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I

Preface

The paper in this RANA report has been submitted to the proceedings of the
4th International Workshop “Scientific Computing in Electrical Engineering”
(SCEE). This workshop was organized by the Eindhoven University of Tech-
nology from the 23th till the 28th of June, 2002. A poster about the research
described in the paper was presented at this workshop. Details are described
in two internal reports of Thales Nederland B.V., namely “Finitely Large
Phased Arrays of Microstrip Antennas” by D.J. Bekers (EAR 9501 027 223)
and “A Planar Array of Narrow Ring-Shaped Microstrips in Half Space” by
W. Dijkstra (EAR 9501 027 224).
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Abstract. This paper focuses on the development of a model to obtain quali-
tative insight in the behaviour of large, but finite, phased arrays of microstrip
antennas. This model concerns a finite array of simple elements, namely perfectly
conducting, infinitely thin, narrow rings, excited by voltage gaps and positioned in
free or half space. The currents on the rings, and from that the electromagnetic
field, are calculated by a moment method. Dimension analysis is carried out to
reduce numerical effort and to acquire insight in the behaviour of the array. The
qualitative analysis shows promising results and although numerically a brute force
method has been applied, CPU times are still acceptable.

1 Problem Description

Currently, Thales Nederland is realizing new radar systems consisting of large
phased arrays of microstrip antennas. These arrays consist of about 1000
antenna elements positioned on an antenna face of about 16 m2. The systems
scan in azimuth by rotation and in elevation by phase shifts. A narrow main
lobe and low side lobe level, an impedance match with the feeding network
of the array, and a low cross polarization are design goals.

To analyse such arrays, either a finite array model (or element-by-element
approach) or an infinite array model is used at Thales Nederland. The infinite
array model requires much less computation time and data storage demand
than the finite array model. However, since it cannot account for edge effects
and differences between the antenna elements, the need for a finite array
model still exists to meet the design goals.

Since the actual geometry of the antenna elements is complicated, simula-
tion of a finite array taking into account in detail these elements will require
too much computing resources to be realistically feasible. Therefore, we have
decided to develop a model based on simple elements that will enable us to
find the characteristics that describe the qualitative behaviour of large phased
arrays.
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2 Modelling

The main requirements on our model are the following. Firstly, the arrays
are finite such that boundary effects can be incorporated. Secondly, compu-
tation times should be in the order of hours. Thirdly, the algorithm should
be based on analytical expressions to provide insight in the characteristics or
characteristic parameters of an array.

The qualitative model concerns a finite planar array of simple elements
in free space or above an infinitely wide ground plate. Considering the radi-
ating part of the actual antenna elements, i.e. a rectangular microstrip loop,
we have chosen perfectly conducting, infinitely thin, narrow ring-shaped mi-
crostrips, shortly rings, as elements; see Fig. 1. The reasons for this choice
are twofold. A ring is the most simple loop geometry and the modes on this
geometry can be described analytically.

The rings are excited by voltage gaps at a certain frequency with corre-
sponding wavelength λ and wave number k. On each ring, the gap is uniform
with respect to the width and can be positioned arbitrarily. The widths 2bq

of the rings are all of the same order, but much smaller than the wavelength,
the radii aq, and the distances between the rings. In other words, kbq ¿ 1,
βq = bq/aq ¿ 1, and bp/(Lpq − ap − aq) ¿ 1, where Lpq is the distance
between the centers cp and cq of ring p and q; see Fig. 1. If a ground plate is
present, the rings are situated above this plate at height h.
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Fig. 1. Geometry of an array of two rings.

Since the excitation is time harmonic, the electromagnetic field is so also,
and therefore, a (spatial) time-harmonic representation of this field is used.
The time dependence is suppressed. The total electric field is written as
the sum of a scattered electric field Escat and an excitation field Eex. The
scattered electric field is expressed in terms of the unknown current density
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J on the rings by an integro-differential operator acting on the current,

Escat = LJ. (1)

The operator L can be factorized as L = DT , where D is the differential
operator−jωµ(I+∇∇·) and T is the integral operator described by a Green’s
kernel, where T J is the magnetic vector potential. The condition that the
tangential component of the total electric field is zero at the surface S of the
rings yields an equation for the current,

(LJ)tan = −(Eex)tan, on S. (2)

Here, ( · )tan is a trace operator that restricts a vector field to the surface S
and projects this field tangentially on S. Equation (2) is solved by a moment
method expanding the unknown current into a finite number of expansion
functions with unknown coefficients. Once the current is known, the electro-
magnetic far field can be calculated analytically.

3 Analytical Aspects

Let the surface of the q-th ring be Sq. On each Sq, a polar parameter rep-
resentation is chosen, the orientation of which is described by the angle ψq;
see Figure 1. The voltage gap on Sq is positioned in ϑq = π. Hence, ψq deter-
mines not only the orientation of the parameter representation, but also the
position of the gap. Two tangent vectors erq and eϑq correspond in the usual
way to this representation. Together with the corresponding normal, they
form a local coordinate system on Sq, which is extended straightforwardly to
global coordinate system.

It is assumed that the current Jq = J|Sq is directed along the centerlines
of the rings and that it is uniform with respect to the width bq,

Jq(rq, ϑq) = w(ϑq)eϑq . (3)

The basis of this assumption is that the wavelength is much larger than the
widths of the rings. Expressing LJq, i.e. the scattered electric field induced by
ring q, into the system of Sp, we calculate (LJq)tan on Sp straightforwardly by
putting the axial coordinate equal to zero and omitting the axial component.
Then, a differential operator Drpϑp is determined such that

(LJq)tan|Sp
= Drpϑp(T Jq

∣∣
Sp

), (4)

where |Sp denotes the restriction to Sp. Hence, the projection of the trace
operator is incorporated in Drpϑp .

The impedance matrix component for a test function vp and an expansion
function Jq is given by

<vp, (LJq)tan|Sp>, (5)
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where <·, ·> is the inner product on functions defined from S to the tangent
space of S. It is shown that the variation of (LJq)tan|Sp in rp is of order βp

with respect to its variation in ϑp. This implies that (LJq)tan|Sp
depends

only weakly on rp. Therefore, the test function vp is chosen uniform with
respect to rp and tangentially directed only. This means

vp(rp, ϑp) = v(ϑp)eϑp
. (6)

Then, the impedance matrix component (5) turns into

<vp, (LJq)tan|Sp
> =

∫

ϑp

vp(ϑp)
∫

rp

(Drpϑp [T Jq|Sp ])ϑp dσ(rp, ϑp). (7)

Neglecting terms of order βp, we reverse the differential operator Drpϑp and
the integral with respect to rp. This leads to averaging of the Green’s kernel
with respect to the radial source and observation coordinates. In case p = q,
the averaged kernel has a logarithmic singularity, otherwise it is regular. Re-
quiring that the test function vp and the expansion function wq have square
integrable second and first generalized derivatives, respectively, we transfer
the reversed differential operator to vp. The resulting differential operator
incorporates the Helmholtz operator. Together with the periodic boundary
conditions, this operator induces a Sturm-Liouville problem for vp, the eigen
functions of which are chosen as test functions. Then, the expansion func-
tions are chosen equal to the test functions. The resulting impedance matrix
component is a double integral, which can be rewritten to a single integral
in case p = q by use of properties of inner product and convolution.

Choosing a finite number of test and expansion functions on each Sp,
we obtain an impedance matrix built up of blocks, which describe the self
and mutual coupling of the rings. The blocks on the diagonal are diagonal
matrices describing the self coupling of each ring, while the other blocks are
dense matrices describing the mutual coupling between each pair of rings. The
expansion coefficients are calculated by an LU-factorization of the impedance
matrix.

4 Numerical Results

The first result we show is used for validation of the implementation. We
show the real and imaginary part of the current through one ring in free
space, excited at a frequency of 3 GHz; see Fig. 2. We can compare the result
with known results from literature: the current through a wire loop excited
by a voltage gap at the same frequency; see [2, Fig. 2 and 3] and [4]. Here, we
use a rule of thumb found by Kraus [3, p. 238], which states that the results
for a thin strip of width w and a wire with cross-sectional radius w/4 are
equivalent. Two expansion functions show already an accurate result for the
real part of the current. Four expansion functions show a quite accurate result
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for the imaginary part of the current, except near the voltage gap in ϑ = π.
The reason for the latter is the following. It can be shown that since the cur-
rent has a square integrable generalized derivative, the excitation field should
be square integrable. However, the delta functions that describe the voltage
gaps are not square integrable. Furthermore, the expansion functions do not
only have square integrable generalized derivatives, but are even continuously
differentiable.

Figure 3 shows the effect of a ground plate. Figure 3.(a) shows the current
amplitude for a ring in free space, and at h = λ/4, h = λ/2, and h = λ above
a ground plate. The current is normalized on the maximum amplitude in
free space. Due to interference, the amplitude for h = λ/4 is lower than for
free space, and for h = λ/2 and h = λ higher. Due to space attenuation, the
amplitude for h = λ is lower than for h = λ/2. Figure 3.(b) shows the far field
components in the yz-plane for free space and for h = λ/4. Here, a spherical
coordinate is chosen that is related to the cartesian coordinate system in Fig.
1 in the usual way. The influence of the ground plate can be observed from
the behaviour of the φ-component, i.e. the cross-polarization, that vanishes
at θ = 90o (endfire) for the ground plate, but not for free space.

Figure 4 shows results for two line arrays of 7 identical rings with spacings
7λ/15 and 3λ/5. Here, 8 expansion functions per ring is a suitable choice. The
orientation of the local coordinate systems on the rings is such that ψq = 0.
As aforementioned, the voltage gaps, all of equal amplitude, are positioned in
ϑq = π. The centers of the rings are positioned on the positive x-axis, where
the center of the first ring is in the origin; see Fig. 1. The CPU time of a
Matlab implementation on a HP PC with Windows NT, an Intel Pentium
IV processor at 1.6 GHz, and 256 Mb of RAM is 366 sec. Figures 4.(a)-(b)
show the normalized radiation intensities in the xz and yz-plane (H and
E-plane) together with the intensity of one ring. In the xz-plane, one main
lobe and several side lobes are observed for both spacings, where the number
of lobes is related to the spacing. In the E-plane, only one lobe is observed.
These results are in qualitative correspondence with results from literature;
see [1, Chapter 3]. Besides that the array with larger spacing has more side
lobes, also its maximal radiation intensity is higher. This effect is due to the
degree of mutual coupling. Influence of mutual coupling on the current is
shown in Fig. 4.(c)-(f). For smaller spacing, the amplitudes of the currents
differ significantly from the amplitude on one ring, while for larger spacing,
they differ only slightly. In particular, the maxima of the amplitudes for the
spacing 7λ/15 are significantly lower than the maximum for one ring. For
the spacing 3λ/5, these maxima are both slightly higher and lower than the
maximum for one ring. The phases differ for both spacings from the phase
on one ring.
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5 Conclusions

We have developed a tool for analysing finite arrays of rings that is easy
to handle. The algorithm is based on analytic expressions as required. The
validation has been successful; results have shown to be in qualitative corre-
spondence with literature and practice. Although numerically, a brute force
method has been applied, the CPU times are acceptable. However, to anal-
yse large arrays of about 100 elements or more, they should be reduced. The
accuracy is sufficient for qualitative analysis.

6 Prospects

Research on characteristics of arrays and essential aspects of the antenna
elements will be topic of further research. A transparent relation should be
established between excitation, geometry, and scattered field. Finally, feed-
back should be provided to the hardware designers of Thales Nederland.
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Fig. 2. The total current on a ring excited by a voltage gap of 1V at a frequency
of 3GHz.; a = 0.0637 λ, b = 0.0027 λ, c = (0, 0, 0), and ψ = 0. (a) Real part; 2
expansion functions of cosine type. (b) Imaginary part; blue, red, black: 4, 6, and
8 expansion functions of cosine type.
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Fig. 3. A ring excited by a voltage gap of 1 V with 8 expansion functions of cosine
type; ka = 2π/5, β = 1/40, c = (0, 0, 0), ψ = 0. (a) Current amplitudes normalized
on the maximum amplitude in free space; blue: free space; green: h = λ/4; red:
h = λ/2; black: h = λ. (b) Far field components in the yz-plane normalized on
the maximum of |Eθ|; blue: free space; black: h = λ/4; solid lines: Eθ-components
(co-polarization); dashed lines: Eφ-components (cross-polarization).
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Fig. 4. Results for line arrays of 7 rings of equal radii (kaq = 2π/6) and widths
(βq = 3/50), with voltage gaps of equal amplitude (1V), and positioned in free
space.
(a)-(b): Radiation intensities in the xz and yz-plane, resp., normalized on the maxi-
mum intensity of one ring; blue: one ring; black: spacing 7λ/15 (cq = 7λ(q−1)/15);
red: spacing 3λ/5 (cq = 3λ(q − 1)/5).
(c)-(f): Current amplitudes and phases for spacings 7λ/15 ((c), (e)) and 3λ/5 ((d),
(f)); blue: one ring; green/red/black/purple: from first ring to center ring.


