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Abstract. In many practical situations the coordination of transportation mana-
gement and inventory management may lead to considerable cost reductions. Trans-
portation management includes the application of different types of shipment con-
solidation policies. Shipment consolidation takes into account the logistics strategy
of combining two or more shipment orders to optimize transportation. When the
shipment consolidation policy changes, the shipment lead time changes as well and
if the lead time changes, the inventory policy needs to be re-evaluated, since chan-
ging lead times affect customer service. In this paper the lead time comprises two
elements: waiting time due to order consolidation and the shipment time. The lead
time is an important parameter for inventory management. We derive approxima-
tions for the lead time behaviour in (s,nQ) models where the items are consolidated
according to different types of consolidation policies.

1 Introduction

The coordination of inventory management and transportation management
is crucial for an efficient management of the supply chain. Transportation
management includes the application of different types of shipment con-
solidation policies. The consolidation policy coordinates shipment processes
of different item orders for the same (intermediate) destination, and this can
lead to a reduction in transportation costs. Higginson and Bookbinder (1994)
distinguish between two types of consolidation policies: the time policy and
the quantity policy. The time policy dispatches orders when a shipping date
is expired. The shipping date is usually set through consideration of service
levels. Higginson and Bookbinder (1995a) give some normative approaches
to set the shipping date. The quantity policy dispatches orders when a fixed
quantity is consolidated. Higginson and Bookbinder (1995b) use a Markov
chain model to determine the optimal consolidation policy given an (s,S)
inventory policy generating shipment orders.

Another line of research is the joint replenishment or coordinated re-
plenishment problem. Goyal and Satir (1989) present an early review of all



models, starting from a simple deterministic problem. In the joint replenish-
ment literature we observe two types of control policy; viz. the continuous
review can-order policy (si,ci,Si) and the periodic review order-up-to po-
licy (Ri,Si). In the continuous can-order policy (si,ci,Si), when the inven-
tory position of an item i reaches the must-order point si, a replenishment
is triggered as to raise the item’s inventory position to order-up-to level Si.
Meanwhile, any other item in the group with an inventory position at or
below its can-order point ci is included in the replenishment as to raise the
inventory position up to Si. See, e.g., Liu and Yuan (2000) or Federgruen,
Groenevelt and Tijms (1984). In the periodic review (Ri,Si) policy, the in-
ventory position of item i is inspected with intervals Ri and the review mo-
ments are coordinated in order to consolidate orders of individual items, see
Viswanathan (1998).

In this paper, we analyze shipment consolidation policies under the as-
sumption of compound renewal customer demand. The compound renewal
demand process enables accurate modeling of real-world demand processes.
In the literature discussed above order-up-to-policies are employed for inven-
tory management. In practice, it is often more appropriate to employ (s,nQ)-
policies, which take into account restrictions imposed by material handling
units such as pallets and boxes. The focus in this paper is to model the
interaction between shipment consolidation processes and inventory manage-
ment policies. In general this involves multiple items or stock keeping units
(sku’s) and multiple stock locations. It is easy to see that a building block for
the analysis of the interaction between shipment consolidation and inventory
management, is the analysis of a line haul between two stocking locations,
for example between a warehouse and a retailer. We assume for ease of refe-
rence that the warehouse holds stocks of multiple items. The same items are
held by the retailer who sells to customers. The inventories at the retailer are
controlled according to an (s,nQ)-policy. The retailer has to satisfy fill rate
requirements for all items. The reorder level, which ensures the required fill
rate, depends on the lead time of orders from the warehouse to the retailer.
The lead time of an order comprises the waiting time for truck departure and
the transportation time. The waiting time for truck departure is the main
subject of this paper. The contribution of this paper to literature is twofold.
First of all, we analyze shipment consolidation policies under the assumption
of compound renewal demand, where this demand represents the customer
orders at the retailer. We present an overall analysis of this problem integra-
ting shipment consolidation and inventory management taking into account
material handling restrictions. The latter is dealt with through the use of
(s,nQ)-policies.

In this paper, we use the method of Whitt (1982) to superpose renewal
processes with mixed-Erlang distributed inter-renewal times. Notice that the
superposed process is not a compound renewal process. Yet, our analysis
reveals that in line with the research of Whitt (1982), assuming that the



superposed process is renewal yields good approximations for performance
characteristics, c.f. Smits, de Kok and, van Laarhoven (2000).

The sequel of this paper is organized as follows: In section 2, we describe
in detail the model and we derive approximations for the waiting time. In
section 3, we test the approximations through extensive computer simulations
and in the last section, we give some conclusions and indicate a few thoughts
for further research.

2 Model description

The model considers a line haul between a warehouse and a retailer. At
both locations stocks of all items are kept. At the retailer the customer de-
mand for each item arrives according to a compound renewal process, i.e.,
customer orders for an item arrive according to a renewal process and the
demand per customer has some arbitrary distribution function. Demands of
different customers for an item are independent and identically distributed.
We furthermore assume that the compound renewal demand processes for
different items are independent of each other. Additional constraints of the
model are the item fill rate constraints at the retailer. This implies that at
the retailer for each item a target fill rate is given. The fill rate is the fraction
of demand directly delivered from shelf. The inventories at the retailer are
controlled by (s,nQ)-policies. It operates as follows: as soon as the inventory
position, which is expressed as the physical inventory plus the stock on order
minus the backorders, drops below reorder level s an amount nQ is ordered
such that the inventory position is raised to a value between s and s + Q. Q
is called the batchsize, n is an integer. The demand that cannot be met im-
mediately is backordered. We assume that the warehouse always has enough
stock to fulfill the replenishment orders towards the retailer. To be able to
calculate the reorder levels of the different items, the lead time towards the
retailer is needed. In our model the lead time comprises the waiting time
due to transport consolidation and the handling and transportation time. In
this paper, we derive approximations for the waiting time due to consolida-
tion for the time policy and the quantity policy. Figure 1 gives a graphical
representation of the model. Below a list of the used notation is introduced.

Parameters and variables
Ld driving time
Z waiting time due to shipment consolidation
L∗ lead time
T time between two truck departures. In the time policy T is

deterministic and in the quantity policy T is stochastic
Ai time between two subsequent arrivals of item i

at the retailer



Di demand size of item order i (in volume) at the retailer
P2i fill rate at the retailer
Di(L∗) demand for item i during the lead time
si reorder level of item i (in volume)
X+

i physical inventory level at an arbitrary point in time
Qmax predetermined consolidation quantity (in volume)
∆(t) consolidated quantity at time t, ∆(T ) is the shipped quantity
Qi batchsize of item i (in volume)
Oi order process of the retailer towards the warehouse for item i
Ri time between order placements at the warehouse for item i
O∗ aggregate order process at the warehouse
O∗6=i aggregate order process of all item except i at the warehouse
R∗ aggregate process of the time between two order placements

at the warehouse
R∗6=i aggregate process of the time between two order placements

for all items except i at the warehouse
V rest part of the split order in the quantity policy

with partial shipments
U undershoot process
N(T ) is defined as the number of arrivals in (0,T ]
Wi is defined as O∗6=i + V + Oi

N(X) is defined as the number of arrivals between the arrival of an
arbitrary customer and the departure of the truck

Y (t) inventory position at moment t

Functions and Operators
E[Y ] expectation of the random variable Y
σ2(Y ) variance of the random variable Y
E[Y 2] second moment of the random variable Y
cY coefficient of variation of the random variable Y
(y)+ max(0,y)
P{A} probability of event A
Fn∗(t) n-fold convolution of Fy(t)
Fy(t) pdf of random variable Y

M(t) renewal function, M(t) =
∞∑

n=0
Fn∗(t)

associated with pdf Fy(t)

Time policy
In case consolidation employs a time policy the trucks depart at fixed time
intervals T (for example, every week). Figure 2, gives a schematic represen-
tation of the time policy. All replenishment orders arriving within one time
interval T are consolidated and shipped together to the retailer. We define
∆(t) as the collected quantity at moment t and ∆(T ) as the consolidated



amount that is shipped. We want to find expressions for the time between
the arrival of an arbitrary order and the departure of the truck.

Quantity policy
In case consolidation employs a quantity policy, we distinguish between two
alternatives; partial shipments and full shipments/flexible truck capacity. In
both cases we assume that at time 0 a truck leaves the warehouse.
i) Partial shipments

The orders are consolidated until the collected quantity ∆(t), is larger than
or equal to a predetermined quantity Qmax. The last order ON(T ) is split such
that ∆(T ) is equal to Qmax, where T is the time of the first truck departure
after time 0. The consolidated quantity ∆(T ) is shipped to the retailer and
the consolidation process starts all over again with as starting quantity the
remaining part of the order V . So ON(T )−V leaves directly and the remaining
part V leaves with the next truck. Figure 3a) gives a schematic representation
of the process. In order to determine the probability distribution function of
∆(t) we apply the following proposition.

Proposition 1. The consolidation process of a quantity policy with partial
shipments under a compound renewal demand process is equivalent to the
inventory position process under an (0,nQmax) control policy and compound
renewal customer demand.

Explanation. In the (0,nQmax) inventory policy with compound renewal cus-
tomer demand, the inventory position Y (t) decreases at the arrival of a cus-
tomer order. When the inventory position drops below 0 an amount Qmax

is ordered. The amount by which the inventory position drops below 0 is
called the undershoot and is denoted by U . In the quantity consolidation
policy with compound renewal replenishment orders, the collected quantity
increases at the arrival of a replenishment order. When the collected quan-
tity exceeds Qmax, an amount ∆(T ) = Qmax is shipped towards the retail
warehouse. In the consolidation process the cumulative order between two
shipments is ∆(T ). The inventory position has the same course as the con-
solidated quantity at a moment in time. The undershoot process U in the
(0,nQmax) inventory policy is similar to the split order process V in the
shipment consolidation process (see Figure 3).
ii) Full shipments/flexible truck capacity

The orders are consolidated until the collected quantity is larger than or
equal to a predetermined quantity Qmax. The consolidated quantity ∆(T ) is
equal to the entire collected quantity in (0, T ] and hence ∆(T ) ≥ Qmax. The
consolidated quantity ∆(T ) is shipped to the retailer and the consolidation
process starts all over again. Figure 4 a) gives a schematic representation of
the process. The probability density function of ∆(t) can be derived from the
following proposition.



Proposition 2. The quantity consolidation process with full shipments/fle-
xible truck capacity under compound renewal demand is equivalent to the in-
ventory position process under an (0,S) control policy and compound renewal
customer demand where S = Qmax.

Explanation. In the (0,S) inventory policy, where S = Qmax, with compound
renewal customer demand, the inventory position decreases at the arrival of
a customer order. When the inventory position drops below 0, an amount
Qmax + U is ordered such that the inventory position is raised up to Qmax.
In the quantity consolidation policy with compound renewal replenishment
orders, the collected quantity increases at the arrival of a replenishment order.
When the collected quantity exceeds Qmax, an amount ∆(T ) = Qmax + V is
shipped towards the retailer. The inventory position has the same course as
the consolidated quantity at every moment in time (see Figure 4).

To be able to calculate the waiting time between the placement of an
arbitrary order and the departure of the truck, we must derive expressions
for the arrival process of orders to be consolidated. To calculate this arrival
process, we derive approximations for the order process of the different items
from the retailer towards the warehouse. These approximations are described
in Appendix A. After that, we superpose the order processes of the differ-
ent items. The approximations for the superposed process are described in
Appendix B. The superposed compound renewal process constitutes the de-
mand for the consolidation process. With this superposed process we can
derive expressions for the first two moments of the waiting time due to ship-
ment consolidation. Notice that the superposed process is not a compound
renewal process. Yet, our analysis reveals that assuming that the superposed
process is a compound renewal process yields good approximations for the
performance characteristics. From the first two moments of the waiting time
due to shipment consolidation and the first two moments of the transporta-
tion time we compute the first two moments of the lead time of an arbitrary
order for an item. Using the analysis in Smits et al. (2000) we can compute
the reorder levels that yield the required fill rate level and the associated
average net stocks.

2.1 Waiting time due to consolidation

In this section, we derive expressions for the waiting time due to shipment
consolidation. Again we distinguish between two types of consolidation poli-
cies, the time policy and the quantity policy. Due to the compound renewal
demand process we cannot hope for exact results of the waiting time distribu-
tion. Our generic approach is to derive expressions for the first two moments
of the waiting time and fit a tractable distribution to these first two moments.

Time policy



We assume that the orders arrive at the warehouse according to a compound
renewal process. In appendix A and B approximations of the superposed order
arrival process are given. This process is independent of the truck departure
process, which is a renewal process with deterministic inter-renewal times.
Under stationarity it holds that the waiting time until truck departure of an
arbitrary order is uniformly distributed on (0, T ). The proof of this statement
can be found in appendix D. Thus we find

E[Z] =
T

2
(1)

E[Z2] =
T 2

3
(2)

Quantity policy
The derivation of the waiting time distribution under the various types of
quantity policies is much more complicated than in case of the time policies.
Exact results are only available for special cases. Therefore we have to resort
to the derivation of approximations for the first two moments of the waiting
time distribution.

We have defined N(X) as the number of arrivals between the placement
of an arbitrary order and the departure of the truck. For the first moment
we obtain

E[N(X)] =
∞∑

n=1

n(F (n−1)∗(Qmax −X)− F (n)∗(Qmax −X)) (3)

E[N(X)] =

Qmax∫
0

M(Qmax − x)dFX(x) (4)

To be able to evaluate this for the different consolidation policies, we have to
find an expression for FX(x) for the two different policies.

i) Partial shipment
We can use Proposition 1 and the fact that the inventory position of an (s,nQ)
inventory policy is uniformly distributed between (s,s+Q). Therefore we can
conclude that ∆(t) is uniformly distributed between (0,Qmax), this gives

P{X ≤ x} = x
Qmax

.



ii) Full shipment/flexible truck capacity
We can use Proposition 2 and the fact that the inventory position of a (s,S)
inventory policy is a renewal process. Therefore we can conclude that ∆(t) is
a renewal process, this gives

P{X ≤ x} = M(x)
M(Qmax) .

When Oi is Poisson distributed, we could precisely calculate N(X) for
the first two cases, but in practice the coefficient of variation of the reple-
nishment orders are lower than 1. Another difficulty is the calculation of the
waiting time from N(X), since we have to take into account that a part of
the last replenishment V may not leave directly in the partial shipment case.
We observe that it is difficult to find an exact expression for the waiting
time. However in practice, it may be possible to standardize the volume of
the batchsizes for the different sku’s to pallets or boxes and the volume of
the truck to a multiple of this volume unit. In this case the consolidated
quantity ∆(T ) is exactly equal to the predetermined quantity Qmax and we
can compute exact derivations for the waiting time.

a. Equal batchsizes for all items
In this subsection we derive the first two moments of the waiting time when
the volume of the batchsizes of the different items are equal to some Q.
The volume of the predetermined shipped quantity Qmax is assumed to be a
multiple of Q. In this case ∆(t) has a discrete distribution. The consolidation
process starts at the arrival of the first batchsize Q, after this a second batch
arrives and the consolidated quantity is 2Q, then 3Q until the predetermined
shipped quantity is reached. In the steady state, ∆(t) is uniformly distributed
over [0, Q, 2Q, ..., (Qmax

Q − 1)]. The different consolidated quantities have the
same probability namely Q

Qmax
. It easily follows that

E[N(X)] =
( Qmax

Q −1)∑
k=0

k
Q

Qmax
=

1
2
(
Qmax

Q
− 1)

Qmax

Q

Q

Qmax
=

1
2
(
Qmax

Q
− 1)

(5)

E[N(X)2] =
( Qmax

Q −1)∑
k=0

k2 Q

Qmax
=

1
6
(2

Q2
max

Q2
− 3

Qmax

Q
+ 1) (6)

E[Z] = E[N(X)]E[R∗] (7)

E[Z2] = E[N(X)]σ2(R∗) + E[N(X)2]E[R∗]2 (8)



b. Heuristic for non-equal batchsizes
In the derivations of the waiting time for the quantity policy with non-equal
batchsizes we encounter two difficulties: the waiting time is dependent on the
quantity consolidation policy (partial shipments or full shipments/flexible
truck capacity) and the waiting time may be different for different items. If
a batchsize is very large compared to other ones then it is likely that the
waiting time for this batchsize is smaller than for the other ones.
We observe that it is not efficient to have a high probability of having more
than two batches of the same item in one truck. When there is high probability
of having two orders in one truck, we can increase the batchsize without
increasing the inventory level which leads to the same inventory costs but
may lead to lower transportation and handling costs. To calculate the waiting
time of batchsize i, we assume two types of order processes. The order process
of item i and the order process of all other items except i. We use the formulas
in appendix A and B to calculate the aggregate order process of all products
except item i. We define E[R∗6=i] and E[R∗26=i] as the first two moment of the
inter-arrival times of all other items except item i and we define E[O∗6=i] and
E[O∗26=i] as the first two moments of the order size of all items except i.

i) Partial shipments
The last order is split such that the consolidated quantity is equal to the
predetermined quantity. The part of the last order which is split is denoted
by V . Since this consolidation policy is equivalent to the (0,nQmax) inventory
policy, V is equivalent to the undershoot process in the (0,nQmax) inventory
model.
For the first two moments of the undershoot process (Appendix B formula’s
33 and 34), we use the asymptotic results for the first two moments of the
forward recurrence time distribution. Therefore the first two moments of V
are

E[V ] ' E[O∗2]
2E[O∗]

(9)

E[V 2] ' E[O∗3]
3E[O∗]

(10)

Now let us define ni as the amount of products orders i that are consoli-
dated in an arbitrary consolidated shipment. We neglect the probability that
ni > 1, since we deduced previously that it is not cost efficient to have a
high probability of having more than 2 orders of the same item in one truck.
Figure 5 gives a schematic representation of the truck consolidation process.
We define Wi = O∗6=i + V + Oi. Given that ni = 1, the probability that the
number of arrivals of order process 6= i is equal to k, is as follows:

P{n 6=i = k|ni = 1} = P{
k∑

i=1

Wi ≤ Qmax} − P{
k+1∑
i=1

Wi ≤ Qmax} (11)



If Oi is discrete then we can evaluate the formula above by assuming that
k∑

i=1

O∗6=i +V is mixed Erlang distributed, else we assume that
k∑

i=1

Wi is mixed

Erlang distributed. Formula (11) gives correct results when k is large and
when O∗6=i and V are exponentially distributed. We assume that the proba-
bility that the item i order is the first one is equal to the probability that the
item i order is the second one, the third or the last one, given that n 6=i = k
and ni = 1. We define N(X)i as the number of arrivals between the placement
of an arbitrary order i and the departure of the truck.

E[N(X)i] '
∞∑

k=0

P{n 6=i = k|ni = 1}( 1
k + 1

k∑
s=1

s +
1
2
) (12)

E[N(X)2i ] '
∞∑

k=0

P{n 6=i = k|ni = 1}( 1
k + 1

k∑
s=1

s2 +
1
4
) (13)

The first two moments for the waiting time are

E[Zi] ' E[N(X)i]E[R∗6=i] (14)

E[Z2
i ] ' E[N(X)i]σ2(R∗6=i) + E[N(X)2i ]E[R∗6=i]

2 (15)

We can derive similar expressions for the full shipment/flexible truck capacity.

3 Simulations and results

In this section, we test the approximations found for the first two moments
of the waiting time. The testing is done with the help of discrete event si-
mulations. The simulations start all with the same seed and stop after 40 000
arrivals of item orders, which ensures accuracy of the simulation results. We
assume that the inter-arrival time between customer orders at the retailer is
mixed Erlang distributed. Furthermore we assume that the customer order
sizes are mixed Erlang distributed.

3.1 Input for the simulations

For the time policy, we ran 84 different simulations to test the approximations
of the waiting time distribution. In the derivations of the aggregate order
process some approximations are made to estimate the second moment of
the time between two replenishment orders, the approximations perform less
if the number of superpositions is smaller than 16. For this reason we varied
in the simulations the number of items between the 16 and 32. This is in line
with practice where the number of different items is usually larger than 16.
All items are identical with E[Ai] = 1 and E[Di] = 100, because the derived



approximations for the waiting time in time policy are independent of the
arrival process of orders to be consolidated. We varied c2

Ai
and c2

Di
between

0.4, 1 and 1.6. The batchsizes at the retailer were varied between 500, 1000,
1500, ..., 5000. T is varied between 1, 3 and 6 and P2i between 90 %, 95 %
and 99 %. Ld is varied between 2 and 8.

For the quantity policy with equal batchsizes we performed 84 different
simulations. The number of different items are varied between 16 and 32.
For all items E[Ai] = 1 and c2

Ai
is varied between 0.2, 1 and 2. In the

quantity policy the waiting time due to shipment consolidation is dependent
on the arrival process of orders to be consolidated, therefore we assume for the
different items different demand processes. We used the fact that in practice,
a few items have a large demand and many items have a small demand. We
distinguish between two types of items large demand and small demand. 66
% of the items have a small demand. E[Di] = 100 for the large demand and
E[Di] = 10 for the small demand. c2

Di
is varied between 0.2, 1 and 2. Ld is

varied between 2, 4, 8 and 16. The batchsize is varied between 500 and 2000.
Qmax is varied between 2000 and 4000 and P2i is varied between 90 %, 95 %
and 99 %.

For the quantity policy with non-equal batchsize, we performed 14 differ-
ent simulations. In the simulations we assumed 16 items with four different
types of demand. Type j demand is defined as Dj . The Ld is varied between
2 and 8 and the fill rate is varied between 90 %, 95 % and 99 %. The input
for the cases are given Table 1.

Table 1: Input for the quantity policy simulations with non-equal batch-
sizes

Case E[A] c2
A E[D1] E[D2] E[D3] E[D4] c2

D E[Q] Qmax

1 1 1 100 150 200 250 1 900 4000
2 1 1 50 70 90 110 1 900 4000
3 1 0.4 50 70 90 110 1 900 4000
4 1 1.6 50 70 90 110 1 900 4000
5 1 1 50 70 90 110 0.4 900 4000
6 1 1 50 70 90 110 1.6 900 4000
7 1 1 50 70 90 110 1 300 8000
8 1 1 50 70 90 110 1 600 8000
9 1 1 50 70 90 110 1 900 8000
10 1 0.4 50 70 90 110 1 900 8000
11 1 1.6 50 70 90 110 1 900 8000
12 1 1 50 70 90 110 0.4 900 8000
13 1 1 50 70 90 110 1.6 900 8000
14 1 1 50 70 90 110 1 2000 8000

where E[Q] is the average batchsize over all different items.



3.2 Results

We used the approximations derived previously in this paper to calculate
the first two moments of the waiting time due to shipment consolidation.
We fit a mixed Erlang distribution to these first two moments. Using the
expressions in Appendix C we computed the reorder levels that ensure the
required service levels and the resulting average physical inventory levels. To
test our approximations we compare the error in the first two moments of the
waiting times, the fill rate and physical inventory level. The error in the first
two moments of the waiting time and the average physical inventory level is
expressed in a percentage error. The error between the target P2i and the
one obtained with the simulation is expressed in absolute percentage error.
For every simulation we calculate the relative absolute deviation as follows:

RADi =
∣∣P2i − P target

2i

∣∣ ∗ 100 (16)

The percentage error in the average inventory (PEAI) is calculated as follows:

PEAIi =

∣∣∣E[X+
i ]− E[X+∗

i ]
∣∣∣

E[X+∗

i ]
∗ 100 (17)

where E[X+∗

i ] is the calculated average inventory and E[X+
i ] is the simulated

average inventory. To be able to draw meaningful conclusions, we define ac-
ceptable margins for the RADi values and the PEAIi values. To construct
a realistic margin, we look at the error in the probability of having backlog
(1− P2i). In Table 2 shows good and acceptable values for the fill rate.

Table 2: Good and acceptable fill rates.

P target
2i Good P2i Acceptable P2i

90 %
95 %
99 %

Min Max RADi values
89 % 91 % 1

94.5 % 95.5 % 0.5
98.9 % 99.1 % 0.1

Min Max RADi values
88 % 92 % 2
94 % 96 % 1

98.8 % 99.2 % 0.2

For the PEAIi the good margin is 2.5 % and the acceptable margin is 5%.
Time policy
In this section, we discuss the results of the simulations with time policy. For
84 simulations, the percentage error in the E[Z] is between 0.5 % and 1.5 %,
the percentage error in the second moment of the waiting time is between 2
% and 3.5 %. Table 3 summarizes the results.



Table 3: Summary of the results for the ”time” policy

P2i E[RADi] RADm
i GP2 AP2 E[PEAIi] PEAIm

i GI AI
90 % 0.38 0.93 100 % 100 % 1.03 6.45 83 % 95 %
95 % 0.52 1.17 93 % 98 % 0.79 5.06 90 % 100 %
99 % 0.16 0.36 64 % 78 % 0.57 3.75 90 % 100%

Where RADm
i and PEAIm

i are respectively the maximum RAD and PEAI,
GP2 and AP2 are the percentage within respectively the good and the ac-
ceptable range for the error in the fill rate and GI and AI are the percentages
within the good and acceptable range for the errors in the average inventory.
Hence we conclude that our approach yields excellent results for the time
policy.
Quantity policy, equal batchsizes
The results for the situation with batchsizes that are equal in volume are
summarized in Table 4.

Table 4: Summary of the results for the quantity policy with equal batch-
sizes

P2i E[RADi] RADm
i GP2 AP2 E[PEAIi] PEAIm

i GI AI
90 % 0.38 1.13 92 % 100 % 1.90 7.46 80 % 99 %
95 % 0.30 0.77 81 % 100 % 1.47 6.53 80 % 99 %
99 % 0.20 0.45 20 % 60 % 1.22 4.32 90 % 99 %

The error in E[Z] is between 0.7 % and 4.2 % and σ2(Z) is between 3.4%
and 7.2 %. The peak values are caused by a high probability of having two
orders of the same item in one truck. If there is a high probability of having
two orders of the same item in one truck then the demand during the lead
time can be no longer approximated by a mixed Erlang distribution because
the distribution function of the demand during the lead time has more than
one peak. The results were not satisfying in cases of extreme large or low
coefficients of variation of the inter-arrival times and order sizes, which is
in line with observations about two-moment approximations in general in
Tijms (1994). Generally, when the number of items increase, the coefficients
of variation will converge to 1 and the results will show better outcome.
Quantity policy, non-equal batchsizes
In section 2.1, we derived approximations for the waiting time due to ship-
ment consolidation for the partial shipment non-equal batchsize quantity pol-
icy. In a similar way, we derived expressions for the waiting time due to ship-
ment consolidation for the full shipment/flexible truck capacity policy and
for the full shipment/fixed truck capacity. In the full shipment/fixed truck
capacity the orders are consolidated until the collected quantity is larger
than or equal to a predetermined quantity Qmax. In this policy, ∆(T ) =
Qmax − ON(T ) + V is directly shipped to the retailer and the last order
ON(T ) will be shipped with the next truck to the retailer.



For the three possible consolidation policies the errors in the E[Z] are
between 2.58 % and 7.44 % and in σ2(Z) are between 4.90 % and 16.10 %.
The results for the fill rate and the average inventory are as follows:

Table 5: Summary of the results for the non-equal batchsizes

Quantity P2i E[RADi] RADm
i GP2 AP2 E[PEAIi] PEAIm

i GI AI
policy

1 90 % 0.74 2.22 79 % 97 % 2.16 4.96 64 % 98 %
1 95 % 0.32 1.64 68 % 100 % 2.56 5.46 64 % 98 %
1 99 % 0.15 0.46 46 % 93 % 1.86 4.05 64 % 98 %
2 90 % 0.93 1.99 86 % 97 % 3.22 5.84 52 % 91 %
2 95 % 0.48 1.49 71 % 96 % 2.87 5.29 58 % 91 %
2 99 % 0.15 0.48 61 % 86 % 2.33 5.14 58 % 94 %
3 90 % 1.17 2.20 50 % 86 % 3.65 6.36 0.33 87 %
3 95 % 0.67 1.93 46 % 75 % 3.56 6.02 0.39 87 %
3 99 % 0.19 0.93 43 % 86 % 3.03 6.34 0.33 87 %

In Table 5, quantity policy 1 refers to the partial shipment policy, quantity
policy 2 refers to the full shipment /flexible truck capacity policy and quantity
policy 3 refers to the full shipment/fixed truck capacity policy.

In quantity policy 2, the fill rates obtained with the simulations where
higher than the target fill rates and in quantity policy 3, the fill rates obtained
with the simulations where lower than the target fill rates. The errors increase
when the coefficients of variation of demand are high (1.6) or low (0.4) due
to approximations made in the superposition of mixed Erlang distributions.
For example, for the cases 2 to 6, for reference see Table 1, with P2i = 90%
and Ld = 2, Table 6 shows the differences in E[RADi] for different coefficient
of variations.

Table 6: Differences in E[RADi] for different coefficient of variations.

c2
A 1 0.4 1.6 1 1

c2
D 1 1 1 0.4 1.6

E[RADi] 0.19 0.60 0.42 0.70 0.74

The errors in the fill rate increase when the average batchsize is large com-
pared to the truck size. Table 7 show this results, the truck size was kept
constant at 8000 units and the target fill rate was 90 %.

Table 7: Differences in E[RADi] for different number of orders per truck

Qmax

E[Q] 27 13 9 4
E[RADi] 0.06 0.1 0.42 1.18

The heuristic performs well as long as the order sizes are not too large com-
pared to the truck size and c2

A and c2
D are not extremely large or low.



4 Conclusions and further research

In this paper we studied the interactions between shipment consolidation
policies and inventory management policies. We argued that the lead time
of orders from a retailer to a warehouse is influenced by the shipment con-
solidation policy used at the warehouse. In order to get a deeper insight
into this interaction we derived approximations for the waiting time distri-
bution of retailer replenishment orders due to consolidation at the warehouse
for different consolidation policies used in practice. An extensive numerical
study was conducted to understand and test the different approximations.
The study revealed that the approximations performed well. The only prob-
lems occurred when the coefficient of variations were very low or very high.
Those errors were usually due to approximations made in the superposition
of the inter-arrival times. We know from previous research (Smits, de Kok,
and van Laarhoven 2000) that if the number of customers and items is large
and the demand between customers varies a lot the errors will diminish.

A next step in this research will be to find expressions for the waiting
time in a multi-echelon setting and to find close to optimal values for the
batchsizes and T in the time policy and close to optimal values for the batch-
sizes and Qmax in the quantity policy. These extensions should enable to
develop models for the integrated design of transportation and supply net-
works that incorporate the operational characteristics of the processes under
considerations, such as stochastic demand and stochastic lead times.



APPENDIX

A Replenishment process

In this section we present a procedure that translates the demand process
of an item at the warehouse to a replenishment process of the item towards
the central warehouse. These expressions have been derived by Pyke, De Kok
and Baganha (1996). Assume Oi is the order process of product i. The first
two moments of Oi are derived as follows:

E[Oi] =
QiE[Di]

Qi∫
0

P{Di ≥ x}dx

(18)

E[O2
i ] = Q2

i

∞∑
z=0

(2z + 1)P{Ui ≥ zQi} (19)

where

P{Ui ≥ zQi} =

Qi∫
0

P{Di ≥ zQi + x}dx

Qi∫
0

P{Di ≥ x}dx

(20)

The time between the placement of two orders is defined as Ri. It is evaluated
as follows:

Ri =
∑
j=1

NiAij (21)

where Ni is defined as the number of arrivals during an arbitrary replen-
ishment cycle at the central warehouse and Aij as the jth inter-arrival time
during this replenishment cycle at the central warehouse. There a replen-
ishment cycle is defined as the time that elapses between two consecutive
replenishment orders generated by the retailer for product i. Then the first
two moments of Ri can be calculated as follows:

E[Ri] = E[Ni]E[Ai] (22)

E[R2
i ] = E[Ni]σ2(Ai) + E[N2

i ]E2[Ai] (23)

Due to flow conservation the following relation holds for E[Ni]:

E[Ni] =
E[Oi]
E[Di]

(24)



To determine an expression for E[N2
i ], we apply the following approximation

which is accurate when Qi

E[Di]
is not too small ( Qi

E[Di]
> 1):

E[N2
i ] '

(
Q2

i

E2[Di]
+ c2

Di

Qi

E[Di]
+

E2[D2
i ]

2E4[Di]
− E[D3

i ]
3E3[Di]

)
E[Oi]
Qi

(25)

B Aggregate order process

In this paragraph we will find expressions for the first two moments of the
inter-arrival time and the order size of an arbitrary order towards the central
warehouse. To do this, we apply the stationary interval method developed by
Whitt (1982), to superpose renewal processes. Instead of superposing hyper-
exponential and shifted exponential distributions we superpose mixtures of
Erlang distributions. In the superposition procedure it is assumed that the
superposed process is a renewal process, which is not true. Because when
we superpose N renewal processes, the first renewal time of the superposed
process should be the minimum of the first renewal times of the N individual
renewal processes. The superposition gives exact results when the renewal
processes are Poisson distributed. The superposed process converges to the
Poisson process when N tends to infinity (Tijms (1994)). The N products are
represented by index i. The first two moments of T ∗ and O∗ are calculated
as follows: (see De Kok (1996))

E[R∗] =
1

N∑
i=1

1
E[Ri]

(26)

E[R∗2] ' 2E[R∗]

∞∫
0

(
N∏

i=1

1
E[Ri]

) N∏
i=1

∞∫
0

(1− FRi(y))dy

 dx (27)

E[O∗] =
N∑

i=1

E[R∗]
E[Ri]

E[Oi] (28)

E[O∗2] =
N∑

i=1

E[R∗]
E[Ri]

E[O2
i ] (29)

C Derivation of the reorder level and physical
inventory level

First, we derive some analytical approximations to calculate the reorder levels
for a target fill rate. Given the inter-arrival time Ai of each item and its



demand size Di, the reorder levels can be analytically evaluated. The reorder
levels si are calculated as follows: (see Janssen (1998) for a proof)

P2i ' 1− E[(Di(L∗i ) + Ui − si)+]− E[(Di(L∗i ) + Ui − si −Qi)+]
Qi

(30)

It is possible to evaluate the reorder level si using the bisection method. L∗

is the total lead time, it is expressed as the sum of the waiting time due to
consolidation and the transportation time. Di(L∗i ) is the demand for product
i at the warehouse during the lead time L∗i . The mean and the variance of
Di(L∗i ) are calculated as follows: (For a detailed explanation see De Kok
(1991))

E[Di(L∗i )] ' (
E[L∗i ]
E[A]

+
E[A2]
2E2[A]

− 1)E[Di] (31)

σ2(Di(L∗i )) '
E[L∗i ]
E[A]

σ2(Di) +
E[L∗i ]
E[A]

c2
AE2[Di] + σ2(L∗i )

E2[Di]
E2[A]

+
(c2

A − 1)
2

σ2(Di) +
(1− c4

A)
12

E2[Di] (32)

Expressions for the first and the second moment of the undershoot are

E[Ui] '
E[D2

i ]
2E[Di]

(33)

E[U2
i ] ' E[D3

i ]
3E[Di]

(34)

For a derivation of these results see Tijms (1994). The average stock on hand
is calculated as follows:

E[X+
i ] ' 1

2Qi
(E[(si + Qi −Di(L∗i ))

+2
]− E[(si −Di(L∗i ))

+2
]) (35)

For a derivation see Janssen (1998) or De Kok (1991).

D Derivation of Z for the time policy

Theorem 3. Z is uniformly distributed over the interval (0,T ) for time po-
licy.



Proof. We define Ã as the residual life time of the inter-arrival time of an
arbitrary customer at an arbitrary moment in time. We define W as the
residual lifetime of the truck arrival process at the arbitrary moment in time.
Since W is the time between an arbitrary moment in time and the departure
of the truck, W is uniformly distributed over (0, T ), for references see Doob
(1953). k ∈ N

Ã + Z = W + kT

Ã + Z + T −W = (k + 1)T

We define X = T −W , it is easy to see that X is uniform distributed between
(0, T ) and k̃ = k + 1

P{Z ≤ z} = P{X + Ã ∈ (k̃T − z, k̃T ), k̃ ∈ N}

=
∞∑̃

k=1

1
T

T∫
0

P{Ls ∈ (k̃T − z − x, k̃T − x)}dx

=
∞∑̃

k=1

1
T

T∫
0

[
∞∫

k̃T−z−x

dFÃ(ã)−
∞∫

k̃T−x

dFÃ(ã)]dx

= 1
T [

T−z∫
0

∞∫
T−z−x

dFÃ(ã)dx +
0∫

T−z

∞∫
0

dFÃ(ã)dx−
T∫
0

∞∫
T−x

dFÃ(ã)dx]

+
∞∑̃

k=2

1
T [

∞∫
k̃T−z

T∫
0

dxdFÃ(ã) +
k̃T−z∫

((k̃−1)T−z)

T∫
(k̃T−z−ã)

dxdFÃ(ã)

−
∞∫̃

kT

T∫
0

dxdFÃ(ã)−
k̃T∫

((k̃−1)T )

T∫
(k̃T−ã)

dxdFÃ(ã)]

= 1
T [

T−z∫
0

T−z∫
T−z−ã

dxdFÃ(ã) +
∞∫

T−z

T−z∫
0

dxdFÃ(ã)−
∞∫
T

T∫
0

dxdFÃ(ã)

+z −
T∫
0

T∫
T−ã

dxdFÃ(ã)] +
∞∑̃

k=2

[
∞∫

(k̃T−z)

dFÃ(ã)−
∞∫̃

kT

dFÃ(ã)

+
k̃T−z∫

(k̃−1)T−z

( ã−z−(k̃−1)T
T )dFÃ(ã)−

k̃T∫
(k̃−1)T

ã−(k̃−1)T
T dFÃ(ã)]

= z
T +

∞∫
T−z

T−z
T dFÃ(ã)−

T∫
T−z

ã
T dFÃ(ã)−

∞∫
T

dFÃ(ã)

+
∞∑̃

k=2

[
k̃T−z∫

(k̃−1)T−z

z
T dFÃ(ã) +

(k̃−1)T∫
(k̃−1)T−z

ã−(k̃−1)T
T dFÃ(ã)

−
k̃T∫

k̃T−z

ã−k̃T
T dFÃ(ã)]

= z
T +

∞∫
T−z

T−z
T dFÃ(ã)−

T∫
T−z

ã
T dFÃ(ã)−

∞∫
T

dFÃ(ã)

+
∞∫

T−z

z
T dFÃ(ã) +

T∫
T−z

ã−T
T dFÃ(ã)

= z
T
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