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Abstract

A transverse gradient coil (x- or y-coil) of an MRI-scanner is modeled as a network of
curved circular strips placed at the surface of a cylinder. The current in this network is
driven by a time-harmonic source current. The low frequency applied allows for an electro-
quasi-static approach. The strips are thin and the current is assumed to be uniformly
distributed in the thickness direction. For the current distribution in the width direction
of the strips, an integral equation is derived. Its logarithmically singular kernel represents
inductive effects related to the occurrence of eddy currents. For curved circular strips of
width much smaller than the radius of the cylinder one may locally replace the curved
circular strip by a tangent plane circular strip. This plane geometry preserves the main
characteristics of the transverse current distribution through the strips. The current
distribution depends strongly on the in-plane curvature of the strips. The Petrov-Galerkin
method, using Legendre polynomials, is applied to solve the integral equation and shows
fast convergence. Explicit results are presented for two examples: a set of 1 strip and one
of 10 strips. The results show that the current distributions are concentrated near the
inner edges and that resulting edge-effects, both local and global, are non-symmetric. This
behavior is more apparent for higher frequencies and larger in-plane curvatures. Results
have been verified by comparison with finite element results.

1 Introduction

Magnetic Resonance Imaging (MRI) is a revolutionary way of scanning in medical diagnostics,
producing images with contrast differences. MRI utilizes gradient coils to induce magnetic
field gradients for the spatial differentiation of the signals emitted from parts of the human
body to be diagnosed. A gradient magnetic field is an alternating magnetic field, superimposed
on a strong static and substantially uniform magnetic field, which changes linearly with
position. For a detailed description of MRI we refer to e.g. [1],[2].
The gradient coils of an MRI-scanner consist of copper strips on a cylinder. They are designed
such that alternating electric currents through the coils cause the magnetic field to have a
uniform gradient in a specific region of interest. High precision of the gradient field is crucial
for reliable high quality images. Thus, research is carried out on the development of eddy
currents in the gradient coils, which have a negative effect on the uniformity of the gradient
field. In previous work [3] and [4], networks of plane straight strips and of coaxial rings were
considered. It was shown that a longitudinal or z-coil can be modeled by a set of circular
loops of strips (rings) around the cylinder. By properly selecting the positions of the loops
and the magnitudes of the currents, one can achieve a uniform gradient field of high precision.
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Different design solutions are presented by e.g. Romeo and Hoult [5] or Suits and Wilken
[6]. In other methods, the values of the currents are fixed and the corresponding positions
are computed. This leads to optimization methods, such as the conjugate gradient method
by Wong and Jesmanowicz [7] and the simulated annealing method by Crozier and Doddrell
[8]. Other basic methods for the design of x- and y-coils are described by Frenkel et al. [9] or
Siebold [10]. A standard example of a coil that creates a magnetic field whose axial component
is linearly increasing in the transversal direction is the Golay coil. The Golay coil consists
of four sets of symmetrically placed saddle coils. The optimal dimensions are determined
using zonal spherical harmonics. For more details on the Golay coil, see [1, Sect. 3.4]. In
the practical design of gradient coils, first, for a DC source current the optimal distribution
of streamlines, representing one-dimensional wires, is determined and, then, thin strips of
copper are placed along these streamlines. The magnetic field induced by the currents in the
conductor pattern is computed, assuming that the current density is uniform in the strips.
For the optimal distribution of streamlines, often stream functions are used; see Peeren [11],
[12], Turner [13] or Tomasi [14].
The present paper focusses on a mathematical model of the current distribution in the trans-
verse gradient coils of the scanner. Since strips of finite width (instead of wires) are used in
the manufacture of a gradient coil eddy currents occur. The eddy currents cause forces on the
conductors that result in noise and reduction of lifetime. More importantly, the eddy currents
cause perturbations of the expected gradient field, leading to MR pictures with blurring and
ghosting. Eddy current response is greatly affected by the frequencies used, by geometrical
features such as curvature, edges, grooves, and by the distances between conductors.
The main objective of this paper is to determine the current distribution within the strips. In
contrast to the currently used streamline methods, in which the current in a strip is assumed
to be uniformly distributed, we include eddy currents, making the current distribution non-
uniform, thus affecting the linearity of the gradient field and consequently the quality of the
images.
In previous work, we have determined the eddy currents in sets of plane rectangular strips [3]
and parallel coaxial rings [4]. In both papers, an integral equation for the current is derived
and the Galerkin method is used to solve the integral equation. Legendre polynomials turned
out to be a very appropriate choice of the basis functions, because of fast convergence and the
analytical way to overcome the logarithmic singularity in the kernel of the integral equation.
The results in both plane rectangular strips and rings show edge-effects in the currents and
phase-lag with respect to the source. The main conclusion after comparing the results of [3]
and [4] is that the curvature of the rings hardly affects the current distribution, as compared
with that of the plane strips, provided the radius of the rings is always much larger than its
width.
In this paper, we consider configurations of one or more closed circular loops of strips placed
on top of a cylinder. These circular strips form an appropriate geometry to model a transverse
gradient coil. In contrast to the rings, these strips have two characteristic curvatures: the
(global) curvature of the basic cylinder and the (in-plane) curvature of the circular central line
of the strip on the cylinder. Since the radius of the cylinder is always much larger than the
width of the strips, the global curvature is not so relevant, but the in-plane curvature will play
a dominant role. The strips are conductors and carry a time-harmonic electric current. The
thin strips have an almost uniformly distributed current density in the thickness direction,
implying that the thin strip can be modeled as a 2-D surface and the current density (A/m2)
as a surface current (A/m). The current in the strips is in tangential direction (along the
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central line), but non-uniformly distributed in transverse (width) direction. For this current
distribution, an integral equation with a singular logarithmic kernel is derived. The non-
uniformity of the current is not only due to the, dynamic, eddy currents, but also to the,
static, 1/r-effect : the static (or DC) current is inversely proportional to the radial distance r
measured with respect to the center of the circular strip. To account for this 1/r-effect, the
Petrov-Galerkin method is used to solve the integral equation.
We start this paper with the problem formulation and the derivation of the basic integral
equation in Sect. 2. In Sect. 3, the solution procedure for this integral equation is presented,
while numerical results for two different types of transverse gradient coils are given in Sect. 4.
Explicit results are depicted for the transverse current distributions and for the electric re-
sistances of the coils. We show how due to the 1/r-effect and the eddy currents the current
distribution on the strips is shifted towards the inner edges of the strips. This effect is getting
stronger as the in-plane curvature of the strip and the frequency of the time-harmonic current
increase.

2 Problem formulation

A gradient coil consists of a long strip of copper arranged on a cylinder. Fig. 1 shows design
configurations of gradient coils. As can be seen from this figure, the strips on a transverse (x-
or y-) coil form circles on top of the cylinder, whereas the z-coil consists of a set of parallel
circular strips (rings) around the cylinder. The width of a strip is a few centimeters, its
thickness a few millimeters, and a common value for the radius of the cylinder is 35 cm. The
mutual distance between separate windings of the coil varies from just a few millimeters to
several centimeters. As in [3] and [4], the strips are of uniform width; however, not all the
strips need to have the same width and mutual distances may be different.
A comparison of the results of [3] and [4] revealed that inductance effects are local; see the
second paragraph of Sect. 5 of [4]. Induction causes the non-uniformness of the transverse
current distribution. This leads us to the following conclusion: the current distribution in
transverse direction in a point on a strip of width D is only affected by the currents in a D-
vicinity (distances of a few times D) of that point. Mathematically, the basic reason is that
the logarithmic part of the kernel of our fundamental integral equation governs the principal
behavior of the current. This logarithmic kernel is the same for a straight and a curved strip,
and the approximation made by replacing the whole kernel for the curved ring by only its
logarithmic part is of O(D2/R2), for D/R ≪ 1. Therefore, replacing the cylindrically curved
loop locally by a plane circular loop in the tangent plane on the cylinder in the same point is
allowed within the same order of accuracy. As long as we are only interested in the transverse
current distribution, this replacement by a plane circular loop is justified. However, it must be
emphasized that this is not allowed when we want to calculate the magnetic field induced by
the currents in the curved circular loops on top of the cylinder. All this holds irrespective of
the in-plane radius of the circular loop; even if this radius becomes in the order of magnitude
of a few times D, this approximation is still allowed.
Hence, since in this paper we focus on the transverse current distributions in the strips, we
can approximate the strips, locally, by plane circular strips. The configuration of a set of
plane circular loops is depicted in Fig. 2. In this plane configuration, we introduce a radial
coordinate r, measured from the center of the circle (the notation r should not be confused
with the r-coordinate of a set of cylindrical coordinates attached to the cylinder), and a
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(a) x-coil

(b) z-coil

Figure 1: (a) Sketch of the x-coil. The y-coil has an identical shape and
is placed in the scanner with a rotation of 90 degrees about the
x-coil; (b) Sketch of the z-coil.
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tangential coordinate ϕ, as shown in Fig. 2.

Figure 2: The configuration of a set of plane circular strips.

We consider a set of N distinct plane circular strips of uniform width and thickness. The
thickness of all strips is h, which is very small compared to their widths. Therefore, the
current distribution through the thickness is fairly uniform (see [4]) and thus the resulting
current can be considered as a surface current j on an infinitely thin strip. The circular strips
are lying concentrically in a plane; see Fig. 2. Not all strips are necessarily of the same width
and their mutual distances may differ. Because the geometry is rotationally symmetric and
the current divergent free, the current does not depend on ϕ and has a component in the
ϕ-direction only, so j = j(r)eϕ. The current distribution j(r) is the unknown function we
want to calculate here.
The loops occupy a surface S∪ on the plane. The set of loops is subdivided into L groups,
each of which is driven by a separate source current and has a prescribed time-harmonic
total current Il(t) = ℜ{Ile

−iωt}, l = 1, . . . , L, with Il ∈ C a complex constant. The sum of
the widths of all loops in group l is denoted by Dl. The number of loops in each group is

denoted by Nl. Then, S
(l)
n can be defined as the surface of the n-th loop within group l, with

n ∈ {1, . . . , Nl} and S
(l)
∪ as the surface occupied by the strips in the l-th group. Hence,

S
(l)
∪ =

Nl
∑

n=1

S(l)
n , and S∪ =

L
∑

l=1

S
(l)
∪ =

L
∑

l=1

Nl
∑

n=1

S(l)
n , (1)

where,
∑

denotes disjoint union of sets. Note that S
(l)
n ⊂ S

(l)
∪ ⊂ S∪.

Since the currents do not depend on ϕ, it is more convenient to introduce a notation for the
r-intervals in which the loops are positioned. Instead of S∪, which represents a surface, we
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introduce the one-dimensional set Sr
∪ as the collection of all radial intervals of the loops:

Sr
∪ =

N
∑

n=1

Sr
n, Sr

n = {r| r
(n)
0 < r < r

(n)
1 }. (2)

The current distribution j(r) satisfies an integral equation that is derived from the Maxwell
equations in the same way as in [3] and [4]. Thereby we use the assumption that the low
frequency ω of the time-harmonic fields allows an electro-quasi-static approach; see [4, Sect. 2].
To make our formulation dimensionless, let jc be the characteristic value for the surface
current through the strips, and Rc the characteristic length, successively defined by

jc =

∑L
l=1 Il

∑L
l=1 Dl

, Rc = r
(1)
0 . (3)

Thus, the current is scaled by the average current through all strips and the distances are
scaled by the inner radius of the first loop. We can write the complex amplitude of the vector
potential A at position x in a dimensionless form Ã, according to

A(x) = µ0R
cjcÃ(x̃), (4)

where

Ã(x̃) =
1

4π

∫

S∪

̃(ξ̃)

|x̃ − ξ̃|
da(ξ̃). (5)

Here, µ0 is the magnetic permeability, x̃ = x/Rc is the dimensionless position of the ob-
servation point, and ̃ is the dimensionless current, scaled by jc. This means that j(x, t) =
ℜ{jc̃(x̃)e−iωt}. In the sequel, we consider only the spatial parts of the fields; time derivatives
are replaced by −iω. The tildes are omitted from now on.
On the plane circular strips, we denote the observation point P and the source point Q by
vectors p = p(r, ϕ) and q = q(ρ, θ), which are in polar coordinates given by

p = rer(ϕ), q = ρeρ(θ) = ρ cos(ϕ − θ)er − ρ sin(ϕ − θ)eϕ. (6)

The distance between the points P and Q is

|p − q| =

√

(r − ρ)2 + 4rρ sin2

(

ϕ − θ

2

)

. (7)

Substituting j(ξ) = j(ρ)eθ = j(ρ) sin(ϕ − θ)er + j(ρ) cos(ϕ − θ)eϕ into (5), we obtain the
components of the vector potential A = A(r) according to

Ar(r) =
1

4π

∫

S∪

sin(ϕ − θ)j(ρ)
√

(r − ρ)2 + 4rρ sin2(ϕ−θ
2 )

da(ρ, θ) = 0, (8)

Aϕ(r) =
1

4π

∫

S∪

cos(ϕ − θ)j(ρ)
√

(r − ρ)2 + 4rρ sin2(ϕ−θ
2 )

da(ρ, θ), (9)

where the surface element da(ρ, θ) = ρ dρ dθ.
To arrive at an integral equation for the current, we use the relation the relation between the
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electric field E and the vector potential (E, eϕ) = Eϕ = iωAϕ, apply the continuity of the
tangential component of the E-field at the surface of the strip and then Ohm’s law in the
form j = σhEϕ + js = iωσhEϕ(r)+ js(r), where σ is the electric conductivity (the factor h is
added because j is a surface current) and js is a source current (see [4, eq. (6)]). Thus, after
dimensionalization, we obtain

j(r) − iκ

4π

∫

S∪

cos(θ)j(ρ)
√

(r − ρ)2 + 4rρ sin2( θ
2)

da(ρ, θ) = js(r), (10)

where
κ = hσµ0ωRc. (11)

Since S∪ = Sr
∪ × [−π, π], repeated integration yields

j(r) − js(r) =
iκ

2π

∫

Sr
∪

[

∫ π/2

−π/2

cos(2θ)
√

(r + ρ)2 − 4 cos2(θ)
dθ

]

ρj(ρ) dρ

=
iκ

2π

∫

Sr
∪

1

k
√

rρ
[(2 − k2)K(k) − 2E(k)]ρj(ρ) dρ. (12)

Here, K(k) and E(k) are the complete elliptic integrals of the first and second kind ([15,
Sect. 17]), respectively, and

k =
2
√

rρ

r + ρ
. (13)

The source current is a time-harmonic current, but its spatial part is independent of the
frequency ω as this spatial part is equal to the DC source current (ω = 0).

3 Solution method

3.1 Construction of a linear set of equations

The Petrov-Galerkin method, used to solve the integral equation (12), is first applied to one
circular strip: Sr

∪ = {r| 1 < r < r1/r0}. The case of more strips is treated in the same way
and explained further on.
Let the current distribution j be expanded in a series of basis functions φm, with corresponding
coefficients αm, according to

j =

∞
∑

m=0

αmφm. (14)

The source current js is expanded in the same basis functions φm, but with coefficients βm,

js =

∞
∑

m=0

βmφm. (15)

For an appropriate choice of the basis functions, we are led by the solution for the DC-
situation. For ω → 0 (equivalently, κ → 0), the inductive effects disappear and j → js. The
analytical solution for the static current distribution in one plane circular loop, carrying a
total current I, is given by

j =
I

Rcjc log(r1/r0)

1

r
=

D

r0 log(r1/r0)

1

r
. (16)
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Consequently, the current is inversely proportional to r (where one should read r̃ = r/r0 for
r).
The kernel of the integral equation (12) has a logarithmic singularity in r = ρ (i.e. k = 1).
Therefore, we approximate j by a series of scaled and shifted Legendre polynomials divided
by r, according to

φm(r) =
1

r
Pm

(r − c

d

)

, (17)

where

c =
r1 + r0

2r0
, d =

r1 − r0

2r0
. (18)

As said before, the spatial behavior of the source current is the same for all frequencies ω,
including ω = 0. This yields, with P0(r) = 1,

β0 =
I

Rcjc log(r1/r0)
, βm = 0, m ≥ 1. (19)

The coefficients αm, m ≥ 0, depend on the frequency ω. Only for ω = 0 we know them a
priori: α0 = β0, αm = 0, m ≥ 1, because for ω = 0 inductive effects are absent. The total
current condition for one strip reads

∫ r1

r0

j(ρ) dρ = α0 ln

(

r1

r0

)

+ d
M
∑

m=1

αm

∫ 1

−1

Pm(r)

dr + c
dr =

I

Rcjc
. (20)

We apply a projection method with test functions different from basis functions and use the
inner product

(f, g) =

∫

Sr
∪

f(r)g(r) r dr. (21)

The basis functions are Legendre polynomials of the first kind divided by r (see (17)) while
the test functions are the Legendre polynomials themselves, i.e. Pm((r− c)/d). Their mutual
inner products are

∫ r1

r0

Pm(ρ−c
d )

ρ
Pn

(ρ − c

d

)

ρ dρ =
2d

2m + 1
δmn. (22)

Thus, the source current only yields a non-zero inner product for the zeroth-order test func-
tion P0. This is the main reason to use the Petrov-Galerkin method. It enables us to embed
the source current in the family of basis functions such that the total current density is ex-
panded into components that comprise the source current density.

Next, we generalize the method for two or more plane circular loops. Let ψl be the charac-
teristic function of group l,

ψl =

Nl
∑

n=1

1
[r

(n)
0 ,r

(n)
1 ]

, (23)

where 1[a,b] represents the characteristic function of the interval [a, b]. In (23), r
(n)
0 and r

(n)
1

are dimensionless, scaled on Rc = r
(1)
0 . Due to disjointness of the intervals Sl

Ω, each two
characteristic functions ψl1 , ψl2 , l1, l2 ∈ {1, 2, . . . , L} satisfy

(

ψl1

r
, ψl2

)

=
Dl1

Rc
δl1l2 . (24)
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The source current js is in every loop inversely proportional to r and can therefore be written
as

js =
L

∑

l=1

Cl
ψl

r
, (25)

with unknown constants Cl. The integral equation (12) then becomes

j(r) − iκ

∫

Sr
∪

K(r, ρ)j(ρ)ρ dρ =
L

∑

l=1

Cl
ψl(r)

r
, r ∈ Sr

∪ , (26)

with

K(r, ρ) =
1

2πk
√

rρ
[(2 − k2)K(k) − 2E(k)], k =

2
√

rρ

r + ρ
. (27)

Moreover, the total current per group is prescribed, so j(r) must satisfy
∫

Sr
∪

j(ρ)ψl(ρ) dρ = (
1

r
j, ψl) = Îl, l = 1, . . . , L, (28)

where Îl = Il/(jcRc), with jc according to (3).
We define the operator K on L2(S

r
∪, r dr) by

(Kf)(r) =

∫

Sr
∪

f(ρ)K(r − ρ)ρ dρ, (29)

and then (26) can be written in operator form as

(I − iκK)j =
L

∑

l=1

Cl
ψl

r
. (30)

We define the projection Π on the linear span of the characteristic functions r−1ψl, l ∈
{1, . . . , L}, by

(Πf) =
L

∑

l=1

(f, ψl)

(1
rψl, ψl)

ψl

r
. (31)

The projection Π applied to j yields, with use of (24),

Πj =
L

∑

l=1

Rc (j, ψl)

Dl

ψl

r
=

L
∑

l=1

α
(l)
0

ψl

r
, (32)

where the coefficients α
(l)
0 are defined by α

(l)
0 = Rc(j, ψl)/Dl, l = 1, . . . , L.

We note that, although Π2 = Π, Π is not orthogonal, because Π∗ 6= Π as

(Π∗f) =
L

∑

l=1

(f, 1
rψl)

(1
rψl, ψl)

ψl 6= (Πf). (33)

Moreover, we note that (28) cannot be used here in the same way as in [3], [4], where the
coefficients of the basis functions ψl disappeared in favor of the total currents Îl. Hence, we

cannot directly eliminate the unknown coefficients α
(l)
0 here.
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Next, j is split into two parts according to

j = Πj + (I − Π)j =
L

∑

l=1

α
(l)
0

ψl

r
+ j⊥. (34)

Here, j⊥ = (I − Π)j is in the range of Π∗, i.e. (j⊥, ψl) = 0, for l = 1, . . . , L. Applying the
operator (I − Π) to (30), we obtain

j⊥ − iκ(I − Π)Kj = 0, (35)

or equivalently,

j⊥ − iκ(I − Π)Kj⊥ = iκ
L

∑

l=1

α
(l)
0 (I − Π)K

ψl

r
. (36)

In this relation for j⊥, the constants Cl have disappeared, but they are replaced by the

coefficients α
(l)
0 , which are also not known a priori. For this, we should use the L known

values Îl, l = 1, . . . , L, for which we need an additional set of L equations. These equations
are obtained from the inner products of relation (30) with ψl, l = 1, . . . , L.
We approximate j⊥ by a finite series of basis functions φm ∈ ran(I − Π),

j⊥
.
=

M
∑

m=1

αmφm. (37)

Taking successively the inner product of (30) with ψl and (36) with rφn, we arrive at

α
(l)
0

Dl

Rc
− iκ

L
∑

k=1

α
(k)
0 (K

ψk

r
, ψl) − iκ

M
∑

m=1

αm(Kφm, ψl) =
Dl

Rc
Cl, l = 1, . . . , L, (38)

M
∑

m=1

αm(φm, rφn) − iκ
L

∑

l=1

α
(l)
0 (K

ψl

r
, rφn) − iκ

M
∑

m=1

αm(Kφm, rφn) = 0, n = 1, 2, . . . , M. (39)

For convenience of notation, we write the equations (38) and (39) in matrix form as

(G − iκA)a = c, (40)

where the block matrices G, A and the column vectors a, c are defined by

G =

(

G11 0

0 G22

)

, A =

(

A11 A12

A21 A22

)

,

a =

(

a1

a2

)

, c =

(

c1

c2

)

, (42)

with elements (m, n = 1, . . . , M ; k, l = 1, . . . , L)

A11(l, k) = (ψl, K
ψk

r
), A12(l, m) = (ψl, Kφm),

A21(n, l) = (rφn, K
ψl

r
), A22(n, m) = (rφn, Kφm),
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G11(l, k) =
Dl

Rc
δkl, G22(n, m) = (rφn, φm),

a1(l) = α
(l)
0 , a2(m) = αm,

c1(l) =
Dl

Rc
Cl, c2(m) = 0. (43)

The way we solve this matrix equation is explained in Sect. 3.2. We first show how the entries
of the matrices are computed.
We introduce shifted and scaled Legendre polynomials, Ps,q(r; cq; dq), of order s, defined on
strip q (q = 1, . . . , N) as

Ps,q(r; cq; dq) = Ps

(r − cq

dq

)

, r ∈ [r
(q)
0 , r

(q)
1 ], (44)

where

cq =
r
(q)
1 + r

(q)
0

2
, dq =

r
(q)
1 − r

(q)
0

2
, q = 1, . . . , N, (45)

and Ps,q(r; cq; dq) = 0 for r 6∈ [r
(q)
0 , r

(q)
1 ]. Orthogonality of Legendre polynomials yields

∫

Sr
∪

Ps,q(ρ; cq; dq)

ρ
Ps′,q′(ρ; cq′ ; dq′)ρ dρ =

2dq

2s + 1
δss′δqq′ . (46)

The shifted and scaled Legendre polynomials are used to construct the basis functions. We
create a series expansion in different basis functions for each strip separately,

j⊥ =
S

∑

s=1

N
∑

q=1

αs,qφs,q +
N−L
∑

t=1

α0,tφ0,t, (47)

where S denotes the number of degrees of basis functions that is included.
Requirements for the basis φs,q functions is that (φs,q, rφs′,q′) = 0 for s 6= s′ or q 6= q′ and
(φs,q, ψl) = 0 for all s and l. For Legendre polynomials of degree one and higher, we have

∫

Sr
∪

Ps,q(ρ; cq; dq)

ρ
ψl(ρ)ρ dρ = 0, (48)

for q = 1, . . . , N , l = 1, . . . , L, and s ≥ 1. Therefore, we can choose the basis functions of
degree one and higher equal to the shifted and scaled Legendre polynomials:

φs,q =
1

r
Ps,q(r; cq; dq), q = 1, . . . , N, s = 1, . . . , S. (49)

The functions φ0,t, t = 1, . . . , N − L together with the functions r−1 ψl, l = 1, . . . , L estab-
lish an orthogonal system with the same linear span as {r−1P0,q(ρ; cq; dq) | q = 1, . . . , N},
satisfying

(φ0,t, rφ0,t′) = δtt′ , t, t′ = 1, . . . , N − L,

(φ0,t, rψl) = 0, t = 1, . . . , N − L, l = 1, . . . , L ; (50)
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for more details see [4, Sect. 3].

It is convenient to transform all intervals [r
(q)
0 , r

(q)
1 ] to [−1, 1]. For the entries of A, we have

to compute integrals of the form

dqdq′

∫ 1

−1

∫ 1

−1
Ps′(r)Ps(ρ)K(dq′r + cq′ , dqρ + cq)(dq′r + cq′) dρ dr. (51)

Since the integrands are logarithmically singular if q = q′, we extract the logarithmic part,
which is obtained explicitly from the asymptotic expansion of K(r, ρ) for r close to ρ:

rK(r, ρ) ≈ − 1

2π

(

log|r − ρ| − log
√

rρ − log2 + Γ(0)(
3

2
) + γ

)

, |r − ρ| ≪ 1, (52)

where Γ(0)(3/2) ≈ 0.03649 (Γ(0) is the polygamma function), and γ ≈ 0.57722 (Euler’s con-
stant); see [15]. The difference between rK(r, ρ) and this asymptotic expansion is a regular
function.
In computing integrals of the type (51), we use the following explicit result:

∫ 1

−1

∫ 1

−1
Pk(r)Pk′(ρ) log |r − ρ| dρ dr

=































8

(k + k′)(k + k′ + 2)[(k − k′)2 − 1]
, if k + k′ > 0 even ,

0, if k + k′ odd ,

4 log 2 − 6, if k = k′ = 0 .

(53)

For the derivation of this relation, we refer to [16]. The remaining difference function is regular
and can therefore be integrated numerically. We will use the Gauss-Legendre quadrature rule
as integration method. We note that the singular logarithmic part of the integral kernel
governs the behavior of the current distribution j(r); the contributions of the regular part
are small.

3.2 Solving the linear set of equations

In this section, we describe the solution procedure for the equation (40). In this equation, the

unknowns are αm, m = 1, . . . , M , Cl and α
(l)
0 , l = 1, . . . , L. The coefficients Cl, introduced

in (25) should be related to the L prescribed values of the total currents Îl through groups
l = 1, . . . , L. The parameter κ has a known value and the entries of G and A can be
determined from (43). Additionally, the total currents Î1, . . . , ÎL in the L groups are given.
According to (28) they yield the relations

∫

Sr
∪

j(ρ)
ψl(ρ)

ρ
ρ dρ = α

(l)
0

(

ψl

r
,
ψl

r

)

+
M
∑

m=1

αm

(

φm,
ψl

r

)

= Îl, l = 1, ..., L. (54)

We use these relations to eliminate the L unknown coefficients Cl. To this end, we define the
L × (L + M) matrix S by

S =
(

S11 S12

)

, (55)
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with elements (m = 1, . . . , M ; k, l = 1, . . . , L)

S11(l, k) =
(ψl

r
,
ψk

r

)

δkl, S12(l, m) =
(ψl

r
, φm

)

, (56)

where the latter elements are only non-zero if φm acts on a ring in group l. Moreover, let Î

be the L-vector consisting of all Îl, l = 1, . . . , L. Then, (54) can be written in matrix form

Sa = Î. (57)

Thus, the vector a of length L + M is transformed into the vector Î of length L. The vector
c in the right-hand side of (40) also has length L + M . However, only the first L entries are
unknown (representing Cl); the other entries are equal to zero. To reduce also the vector c

to a vector of length L, we introduce the (L + M) × L matrix B and the L-vector ĉ, by

B =

(

B11

B21

)

, c = Bĉ, (58)

where (m = 1, . . . , M ; k, l = 1, . . . , L)

B11(l, k) =
Dl

Rc
δkl, B21(m, k) = 0, (59)

and
ĉ(l) = Cl. (60)

We know that (G − iκA) is invertible, and so the matrix equation (40) reveals that a =
(G − iκA)−1c. According to (57) and (58)2, the two L-vectors Î and ĉ are related to each
other by

S(G − iκA)−1Bĉ = Î, (61)

or
ĉ = [S(G − iκA)−1B]−1Î, (62)

since also S(G − iκA)−1B is invertible.
At this point, we have eliminated the unknown coefficients Cl in favor of the given Îl, l =
1, ..., L. The right-hand side of (40) becomes

c = Bĉ = B[S(G − iκA)−1B]−1Î =: CÎ, (63)

where C is a known (L + M) × L matrix. The fundamental unknown (L + M)-vector a,

containing the unknowns α
(l)
0 and αm, is governed by the matrix equation in its ultimate

form
(G − iκA)a = CÎ. (64)

This linear set of equations will be solved numerically. The results for two different sets of
circular strips will be presented in the next section.

4 Numerical results

In this section, we present numerical results for the current distributions for, first, a set of
one circular strip, and, secondly, for a set of ten strips. We also computed the total resistance
and the dissipated power of the two sets for a range of frequency values.
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4.1 One plane circular strip

We first consider one circular loop of width D = 2 cm, thickness h = 2.5 mm, and inner
and outer radius r0 = 32.33 cm and r1 = 34.33 cm, respectively. The amplitude of the total
current on the loop is I = 600 A.

0.32 0.325 0.33 0.335 0.34 0.345
2.8

2.9

3

3.1

3.2

3.3

3.4

3.5
x 10

4

|j|
(A

/m
)

r (m)

Figure 3: Amplitude of the current distribution in one circular loop of 2 cm
width with a total current of 600 A at frequencies f = 100 Hz (∗),
f = 400 Hz (◦), f = 700 Hz (+), f = 1000 Hz (△).

In Fig. 3, the amplitude of the current distribution in the strip is shown as function of r
for the four frequencies f = ω/2π = 100, 400, 700, 1000 Hz. For low frequencies, the current
tends to the DC solution, which can be determined analytically from (16). Note that in (16)
the variables j and r are dimensionless. In dimensional form we obtain

j(r) =
I

r log
(

r1/r0

) =
1.0

r
· 104 A/m. (65)

The value of the average current is jc = I/D = 3.0 · 104 A/m.
On the scale used in Fig. 3, the current distribution at f = 100 Hz cannot be distinguished
from the DC solution, but for higher frequencies edge-effects become visible. In contrast to
the situation of one ring, see [4], the edge-effects are not symmetric in the circular loop. The
current near the inner edge of the loop has a higher value than near the outer edge; the main
part of the current distribution shifts towards the inner edge of the loop. A direct consequence
of this shift is that the magnetic field along the axis of symmetry of the loop, which is induced
by the circular loop, increases and deviates from the desired field. Hence the designer of a
transverse gradient coil has to compensate for this amplified field strength.
In comparison with the uniform current distribution that is assumed in the design approach
using streamlines, two effects play a role in the distortion of the desired field. First, the
current is more dense near the inner edge of the loop than near the outer edge, because of
the variation of their circumferential lengths. This effect is called the 1/r-effect, and it also
occurs in the static DC situation. The second effect, the edge-effect, occurs only in a dynamic
situation and is caused by induction.
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Figure 4: One plane circular strip of 2 cm width with a total current of
600 A. (a) Resistance R̄ at frequencies up to f = 400 Hz; (b)
Resistance R̄ at frequencies up to f = 10000 Hz. The symbols △

denote the FEM results.

In our approach the Petrov-Galerkin method is applied to solve the basic integral equation.
Global basis functions, with unlimited support, are defined on the whole domain of the strips.
The resulting matrices are of small size, but dense. Another option to solve the integral
equation for the current distribution is by using local basis functions, with local support, in
the Galerkin method. The matrices are then sparse, but of large size. We have performed
such computations with the finite element package SYSIPHOS (in cooperation with Dr. H. De
Gersem, Technische Universität Darmstadt). The field-circuit coupling that is implemented,
is described in [17], the solver in [18], and the necessary adaptive mesh refinement in [19].
This 2D solver computes the current distribution through a cross-section of finite thickness. In
order to obtain a good approximation of the current, a very fine mesh needs to be generated.
Since the thickness of the strip is very small, in this direction the elements have a size in
the order of tenths of a millimeter. However, as we are mainly interested in the current
distribution in the radial direction, we need a fine mesh in that direction as well. Finally,
because the domain of the vector potential extends to the space outside the (cross-section of
the) strip, also the vacuum space around the strip must be meshed. All this easily leads to a
matrix system with millions of elements, resulting in large computation times. However, for
a validation of the results of our approach of global basis functions, it has been worthwhile
to do the finite element computations. We obtained exactly the same current distributions
with the two methods.
For a second validation, we have computed the resistance of the strip. Again, both our method
and the FEM method yield the same results. This is shown in Fig. 4. The electrical resistance
for a 3-dimensional body V, carrying a time-harmonic current with, complex, spatial density
J and total current I, is defined as

R̄ =
1

σI2

∫

V

J · J∗ dv, (66)

where the asterix denotes the complex conjugate. For the 2-dimensional strip, with
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J · J∗ → (jc/h)2 j(r) and jc = I/D, this formula simplifies to

R̄ =
2πr2

0

hσD

∫ r1/r0

1
rj2(r) dr. (67)

For the DC case, the resistance can be calculated analytically, yielding

R̄DC =
2π

hσ log
(

r1/r0

) = 7.12 · 10−4 Ω. (68)

For the time-harmonic case, Fig. 4(a) presents values of R̄ for the low frequency range from 0
to 400 Hz. Fig. 4(b) represents the higher frequency range from 0 to 10000 Hz, showing the
behavior after the point of inflection.

4.2 Ten plane circular strips

In the practical design of x-coils and y-coils, specific software is used to compute a stream
function. The stream function has a shape that is well approximated by a cosine function.
Here, we define the stream function s(r) as

s(r) =















Imax cos

(

πr

2Rref

)

, if |r| < Rref ,

0, if |r| > Rref ,

(69)

where Rref is the radius that defines the support domain of s(r), and Imax represents the
maximum value of s(r). The stream function is discretized by means of streamlines, which
form circles at fixed values of r. Each streamline forms the central line of a plane circular
loop. The number of streamlines and the widths of the loops are such that the strips do not
overlap.
In case we want to specify N plane circular loops with central lines at positions r = r(n),
n = 1, . . . , N , and with each loop carrying the same total current, the discretization can be
made according to equidistant steps in the stream function. Then, each loop has a total
current of I(n) = Imax/N , and the positions r(n) are determined from

cos
( πr(n)

2Rref

)

=
1

2N
(2n − 1) , n = 1, . . . , N, (70)

such that

r(n) =
2Rref

π
arccos

(2n − 1

2N

)

. (71)

The configuration we consider here consists of ten circular loops, all of width 2 cm; its domain
is limited by Rref = 0.5 m. The maximum value of the stream function is chosen as Imax = 600

A. The inner radii r
(n)
0 and the outer radii r

(n)
1 , as found from (71), are listed in Table 1, for

n = 1, . . . , 10. The total current in each ring is I(n) = Imax/N = 60 A. The applied currents
have a frequency ω = 2πf and are in phase.
The resulting current distributions within the loops are calculated from (64). In Fig. 5, the
amplitudes of the current distributions in the ten loops are depicted for f = 100, 400, 700, 1000
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Table 1: Inner and outer radii of the set of 10 circular loops.

Ring Inner radius Outer radius

1 9.11 cm 11.11 cm

2 16.66 cm 18.66 cm

3 22.01 cm 24.01 cm

4 26.48 cm 28.48 cm

5 30.46 cm 32.46 cm

6 34.14 cm 36.14 cm

7 37.62 cm 39.62 cm

8 40.96 cm 42.96 cm

9 44.21 cm 46.21 cm

10 47.41 cm 49.41 cm

Hz. The average current in each ring is jc = 3.0 · 103 A/m. In the DC situation, the current
is distributed according to the analytical formula

j(r) =
N

∑

n=1

I(n)

log
(

r
(n)
1 /r

(n)
0

)

ψn(r)

r
, (72)

where ψn(r) is the characteristic function of loop n.
In Fig. 5, the current distribution at 100 Hz is very close to the DC solution, but for higher
frequencies in each loop local edge-effects become visible. Moreover, considering the envelope
of the graph, a global edge-effect is observed. Analogous results were found for a set of coaxial
rings in [4]. However, in contrast to [4], here both the local and the global edge-effect are not
symmetric: it is in all loops and in the set as a whole more pronounced near the inner edges.
This will result in an amplified magnetic field along the axis of symmetry, which should be
compensated in the ultimate design.
We have also computed the total resistance of the set of loops by means of formula (66).
In the DC situation, the current is given by (72), which yields the following value for the
resistance:

R̄DC =
2π

hσ

10
∑

n=1

1

log
(

r
(n)
1 /r

(n)
0

)

= 6.816 · 10−3Ω. (73)

For frequencies in the range from 0 to 400 Hz, the results are shown in Fig. 6(a). The symbols
△ denote the FEM results. We conclude that the results of our method and the finite element
method coincide. Moreover, to show the behavior of the resistance after the point of inflection,
in Fig. 6(b) we have depicted the computed values of R̄ for the range from 0 to 10000 Hz as
well.
The dissipated power in a set of loops is defined as

Pdiss = I2R̄. (74)

As an example, we calculate the dissipated power for the two sets considered here at a
frequency f = 1000 Hz. For the first set of one strip, with a current I = 600 A and a

17



0 0.1 0.2 0.3 0.4 0.5 0.6
2500

3000

3500

4000

4500

5000

|j|
(A

/m
)

r (m)

Figure 5: Amplitude of the current distribution in a set of ten circular loops
of 2 cm width, each with a total current of 60 A, at frequencies
f = 100 Hz (∗), f = 400 Hz (◦), f = 700 Hz (+), f = 1000 Hz
(△).
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Figure 6: Total resistance of a set of ten circular loops of 2 cm width carrying
a total current of 60 A per loop in phase. (a) Resistance R̄ at
frequencies up to f = 400 Hz; (b) Resistance R̄ at frequencies up
to f = 10000 Hz. The symbols △ denote the FEM results.

resistance R̄ = 3.2 · 10−3 Ω, we find Pdiss = 1.15 · 103 W, whereas for the set of ten strips,
with I = 60 A and R̄ = 2.1 · 10−2 Ω, we find Pdiss = 75.6 W. Hence, the total dissipated
power in a set of 10 strips is less than that in a set of one strip, while in both situations the
same magnetic field is created in a specific region of interest (according to (69)). The overall
advantage is that the current that has to be supplied to the 10 strips is ten times less than
the one needed in the set of one strip.

5 Summary and Conclusions

In this paper, we have modeled a transverse (x-coil or y-coil) gradient coil by a set of curved
circular loops, i.e. thin copper strips, placed on the surface of a cylinder. We have shown
that locally replacing the curved surface by the tangent plane has a negligibly small effect on
the current distribution in the loops. The reason is that the currents affect each other only
locally. Therefore, for the current distribution in the curved circular loops on the cylindrical
surface, we may use the distribution calculated for a plane circular strip model. However, this
model may not be applied for the calculation of the induced magnetic field. For the latter,
one must return to the original curved configuration and then by means of the Biot-Savart
law the magnetic field can be calculated.
In a set of plane circular loops, the current flows in tangential direction and depends on
the radial coordinate only. The current distribution in the loops is induced by a source
current. In circular loops, this source current features a 1/r-decay in the radial direction.
For this reason, we apply the Petrov-Galerkin method, in which as basis functions Legendre
polynomials divided by the radial coordinate are chosen, and as test functions the Legendre
polynomials themselves. For the resulting current distribution an integral equation is derived.
The kernel of this integral equation is logarithmically singular. To tackle the logarithmic part
of the kernel, we use the analytical formula (53); the remaining part of the kernel is regular
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and computed numerically. In this way, the integral equation is reduced to a finite set of
linear algebraic equations for the unknown coefficients of the basis functions. Solving this
system, we obtain the current distribution we are looking for.
The resulting current distribution in the loops shows two effects that influence the induced
magnetic field:

1. A decay in the current density in the radial direction, called the 1/r-effect, a typical
static effect.

2. Edge-effects, caused by eddy currents, a typical dynamic effect.

The edge-effects are more pronounced near the inner edge of the circular strip. Thus, in total,
the currents are shifted towards the center of the coil. This is in contrast with the original
design based on streamlines in which a uniform distribution of the current in the loops was
assumed. Consequently, the induced magnetic field along the axis of symmetry of the loops
is amplified, an effect that should be compensated for in the final design.
Based on the analysis in this report we conclude that the dominant logarithmic behavior of
the kernel of the governing integral equation justifies the approximation of a curved circular
loop locally by a plane circular loop. The Petrov-Galerkin method, in combination with
the use of Legendre polynomials, delivers us a very fast algorithm to calculate the current
distribution, for which only a very small number (5 to 10) of basis functions are needed. We
have validated our results by comparison with those of a (much more time-consuming) finite
element program, and complete correspondence was found. We observe a striking difference
between a set of coaxial rings (modeling a z-coil) and one of circular loops (modeling an x- or
y-coil) in so far that the latter shows a non-symmetric edge-effect (leading to the shift in the
current distribution mentioned above). From Figs. 3 and 5, we conclude that this edge-effect
becomes more apparent both with increasing frequency and curvature of the loops. Fig. 5
shows not only a local edge-effect per loop, but also a global one for the set as a whole. Also
the magnitude of the latter effect increases with the frequency.
Finally, the total resistances of the two sets we considered were calculated (for this, not more
than six coefficients were needed). As can be expected, the resistance increases with frequency.
More important is the conclusion, which was also found in [4], that the dissipated power for
the set of ten loops was less than that for one single loop, provided that both sets create the
same magnetic field in a specific region of interest. Moreover, we noticed from Figs 4 and
6 that the resistance as function of the frequency has an inflection point. As explained in
[4], this point represents the frequency at which prevailing resistive effects with respect to
inductive effects change into prevailing inductive effects.
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