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ROUND-OFF ERROR ANALYSIS 
OF DESCENT METHODS 

FOR SOLVING LINEAR EQUATIONS 

JO BOLLEN 



The diagram on the front page Is drawn from a test for a two dimensional linear system wi th eigenvalues 
1/3 and 1, where the eigenvector components of the solution Rare equal and where the (absolute values 
of the) eigenvector components of the Init ial error vectorS:- x0 are In the ratio of 3 to I. Furter­
more, 11~11 • I and II~- x0 11 • 10 - 1. The test Is performed using artificial floating point arithmetic 
wlth artificial r elative precision 10-2 (see section .1.6). The left-hand part represents the lterands 
computed by the conjugate gradient method whereas the right-hand part represents the lterands computed 
by the gradient method. The ellipses correspond to the level lines of the objective function F(x) • 
• IIA\(x - x)ll2 . 
The diagram above t s drawn from a test with the same parameter setting but the computations are per­
formed with (almost) exact accuracy (artificial relative precis i on 10 -10). It sl'lows the step-wise~ 
I I near convergence of the gradient method and the termination after two steps of the conjugate gradient 
method. The front page diagram Illustrates the Influence of round-off on the numerical behavior of botl'l 
methods . 
It is my colleague Herman Willemsen who not only performed the tests described above but a\so did all 
the prograrrmlng and testing needed to obtain the numerical results presented In tl'lls thes i s, I like to 
express my gratitude for the pa tience he showed in working with slowly converge nt processes . 
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1. 1. 1ntAoduc:U.cn and llummaJr.y 

CHAPTER 1 

1NTRO'OUCT1 ON 

There are two classes of numerical methods for solving linear systems 

Ax = b, viz. direct methods and iterative methods. Direct methods 

decompose the original matrix A in order to obtain an equivalent 

linear system that is easy to solve numerically. Some commonly used 

methods are Gaussian elimination, QR-decomposition by Householder's 

method, modified Gram-Schmidt and Cholesky decomposition. Iterative 

methods compute successive approximations of the solution, without 

making any changes to the original matrix. Some commonly used iterative 

methods are Jacobi-, Richardson-, Gauss-Seidel-, Chebyshev- and Lanczos­

iterations, systematic overrelaxation, alternating direction itera­

tions, gradient method and conjugate gradient method. 

A basic distinction between direct and iterative methods is that a 

direct method yields the solution i := A-1b exactly in a finite number 

of arithmetical operations (if the latter are performed without round­

off) , whereas an iterative method in general produces an infinite 

sequence {xi} whose limit is the solution i. Each approximation is 

obtained from its predecessor(s) by a finite number of arithmetical 

operations. As a consequence, for a direct method the number of ari th­

metical operations is known in advance, whereas for an iterative 

method the number of arithmetical operations depends on the required 

accuracy of the computed solution. 

Another distinction between direct and iterative methods is the dif­

ference in storage requirements. In most direct methods, where all 

entries of the matrix A are stored in a two dimensional array, the 

matrices resulting from the decomposition of A can be stored by over­

writing {parts of) A. Iterative methods can be applied without storing 

A explicitly. One only needs a black box for the execution of matrix 

by vector product operations. For fairly small systems this distinction 
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is minor. However, for large sparse systems where the matrix A has a 

relatively small number of nonzero entries, the decomposition matrices 

generated by direct methods generally are less sparse than A and this 

may give rise to rather excessive storage requirements. On the other 

hand, an iterative method can take full advantage of the sparsity of 

A, because in the matrix by vector product operations the zero-entries 

can be skipped. 

An additional aspect of importance in the discussion of the solution 

of linear systems is the influence on the computed solution of round­

off, this round-off being due to the floating point computations with 

finite relative precision e::. As far as direct methods are concerned 

Wilkinson [65] proved that most commonly used direct methods are well­

behaved and numerically stable. Well-behaved methods compute an ap­

proximation x which is the exact solution of a linear system with a 

slightly perturbed A, i.e., (A+ E) x = b, where E is of order e::IIAU. 

Consequently, a well-behaved methods computes an approximation x whose 

relative error II x - xll I II xll does not exceed a quantity of order 

e::IIAIIIIA- 1
11 ==: er<:. A method that computes an approximation with a rela­

tive error at most of order er<: is called a numerically stable method. 

Bence, a well-behaved method is a numerically stable method but not 

necessarily vice versa. As far as iterative methods are concerned 

there is up to now only very little literature presenting results on 

the influence of round-off. This partly is due to the fact that 

iterative methods seemed to be more self-correcting than direct 

methods, so that one expected iterative methods to be well-behaved 

spontaneously. Another reason is that the users of iterative methods 

generally are more interested in how many iterations are needed to 

obtain an approximation with a reasonable accuracy than in the maxi­

mally attainable accuracy after maybe many iterations. Nevertheless 

it is somewhat remarkable that round-off error analyses of iterative 

methods hardly exist. W6zniakowski is one of the first authors who in 

very recent years published results on good-behavior and numerical 

stability for iterative methods such as Chebyshev iterations (cf. 

W6zniakowski [77]} and SOR, Jacobi-, Gauss-Seidel- and Richardson­

iterations (cf. W6zniakowski [78]; see also Jankowski and 

W6zniakowski [77] and W6zniakowski [80]). 

This thesis is intended to be a contribution to this rather new field 

of research, concerning the round-off error analysis of iterative 
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methods for solving linear systems. We will study the class of descent 

methods which is a large sub-class of iterative methods. Descent 

methods can be characterized as follows. Given an objective function 

F(x), one starts at an initial point, determines, according to a fixed 

rule, a direction of movement and then moves in that direction to the 

local minimum of the objective function. At the new point a new direc­

tion is determined and the process is repeated. The objective function 

F must satisfy the following three important properties: F(x) = 0, 

F(x) > 0 if x ~ x, and F is convex. We consider descent methods where 

F (x) is taken to be the quadratic function (x - x , A (x - x) ) , expressed 

in terms of the Euclidean inner product. A is supposed to be a positive 

definite matrix. In addition to the choice of the objective function, 

the main difference between the various descent methods rests with the 

rule by which successive directions are chosen. 

We pay special attention to the gradient method and the conjugate 

gradient method. The gradient method (often referred to as steepest 

descent method) is a descent method that is especially important from 

a theoretical point of view, since it is one of the simplest methods 

for which a satisfactory analysis of the convergence behavior exists 

(in the case of exact computations). The method is characterized by 

the rule that at each i terand xi the residual vector b - Axi is chosen 

as the direction of movement. The conjugate gradient method, developed 

independently by Hestenes and Stiefel [52], is an iterative method as 

well as a direct method. It is an iterative (descent) method in the 

sense that at each step a better approximation to the solution is ob­

tained. At each iterand xi an A-orthogonal version of the residual 

vector b- Axi is chosen as the direction of movement. It is a direct 

method in the sense that it yields the solution after at most n steps, 

where n is the dimension of the linear system (in the case of exact 

computations). The early enthusiasm on this finite termination prop­

erty soon diminished after it turned out that in the presence of 

round-off for some ill-conditioned linear systems the n-th computed 

iterand xi is not even a reasonable approximation to the solution. 

The method became of mainly academic interest, at least as a solver 

for linear equations. The paper of Reid [71], in which the iterative 

character of the method was emphasized, reactivated the interest in 

the conjugate gradient method and nowadays the method is known as an 

iterative method with very strong convergence proper.ties for large 
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sparse linear systems with moderate condition number. For these systems 

the method often yields acceptable approximations after much less than 

n steps. 

This thesis contains a number of results on the good-behavior and 

numerical stability of the gradient method and the conjugate gradient 

method for both well- and ill-conditioned systems. These results 

mainly deal with the ultimate numerical convergence behavior. We have 

carried out a number of computational tests in order to verify the 

analytical results of our round-off error analysis. 

We now summarize the contents of this thesis. 

In this introductory Chapter 1 some basic notions required in the 

sequel are presented. After the introduction of some notational con­

ventions in section 2 we discuss in section 3 the preliminaries on 

rounding errors in floating point computations. Section 4 deals with 

the concepts of good-behavior and (A-) numerical stability which serve 

as a qualification for the attainable accuracy of computed solutions 

in the presence of round-off. We also briefly recall some definitions 

concerning the speed of convergence of iterative processes. The reason 

why and the way in which we use the Bachmann-Landau o-symbol in our 

round-off error analysis is explained in section 5. The final section 

of Chapter 1 describes the construction of our test problems and the 

implementation of the gradient method and the conjugate gradient 

method computations. We also give a description of what we call arti­

ficial floating point arithmetic. 

In Chapter 2 a general theory for the algebraic and numerical behavior 

of descent methods (DM's) is presented. In section 1 we discuss the 

fundamental idea behind DM's and we point out that the methods can be 

based either on recursive or on true residual vectors. In section 2 

the definitions of recursive residual descent methods (RRDM's) and 

true residual descent methods (TRDM's) are given and we deduce some 

well-known algebraic properties that are fundamental for studying the 

properties of DM's in the presence of round-off (henceforth denoted by 

numerical properties). We also briefly review some well-known DM's 

like the Gauss-Seidel method, the Gauss-Southwell method, the gradient 

method and the conjugate gradient method. Numerical properties of 

RRDM's are derived in section 3. The numerical behavior of the recur­

sive residuals is treated in subsection 3.1 and then the numerical 
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behavior of the approximations xi is treated in subsection 3.2. Sub­

section 3.1 contains the main theorem (theorem 2.3.1.4) for the numer­

ical performance of RRDM's, In section 4 we derive numerical proper­

ties for TRDM's and the main result is stated in theorem 2.4.6. The 

usability of this main result is demonstrated by applying it to the 

Gauss-Southwell method. 

In Chapter 3 the general theory of chapter 2 is applied to the gradient 

method (GM). The definition of the GM is given in section 1, where we 

also review some of its well-known algebraic properties. In section 2 

numerical analogues of these algebraic properties are derived for the 

RRGM, whereas in section 3 this is done for the TRGM. The main result 

for the RRGM is the step-wise linear convergence to zero (cf. sec-

tion 1.4) of the recursive residual vectors. The proof of good­

behavior and numerical stability is the main result for the TRGM. 

Section 4 reports on numerical results obtained by tests with the 

RRGM and the TRGM. 

Chapter 4 is devoted to the conjugate gradient method (CGM). In sec­

tion 1 we give the definition of what we call the most natural version 

of the CGM, which is one of the (algebraically equivalent) versions 

contained in the paper of Bestenes and Stiefel [52] (cf. also Reid 

[71]). We also deduce some of its numerous elegant algebraic proper­

ties. In section 2 numerical analogues of some of these algebraic 

properties are derived for the RRCGM, whereas in section 3 this is 

done for the TRCGM. The main result for the RRCGM is the bi-step-wise 

linear convergence to zero (see section 4.2) of the recursive resid­

uals. For the TRCGM our main result is that this method computes at 

least one approximation xi for which the residual is at most of the 

order e:K ~ IIAIIIIxi U, which is a factor K! worse than good-behavior. 

We also point out how it can be understood that in many actual execu­

tions of the process good-behavior is observed. In section 4 we report 

on numerical results obtained by tests with the RRCGM and the TROGM. 

In Chapter 5 we discuss some variants of the CGM as defined in 

Chapter 4. In section 1 we introduce four so-called independent start 

conjugate gradient methods (ISCGM's); their algebraic properties are 

derived in section 2. In section 3 we demonstrate the numerical im­

plications of these properties for one particular version. The main 

result is that the natural version of the conjugate gradient method as 
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considered in Chapter 4 seems to be more robust than the other ver­

sions as far as the influence of round-off errors is concerned. 

1. 2. No:t:a:tiotU. and c.onven.UotU. 

In this section we describe our notational conventions and we give a 

list of the general symbols, which we shall use throughout this mono­

graph. 

Veetors 

All vectors are supposed to be (real) column vectors. The vector xi 

indicates the 1-th approximation to the solution 2 of the linear 

system, determined by the descent method on hand. The vector pi in­

dicates the i-th direction vector of the descent method (see section 

1.2). The residual vector b -Axi is denoted by ri of ri (for the dif­

ference see below). By (x,y) we mean the Euetidean inner produat of 

the vectors x and y and by llxll we mean the EuaUdean norm of the vec­

tor x. Thus 

(1) 
n 

(x,y) := l xjy j , 
j=1 

nxu ~ := (x,x) • 

The indices j or ! in connection with a vector indicate the j-th or 

1-th component of the vector. 

Matriaes 

The descent methods under consideration are basically designed for 

solving a system of linear equations, denoted by Ax = b, with a (real) 

positive definite matrix A. We briefly call such a system a definite 

system. The order of the (square) matrix A is called the dimension of 

the linear system and it is denoted by n. The spectral decomposition 

of the m x n matrix A is denoted by 

{2) A = UAUT 1 

where 

6 

u is an orthogonal n x n matrix, whose columns ui are a complete 

set of orthonormal eigenveato'l'B of A, 
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A is an n x n diagonal matrix, whose diagonal entries ).i are the n 

(positive) eigenva~ues of A. Without loss of generality we 

always assume that the eigenvalues are ordered~according to 

0 < "t s "2 s ••• s "n· 

The positive definite matrices Aa (a -1/2,1/2,3/2) are defined by 

Hence AIA6 • A, A-iAj = I, A-IAt = A, etc. 

The norm of a matrix A, denoted by II All, is always meant to be the 

spectral norm, defined by 

(4) II Axil 
IIAII := =W .. '-n 

The rate of change of the solution of a linear system with respect to 

a change in the coefficients as well as the influence of round-off on 

the computed solution and on the rate of convergence is expressed in 

terms of the (spectral) condition nurrbei' of A, denoted by K (A) and 

defined by 

(5) 

Since we only consider the condition number of the matrix A correspond­

ing to a specific definite linear system, there is no confusion if we 

write simply K instead of K(A). 

An important inequality in connection with the condition number which 

will frequently be used in our convergence considerations is the 

Kantorovieh inequality, which states that if A is a positive definite 

matrix, then for any vector x one has 

(6) __ ...,:(,;;;X;.t.1 ;;;;X:..) ~- <!: 4K • 
-1 2 (x,Ax) (x,A xl (K + 1) 

In (6), equality holds iff xis a multiple of the vector v 1 +vn. where 

v
1 

is an eigenvector corresponding to the smallest eigenvalue and vn 

is an eigenvector corresponding to the largest eigenvalue. The quotient 

at the left-hand side of (6) will be called the Kantoroviah quotient 

of the vector x with respect to A. It can be written in terms of norms 

as llxll 4 I !IIAI xiiiiA-1 xlll 2• 
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Round-off 

Our round-off error analysis is based on round-off due to the use of 

floating point numbers and floating PQint arithmetic. Vectors and 

numbers that actually have been computed and stored by the floating 

point machine are called maahine veatore and maahine YIUl'l'bers. If an 

expression S involving machine vectors and machine numbers is evalu­

ated using normal floating point arithmetic, then this is denoted by 

fl (S) ; if the e:Kpressions is computed using artifiaia'l f'loating point 

arithmetic (defined in section 1.6), then this is denoted by fla(S). 

Round-off occurring at basic arithmetical operations is expressed in 

terms of round-off matriaes, denoted by the capital characters F, G, D 

and E, each referring to specific operations like, e.g., vector addi­

tion, scalar by vector products, etc., as described in section 1.3. 

If we want to indicate the difference between an exact vector or 

number and a computed vector or number, then we use the symbol c5. 

For instance, we write 

(8) z := fl(x+yl = x+y+oz, k := fl(t*m) = t*m+c5k, 

where x, y, z and oz are machine vectors and t, 111, k and c5k are machine 

numbers. The vector c5z is called a round-off veator and the scalar c5k 

is called a round-off scalar. Intermediate round-off scalars are 

denoted by Greek letters like ~. n, p, v, ~. p, a, T, w (see e.g. 

formula (2.3.1.16)). 

For the vectors xi and pi, mentioned before, we do not have a dif­

ferent notation to indicate whether they stand for the computed vectors 

or the exact vectors. With respect to the residual. veato:r> b- Axi we 

make the following distinction. In considerations on numerical behavior 

the vector ri stands for the (exact) vector b- Ax
1

, whereas ri stands 

for some computed vector that would be equal to f'i when using exact 

arithmetic. 

A property holding if an algorithmisperformed using exact arithmetic 

is called an algebraia p:rooperty; a property holding if the descent method 

is performed using floating point arithmetic is called a numeriaa'l 

propezoty. The term ana'lytiaal :roesults refers to algebraic as well as 

to numerical properties and is used in contrast with the term 

nwrtBriaa'l results, pointing to numerical experiments. 
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In any {sub)section theorems, propositions, lemmas, definitions and 

remarks are numbered 1, 2, ••• ,and formulas are numbered (1), {2), ••• 

If, in some {sub)section, we refer to theorem 2 {say), then we mean 

theorem 2 of the {sub)section on hand. If we refer to theorem 1.2.3 

(say} 1 then we mean theorem 3 of section 1.2. Opposite to each number 

for pagination there is a number indicating the (sub)section in ques­

tion. 

We conclude this section with a list of general symbols. 

IR 

IAI 

A< B 

diag{a1 1 ••• ,an) 

T 
X 

{xi} 

Tiiii xi 

span {x
1

, ••• ,xi} 

lal 

1.2 

set of real numbers 

set of column n-vectors over lR 

set {1 12 1 ••• } of natural numbers 

set {0 11 1 ••• } of nonnegative integers 

transpose of the matrix A 

inverse of the matrix A 

(i1j)-th entry of the matrix A 

identity matrix 

matrix with entries IAiij := IAijl 

for all entries there holds Aij < Bij 

diagonal matrix with diagonal entries a 11•••1an 

transpose of vector x 

-1 solution A b of the linear system Ax = b 

sequence of vectors x11x21••• 

limes superior ot the sequence {xi} 

subspace spanned by the vectors x1 , ••• ,xi 

HA ~II II xi II /II A i (i- xi l II 

IIAIIIIxill /IIA(i-xi)ll 

IIA312
11 llx

1 
II /IIA312 

(i- xi) II 

a approximately equals b, a is of the order of b 

absolute ~alue of a 
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a>b 

a mod b 

ent(a) 

v 

3 

D 

... 
* 

VF(x) 

0 

B 

t 

10 

a is much greater than b 

the remainder when dividing a by b 

entier of a1 largest integer not exceeding a 

lim ai = 0 
i-+<><> 

universal quantifier 

existential quantifier 

end of a (proof of a) theorem, lemma, proposition 

or remark 

implication sign 

product sign (only used occasionally to avoid con­

fusion) 

any basic dyadic arithmetical operation+, -, *• I 

gradient of the vector function F 

Bachmann-Landau symbol 

base of the floating point numbers 

length of the mantissa of the floating point 

numbers 

1-t relative machine precision; £ := !B 

constant depending on n and e, denoting the upper 

bound for the norm of the round-off matrix E, 

representing round-off at matrix by vector product 

computations 

constant depending on n and e, denoting the upper 

bound for the norm of the round-off matrix D, 

representing round-off at inner product computa­

tions 
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Throughout this thesis we assume that the algorithms based on descent 

methods are performed in floating point arithmetic. The floating point 

numbers will be assumed to have base B and a mantissa length of t 

digits (B ~ 2, t ~ 1). Then every real number in the floating point 

range of the machine can be represented with a relative error which 

does not exceed the relative machine precision E, which is defined by 

E = ~B 1-t. Furthermore we assume that we have a machine with proper 

rounding arithmetic in the sense of Dekker [79]. This means that the 

execution of any dyadic arithmetical operation • (this can be +, -, 

*• /) on two machine numbers a and b gives a machine number fl(a • b) 

such that there is no other machine number closer to the exact result 

of a • b. Consequently, the following relations hold 

( 1) fl (a e b) = (a e b) ( 1 +I;) , 

(2) (1+nlfl(aeb) =aeb, 

where both 1~;1 ~ E, lnl ~ £. 

We do not put a restriction on the range of the exponent of the 

machine numbers. Hence we neglect the possibility of underflow or 

overflow. 

From (1) and (2) it follows that adding or subtracting two machine 

vectors x and y and multiplying a machine vector x by a machine number 

a (implemented in the obvious way) gives computed vectors fl (x ± y) and 

fl(ax) satisfying 

(3) fl(x±y) • (I +F1l (x±y) , 

(4) (I+G1)fl(x±y) =X± y, 

(5) fl(ax) = (I +F2)ax , 

(6) (I + G2l fl (ax) = ax , 

where F1, F2, G1 and G2 are diagonal matrices, satisfying 

and consequently 
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We assume that the algorithm for the calculation of the inner product 

of two machine vectors x and y satisfies 

(9) fl{(x,y)) = ((I+Dlx,y) , 

where D is a diagonal matrix such that 

(10) IIDII s e:C2 1 

the constant c2 depending only on n and e:. Throughout this monograph 

c2 always stands for the bound of the round-off matrix D representing 

round-off errors at inner product computations. 

REMARK 1. If the inner product calculation is performed in the obvious 

way, by multiplying corresponding successive components (in increasing 

order) and adding the result to the intermediate inner product, then 

the entries of the diagonal matrix D in (9) satisfy, under the res­

triction ne + 0 (cf. Wilkinson [65]) 

(11) ID11 1 s ne:(l+O(l)) , lDiil s {n+2-ile:U+o{1)) , 

(i=2, ••• ,n). 

consequently, the constant c2 in (10) can be chosen c
2 

= n(l+O(l)), 

[ne: + 0]. (for the meaning of the o-symbol we refer to section 1.5.) 0 

We assume that the algorithm for matrix by vector product calculation 

is implemented in such a way that the computed vector fl {Ax) , based on 

the machine matrix A and the machine vector x, satisfies 

(12) fl (Ax) = (A +E)x , 

where E is a matrix such that 

the constant c1 depending only on n and e:. Throughout this monograph 

c1 always stands for the bound of the round-off matrix E representing 

round-off errors at matrix by vector product computations. 

REMARK 2. In the real-world siutation, where the matrix by vector 

product calculation is performed in the obvious way, by computing 

inner products {in the way as described in remark 1) of rows of A and 

the vector x, it follows from (11) that fl(Ax) satisfies componentwise 
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{14) 
n 

( fl (Ax)) j = l: A . R. xt < 1 + njt > , 
R-=1 J 

(j = 1, ••• ,n) 

where, under the restriction ne + 0, for all j = l, ••• ,n 

(15) lnj
1

1 :s; ne(l+0(1)), lnjR.I s (n+2-R.)e(l+0(1)), 

(! = 2, ... ,n) • 

Hence the matrix E in (12) has entries Ej! nj! Ajt and consequently 

( 16) I E I s nel A I ( 1 + o (1 l ) , II Ell s n 312 e II AU ( 1 + o ( 1) ) , [ ne + 0] • 

3/2 According to the definition of c1 we can choose c
1 

= n ( 1 + o ( 1)), 

[ ne + 0]. Note that componentwise (Ex) j = E~,. 1 Ajt xt njt and hence the 

round-off vector Ex generally is randomly direated. This is an impor­

tant characteristic of the normal matrix by vector product computation, 

since for randomly directed vectors y, II Ayll - II All II yll • Furthermore, 

I ( fl (Ax}) j - (Ax) . I s ne ( I A II xI l . 
J J 

which indicates that the-components are not necessarily computed with 

relative precision. 0 

If two vectors are added (or subtracted), then the rounding errors due 

to this operation can be expressed by (3) and (4). Another, rather 

unusual, way to express this rounding errors is given in the following 

lemma. It will be of special interest if the two vectors differ much 

in length. We shall meet this situation in Chapter 2. 

From the assumption that we have proper rounding arithmetic it follows 

that if we add two machine numbers a and b for which lbl < (e/B) lal, 

then 

(17) fl{a+b) '"a 

Using this relation we can prove the following lemma. 

LEMMA 3. If x and y aPe maahine veato:re,. then 

(18) fl(x+y) =x+ (I+H)y, 

~here H is a diagonal matri~ satisfying 

(19) IHI s (B+e)I, IIHII s B+e. 

1.3 13 



PROOF. Let fl (x + y) = X + y + c5 • 

If lyjl < (e/Bllxjl' then it follows from (17) that c5j = -yj. 

If lyjl :<: (e/B)Ixjl, then it follows with (1) that lc5jl s el (x+y)jl s 

s (B + e:) I yj I . Hence in both cases I c5 .I s (B + e) I y. I . 
J J 

The proof of the lemma is completed by defining Hjj := 

Hjj := o, (y j = 0), Hji := o, (j F i). 

OlYjt. fyj ;'0) 1 

D 

REMARK 4. SUppose we have a sequence {yi} of machine vectors that 

converges linearly on the average to zero with a convergence ratio no 

greater than L, i.e., llyill :;; LiHy
0

11, L E {0,1). Assume that 

s := z;.o yt is computed by adding successive vectors (in increasing 
i order of indices) to the intermediate sum vector si := fl(Z!=O y1). 

Then, in view of the foregoing lemma we obtain 

(20) 

all i 2: 0. D 

If the defining statements of a DM contain compound statements, then 

(unless stated differently) these statements are supposed to be per­

formed in the obvious way, based on the elementary arithmetical opera­

tions described so far. 

In order to investigate the influence of round-off due to a specific 

arithmetical operation, we sometimes assume in performing a round-off 

error analysis that all arithmetical operations are executed exactly, 

except for the one under consideration. This kind of analysis is 

called a one-round-off erro:r> anaZysis. 
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1.4. 8116-Lc. conc.epu o6 nwneJt.ic.a.R. .6.tabllli:y, good-be.hav-i.oJt a.nd 
conv~gence nate 

To denote the quality of the approximate solution computed by an algo­

rithm with floating point arithmetic, one generally uses the concepts 

of numerical stability and good-behavior. The speed of convergence to 

the solution is expressed in terms of order of convergence and conver­

gence ratio. 

We briefly recall (see W6zniakowski [77)) what we mean by numerical 

stability and good-behavior of an iterative method for solving a 

linear system Ax a b, where A is a nonsingular matrix and b is a 

(column) vector (solution vector 5!:). We assume that 11•11 denotes the 

Euclidean norm for vectors and the spectral norm for matrices (2-norm) • 

Since our linear system is supposed to be definite and we only con­

sider OM's that minimize the object! ve function F (x) :a (x - x , A (l - xl l = 

= II A l (2 - x) 11
2

, it seems sensible to define also a stability concept 

connected with this function. 

Suppose a DM is performed in floating point arithmetic {relative 

machine precision e) with arbitrary initial point x0 and a sequence 

{xi} is computed of approximations to the solution x of the linear 

system Ax = b. Then we have the following definitions (the constants 

g1, g2 and g
3 

that appear are supposed to depend only on the dimension 

of the system) • 

DEFINITION 1. The DM is said to be weZZ-behaved (oro~ equival-ently, has 

good-behavior>) if foro all initial points x0 there e:cists an appro:cima­

tion xi such that 

(1) (A +E) xi a b 1 

with some ma:t;l'i:x: E satisfying IIEII s g1ei!AII. D 

In view of formula (1), good-behavior menas that the computed approx­

imate solution is the exact solution of a slightly perturbed system. 

It is easily seen that (1) implies 

On the other hand, if (2) is satisfied, then the matrix 
T 2 

E := (b-Axi)xi /llxill satisfies equality (1) and the inequality of 
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definition 1. Hence a DM is well-behaved iff there exists an approxima­

tion xi satisfying (2). The vector A(st- xi) "' b- Axi is called the 

residual veator and II A (x- xi) II is called the residual. Since 

inequality (2} implies 

This gives rise to the following definition. 

DEFINITION 2. The DM is said to be numeriaaUy stable if for all 

initial points x0 there exists an approximation xi satisfying 

The DM is said to be A-numeriaaUy stable if for aU initial points x
0 

there exists an approximation xi satisfYing 

(6} 0 

The vector 5t- xi is called the error veator, 11 st- xi II is called the 

error, A!(5t-xi) is called the natural error veator and IIA~(x-xilll is 

called the natural error. 

A numerically stable DM is of interest only if g2e::K is appreciably 

less than unity and for an A-numerically stable DM one wishes g3e::K! 

to be appreciably less than unity. When using in the following chap­

ters one of the concepts defined above, we shall always indicate the 

underlying restriction on n, e::, K. 

Note that (5} and (6} imply 

(7) 

hence we might as well (cf. W6zniakowski [77]) have used x instead of 

xi in the right-hand sides of (5} and (6). 
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Good-behavior implies A-numerical stability and A-numerical stability 

implies numerical stability. On the other hand these implications do 

not, in general, hold vice versa. 

Since 

numerical stability only implies 

(cf. formulas (2} and (6}) and A-numerical stability only implies 

(cf. formula (2}). 

So, an {A~)numerically stable DM does not necessarily solve a nearby 

linear system. However, the (A-)numerically stability concept indicates 

that the solution xi is satisfactory from the 

If a vector x satisfies (1) and if IIEII ~· e:IIAII 

(which generally is the case if E is random), 

following point of view. 

and IIA-1Exll IIA-11111EIIIIxll 
-1 

then llx -xll "' IIA Exll -

- e:KII xll • Consequently, if a DM is numerically stable then there exists 

an iterand xi whose error is of the order of magnitude of the error of 

the exact solution of a nearby system (nearby in the sense that 

IIEII I IIAII is of the order of the machine precision}. This last error is 

called the inhe~nt e~ (cf. Stoer and Bulirsch [80]). A similar 

statement holds for an A-numerically stable DM, if it is formulated in 

terms of the natural error and the inhe~nt natu:r>aZ error &K!Uxn. 

REMARK 3. W6zniakowski [80] defines good-behavior of a DM generating a 

sequence {xi} by the relation 

and numerical stability by the relation 

Both definitions are stronger than our corresponding definitions in 

the sense that for our case the inequalities (2} and {5) have to be 

satisfied for only one approximation whereas for W6zniakowski's case 
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these inequalities have to be satisfied ultimately for all approxima-

tions. For practical implications this is a minor difference. 0 

It is not assumed explicitly that the DM generates a finite sequence 

{xi}. Of course, if a (infinite) DM is well-behaved, then the iteration 

might be terminated as soon as the last computed approximation xi 

satisfies (5), with an acceptable g
3 

(for this purpose one needs an 

estimate for tiAII., which is often easy to obtain). If a DM is not well­

behaved but if one knows (e.g. due to (A-)numerical stability) that 

the method will compute an approximation xi with residual satisfying 
R, 

llb-Axill :>: g3e:K IIAIIIIxill' for some g3 and t > O, then this inequality 

can be used as a stopping criterion (one then needs not only an esti­

mate for IIAII, but also for IIA-111, which is probably hard to obtain). 

What is more, if (say) t = !, then one can only guarantee that the 

error of the last approximation xi is of order e:K 312nxill and its 

natural error is of order e:KIIxill' which might be unacceptably large. 

Another important performance indicator of an iterative process is the 

rate of convergence. The concepts of numerical stability and good­

behavior measure the ability of the method to arrive at a "correct" 

answer. The concept of convergence rate indicates how much effort 

(number of iteration steps) is necessary to obtain that answer. Al­

though there exist numerous notions on convergence behavior we define 

only two notions, related to the speed of convergence of a sequence of 

vectors {xi}, which are adequate for our purposes. 

DEFINITION. 4. If for some L < 1 the sequence {y i} satisfies 

then the sequence is said to converge step-wise ZinearZy to zePO ~ith 

a convergence ratio no greater than L. 0 

Most authors assume that t!3 (lly-yi+lll /l!y-yi[l) =: L0 < 1 exists and 

then the convergence to y is called linear with asymptotic convergence 

ratio L0 • But then next they use this definition also for cases where 

the limit does not necessarily exist and only an upper bound in the 

sense of (13) can be given (like, e.g., for the gradient method (3.1.7)). 

An advantage of the latter definition is that if one wants to compare 
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two linearly convergent sequences with different convergence ratios, 

then definitely the sequence corresponding to the smaller convergence 

ratio is ultimately closer to the limit. Upper bounds in the sense 

of (13) are not very suitable for comparing two sequences, but they 

only give information about each separate sequence. 

DEFINITION 5. If for soms g and L < 1 the sequence {yi} satisfies 

(14) 
i 

llyill s gL 11y011 (i > 0) , 

then the sequence is said to converge linearly to zero on the average 

with an average convergence ratio no greater than L. D 

It is obvious that step-wise linear convergence implies linear conver­

gence on the average, but not, in general, vice versa. 

In contradiction to the definitions of (A-)numerical stability and 

good-behavior the two definitions above do not depend on e, but the 

definitions concern any (algebraic or computed) infinite sequences. 

In practice we never compute an infinite sequence, but still for a 

finite number of vectors {y0 , ••• ,yk} we use the definitions 3 and 4, 

indicating that the validity of (13) and (14) is restricted to the 

values of i satisfying 0 s i s k. 

In our round-off error analysis we meet equalities and inequalities 

involving the relative machine precision e, the condition number K and 

the constants c1 and c2 corresponding to round-off due to matrix by 

vector prOduct computations and inner product computations, respec­

tively (cf. section 1.3). In order to simplify the expressions we want 
2 to be able to neglect terms of order e in the presence of a term of 

order e, with a minimal loss of relevant information. For this purpose 

we use the Bachmann-Landau a-notation. For instance, we write 

(1) 

where the expression between square brackets indicates that 0(1) 

stands for a quantity that is small if eC2K~ is small. Of course, one 
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could also write down an explicit inequality, say 

(2) 

based on a rather arbitrary restriction. However, the use of the a­
symbol has some advantages relative to the use of explicit constants, 

as will become clear from the following considerations. 

We first qive two formal definitions and some properties concerning 

the o-symbol. 

DEFINITION 1. Let £, g, h be tlwee saalaP j'unatione de.fined on a set 

D £ m1 
(R. E JN), then 

(3) f(x) 5 O(g{x)) , [h{x) + 0] , 

means 

0 

Note that constant o only depends on n and not on x; the implication 

holds uniformly with respect to x E D. In fact, {1) only supplies in­

formation to those x for which h(x) is small. The expression between 

square brackets is referred to as the restriction under which {1} 

holds. 

The following definition presents itself quite naturally. 

DEFINITION 2. Let f, g, h be tlwee saalax> functions defined on a set 

D £ m1 CR. E :1>1} , then 

(4} f(x) ~ O(g(x}) , [h(x} + 0] 

means 

f (x) :5 o ( g ( x)) , [h(x) + 0] , 

and 

- f (x} :S 0 ( g (x)) , [h{x) + 0] • 0 

The statement f(x) ~ O(g(x)), [h(x) + 0], thus means 

COnsequently, if(x) I 5 O(g(x)) is equivalent with f(x) = O(g(x)), 
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[h(x) + O]. In our analysis we use both ~ and =, one with another, in 

these situations. 

In nearly all formulas containing the a-symbol, it appears in the form 

0(1). We remark that we do not define the meaning of a(g(x)) itself; 

as it is often done in asymptotic analysis (cf. De Bruijn [61]), we 

only give the interpretation of some complete formulas. 

For instance, if we write for two scalar functions f 1 and f
2

, with 

f
2 

(x) > 0 (x E D), 

(5) [h(x) + 0] , 

we mean 

(6) [h(x) + 0] , 

in the sense of definition 1. We also write relations like 

(7) f 1 (x)a(1) =a(1), [h(x) + O] , 

which statement is to be interpreted as follows. For any function f 2 
for which f

2
(x) = a(1), [h(x) + 0], one also has f 1 (x)f

2
(x) = a(1), 

[h(x) + OJ. In these cases the expressions involving a-symbols have to 

be considered as a class of functions (compare also the properties 

below). 

Some rather trivial but often used properties are the following. 

PROPERTIES 3. 

(i) f(x) = a(1) , [f(x) + 0] , 

(ii) a(1) + a(1) = a(1) , [h(x) + O] , 

(iii) a(l)a(l) = a(l) , [h(x) + 0] , 

(iv) (1+a(1))-1 = 1+a(l), [h(x) + 0] D 

The last three properties indicate that the a-symbol is easy to handle 

and that is our main reason for using it. 

Another advantage of a-symbols above explicit constants is that the 

coefficients in the relations involving a- and =-symbols are more or 
-1 less uniquely determined (compare (1-e:) = 1+e:+a(1), [e:·+ 0] and 

1+e: ~ (1-e:)-1 ~ 1 + (1+1/3)e:, [0 < e: < lJ). 
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A disadvantage of the use of o-symbols is that we do not obtain ex­

plicit bounds. However, in all cases where we derive formulas with a­
symbols it is possible to retrace the proof, replacing all a-formulas 

by estimates involving explicit numerical constants. That is, at every 

stage of the proof we are able to indicate definite numbers, where the 

asymptotic estimates only state the existence of such numbers (compare 

the proof of theorem 2.3.4 and the proof of proposition 2.3.12). But 

in most cases the final estimates are obtained by means of a consider­

able number of steps and in each step a factor 2 or so, in the esti­

mates, is easily lost. Quite often it is possible to reduce such 

losses by a more careful examination. 

We are primarily interested in studying how the matrix condition 

number K and the constants c1, c 2 affect the various error estimates. 

For this purpose the a-notation supplies sufficient information if it 

is used in an appropriate way, which means that one checks at every 

stage whether a formula holds uniformly with respect to the relevant 

parameters. 

REMARK 4. Wilkinson [65] uses explicit bounds in his error analysis. 

The application of the basic relations mentioned in section 1.3 fre­

quently leads in the first instance to bounds of the form 

(8) 
~ t 

(1 -E) S 1 + )J S ( 1 +E) 1 { ~ € JN) 

and these are somewhat inconvenient. In order to simplify such bounds 

Wilkinson makes the assumption that in all practical applications t 

will be subject to the restriction R.e: < 1/10. With this restriction 

one has 

(9) R. 
(1 +e:l < 1 + (1.06He: , ~ (1- e:) > 1- (1.06)te: • 

Therefore he defines e: 1 := (1.06)£, which is only marginally different 

from e: and enables him to replace relation (8) by IPI < te: 1, whenever 

this is advantageous. However, this leads to many explicit constants 

like 12.36, 1.501, etc., which is why we refrained from following the 

same strategy. 

wozniakowski [80] uses the relation ~ which is defined as follows. Let 

f and g be two scalar functions defined on [O,e:0J. Then f(e:) ~ g(e:) 

means that there exists a constant K and a scalar function h such that 
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f(e) g(e) (1 +h(e)), where lh(e) I ::; Ke for 0 :S e s e
0

• The relation 

f(e) s g(e) now means f(e)::; g(e) or f(e) ~ g(e). These relations en-
2 abled him to ignore terms of order e in the presence of a term of 

order e. Not very much attention is payed by him to uniformity as far 

as c 1, c2 andK are concerned. For example, we distinguish between 

E:l<j + 2 2 = E:K~(l+O(l)) 3/2 e K , [E:K + 0] t 

and 

E:Ki + 2 = £K! (1 + 0 ( 1) ) (e;Ki + Q] e K 

whereas Wozniakowski would write in both cases 

In carrying out computational experiments for testing mathematical 

software there are two main types of test problems (cf. Crowder, 

Dembo and Mulvey [79]): those which are representative real-world 

application problems and those which are "constructed" problems. The 

first type is used to give an indication of the behavior for practical 

problems, whereas the second type is used to investigate specific 

aspects of a method which might be exercised infrequently in applica­

tion of the method on real-world problems. We only performed numerical 

tests with problems of the second type, generated pseudorandomly. Our 

test problems are designed to verify the validity of our analytical 

results, which deal with attainable accuracy of approximate solutions 

and give upper bounds for convergence ratios {cf. section 1.3). More­

over, we want to investigate whether and under which conditions these 

estimates are best-possible, or essentially best-possible in the sense 

that they contain the correct power of K. This last goal justifies the 

use of constructed problems, where the characteristics of the popula­

tion, from which a problem is drawn, are known and can be controlled. 

If an estimate turns out to be best-possible for some class of con­

structed test problems, then there remains the question to what extent 
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this class is representative for real-world problems. The answer to 

this question will be discussed only incidentally. 

Numerical experiments have only been carried out for the GM and the 

CGM. The algebraic performance of these two methods depends on the 

data A, b and the initial vector x0 • The numerical performance of 

these methods not only depends on A, b and x0 , but in addition on the 

way of implementation of the various arithmetical operations. In the 

following we describe how A, b and x0 are constructed and how the 

arithmetical operations are implemented. 

The choice of the matrix A 

Every n x n positive definite matrix A can be written in terms of its 

spectral decomposition 

(1) 

where 

T 
A = UAU , 

- U is an orthogonal n x n matrix, whose columns are a complete set of 

n orthonormal eigenvectors u1, ••• ,un of the matrix A; 

- A is an n x n diagonal matrix whose diagonal entries Ai are the n 

positive eigenvalues of A. 

Without loss of generality we always assume A1 ~ A2 ~ 
-1 (hence I! AI! = 1 and K = A 1 l . 

~ A 
n 

1 

Obviously A is determined completely by A and U and hence choosing A 

is equivalent with choosing A and U. 

The diagonal matrices A can be controlled in a trivial way by choosing 

its diagonal entries ).i. 

Algebraically, the GM and the CGM are invariant relative to orthogonal 

basic transformations (see remark 1.3.3). Consequently, the algebraic 

performance of these two methods is completely determined by the 

eigenvalue distribution of A and the eigenvector components (compo­

nents with respect to the basis of eigenvectors) of the vectors b and 

x0 • Therefore an obvious choice for U would be u = I. In the presence 

of round-off however, the whole structure of A (and consequently the 

choice of U) affects the numerical performance {cf. remark 1.3.2). 

Since the round-off occurring at the computation of fl{Ax) is 

24 1.6 



certainly not representative for the real-world computation of fl{Ax), 

we have to take special arrangements if we choose U = I. 

Another obvious choice is to construct pseudorandomly orthogonal 

matrices u. The two alternatives are evaluated in the sequel. 

PSEUDORANDOMLY GENERATED ORTHOGONAL MATRICES, The construction of a 

pseudorandomly generated orthogonal matrix can be accomplished in 

various ways. For instance, U can be constructed as a product of a 

number of random Householder transformations or Givens transformations 

or by Gram-Schmidt orthogonalization performed on a matrix with random 

entries (cf. Stewart [80]), We only experimented with matrices U con­

structed as a product of a number of Householder transformations. 

Intuitively one feels that the number of Householder transformations 

must be rather large to guarantee the random character of U. 

THE CASE U = I. Choosing U = I implies that we have a test matrix A 

with eigenvectors e 1, ••• ,en {unit vectors), From a numerical point of 

view this is a rather special choice. 

Implementation of the matrix by veator produat aomputationa 

Once AandU are selected we have to decide how to implement the com­

putation of Av = UAUTv for an arbitrary machine vector v. 

PSEUDORANDOMLY GENERATED ORTHOGONAL MATRICES. In cases where U is 

chosen pseudorandomly an obvious way of implementing the computation 

of Av is first to assemble (and store) the matrix A by computing 

A= fl{UAUT) (in some way), and next to compute any matrix by vector 

product straightforwardly by computing inner products of rows of A and 

the vector involved. This way of implementation will be referred to as 

assembled implementation (AI). If the assembled A has not a rather 

special structure, then the round-off occurring if computing Av in 

this way agrees with the real-world situation (cf. remark 1.3.2), 

During the assembly of A round-off occurs, but if eK is appreciably 

less than unity (and assuming symmetry is preserved), then certainly 

the computed matrix is positive definite although its exact eigenvalue 

distribution is slightly different from the chosen one. In general, 

the matrix A, constructed in this way, is not sparse and every matrix 
2 by vector computation takes n multiplications. 
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If U is constructed as a product of (not too many) elementary orthog­

onal transformations, then computing time can be reduced significantly 

by keeping A in product form, For instance, if U is constructed as a 

product of m Householder transformations U = H • • • H
1

, where each H. 
m 1 

corresponds to a random vector hi (i = t, ..• ,m) such that 

{2) 

then instead of assembling A and computing Av straightforwardly, this 

matrix by vector product could be computed (from right to left} from 

the relation 

(3} Av = H • • • H AH • • • H v • m 1 1 m 

This way of implementation will be referred to as product fom imple­

mentation (PFI). For each Householder transformation the computation 

of Hiw costs 2n + 1 multiplications (apart from the computation of 

2/ (hi,hi) which has to be carried out only once). Hence, if Av is 

computed using (3}, this costs about (4m+1)n multiplications. Thus, 

from this point of view, implementing Av based on (3} is cheaper if 

(roughly) m < n/4. If m is much smaller than n, computational time is 

reduced significantly. However, as we shall discuss in section 3.4, 

for small values of m the round-off occurring at the computation of 

Av, based on (3), is certainly not representative for the real-world 

situation. 

THE CASE U = I. In cases where we take the identity matrix for U we 

have A = A. One might think of computing Av by just multiplying each 

component of v with the corresponding eigenvalue. However, this way 

of implementation is certainly not a real-world implementation. 

One has fl (Av) = (A +E) v, where IE I =:; r::A. Hence our general condition 

on round-off errors due to matrix by vector products, IIEII :;; r::c 111AII, 

is certainly satisfied (with c 1 = 1). However, the vector Ev is ap­

proximately parallel to the vector Av whereas for the real-world im­

plementation this vector is rather randomly directed ( cf. remark 1. 3. 2) • 

TO remedy this drawback we use a kind of artificial floating point 

implementation (AFI) for the computation of Av in the following way. 

We first compute u := fl(Av) and next add a vector u' with components 

chosen randomly from the interval [-oiiAIIIIvll , +oiiAIIIIvll], where o > 0 is 
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a fixed number {fixed throughout the whole performance of the algo­

rithm) called the aPtifiaiaZ Pelative pPeaieion. If fla(Av) denotes 

the vector Av computed in this way, then we have 

(4) fla (Av) = fl (fl (Av) + fl (ye)) , 

where e is a machine vector with components randomly chosen from the 

interval [-1,+1] and y := fl (<S[Ivl() {since· HAll = 1). We assume that the 

computation of y is carried out such that the relative error does not 

exceed (in + 2) e: ( 1 + 0 ( 1) ) , under the restriction m: + 0. The following 

considerations show that, if 6 > e:, the computation of Av by using (4) 

simulates the real-world computation of a general matrix by vector 

product, using floating point arithmetic with relative precision o. 

LEMMA 1. 

(5) fla(Av) = Av+w 1 

~hePe the aomponente ofw eatieJY 

(6) wj = !lj (Avl j + y(l +O'j)ej 

~ith 

(7) [ne: + 0] {j 1, ••• ,n) • 

(8) fla(Av) = (A +E}v , 

(9) [ne: + 0] • 

PROOF. All a-symbols are assumed to hold under the restriction ne: + 0. 

Using the preliminaries of section 1.3 we note that each component of 

fla(Av) satisfies 

{10) (fla(Avllj 

where le:ji,ITjl,lpjl s £, 

Consequently, 

where 
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~md 

IP : 
j 

which proves (6) • 

Defining E := wvT I (v,v) we conclude from (5) that (8) is satisfied. 

From (6) it follows that 

(14) IIEII::; llwll /llvll::; (2e:IIAvll + ollvlllleiiJ /llvll(1 +0(1})::; 

::; (2e:+n~oJ(1+o(1Jl, 

which proves (9) • 

3ince llJj(Avljl s 2e:llvll(1 +0(1)) and ly(1 +t:rj)ejl = oUv!llejl (1 +0(1}) 

the vector w is approximately parallel to the random vector e, if 

' J<> r::. Hence, the vector w is randomly directed. Therefore, if o > E, 

t::;ea fla (Av) agrees with a real-world implementation of Av on a 

floating point machine with relative machine precision o (but with 
! 3/2 c 1 = n·(t+o(1}) instead of c1 = n (1+0(1})1 cf. remark 1.3.2). 

D 

Of course, for every matrix by vector product that must be computed 

during the performance of the algorithm one has to choose a different 

ra::dom vector e, since- otherwise all corresponding round-off vectors w 

are parallel. Each matrix by vector product based on (4) costs (apart 

from choosing n random numbers) 3n + 1 multiplications and 1 square 

root operation, which is favourable if compared with the assembled 

implementation. 

Tr.e choice of b 

As far as the choice of b is concerned we want to be able to control 

directly the eigenvector components sj of the solution vector 
-1 x A b. With respect to AI or PFI this can be achieved by choosing s 

and computing directly b = fl(UAs), or by computing first i = fl(Us) 

and next b = fl(Ax). 

REMARK 2. If b is computed from b = fl(UAsl, then there holds for some 

C' 
1 

( 15) 

28 

b CUA+Els, IIEII::; e:ciUAII, 
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T -1 -1 T and consequently u A b - s = A U Es, which indicates that the eigen-
-1 vector components s~ of A b not necessarily have a small relative 

J T -1 
error, Furthermore, it follows that !IU A b- sll S e:Ci•dfsl!. Similar 

results hold for the situation where b is computed from x = fl(Us), 

b .. ncAi>. 

For AFI the eigenvector components of x can be controlled in a trivial 

way by computing b = fl(As) (but not b = fla(As)). 

REMARK 3. If b is computed from b = fl(As), then one has 

(16) b = A(I +E)s , lEI s e:I 

Consequently, I (A-lb- s) .I = I (Es) j I s e: Is .I, which implies that com-
-1 J J 

ponentwise A b equals s up to machine precision e:. D 

The ahoiae of x0 

As far as the choice of x0 is concerned we want to be able to control 

directly the eigenvector components ej of the initial error :!!: - x0 
(:!!:- x0 = Ue). For AI or PFI this can be achieved by choosing e and 

computing x0 = fl (U (s- e)) or x0 = fl (x- Ue}, where x = fl {Us) • 

For AFI this can be accomplished by computing x0 = fl (s- e). 

Implementation of the basia dyadia arithmetiaaZ opePations and the 

inner produat aomputations 

If in a test problem matrix by vector product computations are based 

on AI or PFI, then the other basic dyadic arithmetical operations, 

i.e., vector addition, vector subtraction, scalar by vector product 

and scalar division, are implemented in the obvious way. The inner 

product computations are also implemented in the obvious way, described 

in remark 1 • 3 • 1 • 

If in a test problem matrix by vector product computations are based 

on AFI with artificial relative precision o (o·> e:}, then the other 

basic operations are adapted in the following way (x, y are machine 

vectors, a, b are machine numbers) • 

(17) fla{x±y) = fl(fl(x±yl +fl(uell , 

(18) fla(ax) = fl(fl(ax) +fl(T;;')) 1 

1.6 29 



(19) fla((x,y)) = fl(fl(x,y) +fl(o'llxllllyll)) , 

(20) fla (a/b) ,. fl ((a/b) ( 1 + o")) , 

-where lJ := fl(o llx ± yll), -r := fl (o !lax !I}, e and e are machine vectors 

with components randomly chosen from the interval [-1,+1] and o' and 

o" are scalars randomly chosen from the interval [-o,+o]. 

REMARK 4. We note that formulas (17), (18) and (19) do not agree with 

the basic relations and inequalities (3) to {10) of section 1.3. For 

instance, in general the diagonal matrix F1 defined by the relation 

{21) fla{x + y) 

does not satisfy IF
1

1 s oi. However, there exists a not necessarily 

diagonal matrix F1 satisfying (21} for which, neglecting terms of the 

order E, IIF
1

11 5 o holds. This also applies to the other round-off 

matrices F2 , G1, G
2

, 0 corresponding to the specific fla-operations. 

In our round-off error analysis we never use the fact that for 

floating point arithmetic the round-off matrices are diagonal; we only 

use the upper bound for their norms, Consequently, our round-off error 

analysis also holds for fla-arithmetic, 

An important property of the AFI is that this implementation is in­

variant relative to orthogonal basis transformations. 

A more obvious adaptation of the operations would be 

(22) fla{x±y) = fl({I+t
1

l (x+y)) , 

(23) fla(ax) = fl((I + t
2

lax) , 

(24) fla( {x,y)) = fl ( {(I+ t
3

) x,y)) , 

where t 1, t 2 , t 3 are diagonal matrices with diagonal entries randomly 

chosen from the interval [-o,+o], since these formulas agree auto­

matically with the basic relations and inequalities (3) to (10) of 

section 1.3. However, these fla-operations do not always correspond 

to the real-world implementation on a machine with relative machine 

precision o. If U = I, then the elements of a vector x are its eigen­

vector components. Hence, if the vector x has a special structure of 

eigenvector components, then ultimately also the approximations xi 

will have that special structure. This implies, for instance, that 
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ultimately the round-off vectors due to the fla-addition (22) in up­

dates like xi+l = xi + aipi will be more or less parallel to the 

(special) direction of x. This unrealistic situation cannot occur for 

fla-addition based on {17), 0 

REMARK 5. AFI enables us to simulate even one-round-off error analysis. 

(cf. section 1.3). For instance, if a one-round-off error analysis is 

carried out, only taking into account round-off at the matrix by 

vector product computations, then AFI of Av with o > E, and performing 

all other arithmetical operations in normal floating point arithmetic, 

simulates the situation corresponding to this one-round-off error 

analysis. 0 

If we want to perform different tests with the same eigenvalue dis­

tribution and the same eigenvector components for x and x-x0 but with 

different round-off patterns, then for AI and PFI this can be achieved 

by selecting different matrices Um (which means selecting different 

stes of vectors {h1, ••• ,hm} for the Householder transformations). In 

case we deal with AFI this can be achieved by selecting different 

random numbers from the interval [-o,+o]. 

We had carried out quite a lot of tests problems based on AI and PFI 

before we got aware of the advantages of AFI. However, we did not 

repeat all of these former experiments using AFI. 

The numerical experiments were performed on the Burroughs B7700 com-
1 -12 . puter (B = 8, t = 13, E = 28 - 7.3Io-12). For the generation of 

random numbers we used the arithmetic function RANDOM, intrinsic to 

Burroughs Extended Algol, described in: B7000/B6000 Series, System 

Software, Operational Guide, Vol. 1, p. 9.2.4 (1977). 
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2.1. 1ntnoduct£on 

CHAPTER 2 

VESCENT METHOVS (VMJ 

In this chapter we consider the numerical process of solving a definite 

linear system 

(1) Ax = b , 

by a descent method (DM). Every descent method for solving (1) is 

coupled with a so called objective function F: JRn + JRn, This objective 

function is chosen in such a way that the solution x of the linear 

system is a global minimum of F. 

The fundamental underlying structure of descent methods (see Luenberger 

[73]) is as follows. Starting at an initial point one determines, ac­

cording to a fixed rule, a direction of movement, and then moves in 

that direction to a minimum of the given objective function F on that 

line. At the new point a new direction is determined and the process 

is repeated. The main difference between various descent methods 

rests with the rule by which successive directions of movement are 

selected. Once the direction is chosen, the method determines the 

point on the corresponding line for which the objective function at~ 

tains its minimal value. This indicates a second difference, 

namely the choice of the objective function. 

In contrast with direct methods, like for instance Gaussian elimi­

nation, the descent methods do not alter the original matrix. In fact, 

it is possible to avoid storing the matrix explicitly. All that is 

required is a s1.lbroutine that prod11ces Ax for a given vector x. This 

is one of the main reasons why descent methods became attractive for 

solving large sparse linear systems. Full advantage can be taken of 

the sparsity structure of A and no assumptions need to be made about 

the pattern of nonzeros. Also the storage requirements are quite modest 

and the implementation is easy. 
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Some well-known descent methods are the Gauss-Seidel method, the Gauss­

Southwell method, the gradient method (or steepest descent method) and 

the conjugate gradient method. 

In this thesis we restrict ourselves to the case where the n x n matrix 

A is positive definite. We consider only descent methods for which the 

objective function F is represented by the quadratic form 

(2} F (x) = ( (St- x) ,A (x- xl) , 

where x ~ 0 is the solution of the linear system. 

In the Euclidean norm (2) can be written as 

All descent methods mentioned before are based on this objective func­

tion. For descent methods based on objective functions of the form 

11Aa(x-x)ll 2 (2a € JN) one can derive similar results as are derived 

in this thesis for the case a = ~. 

We now summarize the contents of Chapter 2. 

In section 2 we deduce some well-known elementary algebraic properties 

of the descent methods. The main reason of deducing these properties 

here is that they are basic for studying the behavior of the methods 

in the presence of round-off. We also formulate explicitly the well­

known descent methods mentioned above. 

In executing a descent method there are two possible ways of computing 

the residual vector ri := b -Axi, belonging to each successive approxi­

mation xi. One way is to compute the residual vector directly from 

this definition; residuals computed in this way are called true resid­

ual veators. The second way is to compute the residual vector by up­

dating, using the recurrence relation for two successive residual 

vectors; residual vectors computed in this way are called reaursive 

residual veators. It turns out that there is a great difference be­

tween algorithms using true residuals and recursive residuals in the 

presence of round-off. 

Section 3 deals with the numerical behavior of descent methods if 

recursive residuals are used. It consists of two subsections. In the 

first subsection a round-off error analysis is presented of one step 

of the process and subsequently this result is used to prove the step­

wise linear convergence of the objective function, expressed in terms 

34 2.1 



of the recursive residual vector. In the second subsection we derive 

an upperbound for the value of the objective function, expressed in 

terms of the computed approximations, for large values of i. 

Section 4 deals with the numerical behavior of the descent methods if 

true residuals are used. First we give a round-off error analysis of 

one step of the process. Next we use this result to prove the step­

wise linear convergence of the objective function, expressed in terms 

of the true residual vector and we give an upper bound for the attain­

able accuracy of the computed approximations. Finally we apply the 

theoretical results of this section to the Gauss-Southwell method in 

order to show how the general theory leads to assertions on good­

behavior and numerical stability in a specific example. 

In this section we formulate the DM and deduce some important algebraic 

properties, i.e. properties that are valid if no round-off occurs. We 

shall interprete these results for some specific OM's. 

Given a definite system 

{1) Ax = b I 

then the DM, corresponding to a given sequence of arbitrary nonzero 

vectors {p.}, is defined by the following statements. 
l. 

Descent Method (DM} 

Choose an initial point xo; 

ro := b - Axo; i := 0; 

while ri -# 0 .9£ 
begin 

(2) ai := {ri,pi) I (pi,Api) 

(4} := { either b - Axi+l 

or ri - ai Api; (5) 

i := i + 1 

2.2 

(TRDM) 

(RRDM) 
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The residual vector ri+l can be computed from either formula (4) or 

formula (5). 

If the residual vector is computed from (4), then this residual vector 

is called a true residuaZ vector (cf. section 2.1), and a DM where all 

residual vectors are computed from (4) is called a true residuaZ de­

scent method (TRDM) • 

From statement (3) it follows that 

which gives the recurrence relation (5) if translated in terms of the 

residual vectors. 

Therefore, if the residual vector is computed from (5), this residual 

vector is called a recursive residual vector and a DM where all resid­

ual vectors are computed from (5) is called a recursive residual. de­

scent method (RRDM) • 

Of course, if exact arithmetic is used, the approximations {xi} gener­

ated by RRDM and by TRDM are exactly the same. However, this certainly 

is not the case when both methods are performed using floating point 

arithmetic. 

As far as the computational work is concerned, the most expensive 

operation is in general the matrix by vector product. For TRDM two 

matrix by vector products are needed, for RRDM only one. For both 

methods, apart from the vector pi, one needs to store the vectors xi' 

ri and Api only during the step from i to i + 1. There is no need to 

know all vectors pi in advance, they could as well be computed (and 

stored for one step) as the process proceeds. 

REMARK 1. Of course, computing all residual vectors either from (4) or 

(5) is not absolutely necessary. One might as well compute ri+l from 

relation (4} every (say) 10 steps and use formula (5) in all other 

steps. This will be called a mixed descent method (MDM). IJ 

We now prove some well-known, elementary algebraic properties of DM's. 

Since algebraically RRDM and TRDM are equivalent, there is no need to 

distinguish between them. 

THEOREM 2. At eaah step a DM minimizes the objeative function 

(7} F(x) := ((x-x),A(x-xll = IIA~(x-xlll 2 
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along the Une x xi + api and 

(i) 

ZJhere 

(8) 

FU'r'ther> 

PROOF. We have 

(9) F (xl.. + apJ.. l = II A l (x- x - ap l II 2 = i i 

which is minimal for 

(10) a= 

(11) 

(A(x- x
1

} ,pi) 

II A~ pill
2 

{ri,pi) 

(pi ,Api) = ai 

Since Al(x-x.) = A-l(Ax-Ax.) .. A-~ r. and (ri,p.) 2 /IIAl p
1

11
2 = 

2 l. l. l. l. 
= llaiA~pill • formulas (i) and (ii) follow readily from (11). 

Using (5) we obtain 

(12) 

which proves (iii). 

2.2 

D 
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The vector A! (x -xi) is something in between the error vector x - xi 

and the residual vector A (x- x.) • Since a DM minimizes the error 

IIA! (x- xill at each separate st~p, it seems natural to measure the 

error this way, instead of measuring II x - x .II or II A (x -xi II • Therefore 

we call this error the natur>aZ e1:'1:'01' and AJ (x- xi) is called the 

natural e1:'1:'01' vector (cf. section 1.4). 

REMARK 3. The gradient vector of the objective function F(x) at point 

xi+l equals 

(13) - 2 (b- Axi+l) = - 2ri+l • 

COnsequently, relation (iii) states that the gradient vector of the 

objective function at the minimal point on the line x = xi+ api is 

orthogonal to the direction of that line. This is a well-known neces-

sary condition for minimization (see Luenberger [73]). D 

From (i) of theorem 2 it follows that 

i 2 
and this infinite product diverges to zero iff Et=O yt diverges. 

Hence we have the following corollary of theorem 2. 

COROLLARY 4. The sequence {xi}• generated by a DM convel:'ges to the 

solution x iff Z~=O y~ divel:'gee. D 

Note that cos -l y i is the angle between the vectors A- i r i and A i pi. 

If there exists a y > 0 and an infinite subset N of JN
0 

such that 
00 2 

yi > y for all i E N, then the series Ei=O yi diverges. Stated dif-

ferently, if the angle between A-A ri and A~ pi is bounded away from 

~12 for an infinite subset of vectors pi' then the natural error tends 

to zero. 

For the Gauss-Southwell method, the gradient method and the conjugate 

gradient method we shall show that the choice N = JN
0 

is possible. 

This leads to the second corollary of theorem 2. 
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COROLLARY 5. If {xi}~ {ri} are generated by a DM and if there e:I:ists a 

Y > 0 suah that y i > y for aU i ~ 0 then the natural error converges 

step-wise ZinearZy to zero and for aZZ i ~ 0 

(15) 
IIAl{it -xi+1111 2 

II A~ (x - xi) II 2 0 

In the cases we are dealing with it is in general difficult to deter­

mine directly a lower bound for yi. Therefore, in our numerical analy­

sis of DM's we often consider, instead of the parameter yi, the param­

eters ai and ai defined by 

(16) 
llrill llpill 

a. := I <ri,pi> I ~ 

and 

(17) ai 
II rill II A~ pill 

:= I IIA Ill (ri,pi} I 

It turns out that y i can be bounded in terms of ai and 1\; this is the 

contents of the following lemma. 

LEMMA 6; Suppose r and p are tuJo arbit:rul"Jj vectors for which (r,p} f. 0 

and Zet 

then 

a := llrliiiPII I I (r,p) I , 

13 := llriiiiA! Pll I (IIAilll {r,p) I) , 

y := I (r,p) I I CIIA-l riiiiA~ pll) , 

where K is the condition number of A. 

PROOF. The various inequalities follow easily from 

and 

2.2 

0 
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REMARK 7. Instead of minimizing the objective function at each separate 

step of the process, one might be concerned only with diminishing the 

objective function at each separate step. We have (see (9)): 

which is a quadratic function in a and f(O) F(xi). Since f is minimal 

at ai, f is symmetric aronnd ai and consequently f(a) < f(O) for all a 

satisfying I ai - a I < I ai - 0 I • Stated differently, if a = wai, for some 

0 < w < 2, then F{xi +api) < F(xi}. Hence, if instead of (2) one takes 

ai := wi (ri,pi) I (pi,Api}, where 0 < wi < 2, then the natural error 

decreases at the step from i to i + 1. The factor wi is called Pela::ca­

tion factor. If all relaxation factors satisfy the condition 

o < wi < 2- o for some o E (0, 1), then for this process a convergence 

result similar to {15) holds. Note that the sequence {wi} influences 

the sequences {ai}, {Si} and {yi} and also the convergence ratio. 

A well-known DM using relaxation factors is the method of systematic 

overrelaxation (see Gauss-Seidel method} • 

The remaining part of this section is devoted to a review of some 

basic algebraic properties of the Gauss-Seidel method, the Gauss­

Southwell method, the gradient method and the conjugate gradient 

method. 

1. The Gauas-Seide Z method 

0 

The Gauss-Seidel method (as well as the Gauss-Southwell method) be­

longs to the class of so-called coordinate descent methods. In these 

methods each direction vector pi is a unit vector. Therefore at each 

separate step only one component of xi is changed. Moreover, (cf. 

theorem 2(iii)), every residual vector has one zero component. A sub­

class of the coordinate descent methods is the class of cyclic coor­

dinate descent methods, to which the Gauss-Seidel method belongs. 

In these methods the direction vectors pi are cyclically chosen out of 

the set {e 1 , ••• ,en} of unit vectors. The objective function is sequen­

tially minimized with respect to different components of x. There are 

a number of ways in which this concept can be developed into a complete 

algorithm. 

In the Gauss-Seidel method one takes successively Po := e
1

, p 1 := e 2 , •• 

• • , pn-l := en and then repeats by taking pn := e 1 , pn+l := e 2 and so on. 
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Consequently, for all i ~ 0 

(19) 

where 

(20) k (i) := 1 + i mod n • 

The Gauss-Seidel method, applied to a definite system, converges 

average linearly. This result was first proven by Reich [49], using 

spectral radii. We here give a different proof using a compactness­

argument. 

Observe that for the Gauss-Seidel method, for every i ~ 0, the n steps 

from xi*n to x(i+l)*n are exactly the same as then steps from x0 to 

x~ if the process is started with x0 := xi*n' 

Consequently, if we can prove that there exists an L ~ (0,1} such that 

IIA!(x-xnlll s LIIA!(x-x
0
lll for any initial start vector x

0 
¥ x, then 

either the Gauss-Seidel process terminates (i.e. xi = x for some i ~ 0) 

or IIA!(x-x(. 
1

) lll :5 LIIA~(X:-x. )IJ for all i <': 0. In the latter case 
~+ *n ~*n 

we have linear convergence on the average with an average convergence 

ratio no greater than L
1/n. 

We now prove the existence of such an L ~ (0,1). From theorem 2 it 

follows 

(21) 

Consequently, IJA~(S!:-xn)ll = IIA!(X:-x
0

JII iff (ri,pi} = 0 for all 

0 $ i S n-1. From the recurrence relation for ri and the definition of 

ai we obtain 

(22) 
i-1 

ro - I aR, ApR 
.l=O 

I I 

if (ri,pi) = 0 for all 0::; is n-1. Hence, if IJA 2 (x-xn)ll "'IIA2 (x-x
0

JII 

then (r0 ,pi) = 0 for all 0 :5 i $ n-1 and since p0 , ... ,pn are linearly 

independent this ~mplies r 0 = 0. Therefore, if r 0 # 0 (i.e. x0 ¥ x) 

then certainly IIA 2 (x-x
0

)11 < IIA!(x-x
0

)11. Obviously, if 

(23) L := 

I 

II A 2 (X- X )II 
max --~1 ----~n~ 

llx-x011=1IIA 2 (x-x0 JII 
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then L < 1. Since x - xn depends homogeneously and linearly on :K- x0 , 

(23) implies that IIA!(x xn)ll ~ LIIA!(x-x
0

}11 for all x0 ¥: :K. Note that 

the foregoing proof also holds under weaker conditions with respect to 

the direction vectors {pi}. 

A modification of the Gauss-Seidel method is the method of systematic 

overrelaxation (SOR}. This DM generates the direction vectors p. 
~ 

exactly in the same way, but instead of actually minimizing the ob-

jective function along that direction, which means computing ai from 

(2}, one computes a1 := w(ri,pi} I (pi,Api}. Here the relaxation factor 

w is greater than 1 and it is introduced to improve the convergence 

ratio (cf. remark 7}. 

2. The Gauss-Southwell method (GSM) 

This method belongs to the class of so-called directed coordinate de­

scent methods. Instead of assigning the sequence of unit vectors a 

priori in carrying out line minimization, the coordinate to be changed 

is chosen such that it corresponds to the largest (in absolute value) 

component of the gradient vector. 

Consequently; for all i :?: 0 

(24) 

where k(i) satisfies 

for all 1 ~ j ~ n. 

Since llrill
2 ~ n(ri,ek(i)J 2 we find, taking into account the definitions 

(16) and (17), that 

(26) 

and consequently, from lemma 6, y. :?: (BiK~)- 1 
:?: (nK)-!. Hence, from 

1 ! ~ 
corollary 5, (1- (nK- ) ) is an upper bound for the convergence ratio. 

(Note that theorem 2(iii) yields (ri+l'ek(i)) 
2
= 0 (1:?: 0) and the~e­

fore, except for the first step, one has II rill ~ (n- 1) (ri ,ek (i)) , 

which leads to the sharper bound (1- ( (n- 1) K) - 1) ~ for the convergence 

ratio.) 
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3. The gradient method (steepest descent method) (GM) 

We recall that a DM searches for the minimum of the objective function 

F (x} := (x- x, A(x- x} ). Obviously a good choice for moving towards x 
is to move in the (opposite) direction of the gradient, since this 

is the direction of steepest descent of the objective function. The 

gradient vector ofF at xi (cf. (13)) equals 

The gradient method is based on this idea; as successive search direc­

tions one chooses the successive directions of the residual vector. 

This means, for all i ~ 0 

Consequently, according to definitions (16) and (17), 

(29) 1 I 

1 
and the convergence ratio is no greater than (1- 1/K} 2

• However, direct-

ly estimating yi gives a sharper upper bound, for according to the 

definition of yi we obtain from the Kantorovich inequality (cf. section 

1. 2): 

(30) 

and hence (see corollary 5} (K- 1} I (K + 1} is another (sharper} upper 

bound for the convergence ratio. 

4. The conjugate gradient method (CGM) 

This method belongs to the class of so-called conjugate direction 

methods. We review some characteristics of these methods (see Hestenes 

and Stiefel [52] and also Hestenes [SOJ: First a definition is given. 

DEFINITION 8. Let A be a symmetric n x n matr>i:x, then the vectors 

x,y € Rn are said to be A-orthogonal, or conjugate with respect to A, 

if (x,Ay) = 0. 
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Note that, if A is positive definite, mutually conjugate nonzero 

vectors are linearly independent. Consequently the maximum number of 

mutually conjugate nonzero vectors then equals n. 

A conjugate direction method is a DM in which the vectors 

p0 ,p1 , ••• ,pn-l are mutually conjugate nonzero vectors. It causes no 

problem in having no more than n such vectors available, since after 

at most n steps the solution x is obtained. This property follows from 

the following consideration. 

Let m be the smallest integer such that x - x
0 

is in the subspace span­

ned by p0 , ••• ,pm_ 1• Clearly m ~ n, since the conjugate vectors are 

linearly independent. Furthermore, 

( 31} 

where 

(32) 
(A(x- x

0
) ,pi} 

(pi,Api) 

(rO,pi} 

(pi,Api) • 

From the recurrence relation (5) for residual vectors we obtain 

Hence, (r1 ,p1) = (r0 ,p1 J and a1 = ar. 

Since 

X m 

m-1 
xO + L ai Pi 

i=O 

it follows that xm x and the algorithm ends after m steps. 

For every DM one has for i ~ 0 

i 

(34) A-
1 

ri+l = x-xi+l = x-x0 - k!O ~pk 

Consequently, for a conjugate direction method it follows from (31) 

that 

{35) 
-1 

A ri+1 

and hence, for any j < i + 1 
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(36) 0 . 

This means (compare remark 3) that the gradient vector of the objective 

function F(x) at point xi+l is orthogonal to all previous direction 

vecto~s p0 , ... ,pi. This establishes the second important algebraic 

property of conjugate direction methods, namely that xi+l not only 

minimizes F(x) along the line x =xi +api (see theorem 2) but on the 

whole affine set passing through x
0 

and spanned by p0 ,p1,... (cf. 

section 4.1). 

The conjugate gradient method is the conjugate direction method that 

is obtained by constructing the successive directions by A-orthogo­

nalization of the successive gradients, acquired as the process proceeds. 

The first step is identical to a gradient method step (p0 
each of the next steps one determines the (opposite) gradient vector 

(i.e. the residual vector) and adds to it a linear combination of the 

previous direction vectors in such a way that this new direction 

vector is A-orthogonal to the previous one. Proceeding in this way it 

happens that ri (i ~ 2) is automatically A-orthogonal to p0 , ... ,pi_2 . 

Hence, pi {i ~ 1) can be determined from 

(37) 

where 

(38) 
(ri,Api-1) 

bi-1 :=- (pi-l'Api-1) 

From the definition of bi-l it follows immediately that (pi,Api_ 1J 0. 

From the definition of pi and theorem 2(iii) it follows that for i ~ 

(39) 

From the definition of pi it also follows that for i ~ 

Taking squared norms at both sides and using A-orthogonality, we obtain 

Pythagoras' theorem 

(40) (i ~ 1) • 
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Consequently, for i ~ 1 

{ 41) 

This inequality trivially also holds for i = 0. 

Thus for the conjugate gradient method we have according to definitions 

(16) and (17), for all i ~ 0, 

llpill IIA-~I!IIAt pill II A- ~Ill! A~ rill ~ 
(42) (Xi =--< :<:: :S: K 

llrill - llrill II rill 

and 

{43) Bi 
IIA~ pill 

:<:: 

IIA! rill 
$ 1 • 

i' A!lll! rill IIA~IIII r.ll 
J. 

Therefore, in view of corollary 5 and lemma 6, ( 1 - 1/K) I is an upper 

bound for the convergence ratio of the step-wise linear convergence 

ratio of the natural error. Analogously to the gradient method case 

one finds a better bound by using the yi. One has 

(44) 

and hence the convergence ratio is no greater than (K- 1) I (K + 1). 

0, we have 

From (39) it follows that 

(46) 

and hence a1 might as well be computed from this relation. 

A simple alternative formula can also be derived for bi. From (5), 

(37) and {39) we obtain for i ~ 

{47) 

It is l")bvj_ous frnn the first e'1U3.lity thett (ri+l ,r1 ) = 0 also holds 

for i 0. 
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-1 
From (5) it follows that Api ==a1 (r1 -ri+l) (i :<: 0) and consequently, 

together with (46) and (47) we obtain for i ~ 0 

(48) 

which implies 

hence bi might as well be computed fro'll tnis r""Jla~·.i'-' · .. 

The conjugate gradient methods based on these alternative formulas for 

ai and bi are discussed in Chapter 5. 

2.3. The.Jc..ec.wu.-l.ve Jc..eJ...l.duai. deJ.c.ent me-thod (RRVM) 

In the presence of rounding errors the algebraic properties of DM's 

mentioned in the previous section, are affected by these rounding 

errors. For instance, even if at a certain step the relation 

r i b - Axi holds exactly, then, performing one more step using the 

recurrence relation ri+l = ri- ai Api for floating point computation 

of ri+l' this recursive residual will differ from the exact residual 

b- Axi+l. This is due to the fact that the rounding errors occurring 

during the computation of xi+l "" xi + ai pi and occurring during the 

computation of ri+l = ri - ai Api are independent. From this it will 

follows that we have to distinguish between RRDM and TRDM. In this 

section we shall investigate the behavior of RRDM if computations are 

carried out using floating point arithmetic. For TRDM this investiga­

tion is carried out in section 4. 

We recall that the RRDM, corresponding to a given sequence of arbitrary 

nonzero vectors {pi} consists of the following statements. 
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RRDM 

Choose an initial point xo; 

ro := b -Axo; i := 0; 

~ri'IO~ 
begin 

i := i + 1 

end. 

We observe that the sequence {ri} can be computed without computing 

the sequence {xi}. Therefore, in this subsection we first analyse one 

step of RRDM, disregarding the computation of xi+l' and next we add 

the computation of xi+l to our considerations in subsection 2.3.2. 

The following round-off error analysis is performed under the assump­

tions of section 1. 3. The vectors {pi} corr~sponding to RRDM are 

supposed to be arbitrary nonzero machine vectors. The constants c1 and 

c 2 refer to the constants corresponding to matrix by vector product 

computations and inner product computations as described in section 

1.3. The capital characters o, E, F and G, appearing in the error anal­

ysis, will always refer to round-off matrices describing particular com­

putations as mentioned in section 1.3. By ai' ri' ri+l and pi we always 

indicate the numbers and vectors as they are computed and stored by 

RRDM. For clearness' sake, (ri,pi) is the exact euclidean inner pro­

duct of the stored vectors r 1 and pi' whereas fl{Cr1 ,p
1
}} denotes the 

computed value of this inner product. In the formulation of the lemmas 

and theorems we shall not always mention the restriction that ri, pi 

and (ri,pi} are assumed to be nonzero during the computations. Through­

out the error analysis we use the a-symbol defined in section 1.5 and 

we neglect the possibility of overflow and underflow. 

We are now ready to prove an analogue of theorem 2.2.2 in the presence 

of round-off. It assesses the influence of round-off on relation (i} 

of theorem 2.2.2. 
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THEOREM 1. Let rp pi be two nonzero machine vectore and let ri+l be 

computed from one step RRDM~ ba.eed on these vecto!'s. Let 

Then we have 

(5) 2 
1 - yi + T)i+1 I 

unde1' the Nstnction 

PROOF. We first consider the computation of ai from (1). 

Further we have 

(10) fl((pi 1 Ap1)) • ((I+Di)Pii(A+E1)pi) = (p1 ,Api) + l;;i, 

{11) 11;;1 1 = l(Dlpi,Api) + ((I+Dl)pi,Eipi)l S 

2 s e:c211P11111APill + e:c 1 (1+e:C~)IIAIIIIPill s 

s e:C211pillf1Apill + e:C111AJIDPin
2 u +0(1)) I [e:C2 + 0] • 

This yields 

(12) 

(13) 

Bence, 
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where 

(16} 

From (11) we obtain 

(17} [&C2 + 0] • 

Consequently, from (9), (11), (13), (16) and (17), 

(18) 
{&C

2
11r

1
1111pill + (&C2Kl +&C1K) I (ri,pi) I +&I Cr1 ,pi) I} 

lt5a j_ I s _....;;;..--=-~----=-:-1 ---:::2,;;.__---"'-------------­
{IIA2 pill (1 + 0(1)}} 

under the restriction 

Since 

(20) 

it follows from (18) that 

under restriction (19), and in particular that 

under restriction (19). 

For the computation of ri+l we have 

or 

with 
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(26) [E + 0) , 

A substitution of (14) in (24) shows that also 

where 

(30) 

From (20) it follows that 

Together with (14) and (22) this yields 

under restriction (19). 

Consequently, 

(33) JIJ.ill ~ laiiiiVi,fl ~ 2e:UA-l rill/IIAl Pill (1 +0(1)) , 

(34) IIJl!l ~ laii11Vi11 ~ e:C 1 11AIIJIA-~ riii/IIA~ Pill (1 +0(1)) , 

under restriction (19). 

We proceed by expressing ni+l in terms of 6rl+l. From (28) it follows 

that 

(35) 

and, by taking squared norms of both sides of the equality, we obtain 

{36) IIA-l ri+111
2 = IIA-i(ri -liApi>lt 2 + 2(A-l r

1
- aipi, 6ri+l) + 

+ IIA-i 6ri+1n
2 • 

From the definition of a
1 

we get (compare (2.2.11)) 

2.3.1 51 



(37) 

which leads to the basic formula 

(38) 
IIA-1 ri+l11

2 

IIA-l rill 2 
2 

1 - Yi + ni+l ' 

where y1 is defined by {4) and 

It remains to be proved that ni+l satisfies {6) under the restric­

tion (7). 
-1 

Note that (A r
1

- S.i pi ,Api) = 0 and therefore the term t'lai Api in {29) 

cancels when evaluating the inner product in the numerator of for­

mula (39). 

Consequently, from (29), {31), (33) and (34) we obtain, evaluating 

term by term, 

+ IS.illlpiiiiiJ_illllpill} /IIA-1 r 111
2

::; 

::; 2IIF.i_ll~<! + 2{11Ji.11Kl + IIJ.i_IIIIA-111l11Aj pill /IIA-! rill::; 

::; {6EK~ +2EC1 ) {1 +0(1)) I 

under restriction (19). 

Remains to be estimated the second order term in (39). This estimate 

does not affect the numerical constants appearing in the first order 

terms and therefore we may estimate rather roughly as far as numerical 

constants are concerned. 
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Since (a+b+c+d) 2 :::; 4Ca2 +b2 +c2 +d2), from (21), (29), (31), (33) 

and (34) we find 

{41) 

2 2 2 2 2 2 2 2 2 2 2 
!> 4{e: K + 4(4e: C2K+e: C1K +e:) + 4e: K + € ClK }(1+0(1)) , 

under restriction (19). 

So, finally we obtain from (39), (40} and (41) 

under restriction (19}. As this inequality can be written in the more 

COl!IPact form (6), under the restriction (7), we have proved theorem 1. 
0 

We note that the constant c2 does not show up in the first order part 

of estimate (6}. In the error analysis it only appears in the absolute 

error oar occurring at the COIIIPUtation of di. The objective function 

F (xi + ap 
1

) is quadratic in a and hence, if we are at a distance cS from 

the point at which this function attains its maximum, the function 

value differs by an amount of the order 15 2 from the function value in 

that minimal point. Consequently, oai does not appear in (40), which 

explains the absence of c2• Formulas (6) and (7), however, show that 

e:C2K~ has to be small in order to have ni+l small. A first order 

round-off error analysis would not have given this information. 

REMARK 2. Theorem 1 can also be written in a form more closely related 

to {ii) of theorem 2.2.2. we have 

where, according to (15), !i := Cr1 ,pi) I {pi,Api) • 

Consequently, (5) can be written as 
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It follows in particular that, under the restriction (7), 

II A-~ r i + 
1

11 S (1 + o (1 l ) II A -l rill , 

II iii A~ pill ~ (1 +o (1)) II A-~ rill • 

Using (14) and (22) this yields, under the restriction (7}, 

Retracing the proof of theorem 1 and replacing all a-symbols by defi­

nite estimates involving explicit numerical constants, one can prove 

that ln. 11 ~ 7/40 if 
J.+ 

Hence 

Furthermore, it follows that 

0 

. -~ 2 -1 2 
REMARK 3. It is obvious from (5) that IIA ri+lll s (1 + lni+11> IIA rill , 

which means that the natural error IIA-! ri+lll cannot increase by more 

than a factor (1 + ln.+11> 6 at the step from i to i + 1. In view of (6) 

and (7), lni+11 is s~all if eK!(l+c2 +c1KJ) is small. Formula (5) 

also shows that the natural error certainly decreases if the condition 

Y~ > Tli+l is satisfied. From lemma 2.2.6 it follows that in terms of 

the parameter ai defined by (2.2.17), this condition is certainly 

Satisfied if B~ITli+lJK < 1. Because of (6) and (7) this last condition 

3/2 2 l is fulfilled if eK ai {1 + c2 + ClK ) is small enough. 0 

our relation (5) is phrased in terms of an absolute error ni+l. We may 

as well try to estimate the relative error vi+l' defined by the rela­

tion 
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(42} 

2 
Obviously, "i+l =- ni+l/yi. In the proof of the next theorem we do 

not estimate "i+l from this relation, but we estimate "i+l directly. 

In this way we obtain a weaker sufficient condition on B~, c1 , c 2 and 

K to guarantee the monotonicity of the natural error IIA-l r 111. 

THEOREM 4. Let ri ,pi be ti.Jo nonzero machine vectors, for which 

(ri ,pi} ; 0,. and let ri+1 be computed f:rom one step RRDM, based on 

these vectors. Let y i be defined as in theorem 1 and let, aacording to 

(2.2.16) and (2.2.17) 

(43) ai := llrillllpill I I Cri,pi) I 

and 

(44) Bi := llriiiiiAl pill I (IIAIIII Cr1 ,pil I> • 

Then we have 

(45) 

where 

(46) lvi+
1
! s 2d~e6(2+c1~e~) +~eB1 C2+Bil +ai(l+C1~el}C1+o(1)) + 

+ e:c
2 

(r<J +a
1

> o(1) , 

under the restriction 

PROOF. In the proof of the previous theorem we-estimated the absolute 

error oai occurring at the computation of di. In view of (8) we see 

that the relative error in the computation of the inner product (ri,pi} 

is not necessarily bounded if (ri,pi} ~ 0 and therefore we evaded ex­

pressions for relative errors. In the present proof we follow the 

lines of the proof of theorem 1, the only difference be~ng the use of 
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an estimate for the relative error of ai' in terms of the parameters 

(li and ai. 
From {8) and (9} one has 

Formulas {10} and (17) yield 

(51) 

Consequently 

(52) 

where ai is defined by (15) and 

Hence, from {49), (51) and (13) 

(54) I<Saf:l :!> {ec2ai+ec2..::1+&C
1
..::+e:)(1+o(1)) 

under the restriction {19), and consequently 

(55) I<Sa"l = 0(1) 
i 

under the restriction 

The vector 6ri_+1 in (29) can be written as 

(57) 6ri_+1 = Ffri - ai (6at Api + Mj_ Api +Mfpi) , 

(58) M' 
i := a-t J' 

i i (1 +6a"liiV'II i i IIMj_ll :!> 2e:{1+0(1)) 

(59) M" -1 = (1 +6ai_l11V_ili IIM"II e:c
1

11AII (1 + 0(1) l i == ai J! I i s 

under the restriction (56). 

56 

, 
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Instead of transforming (37) into (38), we may also write 

(60) 

where yi is defined as in theorem 1 and 

(61) vi+1 := {2(A-
1
ri-!ipi,6rj\1l + IIA-i 6rl+lll

2
}1{ai(ri,pi)}. 

Analogously to (40) we obtain, evaluating term by term, 

+ IIA-
1

riiiiiM:f.IIIIApill I I (ri,pi) I +llpiiiiiMi_IIIIAPill IliA! pill
2

+ 

-1 i 2 
+ IIA riii11Millllp111 I I (ri,pi) I +llpiiiiiMillllpill lilA pill s 

s IIFiiiKB~ +IIFlllai +IIMi.IIKBi +IIMi.IIKi +11Mi_IIIIA-
1
11ai +IIMi,IIIIA-

1
11 :;; 

:;; d~ei(2+c1Ki) +Kf3i(2+f3i) +ai(1+c1~e)}(l+0(1)) , 

under the restriction (56). 

Analogously to (41) we find, evaluating term by term, that 

s 4{11FJ:II41A- 11111riii~IA! pill
2 I (ri,pil

2
+ (6aJ:l

2 + 

+ IIM:f.11
2

11A-
1

1111APill
2 

lilA! pill
2 

+11Mi_11
2

11A-
1

IIIIpill
2

} lilA! piU
2 s 

2 2 2 2 
+ 4e K +e ClK } (1 +0(1)) t 

under the restriction (56). 

So, finally, we obtain from (61), (62) and (63) 
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under the restriction (56). As this inequality can be written in the 

more compact form (46), under the restriction (47), we have proved 

theorem 4. 

REMARK 5. We have (cf. (11), (50) and (51)) 

consequently, if EC21(J + (1 +e:c2>ec1K < 1, then fl((pi,Api)) ..; 0 if 

0 

pi ~ 0. Hence in that case the DM performed using floating point arith­

metic cannot break down because of a zero denominator, and the algo­

rithm will only end if r 1 = 0 (neglecting, of course, underflow). 0 

REMARK 6. We observe that just as in theorem 1 the constant c 2 does 

not show up in the first order part of (46). From formulas (46) and 

(47) we conclude that, as far as c2 concerns, e:c2 (K ~ +ail has to be 

small in order to have vi+l small. 0 

REMARK 7. In the previous theorem we frequently used the parameters cr.i 

and Si for estimating the various rounding errors. Expressions in­

volving (say) II rillll Ap111 I (JIAIII Cr1 ,pi) I) were estimated in terms of 

these parameters. For the gradient method and the conjugate gradient 

method the introduction of more parameters does not give stronger 

results, since no sharper direct bounds than in terms of cr.i and Bi are 

available for these expressions. 

The numerical behavior of these methods is of our main interest and 

therefore theorem 4 is formulated in terms of a1 and Bi only. 0 

From (46) and (47) and the fact that ai ~ 1 it follows that 

lvi+ll = 0(1) under the restriction 
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Consequently, as a corollary of theorem 4 we obtain the analogue of 

corollary 2.2.5 if floating point arithmetic is used. 

COROLLARY 8. Let {r.} be computed by RRDM mth an arbitrary initial 
l. 

maahine vector x0 and suppose there e:r:ist aonstanta a,B,y > 0 auah 

that for all i ~ 0 

(66) ai := II rillllp111 I I cr1 ,pi) I ~ a , 

(67) Bi := llriiiiiAi pill I (I!A~III Cri,pi) ll ~ B I 

(68) yi := I Cri,pil I I CIIA-l rillllAl pill> ~ y , 

then 'b1e have for i ~ 0 

(69) 1- y 2 (1+0(1)) 

(70) 

REMARK 9. From (69) and (70) it is obvious that the natural error 

II A-! rill, and consequently r 1 , tends to zero if dK! (1 + c2> + 

D 

+ KB (1 +B) + a (1 + c2 + c1K)} is small enough. We realize that from a 

practical point of view this is not a very interesting conclusion 

since convergence of the recursively computed residual r 1 has no 

direct practical implication. However, from an academical point of 

view it is a rather surprising result, since there are not many itera­

tive processes, used in practice, gensrating sequences that tend to 

zero. 0 

REMARK 10. From lemma 2.2.6 it follows that if one of the three param­

eters ai, a1, yi is bounded, then the other two parameters are bounded 

(bounded in accordance with (66), (67) and (68)). However, as we saw 

in section 2.2 for the algebraic case, it sometimes is possible to 

obtain sharper bounds by estimating each parameter separately. 0 
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REMARK 11. In corollary 8 it is assumed that all yi are bounded away 

from zero uniformly for all i ~ 0. For the Gauss-Southwell method, the 

gradient method and the conjugate gradient method this is algebraically 

the case (cf. section 2.2) and, as we shall see, this enables us to 

prove this boundedness even if round-off occurs. In most cyclic coor­

dinate DM's, however, yi = 0 can occur with exact arithmetic and then 

we lack an algebraic base for proving the existence of a uniform posi­

tive lower bound in the presence of round-off. On the other hand, for 

most of these algorithms (like e.g. Gauss-Seidel), there exists a 

k ~ n such that in every k subsequent nonoverlapping steps there is at 

least one step for which y1 is bounded away from zero and this bound 

(y say) is uniform in i. Thus for every k subsequent nonoverlapping 

steps one can apply theorem 4 for the steps where yi ~ y and apply 

theorem 1 for the remaining steps in this subsequence in order to 

obtain results on the decrement of the natural error after these k 

steps. 0 

Comparing (69) and (2.2.15) we see that the convergence ratio of the 

numerical process approaches the convergence ratio of the algebraic 

process as (70) tends to zero. However, we are not primarily interested 

in the fact that the numerical convergence ratio is close to the alge­

braic convergence ratio if (70) is small, but we want to know under 

which explicit conditions the natural error IIA-i r.ll tends to zero. 
l. 

From theorem 4, as we said before, we conclude that the natural error 

decreases at the step from i to i + 1 iff "n+l > -1 in (45). Apparently, 

from (46) and (47), lvi+ll < 1 if (65) is small. Unfortunately, these 

formulas do not supply an explicit bound for (65) in order to guarantee 

lvi+11 < 1 uniformly in i. Here we encounter a situation where the 

disadvantage of the o-notation (it does not yield explicit error bounds) 

emerges. On the other hand, as we said already in section 1.5, one can 

easily retrace the proof and replace all o-symbols by definite esti­

mates involving explicit numerical constants. To strengthen this asser­

tion we shall execute this procedure for the foregoing proof. The 

reason of doing it in particular in this case is that theorem 4 is one 

of our basic results. 

We shall show that, under the assumption 
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one certainly has lv. 1 1 ~ 11/16. 
l.+ 

We shall follow the lines of the proof of theorem 4, replacing the a-
symbols by numerical constants. 

We first obtain 

Hence, instead of (54) we get 

Furthermore we find 

llv.'ll 5; 2~ +e 2 9 9 
l. ... < 4 e: 5; 32 , 

64 9 144 4 
IIMj_ll 5; (1 +I oai_l liiV.i_ll < 55 4 e =55 e < 2(1 + 10>e 

liM~ II 
l. 

consequently, 

and also 
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144 2 2 82 2 2 2 2 
+ (55> e ~< + (55) e C1K } ~ 

82 2 1 5 
~ 8 * (55) * (64) < "i6 . 

Bence 

Thus, as a more explicit version of theorem 4 we obtain 

PROPOSITION 12. Let {ri} be computed by RRDM unth an amit'!'a1:'Y initial 

rmchine vector x0 and Zet ai. ei, y i denote the parameters of theorem 4. 

Furthe~re. let 

then !Je have 

II A-i 112 
ri+l 

(77) 

11 
The restriction (76) is quite arbitrary and the bound I v i+ll ~ "i6 is 

deduced by a rather rough estimate; it can easily be improved. 

0 

Of course, the foregoing calculations also yield a more explicit ver­

sion of corollary 8, i.e., if ai ~a, Bi ~ B, yi ~ y and if (76) holds 
1 2 -i 2 2 when replacing ai' Bi by a, B, then IIA-2 ri+111 /IIA rill ~ 1- (5/16)y 

and consequently ri + 0 (i + ®). 
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REMARK 13. From lemma 2.2.6 it follows that 

and hence (cf. remark 3 and remark 9) the sufficient condition for 

convergence of ri to zero, following from theorem 4, is weaker (and as 

we shall see in most cases essentially weaker) than the sufficient 

condition for convergence of ri to zero, following from theorem 1. D 

We conclude this section with an examination of the infinite sums 

r;,.
0 

IIA-i r£11 and r;,.
0 

llaJ!.A~p111. The results will be used in sec­

tion 2.3.2. 

From corollary 2. 2. 5 1 t follows that algebraically, if all y i ~ y, 

The analogue in the presence of round-off is expressed in (80) • 

LEMMA 14. Let {r.} be computed by RRDM~ith an arbit~ initial 
l. 

maahine vector x0 and let a~ a~ y denote the boundS of corollary B. 

Then ~e have 

CCI 

(80) l UA-~ r
1

11 2 :> y-2 (1+c(1))11A-i r
0

11 2 , 
R.=O 

under the restriction 

PROOF. This is a direct consequence of corollary 8. 

Algebraically (cf. theorem 2.2.2) we have lla
1 

Ai pill 2 

II -l 2 - A ri+lll , and consequently 

D 

Hence, since IIA-! rill-+- 0 (i+<») undertheconditions of corollary2.2.5, 
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we obtain 

The analogue in the presence of round-off is expressed in (84). 

LEMMA 15. Let {ri} be oomputed by RRDM UJith an arbitrai'!I initial 

maahine veato:r> x0 and let a, e denote the bounds of aorotla:Py B. Then 

r.Je have 

unde:zt the pestt>i.ation (81) • 

PROOF. From (14), (22) and remark 2 it follows that 

under the restriction £Kl(1 +C2 +C
1

Kl} + 0, and consequently also 

under restriction (81). 

We obtain by summation 

which proves (84) • 

REMARK 16. From (28) we obtain 

From (21), (29), (33) and (34) we get 

(88) I (orj\t•Pi) I s IIA-! ori+liiiiAl pill s 

0 
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~ {IIA-jiiiiFillllrill + lt5ai_IIIA~ pill + !IA-!!IIIJj_IIIIApill + 

+ IIA-!IIIIJ!IIIIpiii}IIA~ pill ~ 

under the restriction e:K 1 {1 + c2 + c 1 K 1) -r 0. 

Hence, under the same restriction, we have 

(89) tPi :• I (A-i ri+l'Alpi) I I (IIA-l ri+ 11111A~ pill) 

= O{l)IIA-! rill /IIA-1 ri+
1

11 • 

-1 -i We note that cos tPi is the angle between the vectors A ri+1 and 

Al pi. From theorem 2.2.2(iii) we know that algebraically these vectors 

are orthogonal. From (89) we see that in the floating point case this 

orthogonality can be seriously disturbed if II A-A r
1

11 /II A-A ri+
1

11 is 

large. Stated differently, the vectors A-! ri+1 and Al pi are approxi-

mately· orthogonal, unless II A-! ri+ill <C IIA-l rill. 0 

REMARK 17. Substitution of result (80} into (84) yields 

under the restriction (81). 

Of course, this implies that ai Ai pi + 0 (i + co). 0 

In the previous subsection we disregarded the computation of xi. 

However, the step-wise linear convergence of the computed recursive 

residuals to zero does not guarantee the convergence of xi to x, since 

in the presence of round-off the ri will wander away from the true 

residuals fi := b- Axi as we mentioned already at the beginning of 

this section. 
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The vector xi+l is COII\Puted from the relation xi+l • xi + a1pi. Conse­

quently, the error occurring at the computation of xi+l can be of 

order e:llx1 II at each step and this ultimately equals £ Rst:U. Therefore, 

even if no round-off would occur at the computation of ri+l :• 

• r 1 - ai Api the difference llfi+l - ri+lll may at each step increase by 

something of the order £ IIA 111151: II • From this one can see that the assump­

tion that the machine has strong arithmetic in the sense of Dekker 

[79] (see (1.3.1) and (1.3.2)), is not sufficient to guarantee even 

the uniform boundedness of t 1 - ri for all i ;;: 0. 

From his experiments Reid [71] found that t 1 and ri depart from each 

other rather slowly if the problem is we~-conditioned. Be showed that 

any errors that occur in the evaluation of ai do not make a direct 

contribution to the difference between ri+l and fi+l' 

In the first part of our analysis we shall study the growth of the 

difference fi- r 1 as i increases, and next this result will be used to 

estimate the natural error II A' ( x - xi) II • 
From the assui!IPtion that we have a machine with proper rounding arith­

metic (cf. section 1.3), we shall arrive at the conclusion that the 

approximations xi are uniformly bounded. These approximations are com­

puted from the relation xi;!-l • xi+ aipi. Algebraically 

(cf. theorem 2.2.2) and hence {ai pi} converges average linearly in 

the case of complete accuracy. From remark 2.3.1.2 it follows that 

this also holds in the presence of round-off. Hence we are in the 

situation as discussed in remark 1.3.4, indicating the uniform bounded­

ness of {xi}. 

We conclude the numerical consideration of RRDM with a one-round-off 

error analysis (see section 1.3) which indicates the maximal magnitude 

of the true residual at the moment where in the numerical process 

IIA!(Si:-xi+1lll > IIA~(x-xi>ll occurs. 

We now first examine how much the true residual r 1 := b -Ax1 and the 

computed recursive residual ri can differ. It turns out that the 

sharpest result is obtained when using the natural norm IIA-!(fi -ri)ll. 
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LEMMA 1. Let {xi}~ {ri} be aomputed by RRDM with an arbitru;py initial 

maahine veator x0 and let f:i := b- Axi. 

Then t.M have for aU i ~ 1~ undor the restriation e: + 0~ 

(1) . 

PROOF. For convenience we introduce the abbreviation 

(2) 

All o-symbols are assumed to hold under the restriction e: + 0. For the 

computation of ri+i we have, according to (2.3.1.25), 

Consequently, 

For the computation of xi+1 we have 

COnsequently, 

Since 

we obtain 
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From (6) we arrive at the following recursion for fi+l' 

Combining this with recursion {3) for ri+l we obtain the following re­

cursion for yi+l' 

In view of this and inequalities (5) and (10} we find 

Backward repetition of this inequality yields 

i-1 
+ e: r { (1 + e:r:l}.i:-.t-l CIIA! l!ll5!:11 + (4Ki + c 1r:) l(a.t A! PR.II (1 + 0 (1)) + 

R.=O 

as had to be proved. 0 

We are now ready to derive a bound for the difference If A-! (fi- ri} II in 

terms of the solution i, the initial residual r 0 = b- Ax0 and the 

number of iteration steps carried out. 

68 2.3.2 



'I'HEOREM 2. Let {xi}" {ri} be aomputed by RRDM with an aroitra:ry 

initial maahine veator x0 and let a, a, y denote the bounds of 
aorollary 2.3.1.8. 

Then we have for i ~ 1 

under the resmation 

PROOF. For the computation of r 0 we have 

( 18) r
0 

= fl(b -Ax0 l = (I +F) (b- (A +E)x
0

> 

Hence, 

(19) 

and, under the restriction e + 0, 

Since xo = x-A-1 to, we have llxoll s; llxll + IIA-IIIIIA-l foil· 
SUbstitution in (20) yields, under the restriction e + 0, 

under the restriction e(Kj+c
1

..:) + 0. 

From remark 2.3.1.17 and the Cauchy-Schwarz inequality we obtain 

(23) 
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under the restriction 

Consequently, under the restriction (17), using (22) we get 

(25) 

(Note that restriction (24) is included in restriction (17) since 
y-2 ~ 1.) 

Analogously, from lemma 2.3.1.14, it follows that 

under the restriction (24). 

SUbstitution of (21), (25) and (26) into (1) completes the proof. 0 

-1 ~ REMARK 3. Since y1 s SiK , theorem 2 is also valid if we replace all 

y by SK~. 0 

REMARK 4. Instead of measuring the difference between fi- ri in terms 

of the norm IIA-!(ri -ri)ll we may as well try to measure llfi -rill· 

From (12} it follows that 

and consequently 

i i 
(28) llti -rills llt0 -r011 + t IIAOxtll + t ll6ri,ll., 

t=l t=1 

Estimating each separate part we find under the restriction e ~ 0 

i i-1 i-1 r IIAoxtll s eiiAII ! ltxtll + 2eK!IIA!0(1+0(1)} ! lla.tA!p.tll I 

t=l t=O t=O 
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where we subsequently used formulae (18), (16) and (3). 

Substitution into (28} yields, under the restriction £ + 0, 

The last two sums can be replaced by (25) and (26) under the restric­

tion (17). The first part of estimate (29) is an a posteriori esti­

mate; a similar a posteriori estimate can be written down in (1). com­

paring (1) and (29) we observe that the corresponding factor for the 

last two sums in these estimates differ (apart from the numerical 

constants) by a factor II A- ill and hence, as far as these two sums are 

concerned, estimate (29) is sharper, even though it measures ri- ri in 

a different norm. However, replacing the first part of (29) by an a 

priori bound (as we did in lemma 1) destroys this superiority. D 

From the inequality 

and the fact that IIA-~ r.ll + 0 (i + ""), if (17) is small enough, we 
1 

see that (16) yields an estimate for the ultimate behavior of 

IIAl (l- x
1

J II. However, estimate (16) contains the number i of iteration 

steps and this estimate certainly is not bounded as i tends to in­

finity. 

In the next theorem we take a suitlable value of i. For this value of i 

the right-hand side of (30) is small in the sense that i is not too 

large to give an unacceptable bound for IIA-i (fi- ri)ll, using (16), and 

i is not too small to let IIA-i rill be unacceptably large. 
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THEOREM 5 • Let {xi}.. { r i} be computed by BRDM !;)i.th an a:l'bi, t':f.>arry 

initial machine vecto~ xo and let a.. a .. y denote the bounds of 
co~Zlary 2.3.1.8. FU~thermo~ .. let 

(31) -2 1 N := ent(2y loge+ 1) • 

Phen !;)e have 

l -2 1 ! + e:{1 +C1K +2y log e}IIA llllxll (1 +0(1)) , 

unde~ the ~etnction 

-1 l -1 l 1 + EY {i<: ( 1 + y + C 1 K } log e -+ 0 • 

PROOF. From corollary 2.3.1.8 and the definition of Nit follows that 

(34) IIA-1 rJI s {1-)(1+0(1)))lNIIA-!r
0

11 s 

-2 
s O-/(l+o{l)))y 1091/e::IIA-lr U 

0 

1 -~ = exp(- (1 +0(1)) loge) IIA roll , 

under the restriction (2.3.1.70) and consequently also under the 

restriction (17). 

In fact, the o-symbol in (34) stands for the maximum v of all lvi+11 

(0 s is N-1) of theorem 2.3.1.4. From (2.3.1.46) and (2.3.1.47) it 

follows that v can be bounded in terms of (2.3.1.70) and thus in terms 

of (17). COnsequently, the expression exp (- {1 +O{l))log 1/e::l in {34) 

can be replaced by e:: { 1 + o { 1}) under the restriction ( 17) • 

Hence it follows with (22) that 

-2 1 under the restriction (17). Furthermore, since N S 2y loge+ 1 (and 
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e < e-1) we have Ni ~ 2y-l log 1/E and 

(l+EK~)N S exp(NEKj) S exp(£1C:J(2y-2 log~+l)) • 1+0(1), 

under the restriction ey-2 Ki log!+ £Ki-+ 0. 
1:: 

Substitution of these inequalities in_theorem 2 and taking i • N yields 

under the restriction (33). 

Note that the terms in (33), containing log 1/£, are needed to assure 

that (1 + EKJ)N • 1 +O (1) and to assure that 

Inequality (32) now follows from (30), (35) and (36). 

REMARIC 6~ As in the case _of theorem 2, theorem 5 is also valid if we 

replac~ ally by BKi (see remark 3). 

0 

Note that in fact Nl s 2y - 1 (log 1/£) I holds and that consequently in 

(32) the first log 1/£ may be replaced by (log 1/e:) i and that also in (33) 

this replacement is allowed, but this is a rather small improvement 

and therefore deleted. 

~RK 7. Instead of the estimates of subsection 2. 3.1 we could have 

used 

s 0A-Ir
0
U I U-ilu+oU»> 1 s 

.t•O 

-2 -l s 2y UA r
0

11 (1 +o(1)} , 

and (see remark 2.3.1.2) 

0 
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i-1 co 

{38) l: llatA!p.tll ~ (1+0(1)) X IIA-!rtll s2y-211A-6r
0
11U+0(1)), 

.t=O !=0 

under the restriction (24). 

Both bounds do not depend on i. However, for 0 s i ~ N, the bound of 

(26) is of the same order as the bound supplied by (37), whereas the 

bound of (38) is a factor y-1 larger than that of (23) (apart from a 

factor log 1/e:). D 

We now investigate what happens to the approximations xi as the compu­

tations are carried out beyond iteration step N. As we mentioned al­

ready in the introduction of this subsection, our result will be based 

on lemma 1.3.3, due to the fact that we have a machine with proper 

rounding arithmetic, and the fact that llai pill tends to zero as i 

tends to infinity, if (33) is small. 

THEOREM 8. Let {x1 }, {ri} be aomputed by RRDM 'With an aPbit:m:l'Y 

initial machine VeatoP x0, let a, 6, Y denote the boundS Of corollary 

2. 3. 1. 8 and let N be de fined as in theor>em 6. Then 'We have foP aU 

i <: N the inequality 

(39) IIA!(x-xi)ll s dl+K!+C1K+2y-2(1+BK!) + 

undeP the PestPiation (33). 

PROOF. Since xi+l = x1 + aipi + oxi+1 {see {6)), we know that for 

i > N 

i-1 i 
(40) IIA!(xi -~lll s Z: llatA!ptll + Z: IIA!ox.tll. 

t=N .t=N+1 

Analogously to (38) we find for the first sum the estimate 

(41) 
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under the restriction ( 33) (note that ( 33) implies ( 17) , which im­

plies (24)). 

This proves the convergence of the first sum. Since generally x1 
will not tend to zero as i tends to infinity, the convergence of the 

second sum in (40) does not follow from (7). However, from lemma 1.3.3, 

due to the proper rounding arithmetic, we may conclude that instead of 

(6) one also has 

and therefore, instead of (8), under the restriction e + 0, 

'l'oqether with (41) this yields 

i ~1 

(44) I IIA~ox~lls (e+(B+e)(l+o(1)))~:l I llaR.Aip
1
11s 

t-N+l t=N 

under ·the restriction (33), 

From (34) and (22) we know that under the restriction (17) 

Bence, from (40), (41), (44) and (45) it follows that 

(46) IIA!(xi -~)II s 2y-2 (1 +BKi)fiA-i rNII (1 +o(l)) s 

s 2e:y-2 (1+B~ei>IIA-j !-
0
IIC1+o(1)) +e:o(l)IIAiiiiiStll 

under the restriction (33). (We remark that the second a-symbol stands 

for 2e:y - 2 ( 1 + BK i) c1 K i 1 if the base B of the floating point numbers is 

regarded as a fixed integer, then the term containing B can be omitted 

in (33), as is actually done.) 

Since IIAi (x- xi )II ::> II A! (St- XN>II + II A! cx1 - XN)II, inequality (39) follows 

from (32) and (46). D 

Again we mention that in theorem 8 ally's may be rep~aced by 8Kl. 
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REMARK 9. Comparing {32} and (39) we see that the bounds for the natu­

ral error II A! (l -xi) II at step N and at all later steps do not differ 

essentially. Here we shall not present a detailed discussion on:,the .·. 

influence of and the interaction between the separate terms occurring 

in estimate (39). This discussion will be given for the gradient method 

in Chapter 3 and for the conjugate gradient method in Chapter 4. Note 

that, if ri = 0 for some i ~ 0, then certainly (32) holds for 

IIA!(st-xi)ll if i!!: Nand (39) holds if i > N. 0 

Algebraically for every DM, IIA-! rill converges step-wise linearly to 

zero (cf. section 1.4) under the conditions of corollary 2.2.5 and 

consequently II A-! ri+lll < IIA-l rill holds for i ~ 0. We have seen that 

for RRDM this also holds numerically if expression (2.3.1:70) is small 

enough. Algebraically, for every DM, II A! (x- xilll = IIA-l rill and con­

sequently also IIAl(st-xi+l>ll < IIAl(x-xilll holds for all i ~ 0. Bow­

ever, in the presence of round-off the relation II A! (x -xi) II = II A-! rill 

does not hold and consequently one might ask whether II A l (i - xi lll con­

verges step-wise linearly for all i ~ 0. Another question concerns the 

magnitude of ·the error st - xi, measured in some norm, at the moment 

where the step-wise convergence of II A! (i- x. HI is destroyed by round-
.~ 

off errors. 

These questions are not only interesting for RRDM but also for TRDM. 

In the next section, where we consider TRDM, we do not give an upper 

bound for the natural error II A l (x- xi )II at a fixed step (i = N) , 

neither do we give a limes superior result for the natural error, but 

we only deal with the problem just mentioned, viz., the monotonic de­

crease of II A! (i- xilll is disturbed .at a certain step, what can be · 

said about the error II i - xill ? In the remaining part of the present 

subsection we consider this problem for RRDM which enables us to point 

out the difference with TRDM. For brevity, we treat the case that 

there is only one type of arithmetical operations during the process 

where round-off occurs, whereas all other arithmetical operations are 

assumed to be carried out with complete accuracy. This kind of incom­

plete error analysis is a so-called one-round-off error analysis (cf. 

section 1.3). The only operation involving round-off will be the 

matrix by vector product computations, i.e. fl(Api) = (A+Ei)pi, 

II E~l !!: e:c111All (we assume that A* x0 is carried out with complete 
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accuracy). The reason for this choice is that in the restrictions and 

estimates of the foregoing theorems the terms including c1 , correspond­

ing to matrix by vector computations, contain the largest powers of K 

and therefore this operation seems to have the largest influence on 

the numerical behavior. 

Of course, all results deduced so far in this chapter for RRDM and using 

floating point arithmetic for all arithmetic operations, are also 

valid in the one-round-off case at hand. It is obvious that terms ap­

pearing in estimates and restrictions and not containing the factor 

c1 can be omitted, since they entered the round-off error analysis 

because of other arithmetical operations than the matrix by vector 

product computations. For instance, restriction (17) is replaced by 

restriction (49). 

THEOREM 10. Let {xi}~ {ri} be aornputed by RRDM U)ith an arbiti'GPY 

initial machine vecto:r> x0 • Assume that only the matl"i:x: by vecto:r> 

products Api (i ;;:: 0) a:r>e cal'l'ied out in :floating point al'ithmetic~ att 

othe:r> al'ithmetiaat operotions being e:x:eauted e:r:aatty. Let ai~ a~ fh yi 

denote the pa:r>amete:r>s and boundS of co:r>otZary 2.3.1.8. 

Then U)e have fo:r> att 1 ;;:: 0 

(47) 

(48) 

IIAj (i: -xi+1>11
2 

II A I (i: - xi )II 2 

unde:r> the l'estl'iation 

(49) 

= 1 

PROOF. Since xi+l =xi +aipi, or equivalently, A-jri+l • A-jri + 

- a1 A i p1 , we have for A-i ti+l (• Aj (x- xi+l)) 

(50) 

In view of 
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we have the following relation for ai 

(53) 
(ri ,pi) 1 

(pi'Api) (1 + lJi} 

under the restriction eC1K + 0. 

For the computation of ri+l we obtain 

From xi+l = x1 + a1 pi it follows that the residual vector fi satisfies 

ti+l = fi - ai Api and hence, together with (55), this yields 

fi+l - ri+l "' ri - ri - t5rj_+i' Since A* x0 is assumed to be computed 

with comPlete accuracy,. we have r 0 = t 0 and hence 

{57) 

Consequently, 

Substitution of (53) and (58) into (50} yields 
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(60) 

{61) 

From (2.3.1.84) and (56) we obtain (cf. (29)) 

{62) 

under the restriction (49}. 

Estimate (48) now follows from {54), (58) and (62). 0 

REMARK 11. From (57) it follows that 

(63) 

(64) 

and hence (47) can be written as 

{65} 

where lll:i+t = llli+1 C1+6i) + 6i. For our purposes, however, formula (47) 

is more appropriate. 0 

The type of estimate (48) for 111i+l is different from the type of esti­

mate for ni+l as qiven in theorem 2.3.1.1 and for vi+1 as qiven in 

theorem 2.3.1.4. The estimate for ni+l is uniformly bounded fori~ 0 

and this also holds for vi+l if eti is uniformly bounded for i ~ 0. The 

estimate of w 
1 

+ 1 certainly does not have this property since it contains 

a factor i in the numerator and a factor II r 111 in the denominator for 

which alqebraically llr
1

11 -+ 0 {i -+ oo). 
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Another minor distinction between ni+l and \li+1 on the one hand and 

ooi+t on the other hand, is the presence of the initial natural error 

IIA-~ .r
0
n. 

We recall that we are interested in what can be said about the magni­

tude of the error st -xi, measured in some norm, at the moment when 

for the first time IIA~(S!:-xi+ 1 )11 > IIAl(x-xi)ll. It follows from (47) 

that at this specific moment certainly ooi+1 < -1 and hence looi+ll > 1. 

In order to demonstrate how this last inequality can be used to esti­

mate x - xi in terms of the norm II A (x - xi) II , we first consider an ex­

plicit version of theorem 10. 

By retracing the proof of theorem 10, like we did in subsection 2.3.1 

for theorem 2.3.1.4, one can prove that if 

(66) 

then estimates (62) and {48) can be replaced by explicit bounds, i.e., 

and 

{68) 

we now assume that {66) is satisfied and that II AI (x- xi+l) (( >II A! (St- xi) II 
holds for some i ~ 0. Then lwi+ll > 1 certainly implies 

Since llrill s llorill + llrill and ai ;;:: 1, we obtain, together with (67}, 

for the residual vector A{x- xi) (= t
1
l, 

(70) 

Summarizing, if (66) is satisfied and IIA!(i-xi+l}ll > IIA!(i-xi}l/, then 

the residual vector A(S!:- xi) satisfies (70). 

We now return to the general case. Using a-symbols, the following 

corollary of theorem 10 follows from the same arguments as used in the 

explicit example. 
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COROLLARY 12. Conaide:ro RRDM pe:roformed unde:ro the conditions of theo:zrem 

10. If IIAI(2-xi+1>11 > 11Al(2-xi)ll fo:ro some i <!: 0~ then the :zresiduaZ 

vecto:ro A(2- xi) satisfies 

(71) IIA(i-xi>ll s 3e:liaic1KliiAliiiiA-l:t
0

U (1+0(1)), 

unde:ro the :zrest:roiction (49). 0 

The meaning of (71) diminishes as i increases. However, if i is no 

greater than N, defined in theorem 5, th~n certainly If s 2y-1 log 1/e: 

and consequently 

(72) 

under the restriction (49). Note that (72) contains the uniform bound 

y for yi and the actual value of ai. For values of i greater than N we 

have already in view of estimate (39) of theorem 8, 

(73) 

-2 -1 under the restriction e:y ac1K + e:y c 1K log 1/e: ~ 0, and hence, for 

the residual vector 

(The absence in (73) of those terms in (39) not containing c 1 has been 

explained already; all terms in (39) containing [(ill are absent because 

of the supposed exact computation of r 0 = b- Ax0 and xi+1 = xi+ ai Pi.) 

So, we can use (71) if monotonicity breaks down before iteration step 

N and we can use (73) or (74) if this happens after iteration step N. 

In fact, if monotonicity breaks down at a certain step, one might as 

well stop the iterative process since then apparently algebraic proper­

ties are drastically disturbed by round-off errors. The problem of ob­

serving in practice, when monotonicity of IIA l (x- xi) 11 breaks down is 

discussed in remark 2.4.9. 
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2.4. The .tltue Jr..e.sidual de.sc.eYii:. method6 (TR'DM) 

In this section we consider the numerical behavior of TRDM. The only 

difference between RRDM and TRDM is the way in which the residual 

vector ri is determined, In TRDM one determines ri from the relation 

ri = b- Axi, in fact this relation explains the name residual vector. 

The vectors xi and ri are directly coupled at each iteration step. 

Round-off occurring at the computation of xi immediately affects the 

computed vector ri and therefore TRDM seems to be more self-restoring 

than RRDM, where the sequence {r1} could be computed without even 

computing the sequence {xi}. Moreover, the difference between the 

computed residual ri and the exact residual b- Axi is only caused by 

computational round-off at one step, whereas for RRDM we saw that this 

difference is influenced by all previous round-off errors, except for 

the round-off during the computation of ai. In computing the residual 

from the relation ri = b- Axi, a round-off error is introduced which 

ultimately is at least of the order £C 1 11 AU IUtU • Consequently, in the 

case of finite accuracy, it is rather unlikely that ri tends to zero 

as i tends to infinity. Here we have a first, although rather obvious, 

difference between the numerical behavior of TRDM and RRDM. 

As far as computational work is concerned, for RRDM only one matrix 

by vector product A* pi is computed at each iteration step, whereas 

for TRDM there are two, viz. , A * pi and A * xi. Therefore, from this 

point of view RRDM is to be preferred. 

Recall that TRDM, corresponding to a given sequence of arbitrary non­

zero vectors {pi}, consists of the following statements. 

TRDM 

Choose an initial point x0 1 

r 0 := b-Ax
0

; i := 01 

while ri :1 0 do 

begin 

(1) ai := (ri ,pi) I (pi,Api) 

(2) xi+l := xi + ai Pi I 

(3) ri+l := b- Axi 

i := i + 1 

end. 
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It is obvious that for TRDM we cannot study the numerical convergence 

of {r1} separately from the numerical convergence of {xi}. The follow­

ing round-off error analysis is performed under the same conditions 

and conventions as in the previous section and it is also rather par­

allel and equal in character to the analysis done there. The presence 

of the same symbols ii, oai, orf.+1, etc., does not indicate that they 

stand for exactly the same quantities, but it only expresses a certain 

correspondence. 

Before starting off the round-off error analysis of TRDM, we first 

deduce some auxiliary results concerning the computation of a residual 

vector b -Ax. This result will be used in many considerations where 

the computation of a true residual vector is carried out. 

LEMMA 1. Let b, x be tl4o maahinB veatoPs and 'let 

(4) f := b- Ax 1 r := fl (b- Ax) • 

Then t.1e have 

(5) (t,r) = lltR2
(1+0(1)) = llrii2

Cl+0(1)) , 

undsP the Nstzoiation e(1 +c1q~) -+ 0 

(6) Cf,A-1 r) =0A-ItU 2 tt+0(1)) =RA-1rn2 C1+o(1)l, 

unde'P the Nstzoiction e..:l(l+C
1
l/l)-+ 0, and 

(7) Cf,Ar) = UAj r11 2 (1 +0(1)} = IIAI r11 2 C1 +0(1)) , 

(8) 9 :a IAIIIlxlt/llrll , l/1 := IIAIIIIIXII/IIA-1 fll, 

X := IIA312llllxll /IIA112 fll. 

PROOF. We have 

(9) r • fl (b -Ax) = (I+ F) (b- (A+ E) x) = f + or , 

(10) or:= F(b-Ax)- (I+F)Ex. 

Consequently, 

(11) llorll s dfll + e(l +e:Jc111AIIIIxll 
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and hence, under the restriction e + 0, 

(12} II or II I IIi II !> e ( 1 + c 
1 

q> ( 1 + o ( 1}} } , 

(13} IIA-! orll I IIA-~ fll !> eK!(1 +C
1

1/IC1 +o(1}}} , 

(14} IIAiorii/IIAifll !> e(K!+c
1
xct+o(1)}}, 

or 

(16) llorll llltll = o(l), under the restriction e(1+c1cp) + 0, 

(17) IIA-!oriiiiiA-ifll = 0(1) 1 undertherestriction eKi(1+C
1
!/I)+O, 

(18) IIA! orll /IIAi fll = 0(1) , under the restriction e(Kl +c1x> + 0. 

The first equalities in (5), (6) and (7) follow immediately from (9) 

and the appropriate inequality (16), (17) or (18). The second equali­

ties follow from the fact that for ! = 0,-l,! one has 

under the appropriate restriction. 0 

REMARK 2. Note that 

Consequently, in the restriction of lemma 1 all 1/1 may be replaced by IP 

or x. all q> may be replaced by x or Kll/1, and all x may be replaced by 

KliP or Kl/1. 0 

We now deduce a theorem where the influence of round-off on relation (i) 

of theorem 2. 2. 2 is expressed in terms of an absolute error. The proof 

is very similar to the proof of theorem 2.3.1.1. 

THEOREM 3. Let xi, pi be two arbitrory maahine vectors (pi :f. 0) and 

let xi+1 be aomputed from one step TRDM~ based on these veators. Let 

{19) ri :=b-Axi, 
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Then we have 

(22) 

i 2 
IIA (St- xi+1) II 

II A I (x - xi) 11 2 
2 

1 - Y i + ni+l 

wheroe 

(23) 

undero the roesti'iction 

PROOF. From (9) and (13) we know that the computed vector ri, under 

the restriction E + 0, satisfies 

From the proof of theorem 2.3.1.1 it follows that for the computed ai 

there holds 

(27) 

v-
·.r 

(28) l&af_l $; (2EC2Ki+EC1K+E)(IA-fr~II/11Aipiii(1+0(1)), 
under the restriction 

TOgether with lemma 1 this yields 

under the restriction 

(31) 
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where 

(33) 

(34) 

From (26) we obtain, under the restriction E + 0, 

Together with (30) this yields, under the restriction (31), 

This obviously implies, under the restriction (31), 

For the computation of xi+l we have 

consequently, from (32), (37) and the fact that lail s II A-! fiii/IIA!pill 

we obtain 

under the restriction (31) • 

We now express ni+l in terms of oxi+l' From (38) it follows that 
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and hence, by taking squared norm of both sides, 

From the definition of li we obtain 

which leads to the basic formula 

(45) 
2 

1 - y i + ni+1 , 

where yi is defined by (20) and 

(46) 

It remains to be proved that ni+l satisfies {23) under the restric­

tion (24). Note that Cfi -ai Api,pi) = 0 and therefore the term 6a1 pi 

in (39) cancels when evaluating the inner product in the numerator 

of (46). Consequently, from (33), (39) and (41) we obtain, evaluating 

term by term 

(47) 

s {llt1 JIUFj_"UIIx1 11 + la1 111Ap1 011Fj_"llllx1 11 + lltiiiiiV1 fiiiPill + 

+ I4
1

111Ap
1

IIIIV
1

1111p
1

11} /IIA-1 fill
2 

s 

under the restriction (31). 

For the second order term in (46) we obtain from (33), (36) 1 (39) 

and (41) 
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(48) IIA~ oxH111 2 /IIA-~t111 2 s 

s 4{11Fi" 11
2

11AIIIIx1 11
2 + {oa1> 

2
11 A 6 pi 11

2 
+ llv1 11

2
11AIIIIpill

2
} /IIA-1 f} 2 

s 

under the restriction (31). 

So, finally, we obtain from (46), {47) and (48) 

under the restriction (31). 

As this inequality can be written in the more compact form of (23), 

under the restriction {24), we have proven theorem 3. D 

Note that both constants c 1 and c 2 do not occur in the first order 

part of (23). In the error analysis these constants only appear in the 

absolute_error oai and, as is explained for the recursive residual 

cases, this absolute error does not appear in the first order part of 

(47). 

REMARK 4. Theorem 3 can also be written in a form closer related to 

expression (ii) of theorem 2.2.2. We have 

where, according to (33), ai = (t1 ,pi) I (pi ,Api) • 

consequently, (22) can be written as 

It follows in particular that, under the restriction (24), 
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Using (32) and (37) this yields, under the restriction (24), 

·~etracing the proof of theorem 3 and replacing all o-symbols by defi­

nite estimates involving explicit numerical constants one can prove 

that lni+11 ~ 22/40 if 

and 

Hence 

1 
16 

lla. A!p.ll ~ (1+
1
3
0
liiA!(i-x.lll 

1 1 1 

Furthermore, it follows that 

D 

REMARK 5. It is obvious from (22) that the natural error IIA!(x-xi>ll 

cannot increase more than a factor (1 + lni+1 1>! at the step from ito 

i + 1 (cf. remark 2.3.1.3). In view of (23) and (24), ni+1 is small if 

is small. The second part of (50) depends on ~i and consequently on 

xi, whereas the first part only depends on the machine, the implemen­

tation and the matrix involved. The restriction e:(1 +C1K )~i ~ 1/16 

(say) is satisfied iff IIA!(x-xi>ll ~ 16e:(1 +C1K!)IIA!IIIIxill and conse­

quently, at the step where e:(l +C1K!)~i ~ 1/16 is not satisfied (as­

suming that c1 does not depend on K) , the error II A l (x- xi) II is of the 

order of magnitude of the inherent natural error (cf. section 1.3). 

Therefore, at that moment we might as well stop the iterative process. 
D 

In order to obtain results concerning the monotonicity of the natural 

error II Al (x- xi)ll the next theorem (where we estimate relative errors) 
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is more appropri9te than the previous theorem. The proof is very simi­

lar to the proof of theorem 2.3.1.4. 

THEOREM 6. Let xi~ pi be two arbitrary machine vectors (pi # 0) and 
Zet xi+l be computed from one step TRDM~ based on these vectors. Let 

y i~ fi be defined as in theorem 3 and Zet~ according to (2. 2.16) ~ 

(2.2.17) and (8) the numbers ai~ Bi~ 'i be defined by 

(51) ai := II rill II pill I I <ri,pi> I , 

(52) B. 
1 

:= llfiiiiiAi pill I (IIAilll (fi,pi) I> 

(53) 
'i := IIAIIIIxill I llrill 

Then tJe have 

(54) 

tJhere 

11Ai(5t-xi+1)112 

11Ai(st-xi)ll
2 

under the restriction 

. 
, 

PROOF. From (9) and (10) we know that the computed vector ri satisfies 

under the restriction e + 0. 

If we define aj_ := llriiiiiPill I I (ri,pi) I, then we may conclude (cf. 

theorem 2.3.1.4) 

(59) 
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(60) Ilia" I< (e:C a'+ e:C
2
K! + e:C

1
K + e:) (1 +0(1)) , i - 2 i 

under the restriction 

However, we want to have expressions in terms of ai defined by (51). 

From (57) and (58) we obtain under the restriction e: + 0, 

(63) 

and hence ITil = 0(1) under the restriction 

(Note that ai ~ 1 and hence restriction (64) implies the restriction 

e: + 0.) 

In view of this and taking into account lemma 1 we find 

(65) a~ =a. (1 +0(1)) 
~ ~ 

under the restriction (64). Substitution of (62) into (59) yields 

(66) ai = a.i c1 + cS';iJ , 

(67) a.i 
! 2 

:= (f.,pi)/IIAp.ll, 
~ ~ 

(68) l)';i := Ti (1 +lia'j_) + lia'j_ . 

From (60), (61), (64) and (65) we obtain 

(70) 

under the restriction 

The vector lixi+l in (39) can be written as 
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(74) IIMill ~ 2e:(1 +0(1)) , 

under the restriction 

Instead of transforming (44) into (45) we may also write 

(76) 
IIA~(lt-xi+1 >11 2 

II A! (x- xilll 2 = 

where y
1 

is defined as in theorem 3 and 

(77) "i+l := {2(fi-aiAp1 ,oxi+1l -IIAI b 1+111
2
}/{ii(fi,pi)} 

Analogously to (47) we find, evaluating term by term, that 

under the restriction (75). 

Similarly to (48) we obtain, evaluating term by term, that there holds 
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under the restriction {75). 

So, finally, we obtain from (77), {78) and (79} 

under the restriction (75). 

As this inequality can be written in the more compact form of (55), 

under the restriction (56), we have proved theorem 6. 

Note that remark 2.3.1.5 and remark 2.3.1.7, concerning the main 

theorems of section 2.3.1, also apply to theorem 3 and theorem 6. 

0 

REMARK 7. Just like in theorem 3 the constants c 1 and c2 do not occur 

in the first order part of (55). Formulae (55) and (56} indicate that 

e:CC2K~ +C1Kl + aic2 + <f\ +c1ai)4J)i has to be small in order to have 

vi+l small. The following simple straightforward one-round-off error 

analysis stresses this result for the term c1ai4pi. Suppose that during 

the step from xi to xi+l only round-off occurs at the computation of 

A* xi. Then, retracing the proof of theorem 1.4.6, we obtain succes­

sively 

(81) 0 , 

{82) 

2 
Consequently, lvi+ll ~ (e:c1a1q.>i) , which implies lvi+1 1 s e:c1ai4pi 0(1) 

under the restriction e:c1aiq.>i ~ 0. The other terms in (55) and (56) 

containing c1 are present due to the computation of A* pi. The above 
2 

derivation also indicates that the bound lvi+ll s (e:C1ai4J)i) is sharp. 
0 
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From (55) and (56) it follows that lvi+1 J = 0{1) under the restriction 

As we mentioned already in remarks 2.3.1.10 and 2.3.1.11, algebraically 

ai, Bi and Yi are uniformly bounded for all i ~ 0 for the Gauss­

Southwell method, the gr«dient method and the conjugate gradient 

method. We shall see that this fact enables us to prove the boundedness 

of these parameters in the presence of round-off as long as ec1 q~i is of 

order 1, i.e. , the residual II f' ill is not less than s~thing of the 

order e:c111A!IIIxill. (Note that algebraically q~1 + oo (i + 0) • ) 

For instance for the gradient method (cf. (2.2)) we have, algebraical­

ly, ai = 1. In the floatipg point case one takes pi = ri (the computed 

residual) and hence in that case it follows from lemma 1 that 

(84) 1·0+0(1)) , 

under the restriction e: (1 + c1 Ill 1 ) + 0. 

Stated differently, as long as ec1 q~i is small the parameter ai' corre­

sponding to the process performed in floating point arithmetic, ap­

proximately equals the a
1 

of the algebraic process. 

This is one reason why (55) has only significance as long as ec 1q~i is 

of order. 1. Another reason, of course, is the appearance of qli in (55) 
2 

and (56) itself which even requires &(Bi +Bi +C1ai)q~i to be small. 

In corollary 2.3.1.8, which is a direct consequence of theorem 2.3.1.4, 

we assumed uniform bounds for ai, Si and y i. From the previous consid­

erations it. will be clear that it is unrealistic to assume this for 

TRDM in the presence of round-off and therefore an analogue of corol­

lary 2.3.1.8 is omitted. 

However, we are mainly interested in the monotonicity of the natural 

error IIAl (i- x. )II. From theorem 6 it follows that the natural error 
l. 

decreases at the step from i to i + 1 iff vi+l > -1 in (54). Apparently, 

from (55) and (56), lvi+ll < 1 if (83) is small. As we noted already 

in the case of RRDM, these formulae do not supply an explicit bound 

for (83) in order to guarantee lv. 1 1 < 1, owing to the use of the o-
l.+ 

notation. Therefore we now first turn to an explicit version of theo-

rem 6. Since. theorem 6 is one of our basic theorems we give a full 

proof of this explicit version, although there is nothing new in it. 

We shall show that under the assumptions (97) and (98) of proposition 
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a (to be stated presently) there certainly holds lvi+ll < 4/5 in 

theorem 6. 

We shall follow the lines of the proof of theorem 6, replacing the a­
symbols by numerical constants. Proceeding in this way we first obtain 

from lemma 1, instead of (58), 

{85) 

From the proof of theorem 2.3.1,4 we find for oal 

{86) 

(87) 

(88) 

loail :!': Cl>..ii+IJJ1 1+1e:1 1+1>..ie:ii>/C1-ItJ1 1>, 

1>..1 1 :!': e:c2Urii1Hp1 11 I I (ri,pi) I , 

ForT{ we Obtain, instead of (63), 

(90) 

and consequently, using Hrill s Hfill (1 +llorill /!Ifill) s (13/lO)IIfill, one 

has 

Hence, instead of (60), we obtain from (86), (88), (89) and (91) 

(92) 

and usinq (90) this yields 
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(93} 

378 4 
'tooo' <TO • 

Instead of (74) we find from (93) 

(94) 

So, finally, instead of (78), one has 

and, by a slightly different estimate, we obtain instead of (79) 

{96) ~ 2 - 2 2 2 2 2 
IIA oxi+lll /lai(fi,pi}l::; 2(oai) + 4(e: lliq~i+9e: K)::; 

378 2 1 2 1 2 4 
::; 2'toool + 4<s> + 36 '4o' <TO • 

Hence 

Thus, as a more explicit version of theorem 6 we obtain 

PROPOSITION 8. Let xi~ p1 be two maahine veato~a (pi ~ 0) and Zet xi+l 

be aornputed ft'om one step TRDM~ baaed on these veato~s. Let y i~ ai~ 

11 1~ fi and ((li be defined as in theornm 6. Fu~the'l'frlOrn,. Z.et 

and 

Then !Je have 

(99) 0 
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REMARK 9. One may ask whether it is possible to verify the monotonicity 

of IIAi(x -xi) II by soma computation. It is obvious that the objective 

function F(xi) = (x-x
1

,A(x-xi}} = 11Ai(x-x
1

JU 2 cannot be computed, 

since the solution vector x is not known. On the other hand, however, 

we have, algebraically, 

Hence, 

This function can be computed and algebraically F(xi) > F(x1+1> is 

equivalent with G(xi,xi+1) > 0. Now the important question rises what 

can be said if fl(G(xi,xi+1)) < 0. To illustrate the problem involved, 

we perform a one-round-off error analysis, where we assume that during 

the computation of G(xi,xi+l), defined by the expression in the middle 

of (101), only round-off occurs at the computation of A* xi+l (and not 

at the computation of A(xi -xi+l)). We then have 

(102} 

(103) 

consequently, from theorem 6, it follows that 

(104) fl(G(xi,xi+l)) = F(xi) - F(xi+l) + oG{xi,xi+l) 

2 {fi,pi) 

=11Aipill2 (l+vi+l+ei+l>, 

where vi+l is estimated in (55) and 

(105) 
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Hence, if fl(G(x
1

,x1+
1
)) < 0 at a certain step, then at least one of 

the two inequalities lv
1

+
1

1 >A, 19
1

+
1

1 > i holds. If for that partic­

ular step (97) is satisfied, then I v i+
1

1 ? i leads to the conclusion 

that 

which qualitatively is the same conclusion as one would obtain when 

break down of the monotonic! ty of II A! (x - x
1

) II could be verified (which 

would imply lvi+l! > 1). On the other hand, l9i+1 1 ? l implies 

( 107) 

Algebraically we have (cf. theorem 2.2.2) 

::!: IIA-jiiiiA-! rill S 

-1 
::; IIA 1111r1 11 • 

Hence, from (107) we obtain no better estimate than 

which is unsatisfactorily. 

Note that algebraically also xi+1 = xi+ ai pi and hence 

and therefore G(xi,xi+ll could easily be computed from the (already 

computed) number ai and vectors p
1

, Ap
1

, ri+1• However, in the presence 

of round-off, even if the right-hand side of (108) is computed exactly, 

the same kind of a problem, as reflected in (107) arises, due to round-

off at the computation of ri+1' 

We conclude this section by showing how the theory developed in this 

section leads to assertions on the numerical behavior of a specific 

OM, the Gauss-Southwell method. 
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EXAMPLE. The tr-ue Nsidual Gauss-SouthJell method (TRGSM) 

Recall that in TRGSM one takes pi :== ek{i), where k(i) corresponds to 

the largest (in absolute value) component of the computed residual 

ri == fl(b-Axi), i.e., ICri,ek{i)ll ~ ICri,ej)l for all1 -s j -s n. 

For application of our theory we need bounds for ai' Si and yi, as 

defined by (51), (52) and (20). Algebraically, ai s n! (cf. section 

2.2). Using floating point arithmetic this bound is affected by round­

off. We have ai : .. lltillllek(i)H /I (fi,ek(i)) 1. From the proof of lemma 

1 we know that under the restriction e: -+- 0 

Hence, 

where 

(110) 
·l(or1 ,~(i))l llor11111fill llrill 

l!i:il (ri,ek(i)) s ~llrill l<ri,~{i)ll s 

II rill 
s e: o + c 1 cp i l I c > I < 1 + o u > > s 

ri,ek(i) 

s e:n!(1+c1q~i)(1+o(1)) 
under the restriction 

Together with (110) we find !til = 0(1) under the restriction 

e:nl (1 +C
1

cpi) + 0. So, finally, we obtain 

(112) 

s nl ( 1 + o ( 1)) , 

under the restriction en!{1+C
1

cpi) + 0. 

Together with lemma 2.2.6 it follows that Bi s n!(1+o(1)) and 
-t I y i s n ( 1 + o ( 1) ) under the same restriction. 

Substitution in (55) and (56) yields for the parameter vi+l of (54) 

the estimate 
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under the restriction 

Retracing the proof of (112) one finds that, if eni ~ 1/40 and 

e:n! c 1 ~1 s 1/4, then ai s 3ni and consequently 1\ s 3nl, y;1 
:s; 3(nK) J. 

Combining this and proposition 8 we obtain the following explicit 

statement for TRGSM. 

PROPOSITION 10. If xi+l is computed for one step TRGSM, based on the 

maahine veator xi and if 

(115) e:{Ki(1+C
2

+ClKi) + 3nl(1+C
2

)} $ 4~, 

(117) 
1 

1 - 45nK • 

This leads to the following three important conclusions on TRGSM (if 

(115) is satisfied): 

(i) If 11Al(x-x1+
1

>11;;: IIA!(x-xilll holds for some i;;: o, then 

llb-Ax
1

11 s 12e:(ni(2+C
1

l + 6n)f1AIIIIx
1

11. 

D 

(ii) As long as lib- Axil! ;;: 12e (nl (2 + c
1

) + 6n) I!Ailllx
1

11, the natural 

error IIA! (x- x1)11 converges step-wise linearly with a convergence 

ratio no greater than (1 - (45nK) -l) l. 

{iii) There exists ani;;: 0 such that llb-Axill < 12e:{nj{2+c1> +6nli1AIIIIxill· 

{Since otherwise {117) holds for all i ~ 0 which leads to the 

contradiction lib- Ax
1

11 -+ 0 (i -+ co).) 
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Combining these three conclusions into one statement we obtain (if 

(115) is satisfied) the following result. 

PROPOSITION 11. If {x.} is gene:ttated by TRGSM with an aPbit:roa:.r.y initial 

maahine veato:r> x0, t~n the natu:ro.Z ePPOP II A 6 (i -xi) II aonVeP(Jes step­

wise Zinea:r>Zy with a conveP(Jenae :ttatio no gPeate:r> than {1- (15nK) -ll 1, 
at least until the ite:ttation step whePe the Nsidual satisfies 

llb-Axill s 12e:(n~(2+c1 ) + 6n)IIAIIIIx111. 0 

This implies that TRGSM is well-behaved and, consequently, numerically 

stable and A-numerically stable (cf. section 1.4). 
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CHAPrER 3 

THE GRAVZENT METHOV ( GM) 

3.1. Zn:tlwdu.dion 

One of the oldest and most widely known descent methods is the gradient 

method (often referred to as steepest descent method). A description of 

the method was first given by Cauchy in 1847. The application of the 

method is not restricted to the case where the objective function is 

quadratic. The objective function may be any differentiable function 

of several variables whose gradient is known explicitly. Therefore the 

method is also of great interest as a technique for nonlinear optimiza­

tion problems. From a theoretical point of view the method is very im­

portant, since it is one of the simplest iterative methods for which a 

satisfactory analysis of the algebraic behavior exists. Many more ad­

vanced· methods, like the conjugate gradient method, are often motivated 

by an attempt to modify the basic GM in such a way that the new method 

will have superior convergence properties. 

As far as we know, Wofniakowski [BO] is until now the only one who gave 

a complete round-off error analysis for the TRGM in order to obtain 

assertions on the numerical behavior of the TRGM. our results on the nu­

merical behavior of TRGM, derived in this chapter are superior to those 

of Wofniakowski in two aspects. Firstly, we prove step-wi$e linear con­

vergence whereas WOfniakowski gives a result in terms of the limit 

superior. Secondly, we prove good-behavior, whereas Wozniakowski's 

result does not even imply numerical stability. 

No published round-off error analysis of RRGM is known to us. 
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The GM is defined by the following statements. 

Gradient method (GM) 

Choose an initial point x0 ; 

ro := b-Axo; i := 0; 

!!.h!!!, r i -f. 0 ~ 

begin 

(1) ai := (ri,ri) I (ri,Ari) 

(3) 

(4) 

{either b - Axi+l ; 

or ri - ai Ari ; 

i := i + 1 

end. 

(TRGM) 

(RRGM) 

We use either (3) at all steps or (4) at all steps, and thus disregard 

the mixed gradient method (HGM) (cf. remark 2.2.1). 

According to'the definitions (2.2.16), (2.2.17) and (2.2.8) we have 

algebraically 

2 
·1ai =llrill IICri,ri)l = 1, 

(5) 

Bi =II rill IIAi rill I CIIAIIII Cr
1
,r1 ) 1J !5: 1 1 

(6) yi =llrill
2

1<iiA-lriRIIAiriH) ~ 2K~I(~c::+l). 

From ],emma 2. 2.6 we also have B i ~ K -I and K- A s y i s 1. Consequently 1 

corollary 2.2.5 yields 

(7) 2 4K (K- 1)2 
=1-y S1- = -- , 

i (K+l)2 K+1 

which reflects the step-wise linear convergence to zero of the natural 

error with a convergence ratio no greater than (K- 1) I (K + 1). 

Another well-known algebraic property of ·the GM reads as follows. 
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THEOREM 1. If xi+l is computed j':l:tom one step GM, based on xi for whiah 

ri = b- Axi ;1.· O, then we have 

(8) 
IIA-1 ri+1112 

IIA-l rill 2 

2 -~ 2 4 
llrill IIA rill ( llr111 ) 

- 1 - 2 - ---r__;~...,....--::-

11 At rill 211A-l rill 2 
II A-! ri11 211A~ ril1 2 

PROOF. If, in the equality jt-x
1
+1 = x-xi -ai r

1
, we take squared 

norms at both sides we obtain 

2 i 2 -1 
Since ai =II rill /II A rill and x- xi = A ri we obtain (8) after some 

rearrangements. 

Since 

( 10) 

the following corollary of theorem 1 is valid. 

COROLLARY 2. If {xi} is generated by the GM, then the error aonvePges 

step-bJise lineal'ly to zel'O and 

D 

(11) 
llx- x. 111

2 
l.+ 

II x- x~l 2 

1 
1<: 

D 

REMARK 3. The GM is inv.ariant relative to orthO<JOnal basis transforma­

tions. Let {xi}, respectively {xi} be generated by the GM corresponding 

to the systems Ax = b, A'x' •b', respectively, with initial vectors x
0

, 

x0, respectively. If A' = VTAV, b' • VT b, x0 = VT x
0

, where V is an 

orthogonal matrix, then xi = VT xi for all i :::: 0. Since V is orthogonal 

this implies that also I!Aa(x-xi)ll =II (A')a(i' -xpll (a= 0,!,1>. D 
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In the next two sections we investigate the validity of these proper­

ties if the GM is performed usinq floating point arithmetic. RRGM is 

studied in section 2; TRGM is studied in section 3. In section 4 we 

report on numerical experiments carried out with the GM. 

3. 2. The 1LeCLI!r.6.ive lLU-id.u.at gJtati,i.e.nt method (RRGM) 

The results, deduced in this section, will be based on the results of 

section 2.3 for general RRDM's. The results obtained there are ex­

pressed in terms of the parameters ai, si and yi definedby {2.3.1.43), 

{2.3.1.44) and (2.3.1.4}. Therefore we have to estimate these param­

eters for RRGM. We arrive at exactly the same estimates (3.1.5) and 

{3.1.6) as in the algebraic case. The only difference is that now ri 

stands for the recursi~ely computed residual vector, whereas in the 

algebraic case ri = b- Axi. Hence 

As an immediate consequence of corollary 2.3.1.8 we obtain 

PROPOSITION 1. Let {ri} be computed by RRGM 'With an arbit:roa.ry initial 

maohine vecto'l' x
0

, then 'We have fozo i ~ 0 

(2) 4K 
~-1- {1+0{1)}, 

(K + 1) 
2 

unde'l' the 'l'l!tstl'iotion 

(3) D 

As a more explicit version we obtain from proposition 2.3.1.12 

PROPOSITION 2. Let {ri} be oomputed by RRDM 'With an a:r>bit:roa.ry initial 

machine veoto'l' x0 and let 
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one has 

(5) 1 - 5K 
4(K+1) 2 D 

As we mentioned already in section 1.3, for many straightforward im-
3/2 plementations there holds c1 - n and c1 ~ n. Hence in the left-hand 

side of (4) the largest term is of order n
312 K. 

As far as the computed sequence {xi} is concerned we only reformulate 

theorem 2.3.2.5 for RRGM. 

PROPOSITION 3. Let {xi}~ {ri} be aomputed by RRGM with an a:t'bit:r>ary 

initiaZ machine vector x0 and Zet N := ent(2K log 1/e: + 1}~ then we 

have 

under the restriction 

(7) D 

If II At (S!:- x
0

)11 ~ IIAilliiS!:II (which is the case for instance if x0 = 0 and 

IIA& ill "'IIAlllllxlll, then, apart from the (rather unimportant) factor 

log 1/e: (log 1/e: = 27.6 if e: = 10-12), we conclude from proposition 3 

that essentially IIAt(S!:-~)11 ~ e:(l+C 1 J~e 3121(A!IIIIlll• This is a very 

Qnsatisfactory result since A-numerical stability (cf. section 1.4) 

requires IIAi (S!:- ~)II"' e:K!IIA~I!IIill, which is a factor K smaller. Even if 

IIA!(x-x0JII:;; K- 1nAillllill, still I!Ai(:R-~lll,.., eKIIA!IIIIxll, which does 

not guarantee A-numerical stability. However, if K is not too large 

and if the required accuracy of the computed solution is not too high, 

one might decide to use RRGM instead of TRGM (which is well-behaved as 

we shall prove in the next section} because of time-saving. Besides of 

that, our numerical experiments (cf. section 3.4) indicate that esti­

mate {6) is unsharp by a factor ~el. 
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Most of the results deduced in this section are based on the results 

of section 2.4 for a general TRDM. We also state a result concerning 

the monotonicity of the error 1!2- xi n in the presence of round-off 

(for the algebraic case see theorem 3.1.1). 

In order to translate the result of section 2.4 for TRGM we have to 

estimate the parameters a
1

, Bi, y1 defined by {2.4.20), (2.4.51) and 

(2.4.52). If ri = fl(b-Ax1), ti = b-Axi and cpi := IIAUIIxiU/IIfill' 

then we conclude from lemma 2. 4. 1 and lemma 2. 2. 6, under the restric­

tion e(1 +C1cpi) .... O, 

a1 := llfillllrill I I (!'
1
,ri) I .. 1 +0(1) , 

( 1) 

81 := llfiiiiiAlrill /<IIAli!ICfi,rilll :!> ai = l+o(l), 

<2> y~ 1 
:= IIA-ifiiiiiAlriU /lct1 ,r1ll s ~elai ~ ~ei(l+o(l}l • 

Substitution.in (2.4.55) and (2.4.56) yields for the parameter vi+l 

of theorem 2.4.6 the inequality 

under the restriction 

Retracing the proof of (1) one finds that, if e s 1/40 and ec1cp1 s 1/4, 
l -1 then ai S 2 and consequently SiS 2, Yi ~ (2K ) • 

Combining this and proposition 2.4.8 we obtain the following e~licit 

version of this proposition for TRGM. 

PROPOSITION 1. If xi+l is computed from one step 'l'RGM based on an 

arbitrary mackins vector xi and if f'Ul'themore 

then ?Je have 
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(7) 

From this proposition we can draw conclusions similar to those we 

derived for TRGSM from proposition 2,4,10, which conclusions can be 

combined into the following statement. 

D 

PROPOSITION 2. If {xi} is genePC.ted by the TRGM UJith aroitra:l'y initiaL 

maahine veator x0 and if e:bJ(1 +c2 +C1t<)) + 2(1 +c2)} s 1/40_. then 

the natUPC.l. el'l"Ol' IIA i Ul:- xi) II converges step-UJise Unea:J:'Ly UJith a aon­

vergenae patio no greatel' than (1- (20K')- 1 l~ .. at Least untiL the iter­

ation step UJhe:re the :residual. satisfies 

(8) 

This implies that TRGM is well-behaved and consequently numerically 

stable and A-numerically stable (cf. section 1.4). 

D 

Note that (8) can be used as a stopping criterion, provided an estimate 

for II All is available. 

In theorem 3.1.1 and corollary 3.1.2 we stated the monotonicity of the 

error II~- xi II for the algebraic (TR} GM. One may ask what can be 

said about this monotonicity if TRGM is performed in floating point 

arithmetic. Without giving a proof (which is very similar to the proof 

of theorem 2.4.6) we state the following analogue of theorem 3.1.1 in 

the presence of round-off. 

THEOREM 3. Let xi+l be computed from one step TRGM based on an aroi­

tPC.X'1J maahine vectol' xi. Let fi := b- Ax1 and define 

(10) 

(11) 
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{12) 

under the restriction 

{14) 

From lemma 2. 4. 1 we obtain under the restriction e:K i { 1 + c11!J i) + 0 

(15) 

and 

{16) 

IIAi r 111 211A-l ~i11 2 

llr
1

11 2 11A-Itill 2 
(1 +o(l)) ~ ~e(l +o{1)) , 

Hence we have the following corollary of theorem 2 {cf. {3.1.11)). 

0 

COROLLARY 4. Let xi+l be computed ft'om one step TRGM based on an 

arbitrary machine .vector xi and let 1Pi be defined by (9). Then 111e have 

(17) :;; 1- ~ {1+0(1)) , 

under the restriction 

{18) 0 

One can prove that, if (19) and (20) {to be stated presently) are 
-1 

satisfied, then 0 < a1 < (14/10)K, fp1 f < (12/10) and lvi+ll < (7/10). 

Hence we have the following explicit version of corollary 4. 
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PROPOSITION 5. Let xi+l be aomputed from one step TRGM based on an 

al'bitr>aey maahine veator> xi and let wi be defined by (9). 

Funhe!'ITIOr>e:~ let 

(19} dK~(1+C2 +ClK!) + (3+C
2
)} S 4~, 

and 

(20} dl + Kl(l +2C
1

)}ljli S t t 

then '!Je have 

(21) 
1 

1 - "i'4K 0 

Consequently, if (19) is satisfied, then for TRGM the error II x- xi II 

converges step-wise linearly with a convergence ratio no greater than 

(1- (14~<:)-l)i, at least until the iteration step where the natural 

error satisfies 

(which implies that the monotonicity of the error cannot break down 

before the natural error reaches the level of the inherent natural 

error, cf. section 1.4), 

Now assume for a moment that e{Kl(1+C2 +c1~<:!) + (3+2C2)} s 1/40, 

then both (5) and (19) are satisfied. If at a certain step (22) is not 

satisfied, then it follows from proposition 5 that the error decreases 

at the step from i to i + 1. Given c 1 :<: 5, the nonvalidity of {22) also 

implies that IIACx-xi}ll > 8e(1+2C1l11AIIIIx1 11 :<: 8e{6+C1l11Ailllxill' Hence 

(6) holds and consequently, from proposition 1, then also the natural 

error decreases at the step from i to i + 1. We observe that this 

reasoning does not imply that the natural error decreases at least as 

long as the error. 

REMARK 6. Note that both (8) and (22) do not contain a term involving 

c2• Thus the round-off errors occurring at the inner product computa­

tions do not influence the values of the (natural) error and the 

residual at a step where the monotonicity of the error or the natural 
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error breaks down. On the other hand, restrictions (5) and (19) in­

dicate the allowable level if these round-off errors in order to have 

linear convergence. The round-off occurring at the inner product com­

putations only influence directly the value of the parameter ai: 

fl (ai) = ai (1 + oii) (cf. (2.4.66)). If oii = 0, then we have exact 

minimization of the objective function II Al Ut- x>11 2 along the line 

x = xi + ari. For oii ~ 0 the factor ( 1 + oii} can be regarded upon as a 

relaxation factor (cf. section 2,2}. Hence, as long as the inner pro­

duct computations are performed with an accuracy guaranteeing 

I oii I s; 1 - o, for some 6 f (0 ,1], then these computations do not af­

fect the monotonicity of the natural error but only the convergence 

speed. This explains why c2 does not occur in {5). By similar argu­

ments one can explain why c2 does not occur in (19). 0 

3.4. · NwnvUc.al. expe!Wnenh 

In this section we report on the numerical experiments that have been 

carried out with the GM. OUr main goal is to verify the validity of 

our analytical results deduced in sections 2 and 3. In addition we 

want to investigate whether and under which conditions the various 

estimates are best-possible or essentially best-possible in the sense 

that they contain the correct exponent of K. 

In section 1.6 we discussed t.ltree possible ways of constructing test 

problems and implementing a descent method: assembled implementation 

(AI), product form implementation {PFI} and artificial floating point 

implementation (API}. Before reporting on the results of the tests, we 

first specify further how these three ways of implementation are em­

ployed. 

Firstly, the matrix A= diag(A.1, ••• ,)n), containing the eigenvalues of 

A, has to be chosen. In our tests we used two different distributions 

for Ai: the logarithmi.caZ. distribution, where the ratio A.i+1 I A.i is 

constant for all i = 1, ... , n-1, and the equidistant distribution, 

where Ai+l-Ai is constant for all i = 1, ••• ,n-1. However, only very 

few tests have been carried out with the latter distribution and they 

did not bring in essentially different insights (from our point of 

view). Therefore, we do not report on these tests. We always choose 
-1 An= 1 {and hence A. 1 = K ). 

112 3.4 



Secondly, in the case of AI and PFI, the orthogonal matrix U of eigen­

vectors of A has to be chosen. In all our tests U was chosen as a 

product Urn := Hm • • • H1 of m Householder transformations 

(1) 

where the vectors h 1, ••• ,hm were chosen randomly in the sense that 

each component is a pseudorandom number from the interval [-1,+1]. 

REMARK 1. It is only the direction of hi that determines Hi. However, 

choosing each component of the vectors h1, ••• ,hm randomly from the 

interval [-1,+1] does not generate randomly directed vectors. If, for 

instance, n = 2, then in the square {ae1 + Be2 I a,B € [-1,+1]} there 

are "more" vectors with a direction angle between 'lf/4- 6 and 'lf/4 + 6 

than there are with a direction angle between - 6 and o. This implies 

that relatively fewer vectors will have a direction close to the one 

of e 1 or e2 than to the one of e 1 + e2 or e 1 - e2• For larger values of 

n this effect becomes more pronounced. In order to generate randomly 

directed vectors one can proceed as follows: generate a vector h by 

choosing its components randomly between -1 and +1; compute llhiiJ if 

llhll ~ 1, then the vector is accepted, otherwise the procedure is 

repeated. In our tests this refinement is omitted. 0 

In the case of AI the matrix A = fl{U AUT) is computed from the rela-
m m 

tion A= Hm ••• H1Aa 1 ••• Hm in the way suggested by Wilkinson ([65], 

section 5.30), where full advantage is taken of symmetry. 

In the case of PFI we do not use the computed matrix A for matrix by 

vector product calculations, but tpese products are computed straight­

forward (from right to left) from the relation Ax= Hm • • • H1 AH1 • • • Hm x. 

The choice of U does not apply to the case of AFI, since then we have 

U = I. 

Finally, the vectors b and x0 have to be chosen. This is done in the 

way as mentioned in section 1.6. We choose machine vectors s and e and 

next, for AI and PFI, we compute X= fl(U s), b = fl(Ax), 
m 

x0 = fl {x- Urn e) , where the matrix by vector products are based on PFI, 

whereas for AFI we compute b = fl (As) , x0 = fl (s -e) • 

In all our discussions of numerical results in this section the symbol 

A stands for the matrix fl(U AUT}. With respect to AI and PFI this is m m 
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the machine matrix computed in the way just mentioned; for ~ this is 

the machine matrix A. The symbol b stands for the machine vector b. 

If we display the values of Fi,a := fl (IIAa(x -xi) Ill (a = O,l,ll, when 

reporting on numerical results, then, for AI and PFI these values are 

computed according to the formula 

(2) Fi := fl(lffl{Aa-lu !fl
2
(b-Ax.)))ll). ,a m 1 

Here vi := fl2 (b-Axi) denotes the vector with components computed in 

double length precision (with 2t-digit mantissae) and rounded to 

single length precision. Note that consequently we also need the 
a-1 assembled A for PFI. The computation of wi := fl (A u v.) ,a m 1 

(a= o,ll is based on product form implementation. 

If we display the values of Fi (a= O,l,1l for AFI, then these ,a 
values are computed according to the formula 

REMARK 2. One may ask how many significant figures one obtains if 

IIAa(x-xi)ll is computed from (2). To this purpose one can show that, 

for .some c 3 depending only on n, 

where fi := b- Axi and 

(5) 

If we assume that for any machine vector v 

(6) 

where 
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Consequently, 

(9) llwi II .. IIAa-l fill (1 + n. l , ,a ~,a 

where 

1-a 
under the restriction £(C3 +CaK ) + 0. 

If the calculation of the norm is performed in such a way that the 

relative error does not exceed C 4 ( 1 + 0 ( 1)) , under the restriction 

c4£ + 0, then we finally obtain 

where 

under the restriction 

(13) 

If we define ca := 0 for a = 1, then (13) also holds for a = 1. Now, 
a-1 

if for some constant K, one has llfill ~ e:KIIAIIIIx111, then IIA fill :2: 

~ e:KIIAallllx.ll 
~ 

follows that 

and hence in that case, under the restriction (13), it 

This inequality indicates that if the residual is not essentially less 

than the inherent residual, then, using (2), the error, the natural 

error and the residual are computed with a relative error of order e:K, 

£K!, e:, respectively. D 
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REMARK 3. Consider the case of AFI, where Fi ,a is computed from (3) • 

If llb-Axill :2: oKIIAIIIIx
1

11, then one has for lli,a as given in (11) the 

estimate 

(15) -1 1-a ll..t i, a I ::> e: ( C 4 + ( 4 + (K6) h: ) ( 1 + o (1)) , 

under the restriction e: ~ 0. Consequently, if the residual is not 

essentially less than the inherent residual (corresponding to machine 

precision o), then, using (3), the error, the natural error and the 

residual are computed with a relative error of order (e:/4)~, (e:/6)~!, 
(e:/6), respectively. 0 

3. 4. 1 • The tJtue Jte.t..Lciua.t gJta.cUen.t method 

From proposition 3.3.1 it follows that, if at a certain iteration step 

we have IIA!(x-XJt+l)ll;:: IIA!UI:-XJtlll, then the residualiiA(l-~)11 is 

of order e: IIAIIIIXJt II. Of course, in the tests the exact value of the 

natural error is not known. However, we can compute the approximate 

value Fi,! from (2) or (3). Therefore the TRGM iterations are stopped 

as soon as Fk+ld :2: Fk,l' ;'-'he values of Fk,O' Fk,i' Fk,l are referred 

to a.s pseudo rrrinimal eZTOr, pseudo rrrinimal natural eZTOr and pseudo 

rrrinimal residual, respectively. 

REMARK 1. One may ask whether Fk+1,i ~ Fk,! also implies that 

lltkll = IIA(l- '1t) II is of the order €11AIIIIXJtll c€ = e: or € = o). If also 

IIA-l fk+
1

11 ;:: IIA-l fkll, then this is obviously true (cf. proposition 
-l -1 

3.3.2). Now assume that Fk+ld ~ Fk,! and IIA fk+lll < IIA fkU. 

In the case of AI or PFI it then follows from the analysis of 

remark 3.4.2 that 

(1) 

where 

(2) I til ::;; 2e:{c4 + ({1 +Cj)fiA~UNfill + 

+ e:c3~li1Ajllllx1Ul /IIA-1 fill} (1 +0(1)) , 

116 3.4.1 



to definition (2.4.8), cpi :• IIAIIIIxill /llfill. From section 3.3 we know 

that 

(3) 

-1 
where yk is defined by (3.3.2) and vk+1 satisfies (3.3.3) under the 

restriction eb:l (1 +c
2 

+C
1
Kt) + (1 +C

1
)cpk}-+ 0. 

Combining (1) (for i = k,k+l) and (3), and assuming IIA-! tk+
1

11 < 

< IIA -! tkll one can prove that . 

{4) 

where l9k+ll = 0(1) under the restriction 

(5) 

Consequently, Fk+1,l ~ Fkd implies vk+l :S -1+0(1) under the restric­

tion {5). A similar reasoning as given in section 2.4 leads to the 

conclusion that IIA(i-~)11 is of order e!IAIII!~Il if 

e{C2K~ + K(l+C +C1 +C3 +c4)} is small and Fk+l,t ~ Fk,r 

In the case of AFI one can prove that F. 1 satisfies (1) where 
~.2 

under the restriction e{ c 4 + K! + K! 4p i} -+ 0. 

Combining this result (for i • k,k+l) with (3) (where, in all expres­

sions involved, e has to be replaced by .the artificial machine preci­

sion 6), one can prove that (4) holds with ek+i = o ( 1) under the restriction 

(7) o{K~(l+C2 +C1K~) + (1+C
1

)cpk} + eK{l+C
4

+cpk} _,. 0. 

Hence, similar to the case of AI and PFI, the inequality Fk+1,! ~ Fk,! 

leads to the conclusion that II A (x - ~) II is of order o II All II~ II if eK < cS 

and if o{c
4 

+ K~{1+C2 +c1 K~)} is small. 

In summary, for all three kinds of implementation .the inequality 

Fk+l,! ~ Fk,! leads to the qualitatively same conclusions as the 

inequality 
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D 

The influence of m 

In order to investigate the influence of the value of m on the pseudo 

minimal (natural) error and the pseudo minimal residual for AI and 

PFI, we performed several tests with fixed dimension n, fixed loga­

rithmical eigenvalue distribution and fixed eigenvector components s 

and e of the solution vector i and the initial error vector i- x0 • We 

only varied the number m of Householder transformations and the 

Householder vectors h1, ••• ,hm. In order to invoke different round-off 

errors we chose ten different sets of random vectors {h 1, ••• ,hm} for 

each value of m. 

The results in table 1 are obtained for the case where n • 30, 
2 -2 2/29 

k • 10 C\ = 10 , :>..j+l/:>..j = 10 ,... 1.17), ej/ej+l • sj/sj+l 
-3 . -6 =10 (J=1, ••• ,29),11sll=l,llell=10. 

Each pair of columns gives the smallest and the largest observed 

values (of the ten test problems for each value of m) of the measured 

quantity indicated on top of the table and computed according to (3.4.2) 

or {3.4.3).- In all cases ~t iteration step k (defined as being the 

first step for which Fk+1,! ~ Fk,i) there hold lll~Jtll- 1 (= llil(). 

m k UX-:~1 IAjUt-~lll IIA(t:-~lll 

1 13 139 6.1 10-12 1.510-to 1.21 0-12 1.810-11 s.610-t3 3.910-12 

5 9 28 l.lto-10 J.Oto-10 1.2to-11 4.310-11 2.010-12 a.ato-12 
10 a 2a t.3to-to J.Oto-to 1.9to-11 4.410-11 4. 71Q-12 9.ato-12 
15 15 27 1.610-10 2.110-to 2.410-11 3.a10-11 5.410-12 9.1to-12 

30 13 26 2.01o-to J.o10-1o 2.5 10-u 4.1to-11 s.5to-12 1.1to-11 
100 14 24 t.7to-10 3~6 10...;to 2.4}o...;u ·· 4~8tH1. 6.310.,-12. 9.9to-t2 

1 6 93 1.210-11 2.s10-1o 1.110-12 3.210-11 9.510-13 5.910-12 

5 a 17 2.21 o-10 5.310-10 2.a10-11 6.4to-11 6.a10-12 2.4to-u 
10 8 18 4.6J0-10 8.3 10-to 6.010-12 1.1to-10 1.310-11 2.3 10-11 

15 5 13 5.710-1o 1.3IQ-9 9.110-11 1.710-to 2.210-u 4.81o-11 
30 5 14 1.1 10-9 t.61o-9 1.110-to 2.410-10. 4.1to-11 6.3to-H 

100 3 7 1.9to-9 4.31o-9 4.6t0-to 6.510-to 1.6to-10 2.41 0-to 

TABLE 1. The influence of m 
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From the upper half of table 1 we see that in the case of AI the 

results hardly depend on m if m ~ 5. Only the case m • 1 seems to be 

special in the sense that the range of k is essentially larger and the 

lower bounds for IIAa(~-~)11 (a= o,l,1l are significantly smaller. 

We believe that this difference occurs because the matrix u, based on 

only one Householder transformation, is in general diagonally dominant 

and in fact close to the .identity (note that u1j • 6ij - 2 hi* hj I (h,hl, 

where 6
1

j is the Kronecker delta). Consequently A is close to A which 

causes an atypical round-off behavior at the matrix by vector product 

computations. 

Apparently, in all cases of table 1, based on AI, one has for 

a .. o,l,l 

(8) j
iiAa(x-~}11 

g
0 

= o.s , 

which agrees with the good-behavior of the TRGM. 

From the lower half of table 1 we see that in the case of PFI the 

pseudo minimal values increase as m increases. Since an increasing 

number of Householder transformations involves an increasing number of 

arithmetical operations, the constant c1 increases as m increases and 

therefore this result is not suxprising. Another observation that can 

be made in connection with the value of m is that for small values of 
T m the round-off vector Ex, defined by fl(Ax) = (UmAUm +E)x, lies more 

or less in a subspace of at most dimension 2m. The subspace only de­

pends on A and not on x. Therefore the vector Ex certainly is not 

randomly directed for small values of m. In order to identify this 

2m-dimensional subspace we first state the following lemma without 

proof. 

LEMMA 2. Let um := Hm • •• H1> rJheN Hi az>e Househo'lde:ro t:roanafo:romations 

based on ~it:roary maehine vector-s h1 (i = l, ••• ,m), and ~et x be an 

~it:roa:roy machine vector-. If fl cum X) is computed by p:rooduat form im­

p~ementation, then r.1e have 

(9) 
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(10) 

(11) 

liE II s 3me (1 + o ( 1)) 1 m 

Ia (!}I s 4(n + l)ellxll (1 +O (1)}, 
m 

unde:P the reatr>iation (m + nl e -+ 0 • 

(! .. 1, ••• ,m) , 

D 

The vector Emx is more or less arbitrary and IIEmxll s 3mellxii(1+0(1)). 

Each vector e~t) Hm ••• H!+1 h! /ILh,ell R. points into the direction 

Hm•••HR.+lht (! .. l, •• ·.,m), and lie!) Hm•••h111/!lh
1

11 S 4(n+1)ellx!l. 

Consequently 1 if m < n, then the vector fl (Um x) - Um x is more or less 

an arbitrary vector in the subspace spanned by 

Hm ••• H2 h 1 , Hm ••• H3 h2
, ••• ,hm of dimension mat most, which actually 

is identical with the subspace spanned by h 1 , ••• ,hm. In particular, if 

m .. 1, then (fl (Um x) - um x} is parallel to h
1

• The assertion (9) can 

also be written in the more convenient form 

where by lemma 2 it follows that 

( 13) liE II s m(4n+7}e(1+o(1)) , 
m 

under the restriction (m + p) e -+ 0. 

The complete product form computation of fl(Ax) satisfies 

(14) fl(Axl = (U +E"}A(I+D)(U~+E 1 )x"' (U AUT+E)x, 
m m m m m m 

where E' and E" satisfy (14}, !of :S ei and hence m m 

(15) IIEII s m(8n+15)eJIAII<l+o(1)), [ (m + n) e -+ 0] 

Similarly to the previous considerations it follows that, in case 

m < n, the vector Ex is more or less an arbitrary vector in the sub­

space spanned by h 1, ••• ,hm,Ah
1

, ••• ,Ahm of dimension at most 2m. In 

particular, if m"' 1, then Ex e span{h
1

,Ah1}. Hence for small values 
T 

of m the product form implementation of UmAUm x certainly not agrees 

with the real-world implementation where Ex is randomly directed. 

Apparently, in all cases of table 1, based on PFI, one has for 

a= O,l,l 

(16} j 
IIAa(R-~lll 

90 ... s .9 , 

120 3.4.1 



which agrees with the good-behavior of the TRGM. 

The influenrJe of the eigenveatoro aomponents of x and x- x0 

Algebraically, the sequence {x- xi} obtained by the GM only depends on 

the matrix A and the initial error vector :R- x
0

, but not on :R. In 

order to investigate this for the numerical process, at least as far 

as x- x
0 

and x are concerned, we did several tests, only varying the 

eigenvect;:or components of SC- x
0 

and :it. 

As mentioned before, these eigenvector components are controlled by 

machine vectors e and s, respectively. For both vectors we experimented 

with three different distributions, viz. sj Is '+l, e1 I e .+1 = 
3 -3 J 3 J ~ = 10, 1,10 (j = l, ••• ,m-1). In case sj lsj+l = 10 the vector x 

points into the direction of the eigenvectors corresponding to the 

small eigenvalues and therefore this vector is called a small-or-iented 

veatoro. Similarly, a vector that points into the direction of the 

eigenvectors corresponding to the large eigenvalues is called a Zaroge­
oroiented veatoro, and a vector with more or less equal eigenvector 

components is called an un-oriented veator. For each of the six com­

binations of distribution of the components of s and e, as indicated 

in table 2, we performed five different tests based on PFI. These 

tests are different in the sense that we chose different sets of 

random vectors {h1, ••• ,h} in order to invoke different round-off 
m 4 

errors. In all cases n = 20, m = 5, K = 10 , llsll = 1, 

II A i ell ( = II A! (it- x
0

)11) = 10-6 • Just like in table 1 each pair of 

columns presents the smallest and the largest observed value in the 

five tests and furthermore in all cases it turned out that uxklf ~ 1 

<= llxll>. 

k e/":!+1 s/sj+l u- "ka lA! (lt- "k)l Rll(l! -"klll 

1180 6042 to3 103 1.1 10-a 5.610-a 1.4to-10 6.010-to 2.s10-12 9.710-12 
1252 4133 103 1 4.910-e 1.21 0-? s.210-2o 1.2!o-9 1 .o10-12 L4to-11 

362 10451 to3 to-3 6.s10-a 4. 210-7 4.210-to l.e10-9 9.o10-12 s.1 10-11 

1180 6042 103 to3 1.1 10-a 5.610-8 1.4to-10 6.0 10-10 2.s10-12 9.7to-12 
12859 14732 1 103 1.o10-8 3,410-8 1.1 10-10 6.010-10 2.3to-12 6.810-12 

2 55 to-3 103 4.810-9 2,010-e 6.2to-,11. 2.0to-10 2.o1o-12 4.Eilo-12 

TABLE 2. '1'he influsnce of the eigenvector' components 

3.4.1 121 



The difference between the values of IIAa(x-"'k)ll,~ (a= O,L1l in the 

upper half of table 2 where only the eigenvector components of the 

solution vector x are varied, are rather small. Hence we conclude that 

the direction of x does not affect the pseudo minimal values, although 

the values of 11 A a {x- "'k} II, (a = 0, ~, 1} seem to be slightly larger in 

case x is larger oriented. More pronounced is the wide range for the 

value of k in the case of large-oriented vectors x. We have no satis­

factory explanation for this phenomenon. 

From the lower half of table 2, where only the eigenvector components 

of the initial error vector x- x0 are varied, we see that the values 

of II A a (x - "'k) II , (a = 0, L 1) do not depend on these components, but the 

number of steps needed to reach these values strongly depends on these 
I -6 components (note that in all cases initially II A (x- x0) II = 10 ) • For 

the cases where x- x
0 

is either large- or small oriented, the conver­

gence appears to be faster than in the un-oriented case. This can be 

explained as follows. In the oriented cases the initial natural error 

A! (x- x0) essentially belongs to an invariant subspace of relatively 

small dimension, spanned by eigenvectors associated with either small 

or large eigenvalues. Hence it seems as if we are solving a linear 

equation of lower dimensiop and with a smaller condition number (the 

quotient of the extreme eigenvalues corresponding to the subspace in­

volved), and this has a favourable influence on the initial conver­

gence behavior. 

As far as the two oriented cases are concerned, the convergence ap­

pears to be faster in the large-oriented case {l.o. case). From our 

experiments it turns out that this is mainly caused by the much 

stronger decrease of the natural error in the first step. If no round­

off would occur one would have (cf. theorem 2.2.2) 

( 17) 

where 

II A~ (x- x
1

>11 2 

IIAI(x-x
0

>11 2 
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It can be shown that (1-y~)i ~ 8lo-4 for the small-oriented case 
~2 i (s.o. case) and (1 -y0J ,... 3lo-4 for the l.o. case. Consequently, the 

algebraic decrement of the natural error hardly differs for the two 

cases and hence the slower decrease for the s.o. case in the first 

step is due to round-off. In the presence of round-off the analogue 

of (17) reads 

(20} 

where 

(21) 

(22) 

IIA!O't-x1>11
2 

IIAl (x- x
0

>11 2 

and wbare v1 satisfies (3.3.3} under the restriction (3.3.4) and f 0 is 

defined by (19). From lemma 2.4.1 it follows that 

(ro,ro> 
• 1 + 0(1) 

Cfo,ro> 
(23) 

IIAj r
0

11 
1 + 0 ( 1) 

IIAi r
0

11 

where cp0 :• 11AIIIIx011 /IIACi-x0>11 and x0 := IIA312UIIx011 /IIA312 ci-x0JII. 

-8 -10 
For thf s.o. case we have cp0 = 10 , x0 = 10 and as a more explicit 

version of (23) one can show that for this case one approximately has 

(24) 

-6 For the l.o. case we have cp0 = x0 = 10 and as a more explicit ver-

sion of (23) one can show that for this case one approximately has 

(25) 

As far as v1 is concerned, the estimate (3.3.3) suggests that v1 is 
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larger for the s.o. case. However, the basic estimate (2.4.55), which 

still contains the parameter ai, contradicts this expectation because, 

although fllo is a factor 102 larger, the parameter ao is a factor 102 

smaller for the s.o. case. For both cases one can show that 
2 lv11 $;4Io-5. Hence, forthes.o. case (1-y0 (1+v

1
)) canbeoforder 

2 
c 1 1o-1 and for the l.o. case (1-y0 (1 +v

1
)) can be of order c 1 1o-5, 

which explains the difference in decrement of the natural error in the 

first step for the two cases. 

Of course, A~ (i - x
0

) does not belong exactly to an invariant ·subspace of 

lower dimension. In the s.o. case the eigenvector components of Ai (SI:- x
0

) 

associated with the large eigenvalues are reactivated by the GM. 

Therefore the difference in speed of convergence between the s.o. case 

and the u.o. case is restricted to the first steps. This is illustrated 

in figure 1 where the values of II A a (x- xi) II (a = 01 I 1 1) are plotted for 
3 

a test problem with ej I ej+l = 10 and a test problem with ej I ej+l = 1 

(in both tests sj I sj+l = 103). The initial values II {SI:- x0) II, 

IIA~(x-xo>ll, IIA(x-xo>ll are lo-4, Io-6, 10-8 and 2.8lo-6. lo-6, 

S.Olo-7, respectively, whereas k is 5942 and 12859, respectively. 

We see that after the first 3000 steps the rate of convergence of 

IIA i (x- xi) II is approximately the same for both tests. In both cases 

there holds for all i ~ 3000 

0.9997 $; 
11Ai(St-xi+1>11 

IIAl(x-xilll 
5 0.9998 , 

and hence the convergence ratio varies between 1 - 3lr:. and 1 - 2lr:.. 

Algebraically we know that ~e convergence ratio is no greater than 

(r:.-1) I (r:.+l)- 1-2/K (cf. (3.1.7)). The proof of this result is 

based on the Kantorovich inequality applied to the residual vector ri, 

viz. 

(26) 

$ l _ 4K (tc - 1)2 
(tc+1)2"' tc+l I 

with equality iff ri is a multiple ,of the vector u1 +un or u1 -un' 

where ut are eigenvectors of A. In the two tests the residuals ri 
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(i :?: 3000) appeared to be_more or less un-oriented. Therefore it is not 

surprising that the convergence ratio in the tests is slightly better 

as indicated by the algebraic upper bound. 

In the case of an exactly un-oriented residual vector, ri being a 

multiple of the vector E~=l u~, the Kantorovich quotient 
4 -~ 2 ~ 2 llrill I (IIA rill IIA rill ) would be approximately 60/K for the test 

matrix A with logarithmical eigenvalue distribution and K = 104• This 

would give rise to a convergence ratio 1- 30/K. Hence, there seems to 

be somewhat more structure in the distribution of the eigenvector com­

ponents of r 1 , namely such that the Kantorovich quotient is approxi­

mately 60/K 

Apparently, for all cases of table 2 one has 

which agrees with the good-behavior of the TRGM. 

Figure 1 also confirms our result (cf. proposition 3.3.5) stating that 

the error llx:... xi II converges step-wise linearly with a convergence 

ratio no greater than ( 1 - 1/K ( 1 + o ( 1)) as long as the natural error 

has not attainedthelevel of the inherent natural error. 

The influence of K 

A well-behaved method has the property that II A a (SC- ~)II :~> 
1-a a · t 

~ gae:K IIA 1111~11 (a= 0,2,1), where ga only depends on a, e: and the 

dimension of the system. In (8), (16) and (27) we presented already 

the values for 9a following from the previous tests. The differences 

between these values of ga (for the same value of a) are due to the 

implementation, the values of m and n, and the choices for s and e. 

In order to eliminate these.influences we performed 25 tests based on 

AFI, with fixed n, s and e, but with a variable condition number K, 

viz. K = 10P (p = 2, 2.5, 3, 3.5, 4). We performed five different 

tests for each condition number; different in the sense that we in­

voked different artificial round-off errors (cf. section 1.6). The 

results in table 3 are obtained for the case where n = 20, sj I sj+1 = 
= ej/e. 1 = 10

3 
(j = 1, ... ,19), llsll = 1, llell = K*l0-

2, with arti-
J+ -7 

ficial relative machine precision o = 10 • The displayed values have 
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to be interpreted in the same way as in the two previous tables, each 

line corresponding to five tests. 

1<: k lilt - "k" II AI !x -XJclll IIA{x-l!Jclll 

102 105 120 9.9to-6 L4to-s 1.210-6 1.610-6 2.310-7 J.o10-7 

to2.5 333 360 3.910-s s. 21 0-s 2.610-6 3.410-6 2.4to-7 2.810-7 

103 847 1100 Llt o-4 1.910-4 5.010-6 7.310-6 2.4to-7 3.1 10-7 

to3.5 3131 4717 s.t 10-4 7.o10-4 l.OHI-5 1.3to-s 2.6to-7 2.110-1 

104 20768 26608 2.310-3 2.310-3 2.3 10-,s 2.110-,s 2. 710-7 3.o10-7 

TABLE 3. The influence of oc 

Table 3 shows that in all tests for a= O,i,l we have 

where (1) ga 0.99 and g~2 ) = 3.1, which agrees with the good-behavior 
(1) 

of the TRGM. Somewhat striking is the fact that the constants ga , 
(2) ga both systematically slightly increase asK increases (a= O,!l. 

The infl-uence of the basia al"'lthmetiaaZ operations 

From proposition 3.3.2 and remark 3,4.2 it follows that, if&, c1, c2 
and K are sufficiently small, then the pseudo minimal residual is at 

most of order e ( 1 + c1) II All U ~U , and consequently the pseudo minimal 
1-a a (natural) error is at most of order e (1 + c 1) K II A 1111 ~II (a = 0, ~) • 

This implies that the pseudo minimal values do not depend on the 

constant c 2 , corresponding to the round-off errors occurring at the 

inner product computations. In order to verify this we performed 40 
3 

tests, based on AFI, with n = 20, sj I sj+l '" ej I ej+l == 10 

(j • 1, ••• ,19), llell = llsll = 1, K = 104 fixed for all tests. We only 

varied the (artificial) relative machine precision of the various 

arithmetical operations. Furthermore, we distinguished between three 

types of arithmetical operations like we did in the round-off error 

analysis, viz. the dyadic arithmetical operations +, - (both for vectors), 

* (for scalar by vector), I (for scalars), the matrix by vector 

product operations (c1l and the inner product operations <c2}. Each 

of these three types is performed either with artificial relative 
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-7 machine precision 5 = 10 (implemented in the way as described in 
-11 section 1.6) or with artificial relative machine precision e = 10 

If some type of arithmetical operation is performed with precision 6, 

then the arithmetical operations performed with precision e can be 

regarded upon as being performed exactly (which means c1 = 0 or c2 0 

in the appropriate cases), The results are written down in table 4. 

The first three columns indicate the relative machine precision for 

each of the three types of arithmetical operations, whereas the other 

columns indicate the smallest and largest observed values (of the five 

tests for each case), as in the previous tables. Again it turned out 

that in all cases II "k,ll ... 1 • 

A*v 
+ -
* I 

(v,w) k Ill< "kll IJAj(l< "klll IIA<x- "klll 

15 0 0 3955 12942 2.610-3 3.t 10-3 2.6 10-s 3.1 10-s 2.a10-1 4.0 10~7 

15 ll £ 5683 9728 2.4 10-3 3.0Jo-3 2.4 10-s 3.o1o-5 2. 7to-7 3.3to-7 

5 E 15 6284 10707 2.410-3 2.6 10-3 2.4 10-s 2.6 10-s 2.1 10-1 3.lto-7 

0 £ E 6675 12628 2.31 0-3 2.7 10-3 2.3 10-s 2. 7 10-s 2.6Jo-7 2.9to-7 

£ 15 15 4 219 s.s10-4 6. 210-4 7 .o10-6 7.910-6 1.2 10-1 1.6Io-7 

£ 0 e 26 240 5.4 10-4 6.2 10-4 6.9to-6 7.s10-6 !.3to-7 !.Sto-7 

e E ll 20506 23104 l.Sto-7 I.Sto-7 2.010-9 2.3 10-9 2.s10-11 3.6to-11 

£ E £' 21516 23500 1.5!0'-:1 l.Blo-7 1.9to-9 2.3 10-9 2.Sto-11 3.610-u 

TABLE 4. The influsnce of the basic anthltl9tieal operotions 

We see that the results of each successive pairs of lines, where the 

relative precision of the inner product computations is either o or e, 

hardly differ. This confirms our analytical result that c 2 does not 

affect the pseudo minimal values. 

The very small differences between the first four lines where the 

relative precision of the matrix by vector product computations equals 

o, agrees with the analytical result that c1 has a main influence on 

the pseudo minimal valus. 

Comparing lines 5 and 6 (where the matrix by vector product operations 

are carried out with relative precision e = 10-11 and the dyadic 

arithmetical operations are carried out with relative precision 
-7 o = 10 ) with lines 3 and 4 (where we have the opposite case}, we see 
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that the pseudo minimal values are slightly smaller in the first cases. 

This can be explained by the fact that round-off due to matrix by 

vector product operations is proportional to c1o cc1 ~ nl), whereas 

round-off due to the dyadic arithmetical operations is proportional to 

o. somewhat surprising is the extremely fast convergence in the first 

cases. Similar to the tests of table 2, this is mainly due to the much 

stronger decrease of the natural error in the first step, which is a 

consequence of the fact that y0 defined by (18) and y0 defined by (21) 

differ less in the first cases. 

For a more detailed explanation see the discussion concerning (17) 

and (20). 

The results presented in the last two lines of table 4 differ by a 

factor of the order 10-4 from the results presented on the first two 

lines; this is just as one would expect, since the corresponding 
-4 relative machine precisions also differ by a factor of the order 10 • 

Since in all 

a factor 103 

j -2 tests II A (:It- x0) H = 10 , the natural error decreased by 
7 in the tests of the first two lines and by a factor 10 

in the tests of the last two lines. This explains why more steps are 

needed in the tests of the last two lines. 

3. 4. 2. The. Jr.e.c.wu..i.ve. Jr.U.i.du.al gJt.a.cU.ent method 

As far as our analytical results for the numerical behavior of the 

RRGM are concerned, the most striking result is the step-wise linear 

convergence to zero of the natural error It A- j r i IT • We performed several 
-8 tests with the RRGM, based on PFI (m = 5) and AFI (o = 10 ) , varying 

the dimension n (20 s n s 50), the eigenvector components sand e 
3 -3 -1 -6 

(sj /sj+1, ej /ej+1 10 , 1, 10 , llsll = 1, 10 s neu s 10 ) and 

the condition number K (102 s K s 104). In order to avoid underflow, 
-22 the iterations were stopped as soon as llrill s 10 • In all cases this 

level was attained. 

From our tests it was hard to conclude anything about the influence of 

the dimension non the numerical behavior of ri. 

Varying the eigenvector components e of the initial error vector only 

affected the convergence ratio of IIA-j rill in the first (hundreds of) 

steps. Varying the eigenvector components s of the solution vector 

hardly caused any difference in the numerical behavior as far as ri is 
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concerned. Varying the condition number affected the convergence ratio 

during all iterations, as was to be expected. In all cases, after some 

hundreds of steps, the convergence ratio of the natural error IIA-~ rill 

varied between 1 - 4/K and 1 - 2/tt:, indicating that the initial orienta­

tion of the recursive residuals dies out and changes to an orientation 

that induces Kantorovich quotients varying between 8/K and 4/K (see 

the discussion concerning (3.4.1.26)). 

As far as the approximations {xi} are concerned we have the analytical 

result formulated in proposition 3.2.3. It states that at iteration 

step N := ent(2K log 1/E + 1) there holds 

under the restriction (3,2.7). In order to verify whether (1) is 

sharp, in the sense that it contains the correct maximal exponent of 

K, one has to test with large values of K to be able to distinguish 

between ~~: 312 , K, etc. However, the number N of iteration steps is 

proportional to K. The tests would cost a considerable amount of 

computing time. Therefore these tests were omitted. 

The result (1) has been obtained from the intermediate analytical 

result formulated in theorem 2.3.2.2. The inequality holds for all 

i ~ 0 and is expressed in terms of the residual vector f := b- Axi and 

the recursively computed residual vector ri. 

In the case of the RRGM the inequality reads 

under the restriction EK312cc2 + (1 +C1 )K~} + 0. For the natural error 

IIAj(x-xilll we have the estimate (cf. (2.3.2.30)) 
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Consequently, for small IIA-1 rill estimate (2) also holds with 

IIA-!(fi -ri)ll replaced by IIAi(t.-xi)ll. In order to verify whether (2) 

is sharp we performed a few tests based on API with artificial relative 
-a machine precision 6 = 10 in the way described in section 1.6. 

Similar to the TRGM the iteration steps were stopped as soon as 

Fk+l,! ~ Fk,!' We report on the results for only one typical test. 

These results are displayed in table 1 and were obtained for the case 
3 3 4 

where n = 20, sj/sj+1 = pj/pj+l = 10 1 llsll = 1, llpll = 10 1 K = 10. 

The iterations stopped at step k = 14244, 

i 112-xill II A! (t-x. lll 
1 

IIA(i-xi)ll IIA-! rill 

0 1.oo10+3 t.oo10+1 1.0010-1 1.0010+1 

1 6.43 10-1 7.6o10-2 5.11 10-2 7.5910-2 

2 6.33to-1 3.35 10-2 1.1310-2 3.3410-2 

3 6.2a10-1 2.5510-2 s.4o10-3 2.53 10-2 

12000 3.ao10-2 5.7610-4 2.8210-5 1.5910-4 

13000 3.5210-2 5.47 10-4 2.a1 10-s 1.1610-4 

14000 3.3110-2 5.27 10-4 2.s1 10-s 8.56 10-s 
-14244 3.2710-2 5.24to-4 2.at 10-5 7.95 10-s 

TABLE 1. The RRGM 

For i = 14244 and K = 104 the right-hand side of (2) is of order 
. -2 ! -4 I (2+C1)10 IIA (Sl:-xo>ll + 10 IIA nuxu and consequently, from {2) 

and (3) we obtain (approximately) the estimate 

(4) 

for the test of table 1. In view of the observed value of 

IIA! (i- x
14244

>n this seems to be unsharp by at least a factor K l. This 

can be explained as follows. In section 2.3.1, we derived from the 

step-wise linear convergence of the natural error (cf. corollary 2.3.1.8) 

the estimate (cf. (2.3,1.80)) 
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which next was used in section 2.3.2, in order to prove (2) {see 
-1 i e.g. (2.3.2.26)). For the RRGM we have y ;!;; (K+l) I (2K) (cf. (3.2.1)) 

so that from (6) it follows that approximately 

However, from the upper half of table 1 we see that in the first steps 

the natural error converges step-wise linearly with a convergence 

ratio that is much smaller than (1 -l> I - 1- 2IK and therefore (5) 

and consequently (7) is not sharp. For instance, if we only take into 

account the strong decrease of the natural error in the first step, 

then the following relations approximately hold 

s IIA-i r
0

11 2 + y-2 HA-i r
1
u2 (1 +o(l)) s 

s IIA-i r
0

11 2c1 + l~ei[A-i r 1n
2 I HA-l r 0tt 2> 

This implies that we gain a factor of order Kl in comparison with 

estimate (7). It is easy to verify that the main term in the right­

hand side of {2) can be lowered by a factor Ki when using estimate (B). 

As we can see from table 1, during the last thousands of iterations 

the convergence ratio of IIA'-i rill varies between 1-4IK and 1-3IK so 

that these natural errors hardly have an adverse effect on estimate {7). 

Since estimate (1) is based on estimate (2), the estimate (1) will 

also be unsharp by at least a factor K! in cases of much faster con~ 
vergence in the first steps. 
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REMARK 1. If in the test problem of table 1 we would restart the RRGM 

after the first step, which means that r 1 is not computed recursively 

but from r 
1 

= fl (b - Ax1) , then we expect the further results to be 

only slightly different from the results in table 1. Then applying the 

analytical result (2) to the case with initial vector x
1 

instead of x
0 

would yield a rather sharp estimate for II A I (x - x
14244

) II , since then 

the strong decrease of the natural error II A-I rill in the first step is 

evaded. 0 

The residual II A (x - xi) II seems to stagnate at the level 2. 81 o-5 and 

hence it follows from this example that the RRGM is not well-behaved. 
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CHAPrER 4 

THE CONJUGATE GRAVIENT METHOV ( CGMJ 

The CGM was first described by Hestenes and Stiefel [52] and proposed 

as an iterative method for solving a definite linear system. Almost 

immediately the technique was extended to more general problems in the 

nonlinear programming field, where it proved to be extremely effective 

in dealing with general objective functions. 

Algebraically, for linear problems, the CGM produces the solution 

x = A-lb after at most n steps, but it is only slightly more compli­

cated then the GM. In the presence of round-off, however, the n-th 

computed vector xn generally is not even a reasonable approximation to 

x if the system is ill-conditioned. This is caused by the fact that 

the algebraic orthogonality relations are disturbed by round-off 

errors. For this reason the method saw little use as a method for 

solving linear systems until 1970, when it was shown by Reid [70] to 

be highly effective on some large, well-conditioned sparse systems. 

The most recent application of the CGM in connection with large sparse 

systems is first to transform the original system into another equiva­

lent system that has a smaller condition and a more suitable spectrum, 

and next solve this preconditioned system by some version of the CGM 

(see e.g. Meijerink and van der Verst [77], Kershaw [78], Manteuffel 

[80]). 

Until now a few theoretical analyses have been carried out, explaining 

the numerical behavior of the CGM, but they are limited to an indica­

tion of some of the factors that influence the growth of round-off 

errors. As far as attainable accuracy is concerned, the only complete 

error analysis known to us at this time is given by Woiniakowski [80]. 

However, it analyzes a new version of the CGM, not contained in the 

paper of Hestenes and Stiefel [52], which is very closely related to 

the GM. 
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The CGM is defined by the following statements. 

Conjugate Gradient Method (CGM) 

Choose an initial point x
0

; 

Po := r
0 

:= b -Ax
0

; i := 0; 

while ri ~ 0 A pi ~ 0 do 

begin 

(1) 

(2) 

(3} 

(4} 

(5) 

(6) 

i := i + 1 

end. 

We use either (3) at all steps or (4) at all steps and hence we dis­

regard the mixed conjugate gradient method (MCGM) ( cf. remark 2. 2 .1) • 

In section·2.2 we stated already the basic idea behind the CGM: it is 

the conjugate direction method where the conjugate directions are 

chosen as an A-orthogonal version of the successive gradients. From 

the definition of bi it' follows immediately that pi+l' computed from 

(6), satisfies (pi+l'Api) = 0. The fact that pi+l and the other pre­

vious direction vectors p
1 

(t = O, ••• ,i-1) are conjugate with respect 

to A is stated in the following well-known theorem. The proof is 

straightforward, based on proving (i) and (ii) simultaneously by in­

duction on i. 

(i) 

(ii) (!- 0, ••• ,1~1) • D 
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In section 2.2 we established the following special properties of the 

CGM. 

{ii) 

(iii) 

(iv) 

(v) 

For the parameters ai, e1 and y
1

, defined by (2.2.16), (2.2.17) and 

(2.2.8) we found (cf. (2.2.44}, (2.2.45), {2.2.46)) 

II pill 
K ~ ' Bi 

IIA~ pill 
s 1 , ai =--< 

IIA~IIIIr1 11 llr
1

11 -

4 
2 II rill 

;;:: 4K 
yi 

IIA-l r
1

11
2DAI pi0 2 (K+1) 2 • 

consequently, from corollary 2.2.4 we obtain 

(8) 4K (K- 1)
2 

- (1<: + 1) 2 = K+T , 

0 

which reflects the step-wise linear convergence to zero of the natural 

error with a convergence ratio no greater than (K- 1) I (K + 1). 

From the next well-known considerations it will follow that the aver­

age convergence ratio of the natural error is no greater than 

{K~- 1) I (K~ + 1), which is essentially less than the convergence 

ratio. 
i 

Since xi+1 =xi+ aipi = x0 + ER.=Oa.tp.t and span{p0 ,p1, ... ,pi} = 

= span{r
0

,Ar
0

, ••• ,Ai r
0

}, there exists a polynomial Q1 of degree i 

such that xi+l = x0 + Q1 {A)r0 . As we observed already in section 2.2, 
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the residual ri+l and the conjugate direction vectors p0 , ••• ,pi satis­

fy (ri+l'p.) = 0 (j = O, ••• ,i) for every conjugate direction method. 
J I 2 · 

Since the objective function F (x) : = II A (i - x) II is a strictly convex 

function and VF(xi+l) = -ri+l' this implies that xi+l not only mini­

mizes F(x) along the line x = xi + api but on the whole affine set 

passing through x
0 

and spanned by p
0

,p1 , ••• ,pi • 

Since span{p
0

,p1 , ... ,pi} = span{r
0

,Ar
0

, ... ,Air
0

}, it follows that for 

any polynomial Pi of degree i there holds 

n 
Expanding i- x0 in eigenvector components x- x0 = l:t=t ~t ut, where 

u0 , .•• ,un are the eigenvectors of A, we obtain 

(10) 

for any polynomial Pi of degree i. Now select Pi(A) so that 

where 

. 2 1 i+l 2 j -i-1 
Ti+l (z) := H (z + (z - 1) 2) + (z + (z - 1) } } 

is the (i+1)-th Chebyshev polynomial (the formula for Ti+l(z) can be 

vsed for all z even though in some cases the intermediate quantities 

may be complex). For this choice of Pi we obtain 

In view of this we have 

THEOREM 3. If {xi} is generated by the CGM~ then the natural el'Z'Or 

satisfies 

138 4.1 



(13) 0 

Another well-known algebraic property of the CGM is the monotonic de­

crement of the error list- xi II. 

THEOREM 4. If {xi} is geneMted by the CGM~ then the el'P01' satisfies 

(14) 

0 

Bestenes and Stiefel [52] gave a proof of (14) using backward induc­

tion based on the fact that xi+l = x for some i < n. Kammerer and 

Nashed [72] gave a proof by forward induction, that is also valid in 

the Hilbert space case. Since llp
1

11 <: llr
1

11 and IIAl pill ~ IIA~ rill we have 

the following corollary of theorem 4. 

COROLLARY s. If {xi} is genemted by the CGM~ then the el'P01' convePges 

step~ise Zineaply to ze1'o and 

(15) ~ 1 
1 
K 

We note that, just like the GM, the CGM is invariant relative to 

orthogonal basis transformations ( cf. remark 3. 1. 3} • Furthermore, we 

observe that it follows from theorem 2(i) that ri+l ~ 0 implies 

pi+l ~ 0 and hence the CGM terminates because of the fact that 

ri+l = 0 as well as pi+1 = o. Consequently, the condition pi+l r 0 

could be left out in the stopping criterion. 

We conclude this section with another remarkable algebraic property 

of the CGM. Suppose we choose an arbitrary initial vector x0 , set 

r 0 := b- Ax0 and instead of setting Po := r 0 we choose an arbitrary 

initial vector p0 ~ 0 to start the CGM-iterations. Retracing the 

proofs in section 2.2 of the relations stated in theorem 2, it turns 

out that the relations (i), (ii) still hold fori<: 0 and that the 

0 
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relations (iii}, (iv} and (v} still hold for i ~ L Consequently, this 

so-called independent star-t conjugate gradient method (ISCGM} (p0 f' r 0J 

is a OM for which the parameters ai, ai and yi satisfy the inequalities 

stated in (7) for i ~ 1. Bence, apart from the first step, the natural 

error converges step-wise linearly to zero with a convergence ratio no 

greater than (K- 1) I (K + 1). As far as the first step is concerned, we 

have Yo := I Cr0 ,p0 l I I CIIA-6 r 0 1111A1 Poll> and consequently (cf. (i) oftheo­

rem2.2.2) IIA!(Sc-x1JII s IIA6(x-x0JII, with equality iff (r0 ,p0> = o. 
On the other hand, the results of theorem 3 and theorem 4 do certainly 

not hold for the ISCGM, since their proofs are strongly based on 

orthogonality relations like (ri,pj} = 0 (i > j}, (pi,APj) = 0 (if' j), 

and these orthogonality relations are based on the fact that Po = r 0 • 

The numerical importance of the ISCGM can be explained as follows. 

Suppose we have performed k steps of the CGM in the presence of round­

off. It is obvious that we may not expect the relations of theorem 2 to 

hold exactly. Without round-off, continuing the CGM after these k steps 

is equivalent to starting the ISCGM with initial vectors ~ and pk. 

Consequently, we may conclude from the previous considerations that at 

all these later steps the natural error converges step-wise linearly 

to zero. This can be considered as a stability property of the CGM: if 

after some iteration step the occurrence of round-off is exclude~ per­

manently, then from this step on the natural error converges step-wise 

linearly to zero. 

In Chapter 5 we deduce some more properties of the ISCGM and we also 

consider independent start versions of other variants of the CGM. 

In the next two sections we discuss the numerical analogues of the 

inequalities given in (7) which will next be used to prove a numerical 

analogue of the step-wise linear convergence reflected by (8). In 

section 2 this is done for the RRCGM; in section 3 this is done for 

the TRCGM. In section 4 we report on numerical experiments that have 

been carried out with the CGM where also remarks concerning the valid­

ity of theorem 3 and corolla;ry 5 in the presence of round-off are 

included. 
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4. 2. The Jte.eUM.ive. Jte4idual c.onjuga.te gJta.di.ent method !RRCGMI 

The results deduced in this section will be based on the results of 

section 2.3 for general RRDM's. The results there were expressed in 

terms of the parameters ~1 , Si and yi, defined by (2.3.1.43), 

(2.3.1.44) and (2.3.1.4). Therefore, we have to estimate these param­

eters for the RRGM. 

We first repeat the estimation of these parameters in the algebraic 

case, since the estimation in the presence of round-off proceeds along 

the same lines. 

Since, algebraically, A~ pi+l - b1 Ai pi =A! ri+l, where bi is chosen 

such that {pi+l'Api) = 0, it follows by taking squared norms at both 

sides that 

(1) 

or equivalently, 

(2) 

where 

In particular we have 

(4) 

Algebraically we have for any DM (cf. theorem 2.2.2(iii)) 

and since in the CGM pi+l 

(6) 

The formulas (4) and (6) are used to estimate the three parameters ~i' 

Si and yi in the algebraic case. According to the definitions we ob­

tain 
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~ KlfiAi pill I IIA! rill ~ Ki , 

(8) a1 := llr.IIIIAip.ll I OIA!fll Cr1 ,pilll = IIAip.ll I (IIAillllr.lll ~ 1, 
l. l. l. l. 

In order to estimate the parameters in the presence of round-off it 

seems necessary to investigate first the analogues of the formulas (4) 

and (6) and intermediately the analogues of (2) and (5). Observe that 

the algebraic relation (1) is quite similar to the algebraic relation 

{i) of theorem 2.2.2 whose numerical analogues are stated in theorem 

2.3.1, theorem 2.3.4 and remark 2.3.2. Therefore it is not surprising 

that the proof of the numerical analogue of (1) is similar to the 

proofs of these theorems. 

THEOREM 1. Let ri+ 1~ pi be two arbitraey nonzePo machine vectoPs and 

Zet pi+l be computed aacoPding to (4.1.5) and (4.1.6). FUPthermoPG~ 

Zet 

{10) 9 i := I (ri+l ,Api) I I ( IJAi ri+1 1111A l pi Ill • 

Then l<1e have 

(11) 

l 2 IIA pi+1 11 

IIAi r 112 
i+1 

undeP the PGstnction 

PROOF. The proof is entirely analogous to the proof of theorem 2.3.1. 

We only state the main intermediate results, that will also be used 

later on. 
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under the restriction 

The computation of pi+1 = fl (ri+1 +bi pi) satisfies 

(20) II Fi II ~ E , !I vi II ~ 2e: ( 1 + 0 ( 1)) , (E + 0] , 

and also 

under the restriction (17). 

From (18) we derive the basic formula 

(24) 1 - e~ + lli+t , 

where ei is defined by (10) and 

Using the former inequalities one can prove that (12) holds under the 

restriction (13). 

REMARK 2. Theorem 1 can also be written in a form closer related to 

expression (1). We have 

0 
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(26) 

where, according to (15), bi :=- (ri+l'Api) I (pi,Api). 

Consequently, (11) can be written as 

It follows in particular that, under the restriction (13), 

I
I!A~pi+lll s (l+C(l))IIA~ri+lll , 

(27) 

llbi A! pill ~ (1 +0(1JJIIAj ri+lll. 

Using (14) and (16) this yields, under the e~striction (13), 

Retracing the proof of theorem 1 and replacing all o-symbols by defi­

nite estimates involving explicit numerical constants, one can prove 

that l~i+ 1 1 s 7/40 if 

Hence 

{30) 

Furthermore, it follows that 

{31) D 

We now derive the numerical analogue of (6). In remark 2.3.1.16 we saw 

already that the orthogonality of ri+l and pi can be seriously disturb­

ed by round-off if IIA-~ riii/IIA-! r
1

+
1

11 is large. It is obvious that 

this loss of orthogonality influences the approximate validity of (6). 

THEOREM 3. Let ri, pi be wo a'!'bit'!'ary nonzero machiwa veators and let 

ri+1, Pi+l be aomputed from owa step RRCGM. Then we have 
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(32) 

PROOF. From {2.3.1.14) and (2.3.1.24) we obtain 

Hence, using (15), we get 

consequently, 

(37) 

where 

{38) 

From (25), (26), (27) and remark 2 of section 2.3.1 and from (28) of 

this section we obtain, under the restriction (34) 

(39} lbi (t5rf.+l'pil I lllri+111
2 ~ llbi Al p1IIIIA-i cSrj_+111 /llri+111

2 ~ 

~ llb
1

Ajp
1

ll{er<liiA-jr
1

11 + 

4.2 

+ (2er<jllaiAlp1ll +eC1r<llaiAjpill)(l+O(l))}/llri+lll
2 ~ 

~ er<! (3 +C1t<:j) IIAl r
1
+11111A-! rill I llr

1
+111

2 (1 +O (1)) ~ 

~ eK(3 +C 1~<:J) IIA-! r
1

11 I IIA-l ri+111 (1 + o(l)) • 

145 



From (19), (20) and (28) we obtain, under the restriction (34) 

From (2.3.1.21) and (28) we obtain, under the restriction (34) 

(41) loa~ b. (pi,Ap.l I /llr.+ 111
2 

s 
~ ~ ~ ~ 

Inequality (33) now follows from (38), (39), (40) and (41). 

A more explicit version of the result just derived is given without 

proof. We have 

0 

PROPOSITION 4. Let ri~ pi be two arbitrary nonzero maahine veators and 

let r1+
1
, pi+l be aomputed from one step RRCGM. 

If 

(42) 

then, in equality (3J), aertainly 

Once we have derived the numerical analogues of (4) and (6), it is 

easily seen that in the presence of round-off the parameters ai, B1 
and yi satisfy 
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(44} 
-1 i '(. s (K+l) I (2K ){1+0(1)) , 
~ ' 

under the restriction 

(45) + 0 • 

This implies that if IIA-! rill is not very small relative to IIA-! ri_
1

11 

(and e:K(1+C
2

+c
1
K!) is appreciably less than unity), then the bounds 

for ai, Bi and yi in the presence of round-off are close to the bounds 

for ai, Si and yi in the algebraic case. Consequently, it then follows 

from proposition 2.3.1.12 that IIA-lri+
1

11 < IIA-~r1 11. Stated different­

ly, if e:K (1 + c 2 + c1 K l) is appreciably less than unity, then 

IIA-! ri+
1

11 < IIA:-! rill unless IIA-i rill « IIA-i ri_
1

11. 

This justifies the expectation that eventually in all cases 

IIA-i ri+
1

11 < IIA-i r
1

_
1

11. Concrete form is given to this expectation in 

the following proposition. As in the case of a general DM we are not 

primarily interested in the fact that the numerical convergence ratio 

is close to the algebraic ratio if (45) is small, but we want to know 

under what explicit conditions the natural error II A-~ r .II tends to 
' ~ 

zero. Because of this a version of proposition 5 using a-symbols is 

omitted. We only state an explicit version. 

PROPOSITION 5. Let r 1_
1
, pi_1 be ~o arbitrary nonzero machine vectors 

and let 

(46) L := { 1 - 1~ K 2} f • 
(K + 1} 

Consider ~o successive steps of the RRCGM. If 

(47) 

then at least one of the following ~o inequalities 

(48) 
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(49) 

holds. 

2 -l 2 4 -l 2 
PROOF. Note that L ;:: 1-5/64 59/64. If IIA ri+lll S L IIA ri_ 111 , 

then we are ready. 
-! :.1. 4 -! 2 Let us now assume that IIA ri+lll > L IIA ri_111 • If (46) is satis-

fied, then (cf. remark 2.3.1.2) one certainly has IIA-l r. 
1

11 s 
I ~ 

s (11/10) IIA- rill and consequently 

11 4 < --<-
10L2 3 • 

Consequently, from proposition 4 and assumption (46) it follows that 

(50) 

where 

In view of (30) we furthermore have 

(52) 

Hence we obtain the explicit bounds 

(53) 

Consequently, the assumption of proposition 2.3.1.12 certainly is 

satisfied and we conclude 

(54) D 

REMARK 6. Since in proposition 5, ri_ 1 and pi-l are arbitrary, the 

assertion given in (48) and (49) holds for all i ;:: 1 not only for the 
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RRCGM, but also for the RRISCGM, as introduced in section 4.1. Proposi­

tion 5 indicates that if in a certain step the natural error does not 

decrease by a factor L, then it did decrease by at least a factor L2 

in.the last two steps together. It is easily seen that the assertion 

given in (48) and (49) implies the assertion that for every i ~ 2 

{55) or 

Therefore we have a kind of bi-step-Wise linea~ convergence to zero of 

the natural error IIA-i rill with a convergence ratio no greater than L. 
0 

The linear convergence to zero on the average of the natural error is 

expressed in the following corollary of proposition 5. 

COROLLARY 7. Conside~ the RRCGM U'Jith aribitroa~y initial vecto'!' x
0 

and 

assume that 

Then UJe have fo'!' i ;;:: o 

(57) IIA-i rill S: L211A-~ r
0

11 , 

UJhe~e L is definsd by ( 46}. 

PROOF. For i = 0 inequality (57) is trivially satisfied. For i = 1 

(57) follows immediately from proposition 3.2.2 since the first step 

of the RRCGM is identical to the first step of the RRGM. 

Now let i ~ 2 and suppose (57) holds for all 0 s: k ~ i-1. If 

IIA-~ riii/IIA-1 r
1

_
1

11 !!:: L, then 

(58) IIA-1 r
1

11/IIA-i r
0

11 ~ 

~ (IIA-! r
1

11/IIA-I ri_
1

11l CIIA-i ri_
1

11/IIA-! r
0

11) s L•Li-l = Li 

If IIA-i riii/IIA-1 r 1_111 > L, then, by proposition 5, one certainly has 

IIA-i r
1

11/IIA-! ri_2 11 ~ L2, and therefore 
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(59) IIA-! r
1

11 I IIA-i r
0

11 5; 

5; (IIA-l r.ll I IIA-! r. 
1

11) (IIA-j r. 
2

11 I IIA-i r
0

11) s L2•L1- 2 = Li. 
~ ~- ~-

Hence, in either case (57) also holds for i and (50) follows by in­

duction. 

REMARK 8. For the RRISCGM we cannot apply propos! tion 3. 2. 2 (which 

applies to the RRCGM) for the first step. We can apply, however, 

-i 11 -· remark 2.3.1.2 which guarantees that IIA r
1

11 s C10)11A r
0

11. From 

this and proposition 5 it follows, similar to corollary 7, that for 

the RRISCGM one has for all i ~ 0 

(60) 

0 

0 

REMARK 9. The restriction for the RRGM in proposition 3.2.2 and the 

restriction for RRCGM in proposition 2.4.5 essentially differ by a 

factor K~ in favour of the RRGM. The basic restriction (2.3.1.70) for 

general OM's, under which these proposition were derived, contains the 

term a(l +c2 +c1K) and since (even algebraically) the bounds for a 

differ by a factor Kj in the case of RRGM and RRCGM, the difference is 

not surprising. 0 

We do not present a numerical analogue of theorem 4.1.3 which states 

that algebraically the average convergence ratio is no greater 

than (K~- 1) I (Kj + 1). In practice, this algebraic average con­

vergence ratio is observed (see section 4.4). The proof of theorem 

4.1.3 is based on the whole history of the RRCGM, particularly on the 

orthogonality relations (ri+i'pj) = 0 (j < i). In section 2.3.1 we 

considered only one step RRDM and in remark 2.3.1.16 we discussed the 

numerical analogue of only one orthogonality relation (ri+l'pi) = 0. 

In order to obtain a numerical analogue of theorem 4.1.3 it seems 

necessary to investigate the approximate validity of all orthogonality 

relations, but this is outside the scope of this thesis. However, we 

do realize that it is because of the smaller average linear conver­

gence ratio that in practice the CGM is far superior to the GM .• 

For the same reasons we do not present a numerical analogue of 

theorem 4.1.4. 
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Recall that, using recursive residuals, II A-~ rill -!>- 0 does not imply 

that II x. - x II + 0. However, we cannot apply the results of section 
~ 

3.2.2 without more ado. This is due to the fact that in the general 

case we assumed step-wise linear convergence of {A-~ r.} whereas for 
~ 

the RRCGM we only proved bi-step-wise linear convergence in the sense 

of (55). However, it is still possible to derive similar results (see 

Bollen [79] for a rather weak result), but we refrain from stating 

them here. 

4.3. The. Vw.e. !tetd .. du.al c.cnju.ga.te. gfta.d.i'..e.n.t method [TRCGMI 

The results deduced in this section will be based on the results of 

section 2.4 for general TRDM's. The results there were expressed in 

terms of the parameters ai, Bi and yi defined by (2.4.20), (2.4.51) 

and (2.4.52), respectively. Therefore, we have to estimate these param­

eters for the TRCGM. Of course, as far as the algebraic processes 

TRCGM and RRCGM are concerned, there is no difference between the 

estimates. Consequently, we proceed along the same lines as in section 

4.2 and investigate the numerical analogues of (4.2.4) and (4.2.6). 

With respect to the numerical analogue of (4.2.4) we can use the 

results of theorem 4.2.1 and remark 4.2.2, on the understanding that 

now ri+l stands for the computed true residual ri+l := fl(b -Axi). 

The results deduced in section 4.2 cannot be used to obtain the 

numerical analogue of (4.2.6) but nevertheless the proof of the 

numerical analogue of (4.2.6) for the TRCGM is very similar to the 

proof of theorem 4.2.3. 

We first establish an auxiliary result. 

LEMMA 1. Let xi .. p1 be wo a:PbitrapY machine veators and 'let xi+l be 
computed according to (4.1.1). (4.1.2) and (4.1.5). Furthermore, 'let 

acaording to the de~nitions (2.4.19) and (2.4.21) 

Then we have 
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PROOF. All a-symbols are assumed to hold under the restriction (4}. 

From (2.4.38) we obtain 

From (2.4.39), (2.4.41) and (2.4.37) we obtain 

In view of remark 2.4.4 we have 

Substitution of (6) and {7) into (5) proves (3}. 

We now arrive at the numerical analogue of (4.2.6) for the TRCGM. 

THEOREM 2. Let xi, pi be t;l,]o ar>bitrary machine vecto:r>s and Zet xi+l~ 

pi+l be aomputed from one step TRCGM. Fu:r>ther>more, Zet acco:r>d:lng to 

previous definitions~ for> R. = i,i+l 

cs> .r R. := b - AxR. , 

(9) <pR. := IIAIIIIx.\'.11/llrtll , IPR. := IIA~IIIIxR-11/IIA-l t.tll • 

Then we have 

{10) 

wher>e 
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under the restriction 

PROOF. All a-symbols are assumed to hold under the restriction (12). 

Expressing (2.4.38) in terms of fi' fi+l we obtain 

and consequently, from the definition of ai it follows that 

Using (4.2.18) and (2.4.25) this yields 

where 

It remains to be estimated each of the terms in (15). 

From (2.4.12) it follows that 

(16) 

From (4.2.19), (4.2.20), {4.2.28) and (2.4.5) it follows that 

s e: ( 1 + 2K I) ( 1 + 0 ( 1) ) • 
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From (2.4.39), (2.4.34), (4.2.28), {3), (2.4.28), (2.4.11) and (2.4.41) 

it follows that 

+ IIA!IIIIv1 p1IIJ IIA!ri+111 /llfi+ill
2

<1 +0(1}) s 

$ {ciiA!II (lixi+
1

11 + IIA-i!IIIA-i fill)+ e:(1 + 2C2K! +C
1

KJ IIA-! fill+ 

+ IIA-lll (cllfill +ec111AII Cllxi+lll + IIA-!IIIIA-! fill))+ 

Inequality (11) now follows from (15), (16}, (17} and (18). 

A more explicit version of this result is stated without proof. We 

have 

PROPOSITION 3. Let xi~ pi be two arbitrary machine vectors and let 

xi+P p
1
+1 be computed j':r>om one step TRCGM. If 

( 19} 

and if for R- = i ,i+1: 

(20} £:{1 +C1K!}1jJR, $ 1~ , 

then. in equality (11). certainly 

0 
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Now that we have derived the numerical analogue of (4.2.6) we can estimate 

the parameters ai, Bi and y1 in the presence of round-off. From (11) 

and (12) , replacing i + 1 by i, it follows that under the restriction 

(22) e{Kl(1 +C2 +C
1
Kl) + (1 +C

1
Kl)lf/i_

1 
+ (1 +C1 K~)!pi + 

-l 
l l l IIA fi 111} 

+ K ( 1 + 2K ( 2 + C2 + C l K ) ) -~ - + 0 • 
IIA fill 

certainly IA
1

1 • 0(1). Using (2,4,5), (2,4.6) and {4,2.27) it follows 

that, under the restriction {22), 

(23) 

(24) 

(25) 

Utili llpill 
ai := I {f'i,pil I 

llf'iiiiiA-liiiiAl pill IIAliiiiAl r.ll 
::0 S---::-~~1-(1+0(1)) S 

llf}2o-Pill llrill 

l II rill l 
S K ii'fjJ (1 +0(1)) S K (1 +0(1)) 1 

i 

II rill 
S iiF.r (1+0(1)) $ 1+0(1) 1 

1 

IIA-l riiiiiA! rill 

llf 1 11 2 o - I \I l 
(1 +0(1)) s 

This completes the set of basic relations that are needed to prove the 

main theorem of this section. We only formulate an explicit version 

(cf. proposition 4.2.5). 
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PROPOSITION 4. Let xi-1' pi_1 be two arbitra:ry maahin.e vectors and let 

L := {1 - l K }
1 

. 
5 (K + 1) 2 

Consider two steps of the TRCGM. If 

(26} 

(27) 

and if 

( 8} !) < .l.. 2 e:(l +ClK ljli-1 - 16 ' 

then at least one of the following two inequalities 

(29) 

(30) 

holds. 

11Al{x-xi+
1

JII 2 

II A l (51 - xi) II 2 

PROOF. First we derive some explicit bounds concerning ri, fi. From 

(2.4.9), (2.4.12) and the assumptions (26) and (27) it follows that 

1 1 121 1 
s 1 + 120 + (32} (120) < 1 + 1o . 

From {2.4.9}, (2.4.13} and the assumptions {26} and (27) it follows 

that 

156 4.3 



Hence 

The remaining part of the proof is very similar to the proof of prop­

osition 4.2.5. 
2 -i 2 4 -i 2 Note that L ;:: 1/20. If IIA ti+111 s: L IIA ri_111 , then we are ready. 

-l 2 4 -j 2 Let us now assume that IIA f
1
+111 > L IIA ti_ 111 • From the assump-

tions (26) and (28) it follows that IIA-i ti+111 s: (13/10) IIA-! fill and 

(cf. remark 2.4.4) consequently 

(34) 

Hence, from proposition 3 and the assumptions (26), (27) and (28) we 

obtain 

In view of (4.2.30) one has 

(36) 

The inequalities (31), (32), (34) and {35) enable us to replace the 

estimates (23), {24) and (25) by explicit bounds. We thus obtain 

'( 12)-
1
(11)

2 
l (37) (Ji s K 1 - 4o TO, s 2K I 

1 ! ( 12)-1(10)(11)2 
! (39) y~ s (K+l) /(2K) 1- 4o 9, TO s (K+l) /K 

Finally, from (26), (27), {37) and (38) it follows that the assump­

tions of proposition 2.4.8 are satisfied and consequently 
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(40) 
IIA-~ ri+1H2 

IIA-! fill 2 D 

We now assume that (26) holds. It easily follows from proposition 4 

that if (27) holds for all 0 ~ i ~· k and (28) holds for all 0 ~ ~ ~ k, 

then for every 0 ~ i ~ k 

( 41) or 

Hence, as long as (27) and {28) are satisfied {cf. section 4.2) we 

have hi-step-wise linear convergence of the natural error II A! (x- xi) II 

and consequently.also linear convergence on the average with a conver­

gence ratio no greater than L. From this we can draw three conclusions 

similar to those we derived for the TRGSM from proposition 2.4.10, but 

now expressed in terms of hi-step-wise linear convergence. They are 

combined into the following proposition. 

PROPOSITION 5. If {xi} is generated by the TRCGM with arbitrary 

initial machine vector x0 and if 

then the natural error II A! (x- xi) II converges bi-step-wise linearly 

with a aon.vergenae ratio no greater than (1 - K I (5 (K + 1) 
2
)) ! , at least 

until the iteration step where one of the following two inequalities 

is true: 

(44) D 

If inequality (43) is essentially sharp and if c1 is of order unity · 

(or order n3/ 2 as in straightforward implementation), then the residual 

lib- Axil! is a factor ,,J too large to have good-behavior; if cl is of 

the order eA (e.g. by using double length precision), then the residual 

is small enough to guarantee good-behavior. 
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If inequality (44) is satisfied, then the natural error II A l (st- xi )II is 

at most of the order of the inherent natural error and hence we have 

A-numerical stability and consequently also numerical stability. 

COmbining the two inequalities, and using (1.4.3) and (1.4.4), we may 

conclude that if (42) is satisfied, then TRCGM generates at least one 

approximation xi for which 

(45) (a= 0,!,1) • 

Bence we cannot conclude that in general the TRCGM is well-behaved or 

(A)-numerically stable. If, however, c1 is of the order£~, then it 

follows that TRCGM is well-behaved. 

REMARK 6. In view of proposition 2.4.8 it is not surprising that (43) 

contains a term of order eC1KliiAUtlxill (which precludes the proof of 

good-behavior), since the underlying restriction (2.4.98) contains a 

term £C1a
1

q>i and we only have the a priori bound ai s K!(1 +0(1)) (cf. 

remark 4.2.9). Note, however, that it follows from proposition 2.4.8 

that if (42) is satisfied and if ai and ai are of order unity at a 

step where the monotonicity of the natural error breaks down, then the 

residual llb-Axill is of the order £11AIIIIxi!l and hence we have good-

behavior. 

Note that all results derived in this section also hold for the 

TRISCGM as defined in section 4.1. 

In this section we report on some of the numerical experiments that 

have been carried out with the CGM in order to verify our analytical 

results deduced in sections 2 and 3. Our tests are based on the three 

different ways of implementation, viz. assembled implementation (AI), 

profuct form implementation (PFI) and artificial floating point im­

plementation (AFI), as described in section 1.6. As far as the dis­

tribution of eigenvalues, the choice of the orthogonal matrix u, the 

assemblage of U (both in case of AI or PFI) and the eigenvector 
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components of b and x0 are concerned, we refer to the introductory 

part of section 3.4, which deals with similar tests for the GM. If we 

display the values of Fi := fl(IIAa(i-x.)ll), (a= 0,~,1), when re-,a J. 

porting on numerical results, then these values are computed according 

to the formulas (3.4.2) (for AI and PFI) and (3.4.3) (for AFI). For a 

discussion on significant figures we refer to remark 3.4.2 and 

remark 3.4.3, respectively. 

4. 4. 1. The :tltue Jtui.dua..f. c.onju.ga.te gJr.a.cU.ent method 

For the numerical performance of the TRCGM we have deduced two basic 

analytical results. Firstly, the (explicit) result stated in proposi­

tion 4.3.5, from which it follows that, if e:~<:(3 +3c2 +c1 ~<:t) ~ 1/40, 

then the TRCGM generates at least one approximation xi for which 

(1) a ! 1-a a IIA (i-xillf ~ 16e:(3+2C1K' )K' IIA llllxill, (a= 0,~,1); 

this will be called the reaahable level. Secondly, the (explicit) 

result stated in proposition 2.4.8 and holding for every TRDM, from 

which it follows that, if IIAl(i-~+ 1 )11 2:! IIA!{x-~)11 for some k and 

if d~<:l(l +C
2 

+C1K!) + ak(1 +C
2

J} ~ 1/40, then 

{2) 

Here 

! We recall that algebraically ak ~ K and Bk S 1. 

Our tests are mainly designed for the verification of these two 

results. In all experiments the TRCGM iterations are terminated as 

soon as F k+ 1 , i 2:! F k, i (see remark 3. 4. 1. 1) • 

We also performed tests similar to those performed for the GM in order 

to investigate the influence of the value of m (for AI and PFI), the 

influence of the eigenvector components of. x and x - x0 and the in­

fluence of the basic arithmetical operations. The conclusions that can 
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be drawn from these tests do not essentially differ from the conclu­

sions for the GM and therefore the results are deleted. 

The influence of K 

We performed several tests based on AFI with fixed dimension n, fixed 

eigenvector components s and e for Sl: and x - x0 , and with logari thmical 

eigenvalue distribution, only varying the condition number. A set of 

representative results is given in table 1 , where n = 20, s j I s . + 1 = 
= ej /ej+1 = 10

3
, Usll = 1, llell = Klo-1 (hence IIA~(x-x0 >n = K~l~-1) 

and the artificial relative precision is o = 10-6 • We performed five 

different tests for each condition number; different in the sense that 

we invoked different artificial round-off errors (cf. section 1.6). In 

all cases at iteration step k, defined as being the first step for 

which Fk+l,~ ~ Fk,!' there holds llxkll ~ 1 (= llxiJ). The smallest and 

largest observed values of k of each set of five tests with the same 

condition number are given in the table. In the columns headed 

IIAa(x-XJ.:>II,(a "'0,!,1), we display the largest and smallest observed 

value of Fk,a' The column denoted by amax indicates the largest ob­

served value of ai (cf. (3)) throughout all iteration steps and all 

five tests together. The column denoted by ak indicates the largest 

observed value of ak. 

K k H:R- x011 HA~(l<-x0lll IIA(:R- x
0

lll 
"'lllal< "'k 

to2 24 26 2.a10-s 5.9to-s 7.5to-6 a. 7 10-6 3.1to-6 4.010-6 2.3 1.6 

1 o2.5 42 58 1.2Jo-4 2.61o-4 LO!o-5 1.61o-s 2.310-6 3. 7 10-G 3.0 2.0 

to3 77 97 s.J10-4 9.21o-4 1.a1 0-s 3. 'to-5 2.310-6 8.1 10-6 7.6 2.0 

1 o3.5 123 218 1.71o-3 3.3 10-3 3.91o-s 6.4to-5 3.3to-6 4.4 10-6 9.5 3.1 

104 231 337. 4.a10..,3 1. 2to-:2 ·.5.6to-:5 · 1.2to-4 3.210-6 6.1 1o-6 48 2.9 

TABLE 1. The i.nfl:uenee of " 

We see that at step k certainly (1) is satisfied in all cases, even if 

we replace the factor c1 K! by c1• Consequently the non-well-behavior of 

the TRCGM, suggested by ( 1) , is not confirmed by the results of table 1. 

We recall that (1) is in fact deduced from (2), using the a priori 
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bound ai s Kl(1+0(1)) (cf. (4,3,23)). As we see from table 1, at 

iteration step k, where the monotonicity breaks down, ak is of order 

in all cases. Hence the estimate for ai as used in {1) is unsharp by a 

factor Kl and therefore {1) itself is also unsharp by a factor K~. On 

the other hand, the data of the column headed amax indicate that it is 

doubtful whether the a priori bound ai s K I (1 + o ( 1)) {for all 

0 s i s k-1} can be sharpened as far as the exponent of K is concerned. 

In all 25 tests, throughout all iteration steps, there holds Bi s 1, 

as was to be expected in view of {4.3.24), Therefore using the actual 

values of ak and Bk' we conclude from (2) that for the tests of table 1 

the TRCGM is well-behaved. This corresponds to the numerical results 

obtained. The results of table 1 also agree with the algebraic prop­

erty {fori = k) stated in theorem 4.1.3, i.e., 

and indicating the faster linear convergence on the average with an 

average convergence ratio no greater than (K~- 1) I {K! + 1) {~ 1- 2/K!) 

for the TRCGM in comparison with the TRGM. As far as the step-wise 

convergence of the natural error is concerned, we proved (cf. proposi­

tion 4.3.4) that the convergence ratio is no greater than 

(K- 1) I (K + 1) c~ 1 - 2/K). This difference between average convergence 

ratio and (step-wise} convergence ratio is also revealed by our tests. 

For instance, in a particular test with K = 104 the natural error 

decreased by a factor 0.5504 in the steps from 200 to 300. Since 
1/100 

(0.5504) = 0.9940, there is at least one step for which 

II A! (x- xi+1JII /II A! (i- xi}ll ~ 0.9940, whereas 1- 2/Kl = 0,980. It also 

follows that the average convergence ratio, based on these hundred 

steps, is greater than 1- 2/KJ. One may ask whether it is possible to 

construct a test problem (with a large initial natural error 

II A! (i- x0) II and slow convergence in the first steps in order to accom­

plish the need of much more than n iterations before attaining the 

reachable level), which ultimately contradicts the algebra average 

convergence ratio. Note that the proof of (6) is based on algebraic 

orthogonality relations holding for all 0 s i s n. Of course, these 

relations cannot hold anYmore after n iterations and therefore it is 

doubtful whether (6) still holds for the numerical process in case 
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i > n. We performed a rather limited set of trials to justify this 

doubt, but in all tests (6) held. 

REMARK 1. In fact, our propositions on the numerical speed of conver­

gence for the TRCGM are expressed in terms of bi-step-wise linear 

convergence (cf. proposition 4.3.4) with a convergence ratio no greater 

than (K - 1) I (K + 1). We were not able to prove step-wise linear conver.,.. 

gence since the estimate for the parameter Ai in the relation 

(f1 ,pi) = (1+\lllfill contains a term with a factor IIA-Ifi-lii/IIA-li'ill 

(cf. theorem 4.3.2) and there is no a priori upper bound available for 

this factor. Consequently, no a priori upper bound for the parameters 

ai, Si and yi is available (the restriction under which the inequali­

ties (23), (24) and (25) of section 4.3 hold contains the same factor). 

Therefore, if IIA-! fi-111 I II A-! rill is extremely small, then it might be 

possible that in the next step the ratio IIA-1 fill I II A-! ri+111 is slight­

ly less than one 1 even if the residual II fill has not yet achieved the 

reachable level e: ( 1 + C 1..:!) II All II xi II • However, from the results of the 

tests of table 1 we see that in all steps, apart from the very first 

steps, one has II A-I fi_ 111 I II A-! fill ~ 4. Hence, in view of esti-

mate (4.3.21) it follows that in all cases the parameter Ai is fairly 

small as long as the residual is not of the order of the reachable 

level. Consequently, after the very first steps it is impossible to 

encounter the situation that the natural error increases in some step, 

whereas at the same step the residual is not of the order of the 

reachable level. Hence, using this bit of a posteriori information, we 

may state that for all our tests our analytical results yield step­

wise linear convergence as long as the reachable level has not yet 

been attained. 0 

As we mentioned already at the end of section 4.3, all results deduced 

in that section also hold for the TRISCGM as defined in section 4.1 

{with not necessarily Po= r 0J. We carried out several tests with 
4 

K = 10 and the same parameter setting as in the tests of table 1. 

The only difference consisted of the (independent) choice of p
0

• All 

tests confirmed the analytical results of section 4.3. For the five 

tests, with initial Po vector with components pj satisfying 
3 pj lpj+l .. 10 and llpll = 1, the observed values (ordered and to be 

interpreted in the same way as the lines of table 1} read 
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The computed values of IIAa(x-~lll,(a=O,!J, agree with the corre­

sponding values for the TRCGM with K = 104 (cf. last line of table 1). 

The values of II A (i - ~)II seem to be slightly larger. The test for 

which (the value) IIA(St- ~)II = 1.4lo-5 is attained, is also the test 

with amax = ak 160. In view of (2) it is not surprising that the 

very test with a relatively large value of ak also has a relatively 

large value of IIA(i -~)11. Note that the algebraic inequality lakl:::; K~ 
is seriously disturbed at this step. As far as the speed of conver­

gence is concerned we see that, compared with the TRCGM case, twice as 

many steps are needed to achieve the reachable level. 

As we mentioned already in section 4.1, the algebraic upper bound 

(K!- 1) I (K ~ + 1) for the average convergence ratio of the TRCGM not 

necessarily holds for the TRISCGM, since in the latter case, at the 

point xi+l' the objective function F(x) := IIAI(x-x)ll is not neces­

sarily minimized on the affine set passing through x0 and spanned by 

p0 , ••• ,pi. Therefore the slower convergence of TRISCGM is not sur­

prising. 

In figure 1 we plotted the values of II A! (x -xi) II and II A (i -xi) II 

(i = 0,50,100, ••• ,k), both for one test of the TRGM and one test of 

the TRISCGM; the values of k are 301 and 709, respectively. 

We see that the faster convergence of II A! (x- x. Jll for the TRCGM test 
~ 

is restricted to the first hundred steps; after these steps the speed 

of convergence hardly differs between the two tests and the conver­

gence ratio varies between 1 - 6/K~ and 1 - 2/K for both tests (this 

observation is not only based on the plotted steps but on all steps). 

The average convergence ratio is 0.9869 (~ 1 -1.3/K!) for the TRISCGM 

test (based on all 709 steps) and 0.9817 (- 1 -1.8/K&} for the TRCGM 

test (based on the last 200 steps) • Hence, for both tests the alge­

braic upper bound (K! - 1) I (K~ + 1) (~ 1- 2/K!) for the average con­

vergence ratio of the TRCGM does not quite hold for the numerical 

process during the last hundred of steps. We also see that initially 

the residual converges much faster for the TRCGM test. Although the 

figure suggests the monotonic decrement of the residual after the 

first 50 steps, this is not true. Both tests have the property that, 

incidentally, there are steps at which the residual slightly increased. 

The error llx- x1 11 is not .plotted. Also, initially, the error decreases 
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faster for the TRCGM test and decreases monotonically at all steps. 

This last fact agrees with the algebraic property as stated in 

corollary 4.1.5. The TRISCGM test has the property that, incidentally, 

there are steps at which the error slightly increased. 

4. 4. 2. The Jtec.~-l.ve Jtu-i.d.ua.l c.onju.ga:te gJU:tcii.eiU: method 

As far as the analytical results for the numerical performance of the 

RRCGM are concerned, the most striking result is the bi-step-wise 

linear convergence to zero of the natural error IIA-~ r.ll (cf. proposi­
~ 

tion 4.2.5). We performed several tests with the RBCGM, based on PFI 

(n = 5) and AFI (o = 10-6), varying the dimension n (20 s n s 50), the 

eigenvector components s and e 

llsll = 1, 10-1 s llell s 10-6} and 

3 -3 
{sj I sj+1 , e. I e .+1 .. 10 , 1, 10 , 

J J 2 4 
the condition number K (10 s K s 10 ). 

In order to avoid underflow the iterations were stopped as soon as 
-22 llrill s 10 • In all cases this level has been reached. At all steps 

the natural error decreased at least by a factor 1 - 2/K. The reason 

that the situation, representative for bi-step-wise linear convergence, 

where IIA-!ri+liiiiiA-~rill > 1-2/K and IIA-!ri+
1
11/IIA-jr

1
_

1
11 s (1-2/K)

2 , 

does not occur is due to the fact that the factor IIA-1 ri_
1

11 I IIA-! rill 

never is extremely small in our test (see remark 4.4.1.1 for a more 

detailed explanation in a similar situation). 

Since we do not have available an analytical result concerning the 

attainable accuracy of II A a (x- x.) II (a = 0, L 1), for the RRCGM only 
~ 

limited attention to this aspect is paid and we do not present numeri-

cal results here. 
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CHAPrER 5 

VARIANTS OF THE CONJUGATE GRAVIENT METHOV 

5.1. IntMduc.:tion 

In this chapter we discuss three other variants of the CGM. The only 

difference between these methods is the way in which the parameters ai 

and b i are computed. 

We recall that in the CGM as defined in section 4.1 these parameters 

are determined by the relations 

The formula for ai follows directly from the fact that we want to mini-
-! 2 mize IJA (ri -aApi)ll (regarded as a function of a). Hence, evidently 

(ri+l'pi) "" (ri- ai Api, pi) = 0. The formula for b1 follows immediately 

from the fact that we want (ri+l +bp1 ,Ap1 ) = 0. From this point of view 

formulas (1) appear to be natural and therefore they will be referred 

to as natUMt formulas for a1 and bi. 

From (iv) and {v) of theorem 4.1.2 it follows that, algebraically, 

one has 

(2) 

So, for both parameters we have an alternative formula. 

The formulas (2) will be referred to as unnatUMZ fo!'mulas for ai and 

bi. 

Determining a
1 

from either the natural formula or the unnatural for-

mula and determining bi from either the natural or unnatural formula, 

we obtain four, algebraically equivalent, versions of the conjugate 

gradient method. 

However, in the presence of round-off, these versions not necessarily 

have the same numerical properties. 

5.1 167 



In section 4.1 we introduced the so-called independent start conjugate 

gradient method (ISCGM), which is exactly the same as the CGM apart 

from the uncoupled choice of ~ and Po. Every step from xi, pi to 

xi+l, pi+l of the CGM can be considered as the first step of the 

ISCGM with initial vectors xi' pi. Algebraically, for every choice of 

x0 and Po ~ 0, the natural error converges step-wise linearly to zero 

with a convergence ratio no greater than (K- 1) I (K + 1) for the ISCGM 

(cf. s,ection 4.l). From a numerical point of view this is interesting, 

since it implies that if in the CGM the occurrence of round-off is 

excluded permanently after some iteration step, then in the consecu­

tive steps the natural error converges step-wise linearly to zero. 

This property holds for all OM's defined by the algorithm in sec-

tion 2.2. No matter whether bi is computed from (1) or from (2), if 

we compute ai from ( 1) , then the method is a DM. Therefore we may ex­

pect that the afore mentioned property also holds if we use formula (1) 

for ai and (2) for bi. One may ask whether the same property holds for 

the other two variants of the CGM, based on formula (2) for ai. 

We consider the independent start version of all four alternatives 

Independent Start Conjugate Gradient Methods (ISCGM) 

Choose an initial point x0 ; 

r
0 

:= b -Ax
0

; i := 0; 

Choose an initial direction vector p0 ; 

while ri "' 0 A pi "' 0 ~ 
begin 

(3) 

(4} 

(6) 

(7) 

(natural formula) 

(unnatural formula) 

(true residual) 

(recursive residual) 

(8) 

(9) 

:= {either - (ri+l ,Api) I (pi ,Api) 

bi or (ri+1'r1+1)/(ri,ri) 

(natural formula) 

(unnatural formula) 
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i := i + 1 

end. 

We use either (3) at all steps or (4) at all steps. The same applies 

to (6),(7) and to (8),(9), respectively; we disregard the mixed cases, 

where different alternative formulas are used at different steps. Note 

that from a numerical point of view we have 8 versions. 

If the independent start conjugate gradient method is carried out 

using the natural formula for ai, the true residual formula for ri+l 

and the unnatural formula for bi (in all steps!}, then this method 

will be denoted by TRISCGNUM. The algorithms TRISCGNUM, RRISGUUM etc. 

are defined in a similar way. From now on ISCGM not only stands for 

the independent start version of our basic CGM of chapter IV, but for 

any of the four versions defined above • 

. REMARK 1 • All four versions of the CGM are introduced in the paper 

of Hestenes and Stiefel [52]. In fact, they proposed the CGUUM as the 

basic one and mentioned the natural formulas as other possible choices. 

Reid [71] also considers all four versions and recommends the unnatural 

formulas and the recursive residuals on computational grounds, since he 

observes no significant difference as far as numerical convergence be­

havior is concerned. 

In the next section we derive some algebraic properties of the ISCGM's. 

In the third section we carry out a one-round-off error analysis for 

the ISCGUNM to illustrate the numerical analogues of the algebraic 

properties and their implications. 

5.2. Ai.geb!UUc. p!Wpeft.ti.u. od the -l.nde.pe.ndent .h.ta!Lt c.onju9a;te. 
9Jc.acU.e.nt method.h (ISCG/.1} 

Obviously, we do not need to distinguish between the use of true and 

of recursive residuals as far as algebraic properties are concerned. 

crowder and Wolfe [72] and Powell [76] considered the ISCGNNM, and 

some of their results will be mentioned later. As far as the other 

variants are concerned we believe our convergence results to be new. 

We s~art off with the following fundamental properties. 
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THEOREM 1. Let {r0 , ••• ,r1+1}. {p0 , ••• ,p!+l} (t ~ 1) be eomputed by any 

vePsion of the ISCGM's with arbitpary initial veato~s r 0 ~ 01 Po ~ o. 

Then we have foP 1 s i s ! 

(i) 

(ii) 

PROOF. In the proof we frequently use the relations r i + 1 = r i - ai Ap i 

and pi+l = ri+1 + bi pi (1 s i s !) • 

Relation {i} is trivially satisfied if we use the unnatural formula 

for ai. If we use the natural formula for ai, then it follows immedi­

ately (cf. theorem 2.2.21 that (ri,pi-l} = O, (1 sis!), and hence 

(ri,pi) = {ri,ri) + bi-l (ri,pi-l) = (ri,ri), (1 s is !) which proves 

(i). 

Relation (ii) is trivially satisfied if we use the unnatural formula 

for bi. If we use the natural formula for bi, then it follows immedi­

ately that Cp
1

,Api_1) = O, (1 s i s !) • Hence, in view of (i), 

(ri+l'ri} = (ri,ri)- ai (Api,ri) = (ri,ri) - ai((Api,pi) + 

- bi_1 Cpi,Api_ 1ll = O, (1 sis t), and consequently, again using (i), 
-1 -1 

(ri+l ,Api) = ai (ri+l ,ri- ri+l} = - ai (ri+l ,ri+1) = 
= - (ri+l ,ri+l) I (ri ,ri) (pi ,Ap1J, (1 :S i s !) , which proves (ii}. 

Using (1} we obtain (ri+l'pi) = (ri,pi)- ai(pi,Api) 

= (ri,pi)- (ri,ri) = (ri,pi -ri} = bi_1 cri,pi_1J, (1 s i :S !), which 

proves (iii}. 

Using (i) and (iil we obtain (pi+l'Ap1J = (ri+l'Api} + bi(pi,Apil = 
-1 -1 . -1 

= a~l (ri+l'ri -ri+l) + ai {ri+1'ri+1} "'ai (ri+1'ri) 

=ai ((ri,ri)-ai(Api,ri)} = (pi,Api)- (ri,Api) = (pi-ri,Api} = 

= b1_1 (pi_1,Api), (1 s i :S !) , which proves (iv). 

Using (ii} and (iii) we obtain Cr1+1'Pi+l) (ri,ri) = 
= (ri,ri) ({ri+1'ri+1) +bi (ri+1'pi}} = (ri+1'ri+1) ((ri,ri) + (ri+l'pi)}"' 

= (ri+1'ri+1) ((ri,ri) +bi-1 (ri,pi-1)) = (ri,pi} (ri+1'r1+1}, (1 :S 1 :S t} 

which proves (v). 

Note that these properties hold after the first step. D 
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The propagation formulas (iii) and (iv) are already contained in the 

paper of Reid [71]. 

For natural ai relations (iii) and (v) become trivial, since in that 

case (ri+1 ,pi) = 0, (0 ~ i ~ 1), and Cri+1 'pi+l) = (ri+l'ri+l) + 

+ bi(ri+1,pi) = O, (0 S i ~ t). For natural bi relation (iv) is obvious, 

since then (pi+l ,Api) = 0, (0 ~ i ~ t). 

For the unnatural choice~, (iii) and (iv) indicate the growth of the 

non-orthogonality of ri+l, pi and pi+l, Api, respectively, whereas (v) 

indicates the invariance of (pi,ri) I (ri,ri)' (1 ~ i ~ t). 

With respect to the CGM we have seen that if the iterations terminate 

at step t ~ 0, then r 1 = 0 as well as p1 = 0 and therefore the restric­

tion pi ~ 0 could in fact be left out in the stopping criterion. One 

may ask whether this also holds for the ISCGM's. A general result, 

valid for all variants, can be formulated if at least two steps are 

performed. 

THEOREM 2. If any Ve1'sion of the ISCGM's terrminates at iteration step 

t ~ 2 and (r1,p1) ~ 0~ then r 1 = 0 as well as pt = o. 

PROOF. If r 1 = 0, then b1_
1 

= 0 and hence pt = r 1 + b1_1 P
1

_1 0. 

If ri ~ 0, (0 ~ i ~ t), then {v) can be written as 

(ri+l'Pi+1l I (ri+1'ri+l) = (ri,pi) I (ri,ri), (1 ~ i ~ R.-1). Consequent­

ly, Cr1 ,p1l I (rR.,rf) = (r1,p1l I (r1,r1l :1- 0 and hence pR. 'F 0. 0 

If an ISCGM terminates after one step because r 1 = 0, then also b0 = 0 

and p1 = r 1 + b0 Po = o. 

For an ISCGM with the natural formula for ai we have after one step 

Cr1,p1) = Cr1,r1J and consequently, if r 1 ~ 0, then p1 :1- 0 and 

Cr1,p1J ~ O. Thus, for the ISCGNNM and the ISOGNUM the assertion of 

theorem 2 also holds fort= 1 and the restriction Cr1,p1J ~ 0 can be 

omitted. 

For an ISCGM with the unnatural formula for ai it is possible to have 

after one step r 1 'F 0 and p 1 = 0. For example, if A= diag(1,2}, 
T T r 0 = (-3,+3), Po = (1,1), then for both ISCGUNM and ISCGUUM one has 

r'f = - (9,9), p'f = (0,0). So for these two methods termination can 

occur at the first step, although x1 = i does not hold. The case in 

which these two methods do not end after the first step and (r 1 ,p1) = 0 
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is irrelevant, since from our results it follows that in that case 

II A-~ rill increases monotonically as long as pi # 0. 

Another interesting question that arises is what can be said if the 

ISCGM's do not terminate, The following theorem expresses the relation 

between two successive natural errors. 

THEOREM 3. Let {ri}~ {pi} be genezoated by an ISCGM !JJith arbitM!'y 

initial vectors r0~ p0 • Then we have for i ~ 1 

(1) 

where 

PROOF. From the relation A-~ ri+1 = A-~ ri - ai Al pi we obtain, by 

taking squared norms at both sides, 

(3) 

Together with {i) of theorem 1 this yields for i ~ 1 

from which {1) readily follows, 0 

Note that for the CGM the parameter T i corresponds to the parameter y 1 
defined by (2.2.8) and furthermore 2(ri,pi} I (ri,ri) -1 = 1. Hence, in 

that case theorem 3 coincides with theorem 2.2.2. 

From theorem 3 we shall derive results concerning the step-wise linear 

convergence to zero of the natural error for ISCGM's, just like we did 

from theorem 2.2.2 for DM's. 

We first determine a lower bound forTi' 

LEMMA 4. Let { r i} ~ {pi} be genezoated by an ISCGM !JJi th cdl:ri tzoary 

initial veators r 0 and Po and let -ri be defined by (2). Then we have 

fori ~ 
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(4) 

PROOF. From the relation A! pi+1 - bi A! pi = A! ri+l we obtain, taking 

squared norms of both sides, 

Using (iv) of theorem 1 we obtain recursively 

So, for unnatural b
1 

we conclude from (ii) of theorem 1 that one has 
2 2 

bi (pi+l ,Api) = llri+111 (p 1 ,Ap0 ) I llr0 11 and consequently 

(7) 

where 

(8) -1 2 M := C2IIA II I 11r0 11 ) max( Cp 1 ,Ap
0

l ,0) • 

For natural bi we have (pi+l'Api) = 0 = (p1,Ap0) and hence (7) also 

holds. By (6) and (7) we finally conclude 

and hence for all ISCGM's 

(10) (i :;>; 1) • 

If we use the natural formula for ai, then (ri ,pi} I Cr
1 
,r1 l 

(i :;>; 1). Combining this, (1) and (4) we obtain 

THEOREM 5. If {ri} is gene!'ated by the ISCGNNM O!' the ISCGNUM with 

arbit!'apY initial vecto!'8 x0, p0, then we have for att i ~ 1 
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I -~ 2 
(11) 

lA ri+l II 
::;; 1 -

4K 

IIA-~r.ll 2 (M + 1) (K + 1) 2 1 

~ 

!Jhere M is defined by (8). 0 

We thus conclude that for arbitrary initial vectors x0 , p0 , assuming 

the iterations do not terminate, the natural error converges step-wise 

linearly to zero with a convergence ratio no greater than 

( 1 - 4 I ((M + 1) {K + 1) 2)} ~. 
As far as the first step is concerned we have according to (3) 

(12) 

IIA-6 r
1

11 2 

IIA -i roll2 

REMARK 6. crowder and Wolfe [72] gave an example of the ISCGNNM in 

which the ratio IIA-~ ri+
1

11 /IIA-! rill is constant for all i 2: 0. Obvi­

ously, there exist initial vectors x
0

, p
0 

for which the convergence 

is only linear, so the finite termination property of the CGM does not 

hold in all cases for the ISCGNNM. 0 

If we use the unnatural formula for ai, then, from (v) of theorem 1, 

it follows that (ri,pi} I Cr
1
,r1 J = Cr1 ,p1) I (r

1
,r1) (i 2: 1). Combining 

this, (1) and (4) yields 

THEOREM 7. Let {ri} be generated by the ISCGUNM or the ISCGUUM mth 

aribitrary initial vectors x0, Po~ let M be defined by (8) and let 

K := 2(r
1
,p

1
J I Cr1,r1) -1. Then !Je have 

(i) if K > 0~ then for all i <: 1 

::;; l _ 4KK 

(M+ 1) (K + 1}
2 

(ii} if K = 0~ then for all i <: 1 

= 1 
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(iii) If K < o.. then for all. i ~ 1 

;?: l _ 4KK 
(M+1){K:+1) 2 • 

We conclude that for arbitrary initial vectors x0, Po the natural 

error converges step-wise linearly after the first step with a conver­

gence ratio no greater than (1 - 4KK I { (M + 1) (K + 1) 2>)! if K > 0. If 

K = 0, then the natural error stays unaltered after the first step. 

If K < 0, then the natural error diverges at a linear rate after the 

first step. 

For the first step we have, according to (3), 

(13) 

REMARK 8. For the ISCGUUM we can derive a simple expression for K in 

terms of the initial vectors r 0 and Po· We have 

and hence K = 2(r
0

,p
0

) I (r
0
,r

0
) -1. Therefore, K ~ o if Cr

0
,p

0
) <!! 

E! l<ro,ro>. 

0 

In case one deals with the ISOGUNM, K is generally not equal to 

2 Cr0 ,p
0

) I <r0 ,r0 ) - 1. 0 

We end this section by mentioning a result of Powell [76] concerning 

the ISCGNNM. 

THEOREM 9. If {r
1

} is generoted by the ISCGNNM with ax>bitr>ary initial 

vectors x0~ Po and if ri ~ 0 for all 0 s i s n+l., then one has 
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(i) The~e exists an! satisfYing 2 ~ ! < n sueh that p 1, ••• ,p1 are 

mutually conjugate and p1 and p!+l ~e not conjugate. 

(ii) Po~ all i ~ 0 the di~ation vecto~s pi+t•···•Pt+l ~e mutually 

conjugate, but pi+l and pi+!+l ~e not conjugate. 

(iii) Termination neve~ ocau~s and aonvervence to the solution occ~s 

at a line~ ~ate. 

REMARK 10. The condition ! :2: 2 in theorem 9 immediately follows from 

the fact that for natural bi one always has (p1 ,Ap2) = 0. It can be 

proved by induction that also for all i ~ 0 the vector ri+!+l is 

orthogonal to the vectors pi+t•••••Pi+!' COnsequently, if p 1, ••• ,pn 

are mutually conjugate {and hence linearly independent), then 

rn+l = O. This explains why ! < n holds in theorem 9. 

0 

0 

The most important conclusion that can be drawn from theorem 9 is that 

the ISCGNNM either terminates within (n + 1} iterations or convergence 

to the solution occurs at a linear rate. Powell L76] also shows that 

in the general case, where both r 0 and Po are arbitrary, the linear 

rate of convergence is usual. In our opinion this result did not get 

the attention in the literature it deserves. For instance, it implies 

that if during the CGM iterations ri and pi are computed exactly in 

all steps but one, then we may expect the convergence to be only 

linear. 

S. 3. A one.-Jteu.nd-o66 tVUWJt a.naly.6-U o6 the. :tJtue. JtU.l.duat ,l.nde.pe.nde.nt 
.6.tM..t c.onjugtLte. gJta.cLi.ent method U6.i.ng the unna.tultal. fioJt:mu.ta. fioJt 

a.,{. and the. na;Cu!tal 6oJt:mu.ta. 601!. b ,{. {TR1SCGUNM) 

Examining the TRCGM in Chapter 4, we· first derived some basic alge­

braic properties and next deduced the numerical analogues in order to 

obtain results for the numerical behavior. In this section we follow 

the same strategy and deduce numerical analogues of some algebraic 

properties derived in the foregoing section, in order to gain insight 

in the numerical behavior of other variants of the CGM. 

We only consider the TRISCGUNM. The TRISCGNNM has been treated already 

in Chapter 4, whereas the TRISCGNUM is a special case of the OM's and 
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probably may be treated using the results of Chapter 2; the TRISCGUUM 

is believed to show the same peculiarities as the TRISCGUNM. 

Furthermore, we restrict ourselves to a round-off error analysis where 

round-off only occurs at the computation of fl(Axi)' since in all our 

previous analyses the errors occurring at that particular computation 

caused the largest discrepancy between algebraic and numerical proper­

ties, 

Throughout this section we use, as before, the definitions 

(1) 

(2) 

The following theorem states the numerical analogues of (v) of 

theorem 5,2.1 and of theorem 5.2.3. These analogues form the basic 

results for the subsequent convergence considerations. 

THEOREM 1. Let {xi}~ {pi} be computed by the TRISCGUNM '"'ith aroitmry 

initial vecto!'s x0., p
0 

and assume that only round-off occu:l's at the 

computation of fl(Ax1). Then '"'e have 

(i) 

(ii) 
(ti+1 ,pi+1) 

(ri+l ,ri+l) 

(i :?: 0) , 

(i ~ 1) , 

PROOF. For the computation of r
1 

we have (cf. lemma 2.4.1) 
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(4) 

(5) 

Further we have 

(6) 

Consequently, 

(7) 

from which (i) readily follows. 

In proving (ii) we closely follow the lines of the proof of 

theorem 5.2.1. We have 

(8) 

l 2 
J b1 =- {ri+1,Api) /!lA pill , 

\ (pi+1 ,Api) = O • 

From (3} and (6) we obtain 

Consequently, for i ~ 1, 

and hence 

(11) 

From this we obtain the numerical analogue of relation (ii) of 

theorem 5.2.1, i.e. 
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( 12) (i C!; 1) 1 

where 

(13) 

From (9} we obtain the numerical analogue of relation {iii) of 

theorem 5.2.1, i.e. 

Substituting the various equalities we finally find, for i :a: 1 

(15) 

This yields the numerical analogue of relation (v) of theorem 5.2.1, 

viz. 

(16) 
(fi+l ,pi) 

(ri+1 ,ri+l) 

which proves (ii). 

We finally discuss some conclusions that can be drawn from this theo-

rem. 

D 

Since we assume that no round-off occurs at the computation of b1 and 

pi+l' we have (pi+t•Ap1 ) = 0 and (cf. formula (5.2.6)) 11Aipi+1112 + 

+ llbi A6 pill
2 

= IIAi ri+111
2

, and in particular IIAi pi+lll s IIAl ri+lll, 
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(i ~ 0). Consequently, using (2.4.6) we obtain 

(17) 

(i ~ 1) , 

under the restriction ec1K~Wi ~ 0, Hence, as far as the lower bound 

for ti is concerned, there are no complications as long as the natural 

error has not reached the level of the inherent natural error (cf. 

section 1.4). By (i) of theorem 1 it follows immediately that the 

natural error decreases as long as (fi ,pi) I (ri ,ri) > ! . In the case 

of exact computations, (ri,pi) I (ri,ri) is constant for i ::: 1. In the 

presence of round-off at fl{Axi) this invariance is disturbed as in­

dicated by (iil of theorem 1. 

The parameter pi satisfies 

(18) 
llrill ((ri,ori+l} {ri+l'ori)) 

Pi = llri+lll urillllri+tll - Uri+1nnrill + 

llrill
2 

2 
llri+lll 

Since we know that llorill lllrill ~ eC1!pi{l+0(1)), [e:C11Pi ~ 0], we have 

the estimate 

under the restriction ec1 (!pi+ 1pi+l) ~ 0. A similar inequality holds 

for 11 i. Consequently, as long as II t iII /II t i + 111 is of order unity and 

the residual has not reached the level corresponding to good-behavior, 

the algebraic invariance of (ti+l ,pi+ll I (ri+l ,ri+l) is only slightly 

disturbed by round-off at each step. However, if llf1 11 I llti+111 is large 

or if the residual comes close to the level eiiAIIIIxill' then this in­

variance can be seriously affected by round-off. If 

2(fi,pi) I (ri,ri) -1 > 0, then in the next step possibly 

2 (fi+l ,pi+l) I (ri+l ,r1+1l -1 < 0, which implies according to (i) of 
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theorem 1, that the natural error increases at the step from i + 1 to 

i + 2. Moreover, even if all round-off is excluded after step i + 1, 

then the natural error tends to infinity at a linear rate after that 

step. Thus, the stability property saying that if round-off is ex­

cluded after any iteration step, no matter how much round-off has 

occurred in the previous steps, then next the natural error converges 

step-wise linearly to zero, does certainly not hold for the TRISCGUNM. 

For the special case of the TRCGUNM (p0 :• r 0) we also have this non­

stability phenomenon. 

In the numerical experiments, reported by several authors, it turns 

out that for the TRCGUNM the quantity II fill /II fi+111 is in practice 

never extremely large, nor are these experiments continued until the 

natural error reaches the level of the inherent natural error. There­

fore, (fi,pi) I (ri,ri) does not change very much during these experi­

ments, which explains-the satisfactory results. 

5.3 181 



182 



REFERENCES 

The figures between square brackets [AB] indicate the year 19AB of 

appearance of the paper or book on hand •. 

Axelsson, o. [74], 

On preconditioning and convergence acceleration in sparse matrix 

problems. 

CERN European Organization, Geneva (Report CERN 74-10). 

Bollen, J.A.M. [79], 

Round-off error analysis of the conjugate gradient algorithm. 

Technological University Eindhoven (T.H.-Report 79-WSK-06}. 

Bruijn, N.G. de [61], 

Asymptotic Methods in Analysis. 

North-Holland, Amsterdam. 

Crowder, H., R.S. Dembo and J.M. Mulvey [79], 

On reporting computational experiments with mathematical software. 

ACM Trans. Math. Software l• 193-203. 

crowder, H. and P. Wolfe [72], 

Linear convergence of the conjugate gradient method. 

IBM J. Res. Dev. ~~ 431-433. 

Dekker, T.J. [79], 

Correctness proofs and machine arithmetic. 

Proc. IFIP TC2 Working conference on Performance Evaluation of 

Numerical Software. North-Holland, Amsterdam, 31-43. 

Hestenes, M.R. [80], 

Conjugate Direction Methods in Optimization. 

Springer-Verlag, New York. 

183 



Hestenes, M.R. and E. Stiefel [52], 

Methods of conjugate gradients for solving linear systems. 

NBS J, Res. ~' 409-436. 

Jankowski, M. and H. W6zniakowski [77], 

Iterative refinement implies numerical stability. 

BIT .!2.' 303-311, 

Kammerer, W.J. and M.Z. Nashed [72], 

On the convergence of the conjugate gradient method for singular 

linear operator equations. 

SIAM J. Numer. Anal. ~· 165-181. 

Kershaw, D.S. [78], 

The incomplete Cholesky-conjugate gradient method for the 

iterative solution of systems of linear equation. 

J. Comp. Phys. 26, 43-65. 

Luenberger, D.G. [73], 

Introduction to Linear and Nonlinear Programming. 

Addison-Wesley, Reading Mass. 

Manteuffel, T.A. [80], 

An incomplete factorization technique for positive definite 

linear systems • 

Math. Comp. 2!, 473-497. 

Meijerink, J.A. and H.A. van der Vorst [77], 

An iterative solution method for linear systems of which the 

coefficient matrix is a symmetric M-matrix. 

Math. Comp. ll• 148-162. 

Powell, M.J.D. [76], 

Some convergence properties of the conjugate gradient method. 

Math. Program. 1!• 42-49. 

Reich, E. [49], 

184 

On the convergence of the classical iterative method of solving 

linear simultaneous equations. 

Ann. Math. Statist. ~· 448-451. 



Reid, J.K. [71], 

On the method of conjugate gradients for the solution of larqe 

sparse systems of linear equations. 

Proc. Conference on Large Sparse Sets of Linear Equations. 

Academic Press, New York; 231-254. 

Stewart, G.W. [80], 

The efficient qeneration of random orthogonal matrices with an 

application to condition estimators. 

SIAM J. Numer. Anal. 12• 403-409. 

Stoer, J. and R. Bulirsch [80], 

Introduction to Numerical Analysis. 

Springer-Verlag, New York. 

Wilkinson, J.H. [65], 

The Algebraic Eigenvalue Problem. 

Clarendon Press, Oxford. 

W6zniakowski, H. [77], 

Numerical stability of the Chebyshev method for the solution of 

large linear systems. 

Numer. Math. 28, 191-209. 

W6zniakowski, B. [78], 

Round-off error analysis of iterations for larqe linear systems. 

Numer. Math. ~· 301-314. 

W6zniakowski, B. [80], 

Round-off error analysis of a new class of conjugate gradient 

algorithms. 

Linear Algebra Appl. 29, 507-529. 

185 



186 



INV'EX 

algebraic property 8 

analytical result 8 

A-numerically stable 16 

A-orthogonal 43 

artificial floating point arithmetic 26 

artificial floating point implementation (AFI) 26 

artificial relative precision 27 

assembled implementation (AI) 25 

average convergence ratio 19 

Bachmann-Landau a-notation 

base 

19 

11 

bi-step-wise linear convergence 149, 158, 163, 166 

condition number 

conjugate 

conjugate direction method 

conjugate gradient method (CGM) 

convergence ratio 

coordinate descent method 

cyclic coordinate descent method 

definite system 

descent method 

directed coordinate descent method 

eigenvalues 

eigenvector 

eigenvector components 

equidistant distribution 

7 

43 

43, 44 

43, 135 

18 

40 

40 

6, 33 

33, 35 

42 

24 

6 

24 

112 

187 



error 16 

error vector 16 

Euclidean inner product 6 

Euclidean norm 6 

Gauss-Seidel method 40 

Gauss-Southwell method (GSM) 42, 99 

good-behavior 15 

gradient method (GM) 43, 103 

gradient vector 38, 43, 45 

Householder transformation 26 

independent start conjugate gradient method (ISCGM) 140, 168 

inherent error 17 

inherent natural error 17, 89 

Kantorovich inequality 7 

Kantorovich quotient 7 

large-oriented vector (l.o.) 121 

linear convergence on the average 18 

logarithmical distribution 112 

machine number 8 

machine vector 8 

mantissa 11 

mantissa length 11 

mixed descent method (MDM) 36 

natural error 16, 38 

natural error vector 16, 38 

numerically stable 16 

numerical property 8 

objective function 33, 34, 3, 15 

one-round-off error analysis 14, 31, 93. 

orthonormal eigenvectors 24 

188 



positive definite matrix 

product form implementation (PFI) 

proper rounding arithmetic 

pseudo minimal error 

pseudo minimal natural error 

pseudo minimal residual 

recursive residual descent method (RRDM) 

recursive residual vector 

relative machine precision 

relaxation factor 

residual 

residual vector 

restriction 

round-off matrix 

round-off scalar 

round-off vector 

small-oriented vector (s.o.) 

spectral decomposition 

spectral norm 

steepest descent method (GM) 

step-wise linear convergence 

systematic overrelaxation 

true residual descent method (TRDM) 

true residual vector 

unit vector 

un-oriented vector 

well-behaved 

24 

26 

11, 66 

116 

116 

116 

47 

34, 36 

11 

40 

16 

16 

20 

8 

8 

8 

121 

24 

7 

43, 103 

18 

40, 42 

47, 82 

34, 36 

40 

121 

15 

189 



SAMENVAmNG 

Bij het numeriek oplossen van lineaire stelsels verqelijkingen Ax = b 

maakt men onderscheid tussen direkte en iteratieve methoden. Een be­

lanqrijk verschil tussen direkte en iteratieve methoden is dat, in 
-1 geval van exact rekenen, een direkte methode de oplossing x := A b 

bepaalt in een eindig aantal rekenkundige bewerkingen, terwijl een 

iteratieve methode een oneindige rij benaderingen {x1} bepaalt die 

naar x convergeert en waarbij elke nieuwe benadering xi uit zijn voor­

ganger(s) wordt bepaald door een eindig aantal rekenkundige bewerkin­

gen. Voor wat betreft het qeheugengebruik van een rekenmachine zijn 

beide methoden sterk verschillend. Bij de meeste direkte methoden 
I 

worden de elementen van de matrix A opgeslagen in een twee-dimensionale 

rij en de bij direkte methoden berekende decompositie matrices kunnen 

vervolqens (geheel of ten dele) worden opgeslagen in de geheugenplaat­

sen gebruikt voor de matrix A zelf. Bij iteratieve methoden kan het 

eXPliciet opslaan van de elementen van A worden vermeden1 het is vol­

doende als men beschikt over een procedure om een gegeven vector x met 

de matrix A te vermenigvuldigen. Voor kleine stelsels is dit verschil 

van ondergeschikt belang maar voor grote ijle stelsels, waar de matrix 

A een relatief gering.aantal niet-nul elementen bevat, zijn de decom­

positie matrices, corresponderend met direkte methoden, in het algemeen 

minder ijl dan A zelf, hetgeen leidt tot extra hoge eisen voor wat 

betreft de capaciteit van het rekenmachinegeheugen. Bij iteratieve 

methoden kan de ijlheid van de matrix A volledig worden uitgebuit door 

bij matrix maal vector vermenigvuldigingen de nul-elementen over te 

slaan. 

Een ander aspect bij het oplossen van lineaire stelsels op de reken­

machine is de invloed van afrondfouten op de berekende oplossing. 

Voor de meeste gebruikte direkte methoden toonde Wilkinson [65] "goed­

gedrag" en "numerieke stabiliteit" aan. Een methode met goed-gedrag 

berekent, indien uitgevoerd op een rekenmachine met relatieve machine-
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precisie E, een benadering x welke de exacte oplossing is van een 

lineair stelsel vergelijkingen met een gering verstoorde matrix A, 

d,w.z. van het stelsel (A +E)x = b waarbij E van de orde €!!All is. 

Derhalve berekent een methode met goed-gedrag een benadering x waarvan 

de relatieve fout II x - xll I II xll hoogstens van de orde € II All II A -lll : = EK 

is. Een methode die een benadering berekent met een relatieve fout 

hoogstens van de orde e:K noemen we numeriek stabiel. Een methode met 

goed-gedrag is dus numeriek stabiel maar het omgekeerde is niet nood­

zakelijk waar. 

Voor iteratieve methoden bestaat er tot op heden slechts weinig lite­

ratuur betreffende de invloed van afrondfouten. Dit is ten dele te 

wijten aan het feit dat iteratieve methoden meer zelf-corrigerend 

leken te zijn dan direkte methoden en men verwachtte dat ze automatisch 

qoed-qedrag zouden vertonen. Een andere reden is wellicht dat de ge­

bruikers van iteratieve methoden in het algemeen meer ge!nteresseerd 

zijn in het aantal iteraties dat nodig is om een benadering van de 

oplossing te berekenen met eenpevredigende nauwkeurigheid dan in de 

maximaal haalbare nauwkeurigheid na eventueel vele iteraties. Desal­

niettem!n is het opmerkelijk dat er nauwelijks iteratieve methoden 

zijn waarvoor een afrondfoutenanalyse bestaat. W6zniakowski is een van 

de eerste auteurs die zeer recent resultaten publiceerde omtrent goed­

gedrag en numerieke stabiliteit van enkele iteratieve methoden. 

Deze dissertatie levert een bijdrage aan dit nogal nieuwe onderzoek­

gebied. We bestuderen in Hoofdstuk 2 het gedrag van algemene descent­

methoden in de aanwezigheid van afrondfouten. Binnen de verzameling 

van iteratieve methoden vormen de descentmethoden een belangrijke 

deelklasser de meest gebruikte iteratieve methoden behoren hiertoe. 

In Hoofdstuk 3 en Hoofdstuk 4 besteden we speciale aandacht aan het 

numerieke gedrag van de gradilnt-methode en de geconjugeerde gradient­

methode. De gradi11!nt-methode (ook wel methode van de steilste belling 

genoemd) is een descentmethode die, vooral vanuit theoretisch stand­

punt bezien, belangrijk is aangezien het een van de eenvoudigste 

niet lineaire iteratieve methoden is waarvoor een bevredigende analyse 

over het convergentiegedrag bestaat in het geval van exact rekenen. 

De geconjugeerde gradient-methode, die onafhankelijk door Hestenes en 

Stiefel [52] werd ontwikkeld, is zowel een direkte als een iteratieve 

methode. Bet is een iteratieve methode omdat bij elke step een betere 

benadering voor de oplossing wordt verkregen. Bet is een direkte 
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methode omdat, bij exact rekenen, na hoogstens n stappen de oplossing 

~ wordt bereikt, waarbij n de dimensie van het stelsel is. Het aanvan­

kelijke enthousiasme over deze eindigheidseigenschap verdween al 

spoedig toen bleek dat in de aanwezigheid van afrondfouten de n-de 

iterand xn vaak zelfs niet eens een redelijke benadering is voor de 

oplossing x van slecht geconditioneerde problemen. De methode werd nog 

slechts van academisch belang geacht, althans voor zover het het op­

lossen van lineaire stelsels betrof. Het artikel van Reid [7l.], waarin 

het iteratieve karakter van de methode werd benadrukt, bracht de 

methode opnieuw in de belangstelling en tegenwoordig staat de methode 

bekend als een iteratieve methode met zeer gunstige convergentie-eigen­

schappen voor sommige grote ijle stelsels met een niet te groot condi­

tiegetal. Voor deze stelsels .!evert de methode vaak een redelijke 

benadering na veel minder dan n stappen. 

Bet toepassen van de algemene theorie uit Boofdstuk 2 op de gradient­

methode en de geconjugeerde gradient-methode !evert een aantal resul­

taten voor wat betreft hun goed-gedrag en numerieke stabiliteit. Deze 

resultaten betreffen voornamelijk het uiteindelijke convergentiegedrag. 

Ter ondersteuning van de gedane uitspraken worden de uitkomsten van 

numerieke experimenten besproken. 

In Hoofdstuk 5 komen varianten van de geconjugeerde gradient methode 

aan de orde. 

192 



CURRICULUM VITAE 
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STELLINGEN 

1 

De methode van de geconjugeerde richtingen voor het oplossen van een 

definiet stelsel Ax= b, waarbij de richtingvectoren p0 , ••• ,pn_1 worden 

bepaald door Gram-Schmidt A-orthogonalisatie van de eenheidsvectoren 

e 1, ••• ,en, is niet alleenalgebraischequivalent met de Cholesky methode 

maar levert ook numeriek even bevredigende resul taten. 

2 

"' Het voorwaarts sommeren van een reeks I: !=1 y R; van een linear conver-

gente rij getallen (iy1+11 ~ Lly11, 0 < L < 1} is een numeriek insta­

biel proces. Deze instabiliteit .kan worden opgeheven door voor elke 

optelling het algoritme van M¢ller te gebruiken. 

M¢ller, o., Quasi-double precision in floating point addition. 
BIT,~ (1965), 37-50, 251-255. 

3 

Zij A een n x n positief definiete matrix met orthonormale eigenvecto­

ren u0 , ••• ,un_1 en positieve eigenwaarden A0 , ••• ,An-l" Als bij de 

methode van de geconjugeerde gradienten de start residuvector {zie 

paragraaf 4.1 van dit proefschrift} voldoet aan 

waarbij a1 ~ 0 (R; = O, ••• ,n-1), dan geldt voor k = 1, ••• ,n-1 en£~ 0, 

voor de exact berekende grootheden 

-1 2 
a. = Ak-1 + 0 ( £ ) I K-1 

2 O(e ) , 



k-1 0 2k-.t 
~ (e: )u! + 

R.=O 

4 

Beschouw het volgende optimalieeringsprobleem: "Bepaal een stuksgewijs 

continue 2w-periodieke functie u(t} met lu(tll ~ 1 zodanig dat bij ge­

geven e: > 0 en gegeven tweemaal continu differentieerbare functie 

f: lR + :R de differentiaalvergelijking 

x + e:f(x}x + x • e:u 

een 2w-periodieke oplossing heeft met maximale amplitude." 

Als de functie f even is en 

X 

f f(l;)dl; .... "' 

0 

(x .... "'} , 

dan bestaat er voor iedere e: > 0 een oploeeing u (t} van bovenetaand 
e: 

probleem, waarbij ue:(t} alleen de waarden +1 en -1 aanneemt. Bovendien 

nadert de afstand tuseen de discontinuiteitepunten van ue:(t) tot wale 

e: "' o. 

5 

Beschouw het optimaliseringsprobleem uit stelling 4 voor de differenti­

aalvergelijking 

x + e:(f(x)x+g(xll + x = e:u , 

waarbij e > 0 en f,g: lR + B beide tweemaal continu differentieerbaar 

zijn. 

Als de functie f even is en f(x) ~ o > 0 voor alle x E lR en ale de 

functie g oneven is en xg(x) ~ 0 voor alle x E lR dan bcstaat er voor 

iedere e > 0 een oplossing ue:(t) van het optimaliseringsprobleem waar­

bij u (t} alleen de waarden +1 en -1 aanneemt. Bovendien nadert de 
e 

afstand tuseen de discontinuiteitspunten van u {t) tot ~ als e: + 0. 
e: 



Zij verder a, B: JR -+ :R gedefinieerd door 

27! 

a(r) := J {g(r cost) - f(r cost) r sin t} sin tdt, 

0 

27! 

B(r) := J {g(r cost) - f(r cost) r sin t} cos tdt. 

0 

Indien r := max {r E JR I a 2 (r) + B2 (r) ::; 16} bestaat en 

..2.. ca2 (r) + s2 (r)) .; 0 VOOr r .. r 1 dan geldt V00r de maximale ampli­dr 
tude Ae 

lim A r 
e-1-0 e 

6 

Het door Reid opgemerkte feit dat zijn numerieke resultaten bij toe­

passing van de methode van de geconjugeerde gradienten voor het oplos­

sen van uit discretisatie van partiiUe differentiaalvergelijkingen 

voortkomende definiete stelsels lineaire vergelijkingen nauwelijks 

verschillen bij het gebruik van recursieve of echte residuen geldt 

zeker niet in het algemeen voor slecht geconditioneerde stelsels. Het 

is af te raden om bij slecht geconditioneerde stelsels uitsluitend 

recursieve residuen te gebruiken. 

Reid, J.K., On the method of conjugate gradients for the solution 
of large sparse systems of linear equations. Proc. Conference 
on Large Sparse Sets of Linear Equations. Academic Press, 
New York, 1971; 231-254. 

Dit proefschrift, Hoofdstuk 4. 

7 

Het is ontoelaatbaar dat in een modern leerboek over numerieke lineaire 

algebra nauwelijks aandacht wordt besteed aan afrondfouten tengevolge 

van eindige machineprecisie. 

Wait, R., The numerical solution of algebraic equations. 
John Wiley & Sons, New York, 1979. 



8 

Het is tebetreuren dat de verzameling mensen die nadenkt over de eco­

nomische gevolgen van werktijdverkorting slechts een kleine doorsnede 

heeft met de verzameling mensen die nadenkt over de maatschappelijke 

gevolgen van vrijetijdverlenging. 

9 

Een van de belangrijkste kenmerken van wetenschappelijk denken is dat 

het rekening houdt met het risico dat uitsluitend wetenschappelijk 

denken met zich meebrengt. 

10 

Er is een grote overeenkomst tussen politici en schepen: beiden maken 

het meeste lawaai als ze in de mist de koers kwijt zijn. 

J.A.M. Bollen 

2 december 1980 
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