theorem 3.12,
as well as the 113 following:

OF7DBF7, 3BB7DDE, 2DCFCTF, 36FD779, 3F726EF, OFFADDY, 15BF1EF,
375FB9A, 3ABFA37 3BCOFAD, 3CE6FF2, OFF7E2A, 13FS8AFE, 1E8377F,
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21F5FC7, 262CFBF, 279F6F4, 287B5FE, 391EF6B, 3BCELD7, 3F65A5D,
0DABABD, 0EDCB4F, 1457FEC, 1736CD7, 17CEF31, 19FF358, 1B5D43F,
1B639EB, 27F213F, 36DBACB, 3DBBD06, 3DEC4EC, 3E1D9F1, 00DF9B7,
037E6E9, 0535B7B, 06E72DE, 0779F94, 078ADEE, 0B9BE53, OEB55AD,
182DEF6, 18F2ESF, 1DC5D9A, 1E3A3BA, 2B147DE, 2BE6B64, 2DD93E2,
2E6F703, 2ECOEF9, 316AD5D, 32B7C78, 32B8767, 33ADSSF, 35436B7,
0005FBA, 007B2A3, 00BCA74, 01639CC, 0189567, 038E2CA, 05B281B,
05E4685, 0628759, 0693CA4, 0A4EC45, OE75016, 19564B0, 1AC190B,
1C28C2E, 1C9614C, 22F05C2, 274C922, 2B19891, 2E07229, 30AA1BS,
3249634, 00D50D9, 040E197, 0450B2D, 09248E3, 093D508, 094065E, 0AA2326,
0CCBAL10, 1331245, 1382D50, 1E091EQ, 2423472, 3088ES3, 354A049, 3864311,
00E6C28, 0C126C1, 1053506, 1368092, 150581C, 1694023, 20180EE, 2191330,
2F88404, 0244174, 04A8942, 11005A9, 1A18A08, 2030C15, 2207882, 004D601,
008229C, 0D42022, 1821050, 2414108.

The 141 other codewords for Cs7:

6F9BBF7, 7BE7ESE, 37F9FCB, 556FAFF, 78DCFBF, 7TEA75FD, 1AEBF77,
1FF59BE, 37DF6B5, 5F5AFDC, 6B7EL7F, 6DBDEEC, 6E77F93, 3ATDAFY,
3DAF5EE, 3DAEEIF, 4DE47F7, 56FACBB, 5BB378F, 5FDF847, 62EFBCE,
670DF7B, 69D3DF9, 17F676C, 1E9DFA3, 2C97B7E, 333BDBC, 33D6BIB,
35B54FB, 366CDD7, 47F92DD, 4E6F63E, 593DF56, 5BSF3F8, 61FEE63,
6BADSB7, 7T8FE4DC, 7C3A3EB, 7D51E2F, 7DEBF80, 7EC2AFS5, 7FD8572,
01AABFF, 02557FF, 057FDOF, 06FF9F0, 0BB7E39, 0ODDCEDA, 174BEE9,
19F95E5, 1C72FB6, 1CE72CF, 1F1EOBF, 1F81D5F, 279B7C6, 2AEB59B,
2B4EF74, 2EF886F, 35ED336, 3F73351, 4B7T9BAA, 4E3EECS5, 51C7CFS6,
58DBB1D, 5D6C979, 67D4DA5, 6D0779D, 6F22CFA, 723785F, 728E72F,
72E1F78, 000A5BF, 0015ACF, 0027F70, 00FB309, 01DS8DEO0, 02F4075,
0338B16, 036E0CA, 03C3626 05B10BA, 0C52C5A, 0D64391, ODAAS45,
14CC346, 1611D91, 183F406, 1AA86DO0, 1B0C839, 1CC78A0, 2ACO90F,
2E92330, 352060F, 3B45540, 4260EA9, 4E09076, 57142E0, 5091215, 64864D4,
650BB80, 716A430, 72B3840, 78181CA, 018D453, 068EE08, 0D4948C, 1478823,
1B221A4, 1C01369, 204CAB4, 211315C, 2136C81, 22A5382, 4055524, 44E1014,
50ACO08D, 5242253, 6E28501, 7880E22, 003866C, 020BSE1, 0616107, 1180B98,
1A71018, 24C0439, 2760A40, 28200D7, 28DE040, 0013692, 09E0502, 0D 10834,
1045C05, 128406A, 142A150, 41500C9, 4826221, 600AS0E, 0288215, 2C04188,
6301420, 0091940,

B.2 Codes mentioned in Sections 3.2
and 3.3

X3, is made from the following fourteen codewords:
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3FFFFF, 0DDFA7, 3E33DD, 15AD7C, 22EAF3, 1B44CF, 04771B, 3FF800,
3CO7E0, 038F06, 0078EC, 324418, 0D2043, 000000.

The 19 other codewords for X!

000000, 0C800F, 4015B0, 017C45, 82CAA2, 992318, 2E1274, T0A0E9, 004FFF,
1EF03B, CF1CES, 75965E, BAAEB4, EBC167, F56999, ADBBAF, 97D7F1,
EA7E5B, FFFFFF.

The 26 other codewords for Xys:

IFFFFFF, 1B9BF3E, 17DDCD3, 0177DAF, 06AB7F9, IAFC3CE, 1D4EBT5,
187BOF3, 14BOF76, 13076DE, OFB6A91, 0F6D722, 0EDBCAC, 0784F0C,
0B4F089, 0CF8921, 104956E, 10928DD, 1124383, 0027C25, 009B382, 0274258,
1F00843, 05084B8, 1844184, 0000000.

The 18 other codewords for Xqs:

3FFFFEF, 0FAAFBF, OE553FF, 237FE3C, 24BFFC3, 13E9DD5, 15EE26F,
19D6DBA, 0065A1E, 009D4C3, 011AB70, 01C01AD, 0E0241B, 1C25160,
3268680, 0253044, 05A8802, 0000000.

The 26 other codewords for Xyy:

0000000, 5005221, 012A684, 0AC8013, 0C04D48, 00138BA, 0167143, 1244894,
1518865, 16A140E, 24D2650, 2989328, 2A344A1, O0CLE7FF, 2AE9D77,
3B7FECO0, 3FB531E, 4FC7CBA, 51E4FCF, 56BBBA3, 7FDSOED, 1773ET7F,
2DEFBAD, 63BF5DB, TAD6BFE6, 7FFFFFF.

Yys consists of the following thirteen codewords:

0000000, 03E0141, 10158A8, 043A272, 0703COF, 00F8F8C, 18C407F, 1FFF000,
1F00FF0, 1C333CF, 1FESE2F, 18DFDFS, IFFFFFF.

Y7 comprises the following 23 codewords:

IFFFFFF, 3FEDD2E, 6A96EFE, 55F0B7D, 716FE93, 1EDB6A5, 2F355D9,
18DF95A, 072EBE6, 386466F, 4D88C9F, 7313137, 7FFC000, 7CO03FCO,
03E3E38, 00BY5E3, 045639D, 1705848, 2918A74, 18E2886, 0A0E528, 6041613,

0060000.

B.3 Codes mentioned in Section 3.4

The 60 other codewords for Zs;:

001834, 110209, 02A051, 085340, 0C20A8, 120186, 00056D, 000ADA, 00B684,
013903, 01C1B0, 064223, 0AC80C, 0D8442, 161418, 007D6B, 00FAD6, 04B5B5,
0BO3EB, 0D607D, OFAD60, 15ACOF, 1607D6, 1AD607, 1F5AC0, 01DTEC,
02CD9F, 033E75, 052BBE, 06F23B, 0B74DA, 0C9B4F, 12BFA2, 13EB49,
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17C876, 191F99, 1A63B5, 1ES84ED, 05E7D3, 0759F9, 09FSAF, 0CBEFS,
0E676E, 1392DF, 145EB7, 18AD77, 1DF31C, 1F3587, 07BD5E, 0AFFCS,
0BCE7B, 17EEAC, 197BF2, 1E68DF, 1ED5BA, 0377BF, 1DFAF5, 1F3F69,
1F8BB7, 14FBTF.

The 98 other codewords for Zy,:

004630, 028109, 181082, 002D06, 0504C1, 209064, 344808, 0422AC, 095A04,
0C8930, 12F400, 130078, 224093, 382141, 0B61A0, 141A13, 144564, 18861C,
251129, 25E014, 2988C2, 2E1450, 330702, 006CD8, 00B34A, 0114B6, 01AE21,
020BC5, 02C82E, 007715, 04F0A3, 06C259, 090373, 1285B1, 133289, 18498B,
1D9045, 20989D, 21444F, 2E2807, 325861, 096AEB, 0D9B36, 0EA6A7, 13533B,
14D4CF, 1A99D5, 1B366C, 24B575, 26CD9A, 2A6753, 2BA92D, 2D5DA49,
3525AB, 01F7E6, 03BD5B, 06CB6F, 075DB5, 0DB2DD, 0EL7FA, OF6ELE,
103EBF, 1AF9AA, 1DC1F3, 1E7A71, 33978D, 34BBC3, 355AEC, 36E6D4,
386DES5, 3974DA, 3E9C2E, 0BE7B9, 136BD7, 1B9EE3, 1CF717, 1D396F,
1FCDCC, 227F7C, 25D67B, 27ALFE, 288FDF, 2FF893, 37EF22, 0CFCFE,
9DEB75, 2F37C7, 32F5F3, 373BB9, 39D3BE, 3AFACD, 3B4C7F, 179F7E,
1E6FEB, 35EE9F, 3FF52D, FF2F7, 2BFFDA.

The 145 other codewords for Z,s:

3FFC3F, AFEFDD, 1BD7FB, 677B7B, T3EEF6, 79BF4F, 7C65FF, TEDBBS5,
IEAAFF, 24FFE7, 3ATFDC, 4D9FBE, 5FFD61, 67BAFD, 6BE3AF, 7F5657,
IE5DAF, 357CFA, 3B2F73, 3DB39B, 3FC57C, 3FEES5, 4BFB56, 4D7AED,
53ADYF, 55C3F7, 57376E, 62DESF, 6E9DD3, 7B9BES, 0177BF, 07ECT7,
0BOECF, OEF1DD, OF4BFA, 17DF19, 18FF6A, 1DB6F4, 27BIAE, 2E3EBY,
32A7ED, 356B4F, 36DADS6, 39CSBF, 595DD5, 5AF693, 5B6E3C, 5CB937,
61BAF3, 64BF5C, 67E7C2, 6B117F, 6DF40F, 7771B1, 7TA3CE6, 7C867B,
09AB7D, 16AFB2, 1B65CB, 2C6D97, 2D5F64, 3A971E, 426ADF, 42D5F6,
4FA5AS5, 57586B, 5CD2AE, 61CD5B, 6AFB21, 7356D8, 750EB5, 7D2D2A,
047365, 072C4D, OE6CBO, 11D43A, 1AA6C2, 26C29A, 291D43, 29A435,
308E6C, 30E589, 353486, 429AA6, 543A91, 59611C, 6589B0, 6A4750, 003658,
00AD96, 01538E, 0168E3, 02D0D5, 02EB48, 031939, 0BOA56, 0CCCOB, 0D9690,
0E02AD, 0E9162, 1C49C4, 24453C, 374A01, 3898A1, 3A2113, 518607, 5330C8,
568C50, 506222, 61D260, 6401CB, 663421, 682878, 00C333, 0307C1, 03CC24,
04A4E8, 083F20, 104E98, 15F100, 1700B2, 198059, 1A140E, 245852, 4D1805,
501354, 60620D, 69A082, 728128, 02B803, 203198, 21062A, 244061, 2C8304,
312844, 4004B5, 406542, 465280, 04088E, 0B2410, 141441, 58C800, 007024,
0082D0, 410109.
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Notation

Vi — n-dimentional vector space over GF(2).

|A| — the cardinality of a finite set A.

Nx,y)={i]|zi=1 A y3p=0,0<:<n}|

di(x,y) — the Hamming distance of x and y.

d,(x,y) — the asymmetric distance of x and y.

d,(a,b) — the unidirectional distance of x and y.

w(x) — the weight of x.

w(C) — the weight of the code C.

Ca(n,d) — AsEC codes of length n and asymmetric distance d.
Cu(n,d) — UEC codes of length n and unidirectional distance d.

Ch(n,d) — SyEC codes of length n and Hamming distance d.
Ay(n,d) — the maximum number of codewords of a Cs(n,d) code
(f = a,u,h).
A(n,d,w) — the maximum number of binary vectors of length n,
Hamming distance at least d apart and constant weight w.
cire(x) — n X n circulant with top row x.
supp(x) — the support of x.
|r| — the largest integer not exceeding the real number r.
[r] — the smallest integer not less than the real number r.
[n, k, d] — linear SyEC code of length n, dimention k and Hamming
distance d.

a | b — a divides b exactly ( a, b integers).
- <x,y >= %, z;y; — the inner product of x and y.
Aut(C) — the automorphism group of C.
r(¢) — the minimum asymmetric distance from the codeword c to

all other codewords.
Sa(c,t) — the sphere with radius ¢ and center ¢ for AsEC codes.
Wa(n,d) — the maximum number of codewords in a WP Ca(n,d) code.
U,(n,d) — the maximum number of codewords in a UW P C,(n,d) code.

7(C') — the average error-correcting capability of a Cy(n,d) code C.
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STATEMENTS

“attached to the dissertation

Binary Block Codes for Correcting Asymmetric or

Unidirectional Errors
Gang FANG

March 8, 1993, Eindhoven Universily of Technology

1. In 1942, K. Menger first introduced the concept of probabilistic metric
spaces (for short, PM spaces) in his paper (Statistical metrics, Proc.
Nat. Acad. Sci. USA, 28, pp. 535-537, 1942). The so called probabilistic
metric of two points (say p and ¢) in a nonempty set means that the
distance of p and g does not correspond to a real number (as usual) but
to a distribution function, denoted by Fpe(x). For a given z, Fp(r)
gives the probability that the distance between p and ¢ is less than
z. There is no doubt that the probabilistic metric is more reasonable,
in terms of the standpoint of practical life of human beings, than the
normal metric. In our routine life, an expression providing a certain
uncertainty often does give an accurate concept.

— Fang, G.: Topological structures of PM spaces, Tech. Report,
85-113, Xi’an Jiaotong University, 1985

2. Let (51, F1,7) and (Sa, F3, 7) be two PM spaces where 7 is continuous.
Then the so called M-product space (S; X S3, FyMF,,7)is also a PM
space which satisfies that S) x S; is separable (complete, compact) if
and only if both S, and S are separable (complete, compact).

— Fang, G., Zhang, W. X.: Properties of M-product spaces of
PM spaces, Journal of Xi’an Jiaotong University, 20(4), 87-30,
Aug. 1986

3. A code C is called s-W P code if the equality (6.3) in the dissertation
holds when r(c) is replaced by sg(c) for all ¢ € C, where the number
sg(c) for any ¢ € C is defined in

-~ Fang, G., Honkala, I. S.: On Perfectness of Binary Block
Codes for Correcting Asymmetric Errors, Proc. of IEEE Inter.
Symp. on IT, San Antonio, Tezas, USA, January 1993

Distinctively, the weakly perfect codes defined in the dissertation are
termed as r-W P codes. It can be shown that the class of r-W P codes
is a subset of the class of s-W P codes.



. Theorem 6.6, Theorem 6.8 and Corollary 6.1 in the dissertation are
also true to s-WP codes.

. Let Z(n,s,t) be the maximum number of codewords in a t-AsEC/s-
AsED (s > t) code of length n. Then

Z(n,s,t) > maz{ Y A(n,2t +2,w) | 0<i<s}

w=i

where the sum is taken over all integers w congruent to ¢ modulo
(s + 1). Particularly, the equality holds when ¢t = 0 and ¢ = |n/2].

.Givenj21,m>2j+1,n22m+1and ¢=|j/2|. Then

: 7k .
n—j ZI—IR—}——L‘

k=0 t=0
. Let F be a t-antichain in {0,1}*. For i = 0,1,---t and f € F', define
Efy={xe{0,1}* | |x|=|f| +t - 20 Adn(x,f) < }.

Then for each ¢ with 0 < ¢ < t, Ey(F) = Uger Ei(f) is an antichain,
and
STIEMD)|(If] + ¢ — 20)(n — [f] — t + 2:)! < nl.
feFr
— Zhang, Z., Xia, X. G.: LYM Inequalities for t-antichains,
Submitted to Discrete Mathematics

. In history, Western mathematics entered into China two times. The
first entry started at the end of the 16th century and ended at the
beginning of the 18th century by the feudalistic closed door policy of
Chinese government at that time. This closed door was broken down
by Western guns and cannons in the Opium Wars in 1840 (cf. Chinese
Mathematics: A Concise History, by Li Yan and Du Shiran, translated by
J. N. Crossley and A. W. -C. Lun, Clarendon press, Oxford, 1987). Be-
sides abacus calculation, which has been preserved and is still widely
used today in everyday life in China, all the rest of the ancient math-
ematics of China blended into the stream of the development of world
mathematics. Nowadays the development of science and technology
is extremely rapid, and it is clear that there must be no future for any
country under a closed door policy.

. The Netherlands is an internationally-oriented country because of her
typical circumstances. China had, has and will have a lot of connec-
tions with the Netherlands in economy. However early in this century,
also there was a Dutchman who played an important role on the po-
litical stage of Chinese history.



