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The dlagram on the front page Is drawn from a test for a two dimensional linear system with eigenvalues
1/3 and 1, where the elgenvector components of the solution R are equal and where the (absolute values
of the) elgenvector components of the initlal error yector & - x4 are in the ratlo of 3 to ). Furter-
more, IR = 1 and IR ~ xoll = yg-1. The test s performed using artificial floating point arithmetic
with artificial relative precision j9-2 (see section 1.6). The left-hand part represents the Iterands
computed by the conjugate gradlent method whereas the right-hand part represents the iterands computed
by L?e grad;egt method. The elllpses correspond to the level |ines of the objective function F(x) =

= A (R - x)I}?2 .

The dlagram above is drawn from a test with the same parameter setting but the computations are per-
formed with (almost) exact accuracy (artificial relative preciston y(-10). It shows the step-wise-
linear convergence of the gradient method and the termination after two steps of the conjugate gradlent
method. The front page dlagram Iliustrates the influence of round-off on the numerical behavior of both
methods .

It is my colleague Herman Willemsen who not only performed the tests described above but also did all
the programming and testing needed to obtain the numerical results presented In this theslis. | llke to
express my gratitude for the patlence he showed in working with slowly convergent processes.
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CHAPTER 1
INTRODUCTION

1.1, Introduction and summary

There are two classes of numerical methods for solving linear systems
Ax = b, viz. direct methods and iterative methods. Direct methods
decompose the original matrix A in order to obtain an equivalent
linear system that is easy to solve numerically. Some commonly used
methods arxe Gaussian elimination, OR-decomposition by Householder's
method, modified Gram-Schmidt and Cholesky decomposition. Iterative
methods compute successive approximations of the solution, without
making any changes to the original matrix. Some commonly used iterative
methods are Jacobi-, Richardson-, Gauss-Seidel-, Chebyshev- and Lanczos-
iterations, systematic overrelaxation, alternating direction itera-
tions, gradient method and conjugate gradient method.

A basic distinction between direct and iterative methods is that a
direct method yields the solution £ := A_xb exactly in a finite number
of arithmetical operations {if the latter are performed without round-
off), whereas an iterative method in general produces an infinite
sequence {xi] whose limit is the solution . Each approximation is
cbtained from its predecessor(s) by a finite number of arithmetical
operations. As a conseguence, for a direct method the number of arith-
metical operations is known in advance, whereas for an iterative
method the number of arithmetical opekations depends on the required
accuracy of the computed solution.

Another distinction bétween direct and iterative methods is the dif-
ference in storage requireﬁents. In most direct methods, where all
entries of thé matrix A are stored in a two dimensional array, the
matrices resulting from the decomposition of A can be stored by'overw
writing {parts of) A. Iterative methods can be applied without storing
A explicitly. One énly needs 3 black box for the execution of matrixx

by vector product operations. For fairly small systems this distinction
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is minor., However, for large sparse systems where the matrix A has a
relatively small number of nonzero entries, the decomposition matrices
generated by direct methods generally are less sparse than A and this
may give rise to rather excessive storage requirements. On the other
hand, an iterative method can take full advantage of the sparsity of
A, because in the matrix by vector product operations the zero-entries
can be skipped.

An additional aspect of importance in the discussion of the sclution
of linear systems ig the influence on the computed solution of round-
off, this round-off being due to the floating point computations with
finite relative precision €. As far as direct methods are concerned
Wilkinson [65] proved that most commonly used direct methods are well~
behaved and numerically stable. Well-behaved methods compute an ap-
proximation x which is the exact solution of a linear system with a
slightly perturbed A, i.e., (A+E)X = b, vhere E iz of order c|a|.
Consequently, a well-behaved methods computes an approximation x whose
relative error [ ~xll /llxll does not exceed a quantity of order
eﬂAﬂ"A_IH =: £k. A method that computes an approximation with a rela-
tive error at most of order ek is called a numerically stable methed.
Hence, a weil*behaved method is a numerically stable method but not
necessarily vice versa. As far as iterative methods are concerned
there is up to now only very little literature presenting results on
the influence of round-off. This partly is due to the fact that
iterative methods seemed to be more self-correcting than direct
methods, so that one expected iterative methods to be well-~behaved
spontaneously. Another reason is that the users of iterative methods
generally are more interested in how many iterations are needed to
obtain an approximation with a reasonable accuracy than in the maxi-
mally attainable accuracy after maybe many iterations. Nevertheless
it is somewhat remarkable that round~off error analyses of iterative
methods hardly exist. Wézniakowski is one of the first authors who in
very recent years published results on good~behavior and numerical
stability for iterative methods such as Chebyshev iterations (cf.
Wozniakowski [77]) and SOR, Jacobi~, Gauss~Seidel- and Richardson-~
iterations (cf. Wézniakowski [78]: see also Jankowski and
Wozniakowski [77] and wWézniakowski {801).

This thesis is intended to be a contribution to this rather new field

of research, concerning the round-off error analysis of iterative



methods for solving linear systems. We will study the class of descent
methods which is a large sub-~class of iterative methods., Descent
methods can be characterized as follows. Given an objective function
F(x), one starts at an initial point, determines, according to a fixed
rule, a direction of movement and then moves in that direction to the
local minimum of the objective function. At the new point a new direc~
tion is determined and the process is repeated. The objective function
F must satisfy the following three important properties: F(®) = 0,
F(x) > 0 if x # %, and F is convex. We consider descent methods where
ﬂmisﬁhn&be&ewﬁmﬂc&md@(iﬂnAmﬂmhemm%w
in terms of the Euclidean inner product. A is supposed to be a positive
definite matrix. In addition to the choice of the objective function,
the main difference between the various descent methods rests with the
rule by which successive directions are chosen.

We pay special attention to the gradient method and the conjugate
gradient method. The gradient method (often referred to as steepest
descent method) is a descent method that is especially important from
a theoretical point of view, since it is one of the simplest methods
for which a satisfactory analysis of the convergence behavior exists
{in the case of exact computations). The method is characterized by
the rule that at each iterand x, the residual vector b-—Axi is chosen
as the direction of movement. The conjugate gradient method, developed
independently by Hestenes and Stiefel [52], is an iterative method as
well as a direct method. It is an iterative (descent) method in the
sense that at each step a better approximation to the solution is ob-
tained. At each iterand ¥, an A-orthogonal version of the residual

vector b ~Ax, is chosen as the direction of movement. It is a direct

method in thi sense that it yields the solution after at most n steps,
where n is the dimension of the linear system (in the case of exact
computations). The early enthusiasm on this finite termination prop-
erty soon diminished after it turned out that in the presence of
round~off for some ill-conditioned linear systems the n~th computed

iterand x, is not even a reasonable approximation to the solution.

The methoé became of mainly academic interest, at least as a solver
for linear equations. The paper of Reid [71], in which the iterative
character of the method was emphasized, reactivated the interest in
the conjugate gradient method and nowadays the method is known as an

iterative method with very strong convergence properties for large.
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sparse linear systems with moderate condition number. For these systems
the method often yields acceptable approximations after much less than
n steps.

This thesis contains a number of results on the good~behavior and
numexical stability of the gradient method and the conjugate gradieht
method for both well~ and ill-conditioned systems. These results
mainly deal with the ultimate numerical convergence behavicr. We have
carried out a number of computational tests in order to verify the

analytical results of our round-off error analysis.

We now summarize the contents of this thesis.

In this introductory Chapter 1 some basic notions required in the
sequel are presented. After the intyoduction of some notational con-
ventions in section 2 we discuss in section 3 the preliminaries on
rounding errors in floating point computations. Section 4 deals with
the concepts of good-behavior and (A-) numerical stability which serve
as a gualification for the attainable accuracy of computed solutions
in the presence of rcund-off. We also briefly recall some definitions
concerning the speed of convergence of iterative processes. The reason
why and the way in which we use the Bachmann-Landau ¢0-symbol in our
round-off error analysis is explained in section 5. The final section
of Chapter ! describes the construction of our test problems and the
implementation of the gradient method and the conjugate gradient
method computations. We also give a description of what we call arti-
ficial fleoating point arithmetic.

In Chapter 2 a general theory for the algebraic and numerical behavior
of descent methods (DM's) is presented. In section 1 we discuss the
fundamental idea behind DM's and we point out that the methods can be
based either on recursive or on true residual vectors. In section 2
the definitions of recursive residual descent methods (RRDM's) and
true residual descent methods (TRDM's) are given and we deduce some
well-known algebraic properties that are fundamental for studying the
properties of DM's in the presence of round-cff (henceforth denoted by
numerical properties). We also briefly review some well-known DM's
like the Gauss-Seidel method, the Gauss-Southwell method, the gradient
method and the conjugate gradient method. Numerical properties of
RRDM's are derived in section 3. The numerical behavior of the recur~

sive residuals is treated in subsection 3.1 and then the numerical



behavior of the approximations‘xi is treated in subsection 3.2. Sub-
section 3.1 contains the main theorem (theorem 2.3.1.4) for the numer-
ical performance of RRDM's. In section 4 we derive numerical proper=-
ties for TROM's and the main result is stated in theorem 2.4.6. The
usability of this main result is demonstrated by applying it to the
Gauss-Southwell method.

In Chapter 3 the general theory of chapter 2 is applied to the gradient
method (GM). The definition of the GM is given in section 1, where we
also review some of its well~known algebraic properties. In section 2
numerical analogues of these algebraic properties are derived for the
RRGM, whereas in section 3 this is done for the TRGM. The main result
for the RRGM is the step-wise linear convergence to zerc {cf. sec-

tion 1.4) of the recursive residual vectors, The proof of good-
behavior and numerical stability is the main result for the TRGM.
Section 4 reports on numerical results obtained by tests with the

RRGM and the TRGM.

Chapter 4 is devoted to the conjugate gradient method {(CGM). In sec—
tion 1 we give the definition of what we call the most natural version
of the CGM, which is one of the (algebraically equivalent) versions
contained in the paper of Hestenes and Stiefel [52] (cf. also Reid
[71]). We also deduce some of its numerous elegant algebraic proper-
ties. In section 2 numerical analogues of some of these algebraic
properties are derived for the RRCGM, wherxeas in section 3 this is
done for the TRCGM. The main result for the RRCEM is the bi~step-wise
linear convergence to zero (see section 4.2) of the recursive resid~
uals. For the TRCGM our main result is that this method computes at
least one approximation Xy for which the residual is at most of the
order euiﬂanuxiu, which is a factor Ké worse than good-behavior.

We also point out how it can be understood that in many actual execu-
tions of the process good-behavior is observed. In section 4 we report
on numerical results obtained by tests with the RRCGM and the TRCGM.

In Chapter 5 we discuss some variants of the CGM as defined in
Chapter 4. In section 1 we introduce four so-called independent start
conjugate gradient methods (ISCGM's); their algebraic properties are
derived in section 2. In section 3 we demonstrate the numerical im~
plications of these propertieé for one particular version. The main

result is that the natural version of the conjugate gradient method as
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considered in Chapter 4 seems to be more robust than the other ver-

sions as far as the influence of round-off errors is concerned.

1.2, Notations and conventions

In this section we describe our notational conventions and we give a

ligt of the general symbols, which we shall use throughout this mono-
graph.

Vectors

All vectors are supposed to be (real) column vectors. The vector x;
indicates the i-th approximation to the solution % of the linear
system, determined by the descent method on hand. The vector Pi in=-
dicates the i~th direction vector of the descent method (see section
1.2). The residual vector b--Axi is denoted by x, of fi {for the 4if~
ference see below). By (x,y) we mean the Fuclidean inner product of
the vectors x and v and by lixll we mean the Euclidean norm of the vec~
tor x. Thus

n
1 (x,y) = .)j Xy oo lxloss (x,x)% .

The indices j or £ in connection with a vector indicate the j-th or

i~th component of the vector.

Matrices

The descent methods under consideration are basically designed for
solving a system of linear equations, denoted by Ax = b, with a (real)
positive definite matrix A. We briefly call such a system a definite
syetem. The order of the (square) matrix A is called the dimension of
the linear system and it is denoted by n. The spectral decomposition
of the mXn matrix A is denoted by

(2) A = UAUT ,

where

U is an orthogonal n xn matrix, whose columns uy are a complete

set of orthonormal eigenveciors of A,



4 is an nxn diagonal matrix, whose diagonal entries Xi are the n

(positive) eigenvalueg of A. Without loss of generality we

always assume that the eigenvalues are ordered according to

0 < xl R Y i
The positive definite matrices a° (0 = -1/2,1/2,3/2) are defined by
3 a% = %’ .

IR

Hence A‘A? = a, atal o I, aiat o a, ete.
The norm of a matrix A, denoted by [lall, is always meant to be the

spectral norm, defined by

(4) Ial := max 2L _

.
x#0 i1l

n
The rate of change of the solution of a linear system with respect to
a change in the coefficients as well as the influence of round-off on
the computed solution and on the rate of convergence is expressed in
terms of the (spectral) condition number of A, denoted by «(A) and
defined by '

-1 )
{5) k(a) := fallla "l =2 /A, .

Since we only consider the condition number of the matrix A correspond-
ing to a specific definite linear system, ﬁhere is no cenfusion if we
write simply k instead of x{(3a).

An important inequality in connection with the condition numbex which
will frequently be used in our convergence considerations is the
Kantorovieh inequality, which states that if A is a positive definite

matrix, then for any vector x one has

(x,x) > 4x .

6) 'y 5
(x,Ax) (x,A "x) {k +1)

In {6), eguality holds iff x is a multiple of the vector v -bvh. where

is an eigenvector corresponding to the smallest eigenva;ue and vn

is an eigenvector corresponding to the largest eigenvalue. The guotient
at the left-hand side of (6) will be called the Xantorovich quotient
of the vector x with respect to A. It can be written in terms of norms

as Ixi® 7 aad xnia~t a2
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Round-off

OQur round-off error analysis ig based on round-off due to the use of
floating point numbers and floating peint arithmetic. Yectoys and
numbers that actually have been computed and stored by the floating
point machine are called machine vectore and machine rumbers. If an
expréssion 8 involving machine vectors and machine numbers is evalu-
ated using normal floating point arithmetic, then this is denoted by
£1(S); if the expressions is computed using ariifictal fleating point
arithmetie (defined in section 1.6), then this is denoted by fla(s).
Round-off occurring at basic arithmetical operations is expressed in
terms of round-off matrices, denoted by the capital characters F, G, D
and E, each referring to specific operations like, e.g., vector addi-
tion, scalar by vector preducts, etc.; as described in section 1.3.
If we want to indicate the difference between an exact vector or
number and a computed vector or number, then we use the symbol §.

For instance, we write
(8) z = fl{x+y) = x+y+8z , := £l{2*m) = L xm+8k ,

where %, v, 2 and 8z are machine vectors and £, m, k and 8k are machine
numbers. The vector 6z is called a round-off vector and the scalar 8k
is called a round-off scalar. Intermediate round-off scalars are
denoted by Greek letters like 7, n, u, v, &, p, 0, 1, 0 {(see e,g.
formula (2.3.1,16)).

For the vectors x and pi, mentioned before, we do not have a dif-
ferent notation to indicate whether they stand for the computed vectors
or the exact vectors. With respect to the residual vector b - Bx, we
make the following distinction. In considerations on numerical behavior
the vector ‘ri stands for the (exact) vector b-Axi, whereas x, stands
for some computed vector that would be equal to ?.i when using exact
arithmetic.

A property holding if an algorithm is performed using exact arithmetic
is called an glgebraic property; aproperty holding if the descent method
is performed using floating point arithmetic is called a numerical
property. The term analytical results refers to algebraic as well as

to numerical properties and is used in contrast with the term

numerical results, pointing to numerical experiments.



In any (sub)section theorems, propositions, lemmas, definitions and
remarks are numbered 1, 2, ..., and formulas are numbered (1), (2}, ...
If, in some (sub)section, we refer to theorem 2 (say), then we mean
theorem 2 of tﬁe {sub) section on hand. If we refer to theorem 1.2.3
{say), then we mean theorem 3 of section 1.2. Opposite to each number
for pagination there is a number indicating the (sub)section in ques~-
tion.

We conclude this section with a list of general symbols,

i) set of real numbers

r" set of column n-vectors over R

™ ) set {1,2,...} of natural numbers

N, set {0,1,...} of nonnegative integers

AT transpose of‘the matrix A

Aui inverse of the matrix A

Aij {i,3)~-th entry of the matrix A

I identity matrix

fal matrix with entries IAlij 3= IAijl

A<B for all entries there holds Aij < Bij
diag(al,...,an) diagonal matrix with diagonal entries al,...,an
xT transpose of vector x

b3 seolution A"lin of the linear system Ax = b
{xi} sequence of vectors X ,X,,...

Tim x, limes superior of the sequence {x,}

span {xi,...,xi} subspace spanned by the vectors KyreesrXy
v #adiia 0 /12t - x) 1

® llAﬂllxilI Flai -xi) I

X 12% 2 e 0 /1832 2 - )

a~b a approximately equals b, a is of the order of b
{al absolute walue of a

1.2 9



a®*b

a mod b

ent (a)

ai-)() {i + =)
k /

3

VF (x}

10

" a is much greater than b

the remainder when dividing a by b
entier of a; largest integer not exceeding a
iim a

i
-0
universal quantifier

= 0

existential quantifier

end of a (proof of a} theorem, lemma, proposition

or remark
implication sign

product sign (only used occasionally to avoid con-

fusion)

any basic dyadic arithmetical operation +, -, *, /
gradient of the wvector function F

Bachmann-Landau symbol

base of the fleoating point numbers

length of the mantissa of the floating point
nunbers

relative machine precigion; ¢ := iBi-t

constant depending on n and ¢, denoting the upper
bound for the norm of the round-off matrix E,
representing round-off at matrix by wvector product

computations

constant depending on n and g, denoting the upper

" bound for the norm of the round-off matrix D,

representing round-off at inner product computa—

tions

1.2



1.3, Preliminanies on aounding errons and §Loating point arithmetic

- Throughout this thesis we assume that the algorithms based on descent
methods are performed in floating point arithmetic. The floating point
numbers will be assumed to have base B and a mantissa length of t
digits (B 2 2, t 2 1}, Then every real number in the floating point
range of the machine can be represented with a relative error which
does not exceed the relative machine precision e, which is defined by
€ = iBlnt. Furthermore we assume that we have a machine with proper
rounding arithmetic in the sense of Dekker [79]. This means that the
execution of any dyadic arithmetical operation @ (this can be +, -,
*, /} on two machine numbers a and b gives a machine number fl{a @ b}
such that there is no other machine number closer to the exact result

of a © b, Consequently, the following relaticns hold
(1) fl{a®b) = (a®b)(l+E) ,

{2) (1+n)fl(a@b) =aeb,

where both lE] < ¢, Inl < e,

We do not put a restriction on the range of the exponent of the
machine numbers. Hence we neglect the possibility of underflow orx

overflow.

From (1) and (2) it follows that adding ox subtracting two machine
vectors x and v and multiplying a machine vector x by a machine number
a (implemented in the obvious way) gives computed vectors fl({x+y) and
£l (ax) satisfying

{3) fl{xty) = (I+F)(xty) ,

(4) (I*Gi)fl(xiy) =xty,

(5} fi(ax) = (I-*Fz)ax ’

(6) (I+Gy)fl(ax) = ax ,

where Fl' Fz, G1 and G2 are diagonal matrices, satisfying
(7 Ir, | < ;x . lrzi‘ <er, lglser, lgl=er,

and consequently

(8) Ns'lll <e, ﬂrzll e, !I61!I <e, llszll <e.

1.3 11



We assume that the algorithm for the calculation of the inner product

of two machine vectors x and y satisfies
(9) f1{(x,y)) = ((T+Dix,y) ,
where D is a diagonal matrix such that

(10 Ipll < €Cy ¢

the constant C2 depending only on n and e. Throughout this monograph
C2 always stands for the bound of the round-off matrix D representing

round-off errors at inner product computations.

REMARK 1. If the inner product calculation is performed in the obvious
way, by multiplying corresponding successive components {in increasing
order) and adding the result to the intermediate inner product, then
the entries of the diagonal matrix D in (9) satisfy, under the res-
triction ne » 0 (cf. Wilkinson [651])

{11} |nn§ < ne{t+o0{1)) , !Diil < n+2-Dell+0(1)) ,
(L = 2,...,0) .

Consequently, the constant C, in (10) can be chosen c, = n(l+0(1}),

[ne + 0]. (for the meaning of the 0-symbol we refer to section 1.5.} []
We assume that the algorithm for matrix by vector product calculation
is implemented in such a way that the computed vector fl(Ax), based on
the machine matrixz A and the machine vector x, satisfies

{12) fl(ax) = (A+E)x ,

where E is a matrix such that

(13) Il < eclﬂau :

the constant 01 depending only on n and £. Throughout this monograph

C1 always stands for the bound of the round-off matrix E representing

round~-off errors at matrix by vector product computations.

REMARK 2. In the real-world siutation, where the matrix by vector
product calculation is performed in the cbvious way, by computing
inner products (in the way as described in remark 1} of rows of A and
the vector x, it follows from (11) that fl(Ax) satisfies componentwise

12 1.3



n
= Z Ajgxg,{i +n

(14} (fl(Ax))j
=1

jf,)' (j=1;--.;n)

where, under the restriction ne + 0, for all j = 1,...,n

{15} '“jz’ < ne{l+0{1)) | € (n+2-Vel+0{1)),

¥ lnjz
(L =2,...,m .

Hence the matrix E in (12) has entries E and consequently

32 = M4a Py
(16) IE] < nelal(1+0(1)) , IEN < n°/%elal(1+0(1)) , C[ne + 0].

According to the definition of C1 we can choose Ci = n3/2(1 +0(1)),

n
[ne - 0]. Note that componentwise (Ex)j = zf,ul Ajﬂ, X, nj&. and hence the
round-off vector Ex generally is randomly directed. This is an impor-
tant characteristic of the normal matrix by vector product computation,
since for randomly directed vectors y, layl ~ lalliyll. Furthermore,

[ (f1(ax)), - (Ax)jl < netlalixl),

3 3

which indicates that the components are not necessarily computed with

relative precision. O

If two vectors are added (or subtracted), then the rounding errors due
to this operation can be expressed by (3) and (4). Another, rather
unusual, way to express this rounding errors is given in the following
lemma, It will be of special interest if the two vectors differ much
in length. We shall meet this situation in Chapter 2.

From the assumption that we have proper rounding arithmetic it follows
that if we add two machine numbers a and b for which |b| < {e/B)lal,
then

(17} fl{a+b) = a .

Using this relation we can prove the following lemma.

LEMMA 3, If x and y ave machine veotors, then
(18) fl{x+y) = x + (I+HyY ,
where B 18 a diagonal matric satiefying

(19) |l £ B+e)x , JHI £ B+e .
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PROOF., Let fl{x+y) = x+y+46.

If !yjl < (s{B}lle, then it follows from (17) that Bj = -y..

If ij{ z (e/B)Ixj[, then it follows with (1) that lsjl S el(x+y)
< (B»&e)lyjl.‘aence in both cases lﬁjl < (B+e}lyj[.

5l =

The proof of the lemma is completed by defining Bjj 1= 6jf’yjc : fyj #0),
Hjj = 0, (yj=0), Hji = 0, (§£4). O

REMARK 4. Suppose we have a sequence {yi} of machine vectors that
converges linearly on the average to zero with a convergence ratio no
greater than L, i.e., liyiﬂ < Liﬂyoll. L ¢ (0,1), Assume that

s = 22_‘0 yz is computed by adding successive vectors (in increasing

= £1(zt

order of indices} to the intermediate sum vector s 2=0 yi) .

i
Then, in view of the foregoing lemma we obtain

Sigp = flsgHyy) =8 +yy + 85,y 0 85y =H iy,
(20)

es, I < (B+e)ly,ll .
Hence ils;H1 -sill £ (1 +B+s)llyill and consequently |l sill is bounded for
all i = 0. ]

If the defining statements of a DM contain compound statements, then
{unless stated differently) these statements are supposed to be per-
formed in the obvious way, based on the elementary arithmetical opera-

tions described so far.

In order to investigate the influence of round-off due to a specific
arithmetical operation, we sometimes assume in performing a round-off
error analysis that all arithmetical operations are executed exactly,
except for the one under consideration. This kind of analysis is

called a one-round-off error analysis.
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1.4. Basdic concepts of numerical stability, good-behavior and
convengence rate

To denote the quality of the approximate solutlon computed by an algo-
rithm with floating point arithmetic, one generally uses the concepts
of numerical stability and good-behavior. The speed of convergence to
the solution is expressed in texms of order of convergence and conver-
gence ratio.

We briefly recall (see W&zniakowski [77]) what we mean by numerical
stability and good-behavior of an iterative method for solving a
linear system ax = b, where A is a nonsingular matrix and b is a
{column} vector (solution vector %). We assume that [[+]] denotes the
Euclidean norm for vectors and the spectral norm for matrices (2-norm).
8ince our linear system is supposed to be definite and we only con-
sider DM’s that minimize the objective function F(x) := (£-x,A(R~-x)) =
= "Ai(ﬁ-x)ﬂz, it seems sensible to define also a stability concept
connected with this function.

Suppose a DM is performed in floating point arithmetic (relative

machine precision ) with arbitrary initial point X and a sequence

-

{xi} is computed of approximations to the solution X of the linear
system Ax = b, Then we have the following definitions (the constants
940 9y and g3 that appear are supposed to depend only on the dimension
of the system).

DEFINITION 1. The DM is said to be well-behaved (or, equivalently, has
good-behavior) if for all initial points X, there exists an approxima-
tion Xy such that

(1) (A-PE}xi =Db ,

with some matriz E satisfying IEN < g clal. O

In view of formula (1), good-behavior menas that the computed approx-
imate solution is the exact solution of a slightly perturbed system.
It is easily seen that (1) implies

(2) 1B -%)0 < g ellAllix,) -

On the other hand, if (2) is satisfied, then the matrix
E := (b-—Axi)xf /llxill2 satisfies equality (1) and the inequality of
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definition 1. Hence a DM is well~behaved iff there exists an approximaf
tion xy satisfying (2). The vector A(%-—xi) = b--Axi is called the
reatdual vector and HA(&-—xi)H is called the restdual. Since

3 =il < 1a”Hiat e -x)0 < 1A A -2

inequality (2) implies

(4 M%-—xi" < glekﬂxiﬂ . HA*(%-xi)u < gist£nxi“ .

This gives rise to the following definition,

DEFINITION 2. The DM 1e said to be numerically stable 1f for all

initial points X, there exiete an approximation x

" satisfying

(5} lli~xiu g gzescllxi![ .

The DM 18 said to be A-rumerically stable 1f for all imitial points %5

there exists an approximation X, satisfying

LI

(6) iat (&=x)l S gae JATIx - U

The vector R-xi is called the error vector, uﬁ-xi" is called the

}

arror, Ai (ﬁ-xi) is called the natural error vector and |A (:‘(-xi)u is

called the naiural error.

A numerically stable DM is of interest only if g,ex is appreciably
less than unity and for an A-numerically stable DM one wishes gqEK

to be appreciably less than unity. When using in the following chap~-
ters one of the concepts defined above, we shall alwaysd indicate the

underlying restriction on n, £, K.

Note that (5) and (6} imply

) ] g e 4 gBEKi b
(N Hx-xngTTEE;N?N' HA(R-xghfifjg;gﬁﬁlMMI:

hence we might as well (cof. WSzniakowski [77]) have used X instead of

Xy in the right~hand sides of (5) and (6).
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Good-behavior implies A-numerical stability and A~numerical stability
implies numerical stability. On the other hand these implications do

not, in general, hold vice wversa.

Since

(8) Ha®-x3)| < MAiﬁlfaiiﬁ—xi) I < llAlHIi~xi11 .

numerical stability only implies

(%) lIA(R-xi}H 5 gzexlmllllxiﬂ P I}A% (%~ X, s gzexﬂ *nuxiu '

{cf. formulas (2} and (6)) and A-numerical stability only implies
0 a@-xpl s gyectiatiixg

{cf. formula (2)).

So, an {(A-)numerically stable DM does not necessarily solve a nearby
linear system. However, the (A-)numerically stability concept indicates
that the solution X is satisfactory from the followxng point of view.
If a vector x satisfies (1) and if |E| ~ efial and A~ EXH ~ fla” HHEINXH
{(which generally is the case if E is random), then [[&~x]| = ﬂA Exu ~
~ exllxll. Consequently, if & DM is numerically stable then there exists
an iterand %, whose error is of the order of magnitude of the error of
the exact solution of a nearby system (nearby in the sense that

HEN / Al is of the order of the machine precision). This last eryor is
called the ZImherent error (cf. Stoer and Bulirsch [801). A similar
statement holds for an A-numerically stable DM, if it is formulated in

terms of the natural error and the inkerent natural error eKiﬂx“.

REMARK 3, Wozniakowski [80] defines good-behavior of a DM generating a

sequence {xi} by the relation

{11) iim HA(R«-X I 91£1AH Tim Hx .,
and numerical stability by the relation

(12) lim Nﬂ-—xiﬂ $ gyex lim ﬂxiﬂ .

Both definitions are stronger than our corresponding definitions in
the sense that for our case the inequalities (2) and (5) have to be

satisfied for only one approximation whereas for Wézniakowski's case
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these inequalities have to be satisfied ultimately for all approxima-
tions. For practical implications this is a minor difference. 0

It is not assumed explicitly that the DM generates a finite sequence
{xi}. Of course, 1f a (infinite) DM is well-behaved, theh the iteration
might be terminated as soon as the last computed approximation X,
satisfies (5), with an acceptable 95 (for this purpose one needs an
estimate for Jal, which is often easy to cbtain). If a DM is not well~
behaved but if one knows {e.g. due to {(A-)numerical stability) that

the method will compute an approximation x, with residual satisfying
ub-AxiH < g3eK£HAH"xiH, for some g, and £ > 0, then this ineguality
can be used as a stopping criterion (one then needs not only an esti-
mate for HAll, but also for HA~1H, which is probably hard to obtain).
What is more, if (say) % = }, then one can only guarantee that the
error of the last approximation x, is of order €K3/2“xiﬁ and its
natural error is of order eKHxiﬂ, which might be unacceptably large.

Ancther important performance indicator of an iterative process is the
rate of convergence. The concepts of numerical stability and good-
behavior measure the ability of the method to arrive at a "correct"
answer. The concept of convergence rate indicates how much effort
{number of iteration steps) is necessary to obtain that answer. Al-
though there exist numerous notions on convergence behavior we define
only two notions, related to the speed of convergence of a sequence of

vectors {xi}, which are adequate for our purposes.

DEFINITION 4. If for some L < 1 the sequence {yi} gatisfies
{13) Iy b < Zhy, 0, (1>0,

then the sequence 18 said to converge step-wige linearly to zero with
a convergence ratie no greater than L. i}

Most authors assume that }.ig Uy -y N 7y -y,l) =2 Ly < 1 exists and

then the convergence to y is called linear with asymptgtic convergence
ratio Lo. But then next they use this definition also for cases where
the limit dves not necessarily exist and only an upper bound in the
sense of (13} can be given (like, e.g;, for the gradient method (3.1.7}).

An advantage of the latter definition is that if one wants to compare
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two linearly convergent sequences with different convergence ratios,
then definitely the seguence corresponding to the smalley convergence
ratio is ultimately closer to the limit. Upper bounds in the sense
of {13) are not very suitable for comparing two sequences, but they

only give information about each separate sequence.

DEFINITION 5. If for some g and L <1 the sequence {Yi} satisfies
(14) Iy s iyl >0
i 0 ’

then the sequence is said to converge linearly to zero on the average
with an average convergence ratic no greater than L. 0

It is obvious that step-wise linear convergence implies linear conver—
gence on the average, but not, in general, vice versa.

In contradiction to the definitions of {(A-)numerical stability and
good~-behavior the two definitions above do not depend on €, but the
definitions concern any (algebraic or computed) infinite sequences.

In practice we never compute an infinite segquence, but still for a
finite number of vectors {yo,....yk} we use the definitions 3 and 4,
indicating that the validity of (13) and (14) is restricted to the
values of i satisfying 0 £ i £ k,

1.5. The use of the o-symbol in round-off erron analysis

In our round-off error analysis we meet equalities and inequalities
involving the relative machine precision £, the condition number x and
the constants C1 and c2 corresponding to round-off due to matrix by
vector product computations and inner product computations, respec-
tively (cf. section 1.3). In order to éimplify the expressions we want
to be able to neglect terms of order 82 in the presence of a term of
order €, with a minimal loss of relevant information. For this purpose

we use the Bachmann-Landau o0-notation. For instance, we write

(1) e{l+C,k+eC Ki) =g{l+C,c+0(1)) , [aczx% + 0] ,

1 2 1

where the expression between square brackets indicates that o(1)
stands for a quantity that is small if echi is small. Of course, one
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could also write down an explicit inequality, say

(2) e(l+c s<+ec2;<5) £ e(1.06 +C k) leczx%f < 0.06 ,

1

based on a rather arbitrary restriction. However, the use of the 0~
symbol has some advantages relative to the use of explicit constants,
as will become clear from the foilowing considerations.

We first give two formal definitions and some properties concerning
the O-symbol.

DEFINITION 1. Let £, g, h be three scalar functions defined on a set

Dc ]RR' (2 € W), then

(3) £(x) < 0{g(x}) , [h{x) >0,
meone

3 v

V>0 3550 Yxen' Ih(x}| < & = £(x) < nlgx)| . O

Note that constant § only depends on n and not on x; the implication
holds uniformly with respect to x € D, In fact, (1) only supplies in-
formation to those x for which h(x) is small. The expression between
square brackets is referred to as the restriction under which (1)
holds.

The following definition presents itself quite naturally.

DEFINITION 2, Let £, g, h be three scalar functions defined on a set
Dc m’“ (L € W), then

(4) f{x) = o(g(x)) , [n(x) » 0]
means

£(x) s 0(gx) , [h(x)>o0],

-£{x) £ 0{gx)) , [hi{x} =o0]. i

The statement f(x) = 0{(g(x)), [h(x) + 0], thus means

A4 v

n>0'36>0 oD’ In{x)] < s o [£(x)]| < niglx)| .

Consequently, |£(x})| < 0(g(x)) is equivalent with £({x) = 0lg(x)),
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[(h(x) - 0]. In our analysis we use both < and =, one with another, in

these situations.

In nearly all formulas containing the 0-symbol, it appears in the form
0(1). We remark that we do not define the meaning of 0(g(x)) itself;
as it is often done in asymptotic analysis (cf. De Bruijn [61]), we
only give the interpretation of some complete formulas.

For instance, if we write for two scalar functions £
f2(x) >0 (x € D),

1 and f2, with

(5) £,(x) < £,(x)(1+0(1) , [h(x) =01,
we mean
(6) (fl(x)-fz(x)) /fz(x) <o0(l) , [h(x) »~ 0],

in the sense of definition 1. We also write relations like

(7) f,x)o(1) =o0(1) , [h(x) » 0],

which statement is to be interpreted as follows. For any function f2
for which £,(x) = 0(1), [h(x) » 0], one alsc has £ Ex) =0(1),
[h(x) » 0]. In these cases the expressions involving 0-symbols have to

be considered as a class of functions (compare also the properties

below) .
Some rather trivial but often used properties are the following.

PROPERTIES 3.

(1) f(x) =0(1) , [£(x) > 01,

(i1) o(l) +o0(1) =0(1) , [(h(x) - 0],

(iii) o(1)o(1) =o(1) , . [h(x) = 0],

(iv) (t+on =140y, [htx) +o0]. 0

The last three properties indicate that the 0-symbol is easy to handle
and that is our main reason for using it.

Another advantage of 0-symbols above explicit constants is that the
coefficients in the relations involving 0- and =-symbols are more or

less uniquely determined (compare (1 -e)-1 =1+e+0(1), [e-» 0] and

1+e s (1-e) s 1+ (1+1/3)e, [0<e < iD).
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A disadvantage of the use of 0~symbols is that we do not obtain ex~
plicit bounds. However, in all cases where we derive formulas with o0~
symbols it is possible to retrace the proof, replacing all ¢-formulas
by estimates involving explicit numerical constants. That is, at every
stage of the proof we are able to indicate definite numbers, where the
asymptotic estimates only state the existence of such numbers (compare
the proof of theorem 2.3.4 and the proof of proposition 2.3.12). But
in most cases the final estimates are obtained by means of a consider-
able number of steps and in each step a factor 2 or so, in the esti-
mates, is easlily lost. Quite often it is possible to reduce such
losses by a more careful examination.

We are primarily interested in studying how the matrix condition

number ¥k and the constants cl' C,, affect the various error estimates.

2
For this purpose the O-notation supplies sufficient information if it
is used in an appropriate way, which means that one checks at every

stage whether a formula holds uniformly with respect to the relevant

parameters.

REMARK 4. Wilkinson [65] uses explicit bounds in his error analysis.
The application of the basic relations mentioned in section 1.3 fre~
quently leads in the first instance to bounds of the form

(8) (1-e)£sx+ps (1+e)£, (2 ¢ M)

and these are somewhat inconvenient. In order to simplify such bounds
Wilkinson makes the assumption that in all practical applications ¢
will be subject to the restriction e < 1/10, With this restriction

one has
2 3
(9 (l+e)” < 1+ (1.06)%e , (1~-e)” > 1~ {1,06)ke .

Therefore he defines € = {1.06)e, which is only marginally different
from ¢ and enables him to replace relation (8) by |ul < %e, whenever
this is advantageous. However, this leads to many explicit constants
like 12.36, 1.501, etc., which is why we refrained from following the
same strategy.

Wozniakowski [80] uses the relation = which is defined as follows. Let
f and g be two scalar functions defined on [0,80]. Then £(e) = gle)

means that there exists a constant K and a scalar function h such that
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L}

£(e) g(e) {1 +h{e)), where |h(e)| € Re for 0 £ ¢ < €9+ The relation
fle) £ gle) now means £(g) < gle) or £(g) #* gle). These relations en~
abled him to ignore terms of order 82 in the presence of a term of
‘oxrder €., Not very much attention is payed by him to uniformity as far

as Cl’ C2 and ¥ are concerned. For example, we distinguish between

ez§ + azzz = ex%(l-&o(l)) ’ [erBXz + 0],

and

}

ek’ + szz = €Ki(1 +o(1)y , tEK% +~ 0],

whereas Woézniakowski would write in both cases

) 22, 4

EXK” + £ K = EK° ,

4

2 .
EK" + £ K = €K” .

1.6. Test problems and implementations

In carrying out computational experiments for testing mathematical
software there are two main types of test problems {cf. Crowder,

Dembo and Mulvey [79]): those which are representative real-world
application problems and those which are "constructed" problems. The
first type is used to give an indication of the behavior for practical
problems, whereas the second type is used to investigate specific
aspects of a method which might be exerciged infreguently in applica-~
tion of the method on real-world problems. We only performed numerical
tests with problems of the second type, generated pseudorandomly. Our
test problems are designed to verify the validity of our analytical
results, which deal with attainable accuracy of approximate solutions
and give upper bounds for convergence ratios {cf. section 1.3). More-
over, we want to investlgate whether and under which conditions these
estimﬁtes are best~possible, or essentially best-possible in the sense
that they contain the correct power of k. This last goal justifies the
use of constructed problems, where the characteristics of the popula-
tion, from which a problem is drawn, are known and can be controlled.
If an estimate turns out to be best-possible for some class of con-

structed test problems, then there remains the question to what extent
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this class is representative for real-world problems. The answer to
this question will be discussed only incidentally.

Numerical experiments have only been carried out for the GM and the
CGM. The algebraic performance of these two methods depends on the

data A, b and the initial vector The numerical performancekof

XO.

these methods not only depends on A, b and x., but in addition on the

0
way of implementation of the various arithmetical operations. In the
following we describe how A, b and %, are constructed and how the

arithmetical operations are implemented.

The chotice of the matriz A

Every n xn positive definite matrix A can be written in terms of its
spectral decomposition

(1) A = uhut ,
where

- U is an orthogonal n xn matrix, whose columns are a complete set of
n orthonormal eigenvectors Ugreo.su of the matrix A;
- A is an n *xn diagonal matrix whose diagonal entries Xi are the n

positive eigenvalues of A.

Without loss of generality we always assume Al < Az £ ... 5 An = 1
(hence fiall = 1 and « = Rzi).

Obviously A is determined completely by A and U and hence choosing A
is equivalent with choosing A and U.

The diagonal matrives A can be controlled in a trivial way by choosing

its diagonal entries li. (
Algebraically, the GM and the CGM are invariant relative to orthogonal
basic transformations (see remark 1.3.3). Consequently, the algebraic
performance of these two methods is completely determined by the
eigenvalue distribution of A and the eigenvector components (compo-
nents with respect to the basis of elgenvectors) of the vectors b and
Xy- Therefore an obvious choice for U would be U = I. In the presence
of round-off however, the whole structure of A {and consequently the
choice of U) affects the numerical performance (cf. remark 1.3.2).

Since the round-off occurring at the computation of fl{ix) is
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certainly not representative for the real-world computation of f£1(ax),
we have to take special arrangements if we choose U = I,
Another cbvious choicé is to construct pseudorandomly orthogonal

matrices U. The two alternatives are evaluated in the sequel,

PSEUDORANDOMLY GENERATED ORTHOGONAL MATRICES. The construction of a
pseudorandomly generated orthogonal matrix can be accomplished in
various ways. For instance, U can be constructed as a product of a
number of random Householder transformations or Givens transformations
or by Gram—-Schmidt orthogonalization performed on a matrix with random
entries (cf. Stewart [80]). We only experimented with matrices U con-
structed as a product of a number of Householder transformations.
Intuitively one feels that the number of Householder transformations

must be rather large to guarantee the random character of U.

THE CASE U = I. Choosing U = I implies that we have a test matrix A
with eigenvectors €yreeese {unit vectors). From a numerical point of

view this is a rather special choice.

Implementation of the matrixz by vector product computations

Once A andU are selected we have to decide how to implement the com-

putation of Av = UAUTV for an arbitrary machine vector v.

PSEUDORANDOMLY GENERATED ORTHOGONAL MATRICES. In cases where U is
chosen pseudorandomly an cbvious way of implementing the computation
of Av ig first to assemble {and store} the matrix A by computing

A= fl(UAUT) {in some way), and next to compute any matrix by vector
product straightforwardly by computing inner products of rows of A and
the vector involved. This way of implementation will be referred to as
assembled implementation (AI). If the assenbled A has not a rather
special structure, then the round~-off occurring if computing Av in
this way agrees with the real-world situation (cf. remark 1.3.2).
During the assembly of A round-off occurs, but if ek is appreciably
less than unity (and assuming symmetry is preserved), then certainly
the computed matrix is positive definite although its exact eigenvalue
distribution is slightly different from the chosen one. In general,
the matrix A, constructed in this way, is not sparse and every matrix

by vector computation takes n2 multiplications.
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If U is constructed as a product of (not too many) elementary orthog-
onal transformations, then computing time can be reduced significantly
by keeping B in product form. For instance, if U is constructed as a
product of m Householder trangformations U = H t**H,, where each H,
corresponds to a random vector hi (i =1,...,m) such that

. " T
{2} Hi g= I Zhihi‘/ (hi’hi) ’

then instead of assembling A and computing Av straightforwardly, this
matrix by vector product could be computed (from right to left) from
the relation

{3) Av = Hm "'Hlﬁﬁl '°'Hmv .

This way of implementation will be referred to as produet form imple-
mentation (PFI). For each Householder transformation the computation
of Hiw costs 2n+1 multiplications (apart from the computation of

2 /(hi.hi) which has to be carried out only once). Hence, if Av is
computed using (3}, this costs about (4m+!i)n multiplications. Thus,
from this point of view, implementing Av based on (3) is cheapexr if
{roughly) m < n/4, If m is much smaller than n, computational time is
reduced éignificantly. However, as we shall discuss in section 3.4,
for small values of m the round-off occurring at the computation of
Av, based on (3}, is certainly not representative for the real-world

situation.

THE CASE U = I. In cases where we take the identity matrix for U we
have A = A, One might think of computing Av by just multiplying each
component of v with the corresponding eigenvalue. However, this way
of implementation is certainly not a real-world implementation.

One has fl{Av) = (A+E)v, where |E| £ cA. Hence our general condition
on round-off errors due to matrix by vector products, HEIl < eC, AL,
is certainly satisfied (with C1 = 1), However, the vector Ev is ap~-
proximately parallel to the vector Av whereas for the real-world im-
plementation this vector is rather randomly directed (cf. remark 1.3.2).
To remedy this drawback we use a kind of artifieial floating point
implementation (AF1)} for the computation of Av in the following way.
We first compute u := fl({Av) and next add a vector u' with components

chosen randomly from the interval [-8lAllllvll , +SliAlllvll], where & > 0 is
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a fixed number (fixed throughout the whole performance of the algo-
rithm) called the artificial relative precigeion. If fla(Av) denotes

the vecter Av compute& in this way, then we have
(4) fla(Av} = FL(f1l(Av) + fl{ye)) ,

where e is a machine vector with components randomly chosen from the
interval [~1,+1] and v := £L(8[v]) (since (Al = 1), We assume that the
computation of ¥y is carried out such that the relative error does not
exceed {in+2)e(1+0(1)), under the restriction ne + 0. The following
considerations show that, if § » €, the computation of Av by using (4)
simulates the real-world computation of a general matrix by wvector

product, using floating point arithmetic with relative precision §.

LEMMA 1.
(5) fla(Av) = Av+w ,

where the components of w satiefy

(6) wj = uj(Av)j + y{1 +0j)ej

with

n lgji.rajl < 2e(1+0(1)), Ine >0l (3=1,...,n .
Furthermore,

{8) fla(Av) = {(A+E)v ,

where

(9 IEl < (nks+2e)(140(1)) , [ne > 07 .

PROOF. All 0-symbols are assumed to hold under the restriction ne » 0.
Using the preliminaries of section 1.3 we note that each component of
fla{Av) satisfies’ '

(10 (flalhv))y = (A vy (1 +aj> e T4y
where |ejl,lrjl:fpj| < e,

Consequently,

(11 wj = (fla(Av)-Av)j = uj vaj + Yejfl-toj) ’

where
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O jr.l o= §(1+£j)(1+p y-1l < 21 +0(1)) ,

3

and

#

{13) io,]

! 1(1+rj)(1+o y -1} < 2e{1+0(1)) ,

3

which proves (6).
Defining £ := wv;‘/(v,v} we conclude from (5} that (8) is satisfied.
From (6) it follows that

(14} el < lwlt /8wl £ 2elldoll + Slvillel) /Hvli(1 +0(1)) =

£ {2e +n£6) {(1+0{1)) ,

wnich proves (9). 0
Since lgj(hv}jl < 2elivii(1 +0(1)) and TY(i'*Uj)ej[ - 6ﬂv“1ejl(1 +0(1))
the vector w is approximately parallel to the random vector e, if

! ® £. Hence, the vector w is randomly directed. Therefore, if § > ¢,
then fla(Av) agrees with a real-world implementation of Av on a
ficating point machine with relative machine precision & (but with

9y = n%(l +¢0{1)) instead of Cy = n3/2(1 +0(1}); cf. remark 1.3.2).

Of course, for every matrix by vector product that must be computed
during the performance of the algorithm one has to choose a different
random vector e, since otherwise all corresponding round~off vectors w
are parallel. Each matrix by vector product based on (4) costs (apart
from choosing n random numbers) 3n+ 1 multiplications and 1 square
root operation, which is favourable if compared with the assembled

implementation.

The choice of b

As far as the choice of b is concerned we want to be able to contrel

directly the eigenvector components s, of the solution vector

1 3

& = A b. With respect to AI or PFI this can be achieved by choosing s
and computing directly b = f1{UAs), or by computing first x = £l {(Us)

and next b = f£1(ax).

REMARK 2, If b is computed from b = £1{UAs), then there holds for some
€
1

(15) b= (UA+E)s , (Bl ¢ ec;llfxil .
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and consequently UTA—ib-s = AﬁiuTEs, which indicates that the eigen-

vector components sé of A-lb not necessarily have a small relative
error. Purthermore, it follows that BUTA-Ib‘—sn < acistH. Similar
results hold for the situation where b is computed from x = f1{us),

b = f1(aX). D

For AFI the eigenvector components of & can be controlled in a trivial
way by computing b = £f1{As) (but not b = fla(As)).

REMARK 3, If b is computed from b = f1(As), then one has

(16} b= AMI+E)s , |E| £ e1 .
Consequently, l(Aplb‘—s)jl = I(Es)j] £ e{sj[, which implies that com-
ponentwise Anlb equals s up to machine precision €. 0

The choice of Xq

As far as the choice of xy is concerned we want to be able to control
directly the eigenvector components ej of the initial error %-—xo
(Si--x0 = Ue). For AI or PFI this can be achieved by choosing e and

computing xg = fl{U{s~e)) or x. = fl(x -Ue), where x = £1(Us).

(]
For AFI this can be accomplished by computing Xy = flis ~e).

Implementation of the basic dyadic arithmetical operations and the
inner product computations

If in a test problem matrix by vector product computations are based
on AI or PFI, then the other basic dyadic arithmetical operations,
i.e., vector addition, vector subtraction, scalar by vector product

and scalar division, are implemented in the obvious way. The inner
product computations are also implemehted in the obvious way, described
in remark 1.3.1.

If in a test problem matrix by vector product computations are based
on AFI with artificlal relative precision § (6 » ¢}, then the other
basic operations are adapted in the following way (X%, y are machine

vectors, a, b are machine nunbers).
(17 fla(xty) = £1(fllxty) +£1l(pa)) ,

(18) fla(ax) = £1(fl(ax) +£l(te)) ,
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(19) flal{x,y)) = £L{fl{x,y) + £L (8 IIxllivl)) ,
(20) flala/b) = £1({{a/b) (1 + §"})

where ¥ := £1(Sllxtyl), T := fl{8flax]), e and e are machine vectors
with components randomly chosen from the interval [~1,+1] and §' and

8" are scalars randomly chosen from the interval [-§,+8].

REMARK 4. We note that formulas (17), (18) and (19) do not agree with
the basic relations and inequalities (3) to (10) of section 1.3. For
instance, in general the diagonal matrix Fi defined by the relation

{21} ﬂam+y)=(I+ﬁ)m+y),

does not satisfy ]F1| < 6I. However, there exists a not necessarily
diagonal matrix F1 satisfying (21) for which, neglecting terms of the
order €, HFlﬂ < 8§ holds. This also applies to the other round-off
matrices Fyo Gl' Gz, D corresponding to the specific fla-operations.
In our round-off error analysis we never use the fact that for
floating point arithmetic the round~off matrices are diagonal; we only
use the upper bound for their norms, Consequently, our round-off errox
analysis also holds for fla-arithmetic.

An important property of the AFI is that this implementation is in-
variant relative to orthogonal basis transformations.

A more obviocus adaptation of the operations would be

(22) ﬂamiy)=flﬂz+%)m+w),
{23) flalax) = fl((1-+§2)ax) '
(24) fla((x,y)) = fl{((I-+¢3)x,y)) ’

where @1, @2, QB are diagonal matrices with diagonal entries randomly
chosen from the interval [-8,+6], since these formulas agree auto-
matically with the basic relations and inequalities (3) to (10) of
section 1.3. However, these fla-~operations do not always correspond
to the real-world implementation on a machine with relative machine
precision 8§, If U = I, then the elements of a vector x are its eigen-
vector components. Hence, if the vector % has a special structure of
eigenvector components, then ultimately also the approximations x

i
will have that special structure. This implies, for instance, that
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ultimately the round-off vectors due to the fla~addition (22) in up-
dates like %41
{special) direction of %. This unrealistic situation cannot occur for

fla-addition based on (17). 0

=% + a;p, will be more or less parallel to the

REMARK 5, AFI enables us to simulate even one-~round-off error analysis.
{cf. section 1.3). For instance, if a one-round~off errxor analysis is
carried out, only taking into account round-off at the matrix by
vector product computations, then AFI of Av with 8§ ® g, and performing
all other arithmetical operations in normal floating point arithmetic,
simulates the situation corresponding to this one-round-off errox

analysis. i

If we want to perform different tests with the same eigenvalue dis~
tribution and the same eigenvector components for % and i-—xo but with
different round-off patterns, then for AI and PFI this can be achieved
by selecting different matrices Um(which means selecting different
stes of vectors {hl"“'hm} for the Householder transformations). In
case we deal with APY this can be achieved by selecting different

random numbers from the interval [-8,+8].

We had carried out quite a lot of tests problems based on AI and PFI
before we got aware of the advantages of AFI. However, we did not

repeat all of these former experiments using AFI.

The numerical experiments were performed on the Burroughs B7700 com-
puter (B =8, t =13, ¢ = 18712 o 7.319~12). For the generation of
random nunbers we used the arithmetic function RANDOM, intrinsic to
Burroughs Extended Algol, described in: B7000/B6000 Series, System
Software, Operational Guide, Vol. 1, o 9.2.4 (1977).
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CHAPTER 2
DESCENT METHODS {DM]

2.1, Introduction

In this chapter we consider the numerical process of solving a definite

linear system
(1) ax = b ,

by a descent method (DM). Every descent method for selving (1) is
coupled with a so called objective function F: n¥‘+ 352 This objective
function is chosen in such a way that the solution % of the linear
system is a glcbal minimum of F.

The fundamental underlying structure of descent methods (see Luenberger
{73]) is as follows. Starting at an initial point one determines, ac-
cording to a fixed rule, a direction of movement, and then moves in
that direction to a minimum of the given objective function F on that
line. At the new point a new direction is determined and the process

is repeated. The main difference between various descent methods
rests with the rule by which successive directions of movement are
selected. Once the direction is chosen, the method determines the

point on the corresponding line for which the objective function at-
tains its minimal value. This indicates a second difference,

namely the choice of the objective function.

In contrast with direct methods, like for instance Gaussian elimi-
nation, the descent methods do not alter the original matrix. In fact,

it is possible to aﬁoid storing the matrix explicitly. All that is
required is a subroutine that produces Ax for a given vector x. This

is one of the main reasons why descent methods became attractive for
solving large sparse linear systems. Full advantage can be taken of

the sparsity structure of A and no assumptions need to be made about
the pattern of nonzeros. Also the storage requirements are quite modest

and the implementation is easy.



Some well~known descent methods are the Gauss—Seidel method, the Gauss~-
Southwell method, the gradient method (or steepest descent method) and

the conjugate gradient method.

In this thesis we restrict ourselves to the case whexe the n xn matrix

A is positive definite. We consider only descent methods for which the

objective function F is represented by the quadratic form
2) F(x) = ({(X-x),A&X-x)) ,

where & # 0 is the solution of the linear system.

In the Euclidean norm (2} can be written as
(3) P = liad@-xi? .

All descent methods mentioned before are based on this objective func-
tion. For descent methods based on cobjective functions of the form
2% (% -x)li2 {20 ¢ WN) one can derive similar results as are derived

in this thesis for the case o = }.

We now summarize the contents of Chapter 2.

In section 2 we deduce some well-known elementary algebraic properties
of the descent methods. The main reason of deducing these properties
here is that they are basic for studying the behavior of the methods
in the presence of round-off. We also formulate explicitly the well-
known descent methods mentioned above.

In executing a descent method there arxe two possible ways of computing

the residual vector xr, := b-Axi, belonging to each successive approxi-

mation X . One way 1sito compute the residual vector directly from
this definition; residuals computed in this way are called true resid-
ual vectors. The second way is to compute the residual vector by up-
dating, using the recurrence relation for two successive residual
vectors; residual vectors computed in this way are called recursive
" restdual vectors. It turns out that there is a great difference be-
tween algorithms using true residuals and recursive residuals in the
presence of round-off.

Section 3 deals with the numerical behavior of descent methods if
recursive residuals are used. It consists of twe subsections. In the
first subsection a round-off error analysis is presented of one step
of the process and subsequently this result is used to prove the step=-

wise linear convergence of the objective function, expressed in terms
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of the recursive residual vector. In the second subsection we derive
an upperbound for the value of the objective function, expressed in
terms of the computed approximations, for large values of i.

Section 4 deals with the numerical behavior of the descent methods if
true residuals are used., First we give a round-off error analysis of
one step of the process. Next we use this result to prove the step-
wise linear convergence of the objective function, expressed in terms
of the true residual vector and we give an upper bound for the attain-~-
able accuracy of the computed approximations. Finally we apply the
theoretical results of this section to the Gauss~-Southwell method in
order to show how the general theory leads to assertions on good-

behavior and numerical stability in a specific example.

2.2, AMgebraic properties of descent methods

In this section we formulate the DM and deduce some important algebraic
properties, i.e. properties that are valid if no round-off occurs. We
shall interprete these results for some specific DM's.

Given a definite system
(N Ax =b ,
then the DM, corresponding to a given segquence of arbitrary nonzero

vectors {pi}, is defined by the following statements.

Descent Method (DM)

Choose an initial point Xgi

Iy s=b = Axg; 1 :=0;

while Ty #0 do

begin

(2) a; := (r;.p;) / {py+Bp,)

(3) Kiap T ¥ YAy Py

4 i ~ either b - ax, , {TRDM)
ist ©

(5 or r, - oay Api ; {RRDM)
i=4i+1

end.
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The residual vector r. can be computed from either formula (4) or

+1
formula (5).

If the residual vector is computed from (4), then this residual vector
is called a truge residual vector (cf. section 2.1), and a DM where all
residual vectors are computed from (4) is called a true residual de-
scent method (TRDM) .

From statement (3) it follows that

(6) b-—Axi+1 = (b—Axi) - aiApi,

which gives the recurrence relation (5) if translated in terms of the
residual vectors.

Therefore, if the residual vector is computed from (5), this resddual
vector is called a recursive residual vector and a DM where all resid-
uval vectors are computed from (5) is called a recursive residual de-
scent method (RRDM) ,

Of course, if exact arithmetic is used, the approximations {xi} genexr—
ated by RRDM and by TRDM are exactly the same. However, this certainly
is not the case when both methods are performed using floating point
arithmetic.

As far as the computational work is concerned, the most expensive
operation is in general the matrixz by vector product. For TRDM two
matrix by vector products are needed, for RRDM only one. For both
methods, apart from the vector Py, one needs to store the vectors xi,
r

i
know all vectors pi in advance, they could as well be computed (and

and Api only during the step from i to i+ 1. There is no need to

stored for one step) as the process proceeds,

REMARK 1. Of course, computing all residual vectors either from (4) or
(5) is not absolutely necessary. One might as well compute T from
relation (4) every (say) 10 steps and use formula (5) in all other

steps. This will be called a mized descent method (MDM). 0

We now prove some well-known, elementary algebraic properties of DM's.
Since algebraically RRDM and TRDM are equivalent, there is no need to
distinguish between them.

THEOREM 2. 4t each step a DM minimizes the objective fumetion

(7) F(x) := {({&=-%),A{&~-x)) = HA%(?{*X)"?‘
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along the line x = X, +ap; and

b 2 -4 2
“ Ha%(g xi+1)“ ia ri+1]l _ 1—«(2
i 2 -1 2 i
Ia (2~xi)!l ia rill
where
l{rilpi)]
(8) Yy = 73 | R
a ¢ r i“ Ia pill
Further
: -4 2 b2, -4 2
(ii) Ia ri+1“ + IlaiA pill = fja ? rill '
(iii) (ri+1tpi) =0 .
PROOF. We have
9) Fix, +ap,) =||A%(52—x -a )Ii2 =
3 TPy 178y

2 2
F(xi) - 2a(A(£-xi),pi) + a liA% pill =

(AlR -x.),p.0\2 (A{&-x.},p.)2
F(xi)-i-llz-\.é pillz(a - i ) - S

2 2
iat pyl iad p

which is minimal for

(AR-x),p;)  (x;p;)
(10 a = SRt ¢ - i"i a
iat p 12 by oBpy) 4

and the minimal value F(xi +aipi) = liA&(ﬁ-x )N2 satisfies

i+1

(11) llA%(i—x

2 .3 2 2 3 2
m)n =Ha%@-x)" - (x;,p)" /1A% plI” .

4 }

= llai A%piliz, formulas (i) and (ii) follow readily from (11).

Since A*(%-x,) = A—%(Aﬁ-—Axi) = A r, and (xi,pi)z/lmi piilz =

eUsing (5) we obtain
(12) (ri+11Pi) = (ri'Pi) - ai(Pi'Api} =0 ,

which proves (iii).

2.2
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4

and the residual vectoxr A(ﬁ-xi). Since a DM minimizes the error

The vector A (ﬁ-xi) is something in between the error vector % - x

i
HA*(i-—xiH at each separate step, it seems natural to measure the
error this way, instead of measuring % -x | or UA(R«-xiH. Therefore
we call this error the natural error and A (ﬁ-—xi) is called the

natural ervor vector (cf. section 1.4).

REMARK 3. The gradient vector of the objective function F(x) at point

X equals

i+l

{13) - 28(% -x,

i+1 Y =-2r

) = - 2(b-Axi+

1 i+l 7

Consequently, relation (iii) states that the gradient vector of the
cbjective function at the minimal point on the line x = xi-fapi is
orthogonal to the direction of that line. This is a well~known neces~
sary condition for minimization (see Luenberger [73]). O

From (i) of theorem 2 it follows that
i
3

-xpl? M-y,
=0

2

(14) HA*(%-—X. = [[A

i+1

H

i 2
2=0 Yy
Hence we have the following corocllary of theorem 2.

and this infinite product diverges to zerxo iff ¥ diverges.

COROLLARY 4. The sequence {xi}, generated by a DM converges to the

solution % 1ff 2:;0 Yi diverges. O
Note that cas-1 Y is the angle between the vectors A“% x, and A% Py
If there exists a v > 0 and an infinite subset N of WN_ such that

0
Yi diverges. Stated dif-

Yy > vy for all 1 € N, then the series Z:=O
ferently, if the angle between A"éri and Agpi is bounded away from
w/2 for an infinite subset of vectors 1 then the natural error tends
to zero.

For the Gauss~Southwell method, the gradient method and the conjugate

gradient method we shall show that the choice N = W, is possible,

0
This leads to the second corollary of theorem 2.
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COROLLARY 5. If {x 1, {ri} are generated by a DM and £f there exists a
y > 0 such z';}zat‘vi > v for all 1 2 0 then the natural error converges
step~wise linearly to zero and for all i 2 0
LR 2 -4 2
ia (x<—xi+1)ﬂ . ia ri+1ﬂ 2

(15) = - < 1-y". 1
tatz-xpn?  patd 2

In the cases we are dealing with it is in general difficult to deter-
nine directly a lower bound for Yy Therefore, in our numerical analy-

sis of DM's we often consider, instead of the parameter Yir the param-

eters o, and Bi defined by
] riH Hpill
(16) o, =
i l (ri;Pi)
and
heiat o
(17} Bi 1=

I
A% | (e, ,p,) |

It turns out that Y; can be bounded in terms of o, and Bi; this is the

contents of the following lemma.

LEMMA 6. Suppose r and p are two arbitrary vectors for which (x,p) # 0
and let

o = fxllipl /| (x,p}] -

llrIHIAi pit / (IIAiH Fepd [}

B :=

v i= Lo | 7 dat cinal oy
then
(18) K’ia < B < y"i < ais < K%a .

where x 18 the condition number of A.

PROOF. The various inequalities follow easily from

12"t At o < el < natinatt o

and

aditnad o < wpl < na~hinat or . O
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REMARK 7. Instead of minimizing the objective function at sach separate
step of the process, one might be concerned only with diminishing the

objective function at each separate step. We have (see (9)):

4

fla) := P(x -bapi) = F(xi) - 2a(ri,pi) + aZHA piﬂz ,

i

which is a guadratic function in a and £(0) = F(xi). Since f is minimal

at a,, f is symmetric around a, and consequently f{a) < £(0) for all a

i

satisfying Iai-al < la, ~0]. Stated differently, if a = wa, , for some

Q0 <w < 2, then F(xi-ka;i) < F(xi). Hence, if instead of (2) one takes
a, = wi(ri,pi) /(pi,Api), where 0 < wy < 2, then the natural error
decreases at the step from i to L+ 1. The factor oy is called relaxa—
tion factor. If all relaxation factors satisfy the condition

§ < Wy < 2~68 for some § ¢ (0,1), then for this process a convergence
result similar to (15) holds. Note that the sequence {wi} influences
the sequences {ai}, {Bi} and {Yi} and also the convergence ratio.

A well-known DM using relaxation factors is the method of systematic

ovexrelaxation (see Gauss-Seidel metheod). O

The remaining part of this section is devoted to a review of some

basic algebraic properties of the Gauss-Seidel method, the Gauss-

‘Southwell method, the gradient method and the conjugate gradient

method.

1. The Gauss~Seidel methed

The Gauss-Seidel method (as well as the Gauss-Southwell method) be-
longs to the class of so~called coordinate descent methods. In these
methods each direction vector p; is a unit vector. Therefore at each
separate step only one component of x; is changed. Moreover, {(cf.
theorem 2(iii)), every residual vector has one zero component. A sub-
class of the coordinate descent methods is the class of gyelic coor—
dinate deescent methods, to which the Gauss~Seidel method belongs.

In these methods the direction vectors p; are cyclically chosen out of
the set {ei,...,en} of unit vectors. The cbjective function is sequen~—
tially minimized with respect to different components of x. There are
a number of ways in which this concept can be developed into a complete
algorithm.

In the Gauss-Seidel method one takes successively Py i= @, Py = €gs..

cer Ppq TRy and then repeats by taking By ™ @r Py T e, and soon.

1
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- Consequently, for all 1 2 0

(19) Pi = ek(i) 14
where
{20) k(i} 2= 1l 4+ i mod n .

The Gauss-Seidel method, applied to a definite system, converges
average linearly. This result was first proven by Reich [49], using
spectral radii. We here give a different proof using a compactness~
argument.

Observe that for the Gauss~Seidel method, for every i = 0, the n steps

are exactly the same as the n steps from x! to

from x, 0

ixn T X(i41)#n

x! if the process is started with x! := x, .
n 0 i%n

Consequently, if we can prove that there exists an L € (0,1} such that
HA%(i-xn)H < LHAi(ﬁ-xO)H for any initial start vector XO‘# %, then

either the Gauss~Seidel process terminates (i.e. x, = ¥ for some i 2 O)

i

1
or A% (%-x o< LHA%(R-xi*n)H for all i = 0. In the latter case

{i+1)#n
we have linear convergence on the average with an average convergence

1/n

ratio no greater than L .

We now prove the existence of such an L ¢ (0,1). From theorem 2 it

follows
: -1
4 2 .4 2 " 2,4 2
(21) A%z -x )% = 122 (% -x )1 ° - izoiri,pi) /iaf p " .
Consequently, HAi(ﬂ-—xn)N = HA%(R-xO)N iff (ri,pi) = 0 for all

0 £ 1i £ n-1, From the recurrence relation for r, and the definition of

a; we obtain

i-1
(22) g =rg - z a, Ap, = rp,
2=0
i 1
if (r;,p;) = 0 for all 0 < i < n-1. Hence, if {la’ (x-x )l = fa? (& = %)l
then (ro,pi) = 0 for all 0 £ 1 € n~-1 and since Pgs---sD, are linearly

independent this implies ry = 0. Therefore, if 2 #0 (i.e. X # R)

)
then certainly NAi(ﬁ-xn)H < HA*(R«-XO)H. Cbvicusly, if

1
HAQ(S{-xn)H
(23 L = max e
I &-xpll =1 2% (% = x )l



then L < 1, Since ﬁ-—xn depends homogeneously and linearly on i-—xo,

(23) implies that HAi(ﬁ-—xn)U < LHA§(2‘~X W for all X # &. Note that

0
the foregoing proof also holds under weaker conditions with respect to

the direction vectors {Pi}.

A modification of the Gauss~Seidel method is the method of systematic
overrelaxation (SOR). This DM generates the direction vectors Py
exactly in the same way, but instead of actually minimizing the ob-
jective function along that direction, which means computing a, from
(2), one computes a, := w(ri,pi) f(pi,Api). Here the relaxation factor
w is greater than 1 and it is introduced to improve the convergence

ratio {(cf, remark 7}.

2. The Gauss-Southwell method (GSM)

This method belongs to the class of so-called directed coordinate de-
scent methods. Instead of assigning the sequence of unit vectors a
priori in carrying out line minimization, the coordinate to be changed
is chosen such that it corresponds to the largest (in absolute value)
component of the gradient vector.

Consequently, for all i 2 0O

(24) p; = ek(i)"

where k(i) satisfies

(25) l (ri | )

>
| 2 |(ri.e

’ek(i)) 3

for all 1 £ § £ n,
Since-ﬂriﬂz < n(ri,e )2 we find, taking into account the definitions

(16) and (17}, that

k(i)

EN [Iek(i)ll !

= £n .
i {{ri

(26} B <
'ek(i} ]

N € o
and consequently, from lemma 6, Yi = (Bixé}'l z {nK)-%. Hence, from
corollary 5, (1 -(nm-l))% is an upper bound for the convergence ratio.
(Note that theorem 2(iii) vields (ri+1'ek(i)) =0 (1 2 0) and thege-
fore, except for the first step, one has llriil € {n-1) (ri'ek(i)} ’
vwhich leads to the sharper bound (1 - (hu-i)n)-l)% for the convergence

ratio.}
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3. The gradient method (steepest descent method) (GM)

We recall that a DM searches for the minimum of the objective function
F(x) = (8-x%x,A(&~x)). Obviously a good choice for moving towards X
is to move in the (opposite) direction of the gradient, since this
is the direction of steepest descent of the objective function. The

gradient vector of F at X, (cf., (13)) eguals
(27 - 2A(x-—xi) = - Z(b‘-Axi) = - 2ri .

The gradient method is based on thig idea; as successive search direc~
tions one chooses the successive directions of the residual vector.

This means, for all i 2 O

(28) p, =, .

Consequently, according to definitions (16) and (17},

b ?
(29 Bi < o, = (ri'ri)

=1‘

5
and the convergence ratio is no greater than (1 - 1/x)*. However, direct-
ly estimating Yy gives a sharper upper bound, for according to the
definition of Yi we obtain from the Kantorovich inequality (cf. section
1.2):

4
2 Hrﬂl

(30) i = dx

IR, 72 2
A el lal e)? e

14

and hence (see corollary 5) (x-1) / (x +1) is another (sharper) upper

bound for the convergence ratio.

4. The conjugate gradient method (CGM)

This method belongs to the class of so-called conjugate direction
methoda. We review some characteristics of these methods (see Hestenes

and Stiefel [52] and also Hestenes [807]. First a definition is given.

DEFINITION 8. Let A be « symmetric n xn matriz, then the vectors
%,y € R® are said to be a~-orthogonal, or conjugate with respect to A,
if (x,ay) = 0.
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Note that, if A is positive definite, mutually conjugate nonzeroc
vectors are linearly independent. Consequently the maximum number of

mutually conjugate nonzero vectors then equals n.

A conjugate dirvection method is a DM in which the vectors
po,pl,...,pn~1 are mutually conjugate nonzero vectors. It causes no
problem in having no more than n such vectorxs available, since after
at most n steps the solution % is obtained. This property follows from

the following consideration.

Let m be the smallest integer such that 2-—xo is in the subspace span-
ned by pO""’pm-l' Clearly m € n, since the conjugate vectors are

linearly independent, Purthermore,

m*z-i
(31) F-x, = al p. oo
0 1=0 i~i
where
(Al -x.),p.)} (r ,p,)
(32) a' = 0 i 0 i .

i (py/Ap)  (pys2p)

From the recurrence relation (5) for residual vectors we obtain

(33) (ryrpg) = (ry yopy) —ay By yeBpy) = (xy 4oy} (31 # 1) .
- = at
Hence, (ri,pi) = {ro,pi) and ai ai.
Since
m=1
*n T % * ;z a; Py
1=0

it follows that X, = % and the algorithm ends after m steps.
For every DM one has for i =2 0
-1 i
(34} A iyl = iz-xi+1 = 2~x0- Z a p -
k=0
Consequently, for a conjugate direction method it follows from (31)
that

m
-1
{35) A x = 3 .

i+1 kaiﬁakk

and hence, for any j < 1 +1
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= (a1 =
(36) (ri+1:9j) = (A ri+1; Apj) =0 .,

This means (compare remark 3) that the gradient vector of the objective

function P at point x,
c {x) P X1

vactors PgreseiPys This establishes the second important algebraic

is orthogonal to all previous direction

property of conjugate direction methods, namely that x not only

i+l
minimizes F(x) along the line x = xi-kapi (see theorem 2) but on the
whole affine set passing through X and spanned by PgeByr-e 1Py {cf.

section 4.1).

The conjugate gradient method is the conjugate direction method that

is obtained by constructing the successive directions by A-orthogo-
nalization of the successive gradients, acquired as the process proceeds,
The first step is identical to a gradient method step (po = ro). In
each of the next steps one determines the (opposite) gradient vector
{i.e. the residuval vector) and adds to it a linear combination of the
previous direction vectors in such a way that this new direction
vector is A~orthogonal to the previous one. Proceeding in this way it
happens that r, (1 2 2) is automatically A-~orthogonal to PgrecePy o
Hence, Py (i > 1) can be determined from

(37 - p, =71, *+ bi~1pi~1'

where

(ry.2p;_4)
(38) by_y = = T -
Pi-17%P5

3
o

From the definition of b it follows immediately that (Pi’Api-l)

i-1
From the definition of pi and theorem 2{(iii) it follows that for i

v

(39) (ri:pi) = (ri'ri) + bi-l(rifpi-l) = (ry,xry) .

It is obvious that (ro,po) = (ro,ro).
From the definition of Py it alsc follows that for i 2 1

A%p. = A%r .

A%p - b i-1 i

i i-1
Taking squared norms at both sides and using A-orthogonality, we obtain
Pythagoras' theorem

1 2 1
Zp, 7 =ia? rill2 (L 2 1) .

3 2
(40) 2 p,I™ +1lb i1

-1 B
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Consequently, for i 2 1.

4

[

(41) ‘A r o,

1
pin < A 1

This inequality trivially also holds for i = 0.
Thus for the conjugate gradient method we have according to definitions
(16) and {17}, for all i = 0,

o iahat o wahat zg
(42) % STE S TTTTED =T W =K
i i i
and
Iat b, iat |
(43) Bi = < < 1.
rabiet  nabinz

Therefore, in view of corollary 5 and lemma 6, (1-1}«)% is an upper
bound for the convergence ratic of the step-wise linear convergence
ratio of the natural error. Analogously to the gradient method case

one finds a better bound by using the Yio One has

(44) yi > ax / (x + 1) 2

and hence the convergence ratio is no greater thanm (¢ ~-1) / (x +1).

Since py = x + b,

i 1-1%5-1 and {ri,pi_l) = 0, we have

2 _ e w2 2 ,2
(45) ho ' =Hrl® + 0. lIp, 7.

From (39) it follows that
(46) a; = (r;,xy) X{pi.Api) '
and hence ay might as well be computed from this relation.

A simple alternative formula can also be derived for bi‘ From (5),
(37} and (39) we obtain for { 2 1

(47) (ri+1,ri} = (ri,ri) - ai(Ii,Api) =

(ri,ri)-ai((pi,Api} - bi_l(pi_i,Api)) =0,

It is nbvious from the first equalityv that (ri+1,ri) = 0 also holds

for 1 = 0.
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From (5) it follows that Bp, = ;1(ri-ri+1

together with {(46) and (47) we obtain for 1 2 0

} (i 2 0) and consequently,

=1
} = a ((ri

(48) ({ 1

Tip17PPy ory) = gty )) s

{ ) (py +2p;) / (ri.ri) P

Tit1'Ti41
which implies

(49) - b, = {

i TirrTiag) /(Egery)

hence bi might as well be computed from tnis rolauiu-.
The conjugate gradient methods based on these alternative formulas for

a; and b, are discussed in Chapter 5.

i

2.3, The necunsive nesidual descent method (RRDM)

In the presence of rounding errors the algebraic properties of DM's
mentioned in the previous section, are affected by these rounding
errors, For instance, even if at a certain step the relation

= b - Ax, holds exactly, then, performing one more step using the

i i
recurrence relation r

x

41 ri-ai Api for floating point computation

of r , this recursive residual will differ from the exact residual

i+l
b-—Axi+1. This is due to the fact that the rounding errors occurring
during the computation of ipg = % + aipi and occurring during the

computation of L fl

follows that we have to distinguish between RRDM and TRDM. In this

=r, -a, Api are independent. From this it will

section we shall investigate the behavior of RRDM if computations are
carried out using floating point arithmetic. For TRDM this investiga-

tion is carried out in section 4.
2.3.1. The numerdcal convergence of {n;}

We recall that the RRDM, corresponding to a given sequence of arbitrary

nonzero vectors {pi} consists of the following statements.
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RRDM
Choose an initial point x

o

ro = b-—AxO; i = 0
while r, # 0 do
begin
(1) a; = {r .p;) / (py+2p,)s
2) Rigq 15 % 0+ aigk :
3 i+l T Ty T 8 AR

i = 4i+1
end .

We observe that the sequence {ri} can be computed without computing
the sequence {xi}. Therefore, in this subsection we first analyse one
step of RRDM, disregarding the computation of X017 and next we add

the computation of %41 to our considerations in subsection 2.3.2.

The following round-off error analysis is performed under the assump-
tions of section 1.3. The vectors {pi} corresponding to RRDM axe

supposed to be arbitrary nonzero machine vectors. The constants C1 and

C, refer to the constants corresponding to matrix by vector prodhct

2
computations and inner product computations as described in section

1.3. The capital characters D, E, F and G, appearing in the error anal-
ysis, will always refer to round-off matrices describing particular com-

putations as mentioned in section 1.3. By ai, b S N

if Ti+l
indicate the numbers and vectors as they are computed and stored by

and Py we always

RRDM, For clearness' sake, (ri,pi) is the exact euclidean inne; pro-
duct of the stored vectors T and Py whereas fl((ri,gi)) denotes the
computed value of this inner product., In the formulation of the lemmas
and theorems we shall not always mention the restriction that T Py
and (ri,pi) are assumed to be nonzerc during the computations. Through-
out the error analysis we use the 0~symbol defined in section 1.5 and

we neglect the possibility of overflow and underflow.

We are now ready to prove an analogue of theorem 2.2.2 in the presence
of round-off. It assesses the influence of round~-off on relation (i)

of theorem 2.2.2,
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THEOREM 1. Let r,, p; be two nonzero machine vectors and let r,

computed from one step RRDM, baged on these vectors. Let

(4) v = el 7t rat g
Then we have
at r g2

i+l 2
5 i 2y
® iat ¢ 2 o " T

1
where
) In,,, | sect(a seh (o + scztcéo{i)

under the restriction

(7) eri(l +C

}
24»01& Yy~ 0 .

PROOF, We first consider the computation of a, from (1).

i

(8) f}.((ri,pi)) = ({I +D£)ri,pi) = (ri:pi) +Ty

. .
(2) ‘Til = 1(Dirippi)' s ecg”rimlpi" .

Further we have

+1

(10) £1((p,,Ap;)) = ((X+DY)p,, (A+E,)p,) = (py,Ap,) + E; &

1]

an lggl = | o}p,.ap;) + ((Z+D)p, ,Ep) | <

A

2
eC,lpllIAR Il + €€, (1 +eCy)allpy ) <

<
This yields
£l ((x,,p,)) (x,,p,} + 1
i°F4 ) i % i
{12) a, = fl( )rn (1+e.) ,
i £l ({p,; /2p,)) (py,2p,) +E, i
(13) ]eil <€ .
Hence,
- ]
(14) a, &i + Gai
2.3.1

be

eCylpg iRyl + eCyiMpyI* (2 +0(1) 4 [ec, >0 .
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where

{15} ﬁi = {l‘i:Pi) /(Pi:APi) ’

}

10Py) *Teeyd

{ngmi pitlzm +E / &A% piu?‘) }

2
{t, - & tr;p) /IAY pIl° + e, (r

(16} 8a! :=
i

From {11) we obtain

o2 4
an L, 1 /A% p,II° s ecye

+eck(l+o(1)) [sc2 - 0] .
Consequently, from {9}, (11), (13), (16) and (17),

i
{eC2|I r,liph + (eCyk® +eck) | {ri,pi)l + e} (xr;/py) [}

(18) [8all <
! tiad p % ro)

under the restriction

(19) e(1 +C2K; +C1K) +0 .

Since

(20) L el = |t . A*pi)! < ot rillllhi p,ll

it follows from (18) that

@) feall s eyt secprana g it puasoan

under restriction (19), and in particular that
-4 }
g
(22) Hail < lla rill /ia pill o{1}

under restriction (19).

For the computation of r 141 W have
- " - ]

(23) Tieg = (I-t-Fi) {r:.L (1 -l-Fi}ai(Ai-Ei)pi) R
or
(24) Tigg T Ty T 3RRy Y 6ri,
with

¥ = " - ] n
(25) Gri“ Fizi ai(ViApi+vipi) '
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(26) vi i Fi + F;(I+Fi) ’ HVJ:.H < 2e{1+0(1}) , fe + 0],

27 Vi s= (T+F]) (I+FE, » Hv;ﬂ < eClia (1 +o(1)) , [e >07.

A substitution of (14) in (24) shows that alsc

= - "
(28) Tigq =Ty - 840, Oy,
where
" " - ' [ n
(29) 6ri+1 = Firi »(GaiApi'+JiApi'PJipi) '
| B, [ n L "
(30) Ji H ai Vi ’ »Ji H aivi »

From (20) it follows that
-4 4
31 Iaii < ka rill/IIA pl .
Together with (14) and (22) this yields
@2 sl < a0+ lsagl s 027t r znat oy

under restriction (19).

Consequently,
@ 3 s la vyl < 2e0n7t x g zuat puasom |
(34) hazl s fag 11V30 < ec,anmat o {na* p it +oa1)) ,

under restriction (19).
We proceed by expressing N1 in terms of 6::;4_1. From (28) it follows

that

_% i "i "% "
(35) AT g= A (ri-ail\pi) + A 6ri+1 '

and, by taking squared norms of both sides of the equality, we obtain

..% 2 -& 2 ;1 "
{36) a ri+1" = [jA (r; -&,2p )1 ° + 2(a r, ~&p,. 6ri+1) +
-£ ™ 2
+ /Ia Sri'l'l“ .

From the definition of,ai we get {compare (2.2.11))
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-4 2 -4 2 i 2
(37) lia ri+1ll = {a rill /la pill +

-1 - " - % " 2
+ 2(a T, aipi, 6ri+1) + [lA 6ri+1u .

which leads to the basic formuia

_; 2
Ia ri+1H

B 2
(38) ......:;_2 = ] - Yi + ”5_+1 .
ia riﬂ

where Yi is defined by {(4) and

= ~1 " —i " 2 -i 2
(39) Mgy = {2a ri-éipi,dri+1) + fia 6ri+1n } /A e

It remains to be proved that N4y satisfies (6) under the restric-

tion (7).
Note that (A-Iri"aipi'Api) = 0 and therefore the term 8a; Ap, in (29)

cancels when evaluating the inner product in the numerator of fox-

mala (39).
Consequently, from (29), (31), (33) and (34) we obtain, evaluating

term by term,

cexy o atep? s

-1
(40) la™" ¢, -a Yt

17 %Py

1553

N T T N e T T EN N LA TEH TE W
-1
+ 1a lp IH30lap, 0 + 1A £ 3lp,l +

W ‘ 'i 2
+ IéilﬂpiMHJiHHpiH} /lia ™ <

A

aesid + 203t namiaonat o sna ey <

(GSK% +2&‘:C1 Y{1+0(1)) ,

A

under restriction (19).

Remains to be estimated the second order term in (39). This estimate
does not affect the numerical constants appearing in the first order
terms and therefore we may estimate rather roughly as far as numerical

constants are concerned.
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2

Since (a+b+c+d)2 < 4(a2 +b +c2+d2), from (21), (29), (31), (33)

and (34) we find

’ =} y2 a2
{41 fla 6ri+1“ /ha ri" <

A

2, -1 2 2,4 .2 2 -1 2
” 1 1
é{llFilf a !!Ilrill + (8a]) la p I+ WA CHliapg i +

2

IS | 2 -4
+ 13170A e Y04 .l s

2 2 2 ecenZia 2y pad o 12 syacd v g2
AUIPgle + ((8a)) " + oy % +HagITIa 15 1A% p ™ 70 * )7} <

A

afec + 4(452C2K-+82szz-*sz) + ae%c + schxz}(1~§o{1}) ,

2

A

under restriction (19).
8o, finally we obtain from (39), (40) and (41)

| £ 4exé(3+ciki)(1+o(1)) + 462(4 +5K+5C2K2+16C§K) (1+0(1)) ,

Ing 4 1

under restriction (19). As this inequality can be written in the more

compact form (6), under the restriction (7}, we have proved theorem 1.

0

We note that the constant C, does not show up in the first order part
of estimate {6). In the error analysis it only appears in the absolute
error 6a; occurring at the computation of ai. The objective function
F(xi-+api) ig gquadratic in a and hence, if we are at a distance § from
the point at which this function attains its maximum, the function
value differs by an amount of the order 62 from the function value in
that minimal point. Consequently, Sai does not appear in (40), which
expliins the absenqe of Cye Formulas (6) and (7), however, show that
€C,k“ has to be small in order to havg n small. A first order

2 i+l
round-off error analysis would not have given this information.

REMARK 2. Theorem 1 can also be written in a form more close1y related
to {1i) of theorem 2.2,2, We have

4 4 b2,

4

2 2 - 2 2 -
Yy = (e 7 AR £ 10a p, 07 = &, atpy* /A

where, according to (15), &i 1= (ri,pi) /(pi,Api).

Consequently, (5) can be written as :
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2 -} .2
1% + s, Aipiﬂz = (t+n,,)lA 4 .

-4
a I

It follows in particular that, under the restriction (7},

HA_% r, I s (1 +<';(1))11A'i x

i+l i" '

la, atpl = aroanm o .

Using (14) and (22} this yields, under the restriction (7},

]

la, a%p,l < (1+0(1))11A'%ri[( .

Retracing the proof of theorem 1 and replacing all O0-symbols by defi-
nite estimates involving explicit numerical constants, one can prove
that In, .1 < 7/40 if

3 by o L
€K (3-¥Cz-+cln ) <€ i -
Hence
-4 Lopad
la riﬂfl < (1+10)HA .

ta, at p s ezmt x

i 10 FLEE

Furthermore, it follows that

4 2Zaua~t
la; & piil S (+ggia® 2l . ]
REMARK 3. It is obvious.from (5) that HA-i r n2 < {1+ ]n E)HA-% x H2
* i+t 7 i+t il
which means that the natural error ||A~ ri+1" cannot increase by more

than a factor (1+Ini+1
and (7), 'ni+1 2

| is small if ex*{(1+C
also shows that the natural error certainly decreases if the condition

{)i at the step from i to 1 +1. In view of (6)
+c1x%) is small. Formula (5)

Yi > Ny is satisfied. From lemma 2.2.6 it follows that in terms of
the parameter B, defined by {2.2.17), this condition is certainly

satisfied if Bilni+1§K < 1. Because of (6) and (7) this last condition

is fulfilled if ex3/? Bf(z-+c2-+c1x%) is small enough. 0
Cur relation (5) is phrased in terms of an absolute errox Nigye We may
as well try to estimate the relative error Vigp? defined by the rela-

tion
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(42)

) .

2
= 1 - Yi(1+vi+1

. In the proof of the next theorem we do
directly.

v = - / 2
41 T 7 Mier /Yy

not estimate vi+1 from this relation, but we estimate vi 1

In this way we obtain a weaker sufficient condition on Bi' Cl' C2 andk

Obviously,

¥ to guarantee the monotonicity of the natural error na} rill .

THEOREM 4. Let LI Y Vbe two nonzero ma:c?z{ne vectors, for which
(r;sp,) # 0, and let x, , be computed from one step RRDM, based on
these vectors. Let v 1 be defined as in theorem 1 and let, accerding to

(2.2.16) and (2.2.17)

(43) @, := i rillllpiﬂ /1 (ri‘pi}]
and

. 4 )
(44) 1= | ;illlla p,ll /7 (2% i {r;rpy) .

By

Then we have

- 2
RPN
{45) ———:;--L‘-HT= 1~ Yi(l Vi) 0
1a7% o
where
i i
{46) I“i-t-il < 2e{x®(2 +Cx*) +kB, (2+8,) +ai(1+cln)}(1+c(1)) +

3
+ec2(1< +ai)0(1) v
under the restriction

) ! |
(47) efx?(l +C, +C,x") + Cz"i} +0 .

PROOF. In the proof of the previous theorem we estimated the absolute
errox Gai occurring at the computation of éi. In view of (8) we see
that the relative error in the computation of the innexr product (ri"Pi)

is not necessarily bounded if (x } = 0 and therefore we evaded ex-

1Py
pressions for relative errors. In the present proof we follow the

lines of the proof of theorem 1, the only difference being the use of
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an estimate for the relative error of éi, in terms of the parameters
@y and Bi.
From (8) and (9) one has

(48} £f1{{r;,p,)) = (ri.pi)(l-i-li) '

(49) |Xi| = [Tif(ri.piH < eCya, .

Formulas {10} and (17) yield

(50) fl((pi.Api)} = (pi,Api)(i +ui) ’

{51) fu, | = 1&g [/llai 12 < ec Ki + eC,k{(1+0(1))  [ec, » 0]
i i Py 2 1 2 .

Consequently

(rgp;) (142
8 = (B, Ap;) (1 +1)

(52) (“'ei) = ai(1+6a:'€) ’

where ai is defined by (15) and
{53) I6a;l = (Ai-ui+ai+kiei) /(1+ui) .
Hence, from (49), {51) and (13)

" i
(54) lGaii < (eC a, +eC,k* +eCy

k+¢€)(1+0(1))
under the restriction (19), and consequently

{55) |6a;l = o(1) ,
under the restriction

i
(56) e{(1 +c2x +CIK) + Czui} -0 .

The vector &r"

141 in (29) can be written as

" = " - " ] "
7 6ri+1 Fir, ai(GaiApi-I-MiApi-!-Mipi) .
[ I -1 . = " [ ]
(58} M : ai J {1 +6ai)llvill ’ IIMiII s 2e{t+0(1)) ,
L ~1 o _ " " " ‘
(59) My = &, ay = (1 +6ai)llvi|l ', Emill € EC1||A||(1+0(1)) .

under the restriction (56).
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Instead of transforming (37) into (38), we may also write

(60}

2
= ] - Yi(14-vi+1) '

where Yi is defined as in theorem 1 and

- -1 b
(61) v = {2(a r, &ipi’ i+1) + §a ri

ot 2} /18, (r, )}

+1
Analogously to (40) we obtain, evaluating term by term,

-1 - -
(62) [{a T, -&p, . 8ri, ) [ 7 lai tr;p) | <

< 1A ez At p 0% / ey om0+ IIESE N /1 2y om0 | +
+ 17 e M2 I / 1z vpp) | +lp lIMz00ap 0 Z1ad p 0%+
+ 127 s, limllp 0 /1 (xyopp) |+ imsiip,h /iat b2
SR S RS | R A | i
< UpslaZ +Irmha, +0uics, +icd +nmnna™ o, +imunay <
i i i i i i i i -

< e{xi(z +c1:<§) +6B, (2+8,) +a, (1 +cia<)}(1 +0{1)) .,

under the restriction (56).
Analogously to {(41) we find, evaluating term by term, that

(63) I!A'* sry, 1 f!a (x .pi)l £

< alieAa e Al p 2/ oy pp 2+ 6a %4

- 2 -
+ nmgn?na” g 12 /iat p 0%+ nen 2a e 0% zuat 02 <

ol o2 . 2 2 i 2 =10 2
< 4{IlFilI n<81+{6ai) +|Imjill k + Mgl A } <

< 4{e KB +4(52C§ i +ezczx-+ezcixz‘+e2) +
2
4+ 4k +e c»c }(1+e(1)) P

under the restriction (56).
So, finally, we obtain from (61}, (62) and (63)
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(64) ] | = 2s{§i(2+clz§) +|csi(2+si) +ai(1 +C1K}}(1+o/(1)) +

vi+1

+ 4e2{(4 +4x + ac?

22 2 2 2
2-:-:-5(:11: }+KBi+4c2ui}(1+0(I)) .

under the restriction (56). As this inequality can be written in the
more compact form (46), under the restriction (47), we have proved
theorem 4. 0

REMARK 5. We have (cf. (11), (50) and (51))

fl((pi.Api)) = (pi.Api)(l-wi) '

4

lpil = lEil /HAi piﬂz < eC,k? + (1+6eC,)eCk .

2
Consequently, if eczxi + (1-+ecz)eclx < 1, then fl((pi.Api)} # 0 if

Py # 0. Hence in that case the DM performed using floating point arith-
metic cannot break down because of a zero denominator, and the algo-
rithn will only end if r, = 0 (neglecting, of course, underflow). 0

REMARK 6. We observe that just as in theorem i1 the constant C, does

2
not show up in the first order part of (46). From formulas (46) and
{47) we conclude that, as far as C2 concerns, ecz(x&-tai) has to be
small in order to have TP small. 0

REMARK 7. In the previcus theorem we frequently used the parameters o,

and Bi for estimating the various rounding errors. Expressions in-

volving (say) ﬂriﬂﬂApiﬂ 7/ alll(x }]) were estimated in terms of

[2%
these parameters, For the qradieit ;ethod and the conjugate gradient
method the introduction of more parameters does not give stronger
results, since no sharper direct bounds than in terms of oy and Bi are
available for these expressions.

The numerical behavior of these methods is of our main interest and

therefore theorem 4 is formulated in terms of o, and Bi only. 3]

i

From (46} and (47) and the fact that ay 2 1 it follows that

lv, .. ] = 0(1) under the restriction

i+1

\ ,
(65) efx (1+C,) + kB (1+8,) +a, (1 +c2-+clm)} + 0 .
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Consequently, as a corollary of theorem 4 we obtain the analogue of

corollary 2.2.5 if floating point arithmetic is used.

COROLLARY 8. Let {ri} be computed by RRDM with an arbitrary initial
machine vector Xy and suppose there exist constants u,B,y > 0 such
that for all i 2 O

(66) oy = Hriﬂﬂpiﬂ Xl(ri,pi)l <q,

(67) B, =tz iad o /a0 <8
g = 1 1Py ‘

(68) v, = liz,up 1/ mat rinnAi NIRRT

then we have for 1 = 0

TN E

(69) —-——%s 1 -y +oa)
ha ® xli
under the restriction

{70} e{Ki(i +c2} + kB(1+B) + all +C,

+Ck)} >0 . 0
REMARK 9. From (69) and (70) it is obvious that the natural exror

HA-% riﬁ. and consequently r;, tends to zero 1f a{x£(1~+C2) +

+ KB(L1+B) + all +C2+Cl1c)} is small enough. We realize that from a
practical point of view this is not a very interesting conclusion
since convergence of the recursively computed residual r, has no
direct practical implication. However, from an academical point of
view it is a rather surprising result, since there are not many itera-
tive processes, used in practice, generating sequences that tend to

zero. ' 0

REMARK 10. From lemma 2.2.6 it follows that if one of the three param-
etars ai, Si’ Yy is bounded, then the other two parameters are bounded
{bounded in accordance with (66), {67) and (68)). However, as we saw
in section 2.2 for the algebraic case, it sometimes is possible to
obtain sharper bounds by estimating each parameter separately. 0
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REMARK 11. In corollary 8 it is assumed that all y; axe bounded away
from zexo uniformly for all L = 0. For the Gauss-Southwell method, the
gradient method and the conjugate gradient method this is algebraically
the case (cf. section 2.2) and, as we shall see, this enables us to
prove this boundedness even if round-off occurs. In most cyclic coor-
dinate DM's, however, Yy = 0 can occur with exact arithmetic and then
we lack an algebraic base for proving the existence of a uniform posi-
tive lower bound in the presence of round-off. On the other hand, for
most of these algorithms (like e.g. Gauss—Seidel), there exists a

k 2 n such that in every k subsequent nonoverlapping steps there is at
least one step for which Yi is bounded away fxcﬁ zero and this bound
(v say) is uniform in i. Thus for every k subsequent nonoverlapping
steps one can apply theorem 4 for the steps where Yy 2 v and apply
theorem 1 for the remaining steps in this subsequence in order to
cbtain results on the decrement of the natural error after these k

steps. 0

Comparing {69) and (2.2.15) we see that the convergence ratio of the
numerical précese approaches the convergence ratio of the algebraic
process as (70) tends to zero, However, we are not primarily interested
in the fact that the numerical convergence ratio is close to the alge-
braic convergence ratio if (70) is small, but we want to know under
which explicit conditions the natural error IH\"i riH tends to zero.
From theorem 4, as we said before, we conclude that the natural error
decreases at the step from i to i +1 iff v > -1 in (45). Apparently,
from (46) and (47}, l“i+1
formulas do not supply an explicit bound for (65) in order to guarantee

n+1
| <1 if (65) is small. Unfortunately, these

fv,,,| < 1 uniformly in i. Here we encounter a situation where the

dii:;vantage of the 0-notation (it does not yield explicit error bounds)
emerges. On the other hand, as we said already in section 1.5, one can
easily retrace the proof and replace all o-symbols by definite esti~-
mates involving explicit numerical constants. To strengthen this asser-
tion we shall execute this procedure for the foregoing proof, The
reason of doing it in particular in this case is that theorem 4 is one
of our basic results.

We shall show that, under the assumption

+C11<)} 4 L '

(71) e{l(‘}‘(z) +c2+cin<i) + KBi(2+Bi) + ai(1+C 3

2
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one certainly has [vi+1l < 11/16,
We shall follow the lines of the proof of theorem 4, replacing the o-

symbols by numerical constants.

We first obtain

4 ) .9
(72) lpil < ECyk” + (1 +ec2)c1|c < eCyk® + 5 eCik <
<2 (e Wdiec e < 2
8 2 1 64 °

Hence, instead of (54) we get

64
(73} Idazl 53’5‘ (Ikil-i-luil-s-l-yil-o-lxiyi!) <
64 9 i 2
< 5 {eczai + 8 (eczm +ec1:<) +egt+e Czci) <
<-7—?- (eC.o, +&C K£+SC K + 2g) <= .
5 271 2 1 ‘55
Furthermore we find
2 9 9
L 4 — —
!Wilf <2+e” <Tes33,
"t * 41
Hviil £ {1+ lV H)ilE I < == ¢C IAII '
64 9 144
1 " t Pl B —
lmill < u+16a11>nviu < T 7E T € < 2(1+10) .
64 41

82
o L ] —
Mgl < 1+ 18afDvil < eCyllal = == eC Al <

5
< (1 +Té-)a<:1uAn .

Consequently.,
-1 .
(74) l(A ri-ai :5ri+1)| /'51(1’:1:?1” <
2 4 3 4
< zzei + ea, + 26K8i{1+10) 4+ 2ee* (1 +-1-6») +
+ eC, Ko (1+—‘=3-) + eC.k (1 +-5—) <
1771 10 1 10
< 328{K*(2+C Ki) + kB {2+8,) +a, {1+Ck)) =5 2
10 1 i i i’ 1 16 *

and also
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'i " 2 .
(75) fia Griﬂli /I&i(ri,pi)l <

A

2 .2 72,2 i 2
4{¢ kB + (gg) (eCya, +eCok’ +eC k+2e)” +

2 1
144.2 2 82,2 222
+(-§~§-) sz+(-§-§) ecilc}s

"

2
4 x (%) {2e2|<812_ + (eczai-reczki-i-eclx-!-k)z +

+ (2e:x<i + sclx)z} S

} ‘ 2
+C1} + K Bi + aicz} £

2
22 2ucdizac

A

8 * 2

2
16 °

A

82, 2 1
B*(gx) * G <
Hence

3 5 1
ls2x() +55 =15 -

1
v 16

Thus, as a more explicit version of theorem 4 we obtain

PROPOSITION 12. Let {ri} be computed by RRDM with an arbitrary initial

machine vector %y and let ays 8 denote the parameters of theorem 4.

[ERE
Furthermore, let

} 3 1

(76) efe (1+C,+Cik y o+ KBiud»Bi) + ai(1+cz+c1|c)} g
then we have

iat oy 2
an - e -2 0

la* zl

1

The restriction {76) is quite arbitrary and the bound i“i+1§ < % is

deduced by a rather rough estimate; it can easily be improved.

Of course, the foregoing calculations also yield a more explicit ver—
sion of corollary 8, i.e,, if ai 50, By £ R, Yi z v and if (76) holds
when replacing a; . B; by @, B, then 111&"i rj_\'_lliz;"lm”i J:'j_ll2 s 1- (5}‘16)'\62

and consequently L 0 (i » =),
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REMARK 13, From lemma 2.2.6 it follows that

(78) a{x%{l +cz+c11<%) + xsi(1+si) + ai(i +c2+c1s<)} <

3/2,2 i
< dex Bi(l +C2+Cxx< )

and hence (¢f. remark 3 and remark 9) the sufficient condition for

convergence of r, to zerc, following from theorem 4, is weaker (and as

i
we shall see in most cases essentially weaker) than the sufficient

condition for convergence of r i to zero, following from theorem 1. 0

We conclude this section with an examination of the infinite sums
= it

2£=0 a rgll and I
tion 2.3.2.

® i
2=0 I a, A pzll . The results will be used in sec~

From corollary 2.2.5 it follows that algebraically, if all Yy Y

(79) Dot ep?ciateg? § -yt oy i ?

£=0 2=0

The analogue in the presence of round-off is expressed in (80).

LEMMA 14. Let {ri} be computed by RRDM with an arbitrary initial
maching vector g and let o, B, Y denote the bounds of corollary 8.
Then we have '

(80) ) T
2=0

zllz s v 2 sona r0112 .

under the restriction

(81) s{xi(iarcz) + KB(1+B) + af(l+C +C1K)} -0 .

2

PROOF. This is a direct consequence of corollary 8. 0

Algebraically (cf., theorem 2.2.2) we have ﬂai Zﬁs£p1L||2 = HA_"" riﬂz +

- lla’i r, _Hllz, and consequently

i-1
(82) T tagatpt® =t op? oat s
2=0 .

2
M

Hence, since | 2’&“é ri" + 0 (f+*) under the conditions of corollary 2.2.5,
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we obtain

(83) D ta,afp?cnatep?.
£=0

The analogue in the presence of round-off is expressed in (84).

LEMMA 15. Let {r,} be computed by RRDM with an arbitrary initial
machine vector %, and let o, B denote the bounds of corollary 8. Then
we have

o co

(84) I tagatpi? cnatxp? 40 §onatep?,
=0 £=0
under the reetriction (81).
PROOF. From (14}, (22) and remark 2 it follows that
' b2 b2 } 204 52

@)  lNa,a’p % =lis, atpi? + 216a}lla, atpl + sap it p? -
- b2 -4 42 _
=lla, a%pll”~ + ethiia ri“
R IN P S LN P P

i+l

under the restriction ekg(i +(22 +C1K£) + O, and consequently also
under restriction (81).

We obtain by‘ summation .

oo o

(86) $ nagatpi?ematrg?aom §oatey?,
2=0 2=0
which proves (84). 0O
REMARK 16. From (28) we obtain
(87) (x;,qP;) = (r;0py) ~ &, (p,,Ap;) + (8x] ,,p;) = (8x] ,,p) .

From (21}, (29), (33) and {(34) we get

(88} {6z

_i " i
RIS LR ECEN I

i+l
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149

{HA—i"”F;H e+ §<Sa:;.lllilai p,ll + ﬂA“%lIllJilillApill +

+ 12 hazine iiat o <

§ 4

< fex?+ (2eC,k* +eC K +€) +2ex£ +eCk) (1 +0{1)}HA—* z,l IlAipi“ =

otyta™ rinat pi

under the restriction etc%(l +C +C1|<£) -+ 0.

2
Hence, under the same restriction, we have

) v = @ ie abentzanh e at o -

= owia™t =0 y1a7 -

+1

We note that ccas;-1 wi ig the angle between the vectors A—é T4 and

A% Py From thecorem 2,.2.2(iii) we know that algebraically these vectors
are orthogonal. From (89) we see that in the floating point case this
orthogonality can be seriously disturbed if HA-Q riﬂ /HA“& ri+ﬂi is
large. Stated differently, the vectors at r,,q and A* p,  are approxi-
mately orthogonal, unless |l at r e at cll. 0

REMARK 17. Substitution of result (80} into (84) yields

o

(90} 2 fa Aépnz = (1’4-7”20(1))II111—%rII2 ‘
£ f A 0
£=0
under the restriction (81).
Of course, this implies that aiaipi + 0 (i), ]

2.3.2. The numerical convergence of {x;}

In the previous subsection we disregarded the computation of X, -
However, the step~wise linear convergence of the computed recursive
residuals §° zero does not guarantee the convergence of x; to %, since
in the presence of round-off the r, will wander away from the true

residuals B, o= b -Axi as we mentioned already at the beginning of

this section.

2.3.2 ' 65



The vector X4 18 computed from the relation X4 = xi-&aipi

quently, the error occurring at the computation of xi+1 can be of

order sﬂxiﬂ at each step and this ultimately equals elj&ll. Therefore,

. Conse~

3
H

even if no round~off would occur at the computation of r
1 ~a; Ap, the difference Hfiﬂ -T
something of the order cllallllRll. From this one can see that the assump-

tion that the machine has strong arithmetic in the sense of Dekker

i+l

= r I may at each step increase by

[79] (see (1.3.1) and (1.3.2)), is not sufficient to guarantee even
the uniform boundedness of fi-ri for all i 2z 0,

From his experiments Reid [71] found that 21 and r, depart from each
other rather slowly if the problem is well~conditioned. He showed that
any errors that occur in the evaluation of a, do not make a direct

141 304 £y y-
In the first part of our analysis we shall study the growth of the

contribution to the difference hetween r

difference fi-ri as 1 increases, and next this result will be used to
estimate the natural error HA*(&-—xi)"-

From the assumption that we have a machine with proper rounding arith-
metic (cf. section 1.3), we shall arrive at the conclusion that the
approximaﬁions x, are uniformly bounded. These approximations are com~

puted from the relation = x, +a

41 ; tagpy. Algebraicallg

bage, < 02 hnay atpn < i hnad 2

(cf. theorem 2.2.2) and hence {aipi} converges average linearly in
the case of complete accuracy. From remark 2.3.1.2 it follows that

this also helds in the presence of round-off. Hence we are in the
situation as discussed in remark 1.3.4, indicating the uniform bounded-
ness of {xi}.

We conclude the numerical consideration of RRDM with a one-round~off
error analysis (see section 1.3) which indicates the maximal magnitude
of the true residual at the moment where in the numerical process

HA%(i-xi o> HAi(i-xi)ﬂ occurs.

+1

We now first examine how much the true residual fi 1= b--Axi and the
computed recursive residual r; can differ. It turns out that the

sharpest result is obtained when using the natural norm ﬁA-i(fi-ri)u.
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LEMMA 1. Let {x;}, {z,} be computed by REDM with an arbitrary initial
machine vector Xy and let 2, :=Db-Ax,.
" Then we have for all i 2 1, under the restriction ¢ + 0,

. na"i&i-xi;n s w+ech il -rgn + sepadppan +

bif o4 sy 3 va al
-+ e{l+ex?) {(4:: +Cyk) (1 +0(1)) )3 llay A%p,ll +
. 2=0

i-1
UL T rzll} .
2=0

PROOF. For convenience we introduce the abbreviation

(2} vy &= A-iffi-ri) .

All O-symbols are assumed to hold undexr the restriction £ +- 0. For the

computation of ri_*,1 we have, according to (2.3.1.25)},
(3) r = x

- [}

441 =Ty T 83 Apg *F 0Ty,
(@ W8z 41 < (2 Nay 2pyll + ecy NAla; oD (240 (1) + eliryl
Consequently,

-4 4 4 eedpath
(5) a Gr;_ﬂll < (2ex +ec1e<}llaiA piuil +0{(1)) + ex?|A riiI .
For the computation of Xipq Ve have
(6) g = :EJ.(:«(1 +aipi) = (I +Fg") (xi-i- (r +Fi“)ai pi) =

=xg vagp ot

(7 6xi+1 1= P;" x 0+ (Fi" +F‘i'"(.T. +F5""))ai p, -
Consequently,
(8} Iliié Gxﬁill < SIIAillltinI + EGK%IIai Aipiﬂ(i +o(1)) .
S8ince
(9) e il = hg-2"12 = & + IIA“QII(IIAwifi‘ ~r M+ lll‘*“i r.ip

i i i i i
we cobtain
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4 L I } it 4
(10) Ia 8x, I < ela®HIRN +ex*Cly N+ 02 ° r )l +2)a, A%p, (1 +0(1))) .
From (6) we arrive at the following recursion Ffor fi 1’
(11 £i+1 = b-Axi+1 = lo-Axi--e:».iz;};ai-zkGxi_'_:t = fi-aiApi—Adxi+1 .

Conbining this with recursion (3) for'ri .1 We obtain the following re-

cursion for Yi+1 ’

_< % - 'i 1
(12) Yigg T¥y TR Oxp -2 T Arp,, .
In view of this and inequalities (5) and (10) we find

a3 Nyl < @ rechiy etz +

+ e(4u<%+cinc)llai Aipill(l +0(1)) + 2ax5nA'% il .

Backward repetition of this inequality yields

(14) iyl < @ +sg5;iﬂyon +
it §imt-1, } }
+e P la+eehyITTTARTIIRN + (4 +C k) flay AT p (140 (1)) +
2=0
+2|<"§wa'i rzﬂ)} .
since (1+exhi™ 1 ¢ (14ech)? we finally obtain

s Nyl < @ +ech gyl + senntinan) 4
by if g T e, ad
+ g(1+ex?)} {(4;: +c1x)(1 +o{1)) E uazA pgl[ +
=0

i-1
2t Y a7t rsu} ,
=0
as had to be proved. 0

i

terms of the solution %, the initial residual i‘g =Db *Axo and the

We are now ready to derive a bound for the difference l[A- 95. - i}“ in

number of iteration steps carried out.
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THEOREM 2. Let {x,}, {r,} be computed by RRDM with an arbitrary
inttial machine vector X, and let a, B, vy denote the bounds of
eorollary 2.3.1.8.

Then we have for i 2 1

. » -}
(16) fia (i‘i~ri)ﬂ <

1

< el +sxé)i{ni+clx+\/§:(4x£+2y— ac%-t-citc)}ilA"£ fol!(ii»o{ii) +

s atnzna s o

+ e(1 +eici)i{i+c i<£+5/:-fci(4s<‘+ 2y )

1

under the restriction

an ey’z{m4(1+c21 +KB(L+B) + all+C,+C0} > 0 .

2

PROOF. For the computation of T, we have

(18) ¥y = fl{b-2x)) = (I+F) (b~ (A+E)x)) = (I+F) (2, -Ex) .
Hence,
- r, = A’i #. 4+ A"%Ff - A“i(I-bF)Ex

(19) AT, 0 0 0

and, under the restriction ¢ + 0,

200 Iaheey -zl s echia™t 2+ ce et rommatinzg

Since x, = K- 12,, we have lxgl < Izl + Iapnad 2.

Substitution in (20) yields, under the restriction e + 0,

ey ey -rgl s e ecponm 2l + ecpciatinzn a o
and consequently, since "A"i roli < !IA_'% (g -zl + IiA“i 2ol
@ It o s aa7d g+ ecpchiatinan avoan

4

under the restrictiocon e(x +C1K} -+ 0.

From remark 2.3.1.17 and the Cauchy-Schwarz inequality we obtain
i-

' e al % e ato 2\ -2 -4
(23) I laga?pl < JI(): lla, a%p,l ) s (+y Tona g,
=0 =0
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under the restriction

(24) e{xi(l +C,y) + kB(1+B} + a(l1+C +C1K)} +0 .

2
Consequently, undexr the restriction (17), using (22) we get

i-1
(25) ) liazaipztl < /i (1+o(1))IIA°§rOII <
£=0

< L teg + ccpciatinan a+om .

(Note that restriction {(24) is included in restriction (17) since
1-2 z 1.)
Analogously, from lemma 2.3.1.14, it follows that
S R R L '
(26) I a0 < v’i’(ﬁ}j Ia rgn‘”’) s AyTIA Pzl +o (1)) <
=0 =0

s My taate )l + ccpciatinan avoa)

under the restriction (24).
Substitution of (21}, (25) and (26} into (1) completes the proof. 0

REMARK 3. Since Y;l £ Bir%, theorem 2 is also valid if we replace all
Y by ﬁri. 0

REMARK 4. Instead of measuring the difference between fi-—ri in terms

of the norm Ha_ﬁ(fi-ri)ﬂ we may as well try to measure g, -x
From (12) it follows that

i" hd

- — - - - ¥
@n Tipr " Tyeq = By Ty CASK - 08r

and consequently
i i
- - *
(28) e, -x 0l s W2g-xl + § Iasxl + J lsxyl ..
=1 f=1
Estimating each separate part we find under the restriction € »+ 0

HrO-rOH < eﬂrcﬂ + eciﬂAH"xOH(1-+0(1)) ’

1 , i-1 by
I nsxl < ellall § olix b + 2ecUa’l 1+ 0(1))
=1 =0 )

151 )
a, 2%p, 0l
o 2T
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i1
DI
£=0

; byl 5 s, at
I ezl = ez+ch it +om) § llaga
=1 =0

4
Pzﬂ + ella‘]
where we subsequently used formumlae (18), (16) and (3).
Substitution into (28) yields, under the restriction ¢ + O,

i-1
(29) Hfi-riﬂ £ e{"roﬂ + C,laltix it + Hhﬂzzoﬂxgﬂ} +

i-1
. e{<z+2x5+c1;<5>ua*||(1+a<1)> I s atpl +
2=0

b 5t
+ Ia% § 1a rgﬂ} .
=0
The last two sums can be replaced by (25) and (26) under the restric-
tion {17). The first part of estimate (29) is an a posteriori esti-
mate; a similar a posteriori estimate can be written down in (1). Com-
paring (1) and (29) we observe that the corresponding factor for the
last two sums in these estimates differ {apart from the numerical
constants) by a factor "Aﬁiﬂ and hence, as far as these two sums are
concerned, estimate (29) is sharper, even though it measures ii -r in
a different norm. However, replacing the first part of (29) by an a
priori bound (as we did in lemma 1) destroys this superiority. |

From the inequality

e Iateexpn s e -ron + na7iey

and the fact that NA_iri" + 0 (1 -+, if (17) is small enough, we
see that (16) yields an estimate for the ultimate behavior of
HA*{&-xi)". However, estimate (16) contains the number i of iteration
steps and this estimate certainly is not bounded as i tends to in-
finity.

In the next theorem we take a suitable value of i. For this value of 1
the right-hand side of (30) is small in the sense that i is not too
large to give an unacceptable bound for Hafﬁ(ii-ri)ﬂ, using (16), and
i is not too small to let naf* r,ll be unacceptably large.
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THEOREM 5. Let {xi}, {ri} be computed by RRDM with an arbitrary
inttial machine vector %, and let a, B, Y denote the bounds of
corollary 2.3.1.8. Furthermore, let

31 N := ent(2y > log ';1; +1) .
Then we have
(32) !la%(x-xﬂ)u <

< ef1 +|<i +C1K+2Y-1(4K£ "“2\"1

o +CyK) log -::}IIA-% gl (1+0(1)) +
+ el +epet v 2y7? tog Buatiiai o

under the restriction

(33) s'y—2{l<&(1 +C,) + kB(1+8) + a(l +02+C1K}} +
+ e*{-i{K"l‘(l +y_1 +Clx&} log -é--* 0.
PROOF. From corollary 2.3.1.8 and the definition of N it follows that

(34) ﬁA—i erl < (1-*{2(1 +0(1)))iN|¥A_§rOH <

logl/e " A-% r

2 -2
< (1-y“(1+0()NY ol

= exp{~ (1 +0(1)) 1og~€1-) ua‘%xou .

under the restriction (2,.3.1.70) and consequently alsc under the
restriction (17).

In fact, the O-symbol in (34) stands for the maximum v of all I\;i“l
(0 £ i £ N~1) of theorem 2.3.1.4. From (2.3.1.46) and (2.3.1.47) it
follows that v can be boundéd in terms of (2.3.1.70) and thus in terms
of (17}. Consegquently, the expression exp (- {1 +0{1))log 1/e) in (34)
can be replaced by e{1 +0{1)) under the restriction (17).

Hence it follows with (22) that

@ a7t rg s cavoun aat 2l + ocwymatyan |

under the restriction (17). Furthermore, since N < 2'7-2 log %:- + 1 {and
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e <el) we have n! < 2y 1og 1/¢ and

{1 +exi)u s Aexp(Nsxs) < exp(ski(Z‘{-z log -éi--!— 13y =1+0(1) ,

under the restriction ey 2 o log%- + et a0,

Substitution of these inequalities in theorem 2 and taking i = N yields

(36) » I!A"*(fu-rn) i<
£ s:{ucé «!-Cltc +2’Y-1 (4|ci -4-2*(’I |e:é + Cltc) log %} st“i i‘on(l +0{1}) +

+efzy?logl+ 14 Clzi}ﬂhimli‘:ﬁ(l +o(1)) ,

under the restriction (33}.
Note that the terms in (33), containing log 1/¢, are needed to assure
that (1+(-:|<5)N = 1+0{1} and to assure that

eu*<4x*+2~f1r*+clc> = o1) .

Inequality (32) now follows from (30}, (35) and (36). 0

REMARK 6. As in the case of theorem 2, theorem 5 is also valid if we
replace all y by Bnci (see remark 3). ‘

Note that in fact l\ii < 27_1(1°g Ife)i holds and that consequently in
(32) the first log 1/c may be replaced by (log 1/&:)i and that also in {33)
this replacement is allowed, but this is a rather small improvement

and therefore deleted. 0

REMARK 7. Instead of the estimates of subsection 2.3.1 we could have
used
i-1

(37 1 llA.irzli < ua’ixon ) a-v2a+ountt <
=0 2=0

A

na‘*ru ) -2 ot s
0" 40

A

27'2na”*r01| (1+0(1)) ,

and (see remark 2.3.1.2) ,
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i-1 ) °
(38) I lagafplls (teot)) § Ia%s

I sy i b gasoan ,
=0 £2=0

2
under the restriction (24).

Both bounds do not depend on i. However, for 0 £ 1 £ N, the bound of
(26) is of the same order as the bound supplied by (37), whereas the
bound of {38) is a factor 7-1 larger than that of (23) (apart from a
factor log 1/¢). 0

We now investigate what happens to the approximations x; as the compu-—
tations are carried out beyond iteration step N. As we mentioned al-
ready in the introduction of this subsection, our result will be based
on lemma 1.3.3, due to the fact that we have a machine with proper
rounding arithmetic, and the fact that "ai.pi“ tends to zero as i
tends to infinity, if (33} is small.

THEOREM 8. Let {x;}, {r,} be computed by RRDM with an arbitrary

0 let o, B, ¥ denote the bounds of corollary
2.3.1.8 and let N be defined as in theovem 5. Then we have for all

i 2 N the inequality

initial machine vector x

(39) A llAi(i-xi}l[ s ef1 -Mci +C !<+2’y-2(1 +BK&} +

i

1

+ 21-1(4Ki+27- x*-+c1n)1og %}ﬂA'£20H(1+0(1})+

2

+ ef1+cC Ké +2y © log é&ﬂAiHHRn(i-fo(l)) ’

1
under the restriction (33).

PROOF. Since x = X, + apy + 8x (see (6)), we know that for

sl T Xy 141
i >N
1a} ig* ! Z
(40} MAa(x, ~x )l < la, a%p, Il +
1% = YTV gt

Haéaxﬂ{.

Analogously to (38) we find for the first sum the estimate

i-1 w0
(41) ) llagAipgll s (1vo(1)) ] uA'*rgu <
=N 2=N

s o 2t vomn
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under the restriction (33} {(note that (33) implies (17), which im-
plies (24)). A

'~ This proves the oonvérgence of the first sum. Since generally x4
will not tend to zero as i tends to infinity, the convergence of the
second sum in (40) does not follow from (7). However, from lemma 1.3.3,
due to the proper rounding arithmetic, we may conclude that instead of
(6) one also has

= "m
(42) X4 =X + {I +Hi) (T +F1 )ai b, -
and therefore, instead of (8), under the -restriction e -0,

i i iiid
(43) a 6xi+1“ < lia (F" + Hi(I +F) yia, p,ll

1Py
£ e+ (B+e) (1 +o(1)))t<£llai3\ipil! .

Together with (41) this yields

b sl 55 e ad
(44) ) Iafexll < (e+(B+e)(1+0(0)))k? | llaga?pll s
f=N+1 2=N

s 28y 2chiat r a0

under the restriction (33).
Prom (34) and (22) we know that under the restriction (17)

un Wtz s casomnant ey + ccpchiabinmn .
Hence, from (40), (41), {44) and (45) it follows that

(46) lIAiixi-xN)l! P 2‘sf-2(1-!~B|<i)llA"i rNII(l +o(1)) <

< 2ev"201 +8Ki}l|A.£ 2ol (1 +0 (1) +ec(1)ﬂl§illllﬁ"

under the restriction (33). (We remark that the second 0-gymbol stands
for 257-2(1 +Bxi)ciré; if the base B of the floating point numbers is
regarded as a fixed integer, then the term containing B can be omitted
in (33), as is actually done.)

“since Iat-x)l s Iat@-xpl + 1akix, - x 1, tnequality (39) forlows
from (32) and (46). 0

Again we mention that in theorem 8 all v's may be replaced by 6&*.
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REMARK 9. Comparing {32) and (39) we see that the bounds for the natu-
ral error lla (Rf-xi)ﬂ at step N and at all later steps do not differ
essentially. Here we shall not present a detailed discussion on:the:.:
influence of and the interaction between the separate terms occurring
in estimate (39). This discussion will be given for the gradient method
in Chapter 3 and for the conjugate gradient method in Chapter 4. Note
that, if r, = 0 for some i 2 0, then certainly (32) holds for ..
NA*{%-—xi)H if i € ¥ and (39) holds if i > N. 0

Algebraically for every DM, “A"% rdl converges step-wise linearly to
zexo (cf. section 1.4) under the conditions of corollary 2.2.5 and
consequently HA“% ri+1ﬂ <IIA-£riH holds for i 2 0. We have seen that
for RRDM this also holds numerically if expression (2.3.1.70) is small
enough. Algebraically, for every DM, Haé(i-x o= Ha-éx H and cone
sequently also HA%(R - % }H < Hki(ﬁ -%; i holas for all i 2 0. How-
ever, in the presence of xound-off the relatlon HA%(ﬁ -x )H = [|A ir "
does not hold and consequently one might ask whether HA%(x xi)ﬂ con~
verges step-wise linearly for all i 2 0. Another guestion concerns the
magnitude of the error % -x., measured in some norm, at the moment
where the step-wise convergence of HAi(ﬁ-xi)H is destroyed by round-

off errors.

These questions are not only interesting for RRDM but also for TRDM.
In the next section, where we consider TRDM, we do not give an upper
bound for the natural error HAi(i-xiNt at a fixed step (i = N},
neither do we give a limes superior result for the natural error, but
we only deal with the problem just mentioned, viz., the monotonic de-
crease of "Ai(i-xiﬁl is disturbed at a certain step, what can be
said about the error Hﬁ-—xiﬂ ? In the remaining part of the present
subsection we consider this problem for RRDM which enables us to point
out the difference with TRDM. For brevity, we treat the case that
there is only one type of arithmetical operations during the process
where round-off occurs, whereas all other arithmetical operations are
assumed to be carried out with complete accuracy. This kind of incom-
plete error analysis is a so-called one-round-off error analysis (cf.
section 1.3). The only operation involving round—off will be the
matrix by vector product computations, i.e. fl(Api) = (A'+Ei)pi;

llEﬂi < eciﬁAﬂ (wve assume that Ax x, is carried out with complete
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accuracy). The reason for this choice is that in the restrictions and
estimates of the foregoing theorems the terms including Cl, correspond-
ing to matrix by vector computations, contain the largest powers of «
and therefore this operation seems to have the largest influence on
the numerical behavior.

Of course, all results deduced so far inthis chapter for RRDM and using
fleoating point arithmetic for all arithmetic operations, are also
valid in the one~-round-off case at hand. It is obvious that terms ap~
pearing in estimates and restrictions and not containing the factor

C1 can be omitted, since they entered thé round~off error analysis
because of other arithmetical operations than the matrix by vector
product computations. For instance, restriction (17) is replaced by
restriction (49).

THEOREM 10. Let {x,}, {ri} be computed by RRDM with an arbitrary
tnitial machine veetor Xq. Assume that only the matrix by vector
products Bp, (1 2 0) are carried out in floating point arithmetic, all
other arithmetical operations being executed exactly. Let ays a5 Bs ¥y
dencte the parameters and bounds of corollary 2.3.1.8.

Then we have for all 1 =2 0

nad@-x,, 12 nat 2
4n et oyl ey,
Na?x-x)1° Liadgy? o

where fi = b».a.xi and

b 1t £l
| = 2¢ Jiaicix AR we——— (140 (1)) + 0{1} ,
Izl

1

(48) ‘mi-i-i

under the restriction

(49) t-:'r-zaclt:: -0,

- -4 -4
I?ROOF.i Since X1 = xi+aj§ pi, or eqliivalently, A fi+1 = A ii +
- aiA Py we have for A i-i-fl (= A (x-xi_u))

(50) il A_i

2 . -b. .2 2,4 .2
2% =0a7 2% - 2a (2 p) + allatp” .

In view of
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(51 (pi.fl(Api)) = (pi'(AJrEi)pi} = (pi:Api)(1+ui) ‘

- ] 2 2 ) 2
(52) Clug b= ey Byp ) | /1A% p T < ec liallp 1T /1A% p T < eCyc
we have the following relation for a;

(r..p,) (r,:p.) (x,,p,}
(53) a, = :Siat MR 1 SIS R T T
1~ To,,£1(Ap,))  (p;,Apy) (L +uy) _ (B, ,Ap,) i

{54) lGa;l = lui/(l +ui)l = eCik(1+0(1)) = o(1) ,

under the restriction SCIK -+ 0.

For the computation of X Ve obtain

(55} Tie 5% Ca fl(Api) =r, - ai(A-l-Ei}pi =

- - []

=rg-oayApy b,
(56) sr1.. =lla, B, p.ll s ecctiabiya, alpy .

i+l ;A R A 1 1 i
From i = sci +ai Py it follows that the residual vector fi gatisfies
£1+1 = i‘i - ay Api and hence, together with (55}, this yvields
- - - — 1

fi‘!’l LI i‘i r, 6ri+1. Since A*xO is assumed to be computed

with complete accuracy, we have ro = ?0 and hence

i
(57) B o=r; +6r, , 6r :=- ] ér .
2=1
Consequently,
(58) (?.i'pi) = (ri,pi)(1+li} :
llil = I(Gri,pi) / (ri.pi)l < Wéx il Ziir,Nay .

Substitution of (53) and (58) into (50) yields

“ty 2. mhe? o

(59} a 141

2 * 2 " ” 2
- (ri,pi) /la piu (1 +2Ai(1+6ai) - (Gai) )

or (using that v, = |{x,,p,)| / ma”t e mnatp 1y,
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pat g, 0 iat 2 2
+1 2 i
{60) ._-......:;......_2_ = ] - ﬂfi —-i—-——z. (1 ""“’14-1) .
1z en? TLEN]

61) 0y, = 2}, (1 +8a]) - (Sa;:)z )

i+l

From (2.3.1.84) and (56) we cbtain (cf. (29))

N8z i’l I ! *iii t
{62) §r Il < 16xll < ec,k?lia®l la, 2% p,ll <
i =1 ¥ 1 P 1

<e /{cln*;m*n( ) ||3£A%p£“2) <
2=0
<e v’i‘cixlﬂzs*llﬂzfi gl (1+0(1)) ,

under the restriction (49).
Estimate (48) now follows from (54), (58) and (62). 0

REMARK 11. From (57) it follows that

T T
(63) a7 e 0?7022 e 1% = 140,

(64) 8 i £

1t sz nat ez
= (2 A ) ’
1ateg na~dey

and hence (47) can be written as

nad@-x,, 002 )
(65) =1 -y {i+eg )
a (ﬂ-xi)li
where miﬂ = mi+1(1 +ei) + ei‘ For our purposes, however, formula (47)
is more appropriate. O

The type of estimate (48) for w is different from the type of esti~

i+l

mate for n as given in theorem 2.3,1.1 and for v as given in

i+t
theorem 2.3.1.4. The estimate for n
and this also holds for v

estimate of @

i+l
141 is uniformly bounded for i 2 O

141 if oy is uniformly bounded for i 2 0. The
L1 certainly does mot have this property since it contains
a factor i in the numerator and a factor |l ri-ll in the denominator for

which algebraically llrill >0 (i + &),
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Another minor distinction between n 141 and v 141 on the one hand and
®; 44 on the other hand, is the presence of the initial natural error
-4

lia toll .

We recall that we are interested in what can be said about the magni-
tude of the error St-xi, measured in some norm, at the moment when
for the first time “Ai(k-xi_'_l)ll > llAiis‘c-xi)I!. It follows from (47)
141 -1 and hence Imi+1! > 1.
In order to demonstrate how this last inequality can be used to esti~

that at this specific moment certainly w

mate % - x, in terms of the norm ||A($:-xi}l! . we first consider an ex-
plicit version of theorem 10,

By retracing the proof of theorem 10, like we did in subsection 2.3.1
for theorem 2.3.1.4, one can prove that if

{66) E‘Y_2 Ciuc(l +a) S % .

then estimates (62) and (48) can be replaced by explicit bounds, i.e.,

67) nez,l < 3 e epdiabiat e
and

6 b when o,
(68) lmi*li < TE 1 uicix Ha<g Wi— (g) .

We now assume that {66) is satisfied and that III\i (2-x5.+1)“ >||Ai (ﬁ-xi) i

holds for some i = O. Then %mi | » 1 certainly implies

+1

(69) tlxill <2 %—e /i oy clniuaiuufi Fa

oll -

Since !I’fiﬂ < llﬁEill + llryll and o, 2 1, we obtain, together with (67},

i
for the residual vector A(i—xi) (= ?:i)g

2

55 € Vi o clrcinzux%nup.”i ?

(70) la-x)l < 3 ol -

Summarizing, if (66) is satisfied and Ilai (S:-xi+1)ll > IlAi (S‘c-xi)lh then
the residual vector A(RX ~ Xi) satisfies (70).

We now return to the general case. Using o-symbols, the following
corollary of theorem 10 follows from the same arguments as used in the

explicit example,
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COROLLARY 12. Congider RRDM performed under the conditions of theorem
10. If IIAi(R—xi_H)II > IIAi(i-xi)II for gome 1 2 0, then the residual
vector A(R -x,) satisfies

(71) ||A(2-xi)|| < 3¢ /i o ClkillAillllA_ifoﬂ (1+0(1)) ,

under the restriction (49). 0

The meaning of (71) diminishes as i increases. However, if i is no
greater than N, defined in theorem 5, then certainly /i< 27—1 log 1/¢

and consequently

-1 b4 -4 1
(72) llA(ﬁ-xi)lI < 6ey a, Cx 1asia i'oll log < (1+0(1))

under the restriction (49). Note that (72) contains the unifoxrm bound
vy for vy i and the actual value of a, . For values of i greater than N we

have already in view of estimate (39) of theorem 8,

Y1ogdycpuinte i soay

(73) HafR-x )l < el + 2y
under the restriction sy-z aclnc + ey_l C1K log 1/e + 0, and hence, for

the residual vector

(74) 1a®-x)l < et + 2" Log Degrnabina™ e (son .

(The absence in (73) of those terms in (39) not containing C1 has been
explained already; all terms in (39) containing [[®]] are absent because

of the supposed exact computation of r, = b—Axo and X4 =% +ai pi.)

So, we can use (71) if monotonicity breaks down before iteration step
N and we can use (73) or (74) if this happens after iteration step N.
In fact, if monotonicity breaks down at a certain step, one might as
well stop the iterative process since .then apparently algebraic proper-
ties are drastically disturbed by round-off errors. The problem of ob-
serving in practice, when monotonicity of IIAi(i‘:—xi)ll breaks down is

discussed in remark 2.4.9.
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2.4. The trhue nesidual descent methods [TRDM}

In this section we consider the numerical behavior of TRDM. The only
difference between RRDM and TRDM is the way in which the residual
vector X, is determined. In TRDM one determines r, from the relation

r, = b-—Axi, in fact this relation explains the name residual vector.

The vectors x; and ri are directly coupled at each iteration step.
Round-off occurring at the computation of Xy immediately affects the

computed vector r, and therefore TRDM seems to be more self-restoring

than RRDM, where ihe sequence {ri} could be computed without even
computing the sequence {xi}. Moreover, the difference between the
computed residual r, and the exact residual b-—Axi is only caused by
computational round-off at one step, whereas for RRDM we saw that this
difference is influenced by all previous round-off errors, except for
the round-off during the computation of a;. In computing the residual
from the relation r = b-—Axi, a round~off error is introduced which
ultimately is at least of the order ecluauﬂﬁn. Consequently, in the
case of finite accuracy, it is rather unlikely that r, tends to zero
as i tends to infinity. Here we have a first, although rather obvious,
difference between the numerical behavior of TRDM and RRDM.

As far as computational work is concerned, for RRDM only one matrix
by vector product A*pi is computed at each iteration step, whereas
for TRDM there are two, viz., A *P:L and A X . Therefore, from this
point of view RRDM is to be preferred.

Recall that TRDM, corresponding to a given sequence of arbitrary non-

zero vectors {pi}, consists of the following statements.

TRDM
Choose an initial point Xq?

r, = b-—AxO; i = 0;
while r, # 0 do
begin
(1 a; = (r;.p;) / (p;s8p;)
(2) Xigpq T + a pi:
(3) T = b--Axi H
i :=4i+1
end.
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It is obvious that for TRDM we cannot study the numerical convergence
of {ri} separately from the numerical convergence of {xi}‘ The follow-
" ing round-off error analysis is performed under the same conditions
and conventions as in the previous section and it is also rather par-
allel and equal in character to the analysis done there. The presence
of the same symbols ai, Gai, 6r£ o’ etc., does not indicate that they
stand for exactly the same quantities, but it only expresses a certain
correspondence.

Before starting off the round-off error analysis of TRDM, we first
deduce some auxiliary results concerning.the computation of a residual
vector b -~ Ax. This result will be used in many considerations where

the computation of a true residual vector is carried out.

LEMMA 1. Let b, x be two machine vectors and let

(4) := b~Ax , r := fl(b~-Ax) .
Then we have
2 2
{5) (2,x) =211 +0(1)) = {xi"C(1+0(1)) ,

under the restriction €(1+C,9) + 0

(6) e, 2 0 = e aron =t asoan
under the restriction sni(i +c.¥) + 0, and

%) @0 = 1al2i? qeon =pat ) w0
under the restriction e(x“‘ +Cyx) > 0, where

(8) 9 = Hallixll Z0z) , ¢ := llhiilllel /llPi.i 2y,

3/2

x = 1237201 702t 2 gy .

PROOF. We have

9 r=flb~-ax) = {I+F) (b~ (A+E)X) = 2+8r ,
(10) 8r := F(b~Ax) - (I+F)Ex .

Consequently,

(11) locl < ellgll + e(1 +e)c,alix|
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and hence, under the restriction € =+ 0,

(12) 6zl /2l 5 ect+c ot +o()) ,

(13) i Hern /it < ecdac o

{14) IIAi sxll / IIAi b{ E(KQ +Cix(1+0(1))) .

or

(16) I8zl /Ilel = 0(1) , under the restriction (1+Cy9) » 0 S
(7 llA-% Sxll / III-\"i 2l = ¢(1) , under the restriction szi(i-&ciq;) H—>O ’
(18} I A% Sxll g"lli\é #ll = 0(1) , under the restriction e:(vci +Cyx) » 0 .

The first equalities in (5), (6) and (7) follow immediately from. (9}
and the appropriate inequality (16}, (17) or (18). The seceond eqguali-
ties follow from the fact that for £ = 0,~},} one has

lna* zt - 1a* 20| < 0a* 621 < na* 2101y ,
under the appropriate restriction. ) 0
REMARK 2. Note that

{18) \bS@éxSK%mSm{é.

Consequently, in the restriction of lemma 1 all ¢ may be replaced by ¢
or X, all ¢ may be replaced by Y or Kélll, and all x may be replaced by
thp or xy. 0

We now deduce a theorem where the influence of round-off on relation (i)

of theorem 2.2.2 is expressed in terms of an absolute error. The proof

is very similar to the proof of theorem 2.3.1.1.

THEOREM 3. Let Xis Py be two arbitrary machine veetors {pi # 0) and
let Xy 41 be computed from one step TRDM, based on these vectors. Let

{(19) ?, == b-Ax, ,

(20) vy = (g p) 1/ a~t finlmipill) '
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(21) ¥ = ||Ai|| Ix, 1 / 14 g0l

Then we have

2
iatz-x, 1
(22) i+l —=1- yi A
12tz -x,)l
where
@) Ing,l s 4e(2t<£+¢i)(l +o(1)) + en*(c2+c1.<"‘+c1¢i)o(1) ,

under the restriction

(24) e{ni(l +c2+cln<i) + (1 +c1|<i)wi} >0 .

PROOF. From (9) and (13) we know that the computed vectoxr T under

the restriction € -+ 0, satisfies

(25) =2, + Gri ,

3y T %

(26) TS 6ri||/||A"*f < en*(nclwi(uom)) .

Al

From the proof of theorem 2.3.1.1 it follows that for the computed a;
there holds

£1( (ri,pi)) ) (ri.pi)

F1((p, A0/ by

27 = fl
@7 ! ( (Pilaei) i

/
Ve
i

(28) l&a:'Ll < (2t-:02|<i +eCyk +€)I|A-£r rill / IIAi p;l(1+o0 (1),

under the restriction

(29) e(l+cC |<4+C1|<) >0 .

2

Together with lemma 1 this yields

{30) ISail_s (2ec2|<4+ec '<+e)|lA'i iill/llAipill (1+0(1)) ,

1

under the restriction

(31) EKi(l +C,+C |<i +C1wi) +0 .

1

Substitution of (ri’Pi) = (:Ei,pi) + (8r )} into (27) yields

1Py
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(32) a, = 5i + Gai '

where
(30 §a, = (6r,,p.) /At p % + sar
it 1Py 1 1°

From {26) we obtain, under the restriction & -+ 0,

(35) l(sri,piuzim*pinz < zsa"icrin /iatp s

4 -1 3
S ex (1+clwi(1+o(1)))lla R ZUNA Lo H
Together with (30) this yields, under the restriction (31},
(36) boa, | < et +etaacedrcescedymnten zuatp i ron)
i 2 1 1 i i i *

This obviously implies, under the restriction (31},

(37) LA iate i /uatp o .

For the computation of X, Ve have

(38) TR fl(xi +aipi? = (I +F]f_") {xi + (I +F:{)ai'pi) =
=% *&p *"s"i«-x ’

39) 8x, . = Fi"x, + a;ipi +V; D,

(40) Vi = a, (F; + Fi" (x +F;)) .

Consequently, from (32), (37) and the fact that I&il <0 Ani fill /1 Ai p,lt

we obtain

(41) ol < ge(lail +rs;im1+cm) €

< ZE“A-% g/ I1A£ p/i(1+0(1))

under the restriction (31).

We now express n in terms of Sxi . From (38) it follows that

141 +1
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4 } i
(it-xi) -aApi—A 8

(42) Ai(ﬁ-x i

141 = A Xip1 !

and hence, by taking sguared norm of both sides,

i 2 i .2
(43) Ia (Sz—xiﬂ)ll = fla (2-xi) -4 pil! +

- L 2
- 2(21 éiApi,Gxi+1) +ia sxﬂ_lll .

From the definition of &, we cobtain

i

(44) iatz-x,_ 2 = 1atix-x)12 - 2,002 71adp 2 &

i+l i 174 i

- 2(2, -5, Ap,, 6x, ) + Iadex, 112
F A T A RS i+1
which leads to the basic formula
P 2
ta (x-xi+1)|| 2
(45) I R F U PPUR
Ia (ﬁ-xi)il
where Yy is defined by (20} and
(46) n := {2(8, Ap, ~ ¢ 51; ) «i-lli"si 8x llz}flia’§2[)2
: i+t A B R £ 51 1+1 A

It remains to be proved that N1 gatigfies {23) under the restric-

tion (24). Note that (ri-ai Api, pi) = ( and therefore the term 5Eipi
in {39) cancels when evaluating the inner product in the numerator
of (46). Consequently, from (33), (39} and (41) we obtain, evaluating

term by term
(47 (#, -4, Ap,, 6% )/“-&”2 <
179 APy %X i
< {lli‘iIIHFj'_"iHlxiil + lailllnpiﬂllﬁ'i" llllxill + 12 v e, I +

..& 2
+ 18, 1Map, NIV, o Y 71872 2,017 <

s 2lrpiy, + 20y cdiatp i ia e s 2ty 42t v )

under the restriction (31).
For the second order term in (46) we obtain from (33), (36), (39)
and (41)
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4 AR T
we)  iatee 1%/ de?
‘ 2 -2 2 2 : -3
s alle 02l 12 + sa ) 20 atp 17 + v, 120AN e 1%) /12" e 2 <

< ate®y? + (a2 v o iatp 12 /a7t e 17 <

< 4{321;:5 + B(e2 + szn +4ezch + echzz + szcimpi) +4£2} (1+0(1))

under the restriction (31).
So, finally, we obtain from (46), (47) and (48)
(49) ln“ll

[

< 4;:(2|<i +¢i) (1+0(1)) +

2 2

+ ae2(12 + 8c + 32c5K +8c1|<2 +w§ +8cfx¢i) (1+0(1))

under the restriction (31).
As this inequality can be written in the more compact form of (23},
under the restriction (24), we have proven thecrem 3. 0

Note that both constants C, and c2 do not occur in the first order

1
part of {23). In the error analysis these constants only appear in the

absolute error 8a, and, as is explained for the recursive residual

1
cases, this absoclute error does not appear in the first order part of
(47).

REMARK 4. Theorem 3 can also be written in a form closer related to
expression {ii) of theorem 2.2.2. We have

2 2 - , 2 2 - 2
Yy = (i‘i.pi} / (kA éi‘:'.!HEAi Piﬁ) = Iléi Aipill /A ifitl ’
where, according to (33), éi = (i‘i,pi) / (pi.Api) .
Consequently, (22) can be written as

i 2 i 2 ). 2
A% (==, 07 + 18, A%p " = (1+n, DA% @=-x))” .
It follows in particular that, under the restriction (24),

IlAi(i‘t-x ] (1+0(1)}11A§(fc-xi)ll ’

i+1

ta, alp s asoantati-xpn .
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Using (32) and (37) this yields, under the restriction (24),
} 4
llaiA pill < (1+o(1))la (R—xi)ll

Retracing the proof of theorem 3 and replacing all 0-symbols by defi-
nite estimates involving explicit numerical constants one can prove

that |”1+1| < 22/40 if

} o1
€K (2+02+c1|< ) < 20 '
and
e(l1+cC Ki)lb < -1-
1 i~ 16 °
Hence
tadiz-x o1 < ae2nat@-x
i+1 - 10 i !

4 3iiadig-
HaiA pill < (1 +-i-0—)IIA 164 xi)ll .

Furthermore, it follows that

3 KITIN PR
Na, a%p,ll < (1+5lA% (=)0 . 0

REMARK 5. It is obvious from (22) that the natural error IIAi(ﬁ-xi)II
cannot increase more than a factor (1 + IniHI)i
i+1 (cf. remark 2.3.1.3). In view of (23) and (24), ni_,_1 is small if

at the step from i to

(50) a{ni(l +c2+c1|<£) + (1 +c1|<%)¢i}

is small. The second part of (50) depends on wi and consequently on

Xs 0 whereas the first part only depends on the machine, the implemen-

tation and the matrix involved. The restriction e(1 +C1|< )lpi < 1/16

4

quently, at the step whexe e(1 +C1K%)\Di € 1/16 is not satisfied (as-
4

1

order of magnitude of the inherent natural error (cf. section 1.3).

(say) is satisfied iff lla (5‘{—xi)" > 16e(1 +C1K%)"A£"" xill and conse-

does not depend on k), the error lla

suming that C (:‘(-xi)ll is of the

Therefore, at that moment we might as well stop the iterative process.

O

In order to obtain results concerning the monotonicity of the natural

error IIAi(i-xi)" the next theorem (where we estimate relative errors)
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is more appropriate than the previous theorem. The proof is very simi-

lar to the proof of theorem 2.3.1.4.

THEOREM 6. Let x,, P, be two arbitrary machine vectors (p; #0) and
let x; 4 be computed from one step TRDM, based on these vectors. Let
Y By be defined as in theorem 3 and let, according to (2.2.16),

(2.2.17) and (8) the numbers oy Bys 9y be defined by
(51) ay = Nellpll /12,01 ,
(52) 8. :=lz.mal ot 7 aakil @, 00 1)
i° i i i'%4i 4
(53) 0, t= Iallix, 0 / Uizl .

Then we have

natz-x, 02 )
(54) — 3 - 1-yili+v, ),
122 (% - %)l
where
}
(55)- Ivi+1l < 2e{2« +2ui+ei(1+ei)tpi}(1 +0(1)) +
+ e{(c,znci +CyKk) + a,Cy + claiqai}o(l) '

under the restriction

| } 4 ,
(56) el (1 +cz+cv1|< ) + e (1+C,) + (Bi+c1ai)tpi} +0 .

PROOF. From (9) and (10) we know that the computed vector x, satisfies
(57) r, = Ei + 6ri '
(58) Il Srill /Ilrill < el +c1¢i(1+0(1))) '

under the restriction £ =+ 0.

1f we define aJ!_ = "ri""Pi" /| (ri,pi) |, then we may conclude (cf.
theorem 2.3.1.4)

fl((ri,pi)) ) (rippi)

F1((p, ,Ap,0)/ ~ (1 +8a7)

59 = fl(
L ®, p,)

90 2.4



4
(60) |6a;| < (eczui + €Cok® + €Cix + e)(1+0(1)) ,

under the restriction

(61) e(1 +C2K£+C1K) +0 .

However, we want to have expressions in terms of ai defined by (51

From (57) and (58) we obtain under the restriction ¢ -+ 0O,

(62) (rgep;) = (E,,p ) (141)

(63) |Ti| I(Gri,pi)l Al (fi,pi)l < ( Grill /Ilfill)ai <

A

ea, + sclaicpi(l +0(1)) ,

and hence I'ri| 0(1) under the restriction

(64) ea, + eclai(pi -0 .

).

(Note that oy = 1 and hence restriction (64) implies the restriction

e = 0.)

In view of this and taking into account lemma 1 we find

(65) ai =ai(1+0(1))

under the restriction (64). Substitution of (62) into (59) yields

(66) a, =3 (1 +s§i) .

(67) s, := (2,,p,) /ladp 12
it i’y byl v

(68) §a, = T, (1+8ay) + 8a) .

From (60), (61), (64) and (65) we obtain

~ }
(70) I6ai| < efl(l+cx?+cix) + @, {(1+C)) + Ciap, (1 +0(1)) ,
under the restriction
4 4
(71) e{k (C2+C1K ) + @, + claitpi} +0 .

The vector 5xi+1 in (39) can be written as

2.4
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- N iy
(72 8x,,4 = Fi"x, + & (6a, p, +M, p,) .

., - ~ " " "
(73) My =&V, (1+6ai)(Fi+Fi (I+Fi)) v
(74) “Mi" < 2e(l+0(1)) ,
under the restriction

4 4
(75) ele®tc, +ck®) + o, (14c) +ca0} >0

Instead of transforming (44) into {(45) we may also write

“Aé(ﬁ-xi_‘_i)ﬂz

(76) P Y
Iaz(z =x)l

=1-viaey, ),

where Yi is defined as in theorem 3 and

2
(77) v 1= {Z(fi—aiApi,ﬁx ) - lmi sx“ill }/{ai(f )} .

1+1 141 1Py

Analogously to {47) we find, evaluating term by term, that

(78) e, -& ap., 8x, )1 /14 (2,,p)] <

< e iiEpiixgiiat 0% 7 e p )% + Hap HIEP I /12D ]+

+ e M Mlp 0 /12,01 + Iap MimUtn /1t n? <

A

" 2 nr i
IIFi I!Bi 9, + llFi ] Bi 0, *+ llMillai + !milhc <

< eBi(pi +eB o, + 2ea, (1+0(1)) + 2t 4001y

under the restriction (75).
Similarly to (48) we obtain, evaluating term by term, that there holds

4 2,,.
(79) fia 5xi+1!| /’ai‘fi"’i" s

1A

2 2 2 2
atirpn®iatieg 1% natp 1% 7 2, pp 2 + (832 +

+

2 2 .4 .2
IIM.lﬂ !lAIHEpill /lia pil[ } <

2 2.2 2 2
4{e oy B + 4eT (41 +C)

Y

m-&CiKz) +

92 2.4



2 2 2 2 2 2
+ 2&1{1+02} +Cyay 9;) + 4¢ cH1i+o0{1)) ,
* under the restriction (75).
So, finally, we obtain from (77), (78) and (79)

{(80) v, .. 1 < Ee{Zn%+2ai+Bi(1+Si)mi}(1+o(1)) +

i+1

+ 482{16(1-+C2

2 2 2 2
zr-bclr ) + 4k + 8ai(1~+cz) +

2, ,.22 2
+ (Bi-+4clai)¢i}(1~+o(1)) v

under the restriction (75).
As this inegquality can be written in the more compact form of (S5),

under the restriction (56), we have proved theorem 6. 0

Note that remark 2.3.1.5 and remark 2.3.1.7, éoncerning the main

theorems of section 2.3.1, also apply to theorem 3 and thecrem 6.

REMARK 7. Just like in theorem 3 the constants C1 and C2 do not occur

in the first order part of (55). Formulae {(55) and (56) indicate that

4
€(C2K -+C1K) + aicz

small., The following simple straightforward one-round-off error

+ (Bi-+Clai)¢i has to be small in order to have

v

i+l
analysis stresses this result for the term Ciqui. Suppose that during
the step from %y to xi+1 only round-off occurs at the computation of
A% x

4 Then, retracing the proof of theorem 1.4.6, we obtain succes-

sively

81} §r, = ~E, %, , | 6rill f'“fill < gC

‘l=
i 1 %1 §aj =0,

1% 7
léﬁiJ = Iril < eCo.9, » 8x,., =& 6ap .,

4

2 : ~ .2
(82) Vi < -la 6xi+1ll ;’{&i(fi.pi)} =~ (8a,)7 .

<
Consequently, v, .| = (ecia | < sclaiwia(l)

i+l

2
iQi) , which implies Ivi+1
under the restriction aclaivi » 0. The other terms in (55) and (56)

containing 01 are present due to the computation of A'kpi. The above

derivation also indicates that the bound {v, .| £ (eclu

2
141 iwi) is sharpij
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From (55) and {56) it follows that |v

o

i+11 = 0{1) under the restriction

4 ) 2
(83) gk (1+c2+c1s< ) + ai(1+c2) + (Bi+si+c1ai)q>i} >0 .

As we mentioned already in remarks 2.3,1.10 and 2.3.1.11, algebraically
“i' Bi and Yi are uniformly bounded for all i 2 0 for the Gauss~
Southwell method, the gradient method and the conjugate gradient
method, We shall see that this fact enables us to prove the boundedness

of these parameters in the presence of round-off as long as eC 95 is of

order 1, i.e., the residual Hiiﬂ is not less than so?ething ofithe
order sclﬂAﬂ“xiH. (Note that algebraically ¢, + = (i +0).)

For instance for the gradient method (cf. (2.2)) we have, algebraical~
1y, a, = 1. In the floating point case one takes py = T {the computed
residual) and hence in that case it follows from lemma 1 that

(84) 1= Hfillllrill /i(i‘i,ri)l = 1.({1+0(1)) ,

%
under the restriction e(i-bclmi) + 0.

Stated differently, as long as C is small the parameter oy coxre~

9
sponding to the process performedlii floating point arithmetic, ap-
proximately equals the gi of the algebraic process.

This is one reason why (55) has only significance as long as 50191 is
of order 1. Another reason, of course, is the appearance of LN in (55)
and (56) itself which even requires ¢ (R -9Bi-+c o )wi to be small.

In corollary 2.3.1.8, which is a direct consequence of theorem 2.3.1.4,

we assumed uniform bounds for «a,., Si and Yy From the previous consid-

erations it will be clear thatiit is unrealistic to assume this for
TRDM in the presence of round-off and therefore an analogue of corol-
lary 2.3.1.8 is omitted.

However, we are mainly interested in the monotonicity of the natural
errox HA%(ﬁ-xi)".,From theorem 6 it follows that the natural error
decreases at the step from i to i+1 iff v
from (55) and (56), lv, |
in the case of RRDM, these formulae do not supply an explicit bound

141 > -1 in (54). Apparently,

< 1 if (83) is small, As we noted already

for (83) in order to guarantee |v, .| < 1, owing to the use of the o0~

i+l
notation. Therefore we now first turn to an explicit version of theo-
rem 6. Since theorem 6 is one of our basic theorems we give a full
proof of this explicit version, although there is nothing new in it.

We shall show that under the assumptions (97) and (98) of proposition
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8 (to be stated presently) there certainly holds lvi “1 < 4/5 in
theorem 6.

We shall follow the lines of the proof of theorem 6, replacing the o~
symbols by numerical constants. Proceeding in this way we first obtain

from lemma 1, instead of (58),
{85) IIGriil /ll?ill Se+e(l+e)Cyy, < (40} (e+eC1(pi) <

41 1 1 3
< (36)(36+3) <T5'

From the proof of theorem 2.3.1.4 we f£ind for Gai"

(86) ISa;‘l < (U«i! + luil + |€1| + llj_sil) /(1= Iui[) .
(87) Hii < eczllrillﬂpill A (xyopy) I
(88) lu, ] € ec K£+€C k{1 +€eC,) £ (ﬂ)(ec scii»ec k) £
i 2 1 2 40 2 1
3

S( )( )<T0_0"

(89) Iei! £ € .
For T § we obtain, instead of (63),

3
(20) lri} < (IIGr ] /lii‘ ll)a £ ( )(ea +scxa wi) T

and consequently, using Hrill 4 Hfi?l (1 +l|6!:ill /Ili‘iil) < (13/10)I!fiﬂ: one
has

(o1) 1,1 < ecya, (e, /02 1) (1 (2,001 /1B 1) <
£ eC, 0 (13)(1 -3--')-1 < 2eC,0
- 2 i'10 i0 271 °

Hence, instead of (60), we obtain from (86), (88), (89) and (91)

(92) 8ay] s (2 (2echo, + (45 (ec, ket s ec )+ e+ 2680 s
100, 41 3
52(9?){ )(eCa +£C2n +€C1K+E)S
100 41 6
£ )(40)( ) <100 '

and using {90) this yields
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6 6

(93) E6a|§|T|(1+¥6a l)+l6al<( 5 1 +15 * o5 <

_ (378, _ 4

= Y500’ <16 °
Instead of (74) we find from (93)
(94) i) s e+l (14183, 1) < G2 (2+55)e < 3e .

i 40
So, finally, instead of (78), one has
(95) |(i"i~§iApi, %01 /718 (&m0 <
2 i 1 3 2
< eBiwi + esicpi + Bsai + 3ex” = (8) + (-5-6-) < 0 °

and, by a slightly different estimate, we cbtain instead of (79)

} 2. ~ 2
(96} la 6xi+1ll /lai(fi,pi)l s Z(Sai) + 4(s Bimi+9s k) €
378, 2 1,2 1.2 4
< 2Goo0’ * % * ¥ <10
Hence
2 4 4
Vil <269 +@=%-

Thus, as a more explicit wversion of theorem 6 we obtain

PROPOSITION 8. Let x,, py be two machine vectors 1’1;)i # 0) and let x
be computed from one step TRDM, based on these vectors. Let y 2 %y
By By and ¢ i be defined as in theorem 6. Furthermore, let

i+l

3 i 1
97 el (1 +C2+C1K‘ )+ ai(l +C2)} < ik
and
(98) 8{261(1 +Bi)q>i + ¢y, } <
Then we have
iadizox, 12
99  —p—Eeest-fyl. o
a (it—xi)lf : )
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REMARK 9. One may ask whéther it is possible to verify the monotonicity
of ||Ai{ﬁ -%; )l by some computation. It is obv1ous that the objective
function F(x } o= (x—xi,A(ﬁ x; 1} = Ilai(i - )ﬁ cannot be computed,
since the solution vector £ is not known. On the other hand, however,

we have, algebraically,

{100} F(xi) -Flx, )} = (&-xi,A(ﬁ-xi)) - (ﬁ*xi+1,A€2-x 1 =

1+1 i+17
= (xi,Axi) - 2(xi.A2) - (xi+1, j,+1) + 2(x, +1,Ax) =
= 0y o X g BUR X))+ 20k By - 20k 0BX ) F
- 2(b,xi -xi_’_l) .
Hence;
(101) Glxgexyyq) #= %y =%y g oDy =%, (D) =200 -Bx g0y =% y) =

= F(xi F(xi+1 .

This function can be computed and algebraically F(xi) > F(xi +1) is

equivalent with G(x } > 0. Now the important question rises what

X+l
can be said if fl((-.?{x_,t,l.x“1
we pe:;form a one-round~off error analysis, where we assume that during

defined by the expression in the middle

}} < 0. To illustrate the problem involved,

the computation of G(xi,xi+1) ’

of (101), only round-off occurs at the computation of A * X549 {and not

at the computation of A(xi We then have

X

(102) fl(G(xi,x 1) = G(xi'xi-i'l) + 6G(xi,x ) .

i+l i+l

(103) 8G{x ) = 2(E, x

10 %541 1 %141’ ) .

* T ¥4t

Consequently, from theorem 6, it fellows that

(104) fl(G(xi:x }) = F(xi) - F(xi“) + GG(xi,x ) =

i+l i+l
2,0
= 5 ¢! VL 1+ai+1) ‘
hal

where \’i+1 is estimated in (55) and

b2 2
(105) ie i+1i < 2i(e xi+1;x i+1)|ﬂA pi!l x’(f‘i,pi) <



< 2ec, Ial?lx, Mix, - x,, 182 / e, 02

Hence, if fl(G(xi.xi+1}) < 0 at a certain step, then at least one of

the two inegualities [vi+il > i, |ei+1{ > § holds. If for that partic-
ular step (97) is satisfied, then lvi+1l > { leads to the conclusion
that

{106) ﬂfiu S 8e(28, (1+8,) + clai)uAﬂﬂxiﬁ .

which qualltatively is the same conclusion as one would obtain when

break down of the monotonicity of HAé(k X )H could be verified (which

would imply !vi+1§ > 1). On the other hand, le i+1] > § implies
2 2 2
107 < -
(107} Hfiﬂ ZEBivC1HAH Hxi+1uﬂxi xi+1H .
Algebraically we have {(cf. theorem 2.2,2)
- -4 } -3 .}
Hxi -xi+1H = ”aipi" < A “lilla; A% pll s A SA Ll =

-1
= Al -
Hence, from (107) we obtain no better estimate than

el < 2¢82 § Caxliailiz, 0,

which is unsatisfactorily.

Note that algebraically also x = xi»rai.pi and hence

i+l

{108) G(xi'x1+1) = taipi,aiApi) + 2(ri+1.aipi) =

= ai(ai(Pi:Api)‘*Z(ri*1.pi)) '

and therefore G(x ) could easily be computed from the (already

17 %541
computed) number a; and vectors Py Api, T

of round-off, even if the right-hand side of (108) is computed exactly,

. However, in the presence

the same kind of a problem, as reflected in (107) arises, due to round-
off at the computation of r, .. 0
We conclude this section by showing how the theory developed in this
section leads to assertions on the numerxical behavior of a specific

DM, the Gauss~-Southwell method.
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EXaMPLE. The true residual Gauss~Southwell method (TRGSM)

Recall that in TRGSM one takes p, = ek(i)’ where k(i) corresponds to
' the largest (in absolute value) component of the computed residual

r, = flb-ax,), i.e., l(ri,ek{i))l z l(x'i,ej)I for all 1 £ j < n.
For application of our theory we need bounds for e Bi and Yi' as
defined by {(51), (52) and (20). Algebraically, N
2.2). Using floating point arithmetic this bound is affected by round-
off. We have a, := iz llle .0 /12

1 k(1) *®r (1)
1 we know that under the restriction e » 0

< n‘! {cf. section

y|. From the proof of lemma

{109) r, =g +8c, , IIGril! /llfill < e(l+cip (1+0(1))) .
Hence,
(ti'ek(i)) = (ri,ek(i))(l-t-gi) .
vwhere
S . T
: 17 % (1) g TE TSy
el
< e(l +c1q>i) W (1+0(1)) <
< e:ni

(1 +C1q>i) {(1+0(1)) ,

under the restriction

{(111) (1 +c1¢i) + 0.,

Together with (110) we find IEil = ¢(1) under the restriction
sn£(1+c1q}i} -+ 0, So, finally, we obtain

a2 . e L L LU AL
1 (2 ey 4y ] "”i'ek(i)" urgx l(fi,ek(i))f

= ni(l +0(1)) ,

under the restriction en%(i +C1mi) + 0. ,

Tf?athez' with lemma 2.2.6 it follows that Bi < n&(1+0{i)) and

A < n*(1+0{1}) under the same restriction.

Substitution in (55) and (56) yields for the parameter Vist Qf (54)

the estimate
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(113) Iviﬂl < 2s{2u<§ + 2:1i + (ni-}-n)@i}(l +0{1)) +
4 i i
+ e{(czm #C;k) + n°C, + Cin 9 lo)
under the restriction
(114} e{:ciu +c2+clu<£) + n*(i +C,y) + né(l +c1)¢i} +0 .

Retracing the proof of (112) one finds that, if sné < 1/40 and

eni Ci‘pi < 1/4, then oy < 31'1i and cansequently Bi < 3n5, 'y? £ 3{11:()%.
Combining this and proposition 8 we cobtain the following explicit
statement for TRGSM.

PROPOSITION 10. If x ig computed for one step TRGSM, based on the

i+l
machine vector x; and if
(115) a{lci(l +C, +C x"‘) + 3n5(1 +C, )} < L
A | 2 40 '
1
(116) 3€{n%(2 +C) o+ Gn}wi T

where 0, 3= HAIHixill /Ilb—Axill, then we have

a2 - x,, 00
(117 5 < 1
tad(z - x|l

1
45nk

. 0

This leads to the following three important conclusions on TRGSM (if
(115) is satisfied):

(i) If llAiti—xi_H)ll 2 ]IA%(}?—xi)“ holds for some i 2 0, then
llb—Ain < 12e(n(2+cC)) + 6n)||A¥H|xiﬂ.

(ii) As long as lIb-Axill = 126(n$(2 +C) + 6n) lfAiHlxiil, the natural
error lIAé(:‘i-xi)U converges step-wise linearly with a convergence

ratio no greater than (1 - (45nK)“1) &.

(1i1) There exists an i 2 0 such that b -axll < 12e(ni(2+c1) +én)fiAlllix
(since otherwise (117) holds for all i z 0 which leads to the
contxadiction {b -Axill + 0 {i > =),) '

AL
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Combining these three conclusions into one statement we obtain (if
(115) is satisfied) the following result.

PROPOSITION 11. If {x;} 78 generated by TRGSM with an avbitrary initial
machine vector x,, then the natural error !}Ai{ﬁ -x i)II converges step—
wige linearly with a comvergence ratio no greater than (1~ (15n0) "1 2,
at least until the iteration step where the residual satisfies

Ib-ax)l s 12etat2ec)) + 6mlallix. 0

This implies that TRGSM is well-behaved Snd, consequently, numerically
stable and A-numerically stable (cf. section 1.4).
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CHAPTER 3
THE GRADIENT METHOD {GM)

3.1. Introduction

One of the oldest and most widely known descent methods is the gradient
method {often referred to as steepest descent method). A description of
the method was first given by Cauchy in 1847, The application of the
method is not restricted to the case where the cbjective function is
quadratic. The objective function may be any differentiable function
of several variables whose gradient is known explicitly. Therefore the
method is also of great interest as a technique for nonlinear optimiza-
tion problems., From a theoretical point of view the method is very im-
portant, since it is one of the simplest iterative methods for which a
satisfactory analysis of the algebraic behavior exists. Many more ad-
vanced methods, like the conjugate gradient method, are often motivated
by an attempt to modify the basic GM in such a way that the new method
will have superior convergence propérties.

As far as we know,hbéniakowgkifaoj is until now the only one who gave
a complete round-off error analysis for the TRGM in order to obtain
assertions on the numerical behavior of the TRGM. Our results on the nu-
merical behavior of TRGM, derived in this chapter are superior to those
of WoZniakowski in two aspects. Firstly, we prove step-wise linear con-
vergence whereas WoZnlakowski gives a result in terms of the limit
superior. Secondly, we prove good—beh#vior, whereas WoZniakowski's

- result does not even imply numerical stability. -

No published round-off error analysis of RRGM is known to us.
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The GM is defined by the following statements.

Gradient method (GM)
Choose an initial point Xyi
T4 = b-2Ax_; 1 := 0;

0

while r, # 0 do

begin

(n a; = (r;,x,) /(ri:Mi) ;

(2} xi+1 =X, + ai ri;

(3) . - either b - ax, ., 7  (TRGM)
i+l °

(4} or r, - a Ari; {RRGM)
i = 4i+1

end.

Wé use either (3) at all steps or (4) at all steps, and thus disregard
the mixed gradient method (MGM) (cf. remark 2.2.1).

According to the definitions (2.2.16), (2.2.17) and (2.2.8) we have
algebralcally

B E AR R I
5) % ,
By = lelNatell /7 (A%NI (2 x2 D) 1,

© v, = be? 7 aatrmmat e 2 22w

From lemma 2.2.6 we also have 8, 2 x“* and K—g $ y; £ 1. Consequently,
corollary 2.2.5 yields
}ooo 2
hateg-x, )l

i,.._ 2
a2 xi)H

' 2
12 _ 4K - (x=1
(N =1 Yy £ 1 (K'+1)2 (K.*1> .

which reflects the step-wise linear convergence to zero of the natural

error with a convexgence ratio no greater than (k~-1) / (k+1).

Another well-known algebraic property of the GM reads as follows.
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THEOREM 1. If x

Ty

i+1-£s‘aompufed from one step GM, based on x, for which
= b-Axi #:0, then we have ’ ‘
2 -1 2
Ili~xi+1li iha ri_l_lll
{8) = =
Ig-x 02 #a™t r,u2
i i
Ne i 20at e 02 e t?
=t : (2“ ! z)'
1o 12na-1. o2 =
Ifa rill Ia rili Ila rill Ifa rill
PROOF. If, in the eguality it-xi+1 = f:—xi -ay ri, we take squared

norms at both sides we obtain

2 . 2 . 2
(9) Il&-xi_ull - ﬂx-xill - 2ai(x-xi,ri) + ai(ri,ri) .

Since a, = ] riﬂ:z /"A4 rillz and ®~-x; = at r, we obtain (8) after some

rearrangements. 0
Since

iad e a7 2 e
(10) <k, = 1,

hry 20a e 2 at e 1Piateg?

the following corollary of theorem 1 is valid.

COROLLARY 2, If {xi} 18 generated by the GM, then the error converges
gtep-ivige linearly to zero and

x 1
(11 = s1-2. O

REMARK 3. The GM is invariant relative to orthogonal basis transforma-
tions. Let {xi}, respectively {xi} be generated by the GM corresponding

to the systems Ax = b, A'x' =b', respectively, with initial vectors x
x('), respectively. If A' = V?AV, b* = VTb, xé = VT Xye
orthogonal matrix, then xi = VT x, for all i 2 0. Since V is orthogonal

this implies that also IA®(x-x)I =1 TONTY =xl (@ =0,4,1). O

0!
where V is an
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In the next two sections we investigate the wvalidity of these proper-
ties if the GM is performed using flcating point arithmetic. RRGM is
studied in section 2; TRGM is studied in section 3. In section 4 we

report on numerical experiments carried out with the GM.

3.2, The recunsive residual gradient method [RRGM)

The results, deduced in this section, will be based on the results of
section 2,3 for general RRDM's. The results obtained there are ex-
pressed in terms of the parameters o Bi and Y defined by (2.3.1.43},
(2.3.1.44) and (2.3.1.4). Therefore we have toc estimate these param-
eters for RRGM. We arrive at exactly the same estimates (3.1.5) and
{(3.1.6) as in the algebraic case. The only difference is that now r
stands for the recursively computed residual vector, whereas in the
algebraic case r;, = b —Axi. Hence

55 awl,K—§$B<1,K—is2K~;Z(K+1)SYiSI.

As an immediate consequence of corollary 2.3.1.8 we obtain

PROPOSITION 1. Let {ri} be computed by RRGM with an arbitrary initial

machine vector x., then we have for i = 0

0:
at o 2
(2) T - =g,
iIa rill (x+1)
under the restyiction
(3) e{xic2+x(1+cl)}+0 . O

As a more explicit version we obtain from proposition 2,.3.1.12

PROPOSITION 2. Let {r,} be computed by REDM with an arbitrary initial

machine vector X, and let

{4) ef(1 +c2) + aci(1+(:2) + K(3t¥01)} < -;- '

then {A"é ri} converges step-wise linearly to zero and for all 1 z 0
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one has

(5) TSt X O
it 4tk +1)

As we mentioned already in section 1.3, for many straightforward im-

3/2

plementations there holds ¢ ~n and C, ~ n. Hence in the left-hand

side of (4) the largest term is of order n3/2 K.

As far as the computed seguence {xi} is concerned we only reformulate
theorem 2.3.2.5 for RRGM.

PROPOSITION 3. Let {xi}, {r;} be computed by FRGM with an arbitrary
initial machine vector g and let N := ent(2x log 1/e + 1), then we
have

6) Ii;vsxé (ﬁ—xN)ll 4

3 3/2

< efl+x®+C,c+2(4c+ (2 +C1)K ) log -;—} f[Aitﬁ-xo)n (14+0(1)) +

1

+ el1 +c1u<3 +2¢ log -;—}naiunﬁuu +o(1)) ,

under the restriction

7 ea<3"2{cz Y +cy) + (1+C))log -i-} >0, 0

If HA% (%~ %y W~ 1 i'f il (which is the case for instance if X, = 0 and
IIA£ sl ~HA%[H (%11}, then, apart from the (rather unimportant) factor
log 1/¢ (log 1/ = 27.6 if ¢ = 10~ ), we conclude from proposition 3

3;2“A£ &) This is a very

that essentially IIA% (ﬁ—xN)ll ~ g1 +Cl)t:
unsatisfactory result since A-numerical stability (cf. section 1.4}
requires llAi (ié—xN) fl Nexillaiﬂﬂill. which is a factor ¢ smaller. Even if
Iad (2 - x) 1 = «liatinsd, sesnn uad@-xn ~ exiatnizg, whicn dces
not guarantee A-numerical stability. However, if « is not too large
and if the required accuracy of the computed solution is not too high,
one might decide to use RRGM instead of TRGM (which is well-behaved as
we shall prove in the next section) because of time~saving. Besides of
that, our numerical experiments (cf. section 3.4) indicate that esti-~

mate (6) is unsharp by a factor ki.
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3.3, The twe nesidual gradient method {TRGM)

Most of the results deduced in this section are based on the results
of section 2.4 for a general TRDM. We also state a result concerning
the monotonicity of the error ﬂﬁ-—xiﬂ in the presence of round-off
{(for the algebraic case see theorem 3.1.1).

In order to translate the result of section 2.4 for TRGM we have to
estimate the parameters ai, Bi' Yi defined by {(2.4.20), (2.4.51) and
(2.4.52), If x, = fl(b-hxi), fi = b--Axi and 9y = ﬂAﬂﬂxiu fﬂfiﬂ:
then we conclude from lemma 2.4.1 and lemma 2.2.6, under the restric-
tion (1l +Cy9,) + O,

a H

i e el / !(si.ri>l = 1+0(1) ,

(1)

8, == Ned iatz s aabii e xph s 0, = 140,

i

2 vl e ma e mnat e /1 pt s oy < basoan

Substitution.in (2.4.55) and (2.4.56) yields for the parameter v
of theorem 2.4.6 the inequality

i+3

@ vyl s setteedag dasomn velic, vepeh v b0

under the restriction

i 4 4
4) elx? (1 +C2+C;K ) + (1 *‘C1)“’1} + 0 .

Retracing the proof of (1) one finds that, if e £ 1/40 and ecitpi < 1/4,
then o, £ 2 and consequently Bi < 2, Y 2z (2K£)“1.
Combining this and proposition 2.4.8 we obtain the following explicit

version of this proposition for TRGM.

PROPOSITION 1. If x, ., 18 cé@uteé Ffrom one step TRGM based on an
arbitrary machine vector Xy and if furthermore

(5) e{o:iu +c2+c1|<5) + 2(1 +c2)} < %0 .
(6) el6+c ty, < &
171 7 8¢

then we have
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] - 2
ia%(x xi+1)ll '

SI-—-m.

{7y

iad iz - 007

From this proposition we can draw conclusions similar to those we
derived for TRGSM from proposition 2.4.10, which conclusions can be
combined into the following statement.

PROPOSITION 2. If {xi} 18 generated by the TRGM with arbitrary initial
o and if e{zi(1+c2+cixi) + 2(1+c2)} < 1740, then
the natural error WA (2-xi)|| eonverges gtep-wise linearly with a con~

machine vector x

vergence ratio no greater than (1 - (200) "1 i, at least until the iter—
ation atep where the residual satisfies

(8) Ib -ax Il s 8e(6+c)ilallxl . 0

This implies that TRGM is well-behaved and consequently numerically
stable and A~numerically stable {cf. section 1.4).

Note that {8} can be used as a stopping criterion, provided an estimate
for llall is available.

In theorem 3.1.1 and corollary 3.1.2 we stated the monotonicity of the
errox Nﬁ-—xill for the algebraic (TR}IGM. One may ask what can be
said about this monotonicity if TRGM is performed in floating point
arithmetic, Without giving a proof (which is very similar to the proof
of theorem 2.4.6) we state the following analogue of theorem 3.1.1 in

the presence of round-off.

THEOREM 3. Let x, ., be computed from one step TRGM based on an arbi-
trary machine vector x,. Let 2, := b - ax, and define

(©) vy o= iabine s nahe

2,2, (x,, a7le)
(o TR S DU
i i

TARCER

1 ri)

(11)

p, 1= -
i ilAi rillz(fi,a
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Then we have

s 2
llx-xi+1||
(12) 5= 1 - oi(z-pi-+vi+1) ’
lli-xi"
where
{(13) }vi+1l < 26{22£{1 +Cz+clxi) +2(3 +C2) + (1 +K‘£(1 +2Cl))¢!i} ’

under the restriction

(14) E{Ki(1+C2+C1K£) + (1+C1Ki)d’i} +0 . 0

From lemma 2.4.1 we obtain under the restriction &’:K%(i +C11&1) + 0

T T
R LA R T X

{15} o," = {(1+0(1)) s x(1+0(1)) ,
, e iate?
and
i te pate )
(16) b, < — = 1+0(1) .
ENENER

Hence we have the following corolléry of theorem 2 {cf. (3.1.11)).

COROLLARY 4. Let x, ., be computed from ome step TRGM based on an
arbitrary machine vector x, and let vy be defined by (9), Thefn we have

2

It
i+i 1
5 Sl-;(1+0(1)) [

X

& -x
17
&-x

under the regtriction

(18) s:i{u +C +cls<-l‘) + (1 +c1)mi} + 0. 0

2

One can prove that, if (19) and (20) (to be stated presently) are
satisfied, then 0 < o'i'l < (14/10)k, !pi! < (12/10) and Iviﬂl < {7/10).
Hence we have the following explicit version of coiollaxy 4.
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PROPOSITION 5. Let x, . be computed from one step TRGM based on an
arbitrary machine vector x; and let ¢, be defined by (9).
 Furthermove, let

i § L
(19) el (1 +C,+Cyk?) + (3+c2)} <95
and
(20) el + clir2c e, < &
RS T
then we have
2

Ix-x, .1 ,

(21) ——iﬂz—s PR S 0
14¢
I - x|

Consequently, if (19) is satisfied, then for TRGM the error "i-xin
converges step-wise linearly with a convergence ratic no greater than
{1 -(14&)“1)i, at least until the iteration step where the natural

error satisfies
2 Iate-xpl s st + cFavac ymakiixg

(which implies that the monotonicity of the error cannot break down
before the natural error reaches the level of the inherent natural

error, cf. section 1.4).

Now assume for a moment that e{n*(1+c2+ciki} + (3+2cz)} s 1/40,
then both (5) and (19) are satisfied. If at a certain step (22) is not
satisfied, then it follows from proposition 5 that the error decreases
at the step from i to i +1. Given C1 z 5, the nonvalidity of (22) also
implies that HA(i-—xi)N > 88(1<+2C1)HAHHxiH 2 86(6'*CI)HAHHxi“- Hence
(é) holds and consequently, from proposition 1, then also the natural
error decreases at the step from i to i+ 1. We observe that this
reasoning does not imply that the natural error decreases at least as

long as the error.

REMARK 6. Note that both {8) and (22) do not contain a term involving

C,+« Thus the round~off errors occurring at the inner product computa-

9t
tions do not influence the values of the (natural) errxor and the

residual at a step where the monotonicity of the error or the natural
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error breaks down. On the other hand, restrictions (5) and (19) in-
dicate the allowable level if these round-off errors in order to have
linear convergence. The round-off occurring at the inner product com-

putations only influence directly the wvalue of the parameter a

fl(ai) = éi(1-+6§i) (cf. (2.4.66)). If sZi = 0, then we have eiact
minimization of the objective function ﬂhi(a-x)ﬂz along the line

X = xi-+a;i. For 631 # 0 the factor (1-%63&} can be regarded upon as a
relaxation factor (cf. section 2.2). Hence, as long as the inner pro-
duct computations are performed with an accuracy guaranteeing

[sﬁil € 1~8, for some § € (0,11, then these computations do not af-
fect the monotonicity of the natural error but only the convergence
speed. This explains why 02 does not occur in (5). By similar argu~

ments one can explain why C2 does not cccur in (19). a

3.4. Numenical experiments

In this section we report on the numerical experiments that have been
carried out Qith the GM, Our main goal is to verify the validity of
our analytical results deduced in sections 2 and 3. In aadition we
want to investigate whether and under which conditions the various
estimates are best-possible or essentially best-possible in the sensé
that they contain the correct exponent of k.

In section 1.6 we discussed three possible ways of constructing test
problems and implementing a descent method: assembled implementatibn
{AI), product form implementation {PFI) and artificial floating point
implementation (AFI). Before reporting on the results of the tests, we
first specify further how these three ways of implementation are em~
ployed.

Firstly, the matrix A= diaé(ll,. . .,ln) , containing the eigenvalues of
A, has to be chosen. In our tests we used two different distributions
for };: the logarithmical distribution, where the ratio 1, ., /1y is
constant for all i = 1,...,n-1, and the equidistant distribution,
where li+1 ~Xi is constant for all i = 1,...,n-1, However, only very
few tests have been carried out with the latter distribution and they
did not bring in essentially different insights (from our point of
view). Therefore, we do not report on these tests. We always choose

A = 1 (and hence Al = K—l). ‘

n
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Secondly, in the case of AL and PFI, the orthogonal matrix U of eigen-
vectors of A has to be chosen. In all cur tests U was chosen as a
© product Um = Hm --'H1 of m Householder transformations

T
(n B, = I- Zhihi/ (hi'hi) P

where the vectors hl""'hm were chosen randomly in the sense that

each component is a pseudorandom number from the interxval [~-1,+1].

REMARK 1, It is only the direction of hi‘that determines Hi' However,
choosing each component of the vectors hl"“'hm randomly from the
interval [~1,+1] does not generate randomly directed vectors. If, for

instance, n = 2, then in the square {ce, + Be2 I a,8 € [~1,+1]1} there

1
are "more" vectors with a direction angle between /4 ~§ and w/4+ 8§

than there are with a direction angle between -8 and §, This implies
that relatively fewer vectors will have a direction c¢lose to the one

+e, or e, -e,. For larger values of

1 2 1 2 1 2
n this effect becomes more pronounced. In order to generate randomly

of e, or e, than to the one of e
directed vectors one can proceed as follows: generate a vectoxr h by
choosing its components randomly between -1 and +1; compute lhll; if
Ihil € 1, then the vector is accepted, otherwise the procedure is

repeated. In our tests this refinement is omitted. 0

In the case of AI the matrix A = fl(UmAU:) is computed from the rela-
tion A = 3m ~--H1AH1 --'Hm in the way suggested by Wilkinson ([65],
section 5.30), where full advantage is taken of symmetry,

In the case of PFI we do not use the computed matrix A for matrix by
vector product calculations, but these products are computed straight-
fwmm(ﬂmrQMtomﬂ)ﬁthrﬂamnma%"-%mlnd%m,
The choice of U does not apply to the case of AFI, since then we have
U=1I.

Finally, the vectors b and Xq have to be chosen. This is done in the
way as mentioned in section 1.6. We choose machine vectors s and e and
next, for AT and PFI, we compute X = £1(U s), b = £1(aX%),

= fl(x-—Ume), where the matrix by vector products are based on PFI,
= fl{s~-e).

x
0
whereas for AFI we compute b = £l{As), X,

In all our discussions of numerical results in this section the symbol

A stands for the matrix fl(Umﬁuz). With respect to AL and PPI this is
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the machine matrix computed in the way just mentioned; for AFI this is
the machine matrix A. The symbol b stands for the machine vector b.

If we display the values of Flg fl(HA9(2-xi)H) (o = 0,4,1), when
14

reporting on numerical results, then, for AI and PFI these values are

computed according to the formula

" o~1
(2) Fi,a := FL{IEL(A Um(flz(bl-Axi)))H) .

Here v, = f12(b -Axi) denotes the vector with components computed in
double length precision (with 2t~digit mantissae) and rounded to
single length precision, Note that consequently we also need the
assembled A for PFI. The computation of w, . := £1(0%"1 U, vy)

(e = 0,}) is based on product form implementation.

If we display the values of Fi,a {a = 0,4,1) for AFI, then these
values are computed according to the formula

_ o-1 _
(3) - Fi’a = FL(IFL (A" “(fl(b Axi)))ll) .

REMARK 2, One may ask how many significant figures one obtains if
ﬂAa(ﬁ‘—xi)H is computed from {(2). To this purpose one can show that,

for some C3 depending only on n,

(4) v, = flz{b‘-Axi) = 21 + dri R

where 21 1= b--Axi and

(5) Elsrill s ellfiliy-r 62C3il3\|illxi|l(1 +0(1)) Eec3 + 0] .

If we assume that for any machine vector v

a-1 T o-1
(6) £1(A umv) = {UmA +Ea)v .
where ¢ = 0,} and el < ecaHAa-ln, then the vector w,  satisfies
¥
T, 0~1 IR L

%) Wy o= W T eE ) (2 or) =0T vl
where

_ T o-1 1~a
@ Swy o = EyE, + Upa® T aen ey,
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Consequently,

o1
(9) awi'an = {a fil( (1+ni,a) .
where

o1
(10) Ini,al < Elswi'ali /la Eiil <
< fec 2% e 0 + ela® iz n +
o i i
2 1-0, o : a-1 _
+ Cpe'x fia Illlxit!3(1+o(1))}/liA rill 3

A

e((c + el ™ s cee ™A%k I /1% 2 (1+00))
[+ 3 i i

under the restriction E(Caﬁ+cami-a) -+ 0.

If the calculation of the norm is performed in such a way that the

relative error does not exceed C4(1-b0(1)), under the restriction

C4e -+ 0, then we finally obtain

(11) F, = 12"t £ (1

- o -
1,0 ) = la” (& xiiﬂ(l'Pni'a) ’

i,a

where

(12) Iuy ) s elcy+ (o, + D' ™ wcied a%Mlxgh /1A% 2D (1 o))

under the restriction

1-0

(13) €(C3+C +Culc )+~ 0.

4

If we define Ca := 0 for ¢ = 1, then {(13) alsc holds for a = 1. Now,
if for some constant K, one has Hfiﬂ = EKHAHHxiR' then HAa—I fiu >
2 aKUA?"inU and hence in that case, under the restriction (13), it

follows that

{14) [ui 0‘I S E(C, + (C +14C K'I)xi"“)(uom) .
£

3

This inequality indicates that if the residual is not essentially less
than the inherent residual, thén, using {2}, the error, the natural
error and the residual are computed with a relative error of order ex,

}

ex?, €, respectively. . 0
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REMARK 3., Consider the case of AFI, where F is computed from (3).

i,
If Hb-AxiH > GKHAﬂ"xiH, then one has for u, . as given in (11) the
, .
estimate
‘ -1, 1w
{15) luy | se(c, + (4+ (k) k™ ) 1+0(1)) ,
a 4

under the restriction € + 0. Consequently, if the residual is not
essentially less than the inherent residual (corresponding to machine
precision §), then, using (3), the error, the natural error and the

i

residual are computed with a relative error of order (e/8)¢, (e/8)x*,

(e/8), respectively. , 0

3.4.1. The te residual gradient method

FProm proposition 3.3.1 it follows that, if at a certain iteration step
3. 4 :
we have la®(z xk*i)" z fia {2-xk)u, then the residual {lA(% xk)“ is
of order EHA“ﬂka. Of course, in the tests the exact value of the
natural error is not known. However, we can compute the approximate
value Fi } from (2) or (3). Therefore the TRGM iterations are stopped
[
5 .
as soon as Fk+1;% 2 ?k:i' ?he values of Fk,o' Fk,i' Fk,l are referred
to as pseudo minimal error, pseudo minimal natural error and pseudo

minimal residual, respectively.

REMARK 1, One may ask whether Fk+1
! — -

g I = HA(Q-xk)H is of the order EHAHkaH (e =core=§. If also

5y ! ' |
Ia £k+1“ > lla fkﬂ, then this is obviocusly true (cf. proposition
-~} -1
3.3.2). Now assume that Fk+1ii 2 Fk.§ and lla fk+1“ < Ha fk"‘
In the case of AI or PFI it then follows from the analysis of

remark 3.4.2 that

} 2 Fk,i also implies that

2 a-b. g2
8} Fi'i = fla fi“ (1+1) ,
where
}
(2) lril < 2efc, + ((1 *Ci)"A e +

+ ecychiatiney /a7t ey avony

under the restriction 5{04 + Ké(l'bci-ﬁc3) + Qi} -+ 0. Here, according
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to definition (2.4.8), 9, 3= lIAIlllxil! /Hfii{ . From section 3.3 we know
that

<4 2
ia fkﬂll

—— )
_i 2 4
la %21

2
=l ey,

where 7;1 is defined by (3.3.2) and v, satisfies (3.3.3) under the
restriction s{Ké(l +Cy+Cik7) + (1+c1)¢k} + 0.
Combining (1) (for i = k,k+1) and (3), and assuming llA-s

< la” fkﬂ one can prove that

Bl <

FZ
k+1,} 2
4 2 L S R TT L
ke}
where 18k+11 = 0{1) under the restriction
4
{5) e{czs + K(1+c§+c1+c3+c4) + (1+c1)q>k} >0 .

k+1,1} 2 k+1
tion (5). A similar reasoning as given in section 2.4 leads to the

Consequently, F Fk 4 jimplies v < =1+ 0{1) under the restric-
’

conclusion that HA(&-—xk)“ is of order e"AHkaﬁ if
4
elck® + k(1+C +C +C3+Cy ) is small and Feet, 2 i}

In the case of AFI one can prove that Fi } satisfies (1) where
r
-4 .4 -4
{6) hil < 29:{(:4 + (4lla el +<?lia llllxill) Aa Fe i (1+ro(1)) ,
under the restriction s{C4+Ki +KiQi} = 0.
Combining this result (for i = k,k+1) with (3) {(where, in all expres-

sions involved, € has to be replaced by the artificial machine preci-
sion §}, one can prove that (4) holds with 6k+1w0(1} under the restriction
4 i

(7 s{x* (1 +Cy +CK%) + (1+c1)zpk} + GK{1+C4+!pk} -0 .

Hence, similar to the case of AI and PFI, the inequality Fk+1 } 2 Fk 3
I 4 ’

leads to the conclusion that [A(&-x )l is of order 5Haﬂﬂxkﬂ if ek < §

and if 6{C4 + K%(li'cszciKi)} is small.

In summary, for all three kinds of implementation the inequality
F 2 F leads to the qualitatively same conclusions as the
k+i,4 7 Tk,

inequality
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fia

The influence of m

In order to investigate the influence of the value of m on the pseudo
minimal (natural) error and the pseudo minimal residual for AI and
PFI, we performed several tests with fixed dimension n, fixed loga-
rithmical eigenvalue distribution and fixed eigenvector components s
and e of the solution vector % and the initial error vector ﬁ-—xo. We
only varied the number m of Householder transformations and the
Householder vectors hi""'hm‘ In order to invoke different round-off
errors we chose ten different sets of random vectors {hl"”'hm} for
each value of m.

The results in table 1 are obtained for the case where n = 30,

k= 10% (0 = 1072, Ayeg /2y = 1072 ~ 147, e
=103

J -6
Bach pair of columns gives the smallest and the largest observed

37341 =857/ 85y =
(3= 1,0.4,29)) lsll = 1, llel = 10

values (of the ten test problems for each value of m) of the measured

guantity indicated on top of the table and computed according to (3.4.2)

or (3.4.3). In all cases at iteration step k (defined as being the

first step for which F F i) there hold lixJl ~ 1 (= [&).
’

x+1,1 2

(&-x 0 2 Iad@-x0 . 0

= X I%-x nadez - 1A - %)l

13 139 | 6.130-12 | 1.530-10 | 1.219-12 | 1.83p-11 | 5.63¢~13 | 3.9y¢~12
5 91 28] 1.130-10 | 3.010-10 | 1.2;0-11 | 4.31¢9-11 | 2.09p~12 | B.8;g~12
10 81 28 ] 1.3109~10 | 3.0109~10 | 1.930-11 | 4.470-11 | 4.730~12 | 9.83¢~12
15 0 151 27 | 1.639-10 | 2.73¢-10 | 2.410-1t | 3.819~11 | 5.439-12 | 9.119-12
30 | 13 ] 26 | 2.019-10 | 3.019~10 | 2.5y0~11 | 4.114~11 | 5.539-12 | 1.130-11

100 | 14 | 24 | 1.730-10 | '3.61¢9~10 ] 2.430~11.] .4.8y0-11 ] 6.31¢-12.] 9.910-12

1 8 ] 93 | 1.230-11 | 2.539~10 | 1.739-12 | 3.25¢9~11 | 9.559~13 | 5.9)p~12
5 8 ] 17 | 2.230~10 | 5.310-10 | 2.8y9-11 | 6.47p5~11 | 6.8y9-12 | 2.4;4-11
10 8] 18 | 4.639~10 | 8.3;4~10 | 6.030=12 | 1.134~10 | 1.310-11 | 2.33p~11
15 S| 13] 5.730~10 | 1.3;¢-9 9.710~11 | 1.710-10 | 2.279-11 | 4.835~11
30 51 14 ] 1.14-9 1.619~9 1.739-10 2.410-10: 4;1;o~11 6.319~11
100 3 71 1.910-9 4.319~9 4.6)9-10 | 6.519~10 | 1.630~10 | 2.419~10

TABLE 1. The influence of m
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From the upper half of table 1 we see that in the case of AI the
results hardly depend on m if m 2 5. Only the case m = 1 seems to be

" special in the sense that the range of k is essentially larger and the
lower bounds for "Aa(34-xk)ﬂ {a = 0,4,1) are significantly smaller.

We believe that this difference occurs because the matrix U, based on
only one Householder transformation, is in general diagonally dominant
‘ j-Zhi*hj/(h,h)o
where § is the Kronecker Qelta). Consequently A is close to A which

i3
causes an atypical round-off behavior at the matrix by vector product

and in fact close to the identity {(note that Uij = Gi

computations.
Apparently, in all cases of table 1, based on AI, one has for
a = 0:&11

f-a, a

1a% - x )l < g ex CUA Ml o

1£:))
99 = 0.5, gi = 0,7, gy = 1.4,

which agrees with the good~behavior of the TRGM.

From the lower half of table 1 we see that in the case of PFI the
pseudo minimal values increase as m increases. Since an increasing
number of Householder transformations involves an increasing number of
arithmetical operations, the constant c1 increases as m increases and
therefore this result is not surprising. Another observation that can
be made in connection with the value of m is that for small values of
m the round-off vector Ex, defined by fl(ax) = (UmAui-FE)x, lies more
or less in a subspace of at most dimension Zm. The subspace only de~
pends on A and not on x., Therefore the vector Ex certainly is not
randomly directed for small values of m. In order to identify this
2m~dimensional subspace we First state the following lemma without

proof.,

LEMMA 2. Let Um 1= Hm ."Hi
baged on arbitrary machine vectors hi (i=1,...,m), and let x be an

» where H; are Householder transformations

arbitrary machine vector. If fl(qu) 18 computed by product form <{m-
plementation, then we have

m
- By - ® 4 ...
(9) £1(U, x) = (U +E )x lzi o, H ceeH,  h /I,

where
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(10} E!Emll < 3me(l+0(1)) ,
(%)
{11) 1em | < atm+Delixli(t+o()), (2 =1,...,m ,

under the vestriction (m+n)e + 0 . 0

~

The vector E x is more or less arbitrary and Ilmell € 3mellxli {1t +0{1)).

(£) "e e
Each vectoxr em Hm Hul h’z "
H ***H, . h (¢ =1,...,m, and llem Hm—-sh’vll /thll < 4{n+ Delxl.

Consequently, if m <€ n, then the vector fl (Um X} - Umx is more or less

/ingll points into the direction

an arbitrary vector in the subspace spanned by

Hm e thl" Hm cwe H3 h2, . "hm of dimension m at most, which actually
is identical with the subspace spanned by hi'""hm‘ In particular, if
m = 1, then (fl (Um x) ~Umx) is parallel to hl' The assertion (9) can

also be written in the more convenient form

fl?) fl(Umx) = (Um+Em)x ’

where by lemma 2 it follows that

(13) HEmll < mldn+7Te{l+o(1)) ,

under the restriction (m+n)e ~ O,
The complete product form computation of £l1{ax) satisfies

’ " T T
(i4) fl{ax) = (Um-!-Em)A(I +D) (Umi»E!;])x = (UmAUm-PE)x .
where El; and 15:1'1'I satisfy (14}, |D| < €I and hence
(15) Hell €« mBn+15)cllAli(1 +0(1)) , [(m+n}e » 0] .

Similarly to the previous considerations it follows that, in case
m €n, the vector Ex is more or less an arbitrary vector in the sub-
space spanned by hi‘ e ,hm,l\hl,. e ,Ahm of dimension at most 2m. In
particular, if m = 1, then Ex ¢ span{hi,ﬁhz}. Hence for small values
of m the product form implementation of Umﬁuzx certainly not agrees
with the real-world implementation where Ex is randomly directed.
Apparently, in all cases of table 1, based on PFI, one has for
a=0,4%,1

1A% (% - )0 < g e " Ia"lixgl

(16}
gQ=S.9 ’ g£=9.0, g1=33 .
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which agrees with the good-behavior of the TRGM.

The influence of the eigenvector components of % and % - N

Algebraically, the sequence {R-xi} obtained by the GM only depends on
the matrix A and the initial error vector ﬂ-—xo
order to investigate this for the numerical process, at least as far

, but not on &. In

as £~-x,. and ¥ are concerned, we did several tests, only varying the

and .

0

elgenvector components of ﬁ-—xo

As mentioned before, these eigenvector components are controiled by
machine vectors e and s, respectively. For both vectors we experimented
with three different distributions, viz. sj /sj+1' e, /e

= 10°, 1, 1073 (=1, .,m1), In case s

g1 =

3 fsj+1 = 10° the vector %
points into the direction of the eigenvectors corresponding to the
small eigenvalues and therefore this vector is called a small-oriented
vector. Similarly, a vector that points into the direction of the
eigenvectors corresponding to the large eigenvalues is called a lavge-
oriented vector, and a vector with more or less equal eigenvector
components is called an un-oriented vector. For each of the six com-
binations of distribution of the components of s and e, as indicated
in table 2, we performed five different tests based on PFI. These
tests are different in the sense that we chose different sets of
random vectors {hl""'hm} in order to invoke different round-off
errors. In all cases n = 20, m = 5, x = 104, Isll = 1,

llAée" (= HAé(ﬁr-xb)ﬂ) = 107®. Just like in table 1 each pair of
columns presents the smallest and the largest observed value in the
five tests and furthermore in all cases it turned out that ka“ ~ 1

(= lzl).

- . i

k ej‘/ej-t»i :a:.’,l"sj.q_l g ~xl Has(g x M intg-x 3l
1180] €042 | 143 103 1.170-8 | 5.610~8 | 1.410-10 | 6.070-10 | 2.51¢-12 | 9.71p~12
1252] 4133 | 143 1 4.910-8 | 1.210-7 | 5.2109~20 | 1.219~9 7.010~12 | 1.470~11
362( 10451 | 193 1673 | 6.510-8 | 4.216-7 | 4.21p~10 | 1.8;0~9 9.016-12 | 5.1yg-14
1180] 6042 | 143 103 1.110-8 | 5.619~8 | 1.414-10 | 6.014=10 | 2.5;p~12 | 9.710~12
12859] 14732 1 103 1.010-8 | 3.410-8 | 1.130-10 | 6.019~10 | 2.310-12 | 6.8)9-12
2 85 | 10~3 | 103 4.819-9 | 2.044-8 | 6.239-11 ] 2.010-10 | 2.01¢~12 | 4.69p~12

TABLE 2. The influence of the eigenvector comperents
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The difference between the values of ﬂAa(i'-xk)ﬂ,(c = 0,}4,1) in the
upper half of table 2 where only the eigenvector components of the
solution vector & are varied, are rather small. Hence we conclude that
the direction of & does not affect the pseudo minimal values, although
the values of HAa(ﬁ-xk)H,(a = 0,4,1) seem to be slightly larger in
case % is larger oriented. More pronounced is the wide range for the
value of k in the case of large~oriented vectors %, We have no satis-
factory explanation for this phenomenon.

From the lower half of table 2, where ohly the eigenvector components
of the initial error vector ﬁ-—xo are varied, we see that the values
of HAa(Rw—xk)“,(a = 0,4,1) do not depend on these components, but the
number of steps needed to reach these values strongly depends on these
components (note that in all cases initially HA%(ﬁ'-xO)H = 10"6). For
the cases where 2-—x0 is either large~ or small oriented, the conver-
gence appears to be faster than in the un-oriented case. This can be
explained as follows. In the oriented cases the initial natural erxror
Aé(ﬁ-—xo) essentially belongs to an invariant subspace of relatively
small dimension, spanned by eigenvectors associated with either small
or large eigenvalues. Hence it seems as if we are sclving a linear
equation of lower dimension and with a smaller condition number {the
quotient of the extreﬁe eigenvalues corresponding to the subspace in-
volved), and this has a favourable influence on the initial conver-
gence behavior,

As far as the two oriented cases are concerned, the convergence ap-
pears to be faster in the large-oriented case (l.o. case). From our
experiments it turns out that this is mainly caused by the much
stronger decrease of the natural error in the first step. If no round-

off would occur one would have (cf. theorem 2.2.2)

had (St~xi)|l2 5
(17) % ) = ] - YO ’
HA(R—x@N
where
(18) 2 e 2,227 aate %At 1)
Yo = Hgrtp 0 0 '
(19) £, 1= b-Ax, .
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2,4

(s.0. case} and (1 'Y )i ~ 310~4 for the l.o. case. Consequently, the

It can be shown that (1 - Y ) ~ 81p~4 for the small-oriented case

algebraic decrement of the natural error hardly differs for the two
cases and hence the slower decrease for the s.o. case in the first
step is due to round~off. In the presence of round-off the analogue

of {17) reads

atwoxp? ,
(20) -T———§'= 1 - Y0(1+v1} '
“A(k—x&" ,
where
(21) 2 e en?/7aate %t e 03
Yg *= g% 0 0 '
{22) ro e fl{b-Axo) '

and where vy gatisfies (3.3.3) under the restriction (3.3.4) and fo is
defined by (19). From lemma 2.4.1 it follows that

(foaro)

—_— 1+ 0{1) [e(t+c,9..3 » 0],
(fo,fo)

1%
(23)

1} 2,

—'—{—-—— =1+ ¢(1) [c(':i-r-c
Ia foll

1Xg) 01,
where 9, t= IAllxgl /AR ~x) 1 and x, = 12/ 20xgh /18372 (2 - x 1.

For thf s.0, case we have @O = 10-8, xo = 10"10 and as a more explicit

version of (23) one can show that for this case one approximately has

(24) — 1! < ¢, 10-3 I——-—— -1 <c, jp-1.
ENEN U aleg 1

For the l.o. case we have 9 = Xo = 10”6 and as a more explicit ver-

sion of (23) one can show that for this case one approximately has

(2,0, natz
(25) —-~1lsc 10-5 + l————-1lsc 10-5 -
(£gr2p) v iade | !

is concerned, the estimate (3.3.3) suggests that v, is

As far as v 1

1
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larger for the s.o. case. However, the basic estimate (2.4.55), which

still contains the parameter B8,, contradicts this expectation because,

: 2

although % is a factor 102 larger, the parameter Bo is a factor 10
smaller for the s.o. case. For both cases one can show that
lvll 419~5. Hence, for the s.o. case {(1- yo(l +v,)) can be of order
<y 10-1 and for the l.o. case (1-~{0(1 +v1)) can be of order 01 10-5,
which explains the difference in decrement of the natural error in the
first step for the two cases.
Of course, Ai(ﬁ-xo) does not belong exactly toan invariant subspace of
lower dimension. Inthe s.0. case the eigenvector components of Ai(ﬁ-—xo)
assoclated with the large eigenvalues are reactivated by the GM.
Therefore the difference in speed of convergence between the s.o. case
and the u.o. case is restricted to the first steps. This is illustrated
in figure 1 where the values of HA (®-x, M {a = 0,§,1) are plotted for

3
(in both tests s, /s,,; = "10% . The initial values Il(%-x SI ¥

a test problem with e, /e, 41 = 10 and a test problem with ej /e = 1

g+
"Aé (5‘:-x0)| "A(ﬁ X, }ll are 19~4, 10-6, 10-8 and 2.819~6. 1¢-6,
8.010~7, respectlvely, whereas k is 5942 and 12859, respectively.
We see that after the first 3000 steps the rate of convergence of
HA*(% xy I is approximately the same for both tests. In both cases
there hclds for all 1 2 3000

Iatz-x,, )1

0.9997 < --—£——-——— < 00,9998 ,
Na%(x -xi)ll

and hence the convergenée ratio varies between ! ~3/k and 1~ 2/k.
Algebraically we know that the convergence ratio is no greater than
(k-1 /{x+1) ~1-2/¢ {cf. (3.1.7)). The proof of this result is
based on the Kantorovich inequality applied to the residual vector L

viz,
nata-x_ 02 rz®
(26) ) = 1 - T T 3%
A (% - x ) Ha = r i71a% x 0
4k (K - 1)2
<1- = '
(x +1)2 K+1 .

with equality iff r, is a multiple .of the vector u1 +un or u1 -un,

where u, are eigenvectors of A. In the twe tests the residuals r,
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1 0-1 1 "A(ﬁ"xi)ﬂ
b1 W
2 4 6 8 10 12 = /1000
FIGIRE 1, The influence of the eigemvectorcomponents

of &-x 0
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(1 2 3000) appeared tobemore or less un-oriented. Therefore it is not
surprising that the convergence ratio in the tests is slightly better
as indicated by the algebraic upper bound.

In the case of an exactly un-oriented residual vector, r, being a

multiple of the vector L. Ug e the Kantorovich quotient

||rill / ta ir Il I!A£ r, 12 § ::ould be approximately 60/x for the test
matrix & with logarithmlcal eigenvalue distribution and x = 104. This
would give rise to a convergence ratio 1 - 30/x. Hence, there seems to
be somewhat more structure in the distribution of the eigenvector com-
ponents of oy namely such that the Kantorovich gquotient is approxi-
mately 60/«

Apparently, for all cases of table 2 one has

12%& - x )1 < g ex' 1AMz N

(27)
9y = 5.8 , g; = 2,5, g, = 7.0 ,

wﬁich agrees with the good-behavior of the TRGM.

Figure 1 also confirms ocur result (cf. proposition 3.,3.5) stating that
the error ﬂﬁl-xiﬂ converges step-wise linearly with a convergence
ratio no greater than (i -1/«(1+0(1)} as long as the natural error

has not attained the level Bf the inherent natural error.

The influence of «

A well~behaved method has the property that a% (2-xk)ﬂ £

< gasx %A% HkaH {a = 0,4,1), where g, only depends on a, € and the
dimension of the system. In (B), (16) and {27) we presented already
‘the values for 9y following from the previocus tests. The differences
between these values of 9y {for the same value of a) are due to the
implementation, the values of m and n, and the choices for s and e.
In order to eliminate these influences we performed 25 tests based on
AFI, with fixed n, s and e, but with a variable condition number «,
viz, ¢ = 10P (p =2, 2,5, 3, 3.5, 4). We performed five different
tests for each condition number; different in the sense that we in~
voked different artificial round-off errors (cf. section 1.6). The
results in table 3 are obtained for the case where n = 20, s 4 fsj+1 =

= ey /ey,y =107 (5= 1,...,19), llsl = 1, lell = k x107°, with arti-
ficial relative machine precision § = 10 7. The displayed values have
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to be interpreted in the same way as in the two previous tables, each
line corresponding to five tests,

. k 12 - tadiz -0 Ba-x)l

102 105 120 | 9.939-6 | 1.47¢-5 | 1.290~6 | 1.699~6 | 2.310-7 | 3.0y¢~7
192.5 1 - 333 360 | 3.910-5 | 5.23¢9-5 | 2.675-6 | 3.419-6 | 2.419~7 | 2.B14~7
103 847 | 1100 | 1.339-4 | 1.919~4 | 5.039~6 | 7.319~6 | 2.419~7 | 3.119-7
103.5 3131 | 4717 S.1yp-4 | 7.059-4 | 1.019-5 | 1.319-5 | 2.634-7 | 2.710~7
104 20768 |26608 | 2.3;4-3 | 2.3)9~3 | 2.319~5 | 2.7375 | 2.719~7 | 3.0y9"7

TABLE 3. The influence of «

Table 3 shows that in all tests for o = 0,4,1 we have
- 2 1-
O e i L T I T B VIR A ST

(1)

where ga (2)

= 0.99 and 9y = 3.1, which agrees with the good-behavior

of the TRGM. Somewhat striking is the fact that the constants 9;1),

9;2) both systematically slightly increase as k increases (o = 0,4,

The influence of the basic arithmetical operations

From proposition 3.3.2 and remark 3,4.2 it follows that, if ¢, C,, C

’
and K are sufficiently small, then the pseudc minimal residual isiat ?
most of order e(l-fcl)ﬁAHkaﬂ, and consequently the pseude minimal
{natural} error is at most of order e(l-bcl)K1~aBA“Mnxkﬂ (o = 0,4).
This implies that the pseudo minimal values do not depend on the
constant Cz, corresponding to the round-off errors cccurring at the
inner product computations. In order to verify this we performed 40
tests, based on AFI, with n = 20, sj Qsj+1 = ej /ej+1 = 103

(3 =1,...,19), llell = lisfl = 1, ¢ = 10" fixed for all tests. We only
varied the (artificial) relative machine precision of the various
arithmetical operations. Purthermore, we distinguished between three
types of arithmetical operations like we did in the round-off error
analysis, viz. the dyadic arithmetical operations +, - (both for vectors),
* (for scalar by veqtor), / (for scalars), the matrix by vector
product operations (Cl) and ihe inner product operations (Cz). Each

of these three types is performed either with artificial relative
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machine precision 8§ = 10-7 {implemented in the way as described in
section 1.6) or with artificial relative machine precision £ = 10—11.
If some type of arithmetical operation is performed with precision §,
then the arithmetical operations performed with precision & can be
regarded upon as being performed exactly (which means C1 = 0 or 02 =0
in the appropriate cases). The results are written down in table 4.
The first three columns indicate the relative machine precision for
each of the three types of arithmetical operations, whereas the other
columns indicate the smallest and largest observed values (of the five
tests for each case), as in the previous tables. Again it turned out

that in all cases "xk" ~ 1,

awv |17 | x 1% -, iad g -t VA -x )
& [ § 3955 | 12942 | 2.619-3 | 3.130-3 | 2.610-5 | 3.19-5 | 2.8y9~7 4.010-7
8 & [ 5683 9728 | 2.419~3 ] 3.030~3 | 2.499~5 | 3.010~5 | 2.714~7 3.33p-7
8 € [ - 6284 | 10707 | 2.4310-3 | 2.6319-3 | 2.4;0~5 | 2.610~5 | 2.710~7 3.130-7
§ € E 6675 | 12628 | 2.3)5~3 | 2.719-3 | 2.310~5 | 2.719~5 | 2.639-7 ‘ 2.910-7

€ § § 4 219 ] 5.510~4 | 6.2y9-4 | 7.010~6 | 7.930~6 | 1.23¢~7 1.6y9~7
€ 8 € 26 240 | 5.4)0-4 | 6.230-4 | 6.910~6 | 7.8109-6 | 1.31¢9~7 1.519-7
[ € § ] 20506 | 23104 | 1.539-7 | 1.810-7 | 2.019-9 | 2.3;0-9 | 2.835~11 | 3.650-11
€ € | e | 21518 :‘23300 1.536=7 | 1.890-7 | 1.916-9 | 2.31¢~9 | 2.B1p~11 3.6yp~11

TABLE 4. The influence of the basic arithmetical operations

We see that the results of each successive pairs of lines, where the
relative precision of the inner product computations is either & or e,
hardly differ. This confirms our analytical result that C2 does not
affect the pseudo minimal values.

The very small differences between the first four lines where the
relative precision of the matrix by vector product computations eguals
§, agrees with the analytical result that C1 has a main influence on
the pseude minimal valus.

Comparing lines 5 and 6 (where the matrix by vector product operations
are carried out with relative precision g = 10-11 and the dyadic
arithmetical operations are carried out with relative precisicn

§ = 10-7) with lines 3 and 4 (where we have the opposite case}, we see
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that the pseudo minimal values are slightly smaller in the first cases.
This can be explained by the fact that round-off due to matrix by

" vector product operations is proportional to 016 (C1 ~ n%), whereas
round~off due to the dyadic arithmetical operations is proportional to
8. Somewhat surprising is the extremely fast convergence in the first
cases. Similar to the tests of table 2, this is mainly due to the much
stronger decrease of the natural error in the first step, which is a
consequence of the fact that ?O defined by (18) and YO defined by (21)
differ less in the first cases.

For a more detailed explanation see the discussion concerning {17}

and (20).

The results presented in the last two lines of table 4 differ by a
factor of the order 10"4 from the results presented on the first two
lines; this is just as one would expect, since the corresponding
relative machine precisions also differ by a factor of the order 10'4.

Since in all tests HAQ(R‘-xO)H = 10_2, the natural error decreased by

a factor 103 in the tests of the first two lines and by a factor 107
in the tests of the last two lines. This explains why more steps are

needed in the tests of the last two lines.

3.4.2. The necuwnsive nesidual gradient method

As far as our analytical results for the numerical behavior of the
RRGM are concerned, the most striking result is the step-wise linear
convergence to zero of the natural error HA-Q riﬂ. We performed several
tests with the RRGM, based on PFI {m = 5) and AFI (§ = 10‘8}, varying
the dimension n (20 £ n £ 50}, the eigenvector components s and e

(8y /85,y 185/ 050y = 103, 1, 1073, s =1, 107} < ey £ 107®) ana
the condition number (102 £k < 1045. In order to avoid underflow,
the iterations were stopped as soon as nri" < 10~22. In all cases this
level was attained.

From our tests it was hard to conclude anything about the influence of
the dimension n on the numerical behavior of r,.

i
Varying the eigenvector compeonents e of the initial error vector only

4

steps. Varying the eigenvector components s of the solution vector

affected the convergence ratio of ||A~ rﬂ] in the first (hundreds of)

hardly caused any difference in the numerical behavior as far as r is
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concerned. Varying the condition number affected the convergence ratio

during all iterations, as was to be expected. In all cases, after some

4

varied between 1 -4/x and 1 -2/¢, indicating that the initial orienta-

hundreds of steps, the convergence ratio of the natural error A~ rill
tion of the recursive residuals dies out and changes to an orientation
that induces Kantorovich quotients varying between 8/x and 4/x {see
the discussion concerning (3.4.1.26})}.

As far as the approximations {x,} are concerned we have the analytical
result formulated in proposition 3,2.3. It states that at iteration
step N := ent(2k log 1/¢ + 1) there holds

1 ' I|A§(?:-xm} I <

/

s ef1 +;<i+c K+ 2{4c + (2 +Ci)|<3 2)1og';-}l!A5(5‘c-xo)H(1 +o(1) +

1

+eltveptea 1092} iatiizi (1 4000

under the restriction {3.2.7). In order to verify whether (1} is

sharp, in the sense that it contains the correct maximal exponent of
K, one has to test with large values of « to be able to distinguish
3/2

between « , K, etc. However, the number N of iteration steps is
proportional to k. The tests would cost a considerable amount of
computing time. Therefore these tests were omitted.

The result (i) has been obtained from the intermediate analytical
result formulated in theorem 2.3.2.2, The inequality holds for all

i 2 0 and is expressed in terms of the residual vector £ := b-~A:~:_i and
the recursively computed residual wector .

In the case of the RRGM the inequality reads

(2) na"i(fi-ri)ﬂ <

< 8(1+€K%)1{K%+C1K+€ {4|<£+ (2 +C1)K)}1|Ai(i-xo)ll(1 +0{1)) +

3/2

+ el +et<i)i{i+c K%+ev§,_ 01(4|<+ (2+C1)IC )}IlAi{HIﬁH(l +0{1)) .,

1

3/

under the restriction ex 2—(02 + (1 +Cl}!cé) + 0. For the natural error

llaiti‘{—xi)ll we have the estimate {cf. (2.3.2.30})

(3) nadz-xpn < nahe -rpn e nate
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Consequently, for small ll;!fé rill estimate {2) alsc holds with

||A-i(fi -ri)li replaced by IIA% (Sl-xi)ll. In order to verify whether (2}
is sharp we performed a few tests based on AFI with artificial relative
machine precigsion § = 10'"8 in the way described in section 1.6.

Similar to the TRGM the iteration steps were stopped as soon as

Fk +1,} = Fk, 5 We report on the results for only one typical test.
These results axe displayed in table 1 and were obtained for the case
se1 = Py /Pyyy = 10, sl = 1, lpl = 10%, « = 10
The iterations stopped at step k = 14244,

where n = 20, sj/s

1 ne-xd | nataexpn | iagexpn | 1a7ho

0 1.0019+3 1.0071p+1 1.00y9~1 1.00yp9+1

1 6.431¢0~1 7.6010-2 5.1119~2 7.5910~2

2 6.33109~1 3.3519~2 1.13y9-2 3.3419-2

3 6.285p~1 2.551p~2 8.403p~3 2.53y9~2
12000 3.8070—2 5.76,4-4 2.8219~5 1.591¢~4
13000 3.5214~2 5.473¢9-4 2.81419~5 1.1619~4
14000 3.31;p~2 5.2719-4 2.81y0~5 8.5619-5
14244 3.2710~2 5.24y09-4 | 2.81;¢9~5 7.9510-5

TABLE 1. The RRGM

For i = 14244 and ¢ = 1{}4 the right-~hand side of (2) is of order
(2 +c1)10"2naim~x0) I+ 10”4 adjix) ana consequently, £rom (2)
and {3) we obtain (approximately)} the estimate

1

(4) }lAi(i‘(-x gos (2 +c1)10'

14244

for the test of table 1. In view of the observed value of
4

185 (% -2y 4244

can be explained as follows. In section 2.3.1, we derived from the

}JJ| this seems to be unsharp by at least a factor K‘*'. This

step-wise linear convergence of the natural error (cf. corollary 2.3.1.8)

(5) lll_\"i < (1-y2(1 <t-o(1)))na'"i riu?‘ '

r, .l 2
i+1

the estimate {(cf. (2.3.1.80))
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(6) (2 ia éx,buz) < flA-§roll(z (1-ya +o(1>>>") =
2=0 2=0 .

— Ha'%roll(uo(i)} .

which next was used in section 2.3.2, in order to prove (2} (see
e.g. (2.3.2.26)). For the RRGM we have y & < (k+1) / (2¢}) (c£. (3.2.1))
80 that from (6) it follows that approximately

® 4
™ (1o sacdinteg .

2=0
However, from the upper half of table 1 we see that in the first steps
the natural error converges step-wise linearly with a convergence
ratio that is much smaller than (1 ~\'2)£ ~ 1=2/x and therefore (5)
and consequently (7) is not sharp. For instance, if we only take into
account the strong decrease of the natural error in the first step,

then the following relations approximately hold

G ) !!A'%rznz - r0|12 + 3 nA'*rgnz <
2=0 =1
< uzs"ixon2 + y‘zna'i r1|]2 {(1+0(1)) =
s pat r01{2(1+{1<|[A—i riﬂzfﬁa_!ronz) =
= 1.1 {lA—irollz .

This implies that we gain a factor of order Ki in comparison with
estimate (7). It is easy to verify that the main term in the right-
hand side of (2} can be lowered by a factor k:é when using estimate (8).
As we can see from table 1, during the last thousands of iterations

the convergence ratioc of liAﬂy'% rin varies between 1~-4/x and 1 ~3/¢ so
that these natural errors hardly have an adverse effect on estimate (7).
Since estimate (1) is based on estimate (2>), the estimate (1) will
also be unsharp by at least a factor ¢* in cases of much faster con-

vergence in the first steps.
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REMARK 1. If in the test problem of table 1 we would restart the RRGM
after the first step, which means that r, is not computed recursively

" but from r, = £fl(b w&l) s then we expect the further results to be

1
only slightly different from the results in table 1. Then applying the

analytical result (2) to the case with initial vector x, instead of x

1 0
would yield a rather sharp estimate for HAi(it-xMM‘}) I, since then
the strong decrease of the natural error | A'% rill in the first step is
evaded. 0

The residual !lA(X-xi}ll seems to stagnate at the level 2.8y4-5 and
hence it follows from this example that the RRGM is not well-behaved.
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CHAPTER 4
THE CONJUGATE GRADIENT METHOD (CGM)

4.1. Introduction

The CGM was first described by Hestenes and Stiefel [52] and proposed
as an iterative method for solving a definite linear system. Alﬁcst
immediately the technigue was extended to more general prcblems in the
neonlinear programming field, where it proved to be extremely effective
in dealing with general objective functions.

Algebraically, for linear problems, the CGM produces the solution

% o= A—l b after at most n steps, but it is only slightly more compli-
cated then the GM. In the presence of round-off, however, the n~th
computed vector %, generally is not even a reasonable approximation to
& if ;he system is ill-conditioned. This is caused by the fact that
the algebraic orthogonality relations are disturbed by round-off
errors. Foxr this reason the method saw little use as a method for
solving linear systems until 1970, when it was shown by Reid [70] to
be highly effective on some large, well-conditioned sparse systems.
The most recent application of the CGM in connection with large sparse
systems is first to transform the original system into another equiva-
lent system that has a smaller condition and a more suitable spectrum,
and next solve this preconditioned system by some version of the CGM
(see e.g. Meijerink and van der Vorst [77], Kershaw [78], Manteuffel
[so]).

Until now a few theoretical analyses have been carried out, explaining
the numerical behavior of the CGM, but they are limited to an indica~-
tion of some of the factors that influence the growth of round-off
errors. As far as attainable accuracy is concerned, the only complete
errox analyéis known to us at this time is given by WoZniakowski [80].
However, it analyzes a new version of the CGM, not contained in the
paper of Hestenes and Stiefel [52], which is very closely related to
the GM.
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The CGM is defined by the following statements.

Conjugate Gradient Method (CGM)

Choose an initial point xog

Py 1= Iy = b-—Axo, i :=0;

while ¥, # 0 A Py # 0 do

begin

(1) a; = (r;/p,) / (py+Bpy) i

(2} X1 TX +a; p, i

{(3) . ~ { either h-—Axi+1 3

i+l T

(4) or r:L -Ai Api ;

(5) bi = - (ri+1,391) Z(picapi) H

b Piyg *% Ty4q v Py Py 7
i::=1i+1

end.

We use either (3) at all steps or (4) at all steps and hence we disg=
regard the mixed conjugate gradient method (MCGM) (cf. remark 2.2.1}).
In section 2.2 we stated already the basic idea behind the CGM: it is
the conjugate direction method where the conjugate directions are
chosen as an A-orthogonal version of the successive gradients. From
the definition of bi
{6), satisfies (pi+1,Api) = 0. The fact that Pi+1 and the othexr pre-

it follows immediately that Py,q+ computed from
vious direction vectors Py (2 =0,...,i~1) are conjugate with respect
to A is stated in the following well-known theorem. The proof is
straightforward, based on proving (i) and (ii) simultanecusly by in-
duction on 1.

THEOREM 1. If {ri}, {pi} are generated by the CGM, then we have

(1) span{po,...,pi} = span{ro,...,ri} = apan{ro,...,Ai ro}.

(1) {piBp,) =0 (L =0,...,i-1) . 0
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In section 2.2 we established the following special proporties of the
CGM.

THEOREM 2. If {ri}, {pi} are gemerated by the CGM, then we have

() (Ti41Piar) = TypgeTiag) o

(14) iatp,, 1% + o atp 12 = 1atr 02,

ETE N N R P IS S T

(iv) a; = (r;,r,) / (py.Bp.)

v by = (ry q0fy,g) / (rgery) - O

For the parameters o Bi and Yyt defined by (2.2.16), (2.2.17) and
(2.2.8) we found (cf. (2.2.44), (2.2.45), (2.2.46))

i , iad p i
ai=.ll—;j:‘l-l.s‘€é' By == e,
A natinz, )

4
B, b
?2 i > 4k .

onatepfatp)? o wen?

Consequently, from corollary 2.2.4 we obtain

] 2
fia (2-;:1_1_1)[! & o - 1\2
® NP R 2 " \«¥1)
ha (2—-xi)ll (k +1}

which reflects the step-wise linear convergence to zero of the natural

error with a convergence ratic no greater than (k~-1) /(v +1).

From the next well-known considerations it will fellow that the aver-
age convergence ratio of the natural error is no greater than

(Ki -1} /(K£~k1), which is essentially less than the convergence
ratio.

Since x, ., = x, + a,p = X, + zi=0 a,p, and span{pO,pl,...,pi} =

- span{ro,Aro,...,Ai ro}, there exists a polynomial Q, of degree i

such that X1 % % + Qi {3} ry. As we observed already in section 2.2,
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the residual x and the conjugate direction vectors PorereePy satis-

i+l
fy (riﬂ’Pj) =0 (j =0,...,1) for every conjugate direction method.

Since the objective function F(x) := IIA% {i&-—:l:)ll2 is a strictly convex
function and VF(xiﬂ) =X this implies that X4

mizes F{x) along the line x = x, + ap, but on the whole affine set

not only mini-

i

passing through x . and spanned by PgrPyrecesPy-

4
Since span{po,p1,...,pi} = span{ro,Aro,...,Ai ro}, it follows that for

any polynomial Pi of degree i there holds

§ 2 i,. 2
(9) Ha (ﬁ-xi+1)ll < ha*{x~ (xo-a-Pi(A)rg))" .
. . - _ h
Expanding ﬁ-xo in eigenvector components x-xo = z£=1 El uz, where

Ugress el are the eigenvectors of A, we obtain

n
M2< ¥ {1-ap, 0
1

beg-
(10) Ia%(%-x P Po g

2 2
141 Y} Ay s

2. 4,. 2
< m;\x {l-lei(lj)} ia (x-xo)“
3

for any polynomial Pi of degree i. Now select Pi(l) so that

A A -22 Aty
(11} f=-2p, ) = Ti-!-l(—_l——T-)/Tii-i(m‘-) ’
n 1 n 1

where

i+1

T, @ = e+ @2 -nh™ s @e @b

is the (i+1)~th Chebyshev polynomial (the formula for 'I'i +1(z) can be
ysed for all z even though in some cases the intermediate quantities
may be complex). For this choice of Pi we obtain

(12) {1+3.p, ()12 N\ PN PR\
1 max {1+ X_.P,( = {T (——-——-—)} < 4(—-—-——) .
Aj o i+l Xn- A‘i K* 1

In view of this we have

THEOREM 3. If {x;} 7s generated by the CGM, then the natural error

satisfies
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| .
an iateexn s (S iakae g 0

sc%-ri

Another well-known algebralc property of the CGM is the monotonic de-

crement of the error HR-xiH.
THEOREM 4. If {x,} Ze gemerated by the CGM, then the error satisfies

oI 2

-3 2 -4 2
=1 - (ia riﬂ + lla ri+1ﬂ ) .

(14)
Y “1_ 2,3 12
% -1 Ia = 1A% ph 0

Hestenes and Stiefel [52] gave a proof of (14) using backward induc-

tion based on the fact that X,

Nashed [72] gave a proof by forward induction, that is also valid in

L

1= % for some i < n., Kammerer and

the Hilbert space case. Since Hpiﬂ = Hriﬂ and HAipi" < lia riH wa have

the followling corcllary of theorem 4.

COROLLARY 5. If {xi} i8 genevated by the CGM, then the error converges
gtep-wise linearly to zero and

2
Ix-x, I
(15) _____;gtgf_ <1-1, 0
- K
I -x 0

We note that, just like the GM, the CGM is invariant relative to
orthogonal basis transformations {(cf, remark 3.1.3). Furthermore, we
observe that it follows from theorem 2{i) that ri+1 # 0 implies

Py # 0 and hence the CGM terminates because of the fact that

Fia1 +1
could be left out in the stopping criterion.

= 0 as well as Piyg = 0. Consequently, the condition Pig1 # 0

We conclude this section with another remarkable algebraic property
of the CGM. Suppose we choose an arbitrary initial vector Xor set

¢ ™ b-Ax0 0
initial vector Pq # 0 to start the CGM-~iterations. Retracing the

r and instead of setting PO = r_ we choose an arbitrary

proofs in section 2.2 of the relations stated in theorem 2, it turns
out that the relations (i), (ii) still hold for i = 0 and that the
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relations (iii)}, (iv) and (v) still hold for i 2 1. Consequently, this
so-called independent atart conjugate gradiewnt method (ISCGM) (py # 1)
is a DM for which the parameters o Bi and Y satisfy the inequalities

stated in (7) for i 2 1. Hence, apart from the first step, the natural
error converges step-wise linearly to zero with a convergence ratio no
greater than (k =1} / (k +1). As far as the first step is concerned, we
have v, := | (rgpg) | / (nza"i ronnaé Pgll) and consequently (cf. (i) of theo-
rem 2.2.2)»11A5(i-x1)|| ES llAs(S‘:-xo)ll , with equality iff (ro,po) = 0,

On the other hand, the results of theorem 3 and theorem 4 do certainly
not hold for the ISCGM, since their proofs are strongly based on

j) =0 (1 #3),
and these orthogeonality relations are based on the fact that Py = Xg+

orthogonality relations like (ri.pj) =0 (1>13), (p;.ap

The numerical importance of the ISCGM can be explained as follows.
Suppose we have performed k steps of the CGM in the presence of round-
off. It is obvious that we may not expect the relations of theorem 2 to
hold exactly. Without round-off, continuing the CGM after these k steps
is equivalent to starting the ISCGM with initial vectors e and Py -
Consequently, we may conclude from the previous considerations that at
all these later steps the natural error converges step-wise linearly
to zero. This can be considered as a stability property of the CGM: if
after some iteration step the occurrence of round-off is excluded per-
manently, then from this step on the natural error converges step-wise

linearly to zero,

In Chapter 5 we deduce some more properties of the ISCGM and we also
consider independent start versions of other variants of the CGM.

In the next two sections we discuss the numerical analogues of the
inequalities given in (7) which will next be used to prove a numerical
analogue of the step~wise linear convergenée reflected by (8). In
section 2 this is done for the RRCGM; in section 3 this is done for
the TRCGM. In section 4 we report on numerical experiments that have
been carried ocut with the CGM where also remarks concerning the valid-
ity of theorem 3 and corollary 5 in the presence of round-off are
included.
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4.2, The nrecursive residual confugate gradient method {RRCGM)

The results deduced in this section will be based on the results of
section 2.3 for general RRDM's, The results there were expressed in
terms of the parameters oy 8i and Yi' defined by (2.3.1.43),
(2.3.1.44) and (2.3.1.4). Therefore, we have to estimate these param—
eters for the RRGM.

We first repeat the estimation of these parameters in the algebraic
case, since the estimation in the presence of round~off proceeds along
the same lines.

Since, algebraically, A£5&+1 - biAipi = Airi+1, where bi is chosen
such that (pi+1,Api) = 0, it follows by taking squared norms at both
sides that

} 2 boop2 _ ot 2
1 fa pu_ll! + b, a pi" ={la riﬂll ,
or equivalently,
tatp 12 ,
(2) i+l =1-8
; 2 i’
flazy,
i+l
wherev
.= } i
3 8, == l(xy ,Bp) |/ A xy AT R D) .

In particular we have
b 4
(4) A% p 0 < 0afxr, 0 .

Algebraically we have for any DM (cf. theorem 2.2,2(iii})

{5) (ri,uapi) =0,
and since in the CGM Py = ri+1 + bipi’ we obtain
6) ( ) = lr, 07

FiaprPigpg? T 0T40

The formulas (4) and (6) are used to estimate the three parameters ags
Bi and Yg in the algebraic case. According to the definitions we cb-

tain
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(N a, 3= l[riﬂllpi“ /1 (ri.pi){ = llpiﬂ fﬂri" <
< scéfI’Ai pi!i /ﬂA% ri“ < tci '

(8) B, = Nz, lafp 0 7 dab i o 10 = atp i/ abiiz < 1,

© R P [T DA RN IR P P[PPI P

(k+1) / (2ehy

1A

In order to estimate the parameters in the presence of round-off it
seems necessary to investigate first the analogues of the formulas (4)
and (6) and intermediately the analoguesz of (2) and (5). Observe that
the algebraic relation (1) is quite similar to the algebraic relation
(1} of theorem 2.2.2 whose numerical analogues are stated in theorem
2.3.1, theorem 2.3.4 and remark 2.3.2., Therefore it is not surprising
that the proof of the numerical analogue of (1) is similar to the
proofs of these theorems.

THEOREM 1. Let Tie1? Py be two arbitrary nonzero machine vectors and
let py .4 be computed according to (4.1.5) and (4.1.6). Furthermore,
let ‘

= } }
(10) o, == lr, oA /7 0IA  2, IA% R 1) .

Then we have

2
Iatp i
(11 BE 5.2 SRS
NI E oM
i+t
where
(12) “’iu' < 12“5(1 F0(1)) + sx*(cz-x-cln*}om .

under the restriction

(13) e:c%(l -!»c2 +C1K‘1'} >0 .
PROCF. The proof is entirely analogous to the proof of theorem 2.3.1.
We only state the main intermediate results, that will also be used

later on.
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We obtain for the computation of bi = £1( _(r1+1'APi) /(pi,Api))

(14) bi & bi + ﬁbi ’
(15) By := - (r;, . 48p;) / (B oBR)
16y 1w}l s et +2cuet racomate, 1/ matp i oy

under the restriction

(17) el +cC K3+c1x) >0 .

2

The computation of Piyg = fl(ri+1'*bi.Pi) satisfies

(18 Pigr = Tyep PR3Py ¥ OBy

(19 8P4y = F{Ti4 TR VIR

(20} 1|F2fl <€, %lviﬂ £ 21+0(1)) , [e=-»0],
and also

2H Pigy = Fieg *ByRy * 0BY

(22) pYyy P FiTyyq *S0ypy + Iipy

@ hh < 2elate 0/ 0adp la+om) .

under the restriction (17).
From (18} we derive the basic formula
} 2
p, 0
i+1 _ 2
7 =18ty

] ,
la ri+1H

ia
(24)

where ei is defined by (10) and

(25) = (20a0r,,, +B, p,), o9y, +Iatopr 1% /ety 07

Hisg i+l

Using the former inequalities one can prove that (12) holds under the
restriction (13). 0

REMARK 2, Theorem 1 can also be written in a form closer related to

expression (1). We have
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2 _ 2, ok
(26) oy = (x,,,,2p) "/ (la%x

! 2 _ e b 02,004 2
piu) = IIBiA piﬂ Jhasx, 17,

LIl i+1

where, according to {15), Bi = - (ri+1,Api) X(pi.Api).
Consequently, {11} can be written as

It follows in particular that, under the restriction (13),

iatp, 1< ecnuaty

Pivt U

i+1
(27

3 i
!IEiA pll £ (W+o(1))la T, .

1
Using (14) and (16) this yields, under the gestriction (13},

3 4
{28) ||biA pill < (L+o(inla riﬂll .

Retracing the proof of theorem 1 and replacing all ¢-symbols by defi~-
nite estimates involving explicit numerical constants, one can prove
that |u, .| < 7/40 if

4 oL
(29) EK (3-+C2-+C1K )} < 70 °
Heénce
4 1,0,4
ila piﬂil < 1+ 10)11& ri_ﬂll ,

(30}

- i . 1, i
IB, a%p Il < (1+ goale 0.

1

Furthermore, it follows that

v e atp s asdynate 0. | 0

i i+l
We now derive the numerical analogue of (6). In remark 2.3.1.16 we saw

already that the orthogonality of r and p; can be seriously disturb-

i+l
ed by round-off if ﬂA~é riﬂ /ha” xi+1" is large. It is obvious that

this loss of orthogonality influences the approximate validity of (6).

THEOREM 3. Let T Py be two arbitrary nonzerc machine vectors and let

ri1e Piyq be computed from ove step RRCGM, Thew we have
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2
(32) (x } = (1*Ai+1)ﬂri+131

’

1i+1'Pi4+1
where

1at e }

4 } 4 i i
(33 1Al s {5(14-2:: ) ek’ (143c% +2C,k +2c1.<)m—-—-— (1+o0(1)) ,

i+l
under the restriction

{34) ezé(l +C, +C1K£) +0 .

PROQOF., From {(2.3.1.14) and (2.3.1.24) we obtain

(35) (ri-t»l'pi) = (ri,pi) -a, {p. ,Api) + (6ri+1,p )} =
= Sajtpyudpy) * (Brpyepy) -

Hence, using (15), we get

(36) Fga1Piar) = FpaqrTig) ¥ BT 0pg) + (30000, =
= (Xy,q0%y,0) - 8ajby(py,Bpy) + by (8x), upy) + (ry4.000,,) -
Consequently,
(37 (Fy 41y = (L¥A Dlr N
where
(38) Mgy i° {b 1 8xy epy) +(x o8Py ) - 8a) by (Pi'APi"} / [lri+1iI2 .

From {25), (26), (27) and remark 2 of section 2.3.1 and from (28) of

this section we c¢btain, under the restriction (34)

2 i "; '
(39) !b (6x! )l zltri“!l < llbia pill ia 6ri+1lt ;’llriﬂi

2}

1+1'Py

} -4

piu{eé Ia

in

UbiA rill +

i 2

+ (2&:1-:%"& A pii +eC, klla Aipiﬁ)(l'*'O(l))}f I <

i+1

A

ectaecchmls imnte b /e, Pavoan <

4

ee3sepchla e i/ e, o

iA
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From (19}, (20} and {28} we obtain, under the restriction (34)

2

1

(40) RIS 2 P Ll SN A PR

}

< (elr,, 0+ 2l b, atp 1 /0y, 0 8

IA

44 2
ethr, I+ 2087 A 1 (1 0(D)) /e, 07

}

€ e(l+2«*)(1+0(1)) .

From (2.3.1.21) and {28) we obtain, under the restriction (34)

2
(41 !6ai b, (p, +2p,) | /HriHn <

A

) -4 ! 2
2
€(1+2C,k* +C %) ia rillllbiA pi” fﬂriﬂll {(1+0(1)) =<

} 4

A

e{l +2C,x

) 2
) rllia?e, I Zlz,, 1% o(1)) <

+c1a<)llA

:

; -} -4
2
ex* (1 +202K +Clr<)HA rill /lla riHH (t+o0(1)) .

A

Inequality {33) now follows from (38), (39}, {(40) and (41). O

A more explicit version of the result just derived is given without

proof. We have

PROPOSITION 4. Let Tis By be two arbitrary nonzero machine vectors and

, .
let i1 Pigq be computed from one step RRCGM.
if

3 3 1
{42) €K (3+c2+<:1;< )] sm,

then, in equality (33}, certainly

-}

b vect 10 3ch s 20.0) i L WP
(43) “‘14-1‘ < {9(1«1»2!: Y +ex”(1+3k +2C2|c +2C1¢c) -—:--———}(1+-1-3} .
A =2 440 D

Once we have derived the numerical analogues of (4) and (6), it is
easily seen that in the presence of round-off the parameters o B i

and'Yi satisfy
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ey < K£(1 +0(1)) ., Si < 1+0(1)) ,

(44)

7;1 S (k+1)/ e oy

under the restriction
-4
T, o

é} la
TN
ry

(45) sr%(1+c +clu<£) + gr{l+C,+0C.K -0 .

2 2 1

This implies that if "A—% ri(l is not very small relative to IIAM% r;i.—l”
{and ex (1 +02 +Cll< } is appreciably less than unity), then the bounds
for o it 8 i and Yy in the presence of round-coff are close to the bounds
for e Si and Yi in the algebraic case. Consequently, it then follows
st < IIA"i r,ll. Stated different-
] +1
ly, if ex(1 +Cy +CyK ) is appreciably less than unity, then

-4 -4 -4
a ri+1|| < lla riﬂ unless la r, ri—l"’
This justifies the expectation that eventually in all cases

from proposition 2.3.1.12 that liA"§ r
b << a7t

ri+1ﬂ < ﬂAvi ri—l“' Concrete form is given to this expectation in

the following proposition. As in the case of a general DM we are not

1a~?

primarily interested in the fact that the numerical convergence ratio
is close to the algebraic ratio if (45) is small, but we want to know
under what explicit conditions the natural error Ilaué ritl tends to
zero. Because of this a version of proposition 5 using ¢0-symbols is
omitted. We only state an explicit version.

PROPOSITION 5. Let r, ,, p,_, be two arbitrary nonzero machine vectors
and let
4
6) L := {1 - ‘iéé‘“‘"s""‘é‘} :
(x+1)

Congider two successive steps of the RRCGM. If

A

§
*Cll()$400

(47) ex {3+ 02

then at least ome of the following two inequalities
4

- 2
ia ri+1|| 2

(48) <L,
1A e 12
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TN
(49) 52 B

it 1

i-1

holds.
PROOF. Note that L% > 1-5/64 = 59/64. If ua‘*riﬂnz <t ﬁA-%ri_lllz,
then we are ready.
Let us now assume that HA”%ri+1Hé > L4HA-%ri_1H2. If (46) is satis-

fied, then (cf. remark 2.3.1.2) one certainly has [|a~ ri+1“ <

< (11/10) HA-% r;ll and consequently

-4 -4 -4
U L N L P VRN
2.

N I T PR T P Bt

r,
i+l

Consequently, from proposition 4 and assumption (46) it follows that

(50) (ryrpy) = WA M?
where
13 IR T } }
(51) 1= (10){e(2+n )+ (e’ (1 + 3+ 20k +2c,6)} <
< 4eg(3+C, +C K%) ES L
- 2 1 10 7
In view of (30) we furthermore have
i 11, 4
(52) IIa pi” < (m)}lA riit .
Hence we obtain the explicit bounds
11 1,-1 -
(53) ay < Ki{EE?{1 —Ezﬁ < 21(i R 81 <2, Yii £ {k +1) /Ki .

Consequently, the assumption of proposition 2.3.1.12 certainly is

gatisfied and we conclude

- 2
e
(54) _éiﬂz Si'i%*iSi'T%_J‘"ﬁ"’Lz' o
lla r (¢ +1)
REMARK 6. Since in proposition 5, ri__1 and Pi 4 are arbitrary, the

assertion given in (48) and (49) holds for all i > 1 not only for the
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RRCGM, but also for the RRISCGM, as introduced in section 4.1. Proposi-
tion 5 indicates that if in a certain step the natural error does not
decrease by a factor L, then it did decrease by at least a factor L2
in the last two steps together. It is easily seen that the assertion

given in (48) and (49) implies the assertion that for every i z 2

-1 -1
2 fr Ia *z, .1
{55) % i < L2 or —'Tit;__ < LZ .
1Atz e,

Therefore we have a kind of bi-step-wise linear convergence to zero of

the natural errox IIA“s r with a convergence ratio no greater than L.

The linear convergence to zero on the average of the natural error is
expressed in the following corecllary of proposition 5.

COROLLARY 7, Consider the RRCGM with avbitrary initial vector x, and

0
assure that

N
{56) €Kf3+Cz+ClK } < 26 °

Then we have for i 2 0

57y . nA"*rin < Lzlla-iroﬂ .

where L 8 defined by (46).

PROOF, For i = 0 inequality (57) is trivially satisfied. For i = 1
{57) follows immediately from proposition 3.2.2 since the first step
of the RRCGM is identical to the first step of the RRGM.
Now let i 2 2 and suppose (57) holds for all 0 £ k £ i-1, If
e n/imte 1< 1, then

-4 -4
{58) ia rill/"A ol <

i i-1 i

st ity naatte n/iategn s et et

1f Habi rill / IIA-iri‘.lil > L, then, by proposition 5, one certainly has

IIA—% rilf / IIA-é ri__zll < Lz, and therefore
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(59) nade i/ ia rl <

-4 -} -4 -1 2, 4-2 _ i
< (lia riil /la ri_1~||) (P ri_zll /A roll} < L% L.

Hence, in either case (57) also holds for i and (50} follows by in-
duction. 0

REMARK 8. For the RRISCGM we cannot apply proposition 3.2.2 (which
applies to the RRCGM) for the firyst step. We can apply, however,
vemark 2.3.1.2 which guarantees that ﬂh_i rlﬂ < 9%% “A_i rou. From
this and proposition 5 it follows, similar to corollary 7, that for
the RRISCGM one has for all 1 2 O

bo s (it

(60} Ia f 35

=
ENLPATN O

REMARK 9, The restriction for the RRGM in proposition 3.2.2 and the
restriction for RRCGM in proposition 2.4.5 essentially differ by a
factor Ké in favour of the RRGM. The basic¢ restriction {2.3.1.70) for
general DM's, under which these proposition were derived, contains the
term u(1-+02-+clk) and since (even algebraically) the bounds for o
differ by a factor K% in the case of RRGM and RRCGM, the difference is
not surprising. O

We do not present a numerical analogue of theorem 4.1.3 which states
that algebraically the average convergence ratic is no greater
than (Ki‘-l) /(K£-+1). In practice, this algebraic average con—
vergence ratio is observed (see section 4.4)}. The proof of theorem
4.1.3 is based on the whole history of the RRCGM, particularly on the
orthogonality relations (ri+1,pj) =0 (j < i}. In section 2,3.1 we
considered only one step RRDM and in remark 2.3.1.16 we discussed the
i+1/Py) = 0.
In order to obtain a numerical analogue of theorem 4.1.3 it seems

numerical analogue of only one orthogonality relation (x

necessary to investigate the approximate validity of all orthogonality
relations, but this is outside the scope of this thesis. However, we
do realize that it is because of the smaller average linear conver-
gence ratio that in practice the CGM is far superior to the GM,

For the same reasons we do not present a numerical analogue of

theorem 4.1.4.
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4

that Hxi-iﬂ + 0. However, we cannot apply the results of section

Recall that, using recursive residuals, §a~ riH + 0 does not imply
3.2.2 without more ado, This is due to the fact that in the general
case we assumed step-wise linear convergence of {A'% ri} whereas for
the RRCGM we only proved bi~step-wise linear convergence in the sense
of (55). However, it is still possible to derive similar results (see
Bollen [79] for a rather weak result}, but we refrain from stating

thenm here.

4.3, The true nesidual confugate gradient method [TRCGM)

The results deduced in this section will be based on the results of
section 2.4 for general TRDM's. The results there were expressed in
terms of the parameters oy, Bi and Yy defined by (2.4.20), (2.4.51)

and (2.4.52), respectively. Therefore, we have to estimate these param-
eters for the TRCGM. Of course, as far as the algebraic processes
TRCGM and RRCGM are concerned, there is no difference between the
estimates. Consequently, we proceed along the same lines as in section
4.2 and investigate the numerical analogues of (4.2,4) and (4.2.6).
With respect to the numerical analogue of (4.2.4) we can use the
results of theorem 4.2.1 and remark 4.2.2, on the understanding that

now v stands for the computed true residual r = fl(b-Axi).

The ri;élts deduced in section 4.2 cannot be useé+io obtain the
numerical analogue of (4.2.6) but nevertheless the proof of the
numerical analogue of (4.2.6) for the TRCGM is very similar to the
proof of theorem 4.2.3.

We first establish an auxiliary result.

LEMMA 1. Let X, Py be two arbitrary machine vectors and let X be
computed according to (4.1.1), (4.1.2) and (4.1.5). Furthermore, let

according to the definitions (2.4.19) and (2.4.21)

(1) £, 1= b~Ax, ,

(2) by c= Dadixg /||A'5fin .

Then we have
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~dyya-d
(3 leill < (llxi+1|l + la fHia filf) (1+0(1}) ,
under tha vestriction

(4) a{z%{1+c2+c1mé) + (1+c1x5¢i)} > 0.

PROOF. All ¢-symbols are assumed to hold under the restriction (4}.
From (2.4.38) we obtain

(5) PN PO I EWN I L
From {2.4.39), (2.4.41) and (2.4.37) we cbtain

{6) ESxiﬂll < IIFS'_" x 0t + Isa, p Il + v, pll <

by —4
< el + 1a7na e oo
In view of remark 2.4.4 we have
7 Ia, ptl < Ha~fina, atpt < ma~tiia e asoan
1 Pyt = 1 & Py i :

Substitution of (6) and (7) into (5) proves (3).
We now arrive at the numerical analogue of (4.2.6) for the TRCGM.

THEOREM 2. Let X5 By be two arbitrary machine vectors and let X419

be computed from one step TRCGM. Furthermore, let according to
premcus definitions, for & = i,i+1
(8) £ := b=-Ax, ,

(9) 0, := Iallxl /7l h , v, o= Iatiixgl 7in 7t e

Then we have

2
{10} (fi-ki’pié-l) = (1 +1 )“214‘1“ '
where
) i
11 Eki+1l 4 6{2(1 +k4) + (1+cl(1 + K )}@i+1 +

% | L b
+ k{1 + 2 (2+c +Cyx }) —-—~;—-—}(1+0(1))
1+1
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under the restriction

(12) s{xc*(l#-c 'I'ClKi} + (1 +c1z%)(¢i+xp

) o

i+1

PROOF. All O0-symbols are assumed to hold under the restriction (12),

Expressing (2.4.38) in terms of fi' £i+ we obtain

1

£ =i -éiApi-ga

i+t "ty *i+1

and consequently, from the definition of &i it follows that

{13} (fiﬂ’pi) = (i‘i,pi) - ai(pi,Api) - (A 6x1+1.pi) =

= -(&Sxi )

+1°Py

Uging (4.2.18) and {2.4.25) this yields

(14) (B1oPy) = (Bypqeryyg) # 03By Ry + (F,400R5,) =
= Ry o) F By a8 ) F (R4 00Ry ) D BSK e py) =
= g g 07,

where

(5) Apyq o= 108y o8y )+ (240001 y) ~bi (A8, py)) /“fiﬂHz .

It remains to be estimated each of the terms in (15).
From (2.4.12) it follows that

2
(16) I ) /e 07 < ler

Eir1e8 44 LRI U

< eg{l+C (1+0(1))) .

1%141

From (4.2.19), (4.2.20), (4.2.28) and (2.4.5) it follows that

2 , R
(17) 148,y 80], 01 /08, N7 < Nopl I /2, 0 <

£ (ellr I =

n+2eiaHm, atp 1 +o0n)) /e

i+l i+l

< (elr, h+2ela fat s, 1 ason) /s,

Il =
i+l i+l

i+1

£ c(1+2n<&)(1+0(1)) .
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From (2.4.39), (2.4.34), (4.2.28), (3}, (2.4.28), (2.4.11) and (2.4.41)
it follows that

2

4 .
p, /1 Bl s

2 4
(18} lbi(Aéx X /Ilfi“tl < la 6xi“llllbia

141 Py

n

dadiegr i+ lIsa; abp i+ a7t or, Il +

ity p i iate, 0702, 12 v0c) <

i+l

}

A

{eHA%H(HxiHH «a~ uA’*eiu) settr2ccd reia 2ll+

s 12" Helle I+ ec Il (e, 1+ 0~ Hina"E e ) +

i+t

1 -
+ 2etln *zin}uaiuxuz I(1+0(1)) =

i+1

i

(e (1 +c1K*;nAuuxmu -

} Lyiathiate
+ell+2c?(2+c, +c A A 22 0} /l2, M1 +0(1)) <

A

)
€“+cﬁ)@ﬁ1+

+ EK%(1+2K£(2+C +Clxi))§iA-£fil|/|lA-%f f(i+o0(1)) .

2 i+1

Inequality (11) now follows from (15), (16), (17) and (18). 0

A more explicit version of this result is stated without proof. We

have

PROPOSITION 3. Let x,, p, be two arbitrary machine vectors and let

Xip12 Piag be computed from cne step TRCGM, If
b iy < L
(19) ekt (3+C, +Ck*) < =&,

and if for & = i,i+1:

} L
(20) s(i-rcix )wl < 6 ¢

then, in equality (11), certainly
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. i }
21y IM*N se{ﬂ1+x) +{1+cﬁ1+x))%*1+

+C Ké))

} 4
+ K(1+2K(2+C2 1

-4
4a fill :
-1
a fi+1ll
Now that we have derived the numerical analogue of (4.2.6) we can estimate

the parameters o Bi and Yy in the presence of round-off. From (11}
and (12), replacing {+1 by i, it follows that under the restriction

(22) e{ni(ncza-clac*) + ey, v archo +

i=-1

} 4 }
+ K U+2K(2+c2+Q3))———y—T— -0,

1ate u}
™ el

certainly f%il = 0(1). Using (2.4.5}), (2.4.6) and {4.2,27) it follows
that, under the restriction (22},

izt up nemia~tiaton  natinate
(23) o U L 2

1= < < o (1+0(1)) =<
LOTERIT T e 2oy Il

} i rill

S Kk === (1 +0(1)) £ K£(1+o(1)) ’
lli*ill

L §
e #lia®p.i ffz dlin® ¢ i
(24) 81 = i i i i

(1+0(1)) =<

I R Y
fa !H(fi,pi)l ila iHIi-i{t (1-]7\]._1)

!!ri!l
< -"—21“— (l+o0(1)} < 1 +0(1) ,

L owteamten whe b
{25) Y,
| TRl

3 (1+o{1h} £
llrill {i-lkil)

-4 3
LA IR
i I (teoq)) < 5—*—;— (1+o(1)) .

< 3
e, I 2%

This completes the set of basic relations that are needed to prove the
main theorem of this section. We only formulate an explicit version
(cf, proposition 4.2.5).
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PROPOSITION 4. Let x,_,, By be two arbitrary machine vectors and let

4
1 K
L:={1-___.___.} )
> k+1)?

Consider two steps of the TRCGM. If

. 1 1
2z
(26} en(3+3c2+c1s< ) € 0 !
i 1

(27) e(3 +201K )*}Ji = 1€ ¢
and 1f
(28) e(1+ckhy, | <

1 i-1 7 16 '

then at least one of the following two inequalities

iab@-x 12
(29) -—--?—-—i-f—l—i-— <1?,
faz(g~x It
1
Iatz-x, 12
(30) ‘-r'"—ii“z—s Ld‘
1abiz-x,_ )l
holds.

PROOF. First we derive some explicit bounds concerning Eie i‘i. From
{(2.4.9), (2.4.12) and the assumptions (26) and (27) it follows that

(31) B Wzl < 1+ loxl /el s 1+ €(1+Ci{1+e)xiw1) <
1 1,121 1
514’1—27)“&(-5-2-}(2?6-)(14"13.

From (2.4.9), (2.4.13) and the assumptions (26) and (27) it follows
that

(32) NA-% £l /’IIA’ik rl <1+ (llA’é sz Il / |]A_i £, (I{A“% g/ ua'i s

4

€ 1 + ex (1+c1(1 +e))\t’illifi fill/ﬂa"%riﬂ £

A

e Latensmaiey
10 i it -
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Hence

-4 -4 1
(33) Ia fiU/IIA rill S1+3.

The remaining part of the proof is very similar to the proof of prop-
osition 4.2.5,

Note that L? 2 1/20. I1f ||1-\-i fi+1"2 < I..4||A“i fi_iﬂz, then we are ready.
Let us now assume that NA-% fi+1"2 > L4HAf% 21-1"2' From the assump-
tions {26) and (28) it follows that HAﬂifi+1H < (13{10)HA‘£ fﬁl and
(cf. remark 2.4.4) conseguently

-1 ~4 -1
30 ia fi_ﬂ! ) la fi-1H ia fi+1" L3 7

-4 -3 -3 T o2 5 °
ia f‘iﬂ ia £i+1" lia fiil 10L

Hence, from proposition 3 and the assumptions {(26), (27) and (28) we
obtain

(35) Mil < (%%){s(2+vci)+z(1+C1(1+K%))(vi+

+ (‘;’}EKi(l'FZKé(Z-PC +C1K%)}} s

2

< 7en(3+3€2+c1n%) + 25(3+2C1K%)¢i S i—% .

In view of (4.2.30) one has

H

i 11,
{36} a pill < (io)IIA rili .

The inequalities (31), (32), (34) and (35) enable us to replace the
estimates (23), (24) and (25) by explicit bounds. We thus obtain

~17, 72
W, 12\ (u }
37 a, S« 1 - i 10, £ 2¢* ,
“1y0\2
12 11

(8) By = 1(’ - m) (’ib‘) =2
(39) e/ *)zum‘z_lmm)-—“zs(u)/*

Yy * « 20) \TAT0 « k7o

Finally, from (26), (27}, (37) and (38) it follows that the assump-
tions of proposition 2.4.8 are satisfied and consequently
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a R
i+1 1 2 2
(40) ““—:q—:——z— £ 1~ TV <1~ 7 = L. 0
fia rill 5{(c+1)

We now assume that (26) holds., It easily follows from proposition 4
that if (27) holds for all 0 £ i < k and (28) holds for all 0 < ¢ £ k,

then for every 0 £ i £ k

} H

A% (2 ~ )1 Iafg-x, 1

£ L .

< L2 or

T Iat (% - x

(41) i+l

k(g - x,
1

-2 110

Hence, as long as {27) and (2B) are satisfied {cf. section 4.2) we
have bi-step-wise linear convergence of the natural error HA*(&-xi)ﬂ
and consequently,also linear convergence on the average with a conver-
gence ratio no greater than L. From this we can draw three conclusions
similar to those we derived for the TRGSM from proposition 2.4.10, but
now expressed in terms of bi-step-wise linear convergence, They are

combined into the following proposition.

PROPOSITION 5. If {xi} ie generated by the TRCGM with arbitrary
initial machine vector xy and if

3
(42) ek(3+3C, +Cyk") < o

F-N
-

i

with a convergence ratio no greater than (1 ~-x / (5(k +1) ))*. at least

then the natural error 1A% (%~ Xy Ml eonverges bi-step-wige linearly

until the iteration step where one of the following two inequalities

18 true:
(43) Bacz-x0 < 16 (3 +2c.d) lallix. 0 ,
i 1 i
) Iataox_ s e scchmabingn | 0

If inequality (43) is essentially sharp and if C1 is of order unity
3/2

(or order n as in straightforward implementation), then the residual
”b-AxiB is a factor K% too large to have good-behavior; if C1 is of
the order eﬁ {e.g. by using double length precision), then the residual

is small enough to guarantee good~behavior.
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If inequality (44) is sétisfied, then the natural error ﬁA&(R-xi)H is
- at most of the order of the inherent natural error and hence we have
A~numerical stability and consequently also numerical stability.
Cﬁmbining the two inequalities, and using {1.4.3) and (1.4.4), we may
conclude that if {42) is satisfied, then TRCGM generates at least one
approximation Xy for which

4

(45) 1A% (= - x N s 16e(3+20,c N ANkl (0 = 0,4,1) .

Hence we cannot conclude that in general the TRCGM iz well-behaved or
(3)-numerically stable. If, however, c1 is of the order ei, then it
follows that TRCGM is well-behaved.

REMARK 6. In view of proposition 2.4.8 it is not surprising that (43)
contains a term of order sclxiﬂnuﬁxiﬂ (which precludes the proof of
good-behavior), since the underlying restriction (2.4.98) contains a
term sciaiwi and we only have the a priori bound a; < K£(1-¥G(1)) (cE.
remark 4,2.9). Note, however, that it follows from proposition 2.4.8
that if (42) is satisfied and if oy

step where the monotonicity of the natural error breaks down, then the

and Bi are of order unity at a

residual Hb-—AxiH is of the order eNAﬂﬂxiﬂ and hence we have good-
behavior. f

Note that all results derived in this section alsc hold for the
TRISCGM as defined in section 4.1,

4.4. Numerical experiments

In this section we report on some of the numerical experiments that
have been carried ocut with the CGM in order to verify our analytical
results deduced in sections 2 and 3. Our tests are based on the three
different ways of implementation, viz. assembled implementation (AI),
profuct form implementation (PFI) and artificial floating point im-
plementation (AFI), as described in section 1.6. As far as the dis-
tribution of eigenvalues, the choice of the orthogonal matrix U, the
assemblage of U (both in case of Al or PFI) and the eigenvector
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components of b and x, are concerned, we refer to the introductory

part of section 3.4, ghich deals with similar tests for the GM. If we
display the values of Fi,a 1= fl(HA“CR-xi)H),(a = 0,},1), when re~
porting on numerical results, then these values are computed according
to the formulas (3.4.2) (for AI and PFI) and (3.4.3) (for AFI}. For a
discussion on significant figures we refer to remark 3.4.2 and

remark 3.4.3, respectively.

4.4.1, The true residual confugate gradient method

Por the numerical performance of the TRCGM we have deduced two basic
analytical results. Firstly, the (explicit) result stated in proposi-
tion 4.3.5, from which it follows that, if zn(3-+302-+cix£) < 1/40,
then the TRCGM generates at least one approximation xy for which

(1y 12%®- )0 < 16603 +2¢,ch e MA%x . @ = 0,415

this will be called the reachable level, Secondly, the (explicit)
result stated in proposition 2.4.8 and holding for every TRDM, from
which it follows that, if !IA&(Q-xk.’_l)H 2 |[A%($Z->s&)ﬂ for some k and
if a{x£(1-+c -Pclxé) + ak(1~+cz)} < 1/40, then

2
) 1A% (% - %)l s 4e (28, (1+8,) +Cya )k MR (@ = 0,4,1) .
Here
& a, =I5 lip, 0 /1 (8, m) 1
(4) B, =g natp s aalyice, 0
(5) fos=b-ax .

We recall that algebraically o < x% and Bk < 1.

Our tests are mainly designed for the verification of these two
results. In all experiments the TRCGM iterations are terminated as
soon as Fk+1 3 = F A (see remark 3.4.1.1).

We alsc performed tests similar to those performed for the GM in order
to investigate the influenﬁe of the value of m (for AI and FPFI), the

influence of the eigenvector components of % and %~ x, and the in-

0
fluence of the basic arithmetical operations. The conclusions that can
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be drawn from these tests do not essentially differ from the conclu~-

sions for the GM and therefore the results are deleted.

The influence of «

We performed several tests based on AFI with fixed dimension n, fixed

eigenvector components s and e for %X and £ ~x., andwith logarithmical

¢
eigenvalue distribution, only varying the condition number. A set of

representative results is given in table 1, whexe n = 20, sj fsj+1 =

= ej /ej‘,'1 = 103: listt = 1, llell = k19-1 (hence HAi(ﬁ-'xg)ﬂ = k?yg9-1)

and the artificial relative precision is § = 10—6. We performed five
different tests for each condition number; different in the sense that
we invoked different artificial round-off errors (cf, section 1.6). In
all cases at iteration step k, defined as being the first step for

> ~ = &
which Fk+1,i x Fk,é' there holds uxkﬂ 1 (= [1&]). The smallest and

largest observed values of k of each set of five tests with the same
condition number are given in the table. In the columns headed
ﬂAa(R-xk)ﬂ,(u = 0,},1), we display the largest and smallest observed
value of F o The column denoted by % nax indicates the largest ob-

k,o

served value of a, {(cf. (3))} throughout all iteration steps and all

five tests together. The column dencted by o indicates the largest

k
observed value of ak.

‘ K 1% - x natex- o TAR - )t Sonnl %
102 24 26 2.819-5 | 5.910~5 | 7.51¢0~6 | 8.710~6 | 3.1)¢-6 | 4.010~6 | 2.3 | 1.6
102.5 42 58 | 1.23p~4 | 2.630~4 1.019-5 1.619-5 | 2.3109-6 | 3.7y9~6 | 3.0 [ 2.0
103 77 97 | 5.31p~4 | 9.2;0-4 1.899-5 | 3.7y0~5 | 2.319~6 | B.lyg~6 | 7.6 | 2.0
103.5 | 123 | 218 | 1.799~3 | 3.319-3 | 3.910~5 | 6.410-5 | 3.310-6 | 4.490-6 | 9.5 | 3.1
104 231 | 337 ] 4.819-3 | 1.2)0=2 | 5.630-5 | 1.239-4 | 3.2;0-6 | 6.139~6 | 48 2.9

TABLE 1. The influence of x

We see that at step k certainly (1) is satisfied in all cases, even if

we replace the factor Clr by Cl‘ Conseguently the non-well-behavior of
the TRCGM, suggested by (1), is not confirmed by the results of table 1,
We recall that (1) is in fact deduced from (2), using the a priori
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bound o, € K%(l +0{(1}) {cf. (4.3.23)}. Bs we see from table 1, at

i
iteration step k, where the monotonicity breaks down, ak is of order 1
in all cases. Hence the estimate for ¢, as used in (1) is unsharp by a

i
factor Ki and therefore (1) itself is also unsharp by a factor x*. On

the other hand, the data of the column headed O ax indicate that it is

doubtful whether the a priori bound o, < Kifi +0(1)) {for all

0 £ i £ k-1) can be sharpened as far is the exponent‘of Kk is concerned.
In all 25 tests, throughout all iteration steps, there holds Si <1,

as was to be expected in view of (4.3.24), Therefore using the actual
o and Bk, we conclude from {2) that for the tests of tablel

the TRCGM is well-behaved. This corresponds to the numerical results

values of

obtained. The results of table 1 also agree with the algebraic prop-
erty (for i = k) stated in theorem 4.1.3, i.e.,

3 _ i
(6) iabe e 2(S 1) iate-xgn

Ki +1°
and indicating the faster linear convergence on the average with an
average convergence ratio no greater than (Ki -1) /(Ki +1) (~ 1-2/Ki)
for the TRCGM in comparison with the TRGM. As far as the step-wise
convergence of the natural error is concerned, we proved (cf. proposi-
tion 4.3.4) that the convergence ratio is no greater than
(k-1) /(¢ +1) (~1-2/k). This difference between average convergence
ratio and (step-wise) convergence ratio is also revealed by our tests.
For instance, in a particular test with ¥ = 104 the natural error
decreased by a factor 0.5504 in the steps from 200 to 300. Since
(0.5594)1/100 = (.9940, there is at least one step for which
hakiz-x,, ol /1At @-x)I 2 0.9940, vhereas 1-2/c} = 0.980. 1t also
follows that the average convergence ratio, based on these hundred
steps, is greater than 1*’2/K§. One may ask whether it is possible to
construct a test problem (with a large initial natural error
“A%(i-—xo)ﬂ and slow convergence in the first steps in order to accom-
plish the need of much more than n iterations before attaining the
reachable level), which ultimately ccntradicts the algebra average
convergence ratio., Note that the proof of (6) is based on algebraic
orthogonality relations holding for all O‘S i £ n. Of course, these
relations cannot hold anymore after n iterations and therefore it is
doubtful whether (6) still holds for the numerical process in case
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i ® n. We performed a rather limited set of trials to jﬁstify this
doubt, but in all tests {6) held.

REMARK 1. In fact, our propositions on the numerical speed of conver-
gence for the TRCGM are expressed in terms of bi-step-wise linear
convergence (cf. proposition 4.3.4) with a convergence ratic no greater
than (k =-1} /{x + 1), Wewere not able to prove step-wise linear conver~
gence since the estimate for the parameter Ai in the relation

(2,,0,) = (1+2)l2,| contains a term with a factor Ia te, 1 /1a" e
(cf. theorem 4.3.2) and there is no a priori upper bound available for
this factor. Consequently, no a priori upper bound for the parameters
ai,‘Bi and Yi is available (the restriction under which the inequali-
ties (23), (24) and (25) of section 4.3 hold contains the same factor).
Therefore, if "Aaifi_ﬂl/ﬂA-%fiU is extremely small, then it might be
possible that in the next step the ratio UA-§ fiHA’HA-%fi+1ﬂ is slight-
ly less than one, even if the residual Hfiﬂ has not yet achieved the
reachable level e(1-+C1K£)HA“”xiH. However, from the results of the
tests of table 1 we see that in all steps, apart from the very first
steps, one has Nahifi~glfﬂh—itiﬁ £ 4, Hence, in view of esti~

mate (4.3.21) it follows that in all cases the parameter Ai is fairly
small as long as the residual is not of the order of the reachable
level. Consequently, after the very first steps it is impossible to
encounter the. situation that the natural error increases in some step,
whereas at the same step the residual is not of the order of the
reachable level. Hence, using this bit of a posteriori information, we
may state that for all our tests our analytical results yield step~
wise linear convergence as long as the reachable level has not yet

been attained. I

As we mentioned already at the end of section 4.3, all results deduced
in that section also hold for the TRISCGM as defined in section 4.1
{with not necessarily p0 = ro). We carried out several tests with

K = 104 and the same parameter setting as in the tests of table 1.

The only difference consisted of the (independent) choice of Pge all
tests confirmed the analytical results of section 4.3. For the five
tests, with initial Py vector with components pj satisfying

Py /Pyyy
interpreted in the same way as the lines of table 1} read

= 10° and fpll = 1, the observed values (ordered and to be
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10%|6248686.0y0-311.310-2]2.710-5]1.319-4|2.170-6] 1.41-5] 160|160

The computed values of HAa(i'-xk)HL(a==0,£), agree with the corre-
sponding values for the TRCGM with k = 104 {cf. last line of table 1).
The values of ﬂA(R-—xk}H seem to be slightly larger. The test for
which {(the value) ﬂA{ﬁ-—xk)H = 1.410~5 is attained, is also the test
with a =q
max k
very test with a relatively large value of o

= 160. In view of (2) it is not surprising that the
Kk also has a relatively
large value of lla(x —-xk)ll . Note that the algebraic inequality }aki <K

4
is seriously disturbed at this step. As far as the speed of conver=
‘gence is concerned we see that, compared with the TRCGM case, twice as
many steps are needed to achieve the reachable level.

As we mentioned already in section 4.1, the algebraic upper bound
(K%— 1) / (x* + 1) for the average convergence ratio of the TRCGM not
necessarily holds for the TRISCGM, since in the latter case, at the
point %, .4+ the objective function F(x) := HA%(i-x)H is not neces~-
sarily minimized on the affine set passing through X and spanned by
ByrevsrPy- Therefore the slower convergence of TRISCGM is not sur-
prising.

In figure 1 we plotted the values of HA*(&-—xi)“ and UA(&«-xiH

(i = 0,50,100,...,k), both for one test of the TRGM and one test of
the TRISCGM; the values of k are 301 and 709, respectively.

We sees that the faster convergence of HA*(?-—xi)U for the TRCGM test
is restricted to the first hundred steps; after these steps the speed
of convergence hardly differs between the two tests and the conver-
gence ratio varies between 1-6/K$ and | -2/« for both tests (this
obgservation is not only based on the plotted steps but on all steps).
The average convergence ratio is 0.9869 (~ 1 - 1.3/1c£) for the TRISCGM
test (based on all 709 steps) and 0.9817 (~ 1 ~1.8fK£) for the TRCGM
test (based on the last 200 steps). Hence, for both tests the alge~
braic upper bound (Ki -1) /(K£ +1} (~ 1 —2}«5) for the average con-
vergence ratic of the TRCGM does not quite hold for the numerical
process during the last hundred of steps. We alsoc se€e that initially
the residual converges much faster for the TRCGM test., Although the
figure suggests the monotonic decrement of the residual after the
first 50 steps, this is not true. Both tests have‘the property that,
incidentally, there are stéps at whicﬁ the residual slightly increased.

The error H&-—xiﬂ is not plotted. Also, initially, the error decreases
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fagster for the TRCGM test and decreases monotonically at all steps.
This last fact agrees with the algebraic property as stated in
corellary 4.1.5. The TRISCGM test has the property that, incidentally,

there are steps at which the error slightly increased.

4.4.2, The recwwsive nesidual conjugate gradient method

As far as the analytical results for the numerical performance of the
RRCGM are concerned, the most striking result is the bi~step-wise
linear convergence to zero of the natural errcr IIA"i rgi (cf., proposi-
tion 4.2.5). We performed several tests with the RRCGM, based on PFI
{n = 5) and AFI (§ = 10_6), varying the dimensgion n (20 £ n < 50), the
eigenvector“iamponents s~gnd e (sj ij+1 ,ej /@j+1 = 103,;4 10-3, .
lell = 1, 10 ° < llell £ 10 ) and the condition number k (10”7 < x £ 107).
In order to avoid underflow the iterations were stopped as soon as

Hriﬂ < 10~22. In all cases this level has been reached. At all steps
the natural error decreased at least by & factor 1 -2/x. The reason
that the situation, representative for bi-step~wise linear convergence,
where a7 tx 1 /0a7 el > 1-2/c ana a7h e, /mahe i s - 2/0?,
Goes not occur is due to the fact that the factor ||A~ ri_lﬂ;'HA" ri“
never is extremely small in our test (see remark 4.4.1.1 for a more
detailed explanation in a similar situation).

Since we do not have available an analytical result concerning the
attainable accuracy of NAG{§-xi)H (o = 0,%,1), for the RRCGM only
limited attention to this aspect is paid and we do not present numeri-

cal results here.
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CHAPTER 5
VARIANTS OF THE CONJUGATE GRADIENT METHOD

5.1. Introduction

In this chapter we discuss three other variants of the CGM. The only
difference between these methods is the way in which the parameters a;
and bi are computed.

We recall that in the CGM as defined in section 4.1 these parameters

are determined by the relations

(1) a)'. = (riapi) / (PicAPi) ’ bi = - (ri+1:APi) / (Pi:APi) .

The formula for ai follows directly from the fact that we want to mini-

mize ﬂA"i(ri-aApi)H2 (regarded as a function of a). Hence, evidently
(ri+1,pi) = (ri-aiAQi,pi) = 0. The formula for bi follows immediately
from the fact that we want (ri_[k1
formulas (1} appear to be natural and therefore they will be referred

+bpi,Api) = 0., From this point of view

to as natural formulas for a; and b, . 7
From (iv) and (v} of theorem 4.1.2 it follows that, algebraically,

one has

(2) a; = (ri.ri) 7 (pi.Api) ¢+ by = (ri+1"‘1+1) / (ri.ri) .

So, for both parameters we have an alternative formula.

The formulas (2) will be referred to as umnatural formulas for a; and
bi'
Determining a;
mula and determining bi from either the natural or unnatural formula,

from either the natural formula or the unnatural for-

we obtain four, algebraically egquivalent, wversions of the conjugate
gradient method.
However, in the presence of round-off, these versions not necessarily

have the same numerical properties.
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In section 4.1 we introduced the so-called independent start conjugate
gradient method (ISCGM), which is exactly the same as the CGM apart
from the uncoupled choice of X and Pg- Every step'from X5 Py to
X010 Piyyq of the CGM can be considered as the first step of the
ISCGM with initial vectors Xyr Pye Algebraically, for every choice of
% and Py # 0, the natural error converges step-wise linearly to zero
with a convergence ratio no greater than (k -1} / {x +1) for the ISCGM
(cf. section 4.1). From a numerical point of view this is interesting,
sincebit implies that if in the CGM the occurrence of round-off is
excluded permanently after some iteration step, then in the consecu-
tive steps the natural error converges step~wise linearly to zero.
This property holds for all DM's defined by the algorithm in sec-

tion 2.2, No matter whether bi is computed from (1) or from (2}, if

we compute a; from (1), then the method is a DM. Therefore we may ex-
pect that the afore mentioned property also holds if we use formula (1)
for a, and (2) for bi‘ One may ask whether the same property holds for
the other two variants of the CGM, based on formula (2) for a, .

We consider the independent start version of all four alternatives

Independent Start Conjugate Gradient Methods (ISCGM)

Choose an initial point Xqi

r, = b-Ax0: i:=0;

0
Choose an initial direction vector Py

while r, # 0 A B; # 0 do

begin
(3} {eithex (ri,pi) /(Pi'Api) ; (natural formula)

a, = ’
(4} . or {ri,ri) /(pi,Api} ;s (unnatural formula)
(5) Xipq =K ta;p
(6) either b-Axi+1 ;3  {true residual)

Tisg 7 {
(7) or r; - a; Ap, i {recursive residual)
(8} b e {elther -z, q/3p)) /(pi,Api) ; (natqral formula)
(9) i or (ri+1'ri+1) f(ri;ri) : (unnatural formula)
(10) Piag 15 Fipq * Py 0y
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i s=4+1

end.

We use either (3) at all steps or (4) at all steps. The same applies
to {6),(7) and to (8),(9), respectively; we disregard the mixed cases,
where different alternative formulas are used at different steps. Note
that from a numerical point of view we have 8 versions.

If the independent start conjugate gradient method is carried cut
using the natural formula for a; . the true residual formula for r

and the unnatural formula for bi {in all steps!}, then this methog+i
will be denoted by TRISCGNUM. The algorithms TRISCGNUM, RRISGUUM etc.
are defined in a similar way. From now on ISCGM not only stands for
the independent start version of cur basic CGM of chapter IV, but foxr

any of the four versions defined above.

REMARK 1. All four versions of the CGM are introduced in the paper

of Hestenes and Stiefel [52]. In fact, they proposed the CGUUM as the
basic one and mentioned the natural formulas as other possible choices.
Reid [71] also considers all four versions and recommends the unnatural
. formulas and the recursive residuals on computational grounds, since he
observes no significant difference as far as numerical convergence be-

havior is concerned.

In the next section we derive some algebraic properties of the ISCGM's.
In the third section we carry out a one-round-off exror analysis for
the ISCGUNM to illustrate the numerical analogues of the algebraic
properties and their implications.

5.2. Mgebraic properties of the independent start confugate
gradient methods [ISCGM)

Obviously, we do not need to distinguish between the use of true and
of recursive residuals as far as algebraic properties are concerned.
Crowder and Wolfe [72] and Powell [76] considered the ISCGNNM, and
some of thelr results will be mentioned later. As far as the other
variants are concerned we believe our convergence results to be new.

We start off with the following fundamental properties.
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THEOREM 1. Let {ro,...,r£+1}, {po....,p£+1} (% 2 L) be computed by any
version of the ISCGM's with arbitrary initial vectors ry # 0, py # 0.
Then we have for 1 £ i £ 2

{1} a; = (r;,x) X(PiuApi) '
(i4) By = (Fyy Ty £ pexgd o
(iid) (ry qoPy) =Dby {x.0p;_4) o«
{iv) (B, 1e2p;) =D, ,(p,,Ap, .}
W (Fya1rPyyg) (Foy) = popy) (7 geryyy) -
PROOF. In the proof we frequently use the relations Tigg =% —EE.APL

and 91+1 = ri+1 + bi pi (1 <4< 48).

Relation {i) is trivially satisfied if we use the unnatural formula

for a,. If we use the natural formula forx a, . then it follows immedi-

i

ately {(cf. theorem 2.2.2) that (ri,pi_l) = 0,{1 £ 1 < %), and hence

(xgopy) = (r;,xg) + b, (x;ep, ) = (rg,r,). (1 <1< 8) which proves

(i).

Relation (ii) is trivially satisfied if we use the unnatural formula

for bi’ If we use the natural formula for bi’ then it follows immedi-

ately that (pi,api_l) = 0, (1 £ i< ). Hence, in view of (i),

(ri+1,ri) = (ri,ri) - ai(Api'ri)~= (ri,ri) - ai((Api,pi) +

- bi_itpiohpi_l))= 0.,(1 € i £ 2), and consequently, again using (i),
o _ -1 ~

(rypqeBPg) = a7 ry qody m X)) = -8 (T yeTig) =

= - (ri+1'ri+l) f(ri,ri)(pi,Api). (1 £ i < ), which proves (ii).

Using {i) we obtain (ri+1'Pi) = (ri,pi) - ai(pi'Api) =

= (r ) o= (xy,r) = (ri,pi-ri) = bi—l(ri'Pi—l)'(I £ i< 2), which

1Py
proves (iii).

Usif? (i) and (ii) we ch?ig (By ,q72P)) =‘(ri+1,Api) + b, (p,,Ap,) =
= aéitriﬂ’ri-riﬂ) ooy T Tiag) T8 EpgeT) =

a; " ((ry,x;) ~a; (Ap;, 1)) = (pg.Ap;) - (r.,Ap;) = (p, ~x ,Ap;) =
=b, oy _4rBps)y (1 51 < 2}, which proves (iv).

Using (ii) and (iii) we obtain (ri+1,pi+1}(ri,ri) =

= (g emg ) UEy oy gy) 4Ry (TP )) = (rg g emy ) (e emgd H (g qrpy)) =
= (rggqeTygg) (o) #by g (ryopy (1) = (xyepd try er ) s d < )
which proves (v).

Note that these properties hold after the first step. 0
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The propagation formulas (iii) and (iv) are already contained in the
paper of Reid [711,

For natural a; relations (iii) and (v) become trivial, since in that
case (:i+1’pi) = 0,(0 £1 < £), and (ri+1,pi+1) = (ri+1,zi+1) +

+ bi(ri+1,pi) =0, {0 £ i £ 2). For natural bi relation (iv) is obvious,
since then (pi+1,Api) = 0,(0 <4152,

For the unnatural choices, (1ii) and (iv) indicate the growth of the

non-orthogonality of r 1t By and Pi+1' Api, respectively, vwhereas (v)

i+
indicates the invariance of (pi.ri) /(ri,ri},(l <is .

With respect to the CGM we have seen that if the iterations terminate

at step ¢ 2 0, then r, = 0 as well as p2 = 0 and therefore the restyic-

|2
tion p; # 0 could in fact be left out in the stopping criterion. One
may ask whether this also holds for the ISCGM's. A general result,

valid for all variants, can be formulated if at least two steps are

performed.

THEOREM 2. If any vereion of the ISCGM's terminates at iteration step

222 and (x )#O,thenr£=0aswellasp£=0.

1'Pq

PROOF. If r, = 0, then bz_1 = (0 and hence Py = ¥, + bz_lpg’_1 = 0.
If x, #0,(0< 4 < 2), then {v) can be written as
(T4 ,17Pyaq) /(ri+1,ri+1) = (r,,py) /(xrg,r;), (1 €15 2-1). Consequent~

ly, (rzlpz} /(rz'rg) = (ri,px) /{rl,rl) # 0 and hence Py # 0. 0

If an ISCGM terminates after one step because = 0, then also bo =0
atm'lip1 =z, +bopo = 0,

For an ISCGM with the natural formula for a, we have after one step
(ri,pi} = (ri,ri) and consequently, if Ty # 0, then Py # 0 and
(rl,pl) # 0, Thus, for the ISCGNNM and the ISCGNUM the assertion of
theorem 2 also holds for £ = 1 and the restriction (rl,pll # 0 can be
omitted.

For an ISCGM with the unnatural formula for a; it is possible to have
after one step r, # 0 gnd py = 0. For example, if A = diag(l1,2),

rg = (-3,+3}, pg = (1,1}, then for both ISCGUNM and ISCGUUM one has
rf = - {9,9), pf = {0,0). So for these two methods termination can
occcur at the first step, although Xy o= £ does not hold. The case in

which these two methods do not end after the first step and (ri,pl) =
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is irrelevant, since from our results it follows that in that case

Ha'é ri" increases monotonically as long as Py # 0.

Another interesting question that ariges is what can be said if the
ISCGM's do not terminate. The following theorem expresses the relation

between two successive natural errors.

THEOREM 3. Let {ri}’ {pi} be generated by an ISCGHM with arbitrary
inttial vectors Tgs Pge Then we have for 1 = 1

~§ 2
” ta ri*ﬂl oy Tz(z(xi,pi) ) 1)
a2 rillz 1N (rpery)

where

2, a~t }
(2) s= Nz, 1/ (0a™2 2, Hap 1)

Ty

-4 4
ri+1 A ri aiA p; we obtain, by

taking squared norms at both sides,

PROOF. From the relation A_%

-4 2 _ -d 2 .2
(3) A"z, IS = 127 £ 0% - &, (2(x;,p,) -2, UA%p %) .

Together with (i) of theorem 1 this yields for i 2 1

- - 2 2 2
e, 02 = e n? <z iatp0? e pp - e

from which (1) readily follows. ; ‘ o

Note that for the CGM the parameter fi

defined by (2.2.8) and furthermore 2(:i,pi

that case theorem 3 coincides with theorem 2.2.2.

corresponds to the parameter Y

) /(ri,ri)~*1 = 1. Hence, in

From theorem 3 we shall derive results concerning the step~wise linear
convergence to zero of the natural error for ISCGM's, just like we did
from theorem 2.2.2 for DM's.

We first determine a lower bound for Tyr

LEMMA 4. Let {ri}, {Pi} be generated by an ISCGM with arbitrary
initial vectors vy and p, and let 1, be defined by {2), Then we have
foriz21
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2»:%

€3 T2 — T
K+1) M+ 1)

where

) M= IR/ zgh?) max((p, 20,0 ,0)

4

PROOF, From the relation Ai Piyy ™ bi Ai p; = aA‘r we obtain, taking

i+1
squared noxms of both sides,

b2 b2t 2
(®) 1a%p, 0% = 26, (b, 0Bp,) + by ATR % = IAT X 1%, (52 0) .

Using (iv) of theorem 1 we cbtain recursively
b, (p, 4s8p,) = b, b, ,(p,sAp, ) = (b, *** by} (p,.2p5) ¢ {1 20).

So, for unnatural bi we conclude from (ii) of theorem 1 that one has

2 2
by (piﬂ,Api) = !lri+11! (pl,Apo} /llroll and consequently

] 2
%) 2o, (p; qo8p) S MIATZ, 1%, 120,
where
-1 2
(8) M o:= (2IAT7N / izgh®) max({p,.2py),0) .

For natural bi we have (pi+1,Api) =0 = {pl,ApD) and hence (7) also
holds. By (6} and (7) we finally conclude

§ 1o
) lia pi+1ll s (1+M*ia ri_HII , 320
and hence for all ISCGM's
2
e, 3
(10) T, 2 L 2x (i1 . 0O

P-4
i rate et wenaem!

If we use the natural formula for a . then (x‘i,pi) / (ri,ri) = 1
(i 2 1). Combining this, (1) and (4) we obtain

THEOREM 5. If {r,} is generated by the ISCGNNM or the ISCGNUM with
arbitrary initial vectors Xgs Pys then we have for all i 2 1
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L

A" r
(11) —%i+12 <1 - 4 X
iia rill M+1)(x+1)
where M 18 defined by (8). O

We thus conclude that for arbitrary initial vectors Xg e PO’ assuming
the iterations do not terminate, the natural error converges step-wise
linearly to zero with a convergence ratio no greater than

(1-4 /(1) D2t

As far as the first step is concerned we have according to (3)

1atz 2 (xgep)
(12) _ =1 - — ,
Ia §r0||2 12~ % x i 2iat o2

and hence HA-ériﬂ < llAﬁi rgll, with equality only if (r,.py) = O.

REMARK 6. Crowder and Wolfe [72] gave an example of the ISCGNNM in
which the ratio IIA-'i riﬂli /IIA"é xill is constant for all i = 0. Obwi-

ocusly, there exist initial vectors x for which the convergence

o’ Po
is only linear, so the finite termination property of the CGM does not

hold in all cases for the ISCGNNM. 0

1f we use the unnatural formula for a,, then, from (v} of theorem i,
it follows that (ri,pi} / (ri,ri) = (rl,pi) / (rl,rl) (i 2 1). Combining
this, (1) and (4) yields

THEOREM 7. Let {ri} be generated by the ISCGUNM or the ISCGUUM with
arbitrary initial vectors X5s Py let M be defined by (8) and let
K := 2(r1,pi) / (rg,ry) -1 Then we have

{1y <Zf K> 0, then for all i 2 1

-4
la ri+1l!

1a~tx 0

2

g 4Kk

(M+1) (K+1)2

H

(i1} Zf XK =0, then for all i 2 1

_i 2
a riﬂlf
Ia? £, 2

=1 ;
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(1i1) If x < 0, then for all 1 2 1

-4 2
W e

Ia=? ril!2 M) (c+ 12

-

We conclude that for arbitrary initial vectors Xp p0 the natural
error converges step-wise linearly after the first step with a conver-
} if K> 0. 1If

K = 0, then the natural error stays unaltered after the first step.

gence ratio no greater than (1 -4k /{(M+1}{k+ 1)2))

If K < 0, then the natural error diverges at a linear rate after the
first step.
For the first step we have, according to (3),

i 2

A ‘r
i 1 ]

(13
1a~} r 2

= ] -

4
“rO" ( (xyepg) ) 1)
1~z Pt pp? V- or%o)

and hence I tx, i s 1A ol 12 205000 / (xyixp) -1 20

REMARK 8. For the ISCGUUM we can derive a simple expression for X in
terms of the initial vectors rO and PG' We have

(14) (rl,pl) = {rl.ri) + bo(rl,po) =

L]

fri.ri} {1+ (ri'PO) / (r0¢ro)) =

"

(ri,rl) (1 '*'{(ro,pc) -ag (poehpo)} / (xgezg)) =
= (rl,ri) (ro,po) / (ro.ro) '

and hence K = 2(ro,po) / (ro,ro) -~ 1. Therefore, K 20 if (x
= }(rotro) .
In case one deals with the ISCGUNM, X is generally not egqual to

G'PO) Z

2(rgepg) / (xgexy) - 1. 0

We end this section by mentioning a result of Powell [76] concerning
the ISCGNNM.

THEOREM 9, If {ri} ig generated by the ISCGNNM with arbitrary initial

vectors X,, P, and 1f r # 0 for all 0 < i < n+l, then one has

0
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(i) There exists an L satisfying 2 < L < n such that Pyseeesp, ave
mutually econjugate and Py and Py 4 are not conjugate.

(i1) PFor all i 2 0 the direction vectors Py,qree-tPy,q are mutually
conjugate, but Piis and Piigsy @ not econjugate.

(ii1) Termination never occure and convergence to the solution ocecurs
at a linear rate. ‘ 0

REMARK 10, The condition £ » 2 in theorem 9 immediately follows from
the fact that for natural bi one always has (pl,Apz) = 0, It can be
proved by induction that also for all i 2 0 the vector Yot is
orthogonal to the vectors pi+1""'pi+£' Consequently, if pi,...,pn
are mutually conjugate {and hence linearly independent), then

41 = O+ This explains why £ < n holds in theorem 9. O
The most important conclusion that can be drawn from theorem 9 is that
the ISCGNNM either terminates within (n+1) iterations or convergence
to the solution occurs at a linear rate. Powell [76] also shows that
in the general case, where both r, and p, are arbitrary, the linear
rate of convergence is usual. In our opinion this result did not get
the attention in the literature it deserves. For instance, it implies
that if during the CGM iterations T, and pi are computed exactly in
all steps but one, then we may expect the convergence to be only

linear.

5.3. A one-nound-off erron analysis of the true nesidual independent
stant confugate gradient method using the wwmatunal formubla fon
a; and the natural formula for b; (TRISCGUNM)

Examining the TRCGM in Chapter 4, we first derived some basic alge-
braic properties and next deduced the numerical analogues in order to
obtain results for the numerical behavicr. In this section we follow
the same strategy and deduce numerical analogues of some algebraic
properties derived in the foregoing section, in crder to gain insight
in the numerical behavior of other variants of the CGM.

We only consider the TRISCGUNM. The TRISCGNNM has been treated already
in Chapter 4, whereas the TRISCGNUM is a special case of t@e DM's and
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probably may be treated using the results of Chapter 2; the TRISCGUUM
is believed to show the same peculiarities as the TRISCGUNM.

© Purthermore, we restrict ourselves to a round-off error analysis where
round~-off only occurs at the computation of fl(Axi), since in all ocur
previous analyses the errors occurring at that particular computation
caused the largest discrepancy between algebraic and numerical proper-
ties.

Throughout this section we use, as before, the definitions

1) 2, = b-Ax, ,

il 4 r, = b—fl(Axi‘) ’ Gri =r, -2 ,

) o, := Ialllx N 7l , ¥, := iadix, riate L

The following theorem states the numerical analogues of (v) of
theorem 5.2.1 and of theorem 5.2.3. These analogues form the basic

results for the subsequent convergence considerations.

THEOREM 1. Let {x ], {pi} be computed by the TRISCGUNM with arbitrary
initial vectors X5 Pg and aessume that only round-off occurs at the
computation of £1(ax,). Then we have

Iatiz-x, 02 (2, ,p.)
) 7 1*12 =1-r§(2-€r—i—f—)—-1), =0 ,
ta (ﬁ-xi)ll ity
where
.= 2, qat } ,
T, |lri|| / (ia fill!lA piﬂ) ’
(2. ..,p..,) (2, ,p,)
(11) - i+l ri'”) =y Utu) -ny, @z,
Tie1Ti41 TyeTy
where

2
u i= (ri‘vri_}l,t?riﬂw&ri)/l!r e,

i+l

2
n, == ((ri*l.éri“) + (rim:i_‘_1 R 6:1_!_1 -Sri)) /IlriHII .

PROOF. For the computation of r, we have (cf. lemma 2.4.1)

i

(3 r1=b-—fl(Axi} =b-Axi-Eixi= i-i-n-Sri B
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{4) £, =b-ax , §r, = -E, x, , IlSriﬂ /~|lfiH S eCy9,

i i ; i
(5 2,2, = I£, 121 +0(1)) = Iz 1%(1 +0(1))  [ec.9, + 0]
i’"i i i 1741 *

Further we have

~ 2,0 2 _
6) a, = Hrill /a piil v Ky T X tagp .
Consequently,
o latiz-x, )12 = Iatiz-x )02 - 2a, 2, ,p.) + aZlalp 12 =
141 i i F1Py 38 Py
TR 2 i .2 2
a*(x xi)ll - Hrili /la pilf (Z(figpi) —llrill Y

from which (i) readily follows.
In proving (ii) we closely follow the lines of the proof of

theorem 5.2.1. We have

- § 42
by == (ryqemp)) /IR R IT, by =x v DR
(8) ,
(piﬂpri) =0 .

From {3) and (6) we obtain
(9) P = § -aiApi, i1 =ri-aiApi+ Gri- 6ri+1.
Consequently, for i 2 1,

(10} { = (ri;ri) - ai(Api,ri3 + (ri,é'ri-ariﬂ) =

ri+1,ri)
= (rgory) -a, ((Bp,p,) -b, , (p;.8p; ,)) +{x,,8r, -8r, ) =
= (rgafry =Sp)

and hence

- 1 - - =
(1 (rypqeBPy) = @y (xy oxy—xg,, +8ry ~0r, )

-1 2
a, " (lry +r, ’6r1-6r1+1) - Ilri+1|[ Y.

From this we obtain the numerical analogue of relation (ii) of

theorem 5.2.1, i.e.
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2
-(x'_i*l,Api) ilri+1ll

{12) b, = = = (1+q,) iz1,
i (py +2P,) uriug i
where
2
{13 By oa= (ri+ri+1 . Sri-sriu) /"ri+1" .

FProm (9) we obtain the numerical analogue of relation (iii) of
theorem 5.2.1, i.e,

{14) (fiq»i'pi) = (21'91.) - ai(pi:Api) = (i‘i,pi-ri) - (ri,Sri) =
= bi__l(rirpi_l) - (rirsri) # (i > 1) .
Substituting the various equalities we finally find, for 1 2 1}

2
13 (ByyqoPyyq) (Tyerg) = Mx 7002, for, )+ (8, R0} =

2 2
= llrili (liriﬂli -(tSri”,ri)}

2
+ ﬂrriﬂli (A +u) by (E,,p, )~ (r;,8,)) =
2 -
=lr, M {(2,0ry) + (8ry,x,) +b, _ (2,.p, ) = (x;,87,)) +
- fr llz(dr r.)+ ir !lzu (z -r,) - {x,,8r,)) =
i 1+1°71 141" MytUEgePy T 11°F4

2 2 2
=l +1lf (¥ r,) -!iri+1il ilrill uy -

2
5 Y {1 +ui) -ﬁriﬂ {8r

i'Py 1+1°

This yields the numerical analogue of relation (v) of theorem 5.2.1,

viz.
(ByegrPy) (&R o 8y eEy)
(16) AN A i U 3 My
34177 i+ i e, U
i+1
which proves (ii). O

We finally discuss some conclusions that can be drawn from this theo~

rem.

Since we assume that no round-off occurs at the computation of b; and
4 2

Py,qs We have (9i+1'APi) 0 and (cf. formula (5.2.6)) lla pi+1ll +

+ b, alp 12 = Malz  1?, and in particutar Nalp, 1 s 1abz 1,

Piy1 +1
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{i 2 0). Consequently, using {(2.4.6) we cbtain

2 2
HriH Hriﬂ
(1 Ty 2 = — = T (o) 2
e miate n 1ah ke
> -—Zﬁéu-(1 ro(1)) @Az
2 r D 1,

under the restriction eciniwi + 0, Hence, as far as the lower bound

for Ti,is concerned, there are no complications as long as the natural
error has not reached the level of the inherent natural error ({(cf.
section 1.4}, By (i} of theorem 1 it follows immediately that the
natural errxor decreases as long as (fi'pi) /(ri,ri) > }. In the case
of exact computations, (ri,pi) /(ri,ri) is constant for i =2 1. In the
presence of round-off at fl(Axi) this invariance is disturbed as in~
dicated by (ii) of theorem 1.

The parameter ui satisfies

e i (x,,8r .} {(r, . .0r,)
(18) i (1 i+1 1+ 1)

u R -
O A A EN T E I I T

2
ﬂrin (ri,Sri) ‘ (ri+1,6ri+1)

- .

2 2 2
he, 12 ey,

i+1

Since we know thati!dr#!/ﬂriﬂ < ecl¢i(1-r0(1))y [ecicpi + 0], we have

the estimate

We N Tk
(19} Iui! < {€C1("1+1+"’i) TF!'—H+ €C, 0, ",_"_2'"" €°1°i+1}“ +0(1)) ,
141 Hri+1ﬂ

under the restriction‘6C1(¢1-+¢i+1) -+ 0. A similar inequality holds
for n,. Consequently, as long as Hiiﬂ /Hfi+1ﬂ is of order unity and
the residual has not reached the level corresponding to good-behavicr,
the algebraic invariance of (fi+1'Pi+1) }(r1*1,ri+1) is only slightly
disturbed by round-off at each step. However, if Hfiﬂ /“£i+1u is large
or 1f the residual comes close to the level e"AHﬂxiH, then this in-
variance can be seriocusly affected by round-off, If

Z{Ei:pi} /(xi,ri) -1 > 0, then in the next step possibly

2(# Yy / (x ) -1.< 0, which implies according tc (i) of

1+1°Pi41 141754
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theorem 1, that the natural error increases at the sfep from i +1 to
i +2, Moreover, even if all round-off is excluded after step i+1,
then the natural error tends to infinity at a linear rate after that
step. Thus, the stability property saying that if round-off is ex~
cluded after any iteration step, no matter how much round-off has
occurred in the previous steps, then next the natural error converges
step-wise linearly to zero, does certainly not hold for the TRISCGUNM.
For the special case of the TRCGUNM (po 1= to) we also have thig non-
stability phenomenon.

In the numerical experiments, reported by" several authors, it turns

out that for the TRCGUNM the quantity “fiﬂ /e is in practice

i+1"
never extremely large, nor are these experiments continued until the

natural error reaches the level of the inherent natural error. There-
fore, (fi,pi) /(ri,ri) does not change very much during these experi~-

ments, which explains-the satisfactory results.
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SAMENVATTING

Bij het numeriek oplessen van lineaire stelsels vergelijkingen Ax = b
maakt men onderscheid tussen direkte en iteratieve methoden. Een be~
langrijk verschil tussen direkte en iteratieve methoden is dat, in
geval van exact rekenen, een direkte methode de oplossing & := Aﬁib
bepaalt in een eindig aantal rekenkundige bewerkingen, terwi]jl een
iteratieve methode een oneindige rij benaderingen {xi} bepaalt die

naar X convergeert en waarbij elke nieuwe benadering x, uit zijin voor-
ganger{s) wordt bepaald dcor een eindig aantal rekenkundige bewerkin-
gen., Voor wat betreft het geheugengebruik van een rekenmachine zijn
beide methoden sterk verschillend. Bij de meeste direkte methoden
worden de elementen van de matrix A opgeslaéen in een twee-dimensionale
rij en de bij direkte methoden berekende decompositie matrices kunnen
vervelgens (geheel of ten dele) worden opgeslagen in de geheugenplaat-
sen gebruikt voor de matrix A zelf. Blj iteratieve methoden kan het
expliciet opslaan van de elementen van A worden vermeden; het is vol-
doende als men beschikt over een procedure om een gegeven vector x met
de matrix A te vermenigvuldigen. Voor kleine stelsels is dit verschil
van ondergeschikt belang maar voor grote ijle stelsels, waar de matrix
A een relatief gering aantal niet-nul elementen bevat, zijn de decom-
positie matrices, corresponderend met direkte methoden, in het algemeen
minder ijl dan A zelf, hetgeen leidt tot extra hoge eisen voor wat
betreft de capaciteit van het rekenmachinegeheugen. Bij iteratieve
methoden kan de ijlheid van de matrix A volledig worden uitgebuit door
bij matrix maal vector vermenigvuldigingen de nul-elementen over te
slaan.

Een ander aspect bij het oplossen van linéaixe stelsels op de reken~
machine is de invloced van afrondfouten op de berekende oplossing.

Voor de meeste gebruikte direkte methoden toonde Wilkinson [65] "goed~-
gedrag” en “numerieke stabiliteit” aan. Een methode met goed-gedrag

berekent, indien uitgevoerd op een rekenmachine met relatieve machine-
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precisie €, een benadering x welke de exacte oplossing is van een
linealr stelsel vergelijkingen met een gering verstoorde matrix A,
d.w.z. van het stelsel {A+E)x = b waarbij E van de orxde ellall is.
Derhalve berekent een methode met goed-gedrag een benadering x waarvan
de relatieve fout %« xll /ixl hoogstens van de oxde aHAHHA~1H 1= EK
is. Een methode die een benadering berekent met een relatieve fout
hoogstens van de orde ex noemen we numeriek stabiel. Een methode met
goad~gedrag is dus numeriek stabiel maar het omgekeerde is niet nood-
zakelijk waar.

Voor iteratieve methoden bestaat er tot ép heden slechts welnig lite-
ratuur betreffende de invloced van afrondfouten. Dit is ten dele te
wijten aan het feit dat iteratieve methoden meer zelf-corrigerend
leken te zijn dan direkte methoden én men verwachtte dat ze automatisch
goed~-gedrag zouden vertonen. Een andere reden is wellicht dat de ge~
bruikers van iteratieve methoden in het algemeen meer geinteresseerd
zijn in het aantal iteraties dat nodig is om een benadering van de
oplossing te berekenen met een bevredigende nauwkeurigheid dan in de
maximaal haalbare nauwkeurigheid na eventueel vele iteraties. Desal-
niettemin is het opmerkelijk dat er nauwelijks iteratieve methoden
zijn waarvoor een afrondfoutenanalyse bestaat, Wézniakowski is een van
de eerste auteurs die zeer recent resultaten publiceerde omtrent goed-
gedrag en numerieke stabjiliteit van enkele iteratieve methoden.

Deze dissertatie levert een bijdrage aan dit nogal nieuwe onderzoek-
gebied. We bestuderen in Hoofdstuk 2 het gedrag van algemene descent-—
metheoden in de aanwezigheid van afrondfouten. Binnen de verzameling
van iteratieve methoden vormen de descentmethoden een belangrijke
deelklasse; de meest gebrulkte iteratieve methoden behoren hiertoe.

In Hoofdstuk 3 en Hoofdstuk 4 besteden we speciale aandacht aan het
numerieke gedrag van de gradiént-methode en de geconjugeerde gradiént-
methode. De gradiént-methode (ook wel methode van de steilste helling
gencend} is een descentmethode die, vooral vanuit theoretisch stand~
punt bezien, belangrijk is aangezien het een van de eenvoudigste

niet lineaire iteratieve methoden is waarvoor een bevredigende analyse
over het convergentiegedrag bestaat in het geval van exact rekenen.

De geconjugeerde gradiént-methode, die onafhankelijk door Hestenes en
stiefel [52] werd ontwikkeld, is zowel een direkte als een iteratieve
methode. Het is een iteratieve methode omdat bij elke stap een betere
benadering voor de oplossing wordt verkregen. Het is een direkte
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methode omdat, bij exact rekenen, na hoogstens n stappen de oplossing
% wordt bexeikt, waarbij n de dimensie van het stelsel is, Het aanvan-
kelijke enthousiasme over deze eindigheidseigenschap verdween al
spoedig toen bleek dat in de aanwezigheid van afrondfouten de n-de
iterand X, vaak zelfs niet eens een redelijke benadering is voor de
oplossing % van slecht geconditioneerde problemen. De methode werd nog
slechts van academisch belang geacht, althans voor zover het het op~-
lossen van lineaire stelsels betrof, Het artikel van Reid [71], waarin
het iteratieve karakter van de methode werd benadrukt, bracht de
methode opnieuw in de belangstelling en tegenwoordig staat de methode
bekend als een iteratieve methode met zeer gunstige convergentie-eigen~
schappen voor sommige grote ijle stelsels met een niet te groot condi~
tiegetal. Voor deze stelsels levert de methode vaak een redelijke
benadering na veel minder dan n stappen.

Het toepassen van de algemene theorie uit Hoofdstuk 2 op de gradiént-
methode en de geconjugeerde gradiént-methode levert een aantal resul-
taten voor wat betreft hun goed~gedrag en numerieke stabiliteit. Deze
resultaten betreffen voornameliik het uiteindelijke convergentiegedrag.
Ter ondersteuning van de gedane uitspraken worden de uitkomsten van
numerieke experimenten bespreken.

In Hoofdstuk 5 komen varianten van de geconjugeerde gradiént methode:

aan de orde.
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STELLINGEN

De methode van de geconjugeerde richtingen voor het oplossen van een
definiet stelsel Ax = b, waarbij de richtingvectoren pO""'pn-l worden
bepaald door Gram—-Schmidt A-orthogonalisatie van de eenheidsvectoren
ei,...,en, is niet alleen algebra{scﬁtequivalent met de Cholesky methode

maar levert ook numeriek even bevredigende resultaten.

00
g=1 g
gente rij getallen (Iy£+zl < L[yll, 0 <L < 1) is een numeriek insta-

Het voorwaarts sommeren van een reeks L van een linear conver-
biel proces. Deze instabiliteit kan worden opgeheven door voor elke
optelling het algoritme van Mgller te gebruiken.

M#ller, 0., Quasi-double precigion in fleating point addition.
BIT, 5 (1965}, 37-50, 251-255,

Zij A een nxn positief definiete matrix met orthonormale eigenvecto-

ren uo,...,u en positieve eigenwaarden~Ao,...,ln_1. Als bij de

n-1
methode van de geconjugeerde gradiénten de start residuvector {(zie
paragraaf 4.1 van dit proefschrift) voldoet aan

r =n-1 o ezu

14
0 190 2 2

waarbij a, £#0 (£ =0,...,n-1), dan geldt voor k = 1,...,n~1 en € > 0,
voor de exact berekende grootheden

ak'l l;il 4 0(82) '

k-1
z 0 (62}(-—!6

r = Ju, +
k 220 b
net : 2., %
+ 22 a[(1=agdy) «oe (1-a 2 ) +0() e uy ,
b = 0(82} '



k~1
P, = 5 o0e® Y, +

2=0 &
n-1 2 ¢
+ kzk a,L(l-ad) vee (1-a_A)+0E) e uy .

Beschouw het volgende optimaliseringsprobleem: "Bepaal een stuksgewijs
continue 2m~periodieke functie u(t) met |u(t)] < 1 zodanig dat bij ge-
geven € > 0 en gegeven tweemaal continu differentieerbare functie

f: IR + R de differentiaalvergelijking

% + ef(x)x + x = gu

een 2w-periodieke oplossing heeft met maximale amplitude.”

Als de functie £ even is en
X
[f(c}dé*w (x » o) ,
0

dan bestaat er voor iedere € > 0 een oplossing G&: (t} van bovenstaand
probleem, waarbij Ge(t) alleen de waarden +1 en -1 aanneemt. Bovendien
nadert de afstand tussen de discontinuiteitspunten wvan Gs(t) tot T als
e + 0.

Beschouw het optimaliseringsprobleem uit stelling 4 voor de differenti-
aalvergelijking

£+ e(E(X)x+g(x)) ¢+ x = eu ,

waarbij € > 0 en £,g: R > R beide tweemaal continu differentieerbaar
zijn.

Als de functie f even is en £(x) =2 § > 0 voor alle x ¢ R en als de
functie g oneven is en xg{x) =2 0 voor alle x ¢ IR dan bestaat er voor
iedere € > 0 een oplossing ﬁe(t) van het optimaliseringsprobleem waar-
bij ue(t) alleen de waarden +1 en ~1 aanneemt. Bovendien nadert de

afstand tussen de discontinuiteitspunten van 58 {t) tot 7 als & ¥ O,



Zij wverder a,f: R + R gedefinieerd door

2m
{g(x cos t} ~ £{r cos t) r sin t}sin tdt,

alr) :
0
2%

Bix} := I {g(r cos £t} - f{r cos t) r sin t}cos tdt.
0

Indien ¥ := max {r ¢ R | a?(r) +8%(z) < 16} bestaat en

é% (az(r)-+82{r)) # 0 voor r = ¥, dan geldt voor de maximale ampli-
tude Ae

limA€=§.
e¥0

Het door Reid opgemerkte feit dat zijn numerieke resultaten bij toe-
passing van de methode van de geconjugeerde gradiénten voor het oplos-
sen van uit discretisatie van partiéle differentiaalvergeli jkingen
voortkomende definiete stelsels lineaire vergelijkingen nauwelijks
verschillen bij het gebruik van recursieve of echte residuen geldt
zeker niet in het algemeen voor slecht geconditioneerde stelsels. Het
is af te raden om bij slecht geconditioneerde stelsels uitsluitend
recursieve residuen te gebruiken.

Reid, J.K., On the method of conjugate gradients for the solution

of large sparse systems of linear equations. Proc. Conference

on Large Sparse Sets of Linear Egquations. Academic Press,
New York, 1971; 231~-254.

Dit proefschrift, Hoofdstuk 4.

Het is ontoelaatbaar dat in een modern leerboek over numerieke lineaire
algebra nauwelijks aandacht wordt besteed aan afrondfouten tengevolge
van eindige machineprecisie.

Wait, R., The numerical solution of algebraic equations,.
John Wiley & Sons, New York, 1979.



Het is te betreuren dat de verzameling mensen die nadenkt over de eco-
nomische gevolgen van werktijdverkorting slechts een kleine doorsnede
heeft met de verzameling mensen die nadenkt over de maatschappelijke

gevolgen van vrijetijdverlenging.

Een van de belangrijkste kenmerken van wetenschappelijk denken is dat
het rekening houdt met het risico dat uitsluitend wetenschappelijk

denken met zich meebrengt.

10

Er is een grote overeenkomst tussen politici en schepen: beiden maken

het meeste lawaai als ze in de mist de koers kwijt zijn.

J.A.M. Bollen

2 december 1980



Wijze Boeken

als ik die dikke boeken zie van de geleerden

vol wifze dingen die zif allemaal beweerden

en ik zie de weneld om mij heen, dan moet ik vrezen
dat niemand ooit die wifze boeken heeft gelezen

Toon Henmans
Uit de gedichtenbundel "Fluiten naar de overkant" van

Toon Hermans. Uitgeverij Elsevier Nederland B.V., Amster-
dam/Brussel .



