

A formalisation of design methods : a lambda-calculus
approach to system design with an application to text editing
Citation for published version (APA):
Feijs, L. M. G. (1990). A formalisation of design methods : a lambda-calculus approach to system design with an
application to text editing. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer
Science]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR324749

DOI:
10.6100/IR324749

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR324749
https://doi.org/10.6100/IR324749
https://research.tue.nl/en/publications/76da4724-30f5-4f77-bf9b-38153a9b681c

A FORMALISATION OF DESIGN METHODS

A >.-calculus Approach to System Design
with an Application to Text Ecliting

A FORMALISATION OF DESIGN
METHODS

A À-calculus Approach to System Design
with an Application to Text Editing

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof. ir. M. Tels, voor
een commissie aangewezen door het College van
Dekanen in het openbaar te verdedigen op

vrijdag 23 februari 1990 te 16.00 uur

door

LA DRENTlUS MICHIEL GERARD US FEIJS

geboren te Sittard

Dit proefschrift is goedgekeurd
door de promotoren

prof. dr. F.E.J. Kruseman Aretz
en
prof. dr. J.A. Bergstra

The work described in this thesis has been carried out at the Phllips Research
Laboratories, Eindhoven as part of the Phllips Research programme.

This work has been done in the context of ESPRIT project 432 (Meteor).

Aan mijn ouders

Contents

1 Overview and introduetion 1

1.1 Structure of this monograph . 1

1.2 The nature of software ... 2

1.2.1 Software engineering 3

1.2.2 Formality 5

1.2.3 The role of languages 9

1.2.4 The role of tools ... 12

1.2.5 Application domain evolution 13

1.3 Informal roodels of software development . 14

1.3.1 General 14

1.3.2 Waterfall model 15

1.3.3 Boehm's spiral model 15

1.3.4 A layered behavioural model 16

1.3.5 Koomen's iteration, learning and detailing model 17

1.4 Towards forma} models of software development . 18

1.4.1 Mod ularisation 18

1.4.2 Parameterisation 20

1.4.3 Simple top-down and bottorn-up models 21

1.5 A formalisation of design structures 23

1.6 Correctness-preserving transformations of designs . 27

1.7 Forma! specification techniques 30

1.7.1 General 30

1.7.2 VDM 31

1.7.3 z. 32

1.8 COLD-K 34

1.9 Formal specification of a text editor 38

1.10 Systematic design of a text editor . 42

1.11 Options for future work 44

Bibliography 46

2 A Fonnalisation of Design Structures 51

2.1 Introduetion 51

2.2 Algebraic systems with preorder 53

2.2.1 Motivation 53

2.2.2 Formalisation 55

2.2.3 Examples 58

2.3 Lambda calculus 59

2.3.1 Introduetion 59

2.3.2 Definition of the Calculus 61

2.3.3 Derived rules 70

2.3.4 Monotonicity 73

2.3.5 Reduction .. 74

2.3.6 N ormalisation . 76

2.3.7 Confluence 80

2.4 Components 83

2.4.1 In trod uction 83

2.4.2 Formal definitions 84

2.5 Designs 85

2.5.1 Introduetion 85

2.5.2 Syntax and Correctness 86

2.5.3 Semantics 90

2.5.4 Correctness-preserving Modifications . 99

2.6 Looking back 105

ii

2.7 Acknowledgements 107

Bibliography 108

A Model Construction 110

B List of symbols ... 116

3 Correctness-Preserving Transformations of Designs 121

3.1 Introd netion . 121

3.2 Designs ... 123

3.2.1 Designs where the system is a sequence 123

3.2.2 Permuting Components .. 126

3.2.3 The conditions 'pf' and 'ds' 129

3.3 Algebraic Operations on Designs 132

3.3.1 The operation * 132

3.3.2 The operation o 136

3.3.3 The operations bot and top 144

3.3.4 The operation ~ 149

3.3.5 Summary 153

3.4 Design Creation . 155

3.4.1 General 155

3.4.2 Top-down example · 155

3.4.3 Design-programs 162

3.4.4 Top-down development 165

3.4.5 Bottorn-up development 173

3.5 Design Evolution 178

3.5.1 General 178

3.5.2 Changing machine 179

3.5.3 Changing system user 181

3.6 Design Partition 183

3.6.1 General 183

3.6.2 Splitting into components 184

3.6.3 Splitting according to * 186

iii

3.6.4 Splitting according to o 188

3.6.5 Splitting according to U 190

3.7 Looking Back 191

Bibliography ... 194

A À1r-Calculus with sequences 195

B Design-development language 202

c List of symbols 209

4 Formal Specification of a Text Editor 215

4.1 Introduetion 215

4.2 Overview of the Forma! Specification . 217

4.3 Text and Algebraic Operations On Text 220

4.3.1 Introduetion 220

4.3.2 Texts 222

4.3.3 Strings. 225

4.3.4 Relating Texts and Strings 226

4.3.5 Printability 227

4.3.6 Natura! Operations on Text . 229

4.3.7 The Reach of a Text . 233

4.3.8 The Profile of a Text . 237

4.3.9 Vertical and Horizontal Composition of Text 240

4.3.10 Operations for Searching . 242

4.3.11 Procrustean Operations 244

4.4 Interfacing an Editorwithits Environment 250

4.4.1 Introduetion 250

4.4.2 DISPLAY: an Abstract Display . 250

4.4.3 'SEQ' and 'STRING': Data types for Interfacing 257

4.4.4 FILE: a File system 263

4.5 Text Editing 266

4.5.1 Introduetion 266

4.5.2 Marked Texts . 267

iv

5

4.5.3 Stating the Application Domain

4.5.4 Spanning the State-space

4.5.5 The Text Invariant

4.5.6 Operations for Dot and Mark control .

4.5. 7 Operations for Text Modification . . .

4.5.8 Operations for Marked-text Management

4.5.9 Operations for Searching

4.5.10 Operations for String Conversion

4.5.11 Termination Axioms

4.5.12 Connecting the Editor with the Display

4.5.13 MOREDOP: More Editing Operations .

269

270

272

276

279

283

284

285

285

286

289

4.5.14 KEYBIND: Connecting the Editor with the Keyboard 291

4.6 Related Work .

4. 7 Looking Back

Bibliography . . .

A List of Symbols

B Standard Class Descriptions .

Systematic Design of a Text Editor

5.1 Introduetion

5.2 The Top of the Editor Design

5.3 The Bottom of the Editor Design .

5.3.1 Introduetion
5.3.2 Specifying Instances

5.3.3 Specifying Attributes .

5.3.4 Specifying Tables .

5.3.5 Specifying Blocks .

5.3.6 The Bottom of the Editor Design .

5.4 Summary of the Top-down Approach . .

5.5 Imptementing the System Components .

5.5.1 Introduetion . . .

V

292

293

297

299

306

331

331

333

335

335

335

336

336

343

345

346

348

348

5.5.2 Implementing KEYBIND 349

5.5.3 Implementing MOREDOP 351

5.5.4 Transforming the Statespace 353

5.5.5 Specifying Pair-wise Attributes 355

5.5.6 ATTR2: a Postulated Component 356

5.5.7 Transforming the State space (continued) 357

5.5.8 Specifying Simple Programming Variables 360

5.5.9 SVAR: a Postulated Component 361

5.5.10 'STRING': another Postulated Component 361

5.5.11 Transforming the State space (continued) 361

5.5.12 Specifying a Window-Invariant Package 370

5.5.13 WLPACKAGE: a postulated component 373

5.5.14 Programming the Editing Operations 373

5.5.15 Termination 396

5.6 lmplementing the Intemal Components 399

5.6.1 lmplementing WLPACKAGE .. 399

5.6.2 Specifying Two-dimensional Arrays . 400

5.6.3 ARRA Y2: a Postulated Component 402

5.6.4 lmplementing WLPACKAGE (continued) 402

5.6.5 Specifying Display Handling 408

5.6.6 DISPLAY JIANDLING: a Postulated Component 410

5.6.7 lmplementing WLPACKAGE (continued) 410

5.6.8 lmplementing DISPLAY JIANDLING 418

5.6.9 lmplementing ATTR2 424

5.6.10 Implementing SVAR . 425

5.6.11 Implementing 'STRING' . 425

5.6.12 lmplementing ARRA Y2 . 426

5.6.13 Arriving at an Editor Design 427

5.7 Related work 428

5.8 Looking Back 429

vi

5.9 Evaluation.

Bibliography ..

A A Lower Design Layer

A.l.l Introduetion .

B

c
D

A.1.2 The Top of the Lower Design Layer

A.1.3 The Bottom of the Lower Design Layer

A.1.4 Implementing the System Components .

A.1.4.1 Introduetion

A.1.4.2 Implementing Sequences

A.1.4.3 Implementing Tables

List of Symbols

The C Program of the Editor

Reference Chart

Curriculum vitae

Samenvatting

vii

432

437

438

438

438

439

439

439

440

444

452

457

466

467

468

1

Chapter 1

Overview and introduetion

1.1 Structure of this monograph

This monograph is concerned with roodels of software development. The
foundations for the roodels studied are based on a À-calculus approach to
design structures. It also contains an application of the concepts studied to
text editing. This first chapter is an overview chapter.

The main body of the monograph is formed by the Chapters 2, 3, 4 and 5.
This body is divided into two parts. The first part consists of the Chapters
2 and 3 which are about research of a fundamental nature, dealing with
roodels of software development based on a À-calculus approach to design
structures. The second part consists of Chapter 4 and 5, which are about
work of an engineering nature, viz. the application of the concepts studied
in the first part to text editing. Each chapter is structured as a unitwithits
own introduction, bibliography and appendices.

Chapter 1 is self-contained and requires no preliminaries. Within Chapter 1
there are, amongst others, sections dedicated to the Chapters 2, 3, 4 and 5
- one section for each chapter. Chapter 1 serves to place the other chapters
in a broader context and to make the relation between them explicit.

Chapter 2 is concerned with a formalisation of design structures. It is self
contained and its preliminaries are an elementary knowledge of rnathematics
and computer science as wellas a certain familiarity with lambda calculus.

Chapter 3 is concerned with correctness-preserving transformations of de
signs. This chapter is the heart of the monograph in the sense that it is de
voted entirely to the dynamic aspectsof the processof software development.
Chapter 3 is a natural continuation of Chapter 2. Results from Chapter 2
are used in Chapter 3, but no additional preliminaries are required.

2 CHAPTER 1. OVERVIEW AND INTRODUCTION

Chapter 4 is concerned with the formal specification of a text editor. The
text editor is introduced by way of illustration of the concepts from Chapter
2 and 3, but at the same time Chapter 4 can he viewed as a case study in
the use of forma! specification techniques. Chapter 4 is self-contained and
its preliminaries are an elementary knowledge of rnathematics and computer
science as wellas a certain familiarity with the COLD-K language.

Chapter 5 is concerned with the systematic design of a text editor and is a
natura! continuation of Chapter 4. The definitions from Chapter 4 are used
in Chapter 5, but no additional preliminaries are required.

The remainder of this first chapter is organised as follows. Section 1.2 is
entitled "the nature of software" and it serves to introduce and demarcate
the field of software engineering, which is the branch of applied science in
which the work presented in this monograph fits. Section 1.3 is about infor
mal models of software development and in Section 1.4 we sketch a line of
thought which gradually moves away from the informal models, leading to
the formalisation of design structures and the correctness-preserving trans
formations of designs presented in the subsequent sections.

Section 1.5 and 1.6 refer to Chapter 2 and Chapter 3 respectively. These
sections serveto present the main achievements of the corresponding chapters
and to relate them to other work.

The results of Chapters 2 and 3 are generic in the sense that they can be
instantiated with a particular formalism. In order to apply the results it is
necessary to do this and therefore Section 1. 7 is a bout formal specification
techniques in general and Section 1.8 is about the particular formalism we
have chosen to he used in Chapters 4 and 5.

Sections 1.9 and 1.10 refer to Chapters 4 and 5 respectively. These sections
serve to present the main achievements of the corresponding chapters and
to relate them to other work. Finally, Section 1.11 discusses a number of
options for future work.

1.2 The nature of software

We approach the nature of software from the viewpoint that software con
struction is an engineering activity (see Section 1.2.1 below) with certain
peculiar characteristics, viz. formality, the role of languages, the role of
tools, and application domain evolution (Sections 1.2.2 to 1.2.5 below). The
most important of these charaderistics is formaiity which acts as a recurring
theme in the discussion of the other characteristics.

1.2. THE NATURE OF SOFTWARE 3

1.2.1 Software engineering

The history of software engineering started in 1944 when Eckert, Mauchly
and von Neumann adopted the idea of storing the instructions fora computer
in electronk form internallyin the memory of the computer [1]. The size of
computer memories has grown exponentially since then and as a consequence
there are hardly any physicallimitations upon the size of the computer pro
grams themselves. Also from a physical viewpoint, computer programs are
extremely flexible in the sense that it is easy to copy and to modify them.
Probably this situation has led to the adoption of the term 'software' as a
synonym for 'computer program'. The first computer programs were just
sequences of instructions, but it did not take long until program structuring
mechanisms were introduced. As Turing [1] put it:

When we wish to start on a subsidiary operation we need only
make a note of where we left off the major operation and then
apply the fust instruction of the subsidiary. When the subsidiary
is over we look up the note and continue with the major operation .
... We have only to think how this is to be done once, and then
forget how it is done.

Also it was soon realised that computers and computer programs were going
toserve as tools for the programmer. As Turing [1] wrote:

This process of constructing instruction tables should he very
fascinating. There need be no real danger of it ever becoming
a drudge, for any processes that are quite mechanica! may he
turned over to the machine itself.

But despite these very promising aspects of software construction, the by
now well-known problem of program correctness was present from the very
beginning. Again we quote Turing [1]:

Delay there must he, due to the virtually inevitable snags, for up
toa point it is better to let the snags he there than to spend such
time in design that there are none (how many decades would this
course take).

Although the above-mentioned charaderistics of software guarantee its con
struction to he a fascinating activity, it takes two more characteristics to
turn it into a real engineering activity.

4 CHAPTER 1. OVERVIEW AND INTRODUCTION

The fust of these charaderistics is the possibility to construct mathematica}
models of computers and of the calculations performed by them. The second
charaderistic is the existence of a wide range of practical applications.

We shall briefly discuss the latter two charaderistics now. Certain math
ematica! models of computers and of the calculations performed by them
were already available be/ore the actual construction of computers took place.
Church's À-calculus modeland the Turing-machine modelalready existed in
1936 and they provided very abstract mathematica! models of computation.
Although these models were tuned to the analysis of a certain theoretica!
notion of computability, they mark the beginning of fruitful research which
has produced an enormous amount of results and concepts. Let us highlight
just a few areas. Of course the following list is a gross simplification of a
huge field of research.

• The invention and analysis of numerous efficient algorithms for search
ing, sorting and numerical calculations (see e.g. [2]).

• The theory of program correctness started by Floyd, Hoare, Dijkstra
and others (see [3,4,5]).

• Specification techniques and denotational semantics, which have led to
the conception of special specification languages [6,7,8] and to a rich
collection of techniques for descrihing semantics [9,10,4].

• Chomsky's theory of formallanguages [11] and parsing theory [12].
• Type theory [13,14,15,16], providing theoretica! foundations for the

concept of type-checking.
• Models of communicating processes starting with Petri nets and Mil

ner's ces [17,18].
• Programming language concepts, embodied in a never-ending stream

of new programming languages: parameter mechanisms, programming
varia bles, scoping, etc. Let us mention just a few important languages:
FORTRAN, ALGOL, COBOL, LISP, Pascal, Modula, C, SETL, Ada,
FP, ML, OCCAM, POOL and Prolog.

Programmed computers turn out to have many practical applications. Ini
tially the applications were restricted to numerical computations, but soon
they included also bookkeeping, administration, language processing, data
manipulation and process controL Programmed computers have become an
integral part of almost all technica} systems. Completely new applications
have come into existence in areas such as telecommunications, entertainment,
manufacturing, safety, medicine and education, but regretfully also in war
fare. By now, programmed computers have deeply penetrated all systems of
infrastructure upon which our society is built.

1.2. THE NATURE OF SOFTWARE 5

As shown above, the term 'software engineering' is quite justified. Let us
mention two other terros as well: 'computer science' and 'computing science'.
The former term is chosen somewhat unfortunately whereas the latter is not
generally accepted (yet). Both 'computer science' and 'computing science'
are often used in order to stress the role of the mathematica} discipline.
The term 'software engineering' is also used in conneetion with the project
management and the organisational aspects of software construction.

It is easy to think that software engineering is related to electronk engineer
ing, but in fact this is not really the case at all. It is true that computers are
built up from electronk components; yet programroers need not know about
the actual construction of the computer. The situation becomes even clearer
when programming languages are employed which abstract more and more
from the underlying machine.

Software engineering has a significant overlap with mathematics, although of
course there are many branches of mathernaties which are just not applicable.
The following branches of rnathematics are relevant [19]:

• formal logic,
• set theory,
• theory of relations, maps and functions,
• À-calculus,
• automata theory,
• theory of formal languages,
• discrete mathematics.

Also queueing theory, category theory, graph theory and the theory of partial
orders and lattices should be mentioned. The following definition of software
engineering is given by Boehm [20]. It is quite consistent with the discussion
presented above:

the practical application of scientific knowledge in the design and
construction of computer programs and the associated documen
tation required to develop, operate and maintain them.

1.2.2 Formality

There is one characteristic which distinguishes software engineering from
most other engineering areas: formality. Every task to be performed by a
computer must be formulated as a program. The computer executes such a
program precisely as it is. In particular, the computer will not complain if
the program is wrong, or if the program solves another problem than the one

6 CHAPTER 1. OVERVIEW AND INTRODUCTION

meant by the programmer. Computer programs must he constructed with
extreme care. One mistake may cause a program to produce nonsenskal
results. With respect to the results, there is no difference between small
mistakes and large mistakes: forgetting a semicolon can he as disastrous as
a collection of huge design errors.

The relevanee of this charaderistic is amplified by the size and the complex
ity of the programs. For simple programs there is a possibility that testing or
even trial and error methods will eventually lead to acceptable results. For
large software products such an approach is fatal. When the complexity of
software products increases, program correctness becomea a very serious is
sue. Remember the fact that one mistake may cause the program to produce
nonsenskal results. Furthermore, this complexity may he such that it is im
possible for one person to understand and remember all details of a program.
It is a consequence of this complexity that communication, documentation,
modularisation, specification and abstraction play an increasingly important
role in the production of large software systems.

Many software projects exhibit phenomena which can easily he interpreted as
the symptoms of inadequately approaching the formality and the complexity
charaderistics sketched above. One such phenomenon is a strong eropha
sis on project management, risk analysis, planning, baseline documenta and
milestones, whereas on the other hand it turns out to he very hard to put
the planning into practice. Some authors even introduced the term 'software
crisis'. We quote Sommerville and Morrison [21] .

... in the late 1960s after the so-called software crisis was iden
tified. This was the name given to the failure of the software
developers to build large systems whkh were required to run on
the then-new third-generation computer hardware.

Very much related to this, there is an increasing interest for modeHing the
software development process. We shall come back to these models later and
in fact we shall construct a special kind of such roodels ourselves (this will he
discussed in Section 1.6). We view the 'software crisis' simply as a symptom
of poorly understood deeper causes such as the lack of formality and the
complexity of software.

The formality issues mentioned above can he explained better by referring to
the notion of a formal system [19]. A formal system consists of: (1) a syntax,
by which we mean an alphabet and rules whkh define a set of formulae, and
(2) a number of rules whkh can he used for the derivation of new formulae
from some given formula. The rules of a formal system are given without
any reference to their intuition or meaning. The formal system just defines

1.2. THE NATURE OF SOFTWARE 7

a game. A computer program can be viewed as a formal system and the
computer executing it can be viewed as the player of the game. The number
of steps performed in a calculation may become so large that one person
cannot imagine and understand the calculation as a sequence of steps.

Instead of that, reasoning about program execution must be based on more
powerlul (mathematica!) approaches, using some impHeit or explicit induc
tion principle. If we want to consider the forma} system as a black box and
try to verify its correctness just by testing, then in general we can never be
sure that the forma} system is correct. Program testing can be used to show
the presence of errors, but not their absence.

There is a second point where forma} systems enter into software engineering,
viz. as systems of reasoning. For this purpose many relatively simple forma}
systems have been proposed. The following list is of course not complete.

• Equational logic for specification of data types [22]. These specifica
tions are often called 'algebraic specifications'. They work well for data
types such as natura! numbers, Boolean values, stacks and queues. In
the typical 'stacks' example, one uses equations like pop(push(s,x}} = s
and top(push{s,x)) =x. Efforts have been made to push the approach
further by descrihing more complex systems, such as simple program
ming languages [23], file systems [24] and data base systems [25].

• First-order predicate logic for descrihing the various states involved
in a program execution. Imperative programs can be viewed as state
transformers and hence there is a need to describe properties of states.
A typical example of such a property is that in some state an array
a[O .. n- 1] is sorted. The state itself remains implicit and to express
this property we would have a first-order predicate logic formula Vi, j :
1N (i < n 1\ j < n 1\ i :5: j => a [i] :::; a[j]). Th is logic is al ready classic
[26], but in the 1970s it has received much attention in conneetion with
Hoare's logic and Dijkstra's wp calculus (see below).

• Hoare's logic for reasoning about the correctness of sequentia} pro
grams. This is a forma} system for reasoning about triples (P, s, Q)
where P is a precondition, s is a program and Q is a postcondition.
This logic can be interpreted as dealing with partial correctnessof pro
grams. It was one of the first forma! systems in software engineering
which was really presented and widely recognised as a formal system.
By now it has been incorporated into the field of mathematica! logic,
where its generalisations are known as dynamic logic [27].

• Dijkstra's wp calculus [5] is a forma} system which can be interpreted
as dealing with total correctness. One writes P => wp(s, Q) where Pis
a precondition, s is a program and Q is a postcondition.

8 CHAPTER 1. OVERVIEW AND INTRODUCTION

There are several related reasons for the introduetion of these forma] sys
tems of logic into software engineering. The first is the program correctness
problem: forma! systems of logic provide mental tools for reasoning about
programs and data types. We could express this as follows: one way of solv
ing the problems caused by the introduetion of a forma/ system, is to introduce
another formal system, viz. a logic for reasoning.

Another closely related reason is that formal systems of logic make it possi
bie to construct tools that assist in reasoning about programs - at least in
principle. The current state of the art is that the reasoning power of theorem
provers is too limited to take full advantage of this possibility; this situation
might change in the fut ure. Even if there are no tools for reasoning yet, syn
tax checking and type checking the formulae of some system of logic already
give useful results.

The size and complexity of programs make it necessary to split programs into
modules which have a specification associated with them. Such specifications
should contain precise properties of data types and of programs; the formulae
of some system of logic are very suited for expressing these properties.

A question which has until now not been solved entirely satisfactorily is the
integration of these forma! systems of logic. One promising approach to
this integration leads to the so-called wide-spectrum languages. These are
languages combining an expressive logic with programming language con
structs. Examples of these are VDM [6], Z [7] and COLD-K [8]. A further
integration would have to incorporate roodels of communicating processes.
A somewhat different approach is taken in the Genesis project [28], where
tools are constructed which are parameterised over systems of logic.

An interesting option which comes with the introduetion of forma] systems
of logic is the possibility to provide the proofs and have them checked auto
matically. The proofs must he coded as expressions of a special version of À
typed À-calculus and then proof-checking becomes a matter of type-checking
- which turns out to he decidable. The checkers are called verification sys
tems or justification systems; the Automath checker [16] is one of the first
examples.

An approach which might become important in the long term · is to have a
formalisation of typical software development processes. This formalisation
then might he turned into an automation of (part of) the software develop
ment process [29].

1.2. THE NATURE OF SOFTWARE 9

1.2.3 The role of languages

There are many different languages in use in software engineering and much
progressis language-driven. Each language Lis a set of sentences and when
e.g. L is a programming language, these are the well-formed programs that
can he compiled and executed. To characterise a language one nsually em
ploys a grammar G - which is a formal system- and we have L = L(G).
In order to structure our discussion, we adopt the following classification
scheme:

• programming languages,
• specification languages,
• special-purpose languages.

We begin with a discussion of programming languages. These have always
played an important role throughout the history of software engineering,
which started with the machine language of the early computers. A machine
language program contains precisely the sequences of Os and 1s that can he
interpreted directly by the computer. For example, an instruction to load
the accumulator register with a binary number 111, for example, could look
as follows:

10000110 00000111.

Clearly this was a user-unfriendly approach and the wish to abstract from
these bit sequences soon gave rise to a following generation of languages.
These were called assembly languages; an assembly-language program has
precisely the same structure as the corresponding machine-language program,
but the sequences of Os and 1s have been replaced by symbols. For example
one could write

LDA A #7

rather than 10000110 00000111. In the 1950s FORTRAN [30] was introduced~
in which one could write down formulae such as

Xl = (-B + SQRT(B**2 - 4.0*A*C))/(2.0*A)

which is relatively close to the usual mathematica! notation. This was a great
step forward, although control-flow constructs and parameter passing were
not very well-chosen from today's point of view.

Let us interrupt our historica! survey now to make a few observations; these
apply to the bistorical development sketched above, but in fact they apply to

10 CHAPTER 1. OVERVIEW AND INTRODUCTION

the later developments as well. First, there has been a tendency to make the
languages more abstract in the sense that the programs have more in common
with the mathematica! descriptions of the underlying models and less with
the corresponding machine-language programs. The second observation is
that many software developers care a lot about the language they use. The
language in use serves as a medium for thinking about the problem at hand
and the program to solve it.

The last observation is that the introduetion ofnew concepts into the practice
of software engineering can be done by embodying each concept as a language
construct in a new language. But somehow the converse of this statement
seems to he the case as well: it is hard to introduce methodological concepts
unless these are very concretely available as constructs in a programming
language. To give one example, the concept of parameterisation was from
a mathematica! point of view already well-described and modelled since the
formulation of the ~-calculus; still it required effort and discipline to have
well-identified parameters when writing subroutines in an assembly language.
FORTRAN provided for functions and subroutines with parameters which
made it much easier to use the concept of parameterisation - although of
course the FORTRAN and the ~-calculus parameter mechanism are quite
different.

In the 1960s and 1970s the hlstorical development has been more complex.
Several new concepts were introduced, but not in such a way that there is
precisely one sequence of languages which is monotonically increasing with
respect to abstractness and expressiveness. Instead of trying to provide a
complete historica! survey, we shall just mention a number of important
concepts:

• modularisation,
• parameterisation,
• concurrency,
• higher-order functions,
• types,
• abstract data types,
• logic programming,
• term rewriting,
• inheritance.

Fora systematic comparison of a number of languages, see [31] and [32].

A problem with the introduetion of new concepts via a programming lan
guage is that usually several concepts are presented in a somewhat inter
twined fashion. Typically the intertwining is between conceptsof a method-

1.2. THE NATURE OF SOFTWARE 11

ological nature and concepts dealing with efficient program execution mech
anisms. For example, the modules in [33] are primarily intended as a rather
syntactic means of ordering a sequence of procedures, data types and vari
ables, tagether with static ways of prohibiting access to constructs which
should be considered local. But at the same time modules can have initial
isation statements; moreover there are special kinds of modules, e.g. the
so-called interface modules which offer solutions to the mutual exclusion
probieros of communicating processes.

Much progressof a methodological nature has been achieved by introducing
new concepts such as modularisation, parameterisation, types, concurrency,
and higher-order functions into programming languages. However, the prob
lem with programming languages is that all constructs must be executable
and as a consequence a need arose foranother kind of languages which are op
tima! with respect to expressivity and abstractness. The resulting languages
are called specification languages. This term may be somewhat misleading
because these are not only useful for specifying programs to be constructed,
but they can also be used for descrihing programs and systems which are al
ready available. This need for another kind of languages has been expressed
elegantly by Hoare [34]:

So in the specification y, you should take advantage of the full
range of concepts and notations of mathematics, including con
cepts that cannot be represented on a computer and operations
that could nat be implemented in a programming language.

Many of the issues occurring in relation with modularisation, parameterisa
tion, typing, concurrency, higher-order functions, etc. apply also to specifi
cation languages. For most of these concepts it seems a good idea to make
them available in specification languages as well- although their integration
still is a major technica! problem. In [35] a specification language is defined
as a language satisfying the following requirements:

• the language concepts enable the description of digital systems,
• the language constructions are derived from mathematica! logic,
• the language has a precise syntax,
• the language has a precise semantics.

If furthermore the language allows for descriptions at severallevels of abstrac
tion, it is called a wide-spectrum specification language. Typically the wide
spectrum languages have a subset which can be considered as executable.
However it is a misconception to postulate that as an ideal it should be tried
to make all constructs in the language executable. By doing so, one just

12 CHAPTER 1. OVERVIEW AND INTRODUCTION

gets another programming language. It is the very purpose of a specification
language to avoid the conflicts between executability on the one hand and
expressivity and abstractness on the other hand; in a specification language
the choice should he in favour of expressivity and abstractness. In [35] a
classification of specification languages is presented. We summarise it here:

• thematic languages, tuned to feature a theoretica! approach,
• combination languages,
• mid-spectrum languages,
• wide-spectrum languages.

In this monograph, the main focus will he upon the mid-spectrum and wide
spectrum languages since these are currently reaching a level of maturity at
which they can he applied in an industrial context. Furthermore insection
1.5 we shall propose a class of syntactic structures called 'designs' and hence
the set D of all designs can he viewed as a language. Yet, D does not fit
in the classification programmingfspecification languages; instead of that, it
provides a kind of 'missing link' between these two language-classes because
it serves for putting programs and their specifications together in an orderly
fashion.

There is a great diversity of special-purpose languages. Because these can he
tuned to very specific needs, they are less subject to conflicting requirements
than the general-purpose programming languages and the general-purpose
specification languages. As examples we have data-base query languages,
job-control languages, input languages for parser-generators etc.

1.2.4 The role of tools

In this section we shall briefl.y discuss the role of tools, i.e. computer
programs which are meant to he of help in software engineering. The role
of tools is to relieve the software designer from certain dull and error-prone
subtasks - as already indicated by the second citation of Turing in Section
1.2.1. Of course only those subtasks can he automated which are completely
understood and which are formalised. We list a number of tools.

• Syntax checkers which serveto determine whether an input text belongs
to the language for which the checker has been built.

• Type checkers which serveto determine whether an input text is correct
according to the type system for which the checker has been built.

• Code generators which serve to perform meaning-preserving transla
tions from a souree language to a target language.

1.2. THE NATURE OF SOFTWARE 13

• Compilers for programming languages. Typically each compiler con
tains a syntax checker, a type checker and a code generator.

• Text editors, structure editors and graphics editors which serveto enter
and modify programs, specifications and other documents which play
a role in software engineering.

• Data-base systems, file systems, and contiguration-management sys
tems which provide systematic ways of storing programs, specifications
and other documents.

• Mail systems, calendars, news systems etc. which serve to structure
the communication between software engineers.

• Text-processing tools and type-setters which serve to produce nice
looking and well-structured documents.

• Interactive program transformation systems which assist the software
engineer in transforming specifications into programs using correctness
preserving transformations.

• Theorem provers, proof assistants and proof checkers which assist the
software engineer in constructing and checking proofs in a formal sys
tem of logic.

The full potential of possibilities has by no means been fully exploited so far.
A potential bottleneck is the lack of integration of all these tools [36]. This in
tegration is complicated by the existence of many programmingfspecification
languages and systems of logic. Also the diversity of available computers and
operating systems is a complicating factor in practice.

Each tool must be based on a formal system and/or an underlying theory;
for example, a syntax checker is based on a particular grammar and the
general theory of languages and parsing whereas a type checker is based on
a particular version of type theory. In general, the construction of tools is a
natural follow-up of language definition or of methodological and theoretica}
advancement.

1.2.5 Application domain evolution

The charaderistics of the process of software development are not the same
for all application domains. It is not possible to give an overview of all
application domains, but some useful remarks can be made by distinguishing
application domains with respecttotheir maturity. In particular, the degree
of achieved formality turns out to be a dominant factor. This section serves
to provide a slightly relativising context for the discussions of the preceding
sections and it also plays a role in positioning our own work.

14 CHAPTER 1. OVERVIEW AND INTRODUCTION

We summarise the idea as worked out in [37], where Sikkel and Van Vliet
discuss domain-oriented reuse of software. They state that the possibilities
for reusing software depend on the maturity of the application domain.

Application domains are subject to a certain development and there are four
distinct phases:

• no reuse,
• ad-hoc reuse,
• structured reuse,
• automation of the domain.

It is argued that the introduetion and standardisation of useful ideas, con
cepts and structures starts in the second phase. This introduetion is an
iterative process which takes quite a lot of time. Only after that is it possi
bie to make the transition to the third phase. Formalisation is viewed as a
tooi which can help in establishing this transition.

Sikkel and Van Vliet focus attention on this transition from the second phase
to the third phase. Indeed, for the first and second phases it is hardly possible
to provide useful models of software development, whereas in the third phase
the software development itself can proceed in an orderly fashion. Therefore
it seems worthwhile to speed-up this transition whenever possible. Just as
Sikkel and Van Vliet, we believe in formal specification techniques as a tooi
for doing this. In the third phase, the software development itself is to a
certain extent already amenable to mathematica} analysis.

In Section 1.6 we shall discuss certain models of the software development
process, which can indeed be viewed as examples of such a mathematica}
analysis. In the fourth yhase the formalisation of the software development
process leads to replating an entire design activity by a simple push-button
operation. Furthermore, when this push-button operation has become suffi.
ciently effi.cient, the application domain will have become quite unproblem
atic from a software engineering viewpoint.

1.3 lnformal models of software development

1.3.1 General

Below we shall summarise some informal models of software development.
Most of these informal models of software development are not based on a
deep analysis of formal systems, but rather they are based on common sense,
social observations and empirica! data. Each of these models conveys some

1.3. INFORMAL MODELS 15

useful insight about software development. There is a large variety of such
models and quite arbitrarily we selected a few representative models for a
brief discussion. No attempt has been made to give a complete overview of
this type of models. For an overview we refer to [38] or [39] .

1.3.2 Waterfall model

The waterfall model [20], also called the life-cycle model, states that, roughly
speaking, the software development process goes through the following phases:

• system feasibility,
• software plans and requirements,
• product design,
• detailed design,
• code,
• integration,
• implementation,
• operations and maintenance.

At the end of each phase a kind of verification or validation takes place and
if its outcome is unsatisfactory, a returntoa previous phase may take place.
This model and variants of it have been used in many projects and these
models have a certain value by providing guidance with respect to the order
in which a project should carry out its major tasks.

1.3.3 Boehm's spiral model

Boehm [40] states that many software life-cycle models of software develop
ment are inappropriate in many situations. He proposes a so-called spiral
model of software development and enhancement. This model is an elabora
tion of the waterfall model of Section 1.3.2. The spiral model adopts a similar
sequence of phases as the waterfall model, but the sequence begins with ha v
inga prototype. Furthermore, this model has the additional feature that this
sequence should he done several times as an iterative process. Every time
before the sequence is entered, a risk-analysis must take place. The model
can he viewed as a kind of repetitive statement and our own presentation of
it below shows it as a while . .. do . .. loop.

16 CHAPTER 1. OVERVIEW AND INTRODUCTION

Boehm has a pictorial notation for it where the total execution sequence is
shown as a spiraL

while risk< max do

• prototype,

• software plans and requirements,

•
• operations and maintenance.

end

Every iteration cycle yields some product which enters the next cycle as a
prototype. The idea of risk-analysis gets a lot of attention in this modeland
it is extensively discussed in [40].

1.3.4 A layered behavioural model

Curtis, Krasner and Iscoe [41] report about a field study of the software
design process for large systems. It is argued that human and organisational
factors seriously infiuence the execution of software development tasks. A
layered behavioural model of software development is given. It has five layers,
each of which has a certain infiuence on the software development process.
The model focuses on the behaviour of the people creating the software,
rather than on the software itself. The five layers are as follows:

• individual,
• team,
• project,
• company,
• business milieu.

By means of a field study based on interview techniques the three most
salient problems of software development were identified. Each problem is
extensively discussed for each of the layers of the model:

• the thin spread of application domain knowledge,
• fiuctuating and confiicting requirements,
• communication and coordination problems.

These problems have survived for several decades despite serious efforts to
improve software productivity and quality. Software development tools and
practices are said to have disappointingly small effects in earlier studies,

1.3. INFORMAL MODELS 17

because they did not improve the most troublesome processes in software
development.

The proposition that human and organisational factors affect the execution
of software development tasks is convincingly shown in [41]. However there
are opportunities to make progress by studying simplified roodels of software
development at a technica! level. Also the reported communication prob
lems suggest that it is useful to improve upon the specification techniques
employed for the products.

Let us say a few words about the relation of the model and the work on
roodels of software development of this monograph. We do not contribute
to the ecological research suggested in [41] nor to the studies of processes
such as learning, requirements negotiation, etc. Instead we focus on the
software product and its descriptions and on the evolutionary behaviour of
these through certain development stages.

1.3.5 Koomen's iteration, learning and detailing model

In [42] the software development model is viewed as a step from a specification
S to an implementation I. In genera!, the implementation is more complex
than the specification; this is because of decomposition and the introduetion
of additional information. Kooroen explicitly meritions the knowledge K
which is needed by the developer to perform the stepS -+1. This is denoted
as follows:

S--->1
K

It is argued that the developer must acquire the knowledge K by learning,
which in most cases takes place by means of iterations and making errors.
Furthermore the transformation process is not just one step, but at another
level this step consists of iterations and recursions.

Also in [42] a distinction is made which in our opinionis quite useful, viz. the
distinction between an idealised design process (IDP) and an actual design
process (ADP). It seems worthwhile to study IDPs and even to formalise
them, but because of the errors which occur during the learning proces, it is
inevitable that there is a difference between ADP and IDP.

Before setting-up our own line of development aiming at certain formal rood
els of software development, let us explicitly mention some useful ideas that
can he taken from the above informal models and that also act as ingredi
ents of the forma! models. From the waterfall and spiral models, we take the
use of sequentia! composition and repetition as structuring mechanisms at

18 CHAPTER 1. OVERVIEW AND INTRODUCTION

process level. From Curtis, Krasner and Iscoe's report we reeall that there
are many aspects of software development that seem not amenable to for
malisation (yet). But we also mention the reported communication probieros
which we shall translate into the need for having 'redundant' specifications
(see Section 1.6). From Koomen's model we adopt the idea that software
development is a process of detailing and adding information; this will come
back in our top-down and bottorn-up roodels (see Section 1.5) which are
strategiesof growing (= adding information to) structures called designs.

1.4 Towards formal models of software devel
opment

1.4.1 Modularisation

Although the informal roodels of software development of Sections 1.3.2,
1.3.3, and 1.3.4 convey certain information about software and its construc
tion, they are still somewhat unsatisfactory. We view it as a weakness of these
and simHar roodels that they impose a management-oriented and project
oriented structure upon a process of software development which is in fact
still poorly understood. Indeed, the situation is even worse in practice, for
often the software itself is poorly understood.

We shall study roodels of software development in this monograph, but we
want to start from a position where we can understand the structure of
the software. Then we take this structure as a starting point for making
meaningful statements about roodels of software development. Our main
mental tooi will be that of formalisation. We begin with having a look
at modularisation, since this seems to he the right way ahead to impose
meaningful structure upon the software itself.

To get started, it is suftkient to have an informal understanding of the ques
tion what ,·s a module?. A module is a piece of software which more or less
constitutes a coherent unit. One may think of it as a bunch of procedures
which tagether provide a certain functionality; one may also think of it as an
abstract data type.

Let us assume that modulescan be fitted tagether tofarm larger modules by
composition mechanisms such as import and that it is possible to associate
narnes to modules. Then it becomes possible to represent the module struc
ture of a software product as a directed acyclic graph (DAG) where the nodes
are modules and where the edges correspond with the 'is part of' relation.

1.4. TOWARDS FORMAL MODELS 19

For example, consider a module structure which is as follows:

• let ml :=module ... end;
• let m2 :=module ... end;
• let m3 := import ml into module ... end;
• let m4 := import mi, m2 into module ... end;
• let m5 := import m2, m3, m4 into module ... end;

This is represented by the tigure below, where an arrow indicates that one
module is part of another module.

B
/1

B B
1 / 1

EJ B
Fig 1.1. Example of DAG module structure.

To have a well-chosen module structure in a software product is the key to
avoiding many problems in later stages of the software development process.
For a discussion of the criteria for choosing a module structure, we refer
to [43]. Although DAG structures as sketched above are attractive because
of their simplicity, they are in practice hardly adequate for descrihing the
structure of real software systems. This is because they can not cope with
parameterisation (generic modules) and specification ('redundant' modules
for specification purposes only).

20 CHAPTER 1. OVERVIEW AND INTRODUCTION

1.4.2 Parameteriaation

Parameterisation of modules is a technique for improving the reusability of
modules. Software reuse is currently a hot topic in software engineering
literature [44] and it is important indeed, for at least the following reasons.

• It is hoped that more frequent reuse of software will lead to higher
productivity of software developers and to significant cost reductions.

• Reuse of modules within one and the samedesign may lead to signifi
cant reductions with respect to the complexity of the design.

• Frequently used software packages could he better certificated for proper
construction and operation. Forthese packages, it is worthwhile to put
more effort in obtaining optima! results.

Parameterisation comes from the insight that often modules could he reused,
provided they have suitable parameters. E.g. the Ada language provides a
mechanism to indicate that a package (= module) is generic, which means
that the package has one or more parameters. Both types and functions can
occur as parameters. We quote Sommerville and Morrison [21].

One classic example of how generics are useful is in sorting pro
cedures. In most languages two different procedures are required
tosort an array of integers and an array of real numbers. Indeed,
the situation is much worse than that since we require a different
sort procedure for every different type.

When a generic package is used, the actual parameters must he chosen and
the substitution of the actual parameters for the forma! parameters is sup
posed to he done at compile time.

Reusability of modulescan he improved by providing them with parameters
but one can conceive of a large number of options for such a parameter
mechanism. Let us have a look at two approaches, viz. the parameterisation
of the algebraic specification languages CLEAR and ASL.

In CLEAR, the parameterisation is uniform in terms of modules: one can
parameterise a module with respecttoa parameter (x say) ranging over mod
ules. In the design of CLEAR [50] it has been recognised that the forma!
parameters of modules must satisfy certain requirements before an instan
tiation can take place. There is no full ,\-calculus, but there is a special
construct called theory procedure. For example in CLEAR one writes

procedure Sorting(x: R) = M

1.4. TOWARDS FORMAL MODELS 21

to introduce a parameterised module named Sorting. Mis the actual spec
ification of sorting which of course must he parameterised with respect to
the sort of things to he sorted and the relevant ordering relation. The latter
sort and relation are described in the parameter restrietion R. The colon is
somewhat misteading since it does not refer toa classica! (irreflexive) typing
relation but to the implementation relation.

In ASL [52] there is an explicit lambda notation for parameterisation, but
the conneetion with the forma! implementation relation is not made. In ASL
one writes

À spec x, sort s, opn p : R.M

to parameterise the module M with respect to a module (spec) x which
contains a sort s and an operation p. Again Ris a parameter restriction, but
in ASL it can he either a module or a Boolean expression.

It is not obvious how to reflect parameterisation and instantiation of modules
in the DAG structures discussed before, which means that actually the DAG
approach is somewhat too naive in practice. In Section 1.5 improved design
structures and a parameterisation mechanism are proposed.

1.4.3 Simple top-down and bottorn-up models

When the DAG model for the modular software products applies, this gives
an opportunity to impose structure upon the development process. In this
way one easily arrives at simple versions of top-down and bottorn-up roodels
and these are nothing but ways of letting the DAG grow.

We depiet a few states from a typical bottorn-up development process.

= EJ EJ
l / l

B EJ
Fig 1.2. The simple bottorn-up model.

22 CHAPTER 1. OVERVIEW AND INTRODUCTION

The three distinguishing properties of this simple bottorn-up development
model are the following.

• lnitially there are one or more unrelated modules. Let us call these the
machine modules.

• Modules are only added, and never removed.
• All modules are always constructed in termsof the machine modules

again either directly or indirectly.

We depiet a few states from a typical top-down development process.

EJ EJ
/l~

EJ EJ-EJ
l/
B

Fig 1.3. The simple top-down model.

The three distinguishing properties of this simple top-down development
model are the following.

• Initially there are one or more unrelated modules. Let us call these the
system modules.

• Modules are only added, and never removed.
• All modules are always either directly or indirectly 'part of' at least

one system module.

It is not hard to formalise the DAG structure and the simpletop-down and
bottorn-up models discussed above1• Similar discussions are presented in [46]
and [47]. The approach can also be pushed further by including middle-out
and outside-in models.

However, the approach is not entirely satisfactory, mainly because the need
for specifications is not taken into account. Especially the simple top-down

1 It is interesting to compare this with M. Feather's (45] view of growing specifi.cations
as a processof applying elaborations e....step1 , e.lltep2 etc. upon an initialspecifi.cation m 0 .

Feather explores the combination of parallel elaborations e....step1 (m0) and e.lltep2 (mo) say,
which e.g. for independent steps could mean to take e....step2 (e....step1 (mo)).

1.5. A FORMALISATION OF DESIGN STRUCTURES 23

approach can hardly workin practice, because it is probiernatie to use a non
existing module unless a sufficiently precise specification of it is available.
This defect becomes even more clear when we aim at reuse of modules.
Parameteriaation is a mechanism for improving module reusability, but at
the same time it leads to an increasing need for specifications. Even when
the functionality of a reusable module is sufficiently known, there is still a
need to have clear (forma!) specifications of the parameters and of their effect
upon module behaviour.

The simple top-down and bottorn-up roodels are too poor to describe this,
but there is a clear route for improving this situation. The main extension
is to associate specifications with modules. In order to make this precise, a
formalisation of the resulting design structures (= structure of modules +
specifications) will he needed. This is the subject of Chapter 2, summarised
in Section 1.5. After that we shall be in a better position to have a second
look at the dynamic aspectsof the processof software development and this
is the subject of Chapter 3, summarised in Section 1.6.

1.5 A formalisation of design structures

This sectionis just a very informal and incomplete introduetion to the con
tents of Chapter 2. The current section is meant to fit logically in the main
lines of thought presented in the current chapter, but the detailed technica}
work involved is done in Chapter 2.

Chapter 2 begins with a formalisation of the module structure of software
products. A mathematica! model is introduced, which covers from an ab
stract point of view several distinct languages. According to the model,
modules are nothing but term'l and the ways of fitting modules together are
algebraic operators in the language of an algebraic system.

This algebraic approach to module composition is investigated by several
authors. For example, in Module Algebra [48] modules are terms consist
ing of module constants/variables and the operators E (the visible signature
of a module), . (renaming of a module), T (conversion of a signature toa
module without axioms), + (combination/union of modules), and D (restrie
tion of the visible signature of a module). The ACT ONE MOD language
[49] provides algebraic operators for basic module specification, extension,
renaming, union, composition and actualisation. The CLEAR language [50]
provides algebraic operators for basic module specification (either with loose
semantica or initiai-algebra semantica), enrichment and derivation (= hiding
+ renaming). Closely related to Module Algebra is the Class Algebra un
derlying the COLD-K design language [8], the main difference from Module

24 GHAPTER 1. OVERVIEW AND INTRODUGTION

Algebra being related tothefact that in COLD-K one can describe systems
having a state.

In Chapter 2, there is no fundamental difference between a specification
module and an implementation module. The only difference is a matter of
role and this is formalised by assuming a binary relation Ç on modules where

means that M 1 is an implementation of M 2 • This relation is required to he
a preorder (= reflexive + transitive). Starting from this simple model, a À
calculus approach to parameterisation is developed in Chapter 2. However,
unlike classica! (untyped) À-calculus, there are restrictions to the actual pa
rameters which may he provided for a parameterised term. The resulting
calculus is called Àn-calculus. In classica! À-calculus [51] one would write
>..x.M to indicate that x is a formal parameter, which may occur in M.
Instead of that, in >..n-calculus we get

>..xÇR.M

where R is aso-called parameter restriction. The calculus is formalised by
means of a collection of rules, where the most important rule is called (n),
because it is a kind of partial version of the well-known rule of classica! À
calculus, which is called (,8). Somewhat simplified, the rule (n) is as follows:

(>.x Ç R.M)A---+ M[x :=A], provided A Ç R.

This calculus can he put on top of an arbitrary algebraic system with pre
order, which means that it works for any formalism with an algebraic ap
proach to module composition.

It is interesting to compare this Àn-calculus with the parameterisation of
CLEAR and ASL as mentioned in Section 1.4.2. CLEAR does not provide
a set of rules as in Àn-calculus but instead of that the parameterised spec
ifications get a semantics directly in terms of mappings from algebras to
algebras. Just as CLEAR, ASL does not provide a set of rules and the pa
rameterised specifications get asemantics in termsof mappings from algebras
to algebras. Furthermore the ASL mechanism is not uniformly in terms of
modules: one can parameterise a module with respect to one or more sorts
and/ or operations.

The Àn-calculus can he provided with a simple system of types and then it is
shown to have the Church-Rosser property (also called confluence) and the
strong normalisation property.

1.5. A FORMALISAT/ON OF DESIGN STRUCTURES 25

Using À71'-calculus, Chapter 2 describes a formaHaation of design structures
by introducing the concept of a design. Intuitively, a design is a (possibly
large) hierarchically structured and component-wise specified software sys
tem. Precisely the fact that a design is component-wise specified implies that
issues of information-hiding arise, which cannot adequately he dealt with by
just the algebraic approach to module composition alone; as it turns out,
they can however he dealt with by the À71'-calculus.

The designs of Chapter 2 are related to the so-called hooks in Automath [54]
and we shall sketch the relation here using De Bruijn's terminology- which
is quite recent. Every lambda term can he viewed as a tree, having nodesof
two kinds.

• Application (a) nodes, where a parameterised term gets an argument,
• Typing nodes (t), which are just À-abstractions. Letusadopt this term,

though formally the parameter restrictions of À71'-calculus are not types.

Now one can organise lambda terros so that they become a special kind
of slanted trees, built up from typing-with-immediate-application pairs (at
pairs) and single typing nodes (t nodes). Hence the trees are named at&t
systems. This is precisely the way Automath hooks are organised and it can
he used for coding and type-checking mathematica. De Bruijn noted this
'books-as-lambda-terms' analogy.

Now it turns out that at&t systems in À71'-calculus can he used for giving a
meaning to a forma! notion of design, corresponding to the intuition sketched
above. In this way there is a 'designs-as-lambda-terms' analogy.

A design can he represented by a structure which looks like this:

xl .- pl c Ql
X2 .- p2 c Q2

Xn .- Pn c Qn
system s

where each line is called a component, each P; is called a glass-box description
(= implementation module) and each Q; is called a black-box description (=
specification module).

It is optional to omit the glass-box descriptions for certain components and
in that case the corresponding P; s are just prim, which is a dummy place
holder. Such components are called primitive. Primitive components act as
the parameters of the design in which they occur; typically sarnething will
he filled-in for the prims in a later stage of the development.

26 CHAPTER 1. OVERVIEW AND INTRODUCTION

In Chapter 2 two notions of correctness for designs are defined, called glass
box correctness and black-box correctness. Both forms of correctness are very
important from a methodological point of view. Glass-box correctness is
based on the principle that all details of the implementation modules may
he known when using these modules. No information-hiding is required.

Black-box correctness is based on the principle that no details of the im
plementation modules may be known when using these modules. Insteadof
that, the user of a module must rely exclusively on specifications - called
black-box descriptions in our terminology. The principle of black-box cor
rectnessis probably already old and has for example been expressed in [55].

We feel it is essential that the user of an interface should nothave
to know anything about the details of the implementation. In
particular, the fact that this interface may he formed by a single
body or a set of several bodies should not make any difference.

However, to the best of our knowledge, it has never been formalised ade
quately and analysed with the techniques of mathematicallogic, as in Chap
ter 2.

The definitions of these correctness notions provide a starting point for a
systematic study of transformational development. In particular, a design is
built up from components and the correctness of a complete design follows
from the correctness of its components. In Chapter 2 we investigate the
precise conditions so that when modifying one component, the correctness of
the resulting design follows from the correctnessof the modified component.
Black-box correctness gives rise to a certain locality principle with respect
to modifications of implementations. Such modifications of implementations
occur very frequently in practice, typically because of requirements to achieve
certain efficiency improvements. For large designs, a complete re-verification
of the (black-box) correctness is out of the question in practice, and as a
consequence it is of key importance to have locality principles. In Chapter 2
a mathematica! basis is provided for this and a number of locality principles
and a number of pitfalls are formulated and demonstrated in a very precise
way.

In Chapter 2 it is shown that several interesting properties of designs have
simple analogons in the À1r-calculus. The most striking analogy is that black
box correctness holds in a design if and only if the corresponding lambda
term in À1r-calculus can he reduced so that no candidate redex remains un
contracted and the contractions are performed from right to left. The new
and innovative aspect of these analogies is that reduction strategiesof lambda
terms are used to characterise methodological notions.

1.6. CORRECTNESS-PRESERVING TRANSFORMATIONS 27

It is important to note that in this monograph, both the design structures and
a number of methodological notions are defined formally and are analysed
using techniques from mathematicallogic. This is a great step forward with
respect to the usual informal and intuitive approach to the same method
ological notions (as e.g. in the above quotation from [551).

1.6 Correctness-preserving transformations of
designs

This section is an overview of the contents of Chapter 3. In view of the
achievements mentioned in Section 1.5 we are now in a better position to
continue the line of thought presented in Section 1.4. We aim at a precise
description of the top-down and bottorn-up modelsof software development,
but now we consider them as ways of growing designs rather than just DAGs.

In order to have a systematic approach, Chapter 3 begins with an examina
tion of algebrak operations at the level of designs. So given two designs d1

and d2 , we investigate the mechanisms to combine these to another design,
d3 say. There are two operations of this type:

• a binary operation * to be used for combining unrelated designs,
• a binary operation o which can be used for combining designs where

the system provided by one design is plugged into the list of assumed
primitives of another design.

Of course the question arises under which circumstances these operations
preserve black-box correctness. This leads to a forma! notion called valida
tion. As it turns out, the question of preservation of black-box correctness
can be answered satisfactorily. Again this question involves non-trivia! issues
of information hiding, requiring an analysis in the tradition of mathematica!
logic, using results from Chapter 2.

After that, a formalisation of the top-down modeland the bottorn-up model
is undertaken, employing techniques which are taken from the product level:
first the pre- and postconditions are made explicit and after that an iteration
construct is introduced based on an invariant assertion. In particular, the
top-down model is based on an invariant assertion TDJNV which asserts
that the current design is black-box correct and that all components play
a role in the system of the design. In Chapter 3 we describe the models
as design-programs and by way of example we show a part of the top-down
design-program, which is called td. The input-parameters of td are denoted
as db and d1 which - roughly speaking - are the external interfaces of the

28 CHAPTER 1. OVERVIEW AND INTRODUCTION

design to he constructed. Below, d corresponds with a variabie design (the
'current design') which is modified in a step-wise manner,

td := technique db, d,
def d := d,;

while not bot(d) =db do d := td...step(d); od;
d.

This td...step is such that it preserves TDJNV. The design-development lan
guage used to express the design-programs has a well-defined syntax and
semantica which is given in an appendix of Chapter 3. For the formal details
we refer to Chapter 3.

It is remarkable that the top-down and bottorn-up models of the development
process arise in a systematic manner by applying (at the design-program
level) an approach which comes from the field of classical sequentia! pro
gramming. The possibilities for deriving invariants and design-programs de
scribing design creation by this approach have by no means been exhausted
in Chapter 3. It certainly is interesting to investigate other possibilities.

The fact that it is possible to split designs and reassemble them again makes
it possible to discuss models of the development process where two (or more)
developers each operate on a part of a design so that when each of them has
finished his part, their results are fitted together to yield a new design again,
which furthermore is black-box correct.

The formal notion of validation makes it possible to construct also several
simple models of design evolution. Summarising, Chapter 3 provides three
types of models of the software development process:

• models of design creation,
• modelsof design partition,
• modelsof design evolution.

In each case the models are very simple - at least from the viewpoint of
practical industrial applications. But they areformaland they arebasedon
a non-trivial approach to modularisation and information hiding and in that
sense they constitute a step forward with respect to the DAG-growing models
of Sec ti on 1.4.3. A lso, it is very important that these models are characterised
formally and that now we know very precisely the invariant assertions on
which the top-down and bottorn-up design programs are based. The fact
that our models are formal can he viewed as an advantage over informal and
semi-formal process models, as in Section 1.3.

1.6. CORRECTNESS-PRESERVING TRANSFORMATIONS 29

The important question of course is whether these models can he made useful
for the practice of developing non-trivia! software products. Actually, a very
similar question applies to À1r-calculus and the forma! notion of design of
Chapter 2. Turning this theory into practice is a large undertaking of an
engineering nature. This has been undertaken indeed, viz. in the context of
a 'project' around the COLD-K language. This project aimed (and aims) at
achieving a significant development in forma! specifi.cation techniques and at
industrialising the results. Clearly this is a task invalving many people, the
author being just one of them. At the present time not much tooi-support
related to the results of Chapters 2 and 3 is available, but as argued in
Section 1.2.4, the construction of these tools may he a natura! follow-up of
the methodological and theoretica! results of Chapter 2 and 3. Presently only
the well-formedness condition 'wf' on designs can he checked, but one can
imagine more sophisticated checks. Also a tooi to list all proof-obligations
related to the black-box correctness of a given design could he useful.

N ext we would like to relate and compare the achievements from Chapter 3
with another, somewhat similar approach, viz. L. Williams' approach [56].
In [56] a software process model (SPM) describes software development as
a sequence of activities. An activity is defined as a 4-tuple consisting of a
set of preconditions, an action, a set of postconditions, and a set of messages.
Williams describes by means of a kind of grammar which sequence of activi
ties are possible fora certain approach. In particular, his design programs (to
use our own terminology) take the shape of regular expressions with sequen
tia! composition, V (choice), Ll (interleaved parallelism) and * (repetition).
Using this as a description technique, he gives design programs for several
models, such as Boehm's spiral model, Lehman's contractual model and the
JSD method.

Although at the process level a certain forma} machinery is used (regular
expressions), at a lower level the activities (forming the alphabet for the
regular expressions) are described informally and do not refer to product
artifacts with a forma! defi.nition. When we campare this with the process
roodels (design-programs) of Chapter 3, we see that the formality of [56] is
lacking a basis, which is present for our approach- viz. in Chapter 2.

It is also interesting to campare our design programs with the DEVA ap
proach of [29]. DEVA can he used for (a.o.) descrihing functions, statements,
programs, contexts, modules, etc. and also the transformations and tactics
operating on these. The design-development language of Chapter 3 is of a
much less general-purpose nature and the design programs of Chapter 3 de
scribe strategies for growing and combining the design structures of Chapter
2. The kernel of DEVA is an applicative language whereas we employ an
imperative design-development language. Probably the most important dif-

30 CHAPTER 1. OVERVIEW AND INTRODUCTION

ference is that DEVA design programscan (at least in principle) he executed
automatically, whereas the semantics of our design programs is relational
to reflect the phenomenon of human 'creative freedom' and there is hardly
any sense in letting a computer evaluate the top-down design program, for
example.

The work presented in Section 1.5 (which is a summary of Chapter 2) and
Section 1.6 (which is a summary of Chapter 3) has servedas a contrihution
to the design of COLD-K. As a result, the parameterisation of COLD-K
modules is hased on À7r-calculus. Furthermore, COLD-K provides constructs
for components and designs, hased on the concepts developed in Chapter 2
and Chapter 3.

The next two sections (1.7 and 1.8) areahout forma! specification techniques
and they discuss several specification languages, with a special emphasis on
COLD-K. Section 1.8 should he viewed as a kind of import at the level
of this monograph: we import COLD-K because it is used in Section 1.9
(which is a summary of Chapter 4) and Section 1.10 (which is a summary of
Chapter 5). Chapters 4 and 5 illustrate the applicahility and usefulness of
the theory developed in Chapter 2 and Chapter 3. They contain an example
of a large formal specification and a suhsequent development process hased
on the formal models of software development.

1. 7 Formal specification techniques

1. 7.1 General

In Sec ti on 1.2.3 we have already discussed the role of specification languages.
In this section we will have a closer look at a few approaches to formal
specifications, each with its own specification language.

The discussion in Section 1.2.3 suggests that in many respects the practi
cal progress in software engineering is language-driven: it is relatively hard
to introduce new methodological concepts unless these are very concretely
availahle as constructs in the language in use. Prohahly this is a major mo
tivation hehind the need for formal specification languages. In practice it is
not enough to have a numher of good concepts dealing with the methodology
of writing forma} specifications: in order to make these concepts transferahle
to a large audience of potential users, one needs a language as a vehicle. The
design of such a language involves many choices and clearly the outcome of
these choices will determine the restrictions to he imposed upon the users
- whomayor may not like that. But this seems hy far outweighed hy the

1.7. FORMAL SPECIFICATION TECHNIQUES 31

benefits of having a very concrete, more or less standardised language.

We do not attempt to provide a complete overview of all relevant languages;
for that we refer the reader to [57] or [35]. The main purpose of this section
is just to mention some specification languages which are relatively close to
COLD-K with respecttotheir aims and their technica! contents. In particu
lar this means that we shall restriet ourselves to so-called mid-spectrum and
wide-spectrum languages. Quite arbitrarily we have chosen to discuss VDM
and Z, but there are other important approaches as well, notably CIP-L and
Larch. Fora comparison with these we refer to [58].

1.7.2 VDM

VDM is a formal-specification approach which has led to the design of several
related specification languages, most of which are often just called VDM.
The roots of VDM lie in the formal specification of programming languages
(PL/I) and in the early days one would refer to the specification language
as the meta-language, just to distinguish it from the programming language
being specified.

The VDM version Meta-IV [6] (1978) has attracted considerable attention
and it has been used to specify many complex systems. lts strong points
are higher-order functions, a rich collection of built-in data types and the
existence of a large body of pragmatics and examples. The built-in data types
include sets, pairs, maps, tuples, trees. Each of these data types comes with
a rich collection of operators, most of which are denoted in a mathematica!
style. E.g. for sets one can use symbols such as U, n, Ç and set comprehension
{x E S I p(x)}. For functions there is even a À-calculus notation, including
a fixed-point operator Y.

In [59] an impravement of the VDM language is described. It reflects some
influence of both the achievements in the theory of program correctness and
the work on algebraic specifications. There is an explicit treatment of the
problem of partial functions. This topic arises naturally in many practical
situations and it is closely related to the idea of associating preconditions with
functions. Jones uses a pre- and postcondition style for specifying functions.
The following toy-example of a partial function has been taken from [59] (p.
74).

subp (i: N,j: N) r: N
pre j :Si
post r + j =i

The problem of partial functions is solved by the introduetion of the logic

32 CHAPTER 1. OVERVIEW AND INTRODUCTION

of partial functions (LPF). In this way it becomes possible to treat the set
of truth-values as any set and to view a predicate P as a Boolean-valued
function. This leads to the situation that P(x) fails to denote a Boolean
value when x does not satisfy the precondition of P. In that case neither
P(x) = true nor P(x) = false holds.

VDM is based on set-theory which is very fiexible; one can freely construct
subsets of given sets and each of these subsets can occur again as the domain
or range of a function. This implies that there is no concept of typing -
except of course that the number of arguments of a function can he viewed
as a simple type.

VDM has special constructs for so-called operations which are simHar to
functions, except for the fact that operations can have side-effects. The
following example of an operation has been taken from !59] (p. 86).

LOAD (i: N)
ext wr reg: N
post reg= i

LOAD is introduced as an operation which has write-read access (wr) with
respecttoa so-called external variabie (ext) called reg. This variabie can con
tain natura! numbers. The availability of these operations and algorithmic
definitions for them in addition to the specification techniques for mathe
matica! functions makes VDM into a true mid-spectrum or wide-spectrum
language (see !35]). Currently there is still a lot of development going on
around VDM and the language has reached a degree of maturity and accep
tation exceeding that of most other specification languages. An interesting
development is Middelburg's VVSL language !60] where the COLD-K mod
ularisation constructs and À1r-based parameterisation constrocts have been
put on top of an (enriched) version of VDM.

1.7.3 z

The specification language Z has emerged from a certain style of specification
developed at the Oxford Programming Research Group. Z was first proposed
by Abrial and it has been evolving for several years, but the recent hook
of Spivey has set a rigarous standard now !61]. Z is essentially based on
Zermelo-Fraenkel set-theory described in first-order predicate logic. It offers
a rich collection of notations for operations on sets such as u, n, Ç and {x E
S I p(x)}. Relations, maps and functions are considered as special kinds of
sets and they all have their own special notations. It is possible to introduce
new primitive sets and if one does so, this means that the remainder of the

1.7. FORMAL SPECIFICATION TECHNIQUES 33

specification is parameterised with respect to these primitive sets.

We show an example in Z below. It introduces a so-called schema subp
which can be interpreted as an operation from IN x IN to IN satisfying the
specification of our earlier VDM example.

subp

i?,j?: IN
r!: IN

j? :::; i?
r! + j? =i?

Although formally i?, j? and r! are just logica! varia bles, it is a convention
that variables ending in ? are inputs and those ending in ! are outputs. The
entire double-box construction is called a schema. A schema consists of a
signature part, declaring one or more variables and an optional axiom part
which serves as a predicate relating these variables.

It is also possible to describe operations having side-effects. This is done by
formally introducing the two states as logica! variables in the signature part
of the schema of the operation.

Let us try the second VDM example as well. The only interesting state
component in this example is a register which we formally introduce by a
schema having a signature part only.

Now we can mention both REG and REG' in the signature part of the
schema of LOAD in order to indicate that LOAD has write-read access with
respect to the register.

34 CHAPTER 1. OVERVIEW AND INTRODUCTION

By way of convention, the dasbed version refers to the new state.

LOAD ______________ ~

REG
REG'
i?: lN

reg'= i?

Z provides a collection of operators on schemas, some of which are best
understood in a rather syntactic way. By way of example we mention two
such operators.

• Inclusion: if S is a schema, it is allowed tomention S in the signature
part of another schema T. This is semantically equivalent to combin
ing the signature parts of S and T and taking the conjunction of their
axiom parts.

• Hiding: in order to hide a variabie v from a schema S we can write
S \ (v). It is semantically equivalent to removing the variabie from
the signature part and prefixing the axiom part with a quantification
3v : T · where T is the type of v.

Spivey [61] gives a forn1al definition of Z, using Z as a metalanguage. As it
turns out, the meaning of a schema with signature part E and axiom part cp
is a so-called variety. For (E, cp) this variety is the collection of structures (=
roodels or heterogeneaus algebras) ha ving the signature E and which satisfy
cp. So fora E-structure A we have A E meaning(E,cp) <=> A F cp. There is
also a concept of typing in Z, but this is set-oriented rather than function
oriented and as aresult there is only a limited kind of type checking possible.
We shall come back to that later.

1.8 COLD-K

COLD-K is a wide-spectrum specification language developed at the Philips
Research Laboratories in Eindhoven within the framework of the Meteor
project. The language has been designed mainly by H.B.M. Jonkers, with
technica! contributions from C.P.J. Koymans, G.R. Renardel de Lavalette,

1.8. COLD-K 35

the author, and to a lesser degree also from J.H. Obbink and P.H. Roden
burg. COLD-K is meant to he used throughout several stages of the software
development process, induding the specification and implementation stages.
Actually there is not just one language COLD-K but there is a sequence of
subsequent versions, such as COLD-S, COLD-fiat, COLD-K, COLD-K-RTL
and COLD-L Amongst these, the COLD-K language plays a special role,
since it is a kernel language which is meant to serve as a fi.xed point in the
development of the language. There is a mathematically defined syntax and
semantics for COLD-K [53]. Other language versions (notably COLD-1) can
he defined in tenns of COLD-K, just by adding constructs of a purely syn
tactic nature. In the remainder of this chapter we shall restriet ourselves to
COLD-K.

In order to give an impression of COLD-K, let us do the VDM and Z examples
in COLD-K. We assume that we have the sort of natura! numbers denoted
by Nat and operations on Nat such as leq and add.

FUNC subp: Nat # Nat -> Nat

AXIOM FORALL i:Nat, j:Nat
(leq(j,i) => add(subp(i,j),j) =i)

The second example involves a register which is introduced as a so-called
variabie function (keyword VAR).

FUNC reg: -> Nat VAR

The LOAD operation becomes a procedure, because of its side-effect. This
procedure has modification rights (keyword MOD) with respect totheregister
reg. In COLD-K there is nobuilt-in construct for indicating a postcondition,
but the assertion sub-language includes Harel's dynamic logic [27]. This
logic is employed in the axiom given below. This axiom should he read as
follows: in all states and for all i, whenever we reach a new state by executing
LOAD (i), the assertion reg = i holds in this new state.

PROC LOAD: Nat ->
MOD reg

AXIOM FORALL i:Nat
([LOAD(i)] reg • i)

In fact the examples above only show definitions which could occur within
a COLD-K scheme (= module) which in turn could he part of an entire
design. It is outside the scope of this monograph to give a more or less
complete introduetion to COLD-K; for that we refer to [8], [53] and [62].

36 CHAPTER 1. OVERVIEW AND INTRODUCTION

Here we would like to point out a few differences with respect to the versions
of VDM and Z as discussed in the sections 1.7.2 and 1.7.3.

First of all the COLD-K salution to the problem of functions being partial
differs from the solutions of VDM and Z. The assertion language of COLD
K is basedon a special version of typed predicate calculus called MPLw [53]
which at its turn is derived from Scott's E-logic. It is possible to state that
an expression e is defined and this is done by means of the postfix operator
! which can be used to write e!. There are rules which relate this notion of
definedness tothebuilt-in equality and to the quantifiers FORALL and EXISTS.
The problem of the undefined truth-values vanishes because one of these rules
says that a predicate applied to an undefined expression just yields F ALSE.
The point is that predicates are normal mathematica} predicates and not
Boolean-valued functions.

It is also interesting to note how programming variables and operations with
side-effects are described in COLD-K. Programming variables are modelled
in COLD-K by having variabie functions and variabie predicates. The op
erations which modify them are called procedures and there are mechanisms
that regulate the modification rights of procedures with respect to variables.
There are several ways of defining procedures: they can be given algorithmi
cally or they can be described axiomatically because dynamic logic is built
in to the assertion sub-language. This is a difference with respect to VDM,
where there are special constructs with keywords pre and post, rather than
a more powerfut logic. In Z there is nothing special about states and side
effects at all: most of this is dealt with by having a certain pragmatic style
relying on conventions a bout identifiers such as i?, r! and reg'.

The expressions in COLD-K are strongly typed, which has the important
advantage that mechanica! type-checking is possible. A syntax- and type
checker exists. This is a difference with VDM and Z, since in the latter
languages one can just define any set, e.g. E ~ {i : IN I 3j : IN · i = 2 x j}
introduces E C IN as the set of even numbers. Now one could introduce
a function f : E --+ E and then to find out that /(77) is wrong requires
reasoning about the assertion 3j: IN· i= 2 x j which was used to define E.
In Z there is a rather coarse concept of type checking which cannot detect the
problem with !(77) but which could at least find out that f(-3) is nonsense.

Probably the most important difference between COLD-K on the one hand
and VDM and Z on the other hand is the presence of powerful constructs for
modularisation, parameterisation and designs in COLD-K. The modularisa
tion of COLD-K is based on an algebraic approach to modularisation. The
basic module construct is called a class scheme and it consists of a list of def
initions of sorts, functions, predicate, procedures and axioms. These can be

1.8. COLD-K 37

combined into larger schemes (= modules) by means of import, export, re
naming and by using narnes for schemes. Furthermore COLD-K provides for
parameteriaation of schemes over schemes. The work presented in Chapters
2 and 3 has served as a contribution to the design of COLD-K in the sense
that the parameteriaation of COLD-K schemes is based on À1r-calculus and
that COLD-K provides constructs for components and designs. In COLD
K one writes LAMBDA x : ITEM OF BODY, corresponding with a À1r-calculus
term Àx Ç ITEM.BODY, and one writes APPLY PARAM TO ARG corresponding
with a À1r-calculus term (PARAM ARG). The top-level construct which can he
denoted in COLD-K is a design. In Jones' VDM there is nothing camparabie
to the COLD-K modularisation, parameteriaation and designs. In Z there
are schemas camparabie to the COLD-K schemes. The parameteriaation of
Z is just over sets rather than over entire schemes, whereas there are no such
things as components and designs inZ.

Another difference between COLD-K and VDM/Z is the absence of fixed
built-in notions like Booleans, natura! number, tuples, sequences, sets and
maps in COLD-K. Instead of that, the language provides facilities to define
them. In practice such data types are taken from standard library - written
in the language, cf. Appendix B of Chapter 4.

COLD-K can he used for expressing programs and specifications, but it is
nat meant for derroting proofs. Of course, languages to denote proofs exist,
ranging from plain English for convincing arguments to À-typed À-calculus
for automated checking - as in the Automath approach. Yet COLD-K
gives rise to proof obligations; more precisely, the principle of black-box
correctness requires for each component COMP X : X_SPEC : = X_IMPL that
f I- x_rMPL Ç X....SPEC for a certain well-defined f . In the editor case study
of Chapter 5, some proof obligations are treated informally, whereas many
others are tacitly dealt with.

After the intermezzo about forma! specification techniques of Sections 1.7
and 1.8, we can praeeed with the main line of this monograph, viz. the
formalisation of design structures (= structure of modules + specifications)
and the models of software development based on that. We are now in
a position where we can indeed attach 'redundant' formal specifications to
modules, viz. by using VDM, Z or COLD-K. Using one of these, we shall
present a case study concerninga text editor, which has been developed as
an application and illustration of the results of Chapter 2 and Chapter 3.

38 CHAPTER 1. OVERVIEW AND INTRODUCTION

1.9 Formal specification of a text editor

This section is an overview of Chapter 4 which concerns the formal specifi
cation of a multi-buffer and display-oriented text editor. This specification
illustrates the use of COLD-K as a specification technique. In particular, the
editor specification is modularised and certain parts of it are generic and as
such it illustrates the COLD-K algebraic approach to module composition
and the À1r-calculus. There is no real development process yet in Chapter 4,
except for the bottorn-up construction of the formal specification, where we
mean bottorn-up in the DAG sense of Section 1.4.3.

The specification of the editor consists of four parts:

• a library,
• an application domain formalisation: texts and operations on texts,
• models of the available primitives, such as a file system and a video

display unit,
• specification of the actual editor including features such as buffer man

agementand keybinding.

When the construction of this specification began, there was already a small
library of data type specifications, containing Booleans, natural numbers,
sets, sequences, bags etc. Most of the library had been constructed ear
lier, mainly by H.B.M. Jonkers and the author. The library is given in an
appendix of Chapter 4.

The need to formalise the application domain is very typical: almost every
specific application domain has its own concepts, notations, conventions and
jargon. Before any system specification can be written down, these concepts
must be introduced formally. As argued already in Section 1.2.4, each tooi
must be based on a forma! system and/ or an underlying theory and for the
text editor - considered as a tooi - the underlying theory is a formalisation
of 'text' and operations on texts. For example, in Chapter 4 there is a sort
of texts, denoted as Text where each text consist of a sequence of lines.
Consider the following text:

:first
second line

Fig 1.4. Example of text.

which is viewed as a sequence of lines where the first line has 18 characters
viz. "first line of text" and where the second line has 11 characters, viz.

1.9. SPECIFICATION OF A TEXT EDITOR 39

"second line". An equally valid, but somewhat more abstract approach is
to model texts by focusing on their 'contour' only. In this approach the above
text is modelled by just the sequence (18, 11) alone. Of coursethereis a kind
of forgetful mapping from the first model to the second model in the sense
that the information conveyed by the actual characters in the text is lost in
the second model. Such approaches at distinct levels of abstraction play a
role in the formalisation of the notion of text.

The sort of lines is called Line and each line consists of a sequence of char
acters (sort Char) . The relevant sorts can be denoted in COLD-K as

SORT Char
SORT Line
SORT Text

and there are operations to select a line from a text and a character from a
line.

FUNC sel: Text #Nat -> Line
FUNC sel: Line # Nat -> Char

Starting from this very simple model, a rich collection of operations on texts
is defined, including a variety of cut and paste operations. For example,
there is a paste operation such that paste(t,u,k,l) means to take a text
t and to insert another text u into it immediately before the position with
given coordinates (k, l). As a kind of inverse of paste there is an operation
cut such that cut(t,k,l,i,j) means takinga text tand cutting out the piece
of text beginning at position (k, l) and ending at position (i, j). It yields a
pair (tt. t2) where t1 = 'remaining text' and t2 = 'deleted text'.

FUNC paste: Text # Text # Nat # Nat -> Text
FUNC cut: Text # Nat # Nat # Nat # Nat -> Text # Text

The following picture may give an idea of both cut and paste.

40

aaaaaaaaaaaaaa
aaaaaaaaaaaaaa

k aaaabbbbbbbbbbb
bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb

ccccccccccccccccccc
j

CHAPTER 1. OVERVIEW AND INTRODUCTION

1---+

cut

aaaaaaaaaaaaaa
aaaaaaaaaaaaaa

k aaaaccccccccccccc

1---+

paate

aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaabbbbbbbbbbb
bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb

Fig 1.5. Cut and paste operations on text.

Algebraic laws for the operations are investigated and an example is the equa
tion paste (cut(t, k, l, i, j), k, l) = t, which holds conditionally. It is shown
that this helps in establishing a set of well-understood operations with useful
notations. In this way an elegant and useful formalisation of the application
domain is obtained.

To interface the editor with its environment it is necessary to model the
available primitives such as a file system and a video display unit. By way of
example we shall have a closer look at the video display unit. lts state space
is spanned by two variabie functions

FUNC screen: -> Text VAR
FUNC cursor: -> Nat # Nat VAR

where Nat refers to the natura! numbers employed to represent the vertical
and horizontal co-ordinates ofthe cursor. All display operations are described
by their effect on either screen or cursor or both. For example PROC nl: ->
MOD screen. cursor serves for sending a new-line cammand to the display,
thereby possibly modifying the screen and the cursor.

To describe the operation of the actual editor, the notion of 'marked text'
is introduced first. A marked text is a composite object that consists of a
text and two co-ordinate pairs called mark and dot. The dot serves a kind
of 'current' location in the text whereas as the mark is a marker that can
he put on any position in the text'. The specification of the editor is based
on a variabie map from buffer narnes to marked texts (sometimes also called
'buffers') and on a notion of 'current' marked text.

On several occasions in Chapter 4, the technique of invariants is used to
describe essential aspects of the editor. There is a so-called 'text-invariant'
that says that for each marked text in the editor, both the dot and mark are

1.9. SPECIFICATION OF A TEXT EDITOR 41

positions that exist in the text of that marked text. Another interesting ex
ample is the so-called 'window-invariant', which is introducedas a predicate
PRED WI. It describes the relation between the current marked text on the
one hand and the screen and the cursor of the display on the other hand.
What WI statesin formal terms boils down (in informal terminology) to the
statement that the window should correspond with a 'look' to the text, if
necessary filled with blanks, such that the dot is visible as the cursor. The
following picture sketches part of the situation.

dot 0 J llim
rl

! column• l._ ___J

Fig 1.6. The relation between window and text.

The editor supports a complete set of editing commands like insert_character,
set_m.ark, beginning_ofJine, backward_character, delete..next_character,
search_forward, write..namedJile, delete_to__killbuffer etc. The editor specifi
cation is completed by a simple keybinding to associate command-invocations
with key-strokes.

In fact the specification of the editor itself is only a fragment of the total
specification. The relative fractions of the number of lines in each of the four
parts mentioned above areabout 35%, 20%, 20% and 25% respectively (from
these the first 35% are general purpose and usabie in any specification case
study; the next 20% are reusable within the same application domain, i.e.
when 'text' plays a role, whereas the remaining 45% are dedicated to this
a pplica ti on).

Chapter 4 covers a number of important aspects of a text editor, although
the editor described is relatively poor in its bells and whistles. However it
is far from trivial and its functionality makes it a usabie editor. It covers
several interesting features also present in other text editors and in partienlar
in EMACS. For a more detailed discussion and evaluation we refer to the
relevant sections at the end of Chapter 4.

Chapter 4 showshow À1r-calculus and COLD-K can heusedas an instrument
for the description of a relatively large and complex software system. At the

42 CHAPTER 1. OVERVIEW AND INTRODUCTION

same time it illustrates a number of general-purpose specification techniques
and as such, it can be viewed as a con tribution to the ad vancement of formal
specification techniques in generaL In the context of the main line of thought
of this monograph, the role of Chapter 4 is twofold: firstly, it shows a num.her
of examples of parameterised modules, using the À1r mechanism of Chapter 2.
Secondly, the resulting specification serves as a starting pointfora systematic
development process (using the results of Chapter 3) which is described in
Chapter 5.

1.10 Systematic design of a text editor

This section is a short summary of Chapter 5 which is a continuation of
the editor case study of Chapter 4. The formal specification is taken as
a specification and a systematic development process aiming at the actual
construction of the editor is undertaken. The top-down model of Chapter 3 is
employed. This model turns out to be workable and because the editor design
is quite complex, it is shown how the top-down modelhelpsin mastering this
complexity. Realistic efficiency considerations and data-reification issues are
taken into account. In particular the design is basedon the assumption that
it is important to economise with respect to memory usage and with respect
to communication with the video display unit.

In Chapter 5 there is not just one editor design, but two:

• a design deditor which is mainly concerned with topics such as buffer
management, file handling, window management and key binding in
terms of a.o. sequences and maps,

• a design dbaaic which is concerned with efficient implementations of se
quences and maps.

These designs can be fitted together with the o operation on designs as
mentioned in Section 1.6. In this way Chapter 5 illustrates also one of the
models of design partition. Chapter 5 focuses on the top-down development
of dediton whereas dbasic can he found in an appendix of Chapter 5.

In the development of deditor many classica! efficiency considerations con
cerning memory usage, execution time and communication overhead play a
guiding role. The important issue of data reification is addressed on several
occasions - e.g. when choosing a representation of the marked texts. Each
text buffer is represented as an array with a gap and a group of pointers and
co-ordinate pairs. To describe this, the well-known machinery of abstraction
functions and representation invariants is employed. The top-down approach

1.10. DESIGN OF A TEXT EDITOR 43

is exploited to achieve a separation of concerns on several occasions - e.g.
to separate the buffer-management from the window-management. Let us
have a closer look at the latter example. When programming the editor
operations insert_character, beginning_ofJine, backward_character etc. no
details of the window-management play a role. This is made possible by a
postulated component named WI_PACKAGE which is specified to offer a proce
dure mod_ text_restore which re-establishes the window-invariant WI after
an arbitrary modification of the current text buffer. In a later stage of the
development process this postulated component is implemented.

The resulting editor, viewed as a product plus its documentation is in a
number of aspects quite satisfactory. In particular, the editor design is with
respect to most operations, reasonably efficient. It should be noted that
~he editor design is quite complex, especially because it is a display-oriented
multi-buffer editor, which means that it is more than just a small toy exam
ple.

It can he expected that due to its completeness and its component structure,
the editor design will be 'robust' for various forms of design evolution and ef
ficiency improvements. The theory of correctness-preserving transformations
on designs of Chapter 2 and Chapter 3 is applicable here: in particular, since
the principle of black-box correctness has been adopted, many efficiency im
provements can take the shape of black-box correctness preserving glass-box
modifications - meaning that there is a 'locality principle' which can yield a
significant reduction of the verification task.

The algorithmic COLD-K texts are translated manually to C to get a working
editor. The details of this translation process are given in an appendix of
Chapter 5.

The editor casestudy is quite large in view of the fact that it was meant as an
example. This is justified by the need to have a non-toy example illustrating
how the theoretica} conceptsof À1r-calculus, components, designs, algebrak
operations on designs and forma! development roodels can he turned into real
engineering concepts. The fact that the example grew large is a direct con
sequence of the level at which our concepts apply, viz. programming-in-the
Iarge, rather than programming-in-the-small. After reaching the milestone
in the evolution of COLDof finishing COLD-K, it was important to have this
kind of an exercise before the design of yet another language version started.
The example has served already for educational purposes in the COLD-K
workshop of the Philips Centre for Software Technology (CST) in November
1988.

In Chapters 4 and 5 we employed the COLD-K language (which certainly
was not the only option) and we showed that this is useful as an instrument

44 CHAPTER 1. OVERVIEW AND INTRODUCTION

when constructing software following a systematic approach and employing
forma! specifications.

For a more detailed discussion and evaluation we refer to the relevant sections
at the end of Chapter 5.

In the context of the main line of thought of this monograph, the role of
Chapter 5 is twofold: firstly, it shows a number of examples of designs,
thereby illustrating the notions of component and design from Chapter 2.
Secondly, Chapter 5 is an application of the results from Chapter 3 and it
demonstrates the applicability and usefulness of these results.

1.11 Options for future work

In this section we shall mention a number of topics which could be the subject
of further research or of further development.

The fust topic concerns the definition of a number of useful language fea
tures which possibly could be added to wide-spectrum languages such as
COLD-K and which could make the taskof constructing large designs easier.
Amongst these we have higher-order logic, concurrency and - at a more syn
tactical level - fl.exible mechanisms for dealing with user-defined operations
and binders.

The second topic concerns the precise definition of the implementation rela
tion Ç for wide-spectrum languages - and for COLD-K in particular. For the
editor case study of Chapter 4 and 5 we adopted a relation based on signa
ture inclusion and theory inclusion. This is certainly not the only possibility
and it would be interesting to have a look at other notions of implementa
tion. Furthermore, the precise conditions that guarantee that the module
composition operations of the so-called 'class-algebra' of COLD-K are mono
tonic with respect to Ç have not been formulated yet. For an analysis of the
problem we refer to [63].

The third topic is the construction of tools supporting the development pro
cess based on the instantiation of the approach from Chapters 2 and 3 with
a given formalism. We have already given a list of tools in Section 1.2.4 and
most of these are relevant when using a wide-spectrum language. We can not
give a minimallist of tools which are absolutely necessary, but clearly the at
tractiveness of a certain formalismis increased by providing a syntax checker,
type checker, module library, code generatorand a tool to create/manipulate
graphical representations.

Finally we mention the topic of practical applications. In view of the fact

1.11. OPTIONS FOR FUTURE WORK 45

that format techniques are meant to he a mental tooi, it is not enough just
to develop the mathematica} foundations of a language and the theoretica!
models of software development based on them. It is also necessary to build
up experience in using forma! methods and although it is inevitable that the
fi.rst case studies are small toy examples, the next step is to scale them up and
seriously attack complex systems. Performing large case studies is a time
consuming and resource-consuming activity but there is more than one yield.
Case studies yield feedback on the language, the method and the theory and
insight in the nature of the problems which are relevant in practice.

By way of a concluding remark we state that the theory of Chapter 2 and
Chapter 3 in combination with a particular formalism (such as the COLD-K
language) provides a potential starting point for improving the process of
software development. It is also clear that this involves much work of an
engineering nature. Chapter 4 and Chapter 5 are a contribution to that, but
much remains to he done.

46

Bibliography

[1] A. Hodges. Alan Turing, the enigma of intelligence, Unwin Paperbacks,
ISBN 0-04-510060-8 (1983).

[2] D.E. Knuth. The art of computer programming, Vols I,II,III, Addison
Wesley, Reading, Mass.

[3] C.A.R. Hoare. An axiomatic basis for computer programming, Commu
nications of the ACM, Volume 12, Number 10 (1969).

[4] J. W. De Bakker. Mathematica! theory of program correctness, Prentice
Hall International series in computer science ISBN 0-13-562132-1 (1980).

[5] E.W. Dijkstra. A discipline of programming, Prentice Hall, ISBN 0-13-
215871-X (1976).

[6] D. Björner, C.B. Jones (eds.) The Vienna development method: the
meta-language. Springer Verlag LNCS 61, ISBN 3-540-08766-4 (1978).

[7] I. Ha yes (ed.) Specifi.cation case studies. Prentice-Hall International se
ries in computer science, ISBN 0-13-826579-8 (1987).

[8] H.B.M. Jonkers. Introduetion to COLD-K, in: M. Wirsing, J.A.
Bergstra (eds), algebrak methods: theory, tools and applications
Springer Verlag LNCS 394 (1989), pp. 139-205.

[9] M.J.C. Gordon. The denotational description of programming lan
guages, an introduction. Springer Verlag, ISBN 0-387-90433-6 (1979).

[10] J.E. Stoy. Denotational semantics: the Scott-Strachey approach to pro
gramming language theory, MIT Press, ISBN 0-262-69076-4 (1977).

[11] N. Chomsky. Three models for the description of language. IRE trans.
on Information Theory, 2:3, pp. 113-124 (1956) .

[12] J.E. Hopcroft and J.D. Ullman. Introduetion to automata theory, lan
guages and computation, Addison-Wesley, ISBN 0-201-02988-X (1979).

[13] A. Church. A formulation of the simple theory of types, Journalof sym
bolic logic, Vol5 pp. 56-68 (1940).

[14] H.B. Curry and R. Feys. Combinatory logic, Vol I. North Holland, Am
sterdam (1958).

[15] R. Milner. A theory of type polymorphism in programming, Joumal of
computer and system sciences 17, pp. 348-375 (1978).

[16] N.G. De Bruijn. A survey of the project Automath, in: J .P. Seldin,

BIBLIOGRAPHY 47

J.R, Hindley (eds.), Essays on combinatory logic, lambda calculus and
formalism, pp. 589-606 Academie Press (1980).

[17] R. Milner. A calculus of communicating systems, Springer Verlag LNCS
92, ISBN 3-540-10235-3 (1980).

[18] J.C.M. Baeten. Proces algebra, Kluwer Programmatuurkunde, ISBN
90-267-1111-5 (1986).

[19] F.E.J. Kruseman Aretz. Aard en wezen van software, Informatie jaar
gang 27 nr. 4 pp. 245-332 (1985).

[20] B.W. Boehm. Software engineering economics, Prentice-Hall Inc. ISBN
0-13-822122-7 (1981).

[21.] I. Sommerville, R. Morrison. Software development with Ada, Addison
Wesley, ISBN 0-201-14227-9 (1987).

[22] H.A. Klaeren. Algebraïsche Specificationen: eine Einführung, Springer
Verlag ISBN 3-540-12256-7 (1983).

[23] J.A. Bergstra, J. Heering, P. Klint, Algebraic specification, ACM Press,
Frontier Series, Addison-Wesley (1989).

[24] M. Bidoit, M.C. Gaudel, A. Mauboussin. How to make algebraic specifi
cations more understandable, an experiment with the PLUSS specifica
tion language, Submitted for the proceedings of the ME TE OR workshop
on algebrak methods, Passau 1987, To appear in Springer Verlag LNCS.

[25] L. Lavazza, S. Crespi Reghizzi. Algebraic ADT specifications of an ex
tended relational algebra and their conversion into a working prototype,
Submitted for the proceedings of the METEOR workshop on algebrak
methods, Passau 1987, To appear in Springer Verlag LNCS.

[26] S.C. Kleene. Introduetion to metamathematics, Van Nostrand, New
York (1952) .

[27] D. Harel. dynamic logic. in: D. Gabbay, F. Guenther (eds.), Handhook of
philosophicallogic, Vol. II, pp. 497-604, D. Reidel Publishing Company,
ISBN 90-277-1604-8 (1984).

[28] An overview of Genesis, The t~rd six monthly consolidated report of the
Genesis project. Project 1222(1041), Deliverable [12Y3], (Aug. 1987).

[29] F.A. Hussain, P. de Groote, R. Jacquart, S. Jähnichen, T.T. Nguyen,
M. Sintzoff, M. Weber. Requirements and feasibility studiesfora devel
opment language, ESPRIT report ToolUse.T32 (May 1986).

[30] D.D. McCracken (ed.). A guide to Fortran IV programming, John Wiley,
New York.

[31] C.H. Smedema, P. Medema, M. Boasson. The programming languages
Pascal, Modula, CHILL, Ada, Prentke-Hall International, ISBN 0-13-
729756-4 (1983).

[32] H. Ledgard, M. Marcotty. The programming language landscape, Sci
ence Research Associates, Inc. ISBN 0-574-21340-6 (1981).

[33] N. Wirth. Modula: a language for modular multiprogramming, Software

48 CHAPTER 1. OVERVIEW AND INTRODUCTION

- Practice and Experience, Vol 7, 3-35 (1977).
[34] C.A.R. Hoare. Mathernaties of programming, BYTE (Aug. 1986).
[35] J.A. Bergstra, G.R. Renarclel de Lavalette. De plaats van formele speci

ficaties in software-technologie, Informatie jaargang 31 nr. 6 pp. 477-556
(1989).

[36] M. Lacroix and M. Vanhoedenaghe. Tooi integration in an open en
vironment. Manuscript M290, Philips Research Laboratory, Av. Van
Becelaere 2 - Box 8, B-1170 Brussels.

[37] K. Sikkel, J.C. Van Vliet. Domeingericht hergebruik van software SERC
Report: RP /mod-88/4, P.O.Box424, 3500AK Utrecht, The Netherlands
(1988).

[38] J.C. Van Vliet. Software engineering, H.E. Stenfert Kroese B.V., Lei
den/ Antwerpen, ISBN 90-207-1298-5 (1984).

[39] L.M.G. Feijs, J. Hagelstein, J.H. Obbink. Process reference model for
requirements engineering and design engineering, ESPRIT document
METEOR/t6/PRLB-PRLE/1 (1986).

[40] B. W. Boehm. A spiral model of software development and enhancement,
IEEE computer, pp. 61-72 (May 1988).

[41] A. Curtis, H. Krasner, N. Iscoe. A field study of the software design
process for large systems, CACM 31-11, pp. 1268-1287 (1988).

[42] C.J. Koomen. Iterations, learning and the detailing step paradigm, Pro
ceedings of the 3rd International Software Process Workshop, Brecken
ridge Colorado 17-19 Nov 1986, M. Dowson (Ed), IEEE (1987).

[43] D.L. Parnas. On the Criteria to he used in decomposing systems into
modules, CACM 15, pp. 840-841 (Dec 1972).

[44] W.J. Tracz. Software reuse myths, Software Engineering Notes, 13-1 pp.
17-21 (1988).

[45] M.S. Feather. Constructing specifications by combining parallel elabo
rations, IEEE transactions on software engineering, Vol 15, N. 2 pp.
198-208 (1989).

[46] D. Hammer, L. Feijs. Objectorientierter Systementwurf, Elektronik 16/9
pp. 58-64 and 17/9 pp. 71-77 (1985).

[47] L.M.G. Feijs, J.H. Obbink. Process models: methods as programs. ES
PRIT '85, Status report of continuing work, The commission of the Eu
ropean Communities (Editors), Elsevier Science Publishers B.V. (North
Holland), 577-591.

[48] J.A. Bergstra, J. Heering, P. Klint. Module algebra, CWI Report CS
R8617 (1986).

[49] H. Ehrig, H. Weber. Programming in the Large with Algebraic Module
Specifications. Information Processing 86, H.-J. Kugler (ed.) Elsevier
Science Publishers B.V. (North-Holland)

[50] R.M. Burstall, J.A. Goguen. An informal introduetion to specifications

BIBLIOGRAPHY 49

using CLEAR, in: R. Boyer and J. Moore (eds.) The correctness problem
in computer science, Academie Press, ISBN 0-12-122920-3 (1981).

[51] H. Barendregt. The lambda calculus, its syntax and semantics, North
Holland, Amsterdam (revised edition), ISBN 0-444-867481 (1984).

[52] M. Wirsing. Structured Algebraic Specifications: a Kernel Language,
Habilitation thesis, Technische Universität München (1983).

[53] L.M.G. Feijs, H.B.M. Jonkers, C.P.J. Koymans, G.R. Renardel de
Lavalette. Formal definition of the design language COLD-K, Prelim
inary Edition. ESPRIT document METEOR/t7 /PRLE/7 (1987).

[54] N.G. De Bruijn. Generalizing Automath by means of lambda-typed
lambda calculus, Proceedings of the Maryland 1984-1985 Special Year
in Mathematica} Logic and Theoretica! Computer Science.

[55] J.Estublier, S.Ghoul, Automated management of large-scale software,
The ADELE Program Base, in: Proceedings of the second Software
Engineering Conference, Nice 1984, 112-117.

[56] L. Williams. Software process modelling: A behavioral approach. 10-
th international conference on software engineering. April 11-15, 1988
Singapore, Computer Society Press, ISBN 0-8186-0849-8, pp. 17 4-186.

[57] B. Cohen, W.T. Harwood, M.I. Jackson. The specification of complex
systems, Addison-Wesley, ISBN 0-201-14400-X (1986).

[58] L.M.G. Feijs, H.B.M. Jonkers, J .H. Obbink, C.P.J. Koymans, G.R. Re
narde! de Lavalette, P.H. Rodenburg. A survey of the design language
COLD, in: ESPRIT '86: Results and Achievements, Elsevier Science
Publishers B.V. (North-Holland), pp. 631-644.

[59] C.B. Jones. Systematic software development using VDM, Prentice-Hall
International, ISBN 0-13-880725-6 (1986).

[60] K. Middelburg. The VIP VDM specification language, in: R. Bloomfield,
L. Marshall, R. Jones (eds.) VDM '88, VDM- the way ahead, pp. 187-
201, Springer Verlag LNCS 328 (1988).

[61] J.M. Spivey. Understanding Z, a specification language and its formal
semantics, Cambridge Tracts in Theoretica! Computer Science 3, ISBN
0-521-33429-2 (1988).

[62] H.B.M. Jonkers. A concrete syntax for COLD-K. ESPRIT document
METEOR/t8/PRLE/2, Revised edition (Jan 1988).

[63] L.M.G. Feijs. Systematic design with COLD-K - an annotated example,
ESPRIT document METEOR/t8/PRLE/3 (Dec. 1987).

[64] A. Horsch, B. Möller, H. Partsch, 0. Paukner, P. Pepper. The Munich
project CIP, Volume II: the program transformation system CIP-S, Part
I: formal specifica ti on (tentative version) Juni 1985, Report TUM-18509,
Technische Universität München.

50 CHAPTER 1. OVERVIEW AND INTRODUCTION

Chapter 2

A Formalisation of Design
Structures

2.1 Introduetion

.51

This chapter presents a formal theory dealing with the component-wise con
struction and specification of complex systems, addressing issues of modu
larisation, parameterisation, abstraction and information hiding. The theory
consists of two parts where the first part mainly serves to introduce an ex
tensive formal machinery which is employed in the second part.

The first part of this theory introduces the notion of an algebrak system
with associated preorder relation. Furthermore a special version of lambda
calculus is developed which is called À1r-calculus. More precisely, there is
an instanee of this calculus for every algebrak system with preorder. The
most important charaderistic of the calculus is that associated with every
abstraction (>.x say) there is a so-called parameter-restriction.

The motivation for the introduetion of these notions is as follows. An al
gebraic system can be used to model the modular structuring of systems.
In particular, we view module-composition mechanisms as operators of an
algebrak system - following [1]. The associated preorder (denoted by Ç)
is used to model the so-called implementation-relation - which is an im
portant relationship between modules and their specifications. We do not
partition the modules into two kinds (implementation/specification) but we
adopt a single-sorted approach where Ç is used to model the implementation
and specification roles of modules. This allows fora smooth transition from
specification to implementation and in partienlar we can have the situation
that m 1 ç: m 2 and m 2 ç: m 3 • The refl.exivity and transitivity properties of
this relation are adopted fora-priori and intuitive reasons [2]. The purpose of

52 CHAPTER 2. A FORMALISAT/ON OF DESIGN STRUCTURES

the À1r-calculus is to descri he the introduetion of narnes and the abstraction
step taking place when introducing specifications for yet unknown modules.
At the same time this À1r-calculus serves as a parameterisation mechanism
for modules (this calculus was used for the parameterisation of the design
language COLD-K [3], [4]). In this calculus we have abstractionsof the form
Àx Ç R.M(x) where R is meant as a restrietion upon the possible actual
parameters A to which Àx Ç R.M(x) can he applied. To make the restrie
tion R effective, we adopt a certain mechanism regulating the equalities that
can he derived about application-expressions. In particular, there is a partial
version of the classica} rule (P) in the sense that (>.x Ç R.M(x))A = M(A)
can only be concluded when it has been shown that A is an implementation
of R, i.e. A Ç R. This À1r-calculus is a theory where equations play an
important role and just as for classica} lambda calculus [5], it is useful to
study reduction. In particular the reduction relations -+ and - allow fora
detailed study of the (modified) rule (P).

The second part of this theory introduces the notion 'design of a system'.
The intuition for this is that a design is a hierarchically-structured and
component-wise specified software system. We shall define a black-box de
scription as the specification part of a component and a glass-box description
as the implementation part of a component. Although it may he redundant,
a black-box description can he useful when it is less complex or easier to
read than the glass-box description. Even when the black-box description is
not less complex, there may he advantages for having an alternative repre
sentation. There is a correctness criterion for components because the two
descriptions must he related by the preorder Ç. We define a design as a col
lection of components, where some components serve as building blocks for
other components. A design need not he finished, but it may correspond to
an intermediate stage in a development. In particular, a design may contain
components which have no glass-box description yet.

There are non-trivia} issues of information hiding that arise in conneetion
with designs. This leads to definitions of black-box correctness (based on
the exclusive use of specifications) and glass-box correctness (using imple
mentation knowledge). As it turns out, À1r-calculus can he used to give an
interpretation of designs. The reduction relations can he used to give alter
native characterisations of black-box correctness and glass-box correctness.

The second part of this theory provides a starting point for a systematic
study of transformational development. In particular, a design is built-up
from components and the correctness of a complete design follows from the
correctness of its components. We shall investigate the precise conditions
such that when modifying one component, the correctness of the result
ing design follows from the correctness of the modified component. As it

2.2. ALGEBRAIC SYSTEMS WITH PREORDER 53

turns out, this depends both on the chosen notion of correctness and on
the question whether an implementation module or a specification module is
modified.

In view of the above introduction, we adopt the following structure for this
chapter. InSection 2.2 we shall introduce algebraic systems with preorder. In
Section 2.3 we introduce the À1r-calculus and we study some of its properties.
This covers the first part of the theory. Fora given algebraic system with
preorder, we can define the notion of a component. Furthermore we shall
define what it means that a component is correct- in a given context. This
will he done inSection 2.4. Using the notionsof component and correctness,
we can define the notion of a design and its correctness. In Section 2.5
we introduce designs and we study their properties. Also in Section 2.5 we
study a certain class of correctness-preserving transformations of designs.
This covers the second part of the theory.

In Chapter 3 the study of correctness-preserving transformations of designs
will he continued in a somewhat more general setting and with a focus on
the dynamic aspects of the software development process.

2.2 Algebraic systems with preorder

2.2.1 Motivation

We adopt the following minimal set of notions to begin the development of
our theory.

• a set of constructs which are the objects to he created and/or used by
software developers. For each construct there are two possibilities. A
construct can he given as primitive, by which we mean that the de
veloper can not or should not investigate how it was constructed. So
a construct is primitive if it can he fitted together from zero compo
nents. Alternatively, a construct can he built by fitting together a finite
nonzero number of constructs.

• composition mechanisms (or 'combinators'), by which we mean ways of
combining existing constructs into new constructs.

• an implementation relation, corresponding to the possibility that one
construct is viewed as an implementation of another construct.

As an example of these notions we consider (software) modules. A primitive
module can contain several sort definitions, function definitions, procedure
definitions and axioms. At this level we have module composition mecha-

54 CHAPTER 2. A FORMALISAT/ON OF DESIGN STRUCTURES

nisms such as import. To illustrate the implementation relation, we consider
two modules m 1 and m 2 where m 1 is an algorithmic description which is
characterised axiomatically by m 2; then the pair (m1, m 2) is in the imple
mentation relation. The motivation for the choice of these notions is as
follows. First of all it is clear that without constructs or without compo
sition mechanisms no constructive activity is possible at all. We adopt an
implementation relation because it seems a very general starting point for a
discussion of abstraction and information hiding. lt is clear that these no
tions are essential for applying the paradigm of hierarchical decomposition.
The latter paradigm appears frequently in literature dealing with the man
ageability of the software development process [6] and it certainly is of great
value.

The notions of constructs, composition mechanisms and an implementation
relation can be formalised by introducing the mathematica! concept of an al
gebraic system. Constrocts correspond to terms and composition mechanisms
to function symbols. This approach is also chosen in [1], where a so-called
'module-algebra' is studied. We shall choose one kind of algebrak system
which exhibita precisely the kind of implementation relation in which we are
interested. It would be nice if we could give one single forma! definition of
some kind of mathematica! structure (which we might call a construction sys
tem) in which we formalise these notions once and for all. However, one can
imagine several kinds of implementation relations and they differ strongly,
both in their mathematica! properties and in their role. Therefore it seems
better to focus on one kind of implementation relation first.

At this point we must be more precise a bout the nature of the implementation
relation. Therefore we must be specific about the kind of constructs we
have in mind. As an important case, we think of constructs at the level of
(software) modules. A module can be used as a specification but certain
modulescan also be used as executable implementations. If m 1 and m 2 are
modules such that - viewing m 1 as an implementation and viewing m 2 as a
specification - m 1 implements m 2, then we say that the pair (m11 m 2) is in
the implementation relation. We can make a list of properties which from
an intuitive point of view should hold for this implementation relation [2].

• Each module implements itself, i.e. the implementation relation should
be reflexive.

• lf m1 implements m 2 and m 2 implements m 3, then m 1 should impie
ment m3, i.e. the implementation relation should be transitive.

• Suppose that m1 implements m2. Now if m 2 occurs as a subconstruct in
a larger construct, m(m2) say, then m(mt) -i.e. the construct m con
taining m 1 insteadof m 2 - should implement m(m2). It follows that we

2.2. ALGEBRAIC SYSTEMS WITH PREORDER 55

shall prefer composition mechanisms which are monotonic with respect
to the implementation relation. Alternative terms for 'monotonie' are:
'compatible' and 'compositional'.

There exist algebraic systems for which a precise definition of the implemen
tation relation has been given. In [7] it has been defined what it means that
m 1 implements m 2 for the case where m 1 is a sequentia! program and m 2

is a pair (cp, ,P) consisting of a precondition and a postcondition (the usual
notation for this is { cp }m1 { ,P}). In [8] this has been done for the case where
m1 is an implementation of a data type and m 2 is a specification of a data
type.

2.2.2 Formalisation

We have gathered enough properties of our minimal set of notionsin order to
formalise them. After we shall have done the formalisation we shall often not
use the above terminology, but rather adopt a terminology which fits best
to the results of the formalisation. In particular, instead of constructs we
shall have terros and instead of combinatars we shall have constants (which
act as the primitive constructs) and function symbols. We shall often give
examples which are extremely small, e.g. by taking symbols denoting natura!
numbers rather than realistic software modules. Nevertheless, such examples
are related to problems which occur in conneetion with realistic software
modules also. We shall describe an algebrak system as a structure or model
and we shall adopt several notations and conventions from logic [9].

Definition 2.2.1 An algebraic system with preorder is a quadrupJe

!R = (A,R,{F; Ij E J},{C; I iE I})

(J,I index sets) where A is a set (called the domain of !R), Ris a preorder,
each F; is a function and each C; is an element (a constant) of A. Reeall that
a preorder is arelation which is refiexive and transitive. We assume that the
arity of each F; is given as a natura! number a;. D

We also allow for many-sorted algebrak systerns with preorder. However we
require that there is one domain of interest (A), on which the preorder R is
defined. In such a case we shall say that there are secondary domains. In
order to keep things simple, we shall focus our discussion on the single-sorted
case. When necessary, we can always deal with secondary domains somewhat
informally~ Often we shall refer toR as the 'implementation relation' . Clearly
we shall prefer algebrak systems in which each F; is a monotonic function,

56 CHAPTER 2. A FORMALISAT/ON OF DESIGN STRUCTURES

but in general we shall not require this. The advantage of a monotonic
function is that knowledge about the constituentsof a composite construct,
allows one to infer properties of the composite construct itself. Monotonicity
is a relevant issue in this context - but we have no reason here to consider
some notion of continuity of functions.

We shall distinguish between the elements of the domain of an algebraic
system with preorder, and the terms (consisting of symbols) used to denote
these elements.

Definition 2.2.2 The alphabet to he used for constructing the set of terms
for a !R as above, consists of the following symbols:

1. function symbols: I; (one for each F;),

2. constant symbols: c; (one for each C;),

3. variables: x; (one for each iE IN)

where IN denotes the set of natural numbers. For this alphabet, the collection
of symbols {[,;;;} U {/; I j E J} U { c; I i E I} is called the signature of !R. We
denote it by Sig(!R). 0

The function symbols and constant symbols from Sig(!R) can he combined
with variables to build terms in the usual way. Reeall that the arity of each
function F; with function symbol f; is given as a;.

Definition 2.2.3 Thesetof terms for !R, denoted as T81 is inductively defined
by:

1. c; E TB! for all i E I,

2. x; E TR for all iE IN,

3. if t11 ... , tai E TB! then /j(t1, ... , tai) E TR for all jE J. 0

The terms at their turn can he used to build formulae.

Definition 2.2.4 (TR-formulae) The set of atomie TR-formulae is defined
as thesetof formulae P = Q and P Ç Q for P, Q E T!Jl.

The set of TR-formulae is the smallest set containing T, _L, all atomie TR
formulae and which is closed under the usual connectives --,, 1\, V,- and the
quantifier V. More precisely, thesetof TR-formulae is inductively defined by:

1. T and _L are TR-formulae,

2. if cp is anatomie TR-formula, then cp is a TR-formula,

2.2. ALGEBRAIC SYSTEMS WITH PREORDER 57

3. if <p is a Tlll-formulae, then so is •<p,

4. if tp and t/J are Tlll-formulae, then so are <p A t/J, <p V t/J and <p -t t/J,

5. if x is a variabie and <p is a Tlll-formula, then V x (<p) is a TR-formula.
0

An (atomie) T1ll-formula is said to he closed if no free variables occur in it.
Note that (atomie Tlll-formulae) C (T111-formulae). Sametimes we shall write
just 'formula' instead of 'T111-formula'. Now we have the syntactic definition
of (atomie) T111-formulae, the next step is to define what it means that such
a formula is true.

Definition 2.2.5 Truth in lR is defined as usual where it is understood that
Ç corresponds to R. When the T!ll-formula <p holds in lR, we denote this by
lR I= <p. See [9] for the details. In particular, the symbol = is interpreted
by (mathematica!) equality on A. Furthermore T, .l, •, A, V, -t and V corre
spond with truth, absurdity, negation, conjunction, disjunction, implication
and universa! quantification respectively. T!ll-formulae which are not closed,
are interpreted as implicitly universally quantified. 0

In the following table we put tagether some of the notions introduced so
far. We simplify the presentation in the table, in the sense that the entry
'symbols' doesnotshow the variables x;. The entries for 'terms' and 'atomie
formulae' speak for themselves. The entry 'statements' shows the notation
for the statement that a T!ll-formula <p holds in lR. The entry 'model' is
trivia!, but we introduce it here already because later we shall add a second
column to this table where the entry 'model' will be less trivia!.

symbols Sig(lR)
terms TIR
atomie formulae { p = Q' p ç Q I P, Q E T!ll}
statements !RI=<p
model lR

Reeall that we distinguish between the elementsof the domain of an algebraic
system with preorder, and the terms, (consisting of symbols) used to denote
these elements. We adopt the point of view that a typical software developer
manipulates symbols. In fact the developer might not be able to find out for
all <p whether lR I= <p or lR ~ tp. Therefore it might seem strange that we
nevertheless introduce the actual algebraic system itself. The reason is that
for an understanding of the notions of component, black-box description and
design we need not to know the precise rules by which the developer reasons

58 CHAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

for finding out if lR I= cp. We simply introduce the algebraic system as
a souree of true facts. This is somewhat similar to the way in which one
simply imports all valid assertions about the basic data types into a proof
system for imperative programs [10] (p.61).

2.2.3 Examples

In this section we give two extremely simple examples and a realistic, relevant
example of an algebraic system with preorder.

As an extremely simple example, consider lR1 := (IN,~. { + }, {0, 1, 2, ... })
where IN is the set of natura} numbers, ~ is the usual "less than or equal"
ordering on IN, and + is binary addition. Trivially ~ is a preorder and + is
monotonic in both arguments. We assume Sig(lRI) = g;;, +, 0, 1, 2, ... } and
use infix notation for +. We can consider a statement like lR1 I= xo+ 1 Ç xo+2
(which holds).

As a better example, consider some set S and take its powerset as a domain.
Assume constants for the subsets of S. Let lR2 := (P(S),Ç,{n},{ci \ei Ç
S}). Notice that Ç is a preorder and n is monotonic in both arguments.
This example can have many faces, depending on the choice for the symbols.
If we adopt (infix) 1\ for n, T for S and l_ for 0 then the example is about
proposition logic and Ç becomes logical implication. But we can also adopt
(mixfix) import .. into .. for n, module end for S and module axiom
false end for 0, making the example look as a simplified kind of module
algebra.

Next we shall discuss an example of an algebraic system which is interesting
for practical applications, viz. Jonkers' so-called class algebra CA underlying
COLD-K [4] which is related to Bergstra's Module Algebra [1]. This CA only
serves as an example here; in particular, no knowledge about CA or COLD-K
is required toreador apply the theory presented in this chapter. The reader
who is not interested in COLD-K may very well decide to skip the current
section and proceed with Section 2.3. The fact that the theory presented in
this chapter is independent of COLD-K has several advantages. We mention
two advantages. First, by abstracting from COLD-K, it is easier to study the
mathematica! properties of the notionsin which we are interested. Secondly,
the notions component, black-box description and design are applicable to a
wider class of design languages.

In COLD-K [4] one has a set of (schemes denoting) so-called class descrip
tions, which we simply view as constant symbols (the ei)· There are a number
offunction symbols (among which one for import) by which one can combine
class descriptions to build larger class descriptions. For class descriptions P

2.3. LAMBDA CALCULUS 59

and Q one can define what it means that P implements Q and we view such
a fact as a pair in the implementation relation. So CA f= P Ç Q means that
P is an implementation of Q. Formally we view CA as an algebraic system
with preorder

(eDescription, Ç, {E, T, D, •, + }, {C, I iE eDescription})

with secondary domains eSignature and eRenaming containing class signa
tures and class renam.ings respectively. We sketch CA briefly. eDescription
is the set of class descriptions modulo semantic equivalence. Each C, is
the equivalence class of i. E is a unary function which takes an element of
eDescription and yields its class signature. T is an embedding of class sig
natures in eDescription. D (for export) is a binary function which takes a
class signature and an element of eDescription and yields another (restricted)
element of eDescription. • (for renaming) is a binary function which takes
a class renaming and an element of eDescription and yields an element of
eDescription. Ç is the implementation relation. Of course the above presen
tation of CA is somewhat simplified.

2.3 Lambda calculus

2.3.1 Introduetion

By way of preparation for the introduetion of components and designs, we
shall extend an arbitrary algebraic system with preorder such that we can
deal with abstraction and with the introduetion of narnes in a forma! way.
We do this by putting a version of lambda calculus 'on top of' the algebraic
system.

At first sight it is not obvious that one benefits from introducing lambda
calculus in order to describe components and designs. However, we can
already at this point indicate that certain connections can be made. First of
alllambda calculus offers the possibility to introduce narnes which may occur
within terms and which become bound tosome other term (by application).
Also for the formalisation of the notion of a design we shall need names,
because we want to be able to refer to components. The act of providing
the specification of a term instead of the termitself can he viewed as a kind of
abstraction. In classica! lambda calculus [5], abstraction is done by putting
>.x. in front of a term. It is possible to combine both kinds of abstraction in
an elegant way, viz. by having lambda abstraction where one puts >.x Ç P.
in front of a term, where P is a specification of the term to which x is going
to he bound by application.

60 GRAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

It will turn out that one such version of lambda calculus can be used for
several purposes, viz. descrihing parameteriaation (e.g. of software modules)
and for descrihing the notions of component and design. Furthermore we
shall see in Section 2.5 that certain methodologically relevant properties of
designs have very simple counterparts in this lambda calculus. The calculus
is named À1r-calculus, where the 1r refers to a rule (1r) which resembles the
rule (,8) of classica} lambda calculus, but which is partial.

Before weembarkon the detailed definition of the À1r-calculus, let us give a
preview of it by means of a table. We have the same entries as before, but
in addition to the column for !R, there is a second column for -\1r-calculus.

symbols Sig1!R) Sig(!R) u {,\,.}
terms TIR AIR
atomie formulae {P = Q,P Ç Q {P=Q,PÇQ

I P,Q E TIR} I P,Q E AR}
statements !RI=cp f-ep
model !R !R+

For the entries 'symbols', 'terms' and 'atomie formulae' we have a simple
inclusion. This reflects the fact that we shall add new symbols which are used
to construct new terms and new atomie formulae. In particular, TIR C AR,
where AR is a set of so-called lambda terms. The entry 'statements' requires
more explanation. The À1r-calculus introduces a collection of rules which
have an axiomatic status, and that are adopted for a-priory and intuitive
reasons. The simplest statements in this calculus are of the form f- cp. The
calculus is such that true facts cp from !R automatically yield a statement f- cp
in À7r. This will be achieved, roughly speaking, by adopting the principle
(!R J= cp) => (f- cp) as one of the rul es. In order to avoid confusion, we
must clearly state that À1r-calculus is not about some proof system for !R in
the tradition of propositional logic or fust-order predicate-logic, say - as the
notation f- cp might suggest. Of course many such proof systems exist already
and various soundness and completeness results are known [9]. Instead of
that, the theme of À7r is a certain non-conventional approach to reasoning
about lambda abstraction. Because the rules of À7r have an axiomatic status,
the question whether they have a model arises naturally. This question is
not completely trivial. It will be addressed in Appendix A where we shall
construct a model which will be denoted by !R+. This explains the en try
'model' in the table.

In subsection 2.3.2 we shall define the set of terms and the rules of the À7r
calculus. In subsection 2.3.3 we shall give some derived rules. In subsection

2.3. LAMBDA CALCULUS 61

2.3.4 we shall briefiy discuss monotonicity and in subsection 2.3.5 we shall
define reduction for the À1r-calculus. Finally subsections 2.3.6 and 2.3. 7 are
about normalisation and confiuence for this reduction. In Appendix A we
shall construct a model for the À1r-calculus.

2.3.2 Definition of the Calculus

We assume an algebraic system with preorder

lR = (A,R,{F; Ij E J},{C; I iE J})

with its associated signature Sig(!R) etc. as before. We shall put a version
of lambda calculus 'on top of' lR to get the À1r-calculus and in this way
the algebraic system lR acts as a parameter of the calculus! The detailed
definition of the calculus begins with the definition of the type symbols and
the lambda terms.

Definition 2.3.1 The set of type symbols is inductively defined by

1. 0 is a type symbol,

2. if u, r are type symbols, then so is (u -+ r). 0

These type symbols are usually known as 'simple types'. Roughly speaking,
there are two classica! approaches for associating such type symbols with
terms. The first approach is Curry's approach where the types are not tex
tually part of the terms. Instead of that there is a derivation system for
associating types with terms. E.g. >.x.x has type (0 -+ 0), but also e.g.
((0-+ 0) -+ (0 -+ 0)), whereas (>.x.(xx))(>.x.(xx)) has no type at all. The
second approach is Church's approach where type-information is an essential
part of the terms. One way of achieving this is to associate explicitly one type
with each variable. E.g. x 0 and x(O--+O) could be distinct variables of types
0 and (0 -+ 0) respectively. In this approach >.x0 .x0 has type (0-+ 0) only.
Each term has one type and the probiernatie (>.x.(xx))(>.x.(xx)) is excluded
from the set of terms. We use the type symbols along the lines of Church's
approach. In order to avoid confusion, we must state explicitly that these
simple types are not the main issue of À1r; the types are used in a classical
way and their only purpose is to exclude certain probiernatie terms.

Definition 2.3.2 We assume infinitely many variables x[of each type r
(iE IN). The alphabet to be used for constructing the set of lambda terms
consists of the following symbols:

62 CHAPTER 2. A FORMALISAT/ON OF DESIGN STRUCTURES

1. Ju netion symbols: /; (one for each F;),

2. constant symbols: c; (one for each C;),

3. variables: xi (one for each (r,i) with rE type symbols, iE IN),

4. auxiliary symbols: . , (,), >., Ç . D

The type superscript xi is used with variables only when necessary to avoid
ambiguity. Reeall that the arity of each function F; with function symbol /;
is given as a;.

Definition 2.3.3 The set of lambda terms for !R, denoted as Aat. and the
type of each lambda term are inductively defined by

1. xi E AIR (iE IN) with type r,

2. c; E AIR (iE/) with type 0 ,

3. if P 1 , ••. , Pa; E AIR with types 0, then /;(Pll ... , Pa;) E AIR with type 0,

4. if P, Q E AIR and P is of type (u ---+ r) and Q is of type u, then
(PQ) E AIR with type r,

5. if P, Q E AIR where Pis of type u, Q is of typerand xf does not occur
in P,
then (>.xf Ç P.Q) E AIR with type (u---+ r).

Note that clauses 1., 2. and 3. yield the terms in TIR if we restriet ourselves
to variables of type 0, identifying x; and x?. Also note that inthelast clause,
Ç occurs as a symbol in lambda terms.

We use = to denote syntactical equality. For P E AIR, FV(P) denotes the set
of /ree variables of P which is defined as usual.

We shall identify a-congruent terms, as is usually done in classical lambda
calculus; see e.g. [5] 2.1.12. We adopt the usual variabie convention [5] 2.1.13
which is as follows. If M 11 ••• , M,. occur in a certain mathematica! context
(e.g. definition, proof), then in these terms all bound variables are chosen
to be different from the free variables. To work according to the variabie
convention means that sometimes a systematic renaming of bound variables
(a so-called a-conversion) has to take place. D

There is an option to simplify the calculus by strengthening the last clause to
exclude all variables from the parameter restrietion P in (>.xf Ç P.Q). We
have chosen nottoadopt this simplification and we shall explicitly study some
of the consequences of the fact that such P may contain variables. When
it comes to applications of the calculus where these consequences are felt
as an unnecessary complication, it is straightforward to adapt the calculus

2.3. LAMBDA CALCULUS 63

correspondingly. Unless sta.ted otherwise, we sha.ll a.ssume tha.t parameter
restrictions may conta.in va.ria.bles.

As typica.l elementsof AR we sha.ll use A, B, C etc. a.nd their indexed versions.
We sha.ll sometimes he somewha.t sloppy in the distinction between a.ctua.l
variables (x 0 , x 11 •••) a.nd the typica.l elements of the set of variables (x, y, z

a.nd their indexed versions).

Example 2.3.4 Consider lR1 = (lN, ~. { + }, {0, 1, 2, ... }) where 1N is the set
of natura.! numbers, ~ is the usua.l "less tha.n or equa.l" ordering on 1N, a.nd
+ is bina.ry a.ddition. Assume a.n a.lpha.bet conta.ining the symbols +, 0, 1, ...
with the obvious interpreta.tion. The function symbol + is used in infix
nota.tion. We use the sa.me nota.tion for the symbols a.nd for the elements
of the doma.in of the a.lgebra.ic system with preorder, but this ca.nnot ca.use
confusion, since lambda. terros ca.n conta.in symbols only.

(i) 1 + (x0 + xt) is a. lambda. term with type 0, provided x 0 , x 1 of type 0.

(ii) .Àx1 Ç 2.x1 is a. lambda. term of type (0 ---t 0), provided x 1 of type 0.

(iii) .Àx0 Ç (.Xx1 Ç 2.x1).(x0 1) is a. lambda. term of type ((0 ---t 0) ---t 0),
provided xo of type (0- 0), x 1 of type 0. 0

We must make a. remark with respect to the a.bove exa.mple where we used
lR1 a.s a.n exa.mple of a.n algebrak system with preorder. We sha.ll use this !R1

very often to illustrate some formal and technica! detail of our theory and
for that purpose this trivial !R1 is usable. But we must warn the reader that
from a. software-engineering point of view it is a misteading example and that
it even may suggest an intuition for !R which is quite wrong. The examples
lR2 and CA from Section 2.2.3 are much better in this respect.

Reeall that the a.lgebraic system lR has the implementation relation R and
that we write !R I= P Ç Q if the elements denoted by P a.nd Q are in this
rela.tion. Now we want to extend this rela.tion, or more precisely, we want
to compare lambda terros as well. We refer to Ç as the 'implementa.tion
relation'. From the terros one can again build formulae P = Q and P Ç Q.
The following should he compared with definition 2.2.4.

Definition 2.3.5 (AR-formulae) Thesetof atomie A3rformulae is defined
as the set of formulae P = Q and P Ç Q for P, Q E Allt, where we require
that Pand Q have the same type.

The set of AR-formulae is the smallest set conta.ining T, ..l, all atomie AR
formula.e and which is closed under the usual logica! connectives -,,/\,V, ---t

and the quantifier V. 0

64 CHAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

An (atomie) Á~~t-formula is said to he closed if no free variables occur in it.
Sametimes we write just 'formula' insteadof 'A~~t-formula'. Let us say a few
words about the interpretation of formulae. Because T~~t C ÁR, also (TR
formulae) C (A~~t-formulae). Clearly T~~t-formulae cp can he interpreted in lR.
These are precisely the formulae where all (sub)terms have type 0 and do not
contain the symbol .À. Forthese formulae the statement lR I= cp makes sense
and has been introduced already in definition 2.2.5. For other formulae, no
interpretation in lR is defined.

Definition 2.3.6 (Context)

(i) An assumption is an atomie Á~~t-formula, put in square brackets. In
particular, if P, Q E ÁR where P and Q have the same type then
[P Ç Q] is an assumption (viz. an inequality), and [P = Q] is an
assumption (viz. an equality).

(ii) A context is a finite set set of assumptions, e.g. {[Pt Ç Qt], ... , [Pn Ç
Qn]}. We shall use r,r' etc. to denote contexts.

(iii) If f = {[cp1], ... , [cpn]} with f =/: 0, then /\ f abbreviates cp1/\ .. . I\ IPn.
If r = 0, then /\ r abbreviates T.

(iv) We shall write r, [cp] for r u {[cp]} and we shall write [cp] for {[cp]}.

(v) As a convenient notation we shall write x Er when x occurs freely in
f. More precisely x E f :<:> 3P, Q E Á~~t · (([P = Q]) E f V ([P Ç Q]) E
f) 1\ x E FV(P) U FV(Q). 0

In our preview above, we indicated already that the simplest statements in .À1r

are of the form f- cp. The general form is r f- cp which intuitively corresponds
with "cp follows from the assumptions in f". The technica! term for such
a statement is a 'sequent'. We shall adopt a rather syntactic point of view
and we shall define a notion of derivability for these sequents, based on a
set of rules, which will he given in a Gentzen-style formulation. We shall
simultaneously define derivability for sequents of the form r f- P = Q and of
the form r f- p Ç .Q.

Definition 2.3. 7 A sequent is a pair (f, cp), written as f f- cp, where f is
a context and where cp is an atomie Á~~t-formula. So cp is either P Ç Q or
P = Q, (P, Q E Á~~t and of equal type). We shall write f- cp for 0 f- cp. 0

The first group of rules serves for importing facts about lR into the calcu
lus. There is a rule denoted by O=t), expressing that for each monotonic
function F; of lR, this monotonicity can he used in the calculus. To state
this somewhat more clearly: the algebrak system with preorder has an in
dexed collection of functions {F; I j E J}. Some of these functions may

2.3. LAMBDA CALCULUS 65

be monotonie, others are not. As usual, a function F; is said to be mono
tonic if 'v'x,y,m,n(x ç y => F;(m,x,n) ç F;(m,y,n)). We do not require
that all functions F; are monotonie, but we assume that somehow we can
teil the monotonic functions from the non-monotonic ones. Then the rule ·
applies to the monotonic functions only. To simplify the notation, we write
!;(... , P, .. .) Ç /;(... , Q, .. .) insteadof f;(M, P, N) Ç /;(M, Q, N).

The second rule can be readas follows: whenever a closed formula cp is true
in the algebraic system !R, then cp can he considered derivable in the calculus.
The statement !R f= cp is in the upper part of this rule, which has the effect
that it acts as a premiss for the applicability of the rule. The sequent r f- cp is
in the lower part of the rule, which has the effect that it acts as the condusion
of the rule.

Definition 2.3.8 (Rules Fl• f=2)

!R f= F; monotonic
ff-PÇQ
---------(f=t)
r r- !;(... ,P, ...) ç f;(... ,Q, ...)

cp closed
!RI=cp

0

Note that the well-formedness of the sequents involved in rule (f=t) requires
that both P and Q have type 0. By these rul es (Fi) one can import certain
relevant facts about !R into the calculus. In this way we need not include
a rule which expresses monotonicity of all functions. In subsection 2.3.4 we
shall see that a rule expressing monotonicity for all lambda terros would not
even be acceptable. The next rule is just necessary for manipulating contexts
in the obvious way.

Definition 2.3.9 (Rule context)

---(context)
r, [cp] r- cp

0

Now we proceed with some more rules. Reflexivity and transitivity have

66 CHAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

been added as rules; for those closed formulae which can he interpreted in
lR, this refl.exivity and transitivity are already given by rule (f=2). But for
the other formulae, these rules are essentially new. E.g. for lR1 as in example
2.3.4, 1- 1 Ç 1 follows from lR1 I= 1 Ç 1, but 1- x~o-o) Ç x~o-o) does not. In
general lR does not teil how to compare all lambda terms. But refl.exivity
and transitivity are properties which are associated with a implementatión
relation on a-priory grounds and this is formalised by the rules (refl..) and
(trans.).

For the '..X-introduction' rules (..X/1), (..X/2) and the 'application rule' (ap.) we
add some remarks. Abstraction is covariant with respect to Ç in the second
argument and it is contravariant with respect to Ç in its first argument (!).
Application is covariant in its first argument. There is nogeneral covariance
of application in its second argument which would he monotonicity (we shall
discuss this later). These covariance and contravarianee issues are important
characteristics of the calculus.

Definition 2.3.10 (Rules refl.. trans . ..X/1 , ..X/2 , ap.)

----(refl..)
fi-PÇP

f 1- P1 Ç P2, Pz Ç Ps
-------(trans.)

(x f/_f)
---------- (..X/t)

----------(U2)

- ----- (ap.)
r 1- (P1Q) ç (PzQ)

0

Note that the well-formedness of the sequents involved in rule (..XII) requires
that x(/. FV(P). Similarly for (..X/z) we must have x(/. FV(Pi) for i = 1, 2.
The definition of the next rule requires the notion of substitution.

2.3. LAMBDA CALCULUS 67

Definition 2.3.11 (Substitution) Let x; he a variabie and P a term such
that x; and P have the same type. Then wedefine the substitution operator
[x; := P] inductively by '

1. x;[xi := P] = P,
x.[x; := P] = x. (i -:j:. j),

2. c.[x; := P] = c.,

3. f;(PI, ... , Pa;)[xi := P]::::: /;(PI[xi := P], ... , Pa;[xi := P]),

4. (Q1Q2)[xi := Pj::::: ((Ql[xi := P])(Q2[xi := P])),

5. (>.x. Ç Q1.Q2)[x; := P] = (>.x; Ç Qt[x; := P].Q2[x; := P]). 0

Note that for clause 5. above x; =f= x; by the variabie convention and that
x; (/. FV(P) - also by the variabie convention. In this way we avoid clashes
of free and bound variables and vialation of the restrietion that a variabie
bound by a >. does not occur in the parameter restrietion of that same >..

The next rule is called (7r) and it resembles the well-known rule (.8) of das
sical lambda calculus, but is partial, by which we mean that contraction is
conditional. In the applicability condition of the rule (7r) an actual parameter
is compared with a parameter restriction. Here is the very essential differ
ence between À7r and classica! typed >.-calculi: the parameter restrictions are
not used torestriet the set of well-formed terms, but insteadof that they are
used to regulate the contractions.

Definition 2.3.12 (Rule 7r)

r r- P2 ç P1
- - ---- ---- (7r)
r r (>.x Ç P1.Q)P2 = Q[x := P2]

0

N ote that the property that a variabie bound by a >. does not occur in the
parameter restrietion of that same >., is preserved by the conversion from
(>.x Ç P1.Q)P2 to Q[x := P2] . Finally we have a rule that makes Ç into
a partial order and a general substitution rule. We write cp(P) to denote
cp[x := P] and cp(Q) to denote cp[x := Q]. We add a remark ().bout the
substitution rule below. In the transition from cp(P) to cp(Q), it is not
required that all occurrences of P are replaced by Q.

68 CHAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

Definition 2.3.13 (Rules =I, subst.)

r r- P1 ç P2
r r- P2 ç P1
---(=I)
r r- P1 = P2

r r- cp(P)
ff-P=Q
---- (subst.)
r r- cp(Q)

D

Now we present the intuition behind the rules (.:Ut), (.H2} and (1r}. Each
lambda term (>.x Ç P.Q) can be viewed as a funetion having a restrietion
concerning its argument. Therefore it is reasonable that the evaluation of
an application term cannot take place unless the argument provably roeets
this restrietion (rule 1r}. The rules (>.II) and (>.I2} describe the conditions
under which one funetion can be viewed as the implementation of another
function. First of all, two funetions with the same argument restrietion are
in the implementation relation if for every acceptable argument their results
are in the implementation relation (rule >.I1}. Secondly, if two funetions
have equal funetion bodies but the restrietion of one funetion is weaker than
the restrietion of the other function, then the funetion with the weakest
restrietion implements the other funetion (rule >.I2}. The fact that in the
rule (>.I1) an assumption [x Ç P] is discharged is motivated as follows: by
the condition in the rule (1r) we know that whatever is going to be substituted
for x will meet the restrietion x Ç P and therefore it is reasonable that the
assumption [x Ç P] can be used when comparing the funetion bodies Q1 and
Q2.

Definition 2.3.14 (>.1r) Derivability for sequents is defined inductively by:

1. If cp is closed and !R I= cp, then r f- cp is derivable (by rule (1=2)). If
r f- cp is the concl usion of a rule from (context, refl.), then r f- cp is
derivable.

2. If r f- cp is the condusion of a rule from (FI. trans., >.I1o >.I2 , ap., 1r,
=I, subst.) and all premises of this rule are derivable, then r f- cp is
derivable, provided that the monotonicity condition and the variabie
condition are satisfied for the cases of 0=1) and (>.II) respectively.

We write r f- cp if r f- cp is derivable. D

2.3. LAMBDA CALCULUS 69

The typing of terms should not he confused with the restrictions associated
with each À. Actually the correctness with respect to the typing has been
dealt with by the definition of thesetof lambda terms, whereas the restric
tions associated with each À play a role in the calculus. E.g. for !R1 as
in example 2.3.4, (Àx1 Ç 2.x1)(Àx1 Ç l.x1 + x 1) is not a lambda term but
(Àx1 Ç 2.xt)3 is a lambda term. In the latter term the effect ofthe restrietion
(Ç 2) is that we cannot apply the rule (1r) to this term.

Let us point out explicitly that À1r-calculus and À-typed À-calculus are not
just almost the same. There are fundamental differences between the nature
of the implementation relation 'Ç' of À1r-calculus and the typing relation ':'
of À-typed À-calculus. One might he tempted to think that it is just a matter
of notation and that instead of writing Àx Ç P.Q we could as well replace
the symbol 'Ç' by the symbol ':' to get Àx: P.Q which looks the same as a
term of À-typed À-calculus. The difference is that 'Ç' as a relation between
terms is refiexive and transitive, whereas in À-typed À-calculus the typing
relation ':' is neither refiexive nor transitive.

Example 2.3.15 Consider two terms Pt. P 2 of equal type. Let f he a con
text. Then we have

which we show as follows. First, by rule (refi.), r 1- P1 Ç P1 and this can
be combined with r 1- P1 = P2 by rule (subst.) when we replace the second
occurrence of P1 in P1 Ç P1 by P2. This yields r 1- P 1 Ç P 2. The result of
this example can be viewed as a derived rule of the calculus. Similarly

which we show again with (refl.) and (subst.). The latter result can he
viewed as a second derived rule of the calculus. 0

Example 2.3.16 Consider !R1 = (lN,:S,{+},{0,1,2, ... }). Define the term
p by

By rule (context) we have [x0 Ç 1]1- x0 Ç 1. Because in !R1 the function + is
monotonie, we have from (f=t) that [x0 Ç 1]1- x0 + x0 Ç x0 + 1 and therefore
we can apply rule (1r) to get [xo Ç 1]1- (Àxt Ç Xo + l.xt)(xo + xo) = Xo + Xo.
By the first derived rule ofthe previous example this yields [x0 Ç 1]1- (Àx1 Ç
xo + l.xt) (xo + x0) Ç x0 + x0 and similarly by the second derived rule of the
previous example [xo Ç 1]1- xo + Xo Ç (Àx1 Ç xo + l.x1)(x0 + x0).

70 CHAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

Now we can apply rule (.H1) twice and finally use rule (=/) to get f- P =
>.xo Ç l.xo + Xo. 0

In Appendix A we study a model for the calculus of this section. To sum
marise the results of that appendix: assuming certain restrictions upon lR,
there is a modeilR+ such that for atomie formula rp in the language of lR we
have lR I= rp {::} lR+ I= rp and furthermore for arbitrary rp

r r- rp => lR+ 1= Ar ---+ rp.

2.3.3 Derived rules

We shall list a number of lemmas that can be viewed as derived rules. The
first lemma is very simple and it shows that we can perfarm a kind of a

conversion at the level of sequents.

Lemma 2.3.17 If r f- rp then for fresh y, r[x := y] f- rp[x := y].

Proof. The proof is by induction over the lengthof the derivation of r f- rp.

• If r f- rp is a direct consequence of rule (f=t) with rp = f(A) Ç f(B)
and r f- A Ç B, then by (i.h.) f[x := y] f- A[x := y] Ç B[x := y].
Apply rule (f=t) again.

• If r f- rp is a direct consequence of lR I= rp by rule (f=2), then rp is closed
and hence rp = rp[x := y]. Apply rule (1=2).

• If r f- rp is r f- (>.z Ç R.St) Ç (>.z Ç R.S2) as a direct consequence of
rule (>.It) with r, [z Ç R] f- St Ç 82 and z f/. r, then we distinguish
two cases. If x = z, then x does not occur in r f- rp and we are done
immediately. Otherwise use (i.h.) and apply rule (>.Jt) again.

• Other rules: analogously. 0

Lemma 2.3.18 (Weakening) If r f- rp, then r, [.,P] f- rp.

Proof. The proof is by induction over the lengthof the derivation of r f- rp.

• If r f- rp is a direct consequence of rule (f=t) with rp = f(A) Ç f(B)
and rf-A Ç B, then by (i.h.) f, [.,P] f-A Ç B. Apply rule (f=t) again.

• If r f- rp is a direct consequence of lR I= rp by rule (f=2), then so is
r, [.,P] r- rp.

• lf rp E f, then f, [.,P] f- rp by rule (context) again.

2.3. LAMBDA CALCULUS 71

• If cp := (.~x Ç R.St) Ç (.Xx Ç R.S2) and r 1- cp by rule {.XI1), then we
know r, [x Ç R] 1- 8 1 Ç 82 and x rf. r.

If x E FV(t/J) then we substitute a fresh z for x (using lemma 2.3.17),
yielding r, [z ç R]l- St[x := z] Ç S2 [x := z]. Apply {i.h.) and rule
(.XI!).

Otherwise we have x rf. FV(t/J) and by (i.h.) r, [t/J], [x Ç R]l- 81 Ç 82

so by rule {.Xlt) again we haver, [t/J]I- (.Xx Ç R.St) Ç (.Xx Ç R.S2).

• Other rules: analogously. 0

Lemma 2.3.19 If r 1- cp, then r[x := P] 1- cp[x := P].

Proof. The proof is by induction over the lengthof the derivation of r 1- cp.

• If r 1- cp is r 1- f(A) Ç f(B) because r 1- A Ç B for f corresponding
with a monotonic function, then by (i.h.) r[x := P] 1- A[x := P] Ç
B[x := P]. Use rule (1==1) again .

• If r 1- cp is a direct consequence of !R I= cp, then note that (since cp
closed) cp = cp[x := P]. Use rule {1==2) again. 1

• If cp Er, then cp[] E f[], so apply rule (context) again.

• If cp = (R Ç R), apply rule (refl.) again.

• If cp = (Pt Ç Ps) because r 1- Pt Ç P2 and r 1- P2 Ç Ps by rule (trans.),
then by (i.h.) r[]I- Pt[] Ç P2[] and f[] 1- P2[] Ç Ps[]. Apply
rule (trans.) again.

• If r 1- cp is r 1- (.Xy ç R.Qi) ç (.Xy ç R.Q2) as a direct consequence of
rule (.XI!) with r, [y Ç R] 1- Q 1 Ç Q2 and y ft r, then we distinguish
two cases.

If x ::: y then x rf. r and x does not occur freely in r 1- cp. Therefore
r[x := P]l- cp[x := P] is just the same as r 1- cp.

If x :f:. y then two possibilities arise. The simplest possibility is that
y ft P . Then we can apply (i.h.) to get f[x := P], [y Ç R[x := P]]I
Q1[x := P] Ç Q 2[x := P]. Now apply rule (.X/1) again.

If y E P then we first substitute some fresh z for y to get r, [z Ç R] 1-
Qt[y := z] Ç Q2[y := z]. Now use (i.h.) and apply rule (.X/t) again.

• Other rules: analogously. 0

Theorem 2.3.20 (Cut-rule) If r 1- cp, and r, [cp]l- t/J, then r 1- t/J.

1 here is a reason why we require '{) closed in 0=2)

72 GRAPTER 2. A FORMALISAT/ON OF DESIGN STRUCTURES

Proof. Induction over the length of the derivation of f, [cp] f- 1/J .

• If r,[cp] f- 1/J is r,[cp] f- f(A) ç f(B) because f,[cp] f-A ç B for I
corresponding with a monotonic function, then by (i.h.) r f- A Ç B.
Use rule 0=1) again.

• If r, [cp] f- 1/J is a direct consequence of !'R f= 1/J, then use (1=2) again.

• If 1/J E f, then f f- 1/J . If 1/J := <p then f f- cp is f f- 1/J.

• If 1/J = (Àx Ç R.S1) Ç (Àx Ç R.S2) and r, [cp] f- 1/J by rule (À/1),
then we know r, [cp], [x Ç R] f- S1 ç S2 and x ~ (f,cp) so certainly
x ~ r. By (i.h.) r, [x Ç R] f- St Ç S2 so by rule (Àlt) we have
r f- (Àx Ç R.St) Ç (Àx Ç R.S2) .

• If 1/J = ,P(Q) and r, [cp] f- ,P(Q) by rule (subst.), then we know r, [cp] f-
1/J(P) and r, [cp] f- P = Q for some P. By {i.h.) r f- ,P(P) and
r f- p = Q so by rule (subst.) again we haver f- '1/J(Q).

• Other rules: analogously. 0

Remark 2.3.21 In earlier versions ofthe calculus we employed a much more
powerlul rule (1=), saying !'R F Af - <p => r u r' f- <p but this caused
problems when proving the lemmas of this section. In particular, for the
proof of the cut-rule we would have to use the model construction)R+. 0

Lemma 2.3.22 If r f- P = Q, then f f- R[x := P] = R[x := Q].

Proof. We want to use the rule (subst.) and we take cp(P) = (Rix := P] =
R[x := P]) which we denote as cp(P) := (R(P) = R(P)). Clearly r f- cp(P).
Now consider the second occurrence of Pand apply rule (subst.). We obtain
r f- cp(Q), which is r f- R(P) = R(Q). o

Lemma 2.3.23 (Generalised cut-rule) . Iff f- cp1 , ••• , f f- fPn and
f, [cpt], ... , [Pn] f- 1/J then f f- 1/J.

Proof. By iterated application of the cut-rule. 0

We listed a number of lemmas about the À1r-calculus above. For our dis
cussion of components and designs in later sections of this chapter, one can
simply accept the propositions of these lemmas as additional rules of the
À1r-calculus.

2.3. LAMBDA CALCULUS 73

2.3.4 Monotonicity

We now give a small derivation that shows that even if the functions F; are
monotonie, there is a kind of consistency problem if we would adopt a rule
expressing monotonicity for all lambda terms. The rule (.H2) plays a key
role in this matter. By monotonicity we mean the following rule.

Definition 2.3.24 (Rule mon.)

------- (mon.) (f/_ .À7r!)

f f- (PQt) Ç (PQ2)

D

Example 2.3.25 Consider the lambda term (.~x0 Ç P.(.Xx1 Ç x0 .x1)), then
we would have the following derivation - when adopting (mon.). Assume
Q17 Q2 E AIR such that f- Q1 Ç Q2 Ç P. By assuming monotonicity we have

and from this we obtain by the rule (1r)

f- (.Xx1 Ç QI.xi) Ç (.Xx1 Ç Q2.x1).

But by the rule (U2) we have

f- (.Xx1 Ç Q1.xi) ;;:;) (.Xx1 Ç Q2.xi)

and hence

This shows that if we assume monotonicity for all terms, we would have that
Q1 plays no role any more in .Àx1 Ç Q1.x1. D

Under certain conditions and with certain modifications it is possible toadopt
the rule (mon.) however. We sketch one workable approach, which yields a
slightly different calculus, .À1r mon, say. It can be done only with an obvious
additional requirement on lR.

Definition 2.3.26 (.À7rmon) Assume an algebraic system as before lR where
furthermore all functions F; are monotonic with respect the preorder R.
Define a restricted set of lambda terms AIR(mon) which is like AIR except for
the additional restrietion that parameter restrictions contain no variables at

74 CHAPTER 2. A FORMALISAT/ON OF DESIGN STRUCTURES

all. The calculus À11"mon is about formulae and sequents basedon ÄR(mon)· It
has the same rules as À11" and in addition tothese also the rule (mon.). D

A model lR~on can he constructed along the same lines as lR+, except that
the function domains may contain monotonic functions only. For most of the
theory about components and designs later in this chapter, there is hardly
any difference between À11" an À11"mon·

2.3.5 Rednetion

In classicallambda calculus every term (.Xx.Q)R can be contracted and there
fore such a term is called a redex. In the À1r-calculus it is not the case that
every term (.Xx Ç P.Q)R can be contracted. It follows that for the À11"
calculus some care is needed in using the word redex. We reserve the word
redex for those terms which can be contracted (in a given context). We also
introduce the term candidate-redex. The following should be contrasted with
[5] 3.1.8.

Definition 2.3.27 A candidate-redex is a term (.Xx Ç P.Q)R. A candidate
redex M = (.Xx Ç P.Q)R can be contracted (is a redex) in context r if
r f-- R Ç P. In this case Q[x := R] is called a contracturn of M. D

The following definition can be viewed as a reformulation of [5] 3.1.5 and
3.1.17 for the À1r-calculus.

Definition 2.3.28 The relation --+ is defined inductively by:

1. r f-- R Ç A:::;.. f f-- (.Xx Ç A.B)R--+ B[x := R],

2. r f-- M--+ N:::;.. r f-- /;(••• ,M, .. .) --+ /;(••• ,N, .. .),

3. r f-- M--+ N:::;.. T f-- ZM--+ ZN,

4. ff--M-+N:::;..ff--MZ-+NZ,

5. r f-- P--+ Q:::;.. r f-- (.Xx ç; P.M)--+ (.Xx ç; Q.M),

6. r, [x Ç P] f-- M--+ N, x ft r :::;.. r f-- (.Xx ç; P.M)--+ (.Xx ç; P.N).

A reduction (path} is a sequence r f-- M0 --+ M 1 --+ M2 --+ ••• D

The following definition can be viewed as a reformulation of (part of) [5]
3.1.5 for the À1r-calculus.

Definition 2.3.29 The relation --+-+ is defined inductively by:

2.3. LAMBDA CALCULUS 75

1. r f- M -+ N => r f- M- N,

2. ff-M-M,

3. r f- M - N, r f- N - L => r f- M - L,

and the relation =,.. is defined inductively by:

1. r f- M - N => r f- M =,.. N,

2. r f- M =,.. N => r f- N ="' M,

3. r f- M =,.. N, r f- N =,.. L => r f- M =,.. L. D

The following lemma can be viewed as a justification of the definitions of
-,-and="'.

Lemma 2.3.30

(i) r f- M-+ N => r f- M = N,

(ii) r f- M- N => r f- M = N,

(iii) r f- M =,.. N => r f- M = N.

Proof. (i) The proof is by induction over the definition of-+.

1. r f- (>.x Ç P.Q)R-+ Q[x := Rj. Use rule (1r).

2. r f- /;(... , M, .. .) -+ /;(... , N, .. .) because r f- M -+ N. By (i.h.)
r f- M = N. Use rule (subst.).

3. r f- ZM-+ ZN because r f- M-+ N. By (i.h.) r 1- M = N. Use rule
(subst.).

4. r 1- MZ-+ NZ because r f- M-+ N. As 3.

5. r f- (>.x ç P.M) -+ (>.x Ç Q.M) because r f- P -+ Q. By (i.h.)
r f- P = Q. Use rule (subst.).

6. r 1- (>.x Ç P.M) -+ (>.x Ç P.N) because r, [x Ç Pjl- M -+ N. By
(i.h.) and the rul es (refl.) and (subst.) r, [x Ç P] f- M Ç N. By
rule (.\I I) r f- (À x Ç P.M) Ç (À x Ç P.N) . In the same way we get
f 1- (.\x Ç P.N) Ç (À x Ç P.M). Finally use rule (=I).

(ii) The proof is by induction over the definition of-.

1. Use (i),

2. Use reflexivity.

3. Use (i.h.) and transitivity.

76 CHAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

(iii) The proof is by induction over the definition of=.,...

1. Use (ii),

2. Use (i.h.) and rule (subst.),

3. Use (i.h.) and transitivity. D

2.3.6 Normalisation

A very desirabie property of a notion of reduction is the strong normalisation
property, denoted by SN. We write SN(M) if M strongly normalises by which
we mean that it does not have an infinite reduction path. We say that SN
holds if SN(M) for all terms M. Classica! untyped >.-calculus does not have
this property, and the famous counter-example is (>.x.(xx))(>.x.(xx)) which
reduces to itself. In À?r-calculus there is a system of simple types which ex
cludes such probiernatie terms and as it turns out, this is suflident to get SN
for our notion of reduction. Note that this is not completely trivia}, because
of the presence of parameter restrictions: in these parameter restrictions
also reduction steps can he done. Although typically most of these parame
ter restrictions will eventually disappear themselves by reductions, this idea
cannot he considered as a proof of the fact that the parameter restrictions
are harmless.

The remainder of this sectionis about proving SN. The reader may want to
skip this proof and in that case he can proceed with Section 2.3.7. We write
Au to denote the set of terms from AR with type u. We write A~ to denote
the closed terms from Au.

Definition 2.3.31 We define >.{3 as the calculus with terms from AR and
withall rules of À?r-calculus but for the rule (1r) which has been replaced by
the rule ({3):

(!3)

We adopt the obvious notion of reduction for >.{3. We shall prove strong
normalisation SN for >.{3 , using Tait's so-called 'computability' argument as
given in e.g. [5] A2. Then SN for À1r follows easily from SN for >.{3 .

Let us explain the basic structure of this computability argument. As a kind
of naive approach one could try to prove SN by induction on the structure of
the terms. Indeed, SN(x), SN(c,), SN(PI}A . . . ASN(Pn) ~SN(!;(Pb ... , Pn))
and SN(P) A SN(Q) ~ SN(>.x Ç P.Q), but the approach fails when it comes
to application. From the fact that SN(P) and SN(Q) hold one can not

2.3. LAMBDA CALCULUS 77

conclude SN(PQ) - as is easily seen from the counterexample of the (not
well-formed) term P = Q = Àx.(xx).

Therefore we have to strengthen the property SN to another property with
will be denoted by C". (one for each T). This strengthening is done by way of
induction loading, i.e. ME C". implies SN(M). The property C". is sametimes
referred to as 'computable', 'reducible' or 'stable'.

Definition 2.3.32 Define the following classes of terms inductively:

Co= {ME A8 I SN(M)},

Ca_"= {ME A~- .. I VN E Ca(MN E C".)}.

Toprove that ME Cu implies SN(M), requires an induction on the structure
of u. In fact we have another very simple induction loading at this level,
which is the reason for adding the proposition (ii) below. As usual we write
u --+ T1 --+ T2 to denote u --+ (T1 --+ T2), i.e. we adopt the convention that
type construction is right-associative. N ote that every type u is of the form
u1 --+ ..• --+ Un--+ 0 which is U1 --+ (.•• --+ (un--+ 0) ...).

Lemma 2.3.33 (i) ME Cu=> SN(M),
(ii) Àx"' ... x"" .c E Cu if u= u 1 --+ ••• --+ Un --+ 0, where c is some constant.

Proof. The proof is by simultaneous induction on u.

Basis: obviously ME C0 => SN(M) and c E C0 • For the induction step we
consider the type u --+ T = u --+ T1 --+ ••• --+ Tm --+ 0 and we assume (i) and
(ii) for u, T, T11 ••• , Tm (i.h.). We must prove (i) ME Cu_,.=> SN(M) and (ii)
Àx" x"' ... x""' .c E Cu-r·

First we treat (i). Let M E Cu-n so VN E Cu(MN E C".). We have
u = u1 --+ ... --+ Un --+ 0 for some u 11 ... , Un· Hence M(Àx"' .. . x"" .c) E C,.
and by i.h. has no infinite reduction. So certainly M has not, i.e. SN(M). In
fact we only use Àx"' ... x"" .c to show that Cu is inhabited. The proof-step
works for any term N in Cu. Next we treat (ii), and we reason as follows:

Àx"x,.' ... x .. "'.cECa-.- if

for NE Cu, (Àx"x,.' .. . x""'.c)N E C,. if

for P1 E C,.., ... ,Pm E C,."', (Àx"x"' ... x .. "'.c)NPl···Pm E Co which
holds since one can do at most m + 1 reductions + finitely many ones
in N and P 1 , ... , P m· In the last step we used the ind uction hypothesis
which gives us SN(N), and SN(P1), ••. , SN(Pm)· 0

78 CHAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

Definition 2.3.34 Define the following classes of terms:

C = U { C". I u is a type},

c; ={ME Áa I M[x:= P] E c for p ç C}.

where P Ç C denotes an arbitrary sequence of terros in C and where x should
always contain all free variables of M.

The intuition behind c; is thesetof terms Min A". such that every instanee
of M with elementsinCis in C. In particular, if M* = M[x := P] then ME
c; => M* E C".. By introducing this c; we pushed the induction loading
somewhat further and this will allow us to have a proof by induction on the
structure of the terms. In this inductive proof we shall use the following
preservation properties.

Lemma 2.3.35 (Preservation properties).

(i) ME C 1\ M----++ M' => M' E C,

(ii) M E c; 1\ M ----++ M' => M' E c;,
(iii) ME c; A .P ç c => M' == M[x:= .P] E c;,
(iv) ME c; => SN(M) .

Proof. (i) The proof is by induction on the type of M. If M E C0 , i.e.
SN(M) then SN(M') for if not, then M----++ M'---+ ... , contradiction. If ME
C",_.., then for arbitrary N E C". we have M N E C .. so by i.h. M'N E C ...
This shows M' E C.

(ii) Assume ME c; and M----++ M'. It follows that M[x := P]- M'[x :=

P]. This can he proved by induction on the derivation of-, cf. [5] 3.1.14.
Let P Ç C, then we know M[x := P] E C and by (i), M'[x := P] E C. This
shows M' E c;.
(iii) Let iJ contain the free variables of M'. We must show that for Q Ç C we
have M'[fl:= Q] E C, i.e. M[i:= P][fl:= Q] E C, i.e. M[i,iJ:= P,Q] E C,
which holds because ME c;.
(iv) Assume ME c; and let P Ç C, then for i 2 FV(M) we have M[i :=

P] E C and hence by 2.3.33 (i) SN(M[x :=PI). Therefore certainly SN holds
for M itself. D

Lemma 2.3.36 M E A". => M E c;.
Proof. The proof is by induction on the structure of M.

2.3. LAMBDA CALCULUS 79

The fust three cases are easy: Case 1 is M = x. Now for all P E C one
has x[x := P] E C. Case 2 is M = c, which is trivia!. Case 3 is M =
/;(M1, ... , MaJ · U se i.h. and the fact that each M, is of type 0.

Case 4. M =:AB with A EAu-nB EAu. Let P Ç C. By i.h. A E c; r

and BE c;, i.e. A[x:= P] E Cu-+r and B[x := P] ECu. Now M[x := P] =
A[x := P]B[x :=ft] which is in Cr and hence is in c. Hence ME c;.
Case 5. M =: Ày Ç A.B with A E Au,B E Ar. Let P Ç C. By i.h. A E c;,
BE c;. We may assume y (/.x. Abbreviate A*:= A[x := P], B' :=: B[x :=

P] soA* ECu and by 2.3.35 (iii) B' E c;. Note that y may still occur free
in B'. Let T = Tl -+ .•. -+ T n -+ 0.

ME c;__,r if

M* :=: Ày Ç A*.B' ECu-rif

forSE Cu, (>.y Ç A*.B')S E Cr if

for T1 E C"", ... ,Tn E Crn• SN((>.y Ç A*.B')STl ... Tn) which holds,
for if nat, then three possibilities arise, each leading to a contradiction.

Either (a) A* or B' have an infinite reduction. But B' E c; so by lemma
2.3.35 (iv) SN(B') and by lemma 2.3.33 (i) also SN(A*). Contradiction.

or (b) S or T1 •. . Tn have an infinite rednetion which contradiets S E C,
T1 E C, .. . , Tn E C and lemma 2.3.33(i).

or (c) (>.y Ç A* .B')ST1 ... Tn - (>.y Ç A*'.B")S'T{ ... T~) -+ B"[y .
S']T{ .. . T~ -+ . • • . But by lemma 2.3.35 (i) S' E C, T{ ... T~ E C and
by lemma 2.3.35 (ii) B" E c;. Therefore by the definition of c; we have
B"* :=: B"[y := S'] E C. From the definition of C we have B"*T{ ... T~ E C 0 ,

i.e. SN(B"[.. .]T{ ... T~). Contradiction. 0

Theorem 2.3.37 (SN). In À1r every term strongly normalises.

Proof. By lemma 2.3.36 and lemma 2.3.35 (iv) we have that in >.{3 every term
strongly normalises. It follows that in À1r every term strongly normalises, for
suppose that M has an infinite rednetion in À7r, then so it has in À{3 which
cannot be the case. 0

Remark 2.3.38 An alternative proof of SN for À1r-calculus can be given
by using a technique due to Plotkin (who actually considered À-typed À

calculus), suggested to us by L.S. van Benthem Jutting. Let AIR denote the
set of terms of À1r-calculus and let A denote the set of terms of classica!
simple-typed À-calculus. Define a mapping-: AIR -+ A as follows:

80 CHAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

/;(Pt, ... , Pa;} :=: /;(Pll ... , Pa,.},

(MN) :=(M'N),
().x" Ç M.N} :=: ((.\y" . .\x".N)M) (y" fresh).

By induction on the structure of M it can be shown that M[x := N] =
M[x := N). Using this, one shows by induction on the derivation of r f-
M -t N that

r f-- M -t N => M ~ N.

Now if a term ME A!R has an infinite rednetion path, then so does M, which
cannot be the case by SN for classica! simple-typed À-calculus. 0

2.3. 7 Confinenee

The diamond property (= confinenee = Church-Rosser property) holds for
À1r. This means that when a term M allows for two different reductions,
r f-- M - M 1 , M - M 2 say, then these can always be 'brought together'
by further reductions, i.e. there is an M3 with f f-- M1 - M3, M2 ---# M3 •

The remainder of this section is about proving this property. The reader
may want to skip this proof and in that case he can proceed with Section
2.4. By way of preparation for this proof, we introduce the so-called weak
diamond property and we shall show that the latter holds for À7r first. This
weak diamond property is relatively easy to prove. In combination with the
SN property it will give us a cheap route towards proving the full diamond
property.

Definition 2.3.39 A one-step rednetion relation -t satisfies the weak dia
mond property if (---H denoting the reflexive transitive closure)

f f-- M -t M11M -t M2 => 3M3 (f f-- Mt---# Ms,M2---# Ms). 0

Lemma 2.3.40 (Substitution)

(i) f f-- B -tB' => r[x := R]l- B[x := RJ-t B'[x := RJ,

(ii) f f-- R -t R' => f f-- B[x := R]---# B[x := R'].

Proof. (i) By induction on the derivation of f f-- B -tB'. (ii) By induction
on the structure of B. 0

2.3. LAMBDA CALCULUS 81

Lemma 2.3.41 The rednetion relation--+ satisfies the weak diamond prop
erty.

Proof. By induction on the derivation of f 1- M --+ M 1 it will he shown that
for all M2 such that f 1- M --+ M2 there is an M3 such that f 1- M1 --+-+ Ms
and f 1- M 2 --+-+ M3 • For the trivial M2 = M1 we can always take Ms = M1
so insome cases we shall not mention this trivial M 2• The numbering of the
cases below corresponds to the numbering of the cases in 2.3.28.

1. f 1- M--+ M 1 is f 1- (Àx Ç A.B)R--+ B[x := R] because f 1- R Ç A.

(i) if M --+ M2 is M --+ B[x := R] we are done immediately: M 3 =
M1 = M2.

(ii) if M --+ M2 is M --+ (Àx Ç A'.B)R, take M3 = M1 (noting
f 1- R Ç A').

(iii) if M --+ M2 is M --+ (Àx Ç A.B')R then take Ms = B'[x := R]
and apply lemma 2.3.40 (i).

(iv) if M --+ M2 is M --+ (Àx Ç A.B)R' then take M3 = B[x := R']
and apply lemma 2.3.40 (ii).

2. f 1- M--+ M 1 is f 1- /;(... ,X, ...) --+ /;(... , X1 , •..) because f 1- X--+
X 1 . Two cases arise:

(i) M--+ M2 is M--+ !;(... ,X2 , •• •). By i.h. there exists an X 3 such
that X1--+-+ X3 and X2 --+-+ Xs. Take M3 = f;(... ,X3, •••).

(ii) M --+ M2 is /;(... ,X, ... , Y, ...) --+ !;(... ,X, ... , Y11 •••). Take
Ma=!;(... ,X1, . . . , Y11 .. .).

3. r 1- M--+ M 1 is r 1- ZX--+ ZX1 because f 1- X--+ X 1 .

(i) if M--+ M2 is ZX--+ Z'X, then take M 3 = Z'X1•

(ii) if M --+ M2 is ZX --+ ZX2, then take Ms = ZX3 where X3 is
given by i.h.

(iii) if M--+ M2 is (Àx Ç A.B)X--+ B[x :=X], then take M 3 = B[x :=
X 1] and apply lemma 2.3.40 (ii).

4. f 1- M --+ M 1 is r 1- X Z --+ X 1Z because f 1- X--+ X 1 •

(i) if M --+ M2 is X Z --+ X2Z, then take Ms = X 3Z where X3 is
given by i.h.

(ii) if M--+ M2 is XZ--+ XZ', then take M 3 =: X 1 Z'.

82 CHAPTER 2. A FORMALISAT/ON OF DESIGN STRUCTURES

(iii) if M - M 2 is (>.x Ç A.B)Z - B[x := Z], then either X- X 1

by A - At or X - Xt by B - Bt. If by A - At then take
M3 = B[x := Z]. If by B- Bt then take Ms = Bt[x := Z] and
apply lemma 2.3.40 (i).

5. r f- M- Mt is r f- (.h Ç P.X) - (.Xx Ç Pt.X) because r f- P-+ Pt.

(i) if M -+ M 2 by P -+ P 2 then take M3 = Àx Ç P3.X where P3 is
given by i.h.

(ii) if M- M 2 by X- X' then take M 3 = Àx Ç Pt.X'.

6. r f- M-+ Mt is r f- (.Xx Ç P.X)- (.Xx Ç P.Xt) because r, [x Ç P] f
X- Xt and x~ r.

(i) if M-+ M2 by P - P' then take M3 = Àx Ç P'.Xt and use 2.3.30
(i), rule (subst.) and the cut-rule 2.3.20 to show that r, [x Ç P'] f
X-Xt.

(ii) if M -+ M 2 by X -+ X 2 then take M 3 := Àx Ç P.X3 where X 3 is
given by i.h. (in context r, [x Ç P]). 0

The following is known as Newman's lemma and it providesus with an easy
way of proving the diamond property.

'
Lemma 2.3.42 If a one-step reduction relation - satisfies the weak dia-
mond property and has the strong normalisation property (SN), then its
refiexive transitive dosure -++ has the diamond property (0).
Proof. Newman's result. See [5] proposition 3.2.25. 0

Theorem 2.3.43 (0). -++ has the diamond property, i.e. if r f- M -++

M 11 M -++ M2 then there is an Ms with r f- Mt -++ Ms, M2 -++ M3 •

Proof. By 2.3.42, 2.3.41 and 2.3.37. 0

The diamond property for À1r does nat essentially depend on SN. As G.R.
Renardel de Lavalette has shown, it is possible to define an untyped version
of À7r which satisfies the diamond property. Tait's proof metbod (see [5] pp.
59-62) is applicable, both for the untyped and typed versionsof the calculus.

2.4. COMPONENTS 83

2.4 Components

2.4.1 Introduetion

Let us assume that an algebraic system IR is given. Roughly speaking, IR
provides us with a notion of a construct 'being constructed from' a number
of primitive constructs and with ways of fitting constructs together. Further
more the possibility that one construct is a specification of another construct
exists. On top of this we have the À1r-calculus and we assume that the de
veloper is allowed to make use of the possibilities of this lambda calculus
whenever possible.

AIR is a starting point from which a software developer can start his con
structive activity. The developer could try to write one (probably large)
term such that his customer is satisfied with this term. Let us call such a
term an end-product. Clearly this is not a feasible approach, so there must
he a top-level specification which serves as a kind of contract between devel
oper and customer. But even with a top-level specification it is difficult to
have a manageable development process. Therefore we shall choose another
representation for the end-product, viz. a representation in which the term
consistsof sub-terms which can he referred to and such that some redundant
terms have been added. The latter terms serve as specifications and we shall
call them black-box descriptions.

For the customer, the references and the blackbox descriptions are probably
not interesting; in any case they do no harm, since it is always possible to
look-up the references and to throw away the black-box descriptions. For
the developer, the references and the black-box descriptions are extremely
helpful during the development since they make it easier to manipulate the
product.

We adopt the viewpoint that introducing references and adding black-box
descriptions should be combined, in the sense that whenever a name (a
rerefence) is given tosome term P, there should also be a black-box descrip
tion associated with P. This viewpoint immediately leads us to a formal
notion of a component. We formalise components as triples, consisting of a
name and two terms, where the second term is the black-box description.

We must add one remark here. Strictly speaking, it is possible to have black
box descriptions without using references. This approach is often used in
combination with Hoare's logic. The black-box descriptions correspond to
pairs of pre- and postconditions. The black-box descriptions are textually
included (as a comment) at the appropriate places in the program text.
However, the use of references is more generaL

84 GRAPTER 2. A FORMALISAT/ON OF DESIGN STRUCTURES

We shall say that a component is correct if the two termsof the component
are in the implementation relation. In order tobenefit from the introduetion
of components, one should require that all components are correct. This
requirement can serve as an invariant of the development process. We shall
formalise what it means that a component is correct - in a given context.

We shall also have the possibility to have references to constructs which are
outside the scope of the developer and which are given by a name and a
black-box description only. We introduce a symbol prim which in these
cases will serve as a placeholder.

2.4.2 Formal definitions

For given lR we could, as a fust attempt, define the set of components as
{x, I iE lN} x (AR U {prim}) X AfR. However, we must take care to respect
the typing, so we adopt the following definition:

Definition 2.4.1 Let lR be an algebrak system with preorder.

(i) Define CR= {x, I iE IN} x (AR U {prim}) x AR.

(ii) The set C!R of components is defined by CR =
{(xf,P,Q) E C~ IQ has type a and if Pi- prim then P has type a}.

(iii) Fora component c = (x, P, Q) we say that x is the name of c, P is the
glass-box description of c and Q is the black-box description of c. We
shall often just write C for CR. D

Reeall that we have the implementation relation denoted by Ç.

Definition 2.4.2 A component (x, P, Q) where P "t prim is correct in
contextrif

r f- P ç Q.

A component (x, prim, Q) is always correct in any context. D

Notation 2.4.3 (Concrete syntax). We shall write

x p Q

to denote the component (x, P, Q). D

The concrete syntax is intended to he used in very small examples. In the
practical applications we have in rnind, we have at least two possibilities.

2.5. DESIGNS 85

The first possibility is to have a so-called design-engineering database with
operations among which an operation that yields the glass-box description
of a component and an operation that yields the black-box description of a
component. The second possibility is to include the notion of a component in
a design language (as done for COLD-K) and we refer to [11] fora concrete
syntax used to represent components.

Example 2.4.4 Consider lR1 as before. Now the component

y .- x+ x c 3

is correct in the context [x Ç 1] since in the À7r-calculus we have

[xÇ1jl-x+xÇ3. 0

Components are somewhat similar to 'lines' in Automath [13], [14]. The
similarity exists only on the syntactical level because the implementation
relation of Automath (a typing relation) is completely different from 'Ç'.

2.5 Designs

2.5.1 Introduetion

In the previous section we discussed the notion of a component. Based on
this notion we shall define the notion of a design2• First of all, it is clear that
a design should contain a collection of components. In fact we shall define
a design such that it contains a sequence of components. In a design it is
possible that a component contains references to other components, but we
want to exclude the possibility of circular referencing. Because the compo
nents are elements of a sequence, this can be achieved simply by requiring
that no name is used before it has been introduced. We shall formulate a
well-formedness predicate on designs.

Besides this sequence of components, each design contains one additional
term, which we shall call the system of the design. The system is to be viewed
as an indication of the actual product to be delivered to the customer. In
most cases this system will be a very simple term which contains the narnes
of one or more components of the design.

We shall define two notions of correctness for designs, which we shall call
glass-box correctness and black-box correctness. Both notions are interesting

2 We use 'design' in the sense of 'design object' rather than 'design operation'.

86 CHAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

from a methodological point of view. The syntax and the correctness of
designs will be defined in Section 2.5.2.

It is possible to translate each well-formed design into a lambda term. For
an arbitrary design d the lambda term resulting from this translation can
be viewed as the meaning of d. In this translation, there is an abstraction
application pair corresponding to each non-prim component. This transla
tion will be defined in subsection 2.5.3. Also in subsection 2.5.3, we shall see
that several interesting properties of designs have simple counterparts in the
À1r-calculus. In subsection 2.5.4 we shall investigate correctness-preserving
modifications of designs.

2.5.2 Syntax and Correctness

Definition 2.5.1 The set D'6l of designs is defined by

Fora design d = ((cl, ... ,c,.),S) we say that {c1 , ••• ,c,.} is thesetof com
ponentsof d and we denote it by cset(d) and we call S the system of d. We
shall often just write D for DR. 0

Notation 2.5.2 We shall employ the following concrete syntax

X1 .- Pt c:: Ql
X2 .- p2 c:: Q2

x,. .- P,. c:: Q,.
system s

Again the concrete syntax is intended to be used for very small examples.
Designs are somewhat similar to Automath 'hooks' [13], [14] where the com
ponents correspond to Automath 'lines'. However, there is no such thing as
a 'system' in Automath hooks.

Definition 2.5 .3 Let d he given as d = ((cl> ... , c;, ... , c,.) , S), then we call
the design ((c;, . .. ,c,.),S) the j-th sub-design of d and we denote it as d(j)·

0

2.5. DESIGNS 87

Definition 2.5.4 A designdis well-formed (abbreviated as wf) if the foi
Iowing conditions hoid:

(i) All components of d have distinct names.

(ii) No variabie occurring in dis used before it has been introducedas the
name of a component. Formally, if d is given as in 2.5.2 (concrete
syntax), then for 1 ~ j ~ n, FV(P;) U FV(Q;) Ç {x1 , ••• ,x;-1}, taking
FV(prim) := 0.

(iii) Let S be the system of d, then each variabie in FV(S) must be the
name of one of the components of d. D

We defined aiready what it means that a component is correct in a given
context. Now we want to define correctness for wf designs. Roughiy speak
ing, we shall define this in such a way that a design is correct iff each of
its components is correct. In order to make this idea precise we must be
explicit about the contextsin which the correctness of the componentsis to
be derived. There are two reasonabie possibilities for defining these contexts.
Therefore we shall have two notionsof correctness for designs.

The first notion of correctness corresponds to the possibility that there is no
information hiding: if the deveioper reasons a~,out a name x1c for which there
is a component (x~c, P~c, Q~c) in the design, then the deveioper may use the
fact that x1c stands for P~c . If P~c = prim, then the best assumption he can
make about x1c is [x1c Ç Q~c].

Definition 2.5.5 (gbc) Let the design d be given as

Xt .- pl

Xn .- Pn

system s.

Assume that dis wf. We say that dis glass-box correct (abbreviated gbc) if
for each component (x;, P;, Q;) E cset(d) where P; "t prim we have

f; f- P; Ç Q;

where f; = IPt, ... , IP;-1 and where for 1 ~ k ~ j - 1 the IPk are defined by

(i) IPk = [x~c = P~c] (P~e "t prim),

(ii) IPk = [x~~: Ç Q~c] (P~e = prim). D

88 CHAPTER 2. A FORMALISAT/ON OF DESIGN STRUCTURES

The second notion of correctness corresponds to the possibility that the glass
box descriptions are hidden: if the developer reasons about a name x~e for
which there is a component (x~e, P~e, Q~e) in the design, then he may only use
the fact that the term for which X~e stands, is specified by Q~e, i.e. he may
use the assumption [x~e Ç Q~e].

Definition 2.5.6 (bbc) Let the design d be given as

Xz .- Pz

Xn .- Pn

system s.

Assume that dis wf. We say that dis black-box correct (abbreviated bbc) if
for each component (x1, P1, Q1) E cset(d) where P; 1- prim we have

f; I- P; ç Qi

where r i = cpz, ... , epi-I and where for 1 ~ k ~ j - 1 the cpk are defined by

0

Example 2.5.7 Consider lRz as before. The following design is gbc but not
bbc.

x1 := 5

X2 := Xz
system x2.

c 10
c 7

0

We defined two notions of correctness, viz. gbc and bbc. Intuitively it is
clear that bbc is stronger than gbc, since the facts P; Ç Q; to he derived are
the same for gbc and bbc, but for bbcthese facts should he derived with less
knowledge than for gbc. This intuition is made more precise below.

Theorem 2.5.8 Let d be a wf design. Then we have

d is bbc ~ d is gbc.

Proof. We give the details for a design d with two components. After
that we give a proof-sketch for the general case. Let d be given as in 2.5.6
(definition bbc). Assume that dis bbc. We distinguish two cases, where each
case falls apart into two subcases.

2.5. DESIGNS 89

1. P1 = prim. The first component is trivially correct. For the second
component we distinguish two cases.

(i) P 2 = prim. The second component is also trivially correct.
Therefore d is gbc.

(ii) P 2 1i prim. For the second component we must show [x1 Ç Q1]1-
P2 Ç Q2, which follows from the fact that d is bbc. Therefore d
is gbc.

2. P1 =f:. prim. The bbc-correctness condition for the first component is
the same as its gbc-correctness condition, viz. 1- P1 Ç Q 1. So the first
component is correct. For the second component we distinguish two
cases.

(i) P 2 = prim. The second component is now trivially correct.
Therefore dis gbc.

(ii) P 2 =f:. prim. From the fact that d is bbc we have 1- P1 Ç Q1

and [x1 Ç Qt] 1- P2 Ç Q2. From 1- P1 Ç Q1 by (subst.) we get
[x1 = P 1] 1- x1 Ç Q1 and now we can use the cut-rule to get
[x1 = P 1]1- P2 Ç Q2• This shows that the second component is
correct in the gbc sense. Therefore d is gbc.

This concludes the proof fora design d with two components. For the gen
eral case, the following assertion is proved by induction on the number of
components (n).

n

1\ (P; =f:. prim => r; 1- P; Ç Q;)
j = l

where f i = IPt. ... , IP;-1 and where for 1 ~ k ~ n- 1 the 1P1r. are defined by

(i) 1P1r. = [x~r. = P~r.] (Pk =f:. prim),

(ii) IPk = [x~r. Ç Q~r.] (P~r. = prim).

Again use rule (subst.) and the (generalised) cut-rule. 0

90 CHAPTER 2. A FORMALISAT/ON OF DESIGN STRUCTURES

2.5.3 Semantics

It is possible to translate each design d into a lambda term3
• The lambda

term resulting from this translation can he viewed as the meaning of d and
we shall denote it as [dD. For each component of d for which the glass-box
description is not prim, there is an abstraction-application pair in [d]. For
each component of d for which the glass-box description is prim, there is an
abstraction in [d]]. A simHar technique ofusing abstraction-application pairs
and abstractions to describe the role of narnes has been proposed by N.G.
de Bruijn in the context of Automath. Readers who are not familiar with
Automath could skip this explanation and praeeed with the next paragraph
(example 2.5.9). In particular each so-called 'hook', which is a structure as
for example

nat .- prim type
zero .- prim nat
suc .- prim (nat ---+ nat)
one .- suc(zero) nat

can he viewed as a >.-term, viz. >.nat : type.>. zero : nat.>. suc : (nat ---+

nat).(>. one : nat.type)(suc(zero)). De Bruijn noted this 'books-as-lambda
terms' analogy where the correctnessof a hook follows from the well-typedness
of its >.-term. In fact the analogy is somewhat complicated when considering
8-reductions. Of course, de Bruijn's typing relation ':' is a kind of imple
mentation relation which has completely different properties as our 'Ç'. Yet
the idea works for designs in the sense that the author noted a 'designs-as
lambda-terms' analogy.

We explain the translation procedure for designs in a step by step manner
for a simple case. After that we give a formal definition which deals with the
general case.

Example 2.5.9 Consider the design dof example 2.5.7. Totranslate this
d we begin with its first component (xt, 5, 10) which we translate into the
following 'term with hole' (>.x1 Ç 10. · · ·)5 where the dots · · · indicate the
hole. Later the hole gets filled with the translation of the rest of the design.
Next, we proceed with the second component (x2, xll 7) which we translate
into (>.x2 Ç 7. · · ·)xl. The latter 'term with hole' is put in the first hole
and this yields (>.x1 Ç 10.(>.x2 Ç 7. · · ·)x1)5. Now we are left with one hole
again and the last step is to put the system in that hole. So [dll = (>.x1 Ç

3 The idea of using lambda terms as asemantic domain is not new and has e.g. been used
by Landin [12] who mapped ALGOL60 to an enriched lambda calculus; in particular, it is
interesting to note that let x= Z; X is mapped to (.~x.X)Z.

I .

2.5. DESIGNS 91

0

For components with prim, a slightly different treatment is needed, which
is not shown yet by this example. By way of preparation for the precise
definition of the translation procedure, we need an auxiliary definition.

Definition 2.5.10 For a design d = ((c1 , ••. , en), S) with n ~ 1 we define
first(d) := c1 and rest(d) := ((c2, ... ,en), S). 0

So first(d) yields the first component of d and rest(d) is d with its fust
component removed. Note that 'rest' does not preserve wf. We give the
formal definition, which is defined by recursion.

Definition 2.5.11 (Meaning function). Define M :D-AR. Write [d] for
M(d).

1. [system S] = S,

2. [d] =().x Ç Q.[rest(d)])P if first(d) = (x,P, Q) and P "t prim,

= (>.x Ç Q.[rest(d)]) if first(d) = (x,prim,Q). 0

The recursive formulation of M was originally defined by the author. A
slightly different formulation has been employed later by H.B.M. Jonkers. It
is a continuation semantics where a translation is given first for each compo
nent.

Definition 2.5.12 (Alternative formulation) First define M C - AR -
AR, where Cis thesetof components. Write [c] for M(c).

1. [(x, P, Q)](R) := (>.x Ç Q.R)P if P "t prim,

2. [(x, prim, Q)]J(R) :=: (>.x Ç Q.R).

Define M : D- A!Jl. Write [d] for M(d).

where o denotes function composition. 0

We can make several observations which support the idea that [d] can be
viewed as the meaning of d. First of all, the components (x.b prim, Qk) be
come lambda abstractions where the black-box description of the component
becomes the restrietion associated with this abstraction (>.xk Ç Qk). This
corresponds precisely to the idea that when the design is applied in the real
world, sarnething satisfying the black-box description has to be filled in fora

92 CHAPTER 2. A FORMALISAT/ON OF DESIGN STRUCTURES

prim. We see that the components with a prim glass-box description can be
viewed as the formal parameters of the design in which they occur. Secondly,
we can observe that reducing ffd ~ corresponds to replacing the narnes by the
things they stand for (i.e. by the corresponding glass-box descriptions). If
a component (x;, P;, Q;) is not correct, then we may consider replacing x;
by P; as illegal. This is precisely refl.ected in ffd]J, where a candidate-redex
(.. h; Ç Q;)P; cannot be contracted unless P; Ç Q;.

Example 2.5.13 Assume variables w, x, y, z and let Ql! Q2, Qs, Q4, P2, P4,
S E AIR. Let the design d be given by

w .- prim ç Ql
x .- p2 ç Q2
y .- prim c Qs
z ·- p" ç Q."
system s.

The meaning of d, denoted as ffdll is given by

Theorem 2.5.14 dis wf => ffdll is closed. Proof. Obvious from .M. D

We want to have a look at rednetion strategies for terms [dll and in order
to formulate these strategies precisely, we introduce a bit of machinery for
marking candidate-redexes and keeping track of what happens with these
marked candidate-redexes during reduction. This technique is known as Zift
ing and we adopt the notations and conventions from [5] 11.1.2, 11.2.1 -
adapted to .À1r-calculus. We mark a candidate-redex by giving an index to
its first lambda. For this purpose we introduce an auxiliary extension of the
set of terms AIR. The following should be compared with definition 2.3.3.

Definition 2.5.15 (Terms with indices)

A~ is a set of terms constructed over the alphabet of A81 extended with
symbols >.o, .Àt, >.2 , •••• This set A~ is inductively defined by the clauses below,
where it is understood that furthermore the same rules and restrictions with
respect to the types as for A81 , apply in the obvious way.

1. x; E A~ (i E IN),

2. c; E A~ (i E J),

3. if Pl>···•Pa; E A~ then /;(Pt,·· .,Pa;) E A~,

4. if P, Q E A~ then (PQ) E A~,

2.5. DESIGNS 93

5. if P, Q E Ak and Xi (/. FV(P), then (Àxi Ç P.Q) E Ak,

6. if P, Q, RE Ak, jE 1N and xi (/. FV(P), then ((A;xi Ç P.Q)R) E Ak.
In this case we say that the candidate-redex ((À;xi Ç P.Q)R) has index
J.

If P E Ak, then IPI E Alll is P withall indices removed. D

This providesus with an extended set of terms and the obvious next step is
to say how the indices are treated during reduction.

Definition 2.5.16 (Reduction with indices)

(i) Substitution on Ak is defined in the usual way. See [5]11.1.3.

(ii) In addition to normal1r-reduction --+,we define 7r;-reduction (also de
noted by --+) which means to contract a candidate-redex ha ving in
dex j (one notion of reduction for each index j E 1N). In particular,
r f-- IRI ç lAl => r f-- (A;x ç A .B)R--+ B[x := R] and we refer to the
latter --+ step as a 7r;-reduction step.

(iii) The notion of reduction 7r1 is 1r U U;EIN 7r;. D

So now we have the features that candidate-redexes can be indexed optionally
and that we can keep track of these candidate-redexes during reduction. The
following should be compared with [5]11.1.6 (i).

Lemma 2.5.17 (Lifting) Let P, Q E Alll such that f f-- P-++ Q where-++
is based on 1r-reduction, then for all P' E Ak with IP'I = P there is a Q'
with IQ'I = Q such that r f-- P' -++ Q', where the latter -++ is based on
11"

1-reduction.

Proof. If r f-- P-++ Q is a one-step 1r-reduction, where a candidate-redex is
contracted, D. say, then it is possible to identify a corresponding candidate
redex D.', say in P'. Take the Q' obtained by contrading this D.' in P'. If
Q = P then take Q' = P'. If P -++ Q involves more than one step, then use
transitivity. D

The following should be compared with [5]11.1.6 (ii).

Lemma 2.5.18 (Projecting) Let P',Q' E Ak such that r f-- P'-++ Q' where
- is based on 11"

1-reduction, then r f-- IP'I - IQ'I where the latter - is
based on 1r-reduction.

Proof. Leave out all indices from a reduction path from P' to Q'. D

94 CHAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

When translating designs to À1r-terms, each non-prim component gives rise
to a candidate-redex and we shall associate indices with these candidate
redexes in a systematic way: index 1 for a candidate-redex derived from
the first component, index 2 for a candidate-redex derived from the second
component etc. In order to formulate this precisely we give a re-formulation
of the meaning function .M introduced before. Therefore we introduce an
extended meaning function .M' using an auxiliary which takes two arguments
and which is also denoted by .M'.

Definition 2.5.19 (Meaning function with indices). First define .M': D x
1N--+ A~. Write [d~j for .M'(d,j). Intuitively [d]j is the meaning of d where
j is the next number to he used for indexing.

1. [system S]j = S,

2. [d]j = (.X;x Ç Q.[rest(d) ~j+l)P if first(d) = (x, P, Q), P ~ prim,

= (.Xx Ç Q.[rest(d)]j+1) if first(d) =(x, prim, Q).

Using this wedefine .M': D--+ A~, writing [d]' for .M'(d), as follows: [d]' :=:
[d]i. 0

This has the effect that we can explicitly refer to a candidate-redex derived
from the j-th component by means of the index j. Note that each j refers
to at most one candidate-redex occurrence in [d]' and that 11"1-reduction
preserves this property - which is because of the special structure of the
terms resulting from the translation of designs by .M'. The following lemma
relates both formulations of the translation from designs to lambda terms,
.M and .M'.

Lemma 2.5.20 Let d be a design, then l[d]l'l = [d].

Proof. The following stronger statement is proved by induction on the
number of componentsof the design: Vj E 1N (l[d]jl = [d]). 0

We illustrate .M' with a small example.

Example 2.5.21 Assume variables x, y, zand let Q11 Q2 , Q3, P 2 , P3, S E AIR.
Let the design d be given by

x .- prim ç Ql
y .- p2 c Q2
z .- p3 c Q3
system s.

2.5. DESIGNS 95

The meaning withindices of dis given by

In this example the first lambda can not have an index because this lambda
does not belong toa candidate-redex. The second component (y, P2 , Q2) gives
rise toa candidate-redex ha ving index 2 and the third component gives rise to
a candidate-redex having index 3. Note that also aftera reduction step, the
residuals of a certain candidate-redex can still be identified by their index.
E.g. suppose that for ffdr as above, ffd~' reduces to Àx Ç Qt-(Àsz Ç Qs[Y :=
P2].S[y := P2])P3 [y := P2], then the original candidate-redex indexed 3 need
not be present any more, but À3 still marks the beginning of a candidate
redex which is rerniniscent of the the third component. 0

There is a very remarkable relation between our notions of correctness and
certain reduction strategies for lambda terms. If d is wf and gbc, then [d]
is outermost reducible, by which we mean that the candidate-redexes intro
duced by the translation of d by .M, can be contracted in an outside-in (i.e.
left-to-right) order. If d is wf and bbc, then ffd] is innermost reducible, by
which we mean that the candidate-redexes introduced by the translation of d
by .M, can be contracted in a inside-out (i.e. right-to-left) order. The formu
lation of these notions of outermost reducible and innermost reducible will be
relative to a given design d because we want to restriet our considerations to
those candidate-redexes which are introduced by the translation of d by .M.
In order to formulate this precisely we use the technique of lifting introduced
above. We observe that in a term [d~' the indices occur in increasing order,
i.e. when this term contains indexed lambdas À;, ÀA: with j < k then the À;

occurs to the left of the À,~:. This observation justifies the definitions below
where 'outermost' will bedefinedas 'in increasing order of indices' and where
'innermost' will be defined as 'in decreasing order of indices'.

Definition 2.5.22 (omr) For wf design d, we say that ffd)' is outermost
reducible if there exist terros Rt. . .. , Rm such that there is a reduction path
(--+ derroting 11"

1-reduction)

where indexed candidate-redexes are contracted in increasing order of indices
and such that the last term Rm contains no more indices. We say that [d]
is outermost reducible with respect to the candidate-redexes introduced by the
translation of d by .M if [d]' is outermost reducible. When d is clear from
the context, we shall just say that [d] is outermost reducible (abbreviated
omr) and then it is to be understood that we mean that it is outermost

96 CHAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

reducible with respect to the candidate-redexes which are introduced by the
translation of d by .M. 0

Very much in the same way wedefine 'innermost reducible' below.

Definition 2.5.23 (imr) For wf design d, we say that ~dJ' is innermost re
ducible if there is a reduction path starting with ~dD' where indexed candidate
redexes are contracted in decreasing order of indices and such that the last
term contains no more indices. We adopt an obvious terminology analogous
to that of 2.5.22. 0

Before we prove the relation between the notions of correctness and the
reduction strategies, we first give an example. The following example shows
three very simple designs and we verify forthese designs that gbc corresponds
toomrand that bbc corresponds to imr.

Exaillple 2.5.24 Consider !R1 as before.

(i) The following design d is neither gbc nor bbc.

X1 := 5
X2 := Xt

system x2 •

c 4
c 7

[dD' = (-ÀtXt Ç 4.(-À2x2 Ç 7.x2)xt)5 which is not omr because fl 5 Ç 4. It
is not imr because although [dD'-+ (-ÀtXt Ç 4.x1)5, we cannot contract the
candidate-redex (-ÀtXt Ç 4.xt)5.

(ii) The following design d' is gbc but not bbc.

Xt .- 5 c 10
x2 .- Xt ç 7
system X2·

~d'D' = (-ÀtXt Ç 10.(-À2X2 Ç 7.x2)xt)5 which is omr because [d'D'-+ (-À2x2 Ç
7.x2)xt[Xt := 5] = (-À2X2 Ç 7.x2)5 -+ x2[x2 := 5] = 5. It is not imr because we
cannot make the reduction step 1- (-À1x1 Ç 10.(-À2x2 Ç 7.x2)xt)5 -+ (-À1x1 Ç
10.x2[x2 := Xt])5. To make the latter reduction step requires (cf. 2.3.28
clauses 4, 6 & 1) that [x1 Ç 10]1- x1 Ç 7 which is not the case.

(iii) The following design d" is both gbc and bbc.

Xt := 5 C 5
X2 := Xt + 1 Ç X1 + 5
system x1 + x2•

2.5. DESIGNS 97

[d"]' = (À1x1 Ç 5.(À2x2 Ç x1 + 5.x1 + x2)(x1 + 1))5 which is omr because
[d"]' --t (À2x2 Ç 5 + 5.5 + x2)(5 + 1) --t 5 + (5 + 1). It is imr because
[d"]' --t (À1X1 Ç 5.x1 + (x1 + 1))5 --t 5 + (5 + 1). 0

It is easy to see why omr corresponds with gbc. When performing an out
ermost 1r-reduction, the resulting substitutions will affect the parameter re
strictions occurring deeper inside the term. This shows that the glass-box
descriptions Pi are relevant in the sense that substitutions [xi := Pi] take
place, infiuencing preconditions of subsequent steps. Indeed, for gbc the
Pi are relevant for the correctness conditions of subsequent components. On
the other hand, when performing an innermost reduction, the early reduction
steps do not infiuence the preconditions of the subsequent steps. Similarly
for bbc, the Pi arenotrelevant for the contextsof the correctness conditions.

By way of preparation for the theorem "dis gbc # [d] is omr" we need a
definition.

Definition 2.5.25 Let the wf design d be given as in 2.5.2 (concrete syn
tax). The unfolding of d, denoted as unf(d) is defined as the design

Xn .- PnSn C:: QnSn
system S

where each S; (1 ~ j . ~ n) is a sequence of substitutions S; = u1, ••• , u;_1

where for (1 ~ k ~ n) the O'Jc are defined as follows:

u"= (empty) (P~c = prim),
uk = [x~c := P~oS~o] (P~c ~ prim),

The intuition behind unf(d) is the design obtained from d by replacing all
narnes by the things they stand for (if possible) while preserving the structure
of d.

Theorem 2.5.26 Let d be a wf design. Now we have

dis gbc # [d] is omr.

Proof. We give the details for a design d with two components. After
that we give a proof-sketch for the general case. Let d be given as in 2.5.6

\

(defini ti on b bc). We distinguish four cases.

98 CHAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

1. P1 = prim 1\ P2 = prim. In this case [d]' = Àx1 Ç Q 1.Àx2 Ç Q 2.S.
Now d is trivially gbc and also [d] is trivially omr.

2. P1 = prim 1\ P2 =/= prim. In this case [d]' = Àx1 Ç Ql-{À2x2 Ç
Q 2.S)P2• Now d is gbc iff [x1 Ç Q1]1- P2 Ç Q2 which is precisely the
case iff 1- Àx1 Ç Ql-(À2X2 Ç Q2.S)P2 --t Àx1 Ç Q1.S[x2 := P2] which
means that [d] is omr.

3. P1 =/= prim 1\ P2 = prim. In this case [d]' = (ÀtXt Ç Q1.Àx2 Ç
Q 2.S)P1. Now d is gbc iff 1- P1 Ç Q 1 which is precisely the case iff
1- (À1Xt Ç Q1.Àx2 Ç Q2.S)P1 ---+ (Àx2 Ç Q2.S)[x1 := Pt] which means
that [d] is omr.

4. P1 =/= prim 1\ P2 =/= prim. In this case [d]' = (ÀtX1 Ç Q1.(À2x2 Ç
Q 2.S)P2)P1. Now d is gbc iff 1- P1 Ç Ql and [x1 = P 1] 1- P2 Ç Q2.
First note that 1- P1 Ç Q1 is precisely the case iff the candidate redex
of À1 can be reduced. The result of this first reduction step is (À 2x2 Ç

Q2[x1 := Pt].S[xt := P1])P2[xt := Pt]·

Secondly, we shall show that [x1 = P1]1- P2 Ç Q2 is precisely the case
iff in the result of the first reduction we can perform the À2 reduction
step. Therefore we show [x1 = Pt] 1- P2 Ç Q2 <=> 1- P2[x1 := Pt] Ç
Q2[x1 := Pt]·

To show(*), assume [x1 = Pt]l- P2 Ç Q2. By (subst.) [x1 = P1]1-
P2[x1 := P 1] Ç Q2[x1 := P1]. Now x1 does not occur any more at the
right-hand side ofthe '1-' and therefore the assumption [x1 = P1] is non
essential. To see this, apply lemma 2.3.19, performing the substitution
[x1 := Pt]; this yields [Pt = Pt]l- P2[x1 := Pt] Ç Q2[x1 := P 1] whence
by (refl.) and the cut-rule 1- P2[x1 := Pt] Ç Q2[x1 := Pt]·

To show (<=) assume 1- P2[x1 := Pt] Ç Q2[x1 := P1]. By weakening and
rule (subst.) we get [Xt = Pt] 1- P2 Ç Q2 • This concludes (<=). So d is
gbc iff [d]] is omr.

For the general case, first prove

(i) dis gbc <=> unf(d) is gbc,

(i i) uni(d) is gbc # [d] is omr.

The theorem is a direct consequence of (i) 1\ (ii). 0

Theorem 2.5.27 Let d be a wf design. Now we have

d is bbc # [d] is imr.

2.5. DESIGNS 99

Proof. Again we give the details for a design d with two components and
aJter that a proof-sketch for the general case. Let d he given as in 2.5.6
(definition bbc). We distinguish four cases.

1. P 1 = primA P2 = prim. In this case [d]' = Àx1 Ç Q1.Àx2 Ç Q2.S.
Now dis trivially bbc and also [d] is trivially imr.

2. P 1 = primA. P2 :t prim. In this case [d]]' :;:: Àx1 Ç QI-(À2x2 Ç
Q 2.S)P2 • Now d is bbc iff [x1 Ç QI] f- P2 Ç Q 2 which is precisely the
case iff f- Àx1 Ç QI-(À2X2 Ç Q2.S)P2 -+ ÀX1 Ç Q1.S[x2 := P2] which
means that [d] is imr.

3. P 1 :t primA. P2 = prim. In this case [d]' = (À1x1 Ç Q 1.Àx2 Ç
Q 2.S)P1. Now d is bbc iff f- P1 Ç Q1 which is precisely the case iff
f- (À1X1 Ç Q1.Àx2 Ç Q2.S)P1 -+ (Àx2 Ç Q2.S)[x1 := P1] which means
that [d] is i mr.

4. P 1 :t primA. P2 :t prim. In this case [d]J' = (À1x1 Ç QI-(À2x2 Ç
Q 2.S)P2)P1. Now dis bbc iff f- P1 Ç Q1 and [x1 Ç Q1] f- P2 Ç Q2.

First note . that [x1 Ç Q1] f- P2 Ç Q2 is precisely the case iff the
candidate-redex of À2 can be reduced. The result of this first reduction
step is (À1X1 Ç Q1.S[x2 := P2])P1.

Secondly we see that f- P1 Ç Q1 is precisely the case iff in the result of
the first reduction, we can perform the À1 reduction step. So d is bbc
iff [d] is imr.

The general case goes in essentially the same way, noting that for performing
a contraction internally within a term (Àix Ç Q) or within a term
(Àx Ç Q) we may workin a context with [x Ç Q] (cf. 2.3.28 clauses 4, 6
& 1). Therefore the fact that f i f- Pi Ç Q i is precisely the condition that is
needed in order to perform the contraction (f i as in 2.5.6, definition bbc).
0

2.5.4 Correctness-preserving Modifica ti ons

One of the ideas bebind the notion of a design is that there is a locality
principle which, roughly speaking, can be stated as follows: "it should he
possible to implement each component in a design without worrying about
the implementation of the other componentsin the design". In order to make
this idea more precise we shall define several kinds of so-called correctness
preserving modifications of designs and we shall investigate their properties.
There are two (binary) criteria to classify the modifications and therefore we
shall have four kinds of modifications. The first criterion deals with "what

100 CHAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

is modified?". We consider two cases: either some glass-box description is
modified, or some black-box description is modified. The second criterion
deals with "which notion of correctnessis adopted?". Again we consider two
cases: glass-box correctness and black-box correctness. The modifications
are defined to establish the adopted notion of correctness - at least locally
for the modified component. The scheme is that we have X-preserving Y
modifications for XE {gbc, bbc} and Y E {glass-box, black-box}. We study
what happens if we take a correct design (in the X sense) and modify a
Y -description. The interesting question is "is the result correct again in the
X sense?", or alternatively "has X been preserved?".

Definition 2.5.28 Let the wf design d be given as

Xt .- pl

Xn .- Pn

system s.

We say that d' is a gbc-preserving glass-box modification of d, (abbreviated
as d' is gbc-gb-mod of d, if d' is obtained from d via the replacement:

(x;, P;, Q;) := (x;, Pj, Q;)

for some j E { 1, ... , n} such tha t P; 't prim, provided d' is wf and for r;
as in definition 2.5.5 (definition gbc)

f; f-- Pj Ç Q;.

In the same way wedefine what it means that d' is a bbc-preserving glass-box
modification of d, by taking r; as in 2.5.6. 0

The intuition behind a gbc-preserving glass-box modification is that a modi
ftcation takes place within one component while preserving the local correct
ness (in the gbc sense) of that component. The question if preserving local
correctness implies preserving correctnessof the whole design, is investigated
below.

Remark 2.5.29 The proposition that for d' is gbc-gb-mod of d we have

d is gbc => d' is gbc.

just does not hold in generaL

The counter-example is as follows. Consider !R1 as before and let the design
d given as

2.5. DESIGNS

x1 .- 5
x2 .- x1
system x2

c::: 10
c::: 5

and consider a reptacement as follows:

Clearly d is gbc but d' is not, because [x1 = 6]1f x1 Ç 5.

Theorem 2.5.30 If d' is bbc-gb-mod of d, we have

dis bbc => d' is bbc.

101

0

Proof. Assume d is as in 2.5.28 (definition bbc-gb-mod) and consider the
reptacement (x;,P;,Q;) := (x;,P},Q;) forsome iE {1, . .. ,n} such that
P; ~ prim, provided d' is wf and for r; as in definition 2.5.6 (definition
bbc) r; f- PJ Ç Q;. For all iE {1, ... , n} where Pi~ prim we must show

r.r-P.ÇQ• (P:ifi=i)

where r. = [x1 ç Q1], ... , [x._1 Ç Q._1]. For i =/:- i we are done since d is
bbc. For i = i we arealso done since for r; as in 2.5.6 (definition bbc) we
have by the definition of bbc-gb-mod r; f- PJ Ç Q;. o

The intuition behind the remark and the theorem given above is that gbc
designs do not offer implementation freedom but bbc designs do.

Instead of considering correctness-preserving glass-box modifications one can
also consider correctness-preserving black-box modifications. The intuition
behind the latter kind of modification is a change of specification for a com
ponent which has already been implemented. It does not come as a surprise
that when one adopts glass-box correctness, these modifications preserve cor
rectness for the whole design - since the black-box descriptions are in fact
not used. It is also easy to see that when one adopts black-box correctness,
these modifications may disturb the correctnessof the whole design.

Definition 2.5.31 Let the wf design d be given as

x1 .- pl

Xn .- Pn

system s.

102 CHAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

We say that d' is a gbc-preserving black-boz modification of d, if d' is obtained
from d via the replacement:

(x;, P;, Q;) := (x;, P;, Qj)

for some j E { 1, ... , n} such tha t P; "t prim, provided d' is wf and for r; as
in 2.5.5 (definition gbc)

r; r- P; ç Qj

In the same way wedefine what it means that d' is a bbc-preserving black-boz
modification of d, by taking f i as in 2.5.6. D

Remark 2.5.32 The proposition that for d' is bbc-bb-mod of d we have

d is bbc ::} d' is bbc.

just does not hold in genera!.

The counter-example is as follows. Consider lR1 as before and let the design
d be given as

X1 := 1

Xz := Xt

system Xz

c:: 2
c:: 2

and consider a reptacement as follows:

N ow d is bbc but d' is not.

Theorem 2.5.33 If d' is gbc-bb-mod of d, we have

d is gbc '* d' is gbc.

D

Proof. Assume d is as in 2.5.31 (definition gbc-bb-mod) and consider the
replacement (x;,P;,Qi) := (xi,Pi,Qj) forsome jE {1, . .. , n} such that
Pi =:f- prim, provided d' is wf and for r i as in definition 2.5.5 (definition
gbc) f i r Pi Ç Qj. For all iE {1, ... , n} where P; =:f- prim we must show

r,r-P,çQ, (Q:ifi=i)

where f; = 'Pt, . . . , cp;- t and where cpk = [xk = Pk] (Pk =:f- prim), 'Pk = [xk Ç
Qk] (Pk = prim).

2.5. DESIGNS 103

Now notice that neither Q; nor Qj occurs in r, so we are done for i I- j
because d is gbc. For i = j we know f; 1- P; Ç Qj by the definition of
gbc-bb-mod. 0

The following table summarises the last two theorems and remarks. For the
modifications which lead to a correct design, the corresponding entry in the
table contains a '+'. For the modifications which may lead to an incorrect
design, the corresponding entry in the table contains a'-'.

preservmg modifying
glass-box black-box

description description
black-box correctness + -
glass-box correctness - +

In the above table we see two entries where the modification may lead to an
incorrect design, although locally (i.e. for the replaced component) correct
ness is preserved. One is tempted to think that by restricting the modifica
tions to those modifications where a term is replaced by a term which is less
than or equal to that term, the resulting designs are still correct. This turns
out to be the case indeed for bbc-preserving black-box modifications, but it
does not hold for gbc-preserving glass-box modifications.

Theorem 2.5.34 Let the wf and bbcdesign d be given as

x1 .- p1

Xn .- Pn

system s

and let d' be obtained from d via the replacement

(x;, P;, Q;) := (x;, P;, Qj)

for some jE {1, ... , n} such that P; ~ prim, provided d' is wf and

[x1 Ç Qi], ... , [x;-1 Ç Q;-d 1- P; Ç Qj Ç Q;.

Then d' is bbc.

Proof. Clearly the first j - 1 components are still correct. The condition
[x1 Ç Qi], ... , [x;-1 Ç Q;-d 1- P; Ç Qj tells us that the j-th component

104 CHAPTER 2. A FORMALISAT/ON OF DESIGN STRUCTURES

is correct. Now consider the i-th component for j < i ::; n. Define r =
[x1 Ç Q1j, ... , [x; Ç Q;], ... , [xi-1 Ç Qi-1] · Define f' = [x1 Ç Q1], ... , [x; Ç
Qj], ... , [xi-1 Ç Q,_1]. Since dis bbc we have

r f- P; ç Q,.

Now [x1 Ç Q1], ... , [x;-1 Ç Q;-1] c f' so r' f- Qj Ç Q;, and since [x; Ç
Qj] E r' we can use the rule (trans.) and we obtain f' f- x; Ç Q;. By the
generalised cut-rule we get

r' f- P, ç Q •. 0

Remark 2.5.35 The proposition that for the wf and gbc design d given as

x1 .- pl

Xn .- Pn

system s

and for d' obtained from d via the replacement

(x;, P; , Q;) := (x;, P}, Q;)

for some jE {1, ... , n} such that Pi ~ prim, provided d' is wf and for r i as
m 2.5.5 (definition gbc}

r i f- P} Ç P; Ç Q i

we have d' is gbc, just does not hold in generaL

The counter-example is as follows. Consider !R1 as before and let the design
d be given as

x1 . - 5
x2 .- 5
system x2

c 10
C x1

and consider areplacement as follows :

Clearly d is gbc but d' is not, because [x1 = 4]1f 5 Ç x1. 0

2.6. LOOKING BACK 105

2.6 Looking back

Reeall the aim of this chapter, as explained in the introduction, viz. to
obtain a theory about the component-wise construction and specification of
complex systems, with a focus on issues of modularisation, parameterisation,
abstraction and information hiding. Our main tooi when constructing such
a theory is formalisation. In order to obtain the necessary formalisations, in
Section 2.2 we abstract from the details of the underlying design language,
by viewinga design language (without parameterisation) as thesetof terms
T~~t of an algebraic system with preorder lR. After that a version of lambda
calculus, called .À7r is introduced, which serves two purposes. First of all it
adds parameterisation to the algebraic system with preorder !R and secondly
it allows us to give a meaning to the notion of a design by means of a 'designs
as-lambda-terms' analogy. Thesetof termsin this calculus is denoted as A~~t.
In .À7r-calculus one can derive facts of the form r 1- P Ç Q with intuition
'P implements Q in context f'. The most significant differences between
.À7r-calculus and classica! >.-calculus are that there is a restrietion x ,Ç P
associated with each abstraction and that a term (>.x Ç P.Q)A can only he
contracted if the argument A meets its restrietion in the sense that A Ç P.
This calculus is shown to have reasonable properties such as cut-elimination,
strong normalisation and confiuence. This .À7r is not the same as typed >.
calculus with subtypes (e.g. [15]). In ..\1r, the ordering relation Ç is on the
>.-terms whereas in [15] there is a relation ~ on their types. Intuitively, in
>.x Ç P the x is 'comparable with' P rather than 'in' P. A conneetion with
>.-typed >.-calculus can he made by viewing a term >.x Ç P.Q as the image
of >.x: *.>.y: (x Ç P).Q under a forgetful mapping, since in .À7r the proof (y)
of (x Ç P) remains implicit. This conneetion is not worked out further here.

The formal definition of the set C of components and the set D of designs is
straightforward: a component is a triple (x, P, Q) (where x is a new name and
where Pis either a termor prim) and it is correct in contextrif r 1- P Ç Q.
We cal P the glass-box description and Q the black-box description. A design
consists of a list of components and one additional term. Designs can he
represented as objects of the form:

xl .- pl c Ql
x2 .- p2 c Q2
xs .- Ps ç Qs
system s

where P1, P 2, Ps can he prim's or terms and where Q1, Q2, Q3 are terms.

The definition of correctness for designs is non-trivial because of the contexts

106 CHAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

in which components must be shown correct. Two possibilities arise, leading
us to the definitions of glass-box correctness and black-box correctness. A
translation from designs into lambda terms is defined, thereby obtaining a
'meaning' for our notion of a design. The meaning of a design d is a term
~d~ E AlR. For each component of d for which the glass-box description is not
prim there is an abstraction-application pair in [d]. For each component
of d for which the glass-box description is prim there is an abstraction in
~d]. This translation provides us with a better insight in the nature of
components with a prim glass-box description: these components are the
formal parameters of the design in which they occur. Furthermore there is
a very remarkable relation between our notions óf correctness and certain
rednetion strategies for lambda terms: glass-box correctness corresponds to
the possibility to perfarm a outermost rednetion and black-box correctness
corresponds to the possibility toperfarm a innermost reduction.

There exist various kinds of modifications of designs, with the intuition that
a modification takes place within one component while preserving the local
correctness of that component. The q uestion if preserving local correctness
implies preserving correctness of the whole design, is investigated for various
kinds of modifications. There are a number of positive and negative results.
For example, that glass-box correct designs do not offer implementation /ree
dom but black-box correct designs do. These results are summarised by the
following table:

preserving modijying
glass-box black-box

description description
black-box correctness + -

glass-box correctness - +

It is interesting to campare the results achieved in this chapter with the
approach sketched by Girard et.al. in [16] (p. 17). The principle of black
box correctness is implicitly already present in this citation.

At a more general level, abstracting away from any peculiar syntactic choice,
one should see a type as an instruction for plugging things together. Let
us imagine that we program with modules, i.e. closed units, which we can
plug together. A module is absolutely closed, we have no right to open it.
We just have the ability to use it or not, and to choose the manner of use
(plugging). The type of a module is of course completely determined by
all the possible pluggings it allows without crashing. In particular, one can
always substitute a module with another of the same type, in the event of a

2.7. ACKNOWLEDGEMENTS 107

breakdown, or for the purpose of optimisation. This idea of arbitrary pluggin ga

seems mathematisable, but to attempt this would lead us too far astray.

In a certain sense, our research can he viewed a 'mathematisation' (= formal
isation) of these ideas. A precise understanding of the notions of component,
black-box description and design is of great methodological importance and
our formalisation and results should he of help in the systematic development
of designs in realistic applications.

2.7 Acknowledgements

The formalisation of algebraic systems with preorderand the definition of the
Àrr-calculus and its properties have been done in cooperation with H.B.M.
Jonkers, C.P.J. Koymans and G.R. Renardel de Lavalette.

108

Bibliography

[1] J.A. Bergstra, J. Heering, P. Klint. Module algebra. CWI Report CS
R8617, May 1986.

[2] M. Broy, P. Pepper. Program development as a formal activity. IEEE
Transactions on Software Engineering, Volume SE-7, Number 1, 14-22
(Jan. 1981).

[3] H.B.M. Jonkers. Introduetion to COLD-K, METEOR workshop on al
gebraic methods, Passau 1987, To appear in Springer Verlag LNCS. Also
as ESPRIT report METEOR/t8/PRLE/8.

[4] L.M.G. Feijs, H.B.M. Jonkers, C.P.J. Koymans, G.R. Renardel de
Lavalette. Formal definition of the design language COLD-K, Prelim
inary Edition. ESPRIT document METEOR/t7 /PRLE/7 (1987).

[5] H. Barendregt. The lambda calculus, its syntax and semantica. North
Holland, Amsterdam, (revised edition) 1984, ISBN 0 444 867481.

[6] D.L. Parnas. On the Criteria to he used in decomposing systems into
modules. Communications ofthe ACM, Volume 15 840-841, (Dec. 1972).

[7] C.A.R. Hoare. An axiomatic basis for computer programming. Commu
nications of the ACM, Volume 12, Number 10, (Oct. 1969).

[8] C.A.R. Hoare. Proof of correctness of data representations. Acta Infor
matica 1, 272-281 (1972).

[9] D. van Dalen. Logic and structure. Springer Verlag 1980, ISBN 0-387-
12831-X. (Second edition).

[10] J.W. de Bakker. Mathematica! theory of program correctness. Prentice
Hall International, Series in Computer Science 1980. ISBN 0-13-562132-1

[11] H.B.M. Jonkers. A concrete syntax for COLD-K, ESPRIT report ME
TEOR/t8/PRLE/2, Revised edition, (Jan. 1988).

[12] P.J. Landin. A correspondence between ALGOL60 and Church's lambda
notation, CACM, Vol. 8, pp. 89-101; 158-165 (1965).

BIBLIOGRAPHY 109

[13] N.G. De Bruijn. Generalizing Automath by means of lambda-typed
lambda calculus, Proceedings of the Maryland 1984-1985 Special Year
in Mathematica! Logic and Theoretica! Computer Science.

[14] D.T. van Daalen. The language theory of Automath. Thesis. Eindhoven
University of Technology, Dept. of Mathernaties (1980).

[15] H. Barendregt, M. Coppo, M. Dezani-Cianaglini. A filter lambda model
and the completeness of type assignment, The Journal of Symbolic
Logic, Vol. 48, N. 4, pp. 931-940 (1983).

[16] J-Y. Girard, Y. Lafont, P. Taylor. Proofs and types. Cambridge tracts
in theoretica! computer science 7, ISBN 0-521-37181-3.

110

Appendix A

Model Construction

There are several reasons why one wants to have a model for the À1r-calculus.
First of all, if we have a non-trivial model, then we know that the calculus
is consistent in the sense that not every equality (or every inequality) is
derivable. Secondly, by constructing a model we can make our intuition
that a lambda term >.x Ç P.Q denotes a function more precise. In this
section we shall construct such a model, denoted by !R+, provided lR satisfies
certain restrictions. The calculus is not complete with respect to this !R+, i.e.
(!R+ I= cp) => (I- cp) does not hold. We do not consider this as a disadvantage
of our approach, because the calculus has a certain value in its own right,
which does not depend on completeness. The calculus is sound with respect
to !R+, i.e. (I- cp) => (!R+ f= cp) - otherwise we should not call it a model.
Under certain assumptions, the model !R+ is obtained as an extension of the
underlying algebraic system with preorder !R. Lambda terms are interpreted
as normal set-theoretic functions. The model contains elements *.- which
correspond to the 'undefined' terms, by which we mean the terms which
cannot he contracted because of the condition in the rule (1r).

In order to keep things simple, we shall adopt two additional assumptions
about the underlying model lR and we shall discuss the various possibilities
arising if these additional assumptions do not hold. The first assumption is
that in lR the preorder R satisfies the additional property that Vx, y (x Ç
y 1\ y Ç x => x = y) which means that R is a partial order. The second
assumption is that there is a maximum element, i.e. 3xVy (y Ç x). Note
that the example CA of Section 2.2.3 satisfies this property with 'class none
end' as maximum element.

If R is nota partial order, then several possibilities arise. The fust possibility
is that lR has at least a substitution property for the relation =n defined as
R n R- 1 , i.e. x =n y :<=> x Ç y 1\ y Ç x. The required substitution property

A. MODEL CONSTRUCTION 111

is that x =n y =>!;(... ,x, ...) =n f;(... ,y, ...) for all jE J, which means
that = R is a congruence. For this first possibility we have the option that
= is interpreted by =n. With this option, the model construction can still
be done, but things become a bit more complicated and also the fact that =
can not be interpreted by real equality is not elegant.

When Risnota partial order, the second possibility is that ~does noteven
have the substitution property for =n mentioned above. In that case the
rules (=I) and (subst.) are essentially non-conservative. The calculus with
these rules is still usabie and it deals just with implementation (denoted by
Ç) and bi-implementation (denoted by =) where the rules (=I) and (subst.)
have an axiomatic status. Another option is to remove the rule (=I) and to
adapt the calculus correspondingly- as has been done in [4].

If there is no maximum element, then the model construction must be done
somewhat differently. We shall discuss this below. So from now on we restriet
ourselves to an algebrak system lR where R is a partial orderand we require
the existence of the maximum element.

Notation A.l.l If z is a function z : X -+ A then z[x -+ a] denotes the
function which everywhere equals z but for the argument x, for which it
results a; formally z[x-+ a](y) = z(y) for y #x and z(x) = a. 0

First we define the function domains and we define the ordering of functions.

Definition A.1.2 (A,., ÇT). Consider lR as before. Wedefine AT and ÇT by
induction on the structure of the type symbol r. Let *o denote the maximum
element, which is already present.

1. Ao :=A,
a Ç 0 b ;{::} aRb.

2. Ao-+T := Au --t AT,
f Ço-+T g :{::}\/x E Au(f(x) ÇT g(x)).

When there is no maximum element, we add *o as a fresh 'junk object' and
we define Ao := A U { *o} and a Ço b ;{::} aRb V b = *o· The fact that this
works depends on the restrietion to closed <p in rule (1=2); to see this consider
a 'one-object' lR, by which we mean a lR such that lR I= x= y, where adding
an object makes the formula VxVy((x = y)) false.

We shall write *o-+T for .h\ a E Ao·*n where .h\ denotes functional abstraction.
If no confusion arises we omit the subscripts for * and Ç. Note that *o-+T is
the maximum element of Ao-+T· Note also that ÇT is a partial order again
for all type symbols r, as is easily shown by induction on the structure of r.

0

112 CHAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

The model lR+ is a structure somewhat similar to lR, where the most im
portant difference is that lR+ has a collection of domains rather than just
one. There is one domain A,. for each type r and consequently there is also
a collection of relations Ç,., rather than just one. Again we have functions
F; and constants C,, but these are related to A 0 only.

Definition A.l.3 (lR+). Consider lR as before and let Typ be the set of
type symbols.

(i) The model !R+ is defined as
({A,.I TE Typ},{Ç,.I TE Typ},{F; Ij E J},{C, I iE J}).

(ii) An assignment z is a map variables ---+ U{A,. I T E Typ} such that
z(x'") E A,., i.e. such that z respects the typing. D

Definition A.l.4 The interpretation of terms in !R+ under an assignment z
is defined by induction over the structure of terms. We write P(z} to denote
the interpretation of term P under assignment z.

1. x,(z} = z(x,),

2. c,(z} = c,,
3. /;(Pto···•Pn)(z} = F;(Pt(z}, ... ,Pn(z}),

4. (PQ)(z} = P(z}(Q(z})

5. (.~x" Ç P.Q) (z} = ~ a E A.,.. if a Ç P(z} then Q(z[x" ---+ a]) else *· D

Note that fora term M the relevant part of an assignment is the restrietion
of the assignment to the free variables x= FV(M); in particular, if Vy ft
x(zt(Y) = Z2(Y)) then M(zt} = M(z2}·

Definition A.l.5 Wedefine !R+ I= cp for AR-formulae cp built from atoms,
conjunction and impHeation as follows.

(i) !R+ I= (P = Q)(z} :{:} P(z) = Q(z).

(ii) !R+ I= (P Ç Q)(z} :{:} P(z} Ç Q(z}.

(iii) lR+ I= (cp 1\ 1/J)(z} :{:} !R+ I= cp(z} and !R+ I= 1/J(z}.

(iv) !R+ I= (cp---+ 1/J)(z} :{:} !R+ f= cp(z} :::? lR+ f= 1/J(z}.

(v) lR+ I= cp :{:} for all z !R+ I= cp(z}.

Lemma A.l.6 For atomie TR-formulae we have

D

A. MODEL CONSTRUCTION 113

Proof. Immediate from the definitions of lR f= cp and lR+ f= cp. 0

As a next step we want to show the soundness of lR+ and for this purpose we
introduce severallemmas about assignments and substututions.

Lemma A.I.7 R[x := P](z) = R(z[x---+ P(z)]).

Proof. By induction over the structure of R.

• Let R =x. Then R[x := P](z) = P(z) and R(z[x---+ P(z)]) = x(z[x---+
P(z)]) = P(z) Otherwise R = y =i- x. Then R[x := P](z) = z(y) and
R(z[x---+ P(z)]) = y(z[x---+ .. .]) = z(y).

• R = ei: trivia!.

• R = !;(Pt.···,Pn)· Then R[x := P](z) = I;(Pt[x := P], ... ,Pn[x :=
P])(z) = F;(Pt[x := P](z), ... , Pn[x := P](z)) = (using i.h.)
F;(Pl (z[x---+ P(z)]}, ... , Pn(z[x ---+ P(z)])) = /;(PI. ... Pn)(z[x ---+ P(z)])
= R(z[x---+ P(z)]).

• R =: (P1P2). Then R[x := P](z) = P1[x := P](z)(P2[x := P](z)) which
we write as f(a). Similarly we write (P1P2)(z[x---+ P(z)]) as g(b). By
i.h. we have f = g and a= b. Therefore f(a) = g(b).

• R = >..y Ç Ql.Q2. By the variabie convention x =i- y. Define f :=
R[x := P](z) which equals
.».a. if a Ç Qt[x := P](z) then Q2 [x := P](z[y---+ a]) else *• and define
g := R(z[x ---+ P(z)]) = which equals
.». a. if a Ç Q1 (z[x ---+ P(z)]) then Q2(z[x ---+ P(z)][y ---+ a]) else *·
Now consider an arbitrary argument, c say and prove (using i.h.) that
f(c) = g(c). In particular, the induction hypothesis yields Q2 [x :=
P] (z[y ---+ a]) = Q2 (z[y ---+ a][x ---+ P(z[y ---+ a])]). We must use that
- by the variabie convention- P does not contain y whence P(z[y ---+
a])= P(z). 0

Lemma A.1.8 (Substitution) Let z be an assignment. Assume P(z) =
Q(z).

(i) R[x := P](z) = R[x := Q](z).

(ii) If RI[x := P](z) = R2[x := P](z),
then RI[x := Q](z) = R2[x := Q](z).

(iii) If Rt[x := P](z) Ç R2 [x := P](z),
then RI[x := Q](z) Ç R2[x := Q](z).

Proof. (i) We have R(z[x ---+ P(z)]) = R(z[x ---+ Q(z)]) and hence by

114 CHAPTER 2. A FORMALISAT/ON OF DESIGN STRUCTURES

lemma A.1.7 we obtain R[x := P](z) = R[x := Q](z).
(ii) Write R[x := P] as R(P) etc. By {i) we have R1{Q)(z) = R1{P)(z) and
by assumption R1{P)(z) = R2(P)(z) and by {i) again R2{P)(z) = R2{Q)(z).
Use transitivity of=.
{iii) By {i) we have R1(Q)(z) = R1(P)(z), and by assumption R1(P)(z) Ç
R2(P)(z) and by (i) again R2 (P)(z) = R2 (Q)(z). Use reflexivity and transi
tivity of Ç. 0

Theorem A.1.9 (Soundness) .

r 1- cp => m+ f= 1\ r - cp.

Proof. The proof is by induction on the length of the derivation of r I- cp.

• (l=t) If r I- cp is r I- /;(A) Ç /;(B) because r I- A ç;; B for /;
corresponding with a monotonic function. Just use i.h. and the mono
tonicity of the corresponding F;.

• {1=2) If r I- cp is a direct consequence of lR I= cp. This case is obvious .

• (context). r ,cp I- cp. We must show that m+ F (Ar 1\ cp)(z) implies
m+ F= cp(z) which is obvious.

• (refl.). r I- P ç;; P. We must show that m+ I= Ar implies m+ I= P ç P
which follows from the fact that the relations [:;;;.,. of m+ are partial
orders.

• (trans.). As refl.

• (.U1). r I- (.Xx ç;; P.Qt) ç;; (.Xx ç;; P.Q2). We have m+ I= Ar 1\ x ç;;
P ---+ Q1 Ç Q2 (i.h.). Take an arbitrary z and assume m+ I= A r(z).
Define f := (.Xx [:;;; P.Qt)(z) and g := (.Xx [:;;; P.Q2)(z). Fora [:;;; P(z)
we shall show f(a) ç g(a). Since x tf_ r we have m+ FA r(z[x---+ a]).
From i.h. Q1(z[x---+ a]) [:;;; Q2(z[x---+ a]), i.e. f(a) [:;;; g(a). This shows
m+ F= A r(z) => I ç;; g.

• (.X/2). r I- (.Xx ç;; P2.Q) ç (.Xx ç;; Pt.Q). We have m+ I= Ar---+ P1 ç;;
P2 (i.h.). Take an arbitrary z and assume m+ I= A r(z).
Define f := (.Xx Ç P2.Q)(z) and g := (.Xx Ç P1.Q)(z). We show for
arbitrary a that f(a) ç;; g(a).
If a [l P1(z) and a [l P2 (z) then f(a) = g(a) = *·
If a[:;;; P2(z) but a Ik P1 (z) then f(a) [:;;; g(a) = *·
If a[:;;; P1(z) [:;;; P2(z) then f(a) = g(a).
This shows m+ I= A r(z) => ! ç;; g som+ I= Ar ---+ (.Xx ç;; P2.Q) c
(.Xx [:;;; P1.Q).

• (ap.) . r I- (P1Q) ç (P2Q). Take an arbitrary z. Assume m+ I= A f(z).

A. MODEL CONSTRUCTION 115

We have !R+ /= Af ---+ P1 Ç P2 (i.h.). Define a := Q(z), f := P1 (z)
and g := P2 (z). We have f Ç g (by i.h.). We must show f(a) Ç g(a).
This follows directly from the definition of Ç.

• (1r). f f- (>.x Ç P1.Q)P2 = Q[x := P2]. We have !R+ /=Af---+ P2 Ç P1
(i.h.) . Take an arbitrary z. Assume !R+ /=A f(z).
(>.x Ç P1.Q)P2(z) =(.\\a. if a Ç P1(z) then Q(z[x---+ a]) else *)(P2(z))
= (i.h.) Q(z[x---+ P2 (z)]) = Q[x := P 2](z) where we used lemma A.1.7.

• (=I)f f- P1 = P2 because f f- P1 Ç P2 and f f- P2 Ç P1. We have
!R+ /=Af ---+ P1 ç P 2 and !R+ /= Af ---+ P2 ç P1 (i.h.). Use the fact
that Ç is a partial order.

• (subst.). f f- R1(Q) = R2 (Q) where we assume that <p is an equality.
We have !R+ /= Af ---+ R 1 (P) = R2 (P) and !R+ /= Af ---+ P = Q
(i.h.). Take an arbitrary z and assume !R+ /= A f(z). From (i.h.)
R1(P)(z) = R2(P)(z) and P(z) = Q(z) so by the substitution lemma
(ii) we get R1(Q)(z) = R2(Q)(z), i.e. !R+ /= (R1(Q) = R2(Q))(z). If <p

contains the symbol Ç insteadof =, we proceed in a similar way, using
the substitution lemma (iii) . 0

116

Appendix B

List of symbols

In this appendix we give a list of the symbols used. For each symbol the
list contains a very short informal description. The list has been subdivided
into a number of sub-lists. The first sub-list contains general mathematica!
symbols. The second sub-list contains the symbols which are introduced
and/ or used first in Sec ti on 2. In a similar way the third sub-list contains
the symbols which are introduced and/or used first in Section 3, and so on.
The list does not include symbols which denote in some sense the negation
of the meaning of an another symbol e.g. f/. negates E and therefore f/. is
not in the list. For some symbols the list contains a relevant page number -
usually the defining occurrence of the symbol.

General mathematica! symbols

=>,<= Logica! implication
{:} Logica! equivalence
A., V Conjunction, disjunction
V Universa! quantification
1\ Generalised conjunction

Syntactical equality
Equality

{ } Set construction
{ I } Set comprehension
E Set memhership
0 Empty set
u Set union
n Set intersection

\ Set difference
c Set inclusion
u Generalised union

B. LIST OF SYMBOLS

11 11
p

(C)*
x
(')
(' ... ')
lN
<
+
o, 1,2, ...
f:A--.B

R-t

i.h.
».
0

Cardinality
Powerset
Function space
The set of sequences with elements from C
Cartesian product
Pair
Tuple (= sequence)
The set of natural numbers
Less than or equal to
Addition
Natural numbers
f is a function from A to B
Substitution
Inverse of relation R
Induction hypothesis
Functional abstraction
Function composition

Symbols concerning constructs

m1,m2,··· Typical modules
lR Typical algebrak system with preorder
A Typical dornain
R Typical preorder

Fi Typical function
J Typical index set of functions
a; Arity of function Fi
C; Typical constant
I Typical index set of constauts

!i Typical function symbol
C; Typical constant symbol
Xo,Xt, X2 Variables
Tli Set of terros for lR
Sig Signature of ...
= Equality symbol
c Preorder (symbol)

F= Truth (in a model)
cp,t/J Typical formulae
lRl lN as algebraic system with preorder
s Arbitrary set
lR2 P(S) as algebraic system with preorder
CA The Class Algebra of COLD

117

54
55
55
55
55
55
55
55
55
56
56
56
56
56
56
56
57
56
58
58
58
58

118 CHAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

CDescription
CSignature
CRenaming
c
E
T
D

•
+

The set of class descriptions
Thesetof class signatures
The set of class renamings
Implementation relation of CA
Signature operation
Embedding of class signatures
Export
Application of renaming
Import

Symbols concerning lambda calculus

a,r

Xo, Xb • • •

x[
c
A,B,P,Q,R,S,Z
x,y,z
FV()
[:= l
T
1\

A
[~]
r
1-
0=t)
(f=2)
(context.)
(refl.)
(trans.)
(>.It)
(>.12)
(ap.)
(7r)

Classica! Contraction rule
Lambda calculus based on rule (1r)
Abstractor (symbol)
Set of terms for À?r

Basic type symbol
Typical type symbols
Constructor for type symbols
Variables
Typical variabie of type r
Partial order (symbol)
Typical elements of AIR
Typical variables
Set of free variables
Substitution in a lambda term
Constant true
Conjunction
Implication
Conjuction (etc.)
Formula ~ as an assumption
Typical context
Derivation symbol
Rule of À?r (algebraic system oracle)
Rule of À?r (algebraic system oracle)
Rule of À?r (context rule)
Rule of À?r (reflexivity)
Rule of À?r (transitivity)
Rule of À?r (lambda introduction)
Rule of À?r (lambda introduction)
Rule of À?r (application)
Rule of À?r (partial contraction rule)

58
58
58
58
58
58
58
58
58

60
60
61
62
61
61
61
62
62
62
63
63
62
67
63
63
63
64
64
64
64
65
65
65
66
66
66
66
66
67

B. LIST OF SYMBOLS 119

(=I) Rule of À1r (= introduction) 68
(subst.) Rule of À7r (substitution) 68
m+ Model for À1r 70
(mon.) Rule for monotonicity 73
À11"mon Version of À7r with built-in monotonicity 73
!Rt,on Model for À11"mon 74
-7 One step 1r Reduction 74 - 1r Reduction 74
-,.. 1r Equality 75
SN Strong normalisation property 76
À{J Calculus with {3 instead of 1r 76
c,c .. 'Computable' terms 77
c· .. 'Substitutive-computable' terms 78
() Diamond property (confl.uence, Church-Rosser) 80
A Terms of classical simple-typed À-calculus 79

Coding: AIR -t A 79
i-- Reduction with at least one step 80

Symbols concerning components

Symbol serving as a placeholder for constructs 84
The set of triples (x, P, Q) 84
Thesetof components 84
Typical element of AR U {prim} 84

c Typical component 84

Symbols concerning designs

DR,D The set of designs 86
d,d',d",r Typical designs 86
cset() Set of componentsof a design 86
d(i) The j-th sub-design of d 86
.- Symbol used in concrete syntax of designs 86
c Symbol used in concrete syntax of designs 86
system Symbol used in concrete syntax of designs 86
wf Well-formed 87
i,j,k,l,n,m Typical natura! numbers 87
gbc Glass-box correct 87
bbc Black-box correct 88
.M, [~ Meaning function for designs 91
À; Lambda with index 92
Ak Set of terms with indices 92
11"j reduction of index j 93

120 CHAPTER 2. A FORMALISATION OF DESIGN STRUCTURES

'Ir' rednetion with indices 93

I I mapping forgetting indices 93
.M'

'
[]' Meaning function withindices 94

omr Outermost reducible 95
1mr Innermost reducible 96
unf(d) U nfolding of d 97
ak,Pk Typical substitutions 97
s Typical sequence of substitutions 97
gbc-gb-mod gbc-preserving glass-box modification 100
bbc-gb-mod bbc-preserving glass-box modification 100
gbc-bb-mod gbc-preserving black-box modification 101
bbc-bb-rood bbc-preserving black-box modification 102

Symbols concerning Model Construction

cp(z) Interpretation onder assignment z 112
*r Interpretation of undefined terros 110
Ao Basic domain 111
Au-+r Function domain 111
z[x--+ a] Modification of an assignment 112
Typ Set of type symbols 112
*r Maximal element 111

Chapter 3

Correctness-Preserving
Transformations of Designs

3.1 Introduetion

121

In this chapter we want to study correctness preserving transformations of
designs. We refer to Chapter 2 for the definition of the syntax and the
semantics of designs. In Chapter 2 we investigated already a number of
simple transformations such as the black-box correctness preserving glass
box modifications (bbc-gb-mod). These modifications take one design as an
input and yield one design as a result. Now we shall also consider binary
operations (*• o) on designs. This implies that we consider the construction
of a design by fitting tagether two designs. Conversely, these operations can
be used for descrihing the process of splitting a given design into smaller
designs. The interesting point, of course, is that under certain conditions
the result of applying a binary operation to two bbc designs is a bbcdesign
again. We must investigate these conditions and the algebraic laws that hold
for the binary operations (both at the level of designs and of their semantica
in terms of À1r, via []]) . It turns out that in order to define these opera ti ons
on designs it is convenient to use sequences within À?r. Therefore weneed an
extension of the À?r-calculus. Such an extension is given in appendix A.

In Section 2 we give a new definition of the set of designs. This definition is
somewhat more general than the definition given in Chapter 2. Furthermore
we discuss two conditions on designs which enable us torestriet ourselves to
a convenient kind of designs.

InSection 3 we shall investigate several operations on designs. We shall have
binary operations * and o. We briefly investigate a binary operation U which
however turns out to be somewhat disappointing. We also have two unary

122 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

operations called bot and top. Furthermore there are two binary predicates
called gbv and bbv. In this way we obtain an algebra of designs. At the end
of Section 3 we shall include a summary of this algebra of designs.

In Section 4 we shall investigate roodels of the development process which
descri he design creation. Therefore we shall start with a discussion of the val
idation of a given design with respect toa given machine&user-context. We
shall describe roodels of the development processas highly non-deterministic
design-programs. These design-programs are of an imperative nature, by
which we mean that they may contain assignment statements. Weneed a
simple language which serves as a design-development language in which we
express these design-programs. Such a language, inspired by COLD, but pre
cisely tailored to our needs is given in appendix B. InSection 3.4 we include
a brief sketch of the main ingredients of this design-development language -
see subsection 3.4.3. The binary operation o will play a role in our discussion
ofvalidation. The binary operation * will he used in our description of design
creation.

In Section 5 we shall discuss the evolution of a given design with respect to its
context in conneetion with issues of design validation. We shall present some
simple roodels of the development process which deal with design evolution.
The binary operation o will he used in our description of design evolution.

The fact that we can partition designs and reassemble them again makes it
possible to discuss roodels of the development process where two (or more)
developers each operate on a part of a design such that when each of them
has finished his part, their results are fitted tagether to yield a new design
which is both bbc and valid. We shall refer to this type of development
processas parallel development. Both binary operations * and o will he used
in our description of parallel development. Section 6 is devoted to design
partition and to parallel development.

In this chapter we shall focus on those aspects of the software development
process which are connected with the idea of structuring the software prod
uct as a design. In view of the fact that the notion of a design is a for
malisation of the approach of having 'black-box descriptions', this focusing
leadsus to an investigation of concepts which deal with the manageability of
the software development process: top-down development, layered designs,
validation, design evolution. It will he the 'leitmotiv' of this chapter that
whenever possible we shall cast the relevant notions in the form of designs
and algebrak operations on designs.

The roodels of the development process described in this chapter are most
certainly not meant to he exclusive: any technique for obtaining valid and
correct designs is a good technique as such. Rather than being prescriptive,

3.2. DESIGNS 123

we aim at the formulation of some general principles which may he of help
for realistic development processes.

The proofs of the theorems and lemmas in this chapter are given with a level
of detail which is meant for convincing the reader rather than for enabling
mechanica! proof-checking.

The Sections 1, 2, 3, 4, 5 and 6 constitute the main line of development of this
chapter whereas appendix A and appendix B are rather technica! digressions.
Definitions from appendix A are used in Sections 2 and 3. Definitions from
appendix B are used in Sections 4, 5 and 6. It has been tried to make both
appendix A and appendix B independent of the Sections 1-6. We suggest the
following order to the reader: 1-2-3-4-5-6 (possibly reading parts of A and
B on a need-to-know basis), foliowed by appendices A and B. Appendix C
contains a list of symbols.

3.2 Designs

3.2.1 Designs where the system is a sequence

In this section we give a new definition of thesetof designs. This definition is
somewhat more general than the definition given in Chapter 2. Furthermore
we introducesome notation.

In Chapter 2 the set Dfll of designs has been defined for a given algebraic
system with preorder lR. This notion of 'design' is not symmetrie in the
sense that a design can have several prim components whereas its system
consistsof just one term. This fact seems to he an obstacle when we want to
define binary operations on designs. We view it as an obstacle because we
want to define an operation o on designs where we replace the prims of one
design by elements from the system of another design. Therefore we extend
our definition of 'design' and we shall use the À1r-calculus with sequences
as given in appendix A. We consider an algebrak system with preorder lR.
Thesetof termsof À1r-calculus is denoted as Afll. Among the terms we have
so-called sequences which are of the form [P11 ••• , Pml and which have a type
of the form (r11 ••• , r m); the introduetion of sequences does not disturb the
nice properties of À?r such as confluence and strong normalisation. The set
Cfll of components is defined as in Chapter 2, except for the fact that we use
the À1r-calculus with sequences.

Definition 3.2.1 Consider the À?r-calculus with sequences and whose set of
terms is Afll. Consider also C1R which is the set of components constructed
over this Afll. Each component is either a triple (x, P, Q) or (x, prim, Q) for

124 CHAPTER 3. CORRECTNESS PRES. TRANSFORMAT/ONS

P, Q E AR. Then the set D~ of designs is defined as the subset of (CR)• x ÀR

given by

{(cl, ... ,cA:),S) IS has a type (rt, ... ,rm)}

for k ~ O,m ~ 0, (k and m not fixed). 0

So in fact we have very much the same kind of designs as in Chapter 2. The
only differences are that now we adopted a richer set of lambda terros and
that now the system of each design must be a sequence. We adopt an obvious
notation for components and designs with symbols :=, Ç and system. Note
that we can embed DIR in D~ by mapping ' ... system S' to ' ... system [SJ'.
We adopt the same definition of wellformedness (wf), glass-box correctness
(gbc), black-box correctness (bbc) and semantics ([]) etc. for designs as in
Chapter 2. For the remainder of this chapter we restriet ourselves to designs
from D~.

Example 3.2.2 Consider !R1 = (IN,~. { + }, {0, 1, 2, ... }). The following de
sign is an element of D~ because its system is a sequence.

x
y

system

prim Ç 7
x+2 Ç 9
[x,y,x+y+1]. 0

Remark 3.2.3 It is important to realise that the mechanism of introducing
components, 'x := P Ç Q' say, is much more complex than an abbreviation
mechanism as in 'x := P'. The essential difference is that with components
non-trivial issues of information-hiding arise. Yet we think that it is a good
idea to employ an abbreviation mechanism as well: it should be possible
to write 'x := P' and from then on use x, knowing that x can be replaced
by P. Abbreviations which have a scope consisting of one design are called
local. It is possible to view a local abbreviation 'x := P' as a special kind of
component. Abbreviations which have a scope consisting of a collection of
designs are called global. Wethink that both a facility for local abbreviations
and a facility for global abbreviations are useful. In this chapter we shall not
investigate such abbreviation facilities any further. 0

We shall need some notation.

Definition 3.2.4 Let d be a wf design.

(i) cset(d} := thesetof component narnes of d,

(ii) sys(d} := the set of comp. narnes that occur freely in the system of d.

3.2. DESIGNS 125

Note that sys(d) Ç cset(d). D

Definition 3.2.5 (arity). (i) Fora design d, the arity of d, notation arity(d)
is the pair ((o11 ... , on), (T1, ... , Tm)) where the O"IJ ••• , On are the types of the
narnes of the prim components of d and where (T1, ... , Tm) is the type of the
system of d.

(ii) For a design d, the reduced arity of d, also denoted as arity(d) is the pair
(n, m) where nis the number of prim componentsof d and where mis the
length of the system of d. 0

Throughout this chapter we shall restriet ourselves to designs where all glass
box descriptions have type 0 and where the system has type (0, ... , 0), i.e. all
system elements have type 0. This restrietion gives us the advantage that we
need not worry about the types of terms and the arities of designs. Under
this restrietion it will be suftkient to employ the reduced arity only. The
restrietion is by no means essential and the extension of our definitions and
results towards arbitrary designs is straightforward. In view of this restrietion
we shall simply use the term 'arity' for 'reduced arity'.

We must he precise about equality of designs.

Definition 3.2.6 (=). Let dh d2 he wf designs. d1 = d2 means that d2 can
be obtained from d 1 by means of a systematic renaming of bound variables.
In this definition it is understood that both the variables bound by lamb
das and the narnes of components are considered as bound variables. lt is
also understood that clashes of free and bound variables must be avoided.
Sametimes we shall state explicitly that two designs d1 and d2 must have dis
joint sets of component narnes (cset(di) n cset(d2) = 0) in order that some
operation is defined. 0

Reeall that in Chapter 2 we defined a mapping []J from designs to lambda
terms, viewing [d] as thesemantics of d. (Of course it is possible to push
the process of semantica! interpretation one step further by interpreting [d]
in some model of À7r, but throughout this chapter we shall not do that.)
We shall say that two wf designs d1 and d2 are semantically equivalent if
[d1]J and [d2] are equal in the sense of À7r-calculus, i.e. if f- [d1] = [d2] is
derivable. Sametimes we write d1 =r 1 d2 if f- [d1 D = [d2]. Note that d1 = ~
implies d1 =rr 1 d2 by rule (refl.).

Even without referring to properties of the algebraic system with preorder !R,
each design can be shown to have a lot of semantica} equivalents. Under cer
tain conditions, this fact will give us some freedom in choosing a convenient
kind of representatives from the classes of semantically equivalent designs.
We shall have two such conditions, viz. a condition called directly specified

126 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

(abbreviated ds) to be introduced inSection 3.2.3 and glass-box correctness
(gbc).

3.2.2 Permuting Components

This section contains preparations which we shall need in Section 3.2.3 when
we shall introduce a condition called 'prims-first' (abbreviated pf). These
preparations include a lemma which we shall call the 'component swap lemma'.

From an intuitive point of view, it is clear that the order of the non-prim
components in a designtoa certain extent is irrelevant. First note that the
order of the prim components is relevant however, as is illustrated by the
following example.

Example 3.2. 7 Consider the algebraic system with preorder !R1 as before.
Let d and d' respectively be given by

y .- prim C:: 1
x .- prim C:: 2
system [x],

x .- prim C:: 2
y .- prim C:: 1
system [x].

Now [d ~ =)..y Ç l.Àx Ç 2.[x] whereas [d'] =).x Ç 2.J..y Ç l.[x] whence
9" [d] = [d']. 0

The next example shows a case where two componentscan be swapped.

Example 3.2.8 Consider the algebraic system with preorder !R1 as before.
Let d and d' respectively be given by

y .- 1 ç 2 x .- prim c:: 2
x .- prim c:: 2 y .- 1 c:: 2
z .- x+y c:: 4 z .- x+y ç 4
system [z], system [z].

Now [d] = (J..y Ç 2.J..x Ç 2.(J..z Ç 4.[z])(x+y))1 and f- [d] = J..x Ç 2.[x+l].
Also [d'] = Àx Ç 2.(J..y Ç 2.(J..z Ç 4.[z])(x+y))l and f- [d'] =).x Ç 2.[x+1].

0

We formalise the idea behind the latter example below.

Lemma 3.2.9 (Component swap lemma). Let d and d' be wf designs. Let
d be gbc. Let d' be obtained from d by swapping two adjacent components,
where at least one of thesecomponentsis non-prim. Then we have:

3.2. DESIGNS

(i) d' is gbc,

(ii) d is bbc {:} d' is bbc,

(iii) f-- [d] = [d'].

Proof. Let d and d' respectively he given by

X1 .- pl c Ql X1 .-

X; .- P; c Q; Xi+l :=
Xi+l := pi+l c Qi+l X; .-

Xn .- Pn c Qn Xn .-
system [MJ, system

127

pl c Ql

P;+l c Q;+l
P; c Q;

Pn c Qn
[MJ.

First of all we note that since dis wf, x;+l does not occur in P;, Q;, P;+l and
Qi+l · Similarly, since d' is wf, x; does not occur in P;, Q;, Pi+l and Qi+l·

(i) We know that d is gbc and we must prove that d' is gbc. Throughout
this part (i) we shall employ several of the derived rules of >.1r as worked
out in Chapter 2 (weakening, cut-rule etc.). Clearly, for all components but
for those named x; and Xi+l! the correctness condition is not affected by the
swapping. The correctness of the component named x; in d' follows from
its correctness in d by weakening. For the component named Xi+l in d' we
reason as follows. If P;+l = prim then the correctness condition is trivially
true, so we assume that P;+l "t prim. Let us consider the case where also
P; t prim. We use the fact that dis gbc and hence r, [x; = P;] f- P;+l Ç Q;+l

where r is the context with i - 1 assumptions as given by the definition
of gbc. Now note that x; occurs neither in r nor in P;, P;+t, Q;+l· By
performing the substitution [x; := P;]) (both left and right of the ' f-') we get
r, [P; = P;] f- P;+l Ç Q;+l· Now we can use the reflexivity of= in >.1r and
the cut-rule to get r f- P;+l Ç Qi+l· We might summarise this by saying that
the assumption [x; = P;] does not play an essential role in the derivation of
P;+l Ç Qi+l· We have shown that the component named x;+l is correct in d'.
In the case where P; = prim we can have a similar reasoning. This shows
that d' is gbc.

(ii) We can show (=>) in a similar way as (i), where instead of an assumption
[x; = P;] we have an assumption [x; Ç Q;]. For the converse (-{=:) we note
that if d' is obtained from d by swapping, then also d can he obtained from
d' by swapping.

(iii) Since d is gbc, we can contract all abstraction-application pairs of [d]
which correspond toa non-prim component and we get f-- [d] = (.C[M])S
where

128 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

• .C is the sequence of abstractions >.x; Ç Q;.
for P; = prim with increasing j.

• S is the sequence of suhstitutions [x; := P;]
for P; ;t. prim with decreasing j.

Similarly let I- [d'll = (.C[M])S'. If P; = prim or Pi+l = prim, then x;
is hound in .C whereas the component named x;+l plays a role in S (or
conversely). In hoth cases the order of thesecomponentsin the design does
not matter, hy which we mean that (.C[M])S = (.C[M])S'. The remaining
case is P; :1- prim and Pi+1 :1- prim. Let S he given as Sl[xi+l := Pi+l][x; :=
P;]S2, then S' must he S1 [x; := P;][xi+l := Pi+1]S2. Now note that S and
S' are effectively the same suhstitutions hecause x; fJ. F V(P;+l) and xi+1 fJ.
FV(P;). This shows I- [dll = [d'l D

By repeated application of the component swap lemma it is also possihle to
swap components that are not adjacent. Some care is needed in order to
preserve the applicability conditions of the component swap lemma during
the intermedia te swap steps. Several cases arise and we show one of them as
a lemma helow.

Lemma 3.2.10 Let d and d' he wf designs. Let d he gbc. Let d' be ohtained
from d hy swapping two non-prim components. Then the same conclusions
(i), (ii) and (iii) as in lerrima 3.2.9 hold.

Proof. Let d and d' respectively he given hy

xl .- pl c Ql Xt .- pl c Ql

X; .- P; c Q; Xï+k:= P;+.~: c Q;+k

Xï+.t:= pi+k c Q;+k X; .- P; c Q;

Xn .- Pn c Qn Xn .- Pn c Qn

system [MJ, system [MJ.

which means that in d the two components to he swapped are separated
by k - 1 components in between. Our strategy is to move component i
downwards past component i+ k hy k swaps fust. The essential ohservation
is that since d' is wf, x; does not occur in P;, Q;, Pi+h Qi+h ... , P;+k , Qi+k·
Therefore the intermediate designs resulting after 1, 2, ... , k steps are all wf.
So for each swap the conclusions of the component swap lemma carry over to
the resulting intermediate design. In particular, the intermediatea are ghc.

As the second part of our strategy, we make component i+ k (hy which

3.2. DESIGNS 129

we mean x;+k := P;+k Ç Qi+A:) huhhle upwards hy k - 1 swaps. We can
apply the component swap lemma k -1 times. Note also that the k- 1 'in
hetween' components are allowed to contain prim's hecause the components
i and i + k are hoth non-prim. Hence in each swap, at least one of the
components involved is non-prim. 0

Very much in the same way we have that the conclusions of the compo
nent swap lemma also hold if the components are not adjacent, provided the
components to he swapped have no prim component between them.

3.2.3 The conditions 'pf' and 'ds'

We think that it is convenient to restriet ourselves to designs organised as
indicated hy the following condition:

Definition 3.2.11 (pf) Let d he a design. We say that dis prims-first (ab
hreviated pf) if its prim components occur hefore its non-prim components.

0

We give an example.

Example 3.2.12 Suppose that in the d~sign d given helow Pt, ... , Pm are
not prim. Then d is pf.

xl .- prim ç M1

Xn .- prim c: Mn

Y1 .- pl c: Ql

Ym .- Pm c: Qm
system [811 ••• , S!]. 0

Under a certain condition (called 'directly specified') to he worked out he
low, a design which is wf and gbc can be transformed into a semantically
equivalent pf design.

Definition 3.2.13 (ds). We say that a designdis directly specified (abbre
viated ds) if it is wf and no hlack-hox description contains the name of a
component. 0

Let us have a look at an example of a design which is not ds. Consider the
algebraic system with preorder !R1 = (IN,::;, { + }, {0, 1, 2, ... }). Now consider
the following design:

130 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

Example 3.2.14

x .- prim c 7
y .- p c x
z .- prim c y

system [811 ... ,s,]. D

In order to see that there is something strange with this design, assume that
we are interested in choosing P such that we can show the correctness of the
second component, while adopting black-box correctness. We must prove
P Ç x under the assumption x Ç 7. Since we canthink of Ç as the ordering
~ on natural numbers, we are very limited in finding some P ~ x if all we
know about x is x ~ 7 (of course we could take x itself). Furthermore, as
another problem, it should he he noted that that if we swap the second and
the third component, we get a design which is not even wf. The condition
ds serves to avoid this and similar situations.

Lemma 3.2.15 Let d be a ds design. Then there is a wf and pf design d'
such that

(i) d is gbc {:} d' is gbc,

(ii) d is bbc {:} d' is bbc,

(iii) dis gbc =? f- [dD = [d'l ·

Proof. The fact that d is ds enables us to put the prim components be
fore the non-prim components without violating the condition wf. The fact
that this transformation preserves glass-box correctness, black-box correct
ness and semantica follows by repeated application of the component swap
lemma 3.2.9. The possibility to apply lemma 3.2.9 repeatedly depends on
the fact that after each swap we get a wf and ds design again; this is the
case since the design is ds and one of the components involved in the swap
is always a prim component moving upwards. D

We are often interested in designs which are ds and gbc. In fact we shall
prefer designs which are even bbc but this condition seemsnot needed here
yet. If all designs are ds and gbc then by lemma 3.2.15 we can transform each
design into an equivalent pf one. Therefore we shall from now on focus on
designs which are pf and also ds. It follows that for each algebraic operation
which we shall define, we shall have to verify that the result of applying the
operation to pf and ds arguments yields a pf and ds design again.

We end this section with a lemma which sometimes is useful for simplifying
designs.

3.2. DESIGNS 131

Lemma 3.2.16 (Component cancellation lemma). Let d and d' be pf 1\

ds designs. Assume that in d there are components (x, := P, Ç Q1) and
(x; := x1 Ç Q1) where i -:/; i- Let d' be obtained from d by removing the
component (x; := x1 Ç Q1) and replacing all occurrences of x; by x,. Then
the following hold:

(i) d is bbc => d' is bbc,

(ii) 1- ffdD = ffd'].

Proof. Let d and d' respectively be given by

xl .- pl c Ql XI .-

x, .- P, c Q, x, ·-

X;-1:= P;-1 c Q;-1 Xj-1:=
Xj .- x, c Q, Xj+l:=
Xj+l:= P;+l ç Q;+l

Xn .-
Xn .- Pn c Qn system
system s,

pl c Ql

p, ç Q,

P;-1 c Q;-1
P;+I[x; := x1] Ç Q;+l

Pn[x; := x,] Ç Qn
S[x; := x1].

(i) Components named xh ••• , Xj-l are correct in d iff they are correct in d'.
Fora component (xk := Pk Ç Qk) with j < k ~ n the correctness condition
in dis

r, [x; ç Q;], [x;+l ç Q;+l], ... '[xk-1 ç Qk-1] f- pk ç Qk ... (*)
and in d' it is
r, [x;+l Ç Q;+t], ... , [xk-1 Ç Qk-1J f- Pk[x; :=x,] Ç Qk ... (**)
where r abbreviates [x1 Ç Q1], •.. , [x;_1 Ç Q;- 1]. Assume (*). By perform
ing the substitution [x; := x,]) (both to the left and right of the 'f- ') we get
f, [x, Ç Q,], [x;+l Ç Q;+I], ... , [xk-1 Ç Qk-1J f- Pk[x; := x,] Ç Qk. Here we
used the fact that Xj does not occur in r and hence r[x; := x,] = r. Now
note that the assumption [x, Ç Q1] is already in r. This shows (**).

(ii) Consider the term [d]. This term contains the abstraction-application
pair (>.x; Ç Q1• ···)x; which corresponds to the component (x; := x1 Ç Q1).

This abstraction-application pair occurs in the scope of an abstraction >.x, Ç
Q1• and therefore it can be contracted via 1r-reduction. This 1r-reduction
yields precisely [d' n. 0

Remark 3.2.17 (Strengthening of the component cancellation lemma). The
proposition that in the component cancellation lemma 3.2.16 we have d' is
bbc => dis bbc, (i.e. the converse of (i)) is false. This can be shown by the

132 GHAPTER 3. GORREGTNESS PRES. TRANSFORMATIONS

following counterexample. Let the pf 1\ ds designs d and d' respectively he
given as

x1 .- prim C Q1
x2 ·- Xt Ç Qt
Xs .- (>.z Ç x1.Q2)x2 Ç Q2
system S,

Xt .- prim Ç Q1
Xs .- (.Xz Ç Xt.Q2)Xt Ç Q2
system S.

Now d' is hhc hecause r (.Xz ç Xt.Q2)Xt = (rule 11", refl.) Q2[z := Xt] = Q2 ç
(example 2.3.15) Q2 whereas in d we can not prove the hlack-hox correctness
of the third component.
If for d and d' as in the component cancellation lemma 3.2.16 we have addi
tionally that there is no glass-hox description Pk (j + 1 ~ k ~ n) in which
both Xi and x; occur then the converse of (i) holds: d' is hhc => dis hhc. 0

Sametimes it will he convenient to represent a context (i.e. a set of assump
tions) hy a design and this is formalised in definition 3.2.18 helow.

Definition 3.2.18 Let the pf 1\ ds design d he given as

Xt .- prim c Mt

Xn .- prim c Mn

Yt .- Pt c Ql

Ym .- Pm c Qm
system [Sll ... ,SI]·

where Pt, ... , Pm are not equal to prim. Then wedefine the black-box context
of d and the glass-box context of d respectively as follows.

(i) fhh(d) is [xt Ç Mt], ... , [xn Ç Mn], [Yt Ç Qr], ... , [Ym Ç Qm],

(ii) f gh(d) is [x1 Ç M1], ... , [xn Ç Mn], [Yt = P1], ... , [Ym = Pm]· 0

3.3 Algebraic Operations on Designs

3.3.1 The operation *
The fust opera ti on on designs is called concatenation and is denoted hy *.
The concatenation of d1 and d2 yields a design containing the components of
d1 and the componentsof d2 and having as its system simply the concatena
tion of the systems of d1 and d2 •

3.3. ALGEBRAIC OPERATIONS ON DESIGNS 133

We have the following intuition. The designs d1 and d2 are considered as
'disjoint' designs and hy constructing d1 * d2, we simply take a kind of union
of their component sets. It is important to realise that designs d1 and d2
have no such thing as "free parameters" and that each design constitutes
very much a closed unit. Conversely, if we can split a design d into d1 and
d2 , such that d = d1 * d2 then this means that d consisted in fact already of
two unrelated parts.

This hinary operation * will he used in our description of design creation
(Section 3.4); there * turns out to he useful for descrihing the addition of
one ore more prim components to a given design. Furthermore, since * can
he used for descrihing the splitting of a design into two smaller designs, it
wil! he used in our description of design partition and parallel development
(Section 3.6).

Definition 3.3.1 (*). Assume pf 1\ ds designs d1 and d2 where cset(dt) n
cset(d2) = 0. Let d1 and d2 respectively he given hy

xl .- prim c M1 ul .- prim c N1

Xnl .- prim c Mn1 u"2 .- prim c N1>2
Y1 .- pl c Ql VI .- A1 ç B1

Y11 .- ph c Qzl v12 .- Az2 c Bz2
system [81, ... ,SmJ, system [T1, ... , T 1n2J

where P1, ... , Pz1 are not equal to prim and where A1. ... , Az2 are not equal
to prim. Then we define d1 * d2 as

xl .- prim c M1

Xnl .- prim ç Mn1
u1 .- prim ç N1

u"2 .- prim c Nn2
Y1 .- pl ç Ql

Y11 .- Pzl c Qzl
vl .- A1 c B1

v12 ·- A12 C Bz2
system [Sb ... , Smp T1, ... , T1n2l·

Note that d1 * d2 is a pf 1\ ds design again. Note also that if arity(dt) =

134 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

(n1, mt} and arity(d2) = (n2, m2), then arity(d1 * d2) = (n1 + n2, m1 + m2)·
Finally note that cset(d1 * d2) = cset(di) U cset(d2). 0

In Section 3.1 we already announced an algebra of designs. We shall now
show two simple algebraic laws which state that the set of pf 1\ ds designs
together with the operation * constitutes a monoid. Strictly speaking, it is a
partial monoid, but when we take into account that we always can perform
a systematic renaming, we can also view it as a non-partial monoid.

Lemma 3.3.2 (Algebraic properties of *). Let d, db d2 and d3 he pf 1\ ds
designs and let e = system []. Then d * e and e * d are defined and we have

(i) d * e = e * d = d,

(ii) (dl* d2) * ds = d1 * (d2 * ds)

provided in (ii) everything is defined, i.e. cset(d,) n cset(d;) = 0 for i =j:. j.

Proof. Directly from definition 3.3.1. 0

Of course we are also interested in the behaviour of* with respect to glass
box correctness (gbc) and black-box correctness (bbc). Since the intuition
behind * is that of taking the union of the component sets of two 'disjoint'
designs the following should not come as a surprise.

Lemma 3.3.3 (Correctness-preserving properties of*). Let d1 and d2 he pf
1\ ds designs with disjoint sets of component names.

(i) d1 and d2 are gbc {::} d1 * d2 is gbc,

(ii) d1 and d2 are bbc {::} d1 * d2 is bbc.

Proof. (i) Let d1 and d2 he as in definition 3.3.1. Throughout this part (i)
we shall employ several of the derived rules of À7r as worked out in Chapter
2 again (weakening, cut-rule etc.). We show(=>) first. Assume that both d1
and d2 are gbc. We must show that d1 *d2 is gbc. If in showing the correctness
of some component in d1 we have the condition r 1- P; ç Q;, where r is the
context as given by the definition of gbc, then the same component appears
also in d1 * ~ with correctness condition f' 1- P; Ç Q; forsome f' 2 r. By
weakening it can he shown that r 1- P; Ç Q; implies f' 1- P; Ç Q;. Therefore
this component is also correct as a component in d1 * d2. In a similar way
can see that each component from d2 is also correct in d1 * d2.

Next we shall show(-<=). Assume d1 * d2 is gbc. First we must show that
d1 is gbc. Consider a non-prim component in d1 * d2 which comes from
d1. Suppose that we have the correctness condition f' 1- P; Ç Q; for this

3.3. ALGEBRAIC OPERATIONS ON DESIGNS 135

component in d1 * d2 • We must prover 1- P; Ç Q; for the samecomponent
in dl> and we have r' = r u ~ for some set of assumptions ~-
~ contains assumptions of the form [u, Ç N 1] for 1 ~ i ~ n 2 where each u1

occurs at most once in the left hand side of an assumption. Since ~ sterns
from d2, we have u, tf. cset(di) and hence the u, do not occur freely in r or in
P;, Q;. Therefore the assumptions in ~ do not play an essential role in the
derivation of P; Ç Q; (show this hy again using the technique of suhstituting
hoth left and right of the '1-') . Hence r 1- P; Ç Q;. This shows that d1 is
ghc. The fact that d2 is ghc can he shown in a simHar way where we deal
with non-essential assumptions [x, Ç M,] for 1 ~ i ~ n1 and [y, = P,] for
1 ~i~ ll .

(ii) Similarly as (i). 0

Note that neither d1 * dz = d2 * d1 (ohvious) nor 1- [d1 * d2 D = [dz * d1 D -
essentially for the same reasans that forhid us to swap prim components.

The following lemma states that the operation * on designscan he interpreted
(via [n as the operation * of the À1r-calculus with sequences (see appendix
A).

Lemma 3.3.4 (Semantics of*). Let d1 and d2 he pf I\ ds and ghc designs
with disjoint sets of component names, then we have

Proof. Let d1, d2 he given as in definition 3.3.1. Since d1 * d2 is ghc, we
can contract all ahstraction-application pairs of [dl * dz n which correspond
to non-prim components and we get 1- [d1 * d2 n = .C1.C2 ([Sf]S2S1) where

• .C1 is the sequence of ahstractions >.x; Ç M;. for 1 ~ j ~ n1
with increasing j,

• .C 2 is the sequence of ahstractions >.u; Ç N;. for 1 ~ j ~ n2

with increasing j,

• Sz is the sequence of suhstitutions [v; := A;] for 1 ~ j ~ l2
with decreasing j,

• S1 is the sequence of suhstitutions [Y; := P;] for 1 ~ j ~ l1

with decreasing j.

Now we have the following calculation in À1r-calculus:

1- [d1 * dz n = .C1.Cz([ST]SzSt)

= .Cl.C2[BS1fSz]

136 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

~ .C1.C2([S St] * [i S2])

~ .Ct([S]St) * (.C2([f]S2))

= [dd * [~].

3.3.2 The operation o

0

The second (partial) operation is called composition and is denoted by o.
It is related to functional composition, usually also denoted by o. Roughly
speaking d1 o d2 is the design which is obtained by appending d1 to d2 while
replacing the prims of d1 by the elementsof the system of~- Furthermore
there is a notion of validation, by which we mean that we shall define when
the composition of d1 with d2 is valid. In Section 3.4.3 we shall argue that
this use of the terros 'valid' and 'validation' is consistent with the usual
terminology (as used in e.g. [1]).

This hinary operation o will play a key role in the discussion of valida
tion (Section 3.4.3) and in the description of design evolution (Section 3.5).
Furthermore o will he used in the description of parallel development (Sec
tion 3.6).

Definition 3.3.5 (o).
Assume pf 1\ ds designs d1 and d2 where cset(d1) n cset(d2) = 0. Let d1 and
d2 respectively he given by

X1 .- prim c M1 Zt .- At ç B1

Xn .- prim c Mn Zl .- A1 c B1
Yt .- pl c Ql system [St, ... ,Sn]·

Ym .- Pm c Qm
system L,

We assume that P 1, ••• , Pm are not prim, whereas some of the A; may he
prim (1 ::; i ::; l). We define d1 o d2 as the design given by

Zt .- At c Bt

Zl .- A1 c B1
Xt ·- St c Mt

3.3. ALGEERAIO OPERATIONS ON DESIGNS 137

Xn .- Sn c Mn
Y1 .- pl c Ql

Ym .- Pm ç Qm
system L.

N ote that d1 o d2 is a pf 1\ ds design again. N ote also that if arity(dl) = (n, k)
and arity(d2) = (h, n), then arity(d1 o d2) = (h, k). D

The design d1 o d2 can be viewed as a 'layered' design with layers d1 and d2.

Remark 3.3.6 We get a highly intuitive view of the construction of d1 o ~
if we ornit the keyword system in d2 and the keywords prim in d1 and write
the system of d2 as a column vector. We show this below. Write d2 as

Z1 .- A1

Zl .- A1

[;J
and write d1 as

xl .-

Xn .-
Y1 .- pl

Ym .- Pm
system L.

Now one can view the construction of d1 o ~ as a matter of plugging the
system of d2 into the hole corresponding to the prims of d1. D

We have one simple algebraic law for o.

Lemma 3.3. 7 (Algebraic properties of o). Let d1, d2 and d3 be pf 1\ ds
designs.

provided everything is defined.

138 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

Proof. Directly from definition 3.3.5. 0

Remark 3.3.8 (i) There is no neutral element e0 such that for all designs d
we have doeo = eood = d. Note that e = system [] certainly does not do the
job, since in general the arity of e need not match the arity of an arbitrary
d.

(ii) If we would adopt a 'top' element T in À?r-calculus, then for any n, the
design en given by

x1 .- prim C T

Xn .- prim Ç T
system [x1 , ••• , Xn]

would have the property that for every design d with arity (m, n) the following
holds:
r [en o d] = [dl Therefore it would be possible to view such an en as a
left neutral element. There is no such right neutral element. This is because
when r [doe ll = [dj], then [doen must have the sameparameter restrictions
for its un-applied lambdasas [dl But the parameter restrictions [doe] come
from the black-box descriptions of its prim-components, which can not he
chosen to fit all d.

(iii) We could have defined d1 o d2 differently, e.g. by having no restrictions
on the arities of d1 and d2 • In that case the elementsof the system of d2 for
which there is no prim in d1 could appear again in the system ofthe resulting
d1 o d2 • In a similar way we could deal with the possibility that there are
prims for which there is no system element. If we would have defined d1 o d2

in such a way, we would have e = system IJ as a neutral element. 0

The following example shows one of the applications for the operation o.

Example 3.3.9 Let us assume that we have a library consisting of two im
plemented components and that we have a design d which must use thls
library. Let the library be given as a design dub· Let dub and d respectively
he given as

X1 .- pl c Ql x' 1 .- prim c Ql
X2 .- p2 c Q2 x' 2 .- prim c Q2
system [xt.x2], Xg .- Ps(x~, x~) Ç Qs

x • . - P4(x~,x~,x3) Ç Q4
system S(x~, x~, x 3 , x4).

The instantiation of d with dub can bedescribed by the composition do dub·

3.3. ALGEBRAIC OPERATIONS ON DESIGNS 139

We can simplify do dubtoa design d'. The designs do dub and d' respectively
are given as

X1 .- pl c Ql Xl .- pl c Ql
x2 .- p2 c Q2 x2 .- p2 c Q2
x' 1 .- Xt c Ql Xs .- Ps(xt. x2) Ç Qs
x' 2 . - x2 c Q2 x .. .- P4(x1, x2, xs) Ç Q4
Xs .- Ps(x~,x~) Ç Q3 system S(x1, x2, xs, x ..).
X4 .- P4(x~,x~,xs) Ç Q4
system S(x~, x~, Xs, x4),

The fact that I- [do dub~ = [d']] follows from the component cancellation
lemma 3.2.16. 0

In the above example we see that the facts that the library is modeled as a
design and that the components using it are modeled as a design introduce
some overhead. In the example this overhead consists of the components
(x~ := x1 Ç Qt) and (x~ := x2 Ç Q2). However the additional compo
nents can easily be removed, as shown by the example. The feasibility of
this approach in practice may depend on the existence of an abbreviation
facility which should provide for 'global' abbreviations (as mentioned in re
mark 3.2.3). If there is no such abbreviation facility, then the overhead due
to the duplication of black-box descriptions (the Q 1 and Q2 in the example)
may become too large.

We have one more algebraic law, in which both * and o occur. By way of
introduetion to this law we first give an example.

Example 3.3.10 Let the pf A ds designs d1 and d2 respectively be given by

x 1 := prim C A 1

x2 := A2 C A 3

system [A4],

Y1 .- prim C B1

Y2 .- B2 C Bs
system [B4]

and let the pf A ds designs d3 and d4 respectively be given by

Z1 . - prim Ç C1
z2 .- C2 C C3

system [C4],

u1 := prim C D 1

u 2 := D 2 C D 3

system [D4],

then the designs (d1 * d2) o (d3 * d4) and (d1 o d3) * (d2 o d4) respectively are
given by

Zt . - prim L Cl
u1 .- prim C D 1

Z1 . - prim L C1
Ut .- prim Ç D1

140 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

Z2 .- c2 c: Cs Z2 .- c2 c: Cs
1.1.2 .- D2 c: Ds Xt .- c,. c: At
Xt .- c,. c: At x2 .- A2 c: As
Y1 .- D,. c: B1 1.1.2 .- D2 ç; Ds
X2 .- A2 c: As Y1 .- D,. c: B1
Y2 .- B2 c: Bs Y2 .- B2 c: Bs ,
system [A4,B4], system [A4,B4].

The latter two designs are semantically equivalent by the component swap
lemma 3.2.9 provided they are gbc. 0

Lemma 3.3.11 (Interchange law for * and o). Consider pf 1\ ds designs dt.
d2 , ds and d4 • Assume that (d1 * d2) o (d3 * d4) is gbc, then

provided (d1 o d3) * (d2 o d4) is defined.

Proof. First note that the left-hand side of the equation must he defined -as
is easily seen by analysing the ari ties of d1 * d2 and d3 * d4 : The design (d1 * d2) o
(d3 * d4) has precisely the same components as the design (d1 o d3) * (d2 o d4).

Furthermore these designs have the same sequence of prim components: fust
the prim componentsof d3 , foliowed by the prim componènts of d4• These
designs also have the same system: the concatenation of the systems of d1

and d2 • Finally the fact that these designs are semantically equivalent follows
by repeated application of the component swap lemma 3.2.9. 0

Remark 3.3.12 The term 'interchange law' is taken from [2] (page 44).
In order to have an intuitive understanding of the interchange law we shall
consider a very simple algebraic system in which this law also holds. Consider
an algebrak system with walls as objects and with two operations: putting
one wal! next toanother and putting one wal! on top of another. Of course
we are given a number of brie/es. We can put one wall beside another wall:

We can put one wall on top of another wall:

Now we have

3.3. ALGEBRAIC OPERATIONS ON DESIGNS

But we also have

([I]o@J) * ([[Jo[QJ) =[IJ*[[]= [IT[J, @] [[] @IQ]

141

0

Very much in the same way as we have two notionsof correctness for designs,
we shall have two different definitions of 'valid', viz. glass-box valid and
black-box valid (written as gbv(d11 d2) and bbv(d11 d2) respectively).

Definition 3.3.13 Assume pf 1\ ds designs d1 and d2 such that d1 o d2 is
defined and let d1 and d2 be given as in definition 3.3.5.
(i) the pair (d11 d2) is glass-box valid (notation gbv(d1 , d2)) if

V i (1 ~ i ~ n) · r 1- S, Ç M,

where r := [z1 Ç B1], ... , [zh Ç Bh], [zh+l = Ah+tl, ... , [zz = Az], assuming
that h is the number of prim componentsof d2.
(ii) the pair (d1 ,d2) is black-box valid (notation bbv(d11 d2)) if

V i (1 ~ i ~ n) · l::l. 1- S, Ç M,

where l::l. := [z1 Ç Bt], ... , [zz Ç Bz]. 0

Before actually employing these notions gbv and bbv for formulating the
correctness-preserving properties of o, we have a look at a few simple prop
erties.

For the left neutral element en we have for all d that both gbv(en, d) and
bbv(en, d), provided the arities match. But gbv(d, en), bbv(d, en) need not
hold in generaL The proposition that for all d11 d2 we have bbv(d11 ~) =>
(d1 , d2 are bbc) just does not hold in generaL The counter-example is very
simple. Use !R1 as before and take the d2 with one component x := 2 Ç 1
and with system []. This is because bbv is about the "plug-ability" of~
with respect to d1 rather than about the internals of d1 and d2 • Similarly
glass-box validation does not imply glass-box correctness - as is easily seen
by consiclering the same counter-example.

As a non-trivial property we have bbv(d1 , d2) => gbv(d1 , d2), provided d2 is
glass-box correct. This can be shown by similar techniques as employed to
prove 'bbc(d) => gbc(d)' in Chapter 2.

Next we investigate the behaviour of o with respect to gbc and bbc. Intu
itively it is clear that the validation conditions gbv and bbv will play a role
here.

142 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

Lemma 3.3.14 (Correctness-preserving properties of o). Let d1 and d2 he
pf A ds designs.

(i) (d11 d2 are ghc A ghv(d11 d2)) => d1 o d2 is ghc,

(ii) (d11 d2 are hhc A hhv(d1,d2)) <=> d1 o d2 is hhc.

Proof. Let d1 and d2 he given as in definition 3.3.5. Let r and tl. he given
hy definition 3.3.13.
(i) Assume that d 1 and d2 are ghc and that ghv(d~, d2) holds. We must show
that d1 o d2 is ghc. We investigate three kinds of componentsin d1 o ~-

• A component from d2 has the same correctness condition in d 1 o d2 as
in d2.

• For a component (xi := Si Ç Mi) where 1 :::::; i :::::; n the correctness
condition is r, [x1 = St], ... , [xi-l = Si-I] f- Si Ç M •. This correctness
condition follows hy weakening from the assumption that ghv(d1, d2)
holds.

• For a component (Y; := P; Ç Q;) where 1 :::::; j :::::; m the correctness
condition is f, [x1 = 81], ... , [xn = Sn], [Yt = P1], ... , [Y;-1 = P;-t] r
P; Ç Q; (*).
Wehavef f- [St Ç MI], ... , [Sn Ç Mn] and hence f, [x1 = 81], ... , [xn =
Sn] f- [x1 Ç M1], ... , [xn Ç Mn] which at its turn together with the as
sumption that d 1 is ghc shows the condition (*).

(ii) We show (=>) fust. Assume that d1 and d2 are hhc and that hhv(dh d2)

holds. We must show that d1 o d2 is hhc. We investigate three kinds of
components in d1 o d2.

• A component from d2 has the same correctness condition in d1 o d2 as
in~-

• Fora component (xi := s. Ç Mi) where 1 :::::; i:::::; n the correctness con
dition is tl., [x1 Ç MI], ... , [xi-l Ç Mi-l] f- Si Ç M1• This correctness
condition follows hy weakening from the assumption that hhv(d11 d2)
hol ds.

• For a component (Y; := P; Ç Q;) where 1 :::::; j :::::; m the correctness
condition is tl., [x1 Ç M1], ... , [xn Ç Mn], [Yl Ç Q1], ... , [Yi-1 Ç Q;-1] f-
P; Ç Q;, which follows hy weakening from the assumption that d1 is
hhc.

N ext we shall show (<=). Assume that d1 o d2 is hhc. First we must show

3.3. ALGEBRAIC OPERATIONS ON DESIGNS 143

that d1 is bbc. For a non-prim component in dt. (Y; := P; Ç Q;) say,
the correctness condition is [x1 Ç M1], ... , [xn Ç Mn], [Yl Ç Ql], ... , [Y;-1 Ç
Q;-1]1-- P; Ç Q;. Now we note that the assumptions in À. do not play an
essential role in the derivation of P; Ç Q;. This shows that d1 is gbc.
For a component in d2 the correctness condition is the same as in d1 o d2 •

This shows that d2 is b bc. Finally we must show that bbv(dt. d2) holds,
i.e. for arbitrary i such that 1 ~ i ~ n we must show À. 1-- Si Ç Mi. Now
we note that the assumptions [x1 Ç M1], ... , [xi-l Ç Mi-l] do not play an
essential role in the derivation of the correctness condition for the component
(xi := Si Ç Mi) in d1 o dz. D

Remark 3.3.15 The proposition that we have

does not hold in generaL

The counter-example is as follows. Consider !R1 as before. Let d1 and d2

respectively be given by

y
z
system

prim C
y c
[y,z],

3
2

x .- 1
system [x].

2

We see that d1 is not gbc. The design d1 o dz is gbc. We give d1 o dz below:

x .- 1 ç 2
y .- x c 3
z .- y c 2
system [y,z]. D

We have a law for bbv which is somewhat similar to the interchange law of
lemma 3.3.11.

Lemma 3.3.16 (Interchange law for bbv). Consider pf 1\ ds designs dt. d2,

d3 and d4 such that the compositions d1 o d3 and d2 o d4 are defined.

Proof. The condition bbv(d1, ds) requires that one can prove that the system
elements of ds satisfy the restrictions of the prim components of d1 in a con
text given by d3 • The same facts must also be proved for bbv(d1 * d2, d3 * d4),

but now in the combined context of d3 and d4• We note that the assumptions
from d4 do not play an essential role.
The condition bbv(d2 , d4) requires that one can prove that the system ele-

144 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

mentsof d4 satisfy the restrictions of the prim componentsof d2 in a context
given by d4 • The same facts must also be proved for bbv(d1 * d2, d3 * d4), but
now in the combined context of d3 and d4 • We note that the assumptions
from d3 do not play an essential role. 0

The operation o on designs is interpreted (via []) as the operation o of the
.À?r-calculus with sequences (see appendix A).

Lemma 3.3.17 (Semantics of o). Let d1 and d 2 be pf 1\ ds designs and let
d2 be gbc.

Proof. As 3.3.4 (Semantics of *). 0

3.3.3 The operations bot and top

We would like to isolate the parts of d1 which for given d2 play a role in
bbv(d1,d2) and the partsof d2 which for given d1 play a role in bbv(d1,d2).

We cast these parts in the form of designs.

Definition 3.3.18 (bot, top). Consider a pf 1\ ds design d which is given as

xl .- prim c M1

Xn .- prim ç Mn

Y1 .- pl c Ql

Ym .- Pm Ç Qm
system [St. ... , St]

where Pt. ... , P m are not equal to prim. We de fine bot(d) and top(d) re
spectively as the designs

xl .- prim ç M1 xl .- prim c M1

Xn .- prim c Mn Xn .- prim c Mn

system [], Y1 .- prim c Ql

Ym .- prim c Qm
system [St.····s,]

3.3. ALGEBRAIC OPERATIONS ON DESIGNS 145

where it is understood that in top(d) only those components are retained
whose name (x; for some i with 1 ~ i ~ n or Y; forsome j with 1 ~ j ~ m)
occurs in the system [St. ... , S!]. Note that bot(d) and top(d) are pf 1\ ds
designs again. Note also that if arity(d) = (n,l) then arity(bot(d)) = (n,O)
and arity(top(d)) = (n', l) where n' ~ n + m. We call bot(d) the bottorn of d
and we call top(d) the top of d. 0

Remark 3.3.19 bot(d) and top(d) are not related to the idea of having
terms l. and T which are minimal and maximal with respect to Ç in À?r

calculus. A motivation of the terms bottorn and top wilt he given in re
mark 3.3.22 below. 0

We have a number algebrak properties.

Lemma 3.3.20 (Algebraic properties of bot, top). Consider a pf 1\ ds design
d and let e = system [].

{i) bot(bot(d)) = bot(d),

(ii) top{ top(d)) = top(d),

(iii) top(bot(d)) = e.

Proof. Directly from the definition 3.3.18. 0

The following lemma gives some algebraic properties which relate the unary
operations bot and top with the binary operations * and o.

Lemma 3.3.21 Assume pf 1\ ds designs d1 and d2 and let d1 o d2 he defined.

(i) bot(d1 * d2) = bot(dl) *bot(~),

{ii) top(d1 * d2) = top{dt) * top{d2),

{iii) bot(d1 o d2) = bot(d2),

(iv) top(d1 o d2) =top(dl)·

Proof. (i) and (ii) follow directly from the definitions 3.3.18 and 3.3.1.
whereas (iii) and (iv) follow directly from the definitions 3.3.18 and 3.3.5. 0

A pf 1\ ds design d for which bot{d) = d is called a bottorn design and a
design d for which top(d) =dis called a top design.

Remark 3.3.22 We have chosen the terms bottorn and top because in
o~r view these notions are related to the so-called top-down and bottorn-up
roodels of the software development process. For example in a top-down

146 CHAPTER 3. CORRECTNESS PRES. TRANSFORMAT/ONS

developrnent process one starts with a given top design and then adds corn
ponents and irnplernents cornponents, until the remaining prim cornponents
correspond to the primitives which actually are available. In a bottorn-up
developrnent process one starts with a given bottorn design and then adds
cornponents and adds systern elernents until the resulting design rneets the ac
tual requirernents of the user of the design. We shall investigate the top-down
and bottorn-up rnodels of the software developrnent processin Sections 3.4.4
and 3.4.5 respectively. D

The following lemma confirms our intuition that bot(d) is precisely the part
of d which is relevant for bbv(d, dt) and that top(d) is precisely the part of
d which is relevant for bbv(~,d).

Lemma 3.3.23 Consider pf 1\ ds designs d, d1 and d2.

(i) bbv(d,dt) {::> bbv(bot(d),d1),

(ii) bbv(d2, d) {::> bbv(~, top(d)).

Proof. Let d be given as in definition 3.3.18. Let d1 and d2 respectively be
given by

zl .- A1 c B1 vl .- prim c R1

ZJc .- A~c c B~c V! .- prim c R1
system [C1, ... ,Cn], w1 .- x1 c yl

Wh. .- x~~. c yh.

system L.

(i) bbv(d,d!) holds iff Vi (1 ::; i ::; n) · [z1 Ç BI], ... , [z~c Ç B~c] f- Ci Ç Mi,
which is precisely the condition bbv(bot(d), d1).

(ii) bbv(d2, d) holds iff Vi (1 ::; i ::; l) · [x1 Ç M1], ... , [xn Ç Mn], [Yl Ç
QI], ... , [Ym Ç Qm] f- Si Ç ~. The condition bbv(d2, top(d)) requires that
the sarne formulae Si Ç Ri can he derived, but with fewer assurnptions,
since the following assurnptions have been rernoved: those assurnptions [xi Ç
Mi] and those assurnptions [Y; Ç Q;] (1 ::; i ::; n, 1 ::; j ::; m) for which
the variabie { Xi or Yi) does not occur in the systern [S11 ... , Sl]. N ow (<=)
follows by weakening and (=>) follows frorn the observation that the rernoved
assurnptions do not play an essential role in derivation of the forrnulae Si Ç

~. D

The following fallacy is essentially due to the fact that glass-box correct
designs do not offer irnplementation freedom.

3.3. ALGEBRAIC OPERATIONS ON DESIGNS 147

Remark 3.3.24 The proposition that for pf 1\ ds designs dt and d2 we have

just does not hold in generaL

The counter-example is as follows

(
x:= prim C 1 y := 1 C 2)

gbv system [x]- ' system [y] - holds because [y = 1]1-- y Ç 1,

bv (
x := prim Ç 1 y := prim Ç 2)

g system [x] , system [y] does not, for [y ç 2]1f Y ç 1. 0

Reeall that we took the decision to cast the top of a design into the form of
a design. This can be viewed as the choice of a very specific representation.
Fora given design d2, we have top(d2) as the representation of the parts of
d2 which for given d1 play a role in bbv(dt,d2). First we note that the order
of the prim components in top(d2) is not relevant (from the current point
of view). This idea is formalised by introducing a binary predicate =pp·

Definition 3.3.25 Let d and d' be pf 1\ ds designs. We say that d' is a
prim permutation of d, notation d =pp d', if d' can be obtained from d by
permuting the order of the prim components. 0

Example 3.3.26 Let d and d' respectively be given by

X1 .- prim c M1 X2 .- prim c M2
x2 .- prim c M2 Xl .- prim ç M1
Xg .- p c Q Xg .- p ç Q
system [x1, x2, xs], system [xt. x2, xs].

We have d =pp d'. Of course we also have d' =pp d. 0

Lemma 3.3.27 Consider pf 1\ ds designs d1, ~ and d~ such that d2 = PP ~
and such that d1 o d2 is defined, then we have

Proof. Just note that bbv(d1, d2) is defined (in definition 3.3.13) as Vi (1 ~
i ~ n) ·À I- Si Ç Mi for suitable n, À, Si and Mi where the elementsof À

are derived from the components of d2, where the si stem from the system

148 GRAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

of d2 and the M; stem from d1. Finally reeall that the context /),. is a set
(of assumptions) and that therefore /),. is independent of the order of the
componentsin d2. 0

If we view a top design as a representation of the parts of a design d2 which
are relevant for hhv(d11 d2), then we might identify even more top designs
than indicated hy =pp·

Definition 3.3.28 Let d2 and d~ he top designs with arities (h, n) and (h', n)
respectively. Then we define

d2 =top d~ :{:} forall d1 with d1 o d2 defined:

(hhv(db d2) {:} hhv(dlo d~)). 0

If for two top designs d2 and d~ we have d2 =top d~ we say that d2 and d~ are
top-equivalent.

Example 3.3.29 Consider an algehraic system !R which provides a hinary
function with symhol + which is written in infix notation. Let the top designs
d2 and d~ respectively he given as

xl .- prim c M1 xl .- prim c M1
x2 .- prim c M2 x2 .- prim c M2
Xs ·- prim ç Ms x' .- prim c M1 1
system [x1 + x2,x1 + xs], xs .- prim c Ms

system [x1 + x2, x~+ xs].

Then d2 =top d~ hecause if we consider the composition of d2 (or of d~) with
some design d1 of the form

Y1 .- prim C R1

Y2 .- prim C R2

(constructing d1 o d2 or d1 o d~), then the validity conditions hhv(dt. d2) and
hhv(d1, d~) are equivalent:

hhv(dt, d2) {:} [xt Ç Mt], [x2 Ç M2], [xs Ç Ms]l- Xt + x2 Ç R1, x1 +xs Ç
R2

{:} [xt Ç Mt], [x2 Ç M2], [x~ Ç Mt], [xs Ç Ms]l- Xt +x2 Ç Rt, x~ +xs Ç
R2

{:} hhv(d, d~). 0

3.3. ALGEBRAIG OPERATIONS ON DESIGNS 149

In the above example we have transfonned the top design d2 into d~ where
d~ can he viewed as the concatenation of two simpler designs. This idea is
formulated in a general form in lemma 3.3.30 given below.

Lemma 3.3.30 Let d2 he a top design with arity (h, n). Then for all n', n" E
lN with n' + n" = n we can find d~, d~, k' and k" such that d~ and d~ have
arities (k', n') and (k", n") and furthermore

Proof. As in example 3.3.29 introduce additional prim components and
rewrite system elementsin termsof the narnes of these new components. In
this way it is possible to make the set of component narnes in the first n'
system elements disjoint with respect to the set of component narnes in the
remaining n" system elements. Then perroute the order of the components
such that first we have the components whose name is in the fust n' system
elements, foliowed by the remaining components. Finally take d~ and d~ in
the obvious way such that d~ * d~ =top d2. 0

Example 3.3.31 Consider an algebraic system !R which provides a binary
function with symbol + which is written in infix notation. Let the top design
d2 be given as in example 3.3.29. Then for n' = n" = 1 lemma 3.3.30 says
that there exist d~, d~ with d~ * d~ =top d2 • Indeed, we can take d~ and d~ as
follows

xl .

x2 .
system

prim C::
prim C::

[x1 + x2],

x' 1

x3 .
system

prim C::
prim Ç
[x~+ x3]. 0

Remark 3.3.32 For bottorn designs the situation is much easier. The most
interesting notion of equality is =n I· Furthermore each bottorn design d of
arity (n, 0) can be split for every n' and n" with n' + n" = n into d' and d"
with arities (n',O) and (n",O) such that d' * d" = d. 0

We see that =pp is nothing but a special case of =top and lemma 3.3.27 just
says that d =pp d' => d =top d'. The advantage of considering =pp is the fact
that = PP is a simple syntactical notion.

3.3.4 The operation ~

We shall briefly discuss a binary operation denoted by 11. The operation is
suggested by the transitivity of the implementation relation Ç. This opera
tion will turn out to be somewhat disappointing but nevertheless we believe

150 CHAPTER 3. CORRECTNESS PRES. TRANSFORMAT/ONS

that it is illustrative to see what goes wrong. Yet the idea behind the oper
ation seems attractive and we shall sketch one possible line of formalisation
to exploit it. The results of this section will not be used in the remainder of
this chapter (Section 3.6.5 being the only exception).

Definition 3.3.33 (11) Assume pf 1\ ds designs d1 and d2. Let d1 and d2
respectively be given by

Xl .- prim c:: M1 Xl .- prim c:: M1

Xn .- prim c:: Mn Xn .- prim c:: Mn

Y1 .- pl c:: Ql Y1 .- Ql c:: R1

Ym .- Pm c:: Qm Ym .- Qm c:: Rm
system L, system L.

So d1 , d2 have the samecomponent names, the same black-box descriptions
for the prim components, the same system and forthermore they have one
'column' in common. Then wedefine d1!1 d2 as

xl .- prim c:: M1

Xn .- prim c:: Mn

Y1 .- pl c:: R1

Ym .- Pm c:: Rm
system L.

N ote that d1 !1 d2 is a pf 1\ ds design again. N ote also that if arity(d1) = (n, k)
and arity(~) = (n, k), then arity(d1 11 d2) = (n, k). 0

Lemma 3.3.34 (Algebraic properties of 11).

Proof. Directly from the definition 3.3.33 0

The following remark shows that 11 lacks a desirabie property.

Remark 3.3.35 The proposition that we have

just does not hold in generaL

3.3. ALGEBRAIC OPERATIONS ON DESIGNS 151

The counter-example is as follows. Consider !R1 as before. Let d1 and d2

respectively he given by

x 1
y .- x
system [y],

c 2
c 2

x 2
y .- 2
system [y].

ç 3
ç 2

So both d1 and d2 are both bbcbut d1 U d2 is not bbc. We give d1 U d2 below.

x 1
y x
system [yJ.

c 3
c 2

0

The above is a bit disappointing, but when adopting glass-box correctness,
there is no problem.

Lemma 3.3.36 Assume pf 1\ ds designs d 11 d2 • Then we have

provided d1 U d2 is defined.

Proof. For each component use rule (trans.) and the fact that neither
the black-box descriptions nor the glass-box descriptions of d2 can contain
component names. 0

As a direct conseq uence of this lemma we also have d1 , d2 are bbc => d1 U d2

is gbc. Just use 'd1 is bbc => d1 is gbc' and 'd2 is bbc => d2 is gbc'.

It is not hard to see why U fails to preserve bbc. The obvious idea - which
is to suppose that rule (trans.) applies- fails because the facts P; Ç Q; and
Q; Ç R; are not given for the same set of assumptions. In particular the
assumptions Yi Ç Q; (j < i) are stronger than the Y; Ç R; which determine
the black-box correctness of d1 U d2•

As a possible solution, we could generalise the notions of correctness so as
not to have two notions gbc and bbc, but just one notion, 'correct' say, which
is parameterised over contexts - writing 'f -correct' for context r.

Definition 3.3.37 (r -correct) Let the pf 1\ ds design d be given as

x 1 .- prim C M 1

Xn prim C Mn

Y1 .- P1 C Ql

152 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

Ym := Pm
system L.

For a given context r we say that d is r -correct, if for every component
y, := P; Ç Q; we have

0

Reeall that r gb(d) denotes the glass-box context of d and that rbb(d) de
notes the black-box context of d (see definition 3.2.18). Now we get the
specialised notions gbc and bbc back in the sense that d is gbc {::} d is
r gb(d)-correct and similarly that d is bbc {::} d is rbb(d)-correct. (To see
these equivalences is not completely trivia!: for => we must use weakening
and for ç we must use that d is wf and that for each P; Ç Q1 the assumptions
Y; = Q; or Y; Ç Q; for j ~ i are non-essential).

With the above machinery of generalised correctness it is straightforward to
see precisely in which way U preserves black-box correctness.

Lemma 3.3.38 Assume pf 1\ ds designs d11 d2. Then we have

provided d1 U d2 is defined.

Proof. Just use transitivity for each component. 0

Using transitivity of Ç means to work by means of a certain type of step
wise refinement. For example, when constructing d1 U d2 we could consider a
y; := P; Ç Q; from d1 and a y, := Q; Ç R. from d2. Now this situation has
the interpretation that R. is a 'high-level' specification which is refined by
the 'intermediate-level' specification Q1, which at its turn is refined by the
'!ow-level' description P;.

A typical development process could be to construct the R. first, foliowed
by the Q1 and after that the P1• Another option is to work the other way
around, i.e. first the P;, then the Q; and the R.. Of course the length of
these sequences can also be extended to more than three.

The analysis of n also suggests a somewhat different line of development
where we do not generalise the notions of correctness, but rather generalise
the notion of design. This suggestion arises naturally from the observation
that when d1 U d2 is defined, d1 and d2 must have already much in common.
Therefore we could view them as partsof one generalised design. We do not
give forma! definitions here, but we rather give a sketch. We could adopt
generalised designs which are of the following form:

3.3. ALGEBRAIC OPERATIONS ON DESIGNS 153

X1 .- prim ç Mt

Xn .- prim c Mn

Y1 .- pl c Ql c R1

Ym .- Pm c Qm ç Rm
system L.

We conclude this section with mentioning the advantages and disadvantages
of these generalised designs over our earlier designs.

The main advantage is that generalised designs carry more information for
each component. The intermediate-level specifications (the Qi) can play
the role of 'part of a correctness proof' for each component. The second
advantage is that certain types of step-wise refinement - just as sketched
above- become correctness-preserving transformations of designs in a natura}
way.

The main disadvantage is that many different generalisations are conceiv
able: what about n instead of three descriptions for each component (the
Pi, Qi, Ri)? what about a different ni for each component? how should we
generalise ds and pf? do we besides gbc and bbc also allow for sarnething
like 'intermediate-box' correctness?. We expect that these technicalities tend
to complicate the theory significantly.

A second disadvantage is that it is not entirely clear how to adapt the map
ping [~ from designs to lambda terms to make it work for generalised designs.

3.3.5 Summary

We end this section with a summary of the algebra of designs. The signature
of the algebra of designs is summarised by the picture given below. We
did not include all predicates. E.g. the predicate = pp is not shown. The
collection of all pf A ds designs is shown as a circle. For the sake of the
picture we view predicates as functions to Boolean values. The set of Boolean
values is shown as a circle named Bool. The operations on designs are shown
as arrows. The arrow which has been labeled () corresponds with the
possibility to construct a design directly, without using algebraic operations
on designs. The constants e and en are given in lemma 3.3.2 and remark 3.3.8
(ii). We also give a number of equations and equivalences which correspond

154 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

with some of our lemmas. We write d1 =rr 1 d2 if 1- [d1]] = [~]].

*• o, ~

(} bbc,gbc
e, en bbv,gbv

bot, top

d*e=e*d=d
(dl * d2) * d3 = dl * (d2 * d3)
en 0 d =rr] d
(dl 0 d2) 0 d3 = dl 0 (d2 0 d3)

8

(d1 * d2) o (d3 * d4) =rr 1 (d1 o d3) * (d2 o d4)
bbc(dt) 1\ bbc(d2) <=? bbc(d1 * d2)
bbc(dt) 1\ bbc(d2) 1\ bbv(d1 ,d2) <=? bbc(d1 o d2)
bot(bot(d)) = bot(d)
top(top(d)) = top(d)
top(bot(d)) = e
bot(d1 o ~) = bot(d2)
top(d1 o d2) = top(d1)
bot(d1 * d2) = bot(dt) * bot(d2)
top(d1 * d2) = top(d1) * top(d2)
bbv(d1. d2) <=? bbv(bot(dl), d2)
bbv(db d2) <=? bbv(d1, top(d2))
bbv(d1 * ~,d3 * d4) <=? (bbv(d1,d3) 1\ bbv(~,d4))

Fig 3.1. The algebra of designs.

3.4. DESIGN CREATION 155

3.4 Design Creation

3.4.1 General

In this section we want to derive several design-programs which describe
the creation of a design. We shall use the design-development language of
appendix B for expressing these design-programs. A design-program can
be executed by a developer (or a team of developers). Since in general
our design-programs will be highly non-deterministic, the developer(s) must
make choices during the execution of a design-program. The fact that these
choices exist, corresponds with the necessity of 'creative freedom' for the
developer(s}. Sametimes we shall use the term 'model of the development
process' as a synonym for 'design-program'.

The derivation of such design-programs is quite non-trivia!. The control
structure of a design-program is not essentially complexer than that of a
classica! simple 'while program', but the point is that the design-programs
describe the manipulation of complex data types: designs, components etc.

Therefore we shall spend quite some effort to the presentation of an elaborate
example a bout a top-down development process first and only after that treat
the formalisation of the top-down design-program in a more general setting.
This has the advantage that during the forma! treatment of the top-down
design-program we can refer to the example. Once we have done the top
down design-program, the bottorn-up design program is relatively easy.

The next section (Section 3.4.2} is devoted to the example and after that we
praeeed with the derivation of two design-programs, which we begin in Sec
tion 3.4.3. Section 3.4.3 presents the common setting of our design-programs
which applies to the next two sections (3.4.4 and 3.4.5). Section 3.4.4 is about
top-down development. Section 3.4.5 is about bottorn-up development.

3.4.2 Top-down example

Befare embarking on a formal treatment of top-down and bottorn-up de
velopments, we first give an elaborate example of a top-down development
which is taken from the area of electronk digital hardware [3]. We have no
claim whatsoever that the hardware circuit of the example is efficient or fast.
In fact our main interest is not in hardware design at all, and the purpose
of the example is to illustrate the notion of design and some of the transfor
mation steps operating on designs. Of course we could take examples using
the ciass-algebra CA of COLD-K, but for illustrating the design concept it
is beneficia! to have a kind of 'stand-alone' example as well.

156 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

The example is about so-called logical circuits and the composition mecha
nisms for these are interconnection wirings. We have two kinds of descrip
tions for logical circuits, viz. equations and interconnection diagrams. The
equations are based on two-valued Boolean logic with constants O, 1, multi
plication (= and) such that 0.0 = 0.1 = 1.0 = 0, 1.1 = 1, addition (= or)
such that 0+ 0 = 0,1 +0 = 0+ 1 = 1 + 1 = 1 and inverting (= not) such that
0 = 1 and I= 0. We write x EB y for x.y + x.y. Logical circuits have so-called
ports, which act as a kind of variables (a,b, c, etc) and which are grouped
into two categories, viz. input ports and output ports. An equation is always
written with the output ports occurring at the left-hand side and the input
ports at the right-hand side of the equation. E.g. z = (a.b) is an equation
which specifies a 'nand' logical circuit with input ports a, b and output port
z. The interconnection diagrams represent algebraic terms corresponding to
some algebraic approach to logicai-circuit composition. We do not provide
a formalisation of these representation issues - although of course this could
be done. The interconnection diagrams may contain component narnes and
we assume that this is also the case for the terms represented by the inter
conneetion diagrams. Intuitively, the interconnection diagrams will speak for
themselves.

We shall use numbers such as 7400, 7404, ... to act as component names.
The use of these narnes is consistent with the terminology of the well-known
transistor transistor logic (TTL) family of integrated logical circuits [3].

Let us assume - for sake of the example - that it is our task to develop
a so-called four-bit adder. We need some notation to specify the four-bit
adder. For a bit-sequence b we write int(b) to denote the integer which is
binary represented by b. In particular, int(O,O,O,O) = 0, int(0,0,0,1) = 1,
int(0,0,1,0) = 2 and int(0,0,1,1) = 3. A four-bit adder is a logical circuit
with input ports a3, a2, a1, ao, b3, b2, bl> bo, output ports s4, s3, s2, s1, so and
which is specified by the equation int(s4,s3,s2,s1>so) = int(a3,a2,a1,ao) +
int(b3,b2,b1,b0) which we abbreviate as int(S) = int(a) + int(b). The compo
nent name of the four-bit adder is 74283. Therefore the top of the design d
to he developed is given by the following design.

7 4283 := prim
system [74283]

c (int(S) = int(a) + int(b))

This is the initia! design of the top-down development. With respect to
the available primitive building blocks, we adopt a minimalistic approach
by restricting ourselves to two simple logical circuits called nand-gate and
ground-connection. It is a well-known fact that these are sufficient to con
struct all other logical circuits. A nand-gate has two input ports a, b and

3.4. DESIGN CREATION 157

one output port z. It is specified by z = "{'a.ij. A ground-connection has no
input ports and one output port g, specified by g = 0. Therefore the bottorn
of the design d to be developed is given by the following design.

7400 .
GND .
system [J

prim
prim

c
c

(z = (a.b))
(g = 0)

N ow the top-down development can really begin. In order to decompose
the 7 4283 four-bit adder we employ a component providing for a so-called
single-bit full adder. A single-bit full adder is a logica! circuit with three
input ports a, b, c, and two output ports s and C0 • The ports c, and C0 are
usually known as 'carry-in' and 'carry-out' respectively. It is specified by the
equations s = a$ b $ c1 and c0 = a.b + c,.(a $ b). So s = 1 iff the number of
inputs that equal 1 is odd. Also c0 = 1 iff there are two or more inputs that
equal 1. We shall introduce a new component named 74183 to provide the
functionality of a single-bit full adder.

Using four instances of the 74183 and one ground-connection, the four-bit
adder can be implemented. This is known as a ripple-carry contiguration [3]
(p. 87). We refer to the following interconnection diagram as 74283IMPL.

C0 74183 C0 74183 Co 7 4183 c,r---uND

s s s s

sa

Fig 3.2. Interconnection diagram 74283IMPL.

The design-step to be taken involves two modifications. First of all, the
new components 74183 and GND must be added to the design. These new
componentscan be viewed as a two-components 'mini-design', d' say.

GND := prim
7 4183 := prim
system []

c (g = 0)
Ç (s =a$ b $ c,, c0 = a.b + c,.(a $ b))

158 CHAPTER 3. CORRECTNESS PRES. TRANSFORMAT/ONS

We must concatenate d' with our initia! design d, i.e. construct d' * d. Sec
ondly, the old 7 4283 must be updated by means of . a kind of overwriting
insert operation, inserting 74283 := 74283IMPL Ç (int(S) = int(ä) + int(b)).
After this design step, our design d is as follows:

GND .- prim c
7 4183 .- prim Ç

7 4283 .- 7 4283IMPL c
system [7 4283]

(g = 0)
(s =a EB b EB c;, C0 = a.b + ci-(a EB b))

(int(S) = int(ä) + int(b))

In order to decompose the 74183 single-bit full adder, we employ and-gates,
or-gates and xor-gates which are provided by new components 7408, 7432 and
7486 respectively. These are specified by z = x.y, z =x+ y and z =x EB y
respectively.

Using and-gates, or-gates and xor-gates the single-bit full adder can be im
plemented. We refer to the following interconnection diagram as 74183IMPL.
We can easily verify that this diagram satisfies the equations of 74183. In
particular, it is helpful to note that the output of the leftmost 7408 equals
a.b and that the output of the leftmost 7 486 equals a EB b. The output of the
rightmost 7408 equals c;.(a EB b). Having noticed this, it follows that for the
output s = a EB b EB c; and C0 = a.b + c;.(a EB b).

a x x
7408 z_ 7408 Zr-

b y r- y

- x
7432 z_

y
'---- x x

7486 z 7486 z s
y 1-- y

Fig 3.3. Interconnection diagram 74183IMPL.

As a matter of fact, verifying that this diagram satisfies the equations of its

3.4. DESIGN CREATION 159

specification essentially means to verify a pair in the implementation rela
tion Ç. The black-box correctness of d requires that each pair (glass-box
description, black-box description) is in this relation - for a suitable con
text. Here and in the general formulation of the top-down model in Section
3.4.4, black-box correctness of the current design serves as an invariant of
the development process. The current section is one of the few places in this
monograph where we give detailed proofs for the proof obligations arising in
conneetion with Ç. In Chapter 5, most proofs remain more or less implicit.

Again the design-step to be taken involves two modifications. First, the new
components must be added to the design. These new components can be
viewed as a three-components mini-design, d', say.

7408 .- prim c (z = x.y)
7432 .- prim c (z =x+ y)
7486 .- prim c (z =x EB y)
system []

We must concatenate d' with our current design d. Secondly, we must insert
a new version of 7 4183 which has 7 4183IMPL instead of prim. After this
design step, our design d is as follows:

7408 .- prim c (z = x.y)
7432 .- prim c (z = x+y)
7486 .- prim c (z =x EB y)
GND .- prim c (g = 0)
74183 .- 74183IMPL c (s = a@bEBcï, C0 = a.b+ci-(aEBb))
74283 .- 74283IMPL c (int(S) = int(ä) + int(b))
system [7 4283]

We could select the last prim-component as the next candidate to be im
plemented - which typically is a kind of default in top-down development.
However, we have no intention to decompose GND, so we perroute some
prim components, putting GND fust (i.e. constructing a design that is
pp-equivalent, cf. definition 3.3.25).

In order to decompose the 7486 xor-gate, we employ inverters, which are
provided by a new component 7404. An inverteris a logkal circuit with one
input port p and one output port q. It is specified by q = p. Using and
gates, or-gates and inverters it is easy to implement a xor-gate. We refer to
the following interconnection diagram as 7486IMPL. For its verification it is
useful to note that the output of the upper 7408 is x.y and that the output of
the lower 7408 is x.y. Therefore the final output z is x.y + x.y which equals
x E9 y.

160 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

x
x p 7404 q 7408 z

x
7432 z z

y

x
y p 7404 q

y

Fig 3.4. Interconnection diagram 7 486IMPL.

Now the design-step is the addition of the 7404 and the insertion of the
implemented 7486 with 7486IMPL insteadof prim. Once more we put GND
first. We do not show the resulting d and we proceed immediately with the
next design-step.

In order to decompose the 7 432 or-gate, we shall employ the 7 400 nand-gate
- which is an available primitive. Furthermore we employ two 7404 inverters.
We refer to the following interconnection diagram as 74321MPL. It is useful
to note that the inputs of its 7 400 equal x and y. Therefore the final output
z is x.y which equals x+ y.

x p 7404 q

7400 z z

y p 7404 q

Fig 3.5. Interconnection diagram 7432IMPL.

The design-step is to add the 7 400 component and to insert a modified 7 432

3.4. DESIGN CREATION 161

component, with 7432IMPL insteadof prim. To decompose the 7408 and
gate we need no new components. It can be done easily with one 7400
nand-gate and one 7404 inverter. We refer to the following interconnection
diagram as 7408IMPL. It is useful to note that the output of its 7400 equals
x.y. Therefore the final output z is x.y.

Fig 3.6. Interconneet ion diagram 7 408IMPL.

Finally we imptement the 7404 inverter. We employ one 7400 whose two
inputs are connected. We refer to the following interconnection diagram as
7404IMPL.

P--q>oo · 1~---_q

Fig 3. 7. Interconnection diagram 7 404IMPL.

The resulting design is finished because its bottorn equals the agreed bottorn
design with 7400 and GND. We show the resulting design d below.

7400 .- prim c (z = (a.b))
GND .- prim c (g =0)
7404 .- 7404IMPL c (q = p)
7408 .- 7408IMPL c (z = x.y)
7432 .- 7432IMPL c (z =x+ y)
7486 .- 7486IMPL c (z = xEBy)
74183 .- 74183IMPL c (s =a EB b EB c;, C0 = a.b + c;.(a EB b))
74283 .- 74283IMPL c (int(S) = int(a) + int(b))
system [7 4283]

This concludes the example. A systematic discussion of top-down develop
ment in general will be undertaken in Section 3.4.4.

162 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

3.4.3 Design-programs

In this section we turn our attention to design-programs for design creation
in a very general setting. We shall use the design-development language of
appendix B. The design-programs will he highly non-deterministic. The data
that are manipulated by the developer(s) during the execution of a design
program may include designs, components, terms of .X1r and names. In this
section we view these data as belonging to given data types which bring with
them certain predicates and operations. In particular, we have predicates
bbc, bbv, = etc. and operations *• o, bot, top etc.

We shall briefly sketch the main ingredients of the design-development lan
guage. For the details we refer to appendix B. In the design-development
language we have assignment statements (an example of an assignment state
ment is d', d" := bot(d), top(d);). Statements can he composed with se
quentia! composition, a non-deterministic choice construct (symbol 0) and
a repetition construct (keywords while, do and od). We have expressions
and expression lists. Expressions may contain operation symbols and vari
ables (an example of an expression is top(d)). Expression lists may contain
operation symbols, variables and procedure calls. Assertions may contain ex
pressions, predicate symbols, logica! connectives and quantifiers (an example
of an assertion is forall d (bbc(d))). Procedures have a list of input param
eters and sometimes a list of result parameters. A procedure is either given
axiomatically (keywords pre and post) or it is defined explicitly (keyword
def). If a procedure is intended to he executed by a developer, it is called a
techm"que (keyword technique). lf a procedure is meant as a description of
an event which is not performed by a developer it is called an event (keyword
event).

We assume that in the design-development language we have variables of
distinct sorts: d, ... for pf A ds designs, c, ... for components, v, w .. . for
narnes and P, Q, ... for terms.

In order to have a systematic approach for deriving design-programs we shall
use methods which come from the field of classica! sequentia! programming
[4] , [7]. In particular, if we want to derive a design-program with a repetition
construct then we shall first look for a suitable invariant.

We are interested in design-programs which descri he the creation of a design
which is valid in a given context. Therefore we must start with a formalisation
of what it means that a design is valid in a given context.

Definition 3.4.1 {machine&user-context, d valid in w.)

{i) A machine&user-context w is a pair (dm, d,) of pf A ds designs where

3.4. DESIGN CREATION 163

d"" is called the machine of w and d. is called the system user of w.
(ii) Let w = (d"", d.), then we say that d is valid in w if bbv(d, d"") A

bbv(d.,d). 0

In a certain way, a machine&user-context w constitutes a (simpli:fied) view
of the external world- at least from the viewpoint of a developer who has
to create a design which is valid in w. The de:finition can he motivated as
follows. The prim components of d can he viewed as a speci:fication of all
building blocks that are needed by d. When the product described by the
design d becomes somehow operational, then the actual building blocks are
provided. We view such a collection of actual building blocks as an underlying
'machine'. The design d itself can be viewed as a description of a product to
be delivered to the user of d. In general this user has certain requirements to
the product described by the design. In our view both providing a machine
fora design and providing a product to its user can he described by the binary
operation o. In particular, the components provided by the the machine can
(via o) he plugged into the prims of the design. Similarly we can imagine
that the system user is assuming a number of primitives (also prims) which
become available by means of the system of the design.

Of course, in many practical situations it is not the case that the system
user and the machine are formalised as designs. Often the system user is
not formalised at all and validation becomes a matter of informal reasoning
and negotiating. Nevertheless we believe that our abstraction might provide
some insight for such situations also.

If we call the activity of showing that a design d is (black-box) correct ver
ification and if we call the activity of showing that a design d is valid in a
machine&user-context w validation, then our terminology is consistent with
the usual terminology [1]: verification = 'are we building the product right?'
and validation = 'are we building the right product?'.

Let us illustrate this with the example of the four-bit adder of Section 3.4.2.
In this example the machine&user-context consists of two "designs". The
:first is the design of the 7400 and GND; typically this is a design where
transistors and resistors occur as components. This 7400 + GND design is
the underlying machine. Thesecondis the design of a higher layer, where the
7 4283 four-bit adder is just a primitive building block; typically this could he
the design of a digital computer. This digital-computer design is the system
user.

We see that the validity of a design d in a given machine&user-context w
depends only on bot(d), top(d) and on w. This observation can from an
intuitive point of view he explained as follows. First of all bot(d) contains
precisely all prim components of d. The prim components of d can he

164 CHAPTER,3. CORRECTNESS PRES. TRANSFORMATIONS

viewed as a. summa.ry of all building blocks tha.t are needed by d. Secondly
top(d) ha.s the sa.me system as d a.nd top(d) conta.ins a. number of prim
components which ca.n be viewed a.s specifica.tions of the narnes occurring
in the system of d. The system of d (with these narnes elimina.ted) ca.n be
viewed as the top-level product to bedelivered totheuser of d.

In genera.!, it is the ta.sk of the developer to (re-)esta.blish a.n invariant, INV
sa.y, which depends both on the design d a.nd on the ma.chine&user-context
(dm, d8). This invariant should consist of two pa.rts where the fust part deals
with va.lida.tion a.nd the second part deals with verifica.tion. So INV must
express tha.t d is va.lid in its ma.chine&user-context (dm, da) a.nd tha.t d is
bla.ck-box correct a.nd therefore we define it as follows:

INV ::= bbv(d,dm) and bbv(d,,d) and bbc(d).

Now we turn our attention to the problem of design crea.tion, which in its
most general form is to crea.te a. design d such tha.t INV is esta.blished. In
order to keep things simple, we sha.ll study the problem of design crea.tion
in a. restricted setting where we focus on the verifica.tion aspect. Therefore
we a.ssume tha.t before the a.ctua.l execution of a. design-program starts the
bounda.ries of the design to be crea.ted are a.lrea.dy fixed, by which we mea.n
tha.t somehow the bottorn a.nd the top of the design to be created are deter
mined. Since the bottorn and the top of a design are designs themselves we
can model this situation by a.ssuming that there are two given designs d6 a.nd
d1• In view of lemma 3.3.27 we consider the top as given up to permutation
of prim components. Therefore we have the following postcondition of the
of design creation.

POST := bot(d) = d6 and top(d) =pp dt and bbc(d).

It is possible to give a criterion for the selection of db and d1• We see that if
the machine&user-context w = (dm, d,) then db and d1 should be chosen such
that bbv(db, dm) and bbv(d., d1) hold. Using lemma 3.3.23 and lemma. 3.3.27
one can verify that bbv(d6,dm) and bbv(d.,d1) and POST implies INV. Of
course it is always possible to derive a db and d1 from (dm,d,) mechanically,
but our approach is somewhat more generaL

Let us illustrate this with the example of the four-bit adder of Section 3.4.2.
Indeed, in this example we have chosen a certain d" viz. the design with one
prim-component 74283 and with system [74283]. Also we have chosen a
certain db, viz. the design with two prim-components 7400 and GND and
with system [].

It is not reasonable to a.ssume that the developer can crea.te a large design
in one step; instead he adds components and modities existing components,

3.4. DESIGN CREATION 165

one at a time. Therefore we assume that there is one variabie d which always
contains the 'current design' and we shall focus on design-programs that
modify this d in a repetitive manner.

There are many (loop-) invariants which could be derived from POST. We
shall investigate two possibilities. The fust possibility will be investigated
in Section 3.4.4 and it leads to the derivation of a design-program which
corresponds tothetop-down approach. The second possibility will be inves
tigated in Section 3.4.5 and it leads to the derivation of a design-program
which corresponds to the bottorn-up approach. These design-programs are
related to the modelsof the development process given in [5].

We shall consider the partial correctness of these design-programs; it may
very well he the case that a (partially) correct design-program cannot suc
cesfully terminate for a given input. In this case we say that the execution
of the design-program fails. From this it should he clear that a correctness
formula {AI}s{A2} does not say anything about failure or successful termi
nation of s. We shall not use an axiomatisation in the style of Hoare's logic
[6] for reasoning about these formulae {A1}s{A2}. Of course this could be
done, butwethink it would push the level of formalisation too far.

3.4.4 Top-down development

In order to obtain an invariant, we take the postcondition POST as a starting
point. POST consistsof three conjuncts and a candidate invariant is obtained
by simply omitting the first conjunct (as suggested in [7] Section 16.2). This
yields top(d) =pp dt and bbc(d), i.e. during the development process the
top of the design remains constant (up to permutation of prim components)
and furthermore black-box correctness is adopted as a methodological prin
ciple. We strengthen this assertion by requiring that all components (except
possibly those in db) play a role in the system of the design d. In order to
formulate this precisely weneed an auxiliary definition:

Definition 3.4.2 Let d be a pf 1\ ds design.

(i) The binary relation <t on the set of component narnes of d is defined
by x 1 <f x2 :{::} x1 occurs freely in the glass-box description of the
component named x2 •

(ii) The binary relation <d is defined as the transitive ciosure of <f.
(iii) Let ï be some subset of cset(d) then we define

x1 ~d ï :{::} x1 E ï V 3x2 E ï · x1 <d x2. 0

166 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

Roughly speaking, we can view a design d as a set of components, identified
by names, where some components are part of other components. Therefore
we shall sometimes refer to <d as the 'part of' relation.

Now we can express the requirement that all components (except possi
bly those in db) play a role in the system of the design d as a condition
forall v (v E cset(d) ~ (v E cset(db) or v ~d sys(d))). This condition
guarantees that no implementation effort is spent on components which will
not he used. This yields the following invariant (where we use the notation
sys(d) from definition 3.2.4):

TD JNV := top(d) =pp dt and
bbc(d) and
forall v (v E cset(d) ~ (v E cset(db) or v ~d sys(d))).

N ow we can develop a design-program based on this invariant. The technique
td given below has two input parameters (db and d1). It is given by an explicit
definition and it uses one variabie (d). After execution of an initialisation
statement and a repetition construct it yields the value of d as its result.

td := technique db, dt
def d := dt;

while not bot(d) =db do d := td....step(d); od;
d

where td....step satisfies the partial-correctness assumption {TDJNV t\ bot(d) =j:.
db} d := td....step(d); {TDJNV}.

Let us illustrate this with the example of the four-bit adder of Section 3.4.2.
Reeall that in the example the assignment d := d1 was executed indeed,
viz. at the point where we said "This is the initia! design of the top-down
development." Reeall also that in the example we had several points where
we said "In order to decompose the ... , we shall employ the ... " etc.; each
such point marks the beginning of the execution of d := td....step(d); . Finally
reeallalso that in the example we reached a point where we could say: "The
resulting design is finished because its bottorn equals the agreed bottorn
design with 7400 and GND." This corresponds with a positive outcome of
the stop-criterion bot(d) = db.

Remark 3.4.3 Under the given assumption for td....step we have

(where the precondition simply expresses that db is a bottorn design and
that d1 is a top design). This can he proved as follows. First we verify that

3.4. DESIGN CREATION 167

after execution of d := dti the invariant TDJNV holds. We have d = dt, so
top(d) =pp dt. Since dt is a top design it contains only prim components
and therefore it is trivially bbc. Take some t1 E cset(d), then v ~d sys(d)
because d is a top design. As a next step we must show that execution of d
:= td_step(d); does nat vialate TDJNV. This follows from the assumption
for td_step. Finally we note that bot(d) = d6 and TDJNV implies POST.

D

We now turn our attention to td_step. It will turn out that there exist
several techniques which satisfy the assumption for td_step. Therefore we
shall investigate several techniques which we shall call td_step0 , td_step1 etc.

The techniques td_step0 and td_step1 describe the transformation of a prim
component into a non-prim component. The latter component should he
provably correct in a suitable context. Therefore we must describe how the
developer should select a prim component and its context {represented as
a design) from a design d. Actually the developer has no choice in this
selection: he must select the last prim component, otherwise the result of
re-inserting it {in its original relative position) as an implemented component
could vialate the condition pf.

Definition 3.4.4 Let the pf 1\ ds design d be given as follows:

x 1 .- prim C M 1

Xn . - prim C Mn

Y1 .- P1 C Q1

Ym ·- Pm !: Qm
system [Sb ... , Sz].

where P1, • •• , Pm are not equal to prim.

(i) last_prim(d) is defined as the component (xn := prim!: Mn),

(ii) last_prim_context(d) is defined as the bottorn design given by

X1 .- prim c M1

Xn-1:= prim c Mn-1
system []. D

We assume that there is an operation 'insert' which serves for inserting a
component into a design by overwriting an existing component (which has

168 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

the samename as the component to be inserted). We do not give a forma!
definition of 'insert'. Fora name v and a term P we write v EP if v occurs
freely in P.

Of course the developer cannot select a prim component from d if d does
not contain at least one prim component. The fact that d contains at least
one prim component can be expressedas not bot(d) = system [].

The technique td....step0 is a kind of naive approach. It uses an auxiliary
technique called tdjmpl which takes a design d and which describes the
selection of the last prim component and its transformation into a non-prim
component (c'). We use the notation rbb from definition 3.2.18.

tdjmpl := technique d --t c'
pre not bot(d) = system []
post exists v (exists P (exists Q

(last_prim(d) = (v := prim Ç Q) and
c' = (v := P Ç Q) and
forall w (wE P --t wE cset(Iast_prim_context(d))) and
rbb(last_prim_context(d)) I- P ç Q)))

td....step0 := technique d
def insert(d,tdjmpl(d))

Let us illustrate this with the example of the four-bit adder of Section 3.4.2.
Indeed, at a certain point we said: "To decompose the 7408 and-gate we
need no new components. It can be done easily with one 7400 nand-gate
and one 7404 inverter. We refer to the following interconnection diagram as
7408IMPL." etc. Formally this corresponds with a last_prim(d) which is (
7408 .- prim C (z = x.y)). The last_prim_context(d) here contains
three prim-components, viz. GND, 7400 and 7404.

Lemma 3.4.5 (Partial correctness of td....step0).

{TDJNV} d := td....step0 (d); {TDJNV}.

Proof. Assume that initially d is the design given in definition 3.4.4. We
assume that this design satisfies TDJNV. If this design has no prim compo
nents then td....step0 fails because the precondition of tdjmpl does not hold.
Reeall that we deal with partial correctness, so td....step0 is allowed to fail.
Therefore we proceed with the assumption that there is at least one prim
component and hence last_prim(d) = (xn := prim Ç Mn)· Then it follows
that tdjmpl returns a component (xn := P Ç Mn) forsome P. This P con
tains only narnes from {x1, ... , Xn- 1} and it satisfies [x1 Ç M1], .. . , [xn-1 Ç
Mn-1]1- P Ç Mn. Execution of 'insert' yields the design

3.4. DESIGN CREATION 169

Xt .- prim c Mt

Xn-1:= prim c Mn-l
Xn .- p c Mn

Yt .- pl c Ql

Ym .- P". c Q".
system [Sb ... ,S1]

which is pf A ds and bbc. We note that the top of the latter design equals
precisely the top of the initial design. Finally we show that all narnes from
{ x1 , •• • , Xn, y1 , ... , y".} which are not in cset(db) are part of the system. This
follows from the fact that TDJNV holds for the initia} design. 0

The definition of td....step0 is a kind of naive approach because td....step0 does
not allow for the creation and insertion of new prim components. We shall
now describe an impravement with respect to td....step0 • We could define a
technique which describes the creation and insertion of one new prim com
ponent; however, we shall not do this because it is essential forthetop-down
approach as expressed by TDJNV that no new prim component is intro
duced unless it is used immediately. We prefera technique which describes
both the creation of new prim components and the transformation of an
existing prim component into a non-prim component whose glass-box de
scription uses all new prim components. This leads us to td....step1 which
is an improved version of td....step0 • It uses an auxiliary technique called
td....specjmpl which describes the selection of the last prim component, the
creation of a set of new prim components and the transformation of the se
lected prim component into a non-prim component. The set of new prim
componentsis represented as a bottorn design (d').

td....specjmpl := technique d --t d', c'
pre not bot(d) = system []
post exists v (exists P (exists Q

(lasLprim(d) = (v := prim Ç Q) and
cset(d') n cset(d) = 0 and
bot(d') = d' and
c' = (v := P Ç Q) and
forall w (wE cset(d') --t wE P) and
forall w (w E P --t w E cset(last_prim_context (d) U cset(d')))
and rbb(d') u rbb(last_prim_context(d)) 1-- p ç Q)))

We can use the binary operation * of Section 3.3 for descrihing the addition
of the new prim components to the current design.

170 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

td...step1 := technique d
def d', c' := td...spedmpl(d);

insert(d' * d, c')

Let us illustrate this with the example of the four-bit adder of Section 3.4.2.
At some point of that development we said: "In order to decompose the 7 4183
single-bit full adder, we employ ... which are provided by new components
7408, 7432 and 7486 respectively." Then these new components were viewed
as a mini-design d' and we concatenated d' with d and furthermore we said:
"Secondly, we must insert a new version of 74183 which has 74183IMPL
instead of prim." In fact this was an example of the execution of d', c' :=
td...spec...impl(d); insert(d' * d, c').

Lemma 3.4.6 (Partial correctness of td...step1).

{TDJNV} d := td...step1 (d); {TDJNV}.

Proof. Assume that initially d is the design given in definition 3.4.4. We
assume that this design satisfies TDJNV. If this design has no prim compo
nents then td...step1 fails because the precondition of td...specJmpl does not
hold. Therefore we can assurne that there is at least one prim component
and hence last_prim(d) = (xn := prim Ç Mn)· Therefore td...spedmpl yields
a bottorn design (d') with new names, say

ZJc .- prim Ç
system []

and it also yields a component (xn := P Ç Mn) forsome P. This P contains
only narnes from {x1, ... , Xn-1> z17 ••• , z~c} and it satisfies [z1 Ç R1], ... , [z~c Ç
R~c], [x1 Ç M1], ... , [xn-1 Ç Mn-1] f- P Ç Mn. Furtherrnore each Z; (1 ~i~
k) occurs in P. This bottorn design is added to the current design, using *•
and execution of 'insert' yields the design

zl .- prim c R1

ZJc .- prim ç R~c
xl .- prim c M1

Xn-1:= prim c Mn-1
Xn .- p c Mn

Y1 .- pl c Q1

3.4. DESIGN CREATION 171

Ym ·- Pm Ç Qm
system [817 ... , S,]

which is pf 1\ ds and bbc. We note that the top of the latter design equals
precisely the top of the original design. Finally we must show that all narnes
from {x17 ... , x"' y17 ... , Ym, Zt, ... , zk} which are not in cset(db) are 'part of'
the system. For the narnes from {x1, ••• ,xn,y1 , ••• 1 Ym} this follows from
the fact that TD JNV holds for the original design. For the narnes from
{z17 ... , zk} this follows from the fact that Xn is 'part of' the system and the
fact that z1 , ••. , Zk occur in the new glass-box description of the component
named Xn· 0

td_step1 raises two related problems. The fust problem is that the developer
has no choice in selecting the prim component to he implemented (although
he can inftuence later choices by 'thinking in advance'). For the prim com
ponents which are in the top design dt he has no inftuence at all on the order
in which they are selected. The second problem is that it may be hard to
makesure that the order of the prim components will match the order of
the prim componentsin the bottorn design db. We shall remedy these prob
lems by descrihing the possibility that the developer modifles the order of
the prim components. We formalise this by defining a technique td_step2 •

td_step2 := technique d ---+ d'
pre true
post d' =pp d

Let us illustrate this with the example of the four-bit adder of Section 3.4.2.
Indeed, at a certain point we said: "We could select the last prim-component
as the next candidate to be implemented - which typically is a kind of default
in top-down development. However, we have no intention to decompose
GND, so we permute some prim components, putting GND first." This was
a typical execution of td_step2 •

Lemma 3.4.7 (Partial correctnessof td_step2).

{TDJNV} d := td_step2 (d); {TDJNV}.

Proof. We assume that TDJNV holds for d and we must show that it
holds also for d' where d' =pp d. Since we have top(d) =pp dt we also have
top(d') =PP dt. The fact that d' is bbc follows from the fact that d is bbc.
Finally we note that the 'part of' relation does not depend on the order of
the prim components. 0

172 CHAPTER 3. CORRECTNESS PRES. TRANSFORMAT/ONS

It is possible to execute td...step by choosing between td...step1 and td...step2•

Using the non-deterministic choice construct 0 from the design-development
language we define td...step as

td...step := technique d
def d' := td...step1(d); 0 d' := td...step2(d);

d'

Now we can combine the results on td...step1 and td...step2 •

Theorem 3.4.8 (Partial correctnessof the top-down technique).

(i) {TDJNV} d := td...step(d); {TD_lNV},

(ii) {bot(db) =db and top(dt) = dt} d := td(db, dt)i {POST}.

Proof. (i) By thesemantics of 0 and by lemmas 3.4.6 and 3.4.7. (ii) By (i)
andremark 3.4.3, noting that TD_lNV 1\ bot(d) =/:db implies TDJNV. 0

Remark 3.4.9 (i) Let us consider the total-correctness question for td,
which is as follows: can every execution sequence which is according to the
top-down model but which is notready yet, be completed toa full execution
sequence? In other words: is it the case that a top-down development pro
cess essentially never can get stuck? The anser is positive: every execution
sequence can be completed. But the main reason for this is the reflexivity of
Ç. From a practical point of view, this answer is of little interest. As soon
as executability considerations or efficiency considerations (at the product
level) play a role, either 'thinking in advance' or 'backtracking' are needed.

(ii) In the postconditions of the techniques td...step0 and td...step1 we have
clauses
rbb(Jast_prim_context(d)) f- p ç Q and rbb(d')urbb(Jast_prim_context(d))
f- p ç Q. It is interesting to note that if in these clauses we replace rbb by
r gb the resulting top-down technique is still partially correct with respect
to POST. We can interpret this fact as follows: as long as the developer
works according to the top-down technique, it does not matter if he knows
the difference between black-box correctness and glass-box correctness.

(iii) Our description of the top-down technique should be considered as open
ended. One can think of techniques td...step3 , td...step4 etc. E.g. td...step3

could describe the possibility of back-tracking where components are removed
and where non-prim components are transformed into prim components.
td...step4 could describe the possibility of adding prim components which
need not be 'part of' the system of the current design, but which happen to
be present in db. A general farm of the top-down technique could be based

3.4. DESIGN CREATION

on a technique td..step given as follows.

td..step := technique d

def 0 i=l,2, ... ,n d' := td...step;(d);
d'

173

D

Finally we consider a kind of completeness question: can every pf A ds A
bbcdesign d where all components play a role in its system, be obtained by
means of a top-down development? The answer is positive, for a given d is
easily obtained from a dt = top(d) by a sequence of td..step1 steps.

3.4.5 Bottorn-up development

In order to obtain another invariant we take again the postcondition POST
as a starting point. POST consists of three conjuncts and a candidate in
variant is obtained by simply omitting the second conjunct. This yields
bot(d) = db and bbc(d), i.e. during the development process the bottorn
of the design remains constant and black-box correctness is adopted as a
methodological principle. We need not strengthen this assertion by requir
ing that all components are built in terms of primitive components, since
this is taken care of by the fact that we consider only designs which are pf A
ds and hence wf. We adopt the following invariant:

BUJNV :=: bot(d) =db and bbc(d).

Now we can develop a design-program based on this invariant. The tech
nique 'bu' given below has two input parameters (db and dt)· It is given
by an explicit definition and it uses one variabie (d). After execution of an
initialisation statement and a repetition construct it yields the value of d as
its result.

bu := technique db, dt
def d :=db;

while not top(d) =PP de do d := bu...step(d); od;
d

where bu..step satisfies {BUJNVAtop(d) =/=pp de} d := bu...step(d); {BUJNV}.

Remark 3.4.10 Under the given assumption for bu..step we have

{bot(db) =db and top(de) =de} d := bu(db,dt)i {POST}.

This can be provedas follows. First we verify that after execution of d :=db;

174 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

the invariant BUJNV holds. We have d =db, so bot(d) =db. Since db is a
bottorn design it contains only prim components and therefore it is trivially
bbc. As a next step we must show that execution of d := bu....step(d) does
not violate BUJNV. This follows from the assumption for bu....step. Finally
we note that top(d) =pp dt and BUJNV implies POST. D

We now turn our attention to bu....step. It will turn out that there exist
several techniques which satisfy the assumption for bu....step. Therefore we
shall investigate several techniques which we shall eaU bu....step0 , bu....step1 etc.

Let us assume an operation 'add....system_element' which takes a design, d say,
and a term P. If d has system [S17 ••• , Si], then add....system_element(d, P)
yields the design which has the same components as d, but which has the
sequence [S1, • • . , S17 P] as its system. We do not give a formal definition of
'add....system_element'.

The technique bu....step0 describes the creation of a term and its addition to
the system of the current design.

bu....step0 := technique d --+ d'
pre true
post exists P

(forall w (wE P---+ wE cset(d)) and
d' = add....system_element(d,P))

Lemma 3.4.11 (Partial correctnessof bu....step0).

{BUJNV} d := bu....step0 (d); {BUJNV}.

Proof. Assume that initially d is the design given in definition 3.4.4. We
assume that this design satisfies BU JNV. Since P contains only narnes from
{xt, ... , Xn , Yt, ... , Ym}, evaluation of add....system_element(d, P)) yields the
design

xl .- prim c M1

Xn .- prim c Mn
Yt .- Pt c Ql

Ym .- Pm c Qm
system [St. ... , S" P]

which is pf 1\ ds and bbc. We note that the bottorn of the latter design equals
precisely the bottorn of the initial design. D

3.4. DESIGN CREATION 175

Let us assume an operation 'add_component' which takes a design, d say,
and a component c and which yields the design which bas all components
of d and which bas furthermore c as its last component. We do not give a
formal definition of 'add_component'. The technique bu....step1 descibes the
creation of a non-prim component and its addition to the current design.

bu....step1 := technique d -t d'
pre true
post exists v (exists P (exists Q

(not v E cset(d) and
forall w (wE P -t wE cset(d)) and
rbb(d) f- P ç Q and
d' = add_component(d, (v := P Ç Q)))))

Note that we did not give the relative order in which P and Q have to be
constructed.

Lemma 3.4.12 (Partial correctnessof bu....step1).

{BUJNV} d := bu..step1 (d); {BUJNV}.

Proof. Assume that initially d is the design given in definition 3.4.4. We
assume that this design satisfies BU JNV. The result d' is the result of eval
uating add_component with d as its first argument and with a component
(v := P Ç Q) as its second argument. From the postcondition of bu....step1

we have that v is a new name and that all narnes occurring in P are from
{ x1 , ••• , Xn, y1 , • •• , Ym}. Furthermore this component is correct in the black
box context of d. Evaluation of add_component(d, (v := P Ç Q)) yields the
design

xl .- prim c M1

Xn .- prim c Mn

Y1 .- pl ç Ql

Ym .- Pm c Qm
V .- p ç Q
system [St, ... , Si]

which is pf 1\ ds and bbc. We note that the bottorn of the latter design equals
precisely the bottorn of the initia! design. 0

It is possible to execute bu....step by choosing between bu..step0 and bu....step1•

Using the non-deterministic choice construct 0 from the design-development

176 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

language we define bu..step as

bu..step := technique d
def d' := bu..step0 (d); 0 d' := bu..step1 (d);

d'

Now we can combine the results on bu..step0 and bu_step1 •

Theorem 3.4.13 (Partial correctnessof the bottorn-up technique).

(i) {BUJNV} d := bu..step(d); {BUJNV},

(ii) {bot(db) =db and top(dt) = dt} d := bu(db,dt); {POST}.

Proof. (i) By the semantics of 0 and by 3.4.11 and 3.4.12. (ii) By (i) and
remark 3.4.10, noting that BUJNV 1\ top(d) #PP de implies BUJNV. 0

Remark 3.4.14 (i) Let us consider the total-correctness question 'for hu,
which is as follows: assume a given db and dt; can every execution sequence
which is according to hu(db, de) but which is not ready yet, he completed
to a full execution sequence? The anser is negative because we can only
add system elements and not remove them. Once we have too many system
elements, we have no way left to arrive at the same system as dt .

(ii) In the postcondition of the technique bu_.step1 we have a clause fbb(d) l
p ç Q. It is interesting to note that if in this clause we replace rbb by
r gb• the resulting bottorn-up technique is not partially correct with respect
to POST. Instead its execution will yield a glass-box correct design.

(iii) Our description of the bottorn-up technique should he considered as
open-ended. One canthink of techniques bu_.step3 , bu..step4 etc. E .g. bu_.step3

could describe the possibility of back-tracking, where components or system
elements are removed. 0

Finally we consider a kind of completeness question: can every pf 1\ ds 1\ bbc
design d be obtained by means of a bottorn-up development? The answer is
positive, for a given d is easily built-up from a db = bot(d) by means of a
number of bu_.step1 steps foliowed by a number of bu_.step0 steps.

As an illustration of the design program hu, we show a sequence of designs
corresponding with a possible bottorn-up development of the four-bit adder.
The fust design d1 is db which is

7400 .- prim
GND .- prim
system []

Ç (z = (a.b))
c (g = 0)

3.4. DESIGN GREATION 177

d2 is obtained by a bu..step1:

7400 .- prim c (z = (a.b))
GND .- prim c (g = 0)
7404 .- 7404IMPL c (q = p)
system []

d3 is obtained by a bu..step1:

7400 .- prim c (z = (a.b))
GND .- prim c (g = 0)
7404 .- 7404IMPL c (q = p)
7408 .- 7408IMPL c (z = x.y)
system []

d4 is obtained by a bu..step1:

7400 .- prim c (z = (a.b))
GND .- prim c (g = 0)
7404 .- 7404IMPL c (q = p)
7408 .- 7408IMPL c (z = x.y)
7432 .- 7432IMPL c (z =x+ y)
system []

d5 is obtained by a bu..step1:

7400 .- prim c (z = (a.b))
GND .- prim c (g = 0)
7404 .- 7404IMPL c (q = p)
7408 .- 7408IMPL c (z = x.y)
7432 .- 7432IMPL c (z =x+ y)
7486 .- 7486IMPL c (z =x EB y)
system []

d6 is obtained by a bu..step1:

7400 .- prim c (z = (a.b))
GND .- prim c (g = 0)
7404 .- 7404IMPL c (q = p)
7408 .- 7408IMPL c (z = x.y)
7432 .- 7432IMPL c (z =x+ y)
7486 .- 7486IMPL c (z =x EB y)
74183 .- 74183IMPL c (s =a EB b EB Ci, C0 = a.b + Ci.(a EB b))
system []

178 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

d7 is obtained by a bu__step1:

7400 .- prim c: (z = (a.b))
GND .- prim c: (g = 0)
7404 .- 7404IMPL c: (q = p)
7408 - 7408IMPL c: (z = x.y)
7432 .- 7432IMPL c: (z =x+ y)
7486 .- 7486IMPL c: (z = xE9y)
74183 .- 74183IMPL c: (s = a E9 b E9 c,, c0 = a.b + Cs. (a E9 b))
74283 .- 74283IMPL ç (int(S) = int(ä) + int(b))
system []

and after a bu...step0 we get d8 which is

7400 .- prim c: (z = (a.b))
GND .- prim ç (g = 0)
7404 .- 7404IMPL c: (q = p)
7408 .- 7408IMPL ç (z = x.y)
7432 .- 7432IMPL c: (z =x+ y)
7486 .- 7486IMPL c: (z=xffiy)
74183 .- 74183IMPL c: (s=aE9b$c,, C0 =a.b+c,.(a$b))
74283 .- 74283IMPL c: (int(S) = int(ä) + int(b))
system [7 4283]

This concludes the bottorn-up example.

3.5 Design Evolution

3.5.1 General

In Section 3.4 we investigated design creation, but it would he wrong to
assume that in realistic software development the 'machine&user-context' in
which the design is supposed to he valid is always a constant machine&user
context. In current software development practice it may very well he the
case that about 50% of the development costs of a product are spent on so
called 'maintenance' (see e.g. [1] pages 540, 541). Traditionally, maintenance
was classified into software update and software repair, where software repair
includes a corrective aspect (see e.g. [1] page 536). In this chapter we shall not
investigate this corrective aspect. From now on we shall use the term 'design
evolution' (because 'maintenance' suggests that there might he something
like 'wear', which of course is not the case for software products).

3.5. DESIGN EVOLUTION 179

If we want to discuss design evoiution then we must have an abstraction of
the (variabie) machine&user-context in which a (variabie) design 'evoives'.
We adopt the definitions of 3.4.1 where a machine&user-context w is a pair
(d"., d.) ofpf 1\ ds designs where d". is called the machine of wand d. is called
the system user of w. The design d is said to he valid in w if bbv(d,dm.) 1\

bbv(d.,d). This definition was motivated by viewing the prim components
of d as a specification of all building biocks that are needed by d and by
viewing the designdas a description of a product to he delivered totheuser
of d.

We consider design evoiution to he the evoiution of a design in a chang
ing machine&user-context. The deveioper operates on a variabie design
which is part of a giobai state. Aiso part of this giobai state is a variabie
machine&user-context w = (dm., d.). The machine&user-context is modified,
let us say at certain points in time. We formalise this view by assuming that
there are three variables dm., d6 and d. We have the following intuitions for
these variables: d". = 'current machine,' d. = 'current system user', d =
'current design'.

It is the task of the developer to (re-)establish the invariant INV, which
depends bath on the designdandon the machine&user-context (d"., d.) and
which expresses that dis valid in the machine&user-context (d"., d.) and that
d is biack-box correct. ·

INV = bbv(d,dm.) and bbv(d.,d) and bbc(d).

The following scenario is adopted. We assume a state in which d"., d6 and
d are such that INV holds. We now assume that the machine&user-context
of the next state has been modified and we say that an external event has
happened. The developer must find a design d' such that after establishing
the state modification d := d'; the invariant !NV holds again. The developer
may do this by acting according to some technique. Let us assume that
the change of the machine&user-context is such that either the machine is
modified or the system user is modified, but not bath. We shall discuss bath
kinds of machine&user-context change separately. One might devise many
techniques addressing the problem of design evolution; we only show some
of the simplest techniques. In Section 3.5.2 we shall give a technique which
deals with a changing machine. In Section 3.5.3 we shall give a technique
which deals with a changing system user.

3.5.2 Changing machine

The following procedure can he used for rnadeling an external event:

180 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

change := event d - d'
pre true
post true

After the external event dm := change(dm)i has happened there is a new
machine but there is still the old system user. The condition bbv(d,dm) may
he false but bbv(d., d) and bbc(d) hold. The developer must restare the
invariant and therefore we look for a suitable statement Sm such that

{INV} dm := change(dm)i Sm {INV}.

One possible technique is based on the idea of an emulator, which is nothing
but a 'layer' interpolating between the new machine and the old design.
Finding an emulator is described by a technique which takes designs dm (the
new machine) and d (the old design) and yields an emulator dem·

emulator := technique dm, d - dem
pre true
post bbc(dem) and bbv(dem,dm) and bbv(d,dem)

Now if emulator(dm, d) yields dem• then we might say that dem o dm is 'd
equivalent' with the old machine, by which we mean that bbv(d, demo dm)
holds. So it is possible to make the old design 'run' upon demo dm by con
structing the composition do (demo dm)· By lemma 3.3.7 (associativity of
o) this is the same as (d o dem) o dm. If we assume that the developer has
modification rights with respect to d but not with respect to the machine,
he should replace the old design d by (d o dem). This indicates that we can
take the following statement for sm:

d := do emulator(dm, d);

Let us illustrate this with the example of the four-bit adder of Section 3.4.2.
Suppose that the supply of 7 400 nand-gates gets exhausted whereas there is
a rich supply of 7402 nor-gates, say. Then we could have an emulator design
as follows:

7402 .- prim c (z=(a+b))
GND .- prim c (g = 0)
7400 .- 7400IMPL c (z = (a.b))
system [7400,GND]

where 7400IMPL implements the functionality of the nand-gate using nor
gates and ground-connections only.

3.5. DESIGN EVOLUTION 181

Theorem 3.5.1 {INV} dm :=change(dm); d .- do emulator(dm, d); {INV}

Proof. Assume that initially d satisfies INV. After dm := change(dm)i
has happened we have bbv(d.,d) and bbc(d). Execution of the emulator
technique yields some design d•m such that bbc(d.m) and bbv(d.m, dm) and
bbv(d, d.m) hold. We must investigate each conjunct of INV for the new
design d o dem·

• bbv(d o d•m• dm) holds because bbv(d.m, dm) holds.

• bbv(d., do d.m) holds because bbv(d., d) holds.

• bbc(d o d.m) follows by lemma 3.3.14 (ii) from bbc(d), bbc(d.m) and
bbv(d,d.m)· 0

Remark 3.5.2 We shall briefiy sketch an alternative solution for the state
ment Sm. It is based on the idea of (re-)starting a top-down development
process. Let us assume that we have an operation 'remove_unused' which
takes a design and which yields the design which is obtained by remov
ing all components which are not 'part of' the system (in the sense of
:=;d sys(d)). Actually, for top-down made designs this means that no im
plementations are thrown away. Let us also assume a technique 'deter
mine_bottom' which for given machine dm yields a bottorn design db such that
bbv(db, dm)· After the external event dm := change(dm); has happened we
are in a state in which bbv(d., d) and bbc(d) holds. If in this state the state
ment d := remove_unused(d); db := determine_bottom(dm)i dt := top(d); is
executed then the invariant TDJNV as given in Section 3.4.4 holds (where
d1 := top(d) means to fix the existing top, rather than throwing something
away) . When TDJNV holds, the developer can start executing the repetition
statement which we knowalready from the top-down approach, viz. while
not bot(d) =db do d := td....step(d); od;. If the latter statement terminates
then INV holds again.

Under certain conditions it may he possible to derive an emulator from the
result of this top-down development process. 0

3.5.3 Changing system user

After the externalevent d. := change(d.); has happened there is a new system
user but there is still the old machine. The conditions bbv(d,dm) and bbc(d)
hold but bbv(d., d) may he false. The developer must restore the invariant
and therefore we look for a suitable statement s. such that

{INV} d. := change(d.); s. {INV}.

182 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

One possible technique is based on the idea of a simulator. Finding a 'sim
ulator' is described by the following technique:

simulator := technique d., d---+ d,1

pre true
post bbc(d.1) and bbv(d,1, d) and bbv(d" d,1)

Now we can take the following statement fors,:

d := simulator(d., d) o d;

Theorem 3.5.3 {INV} d. :=change(d.); d := simulator(d., d) o d; {INV}.

Proof. Assume that initially d satisfies INV. After d, := change(d,}; has
happened we have bbv(d, dm) and bbc(d}. Execution of the simulator tech
nique yields some design d,1 such that bbc(d,.) and bbv(d •• , d) and bbv(d,, d,i)
hold. We must investigate each conjunct of INV for the new design d,i o d.

• bbv(d,1 o d,dm) holds because bbv(d,dm) holds.

• bbv(d., d,1 o d) holds because bbv(d., d,1) holds.

• bbc(d.1 o d) follows from lemma 3.3.14 (ii) from bbc(d,.), bbc(d) and
bbv(d,1, d). 0

Remark 3.5.4 We shall briefly sketch an alternative solution for the state
ment s •. It is based on the idea of (re-)starting a bottorn-up development
process. Let us assume that we have an operation 'empty ...system' which
takes a design and yields the design which is obtained by making the sys
tem equal to []. Let us also assume a technique 'determine_top' which for
given system user d, yields a top design dt such that bbv(d,, dt). After
the external event d, := change(d,); has happened we are in a state in
which bbv:(d, dm) and bbc(d) hol ds. If in this state the statement d :=
empty...system(d); dt := determine_top(d,); db:= bot(d); is executed then the
invariant BUJNV as given in Section 3.4.5 holds. Therefore the developer
can start executing the repetition statement which we know already from
the bottorn-up approach, viz. while not top(d) =pp dt do d := bu...step(d);
od;. If the latter statement terminatea then INV holds again.

Under certain conditions it may be possible to derive a simulator from the
result of this bottorn-up development process. 0

3.6. DESIGN PARTITION 183

3.6 Design Partition

3.6.1 General

In this section we want to investigate parallel development. Often it is de
sirable to have several developers doing their work simultaneously such that
their interaction is limited. The result of their joint effort should he a valid
and correct design. The condition that a designdis valid and correct can he
expressed by INV as given in Sections 3.4.3 and 3.5. The motivation behind
this approach is that one wants to achleve a reduction in development time
compared with the approach in which there is only one active developer at
a time.

The design-development language of appendix B does not have a parallel
composition construct for statements butsome design-programs offer a pos
sibility of parallelism at the 'implementation level'. Because the procedures
can not have side-effects and because we have expression lists, there exists
a kind of parallelism in the following sense: let p1 and p2 he procedures
(techniques) and consider the statement

Now the execution of p1(d1 } can he done simultaneously with (and indepen
dently of) the execution of p2 (d2}·

We could try to devise design-programs dealing with design creation and
design evolution, making special 'parallel' versionsof the techniques given in
Sections 3.4 and 3.5. However, in order to keep matters simple, we shall in
this chapter focus only on design-programs 8 which satisfy {INV} s {INV}.
Such an 8 may range over a very large class of implementation techniques.
E.g. 8 might correspond with optimisations of the current design e.g with
respect to performance requirements which are not expressed as black-box
descriptions; however, 8 can also correspond with an entire re-design.

One of the ideas behind the notion of a design is the locality principle that it
should he possible to implement each component in a design without worry
ing about the implementation of the other components in the design. As one
of the results of the formalisation of this idea (Section 2.5.4} we have the so
called bbc-preserving glass-box modifications, abbreviated as bbc-gb-mod.
We write this as a binary predicate on pf 1\ ds designs: bbc-gb-mod(d, d'}
means that d' is a bbc-preserving glass-box modification of d. Because ford
and d' satisfying bbc-gb-mod(d, d'} we have bbc(d} => bbc(d'} and since one
design can contain many components, these modifications offer an opportu
nity for parallel development. This will he formalised inSection 3.6.2.

184 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

Modifications of black-box descriptions can not always be dealt with in a
similar way: if the black-box description of one component is modified, this
modification may destroy the correctness of several other components. There
fore we must somehow limit the scope of such modifications. For example, if
the design d consists in fact of two unrelated parts, then a black-box mod
ification in one part can not endanger the correctness of components which
are in the other part. It follows that there is a possibility for parallel devel
opment if the current design d can be partitioned into d1 and d2 such that
d = d1 * d2• This approach will be investigated in Section 3.6.3.

Similarly there is a possibility for parallel development if the current design
d can be partitioned into dt and d2 such that d = dt o d2. This approach
will be investigated in Section 3.6.4. We briefiy mention several approaches
based on ~ in Section 3.6.5.

The application of the techniques which we shall discuss in Sections 3.6.3
and 3.6.4 sometimes needs preparations in the sense that the developer
must restructure (transform) the current design. (e.g. using lemmas 3.2.9
and 3.2.16 and remark 3.2.17). In many situations the application of the tech
niques from Sections 3.6.3 and 3.6.4 is doomed to fail unless suitable prepara
tory transformations are performed first. The theory of these preparatory
transformations probably must be based on the use of algebraic operations
on designs such as * and o, but may require additional operations. We have
not investigated this yet.

3.6.2 Splitting into components

In this section we want to formalise the idea that the locality principle of
components can be exploited for parallel development. First weneed some
notation.

Definition 3.6.1 Let v be a name and d a pf 1\ ds design such that v E
cset(d). Then wedefine d[v] := 'the unique component in d with name v'.

D

The technique called 'impl.' given below describes the activity of one devel
oper who gets a design d and the name of a component in this design (v). If
the execution of this technique succeeds, then the developer has performed
a bbc-gb-mod and the result is one component. Formally the technique
does not exclude the possibility that the developer does nothing but taking
an existing old component, but for the partial correctness of the parallel
development technique this does not matter. As before, we use the design
development language of appendix B and we have variables of distinct sorts:

3.6. DESIGN PARTITION

d, ... for pf 1\ ds designs, c, ... for components and v, ... for names.

imple := technique d, v -+ c
pre v E cset(d)
post exists d' (d'[v] = c and bbc-gb-mod(d, d') and

185

forall u ((u E cset(d) and u =1- v)-+ d'[u] = d[u]))

There is a very simple splitting to he done before the actual parallelism
can start. Two distinct component narnes must he selected such that the
corresponding components are non-prim. This is described by the technique
'split/ given below.

splite := technique d-+ vh v2

pre true
post v1 =/- v2 and

v1 E cset(d) and v2 E cset(d) and
v1 f/. cset(bot(d)) and v2 f/. cset(bot(d))

As inSection 3.4.4 we assume that there is an operation 'insert' which serves
for inserting a component by overwriting an existing component (which has
the same name as the component to he inserted). The following technique
describes the splitting, the parallel development and the insertion of the
results.

pardev e := technique d
defv1 ,v2 := splite(d);

Ct. c2 := imple(d, vt), imple(d, v2);
insert(insert(d, ct) ,c2)

The partial correctnessof this technique with respect to INV is stated in the
following theorem.

Theorem 3.6.2 {INV} d := pardeve(d); {INV}.

Proof. Let initially d he a pf 1\ ds design given as

Xn .- prim C Mn

Y1 .- P1 C Ql

Ym .- Pm Ç Qm
system [St. ... , 81]

186 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

188 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

The following technique describes the splitting, the parallel development and
the recombination of the results.

pardev. := technique d"., d., d
def dt. ~ := split.(d);

d~, d~ := msplit(top(d".), d1, d2);
d~, d~ := ssplit(bot(d.), d1, d2);
d1,d2 := impl(d~,d~,dl), impl(d~,d~,d2);
dl* d2

The partial correctness of this technique with respect to INV is stated in the
following theorem.

Theorem 3.6.3 {INV} d := pardev.(d"., d., d); {INV}.

Proof. Use lemma 3.3.3 (ii), lemma 3.3.23 and lemma 3.3.16.

3.6.4 Splitting according to o

0

Let again impl be a technique as given inSection 3.6.3 with the property that
it does not violate the invariant INV and let us assume that this technique
'impl' describes the activity of one single developer.

There is a splitting to be done before the actual parallelism can start. This
is described by the technique 'split0 ' given below.

splito := technique d --t dl>~
pre true
post d1 o d2 = d

As before it is possible to indicate which partsof the machine&user-context
are relevant for d1 and w hich parts of the machine&user-context are relevant
for d2 • This is relatively simple, due to the fact that we can view d1 o d2
as a layered design with layers d1 and d2. We see directly that d1 must be
validated with respect to top(d2) and the bottorn of the system user, i.e.
bot(d.). Similarly we see directly that d2 must be validated with respect to
top(d".) and bot(d1).

It is tempting to propose a technique similar to pardev~ given below as a
description of the splitting, the parallel development and the recombination
of the results.

pardev~ := technique d"., d., d
def dt.d2 := split0 (d);

3.6. DESIGN PARTITION 187

Note that this 'impl' may modify black-box descriptions; so 'impl' certainly
is not restricted to just bbc-gb-mods. There is a splitting to he done before
the actual parallelism can start. This is described by the technique 'split.'
given below.

split. := technique d-+ db~
pre true
post d1 * d2 = d

Based on the splitting of d into d1 and d2 it is possible to indicate which
partsof the Înachine&user-context are relevant for d1 and which partsof the
machine&user-context are relevant for d2. Of course in many practical situa
tions it is not the case that the system user and the machine are formalised as
designs. N evertheless, in such situations we probably still have that certain
parts of the machine&user-context are relevant for d1 and that other parts
of the machine&user-context are relevant for d2.

In view of lemma 3.3.23, the developers need not know dm and d. com
pletely; it is sufReient if they have access totherelevant partsof top(dm) and
bot(d.). In fact top(dm) only needs to he given up to top-equivalence (see
definition 3.3.28). The splitting of the bottorn of the system user d. is a mat
ter of counting prim components and system elements whereas the splitting
of the top of the machine dm might he more complicated. The correspond
ing techniques are given below. Wedefine defo(db d2) :{::} "the composition
d1 o d2 is defined".

msplit := technique dm, d1 , d2 -+ d~, d~
pre defo(dl * d2, dm) and top(dm) = dm
post d~ * d~ =top dm and defo(dt, d~) and defo(d2, d~)

ssplit := technique d., db~ -+ d~, d~

pre defo(d., d1 * d2) and bot(d.) = d.
post d~ * d~ = d. and defo(d~, d1) and defo(d~,d2)

The condition top(dm) = dm in the precondition of 'msplit' says that dm
must he a top design. The condition bot(d.) = d. in the precondition of
'ssplit' says that d. must he a bottorn design. Note that if 'msplit' is invoked
with arguments satisfying its precondition then by lemma 3.3.30 its execution
need not fail. Note also that if 'ssplit' is invoked with arguments satisfying
its precondition then by remark 3.3.32 its execution need not fail.

188 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

The following technique describes the splitting, the parallel development and
the recombination of the results.

pardev. := technique dm, d" d
def dt, ~ := split.(d);

d~, d~ := msplit(top(dm), d1, d2);
d~, d~ := ssplit(bot(d.), d1, d2);
d1,d2 := impl(d~,d~,d1), impl(d~,d~,~);
dl* d2

The partial correctness of this technique with respect to INV is stated in the
following theorem.

Theorem 3.6.3 {INV} d := pardev.(dm, d., d); {INV}.

Proof. Use lemma 3.3.3 (ii), lemma 3.3.23 and lemma 3.3.16.

3.6.4 Splitting according to o

0

Let again impl be a technique as given inSection 3.6.3 with the property that
it does not vialate the invariant INV and let us assume that this technique
'impl' describes the activity of one single developer.

There is a splitting to be done before the actual parallelism can start. This
is described by the technique 'splito' given below.

split0 := technique d --+ dt, d2

pre true
post d1 o d2 = d

As before it is possible to indicate which parts of the machine&user-context
are relevant for d 1 and which parts of the machine&user-context are relevant
for d2. This is relatively simple, due to the fact that we can view d 1 o d2

as a layered design with layers d1 and d2 • We see directly that d1 must be
validated with respect to top(d2) and the bottorn of the system user, i.e.
bot(d.). Similarly we see directly that d2 must be validated with respect to
top(dm) and bot(dl)·

It is tempting to propose a technique similar to pardev~ given below as a
description of the splitting, the parallel development and the recombination
of the results.

pardev~ := technique dm, d., d
def dt. d2 := splito(d);

3.6. DESIGN PARTITION

d~ := top(d2);
d':n := top(dm);
d~ := bot(da);
d~ := bot(dt);
d17 d2 := impl(d~,d~,dt), impl(d':n,d~,~);
dl 0 d2

Remark 3.6.4 The proposition that we have

{INV} d := pardev~(dm, d8 , d); {INV}

just does not hold in general.

189

The counter-example is as follows. In this counterexample we do not worry
about the validation with repeet todmand da but we focus on the interface
between d1 and d2. Consider the algebrak system with preorder lR1 as before.
Assume that the designs d1 and d2 which are obtained by 'splito' respectively
are given by

y .- prim C: 4
system [],

x .- 1
system [x].

c: 1

Indeed bbv(d1 , d2) because [x Ç 1] f- x Ç 4. In this case d1 happens to be a
bottorn design and d2 happens to be a top design, so after the execution of
the assignments tod~, d':n, d~ and d~ we have d~ = d2 and d~ = d1 • Now one
execution of 'impl' yields a design which is valid with respect to the design
d2 as given above and the other execution of 'impl' yields a design which is
valid with respect to the design d1 as given above. Assume that the designs
yielded by these two executions respectively are given as

y .- prim C: 2 x .- 1 c: 3
system [], system [x].

Let us refer to the latter designs as the new value of d1 and the new value of
d2 respectively. Note that bbv(new value of d1 , old value of d2) holds because
[x Ç 1] f- x Ç 2 and that bbv(old value of db new value of d2) holds because
[x Ç 3] f- x Ç 4. But bbv(new value of db new value of d2) does not hold.
Therefore the result of pardev~ is not bbc. 0

We shall now propose a technique pardevo which is an improved version of
pardev~. The idea is that either the bottorn of d1 or the top of d2 should
remain constant in order to avoid the problems shown in remark 3.6.4. We
investigate the solution in which the top of d2 remains constant. In fact it
only needs to remain constant up to top-equivalence (see definition 3.3.28).

190 ÇHAPTER 3. CORRECTNESS PRES. TRANSFORMAT/ONS

Therefore we need a slightly modified version of 'impl', which we shall call
'impl+' which is like 'impl' as used above but has the additional property
that its output design has the same top as its input design. We obtain
the definition of 'impl+' from the definition of 'impl' by simply adding a
conjunct to the postcondition (note that this makes one of the other conjuncts
redundant).

impl+ := technique dm, d" d --+ d'
pre bbv(d, dm) and bbv(d., d) and bbc(d)
post bbv(d',dm) and bbv(d.,d') and bbc(d') and top(d') =top top(d)

The technique 'pardev0 ' given below describes the splitting, the parallel de
velopment and the recombination of the results.

pardev o := technique dm, d., d
def d~.~ := split0 (d);

d~ := top(d2);

d':,. := top(dm)i
d~ := bot(ds)i
d~ := bot(di);
dt,d2 := impl(d~,d~,d1), impl+(d':,.,d~,d2);
d1 o d2

The partial correctnessof this technique with respect to INV is stated in the
following theorem.

Theorem 3.6.5 {INV} d := pardev0 (dm,d"d); {INV}.

Proof. Use lemma 3.3.21 (iii), (iv) lemma 3.3.23 and lemma 3.3.14 (ii). 0

Of course there is also a version of this technique based on the salution in
which the bottorn of d1 remains constant.

3.6.5 Splitting according to ~

Splitting according to U for parallel development is nat as straighforward as
according to * and o. We do nat give a formalisation, but we sketch a few
approaches.

The first approach is to adopt black-box correctness. However we must he
careful for the proposition 'd11 d2 are bbc => d1 U d2 is bbc' does nat hold. But
of course we could split a given d into d1 and d2 in the sense that d1 U d2 is
defined (and equal tod) and that bath d1 and d2 are rbb(d2)-correct. Now
at first sight it seems attractive to have two independent developments for

3. 7. LOOKING BACK 191

d1 and d 2 , preserving their rbb(d2)-correctness and their 11-definedness. But
on second thought we see that their interface encompasses d2 completely:
the black-box descriptions of d2 must be kept fixed because these determine
rbb(d2) and the glass-box descriptions of d2 must he kept fixed because 11-
definedness requires d1 and d2 to have that column in common. As it tums
out, the technique works in principle, but there are so many constraints on
d 2 that there is in fact no parallelism at all.

The second approach is toadopt glass-box correctness. Now we can exploit
the fact that d1, d2 are gbc => d1 11 d2 is gbc. There are two points worth
noting. The first point is that the validation of d1 11 d2 with respect to the
machine&user-context is determined by d2 alone. The second point is that
d1 and d 2 must have one column in common. Therefore one could cast that
column into the shape of a bottorn design which is kept fixed during the
parallel development.

The third approach is to employ the generalised designs sketched in Section
3.3.4. This does not give any new approach to parallelism, but there are
generalisations of the splitting according to *, o and 11 as discussed above.

3. 7 Looking Back

Section 3.2 presents an extension of the À1r-calculus, which is necessary in
order to define algebraic operations on designs. The interpretation (in .X1r)
of each algebraic operation gives rise to an extension of À1r - each extension
requiring the introduetion of additional rules.

By defining binary operations (*, o) and unary opera ti ons (bot, top) on de
signs, an algebra of designs is obtained. The algebraic laws that hold for
these operations are investigated and -as it turns out- certain laws of great
simplicity hold (see e.g. remark 3.3.12). Under certain conditions the result
of applying a binary operation to two bbc designs is a bbc design again. For *
this condition is simply 'true' and for o it is formulated as a binary predicate
bbv; we have the following laws:

bbc(d1) A bbc(d2) # bbc(d1 * d2),
bbc(d1) A bbc(d2) A bbv(d1,d2) # bbc(d1 o d2).

The transitivity of Ç suggests a binary operation 11. It has the the property
that dt, d2 are bbc ~ d1 11 d2 is bbc and the positive result that d1, d2 are
gbc => d1 11 d2 is gbc. Several generalisations of our theory are discussed -
suggested by this 11 - which are interesting for a partienlar kind of stepwise
refinement.

192 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

To describe models of the software development process, a simple design
development language is introduced, leading us to modelsof the development
process as highly non-deterministic design-programs of an imperative nature.

A postcondition for design creation is formulated and from this postcondition
two invariants can be derived in a natura! way. The first invariant is inves
tigated in Section 3.4.4 and it leads to the derivation of a design-program
which corresponds to the top-down approach. The second invariant is inves
tigated in Section 3.4.5 and it leads to the derivation of a design-program
which corresponds to the bottorn-up approach. It is remarkable that the
top-down and bottorn-up models of the development process can be derived
in a systematic manner by applying (at the design-program level) an ap
proach which comes from the field of classica! sequentia! programming. The
possibilities for deriving invariants and design-programs descrihing design
creation by this approach have by no means been exhausted in Section 3.4.
It certainly is interesting to investigate other possibilities.

As it turns out the formulation of the design-programs of Section 3.4 requires
several ad-hoc operations on designs; wethink this is mainly due tothefact
that both top-down and bottorn-up development processes take place within
the scope of one variabie design and that therefore one must be very explicit
about names, contexts, components, etc. In remarks 3.4.9 (ii) and 3.4.14
(ii) an interesting difference between the top-down approach and the bottorn
up approach is revealed: the top down approach always yields a black-box
correct design (even if the developer does not know the difference between
black-box correctness and glass-box correctness) but there exist two variants
of the bottorn-up approach where the first variant yields a black-box correct
design and the second variant yields a glass-box correct design.

Using the algebra of designs, we discuss the validation of a given design with
respect to a given machine&user-context and the related problems of design
evolution. In Section 3.5 we discuss some simple models of the development
process which deal with design evolution.

The fact that it is possible to split designs and reassemble them again, gives
rise to models of the development process where two (or more) developers
each operate on a part of a design such that when each of them has finished
his part, their results are fitted together to yield a new design which is both
bbc and valid.

Most of the basic ideas behind the modelsof the development process which
are given in Sections 4, 5 and 6 are not really new, but their formalisation
is very useful because it makes it possible to reason about the development
process in a precise way. The relatively subtie (but important!) points
addressed in remark 3.2.17, remark 3.3.35, remark 3.6.4 and remarks 3.4.9

3.7. LOOKING BACK 193

(ii) and 3.4.14 (ii) demonstrate that one needs to he careful indeed when
discussing the development process.

It should he noted that most sections in this chapter are open-ended. Ap
pendix A and Section 3 are open-ended because one can always imagine new
useful operations (both in terms of À1r and in terms of designs). Appendix
B is open-ended because one might extend the design-development language
withalmost any language construct from classica! specification languages and
classica! programming languages. Sections 4, 5 and 6 are open-ended because
one can always devise other design-programs; in fact we only investigate some
of the simplest design-programs.

It is important that the concepts investigated in this chapter are applied
in one or more case studies. The language COLD-K can he employed for
such case studies. This is possible because COLD-K is basedon an algebraic
system (viz. the algebra CA of class descriptions) and has À7r for parame
terisation and because it has components and designs as built-in language
constructs [8]. Fora very first example using a technique from this chapter
we refer to [9]. A large example will he presented in Chapters 4 and 5.

194

Bibliography

[1] B.W. Boehm. Software engineering economics. Prentice-Hall, INC., En
glewood Cliffs, New Jersey 07632. ISBN 0-13-822122-7

[2] S. MacLane. Categories for the working mathematician. Springer-Verlag
Berlin-Heidelberg, ISBN 3-540-90035-7.

[3] D. Winkel, F. Prosser. The art of digital design, an introduetion ot
top-down design. Prentice Hall, Inc. ISBN 0-13-046607-7 (1980).

[4] S. Alagié, M.A. Arbib. The design of well-structured and correct pro
grams. Springer-Verlag, ISBN 0-387-90299-6 (1978}.

[5] L.M.G. Feijs, J.H. Obbink. Process models: methods as programs. ES
PRIT '85, Status report of continuing work, The commission of the Eu
ropean Communities (Editors}, Elsevier Science Publishers B.V. (North
Holland), 577-591.

[6] C.A.R. Hoare. An axiomatic basis for computer programming. Commu
nications of the ACM, Volume 12, Number 10, October 1969.

[7] D. Gries. The science of programming. Springer-Verlag, ISBN 0-387-
90641-X.

[8] L.M.G. Feijs, H.B.M. Jonkers, C.P.J. Koymans, G.R. Renardel de
Lavalette. Formal definition of the design language COLD-K. Prelim
inary Edition, April 1987, ESPRIT document METEOR/t7 /PRLE/7.

[9] L.M.G. Feijs. Systematic design with COLD-K, an annotated example.
ESPRIT document METEOR/t8/PRLE/3.

195

Appendix A

À1r-Calculus with sequences

In order to define algebraic operations on designs it is useful to use sequences
within À7r. For that purpose we shall make an extension of the calculus À1r

in this appendix. We shall nat give the complete definition of the resulting
calculus, but rather describe the modifications with respect to the calculus
given in Chapter 2 in an incremental manner.

As a first step we shall adapt the definition of À1r-calculus for an algebraic
system with preorder lR by adding sequences to the language of lR. We
shall denote sequences by using square brackets; e.g. the sequence with two
elements Pand Q is denoted by [P, Q]. We shall have projection functions
11"; for i= 1, 2, We shall avoid the problems that arise when a projection
function 11"; can be applied to a sequence whose length is less than i by
adapting the type system. Furthermore we shall have a binary operation *
for concatenation. The laws that describe the operations on sequences will
he given as rules of À1r.

We do nat define these constructions in À1r as one would do in classica!
lambda calculus. Same of the techniques one uses in classica! lambda calculus
for defining 'pairing' arebasedon having 77-reduction and it is nat clear (yet)
what 17 reduction in À1r-calculus should look like.

Definition A.l.l (i) Add to the inductive defi.nition of thesetof type sym
bols:

• if a11 ••• ,am are type symbols (m ~ 0), then also is (a11 ••• ,um)·

(ii) Add to the definition of the alphabet:

• Symbols for operations on sequences: [,], 11"; (for i = 1, 2, ...), *·

196 CHAPTER 3. CORRECTNESS PRES. TRANSFORMAT/ONS

(iii) Add to the inductive definition of the set AR of lambda terms for lR, and
their type:

• (i) if P1 E AIR, ... , Pn E AIR for n ~ 0 with types ub ... , Un then
[P1, ... ,Pn] E AIR with type (ul> ... ,un)·

(ii) if P E AIR with type (Ut, ... , un) and 1 ~ i ~ n then 1rs(P) E AIR
with type u,. 0

Definition A.1.2 (length). If a lambda term P has type (Ut. ... , un) then
the length of P is defined as n. D

Definition A.1.3 (Rules for sequences). We adopt the rules of À7r (f=t.
f=2, context, refl., trans., À/1. À/2, ap., 1r, =1, subst.) and we add the
following rules:

r f--- [P1, ... ,Pn] * [Ql, ... ,Qm] = [P~>···,Pn,Qb···•Qm]

(C) f f--- PI!;;;;; Ql, ... ,r f--- Pn Ç Qn
- -seq r f--- [P1, ... ,Pn] Ç [Ql> ... ,Qn]

0

We could add a rule for surjectivity of sequence construction, but since we
do not need it we shall not add it. From now on we write À7r to denote the
extended version of the calculus.

Lemma A.1.4 (Properties of*). Let P = [Pb ... , Pm], Q = [Q1, ... , Qn]
and R =: [R1, ... , Rp]·

(i) f--- (P * Q) * R = P * (Q * R),

(ii) f--- [] * P = P * [] = P.

Proof. (i) Weuse rule (*I).

f--- (P * Q) * R =: ([PI. .. . ,Pm] * [QI. ... ,Qn]) * [Rt, ... ,RP]

~ [Pl, ... ,Pm,Qll· · ·•Qn] * [R1, ... ,RP]

~ [Pl, ... ,Pm,Qb···•Qn,Rb···•RP]

~ [P1, ... ,Pm] * [Ql•· .. ,Qn,R~> ... ,RP]

A.).:~r-CALCULUS WITH SEQUENCES

~ [Pt. ... , Pm] * ([Qt, ... , Qn] * [R11 ... , R"J)

= p * (Q * R).

197

(ii) f- [] * P = [] * [Pt, ... ,Pm] ~ [Pl!···•Pm] =Pand finally f- P * [] =
[Pt, ... ,Pm] * [] ~ [Pl!···•Pm] = P. D

Remark A.1.5 It is tempting tothink that every term P of type (O't, ••. , am)
can be written as [P1 , ... ,Pm] for suitable Pt, ... ,Pm such that f- P =
[P1, ... , Pm]· This is not the case however. As an example consider the al
gebraic system with preorder !R1 = (IN,::.;, { + }, {0, 1, 2, ... }) and P :=: (-\x Ç
1.[0, 01)2. An even simpler example is the term xu fora= (a11 ... , am)· D

Remark A.1.6 Insteadof sequence construction using [and] we could have
chosen constructars [] and cons. In that case we might have chosen projection
functions 'hd' and 'tl'. D

We can define the relations --.,--++ and =,..in an obvious way by viewing the
rules (7r,7r;,*t) as basic reduction steps.

Definition A.1.7 (Reduction).

The relation --. is defined inductively by:

1. r f- R Ç A~ r f- (-\x Ç A.B)R--. B[x := R],

2. r f- 1r;([P1, ... , PnD --. P, (1 ~i~ n),

3. f f- [Pt, ... , Pn] * [Q1, ... , Qm] __. [P11 ... , Pno Ql! ... , Qm],

4. ff-M-.N~ff-/j(... ,M, ...)-.f;(... ,N, ...),

5. r f- P,--. P: ~ r f- [Pt, ... ,P;, ... ,Pn]-. [Pli····P:, ... ,Pn] (l~i~n),

6. r r- P - P' ~ r r- P * Q - P' * Q,

1. r r- Q- Q' ~ r r- P * Q- P * Q',

8. r f- P--. P' ~ r f- 1r1(P) --. 7r;(P'),

9. r f- M--. N ~ r f- ZM--. ZN,

10. r f- M--. N ~ r f- MZ--. N Z,

11. r f- P--. Q ~ r f- (-\x Ç P.M)--. (-\x Ç Q.M),

12. r, [x ç P] f- M--. N, x(/. r ~ r f- (-\x Ç P.M)--. (-\x Ç P.N).

The relation --++ is defined inductively by:

1. r f- M --. N ~ r f- M--++ N,

198 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

2. ff-M--++M,

3. r f- M --++ N, r f- N --++ L => r f- M --++ L .

The relation =". is defined inductively by:

1. r f- M--++ N => r f- M =". N, provided M--++ N only by 1r-reductions,
i.e. excluding the clauses 2. and 3. from the definition of-+,

2. r f- M =". N => r f- N =". M,

3. f f- M =". N, f f- N =". L => f f- M =". L.

And of course we have the following lemma, justifying -+,--++ and ="..

Lemma A.1.8

(i) r f- M-+ N => r f- M = N,

(i i) r f- M --++ N => r f- M = N,

(iii) r f- M =". N => r f- M = N.

Pro of.

(i) By induction over the definition of-+.
(ii) By induction over the definition of--++.
(iii) By induction over the definition of ="..

0

0

This enriched À?r-calculus has reasonable properties: In À7r with the exten
sions of definitions A.l.l and A.1.3 every term strongly normalises (SN). This
can he shown by adapting the computability argument of Chapter 2. Further
more in À?r-calculus with the extensions of definitions A.l.l and A.1.3, --++
satisfies the diamond property i.e. r f- M--++ M1 , M--++ M 2 => 3M3 • (r f
M1 --++ M3 , M2 --++ M3). This can he shown by adapting the proof of the
weak diamond property and using Newman's lemma again, justas was done
for À7r in Chapter 2.

In order to have an interpretation for the algebrak operations on designs,
we extend À7r once more by introducing two operations on closed terms,
viz. * and o. One can view * as a generalisation of the concatenation
of sequences (*). One can view M o N as functional composition, where an
automatic un-Currying takes place. We shall not give the complete definition
of the resulting calculus, but rather describe the extensions with respect to
the calculus described so-far in an incremental manner. We shall use the
conventions that u1 -+ ... -+ Un-+ r abbreviates u1 -+ (... (un-+ r) .. .) and
that Àx Ç P.T is shorthand for Àx1 Ç P1 · · · Àxn Ç Pn.T

A. À1r-CALCULUS WITH SEQUENCES 199

Definition A.l.9 (AR)· (i) Add to the definition of the alphabet a clause:

• A binary operation symbol: o.

(ii) Add to the inductive definition of the set of lambda terms and their type:

• if P E AIR with type Ut --+ ••• --+ Um --+ (~t. ... , ~;) and Q E AIR
with type Tt --+ ••• --+ r,. --+ (77t, ... , 'Ik) then P * Q E AIR with type
Ut --+ • • • --+ Um --+ Tt --+ • • • --+ T n --+ (~t, · · ·,~;,'lt.·. • , 'Ik),

• if P E AIR with type Ut --+ ••• --+ Um --+ (~t, . .. , ~;) and Q E AIR
with type Tt --+ ••• --+ r,. --+ (ut, ... , um) then Po Q E AIR with type
r1 --+ ••• --+ r,.--+ (~1, ... , ~;). 0

Definition A.l.lO (rules for *• o). We adopt the rules of À7r (l=t, 1=2 ,

context, refl., trans., Àlt.)../2 , ap~ , 1r, =1, subst., 7r;, *1> Ç -seq) and we
add the rules:

.... (S,Tnotofatypeu-+r)
AxÇ P.S * AifÇ Q.T = AxifÇ PQ.S * T

.... (x ft. M, N not of type u -+ r)
M o (AxÇ B.N) = ÀxÇ B.(M oN)

(A x ç M.N) o [i] = (Ax ç M.N)L

where it is understood that the condusion of rule o2 is an abbreviation of
the following:
(Axt Ç M1· ···Àxm Ç Mm.N) o [Lt, ... ,Lm] = (Ax1 Ç Mt····(Àxm Ç
Mm.N)Lm .. .)Lt. o

Since we have extended thesetof terms and added rules, we must reconsider
the properties of * and o again:

Lemma A.l.ll (Properties of *).
Let P = Àx Ç P'.[P1, .•. , Pm], Q = Aif Ç Q"'.[QI> ... , Q,.] and R =)..z Ç

R'.[Rt.····Rp]·

(i) f- (P * Q) * R = P * (Q * R),

(ii) f- [] * P = P * [] = P.

Proof. (i) We use the rules (*t) and (*2)·

200 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

~ (.XxyÇ P'Q'.([P., ... , Pm] * [Ql! ... , Qn])) * R

~ (.XxyÇ P'Q'.([Pl, . .. ,Pm,Ql•···•Qn])) *R

~ .Xxyz Ç P'Q' R'.([P1, ... , Pm, Q1, ... , Qn] * [R1, ... , Rp])

~ .Xxfiz Ç P'Q' R'.[P., ... , Pm, Q1, ... , Qn, R1, ... , Rp]

~ .Xxfiz Ç P'Q'R'.([P1, ... , Pm] * [Ql! ... , Qn, R1, ... , Rp])

~ (.XxÇ P'.[Pl, ... ,Pm]) * .XfizÇ Q'R'.[Ql, ... ,QmR1, ... ,RP]

~ P * .XfizÇ Q'R'.([Ql!·· .,Qn] * [R11 ••• ,Rp])

~ P * ((.XfiÇ Q'.[Ql! ... , QnJ) * .XzÇ R'.[R11 ••• , Rp])

= p * (Q * R).

(i i) First we prove IJ * P = P.

1- [] * P = [] * .X.iÇ P'.[P., .. . ,Pm]

~ .Xx ç P'.([] * [P1, .. . , Pm])

~ .XxÇ P'.[P11 ••• ,Pm] = P.

Finally we prove P * [] = P.

1- P * [] = (.X.i Ç P'.[Pb ... 1 Pm]) * []
~ .XxÇ P'.([Pl, . . . ,Pm] * [])
~ .XxÇ P'.[P11 ••• ,Pm] = P. 0

Lemma A.l.l2 (Properties of o). The following properties hold only under
certain conditions. A sufReient condition is that both the left-hand side and
the right-hand side of the stated equation are fully reducible (by which we
mean that all candidate-redexes are redexes). We consider closed terms P,
Q and R. Let P = Àx1 Ç P1····ÀXm Ç Pm.[Al! · · · •A;] = .X.iÇ P.[Ä]. Let
Q = .Xy1 Ç Q1.···.Xyn Ç Qn.[Bli···•Bm] = .XfiÇ Q.[B].
Let R = .Xz1 Ç R1• • ··Àzp Ç Rn.[Ö] = .XzÇ R.[Ö].

(i) 1-(PoQ)oR=Po(QoR),

(ii) 1- []oP= Po[] = P.

Proof. (i) M[.i := B] abbreviates M[xm := Bm]· .. [x1 := B1]. We freely use
1r-equality.

1- (Po Q) o R = ((.X.i ç P.[Ä]) o .Xy ç Q.[B]) o R

A. >.1r-CALCULUS WITH SEQUENCES

0 - - - +-::! (>,yç Q.(..\xÇ P. [A])B) o R

= (.xgç Q.(.xxç P.[A])Ë) o .x;ç .R.[ë]
0 - - - - +-- -::! Àz Ç R.((..\y Ç Q.(Àx Ç P. [A])B) o [C])
0 - - ___

::! Àz Ç R.((..\y Ç Q.(Àx Ç P.[A])B)C) ="" ...

="".x; ç .R.[l[x := Ë][Y' := ë]]

= .x;ç .R.[l[x := Ë[Y' := ë]]] ="" . ..

="" .x;ç .R.((.xxç fl.[l])Ë[Y'== ë])

~ .x;ç R.((.Xxç P.[AJ) o [Ë[Y' := ë]])

= .x;ç .R.(P o [Ê[Y':= ë]]) ="" ...

= "" .xz-ç R.(P o ((.xgç Q.[Ë])Ö))

~ Po..\zÇR.((..\yÇQ.[Ë])Ö)

~ Po (.Xzç .R.((.Xgç Q.[Ë]) o [C]))

~ Po ((.xgç Q.[Ë]) o (.Xzç .R.[ë]))

:: Po(QoR).

201

(ii) f- Po[]= Pis nothing but rule (o2). For the converse, note that P must
be of type r1 ---t ••• r n ---t (). Since P is closed and fully reducible, it must he
1r convertibletoa term of the form Àx Ç P.[]. Therefore f- []oP= [] o Àx Ç

P.[] ~ ÀX ç P .([] 0 []) ~ ÀX ç ft.[]= P . 0

202

Appendix B

Design-development language

In this appendix we shall define a simple language which can he employed
for expressing certain models of the software development process. It is
particularly tuned to the setting of our study of growing, combining and
modifying designs. The models of the development process we aim at, are
abstract in the sense that they leave room for creative freedom by a human
developer.

Essentially the design-development language provides for procedures with
input and output parameters. The procedures can he defined by either
imperative programming-language constructs (assignment, while, sequen
tia! composition, etc.) or by fust-order predicate logic constrocts (not,
and, forall, etc.). This language is kept small and simple. lts seman
tics is relational, i.e. the meaning of a procedure is just a relation on
input-domain x output-domain.

The motivation for these choices is as follows. The imperative style is chosen
because we view it as natura! and intuitive to support a notion like 'current
design'. The logical constructs and the relational semantics are required
by the abstractness of our models. The imperative constrocts are required
because sometimes we want to he very specific in our models - like in 'first do
this, then do that', or in case of repetitive models. The procedures themselves
serve as a simple modularisation mechanism for our models. At the end of
this apendix we shall discuss some more aspects of the use of this language.
There we shall also show a few examples.

We assume the following sets

Var: variables with typical elements x, y, ...
Predn: n-ary predicate symbols with typical elements Pm ...
Opn: n-ary operation symbols (n E IN) with typical elements On, ...

B. DESIGN-DEVELOPMENT LANGVAGE

We shall define the following sets

Dexp: deterministic expressions with typical elements e, ...
Asn: assertions with typical elements A, ...

203

Elistk (k E JN+): expressions lists of length k with typical elements
lk, ...
Stat: statements with typical elements s, ...
Procn,m (n E lN, mE JN+): procedures with typical elements Pn,m, ...

We shall define mappings yielding the sets of 'free variables' (denoted as FV)
and the so-called 'assign-set' (denoted as AS). The assign-set of a statement
will contain those variables for which it follows on syntactical grounds that
assignments are made to them.

FV: Dexp .- P(Var)
FV: Asn .- P(Var)
FV: Elist" .- P(Var)
FV: Stat.- P(Var)
AS: Stat.- P(Var)

We give the definitions now, where it is understood that Dexp, Asn, Elistk, Stat
and Procn,m are the smallest sets which are closed under the syntax rules
given below, under the indicated restrictions related toFVandAS and where
it is also understood that the mappings FV and the mapping AS are simul
taneously inductively defined.

e ::=x

I On(et, . · . , en)

A ::= Pn(el, ... , en)
I true
I notA'
I (A' or A")
I (A' and A")
I (A'-- A")
I (A' t-+ A")
I exists x (A')
I forall x (A')

lk ::=x (k = 1)
I On(l~) (k = 1)
ll~, z;:. (k = n + m)
I Pn,m(l~) (k = m)

204 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

s ::= (i.e. empty)
I X11 ... , xk := lk; (x11 ... , xk distinct)
Is' s"
Is' Os"
I while A do s' od;

Pn,m ::= proc X11 . .. , Xn ----? Yll .. . , Ym axiom A

(FV(A) Ç {.i} U {!1}, x1, ... ,xn, Yb ... ,ym distinct)

I proc x1, ... , Xn def s lk

(k = m, FV(lk) Ç {i} U AS(s), FV(s) Ç {i}, x 11 ... , Xn distinct)

proc x 11 ... , Xn----? Yl, ... , Ym pre A post A' abbreviates proc Xt, ... , Xn----?
Y1, ... , Ym axiom (A and A') provided FV(A) Ç {.i}, FV(A') Ç {.i} U

{11}, x1, ... , Xn, Y11 ... , Ym distinct.

FV: Dexp----? P(Var) is defined by

FV(x) ={x}
FV(On(ë')) = Ui=l, ... ,n FV(e;)

FV: Asn ----T P (Var) is defined by

FV(Pn(ë')) = Ui=l, ... ,n FV(e;)
FV(true) = 0
FV(not A) = FV(A)
FV((A or A')) = FV(A) u FV(A')
FV((A and A')) = FV(A) u FV(A')
FV((A----? A')) = FV(A) u FV(A')
FV((A +-+A')) = FV(A) U FV(A')
FV(exists x (A)) = FV(A) \{x}
FV(forall x (A)) = FV(A) \{x}

FV: Elistk ----T P(Var) is defined by

FV(x) ={x}
FV(On(ln)) = FV(ln)
FV(ln, l~) = FV(ln) u FV(l~)
FV(Pn,m(ln)) = FV(ln)

FV: Stat ----T P(Var) is defined by

B. DESIGN-DEVELOPMENT LANGUAGE

FV() = 0
FV(x := l;) = FV(l)
FV(s s') = FV(s) u (FV(s')- AS(s))
FV(s 0 s') = FV(s) u FV(s')
FV(while A dos od;) = FV(A) u FV(s)

AS :Stat-+ P (Var) is defined by

AS()= 0
AS(x := z;) ={x}
AS(s s') = AS(s) u AS(s')
AS(s 0 s') = AS(s) n AS(s')
AS(while A dos od;) = 0

205

We assume a set D (the domain of the built-in data type) with typical ele
ments d, ... and we assume meaning functions

[~ : Predn-+ P(D")
[~ : Op" -+ D" -+ D

The set E of stat es, with typical elements a, ... is defined by

E = Var-+ D

We shall define the following meaning functions

[~ : Dexp -+ E -+ D
[~ : Asn -+ P (E)
[~ : Elist~c -+ E -+ P(D,.)
[~ : Stat -+ E -+ P (E)
[]] : Procn,m-+ P(Dn+m)

We shall identify D x (D x D) with (D x D) x D. We write a{dfx} for the
modified state À\ y · (if y = x then d else a(y)).

The meaning of a deterministic expression yields for a given state the result
value. The meaning of an assertion is thesetof statesin which it holds. The
meaning of an expression list yields for a given state the set of possible result
sequences. A statement is viewed as a non-deterministic state transformer.
A procedure is viewed as arelation between an input sequence and aresult
sequence.

[~ : Dexp -+ E -+ D is defined by

[x ~(a) = a(x)

206 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

[On(e)](a)= [On]([e]{a))

[] : Asn ---+ P (E) is defined by

[Pn(e)] ={a I [e]{a) E [Pn]}
[true] = E
[not A] = E \ [A]
[(A or A')]= [A] U [A']
[(A and A')D =[All n [A']
[(A---+ A')]= {a ia Et [A] V a E [A']}
[(A+-+ A')]= {a ia E [A]{:} a E [A']}
[exists x (A)]= {a l3d·a{djx} E [A]}
[forall x (A)] ={a I Vd · a{djx} E [A]}

[] : Elistk---+ E---+ P(Dk) is defined by

[x](a) = {a(x)}
[On(l) Ha) ={[On](d) ilE [l](a)}
[l,l'](a) = {ddi il E [l](a) 1\ JE [l'Ha)}
[Pn,m(l) Ha)= {J l3l E [l](a) · ddi E [Pn,m]}

[] : Stat ---+ E ---+ P (E) is defined by

[](a) ={a}
[i:= I;](a)= {a{lji} ilE [lHa)}
[s' s"](a) ={a" l3a' ·(a' E [s'](a) 1\ a" E [s"](a'))}
[s0s'](a) = [s](a) U [s'D(a)
[while A dos od;](a) = ui= O,l, ... ~;(a)
where wedefine ~;: E---+ P(E) for i = 0, 1, ... by
~o = ».a· {a} n [not A]
~i+l = ». a·
{a" l3a' E ~;(a) · (a' E [A] 1\ a" E [s](a') 1\ a'' E [notA])}

[]] : Procn,m---+ P(Dn+m) is defined by

[proc i ---+ y axiom A] = { ddi I 3a' · (a' { lj i}{ J /i/} E [A])}
[proc i def sIn= {ddi l3a'. (3a E [s D (a'{cf;i}). (JE [l](a)))}

Now we shall discuss the use of this language. Typically the domain of the
built-in data type is the set of all (pf 1\ ds) designs, but we shall also use
other domains, however without formally having defined this. We take

B. DESIGN-DEVELOPMENT LANGUAGE

Op1 = {top, bot, ... }
Op2 = {o, *• ... }
Pred1 = {bbc, gbc, .. . }
Pre~= { =, =rr 1• =PP• =top• bbv,gbv, bbc-gb-mod, ... }

207

where = denotes equality on D and where =u 1 is defined by d1 =n 1 d2 :Ç:>

1-.h- Ud1 ~ = [d2]. The dots (...) mean that we shall feel free to extend the
set of operations and predicates when necessary. Both o and * are written
in infix notation. Also = and =[1 are written in infix notation.

If no confusion can arise we sametimes omit parentheses e.g. writing A and
A' insteadof (A and A'). We shall freely give names to procedures, writing
n := p where n is the name to he given to the procedure p. We do not
allow recursion (yet). Sametimes we replace the keyword proc byevent or
technique.

We give three simple examples of design-programs written in this language.
In these examples we have three procedures (techniques) which are named
'split', 'impl' and 'pardev' respectively. The procedure 'split' is given in a
pre- and postcondition style. The result of executing split(d) can he any
pair of designs d1 and d2 for which d1 * d2 = d and in that sense 'split' is
non-deterministic.

split := technique d---+ d~, d2
pre bbc(d)
post d1 * d2 = d

The second example is about a procedure 'impl' which also is given in a pre
and postcondition style. The technique 'impl' should he considered as an
instruction to a developer to performa hhc-preserving glass-box modification
(hbc-gb-mod) upon a bbcinput design and to yield the design resulting from
this modification.

impl := technique d ---+ d' '
pre bbc(d)
post hbc-gh-mod(d,d')

The third example is about a procedure 'pardev' which is given as a very sim
ple algorithm consisting of an assignment statementand aresult expression.
It invokes the two procedures of the other examples. The technique 'pardev'
can he viewed as a model of the development process offering a possihility
for parallel development. It says that first of all the input design d should he
split using the technique 'split' and that the resulting parts of d should he
temporarily stared in d1 and d2. Then the technique 'impl' should he applied

208 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

to each of these parts (possibly in parallel) and the results should be fitted
together again with * to form the final result design.

pardev:= technique d
def dh~ := split(d);

impl(dt) * impl(d2)

After these examples, we can give some more motivation for this procedure
concept. Procedures have to yield a sequence of results because we want to
view splittingas a procedure (as shown in the 'split' example). Weneed the
non-determinism since we must be able to describe the creative freedom of
the developer. The fact that procedures have no side-effects makes reasoning
about them relatively easy.

In order to state properties of our design-programs we shall write {At}s{A2}

iff the following holds:

i.e. if we start in a state u1 in which A 1 holds and if execution of s stops in
state u2 then A2 holds in u2. Note that the execution of s starting in u 1 can
go wrong for it may be the case that that there is no u2 E [s](ut). In this case
we say that the execution of s fails. It follows that non-termination is viewed
as a failure as well. We shall refer to {At}s{A2 } as the partial correctnessof
s with respect to A 1 and A2 • As an easy example of this notation we have
{bbc(d)} d1,d2 := split(d); {d1 * d2 = d}.

209

Appendix C

List of symbols

In this appendix we give a list of the symbols used. For each symbol the
list contains a very short informal description. The list has been subdivided
into a number of sub-lists. The fust sub-list contains general mathematical
symbols. The second sub-list contains the symbols which are introduced
in Chapter 2. The third sublist contains the symbols which are introduced
and/or used first in Section 2. In a similar way the fourth sub-list contains
the symbols which are introduced and/or used first in Section 3, and so on.
For some symbols the list contains a relevant page number - usually the
defining occurrence of the symbol.

General mathematical symbols

~,-{::=

{:}

A, V
V, 3

=
:=
{ }
{ I }
E
0
u,n
\
Ç, 2
p
c·
x

Logical implication
Logical equivalence
Conjunction, disjunction
U niversal, existential quantification
Syntactical equality
Equality
Abbreviation
Set construction
Set comprehension
Set memhership
Empty set
Set union, set intersection
Set difference
Set inclusion
Powerset
The set of sequences with elements from C
Cartesian product

210 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

(')
(' ... ')
JN, JN+
<, ~
+
0, 1,2, ...
f:A----+B
À\

[:= l

Pair
Tuple (= sequence)
Natura! numbers, positive nat. numbers
Less than, less than or equal to
Addition
Natura! numbers
f is a function from A to B
Lambda notation for functions
Substitution

Symbols from Chapter 2

a, a1, ... , r, 1"1, •• •

Xo,Xt,···

xf
c
A,B,C,L,M,P, ...
x,y,z,u,v,w
[<p]
r.~
f-

(f=d
(f=2)
(context.)
(refl)
(trans.)
(.Ui)
{.U2)
(ap.)
(7r)

(=I)
(subst.)

0
SN
c~

Typical algebraic system with preorder
lN as algebraic system
Abstractor (symbol)
Lambda calculusbasedon rule (1r)

Set of terms for À7r

Basic type symbol
Gonstructor for type symbols
Typical type symbols
Variables
Typical variabie of type r
Partial order (symbol)
Typical lambda terms
Typical variables
Formula <p viewed as an assumption
Typical contexts
Derivation symbol
Rule of À7r (algebraic system oracle)
Rule of À1r (a!gebraic system oracle)
R ule of À 1r (context rule)
Rule of À1r (reflexivity)
Rule of À1r (transitivity)
Rule of .h (lambda introduction)
Rule of À7r (lambda introduction)
Rule of À7r (application)
Rule of À1r (partial contraction rule)
Rule of À1r (= introduction)
Rule of À7r (substitution)
Diamond (Church Rosser) property)
Strong normalisation property
The set of components

55
58
61
60
62
61
61
61
62
62
62
63
63
64
64
64
65
65
65
66
66
66
66
66
67
68
68
80
76
84

C. LIST OF SYMBOLS

c,ct, ... Typical components
DFR The set of designs

d,db··· Typical designs
:=,Ç Symbols used in concrete syntax of designs
prim, system Symbols used in concrete syntax of designs
wf Well-formed

~ ll Meaning function for designs
gbc, bbc Glass-box correct, black-box correct
bbc-gb-mod bbc-preserving glass-box modification

Symbols concerning designs

M Abbreviated form of e.g. M 17 ••• ,Mn
D' 'IR Designs where the system is a sequence
cset() Set of narnes of a design
sys() Set of narnes in the system of a design
arity() Ari ty of a design

=n 1 Semantic equivalence on designs
pf prims-first
ds Directly specified

rgh•rhb Glass-box context, black-box context

.c Typical sequence of abstractions
s Typical Sequence of substitutions

Symbols concerning algebraic operations on designs

* Concatenation operation on designs (binary)
0 Composition operation on designs (binary)
e Empty design
en Identity design of arity (n, n)
gbv,bbv Glass-box valid, black-box valid
_i,T Min. and max. elements (cf. Ç)
bot, top Bottom and top operations on designs
-pp Equality roodulo permutation of prims
=top Top-equivalence

~ Column-wise operation on designs
() Embedding

Symbols concerning design creation

0,1, .,+,EB,
GND,7400,7401, ...
b,s

Symbols of Boolean logic (in example)
TTL component narnes (in example)
Typical bit-sequences (in example)

211

84
86
86
86
86
87
91
87
??

123
124
124
125
125
129
129
132

135
135

133
136
138
138
141
144
144
147
148
150
153

156
156
156

212 CHAPTER 3. CORRECTNESS PRES. TRANSFORMAT/ONS

int(b) Integer respresented by b (in example) 156
w Typical machine&user-context 162
INV General invariant to be (re-) established 164
POST Postcondition of design creation 164

I Typical set of component narnes 165
<d

1 One-step 'part of' relation 165
<d 'Part of' relation 165
<d Occurs (directly or via <d) in ... 165
TD_lNV Top-down invariant 166
td Top-down technique 166
td....step One-step top-down technique 166
last_prim Operation yielding component 167
last_prim_context Operation yielding 'context' design 167
tdjmpl Technique implementing one component 168
insert Operation for inserting a component 161
td....step0 , td....step1 , ••• Alternative techniques for td....step 167
td....specjmpl Combined specification & implementation 169
BU_lNV Bottorn-up invariant 173
bu Bottorn-up technique 173
bu....step One-step bottorn-up technique 173
bu....step0 , bu....step1 , ••• Alternative techniques for bu....step 174
add....system_element Operation for adding a system element 174
add_component Operation for adding a component 175

Symbols concerning design evolution

change Procedure descrihing arbitrary event 179
emulator Technique descrihing emulation 180
remove_un used Operation to remove unused components 181
determine_bottom Technique yielding a valid bottorn design 181
simulator Technique descrihing simulation 182
emptysystem Operation for making the system empty 182
determine_top Technique yielding a valid top design 182

Symbols concerning design partition

d[v] The unique component in d with name v 184
impl

0 One-developer bbc-gb-mod technique 184
split

0
Technique for splitting into components 185

pardev
0 Component-based parallel technique 185

impl Arbitrary technique respecting INV 186
split. Technique for splitting according to * 187
defo Definedness of composition 187

C. LIST OF SYMBOLS

msplit
ssplit
pardev.
splito
pardev~
pardev0

impl+

Technique for splitting machine
Technique for splitting system user
Parallel technique based on *
Technique for splitting according to o
Fallacious version of pardev o
Parallel development technique based on o
Technique as impl not affecting top

Symbols concerning À1r-calculus with sequences

(' ') Gonstructor for type symbols

[' 'l Gonstructor for terros (sequence)
11"j Gonstructor for terros (projection)

* Gonstructor for terros (concatenation)

1J Glassical notion of red uction
(1r,), (*I), (Ç-seq) Rules of À1r with sequences
-t One step rednetion - Rednetion
-,.. 1r-convertibility
.!! Equality because of rule (*d
r,a,1J,~ Typical type symbols
0 Gonstructor for terms
(*2), (ol), (o2) Rules of À11" with sequences
Àxç.M. A bbreviating ÀXI Ç MI ÀXm Ç Mm.

M Abbreviating Mn ••• MI

Symbols concerning the design-development language

Var Set of variables
Pruln Set of n-ary predicate symbols

Op" Set of n-ary operation symbols
Dexp Set of deterministic expressions
Asn Set of assertions
Eli st" Set of expressions lists of length k
Stat Set of statements
Procn,m Set of procedures
x,y, ... Typical elements of Var

Pn,··· Typical elements of Pred,.

On,••• Typical elements of Op"
e, ... Typical elements of Dexp
A, ... Typical elementsof Asn
lk, ... Typical elements of Elist,.

213

187
187
187
188
188
190
190

195
196
195
195
195
196
197
197
198
196
195
199
199
199

199

202
202
202
203
203
203
203
203
202
202
202
203
203
203

214 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS

s, ... Typical elementsof Stat 203

Pn,m•··· Typical elements of Procn,m 203
FV() Set of free variables of ... 203
AS() Assignset of ... 203
.. - Production symbol of syntax 203

I Separator for alternatives in syntax 203
true, not, or, and Keywords for logkal connectives 203

0 Symbol for non-deterministic choice 204
while, do, od Keywords for repetition construct 204

Statement terminator 204
proc, axiom, def Keywords for procedures 204
·- Symbol for giving a nametoa procedure 207

u] Semantics of design-development language 205
D Data domain (e.g. pf 1\ ds designs) 205
d . .. Typical elementsof the data domain 205
E Set of states 205
u, ... Typical states 205
u{ dj x} Modification of a state 205
<]); Semantics of i steps in repetition 206
{At}s{A2} Partial correctness (design-program level) 208
pre, post Alternative keywords for procedures 204
event, technique Alternatives keywords for proc 207
split, pardev, impl Examples of techniques 207

Chapter 4

Formal Specification of a Text
Editor

4.1 Introduetion

215

Many of the classical probieros of software construction are caused by the
absence of specifications or - if there are specifications - by the ambiguities
in their formulation. Therefore the use of forma! specification techniques is
considered worthwhile. The ability to construct large forma! specifications
supports the applicability of the notions of component, black-box description
and design of Chapter 2 and the correctness-preserving transformations of
designs investigated in Chapter 3. This chapter deals with the construction
of a forma! specification and by way of example we specify a display-oriented
text editor.

A text editor is a good example for illustrating forma} specification tech
niques because of the following reasons. First, most software designers are
familiar with at least one text editor, so the subject in itself may raise some
interest and there is no need for an introduetion into some less known appli
cation area. Secondly an editor is complex enough to give opportunity for
illustrating many specification techniques and design principles.

In [1] the language COLD is proposed, in which one can formally express the
design of a complete software system in various stages of its development.
This language will appear in several user-oriented versions. There exists a
kernel-language COLD-K [1,2,3] which contains all essential semantic fea
tures of the design language. We use this kernellanguage for expressing all
formal definitions and axioms throughout our casestudy. This has the ad
vantage that no ambiguities can arise and that a mechanica! syntax-checking
and type-checking can take place. However, sametimes when we want to

216 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

state derivable properties of certain operations, we use a somewhat more
liberal style of notation.

There are several related reasans that make the undertaking of performing
this editor case study worthwhile. The first reason is that it shows the
usefulness of forma! specificatien techniques in general and of À1r-calculus
and COLD-K in particular. The second reason is that we get an opportunity
to annotate the specificatien and to formulate some guidelines which might he
of help for other users of forma! specificatien techniques. The third reason is
that it will provide us with a starting-point fora large and typical application
of the design methods studied in Chapter 3. The application consists of a
systematic top-down development of the editor, which will he undertaken in
Chapter 5.

The construction of a forma! specificatien typically involves the following
activities: (1) formalisation of application domain-specific concepts: in our
case the most important concept being that of text, and (2) writing actual
specifications of the system under consideration, which in our case is the
editor. Typically one starts with (1) and then proceeds with (2). However
during the writing of the actual specifications, one might discover the need
of additional operations etc. and these should be added to the application
domain-specific concepts formalised already. This is precisely what has hap
pened during the construction of the specificatien presented in this chapter.
The chapter is a rational reconstruction of this process; we have collected the
application-domain specific concepts and put them before the description of
the editor. A central role will he played by the concept of text. We shall
devote some effort to an investigation of this concept by introducing a col
lection of algebrak operations on texts. In this way we develop a machinery
which will turn out to he useful, without making any specification decisions
ahout the actual text editor itself yet. Section 4.2 gives an overview of the
entire editor specification. Text and algebraic operations on text are the
subject of Section 4.3.

The forma! specification presented in this chapter wil! focus on the functional
aspects of a text editor, by which we mean those aspects that are not related
to performance issues. Rather than creating a completely new editor we take
over several concepts from the EMACS family of editors [4,5,6]. Of course,
we have to make choices about the way our editor behaves and choose among
the many different possihle features. We do nat claim that our choices are
preferabie over the many other possihilities. Instead, the points we want to
make in this chapter are (1) that it is possihle to make a precise description
of the behaviour of an editor and (2) that writing a forma! specification helps
in constructing an editor that is based on a few well-understood concepts,
rather than a large collection of ad-hoc features. In Section 4.4 we describe

4.2. OVERVIEW OF THE FORMAL SPECIFICATION 217

a display, some data types for interfacing and a file system. The actual text
editor is the subject of Section 4.5. In Section 4.6 we discuss some related
work. Section 4. 7 is devoted to conclusions.

In Appendix A we provide an overview of all sorts, functions, predicates and
procedures used in this chapter. For each symbol there is a short informal
description. In Appendix B we give a number of standard class descriptions.

4.2 Overview of the Formal Specification

In this section we give an overview of the forma! specification presented in
the remainder of this chapter. This forma! definition will consist of many
definitions of sorts, functions, predicates, procedures and axioms. These
definitions are grouped into a number of modules, or class descriptions as they
are called in COLD-K. Of course we must avoid that this becomes an almost
endless list of definitions without its goal being clear in advance. Therefore
the overview presented in this section is goal-oriented in the sense that it
begins with the top-level definition of the entire forma! editor specification.
This editor specification will not he finished until Section 4.5.14 where its top
level definition turns out to be a procedure called key. We show a fragment
of the definition of key, where it is understood that the sort Char corresponds
with a character-set.

PROC key: Char ->
PAR c:Char
DEF (printable(c) ? ; insert_character(c)

I ord(c) 0 {A~} ?; set_mark
I ord(c) = 1 {AA} 7• beginning_o!_line . '

ord(c) = 20 {AT} ?; insert-!ile

etc.
)

This procedure will he made available to the user of the editor and things
must be arranged such that when the user hits some key on his keyboard,
producing character c say, then key(c) is invoked which activates one of the
editor operations insert_character(c}, set_mark, beginning_of_line,
insert_file etc. Most of these operations result in a modification of an edit
buffer and this modification at its turn can he observed on the screen of the
user's video display unit. The procedure key is contained in a class descrip
tion called KEYBIND_SPEC which imports two other class descriptions called

218 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

WITEFA_SPEC and MOREDOP _SPEC. The narnes of the latter class descriptions
are derived from Window-and-TExt-FAcility and MORe-EDiting-OPerations. The
window and text facility is the kernel of the editor whereas MOREDOP _SPEC
provides a few more operations which can be described easily in terms of
operations from this kernel. More precisely, WITEF A_SPEC provides a layer of
general-purpose editing primitives, whereas MOREDOP _SPEC turns them into
one particular editor - using the general-purpose primitives in a specialised
way. These two class descriptions are presented in Sections 4.5.1-4.5.12 and
4.5.13 respectively. The window and text facility provides operations such as

PROC insert_character : Char ->

The insert_character operation has roughly speaking the effect that an
edit-buffer corresponding with a notion of 'current text' is modified, that the
screen of the display is updated and that the cursor moves one position to the
right. When we try to explain the meaning of insert_character in more
detail, it becomes clear that weneed a lot of preparations. In particular we
must have descriptions of the conceptual organisation of the edit-buffers, of
the notion of 'current text' and of the relation between the contents of the
edit-buffers and the visible contents of the screen. There are also operations
that deal with file handling. For example we have

PROC insert_file : ->

which indicates a need to describe a file system as well. Since files are ad
dressed by names, we must also he prepared to model the strings which
are used for that. The above discussions explain why WITEFA_SPEC and
MOREDOP _SPEC at their turn are based on several lower level class descrip
tions, amongst which:

• DISPLAY_SPEC: a model of the video display unit,
• 'SEQ_SPEC' and 'STRING_SPEC': sequences and as a special case of

these, strings (the quotes are formally part of the names).
• FILE_SPEC: a file-system.

These are presented in Sections 4.4.2, 4.4.3 and 4.4.4 respectively. By way
of example we shall have a closer look at DISPLAY_SPEC, which specifies the
video display unit - at least as much of it as we need to specify the editor.
The statespace of DISPLAY_SPEC is spanned by two variabie functions

FUNC screen: -> Text VAR
FUNC cursor : -> Nat # Nat VAR

where Text denotes a sort of texts and where Nat refers to the natural num-

4.2. OVERVIEW 219

bers. These numbers represent the vertical and horizontal co-ordinates of the
cursor. All display operations are described by their effect on either screen
or cursor or both. For example

PROC nl: -> MOD screen, cursor

serves forsendinga new-line coznmand to the display, thereby possibly mod
ifying the screen and the cursor. The sort Text is in fact an application
domain-specific concept and it plays a key role throughout this case study.
Therefore the formal specification begins with a study of texts and opera
tions on texts. This study comes before the specification of the display and
the file system. We view a text as a sequence of lines. The sort of lines is
denoted as Line and each line consistsof a sequence of characters. We shall
have the following sorts introduced formally:

SORT Line
SORT Text

and there are operations to select a line from a text and to select a character
from a line.

FUNC sel: Text # Nat -> Line
FUNC sel: Line # Nat -> Char

Starting from this very simple model, a rich collection of operations on texts
is defined, including a variety of cut and paste operations. For example, there
is a paste operation such that paste(t, u, k, l) means to take a text t and
to insert another text u into it immediately before the position with given
coordinates (k, l) .

FUNC paste: Text # Text # Nat # Nat -> Text

As a kind of inverse of pastethereis an operation cut such that cut(t, k, l, m, n)
means to take a text t and to cut out the piece of text beginning at posi
tion (k, l) and ending at position (m, n). It yields a pair (t1 , t2) where t 1 =
'remaining text' and t 2 = 'deleted text'.

FUNC cut: Text # Nat # Nat # Nat # Nat -> Text # Text

We shall not only give the definitions of these and similar operations, but
we shall also study some of their properties, which are quite elegant from
an algebraic point of view. The operations are grouped into a number of
class descriptions among which LINE_SPEC, TEXT_SPEC, TEXT_OPS1_SPEC,
TEXT _OPS2_SPEC, TEXT _OPS3_SPEC, STRING_SPEC, and PROFILE_SPEC. This
is done in Section 4.3. No real decisions about the editor are taken yet

220 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

in Section 4.3; the only thing which happens is that those operations are
introduced formally which are needed to discuss text editing. In fact, at the
end of Section 4.3 there is hardly any clue whether we aim at an EMACS
like editor, an ED-like editor or a VI-like editor. We could even specify a
MacPaint-like system, although our collection of operations is quite useless
in that case.

This coneindes the overview of the forma! specification of this chapter. The
overview has been written afterwards, in a goal-oriented fashion, but the
actual presentation in the remainder of this chapter will he organised the
other way around. This is because we want to formally introduce each sort
and operation befare it is used.

4.3 Text and Algebraic Operations On Text

4.3.1 Introduetion

There will he several approaches to rnadeling texts, which differ both with
respect to the style of description and the level of abstraction. E.g. consider
the following text:

second line

then we can model it as a sequence of lines where the first line has 18 char
acters viz. "first line of text" and where the second line has 11 char
acters, viz. "second line".

An equally valid, but somewhat more abstract approach is to model texts by
focusing on their 'contour' only. In this approach the above text is modeled
by just the sequence (18, 11) alone. Of course there is a kind of forgetful
mapping from the first model to the second model in the sense that the
information conveyed by the actual characters in the text, is lost in the
second model. Such approaches at distinct levels of abstraction will play
a role in our formalisation of the notion of text and as it turns out there
will he operations on texts at several levels of abstraction, such that the
corresponding forgetful mapping behaves homomorphically.

In fact there are several more ways of rnadeling texts and we mention two
of these now. First, we can describe texts as strings, provided we adopt
some line-separator. This approach is, roughly speaking, at the same level of
abstraction as the first approach mentioned above, where a text is modeled

4.3. TEXT AND OPERATIONS ON TEXT 221

by a sequence of lines. Secondly we can describe texts just by their length
which we could define as the length of the string representation. In a sense
this is the most abstract non-trivia! model, since it forgets about both the
structure and the contents of the text.

The above discussion may seem a bit vague and it is the very purpose of
our formalisation of the notion of text to cast such ideas into definitions and
propositions which are described with mathematica! rigour. In this formal
isation we will introduce several algebraic operations on texts. For example
there will be an operation called cut which serves for takingapart texts and
an operation paste which serves for fitting together texts. As it turns out,
there are many meaningful operations on texts and it is possible to build a
rich collection of them. We shall build our collection with the guideline that
an operation is included when we foresee that it can be used when specifying
an editor. In case of doubt about the usefulness of an operation, we just
include it, because there is not much harm in having too much operations;
this is because we are not specifying any system to be built yet but we are
just gatbering a vocabulary for speaking about such a system.

A second guideline is that an operation is more likely to be useful when it has
nice algebraic properties. When introducing a new operation, it is a good
idea to consider the questions: does associativity hold? does commutativity
hold? does idempotency hold? does a neutral element exist? etc. Note
that it depends on the signature of an operation whether these questions
are meaningful. Sametimes such a question is not meaningful but we can
invent a suitable variation of it which does make sense. For the applicable
properties we then investigate whether they hold or not.

In order to get started, we need specifications descrihing several data types
of a mathematica! nature. For each such data type there is one COLD-K
class description. We do notstart completely from the beginning, but instead
we use data types such as NAT _SPEC, CHAR_SPEC, SEQ_SPEC, TUPLE_SPEC,
SET_SPEC, MAP _SPEC etc. We adopt these from [7] and we only add a few
simple constants such as 127 and 'a'. Just for completeness, these class de
scriptions are given in Appendix B. This chapter is organised in such a way
that when all forma! COLD-K texts below are appended and Appendix B is
put before that, we get a well-formed list of abbreviation-type components.

We start with the forma! introduetion of the sorts Line and Text. This is
the subject of Section 4.3.2. Next, we introduce strings and we have a look at
the relation between texts and strings. This is the subject of Sections 4.3.3
and 4.3.4. Furthermore we say a few words about printability, which is in
Section 4.3.5.

After that, our systematic study of algebrak operations on texts begins. This

222 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

study of algebraic operations covers the Sections 4.3.6 to 4.3.11.

4.3.2 Texts

We pay some attention to the question 'what is text'?'. It is tempting to say
that a text is a sequence of characters, separated by new-line symbols. How
ever, if you ask this question to someone without programming experience,
he or she will probably tell you about characters on some two-dimensional
medium like paper or a screen. Therefore it is more natura! approach to say
that a text is a sequence of lines where each line is a sequence of characters.
This leads us to a formalisation of lines first.

We use SEQ_SPEC from Appendix B which is a parameterised description of
sequences (sort Seq) with constructor operations empty and cons and also
operations hd, tl, sel, cat, len, rev, bag for head, tail, selection, con
catenation, length, reversal and bag construction respectively. lts parameter
restrietion only mentions a sort Item. LINE_SPEC is obtained as an instantia
tion of SEQ_SPEC where the Items are replaced by characters (sort Char) and
where the resulting sequences are named Lines. The specification CHAR_SPEC
provides among other things this sort Char. It is taken from Appendix B
and it serves as an actual parameter here.

It is a peculiarity of COLD-K that when establishing such an instantiation the
renaming takes place in the parameterised specification (SEQ_SPEC); the re
sulting renamed version of it is applied to the actual parameter (CHAR_SPEC).

LET LINE_SPEC :=

APPLY RENAME
SORT Seq TO Line,
SORT Item TO Char

IN SEQ_SPEC TO CHAR_SPEC;

In a similar way we introduce the sort Text as sequences of lines. It is
important to realise that a text is something to be distinguished from the
internal representation of a text inside a text editor.

LET TEXT_SPEC :=

APPLY RENAME
SORT Seq TO Text,
SORT Item TO Line,
FUNC empty: -> Seq TO niltext

IN SEQ_SPEC TO LINE_SPEC;

4.3. TEXT AND OPERATIONS ON TEXT 223

Since we used an instantiation of SEQ_SPEC we have already the operations
niltext, cons, hd, tl, sel, cat, len and rev. Note that niltext is the
text having no lines at all.

We shall introducesome more operations now and they will he made part of
a class description called TEXT_OPS1_SPEC. We want to add a remark about
structuring our specification here. The purpose of TEXT_OPSLSPEC and sirn
ilar class descriptions to he introduced later is to structure our collection of
sorts and operations. Each class description typically begins with a collec
tion of imports, followed by a CLASS ... END type class description containing
the newly introduced operations. The class descriptions serve as a group
ing mechanism forsort definitions, function definitions, predicate definitions
etc. Of course we aim at a functional grouping by which we mean that we
put together those operations which are closely related with respect to their
purpose and their technica! contents.

LET TEXT_OPSl_SPEC :=
IMPORT NAT_SPEC INTO
IMPORT CHAR_SPEC INTO
IMPORT LINE_SPEC INTO
IMPORT TEXT_SPEC INTO
CLASS

Sometimes is is desirabie to consider non-nil text texts only; later we shall
introduce a predicate ok on texts, such that ok(t) will imply that t =f.
nil text. It would he convenient to have a unique text with the intuition of
'empty text'. However, there are two candidates for this, viz. niltext and
the text that consists of one empty line. Let us call the latter text zero.

We introduce some auxiliary functions, grouped into functions to construct
texts (zero, addempty and addchar), and functions to take texts apart
(first and rest). The function zero yields the text that consists of one
empty line. The function addempty adds an empty line in front of a text.
The function addchar adds one character at the beginning of the first line
of a text. first and rest are unary functions on texts. The function first
yields the first character of a text. The function rest yields a text that is
the input text with its first character removed. Note that hd, tl and cons
are overloaded in the sense that there are two operations called hd (viz. one
one texts and one on lines) and similarly two tl and two cons operations.
Later we shall comeback to this overtoading mechanism.

FUNC zero: -> Text
OEF cons(empty,niltext)

224 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

FUNC addempty: Text -> Text
PAR t:Text
DEF cons(empty,t)

FUNC addchar : Char # Text -> Text
PAR c:Char,t:Text
DEF cons(cons(c,hd(t)),tl(t))

FUNC first:Text -> Char
PAR t :Text
DEF hd(hd(t))

FUNC rest : Text -> Text
PAR t:Text
DEF cons(tl(hd(t)),tl(t))

We have the obvious properties

V t : Text, c : Char (t =f. nil text =>
first(addchar(c, t)) = c 1\ rest(addchar(c, t)) = t)

and

V t: Text
(hd(addempty(t)) = empty 1\ tl(addempty(t)) = t)

where wetook some obvious notational freedom with respect to COLD-K in
the sense that we wrote V rather than FORALL, t =1- nil text instead of NOT t
= nil text etc. This kind of syntactic sugar is formally notpart of COLD
K and when syntax- and type-checking the formal texts of this chapter,
we excluded the propositions which are based on this syntactic sugar. We
only use this syntactic sugar when discussing properties of definitions and
never to give the formal definitions themselves. Throughout this chapter the
actual formal definitions are in COLD-K. These formal COLD-K texts are
recognisable by their somewhat smaller font (first rather than first) and
by the complete absence of mathematica! type-setting (=> rather than =>).

END ; {of TEXT_OPSl_SPEC}

As a next step we relate texts with strings, by which we mean sequences of
characters. This is the subject of our next two sections.

4.3. TEXT AND OPERATIONS ON TEXT 225

4.3.3 Strings

We introduce the sort String as sequences of characters. Again we use
SEQ_SPEC from Appendix B . In informal writing we freely denote strings
using double quotes, e.g. "this is a string" . We introduce the usual
lexicographical ordering on strings as a predicate less. It is defined by
recurs10n.

It is interesting to point out that the strictness principles of COLD-K are es
sential for this definition. In particular, consider the case where t = empty,
then hd(t) is undefined and then by strictness so is ord(hd(t)). There
fore lss(ord(hd(s)) ,ord(hd(t))) is false and so is the equation hd(s) =
hd(t). Therefore in that case less (s, t) is false.

LET STRING_SPEC :=
EXPORT

SORT Char ,
SORT Nat,
SORT String,
FUNC empty :
FUNC cons Char # String
FUNC hd String
FUNC tl String
FUNC len String
FUNC sel String # Nat
FUNC cat String # String
FUNC rev String
PRED less String # String

FROM

IMPORT APPLY RENAME
SORT Seq TO String ,
SORT Item TO Char

IN SEQ_SPEC TO CHAR_SPEC INTO

IMPORT NAT_SPEC INTO
IMPORT CHAR_SPEC INTO
CLASS

PRED less: String # String
PAR s:String,t:String

-> String,
-> String,
-> Char,
-> String,
-> Nat,
-> Char,
-> String,
-> String,

DEF s = empty AND NOT t = empty
OR (lss(ord(hd(s)),ord(hd(t)))

226 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

OR hd(s) = hd(t) AND less(tl(s),tl(t)))

END;

4.3.4 Relating Texts and Strings

Let us now discuss how texts and strings are related. By adopting some
special separator character, control-j say, we can define a bijeetion between
the sort String and the set of non-nil text texts not containing this special
separator character. We call these texts ok and for this purpose we introduce
a predicate ok. Weformally introduce control-j as a constant ctr_j first and
we use the operation chr: Nat -> Char from CHAR_SPEC for that.

LET TEXT_OPS2_SPEC : •
IMPORT NAT_SPEC INTO
IMPORT CHAR_SPEC INTO
IMPORT LINE_SPEC INTO
IMPORT TEXT_SPEC INTO
IMPORT TEXT_OPSl_SPEC INTO
IMPORT STRING_SPEC INTO
CLASS

FUNC ctr_j: -> Char
DEF chr(10)

PRED ok: Text
IND FORALL c :Char,t:Text

(ok(zero :Text) ;
ok(t) => ok(addempty(t)) ;
ok(t) AND NOT c = ctr_j => ok(addchar(c,t)))

Note that ok(t) => t # nil text. We have the following induction principle
for ok texts. To prove an assertion A for ok texts, it suflices to show A(zero)
and two induction steps. The first induction step is Vt : Text(A(t) =>
A(addempty(t)). The second induction step is Vt: Text, c: Char(A(t) A c #
ctr_j => A(addchar(c, t)).

We have the following decomposition principle for ok texts. Each ok text is of
one of three possible forms, viz. zero, addempty(...) and addchar(...). We
can distinguish these three possibilities also as {1} hd(t) = empty A tl(t) =
niltext, {2} hd(t) = empty A tl(t) # niltext and {3} hd(t) # empty.

The functions text and string to he introduced below establish a bijeetion

4.3. TEXT AND OPERATIONS ON TEXT 227

between the sort String and the set of ok texts. These functions text and
string are similar to Meertens' Line and Unline functions [10]. Although it
is possible to give inductive or axiomatic characterisations of these functions,
we use recursive definitions. This has the advantage that it is easy to ex
periment with these definitions using any classica! imperative or functional
programming language. The function text converts a string to a text by
interpreting ctr_j as a separator. The function string applied toa text t
converts t toa string by putting a ctr_j between the lines. In the definition
of the function string we distinguish three cases, where the cases {2} and
{3} give rise to a recursive call of string. We easily verify that the guard
{2} implies ok(tl(t)) and that the guard of {3} implies ok(rest(t)).

FUNC text: String -> Text
PAR s:String
OEF ({1} s = empty ?;

zero

FUNC
PAR
OEF

)

{2} hd(s) = ctr_j ?;

addempty(text(tl(s)))
{3} NOT (s = empty OR hd(s) = ctr_j) ?;

addchar(hd(s),text(tl(s)))

string: Text -> String
t :Text
ok(t) ?;
({1} hd(t) empty ANO tl(t) K niltext ?;

)

empty
{2} hd(t) = empty AND NOT tl(t) • niltext ?;

cons(ctr_j,string(tl(t)))
{3} NOT hd(t) = empty ?;

cons(first(t),string(rest(t)))

We leave several options un-investigated here currently such as embedding
Char \ { c tr _j } into Char, or ha ving a litteral character in the string repre
sentation.

4.3.5 Printability

Let us say a few words about the problems arising because in our formal
isation texts may contain non-printable characters. There are two such
problems. The first problem is obvious: non-printable characters cannot
be printed or displayed as such by a display-oriented editor. Of course it is

228 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

always possible to print some substitute, e.g. '- '.

The second problem is that inside a text editorsome representation for texts
must he chosen. If the text editor is only meant for manipulating ok texts,
then its designer is in a comfortable position because he has the option of
choosing the string-representation discussed befare or some other related
representation. We need not make such a choice here, but we introduce
a suitable predicate derroting printability. We use the fact that in ASCII
the printable characters are in the range ' ' . . '- '. We consider the TAB
character as non-printable.

FUNC blank: -> Char
DEF chr(32)

FUNC tilde: -> Char
DEF chr(126)

PRED printable: Char
PAR c :Char
DEF leq(ord(blank),ord(c)) AND leq(ord(c),ord(ti1de))

For later use we elaborate on the idea of replacing non-printables by some
substitute, and in order to keep things simple, we choose tilde as a sub
stitute indeed. Therefore we introduce by overloading three functions called
printify with the intuition of 'make printable'.

FUNC printi:fy : Char -> Char
PAR c:Char
DEF (printab1e(c) ?; c

I NOT printab1e(c) ?; tilde
)

FUNC printi:fy: Line -> Line
PAR l:Line
DEF (1 = empty ?; empty

I NOT 1 = empty ?; cons(printify(hd(1)),printi:fy(t1(1)))
)

FUNC printify: Text -> Text
PAR t:Text
DEF (t = ni1text ?; ni1text

I NOT t = ni1text ?; cons(printify(hd(t)),printify(t1(t)))
)

We used the mechanism of overloading which means that we have several

4.3. TEXT AND OPERATIONS ON TEXT 229

functions with the same identifier (printify) but with different argument
types and/or result types. This is allowed in COLD-K and it has the advan
tage that we are not forced to invent new narnes ourselves (printify_char,
printify_line and printify_text, say). When using overloaded func
tions or predicates, we must make sure that our expressions and assertions
can be analysed in precisely one way. We give a simple example: AXIOM
printify(printify(niltext)) = niltext is well-typed because there is
only one way of analysing it, viz. by assuming that both printify invoca
tions refer to the function printify: Text -> Text. Note that under this
assumption the axiom becomes well-typed.

4.3.6 Natural Operations on Text

One of the best ways to get an understanding of the concept of text as
formalised by the sort Text, is to look for algebraic operations operating on
texts. In particular, we shall start with a simple binary operation of function
type Text # Text ~ Text. Of course it is not hard to define the insertion of
a character into a text, which would be an operation of function-type Text
Char # Nat2 ~ Text, where we used Nat2 as an obvious shorthand for Nat
Nat. However, we avoid such heterogeneous operations, by which we mean
those operations that deal both with texts and with characters. We must
be prepared to let the domain Nat 2 play a role when we define operations
dealing with co-ordinate pairs.

We shall introduce an operation called add below and we refer to it as {nat
ura/) addition because it can be viewed as a natura! way of adding texts. lts
definition is based on the idea that people are supposed to read texts line
after line, scanning lines from left to right. To read the addition of two texts,
one first reads the first text and after that, immediately proceeds with the
second text. In Section 4.3.9 we shall also encounter other ways of adding
texts for which we want to use narnes such as vertica/ addition and horizontal
addition. Let us give an example showing the natura! addition of two texts
and postpone the formalisation for a moment.

add() .

From the example it can be seen that this addition is not the same as con
catenation; the subtie difference is that the addition does not introduce a

230 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

jump toa new line at the point where the two texts are joined.

Although the above addition operation seems too trivial for being interesting,
it will serve as a kind of starting point for finding other operations which can
he employed in the description of cut and paste capabilities for an editor.
An interesting question which poses itself immediately is whether add has
an inverse. Since addition is not injective there can not he an inverse in the
strict sense, but we can propose an operation whose intuition is related to
the idea of 'undoing the effect of an addition'. This operation will he called
split.

The operation split describes the splitting of a text into two parts, where
the splitting-point is just before some given position. We add one remark
about the use of co-ordinates. Whenever we use pairs (i,j) where i and jare
co-ordinates - or similar quantities - it is understood that i is the vertical
co-ordinate and j is the horizontal co-ordinate. The following picture may
convey some intuition for both split and add.

i
aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaa oplit
aaaaaaaaaaaaaaaa ~
aaaaaaabbbbbbbbb
bbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb

aaaaaaaaaaaaaa
aaaaaaaaaaaaaa

bbbbbbbbb
bbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb

aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaabbbbbbbbb
bbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb

The fact that an arbitrary co-ordinate pair may indicate a position that is
non-existing in the given text has as consequences that split is a partial
operation and that the result of split need not be a pair of ok texts. Also
add is a partial operation, which is the effect of an explicit guard testing
the ok-ness of the input texts. We give the forma! definitions below using
recursion.

FUNC split: Text # Nat # Nat -> Text # Text
PAR t :Text, i:Nat, j :Nat
DEF ({1} i = 0 AND j = 0 ?;

zero, t
I {2} i = 0 AND NOT j = 0 ?

LET t1 :Text,t2:Text;
t1,t2 := split(rest(t),O,pred(j));
addchar(first(t),tl), t2

4.3. TEXT AND OPERATIONS ON TEXT

I {3} NOT i=O ?;

)

LET t1:Text,t2:Text;
tl,t2 := split(tl(t),pred(i),j);
cons(hd(t),tl), t2

FUNC add: Text # Text -> Text
PAR tl:Text, t2:Text
DEF ok(t1) AND ok(t2) ?;

({1} hd(t1) = empty AND tl(t1) = niltext ?;

t2
{2} hd(t1) = empty AND NOT tl(t1) = niltext ?;

addempty(add(tl(t1),t2))
{3} NOT hd(t1) = empty ?;

addchar(first(t1),add(rest(t1),t2))

231

We state several properties of these operations. Addition of ok texts is asso
ciative, i.e.

V t11 t2 , t3 : Text (ok(tt) 1\ ok(t2) 1\ ok(t3) =>
add(t1 , add(t2 , t3)) = add(add(t11 t2), t 3))

which can he shown by induction on t 1, using the induction principle of
Section 4.3.4. Now we can also explain why we used the name zero for the
text with one empty line: it behaves both as a leftand a right neutral element
with respect to the operation add:

V t: Text (ok(t) =>
add(t, zero) = t 1\ add(zero, t) = t)

where the first equality is a consequence of the induction principle of Section
4.3.4 and where the second equality holds just by definition. The function
add is the inverse of split in the following sense:

Vt:Text, c:Nat2 (ok(t)/\split(t,c)! =>
add(split(t,c)) = t)

which can he shown by induction on the vertical co-ordinate of the splitting
point. The basis of the induction is c = (O,j) which at its turn is shown by
induction on j.

Next, we describe two operations which are somewhat more complicated,
but which can he defined easily in terms of the operations add and split.
These operations are called cut and paste and they can he viewed as a

232 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

complementary pair of operations - just like split and add. The operation
cut deletes a text-region from a given position (inclusive) unto another given
position (exclusive) if possible. It yields a pair (t1 , t 2) where t1 = 'remaining
text' and t 2 = 'deleted text'. The operation paste takes a text t and inserts
another text u into it immediately before the position with given co-ordinates
(k, l) say, if possible. The following picture may convey some intuit ion for
both cut and paste.

aaaaaaaaaaaaaa
aaaaaaaaaaaaaa

k aaaabbbbbbbbbbb
bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb

ccccccccccccccccccc

i

.,...__....
cut

aaaaaaaaaaaaaa
aaaaaaaaaaaaaa

.,...__....
paeh

aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaabbbbbbbbbbb
bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb

Formally wedefine cut and paste by using the simpler operations split and
add. Thesesplit and paste are partial operations and as a consequence, so
are cut and paste.

FUNC cut : Text # Nat # Nat # Nat # Nat -> Text # Text
PAR
DEF

FUNC
PAR
DEF

t:Text, n:Nat, m: Nat, i:Nat, j :Nat
LET tl: Text,t2: Text; tl,t2 ·= split(t,i,j);
LET t11:Text,t12:Text; t11,t12 := split(tl,n,m) ;
add(t11,t2), t12

paste : Text # Text #Nat # Nat -> Text
t : Text,u:Text,k:Nat,l : Nat
LET t1: Text,t2: Text; tl,t2 := split(t,k,l);
add(t1 , add(u,t2))

For appropriate choices of the Nat2 argument, the zero text behaves also as
a left and a right neutral element with respect to the operation paste.

Vt:Text, c:Nat2 (ok(t)/\paste(t,zero,c) ! =>
paste(t,zero,c) = t)

which holds because zero is the left neutral element with respect to add and
add is the inverse of split.

V t : Text, c: Nat2
(ok(t) 1\ c = (0, 0) =>

paste(zero, t, c) = t)

4.3. TEXT AND OPERATIONS ON TEXT 233

The latter proposition follows from the fact that zero is the left- and right
neutral element with respect to add. The operation paste is the inverse of
cut in the following sense:

V t : Text, c, d : Nat2 (ok(t) 1\ cut(t, c, d)! '*
paste(cut(t,c,d),c) = t)

which follows from the fact that add is the inverse of split and furthermore
from the property split(tt,c) = (tu, ...) '* split(add(tu,t2),c) = (tu,t2),
which at its turn is shown by induction on the vertical and horizontal co
ordinates of the splitting point - just as before. In a certain way, split is
also the inverse of add and cut is the inverse of paste, but befare we can
state this precisely, we first need another concept, viz. that of the reach of a
text. This is the subject of our next section.

4.3.7 The Reach of a Text

The function reach applied to a text t results the pair (dt, d2) where d1 is
the co-ordinate of the last line of tand where d2 is the number of characters
in the last line of t. We give an example:

re ach((2,1)

We call such a pair(d1,d2) a reach. We have chosen the term reach because
of the intuition that reach(t) indicates 'how far you can get', starting at
position (0, 0) and trying to get as far downwards and rightwards as possible
within this text t. In a certain sense reach(t) can be viewed as a 'size' of
t. Note that d1 and d2 play a somewhat different role: d1 is the co-ordinate
of the last line whereas d2 is the co-ordinate of the last character in the last
line plus one . We sketch the intuition behind reach by a picture:

aaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaabbbbbbbbb
bbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb

------+d2

234 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

We give the formal definition using recursion below. There are three cases
marked as 1', 2' and 3' to indicate that we employ a decomposition principle
for texts different from that of Section 4.3.4.

FUNC reach: Text -> Nat # Nat
PAR t :Text
DEF ok(t) ?;

({1'} tl(t) niltext AND hd(t) = empty ?;

0, 0

{2'} tl(t) niltext AND NOT hd(t) = empty ?;

LET d1:Nat,d2:Nat; d1,d2 ·= reach(rest(t)); (d1,succ(d2))
{3'} NOT tl(t) = niltext ? ;

LET d1:Nat,d2:Nat; d1,d2 ·= reach(tl(t)); (5ucc(d1) ,d2)
)

Note that reach(zero) = (0,0). The function add defined below can be
viewed as the 'addition' of two reaches. Sametimes we refer to it as natural
addition. Let us give an example first. We show two texts and their reaches,
and after that we determine the reach of their addition simply by adding the
texts and applying the reach operator.

let tl), 80 reach(t1) (2,1)

let t2) , 80 reach(t2) (2,1)

add(t1,t2) (), 80 reach(add(tl,t2)) = (4,1)

The interesting observation now is that we could have derived the value of
reach(add(t1, t2)) also from the reaches of t1 and t2 alone. This is pre
cisely the purpose of having the function add on reaches.

FUNC add : Nat # Nat # Nat # Nat -> Nat # Nat
PAR cl:Nat, c2:Nat, d1:Nat, d2:Nat
DEF (dl = 0 ?; cl, add(c2,d2)

I NOT dl= 0 ?; add(cl,dl), d2
)

4.3. TEXT AND OPERATIONS ON TEXT 235

Let us enter the data of the ahove example: add((2, 1), (2, 1)) = (4, 1) indeed.
Addition on reaches is associative and the pair (0, 0) hehaves as a left- and
right neutral element with respect to add as can he shown hy a case-analysis
using the definition of add. The following proposition confirms our intuition
as sketched hy the ahove example.

Vt,u:Text (ok(t)/\ok(u) ~
reach(add(t, u))= add(reach(t), reach(u)))

This can he shown hy induction on t using the induction principle of Section
4.3.4 and where for the stept= addchar(c,t') one distinguishes two cases:
either len(t) = len(u) = 1, so c contrihutes tothereach of the added texts,
or len(t) + len(u) > 2, in which case c does not contrihute to it. Now we
have the reach function, we can also formulate the proposition that in a
certain sense split is the inverse of add.

V t, u : Text (ok(t) 1\ ok(u) ~
split(add(t,u),reach(t)) = (t,u))

which can he shown hy induction on t using the induction principle of Section
4.3.4. We can also perfarm splitting on reaches.

FUNC split: Nat # Nat # Nat # Nat -> Nat # Nat # Nat # Nat
PAR r:Nat, s :Nat, i:Nat, j : Nat
DEF (i,j) , (sub(r,i), (lss(i,r)?; s I i= r ?; sub(s,j)))

This function split is useful for calculating the reaches of the texts ohtained
hy splitting a text with a given reach when also the splitting-point is given.

V t, tb t2 : Text, c : Nat2

(ok(t) 1\ ok(tt) 1\ ok(t2) 1\ split(t, c) = (tt. t2) ~
spli t(reach(t), c) = (reach(tt), reach(t2)))

which can he shown hy referring to the definition of split on reaches and
tothefact that split(t,c) yields the two texts t1 ,t2 that are ohtained hy
splitting t with the splitting point at c. Hence the reach of t1 equals c and
we can get the reach of t 2 hy a simple case-analysis. In any case, the vertical
co-ordinate of t 2 is the difference of the vertical co-ordinates of reach(t) and
c. If the splitting point is before the last line of t, then the length of the
last line of t2 is simply the length of the last line of t. If the splitting point
is in the last line, then the horizontal co-ordinate of t 2 is the length of this
last line minus the horizontal co-ordinate of the splitting point. We can also
perfarm a kind of cut and paste on reaches.

236 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

FUNC cut: Nat # Nat # Nat # Nat # Nat # Nat
-> Nat # Nat # Nat # Nat

PAR t:Nat #Nat, n:Nat, m:Nat, i:Nat, j:Nat
DEF LET tl: Nat# Nat,t2: Nat# Nat; tl, t2 := split(t,i,j);

split(tl,n,m); LET tll:Nat # Nat,t12:Nat #Nat; t11,t12 ·=
add(t11,t2) , t12

FUNC paste: Nat # Nat # Nat # Nat # Nat # Nat -> Nat # Nat
PAR t:Nat # Nat,u:Nat # Nat,k:Nat,l:Nat
DEF LET tl: Nat# Nat,t2: Nat# Nat; tl,t2 := split(t,k,l);

add(tl,add(u,t2))

This function cut is useful for calculating the reaches of the texts obtained
by cutting a text with a given reach.

V t, tt, t2 : Text, c, d : Nat2

(ok(t) 1\ ok(tt) 1\ ok(t2) 1\ cut(t,c,d) = (t~>t2) =>
cut(reach(t),c,d) = (reach(tt),reach(t2)))

which follows from the fact that add and split on texts commute via reach
with add and split on reaches, using the obvious similarity in bath defini
tions of cut. In the same way one can show the following proposition, which
expresses that the latter function paste can be used for calculating the reach
of the text obtained by pasting two texts with given reaches.

V t,u: Text, c: Nat2
(ok(t) 1\ ok(u) =>

reach(paste(t,u,c)) = paste(reach(t),reach(u),c))

We can summarize some of the above propositions by saying that re ach:
Text --+ Nat2 is a homomorphic mapping from the algebra of texts to the
algebra of reaches. So, we can view the algebra of reaches as a simplified
version of the algebra of texts. In genera!, reach(t) does not contain enough
information for reconstructing t, but still it tells us sarnething about the
behaviour of t under the application of split, add, cut and paste operations.

Let us formulate that in a certain sense cut is the inverse of paste.

V t,u: Text, c: Nat2 (ok(t) 1\ ok(u) 1\ paste(t,u,c)! =>
cut(paste(t, u,c), c, add(c, reach(u))) = (t, u))

which follows from the definitions of cut and paste and from the homomor
phism property of reach. Sametimes it is necessary to campare two reaches,
so we introduce predicates las: Nat2 # Nat2 and leq: Nat2 # Nat2 •

4.3. TEXT AND OPERATIONS ON TEXT

PRED lss: Nat # Nat # Nat # Nat
PAR il:Nat, i2:Nat, jl:Nat, j2:Nat
DEF lss(il,jl) OR (il = jl AND lss(i2,j2))

PRED leq: Nat # Nat # Nat # Nat
PAR i1:Nat,i2:Nat,jl:Nat,j2:Nat
DEF lss(il,jl) OR (il = jl AND leq(i2,j2))

237

Notice that a position in a given text can he described precisely by the
reach of the text preceding this position; herree reaches can also he viewed as
position indicators.
So if lss ((eb e2), (d1 , d2)), then this can he interpreted as 'the position (eb c2)

comes before the position (dl>~)'.

END; {of TEXT_OPS2_SPEC}

Thus TEXT _OPS2_SPEC adds to the notions of texts and strings of Sections
4.3.2 and 4.3.3 several conversion operations (Sections 4.3.4 and 4.3.5), a
range of adding and splitting operations (Section 4.3.6) and their images
under the operation reach (Section 4.3.7).

4.3.8 The Profile of a Text

When we use co-ordinate pairs for indicating positions in a text - as we do
in split, cut and paste - then we have to he careful. The point is that
our co-ordinate pairs are based on natura! numbers and thus may indicate
positions that are non-existing in a given text. We develop some machinery
so that later, in the context of a text editor, we can deal with these problems
formally. This will happen in Section 4.5.5, when we shall postulate a so
called text-invariant. If we have a text t, then we might collect all information
that is relevant for 'addressing' in t. For this purpose we introduce so-called
profiles. The profile of a text t is a sequence of natura! numbers, one for
each line of t such that the i-th element in the sequence is precisely equal to
the length of the i-th line in t. We start with an example and then do the
formalisation.

profile(<8, 7 ,1>

Now we formally introduce a sort Profile. An object of sort Profile is
nothing but a sequence (Seq) of natura! numbers (Nat).

238 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

LET PROFILE :=

APPLY RENAME
SORT Seq TO Profile,
SORT Item TO Nat,
FUNC empty: -> Seq TO nilprofile

IN SEQ_SPEC TO NAT_SPEC;

And of course we must define the profile corresponding with a given text,
which we do by introducing a function profile. Therefore we write another
class description called PROFILE_SPEC which imports a number of class de
scriptions introduced before. We want to add a remark about such imports
here. In general, when writing specifications, we need not adopt some min
imality principle. Instead of that we begin each new class description with
a relatively rich collection of imports - so that we have enough notations
at our disposal. There is no harm in importing too much, whereas it is a
nuisance if the imports turn out to he insufficient.

LET PROFILE_SPEC :=

IMPORT PROFILE INTO
IMPORT NAT_SPEC INTO
IMPORT CHAR_SPEC INTO
IMPORT LINE_SPEC INTO
IMPORT TEXT_SPEC INTO
IMPORT TEXT_OPSl_SPEC INTO
IMPORT TEXT_OPS2_SPEC INTO
CLASS

FUNC profile: Text -> Profile
PAR t:Text
DEF ok(t) ?;

END;

({1} hd(t) = empty AND tl(t) = niltext ?;

cons(O,nilprofile)

)

{2} hd(t) = empty AND NOT tl(t) = niltext ?;

cons(O,profile(tl(t)))
{3} NOT hd(t) = empty ?;

LET p:Profile; p := profile(rest(t));
cons(succ(hd(p)),tl(p))

It is possible to define a kind of addition called add and operations like
split, cut and paste on profiles. For suitable choice of these operations,
profile: Text--+ Nat* becomes a homomorphic mapping from the algebra

4.3. TEXT AND OPERATIONS ON TEXT 239

of texts to the algebra of profiles. Furthermore one can define a function
reach: Nat• -t Nat2 such that it is a homomorphic mapping from the
algebra of profiles to the algebra of reaches. The following picture sketches
this situation.

reach

Fig 4.1. The algebras of texts, profiles and reaches.

So, we can view the algebra of profiles as being intermediate between the
algebra of texts and the algebra of reaches. We leave these things for later
investigation, because we do not need them really yet.

LET TEXT_OPS3_SPEC -
IMPORT NAT_SPEC INTO
IMPORT CHAR_SPEC INTO
IMPORT LINE_SPEC INTO
IMPORT TEXT_SPEC INTO
IMPORT TEXT_OPS1_SPEC INTO
IMPORT TEXT_OPS2_SPEC INTO
IMPORT STRING_SPEC INTO
IMPORT PROFILE_SPEC INTO
CLASS

We define a predicate called intext, thereby showinga typical application
of profiles. We use the standard selection function sel. If we have a given
text t and a co-ordinate pair (i,j) then intext(t,i,j) holds if either (i,j)
indicates a position that exists in t or (i, j) corresponds with the very end
of a line - which is an acceptable position for splitting a text into parts, and
therefore for pasting by the function paste.

PRED intext: Text # Nat # Nat
PAR t :Text, i:Nat, j:Nat
DEF LET m:Nat,n:Nat; m,n := reach(t);

leq(i,m) AND leq(j ,sel(profile(t),i))

240 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

In particular, we have intext (zero, (0. 0)).

4.3.9 Vertical and Horizontal Composition of Text

In this section we introduce two ways of adding texts for which we want to
use the narnes vertical addition and horizontal addition. These operations
become important when one wants to describe multi-window capabilities of
a text editor. Although multi-window capabilities are not included in the
text editor described in this chapter, we believe that it is instructive to have
a look at the necessary operations at an algebraic level.

We introduce an operation called v_add below and we refer to it as vertical
addition. Actually there is nothing new here since vertical addition is nothing
but concatenation.

aaaaaaaaaaaaaa
aaaaaaaaaaaaaa

bbbbbbbbb L.,.-,...,-,..,...,
bbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb

v..add
1-----+

aaaaaaa
bbbbbbbbb '------,
bbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb

We give the formal definition below.

FUNC v_add: Text # Text -> Text
PAR t1:Text, t2:Text
DEF cat(t1,t2)

We state a few well-known properties. Vertical addition is associative.

V t1 , t2, ts : Text
(v_add(t1 ,v_add(t2, t3)) = v_add(v_add(t11 t 2), t3))

nil text behaves both as a left and a right neutral element with respect to
the operation v_add.

V t: Text
(v_add(t,niltext) = t 1\ v_add(niltext,t) = t)

The len function from texts to natural numbers behaves homomorphically

4.3. TEXT AND OPERATIONS ON TEXT 241

as stated below.

V t1, t2 : Text
(len(v_add(t1, t2)) = add(len(ti),len(t2)))

We introduce another operation called h_add below and we refer to it as
horizontal addition.

aaaaaaaaaaaaaa
aaaaaaaaaaaaaa
aaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaa h...add

bbbbbbbbb '--------,
bbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb

,____.
aaaaaaaaaaaaaabbbbbbbbb '-------.,
aaaaaaaaaaaaaabbbbbbbbbbbbbbbbb
aaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbb
aaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbb
aaaaaaabbbbbbbbbbbbbbbbbbb

We give the forma! definition below.

FUNC h_add: Text # Text -> Text
PAR t1:Text, t2:Text
DEF (tl = niltext AND t2 = niltext ?; niltext

I NOT (ti ~ niltext AND t2 = niltext) ?;
cons(cat(hd(t1),hd(t2)),h_add(tl(t1),tl(t2)))

From this definition it can beseen that when two texts have different lengths,
their horizontal addition is undefined. Horizontal addition is associative.

V t1, t2, ta: Text (len(t1) = len(t2) = len(ts) =>
h_add(t1,h_add(t2, ts)) = h_add(h_add(t1, t2), t3))

which follows by induction on the lengthof the texts involved and using the
well-known associativity of line-concatenation. For each length l, there is a
left-and right neutral element and we introduce the notation empties(l) for
it:

FUNC empties: Nat -> Text
PAR n:Nat
DEF (n = 0?; niltext

I NOT n = 0?; cons(empty,empties(pred(n)))
)

242 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

so we can denote this property as follows:

V t: Text,l: Nat (len(t) = l '*
h_add(t,empties(l)) = t 1\ h_add(empties(l), t) = t)

which follows again by induction on l, using the fact that empty:Line is
neutral with respect to concatenation. The set of texts of a given length is
closed under horizontal addition:

V t11 t2 : Text, l: Nat (len(t1) = len(t2) = l =*
len(h_add(t11 t2)) = l)

which follows again by induction on l. Horizontal and vertical addition are
related by the interchange law. We have met this interchange law before at
another level, viz. at the level of composition mechanisms for designs. We
refer to Chapter 3 lemma 3.3.11 and remark 3.3.12

V t11 t2, ts, t4 : Text (len(ti) = len(t2) 1\ len(ts) = len(t4) =>
v_add(h_add(t11 t2),h_add(t3, t4))
= h_add(v_add(t11 t3),v_add(t2 , t4)))

which follows by induction on len(ti).

4.3.10 Operations for Searching

In this section we do some preparations such that later we can specify the
search-command of an editor. The formalisation of searching is done in terms
of strings, which is most natural. In typical editing sessions one searches fora
wordorfora short term. However, there is no clear intuition forsearching an
entire sentence or an entire formula that extends over more than one line. So
we describe searching such that it becomes conceptually clear for ctr_j-less
strings. We adopt the same formalisation then for all strings. After that, we
trarlfer the formalisation by homomorphic mappings to the algebra of texts.
We introduce a predicate match such that match(t, s, i) holds in the situation
where in string t there is an occurrence of a substring s at position i.

PRED match: String # String # Nat
PAR t:String, s:String, i:Nat
DEF s = empty OR

hd(s) = sel(t,i) AND match(t,tl(s),succ(i))

By way of preparation for a kind of sentinel technique, we introduce the
following slightly modified version of of match, which we call match'.

4.3. TEXT AND OPERATIONS ON TEXT

PRED match': String # String # Nat
PAR t :String, s :String, i:Nat
DEF i = len(t) OR match(t,s,i)

243

Now wedefine the result of a search operation astheleast position at which
a match - in the sense of match' - occurs.

FUNC search : String # String -> Nat
PAR t:String, s :String
DEF SOME i : Nat

(match ' (t , s,i) AND
FORALL j : Nat (match'(t,s,j) •> leq(i,j)))

Note that if int there is no occurrence of s, then search(t,s) 'falls through'
in the sense that it yields len(t), which is the sentinel technique announced
before. Now we transfer the above formalisation to the algebra of texts by
employing the mappings string and text.

FUNC search: Text # Text -> Nat # Nat
PAR t:Text, s:Text
DEF LET t1 :String, t2:String;

t1,t2 : = split(string(t),search(string(t),string(s)));
reach(text(t1))

where we used an obvious split operation on strings.

FUNC split: String # Nat -> String # String
PAR s:String, i :Nat
DEF (i = 0 ? ;

empty, s
NOT i = 0 ? ;

LET t1:String, t2:String; t1,t2 : • split(tl(s),pred(i));
cons(hd(s),t1), t2

The approach foliowed here could he condidered as a part of our methodology
of writing forma! specifications: choose among the different possible repre
sentations the one which yields the simplest and most elegant definitions.
If the remainder of the specification is in terms of another representation,
just use suitable mappings to transfer the results from one representation to
another.

END; {of TEXT_OPS3_SPEC}

Thus, TEXT_OPS3_SPEC adds to TEXT_OPS2_SPEC some operations for pro-

244 GRAPTER 4. SPECIFICATION OF A TEXT EDITOR

filing texts (Section 4.3.8), for vertical and horizontal composition of texts
(Section 4.3.9) and forsearching (Section 4.3.10).

4.3.11 Procrustean Operations

In this section we shall introduce some machinery for reducing the size of
texts that are too large for some purpose and also some machinery for stretch
ing texts that are too small. However, we not stick to this Procrustean ter
minology and later in this section we introduce operations called look and
fill where the narnes of the operations have been derived from their typical
applications.

One of the most important problems associated with the specification and
design of an editor is the fact that in general the text being edited is too large
to fit on the screen of the display. The text itself may he too long and some
of the lines may he too wide. One- currently rather obsolete- solution is to
make the editor line-oriented. This solves the problem of the text being too
long and then the problem of the lines being too wide can he solved by e.g.
wrap-around. A better solution is adopted in the so-called display-oriented
editors where the screen contains one or more rectangular windows. These
windows can he used for 'looking' to the text(s) being edited. In order to
keep things simple, we restriet ourselves to the case where there is just one
window. This window corresponds with a 'subtext' of the text being edited.
The cursor on the screen corresponds with the 'current position' (= dot) in
the text being edited. The editor maintains a kind of 'window-invariant' viz.
that always this dot and a suitable subtext surrounding the dot are visible
in the window.

A second important problem is that the text may he shorter than the vertical
size of the window; also some of the lines in the text may he shorter than
the horizontal size of the window. The obvious solution is filling, by which
we mean the positions within the window for which there is no character in
the text are displayed as blank.

In this chapter we choose to discuss a display-oriented editor, but as before,
we postpone the description of the actual editor and we develop some ma
chinery for formulating the ideas of looking and filling as mentioned above.
This machinery takes the shape of a colledion of algebrak operatîons on
texts. We start with filling and we put everything dealing with filling in a
class description called FILL_SPEC. Again we begin with an ample colledion
of imports.

LET FILL_SPEC ·=
IMPORT NAT_SPEC INTO

4.3. TEXT AND OPERATIONS ON TEXT 245

IMPORT CHAR_SPEC INTO
IMPORT LINE_SPEC INTO
IMPORT TEXT_SPEC INTO
IMPORT TEXT_OPS1_SPEC INTO
IMPORT TEXT_OPS2_SPEC INTO
IMPORT TEXT_OPS3_SPEC INTO
IMPORT STRING_SPEC INTO
IMPORT PROFILE_SPEC INTO

CLASS

We have to provide for filling in both vertical and horizontal directions. This
observation leadsus directly to two functions vfill and hfill. The function
vfill serves for filling in the vertical direction. Somehow it seems natural
to choose our definitions such that the text gets 'upwards adjusted', so that
filling takes place at the end of the text.

vfill
1-----+

+-- (empty lines)

We give the formal definition of vfill below. We can use the function
empties which we introduced inSection 4.3.9. Reeall that empties(l) is the
text having precisely l empty lines.

FUNC vtill: Text # Nat -> Text
PAR t:Text, n:Nat
DEF LET i:Nat; i := len(t);

LET te :Text;
te : = empties(geq(n,i)?; sub(n,i) I lss(n,i)?; 0) ;
cat(t , te)

The function hfill serves for filling in the horizontal direction. As an aux
iliary for the description of hfill we have a procedure which describes the
construction of lines consisting of blanks only. We refer to the constant blank
for the ' ' character which we introduced earlier.

FUNC blanks: Nat -> Line
PAR j:Nat

246

DEF

CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

(j • 0 ?;

I NOT j = 0 ?;
)

empty
cons(blank,blanks(pred(j)))

Somehow it seems natura! to choose our definitions such that the text gets
'left adjusted', so that filling takes place at the end of the lines.

aaaaaaaaaaaaaa
hfill
1------4

aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
&aaaaaabbbbbbbbb
bbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb

We give the forma! definition of hfill below.

FUNC
PAR
DEF

hfill: Text # Nat -> Text
t:Text, n:Nat
(t = niltext ?;

niltext
NOT t = niltext ?;
LET l :Line; 1 := hd(t);
LET i:Nat; i := len(l);
LET j :Nat; j := (geq(n,i)?; sub(n,i) I lss(n,i)?; 0) ;
cons(cat(l,blanks(j)),hfill(tl(t),n))

And we combine these to get a function fill which does both vertical and
horizontal filling.

:fill
1------4

aaaaa.aaaaaaaaa
aaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaabbbbbbbbb
bbbbbbbbbbbbbbbbb

Note that vfill must be applied fust, so that a subsequent application of
hfill will makesure that the empties introduced by vfill get the desired
length. It just does not work the other way around. We give the forma!
definition of fill below.

4.3. TEXT AND OPERATIONS ON TEXT

FUNC fill : Text # Nat # Nat -> Text
PAR t:Text, i:Nat, j :Nat
DEF hfill(vfill(t,i),j)

END; {of FILL_SPEC}

247

This completes our formalisation of filling and as a next step we introduce
. some machinery for the description of looking. As stated before, the appli
cation we have in mind is to describe how a window is used for 'looking' to
a text. We put everything related to looking in a class description called
LOOK_SPEC.

LET LOOK_SPEC :=
IMPORT NAT_SPEC INTO
IMPORT CHAR_SPEC INTO
IMPORT LINE_SPEC INTO
IMPORT TEXT_SPEC INTO
IMPORT TEXT_OPS1_SPEC INTO
IMPORT TEXT_OPS2_SPEC INTO
IMPORT TEXT_OPS3_SPEC INTO
IMPORT STRING_SPEC INTO
IMPORT PROFILE_SPEC INTO
CLASS

To begin with, we have again an auxiliary. It describes the splitting at line
level.

FUNC hsplit: Line # Nat -> Line # Line
PAR s :Line, n:Nat
DEF ((n = 0) ?;

(empty,s)
NOT n = 0?;
LET s1:Line, s2:Line; s1,s2 : = hsplit(tl(s),pred(n));
(cons(hd(s),s1),s2)

The way we define the algebraic operations for 'looking' is somewhat similar
to the way we defined the cut operation before. There it turned out that
it was convenient to define the more elementary split operation first. We
have to provide for splitting both in horizontal and vertical direction. These
considerations lead us directly to two functions hspli t and vspli t . The
function hspli t serves for splitting in the horizontal direction.

248 CHAPTER 4. SPEGIF/CATION OF A TEXT EDITOR

haplit
1---+

We give the formal definition of hspli t below. We use reenrsion for propa
gating the effect of hspli t: Line --+ Line2 over an entire text.

FUNC hsplit : Text # Nat -> Text # Text
PAR t:Text , n:Nat
DEF (t = ni1text ?; ni1text, ni1text

I NOT t = ni1text ?;

)

LET 11:Line,12 : Line; 11,12 := hsp1it(hd(t),n);
LET t1:Text,t2:Text; t1,t2 : • hsp1it(t1(t),n);
cons(11,t1), cons(12,t2)

Note that h_add is the inverse of hspli t. The function vspli t serves for
splitting in the vertical direction.

v.plit
1---+

aaaaaaaaaaaa.aa
aaaaaaaaaaaaaaaa

aaaaaaabbbbbbbbb
bbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb

We give the formal definition of vspli t below.

FUNC
PAR
DEF

vsp1it : Text # Nat -> Text # Text
t :Text, n : Nat
(n = 0 ? .; niltext, t
I NOT n = 0 ?· 0.

LET tl:Text,t2 :Text; tl,t2 ·= vsp1it(t1(t),pred(n));
cons(hd(t),tl), t2

Note that v _add is the inverse of vspli t. Splitting horizontally twice yields
what we call a horizontallook (function hlook).

4.3. TEXT AND OPERATIONS ON TEXT

hl ook
1---+

We give the formal definition of hlook below.

FUNC hlook: Text # Nat # Nat-> Text
PAR t:Text, j1:Nat, j2:Nat
DEF LET t1:Text, t2:Text; ti ,t2

LET t11 :Text,t12:Text; t11,t12
t12

·= hsplit(t,j2);
:= hsplit(tl,jl);

249

Splitting vertically twice yields what we call a verticallook (function vlook).

aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa

~ aaaaaaabbbbbbbbb vlook
bbbbbbbbbbbbbbbbb 1---+

bbbbbbbbbbbbbbbbb
~ bbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbb

aaaaaaabbbbbbbbb
bbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbb

We give the formal definition of vlook below.

FUNC vlook: Text # Nat # Nat -> Text
PAR t:Text, il:Nat, i2:Nat
DEF LET tl:Text, t2:Text; tl ,t2 :• vsplit(t,i2);

LET t11:Text,t12:Text; t11,t12 :• vsplit(tl,il);
t12

And we combinethem in an obvious way to get a function look which per
farms bath a vertical and a horizontal 'subsetting' of a given text. look(t, c, d)
will denote the contentsof a window whose leftmost uppermost corner is at
c and whose rightmost lowermost corner is determined by d.

250 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

aaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa

~ aaaaaaabbbbbbbbb look
bbbbbbbbbbbbbbbbb ~

bbbbbbbbbbbbbbbbb
~ bbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbb

We give the formal definition of look below. We prefer to define it such that
the application of vlook is done fust, foliowed by hlook because in this way
the result of look is more often defined.

FUNC look: Text # Nat # Nat # Nat # Nat -> Text
PAR t:Text, il : Nat, i2:Nat, jl:Nat, j2 :Nat
DEF hlook(vlook(t,il,j1) , i2,j2)

END; {of LOOK_SPEC}

Both class descriptions FILL_SPEC and LOOK_SPEC are intended to play a role
in formulating precisely how the text being edited should be shown on the
screen of a display device. This will be done in Section 4.5.12.

4.4 Interfacing an Editor with its Environ
ment

4.4.1 Introduetion

In this section we describe several class descriptions that are important for
interfacing the editorwithits environment. First of all we construct our own
model of a physical display device. This is the subject of Section 4.4.2. After
that we introduce special kinds of sequences and strings. This is the subject
of Section 4.4.3. Finally we describe a simple file-system, which is the subject
of Section 4.4.4.

4.4.2 DISPLAY: an Abstract Display

In this section we shall look for a formal description of a display device.
The device that we have in mind is a classica! display of the so-called video
display-unit type- a VT102 or so, say. We do not investigate all the details of

4.4. INTERFACING WITH THE ENVIRONMENT 251

one or more concrete displays and instead we start with an abstract display.
We abstract from the character-sequences that should besent to the display
for 'clear screen', 'cursor motion' etc. In the abstract display the sending of
these concrete character sequences is replaced by abstract commands cl, cm
etc. The choice of the narnes and the functionality of the abstract commands
have been inspired by to the so-called termcap facility (abbreviating terminal
capabilities) as used on UNIX systems. We decided that we shall not try
to include all possible features and capabilities that various displays may
have. Instead we restriet our description to those display capabilities that
are minimally required by the EMACS editor described in [4].

The corresponding class description is called DISPLAY_SPEC and it is given
below. There are two variabie functions which span the state-space. The first
function is called screen and it corresponds with the observable contents on
the screen of the display, which is the text that you see when you sit in front
of the display. The screen has a size given by two constants: li and co,
abbreviating lines and columns.

co

Fig 4.2 The window of the display.

The second function is called cursor and it corresponds with the observable
position of the cursor on the screen of the display. There are a few operations
that are not considered executable, but which we export just for reasoning
purposes. In particular, these are the procedure displ_op and the functions
screen and cursor.

LET DISPLAY_SPEC :=
EXPORT

SORT Char,
SORT Nat,
SORT Text,
FUNC li: -> Nat,
FUNC co: -> Nat,
PROC er: ->
PROC nl: ->
PROC bc: ->
PROC ce: ->

252 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

PROC cl: ->
PROC nd: ->
PROC up: ->
PROC cm: Nat # Nat ->
PROC print: Char -> ,
PROC displ_op: -> ,
FUNC screen: -> Text ,
FUNC cursor: -> Nat # Nat

FROM
IMPORT NAT_SPEC INTO
IMPORT CHAR_SPEC INTO
IMPORT LINE_SPEC INTO
IMPORT TEXT_SPEC INTO
IMPORT TEXT_OPS1_SPEC INTO
IMPORT TEXT_OPS2_SPEC INTO
IMPORT STRING_SPEC INTO
IMPORT PROFILE_SPEC INTO
IMPORT FILL_SPEC INTO
CLASS

FUNC screen: -> Text VAR
FUNC cursor: -> Nat # Nat VAR

FUNC li: -> Nat
FUNC co: -> Nat

PROC er: -> MOD screen, cursor
PROC nl: -> MOD screen, cursor
PROC bc: -> MOD screen, cursor
PROC ce: -> MOD screen, cursor
PROC cl: -> MOD screen, cursor
PROC nd: -> MOD screen, cursor
PROC up: -> MOD screen, cursor
PROC cm: Nat # Nat -> MOD screen,
PROC print: Char -> MOD screen,

% number of linea
% number of columns

% carriage return
% newline
% backwards cursor
% clear to end-of-line
% erase display
% move cursor right
% move cursor up

cursor % cursor motion
cursor % character processing

Of course we have to specify the effect of the procedures upon the screen
(function screen) and upon the cursor (function cursor). This effect is
such that a certain invariant is maintained and we refer to it as display
invariant. We believe that it is a good methodological principle to formulate
this invariant first. We introduce predicates Dil, DI2 and DI3.

• Dil states that the screen is rectangular and that its size is given by
li and co.

4.4. INTERFACING WITH THE ENVIRONMENT 253

• DI2 states that the cursor is on the screen.
• DI3 states that the screen contains only printable characters.

We add one remark related to DI3. Of course we know that many text editors
offer the possibility of entering non-printable characters into texts and that
such characters still somehow get displayed on the screen (e.g. as tilde),
but this matter is not settled within the display but within the editor. We
use the predicate printable on Char from Section 4.3.5.

PRED Dil :
DEF len(screen) = li AND

FORALL i:Nat (lss(i,li) =>
(len(sel(screen,i)) = co))

PRED DI2:
DEF LET c1 :Nat,c2:Nat; c1,c2 :=cursor;

lss(cl,li) AND lss(c2,co)

PRED DI3:
DEF FORALL i :Nat, j :Nat

(lss(i,li) AND lss(j,co) => printable(sel(sel(screen,i),j)))

The invariance of DI1 1\ DI2 1\ DI3 can be expressedas follows:

PROC displ_op: ->
DEF (er

I nl
I bc
I ce
I cl
I nd
I up
I cm(SOME i:Nat, j :Nat ())
I print(SOME c:Char (printable(c)))
)

AXIOM INIT => Dil AND DI2 AND DI3
AXIOM Dil AND DI2 AND DI 3 =>

[displ_op] Dil AND DI2 AND DI3

Next we turn our attention to the semantica! description of the display op
erations which amounts to giving the axioms of the CLASS . . . END part of
DISPLAY_SPEC. To begin with, we have definedness axioms and termination
axioms.

254 GHAPTER 4. SPEGIFIGATION OF A TEXT EDITOR

AXIOM geq(li,l) AND geq(co,l)

AXIOM < er > TRUE;
< nl > TRUE;
< bc > TRUE;
< ce > TRUE;
< cl > TRUE;
< nd > TRUE;
< up > TRUE

AXIOM FORALL i:Nat, j :Nat
(< cm(i,j) > TRUE)

AXIOM FORALL c:Char
(printable(c) =>
< print(c) > TRUE)

The effect of each procedure is described by a postcondition. Before giving
these postconditions, we introduce by overloading two simple auxiliary func
tions called blank_ text. The first function called blank_ text yields one-line
texts consisting of blank characters only. The second function blank_ text
takes two arguments i, j say, and then it yields the text with blanksof dimen
sions i and j. We use the function blanks: Nat -> Line from FILL_SPEC.

FUNC blank_text: Nat -> Text
PAR n:Nat
DEF cons(blanks(n),niltext)

FUNC blank_text: Nat # Nat -> Text
PAR i: Nat, j :Nat
DEF (i = 0?; niltext

I NOT i= 0 ?; cons(blanks(j),blank_text(pred(i),j))
)

We introduce several postcondition predicates, one for each procedure. These
predicates have formal parameters s' for the previous screen, c' for the
previous cursor, s for screen and c for cursor. The first predicate describes
the effect of 'carriage return'. This case is simple: the second co-ordinate of
the cursor becomes 0.

PRED post_cr: Text # Nat # Nat # Text # Nat # Nat
PAR s':Text, c':Nat #Nat, s:Text, c: Nat# Nat
DEF LET i:Nat,j:Nat; i,j := c';

c = (i,O);
s • s'

4.4. INTERFACING WITH THE ENVIRONMENT 255

After we shall have defined this (and several similar) predicates, we state
axiomatically that post_er is the postcondition of er indeed. We shall not
write all axioms in full detail, since it should be clear from the axiom for er
what the remaining axioms should look like.

The second predicate describes what happens if a 'new-line' is sent to the
display. At first sight this case seems simple too: the first co-ordinate of the
cursor must he incremented by 1. However there is a complication because
the cursor may already he on the last line of the screen. In the latter situation
so-called scrolling takes place, i.e. one line of blanks is added to the end of
the screen, whereas the first line of the screen is removed.

PRED po8t_nl: Text # Nat # Nat # Text # Nat # Nat
PAR 8':Text, c':Nat #Nat, 8:Text, c: Nat# Nat
DEF LET i:Nat,j:Nat; i,j :• c';

c = ((l88(i,pred(li))?; 8ucc(i) I i= pred(li)?; i),j) AND
8 = (l88(i,pred(li))?; 8'

I i= pred(li) ?; tl(v_add(8',blank_text(co)))
)

The predicates for 'backwards cursor', 'clear to end-of-line', 'erase display',
'move cursor right', 'move cursor up' and 'cursor motion' speak for them
selves.

PRED po8t_bc: Text #Nat #Nat# Text #Nat# Nat
PAR 8' :Text, c':Nat #Nat, 8:Text, c: Nat# Nat
DEF LET i:Nat,j:Nat; i,j := c';

s • s';
c = (i, (gtr(j ,0)?; pred(j) I j .. 0?; O))

PRED po8t_ce: Text # Nat # Nat # Text # Nat # Nat
PAR 8':Text, c':Nat #Nat, 8:Text, c: Nat# Nat
DEF LET i : Nat,j:Nat; i,j := c';

LET tt:Text,kk:Text; tt,kk : • cut(8',i,j,i,co);
8 = pa8te(tt,blank_text(8ub(co,j)),i,j);
c = c'

PRED po8t_cl: Text # Nat # Nat # Text # Nat # Nat
PAR 8' :Text, c':Nat #Nat, 8:Text, c: Nat# Nat
DEF 8 = blank_text(li,co);

c = (0,0)

PRED po8t_nd: Text # Nat # Nat # Text # Nat # Nat
PAR 8' :Text, c':Nat #Nat, 8:Text, c: Nat# Nat
DEF LET i:Nat,j:Nat; i,j : = c';

256 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

c '"' (i, (lss(j ,pred(co))?; succ(j) I j '"'pred(co)?; j));
s = s'

PRED post_up: Text I Nat I Nat I Text I Nat I Nat
PAR s':Text, c':Nat I Nat, s:Text, c: Nat I Nat
DEF LET i:Nat,j:Nat; i,j := c';

c = ((gtr(i,O)?; pred(i) I i= 0?; 0), j);
s = s'

PRED post_cm: Text I Nat I Nat I Nat I Nat I Text I Nat I Nat
PAR s':Text,c':Nat I Nat,i:Nat,j:Nat,s:Text,c:Nat I Nat
DEF s = s';

c = ((lss(i,li)?; i
(lss(j,co)?;

geq(i,li)?; pred(li)),
geq(j,co)?; pred(co)))

And finally we have one important predicate dealing with printable-character
processing.

PRED post_print: Text I Nat I Nat I Char I Text # Nat # Nat
PAR s':Text, c':Nat #Nat, c:Char, s:Text, c: Nat I Nat
DEF printable(c) =>

(LET i: Nat, j :Nat; i, j : = c' ;
LET tt:Text,kk:Text; tt,kk := cut(s',i,j,i,succ(j));
c = (i,(lss(j,pred(co))?; succ(j) j=pred(co)?; j));
s = paste(tt,addchar(c,zero),i,j))

We state axiomatically that post_er is the postcondition of er.

AXIOM {er}
FORALL screen':Text, cursor':Nat #Nat
(screen = screen' AND cursor = cursor' =>

[er] post_cr(screen',cursor',screen,cursor))

We do not write all the axioms in full detail, since it should he clear from
the axiom for er what they should look like.

~ AXIOM nl,bc,ce,cl,nd,up as er

AXIOM {cm} FORALL screen':Text, cursor':Nat #Nat, i:Nat, j:Nat
(screen = screen' AND cursor = cursor' =>

[cm(i,j)] post_cm(screen',cursor',i,j,screen,cursor))

AXIOM {print} FORALL screen':Text, cursor':Nat #Nat, c:Char
(screen = screen' AND cursor = cursor' =>

4.4. INTERFACING WITH THE ENVIRONMENT 257

[print(c)] post_print(screen',cursor',c,screen,cursor))

END;

Now the invariance of the display-invariant under the display operations
should he derivable in the sense that Dil A DI2 A DI3 => [displ_op]
Dil A DI2 A DI3. This can he shown by verifying its invariance under each
operation separately. By way of example, we shall present this for one of
them and we choose c r .

Assume that in a given state Dil A DI3 A DI3 holds and that in this state we
have executed er. It is important to observe that Dil and DI3 depend only
on the screen and not on the cursor. DI2 at its turn depends only on the
cursor and not on the screen. From the axiomabout er and the postcondition
predicate of er, we can see that in this new state screen = PREV screen
and this inunediately establishes Dil and DI3. So now we have to check for
DI2. The vertical co-ordinate of the cursor has kept its old value (in the
postcondition predicate denoted as i) which thus is less than li, as was to
he shown. Finally we consider the horizontal co-ordinate of the cursor. We
see that it has become 0, so we should check 0 < co which holds by the
axiom saying li ~ 1 A co ~ 1.

This concludes the description of the abstract display. In the specification
of the editor, we shall have to describe the relation between the text being
edited and the dot on one hand and the screen and the cursor of the display
on the other hand. We introduce such a relation, called the window-invariant
in Section 4.5.12.

4.4.3 'SEQ' and 'STRING': Data types for Interfacing

Before we can specify editing operations, we must decide about the way in
which we have to invoke our editing operations. It is hard to avoid that these
operations will take arguments and we must he precise about the types of
these arguments. A frequently occurring data type is the sort of strings, or
more precisely, some data type representing strings.

In our window-and-text facility to he described in Sections 4.5.1-4.5.12 we
shall introduce so-called buffers which have narnes associated with them and
we shall need some kind of strings for that. For example, there will he a
procedure yank_ buffer which takes a string argument for addressing a buffer
to he 'yanked' and a procedure current_buffer_name which yields a string.
Also certain operations for file handling wiJl deal with string arguments.
Now we want to he able to choose a suitable representation of these strings

258 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

by means of conventional data reiikation techniques. For example, the string
"hello, world" could be represented by the address of a memory location
containing the 'h' where subsequent locations contain the 'e ', the '1' and
so on until some termination value indicates the end of the string.

Of course it would not be wise to make such representation choices now
already during the specification phase, but in order to avoid problems in a
later design phase, we must makesure that our specification does not exclude
certain reasonable choices.

Consider the above representation and assume that the memory contains
"hello, world" startingat address 1024 but also at address 1037, say. Now
there is a problem with equality: the test 1024 = 1037 yields FALSE, although
both string representations are equivalent in the sense that they represent
the same sequence of characters.

There is also a problem with the dynamic allocation of strings. In STRING_SPEC
we only have functions such as FUNC empty: -> String and FUNC cons :
Char # String -> String. This implies that formally an implementation
of this cons is not allowed to have some side-effect such as storing characters
in memory locations. The two problems sketched above indicate that, at least
for certain applications, we better not adopt the sort String, but a slightly
different sort, which we shall name 'String'. The quotes in 'String' are
formally part of the identifier. For the latter sprt we introduce an eq pred
icate which is meant for an equivalence relation as indicated above and we
introduce a procedure called cons rather than a function. Furthermore we
explicitly introduce the possibility that a representation invariant has to be
maintained. We shall refer to the objects of this sort 'String' as imple
mentable strings.

Of course the introduetion of this special type of strings is a complication for
our taskof formally specifying an editor, especially because the use of the sort
'String' will propagate throughout large parts of our formal specification.
However we think that data reification is an important topic and therefore
we try to dealwithit explicitly, rather than running away from the problem.
Readers who prefer not to get involved with this topic, should just skip the
current section and continue reading at Section 4.4.4, replacing everywhere
'String' by String, and replacing eq by equality (=).

The purpose of ha ving 'String' rather than String is not to add an im
plementation bias. Instead we like to refer to our approach as specification
for implementability. First we introduce a somewhat more general concept,
by specifying a data type of implementable sequences. These are very much
like sequences, except that they allow for dynamic implementations. They
are given by the class description 'SEQ_SPEC '.

4.4. INTERFACING WITH THE ENVIRONMENT 259

The parameter restrietion is not the usual ITEM, but a somewhat more general
form 'ITEM', which provides an eq predicate rather than just equality. The
advantage of 'ITEM' over ITEM is that with 'ITEM' it is possible to have
implementable sequences of implementable sequences of ... , rather than only
implementable sequences of items with equality.

LET 'ITEM' : =
IMPORT ITEM INTO
CLASS

SORT 'Item' FREE
PRED eq 'Item' # 'Item' FREE
PRED i tem_inv: FREE
FUNC f 'Item' -> Item FREE

AXIOM item_inv =>
FORALL i: 'Item',j: 'Item'
(eq(i,j) <•> f(i) • f(j))

END;

The body of the class description 'SEQ_SPEC' introduces a sort 'Seq'. The
specification 'SEQ_SPEC' is based on the use of an abstraction function f -
by overloading- and a representation invariant seq_inv. Notice that we do
not really specify the invariant; we just allow the implementation to maintain
one. An implementer who does not need this, may just define seq_inv OEF
TRUE. Furthermore in 'SEQ_SPEC' we have procedures cons and cat rather
than functions. There is an eq predicate which should be viewed as the
external notion of equality on 'Seq'.

Not all sorts and operations are considered executable, butsome of the non
executable sorts and operations are exported nevertheless because it is con
venient to have them for reasoning purposes. In particular, the sort Seq, the
predicate seq_inv and the function f are needed for reasoning purposes only.
The remaining exported sorts and operations are considered executable. For
mally, COLD-K does notprovide a program-execution modeland when we
make statements about executability, these do not refer to any formal notion
ofCOLD-K.

LET 'SEQ_SPEC' ·=

LAMBDA X : 'ITEM' OF

260 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

EXPORT

SORT Seq,
PRED seq_inv:,
FUNC f : 'Seq'

SORT 'Seq',
SORT Nat,
SORT 'Item',
FUNC empty
PROC cons 'Item' # 'Seq'
FUNC hd 'Seq'
FUNC tl 'Seq'
PRED eq 'Seq' # 'Seq'
FUNC sel 'Seq' # Nat
PROC cat 'Seq' # 'Seq'
PROC rev 'Seq'

FROM

IMPORT X INTO
IMPORT NAT_SPEC INTO
IMPORT APPLY SEQ_SPEC TO X INTO

CLASS

SORT 'Seq' VAR

FUNC empty: ->
PROC cons 'Item' # 'Seq' ->
FUNC hd 'Seq' ->
FUNC tl 'Seq' ->
PRED eq 'Seq' # 'Seq'

FUNC f: 'Seq' -> Seq
PRED seq_inv: VAR

AXIOM {INVARIANCE}

INIT AND item_inv •> seq_inv;
item_inv AND seq_inv => [p]

PROC p: ->

-> Seq,

-> 'Seq',
-> 'Seq',
-> 'Item',
-> 'Seq',

-> 'Item',
-> 'Seq',
-> 'Seq'

'Seq'
'Seq' MOD
'Item'
'Seq'

seq_inv

DEF (FLUSH cons(SOME i : 'Item' o. SOME
I FLUSH cat (SOME s: 'Seq' o. SOME

'Seq'

s: 'Seq' ())

t: 'Seq' ())

4.4. INTERFACING WITH THE ENVIRONMENT

I FLUSH rev (SOME s: 'Seq' ())
)

AXIOM {ABSTRACTION}

item_inv AND seq_inv •>
FORALL t:'Seq' (f(t)l);

item_inv AND seq_inv •>
FORALL s: 'Seq', t: 'Seq', i:' Item', j: 'Item'
(f(empty) • empty;
([LET u:'Seq'; u:= cons(i,s)] f(u) • cons(f(i),f(s)));

NOT f(s) • empty => f(hd(s)) = hd(f(s));
NOT f(s) • empty => f(tl(s)) • tl(f(s));
eq(s,t) <=> f(s) a f(t))

AXIOM {TERMINATION}

item_inv AND seq_inv =>
FORALL i : 'Item', s: 'Seq' (< cons(i,s) > TRUE)

PROC cat: 'Seq' # 'Seq' -> 'Seq' MOD 'Seq'
PROC rev : 'Seq' -> 'Seq' MOD 'Seq'
FUNC sel : 'Seq' # Nat -> 'Item'

AXIOM {ABSTRACTION}

item_inv AND seq_inv =>
FORALL s : 'Seq', t: 'Seq', n:Nat
([LET u: 'Seq'; u :z cat(s,t)

[LET u: 'Seq'; u:= rev(s)
[LET i: 'Item'; i ·= sel(s,n)

AXIOM {TERMINATION}

item_inv AND seq_inv =>
FORALL s: 'Seq' , t: 'Seq'
(< FLUSH cat(s,t) > TRUE;

< FLUSH rev(s) > TRUE)

END;

] f(u) • cat(f(s),f(t));
] f(u) c rev(f(s));
] f(i) • sel(f(s),n))

261

N ow implementable strings are nothing but implementable sequences of char
acters. We do not need the full generality offered by • ITEM •, but that
does not matter. We also introduce the usual lexicographical ordering on

262 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

sequences as a predicate leas. Again we can distinguish between non
executables and executables. In particular, String, f: 'String' ---+ String
and string_inv need not be executable. The remaining exported sorts and
operations are considered executable.

LET 'STRING_SPEC' :•
EXPORT

SORT String,
FUNC :f : 'String' -> String,
PRED string_inv: ,

SORT Char,
SORT Nat,
SORT 'String' ,
FUNC empty:
PROC cons Char I 'String'
FUNC hd 'String'
FUNC tl 'String'
PRED eq 'String'
FUNC sel 'String'
PROC cat 'String'
PROC rev 'String'
PRED leas 'String'

FROM
IMPORT NAT_SPEC INTO
IMPORT CHAR_SPEC INTO
IMPORT STRING_SPEC INTO

I 'String'
I Nat
I 'String'

'String'

IMPORT APPLY RENAME
SORT Seq
SORT 'Seq'
SORT Item
SORT 'Item'

TO String,
TO 'String' ,
TO Char,
TO Char,

PRED seq_inv: TO string_inv
IN 'SEQ_SPEC' TO
IMPORT CHAR_SPEC INTO
CLASS

-> 'String',
-> 'String',
-> Char,
-> 'String',

-> Char,
-> 'String',
-> 'String',

PRED eq: Char # Char PAR c :Char,d:Char OEF c d
PRED item_inv: DEF TRUE
FUNC :f: Char -> Char PAR c :Char DEF c

END

INTO

4.4. INTERFACING WITH THE ENVIRONMENT 263

CLASS

PRED leas: 'String' # 'String'

AXIOM string_inv •>
FORALL s: 'String',t:'String'
(less(s,t) <•> less(!(s),!(t)))

END ;

4.4.4 FILE: a File system

Both the possibility to edit existing texts and the possibility to store the
results of an edit-session are indispensable for text editing. We assume that
the basic mechanisms for text storage and retrieval are provided by some füe
system. We cannot completely specify an editor unless we also have a de
scription of the available file system. The class description FILE_SPEC below
roodels a simple file system with just enough operations for our purposes.

We use narnes (sort 'String') as file-identifications. Since the file sys
tem can in fact he independent of any particular string implementation,
we have parameterised the file system specification over implementations of
' STRING_SPEC'. The predicate va lid describes the valid narnes of the file
system, corresponding with the situation that for eertaio narnes there exist
files in the system, whereas for other narnes there is no file (yet).

We restriet ourselves to character-files and we model the contentsof a file as
a string. This is described by the function file which fora given name yields
the contentsof the corresponding file. We allow for an arbitrary number of
files in the file system, but in any state at most two files can he active, viz.
one for input and one for output. So read and eof operate on the file that
has been reset most recently. Similarly wri te operates on the most recently
rewritten file. In the description below this idea of having at most two active
files is modelled by the functions infile and outfile which correspond with
the narnes of the input file and the output file respectively.

We suppose that the operations rewri te, reset, read, wri te and eof are
executable. We also export valid, file and pos, but this is just because we
might want to reason with them; they need not he executable.

LET FILE_SPEC :=
LAMBDA X : 'STRING_SPEC' OF
EXPORT

264 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

SORT String,
PRED valid
FUNC file
FUNC pos

SORT Nat,

String,
String
String

SORT Char,
SORT 'String' ,

-> String,
-> Nat,

PROC rewrite: 'String• ->
PROC reset
PROC read
PROC write
PRED eof

'String' ->
-> Char,

Char ->

FROM
IMPORT X INTO
IMPORT NAT_SPEC INTO
IMPORT CHAR_SPEC INTO
IMPORT STRING_SPEC INTO
CLASS

FUNC file String -> String VAR
FUNC pos String -> Nat VAR

PRED valid: String
PAR s :String
DEF file(s)!

FUNC infile :
FUNC outfile:

-> String VAR
-> String VAR

PROC rewrite : 'String• -> MOD file,outtile

AXIOM FORALL s: 'String' (string_inv •> (
< rewrite(s) > TRUE;
[rewrite(s)]
(outfile = f(s);

file(f(s)) • empty;
FORALL t: 'String',u:String
(NOT f(t) = f(s) •>

file(f(t)) • u <•> PREV file(f(t)) • u))))

PROC reset : 'String• -> MOD pos,infile

4.4. INTERFACING WITH THE ENVIRONMENT

AXIOM FORALL s:'String' (string_inv AND valid(f(s)) => (
< reset(s) > TRUE;
[reset(s)]
(infile = f(s);

pos(f(s)) = zero;
FORALL t: 'String',i:Nat
(NOT f(t) = f(s) •>

pos(f(t)) = i <=> PREV pos(f(t)) = i))))

PROC read : -> Char MOD pos

AXIOM string_inv AND lss(pos(infile),len(file(infile))) => (
< read > TRUE;
[LET c:Char; c := read]
(c = sel(file(infile),PREV pos(infile));

pos(infile) • succ(PREV pos(infile));
FORALL t:String,i:Nat
(NOT t = infile =>

pos(infile) = i <=> PREV pos(t) • i)))

PROC write : Char -> MOD file

AXIOM FORALL c:Char (string_inv AND valid(outfile) => (
< write(c) > TRUE;
[write(c)]
(file(outfile) = cat((PREV file(outfile)),cons(c,empty));

FORALL t:String,u:String
(NOT t • outfile •>

(file(outfile) • u <=> PREV file(outfile) • u)))))

PRED eof:

AXIOM string_inv AND valid(infile) AND pos(infile)! •>
(eof <=> pos(infile) = len(file(infile)))

END;

265

We tried to keep the specification of the file system as simple as possible. In
particular, our description doesnotcover the phenomenon of output buffer
ing and the related probieros among which the need for a so-called flush
opera ti on.

Note also that we did not exclude the situation that infile and/or outfile
are undefined - typically after system initialisation. In that case nothing
is specified about the effect of read and wri te. For example if infile

266 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

is undefined then the assertion lss(pos(infile) ,len(file(infile))) is
false, so read can do anything - e.g. abort.

4.5 Text Editing

4.5.1 Introduetion

We adopt the basic idea underlying display-oriented editors where the user
of an editor need not give print or display commands himself. Instead, the
editor more or less automatically makes sure that parts of one or more texts
are displayed within windows on the screen of a display. We also adopt
the idea that the user can edit several texts simultaneously. In combination
with cut and paste capabilities, this makes it possible to move pieces of text
from one text to another. It should be possible for the user to give narnes
to texts. As a third idea we adopt the algebraic operations cut and paste
of Section 4.3.6 as a starting point for the cut and paste capabilities of the
editor. These ideas are also realised in the EMACS editor [4], However, in
[4] the algebraic aspects are somewhat hidden and instead there are simply
operations copy-region-to-buffer and yank-buffer offering cut and paste
capabilities.

We shall describe a kind of abstract machine which we refer to as window
and-text facility. The corresponding class description is named WITEFA_SPEC
- for Window and TExt FAcility). This facility allows for the manipulation
of texts and it makes sure that a suitable part of one text is displayed on
the screen of a display which serves as a window. It supports a notion of
'current text' and a mechanism for associating narnes with texts. For the
time being the window management part of the window-and-text facility is
kept simple: there is just one window with with dimensions li and co which
thus covers the entire screen of the display (see Section 4.4.2). It should he
stressed however that our approach would be suited for the inclusion of multi
window features: the algebraic operations h_add and v_add of Section 4.3.9
would be a good starting point for descrihing the partition of a multi-window
screen.

We avoid the introduetion of a notion of buffer, which in our view is best
postponed until an implementation phase. We have operations whose narnes
arebasedon a buffer-oriented terminology, but we do this only for maintain
ing a kind of name-compatibility with EMACS. In the forma! specification
of these operations we do not use the buffer-oriented terminology. Instead
of that we have the notion of marked text, which is the subject of our next
section.

4.5. TEXT EDITING 267

The remainder of this section is organised as follows. In Section 4.5.2 we
formally introduce marked texts. Section 4.5.3 is about formally importing
the machinery developed before into the editor specification. Section 4.5.4
is about rnadelling the state-space. In Section 4.5.5 we formulate a so-called
text-invariant. The definition of the editor operations will cover the Sections
4.5.6 to 4.5.10. The termination axioms are given for all operations tagether
in Section 4.5.11. In Section 4.5.12 we discuss the conneetion between the
editor and the display. In Section 4.5.13 we present a simple editor which
can be built on top of our window-and-text facility. Finallyin Section 4.5.14
we discuss the conneetion between theeditorand the keyboard.

4.5.2 Marked Texts

A marked text is a composite object that consists of a text and a collection of
co-ordinate pairs. These co-ordinate pairs will be called markers. We expect
that we need the following markers.

• Dot: a kind of 'current' location in the text.
• Mark: a marker that can be put on any position in the text. This mark

can be used for selecting a text-region for cut- and paste operations. In
the typical applications, the mark indicates the beginning of this text
region and the dot indicates its end. This application of the mark will
be worked outinSection 4.5.7.

Furthermore we have considered the possibility of ha ving the following addi
tional markers, but at least for the time being we do not need these urgently,
so we shall not include them in our specification: 1. bob: marker that is
always at the beginning of the text. 2. eob: marker that is always at the
end of the text. 3. searcher: a marker that plays a role in search- and re
place commands. One could even go further and consider the introduetion
of a stack of markers (in [6] this is called a 'mark ring'), allowing for the
manipulation of a large number of markers.

The following picture sketches a marked text.

268 GRAPTER 4. SPECIFICATION OF A TEXT EDITOR

Fig 4.3. Marked text.

We do not introduce the idea of locations for storing marked texts directly,
but instead we focus now on the contents of such locations. We formalise
markers as tuples (i,j). This is done by introducing a class-description called
COPA_SPEC (COPA for CO-ordinate PAir). We have projection functions v for
the vertical co-ordinate and h for the horizontal co-ordinate.

LET COPA_SPEC :~

APPLY APPLY RENAME
SORT Iteml TO Nat,
SORT Item2 TO Nat,
SORT Tup TO Copa,
FUNC projl: Tup -> Iteml TO v,
FUNC proj2: Tup -> Item2 TO h,
FUNC tup: Iteml # Item2 -> Tup TO copa

IN TUP2_SPEC TO NAT_SPEC TO NAT_SPEC;

And now we can define a class description MTEXT_SPEC, which serves for
formalising marked texts as triples of the form (t, d, m) where t is the text
and where d and mare the dot and the mark respectively.

LET MTEXT_SPEC :z
IMPORT APPLY APPLY APPLY RENAME

SORT Iteml TO Text,
SORT Item2 TO Copa,
SORT Item3 TO Copa,
SORT Tup TO MText,
FUNC projl: Tup -> Iteml TO text,
FUNC proj2: Tup -> Item2 TO dot,
FUNC proj3: Tup -> Item3 TO mark,
FUNC tup: Iteml # Item2 # Item3 -> Tup TO mtext

IN TUP3_SPEC TO TEXT_SPEC TO COPA_SPEC TO COPA_SPEC INTO

4.5. TEXT EDITING

IMPORT NAT_SPEC INTO
IMPORT COPA_SPEC INTO
CLASS

FUNC dot: MText -> Nat # Nat
PAR b: MText
DEF v(dot(b)), h(dot(b))

FUNC mark: MText -> Nat # Nat
PAR b: MText
DEF v(mark(b)), h(mark(b))

269

This providesus with an extensional and functional specification of marked
texts. We introduce a number of modification operations on marked texts
not in the sense of modifications on states of course.

FUNC modtext: MText # Text -> MText
PAR m:MText, t:Text
DEF mtext(t,dot(m),mark(m))

FUNC moddot : MText # Copa -> MText
PAR m:MText, c:Copa
DEF mtext(text(m),c,mark(m))

FUNC modmark: MText # Copa -> MText
PAR m:MText, c:Copa
DEF mtext(text(m),dot(m),c)

END;

4.5.3 Stating the Application Domain

Most software products have a certain functionality associated with some
specific application-domain. In our case this is text editing and therefore
we have collected a number of definitions which are specifically related to
the notion of text. This collection of definitions should be viewed as an
application-domain specific notational framework, rather than as a product
specification. It is convenient to have a name for this application-domain
specific notational framework. Therefore we introduce a class description
called APP _DOM_SPEC which encompasses many of the class descriptions given
before.

270 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

LET APP_DOM_SPEC :•

IMPORT BOOL_SPEC INTO
IMPORT NAT_SPEC INTO
IMPORT CHAR_SPEC INTO
IMPORT LINE_SPEC INTO
IMPORT TEXT_SPEC INTO
IMPORT TEXT_OPSl_SPEC INTO
IMPORT TEXT_OPS2_SPEC INTO
IMPORT TEXT_OPS3_SPEC INTO
IMPORT STRING_SPEC INTO
IMPORT PROFILE_SPEC INTO
IMPORT FILL_SPEC INTO
IMPORT LOOK_SPEC INTO
MTEXT_SPEC ;

4.5.4 Spanning the State-space

Our window-and-text facility manages a finite collection of marked texts. At
the specification level, we describe this collection as a map. We shall use
several operations from MAP _SPEC as given in Appendix B such as empty:
- Map, app: Map # Iteml - Item2 and dom: Map - Setl which yields
a set of Iteml. Sometimes we write m[i] for app(m,i). Of course we im
port the application-domain specific notational framework as collected in
APP _DOM_SPEC.

LET WITEFA_SPEC :•

IMPORT APP_DOM_SPEC INTO
IMPORT 'STRING_SPEC' INTO
IMPORT DISPLAY_SPEC INTO

IMPORT (APPLY FILE_SPEC TO 'STRING_SPEC') INTO

IMPORT APPLY APPLY RENAME
SORT Iteml TO String,
SORT Item2 TO MText

IN MAP_SPEC TO STRING_SPEC TO MTEXT_SPEC INTO

IMPORT APPLY RENAME
SORT Item TO String,
SORT Set TO Setl

IN SET_SPEC TO STRING_SPEC INTO

4.5. TEXT EDITING 271

CLASS

The collection of marked texts in WITEF A_SPEC is formally described by a
variabie function mtexts. In this way marked texts will have narnes associ
ated with them, where narnes are just strings.

FUNC mtexts: -> Map VAR

Just to keep things concrete, let us briefly sketch one possible use of this vari
abie map. In Section 4.5.13 we shall describe a simple editor on top of our
window-and-text facility. In this editor we shall have three marked texts,
denoted as mtexts["main"], mtexts["mini"] and mtexts["kill 11]. In
EMACS terminology these would he called the main-buffer, the mini-buffer
and the kili-buffer respectively. The marked text named "main11 contains
essentially the text being edited, whereas the marked text named "mini 11 al
lows the user to input file narnes and search strings. The marked text named
11kill 11 always contains the most recently deleted text.

Now we proceed with spanning the state-space. There is a notion of current
marked text which formally is described by introducing a variabie function.

FUNC current: -> String VAR

The variables mtexts and current need not he considered executable. All
operations to he described later are considered executable.

At fust sight it seems attractive to postulate an initialisation condition by
using the built-in initially assertion INIT of COLD-K, but this may be hard
to implementand therefore we prefer the use of an initialisation procedure.
Insteadof INIT => ... we must write INIT => [ini t(...)] .. .

We want to avoid the situation where current: String becomes undefined.
Therefore the initialisation procedure gets a 'String' argument which rep
resents the name of the first marked text. This marked text consists of the
zero text with (0, 0) as dot and mark. After the initialisation has been in
voked, the user of the window-and-text facility can introduce more narnes
and hence more marked texts. The procedure ini t defined here has modi
tication rights with respect to mtexts, current and a predicate named WTI.
The motivation for this WTI and its definition will he provided later in Section
4.5.5. The procedure ini t also has use rights with respect to the procedure
displ_op which was defined in Section 4.4.2. In the description of the post
condition of init below we refer to the function f: 'String' -> String
which was defined in Section 4.4.3.

PROC init : 'String' ->

272 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

MOD mtexts,current,WTI USE displ_op

AXIOM INIT => FORALL s:'String' (< init(s) > TRUE)

AXIOM INIT =>
FORALL s: 'String'
([init(s)]

current = f(s) AND
mtexts = add(empty,f(s),mtext(zero,copa(O,O),copa(O,O))))

We have classified the operations into the following groups:

• operations for dot and mark control,
• operations for text modification,
• operations for marked-text management,
• operations for searching,
• operations for string conversion.

4.5.5 The Text Invariant

We must make a decision about the behaviour of the editor. There are
a number of marked texts, and one of them, is the 'current' marked text.
Within this current marked text there is a point of interest, indicated by
dot. Probably this is close to the piece of text about which the user of the
editor is thinking and where he is going to do his next insertion or deletion.
The user can move this dot and the cursor in the sense that the cursor on
the screen somehow mirrors the position of the dot. The question now is
if one wants to allow the situation where the dot indicates a position that
is non-existent in the text of the current marked text. We believe that a
consequent and elegant approach is to avoid this situation entirely. Consider
the following text and suppose that dot is at the position corresponding with
the A at the end of the fust line.

thia -ia-a-v,.:.•r=y-=l=o=n=g-=1=111=•=-o=f=-t=•=xt=-=ra=t=h•=r=-l=o=n=g-=i=nd=•=•d=-=:' ahort-line .._
thia-io-a-vary-long-line-of-text-rather-long-indeed-C
thio-io-a-very-long-line-of-text-rather- long-indeed-0
thia-io-a-very-long-line-of-text-rather-long-indeed-E

Now according to our approach it should not he possible to move the dot
one line downwards while staying within the same column. Indeed, suppose
that it would he possible, then it is unclear what it means to do an insert
operation next.

4.5. TEXT EDITING 273

We formulate the ahove ideas hy introducing a so-called text-invariant. The
text-invariant implies that for each marked text hoth the dot and the mark
correspond with positions that exist in the text of that marked text; further
more this text should he ok.

Considering ok texts only has the advantage that when this window-and-text
facility has to he implemented, its designer is in a comfortahle position in the
sense that he has the option of choosing the string-representation of texts.
Another advantage exists already in the specification phase: all operations
such as cut and paste of Section 4.3.6 which are well-defined for ok texts
only, are usahle. Now we easily formulate this part of our text-invariant and
we introduce it as a predicate Til.

PRED Til:
DEF FDRALL s :String, mt:MText

(mt = app(mtexts,s) =>
(LET d : Nat# Nat; d := dot(mt);
LET m: Nat# Nat; m := mark(mt);
intext(text(mt),d) AND intext(text(mt),m) AND ok(text(mt))))

A second constraint on the state-space arises hecause we have a notion of
current and this should he the name of an existing marked text.

PRED TI2:
DEF app(mtexts,current)l

PRED TI:
DEF Til AND TI2

We must formalise the requirement that the operations of the WITEF A_SPEC
respect TI. As a first attempt, we could express this requirement hy saying
that TI is an invariant in the following weak sense, which we might refer to
as repetition-invariant. Let wi tefa_op denote an invocation of one of the
operations of WITEF A_SPEC.

% AXIOM INIT => [init(SDME s: 'String'())] [(wite!a_op)*] TI
% (not adopted)

This first attempt fails, hecause it does not guarantee that TI is preserved
hy an interteaving of wi tefa_op invocations with invocations of other oper
ations. As a second attempt, we could express this requirement as follows.

% AXIDM INIT => [init(SOME s: 'String'())] TI;
% TI => [witefa_op] TI
% (not adopted)

274 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

We shall refer to this formulation by saying that TI is a classical invariant.
This attempt fails too, because we must allow an implementation to have
auxiliary variables and hence to maintain a stronger invariant WTI, say. The
problem is that from the fact that WTI is a classica} invariant one cannot
conclude that TI is so too.

Therefore we introduce as a part of the specification another auxiliary predi
cate WTI (for Window and Text Invariant) which must be a classica} invariant
and which at its turn must imply TI. One might be tempted tothink that the
classica! invariance of WTI under wi tefa_op follows already automatically if
we simply do not add WTI to the modification rights of the operations from
the the wi tefa_op group. However, this would be too strong, because it
would forbid an implementation of the procedures to change the truth-value
of the invariant from false to true - just by luck. So we must add WTI to the
modification rights of the operations from the the wi tefa_op group and we
must state its invariance by an axiom.

PRED WTI: VAR

AXIOM {WTil} INIT •> [init(SOME s : 'String'())] WTI;
WTI m> [witefa_op] WTI

AXIOM {WTI2} WTI => TI

We adopt the latter salution and we might refer to its construction by saying
that TI is an observational invariant with respect to witefa_op. The intu
ition behind this term is as follows. Define an experiment as the execution
of some interteaving of wi tefa_op invocations with invocations of other op
erations. N ow this construction guarantees that after any experiment, it can
be observed that TLholds, although in fact something stronger may hold,
which need not be observable.

Actually wi tefa_op can be defined in terms of the operations from the next
sections. lts definition refers to all but one procedures of WITEFA_SPEC, the
only exception being ini t.

PROC witefa_op: ->
DEF (FLUSH bolp

I FLUSH eolp
I forward_character
I backward_character
I next_line
I previous_line
I beginning_of_line
I end_of_line

4.5. TEXT EDITING

beginning_o!_bu!!er
end_o!_bu!!er
set_mark
exchange_dot_and_mark
insert_!ile(SOME s:'String' (valid(!(s))))
insert_character(SOME c :Char printable(c))
newline
yank_bu!!er(SOME s:'String' (app(mtexts,!(s))!))
delete_next_character
erase_region
erase_bu!!er(SOME s : 'String' ())
copy_region_to_bu!!er(SOME s: 'String' ())
FLUSH current_bu!!er_name
write_named_!ile(SOME s: 'String' ())
switch_to_bu!!er(SOME s: 'String' ())
search_forward(SOME s: 'String' ())

275

FLUSH bu!!er_to_string (SOME s: 'String' (app(mtexts,!(s))!))

In the speci:fication of the operations, we must take care not to contradiet
the assertion that TI is an observational invariant. Even better, we can try
to make a kind of 'almost-invariance' of TI derivable in the sense that ini t
establishes TI and that WTI => [wi tefa_op] TI. We decided to do so and
furthermore we shall show below that ini t establishes TI. We shall later
show by way of example this almost invariance for one of the operations,
which will be copy_region_to_buffer of Section 4.5.7.

Let us show now already that INIT => Vs: 'String' [init(s)] TI is
derivable from the given postcondition of ini t. This postcondition states
that current = f (s) 1\ mtexts = add(empty, f (s), mtext (zero, copa(O,O),
copa(O,O))). For TI1 we must check something for all marked texts mt
in the range of mtexts, but we see that there is only one, which is the
marked text mtext(zero,copa(O,O) ,copa(O,O)). We easily verify that
intext(zero, (0,0)) and ok(zero) holds. Now we are left with TI2 which
requires that current is in the domain of mtexts. Since current = f (s),
it is even the only element in the domain. This shows that ini t establishes
TI.

The presentation of signatures and the the pre- and postcondition style ax
ioms of the operations will be based on the classification of the operations
into several groups as sketched in Section 4.5.4. This will cover the Sections
4.5.6 to 4.5.10. The termination axioms are given for all operations together
in Section 4.5.11.

276 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

4.5.6 Operations for Dot and Mark control

To begin with, we give the signature of the operations from this group.

PROC bolp
PROC eolp
PROC forward_character
PROC backward_character
PROC next_line
PROC previous_line
PROC beginning_of_line
PROC end_of_line
PROC beginning_of_buffer
PROC end_of_buffer
PROC set_mark
PROC exchange_dot_and_mark

-> Bool MOD WTI
-> Bool MOD WTI
-> MOD mtexts,WTI USE displ_op
-> MOD mtexts,WTI USE displ_op
-> MOD mtexts,WTI USE displ_op
-> MOD mtexts,WTI USE displ_op
-> MOD mtexts,WTI USE displ_op
-> MOD mtexts,WTI USE displ_op
-> MOD mtexts,WTI USE displ_op
-> MOD mtexts,WTI USE displ_op
-> MOD mtexts,WTI USE displ_op
-> MOD mtexts,WTI USE displ_op

We describe the operations in pre- and postcondition style. TI must be
respected, which for the operations of this group amounts to the restrietion
of Til that we may not move dot or marktoa position that is non-existing
in the text. We have several similar axioms and in order to savespace the
following premiss serves as a common clause for the specification of several
opera ti ons:

AXIOM WTI => (
LET mtext':MText; mtext' • app(mtexts,current);
LET i:Nat,j:Nat; i,j :• dot(mtext');

Our first operations are two Boolean procedures named bolp and eolp ab
breviating beginning-of-line predicate and end-of-line predicate.

[LET b:Bool; b :• bolp]
(b = true <=> j • 0);

[LET b:Bool; b :z eolp]
(b • true <=> len(sel(text(mtext'),i)) = j);

We used the selection operation sel: Text -> Line which- somewhat im
plicitly - was constructed in Section 4.3.2. The four next operations deal
with moving the dot rightwards, leftwards, downwards and upwards respec
tively. Each operation has two clauses: one for the normal case and one
for the situation where it has no effect because Til must be respected. The
axioms below show a difference between our editor and EMACS [4]. The
difference lies in the effect of trying to move rightwards when the dot is at
the end of a line. In that case our editor does nothing whereas in EMACS

4.5. TEXT EDITING 277

the dot moves to the beginning of the next line. Similar differences exist for
leftward, downward and upward movements.

In view of the fact that mtexts is a map based on MAP _SPEC of Appendix
B , we can use the operation add: Map # String -> MText for descrihing
how the marked text addressed by current is overwritten.

It is interesting to analyse the specification of previous_line below for the
particular case that the vertical co-ordinate of the dot is 0, i.e. i = 0. In
that case pred(i) is undefined and therefore intext(... ,pred(i) ,j) is
false. We see that the postcondition mtexts = PREV mtexts applies - so
nothing happens.

intext(text(mtext'),i,succ(j)) =>
[torward_character]
(LET new_dot: Copa; new_dot :• copa(i,succ(j));

LET new_mtext:MText; new_mtext :• moddot(mtext',new_dot);
mtexts = add((PREV mtexts),current,new_mtext));

NOT intext(text(mtext'),i,succ(j)) =>
[forward_character]
(mtexts = (PREV mtexts));

gtr(j,O) =>
[backward_character]
(LET new_dot:Copa; new_dot :• copa(i,pred(j))

{rest as for forward_character});

NOT gtr(j,O) =>
[backward_character]
(mtexts • (PREV mtexts));

intext(text(mtext'),succ(i),j) =>
[next_line]
(LET new_dot:Copa; new_dot :• copa(succ(i),j)

{rest as for forward_character});

NOT intext(text(mtext'),succ(i),j) •>
[next_line]
(mtexts • (PREV mtexts));

intext(text(mtext'),pred(i),j) •>
[previous_line]
(LET new_dot:Copa; new_dot :• copa(pred(i),j)

{rest as tor forward_character});

278 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

NOT intext(text(mtext'),pred(i),j) •>
[previous_line]
(mtexts • (PREV mtexts));

The next operations deal with moving the dot to the extreme positions in a
line. This is easy because there is no danger of moving dot to a non-existing
position.

[beginning_of_line]
(LET new_dot:Copa; new_dot := copa(i,O)

{rest as for forward_character});

[end_of_line]
(LET new_dot:Copa; new_dot := copa(i,len(sel(text(mtext'),i)))

{rest as for forward_character});

The next operations deal with moving the dot to the extreme positions within
the buffer. Again there is no danger of moving dottoa non-existing position.

[beginning_of_buffer]
(LET new_dot:Copa; new_dot := copa(O,O)

{rest as for forward_character});

[end_of_buffer]
(LET new_dot:Copa; new_dot :a copa(reach(text(mtext')))

{rest as for forward_character});

The following operations deal with controlling the mark. WTI and hence TI1
hold in the begin-state. Therefore we know that both dot and mark are at
existing positions and this remains the case if we put mark at dot or if we
exchange dot and mark. This shows that there is no danger of violating TIL

[set_mark]
(LET new_mark: Copa; new_mark :• dot(mtext');

LET new_mtext:MText; new_mtext :• modmark(mtext',new_mark);
mtexts • add((PREV mtexts),current,new_mtext));

4.5. TEXT EDITING

[exchange_dot_and_mark]
(LET new_dot :Copa; new_dot :• mark(mtext');

LET new_mark:Copa; new_mark :s dot(mtext');
LET new_mtext:MText;

279

new_mtext := modmark(moddot(mtext',new_dot),new_mark);
mtexts • add((PREV mtexts),current,new_mtext))

)

4.5. 7 Operations for Text Modification

These operations serve for changing the text of some marked text and most of
them modify the current marked text. To begin with, we give the signature
of the operations from this group.

PROC insert_tile: 'String' ->
MOD mtexts,WTI USE displ_op, reset, read

PROC insert_character Char -> MOD mtexts,WTI USE displ_op
PROC newline -> MOD mtexts,WTI USE displ_op
PROC yank_bufter 'String' -> MOD mtexts,WTI USE displ_op
PROC delete_next_character: -> MOD mtexts,WTI USE displ_op
PROC erase_region -> MOD mtexts,WTI USE displ_op
PROC erase_butter 'String' -> MOD mtexts,WTI USE displ_op
PROC copy_region_to_butter : 'String' -> MOD mtexts,WTI USE displ_op

We describe the operations in pre- and postcondition style and we must make
sure that TI is respected. Again we have several similar axioms and we have
a common clause for the specification of several operations.

AXIOM WTI =>

FORALL s: 'String', c:Char (

Most operations of this group have the effect that the buffer indicated by
current becomes modified. In order to define the postcondition of the oper
ation insert_file, weneed a specification of the underlying file system and
so we have imported FILE_SPEC as described in Section 4.4.4. Reeall that for
s: 'String • we have f (s) as the corresponding string and file (f (a)) as the
stringcontentsof the corresponding file. Finally text (file (f (s))) denotes
the contents of this file viewed as a text. Of course all of this only holds un
der the assumption that this file exists, which is if valid(f(s)) holds. The
main description tooi for the operations insert_file, insert_character,

280 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

newline and yank_buffer is the paste operator on texts as described in
Section 4.3.6. Some postconditions look complicated because we must re
calculate the co-ordinates of the dot; furthermore the co-ordinates of the
mark may need re-calculation depending on the relative position of mark
with respect to dot. In order to describe these re-calculations we use the add
and paste operations on reaches from Section 4.3.7. The new dot is given
as copa(add(d,reach(t))) but it is interesting to note that we could write
copa(paste (d,reach(t) ,d)) alternatively because
V x, y: Nat2 (paste(x, y ,x) = add(x,y)) is a simple property of the algebra
of reaches (cf. the definitions of paste, split and add).

valid(f (s)) "'>
[insert_file(s)]
(LET t:Text; t :• text(file(f(s)));

LET mtext':MText; mtext' := app((PREV mtexts),current);
LET d: Nat# Nat; d :"' dot(mtext');
LET m: Nat# Nat; m := mark(mtext');

LET new_text:Text; new_text := paste(text(mtext'),t,d);
LET new_dot :Copa; new_dot := copa(add(d,reach(t)));
LET new_mark:Copa;

new_mark := (lss(m,d) ?; copa(m)
I NOT lss(m,d)?; copa(paste(m,reach(t),d))
) ;

LET new_mtext:MText;
new_mtext := mtext(new_text,new_dot,new_mark);
mtexts = add((PREV mtexts),current,new_mtext))

printable(c) =>
[insert_character(c)]
(LET t:Text; t := addchar(c,zero)

{rest as for insert_file(s)});

[newline]
(LET t:Text; t : • addempty(zero)

{rest as for insert_file(s)});

is_in(f(s),dom(mtexts)) =>
[yank_buffer(s)]
(LET t:Text; t :• text(app((PREV mtexts),f(s)))

{rest as for insert_file(s)})

)

4.5. TEXT EDITING 281

The main description tool for the operations delete_next_character and
erase_region is the cut operator on texts as described in Section 4.3.6.
Note that cut always yields a pair (t1, t2) where t1 = 'remaining text' and t2
= 'deleted text'. We apply cut, retaining its first result and throwing away
its second result. Again the co-ordinates of the mark need re-calculation
when cutting takes place at dot. As before, we have one premiss serving the
specification of several operations.

AXIOM WTI =>

FORALL s: 'String', c:Char
(LET mtext':MText; mtext' :~ app(mtexts,current);

LET i:Nat,j:Nat; i,j
LET d: Nat # Nat; d
LET m: Nat # Nat; m

:= dot(mtext');
:• dot(mtext') ;
:• mark(mtext');

Again several operations have two clauses: one for the normal case and one
for the case where the operation has no effect. For delete_next_character
and erase_region it is not obvious what should happen with mark; we adopt
some ad-hoc solution.

intext(text(mtext'),i,succ(j)) •>
[delete_next_character]
(LET new_text:Text,u:Text;

new_text,u :~ cut(text(mtext'),i,j,i,succ(j));
LET new_dot :Copa; new_dot :• copa(d);
LET new_mark:Copa; new_mark :=

(leq(m,d) ?;

copa(m)

) ;

NOT leq(m,d)?;
LET x: Nat# Nat,y:Nat #Nat; x,y := cut(m,i,j,i,succ(j));
copa(x)

LET new_mtext:MText;
new_mtext :• mtext(new_text,new_dot,new_mark);

mtexts • add((PREV mtexts),current,new_mtext));

NOT intext(text(mtext'),i,succ(j)) =>
[delete_next_character]
(mtexts • (PREV mtexts));

lss(m,d) =>
[erase_region]
(LET new_text:Text,u:Text; new_text,u :• cut(text(mtext'),m,d);

282 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

LET new_dot :Copa; new_dot :• copa(m);
LET new_mark:Copa; new_mark :• copa(m)

{rest as for delete_next_character});

NOT lss(m,d) •>
[erase_region]
(mtexts • (PREV mtexts));

There are also a few operations that take a 'String' argument addressing a
certain buffer to he modified. Again it is not always clear what should happen
with mark and dot. In the postcondition of copy_region_to_buffer we use
again the cut operation, but now its first result is thrown away and its second
result is retained.

[erase_buffer(s)]
(mtexts

• add((PREV mtexts),f(s),mtext(zero,copa(O,O),copa(O,O))));

lss(m,d) .. >
[copy_region_to_buffer(s)]
(LET t :Text ,new_text:Text;

t,new_text :• cut(text(mtext'),m,d);
mtexts
~ add((PREV mtexts),f(s),mtext(new_text,copa(O,O),copa(O,O))));

NOT lss(m,d) •>
[copy_region_to_buffer(s)]
(mtexts • (PREV mtexts))

)

Let us show now that WTI =>V s: 'String' [copy_region_to_buffer(s)
] TI is derivable from the given postcondition of copy_region_to_buffer,
as promised earlier. This postcondition states that if mark 2: dot, nothing
happens, in which case we are done. So let us assume that mark < dot.
We know that mark and dot are in the old current text, so consider the
expression cut(text(mtext') ,m,d) where mtext' is the previous marked
text and where m,d are its mark and dot respectively. Then this expres
sion yields two ok texts. The second of these is denoted as new_ text and
it is added to mtexts together with (0, 0) for mark and dot. Note that
it is added by the 'overwriting' add of MAP _SPEC. Now Til holds because
intext (new_ text, (0, 0)) for arbitrary ok values of new_ text. Furthermore
TI2 holds because the range of mtexts could only grow, whereas current
remained unaffected. This shows that copy_region_to_buffer preserves TI

4.5. TEXT EDITING 283

when WTI holds as a precondition.

4.5.8 Operations for Marked-text Management

To begin with, we give the signature of the operations from this group.
We considered a procedure list_buffers, but we decided not to include
it because it is not clear how we should make it elegantly deliver its output.
Similarly we decided not to include a procedure delete_buffer: 'String'
---+ because of the question of what should happen when the current marked
text is deleted, which is probiernatie in view of TI2.

PROC current_buffer_name: -> 'String'
MOD WTI

PROC write_named_file: 'String' ->
MOD WTI
USE rewrite, write

PROC switch_to_buffer: 'String' ->
MOD mtexts, current, WTI
USE displ_op

The operations are described by their postconditions. As before, we have
one premiss serving the specification of several operations.

AXIOM WTI •>

FORALL s:'String' (

We give the description of the operations below. In order to define the post
condition of wri te_named_file we refer again to the file system of Section
4.4.4. The operation switch_to_buffer may create a new marked text
not in the sense of dynamic object creation of course. We take the ad-hoc
value zero for its text component and then TI1 dictates the value (0,0) for
dot and mark.

[LET t:'String'; t :• current_buffer_name]
(f(t) = current);

[write_named_file(s)]
(valid(f(s));

file(f(s)) = string(text(app(mtexts,current)));
FORALL t:'String'
(NOT f(t) • f(s) a) valid(f(s)) <=> PREV valid(f(s)));

284 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

FORALL t: 'String',u:String
(NOT 1(t) • 1(s) •> 1ile(1(s)) • u <•> PREV 1ile(1(s)) • u));

[switch_to_bu11er(s)]
(current • 1(s);

is_in(1(s),dom(PREV mtexts)) •> mtexts • (PREV mtexts);
NOT is_in(1(s),dom(PREV mtexts)) •> mtexts •

add((PREV mtexts),1(s),mtext(zero,copa(O,O),copa(O,O))))

)

4.5.9 Operations for Searching

We describe just one operation for searching. It takes a • String • argument
which is interpreted as the string representation of the search text. The
main description tooi is the seàrch operation of Section 4.3.10 which was
introduced precisely for this purpose.

PROC search_!orward: 'String' -> MOD mtexts,WTI USE displ_op

AXIOM WTI =>

FORALL s:'String' (
[search_!orward(s)]
(LET mtext':MText; mtext' :a app((PREV mtexts),current);

LET 1irst_part:Text,second_part:Text;
1irst_part, second_part := split(text(mtext'),dot(mtext'));
LET i:Nat,j:Nat; i,j :• search(second_part,text(!(s)));

(i,j) • reach(second_part) •> mtexts • (PREV mtexts);

NOT (i,j) • reach(second_part) •>
(LET new_dot: Copa;

new_dot := copa(add(reach(1irst_part),i,j));
LET new_mtext:MText;
new_mtext :• mtext(text(mtext'),new_dot,mark(mtext'));

mtexts • add((PREV mtexts),current ,new_mtext))))

In the above precondition the clause (i, j) = reach(second_part) denotes
the situation where the search text does not occur.

4.5. TEXT EDITING 285

4.5.10 Operations forString Conversion

We expect that there will arise applications for a conversion of the text
of a marked text into a string. One such application will be presented in
Section 4.5.13 when we shall describe a simple editor, where the contents
of the marked text named "mini 11 is converted to a string. The converse
can be programmed by using the hd and tl operations on strings and the
insert_character operation. We introduce an operation buffer_ to_string
taking a 'String' argument. This argument is interpreted as the name of
the marked text whose text at its turn is to be converted to 'String'.
The operation introduced here has no modification rights, except for WTI
of course. We use the abstraction function f: 'String' - String and the
function string, converting texts into strings.

PROC buffer_to_string: 'String' -> 'String'
MOD WTI

The effect of this operation is described again by a pre- and postcondition
style axiom.

AXIOM WTI •>

FORALL s: 'String' (
app(mtexts,f(s))l =>
[LET t: 'String'; t := buffer_to_string(s)]
(f(t) = string(text(app(mtexts,f(s))))))

4.5.11 Termination Axioms

We specify the termination of the procedures of the wi tefa_op group in the
sense that for each procedure invocation there is a state that can be reached
as its final state. This is a rather weak form of termination; but if furthermore
we happen to know that the algorithmic constructs used in its implementa
tion are deterministic, then it implies the strong form of termination in the
sense that every procedure invocation terminates. Actually we relativize the
termination axioms by the assertion WTI which was introduced in Section
4.5.5. As a naive attempt, we could try to write the termination axiom as
AXIOM WTI => < wi tefa_op > TRUE, but this axiom is far too weak for being
interesting; it just states that at least one operation can terminate for some
argument value. So we have to provide one assertion for each operation.

AXIOM WTI => (

286 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

< FLUSH bolp > TRUE;
< FLUSH eolp > TRUE;
< forward_character > TRUE;
< backward_character > TRUE;
< next_line > TRUE;
< previous_line > TRUE;
< beginning_of_line > TRUE;
< end_of_line > TRUE;
< beginning_of_buffer > TRUE;
< end_of_buffer > TRUE;
< set_mark > TRUE;
< exchange_dot_and_mark > TRUE;

FORALL s:'String' (valid(f(s)) z> < insert_file(s) > TRUE);
FORALL c:Char < insert_character(c) > TRUE;

< newline > TRUE;

FORALL s: 'String' (app(mtexts,f(s))l •> < yank_buffer(s) > TRUE);

< delete_next_character > TRUE;
< erase_region > TRUE;

FORALL s: 'String' < erase_buffer(s) > TRUE;
FORALL s: 'String' < copy_region_to_buffer(s) > TRUE;

< FLUSH current_buffer_name > TRUE;

FORALL s: 'String' < write_named_file(s) > TRUE;
FORALL s: 'String' < switch_to_buffer(s) > TRUE;
FORALL s: 'String' < search_forward(s) > TRUE;

FORALL s: 'String'
(app(mtexts,f(s))! a>< FLUSH buffer_to_string(s) > TRUE))

4.5.12 Connecting the Editor with the Display

The class descriptions FILL_SPEC and LOOK_SPEC of Sectien 4.3.11 provide
enough machinery for formulating the 'window-invariant' of an editor. This
invariant describes the relation between the current :Inarked text on the one
hand and the screen and the cursor of the display on the other hand. Note
that WITEF A_SPEC imports APP _DOM_SPEC which encompasses LOOK_SPEC and
FILL_SPEC. The main purpose of this sectien is to introduce one additional

4.5. TEXT EDITING 287

axiom that applies to the window-and-text facility.

We suppose that we have one window the size of which is given by the
values of li and co and we leave the treatment of multi-window features
as a generalisation for later. We start by introducing an auxiliary function
si ze.

FUNC size: -> Nat # Nat
DEF li ,CO

We introduce several more auxiliaries for notational purposes.

FUNC text: -> Text
DEF text(app(mtexts,current))

FUNC dot: -> Nat # Nat
DEF dot(app(mtexts,current))

Informally the window-invariant states that the window should correspond
with a 'look' to the text, if necessary filled with blanks, such that the dot is
visible as the cursor.

We do not need a separate concept o('window'. Instead of that, it is sufti
eient to deal with the position and the size of a window. The position of a
window can he given by a co-ordinate pair (ot,o2) that indicates the position
of the leftmost-uppermost corner of the window. We refer to this as the
screen-origin or just as the origin The following picture sketches part of the
situation.

Fig 4.4. The relation between window and text.

We introduce a function p_sub which describes pair-wise subtraction of co
ordinates. It serves for calculating the position of the cursor from given dot
and given screen-origin. We also define a function p_add which describes
pair-wise addition of co-ordinates.

288 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

FUNC p_sub: Nat t Nat t Nat t Nat -> Nat t Nat
PAR dl:Nat, d2:Nat, ol:Nat, o2:Nat
DEF sub(dl,ol), sub(d2,o2)

FUNC p_add: Nat t Nat t Nat t Nat -> Nat I Nat
PAR ol:Nat, o2 :Nat, sl:Nat, s2:Nat
DEF add(ol,s1), add(o2,s2)

Now we must formulate our window-invariant which wedefine as a predicate
WI. We must also deal with the problem that the text may contain non
printables. Fortunately we earlier (Section 4.3.5) introduced the printify:
Text -> Text operation, so this problem gets solved by introducing an ap
plication of printify in WI.

PRED WI:
DEF LET origin: Nat t Nat; origin :• p_sub(dot,cursor);

LET tilled : Text; tilled :~ till(text,p_add(origin,size));
screen • printity(look(tilled,origin,p_add(origin,size)))

The requirement that WI is an observational invariant should be considered as
a part of the specification of our window-and-text facility. This requirement
should be added to the axioms WTI1 and WTI2 given in Section 4.5.5 and we
do so now by writing another axiom labeled WTI3.

AXIOM {WTI3} WTI •> WI

We must add two remarks about this last axiom. The first remark is that we
have chosen fora certain editor-behaviour that is basedon similar concepts
for the window-oriented subsetting of texts for the horizontal and for the
vertical direction. When the text is too large in the vertical direction, it is
shortened by the application of vlook. When the text is too large in the
horizontal direction, it is shortened by the application of hlook. The user
of the editor perceives this as a kind of leftward text-movement when typing
long lines. Probably it is dependent on the kind of texts being edited whether
this approach is convenient or not.

The second remark is that our specification stillleaves a certain amount of
implementation freedom, where some of this freedom is unacceptable from
an ergonomie point of view. In particular, nothing has been said about the
stability of the position of the window with respect to the text. For example
there is no forma! requirement that always should be tried to re-use the
previous origin value unless this turns out impossible.

4.5. TEXT EDITING 289

END; {o! WITEFA_SPEC}

This concludes the specification of the window-and-text facility.

4.5.13 MOREDOP: More Editing Operations

In this section we shall present a simple editor which can he built on top of
the window-and-text facility presented above. This is just a small example
editor and more powerful and user-friendly editors can he built in a similar
way. The editing primitives of WITEFA_SPEC are of a general-purpose nature
in the sense that we can imagine that they are useful for any editor. Now we
address the construction of one particular editor with charaderistics that it
has a fixed number of dedicated buffers and a particular kili/yank mechanism.
Therefore we start with the definition of some additional operations which
are specific for this editor. They are put together in a class description
MOREDOP _SPEC (for MORe EDiting OPerations). Our simple editor uses precisely
three marked texts:

• "mini" which serves for in putting search texts and file names,
• "kill" which will he used in combination with the operations

yank_buffer and copy-region-to-buffer, thereby providing cut and
paste capabilities at the user-level,

• "main" which essentially contains the text being edited.

The user can switch from "main" to "mini" by escape and from "mini"
back again to "main" by either escape or return.

We introduce three 'String' constants which serve as the fixed narnes for
the three marked texts. The procedure startup serves for initialisation. The
remaining operations are typical editing commands.

LET MOREDOP_SPEC ·a

IMPORT NAT_SPEC INTO
IMPORT BOOL_SPEC INTO
IMPORT CHAR_SPEC INTO
IMPORT WITEFA_SPEC INTO
CLASS

PROC m1n1: -> 'String'
DEF cons('m',cons('i',cons('n',cons('i',empty))))

PROC main: -> 'String'
DEF cons('m' ,cons('a',cons('i' ,cons('n',empty))))

290 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

PROC ki11: -> 'String'
DEF cons('k', cons('i' ,cons('1' ,cons('1' ,empty))))

PROC startup : ->
DEF init(mini);

switch_to_buffer(ki11);
switch_to_buffer(main)

PROC escape: ->
DEF (eq(current_buffer_name,mini) ?; switch_to_buffer(main)

I NOT eq(current_buffer_name,mini) ?; switch_to_buffer(mini)
)

PROC return: ->
DEF (eq(current_buffer_name,mini) ?; switch_to_buffer(main)

I NOT eq(current_buffer_name,mini) ?; new1ine
)

PROC de1ete_to_ki11buffer: ->
DEF copy_region_to_buffer(ki11);

erase_region

PROC yank_from_ki1lbuffer: ->
DEF yank_buffer(ki11)

PROC search_forward : ->
DEF search_forward(buffer_to_string(mini))

PROC insert_fi1e: ->
DEF insert_fi1e(buffer_to_string(mini))

PROC write_named_file: ->
DEF write_named_file(buffer_to_string(mini))

PROC de1ete_previous_character : ->
DEF (bo1p z true ?; SKIP

I bo1p • false ?;

backward_character; delete_next_character
)

END;

It is interesting to compare the definition of delete_previous_character
with the way one would program it on top of EMACS [4] where we assume
skip to he defined by (defun (skip (progn))):

4.5. TEXT EDITING

(detun (delete-previous-character
(it (bolp)

(skip)

291

(progn (backward-character) (delete-next-character)))))

4.5.14 KEYBIND: Connecting the Editor with the Key
board

In order to complete the simple editor, weneed a procedure key, say which
takes characters as its argument and which invokes operations described by
WITEF A_SPEC and the additional editing operations from Section 4.5.13. Es
sentially the procedure key is defined by one large case-statement. In order
to keep things simple, we omitted features such as escape-prefixes [4].

LET KEYBIND_SPEC :•
EXPORT

SORT Nat,
SORT Char,
SORT Text,
PROC startup: ->

Char ->
-> Text,

PROC key
FUNC screen
FUNC cursor -> Nat # Nat

FROM
IMPORT NAT_SPEC INTO
IMPORT CHAR_SPEC INTO
IMPORT WITEFA_SPEC INTO
IMPORT MOREDOP_SPEC INTO
CLASS

PROC key: Char ->
PAR c:Char
DEF (printable(c)

I ord(c) 0 e41}
I ord(c) • 1 {-A}
I ord(c) = 2 eB}
I ord(c) 4 en}
I ord(c) 6 eE}
I ord(c) = 6 {-F}

I ord(c) • 13 eM}

?; insert_character(c)
?; set_mark
?; beginning_ot_line
?; backward_character
?; delete_next_character
?; end_ot_line
? ; torward_character
? • return ..

292 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

ord(c) • 14 eNl ?• next_line . '
ord(c) • 16 ePl ? ; previous_line
ord(c) • 19 <·s} ?• search_forward . '
ord(c) • 20 {·T} ?; insert_file
ord(c) • 21 eul ?• write_named_file . '
ord(c) • 23 ewl ? ; delete_to_killbuffer
ord(c) • 24 {-X} ? ; beginning_of_buffer
ord(c) ... 26 <·n ?; yank_from_killbuffer
ord(c) • 26 eZl ?; end...of_buffer
ord(c) • 27 {ESC}?; escape
ord(c) • 127{DEL}?; delete_previous_character

END;

This concludes the construction of the formal specification of the editor.

4.6 Related Work

Meyer et. al. [12] describe a strategy for displaying structured objects such
as programs on a screen of limited size. They develop a formal model of
the screen allocation, called 'calculus of windows'. Feldman [13] describes a
text editor in a functional style using FP. Justas in our formalisation, text is
considered to he a sequence of lines, each of which is a sequence of characters.
Gutknecht [15] describes the text editor LARA. This seems to he a kind of
combination between a formatting system and an editor, basedon the what
you-see-is-what-you-get principle. If we compare this with our approach, it
can he seen that Gutknecht puts much more (supposed) knowledge about
the structure of documents into his editor than we did.

Sufrin [14] gives an elaborate specification of a display-oriented text editor.
Unlike we do, he considers text as a sequence of characters with new-line
symbols. His texts are somewhat similar to our marked texts in the sense
that they have one pointer to a position in the text associated with them.
This is done by defining text such that each text consists of two sequences,
which should he appended and the splitting-point corresponds with the dot
position.

Partsch [16] describes the specification and transformation processof a sim
ple line-oriented editor using a sugared version of CIP-1. First of all, we
should note that Partsch is in a comfortable position since he assumes a lot
of syntactic sugar. Since COLD-K is a kemellanguage it is somewhat more
Spartan and we assumed many features not to he available (yet). The text

4. 7. LOOKING BACK 293

editor in [16] is single-buffer and line-oriented. There is nothing comparable
with our window-invariant WI. Furthermore he does not deal with file han
dling. However it should be remarked that he describes undo facilities, some
of which in our case are absent. A text is considered as a sequence of lines,
justas in our formalisation. In the forma} model of the editor, the text being
edited is called the "current text file" and it is modelled as a triple (t11 l, t2),

where t 1 is the text before the current line, l is the current line and t 2 is the
text after the current line.

Guttag and Horning [17] present a formal state-based model of a simple dis
play, comparable with our DISPLAY_SPEC. They also present a formalisation
of 'text' including pictures, views and linejparagraph-breaking facilities. In
particular, a text is viewed as a sequence of paragraphs where each paragraph
at its turn is a formatted English string.

4. 7 Looking Back

In this section, we shall in restrospeet summarise the main lines of the work
presented in this chapter. One of the main purposes of constructing the
formal specification presented in this chapter was to illustrate the use of
formal specification techniques. In particular, we wanted to show how the
language COLD-K can he used as a tool for descrihing complex systems. Let
us explicitly point outsome of the interesting points encountered during this
casestudy.

The standard class descriptions of Appendix B. provide us with the pos
sibility to use standard mathematica! data types such as natural numbers,
sequences, maps etc. It is hard to imagine how we could specify an editor
without using such data types. These standard class descriptions have been
written in a certain axiomatic style and this style is different from the style of
specification used during the rest of our editor specification. This observation
is encouraging, for it suggests that the ability to re-invent the specification of
all these standard mathematica} data types need not he part of the skilis of
the avarage software developer willing to use formal specification techniques.
This is why we put BOOL_SPEC, NAT_SPEC etc. in an appendix. These class
descriptions are indiapensabie but atypical.

After the introduetion of Section 4.1 we investigated inSection 4.3 the impor
tant concept of text and algebraic operations on text. At several occasions we
used the mathematica! data type of Seq from Appendix B . We introduced
several operations on texts and instead of using an axiomatic approach, we
just defined these operations. In particular, we used recursive definitions
which are easily executable. This means that in an early phase of the spec-

294 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

ification construction some experiments can he done. The possibility to do
such experiments can he considered as a tool for establishing a close corre
spondence between the necessary intuition about these operations and the
formal definitions. Of course this may not he the only tool and therefore we
immediately mention the tool of reasoning about the formal definitions. We
searched for suitable algebraic laws for our operations. It was our experi
ence that this helps in establishing a set of well-understood operations with
useful notations. Let us mention one example: when we first defined the
operation named hspli t in Section 4.3.11 we thought of it as 'vertical split'
because there is a vettical splitting-line. Later, when looking for its inverse,
this turned out to he h_add of Section 4.3.9. But then we immediately saw
the inconsistency in the terminology and we changed from 'vertical split' to
'horizontal split'.

We showed that elementary and almost trivial operations form the basis for
powerlul cut and paste operations, which indeed correspond with cut and
paste ca pa hilities as found in editors. Similarly the elementary hspli t and
vspli t form the basis for more complicated operations that play a role in
the necessary subsetting of texts as required due to the physicallimitations
of the display device.

We 'discovered' a wealth of algebraic systems related to text such as the alge
bras of strings, reaches and profiles. We investigated the mappings between
them which turned out to have interesting properties. As has been shown,
the knowledge of these algebraic systems and the mappings between them
can he used for specification purposes. We also believe that this knowledge
is equally fruitfut when implementing a text processing system.

In Section 4.4 we described several class descriptions which are important
for interfacing the editorwithits environment. InSection 4.4.2 we described
a display, which can he viewed as a component that is not really part of
the actual editor, but which is indispensable for the editor. We think that
this phenomenon to include such descriptions is typical for the specification
of many realistic and relevant systems. An important methodological point
was demonstrated by introducing the display-invariant Dil/\ DI2/\ DI3 first.
In this way we had a consistency-criterion for checking the pre- and postcon
dition style specifications that were written after that.

We introduced the sorts 'Seq' and 'String', deliberately facing the prob
lems that if we want to provide the implementation of a data type ourselves,
then this data type probably comes with an eq-predicate rather than with
just equality. Of course one is lucky if some data type is built-in into the
programming language and if it comes with a usabie equality; but we wanted
to show the specification techniques required when this is not the case.

4.7. LOOKING BACK 295

In Section 4.4.4 we introduced a file system, which also can he viewed as
a component that is not really part of the actual editor, but that still is
indispensable. The most important guideline when introducing this file sys
tem, was to restriet ourselves. The complete description of a file system is a
serious enterprise in itself and we had to cut-off many possibilities.

In Section 4.5 we started descrihing the actual text editor. The study of
algebraic operations on texts turned out to he fruitful. For example, the
copy-region-to-buffer and yank-buffer operations are just direct appli
cations of certain algebraic operators. We were able to use the Procrustean
operations of Section 4.3.11 for formalising the display-management of the
editor in a compact and abstract way.

In Sec ti on 4.5.5 we discussed several notions of 'invariant' and finally chose for
the option of observational invariant. Still, the other notionsof invariance are
useful intheir own right; e.g. the definition of observational invariant refers to
the existence of a classical invariant. Furthermore we had a kind of 'almost
invariance' of TI in the sense that ini t establishes TI and that WTI => [
wi tefa_op] TI. The latter property constitutes already a consistency check
on our specification. In Sections 4.5.6 to 4.5.10 we demonstrated another
style of pre- and postcondition-style axioms, by writing the postconditions
in-situ in the axioms.

The formal specification of Section 4.5 covers a number of important aspects
of a text editor, although the editor described is relatively poor in its bells
and whistles. However it is far from trivial and its functionality makes it a
usabie editor. We were able to cover several interesting features also present
in other text editors and in particular in EMACS.

It is important to notice that the application-domain specific framework
would have enabled several other choices for the editor behaviour as well.
E.g. the question whether the dot should or should not stay within the
boundaries of the current text could he discussed. Similarly we had got all
notations and techniques for introducing an arbitrary number of markers at
hand.

· We deliberately did not model the current text as a pair of sequences (t11 t2)

where t 1 is the text before the current position and t 2 is the text after it.
Essentially this is the model adopted by [14] and [16]. This model more or
less collapses if one wants many markers or a marker that goes outside the
text. The price we had to pay for our 'marked-text-as-triples' approach is
that occasionally we had to describe clumsy re-calculations of co-ordinate
pairs.

We showed how À1r-calculus and COLD-K can be used as a tool for the de
scription of a relatively large and complex software system. By doing so

296 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

we illustrated a number of general-purpose specification techniques. This
chapter presents one more example of a large forma} specification and as
such, it can be viewed as is a contribution to the advancement of forma}
specification techniques in generaL N ote that the ability to construct large
forma} specifications supports the applicability of the notionsof component,
black-box description and design (Chapter 2) and the correctness-preserving
transformations of designs investigated in Chapter 3. In Chapter 5 we ap
ply the techniques of Chapter 2 and 3 in an implementation activity where
the current chapter serves as a starting point. We postpone a more com
plete evaluation of the editor case study until the end of this implementation
activity.

297

Bibliography

[1] H.B.M. Jonkers. Introduetion to COLD-K, METEOR workshop on al
gebraic methods, Passau 1987, To appear in Springer Verlag LNCS.

[2] L.M.G. Feijs, H.B.M. Jonkers, C.P.J. Koymans, G.R. Renarclel de
Lavalette. Formal definition of the design language COLD-K, Prelim
inary edition, ESPRIT document METEOR/t7 /PRLE/7.

[3] H.B.M. Jonkers. A concrete syntax for COLD-K, ESPRIT document
METEOR/t8/PRLE/2.

[4] Grace Rohlfs. Unipress Emacs screen editor, Unipress Software, 2025
Lincoln Hwy. Edison, NJ 08817 201-985-800 Telex 709418.

[5] R.M. Stallman. EMACS. The extensible customizable, self-documenting
display editor, Proc. ACM Symp. on Text Manipulation, San Fransisco,
CA 1981, pp 28-33.

[6] R.M. Stallman. GNU Emacs Manual, Fourth Edition, Emacs version 17,
February 1986 Publications Department, Artificial Intelligence Lab, 545
Tech Square Cambridge, MA 02139.

[7] L.M.G. Feijs, H.B.M. Jonkers. First course on COLD-K, March-April
1988, Nat. Lab. document,

[8] L.M.G. Feijs. Systematic design with COLD-K: an annotated example,
ESPRIT Document METEOR/t8/PRLE/3.

[9] B.W. Kernighan, P.J. Plauger. Software tools, Addisson-Wesley Pub
lishing Company 1976. ISBN 0-201-03669-X.

[10] L. Meertens, R Bird. Two exercises found in a hook on algorithmics,
IFIP TC2/WG2.1 working conference on program specification and
transformation, Bad Tölz, 15-17 April 1986.

[11] L.M.G. Feijs. A formalisation of design structures, in: Proceedings of
COMP EURO 88- System design: concepts, methods and tools, Brus
sels, Belgium, April 11-14, 1988, pp. 214-229, IEEE computer society
press.

[12] B. Meyer, J-M. Nerson, S.H. Ko. Showing programs on a screen, Science
of Computer Programming 5 (1985) pp 111-142.

[13] G. Feldman. Functional specification of a text editor, ACM Symposium
on LISP and functional programming. pp 37 . .46.

298 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

[14] B. Sufrin. Formal specification of a display-oriented text editor, Science
of Computer Programming 1 (1982) pp 157-202.

[15] J. Gutknecht. Concepts of the text editor LARA, CACM Sept. 1985,
Vol 28-9. pp 942-960.

[16] H. Partsch, From informal requirements toa running program: a case
study in algebrak specification and transformational programming. In
temal Report 87-7, Department of Informaties, Faculty of Science, Uni
versity of Nijmegen.

[17] J. Guttag, J.J. Homing. Formal specification as a design tool, 7-th ACM
symposium on principlesof programming languages, Nevada (1980).

299

Appendix A

List of Symbols

In this appendix we give a list of the sorts, functions, predicates and proce
dures used. For each symbol the list contains a short informal description.
The list has been subdivided into a number of sub-lists. The first sub-list
contains the symbols used from B. The second sub-list contains the symbols
that are introduced in Section 4.3. The third sub-list contains the symbols
that are introduced in Section 4.4 etc.

Symbols from the standard class descriptions

Bool Booleans
true -+ Bool constant true
:false: -+ Bool constant false
not Bool -+ Bool negation
and Bool2 -+ Bool conjunction
or Bool 2 -+ Bool disjunction

Nat natural numbers
zero : -+ Nat constant 0
succ : Nat -+ Nat successor
pred: Nat -+ Nat predecessor
lss Nat2 less than
leq Nat2 less or equal
gtr Nat2 greater than
geq Nat2 greater or equal
add Nat2 -+ Nat addition
sub Nat2 -+ Nat subtraction
mul Nat2 -+ Nat multiplication
div Nat2 -+ Nat di vision
0: -+ Nat constant 0
1: -+ Nat constant 1

300 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

2: --. Nat constant 2
etc.

Char ASCII characters
ord: Char- Nat conversion function
chr: Nat - Char conversion function
'a': -Char constant 'a'
'i': - Char constant 'i'
etc.

Tup 2-tuples (=pairs)
tup Item1 # Item2 -Tup pairing
proj1: Tup -Item1 taking first field
proj2: Tup -Item2 taking second field
Tup 3-tuples (=triples)
tup Item1 # Item2 # Item3 - Tup triple construction
proj1: Tup - Item1 taking first field
proj2: Tup -Item2 taking second field
proj3: Tup -Item3 taking third field

Set finite sets
is_in: Item # Set element predicate
empty: --. Set empty set

Seq finite sequences
empty: -Seq empty sequence
cons Item # Seq --. Seq sequence construction
hd Seq -Item head
tl Seq - Seq tail
len Seq -Nat leng tb
sel Seq # Nat - Item selection
cat Seq # Seq - Seq concatena.tion
rev Seq -Seq reversal
bag Seq - Bag conversion to bag

Map finite mappings
empty: --. Map empty mapping
add Map # Item1 # Item2 --. Map 'overwriting' addition
rem Map# Item1 --. Map remova.l
app Map # Item1 -Item2 map-applica.tion
dom Map - Set1 domain
ran Map - Set2 range

A. LIST OF SYMBOLS 301

Symbols concerning Text and Algebraic Operations on Texts

Line
Text
niltext -+ Text
zero -+ Text
addempty: Text-+ Text
addchar Char # Text -+ Text
first Text Char
rest Text Text

String
empty: -+ String
cons Char # String -+ String
hd String -+ Char
tl String -+ String
len String -+ Nat
sel String # Nat -+ Char
cat String # String -+ String
leas String # String
ctr_j -+ Char
ok
text
string
blank
tilde

Text
String -+ Text
Text -+ String
-+ Char
-+ Char

printable: Char
printify Char -+ Char
printify
printify

Line -+ Line
Text -+ Text

split: Text # Nat2 -+ Text2

add Text2 -+ Text
cut Text # Nat2 # Nat2 -+

paste : Text2 # Nat2 -+ Text
reach: Text -+ Nat2

add Nat2 # Nat2 -+ Nat2

Text2

split : Nat2 # Nat2-+ Nat2 # Nat2

cut Nat2 # Nat2 # Nat2 -+ Nat2

paste: Nat2 # Nat2 # Nat2 -+ Nat2

las Nat2 # Nat2

leq Nat2 # Nat2

Profile
profile Text -+ Profile

linea(= sequences of chars)
texts (= sequences of linea)
the text with 0 linea
the text with one empty line
put an empty line before ..
put a character in front of ..
first character
text except for its first char

strings(= sequences of chars)
empty string
string construction
head
tail
length
selection
concatenation
lexicographical ordering
control-j
non-niltext and no control-j's
conversion·
conversiOn
constant' '
constant •- •
printable (no control chars)
make printable
make printable
make printable

inverse of natural addition
natural addition of texts
cutting a piece out of a. text
pasting one text into another
position immediately after
addition of reaches
splitting of reaches
cutting of reaches
pasting of reaches
stricly less than
leas or equal

profiles (= sequences of Nat)
the profile of a text

302 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

intext Text # Nat2

nilprofile: -+ Profile
v_add Text2 -+ Text
h_add Text2 -+ Text
empties Nat -+ Text
match : String2 # Nat
match': String2 #Nat
search: String2 -+ Nat
search: Text2 -+ Nat2

split : String # Nat -+ String2
vfill : Text # Nat -+ Text
blanks: Nat -+ Line
hfill : Text # Nat -+ Text
fill
hsplit:
hsplit:
vsplit:
hl ook
vlo ok
look

Text # Nat2 -+ Text
Line # Nat -+ Line # Line
Text # Nat -+ Text2

Text # Nat -+ Text2

Text # Nat2 -+ Text
Text # Nat2 -+ Text
Text # Nat2 f# Nat2 -+ Text

position being in boundaries
profile of niltext
vertical addition
horizontal addition
text with empty lines
string matching
string matching with sentinel
search operation
search operation
splitting a string
vertical filling
line with blank characters
horizontal filling
filling in two directions
horizontal splitting
horizontal splitting
vertical splitting
horizontallook
vertical look
text subsetted by 'window'

Symbols concerning Interfacing the Editor with its Environment

li: -+ Nat
co: -+ Nat
PROC er: -+

PROC nl: -+

PROC bc: -+

PROC ce: -+

PROC cl: -+

PROC nd: -+

PROC up: -+

PROC cm: Nat2 -+

PROC print: Char
PROC displ_op:
screen: -+ Text
cursor: -+ Nat2

Dil:
012:
013:

-+

-+

blank_text: Nat -+ Text
blank_text: Nat2 -+ Text

number of linea
number of columns
carriage return
newline
backwards cursor
clear to end-of-line
erase display
move cursor right
move cursor up
cursor motion
printable character processing
arbitrary display command
observable contents of screen
cursor position

display-invariant (conjunct 1)
display-invariant (conjunct 2)
display-invariant (conjunct 3)

single-line text of blanks
text with blanks

A. LIST OF SYMBOLS 303

post_cr: Text # Nat2 # Text # Nat2 postcondition-predicate
post_nl: Text # Nat2 # Text # Nat2 postcondition-predicate
post_bc: Text # Nat2 # Text # Nat2 postcondition-predicate
post_ce: Text # Nat2 # Text # Nat2 postcondition-predicate
post_cl: Text # Nat2 # Text # Nat2 postcondition-predicate
post_nd: Text # Nat2 # Text # Nat2 postcondition-predicate
post_up: Text # Nat2 # Text # Nat2 postcondition-predicate
post_cm: Text # Nat2 # Nat2 # Text # Nat2 postcondition-predicate
post_print: Text # Nat2 # Char # Text # Nat 2 postcondition-predicate

'Item'
eq
item_inv:
seq_inv
f

f

'Seq'

'Item' # 'Item'

'Item' ---+ Item
'Seq' ---+ Seq

empty: ---+ 'Seq'
PROC cons: 'Item' # 'Seq' ---+ 'Seq'
hd 'Seq' ---+ 'Item'
tl 'Seq' ---+ 'Seq'
eq : 'Seq' # 'Seq'
sel: 'Seq' # Nat ---+ 'Item'
PROC c:at: 'Seq' # 'Seq'
PROC rev: 'Seq' ---+ 'Seq'

'String'
f: 'String' ---+ String
string_inv:
empty: ---+ 'String'

---+ 'Seq'

PROC cons : Char # 'String' ---+ 'String'
hd 'String' ---+ Char
tl : 'String' ---+ 'String'
eq : 'String' # 'String'
sel: 'String' # Nat ---+ Char
PROC cat : 'String' # 'String' ---+ 'String'
PROC rev: 'String' ---+ 'String'
less: 'String' # 'String'

va lid String
file String ---+ String
pos String ---+ Nat
PROC rewrite: 'String' ---+

PROC reset 'String' ---+

data type repreaenting items
equivalence relation
invariant needed for 'Item'
invariant needed for 'Seq'
abstraction function
abstraction function

implementable sequences
representation of empty seq.
eenstructor procedure
head
tail
external notion of equality
selection
concatenation
reversal

implementable strings
abstraction function
invariant needed for 'String'
representation of empty string
eenstructor procedure
head
tail
external notion of equality
selection
concatenation
reversal
lexicographic ordering

existence of a file
contents of file
position of read-pointer
open file for writing
open file for reading

304 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

PROC read
PROC write
eo:f:

--+ Char
Char --+

Symbols concerning Text Ecliting

Co pa
v: Copa --+ Nat
h: Copa --+ Nat
copa: Nat2 --+ Copa

MText
text MText --+ Text
dot MText --+ Copa
mark MText --+ Copa
mtext: Text t Copa t Copa --+ MText
dot : MText--+ Nat2

mark : MText--+ Nat2

modtext : MText t Text --+ MText
moddot : MText t Copa --+ MText
modmark: MText # Copa --+ MText
mtexts : --+ Map VAR
current: --+ String VAR
PROC init: 'String' --+
Til:
TI2:
TI:
WTI: VAR
PROC wite:fa_op: --+

PROC bolp --+

PROC eolp --+
PROC :forward_character --+

PROC backward_character --+

PROC next_line --+
PROC previous_line --+
PROC beginning_o:f_line --+

PROC end_o:f_line --+

PROC beginning_o:f_bu:f:fer --+

PROC end_o:f_bu:f:fer --+
PROC set_mark --+
PROC exchange_dot_and_mark --+

Bool
Bool

PROC insert_:file : 'String' --+

reading from file
writing to file
end-of-file predicate

co-ordinate pairs
vertical co-ordinate
horizontal co-ordinate
pairing

marked texts
select text field
select dot field
select mark field
marked text construction
dot of a marked text
mark of a marked text
modification operation
modification operation
modification oparation
collection of marked texts
name 'current' marked text
initialisation procedure
text-invariant (conjunct 1)
text-invariant (conjunct 2)
text-invariant
window and text invariant
arbitrary oparation of ...

'witefa' operation
'witefa' oparation
'witefa' operation
'witefa' operation
'witefa' operation
'witefa' operation
'witefa' operation
'witafa' oparation
'witefa' oparation
'witefa' operation
'witefa' operation
'witefa' operation

'witefa' oparation

A. LIST OF SYMBOLS

PROC insert_character
PROC newline
PROC yank_bu!ter
PROC delete_next_character:
PROC erase_region
PROC erase_butter
PROC copy_region_to_butter:

Char -t

-t

'String' --+

--+

--+

'String' --+

'String' --+

PROC current_butter_name: --+ 'String'
PROC write_named_tile: 'String' --+

PROC switch_to_butter: 'String' --+

PROC search_torward 'String' --+

PROC butter_to_string: 'String' --+ 'String'

size: --+ Nat2

text: --+ Text
dot : --+ Nat2

p_sub: Nat2 # Nat2 --+ Nat2

Nat2 --+ Nat2 p_add: Nat2 #

WI:

PROC mini: --+ 'String'
PROC main: --+ 'String'
PROC kill: --+ 'String'
PROC
PROC
PROC
PROC
PROC
PROC
PROC
PROC
PROC
PROC

start up
escape
return
delete_to_killbutter
yank_trom_killbutter
search_torward
insert_tile
write_named_tile
delete_previous_character:
key: Char -t

-t

--+

--+

--+

--+

--+

--+

--+

--+

'witefa' operation
'witefa' operation
'witefa' operation
'witefa' operation
'witefa' operation
'witefa' operation
'witefa' operation

'witefa' operation
'witefa' operation
'witefa' operation
'witefa' operation
'witefa' operation

the pair (li,co)
current text
current dot
pair-wise subtraction
pair-wise addition

· window-invariant

representation of "mini"
representation of "main"
representation of "kill"
editor operation
editor operation
editor operation
editor operation
editor operation
editor operation
editor operation
editor operation
editor operation

305

top-level operation of editor

306

Appendix B

Standard Class Descriptions

DESIGN

% This is a specification of the data type of booleans with
% inductive definitions for the non-constructor operations.
% The inductive definitions have the shape of truth tables.

LET BOOL_SPEC :•

EXPORT

SORT Bool,
FUNC true : -> Bool,
FUNC false: -> Bool,
FUNC not Bool -> Bool,
FUNC and Bool # Bool -> Bool,
FUNC or Bool # Bool -> Bool,
FUNC imp Bool # Bool -> Bool,
FUNC eqv Bool # Bool -> Bool,
FUNC xor Bool # Bool -> Bool

FROM
CLASS

SORT Bool
FUNC true -> Bool
FUNC false: -> Bool

AXIOM {BOOLl} truel;
{BOOL2} falsel;
{BOOL3} NOT true false

B. STANDARD CLASS DESCRIPTIONS

PRED is_gen: Bool
IND is_gen(true);

is_gen(!alse)

AXIOM FORALL b:Bool
{BOOL4} is_gen(b)

FUNC not: Bool -> Bool
IND not(true) • !alse;

not(!alse) = true

FUNC and: Bool # Bool -> Bool
IND and(!alse,!alse) = !alse;

and(!alse,true) • !alse;
and(true ,!alse) • !alse;
and(true ,true) • true

FUNC or: Bool # Bool -> Bool
IND or(!alse,!alse) = !alse;

or(!alse,true) true;
or(true ,!alse) = true;
or(true ,true) • true

FUNC
IND

FUNC
IND

imp: Bool # Bool
imp(!alse,!alse)
imp(!alse,true)
imp(true ,!alse)
imp(true ,true)

eqv: Bool # Bool
eqv(!alse,!alse)
eqv(!alse,true)
eqv(true ,!alse)
eqv(true , true)

-> Bool
• true;
• true;
"' !alse;
• true

-> Bool
= true;
• !alse;

!alse;
= true

FUNC xor: Bool # Bool -> Bool
IND xor(!alse,!alse) • !alse;

xor(!alse,true) "' true;
xor(true ,!alse) • true;
xor(true ,true) • !alse

END;

307

308 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

% This is a specitication ot the data type ot natura! numbers
% with inductive detinitions tor the non-constructor operations.

LET NAT_SPEC' :=

EXPORT

SORT Nat,
FUNC
FUNC
FUNC
PRED
PRED
PRED
PRED
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC

FROM
CLASS

zero:
succ:
pred:
lss:
leq:
gtr:
geq:
add:
sub:
mul:
div:
mod:
exp:
log:
max:
min:

SORT Nat

-> Nat,
Nat -> Nat,
Nat -> Nat,

Nat # Nat,
Nat # Nat,
Nat # Nat,
Nat # Nat,
Nat # Nat ->
Nat # Nat ->
Nat " Nat ->
Nat # Nat ->
Nat # Nat ->
Nat #I Nat ->
Nat #I Nat ->
Nat # Nat ->
Nat # Nat ->

FUNC zero: -> Nat
FUNC succ: Nat-> Nat

AXIOM
{NA Tl} zero! ;

Nat,
Nat,
Nat,
Nat,
Nat,
Nat,
Nat,
Nat,
Nat

FORALL m:Nat,n:Nat (
{NAT2} succ(m)!;
{NAT3} NOT succ(m) = zero;
{NAT4} succ(m) = succ(n) => m = n)

PRED is_gen: Nat
IND FORALL m:Nat

(is_gen(zero) ;
is_gen(m) => is_gen(succ(m)))

B. STANDARD CLASS DESCRIPTIONS

AXIOM FORALL n:Nat
{NAT5} is_gen(n)

FUNC pred: Nat -> Nat
IND FORALL n:Nat

(pred(succ(n)) n)

PRED lss: Nat # Nat
IND FORALL m:Nat,n:Nat

(lss(m,succ(m));
lss(m,n) •> lss(m,succ(n)))

PRED leq: Nat # Nat
IND FORALL m:Nat,n:Nat

(leq(m,m);
leq(m,n) ~> leq(m,succ(n))

PRED gtr: Nat # Nat
IND FORALL m:Nat,n:Nat

(gtr(succ(m),m);
gtr(m,n) => gtr(succ(m),n)

PRED geq: Nat # Nat
IND FORALL m:Nat,n:Nat

(geq(m,m);
geq(m,n) => geq(succ(m),n)

FUNC add: Nat # Nat -> Nat
IND FORALL m:Nat,n:Nat

(add(m,zero) = m;

)

)

add(m,succ(n)) = succ(add(m,n)))

FUNC sub: Nat # Nat -> Nat
IND FORALL m:Nat,n:Nat

(sub(m,zero) • m;
gtr(m,n) •> sub(m,succ(n)) = pred(sub(m,n)))

FUNC mul: Nat # Nat -> Nat
IND FORALL m:Nat,n:Nat

(mul(m,zero) • zero;
mul(m,succ(n)) = add(mul(m,n),m))

309

310 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

FUNC div: Nat # Nat -> Nat
IND FORALL m:Nat,n:Nat,q:Nat,r:Nat

(m • add(mul(n,q),r) AND lss(r,n) •> div(m,n) z q)

FUNC mod : Nat # Nat -> Nat
IND FORALL m:Nat,n:Nat,q:Nat,r:Nat

(m = add(mul(n,q),r) AND lss(r,n) •> mod(m,n) = r)

FUNC exp : Nat # Nat -> Nat
IND FORALL m:Nat,n:Nat

(exp(m,zero) • succ(zero);
exp(m,succ(n)) = mul(m,exp(m,n)))

FUNC log: Nat # Nat -> Nat
IND FORALL m:Nat,n:Nat,p:Nat

(leq(exp(m,p),n) AND lss(n,exp(m,succ(p))) => log(m,n) = p)

FUNC max: Nat # Nat -> Nat
IND FORALL m:Nat,n:Nat

(geq(m,n) => max(m,n) = m;
leq(m,n) •> max(m,n) = n)

FUNC min: Nat # Nat -> Nat
IND FORALL m:Nat,n:Nat

END;

(leq(m,n) => min(m,n) • m;
geq(m,n) => min(m,n) • n)

B. STANDARD CLASS DESCRIPTIONS 311

% This is a specification of the data type of natural numbers
% basedon NAT_SPEC', providing notations forsome specific numbers.

LET NAT_SPEC :=

IMPORT NAT_SPEC' INTO

CLASS

FUNC 0 -> Nat DEF zero
FUNC 1 -> Nat DEF succ(zero)
FUNC 2 -> Nat DEF succ(succ(zero))
FUNC 3 -> Nat% etc.
FUNC 4 -> Nat
FUNC 6 -> Nat
FUNC 6 -> Nat
FUNC 7 -> Nat
FUNC 8 -> Nat
FUNC 9 -> Nat

FUNC 10 -> Nat
FUNC 11 -> Nat
FUNC 12 -> Nat
FUNC 13 -> Nat
FUNC 14 -> Nat
FUNC 16 -> Nat
FUNC 16 -> Nat
FUNC 17 -> Nat
FUNC 18 -> Nat
FUNC 19 - > Nat

FUNC 20 -> Nat
FUNC 21 -> Nat
FUNC 22 -> Nat
FUNC 23 -> Nat
FUNC 24 -> Nat
FUNC 26 -> Nat
FUNC 26 - > Nat
FUNC 27 -> Nat
FUNC 28 -> Nat
FUNC 29 -> Nat
FUNC 30 -> Nat
FUNC 31 -> Nat
FUNC 32 -> Nat

312

FUNC 72
FUNC 74
FUNC 89
FUNC 97
FUNC 98
FUNC 99
FUNC 100
FUNC 101
FUNC 102
FUNC 103
FUNC 104
FUNC 105
FUNC 106
FUNC 107
FUNC 108
FUNC 109
FUNC 110
FUNC 111
FUNC 112
FUNC 113
FUNC 114
FUNC 115
FUNC 116
FUNC 117
FUNC 118
FUNC 119
FUNC 120
FUNC 121
FUNC 122

FUNC 126
FUNC 127
FUNC 128
FUNC 1024

END;

CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat
-> Nat

-> Nat
-> Nat
-> Nat
-> Nat

B. STANDARD CLASS DESCRIPTIONS

% This is a specification of the data type of ASCII characters.

LET CHAR_SPEC' : •

EXPORT

SORT Char,
SORT Nat,
FUNC ord: Char -> Nat,
FUNC chr: Nat -> Char,
FUNC minchar: -> Char,
FUNC maxchar: -> Char,
PRED lsschar: Char # Char

FROM
IMPORT NAT_SPEC INTO
CLASS

SORT Char
FUNC min: -> Nat DEF 0
FUNC max: -> Nat DEF 127

FUNC ord: Char -> Nat
FUNC chr: Nat - > Char
{ord is an embedding and
chr is its inverse, i . e. a conversion function}

PRED dom: Nat
IND FORALL m:Nat

(leq(min , m) AND leq(m,max) => dom(m))

PRED is_gen: Char
IND FORALL m:Nat (dom(m) => is_gen(chr(m)))

AXIOM {EMBEDDING}

{1} FORALL m:Nat (chr(m)! <=> dom(m));
{2} FORALL m:Nat (dom(m) z> (ord(chr(m)) • m));
·{3} FORALL c:Char (is_gen(c))

FUNC minchar : -> Char DEF chr(min)

FUNC maxchar: -> Char DEF chr(max)

313

314 GRAPTER 4. SPECIFICATION OF A TEXT EDITOR

PRED lsschar: Char # Char
PAR c:Char, d:Char
DEF lss(ord(c),ord(d))

END;

B. STANDARD CLASS DESCRIPTIONS 315

% This is a specitication ot the data type ot ASCII characters
% basedon CHAR_SPEC', providing notations torsome specitic chars.

LET CHAR_SPEC :a

IMPORT CHAR_SPEC' INTO
IMPORT NAT_SPEC INTO
CLASS

FUNC bell: -> Char DEF chr(7)
FUNC tab: -> Char DEF chr(9)

FUNC 'a' : -> Char DEF chr(97)
FUNC 'b': -> Char DEF chr(98)
FUNC 'c,: -> Char DEF chr(99)
FUNC 'd' : -> Char DEF chr(lOO)
FUNC 'e': -> Char DEF chr(101)
FUNC 't': -> Char DEF chr(102)
FUNC 'g': -> Char DEF chr(103)
FUNC 'h' : -> Char DEF chr(104)
FUNC 'i, : -> Char DEF chr(105)
FUNC 'j ' : -> Char DEF chr(106)
FUNC 'k': -> Char DEF chr(107)
FUNC '1': - > Char DEF chr(108)
FUNC 'm': -> Char DEF chr(109)
FUNC 'n': -> Char DEF chr(110)
FUNC 'o' : -> Char DEF chr(111)
FUNC 'p': -> Char DEF chr(112)
FUNC 'q': -> Char DEF chr(113)
FUNC 'r': -> Char DEF chr(114)
FUNC 's': -> Char DEF chr(116)
FUNC 't': -> Char DEF chr(116)
FUNC 'u': -> Char DEF chr(117)
FUNC 'v': -> Char DEF chr(118)
FUNC 'w': -> Char DEF chr(119)
FUNC 'x': -> Char DEF chr(120)
FUNC 'y': -> Char DEF chr(121)
FUNC 'z': -> Char DEF chr(122)

END;

316

LET ITEM :=
CLASS

SORT Item FREE
END;

LET ITEMl :=
CLASS

SORT Iteml FREE
END;

LET ITEM2 :=
CLASS

SORT Item2 FREE
END;

LET ITEM3 :=
CLASS

SORT Item3 FREE
END;

CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

B. STANDARD CLASS DESCRIPTIONS

% This is a specitication ot a strict linear ordering.

LET SLO :•

CLASS

SORT Item FREE
PRED r: Item # Item

AXIOM FORALL i:Item,j : Item ,k:Item (
{SLOl} NOT r(i,i);
{SL02} r(i,j) AND r(j,k) => r(i,k);
{SL03} r(i,j) OR r(j,i) OR (i= j))

END;

317

318 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

% This is an axiomatic specification of the 2-tuple data type
% with inductive definitions for the non-constructor operations.

LET TUP2_SPEC :=

LAMBDA X ITEMl OF
LAMBDA Y ITEM2 OF
EXPORT

SORT Tup,
SORT Iteml,
SORT Item2,
FUNC tup Iteml # Item2 -> Tup,
FUNC projl: Tup -> Iteml,
FUNC proj2: Tup -> Item2

FROM
IMPORT X INTO
IMPORT Y INTO
CLASS

SORT Tup DEP Iteml,Item2
FUNC tup: Iteml # Item2 -> Tup

AXIOM FORALL il:Iteml,jl:Iteml,i2:Item2,j2:Item2 (
{TUPl} tup(il,i2)1;
{TUP2} tup(il,i2) = tup(jl,j2) •> il = jl AND i2 = j2)

PRED is_gen: Tup
IND FORALL il:Iteml,i2:Item2

(is_gen(tup(il,i2)))

AXIOM FORALL t:Tup
{TUP3} is_gen(t)

FUNC projl: Tup -> Iteml
IND FORALL il:Iteml,i2:Item2

(projl(tup(il,i2)) a il)

FUNC proj2: Tup -> Item2
IND FORALL il:Iteml,i2:Item2

(proj2(tup(il,i2)) = i2)

END;

B. STANDARD CLASS DESCRIPTIONS

% This is an axiomatic specification of the 3-tuple data type
% with inductive definitions for the non-constructor operations.

LET TUP3_SPEC : ~

LAMBDA X ITEM! OF
LAMBDA Y ITEM2 OF
LAMBDA Z ITEMS OF
EXPORT

SORT Tup,
SORT Item!,
SORT Item2,
SORT Item3,
FUNC tup
FUNC projl :

Item!
Tup
Tup
Tup

Item2 # Item3 -> Tup,
-> Item!,

FUNC proj2 :
FUNC proj3:

FROM
IMPORT X INTO
IMPORT Y INTO
IMPORT Z INTO
CLASS

SORT Tup DEP Item1,Item2,Item3

-> Item2,
-> Item3

FUNC tup: Item! # Item2 # Item3 -> Tup

AXIOM
FORALL i1 : Item1,j1:Item1,i2 : Item2,j2:Item2,i3:Item3,j3:Item3 (

{TUP1} tup(i1,i2,i3)1;

{TUP2} tup(i1,i2,i3) • tup(j1,j2,j3)
=> il • jl AND i2 = j2 AND i3 • j3)

PRED is_gen: Tup
IND FORALL i1:Item1,i2:Item2,i3:Item3

(is_gen(tup(i1,i2,i3)))

AXIOM FORALL t:Tup
{TUP3} is_gen(t)

319

320 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

FUNC proj1: Tup -> ltem1
IND FORALL i1:1tem1,i2:Item2,i3:Item3

(proj1(tup(i1,i2,i3)) a il)

FUNC proj2 : Tup -> Item2
IND FORALL i1:1teml,i2:1tem2,i3:Item3

(proj2(tup(il,i2,i3)) • i2)

FUNC proj3: Tup -> Item3
IND FORALL i1 : Iteml,i2:1tem2,i3 : Item3

(proj3(tup(i1,i2,i3)) • i3)

END;

B. STANDARD CLASS DESCRIPTIONS 321

% This is an axiomatic specification of the data type of finite sets
% with inductive definitions for the non-constructor operations.

LET SET_SPEC : •

LAMBDA X:ITEM OF
EXPORT

SORT Item,
SORT Nat ,
SORT Set,
PRED is_in Item
FUNC empty
FUNC ins Item
FUNC rem Item
FUNC union Set
FUNC i se ct Set
FUNC diff Set
PRED subset : Set
FUNC card Set

FROM
IMPORT X INTO
IMPORT NAT_SPEC INTO
CLASS

Set,

Set
Set
Set
Set
Set
Set,

SORT Set DEP Item

-> Set,
-> Set,
-> Set,
-> Set,
-> Set,
-> Set,

-> Nat

PRED is_in: Item # Set
FUNC empty: - > Set

Item # Set -> Set FUNC ins

AXIOM
{SETl} empty!;
{SET2} FORALL i:Item,s:Set (ins(i,s)!)

AXIOM FORALL i:Item,j:Item,s:Set (
{SET3} NOT is_in(i,empty);
{SET4} is_in(i,ins(j,s)) <• > i= j OR is_in(i,s);
{SET5} ins(i,ins(j ,s)) • ins(j,ins(i,s));
{SET6} ins(i,ins(i,s)) = ins(i,s))

PRED is_gen: Set
IND FORALL i:Item,s:Set

(is_gen(empty) ;
is_gen(s) => is_gen(ins(i,s)))

322 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

AXIOM FORALL s:Set
{SET7} is_gen(s)

FUNC rem: Item # Set -> Set
IND FORALL i:Item,j:Item,s:Set

(rem(i,empty) ~ empty:Set;
rem(i,ins(i,s)) = rem(i,s);
NOT i= j => rem(i,ins(j,s)) ins(j,rem(i,s)))

FUNC union: Set # Set -> Set
IND FORALL i:Item,s:Set,t:Set

(union(s,empty) • s;
union(s,ins(i,t)) = ins(i,union(s,t)))

FUNC isect: Set # Set -> Set
IND FORALL i:Item,s:Set,t:Set

(isect(s,empty) = empty;
isect(ins(i,s),ins(i,t)) = ins(i,isect(s,t));
NOT is_in(i,s) => isect(s,ins(i,t)) = isect(s,t))

FUNC diff: Set # Set -> Set
IND FORALL i:Item,s:Set,t:Set

(diff(s,empty) = s;
diff(s,ins(i,t)) = rem(i,diff(s,t)))

PRED subset: Set # Set
IND FORALL i:Item,s:Set,t:Set

(subset(s,s);
subset(s,t) => subset(s,ins(i,t)))

FUNC card: Set -> Nat
IND FORALL i:Item,s:Set

(card(empty) = zero;
NOT is_in(i,s) => card(ins(i,s))

END;

succ(card(s)))

B. STANDARD CLASS DESCRIPTIONS

% This is an axiomatic specification of the data type of finite
% bags, with inductive definitions for the non-constructor
% operations.

LET BAG_SPEC :=

LAMBDA X:ITEM OF
EXPORT

SORT Item,
SORT Nat,
SORT Set,
SORT Bag,
PRED is_in Item
FUNC empty
FUNC ins Item
FUNC rem Item
FUNC union Bag
FUNC isect Bag
FUNC diff Bag
PRED subbag: Bag
FUNC mult Item
FUNC set Bag

FROM
IMPORT X INTO
IMPORT NAT_SPEC INTO

Bag,
-> Bag,

#Bag -> Bag,
Bag -> Bag,
Bag -> Bag,
Bag -> Bag,
Bag -> Bag,
Bag,
Bag -> Nat,

-> Set

IMPORT APPLY SET_SPEC TO X INTO
CLASS

SORT Bag DEP Item
PRED is_in: Item # Bag
FUNC empty:
FUNC ins

A X !OM

-> Bag
Item # Bag -> Bag

{BAG1} empty:Bag!;
{BAG2} FORALL i:Item,b:Bag (ins(i,b)!)

AXIOM FORALL i:Item,j:Item,b:Bag,c:Bag (
{BAG3} NOT is_in(i,empty:Bag);
{BAG4} is_in(i,ins(j,b)) <•> i= j OR is_in(i,b);
{BAG5} ins(i,ins(j,b)) • ins(j,ins(i,b));
{BAG6} ins(i,b) = ins(i,c) => b = c)

323

324 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

PRED is_gen: Bag
IND FORALL i:Item,b:Bag

(is_gen(empty);
is_gen(b) •> is_gen(ins(i,b)))

AXIOM FORALL b:Bag
{BAG7} is_gen(b)

FUNC rem: Item # Bag -> Bag
IND FORALL i:Item,j:Item,b:Bag

(rem(i,empty) = empty:Bag;
rem(i,ins(i,b)) = b;
NOT i= j => rem(i,ins(j,b)) ins(j,rem(i,b)))

FUNC union: Bag # Bag -> Bag
IND FORALL i:Item,b:Bag,c:Bag

(union(b,empty) = b;
union(b,ins(i,c)) = ins(i,union(b,c)))

FUNC isect: Bag # Bag -> Bag
IND FORALL i:Item,b:Bag,c:Bag

(isect(b,empty) = empty;
isect(ins(i,b),ins(i,c)) = ins(i,isect(b,c));
NOT is_in(i,b) •> isect(b,ins(i,c)) • isect(b,c))

FUNC diff: Bag # Bag -> Bag
IND FORALL i:Item,b:Bag,c:Bag

(diff(b,empty) 2 b;
diff(b,ins(i,c)) z rem(i,diff(b,c))

PRED subbag: Bag # Bag
IND FORALL i:Item,b:Bag,c:Bag

(subbag(b,b);
subbag(b,c) •> subbag(b,ins(i,c)))

FUNC mult: Item # Bag -> Nat
IND FORALL i:Item,j:Item,b:Bag

(mult(i,empty) • zero;
mult(i,ins(i,b)) = succ(mult(i,b));
NOT i • j •> mult(i,ins(j,b)) = mult(i,b)

B. STANDARD CLASS DESCRIPTIONS

FUNC set: Bag -> Set
IND FORALL i:Item,b:Bag

END;

(set(empty) • empty;
set(ins(i,b)) a ins(i,set(b)))

325

326 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

% This is an axiomatic specificatien of the data type of finite
% sequences, with inductive definitions for the non-eenstructor
% operations.

LET SEQ_SPEC :•

LAMBDA X : ITEM OF
EXPORT

SORT Item,
SORT Nat,
SORT Bag,
SORT Seq,
FUNC empty : -> Seq,
FUNC cons Item # Seq -> Seq,
FUNC hd Seq -> Item,
FUNC tl Seq -> Seq.
FUNC len Seq -> Nat,
FUNC sel Seq # Nat -> Item,
FUNC cat Seq # Seq -> Seq,
FUNC rev Seq -> Seq.
FUNC bag Seq -> Bag

FROM
IMPORT X INTO
IMPORT NAT_SPEC INTO
IMPORT APPLY BAG_SPEC TO X INTO
CLASS

SORT Seq DEP Item
FUNC empty: -> Seq
FUNC cons : Item # Seq -> Seq

AXIOM
{SEQl} empty:Seql;
{SEQ2} FORALL i : Item,s:Seq (cons(i,s)l)

AXIOM FORALL i:Item,j:Item,s:Seq,t:Seq (
{SEQ3} NOT cons(i,s) z empty;
{SEQ4} cons(i,s) = cons(j,t) •> i= j AND s = t)

PRED is_gen: Seq
IND FORALL i:Item,s :Seq

(is_gen(empty),
is_gen(s) => is_gen(cons(i,s)))

B. STANDARD CLASS DESCRIPTIONS

AXIOM
{SEQ6}

FORALL s:Seq
is_gen(s)

FUNC hd: Seq -> Item
IND FORALL i:Item,s:Seq

(hd(cons(i,s)) • i)

FUNC tl: Seq -> Seq
IND FORALL i:Item,s:Seq

(tl(cons(i,s)) = s)

FUNC len: Seq -> Nat
IND FORALL i:Item,s:Seq

(len(empty) = zero;
len(cons(i,s)) = succ(len(s))

FUNC sel: Seq # Nat -> Item
IND FORALL i:Item,j:Item,s:Seq,n:Nat

(sel(cons(i,s),zero) =i;
sel(s,n) E j => sel(cons(i,s),succ(n)) • j)

FUNC cat: Seq # Seq -> Seq
IND FORALL i:Item,s:Seq,t:Seq

(cat(empty,s) = s;
cat(cons(i,s),t) = cons(i,cat(s,t))

FUNC rev: Seq -> Seq
IND FORALL i:Item,s:Seq

(rev(empty) = empty;
rev(cons(i,s)) ~ cat(rev(s),cons(i,empty)))

FUNC bag: Seq -> Bag
IND FORALL i:Item,s:Seq

END;

(bag(empty) = empty;
bag(cons(i,s)) = ins(i,bag(s))

327

328 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

% This is an axiomatic speci!ication o! the data type o! !inite
% maps, with inductive de!initions !or the non-eenstructor
% operations.

LET MAP_SPEC :=

LAMBDA X ITEM1 OF
LAMBDA Y ITEM2 OF
EXPORT

SORT Iteml,
SORT Item2,
SORT Setl,
SORT Set2,
SORT Map,
FUNC empty:
FUNC add
FUNC rem
FUNC app
FUNC dom
FUNC ran

FROM
IMPORT X INTO
IMPORT Y INTO

Map #

Map #

Map #

Map
Map

-> Map,
Iteml # Item2 -> Map,
Iteml -> Map,
Iteml -> Item2,

-> Setl,
-> Set2

IMPORT APPLY RENAME SORT Set TO Setl, SORT Item TO Iteml
IN SET_SPEC

TO X
INTO
IMPORT APPLY RENAME SORT Set TO Set2, SORT Item TO Item2

IN SET_SPEC

INTO
CLASS

TO Y

SORT Map
FUNC empty:
FUNC add
FUNC app

AXIOM

DEP Item1,Item2
-> Map

Map # Iteml # Item2 -> Map
Map # Iteml -> Item2

{MAP1} empty:Map!;
{MAP2} FORALL m:Map,i:Item1,v:Item2

(add(m,i,v)l)

B. STANDARD CLASS DESCRIPTIONS

AXIOM FORALL i:Iteml,j : Iteml,v:Item2,w:Item2,m:Map (
{MAP3} NOT app(empty,i)!;
{MAP4} app(add(m,i,v),j) • w <=>

((i • j AND v = w) OR (NOT i= j AND app(m,j) • w));
{MAP6} NOT i= j •> add(add(m,i,v),j,w) add(add(m,j ,w),i,v);
{MAP6} add(add(m,i,v),i,w) = add(m,i,w))

PRED is_gen: Map
IND FORALL m:Map,i:Iteml,v:Item2

(is_gen(empty);
is_gen(m) •> is_gen(add(m,i,v)))

AXIOM FORALL m:Map
{MAP7} is_gen(m)

FUNC rem: Map # Iteml -> Map
IND FORALL m:Map,i:Iteml,j : Iteml,v:Item2

(rem(empty,i) • empty;
rem(add(m,i,v),i) = rem(m,i);
NOT i= j => rem(add(m,i,v),j) = add(rem(m,j),i,v))

FUNC dom: Map -> Setl
IND FORALL m:Map,i:Iteml,v : Item2

(dom(empty) = empty;
dom(add(m,i,v)) = ins(i,dom(m)))

FUNC ran: · Map -> Set2
IND FORALL m:Map,i:Iteml,v:Item2

(ran(empty) = empty;
ran(add(m,i,v)) • ins(v,ran(rem(m,i))))

END;

329

330 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR

Chapter 5

Systematic Design of a Text
Editor

5.1 Introduetion

331

This chapter describes the implementation of a display-oriented text editor.
It serves for illustrating the notions of component, black-box description and
design as described in Chapter 2. We shall follow one of the models of the
software development process studied in Chapter 3, viz. the top-down model.
We take the forma! specification presented in Chapter 4 and we make it part
of an initia! design. This initial design serves as the starting point for a top
down development processtomeet conditions of verification, validation and
executabili ty.

We shall use the language COLD-K [1] for our case study. The notions of
component, black-box description and design as described in Chapter 2 are
available in this language. One of the purposes of this chapter is to illustrate
the use of design principles based on formal techniques. In particular, we
want to show how the theory of Chapter 2 and Chapter 3 can he used as a
tooi for developing complex systems. We need a language as a vehicle and
this will be COLD-K.

We begin with constructinga top design and a bottorn design first and not
before Section 5.5.1 our initia! design will he constructed. After that the top
down deveiopment process starts. We describe this processas a sequence of
modification steps, affecting one variabie design. Since in the top-down de
veiopment process most modifications amount to the addition of formai text
to this variabie design, we only give the newly added formai texts after each
step. This chapter is organised such way that it is possibie to concatenate the
keyword DESIGN foliowed by the abbreviation-type components from Chapter

332 CHAPTER 5. DESIGN OF A TEXT EDITOR

4 and of Sections 5.3.2 to 5.3.5 and all formal texts contained in Sections 5.5
and 5.6, thereby obtaining a final design which corresponds with the result
of the development process and which can be syntax- and type-checked.

The presentation of this process corresponds more or less with the actual
development process of the case study. Of course it is also a rational re
construction in the sense that sametimes we had to do a little backtracking
which is not refl.ected in this chapter. Also some thinking-in-advance and
'throw-away' preliminary implementation activities took place. These activ
ities are typical for a top-down development process, but it is not always
possible to describe them precisely. This means that sometimes we state "in
order to implement ... , we postulate another component ... " although the
motivation for certain details is incomplete. We did our best to avoid a 'deus
ex machina' effect.

We adopt the methodological principlesof conservativity, origin consistency
and visbility consistency as discussed in [2]. The basic idea of conservativity
is that when constructinga class description of the form IMPORT P INTO Q,
the axioms of Q should not impose new restrictions u pon the sorts, functions,
predicates and procedures introduced in P. The principle of origin consis
tency serves for avoiding the situation where there are two or more defining
occurrences of one name. The principle of visibility consistency amounts to
a restrietion for class descriptions of the form IMPORT P INTO Q when p is
a procedure p E E(P). The restrietion is that if some side-effect of p is
exported by Q, then so i t must be by P.

We adopt the implementation relation basedon signature inclusion and the
ory inclusion, as argued in [2]. We shall implicitly assume the monotonicity
of the COLO-K import, export and renaming operators- in fact without for
mal justification. We also adopt the condition prims first and the condition
directly specified as discussed in Chapter 3. Finally we adopt the principles
of black-box correctness (Chapter 2) and black-box validation (Chapter 3) -
based on the exclusive use of specifications. COLO-K does not provide a
program-execution model and therefore we have no forma} criteria for de
ciding if a certain COLD-K text is executable or not. We aim at a manual
translation from COLD-K to a classica} imperative programming language
(C) and with this idea in mind we shall sametimes (in informal speaking)
distinguish between executable operations and non-executable operations:
operations which need not be translatedor which can not be translated in a
straightforward manner are said to he non-executable.

This chapter is organised as follows. In Section 5.2 we discuss the top of
the editor design. This is easy in view of the preparatory work of Chapter
4. In Section 5.3 we discuss the bottorn of the editor design. This amounts

5.2. THE TOP OF THE EDITOR DESIGN 333

to the introduetion of several new specifications. These describe instances,
attributes, blocks and tables which will he assumed as available primitives.
Section 5.4 contains a summary of the top-down approach. In Section 5.5
we begin a top-down development process. We implement the three compo
nents which constitute the system of the editor design; these are KEYBIND,
MOREDOP and WITEFA. During the implementation of these system compo
nents, several new components are postulated. In Section 5.6 the top-down
development processis continued; the newly postulated components are im
plemented which leads again to the introduetion of new components etc. This
goes on until at the end of Section 5.6 only the primitives of Section 5.3 are
left.

In Section 5. 7 we discuss some related work. Sections 5.8 and 5.9 are devoted
to conclusions and evaluation. In Appendix A we introduce a lower design
layer. In Appendix B we give a list of symbols used in this chapter. In
Appendix C we give the C program resulting from the composition of the
editor design and the design of Appendix A. Finally, in Appendix D we
provide a 'reference chart'.

5.2 The Top of the Editor Design

In the specification presented in Chapter 4 we did not mention the structure
of the design in which the various class descriptions of the formal specifi
cation fit. Now it is time to do so and, more precisely, we must cast these
class descriptions into a design d1• Reeall from Chapter 3 that the top of a
design d is the design in which only those components are retained whose
narnes occur in the system of d; it is denoted as top(d). We must indicate
a design d 1 which is considered as the top of a design dedittm which at its
turn must he constructed during the subsequent development process. The
design d, is shown below. We assume that at the position of the dotsin this
design we have LET-constructs introducing the narnes BOOL_SPEC, NAT_SPEC,
CHAR_SPEC ... WITEF A_SPEC, MOREDOP _SPEC and KEYBIND_SPEC.

DESIGN

COMP WITEFA WITEFA_SPEC;
COMP MOREDOP: MOREDOP_SPEC;
COMP KEYBIND: KEYBIND_SPEC

SYSTEM WITEFA,MOREDOP,KEYBIND

334 CHAPTER 5. DESIGN OF A TEXT EDITOR

The above top design represents a certain view upon the editor design to
be constructed in this chapter. More precisely, it is the view that is of
interest to the user of the editor design. This top design is a kind of con
tract that specifies precisely the components of the design that are made
available. In this case there are three available components, viz. WITEF A,
MOREDOP and KEYBIND. These are specified by WITEF A_SPEC, MOREDOP _SPEC
and KEYBIND_SPEC respectively. When the design will be finished, it may
have many more components, but these are outside the scope of the user.

Let us have a look at each of the three components mentioned in the sys
tem and let us explain why each is part of the system. We begin with
KEYBIND_SPEC, which is the most obvious component. It provides procedures
PROC key: Char -> , PROC startup: -> and the functions FUNC screen:
-> Text and FUNC cursor: -> Nat # Nat which are precisely enough when
using the editor directly for editing texts.

A less obvious way to use the editor design is to employ it as just one layer
of a larger composite design where new features have been added to the
editor. A simple example of this would be to have another keybinding
e.g. by introducing a procedure PROC key_2: Char -> , say. In order to
write this key _2 one needs both the operations provided by the component
WITEFA (e.g. backward_character) and those provided by MOREDOP (e.g.
delete_previous_character). One could also go one step further and add
a layer providing for dynamic keybinding and programmability e.g. as avail
able with MLisp in EMACS [4]. In the latter case one may decide to ignore
the KEYBIND component entirely. So there are in fact two categodes of users.
The first category consistsof the users who simply conneet key totheir phys
ical keyboard and then start typing. The users of the second category are
real software developers constructing another 'higher level' design dtop-~a"..,

say which is put on top of the editor design deditor- which could be done with
the operator o from Chapter 3. This explains why we included WITEFA and
MOREDOP in addition to KEYBIND as part of the system.

This provides us with the following condition which is part of the postcon
dition of the software development process:

where the equality on designs is to be considered roodulo the relative order
of components.

5.3. THE BOTTOM OF THE EDITOR DESIGN 335

5.3 The Bottom of the Editor Design

5.3.1 Introduetion

Befare we undertake a software development process, we must first introduce
our primitive components. In the Sections 5.3.2 and 5.3.3 we introduce in
stances and attributes, which are the basic ingredients of an attribute-oriented
approach, by which we mean that it is easy to add attributes to objects. This
approach has been worked out by Jonkers in [3]. In the Sections 5.3.4 and
5.3.5 we introduce the data types of tables and blocks. We cast the specifica
tions of these primitive components into the farm of a bottam design. This
will he done in Section 5.3.6

5.3.2 Specifying Instances

LET INST_SPEC :=
EXPORT

SORT Inst,
FUNC nil -> Inst,
PROC create: -> Inst

FROM
CL ASS

SORT Inst VAR
FUNC nil: -> Inst

A X !OM
{INSTt} INIT •> nil! AND FORALL a:Inst (a • nil)

PROC create: -> Inst MOD lnst

AXIOM
{INST2} < create > TRUE;
{INST3} [LET a:Inst; a :• create]

a! AND (PREV NOT a!) AND
FORALL b:Inst ((PREV NOT b!) => b • a)

END;

336 CHAPTER 5. DESIGN OF A TEXT EDITOR

5.3.3 Specifying Attributes

LET ATTR_SPEC :~

LAMBDA X CLASS SORT Inst FREE END OF
LAMBDA Y : CLASS SORT Item FREE END OF

EXPORT
SORT Inst,
SORT Item,
FUNC attr Inst -> Item,
PROC set_attr: Inst # Item ->

FROM
IMPORT X INTO
IMPORT Y INTO
CLASS

FUNC attr Inst -> Item VAR
PROC set_attr : Inst # Item -> MOD attr

AXIOM
{ATTRl}
{ATTR2}

END;

FORALL i:Inst,v:Item (
< set_attr(i,v) > TRUE;
[set_attr(i,v)]
attr(i) • v AND
FORALL j : Inst,w:Item (NOT j • i •>
(attr(j) • w <•> PREV attr(j) • w)))

5.3.4 Specifying Tables

In the description of the editor (Chapter 4) there is a variabie map from
strings to marked texts. Somehow this is going to be refl.ected in the im
plementation of the editor and therefore we introduce a specification of
tables. These tables can be used for efficiently dealing with a mapping
from implementable strings (sort 'String') to the representation of marked
texts. Reeall that we have already the class description MAP _SPEC which
provides the sort Map of finite mappings with functions empty: -> Map for
the empty mapping and add: Map # Iteml # Item2 -> Map for 'overwrit
ing' addition. Furthermore there are operations rem: Map # Iteml -> Map
for removal, app: Map # Iteml - > Item2 for map application, dom: Map
-> Setl for domain and ran: Map -> Set2 for range. These mappings are

5.3. THE BOTTOM OF THE EDITOR DESIGN 337

described as an algebraic data type-justas Nat, say. Allobjectsof sort Map
exist already in the initia} state and none of the operations may have side
effects. This means that formally it is not allowed to use certain conventional
data reification techniques when implementing these mappings.

Therefore we introduce another sort of so-called tables which will be specified
with implementability in mind. We must wamthereader here that this will
give rise to several pages of technicalities. In the description TABLE_SPEC
given below, a table will be modeled as a modifiable mapping by which we
mean that associated with every table there is a variabie map - in the sense
of the sort Map. In this way the maps from MAP _SPEC will play a role in the
forma} specification, serving as auxiliaries for the description of something
different, viz. tables. The tables themselves correspond with a variabie
sort Table. Initially precisely one table exists and optionally more tables
can be created dynamically when needed. We employ the attribute-oriented
approach mentioned in Section 5.3.1. Tables are introduced as a kind of
instances and the variabie maps associated with them are introduced as a
kind of attributes.

The specificatien TABLE_SPEC is parameterised with respect to the domain
sort and the range sort of the tables. The simplest way of descrihing this
would be toadopt a definition beginning with sarnething like LET TABLE_SPEC
: == LAMBDA X: ITEMl OF LAMBDA Y: ITEM2 OF ... etc. We adopt ITEM2 in
deed, but we do not adopt ITEMl because of two complications which we want
to take into account.

The first complication is necessary when conventional data reification tech
niques are to be allowed. Typical data reification techniques for tables are
linked lists, sorted lists, open hashing, closed hashing, binary search trees and
balanced trees. Most of these techniques can not be applied when the sort
Iteml comes without any relations or operations- the only exception being
the linked list technique. In order to sort a list we need a binary relation,
less say, on Iteml. The same holds for binary search trees and balanced
trees. Both open hashing and closed hashing require that the Iteml val
ues can be converted to natura! numbers or integers. Of course we need not
choose among these techniques here, but we must make suitable preparations
not to exclude almost all options. Therefore we require that the sort Iteml
comes with a binary predicate less. For this kind of applications, we have
SLO in our library of standard class descriptions - àbbreviating Strict Linear
Order.

There is a second complication which leads us to not adopting SLO, but a
slightly different version of it called 'SLO '. This is needed because we want
to allow for using a sort with an equivalence predicate eq such as 'String'

338 CHAPTER 5. DESIGN OF A TEXT EDITOR

for the domain-sort of the tables. E.g. consider two 'String' objects St

and s 2 with St #- s2 but eq(stt s2); then a table-lookup using St should
yield the same result as a table-lookup using s2. Furthermore we allow for
a representation invariant i teml_inv associated with the domain sort. The
specification of 'SLO' takes SLO as a starting point and the forma} relation
between 'Item1' and Item1 is given by an abstraction function f. When
comparing 'SLO' with SLO we see that essentially, the former allows for a
wider class of implementations of the concept 'strict linear order'; but strictly
formally speaking, it is the other way around. The point is that the role of
the unquoted narnes is not the same in 'SLO' and SLO.

The forma} specification below begins with 'SLO' which imports a renamed
version of SLO. Reeall from our standard library that SLO provides a sort Item
with a binary relation r which is axiomatically stated to be a strict linear
ordering- the kind of relation often denoted by <. Therefore RENAME SORT
Item TO Item1 IN SLO provides a sort Item1 with a binary relation r:
Item1 # Item1 which is again a strict linear ordering. The CLASS . . . END
part of 'SLO' is an extension of SLO introducing the sort 'Item1' with binary
predicates eq and leas. Furthermore it introduces a predicate i teml_inv
and an abstraction function f. There is just one axiom which serves for
stating the precise nature of the eq and less predicates: the function f is
required to behave homomorphically such that = and r are the images of eq
and less respectively. The axiom is relativised by item1_inv. Note that
'SLO' exports everything it contains, including Item1 and r. As explained
above 'SLO' serves as parameter restriction. Similarly ITEM2 which only
requires the presence of a sort Item2 serves as a parameter restrietion fora
second forma} parameter.

LET 'SL01' :=
IMPORT

RENAME
SORT Item TO Iteml

IN SLO
INTO
CLASS

SORT 'Iteml'
PRED eq 'Iteml'
PRED less 'Iteml'
PRED iteml_inv:
FUNC f 'Item1'

FREE
'Iteml' FREE
'Iteml' FREE

FREE
-> Iteml FREE

5.3. THE BOTTOM OF THE EDITOR DESIGN

AXIOM iteml_inv •>

END;

FORALL i:'Item1',j : 'Item!'
(eq(i,j) <•> f(i) • f(j);

less(i,j) <•> r(f(i),f(j)))

LET TABLE_SPEC :=

LAMBDA X 'SL01' OF
LAMBDA Y ITEM2 OF

339

This completes the introduetion of the formal parameters of TABLE_SPEC and
now we turn our attention to its body. There will be local definitions intro
ducing TABLE_INST_SPEC, MAP _FROM_SL01_TO_ITEM2 and TABLE_MAP _SPEC
which serve for introducing tables as renamed instances and for associating
variabie maps with these tables. Within the CLASS . . . END part of the
specification we shall define the table operations among which the proce
dures new: -> Table and add: Table # 'Iteml' # Item2 -> . We must
be prepared to allow techniques which require a representation invariant.
E.g. when a sorted list is used to represent tables, the invariant might state
that the list is a-cyclic and sorted; when a binary tree is used, the invariant
might state that all nodes in a left-hand side subtree have Iteml values which
are less than the Iteml values in the corresponding right-hand side subtree.
The actual choice is for the implementer and here we just introduce a pred
icate table_inv for which we state axiomatically that the table procedures
preserve it as an invariant. For the definition of the operations such as add
this also implies that we have to introduce a case-analysis. The purpose of
the case-analysis is to describe what can happen when the invariant does nat
hold.

TABLE_SPEC has an explicit export list serving as a compact overview of
the sorts and operations provided. The sorts Map, Iteml, the function map:
Table -> Map and the function app: Map # Iteml -> Item2 are needed for
reasoning purposes only. The remaining exported sorts and operations are
considered executable. All table operations are defined as PROC allowing for
a maximum of implementation freedom - although maybe this is nat needed
for certain of them, such as is_in_dom.

340 CHAPTER 5. DESIGN OF A TEXT EDITOR

EXPORT

SORT Map,
SORT Item1,
FUNC map: Table -> Map,
FUNC app: Map # Item1 -> Item2,

SORT Bool,
SORT Table,
SORT Item2,
SORT 'Item1' ,
PRED table_inv: ,
PROC new
PROC add Table
PROC rem Table
PROC app Table

PROC is_in_dom: 'Item1'

FROM

'Item1'
'Item1'
'Item1'
Table

-> Table,
Item2 ->

->
-> Item2,
-> Bool

Now the local definitions follow. The fust one defines TABLE_INST_SPEC
which provides the sort Table with FUNC nil: -> Table and PROC create:
-> Table. The second definition is based on MAP _SPEC which is a parame
terised class description. Reeall from our standard library that it has two
parameters with parameter restrictions ITEM1 and ITEM2 requiring the pres
enee of sorts Item1 and Item2 respectively. It provides the algebrak data
type of maps, i.e. all maps that can he constructed by the constructor op
erations empty and add. Before we can employ this MAP _SPEC it must he
instantiated which we do in this case by taking X and Y as actual parame
ters. Since we are within the scope of the abstractions LAMBDA X: 'SLO 1 ' OF
LAMBDA Y: ITEM2 OF ... we easily verify that X exports a sort Item! and
that Y exportsasort Item2.

LET TABLE_INST_SPEC :•
RENAME

SORT Inst TO Table
IN INST_SPEC;

LET MAP_FROM_SL01_TO_ITEM2 :•
APPLY APPLY

MAP_SPEC
TO X TO Y;

The third local definition serves for associating maps with tables. We employ

5.3. THE BOTTOM OF THE EDITOR DESIGN 341

ATTR_SPEC from Section 5.3.3 which is parameterised with respect to the sorts
of the instances and attributes. In this case the role of instances is played
by Table whereas the role of attributes is played by Map. Furthermore we
must get rid of the instance-and-attribute-oriented narnes and replacethem
by table-and-map-oriented names. As usual the renaming is done in the
parameterised description and as a result we get a parameterised descrip
tion whose parameter restrictions are renamed versionsof CLASS SORT Inst
FREE END and ITEM respectively. When suitably renamed, these require the
presence of a sort Table and a sort Map respectively. This shows that we
can take TABLE_INST_SPEC and MAP_FROM_SL01_TO_ITEM2 as actual param
eters. In this way we get an 'attribute' function map: Table -> Map and an
'assignment' procedure set_map: Table # Map -> .

LET TABLE_MAP_SPEC :=

APPLY APPLY
RENAME

SORT Inst TO Table,
SORT Item TO Map,
FUNC attr Inst -> Item TO map,
PROC set_attr: Inst # Item -> TO set_map

IN ATTR_SPEC
TO TABLE_INST_SPEC TO MAP_FROM_SL01_TO_ITEM2;

We import the formal parameters X and Y and the locally defined class de
scriptions. The auxiliary operation p corresponds with an arbitrary invoca
tion of one of the table operations.

IMPORT X INTO
IMPORT Y INTO
IMPORT BOOL_SPEC INTO
IMPORT MAP_FROM_SL01_TO_ITEM2 INTO
IMPORT TABLE_INST_SPEC
IMPORT TABLE_MAP_SPEC
CLASS

PRED table_inv: VAR

AXIOM {INVARIANCE}

INTO
INTO

INIT AND iteml_inv z> table_inv;
iteml_inv AND table_inv => [p] table_inv

PROC p: ->
DEF (FLUSH new

I add(SOME t:Table(),SOME i: 'Iteml'(),SOME j:Item2())

342 CHAPTER 5. DESIGN OF A TEXT EDITOR

I rem(SOME t:Table(),SOME i:'Iteml'())
I FLUSH app(SOME t:Table(),SOME i:'Iteml'())
I FLUSH is_in_dom(SOME i: 'Iteml'(),SOME t:Table())
)

Now the actual definitions of the table operations can he given. The pro
cedure new yields a fresh table, denoted as t, which is obtained by t : =
create. Furthermore this fresh table gets the empty map associated with
it and this is established by the expression set_map (t, empty) where we use
the procedure set_map from T ABLE_MAP _SPEC.

PROC new: -> Table
DEF LET t:Table; t := create;

set_map(t,empty);
t

Very much in the same style we model add. As a first approximation we could
define add(t,i,j) by something like OEF set_map(t,add(map(t) ,i,j)).
Although this gives the basic idea there is a difficulty because we must take
into account that the invariant need not hold. When the invariant does not
hold, it may become true (just by luck) and furthermore the map attribute
may get any value, as described by USE set_map END. Otherwise the map
attribute is updated using set_map again. Also some care is needed here
because this map attribute is a finite mapping from Item1 to Item2 whereas
our add procedure takes an 'Item1' argument. So we have to use the ah
straction function f, writing set_map(t,add(map(t) ,f(i) ,j)) rather than
set_map(t,add(map(t),i,j)).

PROC add: Table # 'Iteml' # Item2 ->
PAR t:Table,i: 'Item1',j:Item2
DEF (NOT table_inv ?;

)

MOD table_inv USE set_map END
table_inv ?;

set_map(t,add(map(t),f(i),j))

PROC rem: Table # 'Iteml' ->
PAR t:Table,i: 'Item1'
DEF (NOT table_inv ?;

MOD table_inv USE set_map END
table_inv ?;

set_map(t,rem(map(t),f(i)))

5.3. THE BOTTOM OF THE EDITOR DESIGN

PROC app: Table # 'Iteml' -> Item2
PAR t:Table,i: 'Iteml'
DEF (NOT table_inv ?;

SOME i : Item2 ()
table_inv ?;

app(map(t),f(i))

PROC is_in_dom: 'Iteml' # Table -> Bool
PAR i: 'lteml' ,t:Table
DEF (NOT. table_inv ?;

)

END;

SOME b: Bool ()
table_inv ?;

(app(map(t),f(i))l ?; true
I NOT app(map(t),f(i))l ?; false
)

This concludes the specification of tables.

5.3.5 Specifying Blocks

343

In order to store texts within our editor, weneed a facility that manages an
unbounded amount of storage and that on request releases finite portions of
storage in the form of a kind of blocks of storage locations. Below we give
a specification of such a facility. To keep things simple, we did not include
possibilities for returning portions of storage that are no longer needed. The
function cont applied toa block band a natural number n < size(b) yields
the contents of the n-th location in this block. The procedure store can
be applied to a block b, a natural number n < size(b) and an item i. lts
effect is to store the value i in the n-th location in this block. The numbers
0 ... si ze (b) - 1 serve as addresses.

In the class description BLOCK_SPEC below we have four axioma descrihing
the initial state and the procedures alloc, grow and store respectively. The
first axiom states that initially there are no blocks yet. The second axiom de
scribes both the termination of alloc (n) and its postcondition which defines
the size of the newly 'allocated' block and which states that precisely one new
block is created. The third axiom describes the termination of grow(b,n)
and its postcondition. Formally this axiom must be relativised by the pre-

344 CHAPTER 5. DESIGN OF A TEXT EDITOR

miss size (b) ! which of course holds in the states reachable from the initial
state by using alloc and grow. The last axiom gives the termination and
the postcondition of store (b, n, i). Again this axiom is relativised and the
premiss is n < si ze (b).

LET BLOCK_SPEC :=
LAMBDA X: ITEM OF
EXPORT

SORT Block,
SORT Nat,
SORT Item,
FUNC size Block
FUNC cont Block # Nat

-> Nat,
-> Item,

PROC store Block # Nat # Item ->,
PROC alloc Nat
PROC grow Block # Nat

FROM
IMPORT X INTO
IMPORT NAT_SPEC INTO
CLASS

SORT Block VAR
Block

-> Block,
->

-> Nat VAR FUNC size
PROC alloc
PROC grow

Nat -> Block MOD Block
Block # Nat -> MOD size

AXIOM INIT => NOT EXISTS a:Block ()

AXIOM FORALL n:Nat (
< alloc(n) > TRUE;
[LET b:Block; b :• alloc(n)]

size(b) • n AND
(PREV NOT b!) AND FORALL c:Block

((PREV NOT c!) => c = b))

AXIOM FORALL b:Block, n:Nat (size(b)! =>
(< grow(b,n) > TRUE;

[grow(b,n)]
(size(b) = add(n,PREV size(b));

FORALL c :Block (NOT b • c AND (PREV size(c)l} •>
(size(c) • PREV size(c))))))

FUNC cont: Block # Nat -> Item VAR

5.3. THE BOTTOM OF THE EDITOR DESIGN

PROC store : Block # Nat # Item -> MOD cont

AXIOM

END;

FORALL b:Block,n:Nat,i:Item
(lss(n,size(b)) => (
< store(b,n,i) > TRUE;
[store(b,n,i)]
(cont(b,n) .. i;

FORALL c:Block, m:Nat, j:Item
(lss(m,size(c)) •>

(NOT n • m OR NOT b • c =>
cont(c,m) • j <=> PREV cont(c,m) '" j)))))

5.3.6 The Bottom of the Editor Design

345

We expect the underlying machine on which we have to build our editor to
provide us with implementations of the following COLD-K class descriptions.

• Data-types immediately available from a typical programming language
such as Pascal or C. Let us assume that we have general purpose data
types BOOL_SPEC, NAT_SPEC, CHAR_SPEC, INST_SPEC, ATTR_SPEC.

• lmplementable sequences described by 'SEQ_SPEC', modifiable maps,
described by TABLE_SPEC, and so-called blocks described by BLOCK_SPEC.

• A display device. Let us assume that this is given by the class descrip
tion DISPLAY_SPEC. Also we assume a simple file system: FILE_SPEC.

The primitive components from the second group are considered not available
in the programming language at hand. Therefore we can expect that at
some point in time we might imptement some of them ourselves. On the
other hand, these components are of a general-purpose nature and they do
not refl.ect that we are aiming at an editor. These give rise to the following
primitive components:

'SEQ ' imptementing 'SEQ_SPEC',
TABLE implementing TABLE_SPEC,
BLOCK imptementing BLOCK_SPEC.

Now it is time to cast the specifications of all primitive components into the
shape of a design db. Reeall from Chapter 3 that the bottorn of a design d is
the design with the empty system and in which only those components are
retained that have no glass-box description - i.e. implementation module.
The bottorn of a design d is denoted as bot(d). We must cast the specifi-

346 CHAPTER 5. DESIGN OF A TEXT EDITOR

cations of the primitive components into a design d" which is considered as
the bottom of a design dt<f.itor• which at its turn must be constructed during
the subsequent development process. The design d" is shown below. We as
sume that at the position of the dots in this design we have a number of LET
abbreviations, which introduce the names BOOL_SPEC, NAT_SPEC, CHAR_SPEC
etc.

DESIGN

COMP BOOL
COMP NAT
COMP CHAR
COMP INST
COMP ATTR

COMP 'SEQ'
COMP TABLE
COMP BLOCK

BOOL_SPEC;
NAT_SPEC;
CHAR_SPEC;
INST_SPEC;
ATTR_SPEC;

'SEQ_SPEC' ;
TABLE_SPEC;
BLOCK_SPEC;

COMP DISPLAY: DISPLAY_SPEC;
COMP FILE FILE_SPEC

SYSTEM NONE

This providesus with the following condition which is part of the postcon
dition of the software development process:

In Appendix A we shall consider a design dh48ic whose system can be plugged
into d11 and hence also in deditor Of course the contents of this appendix
are supposed to he outside the scope of our design dt<f.itor· In particular,
the principle of black-box validation does not allow the use of knowledge of
implementation details from dhG8fc.

5.4 Summary of the Top-dow~n Approach

At this point we have not started the actual construction of our software
system yet and instead of that we have fixed the boundaries of the design dt<f.itor

to be created. This was done in Sections 5.2 and 5.3 where we have chosen
the user-view dt and the machine-view d" respectively. Let us assume that we
can find a system-user who would like to use the system components specified
by dt. Let us also assume that somehow we can establish the availability of

5.4. SUMMARY OF THE TOP-DOWN APPROACH 347

a machine providing the primitive components specified by db. Under these
assumptions the validation conditions mentioned in Chapter 3 are fulfilled.

We shall describe the principles of the top-down approach informally now.
For the formal treatment we refer to Chapter 3. The top-down approach is
basedon the so-called top-down invariant which is defined as the conjunction
of the following conditions.

1. top(deditor) = dt where the equality on designs is to be considered mod
ulo the relative order of components. Intuitively this means that the
user-view on the editor design is kept fixed.

2. deditor is black-box correct. Roughly speaking, this corresponds with the
situation where all black-box descriptions are true in the sense that the
corresponding glass-box descriptions (if present) are implementations
indeed. Formally this is described best by referring to the implemen
tation relation Ç.

3. All components of deditor are directly or indirectly used in the system of
deditor - except possibly those occurring also in db, i.e. except possibly
those which happen to be available anyway.

A suitable initia! state for the development processcan he established simply
by assigning dt to deditor· Let us check that this makes the top-down invariant
hold indeed. First, the top of this design dt equals dt. which is a property of
top designs. Secondly the design dt is black-box correct since its components
do not have a glass-box description yet and hence are correct by definition.
Finally, all components occur in the system. In our particular case these
components are WITEF A, MOREDOP, KEYBIND. This shows that assigning dt
todeditor makes the top-down invariant hold.

After this assignment a top-down development process can really begin and
this is the subject of Section 5.5. First we add the primitive components
of db to the editor design. Next, we must select some primitive component
and make sure that it gets implemented according to the principle of black
box correctness. In our particular case we shall select KEYBIND as the first
component to he implemented and since its specification is already in algo
rithmic style this is easy. Next we treat MOREDOP which is equally easy and
after that there is only one component to be selected left which is WITEFA.
To implement WITEF A is more complicated and it requires the introduetion
of several new primitive components. After WITEFA has been implemented
we are done with the system components and this stage will be reached at
the end of Section 5.5. Although at that stage all system components have
been implemented, the design is still not finished yet because there are sev
eral newly postulated primitive components which were needed for WITEFA.
InSection 5.6 these are implemented one after the other. Again this requires

348 CHAPTER 5. DESIGN OF A TEXT EDITOR

the introduetion of new primitive components and in this way the top-down
development process proceeeds until only those primitive components are left
that occur in the bottorn design db. This stage will be reached at the end of
Section 5.6.

At that stage we can finish the development process. The condition bot(doditor)
= db serves as the termination condition of the development process. Reeall
that the clause bot(doditor) refers to the so-called bottorn of the design doditor
and that intuitively this bottorn is a machine-view, containing information
about the primitive components. The top-down development process can
be viewed as the execution of a design program of the form given below,
where td_step satisfies the assumption that it does not violate the top-down
invariant.

technique (db, dt)
def doditor := dt;

while not bot(do<iitor) =db do doditor := td....step(do<iitor)i od;
doditor

The precise syntax and semantics of such design programs is given in Chapter
3. Here we restriet ourselves to a short informal explanation. The header
technique (db, dt) indicates that this is a design program where db and dt
act as parameters. The definition of the design program follows after the
keyword def and it consistsof an assigment statement to the variabie design
doditor and a loop of iterated application of td_step. The final doditor serves as
the result of this design program.

5.5 lmplementing the System Components

5.5.1 Introduetion

We begin with dt, but we add immediately the primitive components from
db to it. This yields the design consisting of the keyword DESIGN and the LET
abbreviations given before foliowed by the following components:

COMP BOOL BOOL_SPEC;
COMP NAT NAT_SPEC;
COMP CHAR CHAR_SPEC;
COMP INST INST_SPEC;
COMP ATTR ATTR_SPEC;

COMP 'SEQ' 'SEQ_SPEC' ;

5.5. IMPLEMENTING THE SYSTEM COMPONENTS 349

COMP TABLE TABLE_SPEC;
COMP BLOCK BLOCK_SPEC;

COMP DISPLAY: DISPLAY_SPEC;
COMP FILE FILE_SPEC;

{lil} COMP WITEFA WITEFA_SPEC;
{lil} COMP MOREDOP: MOREDOP_SPEC;
{lil} COMP KEYBIND: KEYBIND_SPEC;

and ha ving as a system WITEFA, MOREDOP, KEYBIND. The black-box descrip
tions (the xxx_SPECs) of this design will remain unchanged during the the
development process and so doesits system. However, some of these compo
nents will get a glass-box description later and as a reminder for this, they
have been marked now by {Ul}. The symbol {ID} should he read as: "this is
going to he replaced later". Since there are no glass-box descriptions yet,
the above initia! design is black-box correct.

5.5.2 lmplementing KEYBIND

In this section we give the implementation of the component KEYBIND which
contains a procedure key, taking characters as its argument and invoking
operations provided by WITEFA and MOREDOP. Furthermore it exports the
initialisation procedure startup - which we can assume to he provided by
MOREDOP since MOREDOP _SPEC exports startup. It also exports screen and
cursor which we can assume to he provided by WITEFA since WITEFA_SPEC
imparts APP _DOM_SPEC which at its turn imparts DISPLAY _SPEC.

The KEYBIND_IMPL given below is almost the same as KEYBIND_SPEC. The
subtie difference is that we use component narnes in the import clauses
rather than abbreviation names. Note that earlier KEYBIND_SPEC was used
as a black-box description. Therefore it was necessary to import NAT_SPEC,
BOOL_SPEC etc. because importing NAT or BOOL would vialate the principle
of direct specification. Reeall from Chapter 3 definition 3.2.13, that a design
is directly specified if it is wellformed and no black-box description contains
the name of a component. Now we are in a different position. We are going
to construct a glass-box description KEYBIND_IMPL and now we are allowed
to refer to component names. In order to get an executable implementation,
we must in fact do so.

The procedure key is described by one large case-statementand we consider
this as already executable. The procedure key calls the procedures from
WITEFA and MOREDOP: insert_character, set_mark, ... , delete_

350 CHAPTER 5. DESIGN OF A TEXT EDITOR

previous_character. Most procedures called by key come from WITEFA,
but the following procedures come from MOREDOP: return, search_forward,
insert_file,write_named_file, delete_to_killbuffer,
yank_from_killbuffer, escape anddelete_previous_character.

LET KEYBIND_IMPL :=
EXPORT

SORT Nat,
SORT Char,
SORT Text,
PROC startup: ->
PROC key Char ->
FUNC screen -> Text,
FUNC cursor -> Nat # Nat

FROM
IMPORT NAT INTO
IMPORT CHAR INTO
IMPORT WITEFA INTO
IMPORT MOREDOP INTO
CLASS

PROC key: Char ->
PAR c:Char
DEF (printable(c) ? ;

ord(c) 0 e41} ?;

ord(c) = 1 eA} ?;

ord(c) 2 {AB} ?;

ord(c) 4 {AD} ? :
ord(c) 6 {AE} ?;

ord(c) 6 {AF} ? ;

ord(c) 13 eM} ? :
ord(c) 14 {AN} ? :
ord(c) 16 eP} ?;
ord(c) 19 {AS} ?;

ord(c) 20 {AT} ?;
ord(c) 21 {AU} ?;

ord(c) 23 ew} ?;

ord(c) 24 eX} ? . ..
ord(c) • 26 eY} ? ;
ord(c) 26 eZ} ? ;
ord(c) 27 {ESC}?;
ord(c) = 127{DEL}?;

END;

insert_character(c)
set_mark
beginning_of_line
backward_character
delete_next_character
end_of_line
forward_character
return
next_line
previous_line
search_forward
insert_file
write_named_file
delete_to_killbuffer
beginning_of_buffer
yank_from_killbuffer
end_of_buffer
escape
delete_previous_character

5.5. IMPLEMENTING THE SYSTEM COMPONENTS 351

Now we are in a position where the primitive component {«I} COMP KEYBIND:
KEYBIND_SPEC can be replaced by a component having both a black-box de
scription and a glass-box description, viz. by COMP KEYBIND: KEYBIND_SPEC
: = KEYBIND_IMPL.

% COMP KEYBIND : KEYBIND_SPEC := KEYBIND_IMPL;
% this is to replace an earlier primitive component.

We must add some explanation to this because we had to solve a techni
ca} complication regarding the presentation of the (dynamic) development
process in this (statie) chapter. When we were in the specification phase
(Chapter 4) this was no problem because at each stage we only added forma}
texts after the texts obtained already. We organise our text in such a way

· that there is a simple mechanica! operation of separating the formal texts
from the informal introductions and annotations. Then the concatenation of
the keyword DESIGN, the LET abbreviations from Chapter 4, Sections 5.3.2
to 5.3.5 and the remaining formal texts from this chapter (Section 5.5.1 to
5.6.13) will constitute one design which can be syntax- and type-checked.
This one design encompasses all the formal texts employed in various stages
of the top-down development process. The technica} complication is that
one component may occur initially just as primitive whereas in a later stage
it is replaced by another component, having both a black-box description
and a glass-box description. Of course we can nothave a well-formed design
where one component-name occurs twice and therefore we include such 'sec
ond defining ocurrences' of components in the design, but we only include
them as comment. Just as above, these situations will be marked by the
sentence "% this is to replace an aarlier primi ti ve component."

In fact, we have now carried out our first top-down design-transformation
step d,ditbr := td...step(deditM); as described in Section 5.4. The resulting design
reads the same as the one given in Section 5.5.1 but for two modifications:
first, the "LET KEYBIND_IMPL : = . . . ; "-text is added ~t an appropriate
place, and second, the line "COMP KEYBIND : KEYBIND_SPEC;" is replaced
by "COMP KEYBIND : KEYBIND_SPEC := KEYBIND_IMPL;".

5.5.3 lmplementing MOREDOP

In this section we give the implementation of the component MOREDOP which
deals with a few additional operations which are added on top of WITEFA.
The description given below is the same as MOREDOP _SPEC, except for the fact
that we use component narnes instead of abbreviation-names.

LET MOREDOP _IMPL : •

352

IMPORT NAT
IMPORT BOOL
IMPORT CHAR
IMPORT WITEFA
CLASS

INTO
INTO
INTO
INTO

PROC mini: -> 'String'

CHAPTER 5. DESIGN OF A TEXT EDITOR

DEF cons('m' ,cons(' i' ,cons('n' ,cons('i' ,empty))))

PROC main: -> 'String'
DEF cons('m', cons('a', cons ('i' ,cons('n' ,empty))))

PROC kill: -> 'String'
DEF cons('k',cons('i',cons('l',cons('l',empty))))

PROC startup: ->
DEF init(mini);

switch_to_butter(kill);
switch_to_butter(main)

PROC escape: ->
DEF (eq(current_butter_name,mini) ?; switch_to_butter(main)

I NOT eq(current_butter_name,mini) ?; switch_to_butter(mini)
)

PROC return: ->
DEF (eq(current_butter_name,mini) ?; switch_to_butter(main)

I NOT eq(current_butter_name,mini) ?; newline
)

PROC delete_to_killbutter: ->
DEF copy_region_to_butter(kill);

erase_region

PROC yank_trom_killbutter: ->
DEF yank_butter(kill)

PROC search_torward: ->
DEF search_torward(butter_to_string(mini))

PROC insert_tile: ->
DEF insert_tile(butter_to_string(mini))

PROC write_named_tile: ->
DEF write_named_tile(butter_to_string(mini))

5.5. IMPLEMENTING THE SYSTEM COMPONENTS

PROC delete_previous_character: ->
DEF (bolp • true ?; SKIP

END;

I bolp • false ?;
backward_character;
delete_next_character

)

353

Again we indicate the completion of the second top-down design transforma
tion step by simply writing the following two lines:

% COMP MOREDOP : MOREDOP_SPEC :• MOREDOP_IMPL;
% this is to replace an earlier primitive component.

We implemented two components and we were lucky in the sense that we
could do so in a rather trivia} way. This was possible because the black-box
descripions of these components were already in the right form. The next
component to he dealt with is WITEFA and in view of its complexity and the
axiomatic style of its description, we can expect that the construction of its
implementation will he less trivia!. lndeed, almost of the entire rest of this
chapter concerns the implementation of WITEFA and the implementation of
components that we shall postulate and that are directly or indirectly used
by WITEFA.

5.5.4 Transforming the State space

We must choose how to repreaent marked texts. This choice is crudal for
the efficiency of the resulting editor, both in terms of execution time and
memory usage. Making this choice is also an important point in the software
development process, since many procedures to he developed later will he
based on this choice.

Before presenting our choice, we present a few informal efficiency consider
ations. We assume that there is no a-priori bound on the size of the texts
that can he edited: neither the number of lines nor the number of charac
ters within one line should he bounded. Of course a real program execution
environment imposes limits upon the amount of available memory, but this
is not formally described by the specifications of our primitive components
and we do not worry about that. Instead of that we want that no 'a priori'
bounds get built-in into our design. So choosing a fixed-size two-dimensional
array as a representation with the rows of the array repreaenting lines would

354 CHAPTER 5. DESIGN OF A TEXT EDITOR

be wrong in this respect.

Better candidate representations are those based upon the use of sequences.
For example, we might repreaent a text by one or more sequences of line
representations, where a line-representation at its turn is a sequence of char
acters. This certainly is a workable approach, but we do not choose it for the
following reason. The problem is that the sequences themselves need some
kind of representation, such as linked lists. The straightforward represen
tation of sequences by linked list would use some form of cells, where each
cell contains a 'next cell' address. This means that for each character stored
in the editor, there is an overhead of one address. Even if we assume that
a character and an address require the same amount of storage, we waste
50% of the available storage. Of course we could try to improve upon the
representation of the sequences but then the approach might loose some of
its elegancy.

After these considerations we shall present our choice, but we would like
to add immediately that there is no claim whatsoever that this would be
the best choice. The amount of possible choices here is enormous and the
question of which is the best one has many aspects. We just took one which
seems reasonable.

We use for each text one block, which is a large extensible one-dimensional
array, as already introduced in Section 5.3.5. Within this block, the text is
stored in a way that is related to the string representation of text, viz. by
using some separator between the lines. For efficiency reasons we shall not
make the block grow in steps of one location at a time, but instead we shall
use larger increments. From this it follows that often there is some freespace
in the block. We decide that this freespace should he contiguons rather than
scattered over the block and that it will take the shape of a kind of gap which
may beat any position within the block. Of course we must also somehow
keep track of the mark and the dot, which simply become natural numbers
indicating a position in the block. A similar representation has been used
also in the implementation of the EMACS editor descibed in [4].

In order to get elegant algorithms taking care for the window-invariant WI,
we also want to keep track of the dot, viewed as a co-ordinate pair. Since
we have operations such as exchange_dot_and_mark and end_of_buffer,
it is a consequence that we must also keep track of the mark viewed as a
co-ordinate pair and of the reach of the entire text. Apart from storing a
marked text as a block-with-positions, we explicitly store the reach of the
text before dot, the reach of the text before mark and the reach of the entire
text.

So we store the text, the dot and the mark as block-with-positions and we

5.5. IMPLEMENTING THE SYSTEM COMPONENTS 355

redundantly store their homomorphic images under the reach operation as
well. This means that many edit procedures have to dotheir work twice: first
of all they operate on the block-with-positions data and then secondly they
perform the same operation on reaches. For the operations on block-with
positions data we have to he careful with respect to efficiency, but fortunately
the operations on reaches such as add, split, cut, and paste pose less
efficiency problems. Actually we just take their definition, which can he
considered executable already.

We start the formalisation of our choice now. As discussed before, weneed
some sort of objects that can represent MText objects. For this purpose we
introduce a sort Buf, whose objects will he called buffers. Buf is nothing
but a renamed version of Inst with several attributes. Each buffer has a
block associated with it. Several Nat attributes are needed as 'pointers' to
certain positions in the block.

• block: Buf -t Block VAR
• dot Buf -t Nat VAR
• mark Buf -t Nat VAR
• gapl Buf -t Nat VAR
• gap2 Buf -t Nat VAR

Finally we need a number of pair-wise attributes. For example, we need
an attribute dot: Buf -t Nat2 which keeps track of the dot viewed as a
co-ordinate pair.

• dot Buf -t Nat2 VAR
• mark Buf -t Nat2 VAR
• reach: Buf -t Nat2 VAR

Sametimes we use a terminology based on a spatial view of buffers. E.g. we
shall speak about moving leftwards or going downwards when we mean to
decrease the value of a variabie that indicates a position.

5.5.5 Specifying Pair-wise Attributes

For dealing with co-ordinate pairs it is convenient to have pair-wise at
tributes.

LET ATTR2_SPEC :=

LAMBDA X CLASS SORT Inst FREE END OF
LAMBDA Y : CLASS SORT Iteml FREE END OF

356 CHAPTER 5. DESIGN OF A TEXT EDITOR

LAMBDA Z CLASS SORT Item2 FREE END OF

EXPORT
SORT Inst,
SORT Item!,
SORT Item2,
FUNC attr Inst -> Item! # Item2,
PROC set_attr: Inst # Item! # Item2 ->

FROM
IMPORT X INTO
IMPORT Y INTO
IMPORT Z INTO
CLASS

FUNC attr Inst -> Item! # Item2 VAR
PROC set_attr: Inst # Item! # Item2 ->

AXIOM
{ATTR1}
{ATTR2}

FORALL i:Inst,v:Item1,w : Item2 (
< set_attr(i,v,w) > TRUE;
[set_attr(i,v,w)]
attr(i) = (v,w) AND
FORALL j:Inst,x:Item1, y:Item2 (NOT j i=>

MOD attr

(attr(j) = (x,y) <=> PREV attr(j) = (x,y))))

END;

5.5.6 ATTR2: a Postulated Component

Since we have already a specification ATTR2_SPEC, we can directly postulate
the following component:

{~} COMP ATTR2 : ATTR2_SPEC;

We best employ the meta-operator COPY when using ATTR2. The effect of
this operator is to make a textual copy of its argument. This will guarantee
that no undesired aliasing takes place because each copy of ATTR2 can be
viewed as a fresh programming variable. This is due to the so-called origin
mechanism of COLD-K. Foradiscussion of the COPY operator we refer to
[3] and for an explanation of the origin mechanism we refer to [1]. Here
we only sketch how the use of COPY in combination with the origin mecha
nism works on a simplified example. Let us - by way of example - assume
that ATTRO is defined by LET ATTRO : = CLASS PRED attr: VAR END which

5.5. IMPLEMENTING THE SYSTEM COMPONENTS 357

means that it describes a two-valued programming variable. Now to get two
instances of such variables we can write LET V : = COPY (A.TTRO) ; LET W : =
COPY(A.TTRO); which is by definition of COPY nothing but LET V := CLA.SS
PRED attr: V A.R END; LET W : = CLA.SS PRED attr: V A.R END;. Since the
latter text introducing V and W contains two defining occurrences of attr,
these have different origins; we can imagine a language implementation at
taching these origins and then we get e.g. attr1 and attr2 respectively which
means that they act as two different programming variables. When syntax
and type-checking we replace COPY(A.TTR2) by A.TTR2. Similar remarks apply
for A.TTR.

5.5.7 Transforming the Statespace (continued)

Now we are ready to introduce a class description BUF descrihing the sort
Buf and the associated attributes. We give the formal definition below.

LET BUF_INST : ..
RENAME

SORT Inst TO Buf
IN INST;

LET BUF :•

% local definitions fellow:

LET CHAR_BLOCK :•
APPLY RENAME

SORT Item TO Char
IN BLOCK TO CHAR;

LET BUF_BLOCK :=
APPLY APPLY RENAME

SORT Inst
SORT Item
FUNC attr : Inst

TO Buf,
TO Bleek,

-> Item TO bleek,
PROC set_attr: Inst I Item -> TO set_block

IN COPY(ATTR) TO BUF_INST TO CHAR_BLOCK;

LET BUF_DOT :•
APPLY APPLY RENAME

SORT Inst
SORT Item
FUNC attr Inst

TO Buf,
TO Nat,

-> Item TO dot,

358 CHAPTER 5. DESIGN OF A TEXT EDITOR

PROC set_attr: Inst # Item ->
IN COPY(ATTR) TO BUF_INST TO NAT;

LET BUF _MARK : •
APPLY APPLY RENAME

SORT Inst
SORT Item

TO set_dot

TO Bu:f,
TO Nat,

FUNC attr Inst -> Item TO mark,
PROC set_attr: Inst # Item -> TO set_mark

IN COPY(ATTR) TO BUF_INST TO NAT;

LET BUF_GAP1 :•
APPLY APPLY RENAME

SORT Inst TO Bu:f,
SORT Item TO Nat,
FUNC attr Inst -> Item TO gap1,
PROC set_attr: Inst # Item -> TO set_gap1

IN COPY(ATTR) TO BUF_INST TO NAT;

LET BUF_GAP2 :•
APPLY APPLY RENAME

SORT Inst TO Bu:f,
SORT Item TO Nat,
FUNC attr Inst -> Item TO gap2,
PROC set_attr: Inst # Item -> TO set_gap2

IN COPY(ATTR) TO BUF_INST TO NAT;

r. Now the pair-wise attributes :follow:

LET BUF_DOT_2 :•
APPLY APPLY APPLY RENAME

SORT Inst
SORT Item1
SORT Item2
FUNC attr : Inst -> Item1 #

PROC set_attr: Inst # Item1 # Item2 ->
IN COPY(ATTR2) TO BUF_INST TO NAT TO NAT;

LET BUF_MARK_2 :=

APPLY APPLY APPLY RENAME
SORT Inst
SORT Item1
SORT Item2
FUNC attr Inst -> Item1 #

PROC set_attr: Inst # Item1 # Item2 ->

TO Bu:f,
TO Nat,
TO Nat,

Item2 TO dot,
TO set_ dot

TO Bu:f,
TO Nat,
TO Nat,

Item2 TO mark,
TO set_mark

5.5. IMPLEMENTING THE SYSTEM COMPONENTS

IN COPY(ATTR2) TO BUF_INST TO NAT TO NAT;

LET BUF_REACH_2 :=
APPLY APPLY APPLY RENAME

SORT Inst
SORT Iteml
SORT Item2

359

TO Bu!,
TO Nat,
TO Nat,

FUNC attr : Inst -> Iteml I Item2 TO reach,
PROC set_attr: Inst I Iteml I Item2 ->

IN COPY(ATTR2) TO BUF_INST TO NAT TO NAT;

~ end o! local de!initions

IMPORT NAT INTO
IMPORT CHAR_BLOCK INTO
IMPORT BUF_INST INTO
IMPORT BUF_BLOCK INTO
IMPORT BUF_DOT INTO
IMPORT BUF _MARK INTO
IMPORT BUF_GAPl INTO
IMPORT BUF_GAP2 INTO

IMPORT BUF_DOT_2 INTO
IMPORT BUF_MARK_2 INTO

BUF_REACH_2;

TO set_reach

As already indicated, the basic idea behind this representation is as follows.
An object Buf has a block associated with it, which contains all characters of
the text represented by b. Within this blockthere is aso-called gap. The gap
ofb corresponds with the positions gapl(b) (inclusive) to gap2(b) (exclusive).
The gap contains the free space in the block and when the dot is near the
gap, it is possible to do insertions easily and efficiently. The characters in
the block correspond with the string representation, but the positions in the
gap are not used. The following picture sketches a buffer with its gap.

I•P1 pp2

Fig 5.1. Buffer with gap.

Reeall the following variables spanning the statespace ofWITEFA, introduced

360 CHAPTER 5. DESIGN OF A TEXT EDITOR

in Chapter 4.

• FUNC mtexts __......Map VAR
• FUNC current: String VAR

These are going to be replaced by other 'new' variables. We want to intro
duce a table from strings (sort 'String') to buffers. Therefore we want to
instantiate TABLE with an implementation of 'STRING_SPEC' and with BUF
thereby getting the possibility to create tables. Actually we need only one
table, but that does not matter. We introduce new variables, which serve for
taking over the role of the original ones; these are the following:

• FUNC table __...... Table VAR
• FUNC current: 'String' VAR

For purposes such as searching in a text or copying texts, we introduce a
simple programming variabie of sort Nat. We call it mover, since it is not
a relatively static pointer, such as mark or dot, but it is supposed to move
during the execution of a search operation, or when it is used as a loop
counter. We also need a pair-wiseversion of mover.

• mover: Nat VAR
• mover: Nat2 VAR

Finally it will turn out to be convenient if we have one more simple program
mingvariabie of sort Nat. We intend to use it as a loop-counter in operations
such as yank_buffer and copy_region_to_buffer. There is noneedfora
pair-wiseversion of counter.

• FUNC counter: __...... Nat VAR

As soon as we try to provide these new variables, we discover the need for
two new components: SVAR providing simple programrning variables and
'STRING' providing an implementation of the sort • String •. Therefore we
have an intermezzo introducing two new components.

5.5.8 Specifying Simple Programming Variables

Weneed a class description specifying a simple programming variable. With
a simple programming variabie we mean a variabie nullary function of type
........ Item. Of course there must be an update procedure. We do not include
some form of variabie creation.

5.5. IMPLEMENTING THE SYSTEM COMPONENTS

LET SVAR_SPEC :•

LAMBDA X : ITEM OF
EXPORT

SORT Item,
FUNC val: -> Item,
PROC upd: Item ->

FROM
IMPORT X INTO
CLASS

FUNC val : -> Item VAR
PROC upd: Item -> MOD val

AXIOM FORALL i:Item
(< upd(i) > TRUE;

[upd(i)] val • i)

END;

5.5.9 SVAR: a Postulated Component

361

We postulate a new component SVAR with black-box description SVAR_SPEC.
Justas for ATTR2 and AT:rR, we best employ the meta-operator COPY for using
SVAR. When syntax- and type-checking we replace this COPY(SVAR) by SVAR.

{=} COMP SVAR : SVAR_SPEC;

5.5.10 'STRING': another Postulated Component

Since we have al ready a specification 'STRING_SPEC', we can directly pos
tulate the following component:

{=} COMP 'STRING' : 'STRING_SPEC';

. 5.5.11 Transferming the Statespace (continued}

After this intermezzo we can give the formal definition of the new variables
which are added to the state space of WITEFA. First of all we instantiate
TABLE.

362 CHAPTER 5. DESIGN OF A TEXT EDITOR

LET TABLE_STRING_BUF :=
APPLY APPLY RENAME

SORT Map
SORT Iteml

TO Buf_Map,
TO String,

SORT 'Iteml' TO 'String',
PRED iteml_inv: TO string_inv,
SORT Item2 TO But

IN TABLE TO 'STRING' TO BUF;

This instantiation of TABLE provides us with operations such as PROC new:
-> Table, PROC add:Table # 'String' # Buf -> and PROC app: Table
'String' -> Buf.

Now we introduce our new variables which is achieved by renaming and
instantiating SVAR. This use of SVAR can be viewed as the COLD-K way of
declaring variables.

Since these variables will serve as representations of (marked) texts, we col
lect them in a class description called TEXT_ VARS. We import the application
domain specific notational framework of APP _DOM_SPEC. We also import the
data type of maps from strings to marked texts, but this need not be exe
cutable; we only use it for reasoning purposes.

LET TEXT_VARS :=

IMPORT BUF
IMPORT CHAR
IMPORT BOOL

INTO
INTO
INTO

IMPORT 'STRING' INTO
IMPORT APP_DOM_SPEC INTO

IMPORT APPLY APPLY RENAME
SORT Iteml TO String,
SORT Item2 TO MText

IN MAP_SPEC TO STRING_SPEC TO MTEXT_SPEC INTO

IMPORT APPLY RENAME
SORT Item TO String,
SORT Set TO Setl

IN SET_SPEC TO STRING_SPEC INTO

IMPORT APPLY RENAME
SORT Item TO Table,
FUNC val: -> Item TO table,
PROC upd: Item -> TO upd_table

IN COPY(SVAR) TO TABLE_STRING_BUF INTO

5.5. IMPLEMENTING THE SYSTEM COMPONENTS

IMPORT APPLY RENAME
SORT Item TO 'String' ,
FUNC val: -> Item TO current,
PROC upd: Item -> TO upd_current

IN COPY(SVAR) TO 'STRING' INTO

IMPORT APPLY RENAME
SORT Item TO Nat,
FUNC val: -> Item TO mover,
PROC upd: Item -> TO set_mover

IN COPY(SVAR) TO NAT INTO

IMPORT APPLY RENAME
SORT Item TO Nat,
FUNC val: -> Item TO moverl,
PROC upd: Item -> TO set_moverl

IN COPY(SVAR) TO NAT INTO

IMPORT APPLY RENAME
SORT Item TO Nat,
FUNC val: -> Item TO mover2,
PROC upd: Item -> TO set_mover2

IN COPY(SVAR) TO NAT INTO

IMPORT
CLASS

FUNC mover: -> Nat # Nat
DEF (moverl,mover2)

PROC set_mover: Nat # Nat ->
PAR i:Nat,j:Nat
DEF set_moverl(i);

set_mover2(j)

END INTO

IMPORT APPLY RENAME
SORT Item TO Nat,
FUNC val: -> Item TO counter,
PROC upd : Item -> TO set_counter

IN COPY(SVAR) TO NAT INTO

IMPORT TABLE_STRING_BUF INTO

363

364 CHAPTER 5. DESIGN OF A TEXT EDITOR

CLASS

Note that we have two alternative ways of dealing with the pair-wiseversion
of the mover. The first approach is to write directly in termsof moverl and
mover2 and alternatively we could use mover: -t Nat2•

Our next task is to describe precisely the relation between the old variables
and the newly introduced ones. Therefore we aim at the definition of an
abstraction function f: Buf -+ MText. We introduce the abstraction in
two phases, using the algebra of strings as an intermediate level. This is
natural since the linear structure of blocks is closely related to the structure
of strings. We shall have several abstraction functions which are called f - by
overloading. The functions f taking a Block argument take all characters
into account, including those in the gap. The functions f taking a Buf
argument skip the characters in the gap.

FUNC f: Block # Nat # Nat -> String
PAR b:Block,m:Nat,n:Nat
~ the string obtained from cont(b,m) .. cont(b,n-1)
DEF (m • n ?; empty

I NOT m 2 n ?; cons(cont(b,m),f(b,succ(m),n))
)

PRED in_gap: Buf # Nat
PAR b:Buf,n:Nat
~ n is a position in the gap of b
DEF geq(n,gapl(b)) AND lss(n,gap2(b))

The next function f is meant for arguments b, m and n such that m ~ n
where m and n are not in the gap of b. This f is defined by a case analysis
where we distinguish two cases. Assume the above restrietion on b, m, n.
The fust case is characterised by lss (n, gapl (b)) OR geq (m. gap2 (b)) and
thus either m ~ n < gapl (b) (both parameters are to the left of the gap)
or gap2(b) ~ m ~ n (both parameters are to the right of the gap). The
second case is characterised by NOT(lss(n,gapl(b)) OR geq(m,gap2(b)))
and thus m < gapl (b) ~ gap2 (b) ~ n which means that the positions
m, ... , n - 1 encompass the gap.

FUNC f: Buf # Nat #Nat -> String
PAR b:Buf,m:Nat,n:Nat
% for leq(m,n) and not in_gap(b,m) and not in_gap(b,n):
Y. string from positions m ... n-1 except for those in the gap
DEF ((lss(n,gapl(b)) OR ~eq(m,gap2(b))) ?;

f(block(b),m,n)
NOT(lss(n,gapl(b)) OR geq(m,gap2(b))) ?;

5.5. IMPLEMENTING THE SYSTEM COMPONENTS

)

LET sl:String; sl :• t(block(b),m,gapl(b));
LET s2:String; s2 :• t(block(b),gap2(b),n);
cat(sl,s2)

FUNC t: Buf # Nat -> String
PAR b:But,n:Nat
% string trom positions 0 .. n-1 except tor those in gap
DEF t(b,O,n)

FUNC t: But -> String
PAR b:But
% string obtained from the entire block, skipping the gap
DEF t(b,size(block(b)))

365

These functions f enable us to view a part of a buffer or an entire buffer as
a string. As a next step we shall push the overloading somewhat further and
we introduce another collection of functions f which enable us to view a part
of a buffer or an entire buffer as a text.

FUNC t: Block # Nat # Nat -> Text
PAR b:Block,m:Nat,n:Nat
DEF text(f(b,m,n))

FUNC t: Buf # Nat #Nat -> Text
PAR b:But,m:Nat,n:Nat
DEF text(t(b,m,n))

FUNC t: But # Nat -> Text
PAR b:But,n:Nat
DEF text(f(b,n))

In the defining expression of the following function we need a type-cast be
cause otherwise the Text expression text(f (b)) would become ambiguous
(assuming b:Buf). The intended interpretation is that f(b) is a string; the
other interpretation is that f refers to a function f: Buf -> MText to be
introduced later, which would correspond with f (b) being a MText. The
guideline of where to use these type-casts and where not to is very simple:
use no type-casts except where a real ambiguity arises. When it turns out
that many type-casts are needed, one may conclude that the usefulness of
overloading has reached its limit.

FUNC f: Buf -> Text
PAR b:But
DEF text((t(b)):String)

366

FUNC f: Bu:f -> MText
PAR b:Buf

CHAPTER 5. DESIGN OF A TEXT EDITOR

DEF LET do: Nat I Nat; do :• reach(f(b,(dot(b)):Nat));
LET ma: Nat I Nat; ma :• reach(f(b,(mark(b)):Nat));
mtext(f(b),copa(do),copa(ma))

If we would just aim at the definition of the last function f: Buf --+ MText,
then some of the other functions could easily he eliminated. However we
prefer this step-by-step approach, because some of the functions which now
seem to he auxiliaries, might turn out useful intheir own right later, e.g. for
formulating loop-invariants. The last function f is our abstraction function
showing how Buf objects represent marked texts.

We must extend the abstraction described by f: Buf --+ MText to maps.
Reeall that Buf_Map is the sort of maps from strings to buffers. Map is the
sort of maps from strings to marked texts.

FUNC f: Buf_Map -> Map
PAR bm:BuLMap
DEF SOME m:Map

(FORALL s :String, mt:MText
(app(m,s) = mt <z> f(app(bm,s)) • mt))

We define the variables required by the specification (Chapter 4) in terms
of newly introduced variables. Reeall that by means of the imports of
TEXT_VARS we have a variabie function current which is of type 'String';
it is used below to get the String expression f (current).

FUNC current: -> String
DEF f(current)

FUNC mtexts: -> Map
DEF f(map(table))

Using these newly defined variables, we can easily define the functions text
and dot which are formally required here because they occur (as auxiliaries)
in the specification of Chapter 4.

FUNC text: -> Text DEF text(app(mtexts,current))
FUNC dot: -> Nat I Nat DEF dot(app(mtexts,current))

Now we turn our attention to formulating a suitable invariant assertion. The
assertions table_inv and string_inv do not require special attention since
they will hold automatically. Still we must formally have them as conjuncts

5.5. IMPLEMENTING THE SYSTEM COMPONENTS 367

of our invariant. This is condition {1} below. The value of the 'String'
variabie current must be an entry in table. This is condition {2} below.
Furthermore we must regulate the relative positions of dot, mark, gapl,
gap2 and block-size. This is condition {3} below. Finally the co-ordinate
pair representations of dot and mark should correspond with their natural
number representations and the reach attribute should contain the reach of
the text represented by the buffer. This is condition {4} below.

All these conditions are collected in a predicate called TI'. We can view it
as a transformed version of the text-invariant TI from our specifi.cation. At
the sametime it is the representation invariant forthe chosen representation
of marked texts. We repeat Til, TI2 etc. here as well because formally the
principle of signature incusion requires us to have them 'somewhere' in the
implementation of WITEFA.

PRED Til: %as inSection 4.6.6
PRED TI2: % as in Section 4.6.6
PRED TI: %as inSection 4.6.6
PROC witefa_op: -> ~ as in Section 4.6.6

PRED TI':
DEF {1} string_inv;

table_inv;
{2} app(map(table),current)l;
{3} FORALL s:String(app(mtexts,s)! •>

(LET b:Buf; b :• app(map(table),s);
leq(dot(b),size(block(b)));
leq(mark(b),size(block(b)));
leq(gapl(b),size(block(b)));
leq(gap2(b),size(block(b)));
leq(gap1(b),gap2(b));
NOT in_gap(b,dot(b));
NOT in_gap(b,mark(b))));

{4} FORALL s:String(app(mtexts,s)! •>
(LET b:Buf; b : = app(map(table),s);

(dot(b)) Nat t Nat • reach(f(b,(dot(b)):Nat));
(mark(b)) : Nat t Nat • reach(f(b,(mark(b)):Nat));
(reach(b)): Nat t Nat • reach(f(b))))

It should be possible to show that

TI' =>TI.

Reeall from Chapter 4 that TI <:? Til A TI2 and that Til requires that for

368 CHAPTER 5. DESIGN OF A TEXT EDITOR

every strings in the domain of mtexts with corresponding marked text mt
the following holds:

intext(text(mt),d) A intext(text(mt),m) A ok(text(mt))
where d and m denote the dot and the mark of mt respectively.

TI2 requires that app(mtexts, current)!. We shall ,show that TI' => TI
now.

Assume TI' and let s he an arbitrary string in the domain of mtexts. Then
app(mtexts,s) = f(app(map(table) ,s)). Ifwe denote the buffer
app(map(table) ,s) by b, then TI' gives us the following facts about b.

• dot (b) ~ si ze (block(b))
• mark(b) ~ size (block(b))
• gapl (b) ~ si ze (block(b))
• gap2(b) ~ size (block(b))
• gapl(b) ~ gap2(b)
• dot (b) f/_ gap(b)
• mark(b) f/_ gap(b)

where we used some obvious shorthand. Therefore f(b,dot(b) :Nat) is a
prefix text of f(b) so its reach is an existing position in f(b). This shows
intext(text(mt) ,d) where dis the dot of mt. The same can be done for
mark. Furthermore notice that f(b) is ok since it is defined by means of the
conversion function text: String --t Text. This shows TI 1. Finally TI2
follows from app(map(table) ,current)!. Hence we have shown that TI'
=>TI.

We also add a few simple operations and predicates which are directly con
nected with the chosen representation. The narnes of the operations eobp,
eolp etc. abbreviate end-of-buffer-predicate, end-of-line-predicate etc. We
write {C}OR for conditional OR as a hint related to the executability of certain
assertions.

We shall use some informal terminology but we show by means of a few exam
ples how this can be formalised when needed. Let b be a given buffer. Then
the phrase "i is a position at end-of-buffer" means f(b, i): Text = f(b). The
phrase "i is a position at end-of-line" means i2 = sel(profile(f(b)) ,i1)
where (i1,i2) = reach(f(b,i)). The phrase "i is a position at beginning
of-line" means i2 = 0 where (il> i2) = reach(f (b, i)). The phrase "i is a
position at beginning-of-buffer" means reach(f(b,i)) = (0,0).

FUNC right: Buf # Nat -> Nat
PAR b:Buf,i:Nat

5.5. IMPLEMENTING THE SYSTEM COMPONENTS 369

7. next position (going rightwards), skipping gap if necessary
DEF (succ(i) • gapl(b) ?; gap2(b)

I NOT succ(i) = gapl(b) ?; succ(i)
)

PRED eobp: Buf # Nat
PAR b:Buf,i:Nat
% i is is a position at end-of-buffer
DEF i = size(block(b))

PRED eolp: Buf # Nat
PAR b:Buf,i:Nat
% i is a position at end-of-line
DEF eobp(b,i) {C}OR cont(block(b),i) • ctr_j

PRED eobp : Buf
PAR b:Buf
1. dot is at end-of-buffer
DEF eobp(b,dot(b))

PRED eolp: Buf
PAR b:Buf
% dot is at end-of-line
DEF eolp(b,dot(b))

FUNC left: Buf # Nat -> Nat
% next position (going leftwards), skipping gap if necessary
PAR b:Buf,i:Nat
DEF (i • gap2(b) ?; pred(gapl(b))

I NOT i = gap2(b) ?; pred(i)
)

PRED bobp: Buf # Nat
PAR b:Buf,i:Nat
Y. i is a position at beginning-of-buffer
DEF i = 0 OR gapl(b) = 0 AND i ~ gap2(b)

PRED bobp: Buf
PAR b:Buf
% dot is at beginning-of-buffer
DEF bobp(b,dot(b))

PRED bolp : Buf # Nat
PAR b:Buf,i:Nat
Y. i is a position at beginning-of-line

370 CHAPTER 5. DESIGN OF A TEXT EDITOR

DEF bobp(b,i) {C}OR cont(block(b),lett(b,i)) • ctr_j

PRED bolp: Bu:f

PAR b:But
% dot is at beginning-ot-line
DEF bolp(b,dot(b))

END; {ot TEXT_VARS}

We must make one remark about the use of the attributes called mover.
When we use both mover: Nat and mover: Nat2

, then we want for a given
buffer b the following assertion to hold.

reach(f(b,mover:Nat)) = mover:Nat2
,

and we shall refer to this situation by saying that the pair-wise version of
mover precisely follows the mover.

We would like to start programming the WITEFA operations, but first we
need another intermezzo. Just as in the specification phase (Chapter 4) we
prefer to postpone dealing with the fact that the physical display device must
mirror the contentsof the current buffer. We do so by postulating a suitable
component. This is the subject of the next two sections.

5.5.12 Specifying a Window-Invariant Package

We postulate a component which takes care for the window invariant WI
from Chapter 4. It provides two procedures called mod_text_restore and
mod_dot_restore. The first procedure is intended for being used in the
initialisation phase of an editor or after a series of modifications affecting
the current text and dot; then mod_ text_restore establishes the window
invariant WI. The second procedure is intended for being used after a series
of modifications moving the dot alone, but still thereby possibly disturbing
the window invariant WI.

Below we give a class description WI_PACKAGE_SPEC, specifying these two
procedures. Clearly they must operate on the representation of the marked
texts and therefore we can only expect them to work if the corresponding
representation invariant TI' holds. Note that TEXT_VARS is the class de
scription containing the definition of TI'. Although at first sight it seems
natural to import TEXT_VARS into WI_PACKAGE_SPEC, this can not be done
because of the condition 'directly specified' from Chapter 3. Instead, we em
ploy a class description TEXT_VARS_SPEC. It can be verified that TEXT_VARS
Ç TEXT_VARS_SPEC.

5.5. IMPLEMENTING THE SYSTEM COMPONENTS

LET TEXT_VARS_SPEC :=
IMPORT APP_DOM_SPEC INTO
IMPORT APPLY APPLY RENAME

SORT Item1 TO String,
SORT Item2 TO MText

IN MAP_SPEC TO STRING_SPEC TO MTEXT_SPEC INTO
CLASS

SORT Table VAR
FUNC mtexts: -> Map VAR
FUNC current: -> String VAR
PROC upd: Table -> MOD mtexts
PRED Tl': DEP Table, mtexts, current

END;

371

In WI_PACKAGE_SPEC we havealocal invariant wi_package_inv which is nec
essary in order to allow for additional variables which may he needed for the
implementation of WLPACKAGE. Such variables might he created dynamically
and/or need initialisation; hence there must he an initialisation procedure
which is ini t_ wi_package. We repeat the definition of WI because it is
employed in the axioms; p_sub, p_add and size at their turn are repeated
because they occur in WI - and also for reasans of signature inclusion.

LET WI_PACKAGE_SPEC :•
IMPORT TEXT_VARS_SPEC INTO
IMPORT DISPLAY_SPEC INTO
CLASS

FUNC p_sub: Nat# Nat# Nat# Nat ->Nat# Nat~ as inSection 4.6.12
FUNC p_add: Nat #Nat# Nat# Nat ->Nat# Nat~ as inSection 4.6.12
FUNC size: -> Nat #Nat Y. as inSection 4.6 . 12
PRED WI: % as inSection 4.6.12

PRED wi_package_inv: VAR

PROC init_wi_package: ->
MOD wi_package_inv

PROC mod_text_restore : ->
MOD wi_package_inv
USE displ_op

PROC mod_dot_restore : ->
MOD wi_package_inv

372 CHAPTER 5. DESIGN OF A TEXT EDITOR

USE displ_op

PROC mod_dot: -> % auxiliary
DEF LET mt':Map;

mt' := mtexts;
USE upd :Table -> END;
Tl' AND text(app(mtexts,current)) • text(app(mt' ,current)) AND
(mark(app(mtexts,current))) :Copa • mark(app(mt',current)) AND
FORALL s :String
(NOT a • current •> app(mtexts,s) • app(mt',s)) ?

AXIOM [init_wi_package] wi_package_inv;
wi_package_inv m)

[mod_text_restore I mod_dot_restore] wi_package_inv

AXIOM Tl' AND wi_package_inv •>
[mod_text_restore] WI

AXIOM Tl' AND wi_package_inv =>
WI •> [mod_dot] [mod_dot_restore] Wl

AXIOM {TERMINATION}

< init_wi_package > TRUE;
TI' AND wi_package_inv •> < mod_text_restore > TRUE;
Tl' AND wi_package_inv => < mod_dot_restore > TRUE

We can consider the conjunction of WI and wi_package_inv as a strength
erred version of WI and in view of the similarity with the strengtherring of TI
to TI' we introduce the notation WI '.

PRED WI':
DEF WI AND wi_package_inv

END;

One might he tempted to think that wi_package_inv needs not he in the
modification lists of mod_ text_restore and of mod_dot_restore. Forthese
procedures are supposed not to vialate wi_package_inv and this is guaran
teed indeed if wi_package_inv cannot he modified. However, this would he
too strong, hecause it forhids an implementation to change wi_package_inv
from false to true- just hy luck.

5.5. IMPLEMENTING THE SYSTEM COMPONENTS 373

5.5.13 WLPACKAGE: a postulated component

We postulate a component having WI_PACKAGE_SPEC as its black-box descrip
tion. This is an important component in the sense that it hides all probieros
related to the fact that our editor is display-oriented. Note that in partic
ular mod_ text_restora works as a kind of magie button: just activa te it
and then the display is completely taken care of. We take a certain risk by
postulating this component because it is not entirely clear in advance that
sufficiently efficient algorithms for mod_ taxt_rastora and mod_dot_rastora
will he found.

{~} COMP WI_PACKAGE WI_PACKAGE_SPEC;

5.5.14 Programming the Editing Operations

Reeall that the specification requires a classica! invariant WTI which should
logically imply WI and TI. We shall propose such an invariant now.

LET WITEFA_IMPL :=

IMPORT DISPLAY INTO
IMPORT TEXT_VARS INTO
IMPORT WI_PACKAGE INTO
IMPORT (APPLY FILE TO 'STRING') INTO
CLASS

PRED WTI:
DEF WI' AND TI'

Since we know already that WI' :::? WI and TI' :::? TI, the fact that WTI
logically implies WI and TI is immediate from the definition of WTI. Now
we have this invariant we can already write the ini t procedure and one of
the wi taf a_ op procedures, viz. switch_ to_buffar, which serves as a kind
of buffer initialisation. We begin with ini t. By means of the imports of
TEXT_VARS we have 'assignment' procedures upd_tabla and up_currant re
spectively. These are used in the body of ini t below where upd_ tabla (naw)
updates the 'COLD variable' tabla, giving it the value naw and where
upd_currant(s) updates the 'COLD variable' currant, giving it the 'String'
value s. The procedure craate_buffar serves as an auxiliary for both ini t
and switch_ to_buffar. Arbitrarily we choose the value 1024 for the initia!
block-size of newly created buffers.

PROC init: 'String' ->

374 CHAPTER 5. DESIGN OF A TEXT EDITOR

PAR s: 'String'
DEF upd_table(new);

create_buffer(s);
upd_current(s);
init_wi_package;
mod_text_restore

PRÖC create_buffer: 'String' ->
PAR s: 'String'
DEF LET b:Buf; b :• create;

add(table,s,b);
set_block(b,alloc(1024));
set_gapl(b,O);
set_gap2(b,1024);
set_dot (b, 1024) ;
set_mark(b,1024);
% pair-wise:
set_dot(b,O,O);
set_mark(b,O,O);
set_reach(b,O,O)

The specification (Chapter 4) requires that WTI is a classica! invariant. There
fore, among other things we must verify INIT =}\Is: 'String' [init(s)
] WTI. We shall briefly show this now and we begin with with TI'. This
amounts to checking all conjuncts of TI', which are labelled {1}, {2} etc.

Conjunct {1} requires string_inv and table_inv. Now string_inv holds
because 'STRING_SPEC' has been obtained from 'SEQ_SPEC' and in the cor
responding instantiation it was defined that i tem_inv :<=> TRUE; therefore
INIT 1\ i tem_inv =} string_inv applies. We apply this reasoning once more:
table_inv holds because TABLE_STRING_BUF has been obtained from TABLE
and in the corresponding instantiation it was defined that i teml_inv :<=>
string_inv; therefore INIT 1\ iteml_inv => table_inv applies. After hav
ing verified this we need not worry about string_inv and table_inv any
more, forthereare absolutely no operations that could make them false.

Conjunct {2} requires the definedness of the current buffer. This is estah
lishad by upd_table(new), create_buffer(s) and upd_current(s). Con
juncts {3} and {4} regulate the various buffer attributes. In this case there
is just one buffer and create_buffer makes its gap cover the entire block.
It puts the dot and the mark at the end of the block which is (0, 0) when
viewed as a co-ordinate pair. This establishes {3} and {4}.

We must also verify that wi_package_inv holds, which precisely is the effect
ofinit_wi_package.

5.5. IMPLEMENTING THE SYSTEM COMPONENTS 375

Finally we must show that WI holds and this is established by the invocation
ofmod_text_restore. The procedure mod_text_restore only works if both
TI' and wi_package_inv hold but this is the case indeed thanks to the fact
that
mod_ text_restore comes after all other expressionsof ini t. This concludes
our verification of INIT ::::? V s : 'String' [ini t (s)] WTI and we proceed
with another editor operation.

PROC switch_to_buffer: 'String' ->
PAR s: 'String'
DEF upd_current(s);

(is_in_dom(s,table) = true ?; SKIP
I NOT is_in_dom(s,table) ~ true ?; create_buffer(s)
) ;

mod_text_restore

We must verify that swi tch_to_buffer preserves WTI which is
WTI::::? Vs: 'String' [switch_to_buffer(s)] WTI.

Conjunct {1} of TI' holds since we assumed WTI as a precondition. {2}
holds because either s is already an entry in table or s is added to table.
In the former case it holds by the definition of is_in_dom; in the latter case
create_buffer guarantees that the buffer corresponding to s represents a
defined text. For {3} and {4} we reason differently for the old buffers (where
we must refer to the precondition WTI) and for the newly created buffer
(where we reason justas for init(s) before).

Finally the invocation of mod_ text_restore preserves wi_package_inv and
it establishes WI. This shows that swi tch_to_buffer preserves WTI.

Apart from verifying the preservation of WTI, we must also verify the sat
isfaction of the pre- and postcondition style axioms from the specification
(Chapter 4). By way of example we show this for switch_to_buffer(s).
lts postcondition requires current = f(s) which is made true by the ex
pression upd_current(s). The remainder of its postconditionis basedon a
case-analysis. If s is an existing entry in table already, then mtexts = PREV
mtexts must hold, which is the effect of SKIP indeed. If s is a new entry,
then the marked text corresponding with s should he

mtext(zero,copa(O,O),copa(O,O))

which should have been added to PREV mtexts. We easily verify that this is
the marked text represented by the buffer created and initialised by
create_buffer. This shows that swi tch_to_buffer satisfies its pre- and
postcondition style axiom.

376 CHAPTER 5. DESIGN OF A TEXT EDITOR

Later we shall program the remaining WITEF A opera ti ons. J ust like
switch_ to_ buffer these must also have the properties of preserving WTI and
satisfying their pre- and postcondition style axioms. We shall not treat these
at the same level of detail as switch_ to_buffer. We postpone a discussion
of the termination axioms until Section 5.5.15.

We proceed by implementing the operations for dot and mark control as
specified in Chapter 4 Section 4.5.6. To this end we first introduce another
predicate on buffers which is not part of TI', but which should he viewed
as an additional nice buffer property. This predicate is called ready and
roughly speaking, it holds fora buffer if the gap is located at the dot, so that
the buffer is ready for an insert operation at dot. The following buffer is not
ready:

dot pp1 s•p:t

Fig 5.2. Buffer which is not 'ready'.

But the buffer below is ready:

sap1 gap:t
•dot

Fig 5.3. Buffer which is 'ready'.

We do not add the requirement that all buffers are ready to TI' because this
would make dot-movements much more complicated and hence probably also
slower.

PRED ready : Buf
PAR b:Buf
DEF dot(b) = gap2(b)

So if a buffer b with non-empty gap is ready, then inserting a character c in
it, as necessary for the insert_character operation, becomes very simple:

store(block(b),gapl(b),c);
set_gapl(b,gapl(b) + 1)

5.5. IMPLEMENTING THE SYSTEM COMPONENTS 377

where we omittted the necessary updating of the pair-wise mark, dot and
reach attributes. If we want to do an insert operation in a state in which
the buffer in question is not ready, then it should he made so. Therefore
we introduce a procedure make_ready operating on buffers and having use
rights with respect to store, set_dot, set_mark, set_gapl and set_gap2.
This procedure must have the following properties which of courseneed only
he guaranteed if TI ' holds:

1. make_ready(b) only affects attributes of b,
2. [make_ready(b)] ready(b),
3. [make_ready(b)] (f(b)):MText = PREV f(b),

so essentially the represented marked text does not change.

We start the development of make_ready now. We must deal with two
cases depending on the relative position of the gap and the dot. There
fore we use two auxiliaries called make_readyl and make_ready2. The task
of make_readyl is to move the gap downwards to let it meet the dot. The
task of make_ready2 is to move the gap upwards until the new gap2 equals
the dot. Let us give the definition of make_ready now and after that deal
with the auxiliaries.

PROC make_ready: Bu! ->
PAR b:Bu!
DEF (dot(b) = gap2(b) ?; SKIP

I lss(dot(b),gapl(b)) ?; make_readyl(b)
I gtr(dot(b),gap2(b)) ?; make_ready2(b)
)

For make_readyl we use a loop and as a the loop-body we employ a procedure
gap_down. It must leave the text represented by the buffer unaffected.

V b:Buf (TI' 1\ gapl(b) > 0 =*
[gap_down(b)]
((f(b)):Text = PREV f(b)

1\ dot(b):Nat = PREV dot(b)
1\ mark(b):Nat = PREV mark(b))

After the loop of make_readyl has been executed, the new position of the
mark must he calculated. This calculation is done by a case-analysis on the
relative position of the mark. Depending on the position of the mark, it
may he necessary to move the mark over the gap, which means to increase
the value of mark by gap2(b) - gapl(b). After execution of the gap_ down
loop, there are three possible situations: the first situation is characterised
by mark(b) < dot(b) and since the gap has reached dot(b) by moving

378 CHAPTER 5. DESIGN OF A TEXT EDITOR

downwards, we are certain that the gap has not crossed mark(b). The second
situation is characterised by mark(b) ~ 'old value of gap2 (b)' which means
that mark(b) was already at the high end of the buffer compared with the
gap and since the gap has moved downwards we are certain again that the
gap has not crossed mark(b). The third situation is when neither mark(b) <
dot (b) nor mark(b) ~ 'old value of gap2 (b)' holds, which is precisely when
the assertion dot (b) :::; mark(b) < gapl (b) was valid before moving the gap.
In this third situation the value of mark must he increased and after that
the mark will have crossed the gap in the sense that gap2(b) :::; mark(b).

PROC make_readyl: Buf ->
PAR b:Buf
DEF LET old_gap2:Nat;

old_gap2 := gap2(b);
(NOT dot(b) = gapl(b) ?;

gap_down(b)
) *; dot(b) = gapl(b) ?;

(lss(mark(b),(dot(b)):Nat) ?; SKIP
I geq(mark(b),old_gap2) ?; SKIP
I NOT (lss(mark(b),(dot(b)):Nat) OR geq(mark(b),old_gap2)) ?;

set_mark(b,add(mark(b),sub(gap2(b),gapl(b))))
) ;

set_dot(b,gap2(b))

The task of make_ready2 is to move the gap upwards until the value of gap2
equals the dot. For make_ready2 we use a loop and in the loop-body we
employ a procedure gap_up with the property:

V b:Buf (TI' 1\ gap2(b) <size(block(b))) =>
[gap_up(b)]
((f(b)):Text = PREV f(b)

1\ dot(b):Nat = PREV dot(b)
1\ mark(b):Nat = PREV mark(b))

Again we have a loop and a calculation of the mark. Depending on the
position of the mark, it may be necessary to move the mark over the gap,
which now means to decrease the value of mark by gap2(b) - gapl(b).
Again we distinguish three situations where the third situation is precisely
when the assertion gap2 (b) :::; mark(b) < dot (b) was valid before rnaving
the gap. In this third situation the value of mark must he decreased and
after that the mark will have crossed the gap in the sense that mark(b) <
gapl (b).

5.5. IMPLEMENTING THE SYSTEM COMPONENTS

PROC make_ready2: But ->
PAR b:But
DEF LET old_gapl : Nat;

old_gapl := gapl(b);
(NOT dot(b) = gap2(b) ?;

gap_up(b)
) *; dot(b) • gap2(b) ? ;

(lss(mark(b) ,old_gapl) ?; SKIP
I geq(mark(b),dot(b)) ?; SKIP
I NOT (lss(mark(b),old_gapl) OR geq(mark(b),dot(b))) ?;

set_mark(b,sub(mark(b),sub(gap2(b),gapl(b))))

We give the definitions of gap_down and gap_up below.

PROC gap_down: But ->
PAR b :But
% move the gap one position downwards

379

DEF store(block(b),pred(gap2(b)),cont(block(b),pred(gapl(b))));
set_gapl(b,pred(gapl(b)));
set_gap2(b,pred(gap2(b)))

PROC gap_up: But ->
PAR b : Bu:f
% move the gap one position upwards
DEF store(block(b),gapl(b),cont(block(b),gap2(b)));

set_gapl(b,succ(gapl(b)));
set_gap2(b,succ(gap2(b)))

We add one remark about the algorithm for make_ready as developed above.
As an alternative, it would have been possible to put the adaptation of dot
and mark in gap_up and gap_down. This alternative would make the presen
tation of the algorithm somewhat smoother. On the other hand, the current
algorithm is slightly more efficient, which hopefully is worthwhile when edit
ing large texts.

This concludes the workon making buffers ready and we proceed with a few
more editor operations, among which those operations which deal with dot
movements. Actually this turns out to be quite a lot of work, which seems
of a somewhat ad-hoc nature. We shall have to introduce many auxiliaries.
In the definition of right_dot below we need a type-cast for the ambiguous
expression dot (b) ; this is because later there will be another function right :
Buf # Nat # Nat -> Nat # Nat - which will appear in conneetion with
search_forward. No function left: Buf # Nat # Nat -> Nat # Nat is
defi.ned, however.

380

PROC right_dot: Buf ->
PAR b:Buf

CHAPTER 5. DESIGN OF A TEXT EDITOR

~ to be used only if dot is not at end-of-line
DEF set_dot(b,right(b,(dot(b)):Nat));

LET dl:Nat,d2:Nat; dl,d2 := dot(b); set_dot(b,dl,succ(d2))

PROC forward_character: ->
DEF LET b:Buf; b := app(table,current);

(eolp(b) ?; SKIP
I NOT eolp(b) ?;

right_dot(b);
mod_dot_restore

)

PROC left_dot: Buf ->
PAR b:Buf
% to be used only if dot is not at beginning-of-line
DEF set_dot(b,left(b,dot(b)));

LET dl:Nat,d2:Nat; dl,d2 := dot(b); set_dot(b,dl,pred(d2))

PROC backward_character: ->
DEF LET b:Buf; b := app(table,current);

(bolp(b) ?; SKIP
I NOT bolp(b) ?;

left_dot(b);
mod_dot_restore

)

PROC bolp: -> Bool
DEF LET b:Buf; b :~ app(table,current);

(bolp(b) ?; true
I NOT bolp(b) ?; false
)

PROC eolp: -> Bool
DEF LET b:Buf; b := app(table,current);

(eolp(b) ?; true
I NOT eolp(b) ?; false
)

Next, we turn our attention to the procedure next_line and the first thing
to do is introducing an auxiliary function, also called next_line. It serves
for finding out whether it is possible to move the dot to the samehorizontal
position in the next line; if so, then it calculates this new position. The
following picture shows the situation where the dot is neither in the first line

5.5. IMPLEMENTING THE SYSTEM COMPONENTS 381

nor in the last line of the text.

hpoe(b) hpoe(b)

/,L--/ -r+-lfi-r-h-111--lr+-r-flït-r--ltl ----7'//
/ dot /1

ctr ..i we want to fl.nd thie position ctr.j

Fig 5.4. Operation of next_line.

This function next_line requires a little bit of searching and stepping through
the block. There is some searching rightwards for finding the end of the cur
rent line and hence the beginning of the next line. Then some further stepping
to the right is needed for getting to the position with the appropriate hor
izontal co-ordinate. Essentially this searching and stepping is programmed
using recursion. This need not be very efficient, but at least the recursion
depth is limited by the line length. The function next_line yields a pair
consisting of a Boolean value and a natural number. This pair is (true,the
'next-line position'), if this exists; it is (false,O) otherwise. We must ex
plain the term 'next-line position'. Fora given buffer b we say that n is the
'next-line position' if

n1 = d1 + 1 1\ n2 = d2
where (nt. n2) = reach(f (b, n)}

and (d17 ~) = dot(b).

Actually the value 0 is just arbitrary. We use some auxiliaries which will
be defined immediately afterwards. In the definition of next_line below we
employ a function end_of_line yielding two results which are denoted as j
and k, although kis not needed here. Later we shall encounter another usage
of end_of_line where its second result (k) is actually used.

FUNC next_line: Buf -> Bool #Nat
PAR b:Buf
DEF LET j:Nat,k:Nat;

j,k := end_of_line(b,dot(b));
(eobp(b,j) ?; (false,O)
I NOT eobp(b,j) ?; right_stepping(b,right(b,j),hpos(b))
)

We used several auxiliaries which will be defined now. The function
right_stepping applied to a buffer b and natura} numbers j and h yields
a pair consisting of a Boolean value and a natural number. This pair is

382 CHAPTER 5. DESIGN OF A TEXT EDITOR

(true,the position obtained by going h steps rightwards within the same line
starting at position j), if possible; it is (false,O} otherwise. Again we used
a phrase which is easily formalised; we say that nis the position obtained by
going h steps rightwards within the same line startingat position j if

n1 = it 1\ n2 = i2 + h
where (nt. n 2} = reach(f (b, n))

and Ut.J2) = reach(f(b,j)).

The procedure right_stepping is defined as follows.

FUNC right_stepping: Bu! # Nat # Nat -> Bool # Nat
PAR b:Bu!,j:Nat,h:Nat
DEF (h = 0 ?; (true,j)

I NOT h = 0 ?; (eolp(b,j) ?;

)

)

(!alse,O)
NOT eolp(b,j) ?;

right_stepping(b,right(b,j),pred(h))

The function hpos simply yields the horizontal co-ordinate of the dot for a
given buffer. The function end_of_line applied toa bufferband a position i
yields the next position - going rightwards- for which the 'end-of-line' pred
icate holds and the number of rightward steps needed to reach this position.
It is defined recursively and both result values play a role in the recursion,
although this is not the motivation for end_of_line having two results.

FUNC hpos: Bu! -> Nat
PAR b :Bu!
DEF LET d1 : Nat,d2:Nat; d1,d2 := dot(b);

d2

FUNC end_o!_line: Bu! # Nat -> Nat # Nat
PAR b:Bu!,i:Nat
DEF (eolp(b,i) ?; (i,O)

I NOT eolp(b,i) ?;

)

LET n:Nat,m:Nat; n,m := end_o!_line(b,right(b,i));
(n,succ(m))

The following function is called previous_line and it is an auxiliary for the

5.5. IMPLEMENTING THE SYSTEM COMPONENTS 383

procedure with the same name. Again we give a sketch.

hpoa(b) bpoa(b)

/ 1-1 1-1 / /t'---,--t-1 rl-r-1 1----r+-r-lf I t-r-I -----7'/
/ <L I ,:.J ... 7

we want to ftnd thia poaition

Fig 5.5. Operation of previous_line.

This function yields a pair consisting of a Boolean value and a natural
number. This pair is (true,the 'previous-line position'), if this exists; it
is (false,O) otherwise.

FUNC previous_line : Buf -> Bool #Nat
PAR b:Buf
DEF LET j:Nat; j:= beginning_of_line(b,dot(b));

(bobp(b,j) ?;

)

(false,O)
NOT bobp(b,j) ?;
right_stepping(b,beginning_of_line(b,left(b,j)),hpos(b))

We need just one more auxiliary. It serves for finding the next position -
going leftwards - for which the beginning-of-line predicate holds.

FUNC beginning_of_line: Buf #Nat -> Nat
PAR b:Buf,i:Nat
DEF (bolp(b,i) ?; i

I NOT bolp(b,i) ?; beginning_of_line(b,left(b,i))
)

We implement the remairring procedures for dot and mark controL In the def
inition of end_ of _line below, we see another usage of the earlier end_ of _line
function where we do need its second result- which reveals the motivation
for that end_of_line having two results.

PROC beginning_of_line: ->
DEF LET b :Buf; b :• app(table,current);

set_dot(b,beginning_of_line(b,dot(b)));
LET dl:Nat,d2:Nat; dl,d2 :• dot(b); set_dot(b,dl,O);
mod_dot_restore

384 CHAPTER 5. DESIGN OF A TEXT EDITOR

PROC end_of_line: ->
DEF LET b:Buf; b :• app(table,current);

LET n:Nat,m:Nat; n,m :m end_of_line(b,dot(b));
set_dot(b,n);
LET dl:Nat,d2 :Nat; dl,d2 := dot(b);
set_dot(b,dl,add(d2,m));
mod_dot_restore

PROC next_line: ->
DEF LET b:Buf; b :• app(table,current);

LET bb:Bool, i:Nat;
bb,i :s next_line(b);
(bb = false ?; SKIP
I NOT bb • false ?;

)

set_dot(b,i);
LET d1:Nat,d2:Nat; d1,d2 :• dot(b); set_dot(b,succ(dl),d2);
mod_dot_restore

PROC previous_line: ->
DEF LET b:Buf; b :~ app(table,current);

LET bb:Bool, i:Nat;
bb,i := previous_line(b);
(bb = false ?; SKIP
I NOT bb • false ?;

)

set_dot(b,i);
LET dl:Nat,d2:Nat; dl,d2 := dot(b); set_dot(b,pred(dl),d2);
mod_dot_restore

FUNC beginning_of_buffer : Buf -> Nat
PAR b:Buf
DEF (gapl(b) = 0 ?; gap2(b)

I NOT gapl(b) • 0 ?; 0
)

PROC beginning_of_buffer : ->
DEF LET b:Buf; b :• app(table,current);

set_dot(b,beginning_of_buffer(b));
set_dot(b,O,O);
mod_dot_restore

FUNC end_of_buffer: Buf -> Nat
PAR b:Buf
DEF size(block(b))

5.5. IMPLEMENTING THE SYSTEM COMPONENTS

PROC end_of_buffer: ->
DEF LET b:Buf; b := app(table,current);

set_dot(b,end_of_buffer(b));
set_dot(b,reach(b));
mod_dot_restore

PROC set_mark: ->
DEF LET b : Buf; b := app(table,current);

set_mark(b,(dot(b)):Nat);
set_mark(b,(dot(b)):Nat #Nat)
{no screen updating needed}

PROC exchange_dot_and_mark: ->
DEF LET b : Buf; b := app(table,current);

LET i:Nat; i :~ dot(b);
LET j:Nat; j :z mark(b);
LET dl:Nat,d2 :Nat; dl,d2 :• dot(b);
LET ml:Nat,m2:Nat; ml,m2 := mark(b);
set_ dot (b , j) ;
set_mark(b,i);
set_dot(b,ml,m2);
set_mark(b,dl,d2);
mod_dot_restore

385

N ext comes the implementation of the opera ti ons for text modiikation as
specified in Chapter 4 Section 4.5.7. Again we introduce an additional nice
buffer property. We shall refer to the value of gap2(b) - gap1 (b) as the
size of the gap. We shall devote some effort to solving the problem that the
size of the gap may become 0 which implies that there is no more space for
insertions. We introduce a simple predicate space which holds for a buffer
bincase the size of the gap is non-zero. Just as ready, this predicate space
is not part of TI 1 , although of course it is a desirabie buffer property.

PRED space : But
PAR b:Buf
DEF gtr(gap2(b),gapl(b))

Inserting in a buffer that has nospace requires that space should he created
and for this purpose we introduce a procedure make_space of type Buf #
Nat-+ and having use-rights with respect to store, set_gap1, set_gap2 and
grow. This procedure should have the following properties which must hold
for n > 0 under the assumption TI 1 1\ ready (b) :

386 CHAPTER 5. DESIGN OF A TEXT EDITOR

1. make_space (b, n) only affects attributes of b,
2. [make_space(b,n)] space(b) A ready(b),
3. [make_space(b,n)] (f(b)):MText = PREV f(b).

The second parameter of make_space describes the space-increment. It
serves for exploiting estimates of the required amount of space. We ex
peet a typical implementation of BLOCK to show a reasonable performance if
grow is invoked every now and then for a large increment; we expect it to
be wastefut and disproportionately slow if it is invoked many times for very
small increments. We arrange matters such that the procedure make_space
can also be used in cases where the buffer did notrun out of space yet.

The introduetion of new space in a buffer takes place at the high end of the
buffer. We can view this as the introduetion of a second gap, whose size is
equal to the amount of new space. From the point of view that we want to
respect TI' this is one gap too many and hence this second gap has to move
downwards tomeet the other gap. The technique of moving this second gap
is essentially the same as used in make_ready1. When the two gaps have
met, which is when mover = gap2(b), the invariant TI' and the readiness
of the buffer can be restored. This is done by merging the two gaps which
amounts to making gap2(b) and dot(b) equal to the position immediately
after the merged gaps.

PROC make_space: Buf #Nat ->
PAR b:Buf, n:Nat
DEF set_mover(size(block(b)));

grow(block(b),n);

(NOT mover = gap2(b) ?;
second_gap_down(b,n)

) *; mover = gap2(b) ?;

set_gap2(b ,add(gap2(b),n));
set_dot(b,gap2(b));

(lss(mark(b),gapl(b)) ?; SKIP
I NOT lss(mark(b),gapl(b)) ?; set_mark(b,add(mark(b),n))
)

The following picture sketches the situation.

5.5. IMPLEMENTING THE SYSTEM COMPONENTS 387

~I
Fig 5.6. Merging two gaps.

The procedure second_gap_down serves for moving the second gap one p~
sition downwards. It has two arguments where the first argument indicates
a buffer and where the second argument indicates the size of the second gap.

PROC second_gap_down: Buf # Nat ->
PAR b:Buf,n:Nat
DEF store(block(b),pred(add(mover,n)),cont(block(b),pred(mover)));

set_mover(pred(mover))

This concludes the work on making space in buffers. As discussed before,
it is simple to insert a non-ctr _j character in a ready buffer with space,
leaving the readiness of the buffer invariant. In order to update the pair-wise
attributes, we use the natural addition on reaches, which is the function add:
Nat2 # Nat2

--t Nat2 and furthermore we use other operations on reaches such
as paste. The following procedure is meant for inserting a non-ctr_j char
acter in a ready buffer with space. When the dot comes before the mark, the
new pair-wise mark attribute is calculated as paste(mark(b) ,0,1,dot(b)).
In such calculations we avoid using the abstraction functions f which are
meant for reasoning purposes only - some of them would he very inefficient
in deed.

PROC insert_character : Buf # Char ->
PAR b:Buf,c:Char
% only if space(b)
DEF store(block(b),gapl(b),c);

set_gap1(b,succ(gap1(b)));

(lss((mark(b)) : Nat,dot(b)) ? ;

SKIP
NOT lss((mark(b)) : Nat,dot(b)) ? ;

set_mark(b,paste(mark(b),O,l,dot(b)))
) ;

set_reach(b,paste(reach(b),O,l,dot(b)));
set_dot(b,add(dot(b),0,1))

Also the introduetion of a new line in a ready buffer with space can he done

388 CHAPTER 5. DESIGN OF A TEXT EDITOR

in a simple way, leaving the readiness of the buffer invariant.

PROC newline: But ->
PAR b:Buf
% only if space(b)
DEF store(block(b),gapl(b),ctr_j);

set_gapl(b,succ(gapl(b)));

(lss((mark(b)):Nat,dot(b))
SKIP

? • . .
NOT lss((mark(b)):Nat,dot(b)) ?;

set_mark(b,paste(mark(b),l,O,dot(b)))
) ;

set_reach(b,paste(reach(b),l,O,dot(b)));
set_dot(b,add(dot(b),l,O))

Now we can program some of the insertion procedures. The fust one is
insert_file and to keep things simple, we use the insert_character and
newline procedures described above. If it is necessary to insert large files
frequently, then it might be worthwhile to reconsider this algorithm and to
remave the pasting from the main loop.

PROC insert_file: 'String• ->
PAR s : 'String'
DEF LET b :Buf; b := app(table,current);

make_ready(b);
reset(s);
(NOT eof?; (space(b) ? ; SKIP

I NOT space(b) ?; make_space(b,1024)
) ;

LET c:Char; c :a read ;
(c • ctr_j ?; newline(b)
I NOT c • ctr_j ?; insert_character(b,c)
)

) •; eof?;
mod_text_restore

PROC insert_character: Char ->
PAR c:Char
DEF LET b:Buf; b :• app(table,current);

make_ready(b);
(space(b) ?; SKIP
I NOT space(b) ?; make_space(b,128)
) ;

insert_character(b,c);

5.5. IMPLEMENTING THE SYSTEM COMPONENTS

mod_text_restore

After this, the newline procedure is easy.

PROC newline: ->
DEF LET b:Bu!; b :a app(table,current);

make_ready(b);
(space(b) ?; SKIP
I NOT space(b) ?; make_space(b,128)
) ;

newline(b);
mod_text_restore

389

Now we turn our attention to the procedure yank_buffer. We shall use
the term yank buffer, by which we mean the buffer corresponding with the
'String' argument of yank_buffer. All characters in the yank buffer must
be copied into the current buffer, and as can be expected, a loop will take
care for this. At fust sight this loop seems rather obvious, but actually its
construction requires some care in order not to exclude the case b = y, where
b denotes the current buffer and y denotes the yank-buffer. lf b = y then the
current buffer is inserted into itself. In order to develop the loop, we shall
indicate what will he left unaffected by the loop-body and we shall state the
loop-invariant.

The loop-body does not affect the marked texts represented by the buffers
in tabla. The invariant is that an initial fragment of the text in the yank
buffer is present in the gap of the current buffer b. Both the counter and the
mover variables indicate the size of this initial fragment albeit in a different
way; more precisely:

f(block(b),gapl(b),counter) = f(y,mover) A counter ~ gap2(b)

Note that two functions f are involved. The fust f takes the characters in
the gap into account, whereas the second function f is defined to ignore the
characters in the gap, which in the latter case is the gap of the yank buffer.
Finally the ready and space properties of the current buffer are part of the
invariant.

The initialisation for this loop is done by putting the rnaver at the first non
gap position of y and by making the counter equal to gapl (b). Furthermore
of course b must be made ready. To make enough space, make_space is
invoked and its second argument is the amount of freespace needed for the
contentsof the yank buffer y . The latter amount equals the size of the block
of y minus the size of its gap.

390 CHAPTER 5. DESIGN OF A TEXT EDITOR

After the contents of the yank buffer has been copied into the gap of b, the
value of gapl, which is the lower bound of the gap can he increased in order
to make the copied characters really part of the text represented by b. Note
that immediately after the contentsof y has been copied, the reach of y has
not changed yet, even not when b = y. Finally the pair-wise mark, dot and
reach attributes must he modified by pasting the reach of the yank buffer
into them. These modifications of pair-wise attributes should he conducted
as a kind of simultaneous assignment due to the possible aliasing in the sense
that b = y.

PROC yank_buf!er: 'String' ->
PAR s: 'String'
DEF LET b:Bu!; b := app(table,current);

LET y:Bu!; y ·s app(table,s);

make_ready(b);
make_space(b,sub(size(block(y)), sub((gap2(y),gapl(y)))));

set_mover((gapl(y) • 0 ?; gap2(y) I NOT gapl(y) = 0 ?; 0));
set_counter(gapl(b));

NOT mover = size(block(y)) ?;

store(block(b),counter,cont(block(y),mover));
set_mover(right(y,mover:Nat));
set_counter(succ(counter))

)*; mover s size(block(y)) ?;

set_gapl(b,counter);

LET r:Nat #Nat; r := reach(y);
(lss(mark(b),(dot(b)):Nat) ?;

SKIP
NOT lss(mark(b),(dot(b)):Nat) ?;

set_mark(b,paste(mark(b),r,dot(b)))
) ;
set_reach(b,paste(reach(b),r,dot(b)));
set_dot(b,add(dot(b),r));

mod_text_restore

Now we develop copy_region_to_buffer. Let b denote the current buffer.
First it must be tested if mark(b) < dot (b) for if not, then no action is
required. Otherwise, the next thing to he done is to check if the target
buffer exists already. If it does not exist, then it should he created and
appropriately initialised.

5.5. IMPLEMENTING THE SYSTEM COMPONENTS 391

Let c denote the target buffer. The next step is to enter the characters of
the region of b into the target buffer c. This entering starts at position 0 in
c. It is possible to calculate the required amount of space in c in advance.
More precisely, if the region is larger than the block-size of c, then a space
increment of dot(b) - mark(b) - size(block(c)) is needed.

There is a simple loop for copying the text from the region to the target buffer
c. The loop-body leaves the value of the following expression unaffected:

f(block(c) ,O,counter) + f(block(b) ,mover,dot(b))

where the + denotes natural addition of texts. The fust summand is the text
already copied and the second summand is the text to he copied yet. Fur
thermore the loop-body only affects attributes of c. The assertion mark(b)
::::; mover ::::; dot (b) serves as the loop-invariant. Notice again that some care
is needed not to exclude the case b = c for in that case we must invoke
mod_text_restore.

PROC copy_region_to_buffer: 'String' ->
PAR s: 'String'
DEF LET b:Buf; b := app(table,current);

(NOT lss(mark(b),(dot(b)):Nat) ?;

SKIP
lss(mark(b),(dot(b)):Nat) ?;

(is_in_dom(s,table) • true ?; SKIP
I NOT is_in_dom(s,table) = true ?; create_buffer(s)
) ;

LET c:Buf; c :• app(table,s);

(leq(sub(dot(b),mark(b)),size(block(c))) ?; SKIP
I NOT leq(sub(dot(b),mark(b)),size(block(b))) ?;

grow(block(c),sub(sub(dot(b),mark(b)),size(block(c))))
) ;

set_mover((mark(b)):Nat);
set_counter(O);
(NOT mover = (dot(b)):Nat ?;

store(block(c),counter,cont(block(b),mover));
set_mover(right(b,mover:Nat));
set_counter(succ(counter))

) *; mover = (dot(b)):Nat ?;

set_gapl(c,counter);
set_gap2(c,size(block(c)));
set_dot(c,O);

392

)

CHAPTER 5. DESIGN OF A TEXT EDITOR

set_mark(c,O);

LET x:Nat # Nat,y:Nat # Nat;
x,y :~ cut(reach(b),mark(b),dot(b));
set_reach(c,y);
set_dot(c,O,O);
set_mark(c,O,O);

(b = c ?; mod_text_restore I NOT b • c ?; SKIP)

Next, we shall proceed with a few operations which are concerned with delet
ing pieces of text.

PROC delete_next_character: ->
DEF LET b:But; b := app(table,current);

LET i:Nat,j:Nat; i,j := dot(b);

((cont(block(b),dot(b)) • ctr_j OR
dot(b) = size(block(b))) ?;

)

SKIP
NOT (cont(block(b),dot(b)) • ctr_j OR

dot(b) = size(block(b))) ? ;
make_ready(b);
(mark(b) = (dot(b)):Nat ?; set_mark(b,succ(dot(b)))

SKIP I NOT mark(b) • (dot(b)):Nat ?;
) ;

set_dot(b,succ(dot(b)));
set_gap2(b,succ(gap2(b)));

(leq(mark(b),(dot(b)):Nat) ?; SKIP
I NOT leq(mark(b),(dot(b)):Nat) ?;

) ;

LET x:Nat # Nat, y:Nat # Nat;
x,y :• cut(mark(b),i,j,i,succ(j));
set_mark(b,x)

LET p:Nat # Nat, q:Nat # Nat;
p.q := cut(reach(b),i,j,i,succ(j));
set_reach(b,p);

mod_text_restore

5.5. IMPLEMENTING THE SYSTEM COMPONENTS

PROC erase_region: ->
DEF LET b:Buf; b :• app(table,current);

(geq(mark(b),(dot(b)):Nat) ?;

)

SKIP
NOT geq(mark(b),(dot(b)):Nat) ?;

make_ready(b);
set_gapl(b,mark(b));
set_mark(b,(dot(b)):Nat);

LET p:Nat # Nat, q:Nat # Nat;
p,q := cut(reach(b),mark(b),dot(b));
set_reach(b,p);
set_dot(b,(mark(b)):Nat #Nat);

mod_text_restore

PROC erase_buffer: 'String' ->
PAR s: 'String'
DEF (is_in_dom(s,table) • true ?; SKIP

I NOT is_in_dom(s,table) = true ?; create_buffer(s)
) ;

LET b:Buf; b := app(table,s);
set_gapl(b,O);
set_gap2(b,size(block(b)));
set_dot(b,gap2(b));
set_mark(b,gap2(b));

set_dot(b,O,O);
set_mark(b,O,O);
set_reach(b,O,O);

(eq(s,current) ?; mod_text_restore
SKIP I NOT eq(s,current) ?;

)

393

Now we turn to the implementation of the operations for marked-text man
agement as specified in Chapter 4 Section 4.5.8, (with an exception for
switch_to_buffer which is dealt withalready before).

PROC current_buffer_name: -> 'String'
DEF current

394 CHAPTER 5. DESIGN OF A TEXT EDITOR

For the procedure wri te_named_file we employ a loop and the mover serves
as a kind of loop-counter. The loop-body leaves the value of followirig ex
pression unaffected:

file(f(s)) + f(b,mover,size(block(b)))

and also the fact that moveris not within the gap. The loop-body does not
affect other files than the file indicated by s.

PROC write_named_file: 'String' ->
PAR s: 'String'
DEF LET b:Buf; b : • app(table,current);

rewrite(s);
set_mover((gapl(b) • 0 ?; gap2(b) NOT gapl(b) • 0 ?; 0));

(NOT mover • size(block(b)) ?;

write(cont(block(b),mover));
set_mover(right(b,mover:Nat))

) *; mover • size(block(b)) ?

Now we turn to the implementation of the operations forsearching as speci
fied in Chapter 4 Section 4.5.9. In the implementation of search_forward,
we employ a simple loop. We need an auxiliary predicate match. We write
{C}OR for conditional OR and {C}AND for conditional AND as a hint related to
the executability of this recursive predicate.

PRED match : Buf I 'String' I Nat
PAR b:Buf,s:'String',i :Nat
DEF eq(s,empty) {C}OR

(lss(i,size(block(b)))
{C}AND hd(s) = cont(block(b),i)
{C}AND match(b,tl(s),right(b,i))

The intuition behind this predicate match is that match(b, s, i) holds if the
text represented by the len(s) non-gap positions in b startingat i equals the
text represented by s. Of course this definition of match corresponds only
with the intuition if i is not in the gap of b. To put it more formally:
i(/. gap(b) => match(b,s,i) <=> match(f(b),f(s),len(f(b,i))) where the sec
ond match is the one from the specification (Chapter 4).

PRED match': Buf # 'String' I Nat
PAR b:Buf,s:'String',i :Nat
DEF i = size(block(b)) {C}OR match(b,s,i)

For searching a string s in a buffer b, the main assertion of the loop-invariant

5.5. IMPLEMENTING THE SYSTEM COMPONENTS 395

is

\li:Nat (dot(b) ~i< mover 1\ i(/. gap(b) =>NOT match'(b,s,i))

where we used some ohvious shorthand. Furthermore we makesure that the
pair-wise version of mover precisely follows mover: Nat. This is necessary for
in case of a successful search the pair-wise dot attrihute must he updated.
We have the initialisation mover = dot(b) and the termination condition
match' (b, s, mover).

PROC search_forward: 'String' ->
PAR s: 'String'
DEF LET b:Buf; b := app(table,current);

set_mover((dot(b)):Nat #Nat);
set_mover((dot(b)):Nat);

(NOT match'(b,s,mover) ? ;

set_mover(right(b,mover:Nat #Nat));
set_mover(right(b,mover:Nat))

) *; match'(b,s,mover) ?;

(geq(mover,size(block(b))) ?;

)

SKIP
NOT geq(mover,size(block(b))) ?;

set_dot(b,mover:Nat #Nat);
set_dot(b,mover:Nat);

mod_dot_restore

where we used a simple auxiliary function right. This function right de
pends on mover: Nat.

FUNC right: Buf # Nat # Nat -> Nat # Nat
PAR b:Buf,i:Nat,j:Nat
DEF (cont(block(b),mover) = ctr_j ?; (succ(i),O)

I NOT cont(block(b),mover) • ctr_j ?; (i,succ(j))
)

We expect that improvements could he made with respect to the efficiency of
this search-algorithm. Especially the use of the Knuth-Morris-Pratt search
algorithm [5] could he considered.

Finally we turn to the implementation of the operations for string conversion
as specified in Chapter 4 Section 4.5.10. We use reenrsion which is accept-

396 CHAPTER 5. DESIGN OF A TEXT EDITOR

able if the procedure below is only used for obtaining relatively short strings
such as words to he searched for or such as file names.

PROC buffer_to_string: 'String' -> 'String'
PAR s: 'String'
DEF LET b:Buf; b :• app(table,s);

buffer_to_string(b, (gapl(b) • 0 ?; gap2(b)
I NOT gapl(b) = 0 ?; 0
))

FUNC buffer_to_string: Buf # Nat -> 'String'
PAR b:Buf,i :Nat
DEF (i • size(block(b)) ?• ..

)

END;

empty
NOT i • size(block(b)) ?;

cons(cont(block(b),i),buffer_to_string(b,right(b,i)))

5.5.15 Termination

In the specification (Chapter 4) there is a termination axiom for ini t, re
quiring

INIT 9 \Is :'String' (< ini t (s) > TRUE)

and furthermore there is one large axiom dealing with the termination of all
operations from the wi tefa_op group.

WTI =? (

< FLUSH bolp > TRUE;
< FLUSH eolp > TRUE;
< FLUSH forward_character > TRUE;
< FLUSH backward_character > TRUE;
etc.

We did not mention the satisfaction of our implementation with respect to
these axioms yet and we shall by way of example discuss this for ini t now.
We must unfold the definition of init(s) as presented inSection 5.5.14. This
yields

upd_ table (new);
ere a te_buffer(s);

5.5. IMPLEMENTING THE SYSTEM COMPONENTS

upd_current(s);
ini t_wi_package;
mod_text_restore

397

To show that this sequential composition can terminate, we must consecu
tively verify the termination of each of its sub-expressions separately. We
begin with the first sub-expression which is upd_table (new). We unfold the
specification of new as given in Section 5.3.4.

t := create;
set_map(t,empty);
t

The first step to he verified is t : = create which follows from the assertion

{INST2} < create > TRUE

given in Section 5.3.2. The next sub-expression is set_map(t, empty) which
we must analyse, starting with t and empty. This t is defined because it is
the result of create whereas empty is a defined function from the class de
scription MAP _SPEC which was specified algebraically. So set_map is invoked
with defined arguments and hence its termination is a consequence (noting
that set_map is a renamed version of set_attr) of the assertion

{ATTRl} < set_attr(i,v) > TRUE

given in Section 5.3.3 where we take t for i and empty for v. This shows that
the evaluation of new can terminate. A lso upd_ table (new) can terminate;
to see this, notice that upd_ table is a renamed version of upd, so we can use
the axiom

< upd(i) > TRUE

of Section 5.5.8. In this way we can praeeed until we have checked each
sub-expression of the sequential composition of ini t. We do not present the
rest here.

Similar verification steps as indicated above for ini t apply in fact to all
WITEFA operations. Some of these operations have been programmed with
repetition constructs and in these cases the classical technique of variant
functions applies. We do not present these verification steps in this chapter.

This concludes WITEF A_IMPL whence we can implement the last system com
ponent WITEFA- just as we did earlier with KEYBIND and MOREDOP.

398 CHAPTER 5. DESIGN OF A TEXT EDITOR

% COMP WITEFA : WITEFA_SPEC :• WITEFA_IMPL;
% this is to replace an earlier primitive component.

At this point of the development, deditM equals (apart from lots of LET
constructs) the design sketched below.

DESIGN

COMP BOOL
COMP NAT
COMP CHAR
COMP INST
COMP ATTR
COMP 'SEQ'
COMP TABLE
COMP BLOCK
COMP DISPLAY
COMP FILE

COMP ATTR2
COMP SVAR
COMP 'STRING'
COMP WLPACKAGE

BOOL..SPEC:
NAT..SPEC:
CHAR..SPEC;
INST_sPEC;
ATTR..SPEC;
'SEQ.-SPEC';
T ABLE.-SPEC ;
BLOCK.-SPEC:
DISPLAY _spEc:
FILE..SPEC: % from db

ATTR2_sPEC :
SVAR.-SPEC;
'STRING.-SPEC';
WLPACKAGE.-SPEC: % newly postulated

COMP WITEF A WITEF A..SPEC : = WITEF A_IMPL;
COMP MOREDOP MOREDOP_sPEC := MOREDOP_IMPL:
COMP KEYBIND KEYBIND..SPEC := KEYBIND_IMPL

SYSTEM WITEFA,MOREDOP,KEYBIND

This is a typical point of the top-down development: all system components
have been implemented, but this was only achieved by introducing a number
of newly postulated primitive components, to wit: ATTR2, SVAR, 'STRING'
and WI_PACKAGE. Therefore the development process is by far not finished
yet: we have toembarkon the implementation of these primitive components
now. It is characteristic forthetop-down approach that no implementation
effort has been spent on un-used components: each of the three implemented
components was actually part of the system and hence was formally part of
the visible external interface of the design.

5.6. IMPLEMENTING THE INTERNAL COMPONENTS 399

5.6 lmplementing the Internal Components

During the implementation of the system components, several new compo
nents have been postulated: ATTR2, SVAR, 'STRING' and WI_PACKAGE. We
call them internal components, in view of the fact that they are not part
of the system of the design dtditor· In this section the top-down development
process is continued; the internal components are implemented which leads
again to the introduetion of new components etc. This goes on until only
the primitives of Section 5.3 are left.

5.6.1 Implementing WLPACKAGE

We turn our attention to mod_ text_restore and mod_dot_restore, but
it will take about 10 pages of preparations before arriving at the actual
definition of these procedures. We adopt the following two-phase approach
for the execution of mod_text_restore and mod_dot_restore.

• First phase: decide if a new cursor or a new screen contents is needed.
If so, then derive from the buffer named current the desired cursor
value (let us call this the concept cursor) and store the desired screen
contents in a two-dimensional array variabie (the concept screen).

• Second phase: if necessary, transfer the contents of the concept screen
to the actual screen of the physical display device and make the actual
cursor equal to the concept cursor.

The main reason for adopting this two-phase approach is that it gives rise
to a very desirabie separation of concerns. Indeed, the task to be performed
by mod_ text_restore is rather complex: first of all there is a non-trivia!
structure-clash between the representation of the text in the buffer named
current and the two-dimensionallayout of the text to be visualised on the
screen. Secondly the text must be subject to applications of the look, fill
and printify operations, as prescribed by WI. Also mod_ text_restore has
to establish suitable values for cursor and origin. In addition to this we
assume that we are faced with a physical display device with limited capabil
ities and whose communication link is a potential bottleneck in the execution
speed of the editor. Although the screen has a two-dimensionallayout, we
assume that the transfer of text towards the screen is done by so-called se rial
communication. This amounts to the restrietion that all text transfer goes
by means of commands such as ce (clear to end-of-line), cm (cursor motion)
and print (send one single character). Avoiding gross inefficiencies in the
display-handling is a major complication of the task of mod_ text_restore.

400 CHAPTER 5. DESIGN OF A TEXT EDITOR

We must pay a price for this solution of achieving a separation of concerns.
The price is the time to be spent on copying characters from the buffer named
current into the two-dimensional array variabie (the concept screen). Im
mediately after such copying has taken place, one or more of these characters
is transfered again from the concept screen towards the display and clearly
it would be a short-cut to take the characters directly from the buffer.

These considerations heavily depend on the nature of the computing ma
chinery available. When there is enough computing power available whereas
the conneetion with the display is a classica! and relatively slow serial link
we need not worry about the price of filling an array. This could be the
case when a VT102 is connected to a VAX, say. But when the computer
power is very restricted whereas the display is easily accessible, e.g. because
it is directly builtinto the computer hardware, then we better adopt another
solution. This might be the case when using an APPLE-11, say. Since the
available computing machinery comes from a rapidly evolving technology, it
is almost impossible to give a timeleas solution.

The relevant information is passed from the first phase to the second phase
by two variables. We present them in informal notation first.

• ccursor: -+ Nat2 VAR
• cscreen: -+ array !O .. li- 1, O .. co- 1] of Char VAR

Before proceeding with WI_PACKAGE, we insert an intermezzo which is about
two-dimensional arrays.

5.6.2 Specifying Two-dimensional Arrays

To prepare for the updating of the screen, it is convenient to use a two
dimensional array. In this section we specify two-dimensional arrays. To
keep things simple, indexing in an array always starts at zero.

LET DOMAINl : •
EXPORT

SORT Nat,
FUNC sizel : ->Nat

FROM
IMPORT NAT_SPEC INTO
CLASS

FUNC sizel: -> Nat
AXIOM sizel!

END;

5.6. IMPLEMENTING THE INTERNAL COMPONENTS

LET DOMAIN2 :•
EXPORT

SORT Nat,
FUNC size2: -> Nat

FROM
IMPORT NAT_SPEC INTO
CLASS

FUNC size2: -> Nat
AXIOM size2!

END;

LET ARRAY2_SPEC :=

LAMBDA X: DOMAINl OF
LAMBDA Y: DOMAIN2 OF
LAMBDA Z: ITEM OF

EXPORT
SORT Nat,
SORT Item,
SORT Array2,
FUNC sizel :
FUNC size2 :
PROC create:

-> Nat,
-> Nat,
-.> Array2,

FUNC val
PROC upd

Array2 # Nat # Nat -> Item,

FROM

IMPORT X
IMPORT Y

Array2 # Nat # Nat # Item ->

INTO
INTO

IMPORT Z INTO
IMPORT NAT_SPEC INTO

CLASS

SORT Array2 VAR
PROC create: -> Array2 MOD Array2

AXIOM
{ARRAY!} < create > TRUE;
{ARRAY2} INIT ~>NOT EXISTS a:Array2 ();
{ARRAY3} [LET a:Array2; a :• create]

al AND (PREV NOT a!) AND
FORALL b:Array2 ((PREV NOT bi) •> b • a)

FUNC val: Array2 # Nat # Nat-> Item VAR

401

402 CHAPTER 5. DESIGN OF A TEXT EDITOR

PROC upd: Array2 I Nat I Nat I Item -> MOD val

AXIOM FORALL a:Array2,m:Nat,n:Nat,i:Item
(lss(m,sizel) AND lss(n,size2) •> (

{ARRAY4} < upd(a,m,n,i) > TRUE;
{ARRAY5} [upd(a,m,n,i)]

(val(a,m,n) = i;
FORALL b:Array2,k:Nat,l:Nat,j:Item
(lss(k,sizel) AND lss(l,size2) •>

(NOT k = m OR NOT 1 = n OR NOT a = b •>
val(b,k,l) z j <=> PREV val(b,k,l) z j)))))

END;

5.6.3 ARRA Y2: a Postulated Component

We postulate the following component:

{~} COMP ARRAY2: ARRAY2_SPEC;

5.6.4 Implementing WJ_pACKAGE (continued)

After this intermezzo we can introduce the necessary variables.

LET CCURSOR :a
IMPORT APPLY RENAME

SORT Item TO Nat,
FUNC val: -> Item TO ccursorl,
PROC upd: Item -> TO set_ccursorl

IN COPY(SVAR) TO NAT INTO

IMPORT APPLY RENAME
SORT Item TO Nat,
FUNC val: -> Item TO ccursor2,
PROC upd: Item -> TO set_ccursor2

IN COPY(SVAR) TO NAT INTO

CLASS

FUNC ccursor: -> Nat I Nat
DEF (ccursor1,ccursor2)

PROC set_ccursor: Nat I Nat ->

5.6. IMPLEMENTING THE INTERNAL COMPONENTS

PAR i:Nat,j :Nat
DEF set_ccursorl(i);

set_ccursor2(j)

END;

403

We introduce a class description called CSCREEN which at its turn contains a
local definition CS_ARRAY which providesus with arrays of dimensions li and
co. It is interesting to have a look at the application expression below where
a renamed version of ARRAY2 is applied to its three actual parameters; these
are DISPLAY, DISPLAY (again) and CHAR. Let us check that this application
expression is correct: the renamed version of ARRA Y2 has three LAMBDA pa
rameters, each with its associated parameter restriction. The first parameter
restrietion requires the presence of a sort Nat and a defined function li; the
second parameter restrietion requires again Nat and a defined co whereas the
third parameter restrietion only mentions a sort Char. Now we verify that
indeed, DISPLAY provides both li and co - whence it can appear twice. In
fact DISPLAY provides much more than just Nat, li and co, but that does
not matter. Finally, of courseCHAR provides Char. To put it somewhat more
formally: DISPLAY Ç 'renamed DOMAINi' (i = 1, 2) where Ç refers to the
formal implementation relation.

LET CSCREEN :=

LET CS_ARRAY :=
APPLY APPLY APPLY RENAME

SORT Item TO Char,
FUNC sizel: -> Nat TO li,
FUNC size2: -> Nat TO co

IN ARRAY2 TO DISPLAY TO DISPLAY TO CHAR;

IMPORT CS_ARRAY INTO
APPLY RENAME

SORT Item TO Array2,
FUNC val: -> Item TO cscreen,
PROC upd: Item -> TO upd_cscreen

IN COPY(SVAR) TO CS_ARRAY;

The purpose of using SVAR in conneetion with ARRAY2 is to provide for pre
cisely one array. This yields a specialisation of the somewhat more general
ARRAY2, since ARRAY2 allows for a multitude of arrays, all having the same
dimensions. In genera!, these arrays can he created dynamically, e.g. by
LET a: Array2; a : = create but because weneed only one array, we shall
use create just once and keep the Array2 object returned by create in the

404 CHAPTER 5. DESIGN OF A TEXT EDITOR

simple programming variabie FUNC cscreen: -> Array2. So we have a two
dimensional variabie array csereen and we can index with i, j: Nat by writ
ing val(cscreen,i, j) and an assignment is denoted as upd(cscreen,i ,j ,c).
This notation for indexing should be compared with the conventional
cscreen[i, j] or csereen [i] [j] of Pascal and C respectively. The notation
for assignment should be compared with the conventional cscreen[i, j] : =
c of Pascal or cscreen[i] [j] = c; of C. Of course the module CSCREEN
needs initialisation, which is upd_cscreen(create: Array2) (cf. the code of
init_wi_package inSection 5.6.7).

We collect the variables for interfacing the two phases as sketched before
in a class description called CONCEPT_VARS. We add to this an abstraction
function f: Array2 ._ Text which serves for reasoning purposes. In order
to define this abstraction function, we need auxiliaries denoted as f and
g; since this g is useful in its own right, we export it as well. In the def
inition of CONCEPT_ VARS below we employ two auxiliary class descriptions
CSCREEN_SPEC and ABSTRACT_CSCREEN. The latter class description actually
contains the definitions of the functions f and g. The reader easily recog
nises that a generalisation-specialisation approach is used in conneetion with
ABSTRACT_CSCREEN; the precise reason for this will become clear in the next
section. At this point it is sufficient to to notice that in CONCEPT_VARS
the generalisation-specialisation approach does no harm, since the associ
ated LAMBDA can he eliminated easily. It can he verified that CSCREEN Ç
CSCREEN_SPEC.

LET CSCREEN_SPEC ·=
CLASS

SORT Nat
SORT Char
FUNC li: -> Nat
FUNC co: -> Nat
SORT Array2 VAR
FUNC cscreen: -> Array2 VAR
PROC create: -> Array2 MOD Array2
PROC upd_cscreen: Array2 -> MOD csereen
FUNC val: Array2 # Nat # Nat -> Char VAR
PROC upd : Array2 # Nat # Nat # Char -> MOD val

END;

LET ABSTRACT_CSCREEN :~

LAMBDA CS:CSCREEN_SPEC OF
EXPORT

5.6. IMPLEMENTING THE INTERNAL COMPONENTS

SORT Nat,
SORT Line,
SORT Text,
SORT Array2,
FUNC !: Array2 -> Text,
FUNC g: Array2 # Nat -> Line

FROM

IMPORT NAT_SPEC INTO
IMPORT LINE_SPEC INTO
IMPORT TEXT_SPEC INTO
IMPORT CS INTO

CLASS

FUNC g: Array2 # Nat # Nat -> Line
PAR a:Array2,n:Nat,i:Nat
% the line !rom characters i .. co-1 in the n-th line of a
DEF (i = co ?; empty

I NOT i= co?; cons(val(a,n,i),g(a,n,succ(i)))
)

FUNC g: Array2 # Nat -> Line
PAR a:Array2,n:Nat
% the n-th line in a
DEF g(a,n,O)

FUNC !: Array2 #Nat -> Text
PAR a:Array2,n:Nat
% the text !rom lines n .. li-1 in a
DEF (n • li ?; niltext

I NOT n = li ?; cons(g(a,n),!(a,succ(n)))
)

FUNC !: Array2 -> Text
PAR a:Array2
% the text represented by a
DEF !(a,O)

END;

LET CONCEPT_VARS ; a

IMPORT CCURSOR INTO
IMPORT CSCREEN INTO
APPLY ABSTRACT_CSCREEN TO CSCREEN;

405

406 CHAPTER 5. DESIGN OF A TEXT EDITOR

Note that CONCEPT_VARS is an abbreviation at component level, rather than
local within WI_PACKAGE_IMPL. Laterit will appear that we happen to have
an opportuni ty for re-using CONCEPT_ VARS.

Now we turn our attention to the first phase of the WI_PACKAGE procedures.
We present some considerations which are still independent from the repre
sentation of marked texts. We start by having another look at the window
invariant which was defined as a predicate WI and which was specified to
he an observational invariant, i.e. it must he a consequence of the classica!
invariant WTI. We use + and - as shorthand for the pair-wise addition and
subtraction operations on co-ordinate pairs. Let us write .,P as a shorthand
for each of the printify functions. WI is given as:

LET origin: Nat2 ; origin :=dot - cursor;
LET filled: Text; filled:= fill(text,origin+ size);
screen= '1/J(look(filled,origin,origin+ size))

We note that for a given dot and text, there is a certain degree of freedom
in choosing cursor and origin. Although the clause origin :=dot -cursor
suggests that the cursor must he chosen first, and that after that the origin
can he calculated, it can also he done the other way around. Actually we
prefer the latter approach for our implementation. Therefore we introduce
the origin by a quantifier. We rewrite origin = dot - cursor into cursor =
dot - origin and in this way we get an alternative but equivalent definition
of WI.

3 origin: Nat2

(cursor = dot - origin;
LET filled: Text; filled:= fill(text,origin+ size);
screen= '1/J(look(filled,origin,origin + size)))

Our screen-update strategy will he based on the idea of not moving the origin
unless this is really necessary. Therefore the editor must have a mechanism
for recalling the previous origin value. More precisely, the editor will keep
track of the previous origin value for each buffer separately. This is achieved
by introducing a variabie function origin: Buf - Na t 2 •

If we want to argue that WI holds then we we may do so by showing that
the value of this variabie origin for the current buffer makes the body of
the quantified assertion within WI true. In this way we get another predicate
which we shall name WI' '.

cursor = dot - origin(b) ;
LET filled: Text; filled:= fill(text,origin(b) + size);

5.6. IMPLEMENTING THE INTERNAL COMPONENTS 407

screen= ~(look(filled,origin(b) ,origin(b) + size))

where b denotes the current buffer. Clearly WI'' => WI. We also give the
precise definition in COLD-K:

PRED WI' ':
DEF LET b:Buf; b :• app(table,current);

cursor= p_sub(dot(b),origin(b));
LET filled: Text; tilled := fill(f(b),p_add(origin(b),size));
screen= printify(look(filled,origin(b),p_add(origin(b),size)))

So now WI has been transformed into WI'' which essentially consists of two
conditions of the following form:

cursor = dot(b) - origin{b) cl)
screen= ~(look(filled,origin(b) ,origin(b) + size)) c2)

We introduce the notations <pand ~P for pair-wise comparison of co-ordinates
with the meaning

(ob o2) <p (s1, s2) :<::> o1 < s1 1\ o2 < s2

(ob o2) ~P (s1, s2) :<:> 01 ~ s1 1\ 02 ~ s2

We consider WI'' in conjunction with the display invariant which among
other things states that cursor <p size. If we combine this with cl, we
obtain dot(b) <p origin(b) + size. Furthermore, when the subtraction
dot(b) - origin(b) is to yield a defined value, we must have origin(b) ~P
dot(b). In this way we get another condition, to he named c3, with the
property that cl => c3. This c3 depends on dot(b) and origin(b). The
important observation regarding this c3 is that once c3 holds, it is always
possible to make WI'' hold by 'assignments' to screen and cursor.

c3 :<::> origin(b) ~P dot(b) <p origin(b) + size

Both mod_dot_restore and mod_text_restore have to deal with two possi
bie situations: either c3 holds, which means that the old origin(b) value
is still usable, or c3 does not hold, which means that a modification of
origin(b) is inevitable.

Now we can give a first attempt in formulating our screen-update strategy.
We must get two procedures which serve for establishing WI' • aftera modifi
cation of the dot and/or the text. The first procedure serves for establishing
WI'' after a modification of the dot. We expect that updating the screen
will move the cursor, so we first adjust the screen and after that try to get
the cursor right. The definition below still is far from complete, and an ex-

408 CHAPTER 5. DESIGN OF A TEXT EDITOR

pression such as MOD origin(b): c3 ? is meant as shorthand for "modify
origin(b) such that c3 holds".

% PROC mod_dot_restore: ->
% DEF (c3 ?;
1. MOD cursor cursor dot(b) - origin(b) {cl} ?;

% NOT c3 ? ;
% MOD origin(b); c3 ? ;
% MOD screen, cursor screen= printify(...) {c2} ?;

% MOD cursor cursor = dot(b) - origin(b) {cl} ?
%)

So now, after dot has been modified, we can restore WI'' by invoking
mod_dot_restore.

The second procedure serves for establishing WI' ' after a modification of
both the dot and the text or of just the text alone. In general, we expect
that both the screen and the cursor must he updated, even in case the old
origin is still usable. Note that it is reasonable to expect that the cursor
needs updating, for even if it can essentially stay the same, then it probably
still will get messed-up by the screen updating.

%
%
%
%
%
%

PROC
DEF

mod_text_restore:
(c3 ?;

SKIP
NOT c3 ? ;

MOD origin(b);
) ;

->

c3 ?;

% MOD screen, cursor; screen= printfy(. . .) {c2} ?;

% MOD cursor cursor = dot(b) - origin(b) {cl} ?

Before we program mod_dot_restore and mod_text_restore, we have an
intermezzo for postulating a component dealing with display handling, by
which we mean updating the cursor and the screen of the physical device for
given desired cursor value and desired screen contents.

5.6.5 Specifying Display Handling

We introduce two procedures which take data from CONCEPT_VARS, or more
precisely, which take data from the concept cursor and the concept screen;
they transfer these data to the physical display device. The procedure
update_cursor makes the cursor equal to the concept cursor without af
fecting the screen. The procedure update_screen makes the screen equal to
the text represented by the concept screen, thereby possibly disturbing the

5.6. IMPLEMENTING THE INTERNAL COMPONENTS 409

cursor. There is also an initialisation procedure and an invariant . The latter
is called display_handling_inv.

We would like to add a remark about the module structure of the speci
fication given below. DISPLAY_HANDLING_SPEC is constructed in terms of
specification modules only (such as NAT_SPEC, DISPLAY_SPEC, and in fact
also CCURSOR_SPEC, CSCREEN_SPEC) and no reference is made to component
narnes (where we mean to those with COMP). To achieve this, we exploit the
fact that ABSTRACT _CSCREEN is parameterised. This is the reason for the
parameterisation: in the previous section ABSTRACT_CSCREEN was applied to
CSCREEN whereas here it is applied to CSCREEN_SPEC. In the next section
DISPLAY_HANDLING_SPEC will be used as a black-box description; the fact
that it is constructed in terros of specification modules only, guarantees that
the condition 'directly specified' of Chapter 3 is satisfied.

LET CCURSOR_SPEC :=
CLASS

SORT Nat
FUNC ccursor : -> Nat # Nat VAR
PROC set_ccursor: Nat # Nat -> MOD ccursor

END;

LET CONCEPT_VARS_SPEC :=
IMPORT CCURSOR_SPEC INTO
IMPORT CSCREEN_SPEC INTO
APPLY ABSTRACT_CSCREEN TO CSCREEN_SPEC;

LET DISPLAY_HANDLING_SPEC · •
IMPORT NAT_SPEC INTO
IMPORT DISPLAY_SPEC INTO
IMPORT CONCEPT_VARS_SPEC INTO
CLASS

PRED display_handling_inv: VAR

PROC init_display_handling: ->
MOD display_handling_inv

PROC update_cursor : ->
MOD display_handling_inv USE displ_op

PROC update_screen: ->
MOD display_handling_inv USE displ_op

410 CHAPTER 5. DESIGN OF A TEXT EDITOR

PRED pre:
DEF LET i:Nat, j:Nat; i,j :• ccursor;

lss(i,li) AND lss(j,co) AND f(cscreen)l

AXIOM [init_display_handling] display_handling_inv

AXIOM display_handling_inv AND pre •>
[update_cursor I update_screen] display_handling_inv

AXIOM display_handling_inv AND pre =>
[update_cursor] cursor = ccursor AND screen = PREV screen

AXIOM display_handling_inv AND pre =>
[update_screen] screen • f(cscreen)

AXIOM {TERMINATION}

END;

< init_display_handling > TRUE;
display_handling_inv AND pre => < update_cursor > TRUE;
display_handling_inv AND pre => < update_screen > TRUE

One might he tempted tothink that display_handling_inv needs not to he
in the modification listsof update_cursor and ofupdate_screen. Forthese
procedures are supposed not to viola te display _handling_inv and this is
guaranteed indeed if display_handling_inv cannot he modified. However,
this would he too strong, because it forbids an implementation of the proce
dures to change display_handling_inv from false to true.

5.6.6 DISPLAY ..HANDLING: a Postulated Component

After having specified display handling, we formally introduce a component
for it.

{~} COMP DISPLAY_HANDLING DISPLAY_HANDLING_SPEC;

5.6.7 lmplementing WLPACKAGE (continued)

As argued before, our screen-update strategy requires a variabie function
origin: Buf -t Nat2• We formally introduce this below.

5.6. IMPLEMENTING THE INTERNAL COMPONENTS

LET ORIGIN :=

APPLY APPLY APPLY RENAME
SORT Inst
SORT Iteml
SORT Item2
FUNC attr : Inst -> Iteml # Item2 TO origin,
PROC set_attr: Inst # Iteml # Item2 -> TO set_origin

IN COPY(ATTR2) TO BUF_INST TO NAT TO NAT;

411

TO Bu!,
TO Nat,
TO Nat,

We shall need two simple programming variables of sort Nat. They will he
used as loop-counters for processing two-dimensional arrays.

LET XX :=

APPLY RENAME
SORT Item TO Nat,
FUNC val: -> Item TO xx, .
PROC upd: Item -> TO upd_xx

IN COPY(SVAR) TO NAT;

LET YY :=
APPLY RENAME

SORT Item TO Nat,
FUNC val: -> Item TO yy,
PROC upd: Item -> TO upd_yy

IN COPY(SVAR) TO NAT;

After these preparations we can present the import structure of the imple
mentation of WI_PACKAGE.

We use TEXT_ VARS of Section 5.5.11, DISPLAY_HANDLING of Section 5.6.6,
ORIGIN of Section 5.6.7, XX, YY defined above and finally CONCEPT_VARS of
Section 5.6.4.

LET WI_PACKAGE_IMPL :=

IMPORT TEXT_VARS INTO
IMPORT DISPLAY_HANDLING INTO
IMPORT ORIGIN INTO
IMPORT XX INTO
IMPORT YY INTO
IMPORT CONCEPT_VARS INTO

CLASS

At some point in the execution of mod_ text_restore and mod_dot_restore
it will he necessary to build-up the contents of the concept-screen. Clearly

412 CHAPTER 5. DESIGN OF A TEXT EDITOR

this contents must he derived from the buffer named current. We shall
develop a procedure cscreen_build taking care for this. This procedure
can he viewed as the heart of a display-oriented editor, because it must
transform the 'block-with-positions' representation of a text into the desired
two-dimensional, fixed-size screen-contents. Furthermore it may not he too
inefficient because it will he invoked after every insert- or delete-command
during execution of an editor. It will take a few pages of work before we shall
have completed a detailed definition of this procedure.

We plan to make this cscreen_build such that it modifles cscreen,xx, yy,
mover, but nothing else and such that

cscreen! 1\ c3 1\ TI' =>
[cscreen_build]

f(cscreen)
=~(look(fill(t,origin(b)+size),origin(b),origin(b)+size))

where t = f (b, si ze (block(b)))

and where b denotes app(table (current)). We shall use a loop for copying
the relevant characters from the current buffer one by one into the csereen
array. We get a loop-invariant replacing the sub-term si ze (block(b)) in
the postcondition given above by mover: Nat. So this loop-invariant says
that the concept-screen contains printified and 'Procrustesed' version of an
initial fragment of the text in the current buffer. Furthermore we add the
assertion that mover: Nat2 corresponds tomover: Nat to the loop-invariant.

We could initially establish this loop-invariant by making f (cscreen) equal
toa text with blanks only and putting mover = 0. We adopt the idea of filling
the csereen array with blanks indeed, but we can improve with respect to
idea of putting mover = 0. The point is that everything before the origin
becomes irrelevant due to the application of the look operator. Therefore we
make the mover point initially to the position in the buffer which corresponds
with the beginning of the line containing the origin. The initialisation for
establishing this loop-invariant uses two procedures:

• clear_cscreen which puts blanks at all positions of cscreen,
• mover _ to_origin_line which puts the mover to the beginning of the

line containing the origin.

Let usalso discuss the termination condition for the loop of cscreen_build
already. Obviously the condition mover ~ size (block(b)) would do the
job, but again it is easy to do better than that. The point is that everything
after origin(b) + size becomes irrelevant due to the application of the look
operator. Therefore we adopt the following termination condition

5.6. IMPLEMENTING THE INTERNAL COMPONENTS 413

mover ~ size(block(b)) V
vertical co-ordinate of mover ~ vertical co-ordinate of (origin(b) + si ze)

where b denotes app(table (current)). The procedure clear_cscreen serves
for putting blanks at all positions of cscreen. It uses xx and yy as loop
counters.

PROC clear_cscreen: ->
DEF upd_xx(O);

(NOT xx = li ? ;
upd_yy(O);
(NOT yy .. co ?;

upd(cscreen,xx,yy,blank);
upd_yy(succ(yy))

) *; yy - co ? ;
upd_xx(succ(xx))

)*; xx=li?

The procedure mover _ to_origin_line should make the mover move towards
the beginning of the line containing the origin. We use an auxiliary v _eq to he
used in formulating the stop-criterion of the loop of mover _ to_origin_line:

PRED v_eq: Nat # Nat # Nat # Nat
PAR ml:Nat,m2:Nat,ol:Nat,o2:Nat
DEF ml = ol

Now we program mover_to_origin_line and we begin with an efficiency
consideration. We exploit that, for large texts, the origin is likely to he
much closer to the position of the dot than to the begin of the text. Note
that the dot, due to our invariant WI'' (implying c3), never precedes the
origin. Therefore we always have to carry out a backward scan, starting
from the dot. For this scan we shall employ several 'assignments', where
set_mover(left(b,mover)) changes mover: Nat whereas
set_mover1(pred(mover1)) affects mover: Nat # Nat. Note that we have
moverl: Nat which is the same as the vertical coordinate of mover: Nat #

Nat. For the introduetion of these movers we refer to TEXT_VARS inSection
5.5.11.

For mover _ to_origin_line we employ a loop, whose invariant includes the
assertion that the vertical co-ordinate of mover:Nat2 (i.e. moverl) corre
sponds to mover:Nat. Formally this is moverl = m 1 where (m1,m2) =
reach(f (b ,mover: Nat)) and where b is the relevant buffer. The horizontal
co-ordinate mover2 is irrelevant during execution of the loop and afterwards
it will he made equal to 0. Furthermore the assertion that the mover does

414 GRAPTER 5. DESIGN OF A TEXT EDITOR

not preeede the origin is part of the invariant as well. More precisely, we
have the assertion o1 ~ m 1 where (oh o2) = origin(b) and where (m1 , m 2)

= reach(f (b ,mover: Nat)). When the beginning of thé line containing the
origin has not been reached yet, it is easy to maintain the invariant by letting
mover: Nat go one position leftwards and adapting moverl correspondingly.
For adapting moverl, two situations arise: either the leftward step crossed a
line-boundary line, in which case moverl must he decremented, or the left
ward step took place within the same line, in which case moverl must keep
its value.

PROC mover_to_origin_line: But ->
PAR b:But
DEF set_mover((dot(b)):Nat);

set_mover((dot(b)):Nat #Nat);
(NOT (v_eq(mover,origin(b)) AND bolp(b,mover))?;

set_mover(lett(b,mover));
(eolp(b,mover) ?; set_moverl(pred(moverl))
I NOT eolp(b,mover) ?; SKIP
)

) *: (v_eq(mover,origin(b)) AND bolp(b,mover))?;
set_mover2(0)

We introducesome more simple auxiliaries for camparing co-ordinate pairs.

PRED v_geq: Nat # Nat # Nat # Nat
PAR ml:Nat,m2:Nat,ol:Nat,o2:Nat
DEF geq(ml,ol)

PRED h_geq: Nat # Nat # Nat # Nat
PAR ml:Nat,m2:Nat,ol:Nat,o2:Nat
DEF geq(m2,o2)

PRED h_lss: Nat # Nat # Nat # Nat
PAR ml:Nat,m2:Nat,ol:Nat,o2:Nat
DEF lss(m2,o2)

To keep the actual definition of cscreen_build readable, weneed two more
auxiliaries. The first is a predicate called built and it describes the termi
nation condition as discussed before.

PRED built : But
PAR b:But
DEF geq(mover,size(block(b))) OR v_geq(mover,p_add(origin(b),size))

FUNC size: -> Nat # Nat

5.6. IMPLEMENTING THE INTERNAL COMPONENTS 415

DEF li,co

The predicate in_window serves for finding out if the moveris at a position
which contributes to the term
1/J(look(fill(t ,origin(b) + size) ,origin(b) ,origin(b) + size)) from
the postcondition of cscreen_build. In fact in_window only tests the hor
izontal co-ordinate of mover, which is safe if we know that the vertical co
ordinate of mover is within the limits given by origin(b) and origin(b)
+ size. For this reason we must formally add one more conjunct to the
loop-invariant of cscreen_build, viz.

vertical co-ordinate of origin(b) ~ vertical co-ordinate of mover

We easily define in_window using h_geq and h_lss.

PRED in_window: Buf
PAR b:Buf
DEF h_geq(mover,origin(b)) AND h_lss(mover,p_add(origin(b),size))

This concludes the preparations for cscreen_build. lts outline is

"initialisation"
(NOT built(b) ?;

(NOT in_window(b) ?; SKIP
I in_window(b) ?; "copy char unless it is ctr_j"
) ;

"increment mover"
) *: built(b) ?

Finally we fill all the details.

PROC cscreen_build: Buf ->
PAR b:Bu:f
DEF clear_cscreen;

mover_to_origin_line(b);
(NOT built(b) ?;

(NOT in_window(b) ?; SKIP
I in_window(b) ?;

LET c:Char; c := cont(block(b),mover);
(c = ctr_j ?;

)

) ;

SKIP
NOT c • ctr_j ?;

upd(cscreen,p_sub(mover,origin(b)),printify(c))

416 CHAPTER 5. DESIGN OF A TEXT EDITOR

(cont(block(b),mover) • ctr_j ?;

set_moverl(succ(moverl));
set_mover2(0)
NOT cont(block(b),mover) = ctr_j ?;

set_mover2(succ(mover2))
) ;
set_mover(right(b,mover:Nat))

) *; built(b) ?

We introduce predicates p_lss and p_leq for the pair-wise comparison of
co-ordinates (<p and ~P) and the operations p_add and p_sub for pair-wise
addition and subtraction. We also introduce the condition c3 as discussed
before in Section 5.6.4.

PRED p_lss: Nat # Nat # Nat # Nat
PAR ol:Nat, o2:Nat, sl : Nat, s2:Nat
DEF lss(ol,sl) AND lss(o2,s2)

PRED p_leq: Nat # Nat # Nat # Nat
PAR ol:Nat, o2:Nat, sl:Nat, s2:Nat
DEF leq(ol,sl) AND leq(o2,s2)

FUNC p_sub : Nat # Nat # Nat # Nat -> Nat # Nat
PAR dl:Nat, d2:Nat, ol:Nat, o2 :Nat
DEF sub(dl,ol), sub(d2,o2)

FUNC p_add: Nat # Nat # Nat # Nat -> Nat # Nat
PAR ol:Nat, o2:Nat, sl:Nat, s2 :Nat
DEF add(ol,sl), add(o2,s2)

PRED c3: Buf
PAR b:Buf
DEF p_leq(origin(b),dot(b)) AND

p_lss(dot(b),p_add(origin(b),size))

The following detailed version of mod_dot_restore uses the old origin value,
if possible. If this is not possible, then it applies the following strategy both
for the vertical and horizontal co-ordinate of the origin: first try zero, but if
zero is not acceptable, then choose the origin co-ordinate such that the cursor
gets centeredon the screen. In order to implement this idea of eentering we
need two auxiliaries:

FUNC half_li: -> Nat
DEF di v(li, 2)

5.6. IMPLEMENTING THE INTERNAL COMPONENTS

FUNC half_co: -> Nat
DEF di v(co, 2)

PROC mod_dot_restore: ->
DEF LET b:Buf; b : = app(table,current);

(c3(b) ?;

SKIP
NOT c3(b) ?;

LET dl:Nat,d2:Nat; dl,d2 :• dot(b);
set_origin(b,(lss(dl,li) ?; 0

I NOT lss(dl,li) ?; sub(dl,half_li)
).

(lss(d2,co) ?; 0
I NOT lss(d2,co) ?; sub(d2,half_co)
)) ;

cscreen_build(b);
update_screen

) ;
set_ccursor(p_sub(dot(b),origin(b)));
update_cursor

417

This mod_dot_restore has the property to restore WI in the sense that TI • 1\

wi_package_inv => WI => [mod_dot] [mod_dot_restore] WI. Just for
completeness we also show what it means to 'modify dot' at the representation
level.

PROC mod_dot: ->
DEF LET t:Text;

t :• f(app(table,current));
USE set_dot: Buf # Nat ->, set_dot: Buf # Nat # Nat ->,

set_mover: Nat ->, set_mover: Nat # Nat ->,
set_gapl, set_gap2

END;
f(app(table,current)) • t AND TI' ?

Along the same lines we obtain a detailed version of mod_ text_restore.

PROC mod_text_restore: ->
DEF LET b:Buf; b := app(table,current);

(c3(b) ?;

SKIP
NOT c3(b) ?;

LET dl:Nat,d2:Nat; d1,d2 := dot(b);
set_origin(b,(lss(dl,li) ?; 0

I NOT lss(dl,li) ?; sub(dl,half_li)

418

) ;

CHAPTER 5. DESIGN OF A TEXT EDITOR

) .
(lss(d2,co) ?; 0
I NOT lss(d2,co) ?; sub(d2,half_co)
))

cscreen_build(b);
update_screen;
set_ccursor(p_sub(dot(b),origin(b)));
update_cursor

To complete WI_PACKAGE_IMPL, we must give the definitions ofwi_package_inv
and the initialisation procedure ini t_wi_package, and repeat the definitions
of WI and WI '.

PRED wi_package_inv:
DEF cscreen! AND display_handling_inv

PROC init_wi_package: ->
DEF upd_cscreen(create:Array2);

init_display_handling

PRED WI : %as inSection 4.6.12
PRED WI': % as inSection 6.6.12

END;

% COMP WI_PACKAGE : WI_PACKAGE_SPEC :• WI_PACKAGE_IMPL;
% this is to replace an earlier primitive component.

5.6.8 lmplementing DISPLAY _HANDLING

Now it is time to develop algorithms for the procedures update_cursor and
update_screen. Updating the cursor poses no problem, but updating the
screen is not trivia! at all. The development of update_ screen will be guided
by efficiency considerations.

We assume that thesending of command-messages to the display is relatively
slowand that it is a possible bottleneck in the execution speed of the editor.
Of course this assumption depends on the precise nature of the communi
cation mechanism between the computer which executes the editor program
and the display device. If we consider a VT102 type terminal and a 1200
Baud serial communication link our assumption is quite right.

The simplest algorithm, of rewriting the entire screen every time when

5.6. IMPLEMENTING THE INTERNAL COMPONENTS 419

update_screen is called, is considered prohibitively expensive in termsof the
number of display cammand-messages issued. Therefore it seems worthwhile
trying to economize on the use of these messages. The key observation is that
duringa typical edit session, most keystroke-command invocations require in
fact only a modification of a small fragment of the contentsof the screen. In
such situations the editor only needs to direct the cursor towards the place
where the modifications must take place and then overwrite the old screen
contents there.

In order to do so, the editor needs keep track of the contents of the ac
tual screen and of the actual cursor position. For this purpose we introduce
a so-called shadow-administration of the screen and the cursor. This ad
ministration takes the shape of a two-dimensional array of characters for
the shadow-screen and a programming variabie of type Nat2 for the shadow
cursor. In view of the similarity with the variables of CONCEPT_ VARS, it seems
appropriate to do a re-use at textual level.

LET SHADOW_VARS :=
RENAME

FUNC ccursor1 -> Nat TO scursor1,
FUNC ccursor2 -> Nat TO scursor2,
FUNC ccursor -> Nat # Nat TO scursor,
PROC set_ccursor1 : Nat -> TO set_scursor1,
PROC set_ccursor2 : Nat -> TO set_scurs.or2,
PROC set_ccursor Nat # Nat -> TO set_scursor,
FUNC csereen -> Array2 TO sscreen,
PROC upd_cscreen Array2 -> TO upd_sscreen

IN COPY(CONCEPT_VARS);

We shall need two simple programming variables of sort Nat. They will he
used as loop-counters for processing two-dimensional arrays.

LET II :=

APPLY RENAME
SORT Item TO Nat,
FUNC val: -> Item TO ii,
PROC upd: Item -> TO upd_ii

IN COPY(SVAR) TO NAT;

LET JJ :=

APPLY RENAME
SORT Item TO Nat,
FUNC val: -> Item TO j j •
PROC upd: Item -> TO upd_j j

IN COPY(SVAR) TO NAT;

420 CHAPTER 5. DESIGN OF A TEXT EDITOR

The definition of display_handling_inv is nothing but a formalisation of
the idea of maintaining a shadow-administration. We also immediately give
the corresponding initialisation procedure ini t_display_handling for es
tablishing this invariant. The initialisation uses a procedure clear _a screen
which is invoked by init_display_handling. This procedure clear_sscreen
serves for putting blanks at all positions of sscreen. It uses ii and j j as
loop-counters and it is very similar to the procedure clear_cscreen as in
troduced inSection 5.6.7. In init_display_handling we use the procedure
cl from DISPLAY to clear the entire screen.

LET DISPLAY_HANDLING_IMPL :=

IMPORT NAT INTO
IMPORT CHAR INTO
IMPORT DISPLAY INTO
IMPORT TEXT_OPS2_SPEC INTO
IMPORT CONCEPT_VARS INTO
IMPORT SHADOW_VARS INTO
IMPORT II INTO
IMPORT JJ INTO

CLASS

PRED pre: %as inSection 6.6.6

PRED display_handling_inv:
DEF cursor • scursor AND screen = !(sscreen)

PROC init_display_handling: ->
DEF cl;

upd_sscreen(create:Array2);
clear_sscreen;
set_scursor(O,O)

PROC clear_sscreen: ->
DEF upd_ii(O);

(NOT ii = li ?;

upd_jj(O);
(NOT jj "' co ?;

upd(sscreen,ii,jj,blank);
upd_j j (succ (j j))

) *; j j - co ? ;
upd_ii(succ(ii))

) *; ii = li ?

5.6. IMPLEMENTING THE INTERNAL COMPONENTS 421

The procedure update_cursor is easy. We use the procedure cm from DISPLAY
for moving the cursor.

PROC update_cursor : ->
DEF (scursor • ccursor ?; SKIP

I NOT scursor = ccursor ?;

cm(ccursor);
set_scursor(ccursor)

)

The procedure update_screen is more complicated. The complication comes
from the fact that we want to avoid rewriting the entire screen when certain
parts of it are in fact still right. We decompose this procedure in a kind of
top-down approach (at procedure level rather than at component level). The
procedure update_screen contains a loop with ii serving as a loop-counter.
lts invariant is given by

display _handling_inv 1\ ii ~ li 1\

V i: Nat (i< ii => (sel(screen,i) = g(cscreen,i)))

So the relation between screen and its shadow-administration asereen is
always maintained and so is the relation between cursor and scursor. The
correspondence between the real screen and the concept screen (cscreen) is
enforced line after line.

PROC update_screen: ->
DEF upd_ii(O);

(NOT ii = li ? ;
update_line;
upd_ii(succ(ii))

) *: i i = 1i ?

where the procedure update_line is to be detailed bèlow.
This update_line should enforce the relation

sel(screen,ii) = g(cscreen,ii) = g(sscreen,ii)

I.e. it should make sure that the ii-th line arrives both on the screen and in
the shadow-administration. Furthermore scursor must be kept up-to-date
and neither ii nor the contentsof the other lines may be affected. We use a
loop with j j serving as a loop-counter. lts invariant is given by

display _handling_inv 1\ j j ~ co 1\

Vj:Nat (j<jj =>
(sel(sel(screen,ii),j) = val(cscreen,ii,j)))

422 CHAPTER 5. DESIGN OF A TEXT EDITOR

to which we should add that neither ii nor the contents of the other lines
may be affected.

PROC update_line: ->
DEF upd_jj(O);

(NOT jj = co ?;

update_character;
upd_jj(succ(jj))

) *; j j = co 1

where the procedure update_character is to be detailed below.
This update_character should enforce the relation

sel(sel(screen,ii),jj)
= val(cscreen,ii,jj)
= val(sscreen,ii,jj)

whereby it should keep scursor up-to-date and where all positions with co
ordinates (i,j) for i # ii V j < j j remain unchanged. We do not require
that only position (i i, j j) is affected. This is because we issue ce commands
insteadof writing blanks, as will be explained below.

We briefiy explain update_character. First it is tested if the contents of
the screen at position (ii, j j) happens to have the desired value already,
for in that case no action is required. We expect it to have the desired value
often, but if it has not, then the next step is to make sure that the cursor
gets at position (i i, j j).

When a blank must be written, a "clear to end-of-line" command is issued
and the corresponding modifications in the shadow-administration are made.
Note that when this happens, everything on the screen with co-ordinates in
{ (i, j) I i = ii 1\ j ~ j j} might change. The motivation for using "clear
to end-of-line" commands is is that we hope to gain efficiency because we
expect many lines in csereen to have trailing blanks.

When a non-blank character must be written, the shadow-administration
must be kept up-to-date again. We have to be careful with the updating of
scursor, because when a character is written, the horizontal co-ordinate of
the cursor is incremented by one, except when it is already at co- 1. In the
latter case the horizontal co-ordinate keeps its old value.

PROC update_character: ->
DEF (val(sscreen,ii,jj) = val(cscreen,ii,jj) ?;

SKIP
NOT val(sscreen,ii,jj) = val(cscreen,ii,jj) ?;

% if the cursor is not at (ii,jj) then put it there:

5.6. IMPLEMENTING THE INTERNAL COMPONENTS

)

) ;

scursor = (ii,jj) ?; SKIP
NOT scursor = (ii,jj) ?;

cm(ii,jj);
set_scursor(ii,jj)

(val(cscreen,ii,jj) blank ?;

ce;
sce
NOT val(cscreen,ii,jj) • blank ?;

print(val(cscreen,ii,jj));
upd(sscreen,ii,jj,val(cscreen,ii,jj));
(jj = pred(co) ?; set_scursor(ii,jj)
I NOT jj = pred(co) ?; set_scursor(ii,succ(jj))
)

423

Weusedan auxiliary sce to he given below. It serves for modifying asereen
corresponding to the effect of a "clear to end-of-line" (ce) operation on the
real screen. It has been programmed using recursion, which has the ad
vantage that we do not need another programming variable. We could also
use this sce to simplify clear_sscreen, but this would disturb the analogy
between clear_sscreen and clear_cscreen; of course we could redesign
clear_cscreen, but we prefer to avoid such unnecessary backtraking in the
development process. After all, the true reason for introducing sce lies here,
where weneed it as a 'shadow'-version of ce.

PROC sce: ->
DEF sce(scursor)

PROC sce: Nat # Nat ->
PAR i:Nat,j:Nat
DEF (j • co ?; SKIP

END;

I NOT j = co ?;
upd(sscreen,i,j,blank);
sce(i,succ(j))

)

% COMP DISPLAY_HANDLING :DISPLAY_HANDLING_SPEC:•DISPLAY_HANDLING_IMPL;
% this is to replace an earlier primitive component.

We conclude this section whith a remark. Although we tried to do better
than the simplest algorithm of rewriting the entire screen every time when

424 CHAPTER 5. DESIGN OF A TEXT EDITOR

update_screen is called, the resulting solution certainly is not optimal yet.
One reason for this lies in the relatively restricted set of terminal capabilities
which we assumed by adopting DISPLAY. Another reason is that we consider
the search for highly sophisticated screen updating-algorithms outside the
scope of this case study.

5.6.9 lmplementing ATTR2

It is not hard to give an implementation of ATTR2_SPEC using ATTR.

LET ATTR2_IMPL :m
LAMBDA X
LAMBDA Y
LAMBDA Z

EXPORT

CLASS SORT Inst FREE END OF
CLASS SORT Iteml FREE END OF
CLASS SORT Item2 FREE END OF

SORT Inst,
SORT Iteml,
SORT Item2,
FUNC attr Inst -> Iteml # Item2,
PROC set_attr : Inst # Iteml # Item2 ->

FROM
IMPORT X INTO
IMPORT Y INTO
IMPORT Z INTO

IMPORT
APPLY APPLY RENAME SORT Item TO Iteml IN COPY(ATTR) TO X TO Y

INTO

IMPORT
APPLY APPLY RENAME SORT Item TO Item2 IN COPY(ATTR) TO X TO Z

INTO

CLASS

FUNC attr: Inst -> Iteml # Item2
PAR i:Inst
DEF (attr(i),attr(i))

PROC set_attr: Inst # Iteml # Item2 ->
PAR i : Inst,v:Item1,w:Item2
DEF set_attr(i,v);

set_attr(i,w)

5.6. IMPLEMENTING THE INTERNAL COMPONENTS 425

END;

% COMP ATTR2 : ATTR2_SPEC := COPY(ATTR2_IMPL);
% this is to replace an earlier primitive component.

5.6.10 lmplementing SVAR

We give an implementation of SVAR_SPEC where the procedure upd has
been transformed into an algorithmic definition. We need not import any
other components. The definitions below are considered executable be
cause it is very obvious how they could he mapped onto classica! imperative
programming-language constructs. We could translate FUNC val: -> Item
VAR into a declaration var val: Item; in Pascal or just Item val; in C. An
assignment upd(i) would he translated into val := i in Pascal or val =
i; in C.

LET SVAR_IMPL :=
LAMBDA X : ITEM OF

IMPORT X INTO
CLASS

FUNC val: -> Item VAR

PROC upd: Item ->
PAR i:Item
DEF MOD val END; val = i 1

AXIOM FORALL i:Item (< upd(i) > TRUE)

END;

% COMP SVAR : SVAR_SPEC :• COPY(SVAR_IMPL);
% this is to replace an earlier postulated component.

5.6.11 lmplementing 'STRING'

We give an implementation using 'SEQ'.

LET 'STRING_IMPL' :•

IMPORT CHAR INTO

426 GHAPTER 5. DESIGN OF A TEXT EDITOR

IMPORT
APPLY RENAME

SORT Seq
SORT Item
SORT 'Seq'
SORT 'Item'

TO String,
TO Char,
TO 'String' ,
TO Char,

PRED seq_inv: TO string_inv
IN 'SEQ' TO

IMPORT CHAR INTO
CLASS

FUNC f: Char -> Char PAR c:Char DEF c
PRED eq: Char # Char PAR c :Char,d :Char DEF c = d
PRED i tem_inv: PAR NONE DEF TRUE

END

INTO

and the only thing we must program explicitly here is the operation less.
The definition for leas given below is derived from its specification (leas:
'String' # 'String') and the definition of leas: String # String given
in Chapter 4. The main goal of the transformation is to avoid evaluating sul>
expressions such as hd(s) and tl(s) when sis empty.

CLASS

PRED less: 'String' # 'String'
PAR s: 'String', t: 'String'
DEF eq(s,empty) {C}AND NOT eq(t,empty)

END ;

{C}OR (NOT eq(s,empty) {C}AND NOT eq(t,empty)
{C}AND (lss(ord(hd(s)),ord(hd(t))) {C}OR

hd(s) = hd(t) {C}AND less(tl(s),tl(t))))

% COMP 'STRING' : 'STRING_SPEC' := 'STRING_IMPL';
% this is to replace an earlier primitive component .

5.6.12 lmplementing ARRAY2

We can give an implementation using BLOCK.

LET ARRAY2_IMPL :z

5.6. IMPLEMENTING THE INTERNAL COMPONENTS

LAMBDA X: DOMAIN1 OF
LAMBDA Y: DOMAIN2 OF
LAMBDA Z: ITEM OF

IMPORT X INTO
IMPORT Y INTO
IMPORT Z INTO
IMPORT NAT INTO

IMPORT APPLY RENAME
SORT Block TO Array2

IN COPY(BLOCK) TO Z INTO

CLASS

PROC create: -> Array2
DEF alloc(mul(sizel,size2))

FUNC val: Array2 # Nat # Nat -> Item
PAR a:Array2,i :Nat,j:Nat
DEF cont(a,add(mul(i,sizel),j))

PROC upd: Array2 # Nat # Nat # Item ->
PAR a:Array2,i:Nat,j:Nat,x:Item
DEF store(a,add(mul(i,sizel),j),x)

END

% COMP ARRAY2 : ARRAY2_SPEC : • COPY(ARRAY2_IMPL);
% this is to replace an earlier primitive component.

427

Af ter this last design-transformation step deditor := td_step(deditor); we have
arrived at the situation that bot(deditor) = db, i.e. no further steps are required
and the top-down development process is completed.

5.6.13 Arriving at an Editor Design

This concludes our top-down development process and we formally state the
system of the design deditor·

SYSTEM WITEFA,MOREDOP,KEYBIND

A rough sketch of the design obtained in this way is given in Appendix D.
In a separate document [12], a number of diagrams are given which display

428 CHAPTER 5. DESIGN OF A TEXT EDITOR

the structure of the resulting design in detail.

5.7 Related work

Partsch [7] describes the specification and transformation process of a line
oriented editor using a sugared version of CIP-1. It is interesting to compare
this with the specification and implementation described before.

A text is considered as a sequence of lines, just as in our formalisation. In
the formal model of the editor, the text being edited is called the "current
text file" and it is modelled as a triple (t1 , l, t2), where t1 is the text before
the current line, l is the current line and t 2 is the text after the current line.

This conceptual model is in fact not changed during the subsequent trans
formation process. This should be contrasted with our design, where there is
more difference between the conceptual model of the text being edited (viz.
an ok sequence of lines with two co-ordinate pairs) and the chosen repre
sentation (viz. an array with a gap and a bunch of pointers and co-ordinate
pairs). We feel that, with our choice, we were in a better position for studying
issues of data reification, modularisation and information hiding.

It is interesting to compare our approach to data reification with Jones' ap
proach presented in [11]. As an example we take 'SEQ_SPEC' and 'SEQ_IMPL'
from Chapter 4 and Appendix A respectively. The specification introduces
the sort 'Seq' and an abstraction function f: 'Seq' -> Seq. Jones pro
poses similar functions, but calls them retrieve functions (usually denoted
as retr). In Jones' approach there are standardised proof obligations as
sociated with each abstraction function. The main difference with our ap
proach lies in the formal status of the proof obligations; in 'SEQ_SPEC' the
proof obligations are written down explicitly as a part of the specification.
These are the axioms labelled {ABSTRACTION}, e.g. containing the assertion
item_inv AND seq_inv => Vs,t:'Seq', i,j:'Item' ([LET u:'Seq';
u:= cons(i,s)] f(u) = cons(f(i),f(s))). In Jones' approach one
would have simHar assertions being part of the proof obligation. When
these obligations are fullfilled, i.e. when the proof is given, this shows in
Jones' terminology that cons: 'Item' # 'Seq' -> 'Seq' models cons:
Item # Seq -> Seq, where strictly, this statement is with respect to the
given abstraction function (f: 'Seq' -> Seq). In our approach, the prin
ciple of black-box correctness gives rise to the statement f f- 'SEQ_IMPL' Ç
'SEQ_SPEC' where f provides information about BOOL, NAT, INST, ATTR etc.
Showing this statement amounts to proving the axioms in 'SEQ_SPEC' from
the definitions in 'SEQ_IMPL'. So essentially the same specification tech
niques and proof obligations are used, but the difference lies in the formal

5.8. LOOKING BACK 429

status of the abstraction functions and the proof obligations.

Let us also compare our work with the EMACS editor [4]. We maintained
a kind of compatibility with EMACS at the level of procedure names. Also
the chosen representation of texts is somewhat simHar to the representation
chosen in EMACS. Without doubt, from the viewpoint of its amount of
features and also of its efficiency the EMACS editor is superior to the editor
constructed in this chapter. However, no attempts have been made to give a
formal specification of it and as a consequence many features are of an ad-hoc
nature. In this context we like to point out that our approach has by no means
been pushed to its limits by this case study, and that certainly extensions
and improvements to the current design can he made. The documentation of
this EMACS takes the shape of comments in the C program text; but here we
touch the weak spot of the EMACS design. For example, its so-called ultra
hot screen management package contains an explicit warning which suggests
that the reader should not even try to understand this module, let alone
make a modification in it. This is quite unacceptable from a methodological
point of view and we feel that in this respect we did a better job.

5.8 Looking Back

In this section, we shall in restrospeet summarise the main lines of the work
presented in this chapter. For an evaluation and conclusions we refer to
the next section (5.9). One of the main purposes of constructing the design
presented in this chapter was to illustrate the notions of component, black
box description and design as described in Chapter 2 and the correctness
preserving transformations studied in Chapter 3. Furthermore we wanted to
show how the language COLD-K can heusedas a tool for developing complex
systems. Therefore, let us explicitly point out some of the interesting points
encountered during this casestudy.

In Section 5.2 we established the top dt of the editor design which was easy
in view of the preparatory work of Chapter 4. This lead to the following
conjunct of the post-condition of the development process:

top{ d•ditor) = dt

InSection 5.3 we established the bottorn of the editor design. We had toenter
a kind of specification phase in order to descri he the available primitives. This
lead to another conjunct of the post-condition of the development process:

430 CHAPTER 5. DESIGN OF A TEXT EDITOR

In Section 5.5 we began a top-down development process, starting with
the system components KEYBIND, MOREDOP and WITEF A. When implement
ing KEYBIND and MOREDOP we were lucky in the sense that we could do so in
a rather trivial way. This was possible because the black-box descripions of
these components were already in the right form.

The next component tobedealt with was WITEFA and due to its complexity
and the axiomatic style of its description, it was far less trivial to imple
ment. Another complication was the fact that we aimed at a high efficiency
in terms of memory usage. Implementation of WITEF A began with choosing a
suitable representation of marked texts. This was a crudal step in the devel
opment process and it was guided by efficiency considerations, both in terms
of execution time and memory usage. Making this representation choice can
be viewed as a data reification step. Programming of the various editing
operations of the window-and-text facility had to be postponed in order to
introduce the basic machinery of abstraction functions and representation
invariants which was needed for this data reification.

The knowledge of the algebraic systems related to the concept of text as
investigated in Chapter 4 turned out useful. We decided to store texts as
block-with-positions which was introduced as a variant of the string repre
sentation of texts. We decided to the store dot and mark in two ways. First
of all they were stored as natural numbers and secondly their homomorphic
images under the reach operation were stored as well - redundantly. The
collection of algebraic systems studied in Chapter 4 immediately provided a
collection of alternative ideas for this representation: we could have adopted
the string representation or we could have added profiles redundantly.

Insection 5.6 the top-down development process was continued. The newly
postulated components were implemented which lead again to the introdue
tion of new components etc. This went on until at the end of Section 5.6
only the primitives given in Section 5.3 were left.

Let us discuss the well-known advantages and disadvantages of top-down
development in the context of this Section 5.6. The main advantage is the
possibility of having a separation of concerns. When implementing WITEFA
we needed not worry about the problems of satisfying the window-invariant
WI, except for the simple fact that at the end of every buffer modification
we inserted a mod_dot_restore or mod_ text_restore invocation. The fact
that at that phase of the development process there was no implementation of
mod_dot_restore or mod_text_restore available made it impossible to use
hidden implementation details. This is an illustration of Chapter 3 remark
3.4.9. (ii). The disadvantage of top-down development is that one has to take
a certain risk by postulating components; for WI_PACKAGE it was not entirely

5.8. LOOKING BACK 431

clear in advance that sufficiently efficient algorithms for mod_text_restore
and mod_dot_restore could he found.

The next component to he implemented was WI_PACKAGE and again we found
a workable decomposition of its functionality by adopting a two-phase ap
proach for the execution of its procedures. The interface was given by the
data structures of CONCEPT_VARS which includes a two-dimensional array.
We had to postulate a component
DISPLAY _HANDLING thereby getting the possibility of not worrying (yet) about
the actual screen-updating. Later, when implementing DISPLAY_HANDLING
we were able to demonstrate how the postcondition specification and the
efficiency requirements guided us quite elegantly to an algorithm which per
farms much better than the simplest algorithm, of rewriting the entire screen
every time.

Furthermore we had to implement some data type components such as ATTR2,
SVAR etc. Finally at the end of Section 5.6 we arrived at the situation

where furthermore the black-box correctnessof dtditor could he assumed.

Our approach with respect to the degree of formalisation was based on the
so-called rigorous approach; the black-box descriptions and the glass-box
descriptions are in a formallanguage, but there are no forma! proof objects
as such. This means that there is no absolute certainty about the black
box correctness of deditor but the degree of formalisation allows for a fast
and convincing analysis of the correctness of a certain component when the
suspicion arises that there is a weak spot.

In the Appendix A we give a design dbtuic such that the composition of dtditor

and dbtuic is black-box valid. This means that we can construct the design

dtditor 0 dbtuic

whose black-box correctness follows from the black-box correctness of deditor

and dbtuic and the black-box validation of their composition by Chapter 3
lemma 3.3.14 (ii). Very much in the same way one could conceive another
design, dtop-l4yer say, where we could add more sophisticated features to the
editor, such as dynamic keybinding and programmability. Such a layer would
yield another example of the o operator when we would construct dtop-l4yer o
dtditor· We had to restriet ourselves, and we undertook the construction of
dba.oic but we spent no effort on dtop-layer·

The design deditor o dbtuic was the starting point for an activity of system in
tegration and code generation. This was performed manually, which was

432 GRAPTER 5. DESIGN OF A TEXT EDITOR

doable, but which in fact also can be automated. In Appendix C we give
the C program resulting from the composition of the editor design and the
design of Appendix A. In Appendix C we briefly discuss some of the technica}
points which arose during this manual process of code generation.

5.9 Evaluation

After all the effort spent on the editor case-study, it is time to evaluate the
entire approach and to drawsome conclusions.

lt is interesting to compare the relative sizes of the specification part of the
editor (Chapter 4) and the implementation part (this chapter), which do not
differ very much. At first sight this might seem strange, for one might expect
specifications to be abstract and hence compact, whereas implementations
tend to be complicated by efficiency considerations and executability con
straints. So, we seem to have the situation I spec I ~ I impll whereas one
might expect I spec I ~ I impll. In order to explain this, let us analyse the
situation in more detail. First of all, the chapter on the specification part
of the editor (Chapter 4) is more than just the specification of one editor:
it also contains a general-purpose library of standard modules (BOOL_SPEC,
NAT_SPEC, CHAR_SPEC etc.), a formalisation of the application domain which
is text editing and also models of the interfaces of the editor with its envi
ronment, viz. the display and the file-system. If we consider these things as
a vocabulary which is not a part of the actual editor-specification, we get a
much more restricted notion of 'specification'. Assuming the latter notion
of specification, we have that I spec I ~ tl (Chapter 4) I· But it would not be
fair to conclude that thus the specification is much smaller than the imple
mentation indeed, because when we have a closer look to the structure of
this chapter, we see that it contains much more than just 'implementations'.
First of all we have again the phenomenon that the interfaces of the im
plementations are made explicit (INST_SPEC, ATTR_SPEC, BLOCK_SPEC etc.).
Secondly this chapter contains much more than one monolithic implementa
tion, but a large part of it consists of intermediate specifications, i.e. black
box descriptions of internal components (ATTR2_SPEC, WI_PACKAGE_SPEC,
DISPLAY_HANDLING_SPEC etc.). It is also worth noting that formally all texts
from Chapter 4 are part of the final composite design deditor o dbiUic· Certain
operations from the specification are already executable and are used in that
way indeed (e.g. cut and paste operations on reaches). To give some fig-

. ures: I deditor I ~ 4000 lines whereas the C translation of the final composite
design I C(deditor o dba.tc) I~ 2000 lines. Many partsof the COLD texts which
are translated yield, roughly speaking, one line C text for each line of COLD

5.9. EVALUATION 433

text. In terms of 'number of lines', db<uic does not contri hu te much to the total
composite design. To conclude our analysis, we see that I spec I ~ I impll is a
rather imprecise statement, due to the presence of general-purpose descrip
tions and intermediate-level descriptions. Our designs contain much more
than just a top-level specification of the product and its implementation:
they contain much additional descriptions, making various notions and in
terfaces explicit, which is necessary for reasoning about program-correctness
and for making the resulting product maintainable.

Now we turn our attention to the evaluation of the usefulness of COLD-K
for the development of a complex system - as this editor is. The fact that
COLD-K is a wide-spectrum language turned out very useful: we used both
axiomatic descriptions (e.g. in the library) and algori thmic definitions (cut
and paste operations on texts, implementation of the editor operations etc.).
Furthermore we used both static descriptions (e.g. in the library and for
all opera ti ons on texts) and state-based descriptions (e.g. for the display,
the file-system, the editor operations, blocks, buffers etc.). In this way we
were able to choose among several styles of descriptions, depending on the
partienlar problem at hand, and also depending on matters of naturalness
and even of taste. This can he considered as an advantage of COLD-K over
more restricted formalisros such as algebraic specification languages.

We were able to mimiek both the algorithmic constructs and the data-types of
languages such as Pascal and C very well, although of course a code-generator
would have been of help. The task of translating COLD-K texts to C did
not take much time (5% of the total timespent on this casestudy, say) but
there are additional advantages of having an automatic code-generator, viz.
the standardisation of the translation and the possibility to do prototyping.
There are no fundamental technical obstacles for the construction of such
a code-generator for a reasanabie subset of COLD-K (or some other COLD
version). This should he viewed as an advantage, which in the future could
leadtoa further increase in attractiveness of the approach where the theory
of Chapter 2 and Chapter 3 is instantiated by COLD-K. A weak point of the
current manual approach is that maintaining the consistency of the COLD-K
text and the C text must he done manually as well. When making design
modifications or when correcting design errors (yes, we made some), a very
error-prone situation arises.

Let us have a look at the syntax of COLD-K, which at some points is not
optimal with respect to user-friendliness. For example insteadof add(p,q)
one would like to write p + q and also one would like to have short notations
for the frequently occurring renaming and application expressions of param
eterised data types, writing SEQ [Nat] instead of APPL Y REN AME SORT Item
TO Nat IN SEQ TO NAT. Language versionsof COLDareon their way where

434 CHAPTER 5. DESIGN OF A TEXT EDITOR

this will be remedied but at the time this casestudy was done, no such ver
sion was available yet. Anyway it was worthwhile to undertake one or more
serious applications with COLD-K before embarking on the construction of
yet another language version. Furthermore, as this case study shows, the fact
that certain syntactic sugar is missing is not essential for the applicability of
the language. It might lead to writing 50% more text, say, and some clumsy
notations but that is no serious obstacle for applicability, of course. The
availability of powerful abstraction mechanisms and structuring mechanisms
is much more essential.

As a next topic we shall review the resulting editor, viewed as a product plus
its documentation. The editor design takes reasonable efficiency considera
tions into account, based on the assumptions that display communication is
expensive and that any a-priori restrietion to the size of the texts would be
unacceptable. Furthermore we assumed that the ratio
I text stared I/ I memory used I should be close to 1 rather than Î• and this has
been achieved by using dynamic memory allocation primitives and the tech
nique of having a movable gap in each buffer. Also the implementations of
strings and tables are quite efficient; in fact the tables even could have been
simpler for the restricted use made of them when employing the editor via
KEYBIND {there are only 3 names) . Ifwe would undertake the construction of
a higher-level design dwp-1411." the complications of our table implementation
could turn out worthwhile. There are also certain operations which have
a relatively poor performance, but in these cases it is also easy to see why
this is the case and how to improve it when needed. An example of this is
the insert_file operation which takes 43 seconds to insert a lOOK text-file
on a SUN 3/50. As it turns out, this operation spends 70% of its time to
paste {0, 1) reaches in the pair-wise mark and reach attributes. But there
is an obvious black-box correctness preserving glass-box modification {bbc
preserving gb-mod in the terminology of Chapter 2) to remedy this: modify
WITEFA_IMPL to make insert_file operate on the buffer directly insteadof
via insert_character and use two auxiliary counters of sort Nat to keep
track of the reach of the inserted text; in this way the new mark and the new
reach can be found by just one application of paste for each.

Let us have a look at the efficiency of some typical editor operations: to
insert a character at the end of a short (i.e. < co - 1) line takes 58 ms,
which is fast enough to respond to manual typing. To insert a character
at the beginning of a typical text line (= 40 characters, say) takes about
100 ms; the 100 ms is when using a VTlOO emulation on a SUN whereas
this time is three or more times higher when using a 1200 Bd terminal con
nection. In the latter case the terminal conneetion has become the bot
tleneck. To perfarm a wri te_named_file operation takes 2.5 seconds for

5.9. EVALUATION 435

a lOOK text-file. We 'profiled' the editor during a short typical edit ses
sion where a 70 lines document was updated by addition of a few lines of
text and several other small modifications. As it tumed out, the editor
spent 87% of time on mod_text_restore and 1.5% on mod_dot_restore.
These mod_ .. . _re a tore's invoke cscreen_build and update_screen and
the editor spent 61% and 25% of its time on the latter two procedures re
spectively. The execution speed of most typical editor operations depends
neither on the number of lines in the text being edited nor on the posi
tion of the dot - obvious exceptions being search_forward, insert_file
and wri te_named_file. So when inserting characters, it does not matter
whether the dot is at the begining of a short text or in the middle of a lOOK .
text. This advantage is due to our choice of the buffer data structures and
the mover _ to_origin_line algorithm. The resulting editor has been used
on several occasions and it turns out to he usable, though of course it is not
the fastest and most sophisticated editor currently available. We conclude
that theeditoris quite usabiefroman efficiency point of view, but this does
not mean that it is a true product which is ready forsales and distribution
- this was not the purpose of the case study after all. Especially when con
siclering the moderate assumptions on the display-capabilities and the fact
that wetook no special efforts to push the execution speed to its limits, we
can from an efficiency viewpoint regard the editor experiment as relatively
successful.

We must also review the documentation of the editor, which consistsof Chap
ter 4 and this chapter. It provides for a formal description of all functional
aspectsof the editor design as wellas for informal explanations. The strong
point of our approach is that all interfaces with the environment of the editor
have been made explicit and that there are specifications at several levels.
This documentation (Chapter 4 and this chapter) is quite voluminous and
maybe it is hard work fora reader to get completely through it, but it is im
portant to realise that these chapters contain a complete description of the
editor design, including all details of its interfaces and with very accurate
specifications of all data-types involved; furthermore we dealt with various
exceptional cases which tend to complicate the design, such as the case of
the cursor reaching the end of a line or the bottorn of the screen, the case of
trying to move the dot rightwards when at the end of a text line etc. Alto
gether, this editor is a relatively large and complex software system. It can
be expected that due to its completeness and its component structure, the
editor design will be 'robust' for various farms of design evolution and effi
ciency improvements. The theory of correctness-preserving transformations
on designs from Chapter 2 and Chapter 3 is applicable here: in particular,
since the principle of black-box correctness has been adopted, many effi
ciency improvements can take the shape of black-box correctness preserving

436 CHAPTER 5. DESIGN OF A TEXT EDITOR

glass-box modifications - meaning that there is a 'locality principle' which
can yield a significant reduction of the verification task. It can he expected
that this editor provides an excellent starting point for further optimisations
and extensions. By way of example we mention two such extensions: to add
multi-window features to the editor and to add a layer of dynamic keybinding
and programmability.

We shall now explicitly point out two places in the entire documentation
which can he considered as successul and elegant. These are the following:

• the formalisation of 'text', which lead to a rich colledion of algebraic
operations on texts and to the 'discovery' of elegant algebraic laws and
of several important homomorphic mappings,

• the description of the buffer data-structure which we could describe
completely formally together with its invariant properties (gapl(b) ~
gap2(b), dot(b) fl. gap(b) etc.) and several more subtie buffer properties
such as ready and space.

They show how forma! descriptions and efficiency considerations can go hand
in hand. Note how the ready and space properties play a central role in the
efficiency of dot-movements and text-modifications.

We must admit that the current documentation includes neither a user
manual nor diagrams showing some hierarchical decomposition of the editor;
but this should not he viewed as a weak point of our approach. On the
contrary, the forma! specification of the editor provides an excellent starting
point for writing a user manual - which is something different from the de
sign documentation. The fact that the entire design is available as a formal
text, makes it possible to have certain types of diagrams generated automat
ically, and indeed this has been done using van den Bos en van Ommering's
graphicallanguage POLAR. The reader is refered to [12] for the actual dia
grams- which are quite helpful. These diagrams show how the various bits
and pieces are put together, by means of a compact presentation-in-the-large
of both deditcr and dbanc. This should he compared with the situation often
encountered in current industrial practice, where the diagrams come instead
of essential design documentation.

To conclude, let us once more explicitly reeall the main achlevement of the
editor casestudy which is that it providesus with a large and realistic exam
ple of the notion of design developed in Chapter 2 and several applications
of the theory concerning design transformations from Chapter 3.

437

Bibliography

[1] H.B.M. Jonkers. Introduetion to COLD-K, in: M. Wirsing, J.A.
Bergstra (eds), algebrak methods: theory, tools and applications
Springer Verlag LNCS 394 (1989), pp. 139-205.

[2] L.M.G. Feijs. Systematic Design with COLD-K- an annotated example
-.Dec. 1987. ESPRIT document METEOR/t8/PRLE/3.

[3] L.M.G. Feijs, H.B.M. Jonkers. First course on COLD-K, March-April
1988, Nat. Lab. document.

[4] Grace Rohlfs. Unipress Emacs screen editor. Unipress Software 2025
Lincoln Hwy. Edison, NJ 08817 201-985-800 Telex 709418

[5] D.E. Knuth, J.H. Morris, V.R. Pratt. Fast Pattern Matching in Strings,
SIAM J. Comput. Vol6, No 2, June 1977 pp 323-350.

[6] N. Wirth, Algorithms + Datastructures =Programs. Prentice-Hall, inc.
1976. ISBN 0-13-022418-9.

[7] H. Partsch, From informal requirements toa running program: a case
study in algebrak specification and transfonnational programming. In
ternal Report 87-7, Department of Informaties, Faculty of Science, Uni
versity of Nijmegen.

[8] B.W. Kernighan, D.M. Ritchie. The C Programming language. Prentice
Hall, inc. 1978. ISBN 0-13-110163-3.

[9] UNIX Interface Reference Manual. Part No: 800-1303-02, Revision G of
17 February 1986. Sun Microsystems lnc. 2550 Garcia Avenue, Mountain
View, CA 94043.

[10] Digital Equipment Corporation. VT102 Video Terminal User Guide.
EK-VT102-UG-003, 2nd Printing, June 1982.

[11] C.B. Jones. Systematic software development using VDM, Prentice-Hall
International, ISBN 0-13-880725-6 (1986).

[12] L.M.G. Feijs. Systematic design of a text editor: revised appendix. ES
PRIT document METEOR/t9/PRLE/7.

438

Appendix A

A Lower Design Layer

A.l.l Introduetion

In this appendix we descri he the development of a design d/Huic which provides
for a few basic data types. In the context of the development of an editor,
it can he viewed as a design-layer below the editor design. It provides for
implementations of 'SEQ' and TABLE. The 'interfaces' of d/Huic have been
chosen such that its system fits into the primitive components of dedit<>r· In
the terminology of Chapter 3 this can he stated more formally as: "the pair
(d~;tcr1 d!Huic) is black-box valid".

A.1.2 The Top of the Lower Design Layer

The design top(d!Huic), is shown below. At the position of the dotsin this de
sign we assume LET-constructs introducing the narnes BOOL_SPEC, NAT_SPEC,
CHAR_SPEC etc. This top design contains all essential information for check
ing the (black-box) validation of d/Huic with respect to d.ditor· Therefore, this
top design should match the bottorn design given in Section 5.3.6.

DESIGN

COMP BOOL
COMP NAT
COMP CHAR
COMP INST
COMP ATTR

BOOL_SPEC;
NAT_SPEC;
CHAR_SPEC;
INST_SPEC;
ATTR_SPEC;

COMP BLOCK BLOCK_SPEC ;
COMP DISPLAY: DISPLAY_SPEC;

A. A LOWER DESIGN LA YER

COMP FILE

COMP 'SEQ'
COMP TABLE

FILE_SPEC;

'SEQ_SPEC' ;
TABLE_SPEC

SYSTEM BOOL,NAT,CHAR,INST,ATTR,'SEQ' ,TABLE,BLOCK,DISPLAY,FILE

A.1.3 The Bottom of the Lower Design Layer

439

The design bot(dbcuic), i.e. the bottorn of our lower design layer is given
below. At the position of the dots in the bottorn design below we assurne a
number of LET abbreviations, introducing the narnes BOOL_SPEC, NAT_SPEC,
CHAR_SPEC etc. This bottorn design also includes the cornponents BLOCK,
DISPLAY, and FILE which play no role in this design except forthefact that
they are sirnply passed on to next higher design layer. This bottorn does not

include cornponents 1 SEQ 1
, and T ABLE because it is precisely the purpose of

the design dbcuic to provide irnplernentations for these.

DESIGN

COMP BOOL
COMP NAT
COMP CHAR
COMP INST
COMP ATTR

COMP BLOCK

BOOL_SPEC;
NAT_SPEC;
CHAR_SPEC;
INST_SPEC;
ATTR_SPEC;

BLOCK_SPEC;
COMP DISPLAY: DISPLAY_SPEC;
COMP FILE FILE_SPEC

SYSTEM NONE

A.1.4 Implementing the System Components

A.l.4.1 Introduetion

We begin a simple developrnent process and we start with the top design given
in Section A.1.2. This yields the design consisting of the keyword DESIGN
and a large nurnber of LET abbreviations including those for BOOL_SPEC,
NAT_SPEC, CHAR_SPEC, INST_SPEC,ATTR_SPEC, BLOCK_SPEC, DISPLAY_SPEC,

440 5. DESIGN OF A TEXT EDITOR

FILE_SPEC, 'SEQ_SPEC', and TABLE_SPEC given before, foliowed by the fol
lowing components:

COMP BOOL BOOL_SPEC;
COMP NAT NAT_SPEC;
COMP CHAR CHAR_SPEC;
COMP INST INST_SPEC;
COMP ATTR ATTR_SPEC;

COMP BLOCK BLOCK_SPEC;
COMP DISPLAY: DISPLAl_SPEC;
COMP FILE FILE_SPEC;

{(!!} COMP 'SEQ' 'SEQ_SPEC ' ;
{(!!} COMP TABLE TABLE_SPEC;

and ha ving as a system BOOL, NAT, CHAR, INST, ATTR, 'SEQ ' , T ABLE, BLOCK,
DISPLAY, FILE. The black-box descriptions of this design remain unchanged
from now on. Again the symbol {«!} means "this is going to he replaced
later". Just as we did with dedüor, we have mixed the formal texts with
informal descriptions such that we can present the various stages of the de
velopment process in an incremental fashion and such that there is a me
chanica} operation of extracting all formal texts to get one design which can
he syntax- and type-checked. Trivially, the above initial design is black-box
correct. For this simple design there will he no difference between a top-down
and a bottorn-up development process. Note that we just have to implement
'SEQ' and TABLE and these can he independent. When TABLE would use
'SEQ ', or conversely, there would he a difference, but as it happens, this will
not he the case.

A.1.4.2 lmplementing Sequences

Reeall the data type of implementable sequences whose specification was
given already in Chapter 4. Below an implementation of these sequences is
given. It is based on the idea of linked lists and we use an attribute-oriented
approach. The application of the export operator below is not strictly re
quired, but the reader may appreciate it here because the export signature
serves as a summary of what is required by the specification.

LET 'SEQ_IMPL' :=

LAMBDA X : 'ITEM' OF
EXPORT

A. A LOWER DESIGN LA YER 441

SORT Seq,
PRED seq_inv : ,
FUNC t : 'Seq' -> Seq.

SORT 'Seq',
SORT Nat,
SORT 'Item',
FUNC empty -> 'Seq',
PROC cons 'Item' # 'Seq' -> 'Seq',
FUNC hd 'Seq' -> 'Item',
FUNC tl 'Seq' -> 'Seq',
PRED eq 'Seq' # 'Seq'
FUNC sel 'Seq' # Nat -> 'Item',
PROC cat 'Seq' # 'Seq' -> 'Seq',
PROC rev 'Seq' -> 'Seq'

FROM

Next we shall introduce several local definitions. 'S_INST' introduces the
sort 'Seq' as a renamed version of Inst. SEQ_ITEM introduces sequences of
items. More precisely, it exports the sorts Item, Nat, Bag, Seq, the predicate
empty and the operations cons, hd, tl, len, sel, cat, rev and bag.

LET 'S_INST' :=

RENAME
SORT Inst TO 'Seq'

IN INST;

LET SEQ_ITEM :=
APPLY

SEQ_SPEC
TO X;

'S_INST_ITEM' and 'S_INST_NEXT' serve for associating item and next
attributes to 'Seq' objects respectively. Let us analyse the structure of
'S_INST_ITEM' below in detail. It consists of a renamed version of ATTR
which is applied to two actual parameters, viz. 'S_INST' and X. This
renamed version of ATTR is a parameterised description which requires a
sort 'Seq' for its first parameter and a sort 'Item' for its second param
eter; it exports the sorts 'Seq' and 'Item', the function i tem: 'Seq' - >
'Item' and the procedure set_item: 'Seq' # 'Item' -> . The definition
of 'S_INST_NEXT' is very similar to that of 'S_INST_ITEM'.

LET 'S_INST_ITEM' :~

442

APPLY APPLY
RENAME

SORT Inst
SORT Item
FUNC attr
PROC set_attr:

IN COPY(ATTR)
TO 'S_INST' TO X;

LET 'S_INST_NEXT' :•
APPLY APPLY

RENAME
SORT Inst
SORT Item
FUNC attr

Inst
Inst

Inst

Item

5. DESIGN OF A TEXT EDITOR

TO 'Seq',
TO 'Item',

-> Item TO item,
-> TO set_item

TO 'Seq',
TO 'Seq',

-> Item TO next,
PROC set_attr : Inst # Item ->

IN COPY(ATTR)
TO set_next

TO 'S_INST' TO 'S_INST';

% end o! local de!initions

IMPORT X INTO
IMPORT NAT INTO
IMPORT 'S_INST' INTO
IMPORT SEQ_ITEM INTO
IMPORT 'S_INST_ITEM' INTO
IMPORT 'S_INST_NEXT' INTO

CLASS

The invariant seq_inv presented below states that each 'Seq' object rep
resents a defined sequence; in view of the given abstraction function f this
implies that the graph of the next attribute is cycle-free.

PRED seq_inv:
DEF FORALL s : 'Seq' (!(s)!)

FUNC ! : 'Seq' -> Seq
PAR n: 'Seq'
DEF (n • nil ?; empty

I NOT n = nil ?; cons(!(item(n)),!(next(n)))
)

FUNC empty: -> 'Seq'
DEF nil

A. A LOWER DESIGN LA YER

PROC con8: 'Item' # 'Seq' -> 'Seq'
PAR c: 'Item' ,8: 'Seq'
DEF LET t : 'Seq'; t := create;

8et_item(t,c);
8et_next(t,8);
t

FUNC hd: 'Seq' -> 'Item'
PAR 8 : 'Seq'
DEF item(8)

FUNC tl: 'Seq' -> 'Seq'
PAR 8: 'Seq'
DEF next(8)

PRED eq: 'Seq' # 'Seq'
PAR 8: 'Seq', t: 'Seq'
DEF 8 = t {C}OR

NOT(8 = nil) AND NOT(t = nil)
{C}AND eq(hd(s),hd(t)) {C}AND eq(tl(8),tl(t))

FUNC 8el: 'Seq' # Nat -> 'Item'
PAR 8: 'Seq', n:Nat
DEF (n = 0 ?; hd(8)

I NOT n = 0 ?; sel(tl(8),pred(n))
)

PROC cat: 'Seq' # 'Seq' -> 'Seq'
PAR 8: 'Seq', t : 'Seq'
DEF (8 = nil ?; t

I NOT s = nil ?; con8(hd(s),cat(tl(8),t))
)

% If both 8 and t are sequence8, then revap(8,t)
% appends "the rever8e of s" to t.

PROC revap: 'Seq' # 'Seq' -> 'Seq'
PAR 8: 'Seq', t: 'Seq'
DEF (8 = nil ?; t

I NOT 8 = nil ?; revap(tl(8),cons(hd(8),t))
)

PROC rev: 'Seq' -> 'Seq'
PAR 8: 'Seq'

443

444 5. DESIGN OF A TEXT EDITOR

DEF revap(s,empty)

END;

% COMP 1 SEQ 1
:

1 SEQ_SPEC 1
:•

1 SEQ_IMPL 1

% this is to replace an earlier primitive component.

A.1.4.3 lmplementing Tables

Below an implementation of tables is given. It is based on the use of bi
nary trees. We rep/ace the original Map attribute {function map: Tabla ->
Map from TABLE_SPEC) by a Node attribute, where each Node object at its
turn is attributed by 1 Item1', Item2 attributes and two Node attributes.
Our implementation should he compared with [6] Algorithm 4.52. We shall
easily avoid Wirth's var parameters by using procedures with one or more
result parameters. We considered Jonkers' four-step transformation tech
nique [3] which would mean to {1) add new attributes andrelate them to the
old attributes, {2) add assignments to the new attributes, {3) use the new
attributes and (4) to remove the original attributes. This would he a nat
ural continuation of the attribute-oriented approach adopted already in the
specification TABLE_SPEC. We did not employ this transformation technique
however, because the last step of removing the original Map attribute could
not be justified in terms of the formal implementation relation mentioned in
Section 5.1 - although from a practical point of view it seems acceptable.
Again the export operator below is not strictly needed.

LET TABLE_IMPL :=

LAMBDA X
LAMBDA Y

EXPORT

1 SL01' OF
ITEM2 OF

SORT Map,
SORT Item!,
FUNC map: Table -> Map,
FUNC app : Map # Item! -> Item2,

SORT Bool,
SORT Table,
SORT Item2,
SORT 'Item! 1

,

PRED table_inv : ,

A. A LOWER DESIGN LAYER 445

PROC new -> Table,
PROC add Table # 'Item!' # Item2 ->
PROC rem Table # 'Item!' ->
PROC app Table # 'Item!' -> Item2,
PROC is_in_dom: 'Item!' # Table -> Bool

FROM

Now we get severallocal definitions. T_INST below introduces the sart Table.
MAP _FROM_SL01_TO_ITEM2 introduces the sart Map of finite maps from Item1
to Item2. NODE_INST introduces the sart of Node of so-called nodes.
SET_OF _NODE introduces sets of thesenodes- with associated set operations
ins, is_in, union etc. We introduce SET_OF _NODE because when formulating
the representation invariant table_inv, we need to speak about the set of
nodesin a (sub)tree. NODE_SL01, NODE_ITEM2, NODE_LEFT, and NODE_RIGHT
associate various attributes with thesenodes and as a result, every node has
the following attributes: i tem1, i tem2, leftand right. Finally TABLE_ROOT
associates a so-called root-node with every table.

LET T_INST :=
RENAME

SORT lnst TO Table
IN INST;

LET MAP_FROM_SL01_TO_ITEM2 ·=
APPLY APPLY

MAP_SPEC
TO X TO Y;

LET NODE_INST ·=
RÉNAME

SORT Inst TO Node
IN INST;

LET SET_OF_NODE:=
APPLY

RENAME
SORT Item TO Node,
SORT Set TO Nodeset

IN SET_SPEC
TO NODE_INST;

LET NODE_SL01 :=
APPLY APPLY

446 5. DESIGN OF A TEXT EDITOR

RENAME
SORT Inst TO Node,
SORT Item TO 'Iteml',
FUNC attr Inst -> Item TO iteml,
PROC set_attr: Inst # Item -> TO set_iteml

IN COPY(ATTR)
TO NODE_INST TO X;

LET NODE_ITEM2 : =

APPLY APPLY
RENAME

SORT Inst TO Node,
SORT Item TO Item2,
FUNC attr Inst -> Item TO item2,
PROC set_attr : Inst # Item -> TO set_item2

IN COPY(ATTR)
TO NODE_INST TO Y;

LET NODE_LEFT :=
APPLY APPLY

RENAME
SORT Inst TO Node,
SORT Item TO Node,
FUNC attr Inst -> Item TO left,
PROC set_attr: Inst # Item -> TO set_left

IN COPY(ATTR)
TO NODE_INST TO NODE_INST;

LET NODE_RIGHT:s
APPLY APPLY

RENAME
SORT Inst TO Node,
SORT Item TO Node,
FUNC attr Inst -> Item TO right,
PROC set_attr: In st # Item -> TO set_right

IN COPY(ATTR)
TO NODE_INST TO NODE_INST;

LET TABLE_ROOT
APPLY APPLY

RENAME
SORT Inst TO Table,
SORT Item TO Node,
FUNC attr Inst -> Item TO root,
PROC set_attr: Inst # Item -> TO set_root

A. A LOWER DESIGN LA YER

IN COPY(ATTR)
TO T_INST TO NODE_INST;

% end of local definitions

IMPORT X
IMPORT Y
IMPORT BOOL
IMPORT T_INST
IMPORT MAP_FROM_SL01_TO_ITEM2
IMPORT NODE_INST
IMPORT SET_OF_NODE
IMPORT NODE_SLOl
IMPORT NODE_ITEM2
IMPORT NODE_LEFT
IMPORT NODE_RIGHT
IMPORT TABLE_ROOT
CLASS

FUNC nodes: Table -> Nodeset
PAR t:Table
DEF nodes(root(t))

FUNC nodes: Node -> Nodeset
PAR n:Node
DEF (n • nil ?; empty

447

INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO

I NOT n • nil ?; ins(n,union(nodes(left(n)),nodes(right(n))))
)

PRED table_inv: DEF

{1} FORALL t:Table,u:Table
(NOT t =u=> isect(nodes(t),nodes(u)) empty);

{2} FORALL m:Node,n:Node
(NOT n = nil =>

(is_in(m,nodes(left(n))) => less(iteml(m),iteml(n));
is_in(m,nodes(right(n))) => less(iteml(n),iteml(m))))

FUNC map: Table -> Map
PAR t:Table
DEF SOME p :Map

(FORALL i : Iteml, j:Item2
(app(p,i) = j <=>

EXISTS n:Node

448

(is_in(n,nodes(root(t)));
:f(iteml(n)) • i;
item2(n) z j)))

5. DESIGN OF A TEXT EDITOR

Now we can implement the procedure new which was specified by LET t: Table;
t := create; set_map(t,empty); t. Wepreservethesequentialstructure
of this definition, but the assignment set_map(t,empty) is replaced by an
assignment of nil to the root-node attribute. Because we defined the map at
tribute in termsof the root-node attribute, this replacement is justified when
we can show that assigning nil to the root-node makes the map attribute
empty indeed. The map of a table is the map of its root-node and because
nodes (nil) is the empty set, we get (by definition of map: Node -> Map) a
map p with the property Vi, j (app(p, f(i)) = j # 3n : Node (n E 0 1\ .• .)).

This is the empty map.

PROC new: -> Table
DEF LET t:Table; t :• create;

set_root(t,nil);
t

The remairring procedures are dealt with in a very similar way. Some of
these were specified by a case-analysis on the invariant table_inv, such that
here we need not worry about what happens when the invariant does not
hold: an arbitrary modification of all attributes is allowed in that case. In
the other case, the specification prescribes that a certain assignment to the
map attribute must take place. E.g. for add(t, i, j) this is
set_map(t,add(map(t) ,f(i) ,j)). Again this is established by an assign
ment to the root-node.

PRDC add: Table # 'lteml' # Item2 ->
PAR t:Table,i: 'ltem1',j:Item2
DEF set_root(t,add(root(t),i,j))

PROC add: Node # 'lteml' # Item2 ->Node
PAR n:Node,i: 'lteml',j :Item2
DEF (n = nil?;

LET m:Node; m :• create;
set_iteml(m,i);
set_item2(m, j);
set_le:ft(m,nil);
set_right(m,nil);
m

NOT n ~ nil AND eq(i,iteml(n)) ?;
set_i tem2 (n, j) ;

A. A LOWER DESIGN LAYER

)

n

NOT n = nil AND less(i,iteml(n)) ?;

set_lett(n,add(lett(n),i,j));
n

NOT n = nil AND less(iteml(n),i) ?;
set_right(n,add(right(n),i,j));
n

PROC rem: Table # 'Iteml' ->
PAR t:Table,i: 'Iteml'
DEF set_root(t,delete(root(t),i))

PROC delete: Node # 'lteml' -> Node
PAR n:Node, i: 'Iteml'
DEF (n = nil ?;

n
NOT n = nil AND less(i,iteml(n)) ?;

set_lett(n,delete(lett(n),i));
n

NOT n = nil AND less(iteml(n),i) ?;

set_right(n,delete(right(n),i));
n
NOT n = nil AND eq(i,iteml(n)) ? ;

(lett(n) = nil ?;

right(n)

)

right(n) = nil ?;

lett(n)
NOT lett(n) = nil AND NOT right(n) = nil ?;

LET m: Node, j : 'Iteml', k : Item2; ·
m,j ,k := del(lett(n));
set_lett(n,m); set_iteml(n,j); set_item2(n,k);
n

449

We used an auxiliary function del to delete the right-most node in a tree, i.e.
the one with the largest i tem1 value; its result consistsof (1} the modified tree
and (2} the i teml, i tem2 valnes of the deleted node. Somewhat more for
mally, del (n) could be specified as follows LET i: 'Iteml' , j : Item2; i, j
:= rightmost(n); set_map(n,rem(map(n) ,f(i))); n,i,j. The function
rightmost is defined recursively below.

450 5. DESIGN OF A TEXT EDITOR

FUNC rightmost: Node -> 'Iteml' t Item2
PAR n:Node
DEF NOT n • nil ?;

(right(n) • nil ?; iteml(n), item2(n)
I NOT right(n) • nil ?; rightmost(right(n))
)

PROC del: Node ->Node# 'lteml' t Item2
PAR n :Node
DEF (NOT right(n) • nil ? ;

)

LET m:Node,i : 'Iteml',j:Item2;
m,i,j := del(right(n));
set_right(n,m);
n,i ,j
right(n) m nil ? ;

left(n), iteml(n), item2(n)

PROC app: Node # 'lteml' -> Item2
PAR n : Node,i : 'lteml'
DEF (eq(i,iteml(n)) ? ;

item2(n)
less(i,iteml(n)) ?;

app(left(n),i)
less(iteml(n),i) ?;

app(right(n),i)

PROC app: Table # 'lteml ' -> Item2
PAR t :Table,i : 'Iteml'
DEF app(root(t),i)

PROC is_in_dom : 'lteml' #Node-> Bool
PAR i : 'Iteml' ,n:Node
DEF (n = nil ?;

)

false
NOT n = nil AND eq(i,iteml(n)) ? ;

true
NOT n = nil AND less(i,iteml(n)) ?;
is_in_dom(i,left(n))
NOT n = nil AND less(iteml(n),i) ? ;
is_in_dom(i,right(n))

A. A LOWER DESIGN LA YER

PROC is_in_dom: 'Iteml' # Table -> Bool
PAR i: 'Iteml' ,t:Table
DEF is_in_dom(i,root(t))

END

451

The above implementation contains several functions and predicates which
need not he executable but which are needed for reasoning purposes: both
nodes and both map functions, rightmost and of course table_inv.

% COMP TABLE : TABLE_SPEC := TABLE_IMPL
% this is to replace an earlier primitive component.

The structure of the lower design layer db<uic is given by its initial design
{Section A.1.4.1) and the two replacements discussed in Sectiens A.1.4.2 and
A.1.4.3. We coneinde by mentioning its system.

SYSTEM BOOL,NAT,CHAR,INST,ATTR, 'SEQ',TABLE,BLOCK,DISPLAY,FILE

452

Appendix B

List of Symbols

In this appendix we give a list of the sorts, functions, predicates and proce
dures used. The list does not include symbols from the C program of the
editor, nor does it include the symbols introduced already in Chapter 4. The
symbols from Appendix A arealso not mentioned unless they are introduced
in Section 5.3. If a symbol occurs both in a black-box description and in a
glass-box description, then it is mentioned only once and its place in the list
is derived from its black-box description.

For each symbol the list contains a very short informal description. The list
has been subdivided into a number of sub-lists. The fust sub-list contains
the symbols that are introduced in Section 5.3. The second sub-list contains
the symbols that are introduced in Section 5.5. The third sub-list contains
the symbols that are introduced in Section 5.6.

Symbols concerning the bottorn of the editor design

Inst,
nil: ~ Inst,
PROC create : ~ Inst

attr : Inst ~ Item,
PROC set_attr: Inst # Item ~

Table,
table_inv: ,
map: Table ~ Map,
PROC set_attr: Table # Map ~
PROC p: ~
PROC new: ~ Table

instances (atoms)
instanee constant
creation of a new instanee

attribute
attribute modification

modfiable tables
table invariant
Map attribute of table
modification of Map attribute
arbitrary table operation
empty table creation

B. LIST OF SYMBOLS

PROC add: Table # 'Item!' # Item2 -+
PROC rem: Table # 'Item!' -+
PROC app: Table # 'Item!' -+ Item2
PROC is_in_dom: 'Item!' # Table -+

Block,
size: Block -+ Nat,
cont: Block # Nat -+ Item,
PROC store: Block # Nat # Item -+,
PROC alloc: Nat-+ Block,
PROC grow: Block # Nat -+

attr: Inst -+ Item! # Item2

Bool

PROC set_attr: Inst # Item! # Item2 -+

Symbols concerning system components

Buf
block: Buf -+ Block
PROC set_block: Buf # Block -+
dot: Buf -+ Nat
PROC set_dot: Buf # Nat -+
mark: Buf -+ Nat
PROC set_mark: Buf # Nat -+
gap!: Buf -+ Nat
PROC set_gap1: Buf #Nat -+
gap2: Buf -+ Nat
PROC set_gap2 : Buf # Nat -+
dot: Buf -+ Nat2

PROC set_dot: Buf # Nat2 -+
mark: Buf -+ Nat2

PROC set_mark: Buf # Nat2 -+
reach: Buf -+ Nat2

PROC set_reach: Buf # Nat2 -+

val: -+ Item,
PROC upd : Item -+

Buf_Map
table: -+ Table
PROC upd_Table: Table -+
current: -+ 'String'
PROC upd_current: 'String'-+
mover: -+ Nat
PROC set_mover : Nat -+

addition of a.n entry
remova.l of a.n entry
ta.ble look-up
'is in domain' test

memory blocks
number of locations
contents of a. location
storing a. va.lue in a loca.tion
creation of a new block
iocrement of block size

pair-wise a.ttribute
pair-wise modification

(marked text) buffers
block attribute
block attribute modification
dot attribute
dot attribute modification
mark attribute

453

mark attribute modification
lower bound of ga.p
modification of lower bound
upper bound of gap
modification of upper bound
pair-wise dot attribute
modification of pa.ir-wise dot
ma.rk attribute
modification of pair-wise mark
reach attribute
modification of reach attribute

value of programming variabie
assignment

maps from strings to buffers
ta.ble from 'String' to buffers
assignment
name of current buffer
a.ssignment
general purpose 'loop-counter'
assignment

454

moverl, : -+ Nat
PROC set_moverl,: Nat-+
mover2: -+ Nat
PROC set_mover2: Nat -+
mover: -+ Nat2

PROC set_mover: Nat2 -+
counter: -+ Nat
PROC set_counter: Nat -+

f: Block # Nat2 -+ String
in_gap: Buf # Nat
f: Buf # Nat2 -+ String
f: Buf # Nat -+ String
f : Buf -+ String
f: Block # Nat2 -+ Text
f: Buf # Nat2 -+ Text
f: Buf # Nat -+ Text
f: Buf -+ Text
f : Buf -+ MText
f: Buf_Map -+ Map
TI':

right: Buf # Nat
eobp: Buf # Nat
eolp: Buf # Nat
eobp: Buf
eolp: Buf
left: Buf # Nat
bobp: Buf # Nat
bobp: Buf
bolp: Buf # Nat
bolp: Buf

WI':
wi_package_inv:

-+ Nat

-+ Nat

PROC init_wi_package: -+
PROC mod_text_restore: -+

PROC mod_dot_restore : -+
PROC mod_dot: -+

ready: Buf
PROC make_ready: Buf -+
PROC make_ready1: Buf-+

5. DESIGN OF A TEXT EDITOR

mover (vertical co-ordinate)
assignment
mover (horizontal co-ordinate)
assignment
the pair (moverl,mover2)
pair-wise assignment
general purpose loop-counter
assignment

abstraction function
test if position is in gap
abstraction function
abstraction function
abstraction function
abstraction function
abstraction function
abstraction function
abstraction function
abstraction function
abstraction function
strengthened text-invariant

next position (rightwards)
end-of-buffer predicate
end-of-line predicate
dot is at end-of-buffer
dot is at end-of-line
next position (Ieftwards)
beginning-of-buffer predicate
dot is at beginning-of-buffer
beginning-of-line predicate
dot is at beginning-of-line

strengthened window-invariant
invariant of wi_package
initialisation procedure
restore WI (text modified)
restore WI (dot modified)
arbitrary dot modification

buffer is ready for insert
make buffer ready
auxiliary for make_ready

B. LIST OF SYMBOLS

PROC make_ready2: Buf -+
PROC gap_ down: Buf-+
PROC gap_ up: Buf-+
PROC right_dot: Buf-+
PROC left_dot: Buf-+
next_line: Buf -+ Bool #Nat
right_stepping: Buf # Nat2 -+ Bool # Nat
hpos: Buf -+ Nat
end_of_line: Buf # Nat -+ Nat2

previous_line: Buf -+ Bool #Nat
beginning_of_line: Buf # Nat -+ Nat
end_of_buffer: Buf -+ Nat

space: Buf
PROC make_space : Buf #Nat -+

PROC second_gap_down: Buf # Nat -+
PROC insert_character: Buf # Char -+
PROC newline: Buf -+
match: Buf # 'String' # Nat
match': Buf # 'String'# Nat
right: Buf # Nat2 -+ Nat2

_buffer_to_string: Buf # Nat -+ 'String'

455

auxiliary for make_ready
move gap one position down
move gap one position up
move dot one position right
move dot one position left
auxiliary for next_line
going rightwards (if possible)
horizontal position
auxiliary for end_of_line
auxiliary for previous_line
auxiliary for beginning_of_line
auxiliary for end_of_buffer

test for free space
introduetion of morefreespace
move free space down
auxiliary for insert_character
auxiliary for newline
search-string matching
match with sentinel
pair-wise rightward move
aux. buffer_to_string

Symbols concerning internal components

Array2,
PROC create: -+ Array2,
val : Array2 # Nat2 -+ Item,
PROC upd : Array2 # Nat2 # Item -+
ccursorl: -+Nat
PROC set_ccursorl: Nat-+
ccursor2: -+ Nat
PROC set_ccursor2: Nat -+

ccursor: -+ Nat2

PROC set_ccursor: Nat2 -+

cscreen: -+ Array2
PROC upd_cscreen: Array2 -+
g: Array2 # Nat2 -+ Line
g: Array2 # Nat -+ Line
f: Array2 # Nat -+ Text
f: Array2-+ Text
WI''

display_handling_inv:
PROC init_display_handling: -+

two-dimensional arrays
array creation
indexing in an array
assignment
concept cursor (vertical)
assignment
concept cursor (horizontal)
assignment
concept cursor
assignment
concept screen
assignment
abstraction function
abstraction function
abstraction function
abstraction function
transformed window-invariant

display handling invariant
initialisation procedure

456

PROC update_cursor: ~
PROC update_screen: ~
origin: But ~ Nat # Nat
PROC set_origin: But # Nat # Nat ~
xx: ~Nat
PROC upd_xx: Nat ~
yy: ~Nat
PROC upd_yy: Nat ~
PROC clear_cscreen: ~
v_eq: Nat2 # Nat2

PROC mover_to_origin_line : But ~
v_geq: Nat2 # Nat2

h_geq: Nat2 # Nat2

h_lss: Nat2 # Nat2

built: But
size: ~ Nat2

in_window: But
PROC cscreen_build: But ~
p_lss: Nat2 # Nat2

p_leq: Nat2 # Nat2

p_sub: Nat2 # Nat2 ~ Nat2

p_add: Nat2 # Nat2 ~ Nat2

c3: But
halt_li: ~ Nat
halt_co: ~ Nat

ii: ~Nat
PROC upd_ii: Nat ~
j j : ~Nat
PROC upd_jj : Nat ~
scursor1 : ~ Nat
scursor2 : ~ Nat
scursor: ~ Nat2

PROC set_scursor1: Nat ~
PROC set_scursor2 : Nat ~
PROC set_scursor : Nat2 ~
sscreen: ~ Array2
PROC upd_cscreen: Array2 ~
PROC clear_sscreen: ~
PROC update_line: ~
PROC update_character: ~
PROC sce : ~
PROC sce : Nat2 ~

5. DESIGN OF A TEXT EDITOR

transfer of concept to display
transfer of concept to display
leftmost uppermost corner
assignment
simple programming variabie
assignment
simple programming variabie
assignment
fill concept screen with blanks
equaiity on verticai co-ordinate
put mover at Iine with origin
comparison (verticai)
comparison (horizontal)
comparison (horizontai)
buiid-up of csereen done
the pair (Ii,co)
test if position is in window
buiid-up concept screen
comparison of co-ordinate pairs
comparison of co-ordinate pairs
comparison of co-ordinate pairs
addition of co-ordinate pairs
'necessary condition'
Ii divided by two
co divided by two

simpie programming variabie
assignment
simpie programming variabie
assignment
shadow cursor (verticai)
shadow cursor (horizontai)
shadow cursor
assignment
assignment
assignment
shadow administration screen
assignment
fill shadow screen with bianks
update line on screen
update character on screen
'shadow' clear to end of Iine
'shadow' clear to end of line

457

Appendix C

The C Program of the Editor

After the development processes of theeditorand the lower design layer have
been finished, the resulting glass-box descriptions have been translated into
the C programming language [8] manually. Let us devote a few pages of
explanation to this translation. First we explain the translation of the data
structures. We assumed the data types of BOOL, NAT, and CHAR as built-in
into C, and we dealt with them by a few simple macro definitions. E.g. for
BOOL we only needed the following.

#define Bool int
#define true 1
#define false 0

We employed a straightforward technique for dealing with the attribute
oriented approach based on INST and ATTR. This was done by collecting
all attributes of a given object sort and deelare that sort as a pointer to a
structure. The latter structure contains one field for each attribute function.
By introducing macro definitions - one for each attribute function- it be
comes possible to use the same functional notation as in COLD-K again. We
show this for the object sort Node (from Appendix A) having four attribute
functions: i teml: Node -t Iteml, i tem2: Node -t Item2 etc.

#define Node struct attrs_Node *
struct attrs_Node {

};

Item1 attr_item1;
Item2 attr_item2;
Node attr_left;
Node attr_right;

458

#define item1(N)
#define item2(N)
#define left(N)
#define right(N)

5. DESIGN OF A TEXT EDITOR

((N)->attr_item1)
((N)->attr_item2)
((N)->attr_left)
((N)->attr_right)

Next we explain the translation of the algorithms. Whenever possible we
sticked to a straightforward line-by-line translation, although we did no at
tempt to devise a completely standardised translation scheme yet. We show
a simple example and for that purpose we reeall the procedure make_space
from WITEFA_IMPL:

PROC make_space: Buf # Nat ->
PAR b:Buf, n:Nat
DEF set_mover(size(block(b)));

grow(block(b),n);

(NOT mover = gap2(b) ?;
second_gap_down(b,n)

) *; mover = gap2(b) ?;

set_gap2(b,add(gap2(b),n)) ;
set_dot(b,gap2(b));

(lss(mark(b),gap1(b)) ?; SKIP
I NOT lss(mark(b),gap1(b)) ?; set_mark(b,add(mark(b),n))
)

We show its C translation below. It refers to obvious rnacros NOT and SKIP.
Reeall that in C the symbol = denotes assignment whereas == denotes equal
ity!

void make_space(b,n)
Buf b;
Nat n;
{

mover = (size(block(b)));
grow(block(b),n);
while (NOT (mover == gap2(b))) {

second_gap_down(b,n);
}

gap2(b) = add(gap2(b),n);
dot(b) = gap2(b);

C. The C PROGRAM OF THE EDITOR

}

if (lss(mark(b),gapl(b))) {
SKIP

}

else {
mark(b) = add(mark(b),n);

}

459

The above example is rather unproblematic. At other places we faced tech
nica! complications such as operations yielding composite results
(e.g. next_line: Buf -> Bool # Nat and right_stepping: Buf # Nat
Nat -> Bool # Nat from WITEFA_IMPL). For the latter complication we
employed two different solutions, depending on the question whether the op
eration is defined recursively- which is not the case for next_line but which
is the case for right_stepping. Fora non-recursive operation we made sev
eral copies of its direct translation, viz. one for each element of the result.
For a recursive operation, this technique of making copies could lead to gross
inefficiencies so we had to simulate a call-by-reference mechanism using the
C operators * (indirection) and & (address-of). Other complications are re
lated to (1) name clashes due to overloading, (2) using rnacros for efficiency
reasons, (3) COLD-K renamings and (4) modularisation of the C program
text. Although it might he somewhat more work to devise universa! solutions
for these problems, we easily solved them for the particular cases at hand.

We had to provide small C modules providing implementations of BLOCK,
DISPLAY and FILE. These components have no COLD-K glass-box descrip
tions and the C modules should he viewed as reasonable approximations of
BLOCK_SPEC, DISPLAY_SPEC and FILE_SPEC. For BLOCK we had to use the
C library functions malloc and reaHoc [9]. For DISPLAY we adopted the
command sequences of a VT102 terminal [10], which can also he emulated
on SUN 3/50 or Philips P2000-C computer systems. For FILE we had to
use the so-called standard I/0 library as partially described in [8] and which
becomes available by inclusion of the line

#include <stdio.h>

For each instanee of SVAR we declared a simple programming variabie in C.
We by-passed the implementation of ARRAY2, just using C arrays. We inserted
a fflush(outfile); instruction in the translation of write_named_file.
We added a top-level initialisation and rnain-loop to conneet the key proce
dure with the standard input. This is done by means of the C function called
main which has a local variabie c of sort Char and which has the program
text given below. The user must type a control-e character to terminate an

460 5. DESIGN OF A TEXT EDITOR

edit session- whence the termination condition of the loop, ord(c) != 3.

MOREDOP_startup();
c = getcharO;
while (ord(c) != 3) {

key(c);
c = getcharO;

}

The translation process took several days, but the time needed to do this was
only a small fraction of the total timespent on the editor (5%, say). In the
C program texts, we inserted small comments related to the translation; we
did not insert camment to explain the program as such, because after all we
have the designs deditM and dlxuic for that. Although the manual translation
process introduced several small mistakes, we did not spend much time in
debugging. Of course an automatic code-generator would he useful, but the
current manual aproach was already very satisfactory. The choice of the
target-language (e.g. C versus Pascal) is a relatively unimportant detail
of the editor case study and in fact the choice for C was only made when
most of the design work was already done. We could have chosen Pascal
as well, although in retrospect, we learned to appreciate several pragmatic
issues related to C such as the cpp macro preprocessor and the powerfut
malloc/realloc memory-management functions. The decisive point in favor
of C was its growing popularity in industrial contexts.

The complete C program texts are provided in [12]. Since the above dis
cussion contains already an overview of most relevant technica! issues, we
do not include all C program texts here; it is always possible to look-up
details in [12]. Compilation of these C program texts by cc -0 yields an
executable editor. Just by way of example, we include the C program text of
one component and we have chosen to show the translation of TABLE_IMPL.

C. The C PROGRAM OF THE EDITOR 461

I* table_impl.c *I

#de:fine guard(N) i:f (!(N)) { print:f("FATAL ERROR (guard :false)"); }
#de:fine Nat int

I* TABLE_IMPL
'lteml' --> Iteml,
eq: 'Iteml' # 'lteml' --> eq_Iteml,
add : Table # 'lteml' # 'ltem2' -> --> add_Table,
add: Node # 'Iteml' # 'ltem2' -> --> add_Node,

#de:fine Node struct attrs_Node *
struct attrs_Node {

};

Iteml attr_iteml;
Item2 attr_item2;
Node attr_le:ft;
Node attr_right;

#de:fine iteml(N) ((N)->attr_iteml)
#de:fine item2(N) ((N)->attr_item2)
#de:fine le:ft(N) ((N)->attr_le:ft)
#de:fine right(N) ((N)->attr_right)
Node create_Node() {

}

char * malloc 0 ;
return((Node)malloc(sizeo:f(struct attrs_Node)));

#de:fine Table struct attrs_Table *
struct attrs_Table {

Node attr_root;
} ;

#de:fine root(N) ((N)->attr_root)
Table create_Table() {

char * malloc 0 ;
return((Table)malloc(sizeo:f(struct attrs_Table))) ;

}

Table new()
{

Table t;

t = create_Table();
root(t) = nil;

462

return(t);
}

Node add_Node(n,i,j)
Node n;
Iteml i;
Item2 j ;
{

Node m;

i:f (n == nil) {

}

m = create_Node();
iteml(m) i;
item2(m) j;

left(m) nil;
right(m) nil;
return(m);

5. DESIGN OF A TEXT EDITOR

else if (eq_Iteml(i,iteml(n))) {
item2(n) = j;
return(n) ;

}

else if (less(i,iteml(n))) {

}

left(n) = add_Node(left(n),i,j);
return(n);

else if (less(iteml(n),i)) {

' }

}

right(n) = add_Node(right(n),i,j);
return(n);

void add_Table(t,i,j)
Table t ;
Iteml i;
Item2 j ;
{

root(t) • add_Node(root(t),i,j);
}

del(n,return1,return2,return3)
Node n;
Node *return!;
Iteml *return2;
Item2 *return3;

C. The C PROGRAM OF THE EDITOR

{

}

if (right(n) != nil) {

}

Node m; Iteml i; Item2 j;
del(right(n),km,ki,kj);
right(n) = m;
*returnl = n; *return2 =i; *return3 = j;
return;

else if (right(n) z= nil) {
*returnl • left(n);
*return2 = iteml(n);
*return3 item2(n);
return;

}

Node delete(n,i)
Node n;
Iteml i;
{

it (n == nil) {

return(n);
}

else if (less(i,iteml(n))) {

}

left(n) 2 delete(left(n),i);
return(n);

else if (less(iteml(n),i)) {

}

right(n) • delete(right(n),i);
return(n);

else if (eq_Iteml(i,iteml(n))) {

if (left(n) =• nil) {
return(right(n));

}

else if (right(n) == nil) {
return(left(n));

}

else if (left(n) != nil AND right(n) I= nil) {
Node m; Iteml j; Item2 k;
del(left(n),km,tj,tk);

}

left(n) = m; iteml(n) = j; item2(n) k;
return(n);

463

464

}

}

void rem(t,i)
Table t;
Item! i;
{

root(t) delete(root(t),i);
}

rightmost(n,returnl,return2)
Node n;
Iteml *returnl;
Item2 *return2;
{

guard(n I= nil) ;
if (right(n) == nil) {

5. DESIGN OF A TEXT EDITOR

*returnl • iteml(n); *return2 • item2(n);
return;

}

}

else if (right(n) !• nil) {
rightmost(right(n),returnl,return2);
return;

}

Item2 app_Node(n,i)
Node n;
Iteml i;
{

}

if (eq_Iteml(i,iteml(n))) {
return(item2(n));

}

else if (less(i,iteml(n))) {
return(app_Node(left(n),i));

}

else if (less(iteml(n),i)) {
return(app_Node(right(n),i));

}

Item2 app(t,i)
Table t;

C. The C PROGRAM OF THE EDITOR

Iteml i;
{

}

return(app_Node(root(t),i))

Bool isindom_Node(i,n)
Iteml i;
Node n;
{

}

if (n ="' nil) {

return(:t:alse);
}

else if (eq_Iteml(i,iteml(n))) {
return(true);

}

else i:t: (less(i,iteml(n))) {
return(isindom_Node(i,le:t:t(n)));

}

else i:t: (less(iteml(n),i)) {
return(isindom_Node(i,right(n)));

}

Bool is_in_dom(i,t)
Iteml i;
Table t;
{

return(isindom_Node(i,root(t)));
}

465

466

Appendix D: Reference Chart

For each component of dedittw its most important sorts and operations are given below.

DESIGN

COMP BOOL

COMP NAT

COMP CHAR

COMP INST

COMP ATTR

COMP 'SEQ'

COMP TABLE

COMP BLOCK

BOOL_SPEC ; { Bool, true, false, not, and, or

NAT_SPEC ; { Nat, zero, succ, !ss, leq, add, sub, 0, 1, etc.

CHAR_SPEC; { Char, ord, chr, 'a', 'i', etc.

INST_SPEC; { Inst, nil, create

ATTR_SPEC; { attr, set..attr

'SEQ_SPEC 1
; { 'Seq', empty, cons, hd, ti, eq, se!, cat, rev

TABLE_SPEC; { Table, new, add, rem, app, is_jn_dom

BLOCK_SPEC ; { Bleek, size, cont, store, allee, grow

COMP DISPLAY: DISPLAY_SPEC; {!i, co, er, nl, bc, ce, cl, nd, up, cm, print

COMP FILE FILE_SPEC { valid, file, pos, rewrite, reset, read, write, eof

COMP ARRAY2 ARRAY2_SPEC := ARRAY2_IMPL;
{ Array2, create, val, upd

COMP 'STRING' : 'STRING_SPEC' := 'STRING_IMPL';
{ 'String', empty, cons, hd, ti, eq, se!, cat, rev, less

COMP SVAR : SVAR_SPEC := SVAR_IMPL;
{val, upd

COMP ATTR2 : ATTR2_SPEC := ATTR2_IMPL;
{ attr, set..attr

COMP DISPLAY_HANDLING:DISPLAY_HANDLING_SPEC:=DISPLAY_HANDLING_IMPL;
{ iniLdisplayJlandling, update..cursor, update..screen,

COMP WI_PACKAGE : WI_PACKAGE_SPEC := WI_PACKAGE_IMPL;
{ iniLwLpackage, mod_text..restore, mod..dot..restore

COMP WITEFA : WITEFA_SPEC := WITEFA_IMPL;

{

bolp, eolp, forward..character, backward..character, nextJine, previouaJine,
beginning_ofJine, end..ofJine, beginning..of..buffer, end_of_buffer, set.rnark,
exchange_dot..and.rnark, insertJile, inserLcharader, newline, yank..buffer,
delete_next_character, erase..region, erase..buffer, copy ..region_to..buffer, current..buffer _name,
write_namedJile, switch_to..buffer, search.Jorward, buffer J:o..string, buffer _to..string

COMP MOREDOP: MOREDOP_SPEC := MOREDOP_IMPL;

{
mini, main, kill, startup, escape, return, delete_to..killbuffer, yankJrom..killbuffer,
searchJorward, insertJile, write_namedJile, delete..previous..character

COMP KEYBIND: KEYBIND_SPEC :• KEYBIND_IMPL
{ key

SYSTEM WITEFA,MOREDOP,KEYBIND

467

Curriculum vitae

De schrijver van dit proefschrift werd op 4 augustus 1954 geboren te Sit
tard. In 1972 behaalde hij aan het St.-Miehiellyceum te Geleen het diploma
Gymnasium-,8. Hij studeerde vervolgens electratechniek aan de Technische
Hogeschool Eindhoven, alwaar hij in 1979 het ingenieursexamen aflegde. Af
studeerhoogleraar was prof.dr.ir. J.P.M. Schalkwijk. In de tweede helft van
1979 was hij verbonden aan CSELT in Turijn als wetenschappelijk onder
zoeker op het gebied van video-codering. Na het vervullen van de militaire
dienstplicht trad hij in 1981 in dienst van PhilipsTelecommunicatie Industrie
te Hilversum, later APT. Hier heeft hij gewerkt als software-ontwikkelaar,
onder andere in de context van het TCP-16 project betreffende een gedis
tribueerd computer-systeem voor de besturing van telefooncentrales. Sinds 1
april1984 is hij werkzaam bij het Philips Natuurkundig Laboratorium, meer
in het bijzonder in de sector Technische Informatica, als wetenschappelijk
onderzoeker op het gebied van software-ontwerptechnieken.

468 SAMENVATTING

Samenvatting

Het onderzoek dat in het proefschrift beschreven wordt, heeft formalisering
van ontwerpmethoden voor complexe systemen als onderwerp. Het bestaat
uit twee delen: een eerste deel met een theoretisch karakter en een tweede
deel waarin een aantal van de resultaten van het eerste deel aan een complex
ontwerpprobleem worden getoetst.

Centraal in het eerste deel staat het begrip 'ontwerp van een systeem'. In het
algemeen is een systeem opgebouwd uit modules, en bestaan er relaties tussen
die modules onderling (meestal in de vorm van een hiërarchische opbouw) en
tussen modules en specificaties daarvan - een relatie die wij implementatie
relatie noemen. Daarbij staan wij binnen één ontwerp toe dat modules en hun
specificaties naast elkaar bestaan met een verschillende graad van detaille
ring. Het begrip ontwerp (design) blijkt gefundeerd te kunnen worden op een
speciale versie van À-calculus, de À1r-calculus, die in het proefschrift wordt
ontwikkeld. Op basis daarvan is het tevens mogelijk diverse methodologisch
inzichtelijke correctheidsbegrippen voor ontwerpen te introduceren. Deze be
grippen, die betrekkig hebben op 'information hiding', worden op deze wijze
van een wiskundig-logische grondslag voorzien. Aangetoond wordt dat er
verbanden bestaan tussen correctheidsbegrippen voor ontwerpen enerzijds
en reductiestrategiën voor À1r-calculus anderzijds.

Uitgaande van het formele ontwerpbegrip kunnen correctheidsbehoudende
transformaties op ontwerpen gedefiniëerd worden. Een belangrijke rol speelt
het feit dat ontwerpen in het algemeen samengesteld worden uit componen
ten en dat, onder zekere voorwaarden, correctheid van het geheel uit die
van de delen kan worden afgeleid. Diverse ontwerpstrategieën, waaronder
de welbekende 'top-down' methode, blijken strikt formeel gekarakteriseerd
te kunnen worden met de in het proefschrift geïntroduceerde begrippen.
Met behulp van deze aanpak kan een zeer duidelijk onderscheid gemaakt
worden tussen de statische en de dynamische aspecten van het proces van
software-ontwikkeling, hetgeen bijdraagt tot een beter inzicht in het proces
van software-ontwikkeling.

Het tweede gedeelte is een case-study. Het omvat de specificatie en een
daaruit met de top-down methode ontwikkelde realistische implementatie
van een tekst-verwerker. Beide zijn uitgevoerd met behulp van de ontwerp
taal COLD die mede op de resultaten uit het eerste deel is gebaseerd. Bij de
implementatie van de tekst-verwerker worden enerzijds de abstracte speci
ficaties getransformeerd tot algoritmen en worden anderzijds de data-typen
verfijnd door het kiezen van geschikte representaties via meerdere nivo's van

469

verfijning. Deze studie laat zien dat de gebruikte technieken leiden tot een
systematische aanpak, een goed gestructureerd en tevens efficiënt product en
een redelijk toegankelijke documentatie. Tevens toont ze aan dat er nog mo
gelijkheden te over zijn voor verdere uithouwing van theorie, gereedschappen
en door toepassing verkregen ervaringen.

STELLINGEN

behorende bij het proefschrift

A FORMALISATION OF DESIGN METHODS

A À-calculus Approach to System Design
with an Application to Text Editing

van

L.M.G. Feijs

Eindhoven,
23 februari 1990.

1. Het idee van N assi-Schneidermann diagrammen, n.l. dat doosjes-in
doosjes tekeningen gebruikt kunnen worden om met 'flow-of-contra!'
operatoren opgebouwde programma's weer te geven, kan mutatis mu
tandis van nut zijn om met 'module-composition' operatoren opge
bouwde modules als tekeningen weer te geven.
[R.D. van den Bos, L.M.G. Feijo en R.C. van Omroering, PO LAR, a Picture-oriented language for

abstract representations, gepresenteerd op de 2• Meteor workshop, Mierlo, 11·13 Sept 1989.)

2. De met IN GRES geassocieerde vraagtaal QUEL kan geduid worden met
technieken uit de denotationele semantiek, waarbij elke deel-betekenis
functie een extra argument heeft, te weten een bedeling van tuples aan
tuple-variabelen. In het bijzonder, voor een relatie geïntroduceerd met
create A (naam= string, adres= string) en een tuple-variabele geïn
troduceerd met range oft is A, kan de semantiek van een vraag als

[retrieve (t.naam) where not t.adres = 'geldrop' J
op compositionele wijze beschreven worden door

{ ü E string1 I ::lr,v-string' dom(r) = { t} A
[(t.naam)!(r) = üA
[not t.adres = 'geldrop' jj(r) A lftEdom(r) r(t) E A}

waarbij V de verzameling van tuple-variabelen voorstelt en waarbij
de beide deel-betekenisfuncties [~ op voor de hand liggende wijze
gedefiniëerd zijn.
[W.E. Baats, L.M.G. Feije, J.H.A. Gelissen, A forma! specification of!NGRES, in: M. Wirsing, J.A.

BerJ!lltra (Eds.). Algebraic Methods: Theory, Toolo and Applications, LNCS 394, Springer· Verlag

blz. 207-245 (1989).)

3. De gedachte dat typecorrectheid van expressies in programmeertalen
en specificatietalen iets te maken heeft met dimensiecontrole zoals die
bij natuurkundige vergelijkingen gebruikelijk is, leeft wel op latente
wijze maar wordt slechts zelden uitgewerkt. Nochtans is dit zeer wel
mogelijk.
Zo kunnen in een programmaspecificatie die gedeeltelijk in de mechanica geïnterpreteerd kan worden,

types L en T gebruikt worden voor lengte en tijd respectievelijk en L/T voor snelheid; een en ander

kan zo ingericht worden da.t er wel operaties als + : L x L - L, + : T x T - T, f : L x T -+ L/T

en • : L/T x T - L .r.ijn, maar bijvoorbeeld geen • : L >< L - L.

1

4. Een 'Spartaans' maar krachtig formaiisme verdient vaak de voorkeur
boven formalismen waarvan de schijnbare uitdrukkingskracht steunt op
een ad hoc collectie van elk op zichzelf aantrekkelijke handigheden.

5. Het verdient aanbeveling dat software-ontwikkelaars tenminste een der
de deel van hun werktijd aan studie en opleiding besteden - ook, en
zelfs juist, wanneer de werkdruk dit bij voortduring niet lijkt toe te
laten.

6. De volgende gereedschappen vormen een minimale maar tevens zeer
nuttige collectie ter ondersteuning van een als 'breed-spectrumtaal'
aangeduid formalisme zoals COLD: controleprogramma's voor syntax
en typecorrectheid, een modulebibliotheek, een codegenerator voor
een onproblematische deeltaal alsmede gereedschap voor het maken en
hanteren van grafische representaties.

7. Voor de ontwerper van electronische schakelingen is er in de loop der
jaren een omgangstaal opgebouwd met veel woorden die doelmatig zijn
door hun compactheid of in de zin dat ze niet op storende wijze over
belast zijn. Voor de 'software engineering' is een passende omgangstaal
ook gewenst maar nog slechts in mindere mate opgebouwd.
In de eerste categorie vinden we b.v. trafo voor transformator, elco voor electrolytisché condensator,

super voor super· heterodyne ontvanger, modem voor modulator-demodulator, mux voor multiplexe~.

pf (lees: puf) voor picoFarBd, tor voor transistor, R voor weerstand, C voor condensator etc. en in

de tweede b.v. k.angoeroeschakeling, varkensneusje, Eurokaart en totempaal-uitgang.

8. Bron-coderingstechnieken gebaseerd op een twee-componentenstrategie
waarbij een signaal S(t) wordt gesplitst in twee signalen S1 (t) and S2 (t)
zodat S1 (t) + S2 (t) = S(t), dragen steeds het risico met zich mee dat de
splitsing niet leidt tot twee geheel onafhankelijke signalen en dat dus
de som van de bit-rates gebruikt voor de codering van S1 en S2 groter
is dan strikt noodzakelijk voor S.
[L. Feijs, L. Chiariglione. Image coding by means of a two-component souree-coding scheme. CSELT

Rapporti tecnici • VoL VIII - N. 2, June 1980.]

2

9. Zolang bij het ontwerpen van computer beeldschermen nog uitgegaan
wordt van beeldherhalingsfrequenties die voor het menselijk oog waar
neembaar zijn (knipperend beeld), verdient het aanbeveling om gebruik
te maken van heldere tekens op een zwarte achtergrond.

10. Het in de context van technische systemen vaak gebruikte begrip ' up
ward-compatibility' heeft zonder nadere toelichting geen preciese beteke
nis. Een uitstekend voorbeeld is te verkrijgen door te stellen dat er een
upward-compatibility relatie bestaat tussen de systemen van DUPLO
en LEGO bouwblokken en dan details van het hiermede opgeroepen
beeld te toetsen aan de werkelijkheid.
I H. Wieneck, The world of LEGO toyo, Harry N. Abrams, Inc., Publishen , New York. ISBN

0-8109-2362-9.,

11. De constatering dat een van de voornaamste toepassingen van het spel
'LIFE' betrekking heeft op het genereren van een bewegend patroon om
beeldschermen van werkstations voor inbranden te behoeden, is leerrijk
vanuit de optiek van wetenschapsmethodologie.
I What is Life ?, in: E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning ways, Vol. 2, Chapter 25,

pp. 817-SSO.J

3

