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1 

Chapter 1 

Overview and introduetion 

1.1 Structure of this monograph 

This monograph is concerned with roodels of software development. The 
foundations for the roodels studied are based on a À-calculus approach to 
design structures. It also contains an application of the concepts studied to 
text editing. This first chapter is an overview chapter. 

The main body of the monograph is formed by the Chapters 2, 3, 4 and 5. 
This body is divided into two parts. The first part consists of the Chapters 
2 and 3 which are about research of a fundamental nature, dealing with 
roodels of software development based on a À-calculus approach to design 
structures. The second part consists of Chapter 4 and 5, which are about 
work of an engineering nature, viz. the application of the concepts studied 
in the first part to text editing. Each chapter is structured as a unitwithits 
own introduction, bibliography and appendices. 

Chapter 1 is self-contained and requires no preliminaries. Within Chapter 1 
there are, amongst others, sections dedicated to the Chapters 2, 3, 4 and 5 
- one section for each chapter. Chapter 1 serves to place the other chapters 
in a broader context and to make the relation between them explicit. 

Chapter 2 is concerned with a formalisation of design structures. It is self
contained and its preliminaries are an elementary knowledge of rnathematics 
and computer science as wellas a certain familiarity with lambda calculus. 

Chapter 3 is concerned with correctness-preserving transformations of de
signs. This chapter is the heart of the monograph in the sense that it is de
voted entirely to the dynamic aspectsof the processof software development. 
Chapter 3 is a natural continuation of Chapter 2. Results from Chapter 2 
are used in Chapter 3, but no additional preliminaries are required. 
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Chapter 4 is concerned with the formal specification of a text editor. The 
text editor is introduced by way of illustration of the concepts from Chapter 
2 and 3, but at the same time Chapter 4 can he viewed as a case study in 
the use of forma! specification techniques. Chapter 4 is self-contained and 
its preliminaries are an elementary knowledge of rnathematics and computer 
science as wellas a certain familiarity with the COLD-K language. 

Chapter 5 is concerned with the systematic design of a text editor and is a 
natura! continuation of Chapter 4. The definitions from Chapter 4 are used 
in Chapter 5, but no additional preliminaries are required. 

The remainder of this first chapter is organised as follows. Section 1.2 is 
entitled "the nature of software" and it serves to introduce and demarcate 
the field of software engineering, which is the branch of applied science in 
which the work presented in this monograph fits. Section 1.3 is about infor
mal models of software development and in Section 1.4 we sketch a line of 
thought which gradually moves away from the informal models, leading to 
the formalisation of design structures and the correctness-preserving trans
formations of designs presented in the subsequent sections. 

Section 1.5 and 1.6 refer to Chapter 2 and Chapter 3 respectively. These 
sections serveto present the main achievements of the corresponding chapters 
and to relate them to other work. 

The results of Chapters 2 and 3 are generic in the sense that they can be 
instantiated with a particular formalism. In order to apply the results it is 
necessary to do this and therefore Section 1. 7 is a bout formal specification 
techniques in general and Section 1.8 is about the particular formalism we 
have chosen to he used in Chapters 4 and 5. 

Sections 1.9 and 1.10 refer to Chapters 4 and 5 respectively. These sections 
serve to present the main achievements of the corresponding chapters and 
to relate them to other work. Finally, Section 1.11 discusses a number of 
options for future work. 

1.2 The nature of software 

We approach the nature of software from the viewpoint that software con
struction is an engineering activity (see Section 1.2.1 below) with certain 
peculiar characteristics, viz. formality, the role of languages, the role of 
tools, and application domain evolution (Sections 1.2.2 to 1.2.5 below). The 
most important of these charaderistics is formaiity which acts as a recurring 
theme in the discussion of the other characteristics. 
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1.2.1 Software engineering 

The history of software engineering started in 1944 when Eckert, Mauchly 
and von Neumann adopted the idea of storing the instructions fora computer 
in electronk form internallyin the memory of the computer [1]. The size of 
computer memories has grown exponentially since then and as a consequence 
there are hardly any physicallimitations upon the size of the computer pro
grams themselves. Also from a physical viewpoint, computer programs are 
extremely flexible in the sense that it is easy to copy and to modify them. 
Probably this situation has led to the adoption of the term 'software' as a 
synonym for 'computer program'. The first computer programs were just 
sequences of instructions, but it did not take long until program structuring 
mechanisms were introduced. As Turing [1] put it: 

When we wish to start on a subsidiary operation we need only 
make a note of where we left off the major operation and then 
apply the fust instruction of the subsidiary. When the subsidiary 
is over we look up the note and continue with the major operation . 
... We have only to think how this is to be done once, and then 
forget how it is done. 

Also it was soon realised that computers and computer programs were going 
toserve as tools for the programmer. As Turing [1] wrote: 

This process of constructing instruction tables should he very 
fascinating. There need be no real danger of it ever becoming 
a drudge, for any processes that are quite mechanica! may he 
turned over to the machine itself. 

But despite these very promising aspects of software construction, the by 
now well-known problem of program correctness was present from the very 
beginning. Again we quote Turing [1]: 

Delay there must he, due to the virtually inevitable snags, for up 
toa point it is better to let the snags he there than to spend such 
time in design that there are none (how many decades would this 
course take). 

Although the above-mentioned charaderistics of software guarantee its con
struction to he a fascinating activity, it takes two more characteristics to 
turn it into a real engineering activity. 
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The fust of these charaderistics is the possibility to construct mathematica} 
models of computers and of the calculations performed by them. The second 
charaderistic is the existence of a wide range of practical applications. 

We shall briefly discuss the latter two charaderistics now. Certain math
ematica! models of computers and of the calculations performed by them 
were already available be/ore the actual construction of computers took place. 
Church's À-calculus modeland the Turing-machine modelalready existed in 
1936 and they provided very abstract mathematica! models of computation. 
Although these models were tuned to the analysis of a certain theoretica! 
notion of computability, they mark the beginning of fruitful research which 
has produced an enormous amount of results and concepts. Let us highlight 
just a few areas. Of course the following list is a gross simplification of a 
huge field of research. 

• The invention and analysis of numerous efficient algorithms for search
ing, sorting and numerical calculations (see e.g. [2]). 

• The theory of program correctness started by Floyd, Hoare, Dijkstra 
and others (see [3,4,5]). 

• Specification techniques and denotational semantics, which have led to 
the conception of special specification languages [6,7,8] and to a rich 
collection of techniques for descrihing semantics [9,10,4]. 

• Chomsky's theory of formallanguages [11] and parsing theory [12]. 
• Type theory [13,14,15,16], providing theoretica! foundations for the 

concept of type-checking. 
• Models of communicating processes starting with Petri nets and Mil

ner's ces [17,18]. 
• Programming language concepts, embodied in a never-ending stream 

of new programming languages: parameter mechanisms, programming 
varia bles, scoping, etc. Let us mention just a few important languages: 
FORTRAN, ALGOL, COBOL, LISP, Pascal, Modula, C, SETL, Ada, 
FP, ML, OCCAM, POOL and Prolog. 

Programmed computers turn out to have many practical applications. Ini
tially the applications were restricted to numerical computations, but soon 
they included also bookkeeping, administration, language processing, data 
manipulation and process controL Programmed computers have become an 
integral part of almost all technica} systems. Completely new applications 
have come into existence in areas such as telecommunications, entertainment, 
manufacturing, safety, medicine and education, but regretfully also in war
fare. By now, programmed computers have deeply penetrated all systems of 
infrastructure upon which our society is built. 
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As shown above, the term 'software engineering' is quite justified. Let us 
mention two other terros as well: 'computer science' and 'computing science'. 
The former term is chosen somewhat unfortunately whereas the latter is not 
generally accepted (yet). Both 'computer science' and 'computing science' 
are often used in order to stress the role of the mathematica} discipline. 
The term 'software engineering' is also used in conneetion with the project 
management and the organisational aspects of software construction. 

It is easy to think that software engineering is related to electronk engineer
ing, but in fact this is not really the case at all. It is true that computers are 
built up from electronk components; yet programroers need not know about 
the actual construction of the computer. The situation becomes even clearer 
when programming languages are employed which abstract more and more 
from the underlying machine. 

Software engineering has a significant overlap with mathematics, although of 
course there are many branches of mathernaties which are just not applicable. 
The following branches of rnathematics are relevant [19]: 

• formal logic, 
• set theory, 
• theory of relations, maps and functions, 
• À-calculus, 
• automata theory, 
• theory of formal languages, 
• discrete mathematics. 

Also queueing theory, category theory, graph theory and the theory of partial 
orders and lattices should be mentioned. The following definition of software 
engineering is given by Boehm [20]. It is quite consistent with the discussion 
presented above: 

the practical application of scientific knowledge in the design and 
construction of computer programs and the associated documen
tation required to develop, operate and maintain them. 

1.2.2 Formality 

There is one characteristic which distinguishes software engineering from 
most other engineering areas: formality. Every task to be performed by a 
computer must be formulated as a program. The computer executes such a 
program precisely as it is. In particular, the computer will not complain if 
the program is wrong, or if the program solves another problem than the one 
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meant by the programmer. Computer programs must he constructed with 
extreme care. One mistake may cause a program to produce nonsenskal 
results. With respect to the results, there is no difference between small 
mistakes and large mistakes: forgetting a semicolon can he as disastrous as 
a collection of huge design errors. 

The relevanee of this charaderistic is amplified by the size and the complex
ity of the programs. For simple programs there is a possibility that testing or 
even trial and error methods will eventually lead to acceptable results. For 
large software products such an approach is fatal. When the complexity of 
software products increases, program correctness becomea a very serious is
sue. Remember the fact that one mistake may cause the program to produce 
nonsenskal results. Furthermore, this complexity may he such that it is im
possible for one person to understand and remember all details of a program. 
It is a consequence of this complexity that communication, documentation, 
modularisation, specification and abstraction play an increasingly important 
role in the production of large software systems. 

Many software projects exhibit phenomena which can easily he interpreted as 
the symptoms of inadequately approaching the formality and the complexity 
charaderistics sketched above. One such phenomenon is a strong eropha
sis on project management, risk analysis, planning, baseline documenta and 
milestones, whereas on the other hand it turns out to he very hard to put 
the planning into practice. Some authors even introduced the term 'software 
crisis'. We quote Sommerville and Morrison [21] . 

... in the late 1960s after the so-called software crisis was iden
tified. This was the name given to the failure of the software 
developers to build large systems whkh were required to run on 
the then-new third-generation computer hardware. 

Very much related to this, there is an increasing interest for modeHing the 
software development process. We shall come back to these models later and 
in fact we shall construct a special kind of such roodels ourselves ( this will he 
discussed in Section 1.6). We view the 'software crisis' simply as a symptom 
of poorly understood deeper causes such as the lack of formality and the 
complexity of software. 

The formality issues mentioned above can he explained better by referring to 
the notion of a formal system [19]. A formal system consists of: (1) a syntax, 
by which we mean an alphabet and rules whkh define a set of formulae, and 
(2) a number of rules whkh can he used for the derivation of new formulae 
from some given formula. The rules of a formal system are given without 
any reference to their intuition or meaning. The formal system just defines 
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a game. A computer program can be viewed as a formal system and the 
computer executing it can be viewed as the player of the game. The number 
of steps performed in a calculation may become so large that one person 
cannot imagine and understand the calculation as a sequence of steps. 

Instead of that, reasoning about program execution must be based on more 
powerlul (mathematica!) approaches, using some impHeit or explicit induc
tion principle. If we want to consider the forma} system as a black box and 
try to verify its correctness just by testing, then in general we can never be 
sure that the forma} system is correct. Program testing can be used to show 
the presence of errors, but not their absence. 

There is a second point where forma} systems enter into software engineering, 
viz. as systems of reasoning. For this purpose many relatively simple forma} 
systems have been proposed. The following list is of course not complete. 

• Equational logic for specification of data types [22]. These specifica
tions are often called 'algebraic specifications'. They work well for data 
types such as natura! numbers, Boolean values, stacks and queues. In 
the typical 'stacks' example, one uses equations like pop(push(s,x}} = s 
and top(push{s,x)) =x. Efforts have been made to push the approach 
further by descrihing more complex systems, such as simple program
ming languages [23], file systems [24] and data base systems [25]. 

• First-order predicate logic for descrihing the various states involved 
in a program execution. Imperative programs can be viewed as state 
transformers and hence there is a need to describe properties of states. 
A typical example of such a property is that in some state an array 
a[O .. n- 1] is sorted. The state itself remains implicit and to express 
this property we would have a first-order predicate logic formula Vi, j : 
1N (i < n 1\ j < n 1\ i :5: j => a [i] :::; a[j]). Th is logic is al ready classic 
[26], but in the 1970s it has received much attention in conneetion with 
Hoare's logic and Dijkstra's wp calculus (see below). 

• Hoare's logic for reasoning about the correctness of sequentia} pro
grams. This is a forma} system for reasoning about triples (P, s, Q) 
where P is a precondition, s is a program and Q is a postcondition. 
This logic can be interpreted as dealing with partial correctnessof pro
grams. It was one of the first forma! systems in software engineering 
which was really presented and widely recognised as a formal system. 
By now it has been incorporated into the field of mathematica! logic, 
where its generalisations are known as dynamic logic [27]. 

• Dijkstra's wp calculus [5] is a forma} system which can be interpreted 
as dealing with total correctness. One writes P => wp(s, Q) where Pis 
a precondition, s is a program and Q is a postcondition. 
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There are several related reasons for the introduetion of these forma] sys
tems of logic into software engineering. The first is the program correctness 
problem: forma! systems of logic provide mental tools for reasoning about 
programs and data types. We could express this as follows: one way of solv
ing the problems caused by the introduetion of a forma/ system, is to introduce 
another formal system, viz. a logic for reasoning. 

Another closely related reason is that formal systems of logic make it possi
bie to construct tools that assist in reasoning about programs - at least in 
principle. The current state of the art is that the reasoning power of theorem 
provers is too limited to take full advantage of this possibility; this situation 
might change in the fut ure. Even if there are no tools for reasoning yet, syn
tax checking and type checking the formulae of some system of logic already 
give useful results. 

The size and complexity of programs make it necessary to split programs into 
modules which have a specification associated with them. Such specifications 
should contain precise properties of data types and of programs; the formulae 
of some system of logic are very suited for expressing these properties. 

A question which has until now not been solved entirely satisfactorily is the 
integration of these forma! systems of logic. One promising approach to 
this integration leads to the so-called wide-spectrum languages. These are 
languages combining an expressive logic with programming language con
structs. Examples of these are VDM [6], Z [7] and COLD-K [8]. A further 
integration would have to incorporate roodels of communicating processes. 
A somewhat different approach is taken in the Genesis project [28], where 
tools are constructed which are parameterised over systems of logic. 

An interesting option which comes with the introduetion of forma] systems 
of logic is the possibility to provide the proofs and have them checked auto
matically. The proofs must he coded as expressions of a special version of À
typed À-calculus and then proof-checking becomes a matter of type-checking 
- which turns out to he decidable. The checkers are called verification sys
tems or justification systems; the Automath checker [16] is one of the first 
examples. 

An approach which might become important in the long term · is to have a 
formalisation of typical software development processes. This formalisation 
then might he turned into an automation of (part of) the software develop
ment process [29]. 
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1.2.3 The role of languages 

There are many different languages in use in software engineering and much 
progressis language-driven. Each language Lis a set of sentences and when 
e.g. L is a programming language, these are the well-formed programs that 
can he compiled and executed. To characterise a language one nsually em
ploys a grammar G - which is a formal system- and we have L = L(G). 
In order to structure our discussion, we adopt the following classification 
scheme: 

• programming languages, 
• specification languages, 
• special-purpose languages. 

We begin with a discussion of programming languages. These have always 
played an important role throughout the history of software engineering, 
which started with the machine language of the early computers. A machine
language program contains precisely the sequences of Os and 1s that can he 
interpreted directly by the computer. For example, an instruction to load 
the accumulator register with a binary number 111, for example, could look 
as follows: 

10000110 00000111. 

Clearly this was a user-unfriendly approach and the wish to abstract from 
these bit sequences soon gave rise to a following generation of languages. 
These were called assembly languages; an assembly-language program has 
precisely the same structure as the corresponding machine-language program, 
but the sequences of Os and 1s have been replaced by symbols. For example 
one could write 

LDA A #7 

rather than 10000110 00000111. In the 1950s FORTRAN [30] was introduced~ 
in which one could write down formulae such as 

Xl = (-B + SQRT(B**2 - 4.0*A*C))/(2.0*A) 

which is relatively close to the usual mathematica! notation. This was a great 
step forward, although control-flow constructs and parameter passing were 
not very well-chosen from today's point of view. 

Let us interrupt our historica! survey now to make a few observations; these 
apply to the bistorical development sketched above, but in fact they apply to 
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the later developments as well. First, there has been a tendency to make the 
languages more abstract in the sense that the programs have more in common 
with the mathematica! descriptions of the underlying models and less with 
the corresponding machine-language programs. The second observation is 
that many software developers care a lot about the language they use. The 
language in use serves as a medium for thinking about the problem at hand 
and the program to solve it. 

The last observation is that the introduetion ofnew concepts into the practice 
of software engineering can be done by embodying each concept as a language 
construct in a new language. But somehow the converse of this statement 
seems to he the case as well: it is hard to introduce methodological concepts 
unless these are very concretely available as constructs in a programming 
language. To give one example, the concept of parameterisation was from 
a mathematica! point of view already well-described and modelled since the 
formulation of the ~-calculus; still it required effort and discipline to have 
well-identified parameters when writing subroutines in an assembly language. 
FORTRAN provided for functions and subroutines with parameters which 
made it much easier to use the concept of parameterisation - although of 
course the FORTRAN and the ~-calculus parameter mechanism are quite 
different. 

In the 1960s and 1970s the hlstorical development has been more complex. 
Several new concepts were introduced, but not in such a way that there is 
precisely one sequence of languages which is monotonically increasing with 
respect to abstractness and expressiveness. Instead of trying to provide a 
complete historica! survey, we shall just mention a number of important 
concepts: 

• modularisation, 
• parameterisation, 
• concurrency, 
• higher-order functions, 
• types, 
• abstract data types, 
• logic programming, 
• term rewriting, 
• inheritance. 

Fora systematic comparison of a number of languages, see [31] and [32]. 

A problem with the introduetion of new concepts via a programming lan
guage is that usually several concepts are presented in a somewhat inter
twined fashion. Typically the intertwining is between conceptsof a method-
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ological nature and concepts dealing with efficient program execution mech
anisms. For example, the modules in [33] are primarily intended as a rather 
syntactic means of ordering a sequence of procedures, data types and vari
ables, tagether with static ways of prohibiting access to constructs which 
should be considered local. But at the same time modules can have initial
isation statements; moreover there are special kinds of modules, e.g. the 
so-called interface modules which offer solutions to the mutual exclusion 
probieros of communicating processes. 

Much progressof a methodological nature has been achieved by introducing 
new concepts such as modularisation, parameterisation, types, concurrency, 
and higher-order functions into programming languages. However, the prob
lem with programming languages is that all constructs must be executable 
and as a consequence a need arose foranother kind of languages which are op
tima! with respect to expressivity and abstractness. The resulting languages 
are called specification languages. This term may be somewhat misleading 
because these are not only useful for specifying programs to be constructed, 
but they can also be used for descrihing programs and systems which are al
ready available. This need for another kind of languages has been expressed 
elegantly by Hoare [34]: 

So in the specification y, you should take advantage of the full 
range of concepts and notations of mathematics, including con
cepts that cannot be represented on a computer and operations 
that could nat be implemented in a programming language. 

Many of the issues occurring in relation with modularisation, parameterisa
tion, typing, concurrency, higher-order functions, etc. apply also to specifi
cation languages. For most of these concepts it seems a good idea to make 
them available in specification languages as well- although their integration 
still is a major technica! problem. In [35] a specification language is defined 
as a language satisfying the following requirements: 

• the language concepts enable the description of digital systems, 
• the language constructions are derived from mathematica! logic, 
• the language has a precise syntax, 
• the language has a precise semantics. 

If furthermore the language allows for descriptions at severallevels of abstrac
tion, it is called a wide-spectrum specification language. Typically the wide
spectrum languages have a subset which can be considered as executable. 
However it is a misconception to postulate that as an ideal it should be tried 
to make all constructs in the language executable. By doing so, one just 
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gets another programming language. It is the very purpose of a specification 
language to avoid the conflicts between executability on the one hand and 
expressivity and abstractness on the other hand; in a specification language 
the choice should he in favour of expressivity and abstractness. In [35] a 
classification of specification languages is presented. We summarise it here: 

• thematic languages, tuned to feature a theoretica! approach, 
• combination languages, 
• mid-spectrum languages, 
• wide-spectrum languages. 

In this monograph, the main focus will he upon the mid-spectrum and wide
spectrum languages since these are currently reaching a level of maturity at 
which they can he applied in an industrial context. Furthermore insection 
1.5 we shall propose a class of syntactic structures called 'designs' and hence 
the set D of all designs can he viewed as a language. Yet, D does not fit 
in the classification programmingfspecification languages; instead of that, it 
provides a kind of 'missing link' between these two language-classes because 
it serves for putting programs and their specifications together in an orderly 
fashion. 

There is a great diversity of special-purpose languages. Because these can he 
tuned to very specific needs, they are less subject to conflicting requirements 
than the general-purpose programming languages and the general-purpose 
specification languages. As examples we have data-base query languages, 
job-control languages, input languages for parser-generators etc. 

1.2.4 The role of tools 

In this section we shall briefl.y discuss the role of tools, i.e. computer
programs which are meant to he of help in software engineering. The role 
of tools is to relieve the software designer from certain dull and error-prone 
subtasks - as already indicated by the second citation of Turing in Section 
1.2.1. Of course only those subtasks can he automated which are completely 
understood and which are formalised. We list a number of tools. 

• Syntax checkers which serveto determine whether an input text belongs 
to the language for which the checker has been built. 

• Type checkers which serveto determine whether an input text is correct 
according to the type system for which the checker has been built. 

• Code generators which serve to perform meaning-preserving transla
tions from a souree language to a target language. 
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• Compilers for programming languages. Typically each compiler con
tains a syntax checker, a type checker and a code generator. 

• Text editors, structure editors and graphics editors which serveto enter 
and modify programs, specifications and other documents which play 
a role in software engineering. 

• Data-base systems, file systems, and contiguration-management sys
tems which provide systematic ways of storing programs, specifications 
and other documents. 

• Mail systems, calendars, news systems etc. which serve to structure 
the communication between software engineers. 

• Text-processing tools and type-setters which serve to produce nice
looking and well-structured documents. 

• Interactive program transformation systems which assist the software 
engineer in transforming specifications into programs using correctness
preserving transformations. 

• Theorem provers, proof assistants and proof checkers which assist the 
software engineer in constructing and checking proofs in a formal sys
tem of logic. 

The full potential of possibilities has by no means been fully exploited so far. 
A potential bottleneck is the lack of integration of all these tools [36]. This in
tegration is complicated by the existence of many programmingfspecification 
languages and systems of logic. Also the diversity of available computers and 
operating systems is a complicating factor in practice. 

Each tool must be based on a formal system and/or an underlying theory; 
for example, a syntax checker is based on a particular grammar and the 
general theory of languages and parsing whereas a type checker is based on 
a particular version of type theory. In general, the construction of tools is a 
natural follow-up of language definition or of methodological and theoretica} 
advancement. 

1.2.5 Application domain evolution 

The charaderistics of the process of software development are not the same 
for all application domains. It is not possible to give an overview of all 
application domains, but some useful remarks can be made by distinguishing 
application domains with respecttotheir maturity. In particular, the degree 
of achieved formality turns out to be a dominant factor. This section serves 
to provide a slightly relativising context for the discussions of the preceding 
sections and it also plays a role in positioning our own work. 
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We summarise the idea as worked out in [37], where Sikkel and Van Vliet 
discuss domain-oriented reuse of software. They state that the possibilities 
for reusing software depend on the maturity of the application domain. 

Application domains are subject to a certain development and there are four 
distinct phases: 

• no reuse, 
• ad-hoc reuse, 
• structured reuse, 
• automation of the domain. 

It is argued that the introduetion and standardisation of useful ideas, con
cepts and structures starts in the second phase. This introduetion is an 
iterative process which takes quite a lot of time. Only after that is it possi
bie to make the transition to the third phase. Formalisation is viewed as a 
tooi which can help in establishing this transition. 

Sikkel and Van Vliet focus attention on this transition from the second phase 
to the third phase. Indeed, for the first and second phases it is hardly possible 
to provide useful models of software development, whereas in the third phase 
the software development itself can proceed in an orderly fashion. Therefore 
it seems worthwhile to speed-up this transition whenever possible. Just as 
Sikkel and Van Vliet, we believe in formal specification techniques as a tooi 
for doing this. In the third phase, the software development itself is to a 
certain extent already amenable to mathematica} analysis. 

In Section 1.6 we shall discuss certain models of the software development 
process, which can indeed be viewed as examples of such a mathematica} 
analysis. In the fourth yhase the formalisation of the software development 
process leads to replating an entire design activity by a simple push-button 
operation. Furthermore, when this push-button operation has become suffi.
ciently effi.cient, the application domain will have become quite unproblem
atic from a software engineering viewpoint. 

1.3 lnformal models of software development 

1.3.1 General 

Below we shall summarise some informal models of software development. 
Most of these informal models of software development are not based on a 
deep analysis of formal systems, but rather they are based on common sense, 
social observations and empirica! data. Each of these models conveys some 
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useful insight about software development. There is a large variety of such 
models and quite arbitrarily we selected a few representative models for a 
brief discussion. No attempt has been made to give a complete overview of 
this type of models. For an overview we refer to [38] or [39] . 

1.3.2 Waterfall model 

The waterfall model [20], also called the life-cycle model, states that, roughly 
speaking, the software development process goes through the following phases: 

• system feasibility, 
• software plans and requirements, 
• product design, 
• detailed design, 
• code, 
• integration, 
• implementation, 
• operations and maintenance. 

At the end of each phase a kind of verification or validation takes place and 
if its outcome is unsatisfactory, a returntoa previous phase may take place. 
This model and variants of it have been used in many projects and these 
models have a certain value by providing guidance with respect to the order 
in which a project should carry out its major tasks. 

1.3.3 Boehm's spiral model 

Boehm [40] states that many software life-cycle models of software develop
ment are inappropriate in many situations. He proposes a so-called spiral 
model of software development and enhancement. This model is an elabora
tion of the waterfall model of Section 1.3.2. The spiral model adopts a similar 
sequence of phases as the waterfall model, but the sequence begins with ha v
inga prototype. Furthermore, this model has the additional feature that this 
sequence should he done several times as an iterative process. Every time 
before the sequence is entered, a risk-analysis must take place. The model 
can he viewed as a kind of repetitive statement and our own presentation of 
it below shows it as a while . .. do . .. loop. 
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Boehm has a pictorial notation for it where the total execution sequence is 
shown as a spiraL 

while risk< max do 

• prototype, 

• software plans and requirements, 

• 
• operations and maintenance. 

end 

Every iteration cycle yields some product which enters the next cycle as a 
prototype. The idea of risk-analysis gets a lot of attention in this modeland 
it is extensively discussed in [40]. 

1.3.4 A layered behavioural model 

Curtis, Krasner and Iscoe [41] report about a field study of the software 
design process for large systems. It is argued that human and organisational 
factors seriously infiuence the execution of software development tasks. A 
layered behavioural model of software development is given. It has five layers, 
each of which has a certain infiuence on the software development process. 
The model focuses on the behaviour of the people creating the software, 
rather than on the software itself. The five layers are as follows: 

• individual, 
• team, 
• project, 
• company, 
• business milieu. 

By means of a field study based on interview techniques the three most 
salient problems of software development were identified. Each problem is 
extensively discussed for each of the layers of the model: 

• the thin spread of application domain knowledge, 
• fiuctuating and confiicting requirements, 
• communication and coordination problems. 

These problems have survived for several decades despite serious efforts to 
improve software productivity and quality. Software development tools and 
practices are said to have disappointingly small effects in earlier studies, 
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because they did not improve the most troublesome processes in software 
development. 

The proposition that human and organisational factors affect the execution 
of software development tasks is convincingly shown in [41]. However there 
are opportunities to make progress by studying simplified roodels of software 
development at a technica! level. Also the reported communication prob
lems suggest that it is useful to improve upon the specification techniques 
employed for the products. 

Let us say a few words about the relation of the model and the work on 
roodels of software development of this monograph. We do not contribute 
to the ecological research suggested in [41] nor to the studies of processes 
such as learning, requirements negotiation, etc. Instead we focus on the 
software product and its descriptions and on the evolutionary behaviour of 
these through certain development stages. 

1.3.5 Koomen's iteration, learning and detailing model 

In [42] the software development model is viewed as a step from a specification 
S to an implementation I. In genera!, the implementation is more complex 
than the specification; this is because of decomposition and the introduetion 
of additional information. Kooroen explicitly meritions the knowledge K 
which is needed by the developer to perform the stepS -+1. This is denoted 
as follows: 

S--->1 
K 

It is argued that the developer must acquire the knowledge K by learning, 
which in most cases takes place by means of iterations and making errors. 
Furthermore the transformation process is not just one step, but at another 
level this step consists of iterations and recursions. 

Also in [42] a distinction is made which in our opinionis quite useful, viz. the 
distinction between an idealised design process (IDP) and an actual design 
process (ADP). It seems worthwhile to study IDPs and even to formalise 
them, but because of the errors which occur during the learning proces, it is 
inevitable that there is a difference between ADP and IDP. 

Before setting-up our own line of development aiming at certain formal rood
els of software development, let us explicitly mention some useful ideas that 
can he taken from the above informal models and that also act as ingredi
ents of the forma! models. From the waterfall and spiral models, we take the 
use of sequentia! composition and repetition as structuring mechanisms at 
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process level. From Curtis, Krasner and Iscoe's report we reeall that there 
are many aspects of software development that seem not amenable to for
malisation (yet). But we also mention the reported communication probieros 
which we shall translate into the need for having 'redundant' specifications 
(see Section 1.6). From Koomen's model we adopt the idea that software 
development is a process of detailing and adding information; this will come 
back in our top-down and bottorn-up roodels (see Section 1.5) which are 
strategiesof growing (= adding information to) structures called designs. 

1.4 Towards formal models of software devel
opment 

1.4.1 Modularisation 

Although the informal roodels of software development of Sections 1.3.2, 
1.3.3, and 1.3.4 convey certain information about software and its construc
tion, they are still somewhat unsatisfactory. We view it as a weakness of these 
and simHar roodels that they impose a management-oriented and project
oriented structure upon a process of software development which is in fact 
still poorly understood. Indeed, the situation is even worse in practice, for 
often the software itself is poorly understood. 

We shall study roodels of software development in this monograph, but we 
want to start from a position where we can understand the structure of 
the software. Then we take this structure as a starting point for making 
meaningful statements about roodels of software development. Our main 
mental tooi will be that of formalisation. We begin with having a look 
at modularisation, since this seems to he the right way ahead to impose 
meaningful structure upon the software itself. 

To get started, it is suftkient to have an informal understanding of the ques
tion what ,·s a module?. A module is a piece of software which more or less 
constitutes a coherent unit. One may think of it as a bunch of procedures 
which tagether provide a certain functionality; one may also think of it as an 
abstract data type. 

Let us assume that modulescan be fitted tagether tofarm larger modules by 
composition mechanisms such as import and that it is possible to associate 
narnes to modules. Then it becomes possible to represent the module struc
ture of a software product as a directed acyclic graph (DAG) where the nodes 
are modules and where the edges correspond with the 'is part of' relation. 
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For example, consider a module structure which is as follows: 

• let ml :=module ... end; 
• let m2 :=module ... end; 
• let m3 := import ml into module ... end; 
• let m4 := import mi, m2 into module ... end; 
• let m5 := import m2, m3, m4 into module ... end; 

This is represented by the tigure below, where an arrow indicates that one 
module is part of another module. 

B 
/1 

B B 
1 / 1 

EJ B 
Fig 1.1. Example of DAG module structure. 

To have a well-chosen module structure in a software product is the key to 
avoiding many problems in later stages of the software development process. 
For a discussion of the criteria for choosing a module structure, we refer 
to [43]. Although DAG structures as sketched above are attractive because 
of their simplicity, they are in practice hardly adequate for descrihing the 
structure of real software systems. This is because they can not cope with 
parameterisation (generic modules) and specification ('redundant' modules 
for specification purposes only). 
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1.4.2 Parameteriaation 

Parameterisation of modules is a technique for improving the reusability of 
modules. Software reuse is currently a hot topic in software engineering 
literature [44] and it is important indeed, for at least the following reasons. 

• It is hoped that more frequent reuse of software will lead to higher 
productivity of software developers and to significant cost reductions. 

• Reuse of modules within one and the samedesign may lead to signifi
cant reductions with respect to the complexity of the design. 

• Frequently used software packages could he better certificated for proper 
construction and operation. Forthese packages, it is worthwhile to put 
more effort in obtaining optima! results. 

Parameterisation comes from the insight that often modules could he reused, 
provided they have suitable parameters. E.g. the Ada language provides a 
mechanism to indicate that a package (= module) is generic, which means 
that the package has one or more parameters. Both types and functions can 
occur as parameters. We quote Sommerville and Morrison [21]. 

One classic example of how generics are useful is in sorting pro
cedures. In most languages two different procedures are required 
tosort an array of integers and an array of real numbers. Indeed, 
the situation is much worse than that since we require a different 
sort procedure for every different type. 

When a generic package is used, the actual parameters must he chosen and 
the substitution of the actual parameters for the forma! parameters is sup
posed to he done at compile time. 

Reusability of modulescan he improved by providing them with parameters 
but one can conceive of a large number of options for such a parameter 
mechanism. Let us have a look at two approaches, viz. the parameterisation 
of the algebraic specification languages CLEAR and ASL. 

In CLEAR, the parameterisation is uniform in terms of modules: one can 
parameterise a module with respecttoa parameter (x say) ranging over mod
ules. In the design of CLEAR [50] it has been recognised that the forma! 
parameters of modules must satisfy certain requirements before an instan
tiation can take place. There is no full ,\-calculus, but there is a special 
construct called theory procedure. For example in CLEAR one writes 

procedure Sorting(x: R) = M 
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to introduce a parameterised module named Sorting. Mis the actual spec
ification of sorting which of course must he parameterised with respect to 
the sort of things to he sorted and the relevant ordering relation. The latter 
sort and relation are described in the parameter restrietion R. The colon is 
somewhat misteading since it does not refer toa classica! (irreflexive) typing 
relation but to the implementation relation. 

In ASL [52] there is an explicit lambda notation for parameterisation, but 
the conneetion with the forma! implementation relation is not made. In ASL 
one writes 

À spec x, sort s, opn p : R.M 

to parameterise the module M with respect to a module (spec) x which 
contains a sort s and an operation p. Again Ris a parameter restriction, but 
in ASL it can he either a module or a Boolean expression. 

It is not obvious how to reflect parameterisation and instantiation of modules 
in the DAG structures discussed before, which means that actually the DAG 
approach is somewhat too naive in practice. In Section 1.5 improved design 
structures and a parameterisation mechanism are proposed. 

1.4.3 Simple top-down and bottorn-up models 

When the DAG model for the modular software products applies, this gives 
an opportunity to impose structure upon the development process. In this 
way one easily arrives at simple versions of top-down and bottorn-up roodels 
and these are nothing but ways of letting the DAG grow. 

We depiet a few states from a typical bottorn-up development process. 

= EJ EJ 
l / l 

B EJ 
Fig 1.2. The simple bottorn-up model. 
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The three distinguishing properties of this simple bottorn-up development 
model are the following. 

• lnitially there are one or more unrelated modules. Let us call these the 
machine modules. 

• Modules are only added, and never removed. 
• All modules are always constructed in termsof the machine modules

again either directly or indirectly. 

We depiet a few states from a typical top-down development process. 

EJ EJ 
/l~ 

EJ EJ-EJ 
l/ 
B 

Fig 1.3. The simple top-down model. 

The three distinguishing properties of this simple top-down development 
model are the following. 

• Initially there are one or more unrelated modules. Let us call these the 
system modules. 

• Modules are only added, and never removed. 
• All modules are always either directly or indirectly 'part of' at least 

one system module. 

It is not hard to formalise the DAG structure and the simpletop-down and 
bottorn-up models discussed above1• Similar discussions are presented in [46] 
and [47]. The approach can also be pushed further by including middle-out 
and outside-in models. 

However, the approach is not entirely satisfactory, mainly because the need 
for specifications is not taken into account. Especially the simple top-down 

1 It is interesting to compare this with M. Feather's (45] view of growing specifi.cations 
as a processof applying elaborations e....step1 , e.lltep2 etc. upon an initialspecifi.cation m 0 . 

Feather explores the combination of parallel elaborations e....step1 (m0 ) and e.lltep2 (mo) say, 
which e.g. for independent steps could mean to take e....step2 (e....step1 (mo)). 
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approach can hardly workin practice, because it is probiernatie to use a non
existing module unless a sufficiently precise specification of it is available. 
This defect becomes even more clear when we aim at reuse of modules. 
Parameteriaation is a mechanism for improving module reusability, but at 
the same time it leads to an increasing need for specifications. Even when 
the functionality of a reusable module is sufficiently known, there is still a 
need to have clear (forma!) specifications of the parameters and of their effect 
upon module behaviour. 

The simple top-down and bottorn-up roodels are too poor to describe this, 
but there is a clear route for improving this situation. The main extension 
is to associate specifications with modules. In order to make this precise, a 
formalisation of the resulting design structures ( = structure of modules + 
specifications) will he needed. This is the subject of Chapter 2, summarised 
in Section 1.5. After that we shall be in a better position to have a second 
look at the dynamic aspectsof the processof software development and this 
is the subject of Chapter 3, summarised in Section 1.6. 

1.5 A formalisation of design structures 

This sectionis just a very informal and incomplete introduetion to the con
tents of Chapter 2. The current section is meant to fit logically in the main 
lines of thought presented in the current chapter, but the detailed technica} 
work involved is done in Chapter 2. 

Chapter 2 begins with a formalisation of the module structure of software 
products. A mathematica! model is introduced, which covers from an ab
stract point of view several distinct languages. According to the model, 
modules are nothing but term'l and the ways of fitting modules together are 
algebraic operators in the language of an algebraic system. 

This algebraic approach to module composition is investigated by several 
authors. For example, in Module Algebra [48] modules are terms consist
ing of module constants/variables and the operators E (the visible signature 
of a module), . (renaming of a module), T (conversion of a signature toa 
module without axioms), + (combination/union of modules), and D ( restrie
tion of the visible signature of a module). The ACT ONE MOD language 
[49] provides algebraic operators for basic module specification, extension, 
renaming, union, composition and actualisation. The CLEAR language [50] 
provides algebraic operators for basic module specification ( either with loose 
semantica or initiai-algebra semantica), enrichment and derivation (= hiding 
+ renaming). Closely related to Module Algebra is the Class Algebra un
derlying the COLD-K design language [8], the main difference from Module 
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Algebra being related tothefact that in COLD-K one can describe systems 
having a state. 

In Chapter 2, there is no fundamental difference between a specification 
module and an implementation module. The only difference is a matter of 
role and this is formalised by assuming a binary relation Ç on modules where 

means that M 1 is an implementation of M 2 • This relation is required to he 
a preorder ( = reflexive + transitive). Starting from this simple model, a À
calculus approach to parameterisation is developed in Chapter 2. However, 
unlike classica! (untyped) À-calculus, there are restrictions to the actual pa
rameters which may he provided for a parameterised term. The resulting 
calculus is called Àn-calculus. In classica! À-calculus [51] one would write 
>..x.M to indicate that x is a formal parameter, which may occur in M. 
Instead of that, in >..n-calculus we get 

>..xÇR.M 

where R is aso-called parameter restriction. The calculus is formalised by 
means of a collection of rules, where the most important rule is called (n), 
because it is a kind of partial version of the well-known rule of classica! À
calculus, which is called (,8). Somewhat simplified, the rule (n) is as follows: 

(>.x Ç R.M)A---+ M[x :=A], provided A Ç R. 

This calculus can he put on top of an arbitrary algebraic system with pre
order, which means that it works for any formalism with an algebraic ap
proach to module composition. 

It is interesting to compare this Àn-calculus with the parameterisation of 
CLEAR and ASL as mentioned in Section 1.4.2. CLEAR does not provide 
a set of rules as in Àn-calculus but instead of that the parameterised spec
ifications get a semantics directly in terms of mappings from algebras to 
algebras. Just as CLEAR, ASL does not provide a set of rules and the pa
rameterised specifications get asemantics in termsof mappings from algebras 
to algebras. Furthermore the ASL mechanism is not uniformly in terms of 
modules: one can parameterise a module with respect to one or more sorts 
and/ or operations. 

The Àn-calculus can he provided with a simple system of types and then it is 
shown to have the Church-Rosser property (also called confluence) and the 
strong normalisation property. 
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Using À71'-calculus, Chapter 2 describes a formaHaation of design structures 
by introducing the concept of a design. Intuitively, a design is a (possibly 
large) hierarchically structured and component-wise specified software sys
tem. Precisely the fact that a design is component-wise specified implies that 
issues of information-hiding arise, which cannot adequately he dealt with by 
just the algebraic approach to module composition alone; as it turns out, 
they can however he dealt with by the À71'-calculus. 

The designs of Chapter 2 are related to the so-called hooks in Automath [54] 
and we shall sketch the relation here using De Bruijn's terminology- which 
is quite recent. Every lambda term can he viewed as a tree, having nodesof 
two kinds. 

• Application (a) nodes, where a parameterised term gets an argument, 
• Typing nodes ( t), which are just À-abstractions. Letusadopt this term, 

though formally the parameter restrictions of À71'-calculus are not types. 

Now one can organise lambda terros so that they become a special kind 
of slanted trees, built up from typing-with-immediate-application pairs (at 
pairs) and single typing nodes (t nodes). Hence the trees are named at&t 
systems. This is precisely the way Automath hooks are organised and it can 
he used for coding and type-checking mathematica. De Bruijn noted this 
'books-as-lambda-terms' analogy. 

Now it turns out that at&t systems in À71'-calculus can he used for giving a 
meaning to a forma! notion of design, corresponding to the intuition sketched 
above. In this way there is a 'designs-as-lambda-terms' analogy. 

A design can he represented by a structure which looks like this: 

xl .- pl c Ql 
X2 .- p2 c Q2 

Xn .- Pn c Qn 
system s 

where each line is called a component, each P; is called a glass-box description 
( = implementation module) and each Q; is called a black-box description ( = 
specification module). 

It is optional to omit the glass-box descriptions for certain components and 
in that case the corresponding P; s are just prim, which is a dummy place
holder. Such components are called primitive. Primitive components act as 
the parameters of the design in which they occur; typically sarnething will 
he filled-in for the prims in a later stage of the development. 
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In Chapter 2 two notions of correctness for designs are defined, called glass
box correctness and black-box correctness. Both forms of correctness are very 
important from a methodological point of view. Glass-box correctness is 
based on the principle that all details of the implementation modules may 
he known when using these modules. No information-hiding is required. 

Black-box correctness is based on the principle that no details of the im
plementation modules may be known when using these modules. Insteadof 
that, the user of a module must rely exclusively on specifications - called 
black-box descriptions in our terminology. The principle of black-box cor
rectnessis probably already old and has for example been expressed in [55]. 

We feel it is essential that the user of an interface should nothave 
to know anything about the details of the implementation. In 
particular, the fact that this interface may he formed by a single 
body or a set of several bodies should not make any difference. 

However, to the best of our knowledge, it has never been formalised ade
quately and analysed with the techniques of mathematicallogic, as in Chap
ter 2. 

The definitions of these correctness notions provide a starting point for a 
systematic study of transformational development. In particular, a design is 
built up from components and the correctness of a complete design follows 
from the correctness of its components. In Chapter 2 we investigate the 
precise conditions so that when modifying one component, the correctness of 
the resulting design follows from the correctnessof the modified component. 
Black-box correctness gives rise to a certain locality principle with respect 
to modifications of implementations. Such modifications of implementations 
occur very frequently in practice, typically because of requirements to achieve 
certain efficiency improvements. For large designs, a complete re-verification 
of the (black-box) correctness is out of the question in practice, and as a 
consequence it is of key importance to have locality principles. In Chapter 2 
a mathematica! basis is provided for this and a number of locality principles 
and a number of pitfalls are formulated and demonstrated in a very precise 
way. 

In Chapter 2 it is shown that several interesting properties of designs have 
simple analogons in the À1r-calculus. The most striking analogy is that black
box correctness holds in a design if and only if the corresponding lambda 
term in À1r-calculus can he reduced so that no candidate redex remains un
contracted and the contractions are performed from right to left. The new 
and innovative aspect of these analogies is that reduction strategiesof lambda 
terms are used to characterise methodological notions. 
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It is important to note that in this monograph, both the design structures and 
a number of methodological notions are defined formally and are analysed 
using techniques from mathematicallogic. This is a great step forward with 
respect to the usual informal and intuitive approach to the same method
ological notions (as e.g. in the above quotation from [551). 

1.6 Correctness-preserving transformations of 
designs 

This section is an overview of the contents of Chapter 3. In view of the 
achievements mentioned in Section 1.5 we are now in a better position to 
continue the line of thought presented in Section 1.4. We aim at a precise 
description of the top-down and bottorn-up modelsof software development, 
but now we consider them as ways of growing designs rather than just DAGs. 

In order to have a systematic approach, Chapter 3 begins with an examina
tion of algebrak operations at the level of designs. So given two designs d1 

and d2 , we investigate the mechanisms to combine these to another design, 
d3 say. There are two operations of this type: 

• a binary operation * to be used for combining unrelated designs, 
• a binary operation o which can be used for combining designs where 

the system provided by one design is plugged into the list of assumed 
primitives of another design. 

Of course the question arises under which circumstances these operations 
preserve black-box correctness. This leads to a forma! notion called valida
tion. As it turns out, the question of preservation of black-box correctness 
can be answered satisfactorily. Again this question involves non-trivia! issues 
of information hiding, requiring an analysis in the tradition of mathematica! 
logic, using results from Chapter 2. 

After that, a formalisation of the top-down modeland the bottorn-up model 
is undertaken, employing techniques which are taken from the product level: 
first the pre- and postconditions are made explicit and after that an iteration 
construct is introduced based on an invariant assertion. In particular, the 
top-down model is based on an invariant assertion TDJNV which asserts 
that the current design is black-box correct and that all components play 
a role in the system of the design. In Chapter 3 we describe the models 
as design-programs and by way of example we show a part of the top-down 
design-program, which is called td. The input-parameters of td are denoted 
as db and d1 which - roughly speaking - are the external interfaces of the 
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design to he constructed. Below, d corresponds with a variabie design (the 
'current design') which is modified in a step-wise manner, 

td := technique db, d, 
def d := d,; 

while not bot(d) =db do d := td...step(d); od; 
d. 

This td...step is such that it preserves TDJNV. The design-development lan
guage used to express the design-programs has a well-defined syntax and 
semantica which is given in an appendix of Chapter 3. For the formal details 
we refer to Chapter 3. 

It is remarkable that the top-down and bottorn-up models of the development 
process arise in a systematic manner by applying (at the design-program 
level) an approach which comes from the field of classical sequentia! pro
gramming. The possibilities for deriving invariants and design-programs de
scribing design creation by this approach have by no means been exhausted 
in Chapter 3. It certainly is interesting to investigate other possibilities. 

The fact that it is possible to split designs and reassemble them again makes 
it possible to discuss models of the development process where two ( or more) 
developers each operate on a part of a design so that when each of them has 
finished his part, their results are fitted together to yield a new design again, 
which furthermore is black-box correct. 

The formal notion of validation makes it possible to construct also several 
simple models of design evolution. Summarising, Chapter 3 provides three 
types of models of the software development process: 

• models of design creation, 
• modelsof design partition, 
• modelsof design evolution. 

In each case the models are very simple - at least from the viewpoint of 
practical industrial applications. But they areformaland they arebasedon 
a non-trivial approach to modularisation and information hiding and in that 
sense they constitute a step forward with respect to the DAG-growing models 
of Sec ti on 1.4.3. A lso, it is very important that these models are characterised 
formally and that now we know very precisely the invariant assertions on 
which the top-down and bottorn-up design programs are based. The fact 
that our models are formal can he viewed as an advantage over informal and 
semi-formal process models, as in Section 1.3. 
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The important question of course is whether these models can he made useful 
for the practice of developing non-trivia! software products. Actually, a very 
similar question applies to À1r-calculus and the forma! notion of design of 
Chapter 2. Turning this theory into practice is a large undertaking of an 
engineering nature. This has been undertaken indeed, viz. in the context of 
a 'project' around the COLD-K language. This project aimed (and aims) at 
achieving a significant development in forma! specifi.cation techniques and at 
industrialising the results. Clearly this is a task invalving many people, the 
author being just one of them. At the present time not much tooi-support 
related to the results of Chapters 2 and 3 is available, but as argued in 
Section 1.2.4, the construction of these tools may he a natura! follow-up of 
the methodological and theoretica! results of Chapter 2 and 3. Presently only 
the well-formedness condition 'wf' on designs can he checked, but one can 
imagine more sophisticated checks. Also a tooi to list all proof-obligations 
related to the black-box correctness of a given design could he useful. 

N ext we would like to relate and compare the achievements from Chapter 3 
with another, somewhat similar approach, viz. L. Williams' approach [56]. 
In [56] a software process model (SPM) describes software development as 
a sequence of activities. An activity is defined as a 4-tuple consisting of a 
set of preconditions, an action, a set of postconditions, and a set of messages. 
Williams describes by means of a kind of grammar which sequence of activi
ties are possible fora certain approach. In particular, his design programs (to 
use our own terminology) take the shape of regular expressions with sequen
tia! composition, V (choice), Ll (interleaved parallelism) and * (repetition). 
Using this as a description technique, he gives design programs for several 
models, such as Boehm's spiral model, Lehman's contractual model and the 
JSD method. 

Although at the process level a certain forma} machinery is used (regular 
expressions), at a lower level the activities (forming the alphabet for the 
regular expressions) are described informally and do not refer to product 
artifacts with a forma! defi.nition. When we campare this with the process 
roodels (design-programs) of Chapter 3, we see that the formality of [56] is 
lacking a basis, which is present for our approach- viz. in Chapter 2. 

It is also interesting to campare our design programs with the DEVA ap
proach of [29]. DEVA can he used for (a.o.) descrihing functions, statements, 
programs, contexts, modules, etc. and also the transformations and tactics 
operating on these. The design-development language of Chapter 3 is of a 
much less general-purpose nature and the design programs of Chapter 3 de
scribe strategies for growing and combining the design structures of Chapter 
2. The kernel of DEVA is an applicative language whereas we employ an 
imperative design-development language. Probably the most important dif-
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ference is that DEVA design programscan (at least in principle) he executed 
automatically, whereas the semantics of our design programs is relational 
to reflect the phenomenon of human 'creative freedom' and there is hardly 
any sense in letting a computer evaluate the top-down design program, for 
example. 

The work presented in Section 1.5 (which is a summary of Chapter 2) and 
Section 1.6 (which is a summary of Chapter 3) has servedas a contrihution 
to the design of COLD-K. As a result, the parameterisation of COLD-K 
modules is hased on À7r-calculus. Furthermore, COLD-K provides constructs 
for components and designs, hased on the concepts developed in Chapter 2 
and Chapter 3. 

The next two sections (1.7 and 1.8) areahout forma! specification techniques 
and they discuss several specification languages, with a special emphasis on 
COLD-K. Section 1.8 should he viewed as a kind of import at the level 
of this monograph: we import COLD-K because it is used in Section 1.9 
(which is a summary of Chapter 4) and Section 1.10 (which is a summary of 
Chapter 5). Chapters 4 and 5 illustrate the applicahility and usefulness of 
the theory developed in Chapter 2 and Chapter 3. They contain an example 
of a large formal specification and a suhsequent development process hased 
on the formal models of software development. 

1. 7 Formal specification techniques 

1. 7.1 General 

In Sec ti on 1.2.3 we have already discussed the role of specification languages. 
In this section we will have a closer look at a few approaches to formal 
specifications, each with its own specification language. 

The discussion in Section 1.2.3 suggests that in many respects the practi
cal progress in software engineering is language-driven: it is relatively hard 
to introduce new methodological concepts unless these are very concretely 
availahle as constructs in the language in use. Prohahly this is a major mo
tivation hehind the need for formal specification languages. In practice it is 
not enough to have a numher of good concepts dealing with the methodology 
of writing forma} specifications: in order to make these concepts transferahle 
to a large audience of potential users, one needs a language as a vehicle. The 
design of such a language involves many choices and clearly the outcome of 
these choices will determine the restrictions to he imposed upon the users 
- whomayor may not like that. But this seems hy far outweighed hy the 
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benefits of having a very concrete, more or less standardised language. 

We do not attempt to provide a complete overview of all relevant languages; 
for that we refer the reader to [57] or [35]. The main purpose of this section 
is just to mention some specification languages which are relatively close to 
COLD-K with respecttotheir aims and their technica! contents. In particu
lar this means that we shall restriet ourselves to so-called mid-spectrum and 
wide-spectrum languages. Quite arbitrarily we have chosen to discuss VDM 
and Z, but there are other important approaches as well, notably CIP-L and 
Larch. Fora comparison with these we refer to [58]. 

1.7.2 VDM 

VDM is a formal-specification approach which has led to the design of several 
related specification languages, most of which are often just called VDM. 
The roots of VDM lie in the formal specification of programming languages 
(PL/I) and in the early days one would refer to the specification language 
as the meta-language, just to distinguish it from the programming language 
being specified. 

The VDM version Meta-IV [6] (1978) has attracted considerable attention 
and it has been used to specify many complex systems. lts strong points 
are higher-order functions, a rich collection of built-in data types and the 
existence of a large body of pragmatics and examples. The built-in data types 
include sets, pairs, maps, tuples, trees. Each of these data types comes with 
a rich collection of operators, most of which are denoted in a mathematica! 
style. E.g. for sets one can use symbols such as U, n, Ç and set comprehension 
{x E S I p(x)}. For functions there is even a À-calculus notation, including 
a fixed-point operator Y. 

In [59] an impravement of the VDM language is described. It reflects some 
influence of both the achievements in the theory of program correctness and 
the work on algebraic specifications. There is an explicit treatment of the 
problem of partial functions. This topic arises naturally in many practical 
situations and it is closely related to the idea of associating preconditions with 
functions. Jones uses a pre- and postcondition style for specifying functions. 
The following toy-example of a partial function has been taken from [59] (p. 
74). 

subp (i: N,j: N) r: N 
pre j :Si 
post r + j =i 

The problem of partial functions is solved by the introduetion of the logic 
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of partial functions (LPF). In this way it becomes possible to treat the set 
of truth-values as any set and to view a predicate P as a Boolean-valued 
function. This leads to the situation that P(x) fails to denote a Boolean 
value when x does not satisfy the precondition of P. In that case neither 
P(x) = true nor P(x) = false holds. 

VDM is based on set-theory which is very fiexible; one can freely construct 
subsets of given sets and each of these subsets can occur again as the domain 
or range of a function. This implies that there is no concept of typing -
except of course that the number of arguments of a function can he viewed 
as a simple type. 

VDM has special constructs for so-called operations which are simHar to 
functions, except for the fact that operations can have side-effects. The 
following example of an operation has been taken from !59] (p. 86). 

LOAD (i: N) 
ext wr reg: N 
post reg= i 

LOAD is introduced as an operation which has write-read access (wr) with 
respecttoa so-called external variabie (ext) called reg. This variabie can con
tain natura! numbers. The availability of these operations and algorithmic 
definitions for them in addition to the specification techniques for mathe
matica! functions makes VDM into a true mid-spectrum or wide-spectrum 
language (see !35]). Currently there is still a lot of development going on 
around VDM and the language has reached a degree of maturity and accep
tation exceeding that of most other specification languages. An interesting 
development is Middelburg's VVSL language !60] where the COLD-K mod
ularisation constructs and À1r-based parameterisation constrocts have been 
put on top of an (enriched) version of VDM. 

1.7.3 z 

The specification language Z has emerged from a certain style of specification 
developed at the Oxford Programming Research Group. Z was first proposed 
by Abrial and it has been evolving for several years, but the recent hook 
of Spivey has set a rigarous standard now !61]. Z is essentially based on 
Zermelo-Fraenkel set-theory described in first-order predicate logic. It offers 
a rich collection of notations for operations on sets such as u, n, Ç and {x E 
S I p(x)}. Relations, maps and functions are considered as special kinds of 
sets and they all have their own special notations. It is possible to introduce 
new primitive sets and if one does so, this means that the remainder of the 
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specification is parameterised with respect to these primitive sets. 

We show an example in Z below. It introduces a so-called schema subp 
which can be interpreted as an operation from IN x IN to IN satisfying the 
specification of our earlier VDM example. 

subp 

i?,j?: IN 
r!: IN 

j? :::; i? 
r! + j? =i? 

Although formally i?, j? and r! are just logica! varia bles, it is a convention 
that variables ending in ? are inputs and those ending in ! are outputs. The 
entire double-box construction is called a schema. A schema consists of a 
signature part, declaring one or more variables and an optional axiom part 
which serves as a predicate relating these variables. 

It is also possible to describe operations having side-effects. This is done by 
formally introducing the two states as logica! variables in the signature part 
of the schema of the operation. 

Let us try the second VDM example as well. The only interesting state 
component in this example is a register which we formally introduce by a 
schema having a signature part only. 

Now we can mention both REG and REG' in the signature part of the 
schema of LOAD in order to indicate that LOAD has write-read access with 
respect to the register. 
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By way of convention, the dasbed version refers to the new state. 

LOAD ______________ ~ 

REG 
REG' 
i?: lN 

reg'= i? 

Z provides a collection of operators on schemas, some of which are best 
understood in a rather syntactic way. By way of example we mention two 
such operators. 

• Inclusion: if S is a schema, it is allowed tomention S in the signature 
part of another schema T. This is semantically equivalent to combin
ing the signature parts of S and T and taking the conjunction of their 
axiom parts. 

• Hiding: in order to hide a variabie v from a schema S we can write 
S \ ( v). It is semantically equivalent to removing the variabie from 
the signature part and prefixing the axiom part with a quantification 
3v : T · where T is the type of v. 

Spivey [61] gives a forn1al definition of Z, using Z as a metalanguage. As it 
turns out, the meaning of a schema with signature part E and axiom part cp 
is a so-called variety. For (E, cp) this variety is the collection of structures ( = 
roodels or heterogeneaus algebras) ha ving the signature E and which satisfy 
cp. So fora E-structure A we have A E meaning(E,cp) <=> A F cp. There is 
also a concept of typing in Z, but this is set-oriented rather than function
oriented and as aresult there is only a limited kind of type checking possible. 
We shall come back to that later. 

1.8 COLD-K 

COLD-K is a wide-spectrum specification language developed at the Philips 
Research Laboratories in Eindhoven within the framework of the Meteor 
project. The language has been designed mainly by H.B.M. Jonkers, with 
technica! contributions from C.P.J. Koymans, G.R. Renardel de Lavalette, 
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the author, and to a lesser degree also from J.H. Obbink and P.H. Roden
burg. COLD-K is meant to he used throughout several stages of the software 
development process, induding the specification and implementation stages. 
Actually there is not just one language COLD-K but there is a sequence of 
subsequent versions, such as COLD-S, COLD-fiat, COLD-K, COLD-K-RTL 
and COLD-L Amongst these, the COLD-K language plays a special role, 
since it is a kernel language which is meant to serve as a fi.xed point in the 
development of the language. There is a mathematically defined syntax and 
semantics for COLD-K [53]. Other language versions (notably COLD-1) can 
he defined in tenns of COLD-K, just by adding constructs of a purely syn
tactic nature. In the remainder of this chapter we shall restriet ourselves to 
COLD-K. 

In order to give an impression of COLD-K, let us do the VDM and Z examples 
in COLD-K. We assume that we have the sort of natura! numbers denoted 
by Nat and operations on Nat such as leq and add. 

FUNC subp: Nat # Nat -> Nat 

AXIOM FORALL i:Nat, j:Nat 
( leq(j,i) => add(subp(i,j),j) =i) 

The second example involves a register which is introduced as a so-called 
variabie function (keyword VAR). 

FUNC reg: -> Nat VAR 

The LOAD operation becomes a procedure, because of its side-effect. This 
procedure has modification rights (keyword MOD) with respect totheregister 
reg. In COLD-K there is nobuilt-in construct for indicating a postcondition, 
but the assertion sub-language includes Harel's dynamic logic [27]. This 
logic is employed in the axiom given below. This axiom should he read as 
follows: in all states and for all i, whenever we reach a new state by executing 
LOAD (i), the assertion reg = i holds in this new state. 

PROC LOAD: Nat -> 
MOD reg 

AXIOM FORALL i:Nat 
( [ LOAD(i) ] reg • i ) 

In fact the examples above only show definitions which could occur within 
a COLD-K scheme ( = module) which in turn could he part of an entire 
design. It is outside the scope of this monograph to give a more or less 
complete introduetion to COLD-K; for that we refer to [8], [53] and [62]. 
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Here we would like to point out a few differences with respect to the versions 
of VDM and Z as discussed in the sections 1.7.2 and 1.7.3. 

First of all the COLD-K salution to the problem of functions being partial 
differs from the solutions of VDM and Z. The assertion language of COLD
K is basedon a special version of typed predicate calculus called MPLw [53] 
which at its turn is derived from Scott's E-logic. It is possible to state that 
an expression e is defined and this is done by means of the postfix operator 
! which can be used to write e!. There are rules which relate this notion of 
definedness tothebuilt-in equality and to the quantifiers FORALL and EXISTS. 
The problem of the undefined truth-values vanishes because one of these rules 
says that a predicate applied to an undefined expression just yields F ALSE. 
The point is that predicates are normal mathematica} predicates and not 
Boolean-valued functions. 

It is also interesting to note how programming variables and operations with 
side-effects are described in COLD-K. Programming variables are modelled 
in COLD-K by having variabie functions and variabie predicates. The op
erations which modify them are called procedures and there are mechanisms 
that regulate the modification rights of procedures with respect to variables. 
There are several ways of defining procedures: they can be given algorithmi
cally or they can be described axiomatically because dynamic logic is built 
in to the assertion sub-language. This is a difference with respect to VDM, 
where there are special constructs with keywords pre and post, rather than 
a more powerfut logic. In Z there is nothing special about states and side
effects at all: most of this is dealt with by having a certain pragmatic style 
relying on conventions a bout identifiers such as i?, r! and reg'. 

The expressions in COLD-K are strongly typed, which has the important 
advantage that mechanica! type-checking is possible. A syntax- and type
checker exists. This is a difference with VDM and Z, since in the latter 
languages one can just define any set, e.g. E ~ {i : IN I 3j : IN · i = 2 x j} 
introduces E C IN as the set of even numbers. Now one could introduce 
a function f : E --+ E and then to find out that /(77) is wrong requires 
reasoning about the assertion 3j: IN· i= 2 x j which was used to define E. 
In Z there is a rather coarse concept of type checking which cannot detect the 
problem with !(77) but which could at least find out that f( -3) is nonsense. 

Probably the most important difference between COLD-K on the one hand 
and VDM and Z on the other hand is the presence of powerful constructs for 
modularisation, parameterisation and designs in COLD-K. The modularisa
tion of COLD-K is based on an algebraic approach to modularisation. The 
basic module construct is called a class scheme and it consists of a list of def
initions of sorts, functions, predicate, procedures and axioms. These can be 
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combined into larger schemes ( = modules) by means of import, export, re
naming and by using narnes for schemes. Furthermore COLD-K provides for 
parameteriaation of schemes over schemes. The work presented in Chapters 
2 and 3 has served as a contribution to the design of COLD-K in the sense 
that the parameteriaation of COLD-K schemes is based on À1r-calculus and 
that COLD-K provides constructs for components and designs. In COLD
K one writes LAMBDA x : ITEM OF BODY, corresponding with a À1r-calculus 
term Àx Ç ITEM.BODY, and one writes APPLY PARAM TO ARG corresponding 
with a À1r-calculus term (PARAM ARG). The top-level construct which can he 
denoted in COLD-K is a design. In Jones' VDM there is nothing camparabie 
to the COLD-K modularisation, parameteriaation and designs. In Z there 
are schemas camparabie to the COLD-K schemes. The parameteriaation of 
Z is just over sets rather than over entire schemes, whereas there are no such 
things as components and designs inZ. 

Another difference between COLD-K and VDM/Z is the absence of fixed 
built-in notions like Booleans, natura! number, tuples, sequences, sets and 
maps in COLD-K. Instead of that, the language provides facilities to define 
them. In practice such data types are taken from standard library - written 
in the language, cf. Appendix B of Chapter 4. 

COLD-K can he used for expressing programs and specifications, but it is 
nat meant for derroting proofs. Of course, languages to denote proofs exist, 
ranging from plain English for convincing arguments to À-typed À-calculus 
for automated checking - as in the Automath approach. Yet COLD-K 
gives rise to proof obligations; more precisely, the principle of black-box 
correctness requires for each component COMP X : X_SPEC : = X_IMPL that 
f I- x_rMPL Ç X....SPEC for a certain well-defined f . In the editor case study 
of Chapter 5, some proof obligations are treated informally, whereas many 
others are tacitly dealt with. 

After the intermezzo about forma! specification techniques of Sections 1.7 
and 1.8, we can praeeed with the main line of this monograph, viz. the 
formalisation of design structures ( = structure of modules + specifications) 
and the models of software development based on that. We are now in 
a position where we can indeed attach 'redundant' formal specifications to 
modules, viz. by using VDM, Z or COLD-K. Using one of these, we shall 
present a case study concerninga text editor, which has been developed as 
an application and illustration of the results of Chapter 2 and Chapter 3. 
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1.9 Formal specification of a text editor 

This section is an overview of Chapter 4 which concerns the formal specifi
cation of a multi-buffer and display-oriented text editor. This specification 
illustrates the use of COLD-K as a specification technique. In particular, the 
editor specification is modularised and certain parts of it are generic and as 
such it illustrates the COLD-K algebraic approach to module composition 
and the À1r-calculus. There is no real development process yet in Chapter 4, 
except for the bottorn-up construction of the formal specification, where we 
mean bottorn-up in the DAG sense of Section 1.4.3. 

The specification of the editor consists of four parts: 

• a library, 
• an application domain formalisation: texts and operations on texts, 
• models of the available primitives, such as a file system and a video 

display unit, 
• specification of the actual editor including features such as buffer man

agementand keybinding. 

When the construction of this specification began, there was already a small 
library of data type specifications, containing Booleans, natural numbers, 
sets, sequences, bags etc. Most of the library had been constructed ear
lier, mainly by H.B.M. Jonkers and the author. The library is given in an 
appendix of Chapter 4. 

The need to formalise the application domain is very typical: almost every 
specific application domain has its own concepts, notations, conventions and 
jargon. Before any system specification can be written down, these concepts 
must be introduced formally. As argued already in Section 1.2.4, each tooi 
must be based on a forma! system and/ or an underlying theory and for the 
text editor - considered as a tooi - the underlying theory is a formalisation 
of 'text' and operations on texts. For example, in Chapter 4 there is a sort 
of texts, denoted as Text where each text consist of a sequence of lines. 
Consider the following text: 

:first 
second line 

Fig 1.4. Example of text. 

which is viewed as a sequence of lines where the first line has 18 characters 
viz. "first line of text" and where the second line has 11 characters, viz. 
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"second line". An equally valid, but somewhat more abstract approach is 
to model texts by focusing on their 'contour' only. In this approach the above 
text is modelled by just the sequence (18, 11) alone. Of coursethereis a kind 
of forgetful mapping from the first model to the second model in the sense 
that the information conveyed by the actual characters in the text is lost in 
the second model. Such approaches at distinct levels of abstraction play a 
role in the formalisation of the notion of text. 

The sort of lines is called Line and each line consists of a sequence of char
acters (sort Char) . The relevant sorts can be denoted in COLD-K as 

SORT Char 
SORT Line 
SORT Text 

and there are operations to select a line from a text and a character from a 
line. 

FUNC sel: Text #Nat -> Line 
FUNC sel: Line # Nat -> Char 

Starting from this very simple model, a rich collection of operations on texts 
is defined, including a variety of cut and paste operations. For example, 
there is a paste operation such that paste(t,u,k,l) means to take a text 
t and to insert another text u into it immediately before the position with 
given coordinates (k, l). As a kind of inverse of paste there is an operation 
cut such that cut(t,k,l,i,j) means takinga text tand cutting out the piece 
of text beginning at position (k, l) and ending at position (i, j). It yields a 
pair (tt. t2) where t1 = 'remaining text' and t2 = 'deleted text'. 

FUNC paste: Text # Text # Nat # Nat -> Text 
FUNC cut: Text # Nat # Nat # Nat # Nat -> Text # Text 

The following picture may give an idea of both cut and paste. 
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1---+ 

cut 

aaaaaaaaaaaaaa 
aaaaaaaaaaaaaa 

k aaaaccccccccccccc 

1---+ 

paate 

aaaaaaaaaaaaaa 
aaaaaaaaaaaaaa 
aaaabbbbbbbbbbb 
bbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbb 

Fig 1.5. Cut and paste operations on text. 

Algebraic laws for the operations are investigated and an example is the equa
tion paste ( cut(t, k, l, i, j), k, l) = t, which holds conditionally. It is shown 
that this helps in establishing a set of well-understood operations with useful 
notations. In this way an elegant and useful formalisation of the application 
domain is obtained. 

To interface the editor with its environment it is necessary to model the 
available primitives such as a file system and a video display unit. By way of 
example we shall have a closer look at the video display unit. lts state space 
is spanned by two variabie functions 

FUNC screen: -> Text VAR 
FUNC cursor: -> Nat # Nat VAR 

where Nat refers to the natura! numbers employed to represent the vertical 
and horizontal co-ordinates ofthe cursor. All display operations are described 
by their effect on either screen or cursor or both. For example PROC nl: -> 
MOD screen. cursor serves for sending a new-line cammand to the display, 
thereby possibly modifying the screen and the cursor. 

To describe the operation of the actual editor, the notion of 'marked text' 
is introduced first. A marked text is a composite object that consists of a 
text and two co-ordinate pairs called mark and dot. The dot serves a kind 
of 'current' location in the text whereas as the mark is a marker that can 
he put on any position in the text'. The specification of the editor is based 
on a variabie map from buffer narnes to marked texts (sometimes also called 
'buffers') and on a notion of 'current' marked text. 

On several occasions in Chapter 4, the technique of invariants is used to 
describe essential aspects of the editor. There is a so-called 'text-invariant' 
that says that for each marked text in the editor, both the dot and mark are 
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positions that exist in the text of that marked text. Another interesting ex
ample is the so-called 'window-invariant', which is introducedas a predicate 
PRED WI. It describes the relation between the current marked text on the 
one hand and the screen and the cursor of the display on the other hand. 
What WI statesin formal terms boils down (in informal terminology) to the 
statement that the window should correspond with a 'look' to the text, if 
necessary filled with blanks, such that the dot is visible as the cursor. The 
following picture sketches part of the situation. 

dot 0 J llim 
rl 

! column• l._ ___ ....J 

Fig 1.6. The relation between window and text. 

The editor supports a complete set of editing commands like insert_character, 
set_m.ark, beginning_ofJine, backward_character, delete..next_character, 
search_forward, write..namedJile, delete_to__killbuffer etc. The editor specifi
cation is completed by a simple keybinding to associate command-invocations 
with key-strokes. 

In fact the specification of the editor itself is only a fragment of the total 
specification. The relative fractions of the number of lines in each of the four 
parts mentioned above areabout 35%, 20%, 20% and 25% respectively (from 
these the first 35% are general purpose and usabie in any specification case 
study; the next 20% are reusable within the same application domain, i.e. 
when 'text' plays a role, whereas the remaining 45% are dedicated to this 
a pplica ti on). 

Chapter 4 covers a number of important aspects of a text editor, although 
the editor described is relatively poor in its bells and whistles. However it 
is far from trivial and its functionality makes it a usabie editor. It covers 
several interesting features also present in other text editors and in partienlar 
in EMACS. For a more detailed discussion and evaluation we refer to the 
relevant sections at the end of Chapter 4. 

Chapter 4 showshow À1r-calculus and COLD-K can heusedas an instrument 
for the description of a relatively large and complex software system. At the 



42 CHAPTER 1. OVERVIEW AND INTRODUCTION 

same time it illustrates a number of general-purpose specification techniques 
and as such, it can be viewed as a con tribution to the ad vancement of formal 
specification techniques in generaL In the context of the main line of thought 
of this monograph, the role of Chapter 4 is twofold: firstly, it shows a num.her 
of examples of parameterised modules, using the À1r mechanism of Chapter 2. 
Secondly, the resulting specification serves as a starting pointfora systematic 
development process ( using the results of Chapter 3) which is described in 
Chapter 5. 

1.10 Systematic design of a text editor 

This section is a short summary of Chapter 5 which is a continuation of 
the editor case study of Chapter 4. The formal specification is taken as 
a specification and a systematic development process aiming at the actual 
construction of the editor is undertaken. The top-down model of Chapter 3 is 
employed. This model turns out to be workable and because the editor design 
is quite complex, it is shown how the top-down modelhelpsin mastering this 
complexity. Realistic efficiency considerations and data-reification issues are 
taken into account. In particular the design is basedon the assumption that 
it is important to economise with respect to memory usage and with respect 
to communication with the video display unit. 

In Chapter 5 there is not just one editor design, but two: 

• a design deditor which is mainly concerned with topics such as buffer 
management, file handling, window management and key binding in 
terms of a.o. sequences and maps, 

• a design dbaaic which is concerned with efficient implementations of se
quences and maps. 

These designs can be fitted together with the o operation on designs as 
mentioned in Section 1.6. In this way Chapter 5 illustrates also one of the 
models of design partition. Chapter 5 focuses on the top-down development 
of dediton whereas dbasic can he found in an appendix of Chapter 5. 

In the development of deditor many classica! efficiency considerations con
cerning memory usage, execution time and communication overhead play a 
guiding role. The important issue of data reification is addressed on several 
occasions - e.g. when choosing a representation of the marked texts. Each 
text buffer is represented as an array with a gap and a group of pointers and 
co-ordinate pairs. To describe this, the well-known machinery of abstraction 
functions and representation invariants is employed. The top-down approach 
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is exploited to achieve a separation of concerns on several occasions - e.g. 
to separate the buffer-management from the window-management. Let us 
have a closer look at the latter example. When programming the editor 
operations insert_character, beginning_ofJine, backward_character etc. no 
details of the window-management play a role. This is made possible by a 
postulated component named WI_PACKAGE which is specified to offer a proce
dure mod_ text_restore which re-establishes the window-invariant WI after 
an arbitrary modification of the current text buffer. In a later stage of the 
development process this postulated component is implemented. 

The resulting editor, viewed as a product plus its documentation is in a 
number of aspects quite satisfactory. In particular, the editor design is with 
respect to most operations, reasonably efficient. It should be noted that 
~he editor design is quite complex, especially because it is a display-oriented 
multi-buffer editor, which means that it is more than just a small toy exam
ple. 

It can he expected that due to its completeness and its component structure, 
the editor design will be 'robust' for various forms of design evolution and ef
ficiency improvements. The theory of correctness-preserving transformations 
on designs of Chapter 2 and Chapter 3 is applicable here: in particular, since 
the principle of black-box correctness has been adopted, many efficiency im
provements can take the shape of black-box correctness preserving glass-box 
modifications - meaning that there is a 'locality principle' which can yield a 
significant reduction of the verification task. 

The algorithmic COLD-K texts are translated manually to C to get a working 
editor. The details of this translation process are given in an appendix of 
Chapter 5. 

The editor casestudy is quite large in view of the fact that it was meant as an 
example. This is justified by the need to have a non-toy example illustrating 
how the theoretica} conceptsof À1r-calculus, components, designs, algebrak 
operations on designs and forma! development roodels can he turned into real 
engineering concepts. The fact that the example grew large is a direct con
sequence of the level at which our concepts apply, viz. programming-in-the
Iarge, rather than programming-in-the-small. After reaching the milestone 
in the evolution of COLDof finishing COLD-K, it was important to have this 
kind of an exercise before the design of yet another language version started. 
The example has served already for educational purposes in the COLD-K 
workshop of the Philips Centre for Software Technology (CST) in November 
1988. 

In Chapters 4 and 5 we employed the COLD-K language (which certainly 
was not the only option) and we showed that this is useful as an instrument 
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when constructing software following a systematic approach and employing 
forma! specifications. 

For a more detailed discussion and evaluation we refer to the relevant sections 
at the end of Chapter 5. 

In the context of the main line of thought of this monograph, the role of 
Chapter 5 is twofold: firstly, it shows a number of examples of designs, 
thereby illustrating the notions of component and design from Chapter 2. 
Secondly, Chapter 5 is an application of the results from Chapter 3 and it 
demonstrates the applicability and usefulness of these results. 

1.11 Options for future work 

In this section we shall mention a number of topics which could be the subject 
of further research or of further development. 

The fust topic concerns the definition of a number of useful language fea
tures which possibly could be added to wide-spectrum languages such as 
COLD-K and which could make the taskof constructing large designs easier. 
Amongst these we have higher-order logic, concurrency and - at a more syn
tactical level - fl.exible mechanisms for dealing with user-defined operations 
and binders. 

The second topic concerns the precise definition of the implementation rela
tion Ç for wide-spectrum languages - and for COLD-K in particular. For the 
editor case study of Chapter 4 and 5 we adopted a relation based on signa
ture inclusion and theory inclusion. This is certainly not the only possibility 
and it would be interesting to have a look at other notions of implementa
tion. Furthermore, the precise conditions that guarantee that the module 
composition operations of the so-called 'class-algebra' of COLD-K are mono
tonic with respect to Ç have not been formulated yet. For an analysis of the 
problem we refer to [63]. 

The third topic is the construction of tools supporting the development pro
cess based on the instantiation of the approach from Chapters 2 and 3 with 
a given formalism. We have already given a list of tools in Section 1.2.4 and 
most of these are relevant when using a wide-spectrum language. We can not 
give a minimallist of tools which are absolutely necessary, but clearly the at
tractiveness of a certain formalismis increased by providing a syntax checker, 
type checker, module library, code generatorand a tool to create/manipulate 
graphical representations. 

Finally we mention the topic of practical applications. In view of the fact 
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that format techniques are meant to he a mental tooi, it is not enough just 
to develop the mathematica} foundations of a language and the theoretica! 
models of software development based on them. It is also necessary to build 
up experience in using forma! methods and although it is inevitable that the 
fi.rst case studies are small toy examples, the next step is to scale them up and 
seriously attack complex systems. Performing large case studies is a time
consuming and resource-consuming activity but there is more than one yield. 
Case studies yield feedback on the language, the method and the theory and 
insight in the nature of the problems which are relevant in practice. 

By way of a concluding remark we state that the theory of Chapter 2 and 
Chapter 3 in combination with a particular formalism (such as the COLD-K 
language) provides a potential starting point for improving the process of 
software development. It is also clear that this involves much work of an 
engineering nature. Chapter 4 and Chapter 5 are a contribution to that, but 
much remains to he done. 
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Chapter 2 

A Formalisation of Design 
Structures 

2.1 Introduetion 

.51 

This chapter presents a formal theory dealing with the component-wise con
struction and specification of complex systems, addressing issues of modu
larisation, parameterisation, abstraction and information hiding. The theory 
consists of two parts where the first part mainly serves to introduce an ex
tensive formal machinery which is employed in the second part. 

The first part of this theory introduces the notion of an algebrak system 
with associated preorder relation. Furthermore a special version of lambda
calculus is developed which is called À1r-calculus. More precisely, there is 
an instanee of this calculus for every algebrak system with preorder. The 
most important charaderistic of the calculus is that associated with every 
abstraction (>.x say) there is a so-called parameter-restriction. 

The motivation for the introduetion of these notions is as follows. An al
gebraic system can be used to model the modular structuring of systems. 
In particular, we view module-composition mechanisms as operators of an 
algebrak system - following [1]. The associated preorder (denoted by Ç) 
is used to model the so-called implementation-relation - which is an im
portant relationship between modules and their specifications. We do not 
partition the modules into two kinds (implementation/specification) but we 
adopt a single-sorted approach where Ç is used to model the implementation 
and specification roles of modules. This allows fora smooth transition from 
specification to implementation and in partienlar we can have the situation 
that m 1 ç: m 2 and m 2 ç: m 3 • The refl.exivity and transitivity properties of 
this relation are adopted fora-priori and intuitive reasons [2]. The purpose of 
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the À1r-calculus is to descri he the introduetion of narnes and the abstraction
step taking place when introducing specifications for yet unknown modules. 
At the same time this À1r-calculus serves as a parameterisation mechanism 
for modules (this calculus was used for the parameterisation of the design 
language COLD-K [3], [4]). In this calculus we have abstractionsof the form 
Àx Ç R.M(x) where R is meant as a restrietion upon the possible actual 
parameters A to which Àx Ç R.M(x) can he applied. To make the restrie
tion R effective, we adopt a certain mechanism regulating the equalities that 
can he derived about application-expressions. In particular, there is a partial 
version of the classica} rule (P) in the sense that (>.x Ç R.M(x))A = M(A) 
can only be concluded when it has been shown that A is an implementation 
of R, i.e. A Ç R. This À1r-calculus is a theory where equations play an 
important role and just as for classica} lambda calculus [5], it is useful to 
study reduction. In particular the reduction relations -+ and - allow fora 
detailed study of the ( modified) rule (P). 

The second part of this theory introduces the notion 'design of a system'. 
The intuition for this is that a design is a hierarchically-structured and 
component-wise specified software system. We shall define a black-box de
scription as the specification part of a component and a glass-box description 
as the implementation part of a component. Although it may he redundant, 
a black-box description can he useful when it is less complex or easier to 
read than the glass-box description. Even when the black-box description is 
not less complex, there may he advantages for having an alternative repre
sentation. There is a correctness criterion for components because the two 
descriptions must he related by the preorder Ç. We define a design as a col
lection of components, where some components serve as building blocks for 
other components. A design need not he finished, but it may correspond to 
an intermediate stage in a development. In particular, a design may contain 
components which have no glass-box description yet. 

There are non-trivia} issues of information hiding that arise in conneetion 
with designs. This leads to definitions of black-box correctness (based on 
the exclusive use of specifications) and glass-box correctness (using imple
mentation knowledge). As it turns out, À1r-calculus can he used to give an 
interpretation of designs. The reduction relations can he used to give alter
native characterisations of black-box correctness and glass-box correctness. 

The second part of this theory provides a starting point for a systematic 
study of transformational development. In particular, a design is built-up 
from components and the correctness of a complete design follows from the 
correctness of its components. We shall investigate the precise conditions 
such that when modifying one component, the correctness of the result
ing design follows from the correctness of the modified component. As it 
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turns out, this depends both on the chosen notion of correctness and on 
the question whether an implementation module or a specification module is 
modified. 

In view of the above introduction, we adopt the following structure for this 
chapter. InSection 2.2 we shall introduce algebraic systems with preorder. In 
Section 2.3 we introduce the À1r-calculus and we study some of its properties. 
This covers the first part of the theory. Fora given algebraic system with 
preorder, we can define the notion of a component. Furthermore we shall 
define what it means that a component is correct- in a given context. This 
will he done inSection 2.4. Using the notionsof component and correctness, 
we can define the notion of a design and its correctness. In Section 2.5 
we introduce designs and we study their properties. Also in Section 2.5 we 
study a certain class of correctness-preserving transformations of designs. 
This covers the second part of the theory. 

In Chapter 3 the study of correctness-preserving transformations of designs 
will he continued in a somewhat more general setting and with a focus on 
the dynamic aspects of the software development process. 

2.2 Algebraic systems with preorder 

2.2.1 Motivation 

We adopt the following minimal set of notions to begin the development of 
our theory. 

• a set of constructs which are the objects to he created and/or used by 
software developers. For each construct there are two possibilities. A 
construct can he given as primitive, by which we mean that the de
veloper can not or should not investigate how it was constructed. So 
a construct is primitive if it can he fitted together from zero compo
nents. Alternatively, a construct can he built by fitting together a finite 
nonzero number of constructs. 

• composition mechanisms (or 'combinators'), by which we mean ways of 
combining existing constructs into new constructs. 

• an implementation relation, corresponding to the possibility that one 
construct is viewed as an implementation of another construct. 

As an example of these notions we consider (software) modules. A primitive 
module can contain several sort definitions, function definitions, procedure 
definitions and axioms. At this level we have module composition mecha-
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nisms such as import. To illustrate the implementation relation, we consider 
two modules m 1 and m 2 where m 1 is an algorithmic description which is 
characterised axiomatically by m 2; then the pair (m1, m 2) is in the imple
mentation relation. The motivation for the choice of these notions is as 
follows. First of all it is clear that without constructs or without compo
sition mechanisms no constructive activity is possible at all. We adopt an 
implementation relation because it seems a very general starting point for a 
discussion of abstraction and information hiding. lt is clear that these no
tions are essential for applying the paradigm of hierarchical decomposition. 
The latter paradigm appears frequently in literature dealing with the man
ageability of the software development process [6] and it certainly is of great 
value. 

The notions of constructs, composition mechanisms and an implementation 
relation can be formalised by introducing the mathematica! concept of an al
gebraic system. Constrocts correspond to terms and composition mechanisms 
to function symbols. This approach is also chosen in [1], where a so-called 
'module-algebra' is studied. We shall choose one kind of algebrak system 
which exhibita precisely the kind of implementation relation in which we are 
interested. It would be nice if we could give one single forma! definition of 
some kind of mathematica! structure (which we might call a construction sys
tem) in which we formalise these notions once and for all. However, one can 
imagine several kinds of implementation relations and they differ strongly, 
both in their mathematica! properties and in their role. Therefore it seems 
better to focus on one kind of implementation relation first. 

At this point we must be more precise a bout the nature of the implementation 
relation. Therefore we must be specific about the kind of constructs we 
have in mind. As an important case, we think of constructs at the level of 
(software) modules. A module can be used as a specification but certain 
modulescan also be used as executable implementations. If m 1 and m 2 are 
modules such that - viewing m 1 as an implementation and viewing m 2 as a 
specification - m 1 implements m 2, then we say that the pair (m11 m 2) is in 
the implementation relation. We can make a list of properties which from 
an intuitive point of view should hold for this implementation relation [2]. 

• Each module implements itself, i.e. the implementation relation should 
be reflexive. 

• lf m1 implements m 2 and m 2 implements m 3, then m 1 should impie
ment m3, i.e. the implementation relation should be transitive. 

• Suppose that m1 implements m2. Now if m 2 occurs as a subconstruct in 
a larger construct, m(m2) say, then m(mt) -i.e. the construct m con
taining m 1 insteadof m 2 - should implement m(m2). It follows that we 
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shall prefer composition mechanisms which are monotonic with respect 
to the implementation relation. Alternative terms for 'monotonie' are: 
'compatible' and 'compositional'. 

There exist algebraic systems for which a precise definition of the implemen
tation relation has been given. In [7] it has been defined what it means that 
m 1 implements m 2 for the case where m 1 is a sequentia! program and m 2 

is a pair (cp, ,P) consisting of a precondition and a postcondition (the usual 
notation for this is { cp }m1 { ,P}). In [8] this has been done for the case where 
m1 is an implementation of a data type and m 2 is a specification of a data 
type. 

2.2.2 Formalisation 

We have gathered enough properties of our minimal set of notionsin order to 
formalise them. After we shall have done the formalisation we shall often not 
use the above terminology, but rather adopt a terminology which fits best 
to the results of the formalisation. In particular, instead of constructs we 
shall have terros and instead of combinatars we shall have constants (which 
act as the primitive constructs) and function symbols. We shall often give 
examples which are extremely small, e.g. by taking symbols denoting natura! 
numbers rather than realistic software modules. Nevertheless, such examples 
are related to problems which occur in conneetion with realistic software 
modules also. We shall describe an algebrak system as a structure or model 
and we shall adopt several notations and conventions from logic [9]. 

Definition 2.2.1 An algebraic system with preorder is a quadrupJe 

!R = (A,R,{F; Ij E J},{C; I iE I}) 

(J,I index sets) where A is a set (called the domain of !R), Ris a preorder, 
each F; is a function and each C; is an element (a constant) of A. Reeall that 
a preorder is arelation which is refiexive and transitive. We assume that the 
arity of each F; is given as a natura! number a;. D 

We also allow for many-sorted algebrak systerns with preorder. However we 
require that there is one domain of interest (A), on which the preorder R is 
defined. In such a case we shall say that there are secondary domains. In 
order to keep things simple, we shall focus our discussion on the single-sorted 
case. When necessary, we can always deal with secondary domains somewhat 
informally~ Often we shall refer toR as the 'implementation relation' . Clearly 
we shall prefer algebrak systems in which each F; is a monotonic function, 
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but in general we shall not require this. The advantage of a monotonic 
function is that knowledge about the constituentsof a composite construct, 
allows one to infer properties of the composite construct itself. Monotonicity 
is a relevant issue in this context - but we have no reason here to consider 
some notion of continuity of functions. 

We shall distinguish between the elements of the domain of an algebraic 
system with preorder, and the terms (consisting of symbols) used to denote 
these elements. 

Definition 2.2.2 The alphabet to he used for constructing the set of terms 
for a !R as above, consists of the following symbols: 

1. function symbols: I; (one for each F;), 

2. constant symbols: c; (one for each C;), 

3. variables: x; (one for each iE IN) 

where IN denotes the set of natural numbers. For this alphabet, the collection 
of symbols {[,;;;} U {/; I j E J} U { c; I i E I} is called the signature of !R. We 
denote it by Sig(!R). 0 

The function symbols and constant symbols from Sig(!R) can he combined 
with variables to build terms in the usual way. Reeall that the arity of each 
function F; with function symbol f; is given as a;. 

Definition 2.2.3 Thesetof terms for !R, denoted as T81 is inductively defined 
by: 

1. c; E TB! for all i E I, 

2. x; E TR for all iE IN, 

3. if t11 ... , tai E TB! then /j(t1, ... , tai) E TR for all jE J. 0 

The terms at their turn can he used to build formulae. 

Definition 2.2.4 (TR-formulae) The set of atomie TR-formulae is defined 
as thesetof formulae P = Q and P Ç Q for P, Q E T!Jl. 

The set of TR-formulae is the smallest set containing T, _L, all atomie TR
formulae and which is closed under the usual connectives --,, 1\, V,- and the 
quantifier V. More precisely, thesetof TR-formulae is inductively defined by: 

1. T and _L are TR-formulae, 

2. if cp is anatomie TR-formula, then cp is a TR-formula, 
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3. if <p is a Tlll-formulae, then so is •<p, 

4. if tp and t/J are Tlll-formulae, then so are <p A t/J, <p V t/J and <p -t t/J, 

5. if x is a variabie and <p is a Tlll-formula, then V x ( <p) is a TR-formula. 
0 

An (atomie) T1ll-formula is said to he closed if no free variables occur in it. 
Note that (atomie Tlll-formulae) C (T111-formulae). Sametimes we shall write 
just 'formula' instead of 'T111-formula'. Now we have the syntactic definition 
of (atomie) T111-formulae, the next step is to define what it means that such 
a formula is true. 

Definition 2.2.5 Truth in lR is defined as usual where it is understood that 
Ç corresponds to R. When the T!ll-formula <p holds in lR, we denote this by 
lR I= <p. See [9] for the details. In particular, the symbol = is interpreted 
by (mathematica!) equality on A. Furthermore T, .l, •, A, V, -t and V corre
spond with truth, absurdity, negation, conjunction, disjunction, implication 
and universa! quantification respectively. T!ll-formulae which are not closed, 
are interpreted as implicitly universally quantified. 0 

In the following table we put tagether some of the notions introduced so 
far. We simplify the presentation in the table, in the sense that the entry 
'symbols' doesnotshow the variables x;. The entries for 'terms' and 'atomie 
formulae' speak for themselves. The entry 'statements' shows the notation 
for the statement that a T!ll-formula <p holds in lR. The entry 'model' is 
trivia!, but we introduce it here already because later we shall add a second 
column to this table where the entry 'model' will be less trivia!. 

symbols Sig(lR) 
terms TIR 
atomie formulae { p = Q' p ç Q I P, Q E T!ll} 
statements !RI=<p 
model lR 

Reeall that we distinguish between the elementsof the domain of an algebraic 
system with preorder, and the terms, (consisting of symbols) used to denote 
these elements. We adopt the point of view that a typical software developer 
manipulates symbols. In fact the developer might not be able to find out for 
all <p whether lR I= <p or lR ~ tp. Therefore it might seem strange that we 
nevertheless introduce the actual algebraic system itself. The reason is that 
for an understanding of the notions of component, black-box description and 
design we need not to know the precise rules by which the developer reasons 
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for finding out if lR I= cp. We simply introduce the algebraic system as 
a souree of true facts. This is somewhat similar to the way in which one 
simply imports all valid assertions about the basic data types into a proof 
system for imperative programs [10] (p.61). 

2.2.3 Examples 

In this section we give two extremely simple examples and a realistic, relevant 
example of an algebraic system with preorder. 

As an extremely simple example, consider lR1 := (IN,~. { + }, {0, 1, 2, ... } ) 
where IN is the set of natura} numbers, ~ is the usual "less than or equal" 
ordering on IN, and + is binary addition. Trivially ~ is a preorder and + is 
monotonic in both arguments. We assume Sig(lRI) = g;;, +, 0, 1, 2, ... } and 
use infix notation for +. We can consider a statement like lR1 I= xo+ 1 Ç xo+2 
(which holds). 

As a better example, consider some set S and take its powerset as a domain. 
Assume constants for the subsets of S. Let lR2 := (P(S),Ç,{n},{ci \ei Ç 
S} ). Notice that Ç is a preorder and n is monotonic in both arguments. 
This example can have many faces, depending on the choice for the symbols. 
If we adopt (infix) 1\ for n, T for S and l_ for 0 then the example is about 
proposition logic and Ç becomes logical implication. But we can also adopt 
(mixfix) import .. into .. for n, module end for S and module axiom 
false end for 0, making the example look as a simplified kind of module 
algebra. 

Next we shall discuss an example of an algebraic system which is interesting 
for practical applications, viz. Jonkers' so-called class algebra CA underlying 
COLD-K [4] which is related to Bergstra's Module Algebra [1]. This CA only 
serves as an example here; in particular, no knowledge about CA or COLD-K 
is required toreador apply the theory presented in this chapter. The reader 
who is not interested in COLD-K may very well decide to skip the current 
section and proceed with Section 2.3. The fact that the theory presented in 
this chapter is independent of COLD-K has several advantages. We mention 
two advantages. First, by abstracting from COLD-K, it is easier to study the 
mathematica! properties of the notionsin which we are interested. Secondly, 
the notions component, black-box description and design are applicable to a 
wider class of design languages. 

In COLD-K [4] one has a set of (schemes denoting) so-called class descrip
tions, which we simply view as constant symbols (the ei)· There are a number 
offunction symbols (among which one for import) by which one can combine 
class descriptions to build larger class descriptions. For class descriptions P 
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and Q one can define what it means that P implements Q and we view such 
a fact as a pair in the implementation relation. So CA f= P Ç Q means that 
P is an implementation of Q. Formally we view CA as an algebraic system 
with preorder 

(eDescription, Ç, {E, T, D, •, + }, {C, I iE eDescription}) 

with secondary domains eSignature and eRenaming containing class signa
tures and class renam.ings respectively. We sketch CA briefly. eDescription 
is the set of class descriptions modulo semantic equivalence. Each C, is 
the equivalence class of i. E is a unary function which takes an element of 
eDescription and yields its class signature. T is an embedding of class sig
natures in eDescription. D (for export) is a binary function which takes a 
class signature and an element of eDescription and yields another (restricted) 
element of eDescription. • (for renaming) is a binary function which takes 
a class renaming and an element of eDescription and yields an element of 
eDescription. Ç is the implementation relation. Of course the above presen
tation of CA is somewhat simplified. 

2.3 Lambda calculus 

2.3.1 Introduetion 

By way of preparation for the introduetion of components and designs, we 
shall extend an arbitrary algebraic system with preorder such that we can 
deal with abstraction and with the introduetion of narnes in a forma! way. 
We do this by putting a version of lambda calculus 'on top of' the algebraic 
system. 

At first sight it is not obvious that one benefits from introducing lambda 
calculus in order to describe components and designs. However, we can 
already at this point indicate that certain connections can be made. First of 
alllambda calculus offers the possibility to introduce narnes which may occur 
within terms and which become bound tosome other term (by application). 
Also for the formalisation of the notion of a design we shall need names, 
because we want to be able to refer to components. The act of providing 
the specification of a term instead of the termitself can he viewed as a kind of 
abstraction. In classica! lambda calculus [5], abstraction is done by putting 
>.x. in front of a term. It is possible to combine both kinds of abstraction in 
an elegant way, viz. by having lambda abstraction where one puts >.x Ç P. 
in front of a term, where P is a specification of the term to which x is going 
to he bound by application. 
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It will turn out that one such version of lambda calculus can be used for 
several purposes, viz. descrihing parameteriaation (e.g. of software modules) 
and for descrihing the notions of component and design. Furthermore we 
shall see in Section 2.5 that certain methodologically relevant properties of 
designs have very simple counterparts in this lambda calculus. The calculus 
is named À1r-calculus, where the 1r refers to a rule (1r) which resembles the 
rule (,8) of classica} lambda calculus, but which is partial. 

Before weembarkon the detailed definition of the À1r-calculus, let us give a 
preview of it by means of a table. We have the same entries as before, but 
in addition to the column for !R, there is a second column for -\1r-calculus. 

symbols Sig1!R) Sig(!R) u {,\,.} 
terms TIR AIR 
atomie formulae {P = Q,P Ç Q {P=Q,PÇQ 

I P,Q E TIR} I P,Q E AR} 
statements !RI=cp f-ep 
model !R !R+ 

For the entries 'symbols', 'terms' and 'atomie formulae' we have a simple 
inclusion. This reflects the fact that we shall add new symbols which are used 
to construct new terms and new atomie formulae. In particular, TIR C AR, 
where AR is a set of so-called lambda terms. The entry 'statements' requires 
more explanation. The À1r-calculus introduces a collection of rules which 
have an axiomatic status, and that are adopted for a-priory and intuitive 
reasons. The simplest statements in this calculus are of the form f- cp. The 
calculus is such that true facts cp from !R automatically yield a statement f- cp 
in À7r. This will be achieved, roughly speaking, by adopting the principle 
(!R J= cp) => (f- cp) as one of the rul es. In order to avoid confusion, we 
must clearly state that À1r-calculus is not about some proof system for !R in 
the tradition of propositional logic or fust-order predicate-logic, say - as the 
notation f- cp might suggest. Of course many such proof systems exist already 
and various soundness and completeness results are known [9]. Instead of 
that, the theme of À7r is a certain non-conventional approach to reasoning 
about lambda abstraction. Because the rules of À7r have an axiomatic status, 
the question whether they have a model arises naturally. This question is 
not completely trivial. It will be addressed in Appendix A where we shall 
construct a model which will be denoted by !R+. This explains the en try 
'model' in the table. 

In subsection 2.3.2 we shall define the set of terms and the rules of the À7r
calculus. In subsection 2.3.3 we shall give some derived rules. In subsection 
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2.3.4 we shall briefiy discuss monotonicity and in subsection 2.3.5 we shall 
define reduction for the À1r-calculus. Finally subsections 2.3.6 and 2.3. 7 are 
about normalisation and confiuence for this reduction. In Appendix A we 
shall construct a model for the À1r-calculus. 

2.3.2 Definition of the Calculus 

We assume an algebraic system with preorder 

lR = (A,R,{F; Ij E J},{C; I iE J}) 

with its associated signature Sig(!R) etc. as before. We shall put a version 
of lambda calculus 'on top of' lR to get the À1r-calculus and in this way 
the algebraic system lR acts as a parameter of the calculus! The detailed 
definition of the calculus begins with the definition of the type symbols and 
the lambda terms. 

Definition 2.3.1 The set of type symbols is inductively defined by 

1. 0 is a type symbol, 

2. if u, r are type symbols, then so is (u -+ r). 0 

These type symbols are usually known as 'simple types'. Roughly speaking, 
there are two classica! approaches for associating such type symbols with 
terms. The first approach is Curry's approach where the types are not tex
tually part of the terms. Instead of that there is a derivation system for 
associating types with terms. E.g. >.x.x has type (0 -+ 0), but also e.g. 
((0-+ 0) -+ (0 -+ 0)), whereas (>.x.(xx))(>.x.(xx)) has no type at all. The 
second approach is Church's approach where type-information is an essential 
part of the terms. One way of achieving this is to associate explicitly one type 
with each variable. E.g. x 0 and x(O--+O) could be distinct variables of types 
0 and (0 -+ 0) respectively. In this approach >.x0 .x0 has type (0-+ 0) only. 
Each term has one type and the probiernatie (>.x.(xx))(>.x.(xx)) is excluded 
from the set of terms. We use the type symbols along the lines of Church's 
approach. In order to avoid confusion, we must state explicitly that these 
simple types are not the main issue of À1r; the types are used in a classical 
way and their only purpose is to exclude certain probiernatie terms. 

Definition 2.3.2 We assume infinitely many variables x[ of each type r 
(iE IN). The alphabet to be used for constructing the set of lambda terms 
consists of the following symbols: 
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1. Ju netion symbols: /; ( one for each F;), 

2. constant symbols: c; (one for each C;), 

3. variables: xi (one for each (r,i) with rE type symbols, iE IN), 

4. auxiliary symbols: . , (, ), >., Ç . D 

The type superscript xi is used with variables only when necessary to avoid 
ambiguity. Reeall that the arity of each function F; with function symbol /; 
is given as a;. 

Definition 2.3.3 The set of lambda terms for !R, denoted as Aat. and the 
type of each lambda term are inductively defined by 

1. xi E AIR (iE IN) with type r, 

2. c; E AIR (iE/) with type 0 , 

3. if P 1 , ••. , Pa; E AIR with types 0, then /;(Pll ... , Pa;) E AIR with type 0, 

4. if P, Q E AIR and P is of type (u ---+ r) and Q is of type u, then 
(PQ) E AIR with type r, 

5. if P, Q E AIR where Pis of type u, Q is of typerand xf does not occur 
in P, 
then (>.xf Ç P.Q) E AIR with type (u---+ r). 

Note that clauses 1., 2. and 3. yield the terms in TIR if we restriet ourselves 
to variables of type 0, identifying x; and x?. Also note that inthelast clause, 
Ç occurs as a symbol in lambda terms. 

We use = to denote syntactical equality. For P E AIR, FV(P) denotes the set 
of /ree variables of P which is defined as usual. 

We shall identify a-congruent terms, as is usually done in classical lambda 
calculus; see e.g. [5] 2.1.12. We adopt the usual variabie convention [5] 2.1.13 
which is as follows. If M 11 ••• , M,. occur in a certain mathematica! context 
(e.g. definition, proof), then in these terms all bound variables are chosen 
to be different from the free variables. To work according to the variabie 
convention means that sometimes a systematic renaming of bound variables 
(a so-called a-conversion) has to take place. D 

There is an option to simplify the calculus by strengthening the last clause to 
exclude all variables from the parameter restrietion P in (>.xf Ç P.Q). We 
have chosen nottoadopt this simplification and we shall explicitly study some 
of the consequences of the fact that such P may contain variables. When 
it comes to applications of the calculus where these consequences are felt 
as an unnecessary complication, it is straightforward to adapt the calculus 
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correspondingly. Unless sta.ted otherwise, we sha.ll a.ssume tha.t parameter 
restrictions may conta.in va.ria.bles. 

As typica.l elementsof AR we sha.ll use A, B, C etc. a.nd their indexed versions. 
We sha.ll sometimes he somewha.t sloppy in the distinction between a.ctua.l 
variables ( x 0 , x 11 ••• ) a.nd the typica.l elements of the set of variables (x, y, z 

a.nd their indexed versions). 

Example 2.3.4 Consider lR1 = (lN, ~. { + }, {0, 1, 2, ... } ) where 1N is the set 
of natura.! numbers, ~ is the usua.l "less tha.n or equa.l" ordering on 1N, a.nd 
+ is bina.ry a.ddition. Assume a.n a.lpha.bet conta.ining the symbols +, 0, 1, ... 
with the obvious interpreta.tion. The function symbol + is used in infix 
nota.tion. We use the sa.me nota.tion for the symbols a.nd for the elements 
of the doma.in of the a.lgebra.ic system with preorder, but this ca.nnot ca.use 
confusion, since lambda. terros ca.n conta.in symbols only. 

(i) 1 + (x0 + xt) is a. lambda. term with type 0, provided x 0 , x 1 of type 0. 

(ii) .Àx1 Ç 2.x1 is a. lambda. term of type (0 ---t 0), provided x 1 of type 0. 

(iii) .Àx0 Ç (.Xx1 Ç 2.x1).(x0 1) is a. lambda. term of type ((0 ---t 0) ---t 0), 
provided xo of type (0- 0), x 1 of type 0. 0 

We must make a. remark with respect to the a.bove exa.mple where we used 
lR1 a.s a.n exa.mple of a.n algebrak system with preorder. We sha.ll use this !R1 

very often to illustrate some formal and technica! detail of our theory and 
for that purpose this trivial !R1 is usable. But we must warn the reader that 
from a. software-engineering point of view it is a misteading example and that 
it even may suggest an intuition for !R which is quite wrong. The examples 
lR2 and CA from Section 2.2.3 are much better in this respect. 

Reeall that the a.lgebraic system lR has the implementation relation R and 
that we write !R I= P Ç Q if the elements denoted by P a.nd Q are in this 
rela.tion. Now we want to extend this rela.tion, or more precisely, we want 
to compare lambda terros as well. We refer to Ç as the 'implementa.tion 
relation'. From the terros one can again build formulae P = Q and P Ç Q. 
The following should he compared with definition 2.2.4. 

Definition 2.3.5 (AR-formulae) Thesetof atomie A3rformulae is defined 
as the set of formulae P = Q and P Ç Q for P, Q E Allt, where we require 
that Pand Q have the same type. 

The set of AR-formulae is the smallest set conta.ining T, ..l, all atomie AR
formula.e and which is closed under the usual logica! connectives -,,/\,V, ---t 

and the quantifier V. 0 
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An (atomie) Á~~t-formula is said to he closed if no free variables occur in it. 
Sametimes we write just 'formula' insteadof 'A~~t-formula'. Let us say a few 
words about the interpretation of formulae. Because T~~t C ÁR, also (TR
formulae) C (A~~t-formulae). Clearly T~~t-formulae cp can he interpreted in lR. 
These are precisely the formulae where all (sub)terms have type 0 and do not 
contain the symbol .À. Forthese formulae the statement lR I= cp makes sense 
and has been introduced already in definition 2.2.5. For other formulae, no 
interpretation in lR is defined. 

Definition 2.3.6 (Context) 

(i) An assumption is an atomie Á~~t-formula, put in square brackets. In 
particular, if P, Q E ÁR where P and Q have the same type then 
[P Ç Q] is an assumption (viz. an inequality), and [P = Q] is an 
assumption (viz. an equality). 

(ii) A context is a finite set set of assumptions, e.g. {[Pt Ç Qt], ... , [Pn Ç 
Qn]}. We shall use r,r' etc. to denote contexts. 

(iii) If f = {[cp1], ... , [cpn]} with f =/: 0, then /\ f abbreviates cp1/\ .. . I\ IPn. 
If r = 0, then /\ r abbreviates T. 

(iv) We shall write r, [cp] for r u {[cp]} and we shall write [cp] for {[cp]}. 

(v) As a convenient notation we shall write x Er when x occurs freely in 
f. More precisely x E f :<:> 3P, Q E Á~~t · (([P = Q]) E f V ([P Ç Q]) E 
f) 1\ x E FV(P) U FV(Q). 0 

In our preview above, we indicated already that the simplest statements in .À1r 

are of the form f- cp. The general form is r f- cp which intuitively corresponds 
with "cp follows from the assumptions in f". The technica! term for such 
a statement is a 'sequent'. We shall adopt a rather syntactic point of view 
and we shall define a notion of derivability for these sequents, based on a 
set of rules, which will he given in a Gentzen-style formulation. We shall 
simultaneously define derivability for sequents of the form r f- P = Q and of 
the form r f- p Ç .Q. 

Definition 2.3. 7 A sequent is a pair (f, cp), written as f f- cp, where f is 
a context and where cp is an atomie Á~~t-formula. So cp is either P Ç Q or 
P = Q, (P, Q E Á~~t and of equal type). We shall write f- cp for 0 f- cp. 0 

The first group of rules serves for importing facts about lR into the calcu
lus. There is a rule denoted by O=t), expressing that for each monotonic 
function F; of lR, this monotonicity can he used in the calculus. To state 
this somewhat more clearly: the algebrak system with preorder has an in
dexed collection of functions {F; I j E J}. Some of these functions may 
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be monotonie, others are not. As usual, a function F; is said to be mono
tonic if 'v'x,y,m,n(x ç y => F;(m,x,n) ç F;(m,y,n)). We do not require 
that all functions F; are monotonie, but we assume that somehow we can 
teil the monotonic functions from the non-monotonic ones. Then the rule · 
applies to the monotonic functions only. To simplify the notation, we write 
!;( ... , P, .. . ) Ç /;( ... , Q, .. . ) insteadof f;(M, P, N) Ç /;(M, Q, N). 

The second rule can be readas follows: whenever a closed formula cp is true 
in the algebraic system !R, then cp can he considered derivable in the calculus. 
The statement !R f= cp is in the upper part of this rule, which has the effect 
that it acts as a premiss for the applicability of the rule. The sequent r f- cp is 
in the lower part of the rule, which has the effect that it acts as the condusion 
of the rule. 

Definition 2.3.8 (Rules Fl• f=2) 

!R f= F; monotonic 
ff-PÇQ 
---------(f=t) 
r r- !;( ... ,P, ... ) ç f;( ... ,Q, ... ) 

cp closed 
!RI=cp 

0 

Note that the well-formedness of the sequents involved in rule (f=t) requires 
that both P and Q have type 0. By these rul es ( Fi) one can import certain 
relevant facts about !R into the calculus. In this way we need not include 
a rule which expresses monotonicity of all functions. In subsection 2.3.4 we 
shall see that a rule expressing monotonicity for all lambda terros would not 
even be acceptable. The next rule is just necessary for manipulating contexts 
in the obvious way. 

Definition 2.3.9 (Rule context) 

---(context) 
r, [cp] r- cp 

0 

Now we proceed with some more rules. Reflexivity and transitivity have 
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been added as rules; for those closed formulae which can he interpreted in 
lR, this refl.exivity and transitivity are already given by rule (f=2). But for 
the other formulae, these rules are essentially new. E.g. for lR1 as in example 
2.3.4, 1- 1 Ç 1 follows from lR1 I= 1 Ç 1, but 1- x~o-o) Ç x~o-o) does not. In 
general lR does not teil how to compare all lambda terms. But refl.exivity 
and transitivity are properties which are associated with a implementatión 
relation on a-priory grounds and this is formalised by the rules (refl..) and 
(trans.). 

For the '..X-introduction' rules (..X/1), (..X/2 ) and the 'application rule' (ap.) we 
add some remarks. Abstraction is covariant with respect to Ç in the second 
argument and it is contravariant with respect to Ç in its first argument (!). 
Application is covariant in its first argument. There is nogeneral covariance 
of application in its second argument which would he monotonicity (we shall 
discuss this later). These covariance and contravarianee issues are important 
characteristics of the calculus. 

Definition 2.3.10 (Rules refl.. trans . ..X/1 , ..X/2 , ap.) 

----(refl..) 
fi-PÇP 

f 1- P1 Ç P2, Pz Ç Ps 
-------(trans.) 

(x f/_f) 
---------- (..X/t) 

----------(U2) 

- ----- (ap.) 
r 1- (P1Q) ç (PzQ) 

0 

Note that the well-formedness of the sequents involved in rule (..XII) requires 
that x(/. FV(P). Similarly for (..X/z) we must have x(/. FV(Pi) for i = 1, 2. 
The definition of the next rule requires the notion of substitution. 
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Definition 2.3.11 (Substitution) Let x; he a variabie and P a term such 
that x; and P have the same type. Then wedefine the substitution operator 
[x; := P] inductively by ' 

1. x;[xi := P] = P, 
x.[x; := P] = x. (i -:j:. j), 

2. c.[x; := P] = c., 

3. f;(PI, ... , Pa;)[xi := P]::::: /;(PI[xi := P], ... , Pa;[xi := P]), 

4. (Q1Q2)[xi := Pj::::: ((Ql[xi := P])(Q2[xi := P])), 

5. (>.x. Ç Q1.Q2)[x; := P] = (>.x; Ç Qt[x; := P].Q2[x; := P]). 0 

Note that for clause 5. above x; =f= x; by the variabie convention and that 
x; (/. FV(P) - also by the variabie convention. In this way we avoid clashes 
of free and bound variables and vialation of the restrietion that a variabie 
bound by a >. does not occur in the parameter restrietion of that same >.. 

The next rule is called (7r) and it resembles the well-known rule (.8) of das
sical lambda calculus, but is partial, by which we mean that contraction is 
conditional. In the applicability condition of the rule ( 7r) an actual parameter 
is compared with a parameter restriction. Here is the very essential differ
ence between À7r and classica! typed >.-calculi: the parameter restrictions are 
not used torestriet the set of well-formed terms, but insteadof that they are 
used to regulate the contractions. 

Definition 2.3.12 (Rule 7r) 

r r- P2 ç P1 
- - ---- ---- (7r) 
r r (>.x Ç P1.Q)P2 = Q[x := P2] 

0 

N ote that the property that a variabie bound by a >. does not occur in the 
parameter restrietion of that same >., is preserved by the conversion from 
(>.x Ç P1.Q)P2 to Q[x := P2] . Finally we have a rule that makes Ç into 
a partial order and a general substitution rule. We write cp(P) to denote 
cp[x := P] and cp(Q) to denote cp[x := Q]. We add a remark ().bout the 
substitution rule below. In the transition from cp(P) to cp(Q), it is not 
required that all occurrences of P are replaced by Q. 
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Definition 2.3.13 (Rules =I, subst.) 

r r- P1 ç P2 
r r- P2 ç P1 
---(=I) 
r r- P1 = P2 

r r- cp(P) 
ff-P=Q 
---- (subst.) 
r r- cp(Q) 

D 

Now we present the intuition behind the rules (.:Ut), (.H2} and (1r}. Each 
lambda term (>.x Ç P.Q) can be viewed as a funetion having a restrietion 
concerning its argument. Therefore it is reasonable that the evaluation of 
an application term cannot take place unless the argument provably roeets 
this restrietion (rule 1r}. The rules (>.II) and (>.I2} describe the conditions 
under which one funetion can be viewed as the implementation of another 
function. First of all, two funetions with the same argument restrietion are 
in the implementation relation if for every acceptable argument their results 
are in the implementation relation (rule >.I1}. Secondly, if two funetions 
have equal funetion bodies but the restrietion of one funetion is weaker than 
the restrietion of the other function, then the funetion with the weakest 
restrietion implements the other funetion (rule >.I2}. The fact that in the 
rule (>.I1) an assumption [x Ç P] is discharged is motivated as follows: by 
the condition in the rule (1r) we know that whatever is going to be substituted 
for x will meet the restrietion x Ç P and therefore it is reasonable that the 
assumption [x Ç P] can be used when comparing the funetion bodies Q1 and 
Q2. 

Definition 2.3.14 (>.1r) Derivability for sequents is defined inductively by: 

1. If cp is closed and !R I= cp, then r f- cp is derivable ( by rule (1=2)). If 
r f- cp is the concl usion of a rule from (context, refl.), then r f- cp is 
derivable. 

2. If r f- cp is the condusion of a rule from (FI. trans., >.I1o >.I2 , ap., 1r, 
=I, subst.) and all premises of this rule are derivable, then r f- cp is 
derivable, provided that the monotonicity condition and the variabie 
condition are satisfied for the cases of 0=1) and (>.II) respectively. 

We write r f- cp if r f- cp is derivable. D 
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The typing of terms should not he confused with the restrictions associated 
with each À. Actually the correctness with respect to the typing has been 
dealt with by the definition of thesetof lambda terms, whereas the restric
tions associated with each À play a role in the calculus. E.g. for !R1 as 
in example 2.3.4, (Àx1 Ç 2.x1)(Àx1 Ç l.x1 + x 1) is not a lambda term but 
(Àx1 Ç 2.xt)3 is a lambda term. In the latter term the effect ofthe restrietion 
(Ç 2) is that we cannot apply the rule (1r) to this term. 

Let us point out explicitly that À1r-calculus and À-typed À-calculus are not 
just almost the same. There are fundamental differences between the nature 
of the implementation relation 'Ç' of À1r-calculus and the typing relation ':' 
of À-typed À-calculus. One might he tempted to think that it is just a matter 
of notation and that instead of writing Àx Ç P.Q we could as well replace 
the symbol 'Ç' by the symbol ':' to get Àx: P.Q which looks the same as a 
term of À-typed À-calculus. The difference is that 'Ç' as a relation between 
terms is refiexive and transitive, whereas in À-typed À-calculus the typing 
relation ':' is neither refiexive nor transitive. 

Example 2.3.15 Consider two terms Pt. P 2 of equal type. Let f he a con
text. Then we have 

which we show as follows. First, by rule (refi.), r 1- P1 Ç P1 and this can 
be combined with r 1- P1 = P2 by rule (subst.) when we replace the second 
occurrence of P1 in P1 Ç P1 by P2. This yields r 1- P 1 Ç P 2. The result of 
this example can be viewed as a derived rule of the calculus. Similarly 

which we show again with (refl.) and (subst.). The latter result can he 
viewed as a second derived rule of the calculus. 0 

Example 2.3.16 Consider !R1 = (lN,:S,{+},{0,1,2, ... }). Define the term 
p by 

By rule (context) we have [x0 Ç 1]1- x0 Ç 1. Because in !R1 the function + is 
monotonie, we have from (f=t) that [x0 Ç 1]1- x0 + x0 Ç x0 + 1 and therefore 
we can apply rule (1r) to get [xo Ç 1]1- (Àxt Ç Xo + l.xt)(xo + xo) = Xo + Xo. 
By the first derived rule ofthe previous example this yields [x0 Ç 1]1- (Àx1 Ç 
xo + l.xt) ( xo + x0) Ç x0 + x0 and similarly by the second derived rule of the 
previous example [xo Ç 1]1- xo + Xo Ç (Àx1 Ç xo + l.x1)(x0 + x0). 
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Now we can apply rule (.H1) twice and finally use rule (=/) to get f- P = 
>.xo Ç l.xo + Xo. 0 

In Appendix A we study a model for the calculus of this section. To sum
marise the results of that appendix: assuming certain restrictions upon lR, 
there is a modeilR+ such that for atomie formula rp in the language of lR we 
have lR I= rp {::} lR+ I= rp and furthermore for arbitrary rp 

r r- rp => lR+ 1= Ar ---+ rp. 

2.3.3 Derived rules 

We shall list a number of lemmas that can be viewed as derived rules. The 
first lemma is very simple and it shows that we can perfarm a kind of a

conversion at the level of sequents. 

Lemma 2.3.17 If r f- rp then for fresh y, r[x := y] f- rp[x := y]. 

Proof. The proof is by induction over the lengthof the derivation of r f- rp. 

• If r f- rp is a direct consequence of rule (f=t) with rp = f(A) Ç f(B) 
and r f- A Ç B, then by (i.h.) f[x := y] f- A[x := y] Ç B[x := y]. 
Apply rule (f=t) again. 

• If r f- rp is a direct consequence of lR I= rp by rule ( f=2), then rp is closed 
and hence rp = rp[x := y]. Apply rule (1=2). 

• If r f- rp is r f- (>.z Ç R.St) Ç (>.z Ç R.S2) as a direct consequence of 
rule ( >.It) with r, [ z Ç R] f- St Ç 82 and z f/. r, then we distinguish 
two cases. If x = z, then x does not occur in r f- rp and we are done 
immediately. Otherwise use (i.h.) and apply rule (>.Jt) again. 

• Other rules: analogously. 0 

Lemma 2.3.18 (Weakening) If r f- rp, then r, [.,P] f- rp. 

Proof. The proof is by induction over the lengthof the derivation of r f- rp. 

• If r f- rp is a direct consequence of rule (f=t) with rp = f(A) Ç f(B) 
and rf-A Ç B, then by (i.h.) f, [.,P] f-A Ç B. Apply rule (f=t) again. 

• If r f- rp is a direct consequence of lR I= rp by rule ( f=2), then so is 
r, [.,P] r- rp. 

• lf rp E f, then f, [ .,P] f- rp by rule (context) again. 
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• If cp := (.~x Ç R.St) Ç (.Xx Ç R.S2) and r 1- cp by rule {.XI1), then we 
know r, [x Ç R] 1- 8 1 Ç 82 and x rf. r. 

If x E FV(t/J) then we substitute a fresh z for x (using lemma 2.3.17), 
yielding r, [z ç R]l- St[x := z] Ç S2 [x := z]. Apply {i.h.) and rule 
(.XI!). 

Otherwise we have x rf. FV(t/J) and by (i.h.) r, [t/J], [x Ç R]l- 81 Ç 82 

so by rule {.Xlt) again we haver, [t/J]I- (.Xx Ç R.St) Ç (.Xx Ç R.S2). 

• Other rules: analogously. 0 

Lemma 2.3.19 If r 1- cp, then r[x := P] 1- cp[x := P]. 

Proof. The proof is by induction over the lengthof the derivation of r 1- cp. 

• If r 1- cp is r 1- f(A) Ç f(B) because r 1- A Ç B for f corresponding 
with a monotonic function, then by (i.h.) r[x := P] 1- A[x := P] Ç 
B[x := P]. Use rule (1==1) again . 

• If r 1- cp is a direct consequence of !R I= cp, then note that (since cp 
closed) cp = cp[x := P]. Use rule {1==2) again. 1 

• If cp Er, then cp[ ] E f[ ], so apply rule (context) again. 

• If cp = (R Ç R), apply rule (refl.) again. 

• If cp = (Pt Ç Ps) because r 1- Pt Ç P2 and r 1- P2 Ç Ps by rule (trans.), 
then by (i.h.) r[ ]I- Pt[ ] Ç P2[ ] and f[ ] 1- P2[ ] Ç Ps[ ]. Apply 
rule (trans.) again. 

• If r 1- cp is r 1- (.Xy ç R.Qi) ç (.Xy ç R.Q2 ) as a direct consequence of 
rule (.XI!) with r, [y Ç R ] 1- Q 1 Ç Q2 and y ft r, then we distinguish 
two cases. 

If x ::: y then x rf. r and x does not occur freely in r 1- cp. Therefore 
r[x := P]l- cp[x := P] is just the same as r 1- cp. 

If x :f:. y then two possibilities arise. The simplest possibility is that 
y ft P . Then we can apply (i.h.) to get f[x := P], [y Ç R[x := P]]I
Q1[x := P] Ç Q 2[x := P]. Now apply rule (.X/1) again. 

If y E P then we first substitute some fresh z for y to get r, [z Ç R] 1-
Qt[y := z] Ç Q2[y := z]. Now use (i.h.) and apply rule (.X/t) again. 

• Other rules: analogously. 0 

Theorem 2.3.20 (Cut-rule) If r 1- cp, and r, [cp]l- t/J, then r 1- t/J. 

1 here is a reason why we require '{) closed in 0=2 ) 
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Proof. Induction over the length of the derivation of f, [cp] f- 1/J . 

• If r,[cp] f- 1/J is r,[cp] f- f(A) ç f(B) because f,[cp] f-A ç B for I 
corresponding with a monotonic function, then by (i.h.) r f- A Ç B. 
Use rule 0=1) again. 

• If r, [cp] f- 1/J is a direct consequence of !'R f= 1/J, then use (1=2) again. 

• If 1/J E f, then f f- 1/J . If 1/J := <p then f f- cp is f f- 1/J. 

• If 1/J = (Àx Ç R.S1) Ç (Àx Ç R.S2) and r, [cp] f- 1/J by rule (À/1), 
then we know r, [cp], [x Ç R] f- S1 ç S2 and x ~ (f,cp) so certainly 
x ~ r. By (i.h.) r, [x Ç R] f- St Ç S2 so by rule (Àlt) we have 
r f- (Àx Ç R.St) Ç (Àx Ç R.S2) . 

• If 1/J = ,P(Q) and r, [cp] f- ,P(Q) by rule (subst.), then we know r, [cp] f-
1/J(P) and r, [cp] f- P = Q for some P. By {i.h.) r f- ,P(P) and 
r f- p = Q so by rule (subst.) again we haver f- '1/J(Q). 

• Other rules: analogously. 0 

Remark 2.3.21 In earlier versions ofthe calculus we employed a much more 
powerlul rule (1=), saying !'R F Af - <p => r u r' f- <p but this caused 
problems when proving the lemmas of this section. In particular, for the 
proof of the cut-rule we would have to use the model construction )R+. 0 

Lemma 2.3.22 If r f- P = Q, then f f- R[x := P] = R[x := Q]. 

Proof. We want to use the rule (subst.) and we take cp(P) = (Rix := P] = 
R[x := P]) which we denote as cp(P) := (R(P) = R(P)). Clearly r f- cp(P). 
Now consider the second occurrence of Pand apply rule (subst.). We obtain 
r f- cp(Q), which is r f- R(P) = R(Q). o 

Lemma 2.3.23 (Generalised cut-rule) . Iff f- cp1 , ••• , f f- fPn and 
f, [cpt], ... , [Pn] f- 1/J then f f- 1/J. 

Proof. By iterated application of the cut-rule. 0 

We listed a number of lemmas about the À1r-calculus above. For our dis
cussion of components and designs in later sections of this chapter, one can 
simply accept the propositions of these lemmas as additional rules of the 
À1r-calculus. 
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2.3.4 Monotonicity 

We now give a small derivation that shows that even if the functions F; are 
monotonie, there is a kind of consistency problem if we would adopt a rule 
expressing monotonicity for all lambda terms. The rule (.H2) plays a key 
role in this matter. By monotonicity we mean the following rule. 

Definition 2.3.24 (Rule mon.) 

------- (mon.) ( f/_ .À7r!) 

f f- (PQt) Ç (PQ2) 

D 

Example 2.3.25 Consider the lambda term (.~x0 Ç P.(.Xx1 Ç x0 .x1)), then 
we would have the following derivation - when adopting (mon.). Assume 
Q17 Q2 E AIR such that f- Q1 Ç Q2 Ç P. By assuming monotonicity we have 

and from this we obtain by the rule ( 1r) 

f- (.Xx1 Ç QI.xi) Ç (.Xx1 Ç Q2.x1). 

But by the rule (U2) we have 

f- (.Xx1 Ç Q1.xi) ;;:;) (.Xx1 Ç Q2.xi) 

and hence 

This shows that if we assume monotonicity for all terms, we would have that 
Q1 plays no role any more in .Àx1 Ç Q1.x1. D 

Under certain conditions and with certain modifications it is possible toadopt 
the rule (mon.) however. We sketch one workable approach, which yields a 
slightly different calculus, .À1r mon, say. It can be done only with an obvious 
additional requirement on lR. 

Definition 2.3.26 (.À7rmon) Assume an algebraic system as before lR where 
furthermore all functions F; are monotonic with respect the preorder R. 
Define a restricted set of lambda terms AIR(mon) which is like AIR except for 
the additional restrietion that parameter restrictions contain no variables at 
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all. The calculus À11"mon is about formulae and sequents basedon ÄR(mon)· It 
has the same rules as À11" and in addition tothese also the rule (mon.). D 

A model lR~on can he constructed along the same lines as lR+, except that 
the function domains may contain monotonic functions only. For most of the 
theory about components and designs later in this chapter, there is hardly 
any difference between À11" an À11"mon· 

2.3.5 Rednetion 

In classicallambda calculus every term (.Xx.Q)R can be contracted and there
fore such a term is called a redex. In the À1r-calculus it is not the case that 
every term (.Xx Ç P.Q)R can be contracted. It follows that for the À11"
calculus some care is needed in using the word redex. We reserve the word 
redex for those terms which can be contracted (in a given context). We also 
introduce the term candidate-redex. The following should be contrasted with 
[5] 3.1.8. 

Definition 2.3.27 A candidate-redex is a term (.Xx Ç P.Q)R. A candidate
redex M = (.Xx Ç P.Q)R can be contracted (is a redex) in context r if 
r f-- R Ç P. In this case Q[x := R] is called a contracturn of M. D 

The following definition can be viewed as a reformulation of [5] 3.1.5 and 
3.1.17 for the À1r-calculus. 

Definition 2.3.28 The relation --+ is defined inductively by: 

1. r f-- R Ç A:::;.. f f-- (.Xx Ç A.B)R--+ B[x := R], 

2. r f-- M--+ N:::;.. r f-- /;( ••• ,M, .. . ) --+ /;( ••• ,N, .. . ), 

3. r f-- M--+ N:::;.. T f-- ZM--+ ZN, 

4. ff--M-+N:::;..ff--MZ-+NZ, 

5. r f-- P--+ Q:::;.. r f-- (.Xx ç; P.M)--+ (.Xx ç; Q.M), 

6. r, [x Ç P] f-- M--+ N, x ft r :::;.. r f-- (.Xx ç; P.M)--+ (.Xx ç; P.N). 

A reduction (path} is a sequence r f-- M0 --+ M 1 --+ M2 --+ ••• D 

The following definition can be viewed as a reformulation of (part of) [5] 
3.1.5 for the À1r-calculus. 

Definition 2.3.29 The relation --+-+ is defined inductively by: 
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1. r f- M -+ N => r f- M- N, 

2. ff-M-M, 

3. r f- M - N, r f- N - L => r f- M - L, 

and the relation =,.. is defined inductively by: 

1. r f- M - N => r f- M =,.. N, 

2. r f- M =,.. N => r f- N ="' M, 

3. r f- M =,.. N, r f- N =,.. L => r f- M =,.. L. D 

The following lemma can be viewed as a justification of the definitions of 
-,-and="'. 

Lemma 2.3.30 

(i) r f- M-+ N => r f- M = N, 

(ii) r f- M- N => r f- M = N, 

(iii) r f- M =,.. N => r f- M = N. 

Proof. (i) The proof is by induction over the definition of-+. 

1. r f- (>.x Ç P.Q)R-+ Q[x := Rj. Use rule (1r). 

2. r f- /;( ... , M, .. . ) -+ /;( ... , N, .. . ) because r f- M -+ N. By (i.h.) 
r f- M = N. Use rule (subst.). 

3. r f- ZM-+ ZN because r f- M-+ N. By (i.h.) r 1- M = N. Use rule 
(subst.). 

4. r 1- MZ-+ NZ because r f- M-+ N. As 3. 

5. r f- (>.x ç P.M) -+ (>.x Ç Q.M) because r f- P -+ Q. By (i.h.) 
r f- P = Q. Use rule (subst.). 

6. r 1- (>.x Ç P.M) -+ (>.x Ç P.N) because r, [x Ç Pjl- M -+ N. By 
(i.h.) and the rul es ( refl.) and (subst.) r, [x Ç P] f- M Ç N. By 
rule (.\I I) r f- (À x Ç P.M) Ç (À x Ç P.N) . In the same way we get 
f 1- (.\x Ç P.N) Ç (À x Ç P.M). Finally use rule (=I). 

(ii) The proof is by induction over the definition of-. 

1. Use (i), 

2. Use reflexivity. 

3. Use (i.h.) and transitivity. 
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(iii) The proof is by induction over the definition of=.,... 

1. Use (ii), 

2. Use (i.h.) and rule (subst.), 

3. Use (i.h.) and transitivity. D 

2.3.6 Normalisation 

A very desirabie property of a notion of reduction is the strong normalisation 
property, denoted by SN. We write SN(M) if M strongly normalises by which 
we mean that it does not have an infinite reduction path. We say that SN 
holds if SN(M) for all terms M. Classica! untyped >.-calculus does not have 
this property, and the famous counter-example is (>.x.(xx))(>.x.(xx)) which 
reduces to itself. In À?r-calculus there is a system of simple types which ex
cludes such probiernatie terms and as it turns out, this is suflident to get SN 
for our notion of reduction. Note that this is not completely trivia}, because 
of the presence of parameter restrictions: in these parameter restrictions 
also reduction steps can he done. Although typically most of these parame
ter restrictions will eventually disappear themselves by reductions, this idea 
cannot he considered as a proof of the fact that the parameter restrictions 
are harmless. 

The remainder of this sectionis about proving SN. The reader may want to 
skip this proof and in that case he can proceed with Section 2.3.7. We write 
Au to denote the set of terms from AR with type u. We write A~ to denote 
the closed terms from Au. 

Definition 2.3.31 We define >.{3 as the calculus with terms from AR and 
withall rules of À?r-calculus but for the rule (1r) which has been replaced by 
the rule ({3): 

(!3) 

We adopt the obvious notion of reduction for >.{3. We shall prove strong 
normalisation SN for >.{3 , using Tait's so-called 'computability' argument as 
given in e.g. [5] A2. Then SN for À1r follows easily from SN for >.{3 . 

Let us explain the basic structure of this computability argument. As a kind 
of naive approach one could try to prove SN by induction on the structure of 
the terms. Indeed, SN(x), SN(c,), SN(PI}A . . . ASN(Pn) ~SN(!;( Pb ... , Pn)) 
and SN(P) A SN(Q) ~ SN(>.x Ç P.Q), but the approach fails when it comes 
to application. From the fact that SN(P) and SN(Q) hold one can not 
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conclude SN(PQ) - as is easily seen from the counterexample of the (not 
well-formed) term P = Q = Àx.(xx). 

Therefore we have to strengthen the property SN to another property with 
will be denoted by C". (one for each T). This strengthening is done by way of 
induction loading, i.e. ME C". implies SN(M). The property C". is sametimes 
referred to as 'computable', 'reducible' or 'stable'. 

Definition 2.3.32 Define the following classes of terms inductively: 

Co= {ME A8 I SN(M)}, 

Ca_"= {ME A~- .. I VN E Ca(MN E C".)}. 

Toprove that ME Cu implies SN(M), requires an induction on the structure 
of u. In fact we have another very simple induction loading at this level, 
which is the reason for adding the proposition (ii) below. As usual we write 
u --+ T1 --+ T2 to denote u --+ ( T1 --+ T2), i.e. we adopt the convention that 
type construction is right-associative. N ote that every type u is of the form 
u1 --+ ..• --+ Un--+ 0 which is U1 --+ ( .•• --+ (un--+ 0) ... ). 

Lemma 2.3.33 (i) ME Cu=> SN(M), 
(ii) Àx"' ... x"" .c E Cu if u= u 1 --+ ••• --+ Un --+ 0, where c is some constant. 

Proof. The proof is by simultaneous induction on u. 

Basis: obviously ME C0 => SN(M) and c E C0 • For the induction step we 
consider the type u --+ T = u --+ T1 --+ ••• --+ Tm --+ 0 and we assume (i) and 
(ii) for u, T, T11 ••• , Tm (i.h.). We must prove (i) ME Cu_,.=> SN(M) and (ii) 
Àx" x"' ... x""' .c E Cu-r· 

First we treat (i). Let M E Cu-n so VN E Cu(MN E C".). We have 
u = u1 --+ ... --+ Un --+ 0 for some u 11 ... , Un· Hence M(Àx"' .. . x"" .c) E C,. 
and by i.h. has no infinite reduction. So certainly M has not, i.e. SN(M). In 
fact we only use Àx"' ... x"" .c to show that Cu is inhabited. The proof-step 
works for any term N in Cu. Next we treat (ii), and we reason as follows: 

Àx"x,.' ... x .. "'.cECa-.- if 

for NE Cu, (Àx"x,.' .. . x""'.c)N E C,. if 

for P1 E C,.., ... ,Pm E C,."', (Àx"x"' ... x .. "'.c)NPl···Pm E Co which 
holds since one can do at most m + 1 reductions + finitely many ones 
in N and P 1 , ... , P m· In the last step we used the ind uction hypothesis 
which gives us SN(N), and SN(P1), ••. , SN(Pm)· 0 
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Definition 2.3.34 Define the following classes of terms: 

C = U { C". I u is a type}, 

c; ={ME Áa I M[x:= P] E c for p ç C}. 

where P Ç C denotes an arbitrary sequence of terros in C and where x should 
always contain all free variables of M. 

The intuition behind c; is thesetof terms Min A". such that every instanee 
of M with elementsinCis in C. In particular, if M* = M[x := P] then ME 
c; => M* E C".. By introducing this c; we pushed the induction loading 
somewhat further and this will allow us to have a proof by induction on the 
structure of the terms. In this inductive proof we shall use the following 
preservation properties. 

Lemma 2.3.35 (Preservation properties). 

(i) ME C 1\ M----++ M' => M' E C, 

(ii) M E c; 1\ M ----++ M' => M' E c;, 
(iii) ME c; A .P ç c => M' == M[x:= .P] E c;, 
(iv) ME c; => SN(M) . 

Proof. (i) The proof is by induction on the type of M. If M E C0 , i.e. 
SN(M) then SN(M') for if not, then M----++ M'---+ ... , contradiction. If ME 
C",_.., then for arbitrary N E C". we have M N E C .. so by i.h. M'N E C ... 
This shows M' E C. 

(ii) Assume ME c; and M----++ M'. It follows that M[x := P]- M'[x := 

P]. This can he proved by induction on the derivation of-, cf. [5] 3.1.14. 
Let P Ç C, then we know M[x := P] E C and by (i), M'[x := P] E C. This 
shows M' E c;. 
(iii) Let iJ contain the free variables of M'. We must show that for Q Ç C we 
have M'[fl:= Q] E C, i.e. M[i:= P][fl:= Q] E C, i.e. M[i,iJ:= P,Q] E C, 
which holds because ME c;. 
(iv) Assume ME c; and let P Ç C, then for i 2 FV(M) we have M[i := 

P] E C and hence by 2.3.33 (i) SN(M[x :=PI). Therefore certainly SN holds 
for M itself. D 

Lemma 2.3.36 M E A". => M E c;. 
Proof. The proof is by induction on the structure of M. 
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The fust three cases are easy: Case 1 is M = x. Now for all P E C one 
has x[x := P] E C. Case 2 is M = c, which is trivia!. Case 3 is M = 
/;(M1, ... , MaJ · U se i.h. and the fact that each M, is of type 0. 

Case 4. M =:AB with A EAu-nB EAu. Let P Ç C. By i.h. A E c; .... r 

and BE c;, i.e. A[ x:= P] E Cu-+r and B[x := P] ECu. Now M[x := P] = 
A[x := P]B[x :=ft] which is in Cr and hence is in c. Hence ME c;. 
Case 5. M =: Ày Ç A.B with A E Au,B E Ar. Let P Ç C. By i.h. A E c;, 
BE c;. We may assume y (/.x. Abbreviate A*:= A[x := P], B' :=: B[x := 

P] soA* ECu and by 2.3.35 (iii) B' E c;. Note that y may still occur free 
in B'. Let T = Tl -+ .•. -+ T n -+ 0. 

ME c;__,r if 

M* :=: Ày Ç A*.B' ECu-rif 

forSE Cu, (>.y Ç A*.B')S E Cr if 

for T1 E C"", ... ,Tn E Crn• SN((>.y Ç A*.B')STl ... Tn) which holds, 
for if nat, then three possibilities arise, each leading to a contradiction. 

Either (a) A* or B' have an infinite reduction. But B' E c; so by lemma 
2.3.35 (iv) SN(B') and by lemma 2.3.33 (i) also SN(A*). Contradiction. 

or (b) S or T1 •. . Tn have an infinite rednetion which contradiets S E C, 
T1 E C, .. . , Tn E C and lemma 2.3.33(i). 

or (c) (>.y Ç A* .B')ST1 ... Tn - (>.y Ç A*'.B")S'T{ ... T~) -+ B"[y .
S']T{ .. . T~ -+ . • • . But by lemma 2.3.35 (i) S' E C, T{ ... T~ E C and 
by lemma 2.3.35 (ii) B" E c;. Therefore by the definition of c; we have 
B"* :=: B"[y := S'] E C. From the definition of C we have B"*T{ ... T~ E C 0 , 

i.e. SN(B"[ .. . ]T{ ... T~). Contradiction. 0 

Theorem 2.3.37 (SN). In À1r every term strongly normalises. 

Proof. By lemma 2.3.36 and lemma 2.3.35 (iv) we have that in >.{3 every term 
strongly normalises. It follows that in À1r every term strongly normalises, for 
suppose that M has an infinite rednetion in À7r, then so it has in À{3 which 
cannot be the case. 0 

Remark 2.3.38 An alternative proof of SN for À1r-calculus can be given 
by using a technique due to Plotkin (who actually considered À-typed À

calculus), suggested to us by L.S. van Benthem Jutting. Let AIR denote the 
set of terms of À1r-calculus and let A denote the set of terms of classica! 
simple-typed À-calculus. Define a mapping-: AIR -+ A as follows: 
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/;(Pt, ... , Pa;} :=: /;(Pll ... , Pa,.}, 

(MN) :=(M'N), 
().x" Ç M.N} :=: ((.\y" . .\x".N)M) (y" fresh). 

By induction on the structure of M it can be shown that M[x := N] = 
M[x := N). Using this, one shows by induction on the derivation of r f-
M -t N that 

r f-- M -t N => M ~ N. 

Now if a term ME A!R has an infinite rednetion path, then so does M, which 
cannot be the case by SN for classica! simple-typed À-calculus. 0 

2.3. 7 Confinenee 

The diamond property ( = confinenee = Church-Rosser property) holds for 
À1r. This means that when a term M allows for two different reductions, 
r f-- M - M 1 , M - M 2 say, then these can always be 'brought together' 
by further reductions, i.e. there is an M3 with f f-- M1 - M3, M2 ---# M3 • 

The remainder of this section is about proving this property. The reader 
may want to skip this proof and in that case he can proceed with Section 
2.4. By way of preparation for this proof, we introduce the so-called weak 
diamond property and we shall show that the latter holds for À7r first. This 
weak diamond property is relatively easy to prove. In combination with the 
SN property it will give us a cheap route towards proving the full diamond 
property. 

Definition 2.3.39 A one-step rednetion relation -t satisfies the weak dia
mond property if ( ---H denoting the reflexive transitive closure) 

f f-- M -t M11M -t M2 => 3M3 (f f-- Mt---# Ms,M2---# Ms). 0 

Lemma 2.3.40 (Substitution) 

(i) f f-- B -tB' => r[x := R]l- B[x := RJ-t B'[x := RJ, 

(ii) f f-- R -t R' => f f-- B[x := R]---# B[x := R']. 

Proof. (i) By induction on the derivation of f f-- B -tB'. (ii) By induction 
on the structure of B. 0 
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Lemma 2.3.41 The rednetion relation--+ satisfies the weak diamond prop
erty. 

Proof. By induction on the derivation of f 1- M --+ M 1 it will he shown that 
for all M2 such that f 1- M --+ M2 there is an M3 such that f 1- M1 --+-+ Ms 
and f 1- M 2 --+-+ M3 • For the trivial M2 = M1 we can always take Ms = M1 
so insome cases we shall not mention this trivial M 2• The numbering of the 
cases below corresponds to the numbering of the cases in 2.3.28. 

1. f 1- M--+ M 1 is f 1- (Àx Ç A.B)R--+ B[x := R] because f 1- R Ç A. 

(i) if M --+ M2 is M --+ B[x := R] we are done immediately: M 3 = 
M1 = M2. 

(ii) if M --+ M2 is M --+ (Àx Ç A'.B)R, take M3 = M1 (noting 
f 1- R Ç A'). 

(iii) if M --+ M2 is M --+ (Àx Ç A.B')R then take Ms = B'[x := R] 
and apply lemma 2.3.40 (i). 

(iv) if M --+ M2 is M --+ (Àx Ç A.B)R' then take M3 = B[x := R'] 
and apply lemma 2.3.40 (ii). 

2. f 1- M--+ M 1 is f 1- /;( ... ,X, ... ) --+ /;( ... , X1 , •.. ) because f 1- X--+ 
X 1 . Two cases arise: 

(i) M--+ M2 is M--+ !;( ... ,X2 , •• • ). By i.h. there exists an X 3 such 
that X1--+-+ X3 and X2 --+-+ Xs. Take M3 = f;( ... ,X3, ••• ). 

(ii) M --+ M2 is /;( ... ,X, ... , Y, ... ) --+ !;( ... ,X, ... , Y11 ••• ). Take 
Ma=!;( ... ,X1, . . . , Y11 .. . ). 

3. r 1- M--+ M 1 is r 1- ZX--+ ZX1 because f 1- X--+ X 1 . 

(i) if M--+ M2 is ZX--+ Z'X, then take M 3 = Z'X1• 

(ii) if M --+ M2 is ZX --+ ZX2, then take Ms = ZX3 where X3 is 
given by i.h. 

(iii) if M--+ M2 is (Àx Ç A.B)X--+ B[x :=X], then take M 3 = B[x := 
X 1] and apply lemma 2.3.40 (ii). 

4. f 1- M --+ M 1 is r 1- X Z --+ X 1Z because f 1- X--+ X 1 • 

(i) if M --+ M2 is X Z --+ X2Z, then take Ms = X 3Z where X3 is 
given by i.h. 

(ii) if M--+ M2 is XZ--+ XZ', then take M 3 =: X 1 Z'. 
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(iii) if M - M 2 is (>.x Ç A.B)Z - B[x := Z], then either X- X 1 

by A - At or X - Xt by B - Bt. If by A - At then take 
M3 = B[x := Z]. If by B- Bt then take Ms = Bt[x := Z] and 
apply lemma 2.3.40 (i). 

5. r f- M- Mt is r f- (.h Ç P.X) - (.Xx Ç Pt.X) because r f- P-+ Pt. 

(i) if M -+ M 2 by P -+ P 2 then take M3 = Àx Ç P3.X where P3 is 
given by i.h. 

(ii) if M- M 2 by X- X' then take M 3 = Àx Ç Pt.X'. 

6. r f- M-+ Mt is r f- (.Xx Ç P.X)- (.Xx Ç P.Xt) because r, [x Ç P] f
X- Xt and x~ r. 

(i) if M-+ M2 by P - P' then take M3 = Àx Ç P'.Xt and use 2.3.30 
(i), rule (subst.) and the cut-rule 2.3.20 to show that r, [x Ç P'] f
X-Xt. 

(ii) if M -+ M 2 by X -+ X 2 then take M 3 := Àx Ç P.X3 where X 3 is 
given by i.h. (in context r, [x Ç P]). 0 

The following is known as Newman's lemma and it providesus with an easy 
way of proving the diamond property. 

' 
Lemma 2.3.42 If a one-step reduction relation - satisfies the weak dia-
mond property and has the strong normalisation property (SN), then its 
refiexive transitive dosure -++ has the diamond property ( 0 ). 
Proof. Newman's result. See [5] proposition 3.2.25. 0 

Theorem 2.3.43 (0 ). -++ has the diamond property, i.e. if r f- M -++ 

M 11 M -++ M2 then there is an Ms with r f- Mt -++ Ms, M2 -++ M3 • 

Proof. By 2.3.42, 2.3.41 and 2.3.37. 0 

The diamond property for À1r does nat essentially depend on SN. As G.R. 
Renardel de Lavalette has shown, it is possible to define an untyped version 
of À7r which satisfies the diamond property. Tait's proof metbod (see [5] pp. 
59-62) is applicable, both for the untyped and typed versionsof the calculus. 
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2.4 Components 

2.4.1 Introduetion 

Let us assume that an algebraic system IR is given. Roughly speaking, IR 
provides us with a notion of a construct 'being constructed from' a number 
of primitive constructs and with ways of fitting constructs together. Further
more the possibility that one construct is a specification of another construct 
exists. On top of this we have the À1r-calculus and we assume that the de
veloper is allowed to make use of the possibilities of this lambda calculus 
whenever possible. 

AIR is a starting point from which a software developer can start his con
structive activity. The developer could try to write one (probably large) 
term such that his customer is satisfied with this term. Let us call such a 
term an end-product. Clearly this is not a feasible approach, so there must 
he a top-level specification which serves as a kind of contract between devel
oper and customer. But even with a top-level specification it is difficult to 
have a manageable development process. Therefore we shall choose another 
representation for the end-product, viz. a representation in which the term 
consistsof sub-terms which can he referred to and such that some redundant 
terms have been added. The latter terms serve as specifications and we shall 
call them black-box descriptions. 

For the customer, the references and the blackbox descriptions are probably 
not interesting; in any case they do no harm, since it is always possible to 
look-up the references and to throw away the black-box descriptions. For 
the developer, the references and the black-box descriptions are extremely 
helpful during the development since they make it easier to manipulate the 
product. 

We adopt the viewpoint that introducing references and adding black-box 
descriptions should be combined, in the sense that whenever a name (a 
rerefence) is given tosome term P, there should also be a black-box descrip
tion associated with P. This viewpoint immediately leads us to a formal 
notion of a component. We formalise components as triples, consisting of a 
name and two terms, where the second term is the black-box description. 

We must add one remark here. Strictly speaking, it is possible to have black
box descriptions without using references. This approach is often used in 
combination with Hoare's logic. The black-box descriptions correspond to 
pairs of pre- and postconditions. The black-box descriptions are textually 
included (as a comment) at the appropriate places in the program text. 
However, the use of references is more generaL 
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We shall say that a component is correct if the two termsof the component 
are in the implementation relation. In order tobenefit from the introduetion 
of components, one should require that all components are correct. This 
requirement can serve as an invariant of the development process. We shall 
formalise what it means that a component is correct - in a given context. 

We shall also have the possibility to have references to constructs which are 
outside the scope of the developer and which are given by a name and a 
black-box description only. We introduce a symbol prim which in these 
cases will serve as a placeholder. 

2.4.2 Formal definitions 

For given lR we could, as a fust attempt, define the set of components as 
{x, I iE lN} x (AR U {prim}) X AfR. However, we must take care to respect 
the typing, so we adopt the following definition: 

Definition 2.4.1 Let lR be an algebrak system with preorder. 

(i) Define CR= {x, I iE IN} x (AR U {prim}) x AR. 

(ii) The set C!R of components is defined by CR = 
{(xf,P,Q) E C~ IQ has type a and if Pi- prim then P has type a}. 

(iii) Fora component c = (x, P, Q) we say that x is the name of c, P is the 
glass-box description of c and Q is the black-box description of c. We 
shall often just write C for CR. D 

Reeall that we have the implementation relation denoted by Ç. 

Definition 2.4.2 A component (x, P, Q) where P "t prim is correct in 
contextrif 

r f- P ç Q. 

A component (x, prim, Q) is always correct in any context. D 

Notation 2.4.3 (Concrete syntax). We shall write 

x p Q 

to denote the component (x, P, Q). D 

The concrete syntax is intended to he used in very small examples. In the 
practical applications we have in rnind, we have at least two possibilities. 
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The first possibility is to have a so-called design-engineering database with 
operations among which an operation that yields the glass-box description 
of a component and an operation that yields the black-box description of a 
component. The second possibility is to include the notion of a component in 
a design language (as done for COLD-K) and we refer to [11] fora concrete 
syntax used to represent components. 

Example 2.4.4 Consider lR1 as before. Now the component 

y .- x+ x c 3 

is correct in the context [x Ç 1] since in the À7r-calculus we have 

[xÇ1jl-x+xÇ3. 0 

Components are somewhat similar to 'lines' in Automath [13], [14]. The 
similarity exists only on the syntactical level because the implementation 
relation of Automath (a typing relation) is completely different from 'Ç'. 

2.5 Designs 

2.5.1 Introduetion 

In the previous section we discussed the notion of a component. Based on 
this notion we shall define the notion of a design2• First of all, it is clear that 
a design should contain a collection of components. In fact we shall define 
a design such that it contains a sequence of components. In a design it is 
possible that a component contains references to other components, but we 
want to exclude the possibility of circular referencing. Because the compo
nents are elements of a sequence, this can be achieved simply by requiring 
that no name is used before it has been introduced. We shall formulate a 
well-formedness predicate on designs. 

Besides this sequence of components, each design contains one additional 
term, which we shall call the system of the design. The system is to be viewed 
as an indication of the actual product to be delivered to the customer. In 
most cases this system will be a very simple term which contains the narnes 
of one or more components of the design. 

We shall define two notions of correctness for designs, which we shall call 
glass-box correctness and black-box correctness. Both notions are interesting 

2 We use 'design' in the sense of 'design object' rather than 'design operation'. 
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from a methodological point of view. The syntax and the correctness of 
designs will be defined in Section 2.5.2. 

It is possible to translate each well-formed design into a lambda term. For 
an arbitrary design d the lambda term resulting from this translation can 
be viewed as the meaning of d. In this translation, there is an abstraction
application pair corresponding to each non-prim component. This transla
tion will be defined in subsection 2.5.3. Also in subsection 2.5.3, we shall see 
that several interesting properties of designs have simple counterparts in the 
À1r-calculus. In subsection 2.5.4 we shall investigate correctness-preserving 
modifications of designs. 

2.5.2 Syntax and Correctness 

Definition 2.5.1 The set D'6l of designs is defined by 

Fora design d = ((cl, ... ,c,.),S) we say that {c1 , ••• ,c,.} is thesetof com
ponentsof d and we denote it by cset(d) and we call S the system of d. We 
shall often just write D for DR. 0 

Notation 2.5.2 We shall employ the following concrete syntax 

X1 .- Pt c:: Ql 
X2 .- p2 c:: Q2 

x,. .- P,. c:: Q,. 
system s 

Again the concrete syntax is intended to be used for very small examples. 
Designs are somewhat similar to Automath 'hooks' [13], [14] where the com
ponents correspond to Automath 'lines'. However, there is no such thing as 
a 'system' in Automath hooks. 

Definition 2.5 .3 Let d he given as d = ( (cl> ... , c;, ... , c,.) , S), then we call 
the design ((c;, . .. ,c,.),S) the j-th sub-design of d and we denote it as d(j)· 

0 
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Definition 2.5.4 A designdis well-formed (abbreviated as wf) if the foi
Iowing conditions hoid: 

(i) All components of d have distinct names. 

(ii) No variabie occurring in dis used before it has been introducedas the 
name of a component. Formally, if d is given as in 2.5.2 (concrete 
syntax), then for 1 ~ j ~ n, FV(P;) U FV(Q;) Ç {x1 , ••• ,x;-1}, taking 
FV(prim) := 0. 

(iii) Let S be the system of d, then each variabie in FV(S) must be the 
name of one of the components of d. D 

We defined aiready what it means that a component is correct in a given 
context. Now we want to define correctness for wf designs. Roughiy speak
ing, we shall define this in such a way that a design is correct iff each of 
its components is correct. In order to make this idea precise we must be 
explicit about the contextsin which the correctness of the componentsis to 
be derived. There are two reasonabie possibilities for defining these contexts. 
Therefore we shall have two notionsof correctness for designs. 

The first notion of correctness corresponds to the possibility that there is no 
information hiding: if the deveioper reasons a~,out a name x1c for which there 
is a component (x~c, P~c, Q~c) in the design, then the deveioper may use the 
fact that x1c stands for P~c . If P~c = prim, then the best assumption he can 
make about x1c is [x1c Ç Q~c]. 

Definition 2.5.5 (gbc) Let the design d be given as 

Xt .- pl 

Xn .- Pn 

system s. 

Assume that dis wf. We say that dis glass-box correct (abbreviated gbc) if 
for each component (x;, P;, Q;) E cset(d) where P; "t prim we have 

f; f- P; Ç Q; 

where f; = IPt, ... , IP;-1 and where for 1 ~ k ~ j - 1 the IPk are defined by 

(i) IPk = [x~c = P~c] (P~e "t prim), 

(ii) IPk = [x~~: Ç Q~c] (P~e = prim). D 
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The second notion of correctness corresponds to the possibility that the glass
box descriptions are hidden: if the developer reasons about a name x~e for 
which there is a component (x~e, P~e, Q~e) in the design, then he may only use 
the fact that the term for which X~e stands, is specified by Q~e, i.e. he may 
use the assumption [x~e Ç Q~e]. 

Definition 2.5.6 (bbc) Let the design d be given as 

Xz .- Pz 

Xn .- Pn 

system s. 

Assume that dis wf. We say that dis black-box correct (abbreviated bbc) if 
for each component (x1, P1, Q1) E cset(d) where P; 1- prim we have 

f; I- P; ç Qi 

where r i = cpz, ... , epi-I and where for 1 ~ k ~ j - 1 the cpk are defined by 

0 

Example 2.5.7 Consider lRz as before. The following design is gbc but not 
bbc. 

x1 := 5 

X2 := Xz 
system x2. 

c 10 
c 7 

0 

We defined two notions of correctness, viz. gbc and bbc. Intuitively it is 
clear that bbc is stronger than gbc, since the facts P; Ç Q; to he derived are 
the same for gbc and bbc, but for bbcthese facts should he derived with less 
knowledge than for gbc. This intuition is made more precise below. 

Theorem 2.5.8 Let d be a wf design. Then we have 

d is bbc ~ d is gbc. 

Proof. We give the details for a design d with two components. After 
that we give a proof-sketch for the general case. Let d be given as in 2.5.6 
(definition bbc). Assume that dis bbc. We distinguish two cases, where each 
case falls apart into two subcases. 
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1. P1 = prim. The first component is trivially correct. For the second 
component we distinguish two cases. 

(i) P 2 = prim. The second component is also trivially correct. 
Therefore d is gbc. 

(ii) P 2 1i prim. For the second component we must show [x1 Ç Q1]1-
P2 Ç Q2, which follows from the fact that d is bbc. Therefore d 
is gbc. 

2. P1 =f:. prim. The bbc-correctness condition for the first component is 
the same as its gbc-correctness condition, viz. 1- P1 Ç Q 1. So the first 
component is correct. For the second component we distinguish two 
cases. 

(i) P 2 = prim. The second component is now trivially correct. 
Therefore dis gbc. 

(ii) P 2 =f:. prim. From the fact that d is bbc we have 1- P1 Ç Q1 

and [x1 Ç Qt] 1- P2 Ç Q2. From 1- P1 Ç Q1 by (subst.) we get 
[x1 = P 1] 1- x1 Ç Q1 and now we can use the cut-rule to get 
[x1 = P 1]1- P2 Ç Q2• This shows that the second component is 
correct in the gbc sense. Therefore d is gbc. 

This concludes the proof fora design d with two components. For the gen
eral case, the following assertion is proved by induction on the number of 
components (n). 

n 

1\ ( P; =f:. prim => r; 1- P; Ç Q; ) 
j = l 

where f i = IPt. ... , IP;-1 and where for 1 ~ k ~ n- 1 the 1P1r. are defined by 

(i) 1P1r. = [x~r. = P~r.] (Pk =f:. prim), 

(ii) IPk = [x~r. Ç Q~r.] (P~r. = prim). 

Again use rule (subst.) and the (generalised) cut-rule. 0 
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2.5.3 Semantics 

It is possible to translate each design d into a lambda term3
• The lambda 

term resulting from this translation can he viewed as the meaning of d and 
we shall denote it as [dD. For each component of d for which the glass-box 
description is not prim, there is an abstraction-application pair in [d]. For 
each component of d for which the glass-box description is prim, there is an 
abstraction in [d]]. A simHar technique ofusing abstraction-application pairs 
and abstractions to describe the role of narnes has been proposed by N.G. 
de Bruijn in the context of Automath. Readers who are not familiar with 
Automath could skip this explanation and praeeed with the next paragraph 
( example 2.5.9). In particular each so-called 'hook', which is a structure as 
for example 

nat .- prim type 
zero .- prim nat 
suc .- prim (nat ---+ nat) 
one .- suc(zero) nat 

can he viewed as a >.-term, viz. >.nat : type.>. zero : nat.>. suc : (nat ---+ 

nat).(>. one : nat.type)(suc(zero)). De Bruijn noted this 'books-as-lambda
terms' analogy where the correctnessof a hook follows from the well-typedness 
of its >.-term. In fact the analogy is somewhat complicated when considering 
8-reductions. Of course, de Bruijn's typing relation ':' is a kind of imple
mentation relation which has completely different properties as our 'Ç'. Yet 
the idea works for designs in the sense that the author noted a 'designs-as
lambda-terms' analogy. 

We explain the translation procedure for designs in a step by step manner 
for a simple case. After that we give a formal definition which deals with the 
general case. 

Example 2.5.9 Consider the design dof example 2.5.7. Totranslate this 
d we begin with its first component (xt, 5, 10) which we translate into the 
following 'term with hole' (>.x1 Ç 10. · · ·)5 where the dots · · · indicate the 
hole. Later the hole gets filled with the translation of the rest of the design. 
Next, we proceed with the second component (x2, xll 7) which we translate 
into (>.x2 Ç 7. · · ·)xl. The latter 'term with hole' is put in the first hole 
and this yields (>.x1 Ç 10.(>.x2 Ç 7. · · ·)x1)5. Now we are left with one hole 
again and the last step is to put the system in that hole. So [dll = (>.x1 Ç 

3 The idea of using lambda terms as asemantic domain is not new and has e.g. been used 
by Landin [12] who mapped ALGOL60 to an enriched lambda calculus; in particular, it is 
interesting to note that let x= Z; X is mapped to (.~x.X)Z. 
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0 

For components with prim, a slightly different treatment is needed, which 
is not shown yet by this example. By way of preparation for the precise 
definition of the translation procedure, we need an auxiliary definition. 

Definition 2.5.10 For a design d = ((c1 , ••. , en), S) with n ~ 1 we define 
first(d) := c1 and rest(d) := ((c2, ... ,en), S). 0 

So first(d) yields the first component of d and rest(d) is d with its fust 
component removed. Note that 'rest' does not preserve wf. We give the 
formal definition, which is defined by recursion. 

Definition 2.5.11 (Meaning function). Define M :D-AR. Write [d] for 
M(d). 

1. [ system S ] = S, 

2. [d] =().x Ç Q.[rest(d) ])P if first(d) = (x,P, Q) and P "t prim, 

= (>.x Ç Q.[rest(d) ]) if first(d) = (x,prim,Q). 0 

The recursive formulation of M was originally defined by the author. A 
slightly different formulation has been employed later by H.B.M. Jonkers. It 
is a continuation semantics where a translation is given first for each compo
nent. 

Definition 2.5.12 (Alternative formulation) First define M C - AR -
AR, where Cis thesetof components. Write [c] for M(c). 

1. [(x, P, Q) ](R) := (>.x Ç Q.R)P if P "t prim, 

2. [(x, prim, Q) ]J(R) :=: (>.x Ç Q.R). 

Define M : D- A!Jl. Write [d] for M(d). 

where o denotes function composition. 0 

We can make several observations which support the idea that [d] can be 
viewed as the meaning of d. First of all, the components (x.b prim, Qk) be
come lambda abstractions where the black-box description of the component 
becomes the restrietion associated with this abstraction (>.xk Ç Qk ... . ). This 
corresponds precisely to the idea that when the design is applied in the real 
world, sarnething satisfying the black-box description has to be filled in fora 
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prim. We see that the components with a prim glass-box description can be 
viewed as the formal parameters of the design in which they occur. Secondly, 
we can observe that reducing ffd ~ corresponds to replacing the narnes by the 
things they stand for (i.e. by the corresponding glass-box descriptions). If 
a component (x;, P;, Q;) is not correct, then we may consider replacing x; 
by P; as illegal. This is precisely refl.ected in ffd ]J, where a candidate-redex 
( .. h; Ç Q; .... )P; cannot be contracted unless P; Ç Q;. 

Example 2.5.13 Assume variables w, x, y, z and let Ql! Q2, Qs, Q4, P2, P4, 
S E AIR. Let the design d be given by 

w .- prim ç Ql 
x .- p2 ç Q2 
y .- prim c Qs 
z ·- p" ç Q." 
system s. 

The meaning of d, denoted as ffdll is given by 

Theorem 2.5.14 dis wf => ffdll is closed. Proof. Obvious from .M. D 

We want to have a look at rednetion strategies for terms [dll and in order 
to formulate these strategies precisely, we introduce a bit of machinery for 
marking candidate-redexes and keeping track of what happens with these 
marked candidate-redexes during reduction. This technique is known as Zift
ing and we adopt the notations and conventions from [5] 11.1.2, 11.2.1 -
adapted to .À1r-calculus. We mark a candidate-redex by giving an index to 
its first lambda. For this purpose we introduce an auxiliary extension of the 
set of terms AIR. The following should be compared with definition 2.3.3. 

Definition 2.5.15 (Terms with indices) 

A~ is a set of terms constructed over the alphabet of A81 extended with 
symbols >.o, .Àt, >.2 , •••• This set A~ is inductively defined by the clauses below, 
where it is understood that furthermore the same rules and restrictions with 
respect to the types as for A81 , apply in the obvious way. 

1. x; E A~ (i E IN), 

2. c; E A~ (i E J), 

3. if Pl>···•Pa; E A~ then /;(Pt,·· .,Pa;) E A~, 

4. if P, Q E A~ then (PQ) E A~, 
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5. if P, Q E Ak and Xi (/. FV(P), then (Àxi Ç P.Q) E Ak, 

6. if P, Q, RE Ak, jE 1N and xi (/. FV(P), then ((A;xi Ç P.Q)R) E Ak. 
In this case we say that the candidate-redex ((À;xi Ç P.Q)R) has index 
J. 

If P E Ak, then IPI E Alll is P withall indices removed. D 

This providesus with an extended set of terms and the obvious next step is 
to say how the indices are treated during reduction. 

Definition 2.5.16 (Reduction with indices) 

(i) Substitution on Ak is defined in the usual way. See [5]11.1.3. 

(ii) In addition to normal1r-reduction --+,we define 7r;-reduction (also de
noted by --+) which means to contract a candidate-redex ha ving in
dex j (one notion of reduction for each index j E 1N). In particular, 
r f-- IRI ç lAl => r f-- (A;x ç A .B)R--+ B[x := R] and we refer to the 
latter --+ step as a 7r;-reduction step. 

(iii) The notion of reduction 7r1 is 1r U U;EIN 7r;. D 

So now we have the features that candidate-redexes can be indexed optionally 
and that we can keep track of these candidate-redexes during reduction. The 
following should be compared with [5]11.1.6 (i). 

Lemma 2.5.17 (Lifting) Let P, Q E Alll such that f f-- P-++ Q where-++ 
is based on 1r-reduction, then for all P' E Ak with IP'I = P there is a Q' 
with IQ'I = Q such that r f-- P' -++ Q', where the latter -++ is based on 
11"

1-reduction. 

Proof. If r f-- P-++ Q is a one-step 1r-reduction, where a candidate-redex is 
contracted, D. say, then it is possible to identify a corresponding candidate
redex D.', say in P'. Take the Q' obtained by contrading this D.' in P'. If 
Q = P then take Q' = P'. If P -++ Q involves more than one step, then use 
transitivity. D 

The following should be compared with [5]11.1.6 (ii). 

Lemma 2.5.18 (Projecting) Let P',Q' E Ak such that r f-- P'-++ Q' where 
- is based on 11"

1-reduction, then r f-- IP'I - IQ'I where the latter - is 
based on 1r-reduction. 

Proof. Leave out all indices from a reduction path from P' to Q'. D 
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When translating designs to À1r-terms, each non-prim component gives rise 
to a candidate-redex and we shall associate indices with these candidate
redexes in a systematic way: index 1 for a candidate-redex derived from 
the first component, index 2 for a candidate-redex derived from the second 
component etc. In order to formulate this precisely we give a re-formulation 
of the meaning function .M introduced before. Therefore we introduce an 
extended meaning function .M' using an auxiliary which takes two arguments 
and which is also denoted by .M'. 

Definition 2.5.19 (Meaning function with indices). First define .M': D x 
1N--+ A~. Write [d~j for .M'(d,j). Intuitively [d]j is the meaning of d where 
j is the next number to he used for indexing. 

1. [ system S ]j = S, 

2. [d]j = (.X;x Ç Q.[rest(d) ~j+l)P if first(d) = (x, P, Q), P ~ prim, 

= (.Xx Ç Q.[rest(d) ]j+1) if first(d) =(x, prim, Q). 

Using this wedefine .M': D--+ A~, writing [d]' for .M'(d), as follows: [d]' :=: 
[d]i. 0 

This has the effect that we can explicitly refer to a candidate-redex derived 
from the j-th component by means of the index j. Note that each j refers 
to at most one candidate-redex occurrence in [d]' and that 11"1-reduction 
preserves this property - which is because of the special structure of the 
terms resulting from the translation of designs by .M'. The following lemma 
relates both formulations of the translation from designs to lambda terms, 
.M and .M'. 

Lemma 2.5.20 Let d be a design, then l[d]l'l = [d]. 

Proof. The following stronger statement is proved by induction on the 
number of componentsof the design: Vj E 1N ( l[d]jl = [d] ). 0 

We illustrate .M' with a small example. 

Example 2.5.21 Assume variables x, y, zand let Q11 Q2 , Q3, P 2 , P3, S E AIR. 
Let the design d be given by 

x .- prim ç Ql 
y .- p2 c Q2 
z .- p3 c Q3 
system s. 
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The meaning withindices of dis given by 

In this example the first lambda can not have an index because this lambda 
does not belong toa candidate-redex. The second component (y, P2 , Q2 ) gives 
rise toa candidate-redex ha ving index 2 and the third component gives rise to 
a candidate-redex having index 3. Note that also aftera reduction step, the 
residuals of a certain candidate-redex can still be identified by their index. 
E.g. suppose that for ffdr as above, ffd~' reduces to Àx Ç Qt-(Àsz Ç Qs[Y := 
P2].S[y := P2])P3 [y := P2], then the original candidate-redex indexed 3 need 
not be present any more, but À3 still marks the beginning of a candidate
redex which is rerniniscent of the the third component. 0 

There is a very remarkable relation between our notions of correctness and 
certain reduction strategies for lambda terms. If d is wf and gbc, then [d] 
is outermost reducible, by which we mean that the candidate-redexes intro
duced by the translation of d by .M, can be contracted in an outside-in (i.e. 
left-to-right) order. If d is wf and bbc, then ffd] is innermost reducible, by 
which we mean that the candidate-redexes introduced by the translation of d 
by .M, can be contracted in a inside-out (i.e. right-to-left) order. The formu
lation of these notions of outermost reducible and innermost reducible will be 
relative to a given design d because we want to restriet our considerations to 
those candidate-redexes which are introduced by the translation of d by .M. 
In order to formulate this precisely we use the technique of lifting introduced 
above. We observe that in a term [d~' the indices occur in increasing order, 
i.e. when this term contains indexed lambdas À;, ÀA: with j < k then the À; 

occurs to the left of the À,~:. This observation justifies the definitions below 
where 'outermost' will bedefinedas 'in increasing order of indices' and where 
'innermost' will be defined as 'in decreasing order of indices'. 

Definition 2.5.22 (omr) For wf design d, we say that ffd)' is outermost 
reducible if there exist terros Rt. . .. , Rm such that there is a reduction path 
(--+ derroting 11"

1-reduction) 

where indexed candidate-redexes are contracted in increasing order of indices 
and such that the last term Rm contains no more indices. We say that [d] 
is outermost reducible with respect to the candidate-redexes introduced by the 
translation of d by .M if [d ]' is outermost reducible. When d is clear from 
the context, we shall just say that [d] is outermost reducible (abbreviated 
omr) and then it is to be understood that we mean that it is outermost 
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reducible with respect to the candidate-redexes which are introduced by the 
translation of d by .M. 0 

Very much in the same way wedefine 'innermost reducible' below. 

Definition 2.5.23 (imr) For wf design d, we say that ~dJ' is innermost re
ducible if there is a reduction path starting with ~dD' where indexed candidate
redexes are contracted in decreasing order of indices and such that the last 
term contains no more indices. We adopt an obvious terminology analogous 
to that of 2.5.22. 0 

Before we prove the relation between the notions of correctness and the 
reduction strategies, we first give an example. The following example shows 
three very simple designs and we verify forthese designs that gbc corresponds 
toomrand that bbc corresponds to imr. 

Exaillple 2.5.24 Consider !R1 as before. 

(i) The following design d is neither gbc nor bbc. 

X1 := 5 
X2 := Xt 

system x2 • 

c 4 
c 7 

[dD' = (-ÀtXt Ç 4.(-À2x2 Ç 7.x2)xt)5 which is not omr because fl 5 Ç 4. It 
is not imr because although [dD'-+ (-ÀtXt Ç 4.x1)5, we cannot contract the 
candidate-redex (-ÀtXt Ç 4.xt)5. 

(ii) The following design d' is gbc but not bbc. 

Xt .- 5 c 10 
x2 .- Xt ç 7 
system X2· 

~d'D' = (-ÀtXt Ç 10.(-À2X2 Ç 7.x2)xt)5 which is omr because [d'D'-+ (-À2x2 Ç 
7.x2)xt[Xt := 5] = (-À2X2 Ç 7.x2)5 -+ x2[x2 := 5] = 5. It is not imr because we 
cannot make the reduction step 1- (-À1x1 Ç 10.(-À2x2 Ç 7.x2)xt)5 -+ (-À1x1 Ç 
10.x2[x2 := Xt])5. To make the latter reduction step requires (cf. 2.3.28 
clauses 4, 6 & 1) that [x1 Ç 10]1- x1 Ç 7 which is not the case. 

(iii) The following design d" is both gbc and bbc. 

Xt := 5 C 5 
X2 := Xt + 1 Ç X1 + 5 
system x1 + x2• 
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[d" ]' = (À1x1 Ç 5.(À2x2 Ç x1 + 5.x1 + x2)(x1 + 1))5 which is omr because 
[d" ]' --t (À2x2 Ç 5 + 5.5 + x2)(5 + 1) --t 5 + (5 + 1). It is imr because 
[d" ]' --t (À1X1 Ç 5.x1 + (x1 + 1))5 --t 5 + (5 + 1). 0 

It is easy to see why omr corresponds with gbc. When performing an out
ermost 1r-reduction, the resulting substitutions will affect the parameter re
strictions occurring deeper inside the term. This shows that the glass-box 
descriptions Pi are relevant in the sense that substitutions [xi := Pi] take 
place, infiuencing preconditions of subsequent steps. Indeed, for gbc the 
Pi are relevant for the correctness conditions of subsequent components. On 
the other hand, when performing an innermost reduction, the early reduction 
steps do not infiuence the preconditions of the subsequent steps. Similarly 
for bbc, the Pi arenotrelevant for the contextsof the correctness conditions. 

By way of preparation for the theorem "dis gbc # [d] is omr" we need a 
definition. 

Definition 2.5.25 Let the wf design d be given as in 2.5.2 (concrete syn
tax). The unfolding of d, denoted as unf(d) is defined as the design 

Xn .- PnSn C:: QnSn 
system S 

where each S; (1 ~ j . ~ n) is a sequence of substitutions S; = u1, ••• , u;_1 

where for (1 ~ k ~ n) the O'Jc are defined as follows: 

u"= (empty) (P~c = prim), 
uk = [x~c := P~oS~o] (P~c ~ prim), 

The intuition behind unf(d) is the design obtained from d by replacing all 
narnes by the things they stand for (if possible) while preserving the structure 
of d. 

Theorem 2.5.26 Let d be a wf design. Now we have 

dis gbc # [d] is omr. 

Proof. We give the details for a design d with two components. After 
that we give a proof-sketch for the general case. Let d be given as in 2.5.6 

\ 

( defini ti on b bc). We distinguish four cases. 
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1. P1 = prim 1\ P2 = prim. In this case [d]' = Àx1 Ç Q 1.Àx2 Ç Q 2.S. 
Now d is trivially gbc and also [d] is trivially omr. 

2. P1 = prim 1\ P2 =/= prim. In this case [d]' = Àx1 Ç Ql-{À2x2 Ç 
Q 2.S)P2• Now d is gbc iff [x1 Ç Q1]1- P2 Ç Q2 which is precisely the 
case iff 1- Àx1 Ç Ql-(À2X2 Ç Q2.S)P2 --t Àx1 Ç Q1.S[x2 := P2] which 
means that [d] is omr. 

3. P1 =/= prim 1\ P2 = prim. In this case [d]' = (ÀtXt Ç Q1.Àx2 Ç 
Q 2.S)P1. Now d is gbc iff 1- P1 Ç Q 1 which is precisely the case iff 
1- (À1Xt Ç Q1.Àx2 Ç Q2.S)P1 ---+ (Àx2 Ç Q2.S)[x1 := Pt] which means 
that [d] is omr. 

4. P1 =/= prim 1\ P2 =/= prim. In this case [d]' = (ÀtX1 Ç Q1.(À2x2 Ç 
Q 2.S)P2)P1. Now d is gbc iff 1- P1 Ç Ql and [x1 = P 1] 1- P2 Ç Q2. 
First note that 1- P1 Ç Q1 is precisely the case iff the candidate redex 
of À1 can be reduced. The result of this first reduction step is (À 2x2 Ç 

Q2[x1 := Pt].S[xt := P1])P2[xt := Pt]· 

Secondly, we shall show that [ x1 = P1]1- P2 Ç Q2 is precisely the case 
iff in the result of the first reduction we can perform the À2 reduction 
step. Therefore we show [x1 = Pt] 1- P2 Ç Q2 <=> 1- P2[x1 := Pt] Ç 
Q2[x1 := Pt]· 

To show(*), assume [x1 = Pt]l- P2 Ç Q2. By (subst.) [x1 = P1]1-
P2[x1 := P 1] Ç Q2[x1 := P1]. Now x1 does not occur any more at the 
right-hand side ofthe '1-' and therefore the assumption [x1 = P1] is non
essential. To see this, apply lemma 2.3.19, performing the substitution 
[x1 := Pt]; this yields [Pt = Pt]l- P2[x1 := Pt] Ç Q2[x1 := P 1] whence 
by (refl.) and the cut-rule 1- P2[x1 := Pt] Ç Q2[x1 := Pt]· 

To show ( <=) assume 1- P2[x1 := Pt] Ç Q2[x1 := P1]. By weakening and 
rule (subst.) we get [ Xt = Pt] 1- P2 Ç Q2 • This concludes ( <=). So d is 
gbc iff [d]] is omr. 

For the general case, first prove 

(i) dis gbc <=> unf(d) is gbc, 

(i i) uni( d) is gbc # [ d] is omr. 

The theorem is a direct consequence of (i) 1\ (ii). 0 

Theorem 2.5.27 Let d be a wf design. Now we have 

d is bbc # [d] is imr. 
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Proof. Again we give the details for a design d with two components and 
aJter that a proof-sketch for the general case. Let d he given as in 2.5.6 
(definition bbc). We distinguish four cases. 

1. P 1 = primA P2 = prim. In this case [d]' = Àx1 Ç Q1.Àx2 Ç Q2.S. 
Now dis trivially bbc and also [d] is trivially imr. 

2. P 1 = primA. P2 :t prim. In this case [d]]' :;:: Àx1 Ç QI-(À2x2 Ç 
Q 2.S)P2 • Now d is bbc iff [x1 Ç QI] f- P2 Ç Q 2 which is precisely the 
case iff f- Àx1 Ç QI-(À2X2 Ç Q2.S)P2 -+ ÀX1 Ç Q1.S[x2 := P2] which 
means that [d] is imr. 

3. P 1 :t primA. P2 = prim. In this case [d]' = (À1x1 Ç Q 1.Àx2 Ç 
Q 2.S)P1. Now d is bbc iff f- P1 Ç Q1 which is precisely the case iff 
f- (À1X1 Ç Q1.Àx2 Ç Q2.S)P1 -+ (Àx2 Ç Q2.S)[x1 := P1] which means 
that [ d] is i mr. 

4. P 1 :t primA. P2 :t prim. In this case [d]J' = (À1x1 Ç QI-(À2x2 Ç 
Q 2.S)P2)P1. Now dis bbc iff f- P1 Ç Q1 and [x1 Ç Q1] f- P2 Ç Q2. 

First note . that [x1 Ç Q1] f- P2 Ç Q2 is precisely the case iff the 
candidate-redex of À2 can be reduced. The result of this first reduction 
step is (À1X1 Ç Q1.S[x2 := P2])P1. 

Secondly we see that f- P1 Ç Q1 is precisely the case iff in the result of 
the first reduction, we can perform the À1 reduction step. So d is bbc 
iff [d] is imr. 

The general case goes in essentially the same way, noting that for performing 
a contraction internally within a term (Àix Ç Q . ... ) or within a term 
(Àx Ç Q . ... ) we may workin a context with [x Ç Q] (cf. 2.3.28 clauses 4, 6 
& 1). Therefore the fact that f i f- Pi Ç Q i is precisely the condition that is 
needed in order to perform the contraction (f i as in 2.5.6, definition bbc). 
0 

2.5.4 Correctness-preserving Modifica ti ons 

One of the ideas bebind the notion of a design is that there is a locality
principle which, roughly speaking, can be stated as follows: "it should he 
possible to implement each component in a design without worrying about 
the implementation of the other componentsin the design". In order to make 
this idea more precise we shall define several kinds of so-called correctness
preserving modifications of designs and we shall investigate their properties. 
There are two (binary) criteria to classify the modifications and therefore we 
shall have four kinds of modifications. The first criterion deals with "what 
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is modified?". We consider two cases: either some glass-box description is 
modified, or some black-box description is modified. The second criterion 
deals with "which notion of correctnessis adopted?". Again we consider two 
cases: glass-box correctness and black-box correctness. The modifications 
are defined to establish the adopted notion of correctness - at least locally 
for the modified component. The scheme is that we have X-preserving Y
modifications for XE {gbc, bbc} and Y E {glass-box, black-box}. We study 
what happens if we take a correct design (in the X sense) and modify a 
Y -description. The interesting question is "is the result correct again in the 
X sense?", or alternatively "has X been preserved?". 

Definition 2.5.28 Let the wf design d be given as 

Xt .- pl 

Xn .- Pn 

system s. 

We say that d' is a gbc-preserving glass-box modification of d, (abbreviated 
as d' is gbc-gb-mod of d, if d' is obtained from d via the replacement: 

(x;, P;, Q;) := (x;, Pj, Q;) 

for some j E { 1, ... , n} such tha t P; 't prim, provided d' is wf and for r; 
as in definition 2.5.5 (definition gbc) 

f; f-- Pj Ç Q;. 

In the same way wedefine what it means that d' is a bbc-preserving glass-box 
modification of d, by taking r; as in 2.5.6. 0 

The intuition behind a gbc-preserving glass-box modification is that a modi
ftcation takes place within one component while preserving the local correct
ness (in the gbc sense) of that component. The question if preserving local 
correctness implies preserving correctnessof the whole design, is investigated 
below. 

Remark 2.5.29 The proposition that for d' is gbc-gb-mod of d we have 

d is gbc => d' is gbc. 

just does not hold in generaL 

The counter-example is as follows. Consider !R1 as before and let the design 
d given as 
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x1 .- 5 
x2 .- x1 
system x2 

c::: 10 
c::: 5 

and consider a reptacement as follows: 

Clearly d is gbc but d' is not, because [x1 = 6]1f x1 Ç 5. 

Theorem 2.5.30 If d' is bbc-gb-mod of d, we have 

dis bbc => d' is bbc. 
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Proof. Assume d is as in 2.5.28 ( definition bbc-gb-mod) and consider the 
reptacement (x;,P;,Q;) := (x;,P},Q;) forsome iE {1, . .. ,n} such that 
P; ~ prim, provided d' is wf and for r; as in definition 2.5.6 ( definition 
bbc) r; f- PJ Ç Q;. For all iE {1, ... , n} where Pi~ prim we must show 

r.r-P.ÇQ• (P:ifi=i) 

where r. = [x1 ç Q1], ... , [x._1 Ç Q._1]. For i =/:- i we are done since d is 
bbc. For i = i we arealso done since for r; as in 2.5.6 (definition bbc) we 
have by the definition of bbc-gb-mod r; f- PJ Ç Q;. o 

The intuition behind the remark and the theorem given above is that gbc 
designs do not offer implementation freedom but bbc designs do. 

Instead of considering correctness-preserving glass-box modifications one can 
also consider correctness-preserving black-box modifications. The intuition 
behind the latter kind of modification is a change of specification for a com
ponent which has already been implemented. It does not come as a surprise 
that when one adopts glass-box correctness, these modifications preserve cor
rectness for the whole design - since the black-box descriptions are in fact 
not used. It is also easy to see that when one adopts black-box correctness, 
these modifications may disturb the correctnessof the whole design. 

Definition 2.5.31 Let the wf design d be given as 

x1 .- pl 

Xn .- Pn 

system s. 
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We say that d' is a gbc-preserving black-boz modification of d, if d' is obtained 
from d via the replacement: 

(x;, P;, Q;) := (x;, P;, Qj) 

for some j E { 1, ... , n} such tha t P; "t prim, provided d' is wf and for r; as 
in 2.5.5 ( definition gbc) 

r; r- P; ç Qj 

In the same way wedefine what it means that d' is a bbc-preserving black-boz 
modification of d, by taking f i as in 2.5.6. D 

Remark 2.5.32 The proposition that for d' is bbc-bb-mod of d we have 

d is bbc ::} d' is bbc. 

just does not hold in genera!. 

The counter-example is as follows. Consider lR1 as before and let the design 
d be given as 

X1 := 1 

Xz := Xt 

system Xz 

c:: 2 
c:: 2 

and consider a reptacement as follows: 

N ow d is bbc but d' is not. 

Theorem 2.5.33 If d' is gbc-bb-mod of d, we have 

d is gbc '* d' is gbc. 

D 

Proof. Assume d is as in 2.5.31 ( definition gbc-bb-mod) and consider the 
replacement (x;,P;,Qi) := (xi,Pi,Qj) forsome jE {1, . .. , n} such that 
Pi =:f- prim, provided d' is wf and for r i as in definition 2.5.5 ( definition 
gbc) f i r Pi Ç Qj. For all iE {1, ... , n} where P; =:f- prim we must show 

r,r-P,çQ, (Q:ifi=i) 

where f; = 'Pt, . . . , cp;- t and where cpk = [xk = Pk] (Pk =:f- prim), 'Pk = [xk Ç 
Qk] (Pk = prim). 
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Now notice that neither Q; nor Qj occurs in r, so we are done for i I- j 
because d is gbc. For i = j we know f; 1- P; Ç Qj by the definition of 
gbc-bb-mod. 0 

The following table summarises the last two theorems and remarks. For the 
modifications which lead to a correct design, the corresponding entry in the 
table contains a '+'. For the modifications which may lead to an incorrect 
design, the corresponding entry in the table contains a'-'. 

preservmg modifying 
glass-box black-box 

description description 
black-box correctness + -
glass-box correctness - + 

In the above table we see two entries where the modification may lead to an 
incorrect design, although locally (i.e. for the replaced component) correct
ness is preserved. One is tempted to think that by restricting the modifica
tions to those modifications where a term is replaced by a term which is less 
than or equal to that term, the resulting designs are still correct. This turns 
out to be the case indeed for bbc-preserving black-box modifications, but it 
does not hold for gbc-preserving glass-box modifications. 

Theorem 2.5.34 Let the wf and bbcdesign d be given as 

x1 .- p1 

Xn .- Pn 

system s 

and let d' be obtained from d via the replacement 

(x;, P;, Q;) := (x;, P;, Qj) 

for some jE {1, ... , n} such that P; ~ prim, provided d' is wf and 

[x1 Ç Qi], ... , [x;-1 Ç Q;-d 1- P; Ç Qj Ç Q;. 

Then d' is bbc. 

Proof. Clearly the first j - 1 components are still correct. The condition 
[x1 Ç Qi], ... , [x;-1 Ç Q;-d 1- P; Ç Qj tells us that the j-th component 
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is correct. Now consider the i-th component for j < i ::; n. Define r = 
[x1 Ç Q1j, ... , [x; Ç Q;], ... , [xi-1 Ç Qi-1] · Define f' = [x1 Ç Q1], ... , [x; Ç 
Qj], ... , [xi-1 Ç Q,_1]. Since dis bbc we have 

r f- P; ç Q,. 

Now [x1 Ç Q1], ... , [x;-1 Ç Q;-1] c f' so r' f- Qj Ç Q;, and since [x; Ç 
Qj] E r' we can use the rule (trans.) and we obtain f' f- x; Ç Q;. By the 
generalised cut-rule we get 

r' f- P, ç Q •. 0 

Remark 2.5.35 The proposition that for the wf and gbc design d given as 

x1 .- pl 

Xn .- Pn 

system s 

and for d' obtained from d via the replacement 

(x;, P; , Q;) := (x;, P}, Q;) 

for some jE {1, ... , n} such that Pi ~ prim, provided d' is wf and for r i as 
m 2.5.5 (definition gbc} 

r i f- P} Ç P; Ç Q i 

we have d' is gbc, just does not hold in generaL 

The counter-example is as follows. Consider !R1 as before and let the design 
d be given as 

x1 . - 5 
x2 .- 5 
system x2 

c 10 
C x1 

and consider areplacement as follows : 

Clearly d is gbc but d' is not, because [x1 = 4]1f 5 Ç x1. 0 
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2.6 Looking back 

Reeall the aim of this chapter, as explained in the introduction, viz. to 
obtain a theory about the component-wise construction and specification of 
complex systems, with a focus on issues of modularisation, parameterisation, 
abstraction and information hiding. Our main tooi when constructing such 
a theory is formalisation. In order to obtain the necessary formalisations, in 
Section 2.2 we abstract from the details of the underlying design language, 
by viewinga design language (without parameterisation) as thesetof terms 
T~~t of an algebraic system with preorder lR. After that a version of lambda 
calculus, called .À7r is introduced, which serves two purposes. First of all it 
adds parameterisation to the algebraic system with preorder !R and secondly 
it allows us to give a meaning to the notion of a design by means of a 'designs
as-lambda-terms' analogy. Thesetof termsin this calculus is denoted as A~~t. 
In .À7r-calculus one can derive facts of the form r 1- P Ç Q with intuition 
'P implements Q in context f'. The most significant differences between 
.À7r-calculus and classica! >.-calculus are that there is a restrietion x ,Ç P 
associated with each abstraction and that a term (>.x Ç P.Q)A can only he 
contracted if the argument A meets its restrietion in the sense that A Ç P. 
This calculus is shown to have reasonable properties such as cut-elimination, 
strong normalisation and confiuence. This .À7r is not the same as typed >.
calculus with subtypes (e.g. [15]). In ..\1r, the ordering relation Ç is on the 
>.-terms whereas in [15] there is a relation ~ on their types. Intuitively, in 
>.x Ç P the x is 'comparable with' P rather than 'in' P. A conneetion with 
>.-typed >.-calculus can he made by viewing a term >.x Ç P.Q as the image 
of >.x: *.>.y: (x Ç P).Q under a forgetful mapping, since in .À7r the proof (y) 
of (x Ç P) remains implicit. This conneetion is not worked out further here. 

The formal definition of the set C of components and the set D of designs is 
straightforward: a component is a triple (x, P, Q) (where x is a new name and 
where Pis either a termor prim) and it is correct in contextrif r 1- P Ç Q. 
We cal P the glass-box description and Q the black-box description. A design 
consists of a list of components and one additional term. Designs can he 
represented as objects of the form: 

xl .- pl c Ql 
x2 .- p2 c Q2 
xs .- Ps ç Qs 
system s 

where P1, P 2, Ps can he prim's or terms and where Q1, Q2, Q3 are terms. 

The definition of correctness for designs is non-trivial because of the contexts 
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in which components must be shown correct. Two possibilities arise, leading 
us to the definitions of glass-box correctness and black-box correctness. A 
translation from designs into lambda terms is defined, thereby obtaining a 
'meaning' for our notion of a design. The meaning of a design d is a term 
~d~ E AlR. For each component of d for which the glass-box description is not 
prim there is an abstraction-application pair in [d]. For each component 
of d for which the glass-box description is prim there is an abstraction in 
~d]. This translation provides us with a better insight in the nature of 
components with a prim glass-box description: these components are the 
formal parameters of the design in which they occur. Furthermore there is 
a very remarkable relation between our notions óf correctness and certain 
rednetion strategies for lambda terms: glass-box correctness corresponds to 
the possibility to perfarm a outermost rednetion and black-box correctness 
corresponds to the possibility toperfarm a innermost reduction. 

There exist various kinds of modifications of designs, with the intuition that 
a modification takes place within one component while preserving the local 
correctness of that component. The q uestion if preserving local correctness 
implies preserving correctness of the whole design, is investigated for various 
kinds of modifications. There are a number of positive and negative results. 
For example, that glass-box correct designs do not offer implementation /ree
dom but black-box correct designs do. These results are summarised by the 
following table: 

preserving modijying 
glass-box black-box 

description description 
black-box correctness + -

glass-box correctness - + 

It is interesting to campare the results achieved in this chapter with the 
approach sketched by Girard et.al. in [16] (p. 17). The principle of black
box correctness is implicitly already present in this citation. 

At a more general level, abstracting away from any peculiar syntactic choice, 
one should see a type as an instruction for plugging things together. Let 
us imagine that we program with modules, i.e. closed units, which we can 
plug together. A module is absolutely closed, we have no right to open it. 
We just have the ability to use it or not, and to choose the manner of use 
(plugging). The type of a module is of course completely determined by 
all the possible pluggings it allows without crashing. In particular, one can 
always substitute a module with another of the same type, in the event of a 
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breakdown, or for the purpose of optimisation. This idea of arbitrary pluggin ga 

seems mathematisable, but to attempt this would lead us too far astray. 

In a certain sense, our research can he viewed a 'mathematisation' ( = formal
isation) of these ideas. A precise understanding of the notions of component, 
black-box description and design is of great methodological importance and 
our formalisation and results should he of help in the systematic development 
of designs in realistic applications. 
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Appendix A 

Model Construction 

There are several reasons why one wants to have a model for the À1r-calculus. 
First of all, if we have a non-trivial model, then we know that the calculus 
is consistent in the sense that not every equality (or every inequality) is 
derivable. Secondly, by constructing a model we can make our intuition 
that a lambda term >.x Ç P.Q denotes a function more precise. In this 
section we shall construct such a model, denoted by !R+, provided lR satisfies 
certain restrictions. The calculus is not complete with respect to this !R+, i.e. 
(!R+ I= cp) => (I- cp) does not hold. We do not consider this as a disadvantage 
of our approach, because the calculus has a certain value in its own right, 
which does not depend on completeness. The calculus is sound with respect 
to !R+, i.e. (I- cp) => (!R+ f= cp) - otherwise we should not call it a model. 
Under certain assumptions, the model !R+ is obtained as an extension of the 
underlying algebraic system with preorder !R. Lambda terms are interpreted 
as normal set-theoretic functions. The model contains elements *.- which 
correspond to the 'undefined' terms, by which we mean the terms which 
cannot he contracted because of the condition in the rule (1r). 

In order to keep things simple, we shall adopt two additional assumptions 
about the underlying model lR and we shall discuss the various possibilities 
arising if these additional assumptions do not hold. The first assumption is 
that in lR the preorder R satisfies the additional property that Vx, y (x Ç 
y 1\ y Ç x => x = y) which means that R is a partial order. The second 
assumption is that there is a maximum element, i.e. 3xVy (y Ç x). Note 
that the example CA of Section 2.2.3 satisfies this property with 'class none 
end' as maximum element. 

If R is nota partial order, then several possibilities arise. The fust possibility 
is that lR has at least a substitution property for the relation =n defined as 
R n R- 1 , i.e. x =n y :<=> x Ç y 1\ y Ç x. The required substitution property 
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is that x =n y =>!;( ... ,x, ... ) =n f;( ... ,y, ... ) for all jE J, which means 
that = R is a congruence. For this first possibility we have the option that 
= is interpreted by =n. With this option, the model construction can still 
be done, but things become a bit more complicated and also the fact that = 
can not be interpreted by real equality is not elegant. 

When Risnota partial order, the second possibility is that ~does noteven 
have the substitution property for =n mentioned above. In that case the 
rules (=I) and (subst.) are essentially non-conservative. The calculus with 
these rules is still usabie and it deals just with implementation ( denoted by 
Ç) and bi-implementation (denoted by =) where the rules (=I) and (subst.) 
have an axiomatic status. Another option is to remove the rule (=I) and to 
adapt the calculus correspondingly- as has been done in [4]. 

If there is no maximum element, then the model construction must be done 
somewhat differently. We shall discuss this below. So from now on we restriet 
ourselves to an algebrak system lR where R is a partial orderand we require 
the existence of the maximum element. 

Notation A.l.l If z is a function z : X -+ A then z[x -+ a] denotes the 
function which everywhere equals z but for the argument x, for which it 
results a; formally z[x-+ a](y) = z(y) for y #x and z(x) = a. 0 

First we define the function domains and we define the ordering of functions. 

Definition A.1.2 (A,., ÇT). Consider lR as before. Wedefine AT and ÇT by 
induction on the structure of the type symbol r. Let *o denote the maximum 
element, which is already present. 

1. Ao :=A, 
a Ç 0 b ;{::} aRb. 

2. Ao-+T := Au --t AT, 
f Ço-+T g :{::}\/x E Au(f(x) ÇT g(x)). 

When there is no maximum element, we add *o as a fresh 'junk object' and 
we define Ao := A U { *o} and a Ço b ;{::} aRb V b = *o· The fact that this 
works depends on the restrietion to closed <p in rule (1=2); to see this consider 
a 'one-object' lR, by which we mean a lR such that lR I= x= y, where adding 
an object makes the formula VxVy((x = y)) false. 

We shall write *o-+T for .h\ a E Ao·*n where .h\ denotes functional abstraction. 
If no confusion arises we omit the subscripts for * and Ç. Note that *o-+T is 
the maximum element of Ao-+T· Note also that ÇT is a partial order again 
for all type symbols r, as is easily shown by induction on the structure of r. 

0 
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The model lR+ is a structure somewhat similar to lR, where the most im
portant difference is that lR+ has a collection of domains rather than just 
one. There is one domain A,. for each type r and consequently there is also 
a collection of relations Ç,., rather than just one. Again we have functions 
F; and constants C,, but these are related to A 0 only. 

Definition A.l.3 (lR+). Consider lR as before and let Typ be the set of 
type symbols. 

(i) The model !R+ is defined as 
({A,.I TE Typ},{Ç,.I TE Typ},{F; Ij E J},{C, I iE J}). 

(ii) An assignment z is a map variables ---+ U{A,. I T E Typ} such that 
z(x'") E A,., i.e. such that z respects the typing. D 

Definition A.l.4 The interpretation of terms in !R+ under an assignment z 
is defined by induction over the structure of terms. We write P(z} to denote 
the interpretation of term P under assignment z. 

1. x,(z} = z(x,), 

2. c,(z} = c,, 
3. /;(Pto···•Pn)(z} = F;(Pt(z}, ... ,Pn(z}), 

4. (PQ)(z} = P(z}(Q(z}) 

5. (.~x" Ç P.Q) (z} = ~ a E A.,.. if a Ç P(z} then Q(z[x" ---+ a]) else *· D 

Note that fora term M the relevant part of an assignment is the restrietion 
of the assignment to the free variables x= FV(M); in particular, if Vy ft 
x(zt(Y) = Z2(Y)) then M(zt} = M(z2}· 

Definition A.l.5 Wedefine !R+ I= cp for AR-formulae cp built from atoms, 
conjunction and impHeation as follows. 

(i) !R+ I= (P = Q)(z} :{:} P(z) = Q(z). 

(ii) !R+ I= (P Ç Q)(z} :{:} P(z} Ç Q(z}. 

(iii) lR+ I= (cp 1\ 1/J)(z} :{:} !R+ I= cp(z} and !R+ I= 1/J(z}. 

(iv) !R+ I= (cp---+ 1/J)(z} :{:} !R+ f= cp(z} :::? lR+ f= 1/J(z}. 

(v) lR+ I= cp :{:} for all z !R+ I= cp(z}. 

Lemma A.l.6 For atomie TR-formulae we have 

D 
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Proof. Immediate from the definitions of lR f= cp and lR+ f= cp. 0 

As a next step we want to show the soundness of lR+ and for this purpose we 
introduce severallemmas about assignments and substututions. 

Lemma A.I.7 R[x := P](z) = R(z[x---+ P(z) ]). 

Proof. By induction over the structure of R. 

• Let R =x. Then R[x := P](z) = P(z) and R(z[x---+ P(z)]) = x(z[x---+ 
P(z)]) = P(z) Otherwise R = y =i- x. Then R[x := P](z) = z(y) and 
R(z[x---+ P(z)]) = y(z[x---+ .. . ]) = z(y). 

• R = ei: trivia!. 

• R = !;(Pt.···,Pn)· Then R[x := P](z) = I;(Pt[x := P], ... ,Pn[x := 
P])(z) = F;(Pt[x := P](z), ... , Pn[x := P](z)) = (using i.h.) 
F;(Pl (z[x---+ P(z)]}, ... , Pn(z[x ---+ P(z)])) = /;(PI. ... Pn)(z[x ---+ P(z)]) 
= R(z[x---+ P(z)]). 

• R =: (P1P2). Then R[x := P](z) = P1[x := P](z)(P2[x := P](z)) which 
we write as f(a). Similarly we write (P1P2)(z[x---+ P(z)]) as g(b). By 
i.h. we have f = g and a= b. Therefore f(a) = g(b). 

• R = >..y Ç Ql.Q2. By the variabie convention x =i- y. Define f := 
R[x := P](z) which equals 
.».a. if a Ç Qt[x := P](z) then Q2 [x := P](z[y---+ a]) else *• and define 
g := R(z[x ---+ P(z)]) = which equals 
.». a. if a Ç Q1 (z[x ---+ P(z)]) then Q2(z[x ---+ P(z) ][y ---+ a]) else *· 
Now consider an arbitrary argument, c say and prove (using i.h.) that 
f(c) = g(c). In particular, the induction hypothesis yields Q2 [x := 
P] (z[y ---+ a]) = Q2 (z[y ---+ a][ x ---+ P(z[y ---+ a])]). We must use that 
- by the variabie convention- P does not contain y whence P(z[y ---+ 
a])= P(z). 0 

Lemma A.1.8 (Substitution) Let z be an assignment. Assume P(z) = 
Q(z). 

(i) R[x := P](z) = R[x := Q](z). 

(ii) If RI[x := P](z) = R2[x := P](z), 
then RI[x := Q](z) = R2[x := Q](z). 

(iii) If Rt[x := P](z) Ç R2 [x := P](z), 
then RI[x := Q](z) Ç R2[x := Q](z). 

Proof. (i) We have R(z[x ---+ P(z)]) = R(z[x ---+ Q(z)]) and hence by 
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lemma A.1.7 we obtain R[x := P](z) = R[x := Q](z). 
(ii) Write R[x := P] as R(P) etc. By {i) we have R1{Q)(z) = R1{P)(z) and 
by assumption R1{P)(z) = R2(P)(z) and by {i) again R2{P)(z) = R2{Q)(z). 
Use transitivity of=. 
{iii) By {i) we have R1(Q)(z) = R1(P)(z), and by assumption R1(P)(z) Ç 
R2(P)(z) and by (i) again R2 (P)(z) = R2 (Q)(z). Use reflexivity and transi
tivity of Ç. 0 

Theorem A.1.9 (Soundness) . 

r 1- cp => m+ f= 1\ r - cp. 

Proof. The proof is by induction on the length of the derivation of r I- cp. 

• (l=t) If r I- cp is r I- /;(A) Ç /;(B) because r I- A ç;; B for /; 
corresponding with a monotonic function. Just use i.h. and the mono
tonicity of the corresponding F;. 

• {1=2 ) If r I- cp is a direct consequence of lR I= cp. This case is obvious . 

• (context). r ,cp I- cp. We must show that m+ F (Ar 1\ cp)(z) implies 
m+ F= cp(z) which is obvious. 

• (refl.). r I- P ç;; P. We must show that m+ I= Ar implies m+ I= P ç P 
which follows from the fact that the relations [:;;;.,. of m+ are partial 
orders. 

• (trans.). As refl. 

• (.U1). r I- (.Xx ç;; P.Qt) ç;; (.Xx ç;; P.Q2). We have m+ I= Ar 1\ x ç;; 
P ---+ Q1 Ç Q2 (i.h.). Take an arbitrary z and assume m+ I= A r(z). 
Define f := (.Xx [:;;; P.Qt)(z) and g := (.Xx [:;;; P.Q2)(z). Fora [:;;; P(z) 
we shall show f(a) ç g(a). Since x tf_ r we have m+ FA r(z[x---+ a]). 
From i.h. Q1(z[x---+ a]) [:;;; Q2(z[x---+ a]), i.e. f(a) [:;;; g(a). This shows 
m+ F= A r(z) => I ç;; g. 

• (.X/2). r I- (.Xx ç;; P2.Q) ç (.Xx ç;; Pt.Q). We have m+ I= Ar---+ P1 ç;; 
P2 (i.h.). Take an arbitrary z and assume m+ I= A r(z). 
Define f := (.Xx Ç P2.Q)(z) and g := (.Xx Ç P1.Q)(z). We show for 
arbitrary a that f(a) ç;; g(a). 
If a [l P1(z) and a [l P2 (z) then f(a) = g(a) = *· 
If a[:;;; P2(z) but a Ik P1 (z) then f(a) [:;;; g(a) = *· 
If a[:;;; P1(z) [:;;; P2(z) then f(a) = g(a). 
This shows m+ I= A r(z) => ! ç;; g som+ I= Ar ---+ (.Xx ç;; P2.Q) c 
(.Xx [:;;; P1.Q). 

• (ap.) . r I- (P1Q) ç (P2Q). Take an arbitrary z. Assume m+ I= A f(z). 
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We have !R+ /= Af ---+ P1 Ç P2 (i.h.). Define a := Q(z), f := P1 (z) 
and g := P2 (z). We have f Ç g (by i.h.). We must show f(a) Ç g(a). 
This follows directly from the definition of Ç. 

• (1r). f f- (>.x Ç P1.Q)P2 = Q[x := P2]. We have !R+ /=Af---+ P2 Ç P1 
(i.h.) . Take an arbitrary z. Assume !R+ /=A f(z). 
(>.x Ç P1.Q)P2(z) =(.\\a. if a Ç P1(z) then Q(z[x---+ a]) else *)(P2(z)) 
= (i.h.) Q(z[x---+ P2 (z)]) = Q[x := P 2](z) where we used lemma A.1.7. 

• (=I)f f- P1 = P2 because f f- P1 Ç P2 and f f- P2 Ç P1. We have 
!R+ /=Af ---+ P1 ç P 2 and !R+ /= Af ---+ P2 ç P1 (i.h.). Use the fact 
that Ç is a partial order. 

• (subst.). f f- R1(Q) = R2 (Q) where we assume that <p is an equality. 
We have !R+ /= Af ---+ R 1 (P) = R2 (P) and !R+ /= Af ---+ P = Q 
(i.h.). Take an arbitrary z and assume !R+ /= A f(z). From (i.h.) 
R1(P)(z) = R2(P)(z) and P(z) = Q(z) so by the substitution lemma 
(ii) we get R1(Q)(z) = R2(Q)(z), i.e. !R+ /= (R1(Q) = R2(Q))(z). If <p 

contains the symbol Ç insteadof =, we proceed in a similar way, using 
the substitution lemma (iii) . 0 
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Appendix B 

List of symbols 

In this appendix we give a list of the symbols used. For each symbol the 
list contains a very short informal description. The list has been subdivided 
into a number of sub-lists. The first sub-list contains general mathematica! 
symbols. The second sub-list contains the symbols which are introduced 
and/ or used first in Sec ti on 2. In a similar way the third sub-list contains 
the symbols which are introduced and/or used first in Section 3, and so on. 
The list does not include symbols which denote in some sense the negation 
of the meaning of an another symbol e.g. f/. negates E and therefore f/. is 
not in the list. For some symbols the list contains a relevant page number -
usually the defining occurrence of the symbol. 

General mathematica! symbols 

=>,<= Logica! implication 
{:} Logica! equivalence 
A., V Conjunction, disjunction 
V Universa! quantification 
1\ Generalised conjunction 

Syntactical equality 
Equality 

{ } Set construction 
{ I } Set comprehension 
E Set memhership 
0 Empty set 
u Set union 
n Set intersection 

\ Set difference 
c Set inclusion 
u Generalised union 
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11 11 
p 

(C)* 
x 
( ' ) 
( ' ... ' ) 
lN 
< 
+ 
o, 1,2, ... 
f:A--.B 

R-t 

i.h. 
». 
0 

Cardinality 
Powerset 
Function space 
The set of sequences with elements from C 
Cartesian product 
Pair 
Tuple ( = sequence) 
The set of natural numbers 
Less than or equal to 
Addition 
Natural numbers 
f is a function from A to B 
Substitution 
Inverse of relation R 
Induction hypothesis 
Functional abstraction 
Function composition 

Symbols concerning constructs 

m1,m2,··· Typical modules 
lR Typical algebrak system with preorder 
A Typical dornain 
R Typical preorder 

Fi Typical function 
J Typical index set of functions 
a; Arity of function Fi 
C; Typical constant 
I Typical index set of constauts 

!i Typical function symbol 
C; Typical constant symbol 
Xo,Xt, X2 Variables 
Tli Set of terros for lR 
Sig Signature of ... 
= Equality symbol 
c Preorder (symbol) 

F= Truth (in a model) 
cp,t/J Typical formulae 
lRl lN as algebraic system with preorder 
s Arbitrary set 
lR2 P(S) as algebraic system with preorder 
CA The Class Algebra of COLD 
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54 
55 
55 
55 
55 
55 
55 
55 
55 
56 
56 
56 
56 
56 
56 
56 
57 
56 
58 
58 
58 
58 
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CDescription 
CSignature 
CRenaming 
c 
E 
T 
D 

• 
+ 

The set of class descriptions 
Thesetof class signatures 
The set of class renamings 
Implementation relation of CA 
Signature operation 
Embedding of class signatures 
Export 
Application of renaming 
Import 

Symbols concerning lambda calculus 

a,r 

Xo, Xb • • • 

x[ 
c 
A,B,P,Q,R,S,Z 
x,y,z 
FV() 
[ := l 
T 
1\ 

A 
[~] 
r 
1-
0=t) 
(f=2) 
(context.) 
(refl.) 
(trans.) 
(>.It) 
( >.12) 
(ap.) 
(7r) 

Classica! Contraction rule 
Lambda calculus based on rule (1r) 
Abstractor (symbol) 
Set of terms for À?r 

Basic type symbol 
Typical type symbols 
Constructor for type symbols 
Variables 
Typical variabie of type r 
Partial order (symbol) 
Typical elements of AIR 
Typical variables 
Set of free variables 
Substitution in a lambda term 
Constant true 
Conjunction 
Implication 
Conjuction (etc.) 
Formula ~ as an assumption 
Typical context 
Derivation symbol 
Rule of À?r (algebraic system oracle) 
Rule of À?r (algebraic system oracle) 
Rule of À?r (context rule) 
Rule of À?r (reflexivity) 
Rule of À?r (transitivity) 
Rule of À?r (lambda introduction) 
Rule of À?r (lambda introduction) 
Rule of À?r (application) 
Rule of À?r (partial contraction rule) 

58 
58 
58 
58 
58 
58 
58 
58 
58 

60 
60 
61 
62 
61 
61 
61 
62 
62 
62 
63 
63 
62 
67 
63 
63 
63 
64 
64 
64 
64 
65 
65 
65 
66 
66 
66 
66 
66 
67 
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(=I) Rule of À1r (= introduction) 68 
(subst.) Rule of À7r (substitution) 68 
m+ Model for À1r 70 
(mon.) Rule for monotonicity 73 
À11"mon Version of À7r with built-in monotonicity 73 
!Rt,on Model for À11"mon 74 
-7 One step 1r Reduction 74 - 1r Reduction 74 
-,.. 1r Equality 75 
SN Strong normalisation property 76 
À{J Calculus with {3 instead of 1r 76 
c,c .. 'Computable' terms 77 
c· .. 'Substitutive-computable' terms 78 
() Diamond property ( confl.uence, Church-Rosser) 80 
A Terms of classical simple-typed À-calculus 79 

Coding: AIR -t A 79 
i-- Reduction with at least one step 80 

Symbols concerning components 

Symbol serving as a placeholder for constructs 84 
The set of triples (x, P, Q) 84 
Thesetof components 84 
Typical element of AR U {prim} 84 

c Typical component 84 

Symbols concerning designs 

DR,D The set of designs 86 
d,d',d",r Typical designs 86 
cset( ) Set of componentsof a design 86 
d(i) The j-th sub-design of d 86 
.- Symbol used in concrete syntax of designs 86 
c Symbol used in concrete syntax of designs 86 
system Symbol used in concrete syntax of designs 86 
wf Well-formed 87 
i,j,k,l,n,m Typical natura! numbers 87 
gbc Glass-box correct 87 
bbc Black-box correct 88 
.M, [ ~ Meaning function for designs 91 
À; Lambda with index 92 
Ak Set of terms with indices 92 
11"j reduction of index j 93 
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'Ir' rednetion with indices 93 

I I mapping forgetting indices 93 
.M' 

' 
[ ]' Meaning function withindices 94 

omr Outermost reducible 95 
1mr Innermost reducible 96 
unf(d) U nfolding of d 97 
ak,Pk Typical substitutions 97 
s Typical sequence of substitutions 97 
gbc-gb-mod gbc-preserving glass-box modification 100 
bbc-gb-mod bbc-preserving glass-box modification 100 
gbc-bb-mod gbc-preserving black-box modification 101 
bbc-bb-rood bbc-preserving black-box modification 102 

Symbols concerning Model Construction 

cp(z) Interpretation onder assignment z 112 
*r Interpretation of undefined terros 110 
Ao Basic domain 111 
Au-+r Function domain 111 
z[x--+ a] Modification of an assignment 112 
Typ Set of type symbols 112 
*r Maximal element 111 



Chapter 3 

Correctness-Preserving 
Transformations of Designs 

3.1 Introduetion 
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In this chapter we want to study correctness preserving transformations of 
designs. We refer to Chapter 2 for the definition of the syntax and the 
semantics of designs. In Chapter 2 we investigated already a number of 
simple transformations such as the black-box correctness preserving glass
box modifications (bbc-gb-mod). These modifications take one design as an 
input and yield one design as a result. Now we shall also consider binary 
operations ( *• o) on designs. This implies that we consider the construction 
of a design by fitting tagether two designs. Conversely, these operations can 
be used for descrihing the process of splitting a given design into smaller 
designs. The interesting point, of course, is that under certain conditions 
the result of applying a binary operation to two bbc designs is a bbcdesign 
again. We must investigate these conditions and the algebraic laws that hold 
for the binary operations (both at the level of designs and of their semantica 
in terms of À1r, via [ ]]) . It turns out that in order to define these opera ti ons 
on designs it is convenient to use sequences within À?r. Therefore weneed an 
extension of the À?r-calculus. Such an extension is given in appendix A. 

In Section 2 we give a new definition of the set of designs. This definition is 
somewhat more general than the definition given in Chapter 2. Furthermore 
we discuss two conditions on designs which enable us torestriet ourselves to 
a convenient kind of designs. 

InSection 3 we shall investigate several operations on designs. We shall have 
binary operations * and o. We briefly investigate a binary operation U which 
however turns out to be somewhat disappointing. We also have two unary 
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operations called bot and top. Furthermore there are two binary predicates 
called gbv and bbv. In this way we obtain an algebra of designs. At the end 
of Section 3 we shall include a summary of this algebra of designs. 

In Section 4 we shall investigate roodels of the development process which 
descri he design creation. Therefore we shall start with a discussion of the val
idation of a given design with respect toa given machine&user-context. We 
shall describe roodels of the development processas highly non-deterministic 
design-programs. These design-programs are of an imperative nature, by 
which we mean that they may contain assignment statements. Weneed a 
simple language which serves as a design-development language in which we 
express these design-programs. Such a language, inspired by COLD, but pre
cisely tailored to our needs is given in appendix B. InSection 3.4 we include 
a brief sketch of the main ingredients of this design-development language -
see subsection 3.4.3. The binary operation o will play a role in our discussion 
ofvalidation. The binary operation * will he used in our description of design 
creation. 

In Section 5 we shall discuss the evolution of a given design with respect to its 
context in conneetion with issues of design validation. We shall present some 
simple roodels of the development process which deal with design evolution. 
The binary operation o will he used in our description of design evolution. 

The fact that we can partition designs and reassemble them again makes it 
possible to discuss roodels of the development process where two (or more) 
developers each operate on a part of a design such that when each of them 
has finished his part, their results are fitted tagether to yield a new design 
which is both bbc and valid. We shall refer to this type of development 
processas parallel development. Both binary operations * and o will he used 
in our description of parallel development. Section 6 is devoted to design 
partition and to parallel development. 

In this chapter we shall focus on those aspects of the software development 
process which are connected with the idea of structuring the software prod
uct as a design. In view of the fact that the notion of a design is a for
malisation of the approach of having 'black-box descriptions', this focusing 
leadsus to an investigation of concepts which deal with the manageability of 
the software development process: top-down development, layered designs, 
validation, design evolution. It will he the 'leitmotiv' of this chapter that 
whenever possible we shall cast the relevant notions in the form of designs 
and algebrak operations on designs. 

The roodels of the development process described in this chapter are most 
certainly not meant to he exclusive: any technique for obtaining valid and 
correct designs is a good technique as such. Rather than being prescriptive, 
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we aim at the formulation of some general principles which may he of help 
for realistic development processes. 

The proofs of the theorems and lemmas in this chapter are given with a level 
of detail which is meant for convincing the reader rather than for enabling 
mechanica! proof-checking. 

The Sections 1, 2, 3, 4, 5 and 6 constitute the main line of development of this 
chapter whereas appendix A and appendix B are rather technica! digressions. 
Definitions from appendix A are used in Sections 2 and 3. Definitions from 
appendix B are used in Sections 4, 5 and 6. It has been tried to make both 
appendix A and appendix B independent of the Sections 1-6. We suggest the 
following order to the reader: 1-2-3-4-5-6 (possibly reading parts of A and 
B on a need-to-know basis), foliowed by appendices A and B. Appendix C 
contains a list of symbols. 

3.2 Designs 

3.2.1 Designs where the system is a sequence 

In this section we give a new definition of thesetof designs. This definition is 
somewhat more general than the definition given in Chapter 2. Furthermore 
we introducesome notation. 

In Chapter 2 the set Dfll of designs has been defined for a given algebraic 
system with preorder lR. This notion of 'design' is not symmetrie in the 
sense that a design can have several prim components whereas its system 
consistsof just one term. This fact seems to he an obstacle when we want to 
define binary operations on designs. We view it as an obstacle because we 
want to define an operation o on designs where we replace the prims of one 
design by elements from the system of another design. Therefore we extend 
our definition of 'design' and we shall use the À1r-calculus with sequences 
as given in appendix A. We consider an algebrak system with preorder lR. 
Thesetof termsof À1r-calculus is denoted as Afll. Among the terms we have 
so-called sequences which are of the form [P11 ••• , Pml and which have a type 
of the form ( r11 ••• , r m); the introduetion of sequences does not disturb the 
nice properties of À?r such as confluence and strong normalisation. The set 
Cfll of components is defined as in Chapter 2, except for the fact that we use 
the À1r-calculus with sequences. 

Definition 3.2.1 Consider the À?r-calculus with sequences and whose set of 
terms is Afll. Consider also C1R which is the set of components constructed 
over this Afll. Each component is either a triple (x, P, Q) or (x, prim, Q) for 
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P, Q E AR. Then the set D~ of designs is defined as the subset of (CR)• x ÀR 

given by 

{(cl, ... ,cA:),S) IS has a type (rt, ... ,rm)} 

for k ~ O,m ~ 0, (k and m not fixed). 0 

So in fact we have very much the same kind of designs as in Chapter 2. The 
only differences are that now we adopted a richer set of lambda terros and 
that now the system of each design must be a sequence. We adopt an obvious 
notation for components and designs with symbols :=, Ç and system. Note 
that we can embed DIR in D~ by mapping ' ... system S' to ' ... system [SJ'. 
We adopt the same definition of wellformedness (wf), glass-box correctness 
(gbc), black-box correctness (bbc) and semantics ([ ]) etc. for designs as in 
Chapter 2. For the remainder of this chapter we restriet ourselves to designs 
from D~. 

Example 3.2.2 Consider !R1 = (IN,~. { + }, {0, 1, 2, ... } ). The following de
sign is an element of D~ because its system is a sequence. 

x 
y 

system 

prim Ç 7 
x+2 Ç 9 
[x,y,x+y+1]. 0 

Remark 3.2.3 It is important to realise that the mechanism of introducing 
components, 'x := P Ç Q' say, is much more complex than an abbreviation 
mechanism as in 'x := P'. The essential difference is that with components 
non-trivial issues of information-hiding arise. Yet we think that it is a good 
idea to employ an abbreviation mechanism as well: it should be possible 
to write 'x := P' and from then on use x, knowing that x can be replaced 
by P. Abbreviations which have a scope consisting of one design are called 
local. It is possible to view a local abbreviation 'x := P' as a special kind of 
component. Abbreviations which have a scope consisting of a collection of 
designs are called global. Wethink that both a facility for local abbreviations 
and a facility for global abbreviations are useful. In this chapter we shall not 
investigate such abbreviation facilities any further. 0 

We shall need some notation. 

Definition 3.2.4 Let d be a wf design. 

(i) cset(d} := thesetof component narnes of d, 

(ii) sys( d} := the set of comp. narnes that occur freely in the system of d. 
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Note that sys(d) Ç cset(d). D 

Definition 3.2.5 (arity). (i) Fora design d, the arity of d, notation arity(d) 
is the pair ((o11 ... , on), (T1, ... , Tm)) where the O"IJ ••• , On are the types of the 
narnes of the prim components of d and where ( T1, ... , Tm) is the type of the 
system of d. 

(ii) For a design d, the reduced arity of d, also denoted as arity( d) is the pair 
(n, m) where nis the number of prim componentsof d and where mis the 
length of the system of d. 0 

Throughout this chapter we shall restriet ourselves to designs where all glass
box descriptions have type 0 and where the system has type (0, ... , 0), i.e. all 
system elements have type 0. This restrietion gives us the advantage that we 
need not worry about the types of terms and the arities of designs. Under 
this restrietion it will be suftkient to employ the reduced arity only. The 
restrietion is by no means essential and the extension of our definitions and 
results towards arbitrary designs is straightforward. In view of this restrietion 
we shall simply use the term 'arity' for 'reduced arity'. 

We must he precise about equality of designs. 

Definition 3.2.6 ( =). Let dh d2 he wf designs. d1 = d2 means that d2 can 
be obtained from d 1 by means of a systematic renaming of bound variables. 
In this definition it is understood that both the variables bound by lamb
das and the narnes of components are considered as bound variables. lt is 
also understood that clashes of free and bound variables must be avoided. 
Sametimes we shall state explicitly that two designs d1 and d2 must have dis
joint sets of component narnes (cset(di) n cset(d2) = 0) in order that some 
operation is defined. 0 

Reeall that in Chapter 2 we defined a mapping [ ]J from designs to lambda 
terms, viewing [d] as thesemantics of d. (Of course it is possible to push 
the process of semantica! interpretation one step further by interpreting [d] 
in some model of À7r, but throughout this chapter we shall not do that.) 
We shall say that two wf designs d1 and d2 are semantically equivalent if 
[d1]J and [d2] are equal in the sense of À7r-calculus, i.e. if f- [d1 ] = [d2] is 
derivable. Sametimes we write d1 =r 1 d2 if f- [d1 D = [d2 ]. Note that d1 = ~ 
implies d1 =rr 1 d2 by rule (refl.). 

Even without referring to properties of the algebraic system with preorder !R, 
each design can be shown to have a lot of semantica} equivalents. Under cer
tain conditions, this fact will give us some freedom in choosing a convenient 
kind of representatives from the classes of semantically equivalent designs. 
We shall have two such conditions, viz. a condition called directly specified 
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(abbreviated ds) to be introduced inSection 3.2.3 and glass-box correctness 
(gbc). 

3.2.2 Permuting Components 

This section contains preparations which we shall need in Section 3.2.3 when 
we shall introduce a condition called 'prims-first' (abbreviated pf). These 
preparations include a lemma which we shall call the 'component swap lemma'. 

From an intuitive point of view, it is clear that the order of the non-prim 
components in a designtoa certain extent is irrelevant. First note that the 
order of the prim components is relevant however, as is illustrated by the 
following example. 

Example 3.2. 7 Consider the algebraic system with preorder !R1 as before. 
Let d and d' respectively be given by 

y .- prim C:: 1 
x .- prim C:: 2 
system [x], 

x .- prim C:: 2 
y .- prim C:: 1 
system [x]. 

Now [d ~ = )..y Ç l.Àx Ç 2.[x] whereas [d'] = ).x Ç 2.J..y Ç l.[x] whence 
9" [d] = [d' ]. 0 

The next example shows a case where two componentscan be swapped. 

Example 3.2.8 Consider the algebraic system with preorder !R1 as before. 
Let d and d' respectively be given by 

y .- 1 ç 2 x .- prim c:: 2 
x .- prim c:: 2 y .- 1 c:: 2 
z .- x+y c:: 4 z .- x+y ç 4 
system [ z ], system [ z ]. 

Now [d] = (J..y Ç 2.J..x Ç 2.(J..z Ç 4.[z])(x+y))1 and f- [d] = J..x Ç 2.[x+l]. 
Also [d'] = Àx Ç 2.(J..y Ç 2.(J..z Ç 4.[z])(x+y))l and f- [d'] =).x Ç 2.[x+1]. 

0 

We formalise the idea behind the latter example below. 

Lemma 3.2.9 (Component swap lemma). Let d and d' be wf designs. Let 
d be gbc. Let d' be obtained from d by swapping two adjacent components, 
where at least one of thesecomponentsis non-prim. Then we have: 
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(i) d' is gbc, 

(ii) d is bbc {:} d' is bbc, 

(iii) f-- [d] = [d' ]. 

Proof. Let d and d' respectively he given by 

X1 .- pl c Ql X1 .-

X; .- P; c Q; Xi+l := 
Xi+l := pi+l c Qi+l X; .-

Xn .- Pn c Qn Xn .-
system [MJ, system 
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pl c Ql 

P;+l c Q;+l 
P; c Q; 

Pn c Qn 
[MJ. 

First of all we note that since dis wf, x;+l does not occur in P;, Q;, P;+l and 
Qi+l · Similarly, since d' is wf, x; does not occur in P;, Q;, Pi+l and Qi+l· 

(i) We know that d is gbc and we must prove that d' is gbc. Throughout 
this part (i) we shall employ several of the derived rules of >.1r as worked 
out in Chapter 2 (weakening, cut-rule etc.). Clearly, for all components but 
for those named x; and Xi+l! the correctness condition is not affected by the 
swapping. The correctness of the component named x; in d' follows from 
its correctness in d by weakening. For the component named Xi+l in d' we 
reason as follows. If P;+l = prim then the correctness condition is trivially 
true, so we assume that P;+l "t prim. Let us consider the case where also 
P; t prim. We use the fact that dis gbc and hence r, [x; = P;] f- P;+l Ç Q;+l 

where r is the context with i - 1 assumptions as given by the definition 
of gbc. Now note that x; occurs neither in r nor in P;, P;+t, Q;+l· By 
performing the substitution [x; := P;]) (both left and right of the ' f-') we get 
r, [P; = P;] f- P;+l Ç Q;+l· Now we can use the reflexivity of= in >.1r and 
the cut-rule to get r f- P;+l Ç Qi+l· We might summarise this by saying that 
the assumption [x; = P;] does not play an essential role in the derivation of 
P;+l Ç Qi+l· We have shown that the component named x;+l is correct in d'. 
In the case where P; = prim we can have a similar reasoning. This shows 
that d' is gbc. 

(ii) We can show ( =>) in a similar way as (i), where instead of an assumption 
[x; = P;] we have an assumption [x; Ç Q;]. For the converse (-{=:) we note 
that if d' is obtained from d by swapping, then also d can he obtained from 
d' by swapping. 

(iii) Since d is gbc, we can contract all abstraction-application pairs of [d] 
which correspond toa non-prim component and we get f-- [d] = (.C[M])S 
where 
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• .C is the sequence of abstractions >.x; Ç Q;. 
for P; = prim with increasing j. 

• S is the sequence of suhstitutions [x; := P;] 
for P; ;t. prim with decreasing j. 

Similarly let I- [d'll = (.C[M])S'. If P; = prim or Pi+l = prim, then x; 
is hound in .C whereas the component named x;+l plays a role in S (or 
conversely). In hoth cases the order of thesecomponentsin the design does 
not matter, hy which we mean that (.C[M])S = (.C[M])S'. The remaining 
case is P; :1- prim and Pi+1 :1- prim. Let S he given as Sl[xi+l := Pi+l][x; := 
P;]S2, then S' must he S1 [x; := P;][xi+l := Pi+1]S2. Now note that S and 
S' are effectively the same suhstitutions hecause x; fJ. F V(P;+l) and xi+1 fJ. 
FV(P;). This shows I- [dll = [d'l D 

By repeated application of the component swap lemma it is also possihle to 
swap components that are not adjacent. Some care is needed in order to 
preserve the applicability conditions of the component swap lemma during 
the intermedia te swap steps. Several cases arise and we show one of them as 
a lemma helow. 

Lemma 3.2.10 Let d and d' he wf designs. Let d he gbc. Let d' be ohtained 
from d hy swapping two non-prim components. Then the same conclusions 
(i), (ii) and (iii) as in lerrima 3.2.9 hold. 

Proof. Let d and d' respectively he given hy 

xl .- pl c Ql Xt .- pl c Ql 

X; .- P; c Q; Xï+k:= P;+.~: c Q;+k 

Xï+.t:= pi+k c Q;+k X; .- P; c Q; 

Xn .- Pn c Qn Xn .- Pn c Qn 

system [MJ, system [MJ. 

which means that in d the two components to he swapped are separated 
by k - 1 components in between. Our strategy is to move component i 
downwards past component i+ k hy k swaps fust. The essential ohservation 
is that since d' is wf, x; does not occur in P;, Q;, Pi+h Qi+h ... , P;+k , Qi+k· 
Therefore the intermediate designs resulting after 1, 2, ... , k steps are all wf. 
So for each swap the conclusions of the component swap lemma carry over to 
the resulting intermediate design. In particular, the intermediatea are ghc. 

As the second part of our strategy, we make component i+ k (hy which 
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we mean x;+k := P;+k Ç Qi+A:) huhhle upwards hy k - 1 swaps. We can 
apply the component swap lemma k -1 times. Note also that the k- 1 'in
hetween' components are allowed to contain prim's hecause the components 
i and i + k are hoth non-prim. Hence in each swap, at least one of the 
components involved is non-prim. 0 

Very much in the same way we have that the conclusions of the compo
nent swap lemma also hold if the components are not adjacent, provided the 
components to he swapped have no prim component between them. 

3.2.3 The conditions 'pf' and 'ds' 

We think that it is convenient to restriet ourselves to designs organised as 
indicated hy the following condition: 

Definition 3.2.11 (pf) Let d he a design. We say that dis prims-first (ab
hreviated pf) if its prim components occur hefore its non-prim components. 

0 

We give an example. 

Example 3.2.12 Suppose that in the d~sign d given helow Pt, ... , Pm are 
not prim. Then d is pf. 

xl .- prim ç M1 

Xn .- prim c: Mn 

Y1 .- pl c: Ql 

Ym .- Pm c: Qm 
system [811 ••• , S!]. 0 

Under a certain condition (called 'directly specified') to he worked out he
low, a design which is wf and gbc can be transformed into a semantically 
equivalent pf design. 

Definition 3.2.13 (ds). We say that a designdis directly specified (abbre
viated ds) if it is wf and no hlack-hox description contains the name of a 
component. 0 

Let us have a look at an example of a design which is not ds. Consider the 
algebraic system with preorder !R1 = (IN,::;, { + }, {0, 1, 2, ... } ). Now consider 
the following design: 
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Example 3.2.14 

x .- prim c 7 
y .- p c x 
z .- prim c y 

system [811 ... ,s,]. D 

In order to see that there is something strange with this design, assume that 
we are interested in choosing P such that we can show the correctness of the 
second component, while adopting black-box correctness. We must prove 
P Ç x under the assumption x Ç 7. Since we canthink of Ç as the ordering 
~ on natural numbers, we are very limited in finding some P ~ x if all we 
know about x is x ~ 7 (of course we could take x itself). Furthermore, as 
another problem, it should he he noted that that if we swap the second and 
the third component, we get a design which is not even wf. The condition 
ds serves to avoid this and similar situations. 

Lemma 3.2.15 Let d be a ds design. Then there is a wf and pf design d' 
such that 

(i) d is gbc {:} d' is gbc, 

(ii) d is bbc {:} d' is bbc, 

(iii) dis gbc =? f- [dD = [d'l · 

Proof. The fact that d is ds enables us to put the prim components be
fore the non-prim components without violating the condition wf. The fact 
that this transformation preserves glass-box correctness, black-box correct
ness and semantica follows by repeated application of the component swap 
lemma 3.2.9. The possibility to apply lemma 3.2.9 repeatedly depends on 
the fact that after each swap we get a wf and ds design again; this is the 
case since the design is ds and one of the components involved in the swap 
is always a prim component moving upwards. D 

We are often interested in designs which are ds and gbc. In fact we shall 
prefer designs which are even bbc but this condition seemsnot needed here 
yet. If all designs are ds and gbc then by lemma 3.2.15 we can transform each 
design into an equivalent pf one. Therefore we shall from now on focus on 
designs which are pf and also ds. It follows that for each algebraic operation 
which we shall define, we shall have to verify that the result of applying the 
operation to pf and ds arguments yields a pf and ds design again. 

We end this section with a lemma which sometimes is useful for simplifying 
designs. 
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Lemma 3.2.16 (Component cancellation lemma). Let d and d' be pf 1\ 

ds designs. Assume that in d there are components (x, := P, Ç Q1) and 
(x; := x1 Ç Q1) where i -:/; i- Let d' be obtained from d by removing the 
component (x; := x1 Ç Q1) and replacing all occurrences of x; by x,. Then 
the following hold: 

(i) d is bbc => d' is bbc, 

(ii) 1- ffdD = ffd' ]. 

Proof. Let d and d' respectively be given by 

xl .- pl c Ql XI .-

x, .- P, c Q, x, ·-

X;-1:= P;-1 c Q;-1 Xj-1:= 
Xj .- x, c Q, Xj+l:= 
Xj+l:= P;+l ç Q;+l 

Xn .-
Xn .- Pn c Qn system 
system s, 

pl c Ql 

p, ç Q, 

P;-1 c Q;-1 
P;+I[x; := x1] Ç Q;+l 

Pn[x; := x,] Ç Qn 
S[x; := x1]. 

(i) Components named xh ••• , Xj-l are correct in d iff they are correct in d'. 
Fora component (xk := Pk Ç Qk) with j < k ~ n the correctness condition 
in dis 

r, [x; ç Q;], [x;+l ç Q;+l], ... '[xk-1 ç Qk-1] f- pk ç Qk ... (*) 
and in d' it is 
r, [x;+l Ç Q;+t], ... , [xk-1 Ç Qk-1J f- Pk[x; :=x,] Ç Qk ... (**) 
where r abbreviates [x1 Ç Q1], •.. , [x;_1 Ç Q;- 1]. Assume (*). By perform
ing the substitution [x; := x,]) (both to the left and right of the 'f- ') we get 
f, [x, Ç Q,], [x;+l Ç Q;+I], ... , [xk-1 Ç Qk-1J f- Pk[x; := x,] Ç Qk. Here we 
used the fact that Xj does not occur in r and hence r[x; := x,] = r. Now 
note that the assumption [x, Ç Q1] is already in r. This shows ( **). 

(ii) Consider the term [d]. This term contains the abstraction-application 
pair (>.x; Ç Q1• ···)x; which corresponds to the component (x; := x1 Ç Q1). 

This abstraction-application pair occurs in the scope of an abstraction >.x, Ç 
Q1• and therefore it can be contracted via 1r-reduction. This 1r-reduction 
yields precisely [d' n. 0 

Remark 3.2.17 (Strengthening of the component cancellation lemma). The 
proposition that in the component cancellation lemma 3.2.16 we have d' is 
bbc => dis bbc, (i.e. the converse of (i)) is false. This can be shown by the 
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following counterexample. Let the pf 1\ ds designs d and d' respectively he 
given as 

x1 .- prim C Q1 
x2 ·- Xt Ç Qt 
Xs .- (>.z Ç x1.Q2)x2 Ç Q2 
system S, 

Xt .- prim Ç Q1 
Xs .- (.Xz Ç Xt.Q2)Xt Ç Q2 
system S. 

Now d' is hhc hecause r (.Xz ç Xt.Q2)Xt = (rule 11", refl.) Q2[z := Xt] = Q2 ç 
( example 2.3.15) Q2 whereas in d we can not prove the hlack-hox correctness 
of the third component. 
If for d and d' as in the component cancellation lemma 3.2.16 we have addi
tionally that there is no glass-hox description Pk (j + 1 ~ k ~ n) in which 
both Xi and x; occur then the converse of (i) holds: d' is hhc => dis hhc. 0 

Sametimes it will he convenient to represent a context (i.e. a set of assump
tions) hy a design and this is formalised in definition 3.2.18 helow. 

Definition 3.2.18 Let the pf 1\ ds design d he given as 

Xt .- prim c Mt 

Xn .- prim c Mn 

Yt .- Pt c Ql 

Ym .- Pm c Qm 
system [Sll ... ,SI]· 

where Pt, ... , Pm are not equal to prim. Then wedefine the black-box context 
of d and the glass-box context of d respectively as follows. 

(i) fhh(d) is [xt Ç Mt], ... , [xn Ç Mn], [Yt Ç Qr], ... , [Ym Ç Qm], 

(ii) f gh(d) is [x1 Ç M1], ... , [xn Ç Mn], [Yt = P1], ... , [Ym = Pm]· 0 

3.3 Algebraic Operations on Designs 

3.3.1 The operation * 
The fust opera ti on on designs is called concatenation and is denoted hy *. 
The concatenation of d1 and d2 yields a design containing the components of 
d1 and the componentsof d2 and having as its system simply the concatena
tion of the systems of d1 and d2 • 
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We have the following intuition. The designs d1 and d2 are considered as 
'disjoint' designs and hy constructing d1 * d2, we simply take a kind of union 
of their component sets. It is important to realise that designs d1 and d2 
have no such thing as "free parameters" and that each design constitutes 
very much a closed unit. Conversely, if we can split a design d into d1 and 
d2 , such that d = d1 * d2 then this means that d consisted in fact already of 
two unrelated parts. 

This hinary operation * will he used in our description of design creation 
(Section 3.4); there * turns out to he useful for descrihing the addition of 
one ore more prim components to a given design. Furthermore, since * can 
he used for descrihing the splitting of a design into two smaller designs, it 
wil! he used in our description of design partition and parallel development 
(Section 3.6). 

Definition 3.3.1 ( *). Assume pf 1\ ds designs d1 and d2 where cset( dt) n 
cset( d2 ) = 0. Let d1 and d2 respectively he given hy 

xl .- prim c M1 ul .- prim c N1 

Xnl .- prim c Mn1 u"2 .- prim c N1>2 
Y1 .- pl c Ql VI .- A1 ç B1 

Y11 .- ph c Qzl v12 .- Az2 c Bz2 
system [81, ... ,SmJ, system [T1, ... , T 1n2J 

where P1, ... , Pz1 are not equal to prim and where A1. ... , Az2 are not equal 
to prim. Then we define d1 * d2 as 

xl .- prim c M1 

Xnl .- prim ç Mn1 
u1 .- prim ç N1 

u"2 .- prim c Nn2 
Y1 .- pl ç Ql 

Y11 .- Pzl c Qzl 
vl .- A1 c B1 

v12 ·- A12 C Bz2 
system [Sb ... , Smp T1, ... , T1n2l· 

Note that d1 * d2 is a pf 1\ ds design again. Note also that if arity( dt) = 
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(n1, mt} and arity(d2) = (n2, m2), then arity(d1 * d2) = (n1 + n2, m1 + m2)· 
Finally note that cset(d1 * d2) = cset(di) U cset(d2). 0 

In Section 3.1 we already announced an algebra of designs. We shall now 
show two simple algebraic laws which state that the set of pf 1\ ds designs 
together with the operation * constitutes a monoid. Strictly speaking, it is a 
partial monoid, but when we take into account that we always can perform 
a systematic renaming, we can also view it as a non-partial monoid. 

Lemma 3.3.2 (Algebraic properties of *). Let d, db d2 and d3 he pf 1\ ds 
designs and let e = system []. Then d * e and e * d are defined and we have 

(i) d * e = e * d = d, 

(ii) (dl* d2) * ds = d1 * (d2 * ds) 

provided in (ii) everything is defined, i.e. cset(d,) n cset(d;) = 0 for i =j:. j. 

Proof. Directly from definition 3.3.1. 0 

Of course we are also interested in the behaviour of* with respect to glass
box correctness (gbc) and black-box correctness (bbc). Since the intuition 
behind * is that of taking the union of the component sets of two 'disjoint' 
designs the following should not come as a surprise. 

Lemma 3.3.3 (Correctness-preserving properties of*). Let d1 and d2 he pf 
1\ ds designs with disjoint sets of component names. 

(i) d1 and d2 are gbc {::} d1 * d2 is gbc, 

(ii) d1 and d2 are bbc {::} d1 * d2 is bbc. 

Proof. (i) Let d1 and d2 he as in definition 3.3.1. Throughout this part (i) 
we shall employ several of the derived rules of À7r as worked out in Chapter 
2 again (weakening, cut-rule etc.). We show(=>) first. Assume that both d1 
and d2 are gbc. We must show that d1 *d2 is gbc. If in showing the correctness 
of some component in d1 we have the condition r 1- P; ç Q;, where r is the 
context as given by the definition of gbc, then the same component appears 
also in d1 * ~ with correctness condition f' 1- P; Ç Q; forsome f' 2 r. By 
weakening it can he shown that r 1- P; Ç Q; implies f' 1- P; Ç Q;. Therefore 
this component is also correct as a component in d1 * d2. In a similar way 
can see that each component from d2 is also correct in d1 * d2. 

Next we shall show(-<=). Assume d1 * d2 is gbc. First we must show that 
d1 is gbc. Consider a non-prim component in d1 * d2 which comes from 
d1. Suppose that we have the correctness condition f' 1- P; Ç Q; for this 
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component in d1 * d2 • We must prover 1- P; Ç Q; for the samecomponent 
in dl> and we have r' = r u ~ for some set of assumptions ~-
~ contains assumptions of the form [u, Ç N 1] for 1 ~ i ~ n 2 where each u1 

occurs at most once in the left hand side of an assumption. Since ~ sterns 
from d2, we have u, tf. cset(di) and hence the u, do not occur freely in r or in 
P;, Q;. Therefore the assumptions in ~ do not play an essential role in the 
derivation of P; Ç Q; (show this hy again using the technique of suhstituting 
hoth left and right of the '1-') . Hence r 1- P; Ç Q;. This shows that d1 is 
ghc. The fact that d2 is ghc can he shown in a simHar way where we deal 
with non-essential assumptions [x, Ç M,] for 1 ~ i ~ n1 and [y, = P,] for 
1 ~i~ ll . 

(ii) Similarly as (i). 0 

Note that neither d1 * dz = d2 * d1 (ohvious) nor 1- [d1 * d2 D = [dz * d1 D -
essentially for the same reasans that forhid us to swap prim components. 

The following lemma states that the operation * on designscan he interpreted 
(via [ n as the operation * of the À1r-calculus with sequences (see appendix 
A). 

Lemma 3.3.4 (Semantics of*). Let d1 and d2 he pf I\ ds and ghc designs 
with disjoint sets of component names, then we have 

Proof. Let d1, d2 he given as in definition 3.3.1. Since d1 * d2 is ghc, we 
can contract all ahstraction-application pairs of [dl * dz n which correspond 
to non-prim components and we get 1- [d1 * d2 n = .C1.C2 ([Sf]S2S1) where 

• .C1 is the sequence of ahstractions >.x; Ç M;. for 1 ~ j ~ n1 
with increasing j, 

• .C 2 is the sequence of ahstractions >.u; Ç N;. for 1 ~ j ~ n2 

with increasing j, 

• Sz is the sequence of suhstitutions [v; := A;] for 1 ~ j ~ l2 
with decreasing j, 

• S1 is the sequence of suhstitutions [Y; := P;] for 1 ~ j ~ l1 

with decreasing j. 

Now we have the following calculation in À1r-calculus: 

1- [d1 * dz n = .C1.Cz([ST]SzSt) 

= .Cl.C2[BS1fSz] 
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~ .C1.C2([S St] * [i S2]) 

~ .Ct([S]St) * (.C2([f]S2)) 

= [dd * [~ ]. 

3.3.2 The operation o 

0 

The second (partial) operation is called composition and is denoted by o. 
It is related to functional composition, usually also denoted by o. Roughly 
speaking d1 o d2 is the design which is obtained by appending d1 to d2 while 
replacing the prims of d1 by the elementsof the system of~- Furthermore 
there is a notion of validation, by which we mean that we shall define when 
the composition of d1 with d2 is valid. In Section 3.4.3 we shall argue that 
this use of the terros 'valid' and 'validation' is consistent with the usual 
terminology (as used in e.g. [1]). 

This hinary operation o will play a key role in the discussion of valida
tion (Section 3.4.3) and in the description of design evolution (Section 3.5). 
Furthermore o will he used in the description of parallel development (Sec
tion 3.6). 

Definition 3.3.5 ( o ). 
Assume pf 1\ ds designs d1 and d2 where cset(d1) n cset(d2) = 0. Let d1 and 
d2 respectively he given by 

X1 .- prim c M1 Zt .- At ç B1 

Xn .- prim c Mn Zl .- A1 c B1 
Yt .- pl c Ql system [St, ... ,Sn]· 

Ym .- Pm c Qm 
system L, 

We assume that P 1, ••• , Pm are not prim, whereas some of the A; may he 
prim ( 1 ::; i ::; l). We define d1 o d2 as the design given by 

Zt .- At c Bt 

Zl .- A1 c B1 
Xt ·- St c Mt 
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Xn .- Sn c Mn 
Y1 .- pl c Ql 

Ym .- Pm ç Qm 
system L. 

N ote that d1 o d2 is a pf 1\ ds design again. N ote also that if arity( dl) = ( n, k) 
and arity(d2) = (h, n), then arity(d1 o d2) = (h, k). D 

The design d1 o d2 can be viewed as a 'layered' design with layers d1 and d2. 

Remark 3.3.6 We get a highly intuitive view of the construction of d1 o ~ 
if we ornit the keyword system in d2 and the keywords prim in d1 and write 
the system of d2 as a column vector. We show this below. Write d2 as 

Z1 .- A1 

Zl .- A1 

[;J 
and write d1 as 

xl .-

Xn .-
Y1 .- pl 

Ym .- Pm 
system L. 

Now one can view the construction of d1 o ~ as a matter of plugging the 
system of d2 into the hole corresponding to the prims of d1. D 

We have one simple algebraic law for o. 

Lemma 3.3. 7 ( Algebraic properties of o). Let d1, d2 and d3 be pf 1\ ds 
designs. 

provided everything is defined. 
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Proof. Directly from definition 3.3.5. 0 

Remark 3.3.8 (i) There is no neutral element e0 such that for all designs d 
we have doeo = eood = d. Note that e = system [] certainly does not do the 
job, since in general the arity of e need not match the arity of an arbitrary 
d. 

(ii) If we would adopt a 'top' element T in À?r-calculus, then for any n, the 
design en given by 

x1 .- prim C T 

Xn .- prim Ç T 
system [x1 , ••• , Xn] 

would have the property that for every design d with arity (m, n) the following 
holds: 
r [en o d] = [dl Therefore it would be possible to view such an en as a 
left neutral element. There is no such right neutral element. This is because 
when r [doe ll = [dj], then [doen must have the sameparameter restrictions 
for its un-applied lambdasas [dl But the parameter restrictions [doe] come 
from the black-box descriptions of its prim-components, which can not he 
chosen to fit all d. 

(iii) We could have defined d1 o d2 differently, e.g. by having no restrictions 
on the arities of d1 and d2 • In that case the elementsof the system of d2 for 
which there is no prim in d1 could appear again in the system ofthe resulting 
d1 o d2 • In a similar way we could deal with the possibility that there are 
prims for which there is no system element. If we would have defined d1 o d2 

in such a way, we would have e = system IJ as a neutral element. 0 

The following example shows one of the applications for the operation o. 

Example 3.3.9 Let us assume that we have a library consisting of two im
plemented components and that we have a design d which must use thls 
library. Let the library be given as a design dub· Let dub and d respectively 
he given as 

X1 .- pl c Ql x' 1 .- prim c Ql 
X2 .- p2 c Q2 x' 2 .- prim c Q2 
system [xt.x2], Xg .- Ps(x~, x~) Ç Qs 

x • . - P4(x~,x~,x3) Ç Q4 
system S(x~, x~, x 3 , x4). 

The instantiation of d with dub can bedescribed by the composition do dub· 
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We can simplify do dubtoa design d'. The designs do dub and d' respectively 
are given as 

X1 .- pl c Ql Xl .- pl c Ql 
x2 .- p2 c Q2 x2 .- p2 c Q2 
x' 1 .- Xt c Ql Xs .- Ps(xt. x2) Ç Qs 
x' 2 . - x2 c Q2 x .. .- P4(x1, x2, xs) Ç Q4 
Xs .- Ps(x~,x~) Ç Q3 system S(x1, x2, xs, x .. ). 
X4 .- P4(x~,x~,xs) Ç Q4 
system S(x~, x~, Xs, x4), 

The fact that I- [do dub~ = [d' ]] follows from the component cancellation 
lemma 3.2.16. 0 

In the above example we see that the facts that the library is modeled as a 
design and that the components using it are modeled as a design introduce 
some overhead. In the example this overhead consists of the components 
(x~ := x1 Ç Qt) and (x~ := x2 Ç Q2). However the additional compo
nents can easily be removed, as shown by the example. The feasibility of 
this approach in practice may depend on the existence of an abbreviation 
facility which should provide for 'global' abbreviations (as mentioned in re
mark 3.2.3). If there is no such abbreviation facility, then the overhead due 
to the duplication of black-box descriptions (the Q 1 and Q2 in the example) 
may become too large. 

We have one more algebraic law, in which both * and o occur. By way of 
introduetion to this law we first give an example. 

Example 3.3.10 Let the pf A ds designs d1 and d2 respectively be given by 

x 1 := prim C A 1 

x2 := A2 C A 3 

system [A4], 

Y1 .- prim C B1 

Y2 .- B2 C Bs 
system [B4] 

and let the pf A ds designs d3 and d4 respectively be given by 

Z1 . - prim Ç C1 
z2 .- C2 C C3 

system [C4], 

u1 := prim C D 1 

u 2 := D 2 C D 3 

system [D4], 

then the designs (d1 * d2) o (d3 * d4 ) and (d1 o d3) * (d2 o d4 ) respectively are 
given by 

Zt . - prim L Cl 
u1 .- prim C D 1 

Z1 . - prim L C1 
Ut .- prim Ç D1 
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Z2 .- c2 c: Cs Z2 .- c2 c: Cs 
1.1.2 .- D2 c: Ds Xt .- c,. c: At 
Xt .- c,. c: At x2 .- A2 c: As 
Y1 .- D,. c: B1 1.1.2 .- D2 ç; Ds 
X2 .- A2 c: As Y1 .- D,. c: B1 
Y2 .- B2 c: Bs Y2 .- B2 c: Bs , 
system [A4,B4], system [A4,B4]. 

The latter two designs are semantically equivalent by the component swap 
lemma 3.2.9 provided they are gbc. 0 

Lemma 3.3.11 (Interchange law for * and o). Consider pf 1\ ds designs dt. 
d2 , ds and d4 • Assume that ( d1 * d2) o ( d3 * d4 ) is gbc, then 

provided ( d1 o d3) * ( d2 o d4) is defined. 

Proof. First note that the left-hand side of the equation must he defined -as 
is easily seen by analysing the ari ties of d1 * d2 and d3 * d4 : The design ( d1 * d2) o 
( d3 * d4 ) has precisely the same components as the design ( d1 o d3) * ( d2 o d4). 

Furthermore these designs have the same sequence of prim components: fust 
the prim componentsof d3 , foliowed by the prim componènts of d4• These 
designs also have the same system: the concatenation of the systems of d1 

and d2 • Finally the fact that these designs are semantically equivalent follows 
by repeated application of the component swap lemma 3.2.9. 0 

Remark 3.3.12 The term 'interchange law' is taken from [2] (page 44). 
In order to have an intuitive understanding of the interchange law we shall 
consider a very simple algebraic system in which this law also holds. Consider 
an algebrak system with walls as objects and with two operations: putting 
one wal! next toanother and putting one wal! on top of another. Of course 
we are given a number of brie/es. We can put one wall beside another wall: 

We can put one wall on top of another wall: 

Now we have 
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But we also have 

( [I]o@J) * ( [[Jo[QJ) =[IJ*[[]= [IT[J, @] [[] @IQ] 
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0 

Very much in the same way as we have two notionsof correctness for designs, 
we shall have two different definitions of 'valid', viz. glass-box valid and 
black-box valid (written as gbv(d11 d2) and bbv(d11 d2) respectively). 

Definition 3.3.13 Assume pf 1\ ds designs d1 and d2 such that d1 o d2 is 
defined and let d1 and d2 be given as in definition 3.3.5. 
(i) the pair (d11 d2 ) is glass-box valid (notation gbv(d1 , d2)) if 

V i ( 1 ~ i ~ n) · r 1- S, Ç M, 

where r := [z1 Ç B1], ... , [zh Ç Bh], [zh+l = Ah+tl, ... , [zz = Az], assuming 
that h is the number of prim componentsof d2. 
(ii) the pair (d1 ,d2 ) is black-box valid (notation bbv(d11 d2)) if 

V i ( 1 ~ i ~ n) · l::l. 1- S, Ç M, 

where l::l. := [z1 Ç Bt], ... , [zz Ç Bz]. 0 

Before actually employing these notions gbv and bbv for formulating the 
correctness-preserving properties of o, we have a look at a few simple prop
erties. 

For the left neutral element en we have for all d that both gbv( en, d) and 
bbv( en, d), provided the arities match. But gbv( d, en), bbv( d, en) need not 
hold in generaL The proposition that for all d11 d2 we have bbv(d11 ~) => 
(d1 , d2 are bbc) just does not hold in generaL The counter-example is very 
simple. Use !R1 as before and take the d2 with one component x := 2 Ç 1 
and with system [ ]. This is because bbv is about the "plug-ability" of~ 
with respect to d1 rather than about the internals of d1 and d2 • Similarly 
glass-box validation does not imply glass-box correctness - as is easily seen 
by consiclering the same counter-example. 

As a non-trivial property we have bbv(d1 , d2 ) => gbv(d1 , d2), provided d2 is 
glass-box correct. This can be shown by similar techniques as employed to 
prove 'bbc( d) => gbc( d)' in Chapter 2. 

Next we investigate the behaviour of o with respect to gbc and bbc. Intu
itively it is clear that the validation conditions gbv and bbv will play a role 
here. 
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Lemma 3.3.14 (Correctness-preserving properties of o). Let d1 and d2 he 
pf A ds designs. 

(i) (d11 d2 are ghc A ghv(d11 d2)) => d1 o d2 is ghc, 

(ii) (d11 d2 are hhc A hhv(d1,d2)) <=> d1 o d2 is hhc. 

Proof. Let d1 and d2 he given as in definition 3.3.5. Let r and tl. he given 
hy definition 3.3.13. 
(i) Assume that d 1 and d2 are ghc and that ghv(d~, d2) holds. We must show 
that d1 o d2 is ghc. We investigate three kinds of componentsin d1 o ~-

• A component from d2 has the same correctness condition in d 1 o d2 as 
in d2. 

• For a component (xi := Si Ç Mi) where 1 :::::; i :::::; n the correctness 
condition is r, [x1 = St], ... , [xi-l = Si-I] f- Si Ç M •. This correctness 
condition follows hy weakening from the assumption that ghv(d1, d2) 
holds. 

• For a component (Y; := P; Ç Q;) where 1 :::::; j :::::; m the correctness 
condition is f, [x1 = 81], ... , [xn = Sn], [Yt = P1], ... , [Y;-1 = P;-t] r 
P; Ç Q; (*). 
Wehavef f- [St Ç MI], ... , [Sn Ç Mn] and hence f, [x1 = 81], ... , [xn = 
Sn] f- [x1 Ç M1], ... , [xn Ç Mn] which at its turn together with the as
sumption that d 1 is ghc shows the condition ( *). 

(ii) We show ( =>) fust. Assume that d1 and d2 are hhc and that hhv( dh d2 ) 

holds. We must show that d1 o d2 is hhc. We investigate three kinds of 
components in d1 o d2. 

• A component from d2 has the same correctness condition in d1 o d2 as 
in~-

• Fora component (xi := s. Ç Mi) where 1 :::::; i:::::; n the correctness con
dition is tl., [x1 Ç MI], ... , [xi-l Ç Mi-l] f- Si Ç M1• This correctness 
condition follows hy weakening from the assumption that hhv( d11 d2) 
hol ds. 

• For a component (Y; := P; Ç Q;) where 1 :::::; j :::::; m the correctness 
condition is tl., [x1 Ç M1], ... , [xn Ç Mn], [Yl Ç Q1], ... , [Yi-1 Ç Q;-1] f-
P; Ç Q;, which follows hy weakening from the assumption that d1 is 
hhc. 

N ext we shall show ( <=). Assume that d1 o d2 is hhc. First we must show 
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that d1 is bbc. For a non-prim component in dt. (Y; := P; Ç Q;) say, 
the correctness condition is [x1 Ç M1], ... , [xn Ç Mn], [Yl Ç Ql], ... , [Y;-1 Ç 
Q;-1]1-- P; Ç Q;. Now we note that the assumptions in À. do not play an 
essential role in the derivation of P; Ç Q;. This shows that d1 is gbc. 
For a component in d2 the correctness condition is the same as in d1 o d2 • 

This shows that d2 is b bc. Finally we must show that bbv( dt. d2) holds, 
i.e. for arbitrary i such that 1 ~ i ~ n we must show À. 1-- Si Ç Mi. Now 
we note that the assumptions [x1 Ç M1], ... , [xi-l Ç Mi-l] do not play an 
essential role in the derivation of the correctness condition for the component 
(xi := Si Ç Mi) in d1 o dz. D 

Remark 3.3.15 The proposition that we have 

does not hold in generaL 

The counter-example is as follows. Consider !R1 as before. Let d1 and d2 

respectively be given by 

y 
z 
system 

prim C 
y c 
[y,z], 

3 
2 

x .- 1 
system [x]. 

2 

We see that d1 is not gbc. The design d1 o dz is gbc. We give d1 o dz below: 

x .- 1 ç 2 
y .- x c 3 
z .- y c 2 
system [y,z]. D 

We have a law for bbv which is somewhat similar to the interchange law of 
lemma 3.3.11. 

Lemma 3.3.16 (Interchange law for bbv). Consider pf 1\ ds designs dt. d2, 

d3 and d4 such that the compositions d1 o d3 and d2 o d4 are defined. 

Proof. The condition bbv(d1, ds) requires that one can prove that the system 
elements of ds satisfy the restrictions of the prim components of d1 in a con
text given by d3 • The same facts must also be proved for bbv(d1 * d2, d3 * d4), 

but now in the combined context of d3 and d4• We note that the assumptions 
from d4 do not play an essential role. 
The condition bbv(d2 , d4) requires that one can prove that the system ele-
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mentsof d4 satisfy the restrictions of the prim componentsof d2 in a context 
given by d4 • The same facts must also be proved for bbv( d1 * d2, d3 * d4 ), but 
now in the combined context of d3 and d4 • We note that the assumptions 
from d3 do not play an essential role. 0 

The operation o on designs is interpreted (via [ ]) as the operation o of the 
.À?r-calculus with sequences (see appendix A). 

Lemma 3.3.17 (Semantics of o). Let d1 and d 2 be pf 1\ ds designs and let 
d2 be gbc. 

Proof. As 3.3.4 (Semantics of *). 0 

3.3.3 The operations bot and top 

We would like to isolate the parts of d1 which for given d2 play a role in 
bbv(d1,d2) and the partsof d2 which for given d1 play a role in bbv(d1,d2). 

We cast these parts in the form of designs. 

Definition 3.3.18 (bot, top). Consider a pf 1\ ds design d which is given as 

xl .- prim c M1 

Xn .- prim ç Mn 

Y1 .- pl c Ql 

Ym .- Pm Ç Qm 
system [St. ... , St] 

where Pt. ... , P m are not equal to prim. We de fine bot( d) and top( d) re
spectively as the designs 

xl .- prim ç M1 xl .- prim c M1 

Xn .- prim c Mn Xn .- prim c Mn 

system [], Y1 .- prim c Ql 

Ym .- prim c Qm 
system [St.····s,] 
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where it is understood that in top( d) only those components are retained 
whose name (x; for some i with 1 ~ i ~ n or Y; forsome j with 1 ~ j ~ m) 
occurs in the system [St. ... , S!]. Note that bot(d) and top(d) are pf 1\ ds 
designs again. Note also that if arity(d) = (n,l) then arity(bot(d)) = (n,O) 
and arity( top( d)) = ( n', l) where n' ~ n + m. We call bot( d) the bottorn of d 
and we call top( d) the top of d. 0 

Remark 3.3.19 bot(d) and top(d) are not related to the idea of having 
terms l. and T which are minimal and maximal with respect to Ç in À?r

calculus. A motivation of the terms bottorn and top wilt he given in re
mark 3.3.22 below. 0 

We have a number algebrak properties. 

Lemma 3.3.20 (Algebraic properties of bot, top). Consider a pf 1\ ds design 
d and let e = system []. 

{i) bot(bot(d)) = bot(d), 

(ii) top{ top( d)) = top( d), 

(iii) top(bot( d)) = e. 

Proof. Directly from the definition 3.3.18. 0 

The following lemma gives some algebraic properties which relate the unary 
operations bot and top with the binary operations * and o. 

Lemma 3.3.21 Assume pf 1\ ds designs d1 and d2 and let d1 o d2 he defined. 

(i) bot(d1 * d2) = bot(dl) *bot(~), 

{ii) top(d1 * d2) = top{dt) * top{d2), 

{iii) bot(d1 o d2 ) = bot(d2), 

(iv) top(d1 o d2 ) =top( dl)· 

Proof. (i) and (ii) follow directly from the definitions 3.3.18 and 3.3.1. 
whereas (iii) and (iv) follow directly from the definitions 3.3.18 and 3.3.5. 0 

A pf 1\ ds design d for which bot{d) = d is called a bottorn design and a 
design d for which top(d) =dis called a top design. 

Remark 3.3.22 We have chosen the terms bottorn and top because in 
o~r view these notions are related to the so-called top-down and bottorn-up 
roodels of the software development process. For example in a top-down 
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developrnent process one starts with a given top design and then adds corn
ponents and irnplernents cornponents, until the remaining prim cornponents 
correspond to the primitives which actually are available. In a bottorn-up 
developrnent process one starts with a given bottorn design and then adds 
cornponents and adds systern elernents until the resulting design rneets the ac
tual requirernents of the user of the design. We shall investigate the top-down 
and bottorn-up rnodels of the software developrnent processin Sections 3.4.4 
and 3.4.5 respectively. D 

The following lemma confirms our intuition that bot(d) is precisely the part 
of d which is relevant for bbv( d, dt) and that top( d) is precisely the part of 
d which is relevant for bbv(~,d). 

Lemma 3.3.23 Consider pf 1\ ds designs d, d1 and d2. 

(i) bbv(d,dt) {::> bbv(bot(d),d1), 

(ii) bbv(d2, d) {::> bbv(~, top(d)). 

Proof. Let d be given as in definition 3.3.18. Let d1 and d2 respectively be 
given by 

zl .- A1 c B1 vl .- prim c R1 

ZJc .- A~c c B~c V! .- prim c R1 
system [C1, ... ,Cn], w1 .- x1 c yl 

Wh. .- x~~. c yh. 

system L. 

(i) bbv(d,d!) holds iff Vi (1 ::; i ::; n) · [z1 Ç BI], ... , [z~c Ç B~c] f- Ci Ç Mi, 
which is precisely the condition bbv(bot(d), d1). 

(ii) bbv(d2, d) holds iff Vi (1 ::; i ::; l) · [x1 Ç M1], ... , [xn Ç Mn], [Yl Ç 
QI], ... , [Ym Ç Qm] f- Si Ç ~. The condition bbv(d2, top(d)) requires that 
the sarne formulae Si Ç Ri can he derived, but with fewer assurnptions, 
since the following assurnptions have been rernoved: those assurnptions [xi Ç 
Mi] and those assurnptions [Y; Ç Q;] (1 ::; i ::; n, 1 ::; j ::; m) for which 
the variabie { Xi or Yi) does not occur in the systern [ S11 ... , Sl]. N ow ( <=) 
follows by weakening and ( =>) follows frorn the observation that the rernoved 
assurnptions do not play an essential role in derivation of the forrnulae Si Ç 

~. D 

The following fallacy is essentially due to the fact that glass-box correct 
designs do not offer irnplementation freedom. 



3.3. ALGEBRAIC OPERATIONS ON DESIGNS 147 

Remark 3.3.24 The proposition that for pf 1\ ds designs dt and d2 we have 

just does not hold in generaL 

The counter-example is as follows 

(
x:= prim C 1 y := 1 C 2) 

gbv system [x]- ' system [y] - holds because [y = 1]1-- y Ç 1, 

bv (
x := prim Ç 1 y := prim Ç 2) 

g system [x] , system [y] does not, for [y ç 2]1f Y ç 1. 0 

Reeall that we took the decision to cast the top of a design into the form of 
a design. This can be viewed as the choice of a very specific representation. 
Fora given design d2, we have top(d2) as the representation of the parts of 
d2 which for given d1 play a role in bbv(dt,d2). First we note that the order 
of the prim components in top(d2) is not relevant (from the current point 
of view). This idea is formalised by introducing a binary predicate =pp· 

Definition 3.3.25 Let d and d' be pf 1\ ds designs. We say that d' is a 
prim permutation of d, notation d =pp d', if d' can be obtained from d by 
permuting the order of the prim components. 0 

Example 3.3.26 Let d and d' respectively be given by 

X1 .- prim c M1 X2 .- prim c M2 
x2 .- prim c M2 Xl .- prim ç M1 
Xg .- p c Q Xg .- p ç Q 
system [x1, x2, xs], system [xt. x2, xs]. 

We have d =pp d'. Of course we also have d' =pp d. 0 

Lemma 3.3.27 Consider pf 1\ ds designs d1, ~ and d~ such that d2 = PP ~ 
and such that d1 o d2 is defined, then we have 

Proof. Just note that bbv(d1, d2) is defined (in definition 3.3.13) as Vi (1 ~ 
i ~ n) ·À I- Si Ç Mi for suitable n, À, Si and Mi where the elementsof À 

are derived from the components of d2, where the si stem from the system 
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of d2 and the M; stem from d1. Finally reeall that the context /),. is a set 
(of assumptions) and that therefore /),. is independent of the order of the 
componentsin d2. 0 

If we view a top design as a representation of the parts of a design d2 which 
are relevant for hhv(d11 d2), then we might identify even more top designs 
than indicated hy =pp· 

Definition 3.3.28 Let d2 and d~ he top designs with arities (h, n) and (h', n) 
respectively. Then we define 

d2 =top d~ :{:} forall d1 with d1 o d2 defined: 

(hhv(db d2) {:} hhv(dlo d~)). 0 

If for two top designs d2 and d~ we have d2 =top d~ we say that d2 and d~ are 
top-equivalent. 

Example 3.3.29 Consider an algehraic system !R which provides a hinary 
function with symhol + which is written in infix notation. Let the top designs 
d2 and d~ respectively he given as 

xl .- prim c M1 xl .- prim c M1 
x2 .- prim c M2 x2 .- prim c M2 
Xs ·- prim ç Ms x' .- prim c M1 1 
system [x1 + x2,x1 + xs], xs .- prim c Ms 

system [x1 + x2, x~+ xs]. 

Then d2 =top d~ hecause if we consider the composition of d2 ( or of d~) with 
some design d1 of the form 

Y1 .- prim C R1 

Y2 .- prim C R2 

(constructing d1 o d2 or d1 o d~), then the validity conditions hhv(dt. d2) and 
hhv(d1, d~) are equivalent: 

hhv(dt, d2) {:} [xt Ç Mt], [x2 Ç M2], [xs Ç Ms]l- Xt + x2 Ç R1, x1 +xs Ç 
R2 

{:} [xt Ç Mt], [x2 Ç M2], [x~ Ç Mt], [xs Ç Ms]l- Xt +x2 Ç Rt, x~ +xs Ç 
R2 

{:} hhv( d, d~). 0 
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In the above example we have transfonned the top design d2 into d~ where 
d~ can he viewed as the concatenation of two simpler designs. This idea is 
formulated in a general form in lemma 3.3.30 given below. 

Lemma 3.3.30 Let d2 he a top design with arity (h, n). Then for all n', n" E 
lN with n' + n" = n we can find d~, d~, k' and k" such that d~ and d~ have 
arities (k', n') and (k", n") and furthermore 

Proof. As in example 3.3.29 introduce additional prim components and 
rewrite system elementsin termsof the narnes of these new components. In 
this way it is possible to make the set of component narnes in the first n' 
system elements disjoint with respect to the set of component narnes in the 
remaining n" system elements. Then perroute the order of the components 
such that first we have the components whose name is in the fust n' system 
elements, foliowed by the remaining components. Finally take d~ and d~ in 
the obvious way such that d~ * d~ =top d2. 0 

Example 3.3.31 Consider an algebraic system !R which provides a binary 
function with symbol + which is written in infix notation. Let the top design 
d2 be given as in example 3.3.29. Then for n' = n" = 1 lemma 3.3.30 says 
that there exist d~, d~ with d~ * d~ =top d2 • Indeed, we can take d~ and d~ as 
follows 

xl .

x2 .
system 

prim C:: 
prim C:: 

[x1 + x2], 

x' 1 

x3 .
system 

prim C:: 
prim Ç 
[x~+ x3]. 0 

Remark 3.3.32 For bottorn designs the situation is much easier. The most 
interesting notion of equality is =n I· Furthermore each bottorn design d of 
arity (n, 0) can be split for every n' and n" with n' + n" = n into d' and d" 
with arities (n',O) and (n",O) such that d' * d" = d. 0 

We see that =pp is nothing but a special case of =top and lemma 3.3.27 just 
says that d =pp d' => d =top d'. The advantage of considering =pp is the fact 
that = PP is a simple syntactical notion. 

3.3.4 The operation ~ 

We shall briefly discuss a binary operation denoted by 11. The operation is 
suggested by the transitivity of the implementation relation Ç. This opera
tion will turn out to be somewhat disappointing but nevertheless we believe 
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that it is illustrative to see what goes wrong. Yet the idea behind the oper
ation seems attractive and we shall sketch one possible line of formalisation 
to exploit it. The results of this section will not be used in the remainder of 
this chapter (Section 3.6.5 being the only exception). 

Definition 3.3.33 ( 11 ) Assume pf 1\ ds designs d1 and d2. Let d1 and d2 
respectively be given by 

Xl .- prim c:: M1 Xl .- prim c:: M1 

Xn .- prim c:: Mn Xn .- prim c:: Mn 

Y1 .- pl c:: Ql Y1 .- Ql c:: R1 

Ym .- Pm c:: Qm Ym .- Qm c:: Rm 
system L, system L. 

So d1 , d2 have the samecomponent names, the same black-box descriptions 
for the prim components, the same system and forthermore they have one 
'column' in common. Then wedefine d1!1 d2 as 

xl .- prim c:: M1 

Xn .- prim c:: Mn 

Y1 .- pl c:: R1 

Ym .- Pm c:: Rm 
system L. 

N ote that d1 !1 d2 is a pf 1\ ds design again. N ote also that if arity( d1) = ( n, k) 
and arity(~) = (n, k), then arity(d1 11 d2) = (n, k). 0 

Lemma 3.3.34 (Algebraic properties of 11 ). 

Proof. Directly from the definition 3.3.33 0 

The following remark shows that 11 lacks a desirabie property. 

Remark 3.3.35 The proposition that we have 

just does not hold in generaL 
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The counter-example is as follows. Consider !R1 as before. Let d1 and d2 

respectively he given by 

x 1 
y .- x 
system [y], 

c 2 
c 2 

x 2 
y .- 2 
system [y]. 

ç 3 
ç 2 

So both d1 and d2 are both bbcbut d1 U d2 is not bbc. We give d1 U d2 below. 

x 1 
y x 
system [yJ. 

c 3 
c 2 

0 

The above is a bit disappointing, but when adopting glass-box correctness, 
there is no problem. 

Lemma 3.3.36 Assume pf 1\ ds designs d 11 d2 • Then we have 

provided d1 U d2 is defined. 

Proof. For each component use rule (trans.) and the fact that neither 
the black-box descriptions nor the glass-box descriptions of d2 can contain 
component names. 0 

As a direct conseq uence of this lemma we also have d1 , d2 are bbc => d1 U d2 

is gbc. Just use 'd1 is bbc => d1 is gbc' and 'd2 is bbc => d2 is gbc'. 

It is not hard to see why U fails to preserve bbc. The obvious idea - which 
is to suppose that rule (trans.) applies- fails because the facts P; Ç Q; and 
Q; Ç R; are not given for the same set of assumptions. In particular the 
assumptions Yi Ç Q; (j < i) are stronger than the Y; Ç R; which determine 
the black-box correctness of d1 U d2• 

As a possible solution, we could generalise the notions of correctness so as 
not to have two notions gbc and bbc, but just one notion, 'correct' say, which 
is parameterised over contexts - writing 'f -correct' for context r. 

Definition 3.3.37 (r -correct) Let the pf 1\ ds design d be given as 

x 1 .- prim C M 1 

Xn prim C Mn 

Y1 .- P1 C Ql 
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Ym := Pm 
system L. 

For a given context r we say that d is r -correct, if for every component 
y, := P; Ç Q; we have 

0 

Reeall that r gb(d) denotes the glass-box context of d and that rbb(d) de
notes the black-box context of d (see definition 3.2.18). Now we get the 
specialised notions gbc and bbc back in the sense that d is gbc {::} d is 
r gb(d)-correct and similarly that d is bbc {::} d is rbb(d)-correct. (To see 
these equivalences is not completely trivia!: for => we must use weakening 
and for ç we must use that d is wf and that for each P; Ç Q1 the assumptions 
Y; = Q; or Y; Ç Q; for j ~ i are non-essential). 

With the above machinery of generalised correctness it is straightforward to 
see precisely in which way U preserves black-box correctness. 

Lemma 3.3.38 Assume pf 1\ ds designs d11 d2. Then we have 

provided d1 U d2 is defined. 

Proof. Just use transitivity for each component. 0 

Using transitivity of Ç means to work by means of a certain type of step
wise refinement. For example, when constructing d1 U d2 we could consider a 
y; := P; Ç Q; from d1 and a y, := Q; Ç R. from d2. Now this situation has 
the interpretation that R. is a 'high-level' specification which is refined by 
the 'intermediate-level' specification Q1, which at its turn is refined by the 
'!ow-level' description P;. 

A typical development process could be to construct the R. first, foliowed 
by the Q1 and after that the P1• Another option is to work the other way 
around, i.e. first the P;, then the Q; and the R.. Of course the length of 
these sequences can also be extended to more than three. 

The analysis of n also suggests a somewhat different line of development 
where we do not generalise the notions of correctness, but rather generalise 
the notion of design. This suggestion arises naturally from the observation 
that when d1 U d2 is defined, d1 and d2 must have already much in common. 
Therefore we could view them as partsof one generalised design. We do not 
give forma! definitions here, but we rather give a sketch. We could adopt 
generalised designs which are of the following form: 
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X1 .- prim ç Mt 

Xn .- prim c Mn 

Y1 .- pl c Ql c R1 

Ym .- Pm c Qm ç Rm 
system L. 

We conclude this section with mentioning the advantages and disadvantages 
of these generalised designs over our earlier designs. 

The main advantage is that generalised designs carry more information for 
each component. The intermediate-level specifications (the Qi) can play 
the role of 'part of a correctness proof' for each component. The second 
advantage is that certain types of step-wise refinement - just as sketched 
above- become correctness-preserving transformations of designs in a natura} 
way. 

The main disadvantage is that many different generalisations are conceiv
able: what about n instead of three descriptions for each component (the 
Pi, Qi, Ri)? what about a different ni for each component? how should we 
generalise ds and pf? do we besides gbc and bbc also allow for sarnething 
like 'intermediate-box' correctness?. We expect that these technicalities tend 
to complicate the theory significantly. 

A second disadvantage is that it is not entirely clear how to adapt the map
ping [ ~ from designs to lambda terms to make it work for generalised designs. 

3.3.5 Summary 

We end this section with a summary of the algebra of designs. The signature 
of the algebra of designs is summarised by the picture given below. We 
did not include all predicates. E.g. the predicate = pp is not shown. The 
collection of all pf A ds designs is shown as a circle. For the sake of the 
picture we view predicates as functions to Boolean values. The set of Boolean 
values is shown as a circle named Bool. The operations on designs are shown 
as arrows. The arrow which has been labeled ( ) corresponds with the 
possibility to construct a design directly, without using algebraic operations 
on designs. The constants e and en are given in lemma 3.3.2 and remark 3.3.8 
(ii). We also give a number of equations and equivalences which correspond 
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with some of our lemmas. We write d1 =rr 1 d2 if 1- [d1]] = [~ ]]. 

*• o, ~ 

( } bbc,gbc 
e, en bbv,gbv 

bot, top 

d*e=e*d=d 
(dl * d2) * d3 = dl * ( d2 * d3) 
en 0 d =rr] d 
(dl 0 d2) 0 d3 = dl 0 (d2 0 d3) 

8 

(d1 * d2) o (d3 * d4) =rr 1 (d1 o d3) * (d2 o d4) 
bbc(dt) 1\ bbc(d2) <=? bbc(d1 * d2) 
bbc(dt) 1\ bbc(d2) 1\ bbv(d1 ,d2) <=? bbc(d1 o d2) 
bot(bot( d)) = bot( d) 
top(top(d)) = top(d) 
top(bot( d)) = e 
bot(d1 o ~) = bot(d2) 
top(d1 o d2) = top(d1) 
bot( d1 * d2) = bot( dt) * bot( d2) 
top(d1 * d2) = top(d1) * top(d2) 
bbv(d1. d2) <=? bbv(bot(dl), d2) 
bbv(db d2) <=? bbv(d1, top(d2)) 
bbv(d1 * ~,d3 * d4) <=? (bbv(d1,d3) 1\ bbv(~,d4)) 

Fig 3.1. The algebra of designs. 
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3.4 Design Creation 

3.4.1 General 

In this section we want to derive several design-programs which describe 
the creation of a design. We shall use the design-development language of 
appendix B for expressing these design-programs. A design-program can 
be executed by a developer (or a team of developers). Since in general 
our design-programs will be highly non-deterministic, the developer(s) must 
make choices during the execution of a design-program. The fact that these 
choices exist, corresponds with the necessity of 'creative freedom' for the 
developer(s}. Sametimes we shall use the term 'model of the development 
process' as a synonym for 'design-program'. 

The derivation of such design-programs is quite non-trivia!. The control 
structure of a design-program is not essentially complexer than that of a 
classica! simple 'while program', but the point is that the design-programs 
describe the manipulation of complex data types: designs, components etc. 

Therefore we shall spend quite some effort to the presentation of an elaborate 
example a bout a top-down development process first and only after that treat 
the formalisation of the top-down design-program in a more general setting. 
This has the advantage that during the forma! treatment of the top-down 
design-program we can refer to the example. Once we have done the top
down design-program, the bottorn-up design program is relatively easy. 

The next section (Section 3.4.2} is devoted to the example and after that we 
praeeed with the derivation of two design-programs, which we begin in Sec
tion 3.4.3. Section 3.4.3 presents the common setting of our design-programs 
which applies to the next two sections (3.4.4 and 3.4.5). Section 3.4.4 is about 
top-down development. Section 3.4.5 is about bottorn-up development. 

3.4.2 Top-down example 

Befare embarking on a formal treatment of top-down and bottorn-up de
velopments, we first give an elaborate example of a top-down development 
which is taken from the area of electronk digital hardware [3]. We have no 
claim whatsoever that the hardware circuit of the example is efficient or fast. 
In fact our main interest is not in hardware design at all, and the purpose 
of the example is to illustrate the notion of design and some of the transfor
mation steps operating on designs. Of course we could take examples using 
the ciass-algebra CA of COLD-K, but for illustrating the design concept it 
is beneficia! to have a kind of 'stand-alone' example as well. 
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The example is about so-called logical circuits and the composition mecha
nisms for these are interconnection wirings. We have two kinds of descrip
tions for logical circuits, viz. equations and interconnection diagrams. The 
equations are based on two-valued Boolean logic with constants O, 1, multi
plication ( = and) such that 0.0 = 0.1 = 1.0 = 0, 1.1 = 1, addition ( = or) 
such that 0+ 0 = 0,1 +0 = 0+ 1 = 1 + 1 = 1 and inverting (= not) such that 
0 = 1 and I= 0. We write x EB y for x.y + x.y. Logical circuits have so-called 
ports, which act as a kind of variables (a,b, c, etc) and which are grouped 
into two categories, viz. input ports and output ports. An equation is always 
written with the output ports occurring at the left-hand side and the input 
ports at the right-hand side of the equation. E.g. z = (a.b) is an equation 
which specifies a 'nand' logical circuit with input ports a, b and output port 
z. The interconnection diagrams represent algebraic terms corresponding to 
some algebraic approach to logicai-circuit composition. We do not provide 
a formalisation of these representation issues - although of course this could 
be done. The interconnection diagrams may contain component narnes and 
we assume that this is also the case for the terms represented by the inter
conneetion diagrams. Intuitively, the interconnection diagrams will speak for 
themselves. 

We shall use numbers such as 7400, 7404, ... to act as component names. 
The use of these narnes is consistent with the terminology of the well-known 
transistor transistor logic (TTL) family of integrated logical circuits [3]. 

Let us assume - for sake of the example - that it is our task to develop 
a so-called four-bit adder. We need some notation to specify the four-bit 
adder. For a bit-sequence b we write int(b) to denote the integer which is 
binary represented by b. In particular, int(O,O,O,O) = 0, int(0,0,0,1) = 1, 
int(0,0,1,0) = 2 and int(0,0,1,1) = 3. A four-bit adder is a logical circuit 
with input ports a3, a2, a1, ao, b3, b2, bl> bo, output ports s4, s3, s2, s1, so and 
which is specified by the equation int(s4,s3,s2,s1>so) = int(a3,a2,a1,ao) + 
int(b3,b2,b1,b0) which we abbreviate as int(S) = int(a) + int(b). The compo
nent name of the four-bit adder is 74283. Therefore the top of the design d 
to he developed is given by the following design. 

7 4283 := prim 
system [ 74283] 

c (int(S) = int(a) + int(b)) 

This is the initia! design of the top-down development. With respect to 
the available primitive building blocks, we adopt a minimalistic approach 
by restricting ourselves to two simple logical circuits called nand-gate and 
ground-connection. It is a well-known fact that these are sufficient to con
struct all other logical circuits. A nand-gate has two input ports a, b and 
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one output port z. It is specified by z = "{'a.ij. A ground-connection has no 
input ports and one output port g, specified by g = 0. Therefore the bottorn 
of the design d to be developed is given by the following design. 

7400 .
GND .
system [ J 

prim 
prim 

c 
c 

(z = (a.b)) 
(g = 0) 

N ow the top-down development can really begin. In order to decompose 
the 7 4283 four-bit adder we employ a component providing for a so-called 
single-bit full adder. A single-bit full adder is a logica! circuit with three 
input ports a, b, c, and two output ports s and C0 • The ports c, and C0 are 
usually known as 'carry-in' and 'carry-out' respectively. It is specified by the 
equations s = a$ b $ c1 and c0 = a.b + c,.(a $ b). So s = 1 iff the number of 
inputs that equal 1 is odd. Also c0 = 1 iff there are two or more inputs that 
equal 1. We shall introduce a new component named 74183 to provide the 
functionality of a single-bit full adder. 

Using four instances of the 74183 and one ground-connection, the four-bit 
adder can be implemented. This is known as a ripple-carry contiguration [3] 
(p. 87). We refer to the following interconnection diagram as 74283IMPL. 

C0 74183 C0 74183 Co 7 4183 c,r---uND 

s s s s 

sa 

Fig 3.2. Interconnection diagram 74283IMPL. 

The design-step to be taken involves two modifications. First of all, the 
new components 74183 and GND must be added to the design. These new 
componentscan be viewed as a two-components 'mini-design', d' say. 

GND := prim 
7 4183 := prim 
system [] 

c (g = 0) 
Ç (s =a$ b $ c,, c0 = a.b + c,.(a $ b)) 
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We must concatenate d' with our initia! design d, i.e. construct d' * d. Sec
ondly, the old 7 4283 must be updated by means of . a kind of overwriting 
insert operation, inserting 74283 := 74283IMPL Ç (int(S) = int(ä) + int(b)). 
After this design step, our design d is as follows: 

GND .- prim c 
7 4183 .- prim Ç 

7 4283 .- 7 4283IMPL c 
system [ 7 4283 ] 

(g = 0) 
(s =a EB b EB c;, C0 = a.b + ci-(a EB b)) 

(int(S) = int(ä) + int(b)) 

In order to decompose the 74183 single-bit full adder, we employ and-gates, 
or-gates and xor-gates which are provided by new components 7408, 7432 and 
7486 respectively. These are specified by z = x.y, z =x+ y and z =x EB y 
respectively. 

Using and-gates, or-gates and xor-gates the single-bit full adder can be im
plemented. We refer to the following interconnection diagram as 74183IMPL. 
We can easily verify that this diagram satisfies the equations of 74183. In 
particular, it is helpful to note that the output of the leftmost 7408 equals 
a.b and that the output of the leftmost 7 486 equals a EB b. The output of the 
rightmost 7408 equals c;.(a EB b). Having noticed this, it follows that for the 
output s = a EB b EB c; and C0 = a.b + c;.(a EB b). 

a x x 
7408 z_ 7408 Zr-

b y r- y 

- x 
7432 z_ 

y 
'---- x x 

7486 z 7486 z s 
y 1-- y 

Fig 3.3. Interconnection diagram 74183IMPL. 

As a matter of fact, verifying that this diagram satisfies the equations of its 
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specification essentially means to verify a pair in the implementation rela
tion Ç. The black-box correctness of d requires that each pair (glass-box 
description, black-box description) is in this relation - for a suitable con
text. Here and in the general formulation of the top-down model in Section 
3.4.4, black-box correctness of the current design serves as an invariant of 
the development process. The current section is one of the few places in this 
monograph where we give detailed proofs for the proof obligations arising in 
conneetion with Ç. In Chapter 5, most proofs remain more or less implicit. 

Again the design-step to be taken involves two modifications. First, the new 
components must be added to the design. These new components can be 
viewed as a three-components mini-design, d', say. 

7408 .- prim c (z = x.y) 
7432 .- prim c (z =x+ y) 
7486 .- prim c (z =x EB y) 
system [] 

We must concatenate d' with our current design d. Secondly, we must insert 
a new version of 7 4183 which has 7 4183IMPL instead of prim. After this 
design step, our design d is as follows: 

7408 .- prim c (z = x.y) 
7432 .- prim c (z = x+y) 
7486 .- prim c (z =x EB y) 
GND .- prim c (g = 0) 
74183 .- 74183IMPL c (s = a@bEBcï, C0 = a.b+ci-(aEBb)) 
74283 .- 74283IMPL c (int(S) = int(ä) + int(b)) 
system [ 7 4283 ] 

We could select the last prim-component as the next candidate to be im
plemented - which typically is a kind of default in top-down development. 
However, we have no intention to decompose GND, so we perroute some 
prim components, putting GND fust (i.e. constructing a design that is 
pp-equivalent, cf. definition 3.3.25). 

In order to decompose the 7486 xor-gate, we employ inverters, which are 
provided by a new component 7404. An inverteris a logkal circuit with one 
input port p and one output port q. It is specified by q = p. Using and
gates, or-gates and inverters it is easy to implement a xor-gate. We refer to 
the following interconnection diagram as 7486IMPL. For its verification it is 
useful to note that the output of the upper 7408 is x.y and that the output of 
the lower 7408 is x.y. Therefore the final output z is x.y + x.y which equals 
x E9 y. 
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x 
x p 7404 q 7408 z 

x 
7432 z z 

y 

x 
y p 7404 q 

y 

Fig 3.4. Interconnection diagram 7 486IMPL. 

Now the design-step is the addition of the 7404 and the insertion of the 
implemented 7486 with 7486IMPL insteadof prim. Once more we put GND 
first. We do not show the resulting d and we proceed immediately with the 
next design-step. 

In order to decompose the 7 432 or-gate, we shall employ the 7 400 nand-gate 
- which is an available primitive. Furthermore we employ two 7404 inverters. 
We refer to the following interconnection diagram as 74321MPL. It is useful 
to note that the inputs of its 7 400 equal x and y. Therefore the final output 
z is x.y which equals x+ y. 

x p 7404 q 

7400 z z 

y p 7404 q 

Fig 3.5. Interconnection diagram 7432IMPL. 

The design-step is to add the 7 400 component and to insert a modified 7 432 
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component, with 7432IMPL insteadof prim. To decompose the 7408 and
gate we need no new components. It can be done easily with one 7400 
nand-gate and one 7404 inverter. We refer to the following interconnection 
diagram as 7408IMPL. It is useful to note that the output of its 7400 equals 
x.y. Therefore the final output z is x.y. 

Fig 3.6. Interconneet ion diagram 7 408IMPL. 

Finally we imptement the 7404 inverter. We employ one 7400 whose two 
inputs are connected. We refer to the following interconnection diagram as 
7404IMPL. 

P--q>oo · 1~---_q 

Fig 3. 7. Interconnection diagram 7 404IMPL. 

The resulting design is finished because its bottorn equals the agreed bottorn 
design with 7400 and GND. We show the resulting design d below. 

7400 .- prim c (z = (a.b)) 
GND .- prim c (g =0) 
7404 .- 7404IMPL c (q = p) 
7408 .- 7408IMPL c (z = x.y) 
7432 .- 7432IMPL c (z =x+ y) 
7486 .- 7486IMPL c (z = xEBy) 
74183 .- 74183IMPL c (s =a EB b EB c;, C0 = a.b + c;.(a EB b)) 
74283 .- 74283IMPL c (int(S) = int(a) + int(b)) 
system [ 7 4283 ] 

This concludes the example. A systematic discussion of top-down develop
ment in general will be undertaken in Section 3.4.4. 
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3.4.3 Design-programs 

In this section we turn our attention to design-programs for design creation 
in a very general setting. We shall use the design-development language of 
appendix B. The design-programs will he highly non-deterministic. The data 
that are manipulated by the developer(s) during the execution of a design
program may include designs, components, terms of .X1r and names. In this 
section we view these data as belonging to given data types which bring with 
them certain predicates and operations. In particular, we have predicates 
bbc, bbv, = etc. and operations *• o, bot, top etc. 

We shall briefly sketch the main ingredients of the design-development lan
guage. For the details we refer to appendix B. In the design-development 
language we have assignment statements (an example of an assignment state
ment is d', d" := bot(d), top(d);). Statements can he composed with se
quentia! composition, a non-deterministic choice construct (symbol 0) and 
a repetition construct (keywords while, do and od). We have expressions 
and expression lists. Expressions may contain operation symbols and vari
ables ( an example of an expression is top( d)). Expression lists may contain 
operation symbols, variables and procedure calls. Assertions may contain ex
pressions, predicate symbols, logica! connectives and quantifiers (an example 
of an assertion is forall d (bbc(d))). Procedures have a list of input param
eters and sometimes a list of result parameters. A procedure is either given 
axiomatically (keywords pre and post) or it is defined explicitly (keyword 
def). If a procedure is intended to he executed by a developer, it is called a 
techm"que (keyword technique). lf a procedure is meant as a description of 
an event which is not performed by a developer it is called an event (keyword 
event). 

We assume that in the design-development language we have variables of 
distinct sorts: d, ... for pf A ds designs, c, ... for components, v, w .. . for 
narnes and P, Q, ... for terms. 

In order to have a systematic approach for deriving design-programs we shall 
use methods which come from the field of classica! sequentia! programming 
[4] , [7]. In particular, if we want to derive a design-program with a repetition 
construct then we shall first look for a suitable invariant. 

We are interested in design-programs which descri he the creation of a design 
which is valid in a given context. Therefore we must start with a formalisation 
of what it means that a design is valid in a given context. 

Definition 3.4.1 {machine&user-context, d valid in w.) 

{i) A machine&user-context w is a pair (dm, d,) of pf A ds designs where 
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d"" is called the machine of w and d. is called the system user of w. 
(ii) Let w = ( d"", d.), then we say that d is valid in w if bbv( d, d"") A 

bbv(d.,d). 0 

In a certain way, a machine&user-context w constitutes a (simpli:fied) view 
of the external world- at least from the viewpoint of a developer who has 
to create a design which is valid in w. The de:finition can he motivated as 
follows. The prim components of d can he viewed as a speci:fication of all 
building blocks that are needed by d. When the product described by the 
design d becomes somehow operational, then the actual building blocks are 
provided. We view such a collection of actual building blocks as an underlying 
'machine'. The design d itself can be viewed as a description of a product to 
be delivered to the user of d. In general this user has certain requirements to 
the product described by the design. In our view both providing a machine 
fora design and providing a product to its user can he described by the binary 
operation o. In particular, the components provided by the the machine can 
(via o) he plugged into the prims of the design. Similarly we can imagine 
that the system user is assuming a number of primitives (also prims) which 
become available by means of the system of the design. 

Of course, in many practical situations it is not the case that the system 
user and the machine are formalised as designs. Often the system user is 
not formalised at all and validation becomes a matter of informal reasoning 
and negotiating. Nevertheless we believe that our abstraction might provide 
some insight for such situations also. 

If we call the activity of showing that a design d is (black-box) correct ver
ification and if we call the activity of showing that a design d is valid in a 
machine&user-context w validation, then our terminology is consistent with 
the usual terminology [1]: verification = 'are we building the product right?' 
and validation = 'are we building the right product?'. 

Let us illustrate this with the example of the four-bit adder of Section 3.4.2. 
In this example the machine&user-context consists of two "designs". The 
:first is the design of the 7400 and GND; typically this is a design where 
transistors and resistors occur as components. This 7400 + GND design is 
the underlying machine. Thesecondis the design of a higher layer, where the 
7 4283 four-bit adder is just a primitive building block; typically this could he 
the design of a digital computer. This digital-computer design is the system 
user. 

We see that the validity of a design d in a given machine&user-context w 
depends only on bot(d), top(d) and on w. This observation can from an 
intuitive point of view he explained as follows. First of all bot( d) contains 
precisely all prim components of d. The prim components of d can he 
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viewed as a. summa.ry of all building blocks tha.t are needed by d. Secondly 
top( d) ha.s the sa.me system as d a.nd top( d) conta.ins a. number of prim 
components which ca.n be viewed a.s specifica.tions of the narnes occurring 
in the system of d. The system of d (with these narnes elimina.ted) ca.n be 
viewed as the top-level product to bedelivered totheuser of d. 

In genera.!, it is the ta.sk of the developer to (re-)esta.blish a.n invariant, INV 
sa.y, which depends both on the design d a.nd on the ma.chine&user-context 
(dm, d8 ). This invariant should consist of two pa.rts where the fust part deals 
with va.lida.tion a.nd the second part deals with verifica.tion. So INV must 
express tha.t d is va.lid in its ma.chine&user-context (dm, da) a.nd tha.t d is 
bla.ck-box correct a.nd therefore we define it as follows: 

INV ::= bbv(d,dm) and bbv(d,,d) and bbc(d). 

Now we turn our attention to the problem of design crea.tion, which in its 
most general form is to crea.te a. design d such tha.t INV is esta.blished. In 
order to keep things simple, we sha.ll study the problem of design crea.tion 
in a. restricted setting where we focus on the verifica.tion aspect. Therefore 
we a.ssume tha.t before the a.ctua.l execution of a. design-program starts the 
bounda.ries of the design to be crea.ted are a.lrea.dy fixed, by which we mea.n 
tha.t somehow the bottorn a.nd the top of the design to be created are deter
mined. Since the bottorn and the top of a design are designs themselves we 
can model this situation by a.ssuming that there are two given designs d6 a.nd 
d1• In view of lemma 3.3.27 we consider the top as given up to permutation 
of prim components. Therefore we have the following postcondition of the 
of design creation. 

POST := bot(d) = d6 and top(d) =pp dt and bbc(d). 

It is possible to give a criterion for the selection of db and d1• We see that if 
the machine&user-context w = (dm, d,) then db and d1 should be chosen such 
that bbv(db, dm) and bbv(d., d1) hold. Using lemma 3.3.23 and lemma. 3.3.27 
one can verify that bbv(d6,dm) and bbv(d.,d1) and POST implies INV. Of 
course it is always possible to derive a db and d1 from (dm,d,) mechanically, 
but our approach is somewhat more generaL 

Let us illustrate this with the example of the four-bit adder of Section 3.4.2. 
Indeed, in this example we have chosen a certain d" viz. the design with one 
prim-component 74283 and with system [ 74283 ]. Also we have chosen a 
certain db, viz. the design with two prim-components 7400 and GND and 
with system [ ]. 

It is not reasonable to a.ssume that the developer can crea.te a large design 
in one step; instead he adds components and modities existing components, 
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one at a time. Therefore we assume that there is one variabie d which always 
contains the 'current design' and we shall focus on design-programs that 
modify this d in a repetitive manner. 

There are many (loop-) invariants which could be derived from POST. We 
shall investigate two possibilities. The fust possibility will be investigated 
in Section 3.4.4 and it leads to the derivation of a design-program which 
corresponds tothetop-down approach. The second possibility will be inves
tigated in Section 3.4.5 and it leads to the derivation of a design-program 
which corresponds to the bottorn-up approach. These design-programs are 
related to the modelsof the development process given in [5]. 

We shall consider the partial correctness of these design-programs; it may 
very well he the case that a (partially) correct design-program cannot suc
cesfully terminate for a given input. In this case we say that the execution 
of the design-program fails. From this it should he clear that a correctness 
formula {AI}s{A2} does not say anything about failure or successful termi
nation of s. We shall not use an axiomatisation in the style of Hoare's logic 
[6] for reasoning about these formulae {A1}s{A2}. Of course this could be 
done, butwethink it would push the level of formalisation too far. 

3.4.4 Top-down development 

In order to obtain an invariant, we take the postcondition POST as a starting 
point. POST consistsof three conjuncts and a candidate invariant is obtained 
by simply omitting the first conjunct (as suggested in [7] Section 16.2). This 
yields top(d) =pp dt and bbc(d), i.e. during the development process the 
top of the design remains constant (up to permutation of prim components) 
and furthermore black-box correctness is adopted as a methodological prin
ciple. We strengthen this assertion by requiring that all components (except 
possibly those in db) play a role in the system of the design d. In order to 
formulate this precisely weneed an auxiliary definition: 

Definition 3.4.2 Let d be a pf 1\ ds design. 

(i) The binary relation <t on the set of component narnes of d is defined 
by x 1 <f x2 :{::} x1 occurs freely in the glass-box description of the 
component named x2 • 

(ii) The binary relation <d is defined as the transitive ciosure of <f. 
(iii) Let ï be some subset of cset( d) then we define 

x1 ~d ï :{::} x1 E ï V 3x2 E ï · x1 <d x2. 0 
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Roughly speaking, we can view a design d as a set of components, identified 
by names, where some components are part of other components. Therefore 
we shall sometimes refer to <d as the 'part of' relation. 

Now we can express the requirement that all components (except possi
bly those in db) play a role in the system of the design d as a condition 
forall v (v E cset(d) ~ (v E cset(db) or v ~d sys(d))). This condition 
guarantees that no implementation effort is spent on components which will 
not he used. This yields the following invariant (where we use the notation 
sys(d) from definition 3.2.4): 

TD JNV := top( d) =pp dt and 
bbc(d) and 
forall v (v E cset(d) ~ (v E cset(db) or v ~d sys(d))). 

N ow we can develop a design-program based on this invariant. The technique 
td given below has two input parameters (db and d1). It is given by an explicit 
definition and it uses one variabie (d). After execution of an initialisation 
statement and a repetition construct it yields the value of d as its result. 

td := technique db, dt 
def d := dt; 

while not bot(d) =db do d := td....step(d); od; 
d 

where td....step satisfies the partial-correctness assumption {TDJNV t\ bot( d) =j:. 
db} d := td....step(d); {TDJNV}. 

Let us illustrate this with the example of the four-bit adder of Section 3.4.2. 
Reeall that in the example the assignment d := d1 was executed indeed, 
viz. at the point where we said "This is the initia! design of the top-down 
development." Reeall also that in the example we had several points where 
we said "In order to decompose the ... , we shall employ the ... " etc.; each 
such point marks the beginning of the execution of d := td....step(d); . Finally 
reeallalso that in the example we reached a point where we could say: "The 
resulting design is finished because its bottorn equals the agreed bottorn 
design with 7400 and GND." This corresponds with a positive outcome of 
the stop-criterion bot(d) = db. 

Remark 3.4.3 Under the given assumption for td....step we have 

(where the precondition simply expresses that db is a bottorn design and 
that d1 is a top design). This can he proved as follows. First we verify that 
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after execution of d := dti the invariant TDJNV holds. We have d = dt, so 
top(d) =pp dt. Since dt is a top design it contains only prim components 
and therefore it is trivially bbc. Take some t1 E cset(d), then v ~d sys(d) 
because d is a top design. As a next step we must show that execution of d 
:= td_step(d); does nat vialate TDJNV. This follows from the assumption 
for td_step. Finally we note that bot(d) = d6 and TDJNV implies POST. 

D 

We now turn our attention to td_step. It will turn out that there exist 
several techniques which satisfy the assumption for td_step. Therefore we 
shall investigate several techniques which we shall call td_step0 , td_step1 etc. 

The techniques td_step0 and td_step1 describe the transformation of a prim 
component into a non-prim component. The latter component should he 
provably correct in a suitable context. Therefore we must describe how the 
developer should select a prim component and its context {represented as 
a design) from a design d. Actually the developer has no choice in this 
selection: he must select the last prim component, otherwise the result of 
re-inserting it {in its original relative position) as an implemented component 
could vialate the condition pf. 

Definition 3.4.4 Let the pf 1\ ds design d be given as follows: 

x 1 .- prim C M 1 

Xn . - prim C Mn 

Y1 .- P1 C Q1 

Ym ·- Pm !: Qm 
system [Sb ... , Sz]. 

where P1, • •• , Pm are not equal to prim. 

(i) last_prim(d) is defined as the component (xn := prim!: Mn), 

(ii) last_prim_context(d) is defined as the bottorn design given by 

X1 .- prim c M1 

Xn-1:= prim c Mn-1 
system []. D 

We assume that there is an operation 'insert' which serves for inserting a 
component into a design by overwriting an existing component (which has 



168 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS 

the samename as the component to be inserted). We do not give a forma! 
definition of 'insert'. Fora name v and a term P we write v EP if v occurs 
freely in P. 

Of course the developer cannot select a prim component from d if d does 
not contain at least one prim component. The fact that d contains at least 
one prim component can be expressedas not bot(d) = system []. 

The technique td....step0 is a kind of naive approach. It uses an auxiliary 
technique called tdjmpl which takes a design d and which describes the 
selection of the last prim component and its transformation into a non-prim 
component (c'). We use the notation rbb from definition 3.2.18. 

tdjmpl := technique d --t c' 
pre not bot(d) = system [] 
post exists v ( exists P ( exists Q 

(last_prim(d) = (v := prim Ç Q) and 
c' = (v := P Ç Q) and 
forall w (wE P --t wE cset(Iast_prim_context(d))) and 
rbb(last_prim_context(d)) I- P ç Q))) 

td....step0 := technique d 
def insert(d,tdjmpl(d)) 

Let us illustrate this with the example of the four-bit adder of Section 3.4.2. 
Indeed, at a certain point we said: "To decompose the 7408 and-gate we 
need no new components. It can be done easily with one 7400 nand-gate 
and one 7404 inverter. We refer to the following interconnection diagram as 
7408IMPL." etc. Formally this corresponds with a last_prim(d) which is ( 
7408 .- prim C (z = x.y)). The last_prim_context(d) here contains 
three prim-components, viz. GND, 7400 and 7404. 

Lemma 3.4.5 (Partial correctness of td....step0). 

{TDJNV} d := td....step0 (d); {TDJNV}. 

Proof. Assume that initially d is the design given in definition 3.4.4. We 
assume that this design satisfies TDJNV. If this design has no prim compo
nents then td....step0 fails because the precondition of tdjmpl does not hold. 
Reeall that we deal with partial correctness, so td....step0 is allowed to fail. 
Therefore we proceed with the assumption that there is at least one prim 
component and hence last_prim(d) = (xn := prim Ç Mn)· Then it follows 
that tdjmpl returns a component (xn := P Ç Mn) forsome P. This P con
tains only narnes from {x1, ... , Xn- 1} and it satisfies [x1 Ç M1], .. . , [xn-1 Ç 
Mn-1]1- P Ç Mn. Execution of 'insert' yields the design 
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Xt .- prim c Mt 

Xn-1:= prim c Mn-l 
Xn .- p c Mn 

Yt .- pl c Ql 

Ym .- P". c Q". 
system [Sb ... ,S1] 

which is pf A ds and bbc. We note that the top of the latter design equals 
precisely the top of the initial design. Finally we show that all narnes from 
{ x1 , •• • , Xn, y1 , ... , y".} which are not in cset( db) are part of the system. This 
follows from the fact that TDJNV holds for the initia} design. 0 

The definition of td....step0 is a kind of naive approach because td....step0 does 
not allow for the creation and insertion of new prim components. We shall 
now describe an impravement with respect to td....step0 • We could define a 
technique which describes the creation and insertion of one new prim com
ponent; however, we shall not do this because it is essential forthetop-down 
approach as expressed by TDJNV that no new prim component is intro
duced unless it is used immediately. We prefera technique which describes 
both the creation of new prim components and the transformation of an 
existing prim component into a non-prim component whose glass-box de
scription uses all new prim components. This leads us to td....step1 which 
is an improved version of td....step0 • It uses an auxiliary technique called 
td....specjmpl which describes the selection of the last prim component, the 
creation of a set of new prim components and the transformation of the se
lected prim component into a non-prim component. The set of new prim 
componentsis represented as a bottorn design (d'). 

td....specjmpl := technique d --t d', c' 
pre not bot(d) = system [] 
post exists v (exists P (exists Q 

(lasLprim(d) = (v := prim Ç Q) and 
cset(d') n cset(d) = 0 and 
bot( d') = d' and 
c' = (v := P Ç Q) and 
forall w (wE cset(d') --t wE P) and 
forall w ( w E P --t w E cset(last_prim_context ( d) U cset( d'))) 
and rbb(d') u rbb(last_prim_context(d)) 1-- p ç Q))) 

We can use the binary operation * of Section 3.3 for descrihing the addition 
of the new prim components to the current design. 
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td...step1 := technique d 
def d', c' := td...spedmpl(d); 

insert( d' * d, c') 

Let us illustrate this with the example of the four-bit adder of Section 3.4.2. 
At some point of that development we said: "In order to decompose the 7 4183 
single-bit full adder, we employ ... which are provided by new components 
7408, 7432 and 7486 respectively." Then these new components were viewed 
as a mini-design d' and we concatenated d' with d and furthermore we said: 
"Secondly, we must insert a new version of 74183 which has 74183IMPL 
instead of prim." In fact this was an example of the execution of d', c' := 
td...spec...impl( d); insert( d' * d, c'). 

Lemma 3.4.6 (Partial correctness of td...step1). 

{TDJNV} d := td...step1 (d); {TDJNV}. 

Proof. Assume that initially d is the design given in definition 3.4.4. We 
assume that this design satisfies TDJNV. If this design has no prim compo
nents then td...step1 fails because the precondition of td...specJmpl does not 
hold. Therefore we can assurne that there is at least one prim component 
and hence last_prim(d) = (xn := prim Ç Mn)· Therefore td...spedmpl yields 
a bottorn design (d') with new names, say 

ZJc .- prim Ç 
system [] 

and it also yields a component (xn := P Ç Mn) forsome P. This P contains 
only narnes from {x1, ... , Xn-1> z17 ••• , z~c} and it satisfies [z1 Ç R1], ... , [z~c Ç 
R~c], [x1 Ç M1], ... , [xn-1 Ç Mn-1] f- P Ç Mn. Furtherrnore each Z; (1 ~i~ 
k) occurs in P. This bottorn design is added to the current design, using *• 
and execution of 'insert' yields the design 

zl .- prim c R1 

ZJc .- prim ç R~c 
xl .- prim c M1 

Xn-1:= prim c Mn-1 
Xn .- p c Mn 

Y1 .- pl c Q1 
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Ym ·- Pm Ç Qm 
system [817 ... , S,] 

which is pf 1\ ds and bbc. We note that the top of the latter design equals 
precisely the top of the original design. Finally we must show that all narnes 
from {x17 ... , x"' y17 ... , Ym, Zt, ... , zk} which are not in cset(db) are 'part of' 
the system. For the narnes from {x1, ••• ,xn,y1 , ••• 1 Ym} this follows from 
the fact that TD JNV holds for the original design. For the narnes from 
{z17 ... , zk} this follows from the fact that Xn is 'part of' the system and the 
fact that z1 , ••. , Zk occur in the new glass-box description of the component 
named Xn· 0 

td_step1 raises two related problems. The fust problem is that the developer 
has no choice in selecting the prim component to he implemented (although 
he can inftuence later choices by 'thinking in advance'). For the prim com
ponents which are in the top design dt he has no inftuence at all on the order 
in which they are selected. The second problem is that it may be hard to 
makesure that the order of the prim components will match the order of 
the prim componentsin the bottorn design db. We shall remedy these prob
lems by descrihing the possibility that the developer modifles the order of 
the prim components. We formalise this by defining a technique td_step2 • 

td_step2 := technique d ---+ d' 
pre true 
post d' =pp d 

Let us illustrate this with the example of the four-bit adder of Section 3.4.2. 
Indeed, at a certain point we said: "We could select the last prim-component 
as the next candidate to be implemented - which typically is a kind of default 
in top-down development. However, we have no intention to decompose 
GND, so we permute some prim components, putting GND first." This was 
a typical execution of td_step2 • 

Lemma 3.4.7 (Partial correctnessof td_step2). 

{TDJNV} d := td_step2 (d); {TDJNV}. 

Proof. We assume that TDJNV holds for d and we must show that it 
holds also for d' where d' =pp d. Since we have top(d) =pp dt we also have 
top(d') =PP dt. The fact that d' is bbc follows from the fact that d is bbc. 
Finally we note that the 'part of' relation does not depend on the order of 
the prim components. 0 
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It is possible to execute td...step by choosing between td...step1 and td...step2• 

Using the non-deterministic choice construct 0 from the design-development 
language we define td...step as 

td...step := technique d 
def d' := td...step1(d); 0 d' := td...step2(d); 

d' 

Now we can combine the results on td...step1 and td...step2 • 

Theorem 3.4.8 (Partial correctnessof the top-down technique). 

(i) {TDJNV} d := td...step(d); {TD_lNV}, 

(ii) {bot( db) =db and top(dt) = dt} d := td(db, dt)i {POST}. 

Proof. (i) By thesemantics of 0 and by lemmas 3.4.6 and 3.4.7. (ii) By (i) 
andremark 3.4.3, noting that TD_lNV 1\ bot(d) =/:db implies TDJNV. 0 

Remark 3.4.9 (i) Let us consider the total-correctness question for td, 
which is as follows: can every execution sequence which is according to the 
top-down model but which is notready yet, be completed toa full execution 
sequence? In other words: is it the case that a top-down development pro
cess essentially never can get stuck? The anser is positive: every execution 
sequence can be completed. But the main reason for this is the reflexivity of 
Ç. From a practical point of view, this answer is of little interest. As soon 
as executability considerations or efficiency considerations (at the product 
level) play a role, either 'thinking in advance' or 'backtracking' are needed. 

(ii) In the postconditions of the techniques td...step0 and td...step1 we have 
clauses 
rbb(Jast_prim_context(d)) f- p ç Q and rbb(d')urbb(Jast_prim_context(d)) 
f- p ç Q. It is interesting to note that if in these clauses we replace rbb by 
r gb the resulting top-down technique is still partially correct with respect 
to POST. We can interpret this fact as follows: as long as the developer 
works according to the top-down technique, it does not matter if he knows 
the difference between black-box correctness and glass-box correctness. 

(iii) Our description of the top-down technique should be considered as open
ended. One can think of techniques td...step3 , td...step4 etc. E.g. td...step3 

could describe the possibility of back-tracking where components are removed 
and where non-prim components are transformed into prim components. 
td...step4 could describe the possibility of adding prim components which 
need not be 'part of' the system of the current design, but which happen to 
be present in db. A general farm of the top-down technique could be based 
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on a technique td..step given as follows. 

td..step := technique d 

def 0 i=l,2, ... ,n d' := td...step;( d); 
d' 

173 

D 

Finally we consider a kind of completeness question: can every pf A ds A 
bbcdesign d where all components play a role in its system, be obtained by 
means of a top-down development? The answer is positive, for a given d is 
easily obtained from a dt = top(d) by a sequence of td..step1 steps. 

3.4.5 Bottorn-up development 

In order to obtain another invariant we take again the postcondition POST 
as a starting point. POST consists of three conjuncts and a candidate in
variant is obtained by simply omitting the second conjunct. This yields 
bot(d) = db and bbc(d), i.e. during the development process the bottorn 
of the design remains constant and black-box correctness is adopted as a 
methodological principle. We need not strengthen this assertion by requir
ing that all components are built in terms of primitive components, since 
this is taken care of by the fact that we consider only designs which are pf A 
ds and hence wf. We adopt the following invariant: 

BUJNV :=: bot(d) =db and bbc(d). 

Now we can develop a design-program based on this invariant. The tech
nique 'bu' given below has two input parameters (db and dt)· It is given 
by an explicit definition and it uses one variabie (d). After execution of an 
initialisation statement and a repetition construct it yields the value of d as 
its result. 

bu := technique db, dt 
def d :=db; 

while not top(d) =PP de do d := bu...step(d); od; 
d 

where bu..step satisfies {BUJNVAtop(d) =/=pp de} d := bu...step(d); {BUJNV}. 

Remark 3.4.10 Under the given assumption for bu..step we have 

{bot(db) =db and top(de) =de} d := bu(db,dt)i {POST}. 

This can be provedas follows. First we verify that after execution of d :=db; 
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the invariant BUJNV holds. We have d =db, so bot(d) =db. Since db is a 
bottorn design it contains only prim components and therefore it is trivially 
bbc. As a next step we must show that execution of d := bu....step(d) does 
not violate BUJNV. This follows from the assumption for bu....step. Finally 
we note that top(d) =pp dt and BUJNV implies POST. D 

We now turn our attention to bu....step. It will turn out that there exist 
several techniques which satisfy the assumption for bu....step. Therefore we 
shall investigate several techniques which we shall eaU bu....step0 , bu....step1 etc. 

Let us assume an operation 'add....system_element' which takes a design, d say, 
and a term P. If d has system [S17 ••• , Si], then add....system_element(d, P) 
yields the design which has the same components as d, but which has the 
sequence [S1, • • . , S17 P] as its system. We do not give a formal definition of 
'add....system_element'. 

The technique bu....step0 describes the creation of a term and its addition to 
the system of the current design. 

bu....step0 := technique d --+ d' 
pre true 
post exists P 

(forall w (wE P---+ wE cset(d)) and 
d' = add....system_element(d,P)) 

Lemma 3.4.11 (Partial correctnessof bu....step0). 

{BUJNV} d := bu....step0 (d); {BUJNV}. 

Proof. Assume that initially d is the design given in definition 3.4.4. We 
assume that this design satisfies BU JNV. Since P contains only narnes from 
{xt, ... , Xn , Yt, ... , Ym}, evaluation of add....system_element(d, P)) yields the 
design 

xl .- prim c M1 

Xn .- prim c Mn 
Yt .- Pt c Ql 

Ym .- Pm c Qm 
system [St. ... , S" P] 

which is pf 1\ ds and bbc. We note that the bottorn of the latter design equals 
precisely the bottorn of the initial design. D 
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Let us assume an operation 'add_component' which takes a design, d say, 
and a component c and which yields the design which bas all components 
of d and which bas furthermore c as its last component. We do not give a 
formal definition of 'add_component'. The technique bu....step1 descibes the 
creation of a non-prim component and its addition to the current design. 

bu....step1 := technique d -t d' 
pre true 
post exists v ( exists P ( exists Q 

(not v E cset(d) and 
forall w (wE P -t wE cset(d)) and 
rbb(d) f- P ç Q and 
d' = add_component(d, (v := P Ç Q))))) 

Note that we did not give the relative order in which P and Q have to be 
constructed. 

Lemma 3.4.12 (Partial correctnessof bu....step1). 

{BUJNV} d := bu..step1 (d); {BUJNV}. 

Proof. Assume that initially d is the design given in definition 3.4.4. We 
assume that this design satisfies BU JNV. The result d' is the result of eval
uating add_component with d as its first argument and with a component 
( v := P Ç Q) as its second argument. From the postcondition of bu....step1 

we have that v is a new name and that all narnes occurring in P are from 
{ x1 , ••• , Xn, y1 , • •• , Ym}. Furthermore this component is correct in the black
box context of d. Evaluation of add_component(d, (v := P Ç Q)) yields the 
design 

xl .- prim c M1 

Xn .- prim c Mn 

Y1 .- pl ç Ql 

Ym .- Pm c Qm 
V .- p ç Q 
system [St, ... , Si] 

which is pf 1\ ds and bbc. We note that the bottorn of the latter design equals 
precisely the bottorn of the initia! design. 0 

It is possible to execute bu....step by choosing between bu..step0 and bu....step1• 

Using the non-deterministic choice construct 0 from the design-development 



176 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS 

language we define bu..step as 

bu..step := technique d 
def d' := bu..step0 (d); 0 d' := bu..step1 (d); 

d' 

Now we can combine the results on bu..step0 and bu_step1 • 

Theorem 3.4.13 (Partial correctnessof the bottorn-up technique). 

(i) {BUJNV} d := bu..step(d); {BUJNV}, 

(ii) {bot(db) =db and top(dt) = dt} d := bu(db,dt); {POST}. 

Proof. (i) By the semantics of 0 and by 3.4.11 and 3.4.12. (ii) By (i) and 
remark 3.4.10, noting that BUJNV 1\ top(d) #PP de implies BUJNV. 0 

Remark 3.4.14 (i) Let us consider the total-correctness question 'for hu, 
which is as follows: assume a given db and dt; can every execution sequence 
which is according to hu( db, de) but which is not ready yet, he completed 
to a full execution sequence? The anser is negative because we can only 
add system elements and not remove them. Once we have too many system 
elements, we have no way left to arrive at the same system as dt . 

(ii) In the postcondition of the technique bu_.step1 we have a clause fbb(d) l
p ç Q. It is interesting to note that if in this clause we replace rbb by 
r gb• the resulting bottorn-up technique is not partially correct with respect 
to POST. Instead its execution will yield a glass-box correct design. 

(iii) Our description of the bottorn-up technique should he considered as 
open-ended. One canthink of techniques bu_.step3 , bu..step4 etc. E .g. bu_.step3 

could describe the possibility of back-tracking, where components or system 
elements are removed. 0 

Finally we consider a kind of completeness question: can every pf 1\ ds 1\ bbc 
design d be obtained by means of a bottorn-up development? The answer is 
positive, for a given d is easily built-up from a db = bot(d) by means of a 
number of bu_.step1 steps foliowed by a number of bu_.step0 steps. 

As an illustration of the design program hu, we show a sequence of designs 
corresponding with a possible bottorn-up development of the four-bit adder. 
The fust design d1 is db which is 

7400 .- prim 
GND .- prim 
system [] 

Ç (z = (a.b)) 
c (g = 0) 
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d2 is obtained by a bu..step1: 

7400 .- prim c (z = (a.b)) 
GND .- prim c (g = 0) 
7404 .- 7404IMPL c (q = p) 
system [] 

d3 is obtained by a bu..step1: 

7400 .- prim c (z = (a.b)) 
GND .- prim c (g = 0) 
7404 .- 7404IMPL c (q = p) 
7408 .- 7408IMPL c (z = x.y) 
system [] 

d4 is obtained by a bu..step1: 

7400 .- prim c (z = (a.b)) 
GND .- prim c (g = 0) 
7404 .- 7404IMPL c (q = p) 
7408 .- 7408IMPL c (z = x.y) 
7432 .- 7432IMPL c (z =x+ y) 
system [] 

d5 is obtained by a bu..step1: 

7400 .- prim c (z = (a.b)) 
GND .- prim c (g = 0) 
7404 .- 7404IMPL c (q = p) 
7408 .- 7408IMPL c (z = x.y) 
7432 .- 7432IMPL c (z =x+ y) 
7486 .- 7486IMPL c (z =x EB y) 
system [] 

d6 is obtained by a bu..step1: 

7400 .- prim c (z = (a.b)) 
GND .- prim c (g = 0) 
7404 .- 7404IMPL c (q = p) 
7408 .- 7408IMPL c (z = x.y) 
7432 .- 7432IMPL c (z =x+ y) 
7486 .- 7486IMPL c (z =x EB y) 
74183 .- 74183IMPL c (s =a EB b EB Ci, C0 = a.b + Ci.(a EB b)) 
system [ ] 
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d7 is obtained by a bu__step1: 

7400 .- prim c: (z = (a.b)) 
GND .- prim c: (g = 0) 
7404 .- 7404IMPL c: (q = p) 
7408 - 7408IMPL c: (z = x.y) 
7432 .- 7432IMPL c: (z =x+ y) 
7486 .- 7486IMPL c: (z = xE9y) 
74183 .- 74183IMPL c: ( s = a E9 b E9 c,, c0 = a.b + Cs. (a E9 b)) 
74283 .- 74283IMPL ç (int(S) = int(ä) + int(b)) 
system [] 

and after a bu...step0 we get d8 which is 

7400 .- prim c: (z = (a.b)) 
GND .- prim ç (g = 0) 
7404 .- 7404IMPL c: (q = p) 
7408 .- 7408IMPL ç (z = x.y) 
7432 .- 7432IMPL c: (z =x+ y) 
7486 .- 7486IMPL c: (z=xffiy) 
74183 .- 74183IMPL c: (s=aE9b$c,, C0 =a.b+c,.(a$b)) 
74283 .- 74283IMPL c: (int(S) = int(ä) + int(b)) 
system [ 7 4283 ] 

This concludes the bottorn-up example. 

3.5 Design Evolution 

3.5.1 General 

In Section 3.4 we investigated design creation, but it would he wrong to 
assume that in realistic software development the 'machine&user-context' in 
which the design is supposed to he valid is always a constant machine&user
context. In current software development practice it may very well he the 
case that about 50% of the development costs of a product are spent on so
called 'maintenance' (see e.g. [1] pages 540, 541). Traditionally, maintenance 
was classified into software update and software repair, where software repair 
includes a corrective aspect (see e.g. [1] page 536). In this chapter we shall not 
investigate this corrective aspect. From now on we shall use the term 'design 
evolution' (because 'maintenance' suggests that there might he something 
like 'wear', which of course is not the case for software products). 
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If we want to discuss design evoiution then we must have an abstraction of 
the (variabie) machine&user-context in which a (variabie) design 'evoives'. 
We adopt the definitions of 3.4.1 where a machine&user-context w is a pair 
(d"., d.) ofpf 1\ ds designs where d". is called the machine of wand d. is called 
the system user of w. The design d is said to he valid in w if bbv(d,dm.) 1\ 

bbv(d.,d). This definition was motivated by viewing the prim components 
of d as a specification of all building biocks that are needed by d and by 
viewing the designdas a description of a product to he delivered totheuser 
of d. 

We consider design evoiution to he the evoiution of a design in a chang
ing machine&user-context. The deveioper operates on a variabie design 
which is part of a giobai state. Aiso part of this giobai state is a variabie 
machine&user-context w = (dm., d.). The machine&user-context is modified, 
let us say at certain points in time. We formalise this view by assuming that 
there are three variables dm., d6 and d. We have the following intuitions for 
these variables: d". = 'current machine,' d. = 'current system user', d = 
'current design'. 

It is the task of the developer to (re-)establish the invariant INV, which 
depends bath on the designdandon the machine&user-context (d"., d.) and 
which expresses that dis valid in the machine&user-context (d"., d.) and that 
d is biack-box correct. · 

INV = bbv(d,dm.) and bbv(d.,d) and bbc(d). 

The following scenario is adopted. We assume a state in which d"., d6 and 
d are such that INV holds. We now assume that the machine&user-context 
of the next state has been modified and we say that an external event has 
happened. The developer must find a design d' such that after establishing 
the state modification d := d'; the invariant !NV holds again. The developer 
may do this by acting according to some technique. Let us assume that 
the change of the machine&user-context is such that either the machine is 
modified or the system user is modified, but not bath. We shall discuss bath 
kinds of machine&user-context change separately. One might devise many 
techniques addressing the problem of design evolution; we only show some 
of the simplest techniques. In Section 3.5.2 we shall give a technique which 
deals with a changing machine. In Section 3.5.3 we shall give a technique 
which deals with a changing system user. 

3.5.2 Changing machine 

The following procedure can he used for rnadeling an external event: 
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change := event d - d' 
pre true 
post true 

After the external event dm := change(dm)i has happened there is a new 
machine but there is still the old system user. The condition bbv(d,dm) may 
he false but bbv(d., d) and bbc(d) hold. The developer must restare the 
invariant and therefore we look for a suitable statement Sm such that 

{INV} dm := change(dm)i Sm {INV}. 

One possible technique is based on the idea of an emulator, which is nothing 
but a 'layer' interpolating between the new machine and the old design. 
Finding an emulator is described by a technique which takes designs dm (the 
new machine) and d (the old design) and yields an emulator dem· 

emulator := technique dm, d - dem 
pre true 
post bbc(dem) and bbv(dem,dm) and bbv(d,dem) 

Now if emulator( dm, d) yields dem• then we might say that dem o dm is 'd
equivalent' with the old machine, by which we mean that bbv(d, demo dm) 
holds. So it is possible to make the old design 'run' upon demo dm by con
structing the composition do (demo dm)· By lemma 3.3.7 (associativity of 
o) this is the same as ( d o dem) o dm. If we assume that the developer has 
modification rights with respect to d but not with respect to the machine, 
he should replace the old design d by ( d o dem). This indicates that we can 
take the following statement for sm: 

d := do emulator( dm, d); 

Let us illustrate this with the example of the four-bit adder of Section 3.4.2. 
Suppose that the supply of 7 400 nand-gates gets exhausted whereas there is 
a rich supply of 7402 nor-gates, say. Then we could have an emulator design 
as follows: 

7402 .- prim c (z=(a+b)) 
GND .- prim c (g = 0) 
7400 .- 7400IMPL c (z = (a.b)) 
system [7400,GND] 

where 7400IMPL implements the functionality of the nand-gate using nor
gates and ground-connections only. 
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Theorem 3.5.1 {INV} dm :=change( dm); d .- do emulator( dm, d); {INV} 

Proof. Assume that initially d satisfies INV. After dm := change(dm)i 
has happened we have bbv(d.,d) and bbc(d). Execution of the emulator 
technique yields some design d•m such that bbc(d.m) and bbv(d.m, dm) and 
bbv(d, d.m) hold. We must investigate each conjunct of INV for the new 
design d o dem· 

• bbv(d o d•m• dm) holds because bbv(d.m, dm) holds. 

• bbv(d., do d.m) holds because bbv(d., d) holds. 

• bbc(d o d.m) follows by lemma 3.3.14 (ii) from bbc(d), bbc(d.m) and 
bbv(d,d.m)· 0 

Remark 3.5.2 We shall briefiy sketch an alternative solution for the state
ment Sm. It is based on the idea of (re-)starting a top-down development 
process. Let us assume that we have an operation 'remove_unused' which 
takes a design and which yields the design which is obtained by remov
ing all components which are not 'part of' the system (in the sense of 
:=;d sys( d)). Actually, for top-down made designs this means that no im
plementations are thrown away. Let us also assume a technique 'deter
mine_bottom' which for given machine dm yields a bottorn design db such that 
bbv(db, dm)· After the external event dm := change( dm); has happened we 
are in a state in which bbv(d., d) and bbc(d) holds. If in this state the state
ment d := remove_unused(d); db := determine_bottom(dm)i dt := top(d); is 
executed then the invariant TDJNV as given in Section 3.4.4 holds (where 
d1 := top(d) means to fix the existing top, rather than throwing something 
away) . When TDJNV holds, the developer can start executing the repetition 
statement which we knowalready from the top-down approach, viz. while 
not bot(d) =db do d := td....step(d); od;. If the latter statement terminates 
then INV holds again. 

Under certain conditions it may he possible to derive an emulator from the 
result of this top-down development process. 0 

3.5.3 Changing system user 

After the externalevent d. := change(d.); has happened there is a new system 
user but there is still the old machine. The conditions bbv(d,dm) and bbc(d) 
hold but bbv(d., d) may he false. The developer must restore the invariant 
and therefore we look for a suitable statement s. such that 

{INV} d. := change(d.); s. {INV}. 
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One possible technique is based on the idea of a simulator. Finding a 'sim
ulator' is described by the following technique: 

simulator := technique d., d---+ d,1 

pre true 
post bbc(d.1) and bbv(d,1, d) and bbv(d" d,1) 

Now we can take the following statement fors,: 

d := simulator(d., d) o d; 

Theorem 3.5.3 {INV} d. :=change(d.); d := simulator(d., d) o d; {INV}. 

Proof. Assume that initially d satisfies INV. After d, := change(d,}; has 
happened we have bbv( d, dm) and bbc( d}. Execution of the simulator tech
nique yields some design d,1 such that bbc(d,.) and bbv(d •• , d) and bbv(d,, d,i) 
hold. We must investigate each conjunct of INV for the new design d,i o d. 

• bbv(d,1 o d,dm) holds because bbv(d,dm) holds. 

• bbv(d., d,1 o d) holds because bbv(d., d,1) holds. 

• bbc(d.1 o d) follows from lemma 3.3.14 (ii) from bbc(d,.), bbc(d) and 
bbv(d,1, d). 0 

Remark 3.5.4 We shall briefly sketch an alternative solution for the state
ment s •. It is based on the idea of (re-)starting a bottorn-up development 
process. Let us assume that we have an operation 'empty ...system' which 
takes a design and yields the design which is obtained by making the sys
tem equal to []. Let us also assume a technique 'determine_top' which for 
given system user d, yields a top design dt such that bbv(d,, dt). After 
the external event d, := change(d,); has happened we are in a state in 
which bbv:( d, dm) and bbc( d) hol ds. If in this state the statement d := 
empty...system(d); dt := determine_top(d,); db:= bot(d); is executed then the 
invariant BUJNV as given in Section 3.4.5 holds. Therefore the developer 
can start executing the repetition statement which we know already from 
the bottorn-up approach, viz. while not top( d) =pp dt do d := bu...step( d); 
od;. If the latter statement terminatea then INV holds again. 

Under certain conditions it may be possible to derive a simulator from the 
result of this bottorn-up development process. 0 
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3.6 Design Partition 

3.6.1 General 

In this section we want to investigate parallel development. Often it is de
sirable to have several developers doing their work simultaneously such that 
their interaction is limited. The result of their joint effort should he a valid 
and correct design. The condition that a designdis valid and correct can he 
expressed by INV as given in Sections 3.4.3 and 3.5. The motivation behind 
this approach is that one wants to achleve a reduction in development time 
compared with the approach in which there is only one active developer at 
a time. 

The design-development language of appendix B does not have a parallel 
composition construct for statements butsome design-programs offer a pos
sibility of parallelism at the 'implementation level'. Because the procedures 
can not have side-effects and because we have expression lists, there exists 
a kind of parallelism in the following sense: let p1 and p2 he procedures 
(techniques) and consider the statement 

Now the execution of p1(d1 } can he done simultaneously with (and indepen
dently of) the execution of p2 (d2}· 

We could try to devise design-programs dealing with design creation and 
design evolution, making special 'parallel' versionsof the techniques given in 
Sections 3.4 and 3.5. However, in order to keep matters simple, we shall in 
this chapter focus only on design-programs 8 which satisfy {INV} s {INV}. 
Such an 8 may range over a very large class of implementation techniques. 
E.g. 8 might correspond with optimisations of the current design e.g with 
respect to performance requirements which are not expressed as black-box 
descriptions; however, 8 can also correspond with an entire re-design. 

One of the ideas behind the notion of a design is the locality principle that it 
should he possible to implement each component in a design without worry
ing about the implementation of the other components in the design. As one 
of the results of the formalisation of this idea (Section 2.5.4} we have the so
called bbc-preserving glass-box modifications, abbreviated as bbc-gb-mod. 
We write this as a binary predicate on pf 1\ ds designs: bbc-gb-mod(d, d'} 
means that d' is a bbc-preserving glass-box modification of d. Because ford 
and d' satisfying bbc-gb-mod(d, d'} we have bbc(d} => bbc(d'} and since one 
design can contain many components, these modifications offer an opportu
nity for parallel development. This will he formalised inSection 3.6.2. 
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Modifications of black-box descriptions can not always be dealt with in a 
similar way: if the black-box description of one component is modified, this 
modification may destroy the correctness of several other components. There
fore we must somehow limit the scope of such modifications. For example, if 
the design d consists in fact of two unrelated parts, then a black-box mod
ification in one part can not endanger the correctness of components which 
are in the other part. It follows that there is a possibility for parallel devel
opment if the current design d can be partitioned into d1 and d2 such that 
d = d1 * d2• This approach will be investigated in Section 3.6.3. 

Similarly there is a possibility for parallel development if the current design 
d can be partitioned into dt and d2 such that d = dt o d2. This approach 
will be investigated in Section 3.6.4. We briefiy mention several approaches 
based on ~ in Section 3.6.5. 

The application of the techniques which we shall discuss in Sections 3.6.3 
and 3.6.4 sometimes needs preparations in the sense that the developer 
must restructure (transform) the current design. (e.g. using lemmas 3.2.9 
and 3.2.16 and remark 3.2.17). In many situations the application of the tech
niques from Sections 3.6.3 and 3.6.4 is doomed to fail unless suitable prepara
tory transformations are performed first. The theory of these preparatory 
transformations probably must be based on the use of algebraic operations 
on designs such as * and o, but may require additional operations. We have 
not investigated this yet. 

3.6.2 Splitting into components 

In this section we want to formalise the idea that the locality principle of 
components can be exploited for parallel development. First weneed some 
notation. 

Definition 3.6.1 Let v be a name and d a pf 1\ ds design such that v E 
cset(d). Then wedefine d[v] := 'the unique component in d with name v'. 

D 

The technique called 'impl.' given below describes the activity of one devel
oper who gets a design d and the name of a component in this design (v). If 
the execution of this technique succeeds, then the developer has performed 
a bbc-gb-mod and the result is one component. Formally the technique 
does not exclude the possibility that the developer does nothing but taking 
an existing old component, but for the partial correctness of the parallel 
development technique this does not matter. As before, we use the design
development language of appendix B and we have variables of distinct sorts: 
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d, ... for pf 1\ ds designs, c, ... for components and v, ... for names. 

imple := technique d, v -+ c 
pre v E cset(d) 
post exists d' (d'[v] = c and bbc-gb-mod(d, d') and 
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forall u ((u E cset(d) and u =1- v)-+ d'[u] = d[u]) ) 

There is a very simple splitting to he done before the actual parallelism 
can start. Two distinct component narnes must he selected such that the 
corresponding components are non-prim. This is described by the technique 
'split/ given below. 

splite := technique d-+ vh v2 

pre true 
post v1 =/- v2 and 

v1 E cset(d) and v2 E cset(d) and 
v1 f/. cset(bot(d)) and v2 f/. cset(bot(d)) 

As inSection 3.4.4 we assume that there is an operation 'insert' which serves 
for inserting a component by overwriting an existing component (which has 
the same name as the component to he inserted). The following technique 
describes the splitting, the parallel development and the insertion of the 
results. 

pardev e := technique d 
defv1 ,v2 := splite(d); 

Ct. c2 := imple(d, vt), imple(d, v2); 
insert(insert( d, ct) ,c2 ) 

The partial correctnessof this technique with respect to INV is stated in the 
following theorem. 

Theorem 3.6.2 {INV} d := pardeve(d); {INV}. 

Proof. Let initially d he a pf 1\ ds design given as 

Xn .- prim C Mn 

Y1 .- P1 C Ql 

Ym .- Pm Ç Qm 
system [St. ... , 81] 
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The following technique describes the splitting, the parallel development and 
the recombination of the results. 

pardev. := technique d"., d., d 
def dt. ~ := split.(d); 

d~, d~ := msplit(top(d".), d1, d2); 
d~, d~ := ssplit(bot(d.), d1, d2); 
d1,d2 := impl(d~,d~,dl), impl(d~,d~,d2); 
dl* d2 

The partial correctness of this technique with respect to INV is stated in the 
following theorem. 

Theorem 3.6.3 {INV} d := pardev.(d"., d., d); {INV}. 

Proof. Use lemma 3.3.3 (ii), lemma 3.3.23 and lemma 3.3.16. 

3.6.4 Splitting according to o 

0 

Let again impl be a technique as given inSection 3.6.3 with the property that 
it does not violate the invariant INV and let us assume that this technique 
'impl' describes the activity of one single developer. 

There is a splitting to be done before the actual parallelism can start. This 
is described by the technique 'split0 ' given below. 

splito := technique d --t dl>~ 
pre true 
post d1 o d2 = d 

As before it is possible to indicate which partsof the machine&user-context 
are relevant for d1 and w hich parts of the machine&user-context are relevant 
for d2 • This is relatively simple, due to the fact that we can view d1 o d2 
as a layered design with layers d1 and d2. We see directly that d1 must be 
validated with respect to top(d2) and the bottorn of the system user, i.e. 
bot(d.). Similarly we see directly that d2 must be validated with respect to 
top(d".) and bot(d1). 

It is tempting to propose a technique similar to pardev~ given below as a 
description of the splitting, the parallel development and the recombination 
of the results. 

pardev~ := technique d"., d., d 
def dt.d2 := split0 (d); 
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Note that this 'impl' may modify black-box descriptions; so 'impl' certainly 
is not restricted to just bbc-gb-mods. There is a splitting to he done before 
the actual parallelism can start. This is described by the technique 'split.' 
given below. 

split. := technique d-+ db~ 
pre true 
post d1 * d2 = d 

Based on the splitting of d into d1 and d2 it is possible to indicate which 
partsof the Înachine&user-context are relevant for d1 and which partsof the 
machine&user-context are relevant for d2. Of course in many practical situa
tions it is not the case that the system user and the machine are formalised as 
designs. N evertheless, in such situations we probably still have that certain 
parts of the machine&user-context are relevant for d1 and that other parts 
of the machine&user-context are relevant for d2. 

In view of lemma 3.3.23, the developers need not know dm and d. com
pletely; it is sufReient if they have access totherelevant partsof top( dm) and 
bot(d.). In fact top(dm) only needs to he given up to top-equivalence (see 
definition 3.3.28). The splitting of the bottorn of the system user d. is a mat
ter of counting prim components and system elements whereas the splitting 
of the top of the machine dm might he more complicated. The correspond
ing techniques are given below. Wedefine defo(db d2) :{::} "the composition 
d1 o d2 is defined". 

msplit := technique dm, d1 , d2 -+ d~, d~ 
pre defo(dl * d2, dm) and top( dm) = dm 
post d~ * d~ =top dm and defo(dt, d~) and defo(d2, d~) 

ssplit := technique d., db~ -+ d~, d~ 

pre defo(d., d1 * d2) and bot(d.) = d. 
post d~ * d~ = d. and defo(d~, d1 ) and defo(d~,d2) 

The condition top(dm) = dm in the precondition of 'msplit' says that dm 
must he a top design. The condition bot(d.) = d. in the precondition of 
'ssplit' says that d. must he a bottorn design. Note that if 'msplit' is invoked 
with arguments satisfying its precondition then by lemma 3.3.30 its execution 
need not fail. Note also that if 'ssplit' is invoked with arguments satisfying 
its precondition then by remark 3.3.32 its execution need not fail. 
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The following technique describes the splitting, the parallel development and 
the recombination of the results. 

pardev. := technique dm, d" d 
def dt, ~ := split.(d); 

d~, d~ := msplit(top(dm), d1, d2); 
d~, d~ := ssplit(bot(d.), d1, d2); 
d1,d2 := impl(d~,d~,d1), impl(d~,d~,~); 
dl* d2 

The partial correctness of this technique with respect to INV is stated in the 
following theorem. 

Theorem 3.6.3 {INV} d := pardev.(dm, d., d); {INV}. 

Proof. Use lemma 3.3.3 (ii), lemma 3.3.23 and lemma 3.3.16. 

3.6.4 Splitting according to o 

0 

Let again impl be a technique as given inSection 3.6.3 with the property that 
it does not vialate the invariant INV and let us assume that this technique 
'impl' describes the activity of one single developer. 

There is a splitting to be done before the actual parallelism can start. This 
is described by the technique 'splito' given below. 

split0 := technique d --+ dt, d2 

pre true 
post d1 o d2 = d 

As before it is possible to indicate which parts of the machine&user-context 
are relevant for d 1 and which parts of the machine&user-context are relevant 
for d2. This is relatively simple, due to the fact that we can view d 1 o d2 

as a layered design with layers d1 and d2 • We see directly that d1 must be 
validated with respect to top(d2) and the bottorn of the system user, i.e. 
bot(d.). Similarly we see directly that d2 must be validated with respect to 
top(dm) and bot(dl)· 

It is tempting to propose a technique similar to pardev~ given below as a 
description of the splitting, the parallel development and the recombination 
of the results. 

pardev~ := technique dm, d., d 
def dt. d2 := splito(d); 
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d~ := top(d2); 
d':n := top(dm); 
d~ := bot(da); 
d~ := bot(dt); 
d17 d2 := impl(d~,d~,dt), impl(d':n,d~,~); 
dl 0 d2 

Remark 3.6.4 The proposition that we have 

{INV} d := pardev~(dm, d8 , d); {INV} 

just does not hold in general. 
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The counter-example is as follows. In this counterexample we do not worry 
about the validation with repeet todmand da but we focus on the interface 
between d1 and d2. Consider the algebrak system with preorder lR1 as before. 
Assume that the designs d1 and d2 which are obtained by 'splito' respectively 
are given by 

y .- prim C: 4 
system [], 

x .- 1 
system [x]. 

c: 1 

Indeed bbv(d1 , d2) because [x Ç 1] f- x Ç 4. In this case d1 happens to be a 
bottorn design and d2 happens to be a top design, so after the execution of 
the assignments tod~, d':n, d~ and d~ we have d~ = d2 and d~ = d1 • Now one 
execution of 'impl' yields a design which is valid with respect to the design 
d2 as given above and the other execution of 'impl' yields a design which is 
valid with respect to the design d1 as given above. Assume that the designs 
yielded by these two executions respectively are given as 

y .- prim C: 2 x .- 1 c: 3 
system [], system [x]. 

Let us refer to the latter designs as the new value of d1 and the new value of 
d2 respectively. Note that bbv(new value of d1 , old value of d2) holds because 
[x Ç 1] f- x Ç 2 and that bbv(old value of db new value of d2) holds because 
[x Ç 3] f- x Ç 4. But bbv(new value of db new value of d2) does not hold. 
Therefore the result of pardev~ is not bbc. 0 

We shall now propose a technique pardevo which is an improved version of 
pardev~. The idea is that either the bottorn of d1 or the top of d2 should 
remain constant in order to avoid the problems shown in remark 3.6.4. We 
investigate the solution in which the top of d2 remains constant. In fact it 
only needs to remain constant up to top-equivalence (see definition 3.3.28). 
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Therefore we need a slightly modified version of 'impl', which we shall call 
'impl+' which is like 'impl' as used above but has the additional property 
that its output design has the same top as its input design. We obtain 
the definition of 'impl+' from the definition of 'impl' by simply adding a 
conjunct to the postcondition (note that this makes one of the other conjuncts 
redundant). 

impl+ := technique dm, d" d --+ d' 
pre bbv(d, dm) and bbv(d., d) and bbc(d) 
post bbv(d',dm) and bbv(d.,d') and bbc(d') and top(d') =top top(d) 

The technique 'pardev0 ' given below describes the splitting, the parallel de
velopment and the recombination of the results. 

pardev o := technique dm, d., d 
def d~.~ := split0 (d); 

d~ := top(d2); 

d':,. := top(dm)i 
d~ := bot(ds)i 
d~ := bot(di); 
dt,d2 := impl(d~,d~,d1 ), impl+(d':,.,d~,d2 ); 
d1 o d2 

The partial correctnessof this technique with respect to INV is stated in the 
following theorem. 

Theorem 3.6.5 {INV} d := pardev0 (dm,d"d); {INV}. 

Proof. Use lemma 3.3.21 (iii), (iv) lemma 3.3.23 and lemma 3.3.14 (ii). 0 

Of course there is also a version of this technique based on the salution in 
which the bottorn of d1 remains constant. 

3.6.5 Splitting according to ~ 

Splitting according to U for parallel development is nat as straighforward as 
according to * and o. We do nat give a formalisation, but we sketch a few 
approaches. 

The first approach is to adopt black-box correctness. However we must he 
careful for the proposition 'd11 d2 are bbc => d1 U d2 is bbc' does nat hold. But 
of course we could split a given d into d1 and d2 in the sense that d1 U d2 is 
defined (and equal tod) and that bath d1 and d2 are rbb(d2)-correct. Now 
at first sight it seems attractive to have two independent developments for 
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d1 and d 2 , preserving their rbb(d2)-correctness and their 11-definedness. But 
on second thought we see that their interface encompasses d2 completely: 
the black-box descriptions of d2 must be kept fixed because these determine 
rbb(d2) and the glass-box descriptions of d2 must he kept fixed because 11-
definedness requires d1 and d2 to have that column in common. As it tums 
out, the technique works in principle, but there are so many constraints on 
d 2 that there is in fact no parallelism at all. 

The second approach is toadopt glass-box correctness. Now we can exploit 
the fact that d1, d2 are gbc => d1 11 d2 is gbc. There are two points worth 
noting. The first point is that the validation of d1 11 d2 with respect to the 
machine&user-context is determined by d2 alone. The second point is that 
d1 and d 2 must have one column in common. Therefore one could cast that 
column into the shape of a bottorn design which is kept fixed during the 
parallel development. 

The third approach is to employ the generalised designs sketched in Section 
3.3.4. This does not give any new approach to parallelism, but there are 
generalisations of the splitting according to *, o and 11 as discussed above. 

3. 7 Looking Back 

Section 3.2 presents an extension of the À1r-calculus, which is necessary in 
order to define algebraic operations on designs. The interpretation (in .X1r) 
of each algebraic operation gives rise to an extension of À1r - each extension 
requiring the introduetion of additional rules. 

By defining binary operations ( *, o) and unary opera ti ons (bot, top) on de
signs, an algebra of designs is obtained. The algebraic laws that hold for 
these operations are investigated and -as it turns out- certain laws of great 
simplicity hold (see e.g. remark 3.3.12). Under certain conditions the result 
of applying a binary operation to two bbc designs is a bbc design again. For * 
this condition is simply 'true' and for o it is formulated as a binary predicate 
bbv; we have the following laws: 

bbc(d1) A bbc(d2) # bbc(d1 * d2), 
bbc(d1) A bbc(d2) A bbv(d1,d2) # bbc(d1 o d2). 

The transitivity of Ç suggests a binary operation 11. It has the the property 
that dt, d2 are bbc ~ d1 11 d2 is bbc and the positive result that d1, d2 are 
gbc => d1 11 d2 is gbc. Several generalisations of our theory are discussed -
suggested by this 11 - which are interesting for a partienlar kind of stepwise 
refinement. 
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To describe models of the software development process, a simple design
development language is introduced, leading us to modelsof the development 
process as highly non-deterministic design-programs of an imperative nature. 

A postcondition for design creation is formulated and from this postcondition 
two invariants can be derived in a natura! way. The first invariant is inves
tigated in Section 3.4.4 and it leads to the derivation of a design-program 
which corresponds to the top-down approach. The second invariant is inves
tigated in Section 3.4.5 and it leads to the derivation of a design-program 
which corresponds to the bottorn-up approach. It is remarkable that the 
top-down and bottorn-up models of the development process can be derived 
in a systematic manner by applying (at the design-program level) an ap
proach which comes from the field of classica! sequentia! programming. The 
possibilities for deriving invariants and design-programs descrihing design 
creation by this approach have by no means been exhausted in Section 3.4. 
It certainly is interesting to investigate other possibilities. 

As it turns out the formulation of the design-programs of Section 3.4 requires 
several ad-hoc operations on designs; wethink this is mainly due tothefact 
that both top-down and bottorn-up development processes take place within 
the scope of one variabie design and that therefore one must be very explicit 
about names, contexts, components, etc. In remarks 3.4.9 (ii) and 3.4.14 
(ii) an interesting difference between the top-down approach and the bottorn
up approach is revealed: the top down approach always yields a black-box 
correct design (even if the developer does not know the difference between 
black-box correctness and glass-box correctness) but there exist two variants 
of the bottorn-up approach where the first variant yields a black-box correct 
design and the second variant yields a glass-box correct design. 

Using the algebra of designs, we discuss the validation of a given design with 
respect to a given machine&user-context and the related problems of design 
evolution. In Section 3.5 we discuss some simple models of the development 
process which deal with design evolution. 

The fact that it is possible to split designs and reassemble them again, gives 
rise to models of the development process where two (or more) developers 
each operate on a part of a design such that when each of them has finished 
his part, their results are fitted together to yield a new design which is both 
bbc and valid. 

Most of the basic ideas behind the modelsof the development process which 
are given in Sections 4, 5 and 6 are not really new, but their formalisation 
is very useful because it makes it possible to reason about the development 
process in a precise way. The relatively subtie (but important!) points 
addressed in remark 3.2.17, remark 3.3.35, remark 3.6.4 and remarks 3.4.9 
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(ii) and 3.4.14 (ii) demonstrate that one needs to he careful indeed when 
discussing the development process. 

It should he noted that most sections in this chapter are open-ended. Ap
pendix A and Section 3 are open-ended because one can always imagine new 
useful operations (both in terms of À1r and in terms of designs). Appendix 
B is open-ended because one might extend the design-development language 
withalmost any language construct from classica! specification languages and 
classica! programming languages. Sections 4, 5 and 6 are open-ended because 
one can always devise other design-programs; in fact we only investigate some 
of the simplest design-programs. 

It is important that the concepts investigated in this chapter are applied 
in one or more case studies. The language COLD-K can he employed for 
such case studies. This is possible because COLD-K is basedon an algebraic 
system (viz. the algebra CA of class descriptions) and has À7r for parame
terisation and because it has components and designs as built-in language 
constructs [8]. Fora very first example using a technique from this chapter 
we refer to [9]. A large example will he presented in Chapters 4 and 5. 
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Appendix A 

À1r-Calculus with sequences 

In order to define algebraic operations on designs it is useful to use sequences 
within À7r. For that purpose we shall make an extension of the calculus À1r 

in this appendix. We shall nat give the complete definition of the resulting 
calculus, but rather describe the modifications with respect to the calculus 
given in Chapter 2 in an incremental manner. 

As a first step we shall adapt the definition of À1r-calculus for an algebraic 
system with preorder lR by adding sequences to the language of lR. We 
shall denote sequences by using square brackets; e.g. the sequence with two 
elements Pand Q is denoted by [P, Q]. We shall have projection functions 
11"; for i= 1, 2, .... We shall avoid the problems that arise when a projection 
function 11"; can be applied to a sequence whose length is less than i by 
adapting the type system. Furthermore we shall have a binary operation * 
for concatenation. The laws that describe the operations on sequences will 
he given as rules of À1r. 

We do nat define these constructions in À1r as one would do in classica! 
lambda calculus. Same of the techniques one uses in classica! lambda calculus 
for defining 'pairing' arebasedon having 77-reduction and it is nat clear (yet) 
what 17 reduction in À1r-calculus should look like. 

Definition A.l.l (i) Add to the inductive defi.nition of thesetof type sym
bols: 

• if a11 ••• ,am are type symbols (m ~ 0), then also is (a11 ••• ,um)· 

(ii) Add to the definition of the alphabet: 

• Symbols for operations on sequences: [, ], 11"; (for i = 1, 2, ... ), *· 
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(iii) Add to the inductive definition of the set AR of lambda terms for lR, and 
their type: 

• (i) if P1 E AIR, ... , Pn E AIR for n ~ 0 with types ub ... , Un then 
[P1, ... ,Pn] E AIR with type (ul> ... ,un)· 

(ii) if P E AIR with type (Ut, ... , un) and 1 ~ i ~ n then 1rs(P) E AIR 
with type u,. 0 

Definition A.1.2 (length). If a lambda term P has type (Ut. ... , un) then 
the length of P is defined as n. D 

Definition A.1.3 (Rules for sequences). We adopt the rules of À7r (f=t. 
f=2, context, refl., trans., À/1. À/2, ap., 1r, =1, subst.) and we add the 
following rules: 

r f--- [P1, ... ,Pn] * [Ql, ... ,Qm] = [P~>···,Pn,Qb···•Qm] 

(C ) f f--- PI!;;;;; Ql, ... ,r f--- Pn Ç Qn 
- -seq r f--- [P1, ... ,Pn] Ç [Ql> ... ,Qn] 

0 

We could add a rule for surjectivity of sequence construction, but since we 
do not need it we shall not add it. From now on we write À7r to denote the 
extended version of the calculus. 

Lemma A.1.4 (Properties of*). Let P = [Pb ... , Pm], Q = [Q1, ... , Qn] 
and R =: [R1, ... , Rp]· 

(i) f--- (P * Q) * R = P * (Q * R), 

(ii) f--- [] * P = P * [] = P. 

Proof. (i) Weuse rule (*I). 

f--- (P * Q) * R =: ([PI. .. . ,Pm] * [QI. ... ,Qn]) * [Rt, ... ,RP] 

~ [Pl, ... ,Pm,Qll· · ·•Qn] * [R1, ... ,RP] 

~ [Pl, ... ,Pm,Qb···•Qn,Rb···•RP] 

~ [P1, ... ,Pm] * [Ql•· .. ,Qn,R~> ... ,RP] 
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~ [Pt. ... , Pm] * ([Qt, ... , Qn] * [R11 ... , R"J) 

= p * (Q * R). 
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(ii) f- [] * P = [] * [Pt, ... ,Pm] ~ [Pl!···•Pm] =Pand finally f- P * [] = 
[Pt, ... ,Pm] * [] ~ [Pl!···•Pm] = P. D 

Remark A.1.5 It is tempting tothink that every term P of type ( O't, ••. , am) 
can be written as [P1 , ... ,Pm] for suitable Pt, ... ,Pm such that f- P = 
[P1, ... , Pm]· This is not the case however. As an example consider the al
gebraic system with preorder !R1 = (IN,::.;, { + }, {0, 1, 2, ... } ) and P :=: (-\x Ç 
1.[0, 01)2. An even simpler example is the term xu fora= (a11 ... , am)· D 

Remark A.1.6 Insteadof sequence construction using [ and] we could have 
chosen constructars [] and cons. In that case we might have chosen projection 
functions 'hd' and 'tl'. D 

We can define the relations --.,--++ and =,..in an obvious way by viewing the 
rules (7r,7r;,*t) as basic reduction steps. 

Definition A.1.7 (Reduction). 

The relation --. is defined inductively by: 

1. r f- R Ç A~ r f- (-\x Ç A.B)R--. B[x := R], 

2. r f- 1r;([P1, ... , PnD --. P, (1 ~i~ n), 

3. f f- [Pt, ... , Pn] * [Q1, ... , Qm] __. [P11 ... , Pno Ql! ... , Qm], 

4. ff-M-.N~ff-/j( ... ,M, ... )-.f;( ... ,N, ... ), 

5. r f- P,--. P: ~ r f- [Pt, ... ,P;, ... ,Pn]-. [Pli····P:, ... ,Pn] (l~i~n), 

6. r r- P - P' ~ r r- P * Q - P' * Q, 

1. r r- Q- Q' ~ r r- P * Q- P * Q', 

8. r f- P--. P' ~ r f- 1r1(P) --. 7r;(P'), 

9. r f- M--. N ~ r f- ZM--. ZN, 

10. r f- M--. N ~ r f- MZ--. N Z, 

11. r f- P--. Q ~ r f- (-\x Ç P.M)--. (-\x Ç Q.M), 

12. r, [x ç P] f- M--. N, x(/. r ~ r f- (-\x Ç P.M)--. (-\x Ç P.N). 

The relation --++ is defined inductively by: 

1. r f- M --. N ~ r f- M--++ N, 



198 CHAPTER 3. CORRECTNESS PRES. TRANSFORMATIONS 

2. ff-M--++M, 

3. r f- M --++ N, r f- N --++ L => r f- M --++ L . 

The relation =". is defined inductively by: 

1. r f- M--++ N => r f- M =". N, provided M--++ N only by 1r-reductions, 
i.e. excluding the clauses 2. and 3. from the definition of-+, 

2. r f- M =". N => r f- N =". M, 

3. f f- M =". N, f f- N =". L => f f- M =". L. 

And of course we have the following lemma, justifying -+,--++ and =".. 

Lemma A.1.8 

(i) r f- M-+ N => r f- M = N, 

(i i) r f- M --++ N => r f- M = N, 

(iii) r f- M =". N => r f- M = N. 

Pro of. 

(i) By induction over the definition of-+. 
(ii) By induction over the definition of--++. 
(iii) By induction over the definition of =".. 

0 

0 

This enriched À?r-calculus has reasonable properties: In À7r with the exten
sions of definitions A.l.l and A.1.3 every term strongly normalises (SN). This 
can he shown by adapting the computability argument of Chapter 2. Further
more in À?r-calculus with the extensions of definitions A.l.l and A.1.3, --++ 
satisfies the diamond property i.e. r f- M--++ M1 , M--++ M 2 => 3M3 • (r f
M1 --++ M3 , M2 --++ M3). This can he shown by adapting the proof of the 
weak diamond property and using Newman's lemma again, justas was done 
for À7r in Chapter 2. 

In order to have an interpretation for the algebrak operations on designs, 
we extend À7r once more by introducing two operations on closed terms, 
viz. * and o. One can view * as a generalisation of the concatenation 
of sequences ( *). One can view M o N as functional composition, where an 
automatic un-Currying takes place. We shall not give the complete definition 
of the resulting calculus, but rather describe the extensions with respect to 
the calculus described so-far in an incremental manner. We shall use the 
conventions that u1 -+ ... -+ Un-+ r abbreviates u1 -+ ( ... (un-+ r) .. . ) and 
that Àx Ç P.T is shorthand for Àx1 Ç P1 · · · Àxn Ç Pn.T 
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Definition A.l.9 (AR)· (i) Add to the definition of the alphabet a clause: 

• A binary operation symbol: o. 

(ii) Add to the inductive definition of the set of lambda terms and their type: 

• if P E AIR with type Ut --+ ••• --+ Um --+ (~t. ... , ~;) and Q E AIR 
with type Tt --+ ••• --+ r,. --+ (77t, ... , 'Ik) then P * Q E AIR with type 
Ut --+ • • • --+ Um --+ Tt --+ • • • --+ T n --+ (~t, · · ·,~;,'lt.·. • , 'Ik), 

• if P E AIR with type Ut --+ ••• --+ Um --+ (~t, . .. , ~;) and Q E AIR 
with type Tt --+ ••• --+ r,. --+ (ut, ... , um) then Po Q E AIR with type 
r1 --+ ••• --+ r,.--+ (~1, ... , ~;). 0 

Definition A.l.lO (rules for *• o). We adopt the rules of À7r (l=t, 1=2 , 

context, refl., trans., Àlt. )../2 , ap~ , 1r, =1, subst., 7r;, *1> Ç -seq) and we 
add the rules: 

.... .... ........ (S,Tnotofatypeu-+r) 
AxÇ P.S * AifÇ Q.T = AxifÇ PQ.S * T 

.... .... (x ft. M, N not of type u -+ r) 
M o (AxÇ B.N) = ÀxÇ B.(M oN) 

(A x ç M.N) o [i] = (Ax ç M.N)L 

where it is understood that the condusion of rule o2 is an abbreviation of 
the following: 
(Axt Ç M1· ···Àxm Ç Mm.N) o [Lt, ... ,Lm] = (Ax1 Ç Mt····(Àxm Ç 
Mm.N)Lm .. . )Lt. o 

Since we have extended thesetof terms and added rules, we must reconsider 
the properties of * and o again: 

Lemma A.l.ll (Properties of *). 
Let P = Àx Ç P'.[P1, .•. , Pm], Q = Aif Ç Q"'.[QI> ... , Q,.] and R = )..z Ç 

R'.[Rt.····Rp]· 

(i) f- (P * Q) * R = P * (Q * R), 

(ii) f- [] * P = P * [] = P. 

Proof. (i) We use the rules (*t) and (*2)· 
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~ (.XxyÇ P'Q'.([P., ... , Pm] * [Ql! ... , Qn])) * R 

~ (.XxyÇ P'Q'.([Pl, . .. ,Pm,Ql•···•Qn])) *R 

~ .Xxyz Ç P'Q' R'.([P1, ... , Pm, Q1, ... , Qn] * [R1, ... , Rp]) 

~ .Xxfiz Ç P'Q' R'.[P., ... , Pm, Q1, ... , Qn, R1, ... , Rp] 

~ .Xxfiz Ç P'Q'R'.([P1, ... , Pm] * [Ql! ... , Qn, R1, ... , Rp]) 

~ (.XxÇ P'.[Pl, ... ,Pm]) * .XfizÇ Q'R'.[Ql, ... ,QmR1, ... ,RP] 

~ P * .XfizÇ Q'R'.([Ql!·· .,Qn] * [R11 ••• ,Rp]) 

~ P * ((.XfiÇ Q'.[Ql! ... , QnJ) * .XzÇ R'.[R11 ••• , Rp]) 

= p * (Q * R). 

(i i) First we prove IJ * P = P. 

1- [] * P = [] * .X.iÇ P'.[P., .. . ,Pm] 

~ .Xx ç P'.([] * [P1, .. . , Pm]) 

~ .XxÇ P'.[P11 ••• ,Pm] = P. 

Finally we prove P * [] = P. 

1- P * [] = (.X.i Ç P'.[Pb ... 1 Pm]) * [] 
~ .XxÇ P'.([Pl, . . . ,Pm] * []) 
~ .XxÇ P'.[P11 ••• ,Pm] = P. 0 

Lemma A.l.l2 (Properties of o). The following properties hold only under 
certain conditions. A sufReient condition is that both the left-hand side and 
the right-hand side of the stated equation are fully reducible (by which we 
mean that all candidate-redexes are redexes). We consider closed terms P, 
Q and R. Let P = Àx1 Ç P1····ÀXm Ç Pm.[Al! · · · •A;] = .X.iÇ P.[Ä]. Let 
Q = .Xy1 Ç Q1.···.Xyn Ç Qn.[Bli···•Bm] = .XfiÇ Q.[B]. 
Let R = .Xz1 Ç R1• • ··Àzp Ç Rn.[Ö] = .XzÇ R.[Ö]. 

(i) 1-(PoQ)oR=Po(QoR), 

(ii) 1- []oP= Po[] = P. 

Proof. (i) M[.i := B] abbreviates M[xm := Bm]· .. [x1 := B1]. We freely use 
1r-equality. 

1- (Po Q) o R = ((.X.i ç P.[Ä]) o .Xy ç Q.[B]) o R 
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0 - - - +-::! (>,yç Q.(..\xÇ P. [A])B) o R 

= (.xgç Q.(.xxç P.[A])Ë) o .x;ç .R.[ë] 
0 - - - - +-- -::! Àz Ç R.((..\y Ç Q.(Àx Ç P. [A])B) o [C]) 
0 - - __ ...... ._ 

::! Àz Ç R.((..\y Ç Q.(Àx Ç P.[A])B)C) ="" ... 

="".x; ç .R.[l[x := Ë][Y' := ë]] 

= .x;ç .R.[l[x := Ë[Y' := ë]]] ="" . .. 

="" .x;ç .R.((.xxç fl.[l])Ë[Y'== ë]) 

~ .x;ç R.((.Xxç P.[AJ) o [Ë[Y' := ë]]) 

= .x;ç .R.(P o [Ê[Y':= ë]]) ="" ... 

= "" .xz-ç R.(P o ((.xgç Q.[Ë])Ö)) 

~ Po..\zÇR.((..\yÇQ.[Ë])Ö) 

~ Po (.Xzç .R.((.Xgç Q.[Ë]) o [C])) 

~ Po ((.xgç Q.[Ë]) o (.Xzç .R.[ë])) 

:: Po(QoR). 
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(ii) f- Po[]= Pis nothing but rule (o2). For the converse, note that P must 
be of type r1 ---t ••• r n ---t (). Since P is closed and fully reducible, it must he 
1r convertibletoa term of the form Àx Ç P.[]. Therefore f- []oP= [] o Àx Ç 

P.[] ~ ÀX ç P .([] 0 []) ~ ÀX ç ft.[]= P . 0 
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Appendix B 

Design-development language 

In this appendix we shall define a simple language which can he employed 
for expressing certain models of the software development process. It is 
particularly tuned to the setting of our study of growing, combining and 
modifying designs. The models of the development process we aim at, are 
abstract in the sense that they leave room for creative freedom by a human 
developer. 

Essentially the design-development language provides for procedures with 
input and output parameters. The procedures can he defined by either 
imperative programming-language constructs (assignment, while, sequen
tia! composition, etc.) or by fust-order predicate logic constrocts (not, 
and, forall, etc.). This language is kept small and simple. lts seman
tics is relational, i.e. the meaning of a procedure is just a relation on 
input-domain x output-domain. 

The motivation for these choices is as follows. The imperative style is chosen 
because we view it as natura! and intuitive to support a notion like 'current 
design'. The logical constructs and the relational semantics are required 
by the abstractness of our models. The imperative constrocts are required 
because sometimes we want to he very specific in our models - like in 'first do 
this, then do that', or in case of repetitive models. The procedures themselves 
serve as a simple modularisation mechanism for our models. At the end of 
this apendix we shall discuss some more aspects of the use of this language. 
There we shall also show a few examples. 

We assume the following sets 

Var: variables with typical elements x, y, ... 
Predn: n-ary predicate symbols with typical elements Pm ... 
Opn: n-ary operation symbols (n E IN) with typical elements On, ... 
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We shall define the following sets 

Dexp: deterministic expressions with typical elements e, ... 
Asn: assertions with typical elements A, ... 
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Elistk (k E JN+): expressions lists of length k with typical elements 
lk, ... 
Stat: statements with typical elements s, ... 
Procn,m (n E lN, mE JN+): procedures with typical elements Pn,m, ... 

We shall define mappings yielding the sets of 'free variables' (denoted as FV) 
and the so-called 'assign-set' (denoted as AS). The assign-set of a statement 
will contain those variables for which it follows on syntactical grounds that 
assignments are made to them. 

FV: Dexp .- P( Var) 
FV: Asn .- P( Var) 
FV: Elist" .- P( Var) 
FV: Stat.- P( Var) 
AS: Stat.- P( Var) 

We give the definitions now, where it is understood that Dexp, Asn, Elistk, Stat 
and Procn,m are the smallest sets which are closed under the syntax rules 
given below, under the indicated restrictions related toFVandAS and where 
it is also understood that the mappings FV and the mapping AS are simul
taneously inductively defined. 

e ::=x 

I On( et, . · . , en) 

A ::= Pn(el, ... , en) 
I true 
I notA' 
I (A' or A") 
I (A' and A") 
I (A'-- A") 
I (A' t-+ A") 
I exists x (A') 
I forall x (A') 

lk ::=x (k = 1) 
I On(l~) (k = 1) 
ll~, z;:. (k = n + m) 
I Pn,m(l~) (k = m) 
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s ::= (i.e. empty) 
I X11 ... , xk := lk; (x11 ... , xk distinct) 
Is' s" 
Is' Os" 
I while A do s' od; 

Pn,m ::= proc X11 . .. , Xn ----? Yll .. . , Ym axiom A 

(FV(A) Ç {.i} U {!1}, x1, ... ,xn, Yb ... ,ym distinct) 

I proc x1, ... , Xn def s lk 

(k = m, FV(lk) Ç {i} U AS(s), FV(s) Ç {i}, x 11 ... , Xn distinct) 

proc x 11 ... , Xn----? Yl, ... , Ym pre A post A' abbreviates proc Xt, ... , Xn----? 
Y1, ... , Ym axiom (A and A') provided FV(A) Ç {.i}, FV(A') Ç {.i} U 

{11}, x1, ... , Xn, Y11 ... , Ym distinct. 

FV: Dexp----? P( Var) is defined by 

FV(x) ={x} 
FV(On(ë')) = Ui=l, ... ,n FV(e;) 

FV: Asn ----T P (Var) is defined by 

FV(Pn(ë')) = Ui=l, ... ,n FV(e;) 
FV(true) = 0 
FV(not A) = FV(A) 
FV((A or A')) = FV(A) u FV(A') 
FV((A and A')) = FV(A) u FV(A') 
FV((A----? A')) = FV(A) u FV(A') 
FV((A +-+A')) = FV(A) U FV(A') 
FV(exists x (A)) = FV(A) \{x} 
FV(forall x (A)) = FV(A) \{x} 

FV: Elistk ----T P( Var) is defined by 

FV(x) ={x} 
FV(On(ln)) = FV(ln) 
FV(ln, l~) = FV(ln) u FV(l~) 
FV(Pn,m(ln)) = FV(ln) 

FV: Stat ----T P( Var) is defined by 
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FV() = 0 
FV(x := l;) = FV(l) 
FV(s s') = FV(s) u (FV(s')- AS(s)) 
FV(s 0 s') = FV(s) u FV(s') 
FV(while A dos od;) = FV(A) u FV(s) 

AS :Stat-+ P (Var) is defined by 

AS()= 0 
AS(x := z;) ={x} 
AS(s s') = AS(s) u AS(s') 
AS(s 0 s') = AS(s) n AS(s') 
AS(while A dos od;) = 0 

205 

We assume a set D (the domain of the built-in data type) with typical ele
ments d, ... and we assume meaning functions 

[ ~ : Predn-+ P(D") 
[ ~ : Op" -+ D" -+ D 

The set E of stat es, with typical elements a, ... is defined by 

E = Var-+ D 

We shall define the following meaning functions 

[ ~ : Dexp -+ E -+ D 
[ ~ : Asn -+ P (E) 
[ ~ : Elist~c -+ E -+ P(D,.) 
[ ~ : Stat -+ E -+ P (E) 
[ ]] : Procn,m-+ P(Dn+m) 

We shall identify D x (D x D) with (D x D) x D. We write a{dfx} for the 
modified state À\ y · ( if y = x then d else a(y)). 

The meaning of a deterministic expression yields for a given state the result 
value. The meaning of an assertion is thesetof statesin which it holds. The 
meaning of an expression list yields for a given state the set of possible result 
sequences. A statement is viewed as a non-deterministic state transformer. 
A procedure is viewed as arelation between an input sequence and aresult 
sequence. 

[ ~ : Dexp -+ E -+ D is defined by 

[x ~(a) = a(x) 
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[On(e) ](a)= [On ]([e ]{a)) 

[ ] : Asn ---+ P (E) is defined by 

[Pn(e)] ={a I [e]{a) E [Pn]} 
[true] = E 
[ not A ] = E \ [A ] 
[(A or A')]= [A] U [A'] 
[(A and A')D =[All n [A'] 
[(A---+ A')]= {a ia Et [A] V a E [A']} 
[(A+-+ A')]= {a ia E [A]{:} a E [A']} 
[exists x (A)]= {a l3d·a{djx} E [A]} 
[forall x (A) ] ={a I Vd · a{djx} E [A]} 

[ ] : Elistk---+ E---+ P(Dk) is defined by 

[x ](a) = {a( x)} 
[On(l) Ha) ={[On ](d) ilE [l](a)} 
[l,l'](a) = {ddi il E [l](a) 1\ JE [l'Ha)} 
[Pn,m(l) Ha)= {J l3l E [l](a) · ddi E [Pn,m]} 

[ ] : Stat ---+ E ---+ P (E) is defined by 

[ ](a) ={a} 
[i:= I; ](a)= {a{lji} ilE [lHa)} 
[s' s"](a) ={a" l3a' ·(a' E [s'](a) 1\ a" E [s"](a'))} 
[s0s'](a) = [s ](a) U [s'D(a) 
[while A dos od; ](a) = ui= O,l, ... ~;(a) 
where wedefine ~;: E---+ P(E) for i = 0, 1, ... by 
~o = ».a· {a} n [not A] 
~i+l = ». a· 
{a" l3a' E ~;(a) · (a' E [A] 1\ a" E [s ](a') 1\ a'' E [notA])} 

[ ]] : Procn,m---+ P(Dn+m) is defined by 

[proc i ---+ y axiom A ] = { ddi I 3a' · (a' { lj i}{ J /i/} E [A ] )} 
[proc i def sIn= {ddi l3a'. (3a E [s D (a'{cf;i}). (JE [l](a)))} 

Now we shall discuss the use of this language. Typically the domain of the 
built-in data type is the set of all (pf 1\ ds) designs, but we shall also use 
other domains, however without formally having defined this. We take 
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Op1 = {top, bot, ... } 
Op2 = {o, *• ... } 
Pred1 = {bbc, gbc, .. . } 
Pre~= { =, =rr 1• =PP• =top• bbv,gbv, bbc-gb-mod, ... } 
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where = denotes equality on D and where =u 1 is defined by d1 =n 1 d2 :Ç:> 

1-.h- Ud1 ~ = [d2 ]. The dots ( ... ) mean that we shall feel free to extend the 
set of operations and predicates when necessary. Both o and * are written 
in infix notation. Also = and =[ 1 are written in infix notation. 

If no confusion can arise we sametimes omit parentheses e.g. writing A and 
A' insteadof (A and A'). We shall freely give names to procedures, writing 
n := p where n is the name to he given to the procedure p. We do not 
allow recursion (yet). Sametimes we replace the keyword proc byevent or 
technique. 

We give three simple examples of design-programs written in this language. 
In these examples we have three procedures (techniques) which are named 
'split', 'impl' and 'pardev' respectively. The procedure 'split' is given in a 
pre- and postcondition style. The result of executing split(d) can he any 
pair of designs d1 and d2 for which d1 * d2 = d and in that sense 'split' is 
non-deterministic. 

split := technique d---+ d~, d2 
pre bbc(d) 
post d1 * d2 = d 

The second example is about a procedure 'impl' which also is given in a pre
and postcondition style. The technique 'impl' should he considered as an 
instruction to a developer to performa hhc-preserving glass-box modification 
(hbc-gb-mod) upon a bbcinput design and to yield the design resulting from 
this modification. 

impl := technique d ---+ d' ' 
pre bbc(d) 
post hbc-gh-mod(d,d') 

The third example is about a procedure 'pardev' which is given as a very sim
ple algorithm consisting of an assignment statementand aresult expression. 
It invokes the two procedures of the other examples. The technique 'pardev' 
can he viewed as a model of the development process offering a possihility 
for parallel development. It says that first of all the input design d should he 
split using the technique 'split' and that the resulting parts of d should he 
temporarily stared in d1 and d2. Then the technique 'impl' should he applied 
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to each of these parts (possibly in parallel) and the results should be fitted 
together again with * to form the final result design. 

pardev:= technique d 
def dh~ := split(d); 

impl(dt) * impl(d2 ) 

After these examples, we can give some more motivation for this procedure 
concept. Procedures have to yield a sequence of results because we want to 
view splittingas a procedure (as shown in the 'split' example). Weneed the 
non-determinism since we must be able to describe the creative freedom of 
the developer. The fact that procedures have no side-effects makes reasoning 
about them relatively easy. 

In order to state properties of our design-programs we shall write {At}s{A2} 

iff the following holds: 

i.e. if we start in a state u1 in which A 1 holds and if execution of s stops in 
state u2 then A2 holds in u2. Note that the execution of s starting in u 1 can 
go wrong for it may be the case that that there is no u2 E [s ](ut). In this case 
we say that the execution of s fails. It follows that non-termination is viewed 
as a failure as well. We shall refer to {At}s{A2 } as the partial correctnessof 
s with respect to A 1 and A2 • As an easy example of this notation we have 
{bbc(d)} d1,d2 := split(d); {d1 * d2 = d}. 
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Appendix C 

List of symbols 

In this appendix we give a list of the symbols used. For each symbol the 
list contains a very short informal description. The list has been subdivided 
into a number of sub-lists. The fust sub-list contains general mathematical 
symbols. The second sub-list contains the symbols which are introduced 
in Chapter 2. The third sublist contains the symbols which are introduced 
and/or used first in Section 2. In a similar way the fourth sub-list contains 
the symbols which are introduced and/or used first in Section 3, and so on. 
For some symbols the list contains a relevant page number - usually the 
defining occurrence of the symbol. 

General mathematical symbols 

~,-{::= 

{:} 

A, V 
V, 3 

= 
:= 
{ } 
{ I } 
E 
0 
u,n 
\ 
Ç, 2 
p 
c· 
x 

Logical implication 
Logical equivalence 
Conjunction, disjunction 
U niversal, existential quantification 
Syntactical equality 
Equality 
Abbreviation 
Set construction 
Set comprehension 
Set memhership 
Empty set 
Set union, set intersection 
Set difference 
Set inclusion 
Powerset 
The set of sequences with elements from C 
Cartesian product 
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( ' ) 
( ' ... ' ) 
JN, JN+ 
<, ~ 
+ 
0, 1,2, ... 
f:A----+B 
À\ 

[ := l 

Pair 
Tuple ( = sequence) 
Natura! numbers, positive nat. numbers 
Less than, less than or equal to 
Addition 
Natura! numbers 
f is a function from A to B 
Lambda notation for functions 
Substitution 

Symbols from Chapter 2 

a, a1, ... , r, 1"1, •• • 

Xo,Xt,··· 

xf 
c 
A,B,C,L,M,P, ... 
x,y,z,u,v,w 
[<p] 
r.~ 
f-

(f=d 
(f=2) 
(context.) 
(refl ) 
(trans.) 
(.Ui) 
{.U2) 
(ap.) 
(7r) 

(=I) 
(subst.) 

0 
SN 
c~ 

Typical algebraic system with preorder 
lN as algebraic system 
Abstractor (symbol) 
Lambda calculusbasedon rule (1r) 

Set of terms for À7r 

Basic type symbol 
Gonstructor for type symbols 
Typical type symbols 
Variables 
Typical variabie of type r 
Partial order (symbol) 
Typical lambda terms 
Typical variables 
Formula <p viewed as an assumption 
Typical contexts 
Derivation symbol 
Rule of À7r (algebraic system oracle) 
Rule of À1r (a!gebraic system oracle) 
R ule of À 1r (context rule) 
Rule of À1r (reflexivity) 
Rule of À1r (transitivity) 
Rule of .h (lambda introduction) 
Rule of À7r (lambda introduction) 
Rule of À7r (application) 
Rule of À1r (partial contraction rule) 
Rule of À1r ( = introduction) 
Rule of À7r (substitution) 
Diamond ( Church Rosser) property) 
Strong normalisation property 
The set of components 

55 
58 
61 
60 
62 
61 
61 
61 
62 
62 
62 
63 
63 
64 
64 
64 
65 
65 
65 
66 
66 
66 
66 
66 
67 
68 
68 
80 
76 
84 
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c,ct, ... Typical components 
DFR The set of designs 

d,db··· Typical designs 
:=,Ç Symbols used in concrete syntax of designs 
prim, system Symbols used in concrete syntax of designs 
wf Well-formed 

~ ll Meaning function for designs 
gbc, bbc Glass-box correct, black-box correct 
bbc-gb-mod bbc-preserving glass-box modification 

Symbols concerning designs 

M Abbreviated form of e.g. M 17 ••• ,Mn 
D' 'IR Designs where the system is a sequence 
cset( ) Set of narnes of a design 
sys( ) Set of narnes in the system of a design 
arity( ) Ari ty of a design 

=n 1 Semantic equivalence on designs 
pf prims-first 
ds Directly specified 

rgh•rhb Glass-box context, black-box context 

.c Typical sequence of abstractions 
s Typical Sequence of substitutions 

Symbols concerning algebraic operations on designs 

* Concatenation operation on designs (binary) 
0 Composition operation on designs (binary) 
e Empty design 
en Identity design of arity (n, n) 
gbv,bbv Glass-box valid, black-box valid 
_i,T Min. and max. elements (cf. Ç) 
bot, top Bottom and top operations on designs 
-pp Equality roodulo permutation of prims 
=top Top-equivalence 

~ Column-wise operation on designs 
( ) Embedding 

Symbols concerning design creation 

0,1, .,+,EB,
GND,7400,7401, ... 
b,s 

Symbols of Boolean logic (in example) 
TTL component narnes (in example) 
Typical bit-sequences (in example) 
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84 
86 
86 
86 
86 
87 
91 
87 
?? 

123 
124 
124 
125 
125 
129 
129 
132 

135 
135 

133 
136 
138 
138 
141 
144 
144 
147 
148 
150 
153 

156 
156 
156 
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int(b) Integer respresented by b (in example) 156 
w Typical machine&user-context 162 
INV General invariant to be (re-) established 164 
POST Postcondition of design creation 164 

I Typical set of component narnes 165 
<d 

1 One-step 'part of' relation 165 
<d 'Part of' relation 165 
<d Occurs (directly or via <d) in ... 165 
TD_lNV Top-down invariant 166 
td Top-down technique 166 
td....step One-step top-down technique 166 
last_prim Operation yielding component 167 
last_prim_context Operation yielding 'context' design 167 
tdjmpl Technique implementing one component 168 
insert Operation for inserting a component 161 
td....step0 , td....step1 , ••• Alternative techniques for td....step 167 
td....specjmpl Combined specification & implementation 169 
BU_lNV Bottorn-up invariant 173 
bu Bottorn-up technique 173 
bu....step One-step bottorn-up technique 173 
bu....step0 , bu....step1 , ••• Alternative techniques for bu....step 174 
add....system_element Operation for adding a system element 174 
add_component Operation for adding a component 175 

Symbols concerning design evolution 

change Procedure descrihing arbitrary event 179 
emulator Technique descrihing emulation 180 
remove_un used Operation to remove unused components 181 
determine_bottom Technique yielding a valid bottorn design 181 
simulator Technique descrihing simulation 182 
empty ....system Operation for making the system empty 182 
determine_top Technique yielding a valid top design 182 

Symbols concerning design partition 

d[v] The unique component in d with name v 184 
impl

0 One-developer bbc-gb-mod technique 184 
split

0 
Technique for splitting into components 185 

pardev
0 Component-based parallel technique 185 

impl Arbitrary technique respecting INV 186 
split. Technique for splitting according to * 187 
defo Definedness of composition 187 
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msplit 
ssplit 
pardev. 
splito 
pardev~ 
pardev0 

impl+ 

Technique for splitting machine 
Technique for splitting system user 
Parallel technique based on * 
Technique for splitting according to o 
Fallacious version of pardev o 
Parallel development technique based on o 
Technique as impl not affecting top 

Symbols concerning À1r-calculus with sequences 

( ' ' ) Gonstructor for type symbols 

[' 'l Gonstructor for terros (sequence) 
11"j Gonstructor for terros (projection) 

* Gonstructor for terros ( concatenation) 

1J Glassical notion of red uction 
(1r,), (*I), (Ç-seq) Rules of À1r with sequences 
-t One step rednetion - Rednetion 
-,.. 1r-convertibility 
.!! Equality because of rule ( *d 
r,a,1J,~ Typical type symbols 
0 Gonstructor for terms 
( *2), ( ol), ( o2) Rules of À11" with sequences 
Àxç.M. A bbreviating ÀXI Ç MI .... ÀXm Ç Mm. 

M Abbreviating Mn ••• MI 

Symbols concerning the design-development language 

Var Set of variables 
Pruln Set of n-ary predicate symbols 

Op" Set of n-ary operation symbols 
Dexp Set of deterministic expressions 
Asn Set of assertions 
Eli st" Set of expressions lists of length k 
Stat Set of statements 
Procn,m Set of procedures 
x,y, ... Typical elements of Var 

Pn,··· Typical elements of Pred,. 

On,••• Typical elements of Op" 
e, ... Typical elements of Dexp 
A, ... Typical elementsof Asn 
lk, ... Typical elements of Elist,. 
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187 
187 
187 
188 
188 
190 
190 

195 
196 
195 
195 
195 
196 
197 
197 
198 
196 
195 
199 
199 
199 

199 

202 
202 
202 
203 
203 
203 
203 
203 
202 
202 
202 
203 
203 
203 
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s, ... Typical elementsof Stat 203 

Pn,m•··· Typical elements of Procn,m 203 
FV( ) Set of free variables of ... 203 
AS( ) Assignset of ... 203 
.. - Production symbol of syntax 203 

I Separator for alternatives in syntax 203 
true, not, or, and Keywords for logkal connectives 203 

0 Symbol for non-deterministic choice 204 
while, do, od Keywords for repetition construct 204 

Statement terminator 204 
proc, axiom, def Keywords for procedures 204 
·- Symbol for giving a nametoa procedure 207 

u ] Semantics of design-development language 205 
D Data domain (e.g. pf 1\ ds designs) 205 
d . .. Typical elementsof the data domain 205 
E Set of states 205 
u, ... Typical states 205 
u{ dj x} Modification of a state 205 
<]); Semantics of i steps in repetition 206 
{At}s{A2} Partial correctness (design-program level) 208 
pre, post Alternative keywords for procedures 204 
event, technique Alternatives keywords for proc 207 
split, pardev, impl Examples of techniques 207 



Chapter 4 

Formal Specification of a Text 
Editor 

4.1 Introduetion 

215 

Many of the classical probieros of software construction are caused by the 
absence of specifications or - if there are specifications - by the ambiguities 
in their formulation. Therefore the use of forma! specification techniques is 
considered worthwhile. The ability to construct large forma! specifications 
supports the applicability of the notions of component, black-box description 
and design of Chapter 2 and the correctness-preserving transformations of 
designs investigated in Chapter 3. This chapter deals with the construction 
of a forma! specification and by way of example we specify a display-oriented 
text editor. 

A text editor is a good example for illustrating forma} specification tech
niques because of the following reasons. First, most software designers are 
familiar with at least one text editor, so the subject in itself may raise some 
interest and there is no need for an introduetion into some less known appli
cation area. Secondly an editor is complex enough to give opportunity for 
illustrating many specification techniques and design principles. 

In [1] the language COLD is proposed, in which one can formally express the 
design of a complete software system in various stages of its development. 
This language will appear in several user-oriented versions. There exists a 
kernel-language COLD-K [1,2,3] which contains all essential semantic fea
tures of the design language. We use this kernellanguage for expressing all 
formal definitions and axioms throughout our casestudy. This has the ad
vantage that no ambiguities can arise and that a mechanica! syntax-checking 
and type-checking can take place. However, sametimes when we want to 
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state derivable properties of certain operations, we use a somewhat more 
liberal style of notation. 

There are several related reasans that make the undertaking of performing 
this editor case study worthwhile. The first reason is that it shows the 
usefulness of forma! specificatien techniques in general and of À1r-calculus 
and COLD-K in particular. The second reason is that we get an opportunity 
to annotate the specificatien and to formulate some guidelines which might he 
of help for other users of forma! specificatien techniques. The third reason is 
that it will provide us with a starting-point fora large and typical application 
of the design methods studied in Chapter 3. The application consists of a 
systematic top-down development of the editor, which will he undertaken in 
Chapter 5. 

The construction of a forma! specificatien typically involves the following 
activities: (1) formalisation of application domain-specific concepts: in our 
case the most important concept being that of text, and (2) writing actual 
specifications of the system under consideration, which in our case is the 
editor. Typically one starts with (1) and then proceeds with (2). However 
during the writing of the actual specifications, one might discover the need 
of additional operations etc. and these should be added to the application 
domain-specific concepts formalised already. This is precisely what has hap
pened during the construction of the specificatien presented in this chapter. 
The chapter is a rational reconstruction of this process; we have collected the 
application-domain specific concepts and put them before the description of 
the editor. A central role will he played by the concept of text. We shall 
devote some effort to an investigation of this concept by introducing a col
lection of algebrak operations on texts. In this way we develop a machinery 
which will turn out to he useful, without making any specification decisions 
ahout the actual text editor itself yet. Section 4.2 gives an overview of the 
entire editor specification. Text and algebraic operations on text are the 
subject of Section 4.3. 

The forma! specification presented in this chapter wil! focus on the functional 
aspects of a text editor, by which we mean those aspects that are not related 
to performance issues. Rather than creating a completely new editor we take 
over several concepts from the EMACS family of editors [4,5,6]. Of course, 
we have to make choices about the way our editor behaves and choose among 
the many different possihle features. We do nat claim that our choices are 
preferabie over the many other possihilities. Instead, the points we want to 
make in this chapter are (1) that it is possihle to make a precise description 
of the behaviour of an editor and (2) that writing a forma! specification helps 
in constructing an editor that is based on a few well-understood concepts, 
rather than a large collection of ad-hoc features. In Section 4.4 we describe 
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a display, some data types for interfacing and a file system. The actual text 
editor is the subject of Section 4.5. In Section 4.6 we discuss some related 
work. Section 4. 7 is devoted to conclusions. 

In Appendix A we provide an overview of all sorts, functions, predicates and 
procedures used in this chapter. For each symbol there is a short informal 
description. In Appendix B we give a number of standard class descriptions. 

4.2 Overview of the Formal Specification 

In this section we give an overview of the forma! specification presented in 
the remainder of this chapter. This forma! definition will consist of many 
definitions of sorts, functions, predicates, procedures and axioms. These 
definitions are grouped into a number of modules, or class descriptions as they 
are called in COLD-K. Of course we must avoid that this becomes an almost 
endless list of definitions without its goal being clear in advance. Therefore 
the overview presented in this section is goal-oriented in the sense that it 
begins with the top-level definition of the entire forma! editor specification. 
This editor specification will not he finished until Section 4.5.14 where its top
level definition turns out to be a procedure called key. We show a fragment 
of the definition of key, where it is understood that the sort Char corresponds 
with a character-set. 

PROC key: Char -> 
PAR c:Char 
DEF ( printable(c) ? ; insert_character(c) 

I ord(c) 0 {A~} ?; set_mark 
I ord(c) = 1 {AA} 7• beginning_o!_line . ' 

ord(c) = 20 {AT} ?; insert-!ile 

etc. 
) 

This procedure will he made available to the user of the editor and things 
must be arranged such that when the user hits some key on his keyboard, 
producing character c say, then key(c) is invoked which activates one of the 
editor operations insert_character(c}, set_mark, beginning_of_line, 
insert_file etc. Most of these operations result in a modification of an edit
buffer and this modification at its turn can he observed on the screen of the 
user's video display unit. The procedure key is contained in a class descrip
tion called KEYBIND_SPEC which imports two other class descriptions called 
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WITEFA_SPEC and MOREDOP _SPEC. The narnes of the latter class descriptions 
are derived from Window-and-TExt-FAcility and MORe-EDiting-OPerations. The 
window and text facility is the kernel of the editor whereas MOREDOP _SPEC 
provides a few more operations which can be described easily in terms of 
operations from this kernel. More precisely, WITEF A_SPEC provides a layer of 
general-purpose editing primitives, whereas MOREDOP _SPEC turns them into 
one particular editor - using the general-purpose primitives in a specialised 
way. These two class descriptions are presented in Sections 4.5.1-4.5.12 and 
4.5.13 respectively. The window and text facility provides operations such as 

PROC insert_character : Char -> 

The insert_character operation has roughly speaking the effect that an 
edit-buffer corresponding with a notion of 'current text' is modified, that the 
screen of the display is updated and that the cursor moves one position to the 
right. When we try to explain the meaning of insert_character in more 
detail, it becomes clear that weneed a lot of preparations. In particular we 
must have descriptions of the conceptual organisation of the edit-buffers, of 
the notion of 'current text' and of the relation between the contents of the 
edit-buffers and the visible contents of the screen. There are also operations 
that deal with file handling. For example we have 

PROC insert_file : -> 

which indicates a need to describe a file system as well. Since files are ad
dressed by names, we must also he prepared to model the strings which 
are used for that. The above discussions explain why WITEFA_SPEC and 
MOREDOP _SPEC at their turn are based on several lower level class descrip
tions, amongst which: 

• DISPLAY_SPEC: a model of the video display unit, 
• 'SEQ_SPEC' and 'STRING_SPEC': sequences and as a special case of 

these, strings (the quotes are formally part of the names). 
• FILE_SPEC: a file-system. 

These are presented in Sections 4.4.2, 4.4.3 and 4.4.4 respectively. By way 
of example we shall have a closer look at DISPLAY_SPEC, which specifies the 
video display unit - at least as much of it as we need to specify the editor. 
The statespace of DISPLAY_SPEC is spanned by two variabie functions 

FUNC screen: -> Text VAR 
FUNC cursor : -> Nat # Nat VAR 

where Text denotes a sort of texts and where Nat refers to the natural num-
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bers. These numbers represent the vertical and horizontal co-ordinates of the 
cursor. All display operations are described by their effect on either screen 
or cursor or both. For example 

PROC nl: -> MOD screen, cursor 

serves forsendinga new-line coznmand to the display, thereby possibly mod
ifying the screen and the cursor. The sort Text is in fact an application 
domain-specific concept and it plays a key role throughout this case study. 
Therefore the formal specification begins with a study of texts and opera
tions on texts. This study comes before the specification of the display and 
the file system. We view a text as a sequence of lines. The sort of lines is 
denoted as Line and each line consistsof a sequence of characters. We shall 
have the following sorts introduced formally: 

SORT Line 
SORT Text 

and there are operations to select a line from a text and to select a character 
from a line. 

FUNC sel: Text # Nat -> Line 
FUNC sel: Line # Nat -> Char 

Starting from this very simple model, a rich collection of operations on texts 
is defined, including a variety of cut and paste operations. For example, there 
is a paste operation such that paste(t, u, k, l) means to take a text t and 
to insert another text u into it immediately before the position with given 
coordinates (k, l) . 

FUNC paste: Text # Text # Nat # Nat -> Text 

As a kind of inverse of pastethereis an operation cut such that cut(t, k, l, m, n) 
means to take a text t and to cut out the piece of text beginning at posi
tion (k, l) and ending at position (m, n). It yields a pair (t1 , t2 ) where t 1 = 
'remaining text' and t 2 = 'deleted text'. 

FUNC cut: Text # Nat # Nat # Nat # Nat -> Text # Text 

We shall not only give the definitions of these and similar operations, but 
we shall also study some of their properties, which are quite elegant from 
an algebraic point of view. The operations are grouped into a number of 
class descriptions among which LINE_SPEC, TEXT_SPEC, TEXT_OPS1_SPEC, 
TEXT _OPS2_SPEC, TEXT _OPS3_SPEC, STRING_SPEC, and PROFILE_SPEC. This 
is done in Section 4.3. No real decisions about the editor are taken yet 



220 CHAPTER 4. SPECIFICATION OF A TEXT EDITOR 

in Section 4.3; the only thing which happens is that those operations are 
introduced formally which are needed to discuss text editing. In fact, at the 
end of Section 4.3 there is hardly any clue whether we aim at an EMACS
like editor, an ED-like editor or a VI-like editor. We could even specify a 
MacPaint-like system, although our collection of operations is quite useless 
in that case. 

This coneindes the overview of the forma! specification of this chapter. The 
overview has been written afterwards, in a goal-oriented fashion, but the 
actual presentation in the remainder of this chapter will he organised the 
other way around. This is because we want to formally introduce each sort 
and operation befare it is used. 

4.3 Text and Algebraic Operations On Text 

4.3.1 Introduetion 

There will he several approaches to rnadeling texts, which differ both with 
respect to the style of description and the level of abstraction. E.g. consider 
the following text: 

second line 

then we can model it as a sequence of lines where the first line has 18 char
acters viz. "first line of text" and where the second line has 11 char
acters, viz. "second line". 

An equally valid, but somewhat more abstract approach is to model texts by 
focusing on their 'contour' only. In this approach the above text is modeled 
by just the sequence (18, 11) alone. Of course there is a kind of forgetful 
mapping from the first model to the second model in the sense that the 
information conveyed by the actual characters in the text, is lost in the 
second model. Such approaches at distinct levels of abstraction will play 
a role in our formalisation of the notion of text and as it turns out there 
will he operations on texts at several levels of abstraction, such that the 
corresponding forgetful mapping behaves homomorphically. 

In fact there are several more ways of rnadeling texts and we mention two 
of these now. First, we can describe texts as strings, provided we adopt 
some line-separator. This approach is, roughly speaking, at the same level of 
abstraction as the first approach mentioned above, where a text is modeled 
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by a sequence of lines. Secondly we can describe texts just by their length 
which we could define as the length of the string representation. In a sense 
this is the most abstract non-trivia! model, since it forgets about both the 
structure and the contents of the text. 

The above discussion may seem a bit vague and it is the very purpose of 
our formalisation of the notion of text to cast such ideas into definitions and 
propositions which are described with mathematica! rigour. In this formal
isation we will introduce several algebraic operations on texts. For example 
there will be an operation called cut which serves for takingapart texts and 
an operation paste which serves for fitting together texts. As it turns out, 
there are many meaningful operations on texts and it is possible to build a 
rich collection of them. We shall build our collection with the guideline that 
an operation is included when we foresee that it can be used when specifying 
an editor. In case of doubt about the usefulness of an operation, we just 
include it, because there is not much harm in having too much operations; 
this is because we are not specifying any system to be built yet but we are 
just gatbering a vocabulary for speaking about such a system. 

A second guideline is that an operation is more likely to be useful when it has 
nice algebraic properties. When introducing a new operation, it is a good 
idea to consider the questions: does associativity hold? does commutativity 
hold? does idempotency hold? does a neutral element exist? etc. Note 
that it depends on the signature of an operation whether these questions 
are meaningful. Sametimes such a question is not meaningful but we can 
invent a suitable variation of it which does make sense. For the applicable 
properties we then investigate whether they hold or not. 

In order to get started, we need specifications descrihing several data types 
of a mathematica! nature. For each such data type there is one COLD-K 
class description. We do notstart completely from the beginning, but instead 
we use data types such as NAT _SPEC, CHAR_SPEC, SEQ_SPEC, TUPLE_SPEC, 
SET_SPEC, MAP _SPEC etc. We adopt these from [7] and we only add a few 
simple constants such as 127 and 'a'. Just for completeness, these class de
scriptions are given in Appendix B. This chapter is organised in such a way 
that when all forma! COLD-K texts below are appended and Appendix B is 
put before that, we get a well-formed list of abbreviation-type components. 

We start with the forma! introduetion of the sorts Line and Text. This is 
the subject of Section 4.3.2. Next, we introduce strings and we have a look at 
the relation between texts and strings. This is the subject of Sections 4.3.3 
and 4.3.4. Furthermore we say a few words about printability, which is in 
Section 4.3.5. 

After that, our systematic study of algebrak operations on texts begins. This 
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study of algebraic operations covers the Sections 4.3.6 to 4.3.11. 

4.3.2 Texts 

We pay some attention to the question 'what is text'?'. It is tempting to say 
that a text is a sequence of characters, separated by new-line symbols. How
ever, if you ask this question to someone without programming experience, 
he or she will probably tell you about characters on some two-dimensional 
medium like paper or a screen. Therefore it is more natura! approach to say 
that a text is a sequence of lines where each line is a sequence of characters. 
This leads us to a formalisation of lines first. 

We use SEQ_SPEC from Appendix B which is a parameterised description of 
sequences (sort Seq) with constructor operations empty and cons and also 
operations hd, tl, sel, cat, len, rev, bag for head, tail, selection, con
catenation, length, reversal and bag construction respectively. lts parameter 
restrietion only mentions a sort Item. LINE_SPEC is obtained as an instantia
tion of SEQ_SPEC where the Items are replaced by characters (sort Char) and 
where the resulting sequences are named Lines. The specification CHAR_SPEC 
provides among other things this sort Char. It is taken from Appendix B 
and it serves as an actual parameter here. 

It is a peculiarity of COLD-K that when establishing such an instantiation the 
renaming takes place in the parameterised specification (SEQ_SPEC); the re
sulting renamed version of it is applied to the actual parameter ( CHAR_SPEC). 

LET LINE_SPEC := 

APPLY RENAME 
SORT Seq TO Line, 
SORT Item TO Char 

IN SEQ_SPEC TO CHAR_SPEC; 

In a similar way we introduce the sort Text as sequences of lines. It is 
important to realise that a text is something to be distinguished from the 
internal representation of a text inside a text editor. 

LET TEXT_SPEC := 

APPLY RENAME 
SORT Seq TO Text, 
SORT Item TO Line, 
FUNC empty: -> Seq TO niltext 

IN SEQ_SPEC TO LINE_SPEC; 
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Since we used an instantiation of SEQ_SPEC we have already the operations 
niltext, cons, hd, tl, sel, cat, len and rev. Note that niltext is the 
text having no lines at all. 

We shall introducesome more operations now and they will he made part of 
a class description called TEXT_OPS1_SPEC. We want to add a remark about 
structuring our specification here. The purpose of TEXT_OPSLSPEC and sirn
ilar class descriptions to he introduced later is to structure our collection of 
sorts and operations. Each class description typically begins with a collec
tion of imports, followed by a CLASS ... END type class description containing 
the newly introduced operations. The class descriptions serve as a group
ing mechanism forsort definitions, function definitions, predicate definitions 
etc. Of course we aim at a functional grouping by which we mean that we 
put together those operations which are closely related with respect to their 
purpose and their technica! contents. 

LET TEXT_OPSl_SPEC := 
IMPORT NAT_SPEC INTO 
IMPORT CHAR_SPEC INTO 
IMPORT LINE_SPEC INTO 
IMPORT TEXT_SPEC INTO 
CLASS 

Sometimes is is desirabie to consider non-nil text texts only; later we shall 
introduce a predicate ok on texts, such that ok(t) will imply that t =f. 
nil text. It would he convenient to have a unique text with the intuition of 
'empty text'. However, there are two candidates for this, viz. niltext and 
the text that consists of one empty line. Let us call the latter text zero. 

We introduce some auxiliary functions, grouped into functions to construct 
texts (zero, addempty and addchar), and functions to take texts apart 
(first and rest). The function zero yields the text that consists of one 
empty line. The function addempty adds an empty line in front of a text. 
The function addchar adds one character at the beginning of the first line 
of a text. first and rest are unary functions on texts. The function first 
yields the first character of a text. The function rest yields a text that is 
the input text with its first character removed. Note that hd, tl and cons 
are overloaded in the sense that there are two operations called hd (viz. one 
one texts and one on lines) and similarly two tl and two cons operations. 
Later we shall comeback to this overtoading mechanism. 

FUNC zero: -> Text 
OEF cons(empty,niltext) 
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FUNC addempty: Text -> Text 
PAR t:Text 
DEF cons(empty,t) 

FUNC addchar : Char # Text -> Text 
PAR c:Char,t:Text 
DEF cons(cons(c,hd(t)),tl(t)) 

FUNC first:Text -> Char 
PAR t :Text 
DEF hd(hd(t)) 

FUNC rest : Text -> Text 
PAR t:Text 
DEF cons(tl(hd(t)),tl(t)) 

We have the obvious properties 

V t : Text, c : Char ( t =f. nil text => 
first(addchar( c, t)) = c 1\ rest(addchar(c, t)) = t) 

and 

V t: Text 
( hd(addempty(t)) = empty 1\ tl(addempty(t)) = t) 

where wetook some obvious notational freedom with respect to COLD-K in 
the sense that we wrote V rather than FORALL, t =1- nil text instead of NOT t 
= nil text etc. This kind of syntactic sugar is formally notpart of COLD
K and when syntax- and type-checking the formal texts of this chapter, 
we excluded the propositions which are based on this syntactic sugar. We 
only use this syntactic sugar when discussing properties of definitions and 
never to give the formal definitions themselves. Throughout this chapter the 
actual formal definitions are in COLD-K. These formal COLD-K texts are 
recognisable by their somewhat smaller font (first rather than first) and 
by the complete absence of mathematica! type-setting ( => rather than =>). 

END ; {of TEXT_OPSl_SPEC} 

As a next step we relate texts with strings, by which we mean sequences of 
characters. This is the subject of our next two sections. 
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4.3.3 Strings 

We introduce the sort String as sequences of characters. Again we use 
SEQ_SPEC from Appendix B . In informal writing we freely denote strings 
using double quotes, e.g. "this is a string" . We introduce the usual 
lexicographical ordering on strings as a predicate less. It is defined by 
recurs10n. 

It is interesting to point out that the strictness principles of COLD-K are es
sential for this definition. In particular, consider the case where t = empty, 
then hd(t) is undefined and then by strictness so is ord(hd(t)). There
fore lss(ord(hd(s)) ,ord(hd(t))) is false and so is the equation hd(s) = 
hd( t). Therefore in that case less (s, t) is false. 

LET STRING_SPEC := 
EXPORT 

SORT Char , 
SORT Nat, 
SORT String, 
FUNC empty : 
FUNC cons Char # String 
FUNC hd String 
FUNC tl String 
FUNC len String 
FUNC sel String # Nat 
FUNC cat String # String 
FUNC rev String 
PRED less String # String 

FROM 

IMPORT APPLY RENAME 
SORT Seq TO String , 
SORT Item TO Char 

IN SEQ_SPEC TO CHAR_SPEC INTO 

IMPORT NAT_SPEC INTO 
IMPORT CHAR_SPEC INTO 
CLASS 

PRED less: String # String 
PAR s:String,t:String 

-> String, 
-> String, 
-> Char, 
-> String, 
-> Nat, 
-> Char, 
-> String, 
-> String, 

DEF s = empty AND NOT t = empty 
OR (lss(ord(hd(s)),ord(hd(t))) 
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OR hd(s) = hd(t) AND less(tl(s),tl(t))) 

END; 

4.3.4 Relating Texts and Strings 

Let us now discuss how texts and strings are related. By adopting some 
special separator character, control-j say, we can define a bijeetion between 
the sort String and the set of non-nil text texts not containing this special 
separator character. We call these texts ok and for this purpose we introduce 
a predicate ok. Weformally introduce control-j as a constant ctr_j first and 
we use the operation chr: Nat -> Char from CHAR_SPEC for that. 

LET TEXT_OPS2_SPEC : • 
IMPORT NAT_SPEC INTO 
IMPORT CHAR_SPEC INTO 
IMPORT LINE_SPEC INTO 
IMPORT TEXT_SPEC INTO 
IMPORT TEXT_OPSl_SPEC INTO 
IMPORT STRING_SPEC INTO 
CLASS 

FUNC ctr_j: -> Char 
DEF chr(10) 

PRED ok: Text 
IND FORALL c :Char,t:Text 

( ok(zero :Text) ; 
ok(t) => ok(addempty(t)) ; 
ok(t) AND NOT c = ctr_j => ok(addchar(c,t)) ) 

Note that ok( t) => t # nil text. We have the following induction principle 
for ok texts. To prove an assertion A for ok texts, it suflices to show A( zero) 
and two induction steps. The first induction step is Vt : Text(A( t) => 
A(addempty(t)). The second induction step is Vt: Text, c: Char(A(t) A c # 
ctr_j => A(addchar(c, t)). 

We have the following decomposition principle for ok texts. Each ok text is of 
one of three possible forms, viz. zero, addempty( ... ) and addchar( ... ). We 
can distinguish these three possibilities also as {1} hd(t) = empty A tl(t) = 
niltext, {2} hd(t) = empty A tl(t) # niltext and {3} hd(t) # empty. 

The functions text and string to he introduced below establish a bijeetion 
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between the sort String and the set of ok texts. These functions text and 
string are similar to Meertens' Line and Unline functions [10]. Although it 
is possible to give inductive or axiomatic characterisations of these functions, 
we use recursive definitions. This has the advantage that it is easy to ex
periment with these definitions using any classica! imperative or functional 
programming language. The function text converts a string to a text by 
interpreting ctr_j as a separator. The function string applied toa text t 
converts t toa string by putting a ctr_j between the lines. In the definition 
of the function string we distinguish three cases, where the cases {2} and 
{3} give rise to a recursive call of string. We easily verify that the guard 
{2} implies ok(tl(t)) and that the guard of {3} implies ok(rest(t)). 

FUNC text: String -> Text 
PAR s:String 
OEF ( {1} s = empty ?; 

zero 

FUNC 
PAR 
OEF 

) 

{2} hd(s) = ctr_j ?; 

addempty(text(tl(s))) 
{3} NOT (s = empty OR hd(s) = ctr_j) ?; 

addchar(hd(s),text(tl(s))) 

string: Text -> String 
t :Text 
ok(t) ?; 
( {1} hd(t) empty ANO tl(t) K niltext ?; 

) 

empty 
{2} hd(t) = empty AND NOT tl(t) • niltext ?; 

cons(ctr_j,string(tl(t))) 
{3} NOT hd(t) = empty ?; 

cons(first(t),string(rest(t))) 

We leave several options un-investigated here currently such as embedding 
Char \ { c tr _j } into Char, or ha ving a litteral character in the string repre
sentation. 

4.3.5 Printability 

Let us say a few words about the problems arising because in our formal
isation texts may contain non-printable characters. There are two such 
problems. The first problem is obvious: non-printable characters cannot 
be printed or displayed as such by a display-oriented editor. Of course it is 
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always possible to print some substitute, e.g. '- '. 

The second problem is that inside a text editorsome representation for texts 
must he chosen. If the text editor is only meant for manipulating ok texts, 
then its designer is in a comfortable position because he has the option of 
choosing the string-representation discussed befare or some other related 
representation. We need not make such a choice here, but we introduce 
a suitable predicate derroting printability. We use the fact that in ASCII 
the printable characters are in the range ' ' . . '- '. We consider the TAB 
character as non-printable. 

FUNC blank: -> Char 
DEF chr(32) 

FUNC tilde: -> Char 
DEF chr(126) 

PRED printable: Char 
PAR c :Char 
DEF leq(ord(blank),ord(c)) AND leq(ord(c),ord(ti1de)) 

For later use we elaborate on the idea of replacing non-printables by some 
substitute, and in order to keep things simple, we choose tilde as a sub
stitute indeed. Therefore we introduce by overloading three functions called 
printify with the intuition of 'make printable'. 

FUNC printi:fy : Char -> Char 
PAR c:Char 
DEF ( printab1e(c) ?; c 

I NOT printab1e(c) ?; tilde 
) 

FUNC printi:fy: Line -> Line 
PAR l:Line 
DEF ( 1 = empty ?; empty 

I NOT 1 = empty ?; cons(printify(hd(1)),printi:fy(t1(1))) 
) 

FUNC printify: Text -> Text 
PAR t:Text 
DEF ( t = ni1text ?; ni1text 

I NOT t = ni1text ?; cons(printify(hd(t)),printify(t1(t))) 
) 

We used the mechanism of overloading which means that we have several 
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functions with the same identifier (printify) but with different argument 
types and/or result types. This is allowed in COLD-K and it has the advan
tage that we are not forced to invent new narnes ourselves (printify_char, 
printify_line and printify_text, say). When using overloaded func
tions or predicates, we must make sure that our expressions and assertions 
can be analysed in precisely one way. We give a simple example: AXIOM 
printify(printify(niltext)) = niltext is well-typed because there is 
only one way of analysing it, viz. by assuming that both printify invoca
tions refer to the function printify: Text -> Text. Note that under this 
assumption the axiom becomes well-typed. 

4.3.6 Natural Operations on Text 

One of the best ways to get an understanding of the concept of text as 
formalised by the sort Text, is to look for algebraic operations operating on 
texts. In particular, we shall start with a simple binary operation of function
type Text # Text ~ Text. Of course it is not hard to define the insertion of 
a character into a text, which would be an operation of function-type Text 
# Char # Nat2 ~ Text, where we used Nat2 as an obvious shorthand for Nat 
# Nat. However, we avoid such heterogeneous operations, by which we mean 
those operations that deal both with texts and with characters. We must 
be prepared to let the domain Nat 2 play a role when we define operations 
dealing with co-ordinate pairs. 

We shall introduce an operation called add below and we refer to it as {nat
ura/) addition because it can be viewed as a natura! way of adding texts. lts 
definition is based on the idea that people are supposed to read texts line 
after line, scanning lines from left to right. To read the addition of two texts, 
one first reads the first text and after that, immediately proceeds with the 
second text. In Section 4.3.9 we shall also encounter other ways of adding 
texts for which we want to use narnes such as vertica/ addition and horizontal 
addition. Let us give an example showing the natura! addition of two texts 
and postpone the formalisation for a moment. 

add( ) . 

From the example it can be seen that this addition is not the same as con
catenation; the subtie difference is that the addition does not introduce a 
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jump toa new line at the point where the two texts are joined. 

Although the above addition operation seems too trivial for being interesting, 
it will serve as a kind of starting point for finding other operations which can 
he employed in the description of cut and paste capabilities for an editor. 
An interesting question which poses itself immediately is whether add has 
an inverse. Since addition is not injective there can not he an inverse in the 
strict sense, but we can propose an operation whose intuition is related to 
the idea of 'undoing the effect of an addition'. This operation will he called 
split. 

The operation split describes the splitting of a text into two parts, where 
the splitting-point is just before some given position. We add one remark 
about the use of co-ordinates. Whenever we use pairs (i,j) where i and jare 
co-ordinates - or similar quantities - it is understood that i is the vertical 
co-ordinate and j is the horizontal co-ordinate. The following picture may 
convey some intuition for both split and add. 

i 
aaaaaaaaaaaaaa 
aaaaaaaaaaaaaa 
aaaaaaaaaaaaaaa oplit 
aaaaaaaaaaaaaaaa ~ 
aaaaaaabbbbbbbbb 
bbbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbbbb 
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bbbbbbbbbbbbbbbbbbb 
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The fact that an arbitrary co-ordinate pair may indicate a position that is 
non-existing in the given text has as consequences that split is a partial 
operation and that the result of split need not be a pair of ok texts. Also 
add is a partial operation, which is the effect of an explicit guard testing 
the ok-ness of the input texts. We give the forma! definitions below using 
recursion. 

FUNC split: Text # Nat # Nat -> Text # Text 
PAR t :Text, i:Nat, j :Nat 
DEF ( {1} i = 0 AND j = 0 ?; 

zero, t 
I {2} i = 0 AND NOT j = 0 ? 

LET t1 :Text,t2:Text; 
t1,t2 := split(rest(t),O,pred(j)); 
addchar(first(t),tl), t2 



4.3. TEXT AND OPERATIONS ON TEXT 

I {3} NOT i=O ?; 

) 

LET t1:Text,t2:Text; 
tl,t2 := split(tl(t),pred(i),j); 
cons(hd(t),tl), t2 

FUNC add: Text # Text -> Text 
PAR tl:Text, t2:Text 
DEF ok(t1) AND ok(t2) ?; 

( {1} hd(t1) = empty AND tl(t1) = niltext ?; 

t2 
{2} hd(t1) = empty AND NOT tl(t1) = niltext ?; 

addempty(add(tl(t1),t2)) 
{3} NOT hd(t1) = empty ?; 

addchar(first(t1),add(rest(t1),t2)) 

231 

We state several properties of these operations. Addition of ok texts is asso
ciative, i.e. 

V t11 t2 , t3 : Text ( ok( tt) 1\ ok( t2) 1\ ok( t3) => 
add(t1 , add(t2 , t3 )) = add(add(t11 t2), t 3)) 

which can he shown by induction on t 1, using the induction principle of 
Section 4.3.4. Now we can also explain why we used the name zero for the 
text with one empty line: it behaves both as a leftand a right neutral element 
with respect to the operation add: 

V t: Text ( ok(t) => 
add( t, zero) = t 1\ add(zero, t) = t) 

where the first equality is a consequence of the induction principle of Section 
4.3.4 and where the second equality holds just by definition. The function 
add is the inverse of split in the following sense: 

Vt:Text, c:Nat2 (ok(t)/\split(t,c)! => 
add(split(t,c)) = t) 

which can he shown by induction on the vertical co-ordinate of the splitting 
point. The basis of the induction is c = (O,j) which at its turn is shown by 
induction on j. 

Next, we describe two operations which are somewhat more complicated, 
but which can he defined easily in terms of the operations add and split. 
These operations are called cut and paste and they can he viewed as a 
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complementary pair of operations - just like split and add. The operation 
cut deletes a text-region from a given position (inclusive) unto another given 
position (exclusive) if possible. It yields a pair (t1 , t 2) where t1 = 'remaining 
text' and t 2 = 'deleted text'. The operation paste takes a text t and inserts 
another text u into it immediately before the position with given co-ordinates 
(k, l) say, if possible. The following picture may convey some intuit ion for 
both cut and paste. 

aaaaaaaaaaaaaa 
aaaaaaaaaaaaaa 

k aaaabbbbbbbbbbb 
bbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbb 

ccccccccccccccccccc 

i 

.,...__.... 
cut 

aaaaaaaaaaaaaa 
aaaaaaaaaaaaaa 

.,...__.... 
paeh 

aaaaaaaaaaaaaa 
aaaaaaaaaaaaaa 
aaaabbbbbbbbbbb 
bbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbb 

Formally wedefine cut and paste by using the simpler operations split and 
add. Thesesplit and paste are partial operations and as a consequence, so 
are cut and paste. 

FUNC cut : Text # Nat # Nat # Nat # Nat -> Text # Text 
PAR 
DEF 

FUNC 
PAR 
DEF 

t:Text, n:Nat, m: Nat, i:Nat, j :Nat 
LET tl: Text,t2: Text; tl,t2 ·= split(t,i,j); 
LET t11:Text,t12:Text; t11,t12 := split(tl,n,m) ; 
add(t11,t2), t12 

paste : Text # Text #Nat # Nat -> Text 
t : Text,u:Text,k:Nat,l : Nat 
LET t1: Text,t2: Text; tl,t2 := split(t,k,l); 
add(t1 , add(u,t2)) 

For appropriate choices of the Nat2 argument, the zero text behaves also as 
a left and a right neutral element with respect to the operation paste. 

Vt:Text, c:Nat2 (ok(t)/\paste(t,zero,c) ! => 
paste(t,zero,c) = t) 

which holds because zero is the left neutral element with respect to add and 
add is the inverse of split. 

V t : Text, c: Nat2 
( ok(t) 1\ c = (0, 0) => 

paste(zero, t, c) = t) 
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The latter proposition follows from the fact that zero is the left- and right 
neutral element with respect to add. The operation paste is the inverse of 
cut in the following sense: 

V t : Text, c, d : Nat2 ( ok(t) 1\ cut(t, c, d)! '* 
paste(cut(t,c,d),c) = t) 

which follows from the fact that add is the inverse of split and furthermore 
from the property split(tt,c) = (tu, ... ) '* split(add(tu,t2),c) = (tu,t2), 
which at its turn is shown by induction on the vertical and horizontal co
ordinates of the splitting point - just as before. In a certain way, split is 
also the inverse of add and cut is the inverse of paste, but befare we can 
state this precisely, we first need another concept, viz. that of the reach of a 
text. This is the subject of our next section. 

4.3.7 The Reach of a Text 

The function reach applied to a text t results the pair (dt, d2) where d1 is 
the co-ordinate of the last line of tand where d2 is the number of characters 
in the last line of t. We give an example: 

re ach( (2,1) 

We call such a pair(d1,d2) a reach. We have chosen the term reach because 
of the intuition that reach(t) indicates 'how far you can get', starting at 
position (0, 0) and trying to get as far downwards and rightwards as possible 
within this text t. In a certain sense reach(t) can be viewed as a 'size' of 
t. Note that d1 and d2 play a somewhat different role: d1 is the co-ordinate 
of the last line whereas d2 is the co-ordinate of the last character in the last 
line plus one . We sketch the intuition behind reach by a picture: 

aaaaaaaaaaaaaaa 
aaaaaaaaaaaaaaaa 
aaaaaaabbbbbbbbb 
bbbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbbbbb 

------+d2 
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We give the formal definition using recursion below. There are three cases 
marked as 1', 2' and 3' to indicate that we employ a decomposition principle 
for texts different from that of Section 4.3.4. 

FUNC reach: Text -> Nat # Nat 
PAR t :Text 
DEF ok(t) ?; 

( {1'} tl(t) niltext AND hd(t) = empty ?; 

0, 0 

{2'} tl(t) niltext AND NOT hd(t) = empty ?; 

LET d1:Nat,d2:Nat; d1,d2 ·= reach(rest(t)); (d1,succ(d2)) 
{3'} NOT tl(t) = niltext ? ; 

LET d1:Nat,d2:Nat; d1,d2 ·= reach(tl(t)); (5ucc(d1) ,d2) 
) 

Note that reach(zero) = (0,0). The function add defined below can be 
viewed as the 'addition' of two reaches. Sametimes we refer to it as natural 
addition. Let us give an example first. We show two texts and their reaches, 
and after that we determine the reach of their addition simply by adding the 
texts and applying the reach operator. 

let tl ), 80 reach(t1) (2,1) 

let t2 ) , 80 reach(t2) (2,1) 

add(t1,t2) ( ), 80 reach(add(tl,t2)) = (4,1) 

The interesting observation now is that we could have derived the value of 
reach(add(t1, t2)) also from the reaches of t1 and t2 alone. This is pre
cisely the purpose of having the function add on reaches. 

FUNC add : Nat # Nat # Nat # Nat -> Nat # Nat 
PAR cl:Nat, c2:Nat, d1:Nat, d2:Nat 
DEF ( dl = 0 ?; cl, add(c2,d2) 

I NOT dl= 0 ?; add(cl,dl), d2 
) 
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Let us enter the data of the ahove example: add((2, 1), (2, 1)) = (4, 1) indeed. 
Addition on reaches is associative and the pair (0, 0) hehaves as a left- and 
right neutral element with respect to add as can he shown hy a case-analysis 
using the definition of add. The following proposition confirms our intuition 
as sketched hy the ahove example. 

Vt,u:Text (ok(t)/\ok(u) ~ 
reach(add(t, u))= add(reach(t), reach(u))) 

This can he shown hy induction on t using the induction principle of Section 
4.3.4 and where for the stept= addchar(c,t') one distinguishes two cases: 
either len(t) = len(u) = 1, so c contrihutes tothereach of the added texts, 
or len(t) + len(u) > 2, in which case c does not contrihute to it. Now we 
have the reach function, we can also formulate the proposition that in a 
certain sense split is the inverse of add. 

V t, u : Text ( ok(t) 1\ ok( u) ~ 
split(add(t,u),reach(t)) = (t,u)) 

which can he shown hy induction on t using the induction principle of Section 
4.3.4. We can also perfarm splitting on reaches. 

FUNC split: Nat # Nat # Nat # Nat -> Nat # Nat # Nat # Nat 
PAR r:Nat, s :Nat, i:Nat, j : Nat 
DEF (i,j) , (sub(r,i), (lss(i,r)?; s I i= r ?; sub(s,j))) 

This function split is useful for calculating the reaches of the texts ohtained 
hy splitting a text with a given reach when also the splitting-point is given. 

V t, tb t2 : Text, c : Nat2 

( ok( t) 1\ ok( tt) 1\ ok( t2 ) 1\ split( t, c) = ( tt. t2 ) ~ 
spli t(reach(t), c) = (reach(tt), reach(t2)) ) 

which can he shown hy referring to the definition of split on reaches and 
tothefact that split(t,c) yields the two texts t1 ,t2 that are ohtained hy 
splitting t with the splitting point at c. Hence the reach of t1 equals c and 
we can get the reach of t 2 hy a simple case-analysis. In any case, the vertical 
co-ordinate of t 2 is the difference of the vertical co-ordinates of reach(t) and 
c. If the splitting point is before the last line of t, then the length of the 
last line of t2 is simply the length of the last line of t. If the splitting point 
is in the last line, then the horizontal co-ordinate of t 2 is the length of this 
last line minus the horizontal co-ordinate of the splitting point. We can also 
perfarm a kind of cut and paste on reaches. 
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FUNC cut: Nat # Nat # Nat # Nat # Nat # Nat 
-> Nat # Nat # Nat # Nat 

PAR t:Nat #Nat, n:Nat, m:Nat, i:Nat, j:Nat 
DEF LET tl: Nat# Nat,t2: Nat# Nat; tl, t2 := split(t,i,j); 

split(tl,n,m); LET tll:Nat # Nat,t12:Nat #Nat; t11,t12 ·= 
add(t11,t2) , t12 

FUNC paste: Nat # Nat # Nat # Nat # Nat # Nat -> Nat # Nat 
PAR t:Nat # Nat,u:Nat # Nat,k:Nat,l:Nat 
DEF LET tl: Nat# Nat,t2: Nat# Nat; tl,t2 := split(t,k,l); 

add(tl,add(u,t2)) 

This function cut is useful for calculating the reaches of the texts obtained 
by cutting a text with a given reach. 

V t, tt, t2 : Text, c, d : Nat2 

( ok(t) 1\ ok(tt) 1\ ok(t2 ) 1\ cut(t,c,d) = (t~>t2 ) => 
cut(reach(t),c,d) = (reach(tt),reach(t2))) 

which follows from the fact that add and split on texts commute via reach 
with add and split on reaches, using the obvious similarity in bath defini
tions of cut. In the same way one can show the following proposition, which 
expresses that the latter function paste can be used for calculating the reach 
of the text obtained by pasting two texts with given reaches. 

V t,u: Text, c: Nat2 
( ok(t) 1\ ok(u) => 

reach(paste(t,u,c)) = paste(reach(t),reach(u),c)) 

We can summarize some of the above propositions by saying that re ach: 
Text --+ Nat2 is a homomorphic mapping from the algebra of texts to the 
algebra of reaches. So, we can view the algebra of reaches as a simplified 
version of the algebra of texts. In genera!, reach(t) does not contain enough 
information for reconstructing t, but still it tells us sarnething about the 
behaviour of t under the application of split, add, cut and paste operations. 

Let us formulate that in a certain sense cut is the inverse of paste. 

V t,u: Text, c: Nat2 ( ok(t) 1\ ok(u) 1\ paste(t,u,c)! => 
cut(paste(t, u,c), c, add(c, reach(u))) = (t, u) ) 

which follows from the definitions of cut and paste and from the homomor
phism property of reach. Sametimes it is necessary to campare two reaches, 
so we introduce predicates las: Nat2 # Nat2 and leq: Nat2 # Nat2 • 
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PRED lss: Nat # Nat # Nat # Nat 
PAR il:Nat, i2:Nat, jl:Nat, j2:Nat 
DEF lss(il,jl) OR (il = jl AND lss(i2,j2)) 

PRED leq: Nat # Nat # Nat # Nat 
PAR i1:Nat,i2:Nat,jl:Nat,j2:Nat 
DEF lss(il,jl) OR ( il = jl AND leq(i2,j2) ) 
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Notice that a position in a given text can he described precisely by the 
reach of the text preceding this position; herree reaches can also he viewed as 
position indicators. 
So if lss ( (eb e2), ( d1 , d2)), then this can he interpreted as 'the position (eb c2) 

comes before the position (dl>~)'. 

END; {of TEXT_OPS2_SPEC} 

Thus TEXT _OPS2_SPEC adds to the notions of texts and strings of Sections 
4.3.2 and 4.3.3 several conversion operations (Sections 4.3.4 and 4.3.5), a 
range of adding and splitting operations (Section 4.3.6) and their images 
under the operation reach (Section 4.3.7). 

4.3.8 The Profile of a Text 

When we use co-ordinate pairs for indicating positions in a text - as we do 
in split, cut and paste - then we have to he careful. The point is that 
our co-ordinate pairs are based on natura! numbers and thus may indicate 
positions that are non-existing in a given text. We develop some machinery 
so that later, in the context of a text editor, we can deal with these problems 
formally. This will happen in Section 4.5.5, when we shall postulate a so
called text-invariant. If we have a text t, then we might collect all information 
that is relevant for 'addressing' in t. For this purpose we introduce so-called 
profiles. The profile of a text t is a sequence of natura! numbers, one for 
each line of t such that the i-th element in the sequence is precisely equal to 
the length of the i-th line in t. We start with an example and then do the 
formalisation. 

profile( <8, 7 ,1> 

Now we formally introduce a sort Profile. An object of sort Profile is 
nothing but a sequence (Seq) of natura! numbers (Nat). 
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LET PROFILE := 

APPLY RENAME 
SORT Seq TO Profile, 
SORT Item TO Nat, 
FUNC empty: -> Seq TO nilprofile 

IN SEQ_SPEC TO NAT_SPEC; 

And of course we must define the profile corresponding with a given text, 
which we do by introducing a function profile. Therefore we write another 
class description called PROFILE_SPEC which imports a number of class de
scriptions introduced before. We want to add a remark about such imports 
here. In general, when writing specifications, we need not adopt some min
imality principle. Instead of that we begin each new class description with 
a relatively rich collection of imports - so that we have enough notations 
at our disposal. There is no harm in importing too much, whereas it is a 
nuisance if the imports turn out to he insufficient. 

LET PROFILE_SPEC := 

IMPORT PROFILE INTO 
IMPORT NAT_SPEC INTO 
IMPORT CHAR_SPEC INTO 
IMPORT LINE_SPEC INTO 
IMPORT TEXT_SPEC INTO 
IMPORT TEXT_OPSl_SPEC INTO 
IMPORT TEXT_OPS2_SPEC INTO 
CLASS 

FUNC profile: Text -> Profile 
PAR t:Text 
DEF ok(t) ?; 

END; 

( {1} hd(t) = empty AND tl(t) = niltext ?; 

cons(O,nilprofile) 

) 

{2} hd(t) = empty AND NOT tl(t) = niltext ?; 

cons(O,profile(tl(t))) 
{3} NOT hd(t) = empty ?; 

LET p:Profile; p := profile(rest(t)); 
cons(succ(hd(p)),tl(p)) 

It is possible to define a kind of addition called add and operations like 
split, cut and paste on profiles. For suitable choice of these operations, 
profile: Text--+ Nat* becomes a homomorphic mapping from the algebra 



4.3. TEXT AND OPERATIONS ON TEXT 239 

of texts to the algebra of profiles. Furthermore one can define a function 
reach: Nat• -t Nat2 such that it is a homomorphic mapping from the 
algebra of profiles to the algebra of reaches. The following picture sketches 
this situation. 

reach 

Fig 4.1. The algebras of texts, profiles and reaches. 

So, we can view the algebra of profiles as being intermediate between the 
algebra of texts and the algebra of reaches. We leave these things for later 
investigation, because we do not need them really yet. 

LET TEXT_OPS3_SPEC -
IMPORT NAT_SPEC INTO 
IMPORT CHAR_SPEC INTO 
IMPORT LINE_SPEC INTO 
IMPORT TEXT_SPEC INTO 
IMPORT TEXT_OPS1_SPEC INTO 
IMPORT TEXT_OPS2_SPEC INTO 
IMPORT STRING_SPEC INTO 
IMPORT PROFILE_SPEC INTO 
CLASS 

We define a predicate called intext, thereby showinga typical application 
of profiles. We use the standard selection function sel. If we have a given 
text t and a co-ordinate pair (i,j) then intext(t,i,j) holds if either (i,j) 
indicates a position that exists in t or (i, j) corresponds with the very end 
of a line - which is an acceptable position for splitting a text into parts, and 
therefore for pasting by the function paste. 

PRED intext: Text # Nat # Nat 
PAR t :Text, i:Nat, j:Nat 
DEF LET m:Nat,n:Nat; m,n := reach(t); 

leq(i,m) AND leq(j ,sel(profile(t),i)) 
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In particular, we have intext (zero, (0. 0)). 

4.3.9 Vertical and Horizontal Composition of Text 

In this section we introduce two ways of adding texts for which we want to 
use the narnes vertical addition and horizontal addition. These operations 
become important when one wants to describe multi-window capabilities of 
a text editor. Although multi-window capabilities are not included in the 
text editor described in this chapter, we believe that it is instructive to have 
a look at the necessary operations at an algebraic level. 

We introduce an operation called v_add below and we refer to it as vertical 
addition. Actually there is nothing new here since vertical addition is nothing 
but concatenation. 

aaaaaaaaaaaaaa 
aaaaaaaaaaaaaa 

bbbbbbbbb L.,.-,...,-,..,..., 
bbbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbbbbb 

v..add 
1-----+ 

aaaaaaa 
bbbbbbbbb '------, 
bbbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbbbbb 

We give the formal definition below. 

FUNC v_add: Text # Text -> Text 
PAR t1:Text, t2:Text 
DEF cat(t1,t2) 

We state a few well-known properties. Vertical addition is associative. 

V t1 , t2, ts : Text 
( v_add(t1 ,v_add(t2, t3 )) = v_add(v_add(t11 t 2), t3 )) 

nil text behaves both as a left and a right neutral element with respect to 
the operation v_add. 

V t: Text 
( v_add(t,niltext) = t 1\ v_add(niltext,t) = t) 

The len function from texts to natural numbers behaves homomorphically 
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as stated below. 

V t1, t2 : Text 
( len(v_add(t1, t2)) = add(len(ti),len(t2))) 

We introduce another operation called h_add below and we refer to it as 
horizontal addition. 

aaaaaaaaaaaaaa 
aaaaaaaaaaaaaa 
aaaaaaaaaaaaaaa 
aaaaaaaaaaaaaaaa 
aaaaaaa h...add 

bbbbbbbbb '--------, 
bbbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbbbbb 

,____. 
aaaaaaaaaaaaaabbbbbbbbb '-------., 
aaaaaaaaaaaaaabbbbbbbbbbbbbbbbb 
aaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbb 
aaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbb 
aaaaaaabbbbbbbbbbbbbbbbbbb 

We give the forma! definition below. 

FUNC h_add: Text # Text -> Text 
PAR t1:Text, t2:Text 
DEF ( tl = niltext AND t2 = niltext ?; niltext 

I NOT (ti ~ niltext AND t2 = niltext) ?; 
cons(cat(hd(t1),hd(t2)),h_add(tl(t1),tl(t2))) 

From this definition it can beseen that when two texts have different lengths, 
their horizontal addition is undefined. Horizontal addition is associative. 

V t1, t2, ta: Text ( len(t1) = len(t2) = len(ts) => 
h_add(t1,h_add(t2, ts)) = h_add(h_add(t1, t2), t3 ) ) 

which follows by induction on the lengthof the texts involved and using the 
well-known associativity of line-concatenation. For each length l, there is a 
left-and right neutral element and we introduce the notation empties(l) for 
it: 

FUNC empties: Nat -> Text 
PAR n:Nat 
DEF ( n = 0?; niltext 

I NOT n = 0?; cons(empty,empties(pred(n))) 
) 
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so we can denote this property as follows: 

V t: Text,l: Nat ( len(t) = l '* 
h_add(t,empties(l)) = t 1\ h_add(empties(l), t) = t) 

which follows again by induction on l, using the fact that empty:Line is 
neutral with respect to concatenation. The set of texts of a given length is 
closed under horizontal addition: 

V t11 t2 : Text, l: Nat ( len(t1) = len(t2) = l =* 
len(h_add(t11 t2)) = l) 

which follows again by induction on l. Horizontal and vertical addition are 
related by the interchange law. We have met this interchange law before at 
another level, viz. at the level of composition mechanisms for designs. We 
refer to Chapter 3 lemma 3.3.11 and remark 3.3.12 

V t11 t2, ts, t4 : Text ( len(ti) = len(t2) 1\ len(ts) = len(t4) => 
v_add(h_add(t11 t2),h_add(t3, t4)) 
= h_add(v_add(t11 t3),v_add(t2 , t4)) ) 

which follows by induction on len(ti). 

4.3.10 Operations for Searching 

In this section we do some preparations such that later we can specify the 
search-command of an editor. The formalisation of searching is done in terms 
of strings, which is most natural. In typical editing sessions one searches fora 
wordorfora short term. However, there is no clear intuition forsearching an 
entire sentence or an entire formula that extends over more than one line. So 
we describe searching such that it becomes conceptually clear for ctr_j-less 
strings. We adopt the same formalisation then for all strings. After that, we 
trarlfer the formalisation by homomorphic mappings to the algebra of texts. 
We introduce a predicate match such that match(t, s, i) holds in the situation 
where in string t there is an occurrence of a substring s at position i. 

PRED match: String # String # Nat 
PAR t:String, s:String, i:Nat 
DEF s = empty OR 

hd(s) = sel(t,i) AND match(t,tl(s),succ(i)) 

By way of preparation for a kind of sentinel technique, we introduce the 
following slightly modified version of of match, which we call match'. 
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PRED match': String # String # Nat 
PAR t :String, s :String, i:Nat 
DEF i = len(t) OR match(t,s,i) 
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Now wedefine the result of a search operation astheleast position at which 
a match - in the sense of match' - occurs. 

FUNC search : String # String -> Nat 
PAR t:String, s :String 
DEF SOME i : Nat 

( match ' (t , s,i) AND 
FORALL j : Nat ( match'(t,s,j) •> leq(i,j) ) ) 

Note that if int there is no occurrence of s, then search(t,s) 'falls through' 
in the sense that it yields len(t), which is the sentinel technique announced 
before. Now we transfer the above formalisation to the algebra of texts by 
employing the mappings string and text. 

FUNC search: Text # Text -> Nat # Nat 
PAR t:Text, s:Text 
DEF LET t1 :String, t2:String; 

t1,t2 : = split(string(t),search(string(t),string(s))); 
reach(text(t1)) 

where we used an obvious split operation on strings. 

FUNC split: String # Nat -> String # String 
PAR s:String, i :Nat 
DEF ( i = 0 ? ; 

empty, s 
NOT i = 0 ? ; 

LET t1:String, t2:String; t1,t2 : • split(tl(s),pred(i)); 
cons(hd(s),t1), t2 

The approach foliowed here could he condidered as a part of our methodology 
of writing forma! specifications: choose among the different possible repre
sentations the one which yields the simplest and most elegant definitions. 
If the remainder of the specification is in terms of another representation, 
just use suitable mappings to transfer the results from one representation to 
another. 

END; {of TEXT_OPS3_SPEC} 

Thus, TEXT_OPS3_SPEC adds to TEXT_OPS2_SPEC some operations for pro-
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filing texts (Section 4.3.8), for vertical and horizontal composition of texts 
(Section 4.3.9) and forsearching (Section 4.3.10). 

4.3.11 Procrustean Operations 

In this section we shall introduce some machinery for reducing the size of 
texts that are too large for some purpose and also some machinery for stretch
ing texts that are too small. However, we not stick to this Procrustean ter
minology and later in this section we introduce operations called look and 
fill where the narnes of the operations have been derived from their typical 
applications. 

One of the most important problems associated with the specification and 
design of an editor is the fact that in general the text being edited is too large 
to fit on the screen of the display. The text itself may he too long and some 
of the lines may he too wide. One- currently rather obsolete- solution is to 
make the editor line-oriented. This solves the problem of the text being too 
long and then the problem of the lines being too wide can he solved by e.g. 
wrap-around. A better solution is adopted in the so-called display-oriented 
editors where the screen contains one or more rectangular windows. These 
windows can he used for 'looking' to the text(s) being edited. In order to 
keep things simple, we restriet ourselves to the case where there is just one 
window. This window corresponds with a 'subtext' of the text being edited. 
The cursor on the screen corresponds with the 'current position' ( = dot) in 
the text being edited. The editor maintains a kind of 'window-invariant' viz. 
that always this dot and a suitable subtext surrounding the dot are visible 
in the window. 

A second important problem is that the text may he shorter than the vertical 
size of the window; also some of the lines in the text may he shorter than 
the horizontal size of the window. The obvious solution is filling, by which 
we mean the positions within the window for which there is no character in 
the text are displayed as blank. 

In this chapter we choose to discuss a display-oriented editor, but as before, 
we postpone the description of the actual editor and we develop some ma
chinery for formulating the ideas of looking and filling as mentioned above. 
This machinery takes the shape of a colledion of algebrak operatîons on 
texts. We start with filling and we put everything dealing with filling in a 
class description called FILL_SPEC. Again we begin with an ample colledion 
of imports. 

LET FILL_SPEC ·= 
IMPORT NAT_SPEC INTO 
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IMPORT CHAR_SPEC INTO 
IMPORT LINE_SPEC INTO 
IMPORT TEXT_SPEC INTO 
IMPORT TEXT_OPS1_SPEC INTO 
IMPORT TEXT_OPS2_SPEC INTO 
IMPORT TEXT_OPS3_SPEC INTO 
IMPORT STRING_SPEC INTO 
IMPORT PROFILE_SPEC INTO 

CLASS 

We have to provide for filling in both vertical and horizontal directions. This 
observation leadsus directly to two functions vfill and hfill. The function 
vfill serves for filling in the vertical direction. Somehow it seems natural 
to choose our definitions such that the text gets 'upwards adjusted', so that 
filling takes place at the end of the text. 

vfill 
1-----+ 

+-- (empty lines) 

We give the formal definition of vfill below. We can use the function 
empties which we introduced inSection 4.3.9. Reeall that empties(l) is the 
text having precisely l empty lines. 

FUNC vtill: Text # Nat -> Text 
PAR t:Text, n:Nat 
DEF LET i:Nat; i := len(t); 

LET te :Text; 
te : = empties( geq(n,i)?; sub(n,i) I lss(n,i)?; 0 ) ; 
cat(t , te) 

The function hfill serves for filling in the horizontal direction. As an aux
iliary for the description of hfill we have a procedure which describes the 
construction of lines consisting of blanks only. We refer to the constant blank 
for the ' ' character which we introduced earlier. 

FUNC blanks: Nat -> Line 
PAR j:Nat 
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DEF 
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( j • 0 ?; 

I NOT j = 0 ?; 
) 

empty 
cons(blank,blanks(pred(j))) 

Somehow it seems natura! to choose our definitions such that the text gets 
'left adjusted', so that filling takes place at the end of the lines. 

aaaaaaaaaaaaaa 
hfill 
1------4 

aaaaaaaaaaaaaa 
aaaaaaaaaaaaaaaa 
&aaaaaabbbbbbbbb 
bbbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbbbbb 

We give the forma! definition of hfill below. 

FUNC 
PAR 
DEF 

hfill: Text # Nat -> Text 
t:Text, n:Nat 
( t = niltext ?; 

niltext 
NOT t = niltext ?; 
LET l :Line; 1 := hd(t); 
LET i:Nat; i := len(l); 
LET j :Nat; j := ( geq(n,i)?; sub(n,i) I lss(n,i)?; 0 ) ; 
cons(cat(l,blanks(j)),hfill(tl(t),n)) 

And we combine these to get a function fill which does both vertical and 
horizontal filling. 

:fill 
1------4 

aaaaa.aaaaaaaaa 
aaaaaaaaaaaaaaa 
aaaaaaaaaaaaaaaa 
aaaaaaabbbbbbbbb 
bbbbbbbbbbbbbbbbb 

Note that vfill must be applied fust, so that a subsequent application of 
hfill will makesure that the empties introduced by vfill get the desired 
length. It just does not work the other way around. We give the forma! 
definition of fill below. 
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FUNC fill : Text # Nat # Nat -> Text 
PAR t:Text, i:Nat, j :Nat 
DEF hfill(vfill(t,i),j) 

END; {of FILL_SPEC} 
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This completes our formalisation of filling and as a next step we introduce 
. some machinery for the description of looking. As stated before, the appli
cation we have in mind is to describe how a window is used for 'looking' to 
a text. We put everything related to looking in a class description called 
LOOK_SPEC. 

LET LOOK_SPEC := 
IMPORT NAT_SPEC INTO 
IMPORT CHAR_SPEC INTO 
IMPORT LINE_SPEC INTO 
IMPORT TEXT_SPEC INTO 
IMPORT TEXT_OPS1_SPEC INTO 
IMPORT TEXT_OPS2_SPEC INTO 
IMPORT TEXT_OPS3_SPEC INTO 
IMPORT STRING_SPEC INTO 
IMPORT PROFILE_SPEC INTO 
CLASS 

To begin with, we have again an auxiliary. It describes the splitting at line
level. 

FUNC hsplit: Line # Nat -> Line # Line 
PAR s :Line, n:Nat 
DEF ( (n = 0) ?; 

(empty,s) 
NOT n = 0?; 
LET s1:Line, s2:Line; s1,s2 : = hsplit(tl(s),pred(n)); 
(cons(hd(s),s1),s2) 

The way we define the algebraic operations for 'looking' is somewhat similar 
to the way we defined the cut operation before. There it turned out that 
it was convenient to define the more elementary split operation first. We 
have to provide for splitting both in horizontal and vertical direction. These 
considerations lead us directly to two functions hspli t and vspli t . The 
function hspli t serves for splitting in the horizontal direction. 
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haplit 
1---+ 

We give the formal definition of hspli t below. We use reenrsion for propa
gating the effect of hspli t: Line --+ Line2 over an entire text. 

FUNC hsplit : Text # Nat -> Text # Text 
PAR t:Text , n:Nat 
DEF ( t = ni1text ?; ni1text, ni1text 

I NOT t = ni1text ?; 

) 

LET 11:Line,12 : Line; 11,12 := hsp1it(hd(t),n); 
LET t1:Text,t2:Text; t1,t2 : • hsp1it(t1(t),n); 
cons(11,t1), cons(12,t2) 

Note that h_add is the inverse of hspli t. The function vspli t serves for 
splitting in the vertical direction. 

v.plit 
1---+ 

aaaaaaaaaaaa.aa 
aaaaaaaaaaaaaaaa 

aaaaaaabbbbbbbbb 
bbbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbbbbb 

We give the formal definition of vspli t below. 

FUNC 
PAR 
DEF 

vsp1it : Text # Nat -> Text # Text 
t :Text, n : Nat 
( n = 0 ? .; niltext, t 
I NOT n = 0 ?· 0. 

LET tl:Text,t2 :Text; tl,t2 ·= vsp1it(t1(t),pred(n)); 
cons(hd(t),tl), t2 

Note that v _add is the inverse of vspli t. Splitting horizontally twice yields 
what we call a horizontallook (function hlook). 
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hl ook 
1---+ 

We give the formal definition of hlook below. 

FUNC hlook: Text # Nat # Nat-> Text 
PAR t:Text, j1:Nat, j2:Nat 
DEF LET t1:Text, t2:Text; ti ,t2 

LET t11 :Text,t12:Text; t11,t12 
t12 

·= hsplit(t,j2); 
:= hsplit(tl,jl); 
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Splitting vertically twice yields what we call a verticallook (function vlook). 

aaaaaaaaaaaaaa 
aaaaaaaaaaaaaaaa 

~ aaaaaaabbbbbbbbb vlook 
bbbbbbbbbbbbbbbbb 1---+ 

bbbbbbbbbbbbbbbbb 
~ bbbbbbbbbbbbbbbbbbb 

bbbbbbbbbbbbbbbbbbb 

aaaaaaabbbbbbbbb 
bbbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbbb 

We give the formal definition of vlook below. 

FUNC vlook: Text # Nat # Nat -> Text 
PAR t:Text, il:Nat, i2:Nat 
DEF LET tl:Text, t2:Text; tl ,t2 :• vsplit(t,i2); 

LET t11:Text,t12:Text; t11,t12 :• vsplit(tl,il); 
t12 

And we combinethem in an obvious way to get a function look which per
farms bath a vertical and a horizontal 'subsetting' of a given text. look(t, c, d) 
will denote the contentsof a window whose leftmost uppermost corner is at 
c and whose rightmost lowermost corner is determined by d. 
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aaaaaaaaaaaaaa 
aaaaaaaaaaaaaaaa 

~ aaaaaaabbbbbbbbb look 
bbbbbbbbbbbbbbbbb ~ 

bbbbbbbbbbbbbbbbb 
~ bbbbbbbbbbbbbbbbbbb 

bbbbbbbbbbbbbbbbbbb 

We give the formal definition of look below. We prefer to define it such that 
the application of vlook is done fust, foliowed by hlook because in this way 
the result of look is more often defined. 

FUNC look: Text # Nat # Nat # Nat # Nat -> Text 
PAR t:Text, il : Nat, i2:Nat, jl:Nat, j2 :Nat 
DEF hlook(vlook(t,il,j1) , i2,j2) 

END; {of LOOK_SPEC} 

Both class descriptions FILL_SPEC and LOOK_SPEC are intended to play a role 
in formulating precisely how the text being edited should be shown on the 
screen of a display device. This will be done in Section 4.5.12. 

4.4 Interfacing an Editor with its Environ
ment 

4.4.1 Introduetion 

In this section we describe several class descriptions that are important for 
interfacing the editorwithits environment. First of all we construct our own 
model of a physical display device. This is the subject of Section 4.4.2. After 
that we introduce special kinds of sequences and strings. This is the subject 
of Section 4.4.3. Finally we describe a simple file-system, which is the subject 
of Section 4.4.4. 

4.4.2 DISPLAY: an Abstract Display 

In this section we shall look for a formal description of a display device. 
The device that we have in mind is a classica! display of the so-called video
display-unit type- a VT102 or so, say. We do not investigate all the details of 
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one or more concrete displays and instead we start with an abstract display. 
We abstract from the character-sequences that should besent to the display 
for 'clear screen', 'cursor motion' etc. In the abstract display the sending of 
these concrete character sequences is replaced by abstract commands cl, cm 
etc. The choice of the narnes and the functionality of the abstract commands 
have been inspired by to the so-called termcap facility (abbreviating terminal 
capabilities) as used on UNIX systems. We decided that we shall not try 
to include all possible features and capabilities that various displays may 
have. Instead we restriet our description to those display capabilities that 
are minimally required by the EMACS editor described in [4]. 

The corresponding class description is called DISPLAY_SPEC and it is given 
below. There are two variabie functions which span the state-space. The first 
function is called screen and it corresponds with the observable contents on 
the screen of the display, which is the text that you see when you sit in front 
of the display. The screen has a size given by two constants: li and co, 
abbreviating lines and columns. 

co 

Fig 4.2 The window of the display. 

The second function is called cursor and it corresponds with the observable 
position of the cursor on the screen of the display. There are a few operations 
that are not considered executable, but which we export just for reasoning 
purposes. In particular, these are the procedure displ_op and the functions 
screen and cursor. 

LET DISPLAY_SPEC := 
EXPORT 

SORT Char, 
SORT Nat, 
SORT Text, 
FUNC li: -> Nat, 
FUNC co: -> Nat, 
PROC er: -> 
PROC nl: -> 
PROC bc: -> 
PROC ce: -> 
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PROC cl: -> 
PROC nd: -> 
PROC up: -> 
PROC cm: Nat # Nat -> 
PROC print: Char -> , 
PROC displ_op: -> , 
FUNC screen: -> Text , 
FUNC cursor: -> Nat # Nat 

FROM 
IMPORT NAT_SPEC INTO 
IMPORT CHAR_SPEC INTO 
IMPORT LINE_SPEC INTO 
IMPORT TEXT_SPEC INTO 
IMPORT TEXT_OPS1_SPEC INTO 
IMPORT TEXT_OPS2_SPEC INTO 
IMPORT STRING_SPEC INTO 
IMPORT PROFILE_SPEC INTO 
IMPORT FILL_SPEC INTO 
CLASS 

FUNC screen: -> Text VAR 
FUNC cursor: -> Nat # Nat VAR 

FUNC li: -> Nat 
FUNC co: -> Nat 

PROC er: -> MOD screen, cursor 
PROC nl: -> MOD screen, cursor 
PROC bc: -> MOD screen, cursor 
PROC ce: -> MOD screen, cursor 
PROC cl: -> MOD screen, cursor 
PROC nd: -> MOD screen, cursor 
PROC up: -> MOD screen, cursor 
PROC cm: Nat # Nat -> MOD screen, 
PROC print: Char -> MOD screen, 

% number of linea 
% number of columns 

% carriage return 
% newline 
% backwards cursor 
% clear to end-of-line 
% erase display 
% move cursor right 
% move cursor up 

cursor % cursor motion 
cursor % character processing 

Of course we have to specify the effect of the procedures upon the screen 
(function screen) and upon the cursor (function cursor). This effect is 
such that a certain invariant is maintained and we refer to it as display
invariant. We believe that it is a good methodological principle to formulate 
this invariant first. We introduce predicates Dil, DI2 and DI3. 

• Dil states that the screen is rectangular and that its size is given by 
li and co. 
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• DI2 states that the cursor is on the screen. 
• DI3 states that the screen contains only printable characters. 

We add one remark related to DI3. Of course we know that many text editors 
offer the possibility of entering non-printable characters into texts and that 
such characters still somehow get displayed on the screen (e.g. as tilde), 
but this matter is not settled within the display but within the editor. We 
use the predicate printable on Char from Section 4.3.5. 

PRED Dil : 
DEF len(screen) = li AND 

FORALL i:Nat ( lss(i,li) => 
( len(sel(screen,i)) = co ) ) 

PRED DI2: 
DEF LET c1 :Nat,c2:Nat; c1,c2 :=cursor; 

lss(cl,li) AND lss(c2,co) 

PRED DI3: 
DEF FORALL i :Nat, j :Nat 

( lss(i,li) AND lss(j,co) => printable(sel(sel(screen,i),j)) ) 

The invariance of DI1 1\ DI2 1\ DI3 can be expressedas follows: 

PROC displ_op: -> 
DEF ( er 

I nl 
I bc 
I ce 
I cl 
I nd 
I up 
I cm(SOME i:Nat, j :Nat ()) 
I print(SOME c:Char (printable(c))) 
) 

AXIOM INIT => Dil AND DI2 AND DI3 
AXIOM Dil AND DI2 AND DI 3 => 

[ displ_op ] Dil AND DI2 AND DI3 

Next we turn our attention to the semantica! description of the display op
erations which amounts to giving the axioms of the CLASS . . . END part of 
DISPLAY_SPEC. To begin with, we have definedness axioms and termination 
axioms. 
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AXIOM geq(li,l) AND geq(co,l) 

AXIOM < er > TRUE; 
< nl > TRUE; 
< bc > TRUE; 
< ce > TRUE; 
< cl > TRUE; 
< nd > TRUE; 
< up > TRUE 

AXIOM FORALL i:Nat, j :Nat 
( < cm(i,j) > TRUE ) 

AXIOM FORALL c:Char 
( printable(c) => 
< print(c) > TRUE ) 

The effect of each procedure is described by a postcondition. Before giving 
these postconditions, we introduce by overloading two simple auxiliary func
tions called blank_ text. The first function called blank_ text yields one-line 
texts consisting of blank characters only. The second function blank_ text 
takes two arguments i, j say, and then it yields the text with blanksof dimen
sions i and j. We use the function blanks: Nat -> Line from FILL_SPEC. 

FUNC blank_text: Nat -> Text 
PAR n:Nat 
DEF cons(blanks(n),niltext) 

FUNC blank_text: Nat # Nat -> Text 
PAR i: Nat, j :Nat 
DEF ( i = 0?; niltext 

I NOT i= 0 ?; cons(blanks(j),blank_text(pred(i),j)) 
) 

We introduce several postcondition predicates, one for each procedure. These 
predicates have formal parameters s' for the previous screen, c' for the 
previous cursor, s for screen and c for cursor. The first predicate describes 
the effect of 'carriage return'. This case is simple: the second co-ordinate of 
the cursor becomes 0. 

PRED post_cr: Text # Nat # Nat # Text # Nat # Nat 
PAR s':Text, c':Nat #Nat, s:Text, c: Nat# Nat 
DEF LET i:Nat,j:Nat; i,j := c'; 

c = (i,O); 
s • s' 
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After we shall have defined this (and several similar) predicates, we state 
axiomatically that post_er is the postcondition of er indeed. We shall not 
write all axioms in full detail, since it should be clear from the axiom for er 
what the remaining axioms should look like. 

The second predicate describes what happens if a 'new-line' is sent to the 
display. At first sight this case seems simple too: the first co-ordinate of the 
cursor must he incremented by 1. However there is a complication because 
the cursor may already he on the last line of the screen. In the latter situation 
so-called scrolling takes place, i.e. one line of blanks is added to the end of 
the screen, whereas the first line of the screen is removed. 

PRED po8t_nl: Text # Nat # Nat # Text # Nat # Nat 
PAR 8':Text, c':Nat #Nat, 8:Text, c: Nat# Nat 
DEF LET i:Nat,j:Nat; i,j :• c'; 

c = (( l88(i,pred(li))?; 8ucc(i) I i= pred(li)?; i),j) AND 
8 = ( l88(i,pred(li))?; 8' 

I i= pred(li) ?; tl(v_add(8',blank_text(co))) 
) 

The predicates for 'backwards cursor', 'clear to end-of-line', 'erase display', 
'move cursor right', 'move cursor up' and 'cursor motion' speak for them
selves. 

PRED po8t_bc: Text #Nat #Nat# Text #Nat# Nat 
PAR 8' :Text, c':Nat #Nat, 8:Text, c: Nat# Nat 
DEF LET i:Nat,j:Nat; i,j := c'; 

s • s'; 
c = (i, (gtr(j ,0)?; pred(j) I j .. 0?; O)) 

PRED po8t_ce: Text # Nat # Nat # Text # Nat # Nat 
PAR 8':Text, c':Nat #Nat, 8:Text, c: Nat# Nat 
DEF LET i : Nat,j:Nat; i,j := c'; 

LET tt:Text,kk:Text; tt,kk : • cut(8',i,j,i,co); 
8 = pa8te(tt,blank_text(8ub(co,j)),i,j); 
c = c' 

PRED po8t_cl: Text # Nat # Nat # Text # Nat # Nat 
PAR 8' :Text, c':Nat #Nat, 8:Text, c: Nat# Nat 
DEF 8 = blank_text(li,co); 

c = (0,0) 

PRED po8t_nd: Text # Nat # Nat # Text # Nat # Nat 
PAR 8' :Text, c':Nat #Nat, 8:Text, c: Nat# Nat 
DEF LET i:Nat,j:Nat; i,j : = c'; 
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c '"' (i, (lss(j ,pred(co))?; succ(j) I j '"'pred(co)?; j)); 
s = s' 

PRED post_up: Text I Nat I Nat I Text I Nat I Nat 
PAR s':Text, c':Nat I Nat, s:Text, c: Nat I Nat 
DEF LET i:Nat,j:Nat; i,j := c'; 

c = ((gtr(i,O)?; pred(i) I i= 0?; 0), j); 
s = s' 

PRED post_cm: Text I Nat I Nat I Nat I Nat I Text I Nat I Nat 
PAR s':Text,c':Nat I Nat,i:Nat,j:Nat,s:Text,c:Nat I Nat 
DEF s = s'; 

c = ( (lss(i,li)?; i 
(lss(j,co)?; 

geq(i,li)?; pred(li)), 
geq(j,co)?; pred(co)) ) 

And finally we have one important predicate dealing with printable-character 
processing. 

PRED post_print: Text I Nat I Nat I Char I Text # Nat # Nat 
PAR s':Text, c':Nat #Nat, c:Char, s:Text, c: Nat I Nat 
DEF printable(c) => 

( LET i: Nat, j :Nat; i, j : = c' ; 
LET tt:Text,kk:Text; tt,kk := cut(s',i,j,i,succ(j)); 
c = (i,(lss(j,pred(co))?; succ(j) j=pred(co)?; j)); 
s = paste(tt,addchar(c,zero),i,j) ) 

We state axiomatically that post_er is the postcondition of er. 

AXIOM {er} 
FORALL screen':Text, cursor':Nat #Nat 
( screen = screen' AND cursor = cursor' => 

[er] post_cr(screen',cursor',screen,cursor) ) 

We do not write all the axioms in full detail, since it should he clear from 
the axiom for er what they should look like. 

~ AXIOM nl,bc,ce,cl,nd,up as er 

AXIOM {cm} FORALL screen':Text, cursor':Nat #Nat, i:Nat, j:Nat 
( screen = screen' AND cursor = cursor' => 

[ cm(i,j) ] post_cm(screen',cursor',i,j,screen,cursor) ) 

AXIOM {print} FORALL screen':Text, cursor':Nat #Nat, c:Char 
( screen = screen' AND cursor = cursor' => 
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[ print(c) ] post_print(screen',cursor',c,screen,cursor) ) 

END; 

Now the invariance of the display-invariant under the display operations 
should he derivable in the sense that Dil A DI2 A DI3 => [ displ_op ] 
Dil A DI2 A DI3. This can he shown by verifying its invariance under each 
operation separately. By way of example, we shall present this for one of 
them and we choose c r . 

Assume that in a given state Dil A DI3 A DI3 holds and that in this state we 
have executed er. It is important to observe that Dil and DI3 depend only 
on the screen and not on the cursor. DI2 at its turn depends only on the 
cursor and not on the screen. From the axiomabout er and the postcondition 
predicate of er, we can see that in this new state screen = PREV screen 
and this inunediately establishes Dil and DI3. So now we have to check for 
DI2. The vertical co-ordinate of the cursor has kept its old value (in the 
postcondition predicate denoted as i) which thus is less than li, as was to 
he shown. Finally we consider the horizontal co-ordinate of the cursor. We 
see that it has become 0, so we should check 0 < co which holds by the 
axiom saying li ~ 1 A co ~ 1. 

This concludes the description of the abstract display. In the specification 
of the editor, we shall have to describe the relation between the text being 
edited and the dot on one hand and the screen and the cursor of the display 
on the other hand. We introduce such a relation, called the window-invariant 
in Section 4.5.12. 

4.4.3 'SEQ' and 'STRING': Data types for Interfacing 

Before we can specify editing operations, we must decide about the way in 
which we have to invoke our editing operations. It is hard to avoid that these 
operations will take arguments and we must he precise about the types of 
these arguments. A frequently occurring data type is the sort of strings, or 
more precisely, some data type representing strings. 

In our window-and-text facility to he described in Sections 4.5.1-4.5.12 we 
shall introduce so-called buffers which have narnes associated with them and 
we shall need some kind of strings for that. For example, there will he a 
procedure yank_ buffer which takes a string argument for addressing a buffer 
to he 'yanked' and a procedure current_buffer_name which yields a string. 
Also certain operations for file handling wiJl deal with string arguments. 
Now we want to he able to choose a suitable representation of these strings 
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by means of conventional data reiikation techniques. For example, the string 
"hello, world" could be represented by the address of a memory location 
containing the 'h' where subsequent locations contain the 'e ', the '1' and 
so on until some termination value indicates the end of the string. 

Of course it would not be wise to make such representation choices now 
already during the specification phase, but in order to avoid problems in a 
later design phase, we must makesure that our specification does not exclude 
certain reasonable choices. 

Consider the above representation and assume that the memory contains 
"hello, world" startingat address 1024 but also at address 1037, say. Now 
there is a problem with equality: the test 1024 = 1037 yields FALSE, although 
both string representations are equivalent in the sense that they represent 
the same sequence of characters. 

There is also a problem with the dynamic allocation of strings. In STRING_SPEC 
we only have functions such as FUNC empty: -> String and FUNC cons : 
Char # String -> String. This implies that formally an implementation 
of this cons is not allowed to have some side-effect such as storing characters 
in memory locations. The two problems sketched above indicate that, at least 
for certain applications, we better not adopt the sort String, but a slightly 
different sort, which we shall name 'String'. The quotes in 'String' are 
formally part of the identifier. For the latter sprt we introduce an eq pred
icate which is meant for an equivalence relation as indicated above and we 
introduce a procedure called cons rather than a function. Furthermore we 
explicitly introduce the possibility that a representation invariant has to be 
maintained. We shall refer to the objects of this sort 'String' as imple
mentable strings. 

Of course the introduetion of this special type of strings is a complication for 
our taskof formally specifying an editor, especially because the use of the sort 
'String' will propagate throughout large parts of our formal specification. 
However we think that data reification is an important topic and therefore 
we try to dealwithit explicitly, rather than running away from the problem. 
Readers who prefer not to get involved with this topic, should just skip the 
current section and continue reading at Section 4.4.4, replacing everywhere 
'String' by String, and replacing eq by equality (=). 

The purpose of ha ving 'String' rather than String is not to add an im
plementation bias. Instead we like to refer to our approach as specification 
for implementability. First we introduce a somewhat more general concept, 
by specifying a data type of implementable sequences. These are very much 
like sequences, except that they allow for dynamic implementations. They 
are given by the class description 'SEQ_SPEC '. 
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The parameter restrietion is not the usual ITEM, but a somewhat more general 
form 'ITEM', which provides an eq predicate rather than just equality. The 
advantage of 'ITEM' over ITEM is that with 'ITEM' it is possible to have 
implementable sequences of implementable sequences of ... , rather than only 
implementable sequences of items with equality. 

LET 'ITEM' : = 
IMPORT ITEM INTO 
CLASS 

SORT 'Item' FREE 
PRED eq 'Item' # 'Item' FREE 
PRED i tem_inv: FREE 
FUNC f 'Item' -> Item FREE 

AXIOM item_inv => 
FORALL i: 'Item',j: 'Item' 
( eq(i,j) <•> f(i) • f(j) ) 

END; 

The body of the class description 'SEQ_SPEC' introduces a sort 'Seq'. The 
specification 'SEQ_SPEC' is based on the use of an abstraction function f -
by overloading- and a representation invariant seq_inv. Notice that we do 
not really specify the invariant; we just allow the implementation to maintain 
one. An implementer who does not need this, may just define seq_inv OEF 
TRUE. Furthermore in 'SEQ_SPEC' we have procedures cons and cat rather 
than functions. There is an eq predicate which should be viewed as the 
external notion of equality on 'Seq'. 

Not all sorts and operations are considered executable, butsome of the non
executable sorts and operations are exported nevertheless because it is con
venient to have them for reasoning purposes. In particular, the sort Seq, the 
predicate seq_inv and the function f are needed for reasoning purposes only. 
The remaining exported sorts and operations are considered executable. For
mally, COLD-K does notprovide a program-execution modeland when we 
make statements about executability, these do not refer to any formal notion 
ofCOLD-K. 

LET 'SEQ_SPEC' ·= 

LAMBDA X : 'ITEM' OF 
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EXPORT 

SORT Seq, 
PRED seq_inv:, 
FUNC f : 'Seq' 

SORT 'Seq', 
SORT Nat, 
SORT 'Item', 
FUNC empty 
PROC cons 'Item' # 'Seq' 
FUNC hd 'Seq' 
FUNC tl 'Seq' 
PRED eq 'Seq' # 'Seq' 
FUNC sel 'Seq' # Nat 
PROC cat 'Seq' # 'Seq' 
PROC rev 'Seq' 

FROM 

IMPORT X INTO 
IMPORT NAT_SPEC INTO 
IMPORT APPLY SEQ_SPEC TO X INTO 

CLASS 

SORT 'Seq' VAR 

FUNC empty: -> 
PROC cons 'Item' # 'Seq' -> 
FUNC hd 'Seq' -> 
FUNC tl 'Seq' -> 
PRED eq 'Seq' # 'Seq' 

FUNC f: 'Seq' -> Seq 
PRED seq_inv: VAR 

AXIOM {INVARIANCE} 

INIT AND item_inv •> seq_inv; 
item_inv AND seq_inv => [ p ] 

PROC p: -> 

-> Seq, 

-> 'Seq', 
-> 'Seq', 
-> 'Item', 
-> 'Seq', 

-> 'Item', 
-> 'Seq', 
-> 'Seq' 

'Seq' 
'Seq' MOD 
'Item' 
'Seq' 

seq_inv 

DEF ( FLUSH cons(SOME i : 'Item' o. SOME 
I FLUSH cat (SOME s: 'Seq' o. SOME 

'Seq' 

s: 'Seq' ()) 

t: 'Seq' ()) 
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I FLUSH rev (SOME s: 'Seq' ()) 
) 

AXIOM {ABSTRACTION} 

item_inv AND seq_inv •> 
FORALL t:'Seq' ( f(t)l ); 

item_inv AND seq_inv •> 
FORALL s: 'Seq', t: 'Seq', i:' Item', j: 'Item' 
( f(empty) • empty; 
( [LET u:'Seq'; u:= cons(i,s)] f(u) • cons(f(i),f(s)) ); 

NOT f(s) • empty => f(hd(s)) = hd(f(s)); 
NOT f(s) • empty => f(tl(s)) • tl(f(s)); 
eq(s,t) <=> f(s) a f(t) ) 

AXIOM {TERMINATION} 

item_inv AND seq_inv => 
FORALL i : 'Item', s: 'Seq' ( < cons(i,s) > TRUE) 

PROC cat: 'Seq' # 'Seq' -> 'Seq' MOD 'Seq' 
PROC rev : 'Seq' -> 'Seq' MOD 'Seq' 
FUNC sel : 'Seq' # Nat -> 'Item' 

AXIOM {ABSTRACTION} 

item_inv AND seq_inv => 
FORALL s : 'Seq', t: 'Seq', n:Nat 
( [LET u: 'Seq'; u :z cat(s,t) 

[LET u: 'Seq'; u:= rev(s) 
[LET i: 'Item'; i ·= sel(s,n) 

AXIOM {TERMINATION} 

item_inv AND seq_inv => 
FORALL s: 'Seq' , t: 'Seq' 
( < FLUSH cat(s,t) > TRUE; 

< FLUSH rev(s) > TRUE ) 

END; 

] f(u) • cat(f(s),f(t)); 
] f(u) c rev(f(s)); 
] f(i) • sel(f(s),n) ) 
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N ow implementable strings are nothing but implementable sequences of char
acters. We do not need the full generality offered by • ITEM •, but that 
does not matter. We also introduce the usual lexicographical ordering on 
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sequences as a predicate leas. Again we can distinguish between non
executables and executables. In particular, String, f: 'String' ---+ String 
and string_inv need not be executable. The remaining exported sorts and 
operations are considered executable. 

LET 'STRING_SPEC' :• 
EXPORT 

SORT String, 
FUNC :f : 'String' -> String, 
PRED string_inv: , 

SORT Char, 
SORT Nat, 
SORT 'String' , 
FUNC empty: 
PROC cons Char I 'String' 
FUNC hd 'String' 
FUNC tl 'String' 
PRED eq 'String' 
FUNC sel 'String' 
PROC cat 'String' 
PROC rev 'String' 
PRED leas 'String' 

FROM 
IMPORT NAT_SPEC INTO 
IMPORT CHAR_SPEC INTO 
IMPORT STRING_SPEC INTO 

I 'String' 
I Nat 
I 'String' 

# 'String' 

IMPORT APPLY RENAME 
SORT Seq 
SORT 'Seq' 
SORT Item 
SORT 'Item' 

TO String, 
TO 'String' , 
TO Char, 
TO Char, 

PRED seq_inv: TO string_inv 
IN 'SEQ_SPEC' TO 
IMPORT CHAR_SPEC INTO 
CLASS 

-> 'String', 
-> 'String', 
-> Char, 
-> 'String', 

-> Char, 
-> 'String', 
-> 'String', 

PRED eq: Char # Char PAR c :Char,d:Char OEF c d 
PRED item_inv: DEF TRUE 
FUNC :f: Char -> Char PAR c :Char DEF c 

END 

INTO 
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CLASS 

PRED leas: 'String' # 'String' 

AXIOM string_inv •> 
FORALL s: 'String',t:'String' 
( less(s,t) <•> less(!(s),!(t)) ) 

END ; 

4.4.4 FILE: a File system 

Both the possibility to edit existing texts and the possibility to store the 
results of an edit-session are indispensable for text editing. We assume that 
the basic mechanisms for text storage and retrieval are provided by some füe 
system. We cannot completely specify an editor unless we also have a de
scription of the available file system. The class description FILE_SPEC below 
roodels a simple file system with just enough operations for our purposes. 

We use narnes (sort 'String') as file-identifications. Since the file sys
tem can in fact he independent of any particular string implementation, 
we have parameterised the file system specification over implementations of 
' STRING_SPEC'. The predicate va lid describes the valid narnes of the file 
system, corresponding with the situation that for eertaio narnes there exist 
files in the system, whereas for other narnes there is no file (yet). 

We restriet ourselves to character-files and we model the contentsof a file as 
a string. This is described by the function file which fora given name yields 
the contentsof the corresponding file. We allow for an arbitrary number of 
files in the file system, but in any state at most two files can he active, viz. 
one for input and one for output. So read and eof operate on the file that 
has been reset most recently. Similarly wri te operates on the most recently 
rewritten file. In the description below this idea of having at most two active 
files is modelled by the functions infile and outfile which correspond with 
the narnes of the input file and the output file respectively. 

We suppose that the operations rewri te, reset, read, wri te and eof are 
executable. We also export valid, file and pos, but this is just because we 
might want to reason with them; they need not he executable. 

LET FILE_SPEC := 
LAMBDA X : 'STRING_SPEC' OF 
EXPORT 
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SORT String, 
PRED valid 
FUNC file 
FUNC pos 

SORT Nat, 

String, 
String 
String 

SORT Char, 
SORT 'String' , 

-> String, 
-> Nat, 

PROC rewrite: 'String• -> 
PROC reset 
PROC read 
PROC write 
PRED eof 

'String' -> 
-> Char, 

Char -> 

FROM 
IMPORT X INTO 
IMPORT NAT_SPEC INTO 
IMPORT CHAR_SPEC INTO 
IMPORT STRING_SPEC INTO 
CLASS 

FUNC file String -> String VAR 
FUNC pos String -> Nat VAR 

PRED valid: String 
PAR s :String 
DEF file(s)! 

FUNC infile : 
FUNC outfile: 

-> String VAR 
-> String VAR 

PROC rewrite : 'String• -> MOD file,outtile 

AXIOM FORALL s: 'String' ( string_inv •> ( 
< rewrite(s) > TRUE; 
[ rewrite(s) ] 
( outfile = f(s); 

file(f(s)) • empty; 
FORALL t: 'String',u:String 
( NOT f(t) = f(s) •> 

file(f(t)) • u <•> PREV file(f(t)) • u ) ) ) ) 

PROC reset : 'String• -> MOD pos,infile 
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AXIOM FORALL s:'String' ( string_inv AND valid(f(s)) => ( 
< reset(s) > TRUE; 
[ reset(s) ] 
( infile = f(s); 

pos(f(s)) = zero; 
FORALL t: 'String',i:Nat 
( NOT f(t) = f(s) •> 

pos(f(t)) = i <=> PREV pos(f(t)) = i ) ) ) ) 

PROC read : -> Char MOD pos 

AXIOM string_inv AND lss(pos(infile),len(file(infile))) => ( 
< read > TRUE; 
[LET c:Char; c := read] 
( c = sel(file(infile),PREV pos(infile)); 

pos(infile) • succ(PREV pos(infile)); 
FORALL t:String,i:Nat 
( NOT t = infile => 

pos(infile) = i <=> PREV pos(t) • i ) ) ) 

PROC write : Char -> MOD file 

AXIOM FORALL c:Char ( string_inv AND valid(outfile) => ( 
< write(c) > TRUE; 
[ write(c) ] 
( file(outfile) = cat((PREV file(outfile)),cons(c,empty)); 

FORALL t:String,u:String 
( NOT t • outfile •> 

( file(outfile) • u <=> PREV file(outfile) • u ))))) 

PRED eof: 

AXIOM string_inv AND valid(infile) AND pos(infile)! •> 
( eof <=> pos(infile) = len(file(infile)) ) 

END; 
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We tried to keep the specification of the file system as simple as possible. In 
particular, our description doesnotcover the phenomenon of output buffer
ing and the related probieros among which the need for a so-called flush 
opera ti on. 

Note also that we did not exclude the situation that infile and/or outfile 
are undefined - typically after system initialisation. In that case nothing 
is specified about the effect of read and wri te. For example if infile 
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is undefined then the assertion lss(pos(infile) ,len(file(infile))) is 
false, so read can do anything - e.g. abort. 

4.5 Text Editing 

4.5.1 Introduetion 

We adopt the basic idea underlying display-oriented editors where the user 
of an editor need not give print or display commands himself. Instead, the 
editor more or less automatically makes sure that parts of one or more texts 
are displayed within windows on the screen of a display. We also adopt 
the idea that the user can edit several texts simultaneously. In combination 
with cut and paste capabilities, this makes it possible to move pieces of text 
from one text to another. It should be possible for the user to give narnes 
to texts. As a third idea we adopt the algebraic operations cut and paste 
of Section 4.3.6 as a starting point for the cut and paste capabilities of the 
editor. These ideas are also realised in the EMACS editor [4], However, in 
[4] the algebraic aspects are somewhat hidden and instead there are simply 
operations copy-region-to-buffer and yank-buffer offering cut and paste 
capabilities. 

We shall describe a kind of abstract machine which we refer to as window
and-text facility. The corresponding class description is named WITEFA_SPEC 
- for Window and TExt FAcility). This facility allows for the manipulation 
of texts and it makes sure that a suitable part of one text is displayed on 
the screen of a display which serves as a window. It supports a notion of 
'current text' and a mechanism for associating narnes with texts. For the 
time being the window management part of the window-and-text facility is 
kept simple: there is just one window with with dimensions li and co which 
thus covers the entire screen of the display (see Section 4.4.2). It should he 
stressed however that our approach would be suited for the inclusion of multi
window features: the algebraic operations h_add and v_add of Section 4.3.9 
would be a good starting point for descrihing the partition of a multi-window 
screen. 

We avoid the introduetion of a notion of buffer, which in our view is best 
postponed until an implementation phase. We have operations whose narnes 
arebasedon a buffer-oriented terminology, but we do this only for maintain
ing a kind of name-compatibility with EMACS. In the forma! specification 
of these operations we do not use the buffer-oriented terminology. Instead 
of that we have the notion of marked text, which is the subject of our next 
section. 
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The remainder of this section is organised as follows. In Section 4.5.2 we 
formally introduce marked texts. Section 4.5.3 is about formally importing 
the machinery developed before into the editor specification. Section 4.5.4 
is about rnadelling the state-space. In Section 4.5.5 we formulate a so-called 
text-invariant. The definition of the editor operations will cover the Sections 
4.5.6 to 4.5.10. The termination axioms are given for all operations tagether 
in Section 4.5.11. In Section 4.5.12 we discuss the conneetion between the 
editor and the display. In Section 4.5.13 we present a simple editor which 
can be built on top of our window-and-text facility. Finallyin Section 4.5.14 
we discuss the conneetion between theeditorand the keyboard. 

4.5.2 Marked Texts 

A marked text is a composite object that consists of a text and a collection of 
co-ordinate pairs. These co-ordinate pairs will be called markers. We expect 
that we need the following markers. 

• Dot: a kind of 'current' location in the text. 
• Mark: a marker that can be put on any position in the text. This mark 

can be used for selecting a text-region for cut- and paste operations. In 
the typical applications, the mark indicates the beginning of this text 
region and the dot indicates its end. This application of the mark will 
be worked outinSection 4.5.7. 

Furthermore we have considered the possibility of ha ving the following addi
tional markers, but at least for the time being we do not need these urgently, 
so we shall not include them in our specification: 1. bob: marker that is 
always at the beginning of the text. 2. eob: marker that is always at the 
end of the text. 3. searcher: a marker that plays a role in search- and re
place commands. One could even go further and consider the introduetion 
of a stack of markers (in [6] this is called a 'mark ring'), allowing for the 
manipulation of a large number of markers. 

The following picture sketches a marked text. 
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Fig 4.3. Marked text. 

We do not introduce the idea of locations for storing marked texts directly, 
but instead we focus now on the contents of such locations. We formalise 
markers as tuples (i,j). This is done by introducing a class-description called 
COPA_SPEC (COPA for CO-ordinate PAir). We have projection functions v for 
the vertical co-ordinate and h for the horizontal co-ordinate. 

LET COPA_SPEC :~ 

APPLY APPLY RENAME 
SORT Iteml TO Nat, 
SORT Item2 TO Nat, 
SORT Tup TO Copa, 
FUNC projl: Tup -> Iteml TO v, 
FUNC proj2: Tup -> Item2 TO h, 
FUNC tup: Iteml # Item2 -> Tup TO copa 

IN TUP2_SPEC TO NAT_SPEC TO NAT_SPEC; 

And now we can define a class description MTEXT_SPEC, which serves for 
formalising marked texts as triples of the form (t, d, m) where t is the text 
and where d and mare the dot and the mark respectively. 

LET MTEXT_SPEC :z 
IMPORT APPLY APPLY APPLY RENAME 

SORT Iteml TO Text, 
SORT Item2 TO Copa, 
SORT Item3 TO Copa, 
SORT Tup TO MText, 
FUNC projl: Tup -> Iteml TO text, 
FUNC proj2: Tup -> Item2 TO dot, 
FUNC proj3: Tup -> Item3 TO mark, 
FUNC tup: Iteml # Item2 # Item3 -> Tup TO mtext 

IN TUP3_SPEC TO TEXT_SPEC TO COPA_SPEC TO COPA_SPEC INTO 
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IMPORT NAT_SPEC INTO 
IMPORT COPA_SPEC INTO 
CLASS 

FUNC dot: MText -> Nat # Nat 
PAR b: MText 
DEF v(dot(b)), h(dot(b)) 

FUNC mark: MText -> Nat # Nat 
PAR b: MText 
DEF v(mark(b)), h(mark(b)) 
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This providesus with an extensional and functional specification of marked 
texts. We introduce a number of modification operations on marked texts
not in the sense of modifications on states of course. 

FUNC modtext: MText # Text -> MText 
PAR m:MText, t:Text 
DEF mtext(t,dot(m),mark(m)) 

FUNC moddot : MText # Copa -> MText 
PAR m:MText, c:Copa 
DEF mtext(text(m),c,mark(m)) 

FUNC modmark: MText # Copa -> MText 
PAR m:MText, c:Copa 
DEF mtext(text(m),dot(m),c) 

END; 

4.5.3 Stating the Application Domain 

Most software products have a certain functionality associated with some 
specific application-domain. In our case this is text editing and therefore 
we have collected a number of definitions which are specifically related to 
the notion of text. This collection of definitions should be viewed as an 
application-domain specific notational framework, rather than as a product 
specification. It is convenient to have a name for this application-domain 
specific notational framework. Therefore we introduce a class description 
called APP _DOM_SPEC which encompasses many of the class descriptions given 
before. 
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LET APP_DOM_SPEC :• 

IMPORT BOOL_SPEC INTO 
IMPORT NAT_SPEC INTO 
IMPORT CHAR_SPEC INTO 
IMPORT LINE_SPEC INTO 
IMPORT TEXT_SPEC INTO 
IMPORT TEXT_OPSl_SPEC INTO 
IMPORT TEXT_OPS2_SPEC INTO 
IMPORT TEXT_OPS3_SPEC INTO 
IMPORT STRING_SPEC INTO 
IMPORT PROFILE_SPEC INTO 
IMPORT FILL_SPEC INTO 
IMPORT LOOK_SPEC INTO 
MTEXT_SPEC ; 

4.5.4 Spanning the State-space 

Our window-and-text facility manages a finite collection of marked texts. At 
the specification level, we describe this collection as a map. We shall use 
several operations from MAP _SPEC as given in Appendix B such as empty: 
- Map, app: Map # Iteml - Item2 and dom: Map - Setl which yields 
a set of Iteml. Sometimes we write m[i] for app(m,i). Of course we im
port the application-domain specific notational framework as collected in 
APP _DOM_SPEC. 

LET WITEFA_SPEC :• 

IMPORT APP_DOM_SPEC INTO 
IMPORT 'STRING_SPEC' INTO 
IMPORT DISPLAY_SPEC INTO 

IMPORT (APPLY FILE_SPEC TO 'STRING_SPEC') INTO 

IMPORT APPLY APPLY RENAME 
SORT Iteml TO String, 
SORT Item2 TO MText 

IN MAP_SPEC TO STRING_SPEC TO MTEXT_SPEC INTO 

IMPORT APPLY RENAME 
SORT Item TO String, 
SORT Set TO Setl 

IN SET_SPEC TO STRING_SPEC INTO 
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CLASS 

The collection of marked texts in WITEF A_SPEC is formally described by a 
variabie function mtexts. In this way marked texts will have narnes associ
ated with them, where narnes are just strings. 

FUNC mtexts: -> Map VAR 

Just to keep things concrete, let us briefly sketch one possible use of this vari
abie map. In Section 4.5.13 we shall describe a simple editor on top of our 
window-and-text facility. In this editor we shall have three marked texts, 
denoted as mtexts["main"], mtexts["mini"] and mtexts["kill 11 ]. In 
EMACS terminology these would he called the main-buffer, the mini-buffer 
and the kili-buffer respectively. The marked text named "main11 contains 
essentially the text being edited, whereas the marked text named "mini 11 al
lows the user to input file narnes and search strings. The marked text named 
11kill 11 always contains the most recently deleted text. 

Now we proceed with spanning the state-space. There is a notion of current 
marked text which formally is described by introducing a variabie function. 

FUNC current: -> String VAR 

The variables mtexts and current need not he considered executable. All 
operations to he described later are considered executable. 

At fust sight it seems attractive to postulate an initialisation condition by 
using the built-in initially assertion INIT of COLD-K, but this may be hard 
to implementand therefore we prefer the use of an initialisation procedure. 
Insteadof INIT => ... we must write INIT => [ ini t( ... ) ] .. . 

We want to avoid the situation where current: String becomes undefined. 
Therefore the initialisation procedure gets a 'String' argument which rep
resents the name of the first marked text. This marked text consists of the 
zero text with (0, 0) as dot and mark. After the initialisation has been in
voked, the user of the window-and-text facility can introduce more narnes 
and hence more marked texts. The procedure ini t defined here has modi
tication rights with respect to mtexts, current and a predicate named WTI. 
The motivation for this WTI and its definition will he provided later in Section 
4.5.5. The procedure ini t also has use rights with respect to the procedure 
displ_op which was defined in Section 4.4.2. In the description of the post
condition of init below we refer to the function f: 'String' -> String 
which was defined in Section 4.4.3. 

PROC init : 'String' -> 
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MOD mtexts,current,WTI USE displ_op 

AXIOM INIT => FORALL s:'String' ( < init(s) > TRUE) 

AXIOM INIT => 
FORALL s: 'String' 
( [ init(s) ] 

current = f(s) AND 
mtexts = add(empty,f(s),mtext(zero,copa(O,O),copa(O,O))) ) 

We have classified the operations into the following groups: 

• operations for dot and mark control, 
• operations for text modification, 
• operations for marked-text management, 
• operations for searching, 
• operations for string conversion. 

4.5.5 The Text Invariant 

We must make a decision about the behaviour of the editor. There are 
a number of marked texts, and one of them, is the 'current' marked text. 
Within this current marked text there is a point of interest, indicated by 
dot. Probably this is close to the piece of text about which the user of the 
editor is thinking and where he is going to do his next insertion or deletion. 
The user can move this dot and the cursor in the sense that the cursor on 
the screen somehow mirrors the position of the dot. The question now is 
if one wants to allow the situation where the dot indicates a position that 
is non-existent in the text of the current marked text. We believe that a 
consequent and elegant approach is to avoid this situation entirely. Consider 
the following text and suppose that dot is at the position corresponding with 
the A at the end of the fust line. 

thia -ia-a-v,.:.•r=y-=l=o=n=g-=1=111=•=-o=f=-t=•=xt=-=ra=t=h•=r=-l=o=n=g-=i=nd=•=•d=-=:' ahort-line .._ 
thia-io-a-vary-long-line-of-text-rather-long-indeed-C 
thio-io-a-very-long-line-of-text-rather- long-indeed-0 
thia-io-a-very-long-line-of-text-rather-long-indeed-E 

Now according to our approach it should not he possible to move the dot 
one line downwards while staying within the same column. Indeed, suppose 
that it would he possible, then it is unclear what it means to do an insert 
operation next. 
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We formulate the ahove ideas hy introducing a so-called text-invariant. The 
text-invariant implies that for each marked text hoth the dot and the mark 
correspond with positions that exist in the text of that marked text; further
more this text should he ok. 

Considering ok texts only has the advantage that when this window-and-text 
facility has to he implemented, its designer is in a comfortahle position in the 
sense that he has the option of choosing the string-representation of texts. 
Another advantage exists already in the specification phase: all operations 
such as cut and paste of Section 4.3.6 which are well-defined for ok texts 
only, are usahle. Now we easily formulate this part of our text-invariant and 
we introduce it as a predicate Til. 

PRED Til: 
DEF FDRALL s :String, mt:MText 

( mt = app(mtexts,s) => 
(LET d : Nat# Nat; d := dot(mt); 
LET m: Nat# Nat; m := mark(mt); 
intext(text(mt),d) AND intext(text(mt),m) AND ok(text(mt)))) 

A second constraint on the state-space arises hecause we have a notion of 
current and this should he the name of an existing marked text. 

PRED TI2: 
DEF app(mtexts,current)l 

PRED TI: 
DEF Til AND TI2 

We must formalise the requirement that the operations of the WITEF A_SPEC 
respect TI. As a first attempt, we could express this requirement hy saying 
that TI is an invariant in the following weak sense, which we might refer to 
as repetition-invariant. Let wi tefa_op denote an invocation of one of the 
operations of WITEF A_SPEC. 

% AXIOM INIT => [ init(SDME s: 'String'()) ] [ (wite!a_op)*] TI 
% (not adopted) 

This first attempt fails, hecause it does not guarantee that TI is preserved 
hy an interteaving of wi tefa_op invocations with invocations of other oper
ations. As a second attempt, we could express this requirement as follows. 

% AXIDM INIT => [ init(SOME s: 'String'()) ] TI; 
% TI => [ witefa_op ] TI 
% (not adopted) 
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We shall refer to this formulation by saying that TI is a classical invariant. 
This attempt fails too, because we must allow an implementation to have 
auxiliary variables and hence to maintain a stronger invariant WTI, say. The 
problem is that from the fact that WTI is a classica} invariant one cannot 
conclude that TI is so too. 

Therefore we introduce as a part of the specification another auxiliary predi
cate WTI (for Window and Text Invariant) which must be a classica} invariant 
and which at its turn must imply TI. One might be tempted tothink that the 
classica! invariance of WTI under wi tefa_op follows already automatically if 
we simply do not add WTI to the modification rights of the operations from 
the the wi tefa_op group. However, this would be too strong, because it 
would forbid an implementation of the procedures to change the truth-value 
of the invariant from false to true - just by luck. So we must add WTI to the 
modification rights of the operations from the the wi tefa_op group and we 
must state its invariance by an axiom. 

PRED WTI: VAR 

AXIOM {WTil} INIT •> [ init(SOME s : 'String'()) ] WTI; 
WTI m> [ witefa_op ] WTI 

AXIOM {WTI2} WTI => TI 

We adopt the latter salution and we might refer to its construction by saying 
that TI is an observational invariant with respect to witefa_op. The intu
ition behind this term is as follows. Define an experiment as the execution 
of some interteaving of wi tefa_op invocations with invocations of other op
erations. N ow this construction guarantees that after any experiment, it can 
be observed that TLholds, although in fact something stronger may hold, 
which need not be observable. 

Actually wi tefa_op can be defined in terms of the operations from the next 
sections. lts definition refers to all but one procedures of WITEFA_SPEC, the 
only exception being ini t. 

PROC witefa_op: -> 
DEF ( FLUSH bolp 

I FLUSH eolp 
I forward_character 
I backward_character 
I next_line 
I previous_line 
I beginning_of_line 
I end_of_line 
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beginning_o!_bu!!er 
end_o!_bu!!er 
set_mark 
exchange_dot_and_mark 
insert_!ile(SOME s:'String' (valid(!(s)))) 
insert_character(SOME c :Char printable(c)) 
newline 
yank_bu!!er(SOME s:'String' (app(mtexts,!(s))!)) 
delete_next_character 
erase_region 
erase_bu!!er(SOME s : 'String' ()) 
copy_region_to_bu!!er(SOME s: 'String' ()) 
FLUSH current_bu!!er_name 
write_named_!ile(SOME s: 'String' ()) 
switch_to_bu!!er(SOME s: 'String' ()) 
search_forward(SOME s: 'String' ()) 
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FLUSH bu!!er_to_string (SOME s: 'String' (app(mtexts,!(s))!)) 

In the speci:fication of the operations, we must take care not to contradiet 
the assertion that TI is an observational invariant. Even better, we can try 
to make a kind of 'almost-invariance' of TI derivable in the sense that ini t 
establishes TI and that WTI => [ wi tefa_op ] TI. We decided to do so and 
furthermore we shall show below that ini t establishes TI. We shall later 
show by way of example this almost invariance for one of the operations, 
which will be copy_region_to_buffer of Section 4.5.7. 

Let us show now already that INIT => Vs: 'String' [ init(s) ] TI is 
derivable from the given postcondition of ini t. This postcondition states 
that current = f (s) 1\ mtexts = add(empty, f (s), mtext (zero, copa(O,O), 
copa(O,O))). For TI1 we must check something for all marked texts mt 
in the range of mtexts, but we see that there is only one, which is the 
marked text mtext(zero,copa(O,O) ,copa(O,O)). We easily verify that 
intext(zero, (0,0)) and ok(zero) holds. Now we are left with TI2 which 
requires that current is in the domain of mtexts. Since current = f (s), 
it is even the only element in the domain. This shows that ini t establishes 
TI. 

The presentation of signatures and the the pre- and postcondition style ax
ioms of the operations will be based on the classification of the operations 
into several groups as sketched in Section 4.5.4. This will cover the Sections 
4.5.6 to 4.5.10. The termination axioms are given for all operations together 
in Section 4.5.11. 
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4.5.6 Operations for Dot and Mark control 

To begin with, we give the signature of the operations from this group. 

PROC bolp 
PROC eolp 
PROC forward_character 
PROC backward_character 
PROC next_line 
PROC previous_line 
PROC beginning_of_line 
PROC end_of_line 
PROC beginning_of_buffer 
PROC end_of_buffer 
PROC set_mark 
PROC exchange_dot_and_mark 

-> Bool MOD WTI 
-> Bool MOD WTI 
-> MOD mtexts,WTI USE displ_op 
-> MOD mtexts,WTI USE displ_op 
-> MOD mtexts,WTI USE displ_op 
-> MOD mtexts,WTI USE displ_op 
-> MOD mtexts,WTI USE displ_op 
-> MOD mtexts,WTI USE displ_op 
-> MOD mtexts,WTI USE displ_op 
-> MOD mtexts,WTI USE displ_op 
-> MOD mtexts,WTI USE displ_op 
-> MOD mtexts,WTI USE displ_op 

We describe the operations in pre- and postcondition style. TI must be 
respected, which for the operations of this group amounts to the restrietion 
of Til that we may not move dot or marktoa position that is non-existing 
in the text. We have several similar axioms and in order to savespace the 
following premiss serves as a common clause for the specification of several 
opera ti ons: 

AXIOM WTI => ( 
LET mtext':MText; mtext' • app(mtexts,current); 
LET i:Nat,j:Nat; i,j :• dot(mtext'); 

Our first operations are two Boolean procedures named bolp and eolp ab
breviating beginning-of-line predicate and end-of-line predicate. 

[ LET b:Bool; b :• bolp ] 
( b = true <=> j • 0 ); 

[ LET b:Bool; b :z eolp ] 
( b • true <=> len(sel(text(mtext'),i)) = j ); 

We used the selection operation sel: Text -> Line which- somewhat im
plicitly - was constructed in Section 4.3.2. The four next operations deal 
with moving the dot rightwards, leftwards, downwards and upwards respec
tively. Each operation has two clauses: one for the normal case and one 
for the situation where it has no effect because Til must be respected. The 
axioms below show a difference between our editor and EMACS [4]. The 
difference lies in the effect of trying to move rightwards when the dot is at 
the end of a line. In that case our editor does nothing whereas in EMACS 
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the dot moves to the beginning of the next line. Similar differences exist for 
leftward, downward and upward movements. 

In view of the fact that mtexts is a map based on MAP _SPEC of Appendix 
B , we can use the operation add: Map # String -> MText for descrihing 
how the marked text addressed by current is overwritten. 

It is interesting to analyse the specification of previous_line below for the 
particular case that the vertical co-ordinate of the dot is 0, i.e. i = 0. In 
that case pred(i) is undefined and therefore intext( ... ,pred(i) ,j) is 
false. We see that the postcondition mtexts = PREV mtexts applies - so 
nothing happens. 

intext(text(mtext'),i,succ(j)) => 
[ torward_character ] 
(LET new_dot: Copa; new_dot :• copa(i,succ(j)); 

LET new_mtext:MText; new_mtext :• moddot(mtext',new_dot); 
mtexts = add((PREV mtexts),current,new_mtext) ); 

NOT intext(text(mtext'),i,succ(j)) => 
[ forward_character ] 
( mtexts = (PREV mtexts) ); 

gtr(j,O) => 
[ backward_character ] 
( LET new_dot:Copa; new_dot :• copa(i,pred(j)) 

{rest as for forward_character} ); 

NOT gtr(j,O) => 
[ backward_character ] 
( mtexts • (PREV mtexts) ); 

intext(text(mtext'),succ(i),j) => 
[ next_line ] 
(LET new_dot:Copa; new_dot :• copa(succ(i),j) 

{rest as for forward_character} ); 

NOT intext(text(mtext'),succ(i),j) •> 
[ next_line ] 
( mtexts • (PREV mtexts) ); 

intext(text(mtext'),pred(i),j) •> 
[ previous_line ] 
(LET new_dot:Copa; new_dot :• copa(pred(i),j) 

{rest as tor forward_character} ); 
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NOT intext(text(mtext'),pred(i),j) •> 
[ previous_line ] 
( mtexts • (PREV mtexts) ); 

The next operations deal with moving the dot to the extreme positions in a 
line. This is easy because there is no danger of moving dot to a non-existing 
position. 

[ beginning_of_line ] 
( LET new_dot:Copa; new_dot := copa(i,O) 

{rest as for forward_character} ); 

[ end_of_line ] 
(LET new_dot:Copa; new_dot := copa(i,len(sel(text(mtext'),i))) 

{rest as for forward_character} ); 

The next operations deal with moving the dot to the extreme positions within 
the buffer. Again there is no danger of moving dottoa non-existing position. 

[ beginning_of_buffer ] 
( LET new_dot:Copa; new_dot := copa(O,O) 

{rest as for forward_character} ); 

[ end_of_buffer ] 
( LET new_dot:Copa; new_dot :a copa(reach(text(mtext'))) 

{rest as for forward_character} ); 

The following operations deal with controlling the mark. WTI and hence TI1 
hold in the begin-state. Therefore we know that both dot and mark are at 
existing positions and this remains the case if we put mark at dot or if we 
exchange dot and mark. This shows that there is no danger of violating TIL 

[ set_mark ] 
(LET new_mark: Copa; new_mark :• dot(mtext'); 

LET new_mtext:MText; new_mtext :• modmark(mtext',new_mark); 
mtexts • add((PREV mtexts),current,new_mtext) ); 
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[ exchange_dot_and_mark ] 
(LET new_dot :Copa; new_dot :• mark(mtext'); 

LET new_mark:Copa; new_mark :s dot(mtext'); 
LET new_mtext:MText; 
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new_mtext := modmark(moddot(mtext',new_dot),new_mark); 
mtexts • add((PREV mtexts),current,new_mtext) ) 

) 

4.5. 7 Operations for Text Modification 

These operations serve for changing the text of some marked text and most of 
them modify the current marked text. To begin with, we give the signature 
of the operations from this group. 

PROC insert_tile: 'String' -> 
MOD mtexts,WTI USE displ_op, reset, read 

PROC insert_character Char -> MOD mtexts,WTI USE displ_op 
PROC newline -> MOD mtexts,WTI USE displ_op 
PROC yank_bufter 'String' -> MOD mtexts,WTI USE displ_op 
PROC delete_next_character: -> MOD mtexts,WTI USE displ_op 
PROC erase_region -> MOD mtexts,WTI USE displ_op 
PROC erase_butter 'String' -> MOD mtexts,WTI USE displ_op 
PROC copy_region_to_butter : 'String' -> MOD mtexts,WTI USE displ_op 

We describe the operations in pre- and postcondition style and we must make 
sure that TI is respected. Again we have several similar axioms and we have 
a common clause for the specification of several operations. 

AXIOM WTI => 

FORALL s: 'String', c:Char ( 

Most operations of this group have the effect that the buffer indicated by 
current becomes modified. In order to define the postcondition of the oper
ation insert_file, weneed a specification of the underlying file system and 
so we have imported FILE_SPEC as described in Section 4.4.4. Reeall that for 
s: 'String • we have f (s) as the corresponding string and file (f (a)) as the 
stringcontentsof the corresponding file. Finally text (file (f (s))) denotes 
the contents of this file viewed as a text. Of course all of this only holds un
der the assumption that this file exists, which is if valid(f(s)) holds. The 
main description tooi for the operations insert_file, insert_character, 
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newline and yank_buffer is the paste operator on texts as described in 
Section 4.3.6. Some postconditions look complicated because we must re
calculate the co-ordinates of the dot; furthermore the co-ordinates of the 
mark may need re-calculation depending on the relative position of mark 
with respect to dot. In order to describe these re-calculations we use the add 
and paste operations on reaches from Section 4.3.7. The new dot is given 
as copa(add(d,reach(t))) but it is interesting to note that we could write 
copa(paste (d,reach(t) ,d)) alternatively because 
V x, y: Nat2 (paste(x, y ,x) = add(x,y)) is a simple property of the algebra 
of reaches ( cf. the definitions of paste, split and add). 

valid(f (s)) "'> 
[ insert_file(s) ] 
(LET t:Text; t :• text(file(f(s))); 

LET mtext':MText; mtext' := app((PREV mtexts),current); 
LET d: Nat# Nat; d :"' dot(mtext'); 
LET m: Nat# Nat; m := mark(mtext'); 

LET new_text:Text; new_text := paste(text(mtext'),t,d); 
LET new_dot :Copa; new_dot := copa(add(d,reach(t))); 
LET new_mark:Copa; 

new_mark := ( lss(m,d) ?; copa(m) 
I NOT lss(m,d)?; copa(paste(m,reach(t),d)) 
) ; 

LET new_mtext:MText; 
new_mtext := mtext(new_text,new_dot,new_mark); 
mtexts = add((PREV mtexts),current,new_mtext) ) 

printable(c) => 
[ insert_character(c) ] 
( LET t:Text; t := addchar(c,zero) 

{rest as for insert_file(s)} ); 

[ newline ] 
( LET t:Text; t : • addempty(zero) 

{rest as for insert_file(s)} ); 

is_in(f(s),dom(mtexts)) => 
[ yank_buffer(s) ] 
(LET t:Text; t :• text(app((PREV mtexts),f(s))) 

{rest as for insert_file(s)} ) 

) 
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The main description tool for the operations delete_next_character and 
erase_region is the cut operator on texts as described in Section 4.3.6. 
Note that cut always yields a pair (t1, t2) where t1 = 'remaining text' and t2 
= 'deleted text'. We apply cut, retaining its first result and throwing away 
its second result. Again the co-ordinates of the mark need re-calculation 
when cutting takes place at dot. As before, we have one premiss serving the 
specification of several operations. 

AXIOM WTI => 

FORALL s: 'String', c:Char 
( LET mtext':MText; mtext' :~ app(mtexts,current); 

LET i:Nat,j:Nat; i,j 
LET d: Nat # Nat; d 
LET m: Nat # Nat; m 

:= dot(mtext'); 
:• dot(mtext') ; 
:• mark(mtext'); 

Again several operations have two clauses: one for the normal case and one 
for the case where the operation has no effect. For delete_next_character 
and erase_region it is not obvious what should happen with mark; we adopt 
some ad-hoc solution. 

intext(text(mtext'),i,succ(j)) •> 
[ delete_next_character ] 
( LET new_text:Text,u:Text; 

new_text,u :~ cut(text(mtext'),i,j,i,succ(j)); 
LET new_dot :Copa; new_dot :• copa(d); 
LET new_mark:Copa; new_mark := 

( leq(m,d) ?; 

copa(m) 

) ; 

NOT leq(m,d)?; 
LET x: Nat# Nat,y:Nat #Nat; x,y := cut(m,i,j,i,succ(j)); 
copa(x) 

LET new_mtext:MText; 
new_mtext :• mtext(new_text,new_dot,new_mark); 

mtexts • add((PREV mtexts),current,new_mtext) ); 

NOT intext(text(mtext'),i,succ(j)) => 
[ delete_next_character ] 
( mtexts • (PREV mtexts) ); 

lss(m,d) => 
[ erase_region ] 
(LET new_text:Text,u:Text; new_text,u :• cut(text(mtext'),m,d); 
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LET new_dot :Copa; new_dot :• copa(m); 
LET new_mark:Copa; new_mark :• copa(m) 

{rest as for delete_next_character} ); 

NOT lss(m,d) •> 
[ erase_region ] 
( mtexts • (PREV mtexts) ); 

There are also a few operations that take a 'String' argument addressing a 
certain buffer to he modified. Again it is not always clear what should happen 
with mark and dot. In the postcondition of copy_region_to_buffer we use 
again the cut operation, but now its first result is thrown away and its second 
result is retained. 

[ erase_buffer(s) ] 
( mtexts 

• add((PREV mtexts),f(s),mtext(zero,copa(O,O),copa(O,O))) ); 

lss(m,d) .. > 
[ copy_region_to_buffer(s) ] 
( LET t :Text ,new_text:Text; 

t,new_text :• cut(text(mtext'),m,d); 
mtexts 
~ add((PREV mtexts),f(s),mtext(new_text,copa(O,O),copa(O,O))) ); 

NOT lss(m,d) •> 
[ copy_region_to_buffer(s) ] 
( mtexts • (PREV mtexts) ) 

) 

Let us show now that WTI =>V s: 'String' [ copy_region_to_buffer(s) 
] TI is derivable from the given postcondition of copy_region_to_buffer, 
as promised earlier. This postcondition states that if mark 2: dot, nothing 
happens, in which case we are done. So let us assume that mark < dot. 
We know that mark and dot are in the old current text, so consider the 
expression cut(text(mtext') ,m,d) where mtext' is the previous marked 
text and where m,d are its mark and dot respectively. Then this expres
sion yields two ok texts. The second of these is denoted as new_ text and 
it is added to mtexts together with (0, 0) for mark and dot. Note that 
it is added by the 'overwriting' add of MAP _SPEC. Now Til holds because 
intext (new_ text, ( 0, 0)) for arbitrary ok values of new_ text. Furthermore 
TI2 holds because the range of mtexts could only grow, whereas current 
remained unaffected. This shows that copy_region_to_buffer preserves TI 
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when WTI holds as a precondition. 

4.5.8 Operations for Marked-text Management 

To begin with, we give the signature of the operations from this group. 
We considered a procedure list_buffers, but we decided not to include 
it because it is not clear how we should make it elegantly deliver its output. 
Similarly we decided not to include a procedure delete_buffer: 'String' 
---+ because of the question of what should happen when the current marked 
text is deleted, which is probiernatie in view of TI2. 

PROC current_buffer_name: -> 'String' 
MOD WTI 

PROC write_named_file: 'String' -> 
MOD WTI 
USE rewrite, write 

PROC switch_to_buffer: 'String' -> 
MOD mtexts, current, WTI 
USE displ_op 

The operations are described by their postconditions. As before, we have 
one premiss serving the specification of several operations. 

AXIOM WTI •> 

FORALL s:'String' ( 

We give the description of the operations below. In order to define the post
condition of wri te_named_file we refer again to the file system of Section 
4.4.4. The operation switch_to_buffer may create a new marked text
not in the sense of dynamic object creation of course. We take the ad-hoc 
value zero for its text component and then TI1 dictates the value (0,0) for 
dot and mark. 

[LET t:'String'; t :• current_buffer_name] 
( f(t) = current ); 

[ write_named_file(s) ] 
( valid(f(s)); 

file(f(s)) = string(text(app(mtexts,current))); 
FORALL t:'String' 
(NOT f(t) • f(s) a) valid(f(s)) <=> PREV valid(f(s)) ); 
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FORALL t: 'String',u:String 
(NOT 1(t) • 1(s) •> 1ile(1(s)) • u <•> PREV 1ile(1(s)) • u) ); 

[ switch_to_bu11er(s) ] 
( current • 1(s); 

is_in(1(s),dom(PREV mtexts)) •> mtexts • (PREV mtexts); 
NOT is_in(1(s),dom(PREV mtexts)) •> mtexts • 

add((PREV mtexts),1(s),mtext(zero,copa(O,O),copa(O,O))) ) 

) 

4.5.9 Operations for Searching 

We describe just one operation for searching. It takes a • String • argument 
which is interpreted as the string representation of the search text. The 
main description tooi is the seàrch operation of Section 4.3.10 which was 
introduced precisely for this purpose. 

PROC search_!orward: 'String' -> MOD mtexts,WTI USE displ_op 

AXIOM WTI => 

FORALL s:'String' ( 
[ search_!orward(s) ] 
(LET mtext':MText; mtext' :a app((PREV mtexts),current); 

LET 1irst_part:Text,second_part:Text; 
1irst_part, second_part := split(text(mtext'),dot(mtext')); 
LET i:Nat,j:Nat; i,j :• search(second_part,text(!(s))); 

(i,j) • reach(second_part) •> mtexts • (PREV mtexts); 

NOT (i,j) • reach(second_part) •> 
( LET new_dot: Copa; 

new_dot := copa(add(reach(1irst_part),i,j)); 
LET new_mtext:MText; 
new_mtext :• mtext(text(mtext'),new_dot,mark(mtext')); 

mtexts • add((PREV mtexts),current ,new_mtext) ) ) ) 

In the above precondition the clause (i, j) = reach(second_part) denotes 
the situation where the search text does not occur. 
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4.5.10 Operations forString Conversion 

We expect that there will arise applications for a conversion of the text 
of a marked text into a string. One such application will be presented in 
Section 4.5.13 when we shall describe a simple editor, where the contents 
of the marked text named "mini 11 is converted to a string. The converse 
can be programmed by using the hd and tl operations on strings and the 
insert_character operation. We introduce an operation buffer_ to_string 
taking a 'String' argument. This argument is interpreted as the name of 
the marked text whose text at its turn is to be converted to 'String'. 
The operation introduced here has no modification rights, except for WTI 
of course. We use the abstraction function f: 'String' - String and the 
function string, converting texts into strings. 

PROC buffer_to_string: 'String' -> 'String' 
MOD WTI 

The effect of this operation is described again by a pre- and postcondition 
style axiom. 

AXIOM WTI •> 

FORALL s: 'String' ( 
app(mtexts,f(s))l => 
[LET t: 'String'; t := buffer_to_string(s)] 
( f(t) = string(text(app(mtexts,f(s)))) ) ) 

4.5.11 Termination Axioms 

We specify the termination of the procedures of the wi tefa_op group in the 
sense that for each procedure invocation there is a state that can be reached 
as its final state. This is a rather weak form of termination; but if furthermore 
we happen to know that the algorithmic constructs used in its implementa
tion are deterministic, then it implies the strong form of termination in the 
sense that every procedure invocation terminates. Actually we relativize the 
termination axioms by the assertion WTI which was introduced in Section 
4.5.5. As a naive attempt, we could try to write the termination axiom as 
AXIOM WTI => < wi tefa_op > TRUE, but this axiom is far too weak for being 
interesting; it just states that at least one operation can terminate for some 
argument value. So we have to provide one assertion for each operation. 

AXIOM WTI => ( 
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< FLUSH bolp > TRUE; 
< FLUSH eolp > TRUE; 
< forward_character > TRUE; 
< backward_character > TRUE; 
< next_line > TRUE; 
< previous_line > TRUE; 
< beginning_of_line > TRUE; 
< end_of_line > TRUE; 
< beginning_of_buffer > TRUE; 
< end_of_buffer > TRUE; 
< set_mark > TRUE; 
< exchange_dot_and_mark > TRUE; 

FORALL s:'String' ( valid(f(s)) z> < insert_file(s) > TRUE ); 
FORALL c:Char < insert_character(c) > TRUE; 

< newline > TRUE; 

FORALL s: 'String' ( app(mtexts,f(s))l •> < yank_buffer(s) > TRUE ); 

< delete_next_character > TRUE; 
< erase_region > TRUE; 

FORALL s: 'String' < erase_buffer(s) > TRUE; 
FORALL s: 'String' < copy_region_to_buffer(s) > TRUE; 

< FLUSH current_buffer_name > TRUE; 

FORALL s: 'String' < write_named_file(s) > TRUE; 
FORALL s: 'String' < switch_to_buffer(s) > TRUE; 
FORALL s: 'String' < search_forward(s) > TRUE; 

FORALL s: 'String' 
( app(mtexts,f(s))! a>< FLUSH buffer_to_string(s) > TRUE) ) 

4.5.12 Connecting the Editor with the Display 

The class descriptions FILL_SPEC and LOOK_SPEC of Sectien 4.3.11 provide 
enough machinery for formulating the 'window-invariant' of an editor. This 
invariant describes the relation between the current :Inarked text on the one 
hand and the screen and the cursor of the display on the other hand. Note 
that WITEF A_SPEC imports APP _DOM_SPEC which encompasses LOOK_SPEC and 
FILL_SPEC. The main purpose of this sectien is to introduce one additional 
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axiom that applies to the window-and-text facility. 

We suppose that we have one window the size of which is given by the 
values of li and co and we leave the treatment of multi-window features 
as a generalisation for later. We start by introducing an auxiliary function 
si ze. 

FUNC size: -> Nat # Nat 
DEF li ,CO 

We introduce several more auxiliaries for notational purposes. 

FUNC text: -> Text 
DEF text(app(mtexts,current)) 

FUNC dot: -> Nat # Nat 
DEF dot(app(mtexts,current)) 

Informally the window-invariant states that the window should correspond 
with a 'look' to the text, if necessary filled with blanks, such that the dot is 
visible as the cursor. 

We do not need a separate concept o('window'. Instead of that, it is sufti
eient to deal with the position and the size of a window. The position of a 
window can he given by a co-ordinate pair (ot,o2) that indicates the position 
of the leftmost-uppermost corner of the window. We refer to this as the 
screen-origin or just as the origin The following picture sketches part of the 
situation. 

Fig 4.4. The relation between window and text. 

We introduce a function p_sub which describes pair-wise subtraction of co
ordinates. It serves for calculating the position of the cursor from given dot 
and given screen-origin. We also define a function p_add which describes 
pair-wise addition of co-ordinates. 
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FUNC p_sub: Nat t Nat t Nat t Nat -> Nat t Nat 
PAR dl:Nat, d2:Nat, ol:Nat, o2:Nat 
DEF sub(dl,ol), sub(d2,o2) 

FUNC p_add: Nat t Nat t Nat t Nat -> Nat I Nat 
PAR ol:Nat, o2 :Nat, sl:Nat, s2:Nat 
DEF add(ol,s1), add(o2,s2) 

Now we must formulate our window-invariant which wedefine as a predicate 
WI. We must also deal with the problem that the text may contain non
printables. Fortunately we earlier (Section 4.3.5) introduced the printify: 
Text -> Text operation, so this problem gets solved by introducing an ap
plication of printify in WI. 

PRED WI: 
DEF LET origin: Nat t Nat; origin :• p_sub(dot,cursor); 

LET tilled : Text; tilled :~ till(text,p_add(origin,size)); 
screen • printity(look(tilled,origin,p_add(origin,size))) 

The requirement that WI is an observational invariant should be considered as 
a part of the specification of our window-and-text facility. This requirement 
should be added to the axioms WTI1 and WTI2 given in Section 4.5.5 and we 
do so now by writing another axiom labeled WTI3. 

AXIOM {WTI3} WTI •> WI 

We must add two remarks about this last axiom. The first remark is that we 
have chosen fora certain editor-behaviour that is basedon similar concepts 
for the window-oriented subsetting of texts for the horizontal and for the 
vertical direction. When the text is too large in the vertical direction, it is 
shortened by the application of vlook. When the text is too large in the 
horizontal direction, it is shortened by the application of hlook. The user 
of the editor perceives this as a kind of leftward text-movement when typing 
long lines. Probably it is dependent on the kind of texts being edited whether 
this approach is convenient or not. 

The second remark is that our specification stillleaves a certain amount of 
implementation freedom, where some of this freedom is unacceptable from 
an ergonomie point of view. In particular, nothing has been said about the 
stability of the position of the window with respect to the text. For example 
there is no forma! requirement that always should be tried to re-use the 
previous origin value unless this turns out impossible. 
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END; {o! WITEFA_SPEC} 

This concludes the specification of the window-and-text facility. 

4.5.13 MOREDOP: More Editing Operations 

In this section we shall present a simple editor which can he built on top of 
the window-and-text facility presented above. This is just a small example 
editor and more powerful and user-friendly editors can he built in a similar 
way. The editing primitives of WITEFA_SPEC are of a general-purpose nature 
in the sense that we can imagine that they are useful for any editor. Now we 
address the construction of one particular editor with charaderistics that it 
has a fixed number of dedicated buffers and a particular kili/yank mechanism. 
Therefore we start with the definition of some additional operations which 
are specific for this editor. They are put together in a class description 
MOREDOP _SPEC (for MORe EDiting OPerations). Our simple editor uses precisely 
three marked texts: 

• "mini" which serves for in putting search texts and file names, 
• "kill" which will he used in combination with the operations 

yank_buffer and copy-region-to-buffer, thereby providing cut and 
paste capabilities at the user-level, 

• "main" which essentially contains the text being edited. 

The user can switch from "main" to "mini" by escape and from "mini" 
back again to "main" by either escape or return. 

We introduce three 'String' constants which serve as the fixed narnes for 
the three marked texts. The procedure startup serves for initialisation. The 
remaining operations are typical editing commands. 

LET MOREDOP_SPEC ·a 

IMPORT NAT_SPEC INTO 
IMPORT BOOL_SPEC INTO 
IMPORT CHAR_SPEC INTO 
IMPORT WITEFA_SPEC INTO 
CLASS 

PROC m1n1: -> 'String' 
DEF cons('m',cons('i',cons('n',cons('i',empty)))) 

PROC main: -> 'String' 
DEF cons('m' ,cons('a',cons('i' ,cons('n',empty)))) 
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PROC ki11: -> 'String' 
DEF cons( 'k', cons( 'i' ,cons( '1' ,cons( '1' ,empty)))) 

PROC startup : -> 
DEF init(mini); 

switch_to_buffer(ki11); 
switch_to_buffer(main) 

PROC escape: -> 
DEF ( eq(current_buffer_name,mini) ?; switch_to_buffer(main) 

I NOT eq(current_buffer_name,mini) ?; switch_to_buffer(mini) 
) 

PROC return: -> 
DEF ( eq(current_buffer_name,mini) ?; switch_to_buffer(main) 

I NOT eq(current_buffer_name,mini) ?; new1ine 
) 

PROC de1ete_to_ki11buffer: -> 
DEF copy_region_to_buffer(ki11); 

erase_region 

PROC yank_from_ki1lbuffer: -> 
DEF yank_buffer(ki11) 

PROC search_forward : -> 
DEF search_forward(buffer_to_string(mini)) 

PROC insert_fi1e: -> 
DEF insert_fi1e(buffer_to_string(mini)) 

PROC write_named_file: -> 
DEF write_named_file(buffer_to_string(mini)) 

PROC de1ete_previous_character : -> 
DEF ( bo1p z true ?; SKIP 

I bo1p • false ?; 

backward_character; delete_next_character 
) 

END; 

It is interesting to compare the definition of delete_previous_character 
with the way one would program it on top of EMACS [4] where we assume 
skip to he defined by (defun (skip (progn))): 
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(detun (delete-previous-character 
(it (bolp) 

(skip) 
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(progn (backward-character) (delete-next-character))))) 

4.5.14 KEYBIND: Connecting the Editor with the Key
board 

In order to complete the simple editor, weneed a procedure key, say which 
takes characters as its argument and which invokes operations described by 
WITEF A_SPEC and the additional editing operations from Section 4.5.13. Es
sentially the procedure key is defined by one large case-statement. In order 
to keep things simple, we omitted features such as escape-prefixes [4]. 

LET KEYBIND_SPEC :• 
EXPORT 

SORT Nat, 
SORT Char, 
SORT Text, 
PROC startup: -> 

Char -> 
-> Text, 

PROC key 
FUNC screen 
FUNC cursor -> Nat # Nat 

FROM 
IMPORT NAT_SPEC INTO 
IMPORT CHAR_SPEC INTO 
IMPORT WITEFA_SPEC INTO 
IMPORT MOREDOP_SPEC INTO 
CLASS 

PROC key: Char -> 
PAR c:Char 
DEF ( printable(c) 

I ord(c) 0 e41} 
I ord(c) • 1 {-A} 
I ord(c) = 2 eB} 
I ord(c) 4 en} 
I ord(c) 6 eE} 
I ord(c) = 6 {-F} 

I ord(c) • 13 eM} 

?; insert_character(c) 
?; set_mark 
?; beginning_ot_line 
?; backward_character 
?; delete_next_character 
?; end_ot_line 
? ; torward_character 
? • return .. 
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ord(c) • 14 eNl ?• next_line . ' 
ord(c) • 16 ePl ? ; previous_line 
ord(c) • 19 <·s} ?• search_forward . ' 
ord(c) • 20 {·T} ?; insert_file 
ord(c) • 21 eul ?• write_named_file . ' 
ord(c) • 23 ewl ? ; delete_to_killbuffer 
ord(c) • 24 {-X} ? ; beginning_of_buffer 
ord(c) ... 26 <·n ?; yank_from_killbuffer 
ord(c) • 26 eZl ?; end...of_buffer 
ord(c) • 27 {ESC}?; escape 
ord(c) • 127{DEL}?; delete_previous_character 

END; 

This concludes the construction of the formal specification of the editor. 

4.6 Related Work 

Meyer et. al. [12] describe a strategy for displaying structured objects such 
as programs on a screen of limited size. They develop a formal model of 
the screen allocation, called 'calculus of windows'. Feldman [13] describes a 
text editor in a functional style using FP. Justas in our formalisation, text is 
considered to he a sequence of lines, each of which is a sequence of characters. 
Gutknecht [15] describes the text editor LARA. This seems to he a kind of 
combination between a formatting system and an editor, basedon the what
you-see-is-what-you-get principle. If we compare this with our approach, it 
can he seen that Gutknecht puts much more (supposed) knowledge about 
the structure of documents into his editor than we did. 

Sufrin [14] gives an elaborate specification of a display-oriented text editor. 
Unlike we do, he considers text as a sequence of characters with new-line 
symbols. His texts are somewhat similar to our marked texts in the sense 
that they have one pointer to a position in the text associated with them. 
This is done by defining text such that each text consists of two sequences, 
which should he appended and the splitting-point corresponds with the dot 
position. 

Partsch [16] describes the specification and transformation processof a sim
ple line-oriented editor using a sugared version of CIP-1. First of all, we 
should note that Partsch is in a comfortable position since he assumes a lot 
of syntactic sugar. Since COLD-K is a kemellanguage it is somewhat more 
Spartan and we assumed many features not to he available (yet). The text 



4. 7. LOOKING BACK 293 

editor in [16] is single-buffer and line-oriented. There is nothing comparable 
with our window-invariant WI. Furthermore he does not deal with file han
dling. However it should be remarked that he describes undo facilities, some 
of which in our case are absent. A text is considered as a sequence of lines, 
justas in our formalisation. In the forma} model of the editor, the text being 
edited is called the "current text file" and it is modelled as a triple (t11 l, t2), 

where t 1 is the text before the current line, l is the current line and t 2 is the 
text after the current line. 

Guttag and Horning [17] present a formal state-based model of a simple dis
play, comparable with our DISPLAY_SPEC. They also present a formalisation 
of 'text' including pictures, views and linejparagraph-breaking facilities. In 
particular, a text is viewed as a sequence of paragraphs where each paragraph 
at its turn is a formatted English string. 

4. 7 Looking Back 

In this section, we shall in restrospeet summarise the main lines of the work 
presented in this chapter. One of the main purposes of constructing the 
formal specification presented in this chapter was to illustrate the use of 
formal specification techniques. In particular, we wanted to show how the 
language COLD-K can he used as a tool for descrihing complex systems. Let 
us explicitly point outsome of the interesting points encountered during this 
casestudy. 

The standard class descriptions of Appendix B. provide us with the pos
sibility to use standard mathematica! data types such as natural numbers, 
sequences, maps etc. It is hard to imagine how we could specify an editor 
without using such data types. These standard class descriptions have been 
written in a certain axiomatic style and this style is different from the style of 
specification used during the rest of our editor specification. This observation 
is encouraging, for it suggests that the ability to re-invent the specification of 
all these standard mathematica} data types need not he part of the skilis of 
the avarage software developer willing to use formal specification techniques. 
This is why we put BOOL_SPEC, NAT_SPEC etc. in an appendix. These class 
descriptions are indiapensabie but atypical. 

After the introduetion of Section 4.1 we investigated inSection 4.3 the impor
tant concept of text and algebraic operations on text. At several occasions we 
used the mathematica! data type of Seq from Appendix B . We introduced 
several operations on texts and instead of using an axiomatic approach, we 
just defined these operations. In particular, we used recursive definitions 
which are easily executable. This means that in an early phase of the spec-
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ification construction some experiments can he done. The possibility to do 
such experiments can he considered as a tool for establishing a close corre
spondence between the necessary intuition about these operations and the 
formal definitions. Of course this may not he the only tool and therefore we 
immediately mention the tool of reasoning about the formal definitions. We 
searched for suitable algebraic laws for our operations. It was our experi
ence that this helps in establishing a set of well-understood operations with 
useful notations. Let us mention one example: when we first defined the 
operation named hspli t in Section 4.3.11 we thought of it as 'vertical split' 
because there is a vettical splitting-line. Later, when looking for its inverse, 
this turned out to he h_add of Section 4.3.9. But then we immediately saw 
the inconsistency in the terminology and we changed from 'vertical split' to 
'horizontal split'. 

We showed that elementary and almost trivial operations form the basis for 
powerlul cut and paste operations, which indeed correspond with cut and 
paste ca pa hilities as found in editors. Similarly the elementary hspli t and 
vspli t form the basis for more complicated operations that play a role in 
the necessary subsetting of texts as required due to the physicallimitations 
of the display device. 

We 'discovered' a wealth of algebraic systems related to text such as the alge
bras of strings, reaches and profiles. We investigated the mappings between 
them which turned out to have interesting properties. As has been shown, 
the knowledge of these algebraic systems and the mappings between them 
can he used for specification purposes. We also believe that this knowledge 
is equally fruitfut when implementing a text processing system. 

In Section 4.4 we described several class descriptions which are important 
for interfacing the editorwithits environment. InSection 4.4.2 we described 
a display, which can he viewed as a component that is not really part of 
the actual editor, but which is indispensable for the editor. We think that 
this phenomenon to include such descriptions is typical for the specification 
of many realistic and relevant systems. An important methodological point 
was demonstrated by introducing the display-invariant Dil/\ DI2/\ DI3 first. 
In this way we had a consistency-criterion for checking the pre- and postcon
dition style specifications that were written after that. 

We introduced the sorts 'Seq' and 'String', deliberately facing the prob
lems that if we want to provide the implementation of a data type ourselves, 
then this data type probably comes with an eq-predicate rather than with 
just equality. Of course one is lucky if some data type is built-in into the 
programming language and if it comes with a usabie equality; but we wanted 
to show the specification techniques required when this is not the case. 
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In Section 4.4.4 we introduced a file system, which also can he viewed as 
a component that is not really part of the actual editor, but that still is 
indispensable. The most important guideline when introducing this file sys
tem, was to restriet ourselves. The complete description of a file system is a 
serious enterprise in itself and we had to cut-off many possibilities. 

In Section 4.5 we started descrihing the actual text editor. The study of 
algebraic operations on texts turned out to he fruitful. For example, the 
copy-region-to-buffer and yank-buffer operations are just direct appli
cations of certain algebraic operators. We were able to use the Procrustean 
operations of Section 4.3.11 for formalising the display-management of the 
editor in a compact and abstract way. 

In Sec ti on 4.5.5 we discussed several notions of 'invariant' and finally chose for 
the option of observational invariant. Still, the other notionsof invariance are 
useful intheir own right; e.g. the definition of observational invariant refers to 
the existence of a classical invariant. Furthermore we had a kind of 'almost 
invariance' of TI in the sense that ini t establishes TI and that WTI => [ 
wi tefa_op ] TI. The latter property constitutes already a consistency check 
on our specification. In Sections 4.5.6 to 4.5.10 we demonstrated another 
style of pre- and postcondition-style axioms, by writing the postconditions 
in-situ in the axioms. 

The formal specification of Section 4.5 covers a number of important aspects 
of a text editor, although the editor described is relatively poor in its bells 
and whistles. However it is far from trivial and its functionality makes it a 
usabie editor. We were able to cover several interesting features also present 
in other text editors and in particular in EMACS. 

It is important to notice that the application-domain specific framework 
would have enabled several other choices for the editor behaviour as well. 
E.g. the question whether the dot should or should not stay within the 
boundaries of the current text could he discussed. Similarly we had got all 
notations and techniques for introducing an arbitrary number of markers at 
hand. 

· We deliberately did not model the current text as a pair of sequences (t11 t2 ) 

where t 1 is the text before the current position and t 2 is the text after it. 
Essentially this is the model adopted by [14] and [16]. This model more or 
less collapses if one wants many markers or a marker that goes outside the 
text. The price we had to pay for our 'marked-text-as-triples' approach is 
that occasionally we had to describe clumsy re-calculations of co-ordinate 
pairs. 

We showed how À1r-calculus and COLD-K can be used as a tool for the de
scription of a relatively large and complex software system. By doing so 
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we illustrated a number of general-purpose specification techniques. This 
chapter presents one more example of a large forma} specification and as 
such, it can be viewed as is a contribution to the advancement of forma} 
specification techniques in generaL N ote that the ability to construct large 
forma} specifications supports the applicability of the notionsof component, 
black-box description and design (Chapter 2) and the correctness-preserving 
transformations of designs investigated in Chapter 3. In Chapter 5 we ap
ply the techniques of Chapter 2 and 3 in an implementation activity where 
the current chapter serves as a starting point. We postpone a more com
plete evaluation of the editor case study until the end of this implementation 
activity. 
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Appendix A 

List of Symbols 

In this appendix we give a list of the sorts, functions, predicates and proce
dures used. For each symbol the list contains a short informal description. 
The list has been subdivided into a number of sub-lists. The first sub-list 
contains the symbols used from B. The second sub-list contains the symbols 
that are introduced in Section 4.3. The third sub-list contains the symbols 
that are introduced in Section 4.4 etc. 

Symbols from the standard class descriptions 

Bool Booleans 
true -+ Bool constant true 
:false: -+ Bool constant false 
not Bool -+ Bool negation 
and Bool2 -+ Bool conjunction 
or Bool 2 -+ Bool disjunction 

Nat natural numbers 
zero : -+ Nat constant 0 
succ : Nat -+ Nat successor 
pred: Nat -+ Nat predecessor 
lss Nat2 less than 
leq Nat2 less or equal 
gtr Nat2 greater than 
geq Nat2 greater or equal 
add Nat2 -+ Nat addition 
sub Nat2 -+ Nat subtraction 
mul Nat2 -+ Nat multiplication 
div Nat2 -+ Nat di vision 
0: -+ Nat constant 0 
1: -+ Nat constant 1 
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2: --. Nat constant 2 
etc. 

Char ASCII characters 
ord: Char- Nat conversion function 
chr: Nat - Char conversion function 
'a': -Char constant 'a' 
'i': - Char constant 'i' 
etc. 

Tup 2-tuples (=pairs) 
tup Item1 # Item2 -Tup pairing 
proj1: Tup -Item1 taking first field 
proj2: Tup -Item2 taking second field 
Tup 3-tuples ( =triples) 
tup Item1 # Item2 # Item3 - Tup triple construction 
proj1: Tup - Item1 taking first field 
proj2: Tup -Item2 taking second field 
proj3: Tup -Item3 taking third field 

Set finite sets 
is_in: Item # Set element predicate 
empty: --. Set empty set 

Seq finite sequences 
empty: -Seq empty sequence 
cons Item # Seq --. Seq sequence construction 
hd Seq -Item head 
tl Seq - Seq tail 
len Seq -Nat leng tb 
sel Seq # Nat - Item selection 
cat Seq # Seq - Seq concatena.tion 
rev Seq -Seq reversal 
bag Seq - Bag conversion to bag 

Map finite mappings 
empty: --. Map empty mapping 
add Map # Item1 # Item2 --. Map 'overwriting' addition 
rem Map# Item1 --. Map remova.l 
app Map # Item1 -Item2 map-applica.tion 
dom Map - Set1 domain 
ran Map - Set2 range 
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Symbols concerning Text and Algebraic Operations on Texts 

Line 
Text 
niltext -+ Text 
zero -+ Text 
addempty: Text-+ Text 
addchar Char # Text -+ Text 
first Text ...... Char 
rest Text ...... Text 

String 
empty: -+ String 
cons Char # String -+ String 
hd String -+ Char 
tl String -+ String 
len String -+ Nat 
sel String # Nat -+ Char 
cat String # String -+ String 
leas String # String 
ctr_j -+ Char 
ok 
text 
string 
blank 
tilde 

Text 
String -+ Text 
Text -+ String 
-+ Char 
-+ Char 

printable: Char 
printify Char -+ Char 
printify 
printify 

Line -+ Line 
Text -+ Text 

split: Text # Nat2 -+ Text2 

add Text2 -+ Text 
cut Text # Nat2 # Nat2 -+ 

paste : Text2 # Nat2 -+ Text 
reach: Text -+ Nat2 

add Nat2 # Nat2 -+ Nat2 

Text2 

split : Nat2 # Nat2-+ Nat2 # Nat2 

cut Nat2 # Nat2 # Nat2 -+ Nat2 

paste: Nat2 # Nat2 # Nat2 -+ Nat2 

las Nat2 # Nat2 

leq Nat2 # Nat2 

Profile 
profile Text -+ Profile 

linea(= sequences of chars) 
texts (= sequences of linea) 
the text with 0 linea 
the text with one empty line 
put an empty line before .. 
put a character in front of .. 
first character 
text except for its first char 

strings(= sequences of chars) 
empty string 
string construction 
head 
tail 
length 
selection 
concatenation 
lexicographical ordering 
control-j 
non-niltext and no control-j's 
conversion· 
conversiOn 
constant' ' 
constant •- • 
printable (no control chars) 
make printable 
make printable 
make printable 

inverse of natural addition 
natural addition of texts 
cutting a piece out of a. text 
pasting one text into another 
position immediately after 
addition of reaches 
splitting of reaches 
cutting of reaches 
pasting of reaches 
stricly less than 
leas or equal 

profiles (= sequences of Nat) 
the profile of a text 
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intext Text # Nat2 

nilprofile: -+ Profile 
v_add Text2 -+ Text 
h_add Text2 -+ Text 
empties Nat -+ Text 
match : String2 # Nat 
match': String2 #Nat 
search: String2 -+ Nat 
search: Text2 -+ Nat2 

split : String # Nat -+ String2 
vfill : Text # Nat -+ Text 
blanks: Nat -+ Line 
hfill : Text # Nat -+ Text 
fill 
hsplit: 
hsplit: 
vsplit: 
hl ook 
vlo ok 
look 

Text # Nat2 -+ Text 
Line # Nat -+ Line # Line 
Text # Nat -+ Text2 

Text # Nat -+ Text2 

Text # Nat2 -+ Text 
Text # Nat2 -+ Text 
Text # Nat2 f# Nat2 -+ Text 

position being in boundaries 
profile of niltext 
vertical addition 
horizontal addition 
text with empty lines 
string matching 
string matching with sentinel 
search operation 
search operation 
splitting a string 
vertical filling 
line with blank characters 
horizontal filling 
filling in two directions 
horizontal splitting 
horizontal splitting 
vertical splitting 
horizontallook 
vertical look 
text subsetted by 'window' 

Symbols concerning Interfacing the Editor with its Environment 

li: -+ Nat 
co: -+ Nat 
PROC er: -+ 

PROC nl: -+ 

PROC bc: -+ 

PROC ce: -+ 

PROC cl: -+ 

PROC nd: -+ 

PROC up: -+ 

PROC cm: Nat2 -+ 

PROC print: Char 
PROC displ_op: 
screen: -+ Text 
cursor: -+ Nat2 

Dil: 
012: 
013: 

-+ 

-+ 

blank_text: Nat -+ Text 
blank_text: Nat2 -+ Text 

number of linea 
number of columns 
carriage return 
newline 
backwards cursor 
clear to end-of-line 
erase display 
move cursor right 
move cursor up 
cursor motion 
printable character processing 
arbitrary display command 
observable contents of screen 
cursor position 

display-invariant (conjunct 1) 
display-invariant (conjunct 2) 
display-invariant (conjunct 3) 

single-line text of blanks 
text with blanks 
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post_cr: Text # Nat2 # Text # Nat2 postcondition-predicate 
post_nl: Text # Nat2 # Text # Nat2 postcondition-predicate 
post_bc: Text # Nat2 # Text # Nat2 postcondition-predicate 
post_ce: Text # Nat2 # Text # Nat2 postcondition-predicate 
post_cl: Text # Nat2 # Text # Nat2 postcondition-predicate 
post_nd: Text # Nat2 # Text # Nat2 postcondition-predicate 
post_up: Text # Nat2 # Text # Nat2 postcondition-predicate 
post_cm: Text # Nat2 # Nat2 # Text # Nat2 postcondition-predicate 
post_print: Text # Nat2 # Char # Text # Nat 2 postcondition-predicate 

'Item' 
eq 
item_inv: 
seq_inv 
f 

f 

'Seq' 

'Item' # 'Item' 

'Item' ---+ Item 
'Seq' ---+ Seq 

empty: ---+ 'Seq' 
PROC cons: 'Item' # 'Seq' ---+ 'Seq' 
hd 'Seq' ---+ 'Item' 
tl 'Seq' ---+ 'Seq' 
eq : 'Seq' # 'Seq' 
sel: 'Seq' # Nat ---+ 'Item' 
PROC c:at: 'Seq' # 'Seq' 
PROC rev: 'Seq' ---+ 'Seq' 

'String' 
f: 'String' ---+ String 
string_inv: 
empty: ---+ 'String' 

---+ 'Seq' 

PROC cons : Char # 'String' ---+ 'String' 
hd 'String' ---+ Char 
tl : 'String' ---+ 'String' 
eq : 'String' # 'String' 
sel: 'String' # Nat ---+ Char 
PROC cat : 'String' # 'String' ---+ 'String' 
PROC rev: 'String' ---+ 'String' 
less: 'String' # 'String' 

va lid String 
file String ---+ String 
pos String ---+ Nat 
PROC rewrite: 'String' ---+ 

PROC reset 'String' ---+ 

data type repreaenting items 
equivalence relation 
invariant needed for 'Item' 
invariant needed for 'Seq' 
abstraction function 
abstraction function 

implementable sequences 
representation of empty seq. 
eenstructor procedure 
head 
tail 
external notion of equality 
selection 
concatenation 
reversal 

implementable strings 
abstraction function 
invariant needed for 'String' 
representation of empty string 
eenstructor procedure 
head 
tail 
external notion of equality 
selection 
concatenation 
reversal 
lexicographic ordering 

existence of a file 
contents of file 
position of read-pointer 
open file for writing 
open file for reading 
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PROC read 
PROC write 
eo:f: 

--+ Char 
Char --+ 

Symbols concerning Text Ecliting 

Co pa 
v: Copa --+ Nat 
h: Copa --+ Nat 
copa: Nat2 --+ Copa 

MText 
text MText --+ Text 
dot MText --+ Copa 
mark MText --+ Copa 
mtext: Text t Copa t Copa --+ MText 
dot : MText--+ Nat2 

mark : MText--+ Nat2 

modtext : MText t Text --+ MText 
moddot : MText t Copa --+ MText 
modmark: MText # Copa --+ MText 
mtexts : --+ Map VAR 
current: --+ String VAR 
PROC init: 'String' --+ 
Til: 
TI2: 
TI: 
WTI: VAR 
PROC wite:fa_op: --+ 

PROC bolp --+ 

PROC eolp --+ 
PROC :forward_character --+ 

PROC backward_character --+ 

PROC next_line --+ 
PROC previous_line --+ 
PROC beginning_o:f_line --+ 

PROC end_o:f_line --+ 

PROC beginning_o:f_bu:f:fer --+ 

PROC end_o:f_bu:f:fer --+ 
PROC set_mark --+ 
PROC exchange_dot_and_mark --+ 

Bool 
Bool 

PROC insert_:file : 'String' --+ 

reading from file 
writing to file 
end-of-file predicate 

co-ordinate pairs 
vertical co-ordinate 
horizontal co-ordinate 
pairing 

marked texts 
select text field 
select dot field 
select mark field 
marked text construction 
dot of a marked text 
mark of a marked text 
modification operation 
modification operation 
modification oparation 
collection of marked texts 
name 'current' marked text 
initialisation procedure 
text-invariant (conjunct 1) 
text-invariant (conjunct 2) 
text-invariant 
window and text invariant 
arbitrary oparation of ... 

'witefa' operation 
'witefa' oparation 
'witefa' operation 
'witefa' operation 
'witefa' operation 
'witefa' operation 
'witefa' operation 
'witafa' oparation 
'witefa' oparation 
'witefa' operation 
'witefa' operation 
'witefa' operation 

'witefa' oparation 
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PROC insert_character 
PROC newline 
PROC yank_bu!ter 
PROC delete_next_character: 
PROC erase_region 
PROC erase_butter 
PROC copy_region_to_butter: 

Char -t 

-t 

'String' --+ 

--+ 

--+ 

'String' --+ 

'String' --+ 

PROC current_butter_name: --+ 'String' 
PROC write_named_tile: 'String' --+ 

PROC switch_to_butter: 'String' --+ 

PROC search_torward 'String' --+ 

PROC butter_to_string: 'String' --+ 'String' 

size: --+ Nat2 

text: --+ Text 
dot : --+ Nat2 

p_sub: Nat2 # Nat2 --+ Nat2 

Nat2 --+ Nat2 p_add: Nat2 # 

WI: 

PROC mini: --+ 'String' 
PROC main: --+ 'String' 
PROC kill: --+ 'String' 
PROC 
PROC 
PROC 
PROC 
PROC 
PROC 
PROC 
PROC 
PROC 
PROC 

start up 
escape 
return 
delete_to_killbutter 
yank_trom_killbutter 
search_torward 
insert_tile 
write_named_tile 
delete_previous_character: 
key: Char -t 

-t 

--+ 

--+ 

--+ 

--+ 

--+ 

--+ 

--+ 

--+ 

'witefa' operation 
'witefa' operation 
'witefa' operation 
'witefa' operation 
'witefa' operation 
'witefa' operation 
'witefa' operation 

'witefa' operation 
'witefa' operation 
'witefa' operation 
'witefa' operation 
'witefa' operation 

the pair (li,co) 
current text 
current dot 
pair-wise subtraction 
pair-wise addition 

· window-invariant 

representation of "mini" 
representation of "main" 
representation of "kill" 
editor operation 
editor operation 
editor operation 
editor operation 
editor operation 
editor operation 
editor operation 
editor operation 
editor operation 
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top-level operation of editor 
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Standard Class Descriptions 

DESIGN 

% This is a specification of the data type of booleans with 
% inductive definitions for the non-constructor operations. 
% The inductive definitions have the shape of truth tables. 

LET BOOL_SPEC :• 

EXPORT 

SORT Bool, 
FUNC true : -> Bool, 
FUNC false: -> Bool, 
FUNC not Bool -> Bool, 
FUNC and Bool # Bool -> Bool, 
FUNC or Bool # Bool -> Bool, 
FUNC imp Bool # Bool -> Bool, 
FUNC eqv Bool # Bool -> Bool, 
FUNC xor Bool # Bool -> Bool 

FROM 
CLASS 

SORT Bool 
FUNC true -> Bool 
FUNC false: -> Bool 

AXIOM {BOOLl} truel; 
{BOOL2} falsel; 
{BOOL3} NOT true false 
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PRED is_gen: Bool 
IND is_gen(true); 

is_gen(!alse) 

AXIOM FORALL b:Bool 
{BOOL4} is_gen(b) 

FUNC not: Bool -> Bool 
IND not(true ) • !alse; 

not(!alse) = true 

FUNC and: Bool # Bool -> Bool 
IND and(!alse,!alse) = !alse; 

and(!alse,true ) • !alse; 
and(true ,!alse) • !alse; 
and(true ,true ) • true 

FUNC or: Bool # Bool -> Bool 
IND or(!alse,!alse) = !alse; 

or(!alse,true ) true; 
or(true ,!alse) = true; 
or(true ,true ) • true 

FUNC 
IND 

FUNC 
IND 

imp: Bool # Bool 
imp(!alse,!alse) 
imp(!alse,true ) 
imp(true ,!alse) 
imp(true ,true ) 

eqv: Bool # Bool 
eqv(!alse,!alse) 
eqv(!alse,true ) 
eqv(true ,!alse) 
eqv(true , true ) 

-> Bool 
• true; 
• true; 
"' !alse; 
• true 

-> Bool 
= true; 
• !alse; 

!alse; 
= true 

FUNC xor: Bool # Bool -> Bool 
IND xor(!alse,!alse) • !alse; 

xor(!alse,true ) "' true; 
xor(true ,!alse) • true; 
xor(true ,true ) • !alse 

END; 
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% This is a specitication ot the data type ot natura! numbers 
% with inductive detinitions tor the non-constructor operations. 

LET NAT_SPEC' := 

EXPORT 

SORT Nat, 
FUNC 
FUNC 
FUNC 
PRED 
PRED 
PRED 
PRED 
FUNC 
FUNC 
FUNC 
FUNC 
FUNC 
FUNC 
FUNC 
FUNC 
FUNC 

FROM 
CLASS 

zero: 
succ: 
pred: 
lss: 
leq: 
gtr: 
geq: 
add: 
sub: 
mul: 
div: 
mod: 
exp: 
log: 
max: 
min: 

SORT Nat 

-> Nat, 
Nat -> Nat, 
Nat -> Nat, 

Nat # Nat, 
Nat # Nat, 
Nat # Nat, 
Nat # Nat, 
Nat # Nat -> 
Nat # Nat -> 
Nat " Nat -> 
Nat # Nat -> 
Nat # Nat -> 
Nat #I Nat -> 
Nat #I Nat -> 
Nat # Nat -> 
Nat # Nat -> 

FUNC zero: -> Nat 
FUNC succ: Nat-> Nat 

AXIOM 
{NA Tl} zero! ; 

Nat, 
Nat, 
Nat, 
Nat, 
Nat, 
Nat, 
Nat, 
Nat, 
Nat 

FORALL m:Nat,n:Nat ( 
{NAT2} succ(m)!; 
{NAT3} NOT succ(m) = zero; 
{NAT4} succ(m) = succ(n) => m = n ) 

PRED is_gen: Nat 
IND FORALL m:Nat 

( is_gen(zero) ; 
is_gen(m) => is_gen(succ(m)) ) 
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AXIOM FORALL n:Nat 
{NAT5} is_gen(n) 

FUNC pred: Nat -> Nat 
IND FORALL n:Nat 

( pred(succ(n)) n ) 

PRED lss: Nat # Nat 
IND FORALL m:Nat,n:Nat 

( lss(m,succ(m)); 
lss(m,n) •> lss(m,succ(n)) ) 

PRED leq: Nat # Nat 
IND FORALL m:Nat,n:Nat 

( leq(m,m); 
leq(m,n) ~> leq(m,succ(n)) 

PRED gtr: Nat # Nat 
IND FORALL m:Nat,n:Nat 

( gtr(succ(m),m); 
gtr(m,n) => gtr(succ(m),n) 

PRED geq: Nat # Nat 
IND FORALL m:Nat,n:Nat 

( geq(m,m); 
geq(m,n) => geq(succ(m),n) 

FUNC add: Nat # Nat -> Nat 
IND FORALL m:Nat,n:Nat 

( add(m,zero) = m; 

) 

) 

add(m,succ(n)) = succ(add(m,n)) ) 

FUNC sub: Nat # Nat -> Nat 
IND FORALL m:Nat,n:Nat 

( sub(m,zero) • m; 
gtr(m,n) •> sub(m,succ(n)) = pred(sub(m,n)) ) 

FUNC mul: Nat # Nat -> Nat 
IND FORALL m:Nat,n:Nat 

( mul(m,zero) • zero; 
mul(m,succ(n)) = add(mul(m,n),m) ) 
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FUNC div: Nat # Nat -> Nat 
IND FORALL m:Nat,n:Nat,q:Nat,r:Nat 

( m • add(mul(n,q),r) AND lss(r,n) •> div(m,n) z q) 

FUNC mod : Nat # Nat -> Nat 
IND FORALL m:Nat,n:Nat,q:Nat,r:Nat 

( m = add(mul(n,q),r) AND lss(r,n) •> mod(m,n) = r) 

FUNC exp : Nat # Nat -> Nat 
IND FORALL m:Nat,n:Nat 

( exp(m,zero) • succ(zero); 
exp(m,succ(n)) = mul(m,exp(m,n)) ) 

FUNC log: Nat # Nat -> Nat 
IND FORALL m:Nat,n:Nat,p:Nat 

( leq(exp(m,p),n) AND lss(n,exp(m,succ(p))) => log(m,n) = p) 

FUNC max: Nat # Nat -> Nat 
IND FORALL m:Nat,n:Nat 

( geq(m,n) => max(m,n) = m; 
leq(m,n) •> max(m,n) = n ) 

FUNC min: Nat # Nat -> Nat 
IND FORALL m:Nat,n:Nat 

END; 

( leq(m,n) => min(m,n) • m; 
geq(m,n) => min(m,n) • n ) 
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% This is a specification of the data type of natural numbers 
% basedon NAT_SPEC', providing notations forsome specific numbers. 

LET NAT_SPEC := 

IMPORT NAT_SPEC' INTO 

CLASS 

FUNC 0 -> Nat DEF zero 
FUNC 1 -> Nat DEF succ(zero) 
FUNC 2 -> Nat DEF succ(succ(zero)) 
FUNC 3 -> Nat% etc. 
FUNC 4 -> Nat 
FUNC 6 -> Nat 
FUNC 6 -> Nat 
FUNC 7 -> Nat 
FUNC 8 -> Nat 
FUNC 9 -> Nat 

FUNC 10 -> Nat 
FUNC 11 -> Nat 
FUNC 12 -> Nat 
FUNC 13 -> Nat 
FUNC 14 -> Nat 
FUNC 16 -> Nat 
FUNC 16 -> Nat 
FUNC 17 -> Nat 
FUNC 18 -> Nat 
FUNC 19 - > Nat 

FUNC 20 -> Nat 
FUNC 21 -> Nat 
FUNC 22 -> Nat 
FUNC 23 -> Nat 
FUNC 24 -> Nat 
FUNC 26 -> Nat 
FUNC 26 - > Nat 
FUNC 27 -> Nat 
FUNC 28 -> Nat 
FUNC 29 -> Nat 
FUNC 30 -> Nat 
FUNC 31 -> Nat 
FUNC 32 -> Nat 
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FUNC 72 
FUNC 74 
FUNC 89 
FUNC 97 
FUNC 98 
FUNC 99 
FUNC 100 
FUNC 101 
FUNC 102 
FUNC 103 
FUNC 104 
FUNC 105 
FUNC 106 
FUNC 107 
FUNC 108 
FUNC 109 
FUNC 110 
FUNC 111 
FUNC 112 
FUNC 113 
FUNC 114 
FUNC 115 
FUNC 116 
FUNC 117 
FUNC 118 
FUNC 119 
FUNC 120 
FUNC 121 
FUNC 122 

FUNC 126 
FUNC 127 
FUNC 128 
FUNC 1024 

END; 
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-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 
-> Nat 

-> Nat 
-> Nat 
-> Nat 
-> Nat 
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% This is a specification of the data type of ASCII characters. 

LET CHAR_SPEC' : • 

EXPORT 

SORT Char, 
SORT Nat, 
FUNC ord: Char -> Nat, 
FUNC chr: Nat -> Char, 
FUNC minchar: -> Char, 
FUNC maxchar: -> Char, 
PRED lsschar: Char # Char 

FROM 
IMPORT NAT_SPEC INTO 
CLASS 

SORT Char 
FUNC min: -> Nat DEF 0 
FUNC max: -> Nat DEF 127 

FUNC ord: Char -> Nat 
FUNC chr: Nat - > Char 
{ord is an embedding and 
chr is its inverse, i . e. a conversion function} 

PRED dom: Nat 
IND FORALL m:Nat 

( leq(min , m) AND leq(m,max) => dom(m) ) 

PRED is_gen: Char 
IND FORALL m:Nat ( dom(m) => is_gen(chr(m)) ) 

AXIOM {EMBEDDING} 

{1} FORALL m:Nat ( chr(m)! <=> dom(m) ); 
{2} FORALL m:Nat ( dom(m) z> (ord(chr(m)) • m) ); 
·{3} FORALL c:Char ( is_gen(c) ) 

FUNC minchar : -> Char DEF chr(min) 

FUNC maxchar: -> Char DEF chr(max) 
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PRED lsschar: Char # Char 
PAR c:Char, d:Char 
DEF lss(ord(c),ord(d)) 

END; 
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% This is a specitication ot the data type ot ASCII characters 
% basedon CHAR_SPEC', providing notations torsome specitic chars. 

LET CHAR_SPEC :a 

IMPORT CHAR_SPEC' INTO 
IMPORT NAT_SPEC INTO 
CLASS 

FUNC bell: -> Char DEF chr(7) 
FUNC tab: -> Char DEF chr(9) 

FUNC 'a' : -> Char DEF chr(97) 
FUNC 'b': -> Char DEF chr(98) 
FUNC 'c,: -> Char DEF chr(99) 
FUNC 'd' : -> Char DEF chr(lOO) 
FUNC 'e': -> Char DEF chr(101) 
FUNC 't': -> Char DEF chr(102) 
FUNC 'g': -> Char DEF chr(103) 
FUNC 'h' : -> Char DEF chr(104) 
FUNC 'i, : -> Char DEF chr(105) 
FUNC 'j ' : -> Char DEF chr(106) 
FUNC 'k': -> Char DEF chr(107) 
FUNC '1': - > Char DEF chr(108) 
FUNC 'm': -> Char DEF chr(109) 
FUNC 'n': -> Char DEF chr(110) 
FUNC 'o' : -> Char DEF chr(111) 
FUNC 'p': -> Char DEF chr(112) 
FUNC 'q': -> Char DEF chr(113) 
FUNC 'r': -> Char DEF chr(114) 
FUNC 's': -> Char DEF chr(116) 
FUNC 't': -> Char DEF chr(116) 
FUNC 'u': -> Char DEF chr(117) 
FUNC 'v': -> Char DEF chr(118) 
FUNC 'w': -> Char DEF chr(119) 
FUNC 'x': -> Char DEF chr(120) 
FUNC 'y': -> Char DEF chr(121) 
FUNC 'z': -> Char DEF chr(122) 

END; 
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LET ITEM := 
CLASS 

SORT Item FREE 
END; 

LET ITEMl := 
CLASS 

SORT Iteml FREE 
END; 

LET ITEM2 := 
CLASS 

SORT Item2 FREE 
END; 

LET ITEM3 := 
CLASS 

SORT Item3 FREE 
END; 
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% This is a specitication ot a strict linear ordering. 

LET SLO :• 

CLASS 

SORT Item FREE 
PRED r: Item # Item 

AXIOM FORALL i:Item,j : Item ,k:Item ( 
{SLOl} NOT r(i,i); 
{SL02} r(i,j) AND r(j,k) => r(i,k); 
{SL03} r(i,j) OR r(j,i) OR (i= j) ) 

END; 
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% This is an axiomatic specification of the 2-tuple data type 
% with inductive definitions for the non-constructor operations. 

LET TUP2_SPEC := 

LAMBDA X ITEMl OF 
LAMBDA Y ITEM2 OF 
EXPORT 

SORT Tup, 
SORT Iteml, 
SORT Item2, 
FUNC tup Iteml # Item2 -> Tup, 
FUNC projl: Tup -> Iteml, 
FUNC proj2: Tup -> Item2 

FROM 
IMPORT X INTO 
IMPORT Y INTO 
CLASS 

SORT Tup DEP Iteml,Item2 
FUNC tup: Iteml # Item2 -> Tup 

AXIOM FORALL il:Iteml,jl:Iteml,i2:Item2,j2:Item2 ( 
{TUPl} tup(il,i2)1; 
{TUP2} tup(il,i2) = tup(jl,j2) •> il = jl AND i2 = j2 ) 

PRED is_gen: Tup 
IND FORALL il:Iteml,i2:Item2 

( is_gen(tup(il,i2)) ) 

AXIOM FORALL t:Tup 
{TUP3} is_gen(t) 

FUNC projl: Tup -> Iteml 
IND FORALL il:Iteml,i2:Item2 

( projl(tup(il,i2)) a il ) 

FUNC proj2: Tup -> Item2 
IND FORALL il:Iteml,i2:Item2 

( proj2(tup(il,i2)) = i2 ) 

END; 
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% This is an axiomatic specification of the 3-tuple data type 
% with inductive definitions for the non-constructor operations. 

LET TUP3_SPEC : ~ 

LAMBDA X ITEM! OF 
LAMBDA Y ITEM2 OF 
LAMBDA Z ITEMS OF 
EXPORT 

SORT Tup, 
SORT Item!, 
SORT Item2, 
SORT Item3, 
FUNC tup 
FUNC projl : 

Item! 
Tup 
Tup 
Tup 

# Item2 # Item3 -> Tup, 
-> Item!, 

FUNC proj2 : 
FUNC proj3: 

FROM 
IMPORT X INTO 
IMPORT Y INTO 
IMPORT Z INTO 
CLASS 

SORT Tup DEP Item1,Item2,Item3 

-> Item2, 
-> Item3 

FUNC tup: Item! # Item2 # Item3 -> Tup 

AXIOM 
FORALL i1 : Item1,j1:Item1,i2 : Item2,j2:Item2,i3:Item3,j3:Item3 ( 

{TUP1} tup(i1,i2,i3)1; 

{TUP2} tup(i1,i2,i3) • tup(j1,j2,j3) 
=> il • jl AND i2 = j2 AND i3 • j3 ) 

PRED is_gen: Tup 
IND FORALL i1:Item1,i2:Item2,i3:Item3 

( is_gen(tup(i1,i2,i3)) ) 

AXIOM FORALL t:Tup 
{TUP3} is_gen(t) 
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FUNC proj1: Tup -> ltem1 
IND FORALL i1:1tem1,i2:Item2,i3:Item3 

( proj1(tup(i1,i2,i3)) a il ) 

FUNC proj2 : Tup -> Item2 
IND FORALL i1:1teml,i2:1tem2,i3:Item3 

( proj2(tup(il,i2,i3)) • i2 ) 

FUNC proj3: Tup -> Item3 
IND FORALL i1 : Iteml,i2:1tem2,i3 : Item3 

( proj3(tup(i1,i2,i3)) • i3 ) 

END; 
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% This is an axiomatic specification of the data type of finite sets 
% with inductive definitions for the non-constructor operations. 

LET SET_SPEC : • 

LAMBDA X:ITEM OF 
EXPORT 

SORT Item, 
SORT Nat , 
SORT Set, 
PRED is_in Item 
FUNC empty 
FUNC ins Item 
FUNC rem Item 
FUNC union Set 
FUNC i se ct Set 
FUNC diff Set 
PRED subset : Set 
FUNC card Set 

FROM 
IMPORT X INTO 
IMPORT NAT_SPEC INTO 
CLASS 

# Set, 

# Set 
# Set 
# Set 
# Set 
# Set 
# Set, 

SORT Set DEP Item 

-> Set, 
-> Set, 
-> Set, 
-> Set, 
-> Set, 
-> Set, 

-> Nat 

PRED is_in: Item # Set 
FUNC empty: - > Set 

Item # Set -> Set FUNC ins 

AXIOM 
{SETl} empty!; 
{SET2} FORALL i:Item,s:Set ( ins(i,s)! ) 

AXIOM FORALL i:Item,j:Item,s:Set ( 
{SET3} NOT is_in(i,empty); 
{SET4} is_in(i,ins(j,s)) <• > i= j OR is_in(i,s); 
{SET5} ins(i,ins(j ,s)) • ins(j,ins(i,s)); 
{SET6} ins(i,ins(i,s)) = ins(i,s) ) 

PRED is_gen: Set 
IND FORALL i:Item,s:Set 

( is_gen(empty) ; 
is_gen(s) => is_gen(ins(i,s)) ) 
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AXIOM FORALL s:Set 
{SET7} is_gen(s) 

FUNC rem: Item # Set -> Set 
IND FORALL i:Item,j:Item,s:Set 

( rem(i,empty) ~ empty:Set; 
rem(i,ins(i,s)) = rem(i,s); 
NOT i= j => rem(i,ins(j,s)) ins(j,rem(i,s)) ) 

FUNC union: Set # Set -> Set 
IND FORALL i:Item,s:Set,t:Set 

( union(s,empty) • s; 
union(s,ins(i,t)) = ins(i,union(s,t)) ) 

FUNC isect: Set # Set -> Set 
IND FORALL i:Item,s:Set,t:Set 

( isect(s,empty) = empty; 
isect(ins(i,s),ins(i,t)) = ins(i,isect(s,t)); 
NOT is_in(i,s) => isect(s,ins(i,t)) = isect(s,t) ) 

FUNC diff: Set # Set -> Set 
IND FORALL i:Item,s:Set,t:Set 

( diff(s,empty) = s; 
diff(s,ins(i,t)) = rem(i,diff(s,t)) ) 

PRED subset: Set # Set 
IND FORALL i:Item,s:Set,t:Set 

( subset(s,s); 
subset(s,t) => subset(s,ins(i,t)) ) 

FUNC card: Set -> Nat 
IND FORALL i:Item,s:Set 

( card(empty) = zero; 
NOT is_in(i,s) => card(ins(i,s)) 

END; 

succ(card(s)) ) 
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% This is an axiomatic specification of the data type of finite 
% bags, with inductive definitions for the non-constructor 
% operations. 

LET BAG_SPEC := 

LAMBDA X:ITEM OF 
EXPORT 

SORT Item, 
SORT Nat, 
SORT Set, 
SORT Bag, 
PRED is_in Item 
FUNC empty 
FUNC ins Item 
FUNC rem Item 
FUNC union Bag 
FUNC isect Bag 
FUNC diff Bag 
PRED subbag: Bag 
FUNC mult Item 
FUNC set Bag 

FROM 
IMPORT X INTO 
IMPORT NAT_SPEC INTO 

# Bag, 
-> Bag, 

#Bag -> Bag, 
# Bag -> Bag, 
# Bag -> Bag, 
# Bag -> Bag, 
# Bag -> Bag, 
# Bag, 
# Bag -> Nat, 

-> Set 

IMPORT APPLY SET_SPEC TO X INTO 
CLASS 

SORT Bag DEP Item 
PRED is_in: Item # Bag 
FUNC empty: 
FUNC ins 

A X !OM 

-> Bag 
Item # Bag -> Bag 

{BAG1} empty:Bag!; 
{BAG2} FORALL i:Item,b:Bag ( ins(i,b)! ) 

AXIOM FORALL i:Item,j:Item,b:Bag,c:Bag ( 
{BAG3} NOT is_in(i,empty:Bag); 
{BAG4} is_in(i,ins(j,b)) <•> i= j OR is_in(i,b); 
{BAG5} ins(i,ins(j,b)) • ins(j,ins(i,b)); 
{BAG6} ins(i,b) = ins(i,c) => b = c ) 
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PRED is_gen: Bag 
IND FORALL i:Item,b:Bag 

( is_gen(empty); 
is_gen(b) •> is_gen(ins(i,b)) ) 

AXIOM FORALL b:Bag 
{BAG7} is_gen(b) 

FUNC rem: Item # Bag -> Bag 
IND FORALL i:Item,j:Item,b:Bag 

( rem(i,empty) = empty:Bag; 
rem(i,ins(i,b)) = b; 
NOT i= j => rem(i,ins(j,b)) ins(j,rem(i,b)) ) 

FUNC union: Bag # Bag -> Bag 
IND FORALL i:Item,b:Bag,c:Bag 

( union(b,empty) = b; 
union(b,ins(i,c)) = ins(i,union(b,c)) ) 

FUNC isect: Bag # Bag -> Bag 
IND FORALL i:Item,b:Bag,c:Bag 

( isect(b,empty) = empty; 
isect(ins(i,b),ins(i,c)) = ins(i,isect(b,c)); 
NOT is_in(i,b) •> isect(b,ins(i,c)) • isect(b,c) ) 

FUNC diff: Bag # Bag -> Bag 
IND FORALL i:Item,b:Bag,c:Bag 

( diff(b,empty) 2 b; 
diff(b,ins(i,c)) z rem(i,diff(b,c)) 

PRED subbag: Bag # Bag 
IND FORALL i:Item,b:Bag,c:Bag 

( subbag(b,b); 
subbag(b,c) •> subbag(b,ins(i,c)) ) 

FUNC mult: Item # Bag -> Nat 
IND FORALL i:Item,j:Item,b:Bag 

( mult(i,empty) • zero; 
mult(i,ins(i,b)) = succ(mult(i,b)); 
NOT i • j •> mult(i,ins(j,b)) = mult(i,b) 
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FUNC set: Bag -> Set 
IND FORALL i:Item,b:Bag 

END; 

( set(empty) • empty; 
set(ins(i,b)) a ins(i,set(b)) ) 
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% This is an axiomatic specificatien of the data type of finite 
% sequences, with inductive definitions for the non-eenstructor 
% operations. 

LET SEQ_SPEC :• 

LAMBDA X : ITEM OF 
EXPORT 

SORT Item, 
SORT Nat, 
SORT Bag, 
SORT Seq, 
FUNC empty : -> Seq, 
FUNC cons Item # Seq -> Seq, 
FUNC hd Seq -> Item, 
FUNC tl Seq -> Seq. 
FUNC len Seq -> Nat, 
FUNC sel Seq # Nat -> Item, 
FUNC cat Seq # Seq -> Seq, 
FUNC rev Seq -> Seq. 
FUNC bag Seq -> Bag 

FROM 
IMPORT X INTO 
IMPORT NAT_SPEC INTO 
IMPORT APPLY BAG_SPEC TO X INTO 
CLASS 

SORT Seq DEP Item 
FUNC empty: -> Seq 
FUNC cons : Item # Seq -> Seq 

AXIOM 
{SEQl} empty:Seql; 
{SEQ2} FORALL i : Item,s:Seq ( cons(i,s)l ) 

AXIOM FORALL i:Item,j:Item,s:Seq,t:Seq ( 
{SEQ3} NOT cons(i,s) z empty; 
{SEQ4} cons(i,s) = cons(j,t) •> i= j AND s = t) 

PRED is_gen: Seq 
IND FORALL i:Item,s :Seq 

( is_gen(empty), 
is_gen(s) => is_gen(cons(i,s)) ) 
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AXIOM 
{SEQ6} 

FORALL s:Seq 
is_gen(s) 

FUNC hd: Seq -> Item 
IND FORALL i:Item,s:Seq 

( hd(cons(i,s)) • i ) 

FUNC tl: Seq -> Seq 
IND FORALL i:Item,s:Seq 

( tl(cons(i,s)) = s ) 

FUNC len: Seq -> Nat 
IND FORALL i:Item,s:Seq 

( len(empty) = zero; 
len(cons(i,s)) = succ(len(s)) 

FUNC sel: Seq # Nat -> Item 
IND FORALL i:Item,j:Item,s:Seq,n:Nat 

( sel(cons(i,s),zero) =i; 
sel(s,n) E j => sel(cons(i,s),succ(n)) • j ) 

FUNC cat: Seq # Seq -> Seq 
IND FORALL i:Item,s:Seq,t:Seq 

( cat(empty,s) = s; 
cat(cons(i,s),t) = cons(i,cat(s,t)) 

FUNC rev: Seq -> Seq 
IND FORALL i:Item,s:Seq 

( rev(empty) = empty; 
rev(cons(i,s)) ~ cat(rev(s),cons(i,empty)) ) 

FUNC bag: Seq -> Bag 
IND FORALL i:Item,s:Seq 

END; 

( bag(empty) = empty; 
bag(cons(i,s)) = ins(i,bag(s)) 
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% This is an axiomatic speci!ication o! the data type o! !inite 
% maps, with inductive de!initions !or the non-eenstructor 
% operations. 

LET MAP_SPEC := 

LAMBDA X ITEM1 OF 
LAMBDA Y ITEM2 OF 
EXPORT 

SORT Iteml, 
SORT Item2, 
SORT Setl, 
SORT Set2, 
SORT Map, 
FUNC empty: 
FUNC add 
FUNC rem 
FUNC app 
FUNC dom 
FUNC ran 

FROM 
IMPORT X INTO 
IMPORT Y INTO 

Map # 

Map # 

Map # 

Map 
Map 

-> Map, 
Iteml # Item2 -> Map, 
Iteml -> Map, 
Iteml -> Item2, 

-> Setl, 
-> Set2 

IMPORT APPLY RENAME SORT Set TO Setl, SORT Item TO Iteml 
IN SET_SPEC 

TO X 
INTO 
IMPORT APPLY RENAME SORT Set TO Set2, SORT Item TO Item2 

IN SET_SPEC 

INTO 
CLASS 

TO Y 

SORT Map 
FUNC empty: 
FUNC add 
FUNC app 

AXIOM 

DEP Item1,Item2 
-> Map 

Map # Iteml # Item2 -> Map 
Map # Iteml -> Item2 

{MAP1} empty:Map!; 
{MAP2} FORALL m:Map,i:Item1,v:Item2 

( add(m,i,v)l ) 
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AXIOM FORALL i:Iteml,j : Iteml,v:Item2,w:Item2,m:Map ( 
{MAP3} NOT app(empty,i)!; 
{MAP4} app(add(m,i,v),j) • w <=> 

( (i • j AND v = w) OR (NOT i= j AND app(m,j) • w) ); 
{MAP6} NOT i= j •> add(add(m,i,v),j,w) add(add(m,j ,w),i,v); 
{MAP6} add(add(m,i,v),i,w) = add(m,i,w) ) 

PRED is_gen: Map 
IND FORALL m:Map,i:Iteml,v:Item2 

( is_gen(empty); 
is_gen(m) •> is_gen(add(m,i,v)) ) 

AXIOM FORALL m:Map 
{MAP7} is_gen(m) 

FUNC rem: Map # Iteml -> Map 
IND FORALL m:Map,i:Iteml,j : Iteml,v:Item2 

( rem(empty,i) • empty; 
rem(add(m,i,v),i) = rem(m,i); 
NOT i= j => rem(add(m,i,v),j) = add(rem(m,j),i,v) ) 

FUNC dom: Map -> Setl 
IND FORALL m:Map,i:Iteml,v : Item2 

( dom(empty) = empty; 
dom(add(m,i,v)) = ins(i,dom(m)) ) 

FUNC ran: · Map -> Set2 
IND FORALL m:Map,i:Iteml,v:Item2 

( ran(empty) = empty; 
ran(add(m,i,v)) • ins(v,ran(rem(m,i))) ) 

END; 
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Chapter 5 

Systematic Design of a Text 
Editor 

5.1 Introduetion 
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This chapter describes the implementation of a display-oriented text editor. 
It serves for illustrating the notions of component, black-box description and 
design as described in Chapter 2. We shall follow one of the models of the 
software development process studied in Chapter 3, viz. the top-down model. 
We take the forma! specification presented in Chapter 4 and we make it part 
of an initia! design. This initial design serves as the starting point for a top
down development processtomeet conditions of verification, validation and 
executabili ty. 

We shall use the language COLD-K [1] for our case study. The notions of 
component, black-box description and design as described in Chapter 2 are 
available in this language. One of the purposes of this chapter is to illustrate 
the use of design principles based on formal techniques. In particular, we 
want to show how the theory of Chapter 2 and Chapter 3 can he used as a 
tooi for developing complex systems. We need a language as a vehicle and 
this will be COLD-K. 

We begin with constructinga top design and a bottorn design first and not 
before Section 5.5.1 our initia! design will he constructed. After that the top
down deveiopment process starts. We describe this processas a sequence of 
modification steps, affecting one variabie design. Since in the top-down de
veiopment process most modifications amount to the addition of formai text 
to this variabie design, we only give the newly added formai texts after each 
step. This chapter is organised such way that it is possibie to concatenate the 
keyword DESIGN foliowed by the abbreviation-type components from Chapter 
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4 and of Sections 5.3.2 to 5.3.5 and all formal texts contained in Sections 5.5 
and 5.6, thereby obtaining a final design which corresponds with the result 
of the development process and which can be syntax- and type-checked. 

The presentation of this process corresponds more or less with the actual 
development process of the case study. Of course it is also a rational re
construction in the sense that sametimes we had to do a little backtracking 
which is not refl.ected in this chapter. Also some thinking-in-advance and 
'throw-away' preliminary implementation activities took place. These activ
ities are typical for a top-down development process, but it is not always 
possible to describe them precisely. This means that sometimes we state "in 
order to implement ... , we postulate another component ... " although the 
motivation for certain details is incomplete. We did our best to avoid a 'deus 
ex machina' effect. 

We adopt the methodological principlesof conservativity, origin consistency 
and visbility consistency as discussed in [2]. The basic idea of conservativity 
is that when constructinga class description of the form IMPORT P INTO Q, 
the axioms of Q should not impose new restrictions u pon the sorts, functions, 
predicates and procedures introduced in P. The principle of origin consis
tency serves for avoiding the situation where there are two or more defining 
occurrences of one name. The principle of visibility consistency amounts to 
a restrietion for class descriptions of the form IMPORT P INTO Q when p is 
a procedure p E E(P). The restrietion is that if some side-effect of p is 
exported by Q, then so i t must be by P. 

We adopt the implementation relation basedon signature inclusion and the
ory inclusion, as argued in [2]. We shall implicitly assume the monotonicity 
of the COLO-K import, export and renaming operators- in fact without for
mal justification. We also adopt the condition prims first and the condition 
directly specified as discussed in Chapter 3. Finally we adopt the principles 
of black-box correctness (Chapter 2) and black-box validation (Chapter 3) -
based on the exclusive use of specifications. COLO-K does not provide a 
program-execution model and therefore we have no forma} criteria for de
ciding if a certain COLD-K text is executable or not. We aim at a manual 
translation from COLD-K to a classica} imperative programming language 
( C) and with this idea in mind we shall sametimes (in informal speaking) 
distinguish between executable operations and non-executable operations: 
operations which need not be translatedor which can not be translated in a 
straightforward manner are said to he non-executable. 

This chapter is organised as follows. In Section 5.2 we discuss the top of 
the editor design. This is easy in view of the preparatory work of Chapter 
4. In Section 5.3 we discuss the bottorn of the editor design. This amounts 
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to the introduetion of several new specifications. These describe instances, 
attributes, blocks and tables which will he assumed as available primitives. 
Section 5.4 contains a summary of the top-down approach. In Section 5.5 
we begin a top-down development process. We implement the three compo
nents which constitute the system of the editor design; these are KEYBIND, 
MOREDOP and WITEFA. During the implementation of these system compo
nents, several new components are postulated. In Section 5.6 the top-down 
development processis continued; the newly postulated components are im
plemented which leads again to the introduetion of new components etc. This 
goes on until at the end of Section 5.6 only the primitives of Section 5.3 are 
left. 

In Section 5. 7 we discuss some related work. Sections 5.8 and 5.9 are devoted 
to conclusions and evaluation. In Appendix A we introduce a lower design 
layer. In Appendix B we give a list of symbols used in this chapter. In 
Appendix C we give the C program resulting from the composition of the 
editor design and the design of Appendix A. Finally, in Appendix D we 
provide a 'reference chart'. 

5.2 The Top of the Editor Design 

In the specification presented in Chapter 4 we did not mention the structure 
of the design in which the various class descriptions of the formal specifi
cation fit. Now it is time to do so and, more precisely, we must cast these 
class descriptions into a design d1• Reeall from Chapter 3 that the top of a 
design d is the design in which only those components are retained whose 
narnes occur in the system of d; it is denoted as top(d). We must indicate 
a design d 1 which is considered as the top of a design dedittm which at its 
turn must he constructed during the subsequent development process. The 
design d, is shown below. We assume that at the position of the dotsin this 
design we have LET-constructs introducing the narnes BOOL_SPEC, NAT_SPEC, 
CHAR_SPEC ... WITEF A_SPEC, MOREDOP _SPEC and KEYBIND_SPEC. 

DESIGN 

COMP WITEFA WITEFA_SPEC; 
COMP MOREDOP: MOREDOP_SPEC; 
COMP KEYBIND: KEYBIND_SPEC 

SYSTEM WITEFA,MOREDOP,KEYBIND 
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The above top design represents a certain view upon the editor design to 
be constructed in this chapter. More precisely, it is the view that is of 
interest to the user of the editor design. This top design is a kind of con
tract that specifies precisely the components of the design that are made 
available. In this case there are three available components, viz. WITEF A, 
MOREDOP and KEYBIND. These are specified by WITEF A_SPEC, MOREDOP _SPEC 
and KEYBIND_SPEC respectively. When the design will be finished, it may 
have many more components, but these are outside the scope of the user. 

Let us have a look at each of the three components mentioned in the sys
tem and let us explain why each is part of the system. We begin with 
KEYBIND_SPEC, which is the most obvious component. It provides procedures 
PROC key: Char -> , PROC startup: -> and the functions FUNC screen: 
-> Text and FUNC cursor: -> Nat # Nat which are precisely enough when 
using the editor directly for editing texts. 

A less obvious way to use the editor design is to employ it as just one layer 
of a larger composite design where new features have been added to the 
editor. A simple example of this would be to have another keybinding 
e.g. by introducing a procedure PROC key_2: Char -> , say. In order to 
write this key _2 one needs both the operations provided by the component 
WITEFA (e.g. backward_character) and those provided by MOREDOP (e.g. 
delete_previous_character). One could also go one step further and add 
a layer providing for dynamic keybinding and programmability e.g. as avail
able with MLisp in EMACS [4]. In the latter case one may decide to ignore 
the KEYBIND component entirely. So there are in fact two categodes of users. 
The first category consistsof the users who simply conneet key totheir phys
ical keyboard and then start typing. The users of the second category are 
real software developers constructing another 'higher level' design dtop-~a".., 

say which is put on top of the editor design deditor- which could be done with 
the operator o from Chapter 3. This explains why we included WITEFA and 
MOREDOP in addition to KEYBIND as part of the system. 

This provides us with the following condition which is part of the postcon
dition of the software development process: 

where the equality on designs is to be considered roodulo the relative order 
of components. 
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5.3 The Bottom of the Editor Design 

5.3.1 Introduetion 

Befare we undertake a software development process, we must first introduce 
our primitive components. In the Sections 5.3.2 and 5.3.3 we introduce in
stances and attributes, which are the basic ingredients of an attribute-oriented 
approach, by which we mean that it is easy to add attributes to objects. This 
approach has been worked out by Jonkers in [3]. In the Sections 5.3.4 and 
5.3.5 we introduce the data types of tables and blocks. We cast the specifica
tions of these primitive components into the farm of a bottam design. This 
will he done in Section 5.3.6 

5.3.2 Specifying Instances 

LET INST_SPEC := 
EXPORT 

SORT Inst, 
FUNC nil -> Inst, 
PROC create: -> Inst 

FROM 
CL ASS 

SORT Inst VAR 
FUNC nil: -> Inst 

A X !OM 
{INSTt} INIT •> nil! AND FORALL a:Inst ( a • nil ) 

PROC create: -> Inst MOD lnst 

AXIOM 
{INST2} < create > TRUE; 
{INST3} [ LET a:Inst; a :• create ] 

a! AND (PREV NOT a!) AND 
FORALL b:Inst ( (PREV NOT b!) => b • a) 

END; 
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5.3.3 Specifying Attributes 

LET ATTR_SPEC :~ 

LAMBDA X CLASS SORT Inst FREE END OF 
LAMBDA Y : CLASS SORT Item FREE END OF 

EXPORT 
SORT Inst, 
SORT Item, 
FUNC attr Inst -> Item, 
PROC set_attr: Inst # Item -> 

FROM 
IMPORT X INTO 
IMPORT Y INTO 
CLASS 

FUNC attr Inst -> Item VAR 
PROC set_attr : Inst # Item -> MOD attr 

AXIOM 
{ATTRl} 
{ATTR2} 

END; 

FORALL i:Inst,v:Item ( 
< set_attr(i,v) > TRUE; 
[ set_attr(i,v) ] 
attr(i) • v AND 
FORALL j : Inst,w:Item (NOT j • i •> 
( attr(j) • w <•> PREV attr(j) • w ) ) ) 

5.3.4 Specifying Tables 

In the description of the editor (Chapter 4) there is a variabie map from 
strings to marked texts. Somehow this is going to be refl.ected in the im
plementation of the editor and therefore we introduce a specification of 
tables. These tables can be used for efficiently dealing with a mapping 
from implementable strings ( sort 'String') to the representation of marked 
texts. Reeall that we have already the class description MAP _SPEC which 
provides the sort Map of finite mappings with functions empty: -> Map for 
the empty mapping and add: Map # Iteml # Item2 -> Map for 'overwrit
ing' addition. Furthermore there are operations rem: Map # Iteml -> Map 
for removal, app: Map # Iteml - > Item2 for map application, dom: Map 
-> Setl for domain and ran: Map -> Set2 for range. These mappings are 
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described as an algebraic data type-justas Nat, say. Allobjectsof sort Map 
exist already in the initia} state and none of the operations may have side
effects. This means that formally it is not allowed to use certain conventional 
data reification techniques when implementing these mappings. 

Therefore we introduce another sort of so-called tables which will be specified 
with implementability in mind. We must wamthereader here that this will 
give rise to several pages of technicalities. In the description TABLE_SPEC 
given below, a table will be modeled as a modifiable mapping by which we 
mean that associated with every table there is a variabie map - in the sense 
of the sort Map. In this way the maps from MAP _SPEC will play a role in the 
forma} specification, serving as auxiliaries for the description of something 
different, viz. tables. The tables themselves correspond with a variabie 
sort Table. Initially precisely one table exists and optionally more tables 
can be created dynamically when needed. We employ the attribute-oriented 
approach mentioned in Section 5.3.1. Tables are introduced as a kind of 
instances and the variabie maps associated with them are introduced as a 
kind of attributes. 

The specificatien TABLE_SPEC is parameterised with respect to the domain 
sort and the range sort of the tables. The simplest way of descrihing this 
would be toadopt a definition beginning with sarnething like LET TABLE_SPEC 
: == LAMBDA X: ITEMl OF LAMBDA Y: ITEM2 OF ... etc. We adopt ITEM2 in
deed, but we do not adopt ITEMl because of two complications which we want 
to take into account. 

The first complication is necessary when conventional data reification tech
niques are to be allowed. Typical data reification techniques for tables are 
linked lists, sorted lists, open hashing, closed hashing, binary search trees and 
balanced trees. Most of these techniques can not be applied when the sort 
Iteml comes without any relations or operations- the only exception being 
the linked list technique. In order to sort a list we need a binary relation, 
less say, on Iteml. The same holds for binary search trees and balanced 
trees. Both open hashing and closed hashing require that the Iteml val
ues can be converted to natura! numbers or integers. Of course we need not 
choose among these techniques here, but we must make suitable preparations 
not to exclude almost all options. Therefore we require that the sort Iteml 
comes with a binary predicate less. For this kind of applications, we have 
SLO in our library of standard class descriptions - àbbreviating Strict Linear 
Order. 

There is a second complication which leads us to not adopting SLO, but a 
slightly different version of it called 'SLO '. This is needed because we want 
to allow for using a sort with an equivalence predicate eq such as 'String' 
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for the domain-sort of the tables. E.g. consider two 'String' objects St 

and s 2 with St #- s2 but eq(stt s2); then a table-lookup using St should 
yield the same result as a table-lookup using s2. Furthermore we allow for 
a representation invariant i teml_inv associated with the domain sort. The 
specification of 'SLO' takes SLO as a starting point and the forma} relation 
between 'Item1' and Item1 is given by an abstraction function f. When 
comparing 'SLO' with SLO we see that essentially, the former allows for a 
wider class of implementations of the concept 'strict linear order'; but strictly 
formally speaking, it is the other way around. The point is that the role of 
the unquoted narnes is not the same in 'SLO' and SLO. 

The forma} specification below begins with 'SLO' which imports a renamed 
version of SLO. Reeall from our standard library that SLO provides a sort Item 
with a binary relation r which is axiomatically stated to be a strict linear 
ordering- the kind of relation often denoted by <. Therefore RENAME SORT 
Item TO Item1 IN SLO provides a sort Item1 with a binary relation r: 
Item1 # Item1 which is again a strict linear ordering. The CLASS . . . END 
part of 'SLO' is an extension of SLO introducing the sort 'Item1' with binary 
predicates eq and leas. Furthermore it introduces a predicate i teml_inv 
and an abstraction function f. There is just one axiom which serves for 
stating the precise nature of the eq and less predicates: the function f is 
required to behave homomorphically such that = and r are the images of eq 
and less respectively. The axiom is relativised by item1_inv. Note that 
'SLO' exports everything it contains, including Item1 and r. As explained 
above 'SLO' serves as parameter restriction. Similarly ITEM2 which only 
requires the presence of a sort Item2 serves as a parameter restrietion fora 
second forma} parameter. 

LET 'SL01' := 
IMPORT 

RENAME 
SORT Item TO Iteml 

IN SLO 
INTO 
CLASS 

SORT 'Iteml' 
PRED eq 'Iteml' 
PRED less 'Iteml' 
PRED iteml_inv: 
FUNC f 'Item1' 

FREE 
# 'Iteml' FREE 
# 'Iteml' FREE 

FREE 
-> Iteml FREE 
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AXIOM iteml_inv •> 

END; 

FORALL i:'Item1',j : 'Item!' 
( eq(i,j) <•> f(i) • f(j); 

less(i,j) <•> r(f(i),f(j)) ) 

LET TABLE_SPEC := 

LAMBDA X 'SL01' OF 
LAMBDA Y ITEM2 OF 
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This completes the introduetion of the formal parameters of TABLE_SPEC and 
now we turn our attention to its body. There will be local definitions intro
ducing TABLE_INST_SPEC, MAP _FROM_SL01_TO_ITEM2 and TABLE_MAP _SPEC 
which serve for introducing tables as renamed instances and for associating 
variabie maps with these tables. Within the CLASS . . . END part of the 
specification we shall define the table operations among which the proce
dures new: -> Table and add: Table # 'Iteml' # Item2 -> . We must 
be prepared to allow techniques which require a representation invariant. 
E.g. when a sorted list is used to represent tables, the invariant might state 
that the list is a-cyclic and sorted; when a binary tree is used, the invariant 
might state that all nodes in a left-hand side subtree have Iteml values which 
are less than the Iteml values in the corresponding right-hand side subtree. 
The actual choice is for the implementer and here we just introduce a pred
icate table_inv for which we state axiomatically that the table procedures 
preserve it as an invariant. For the definition of the operations such as add 
this also implies that we have to introduce a case-analysis. The purpose of 
the case-analysis is to describe what can happen when the invariant does nat 
hold. 

TABLE_SPEC has an explicit export list serving as a compact overview of 
the sorts and operations provided. The sorts Map, Iteml, the function map: 
Table -> Map and the function app: Map # Iteml -> Item2 are needed for 
reasoning purposes only. The remaining exported sorts and operations are 
considered executable. All table operations are defined as PROC allowing for 
a maximum of implementation freedom - although maybe this is nat needed 
for certain of them, such as is_in_dom. 
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EXPORT 

SORT Map, 
SORT Item1, 
FUNC map: Table -> Map, 
FUNC app: Map # Item1 -> Item2, 

SORT Bool, 
SORT Table, 
SORT Item2, 
SORT 'Item1' , 
PRED table_inv: , 
PROC new 
PROC add Table 
PROC rem Table 
PROC app Table 

# 

# 

# 

PROC is_in_dom: 'Item1' 

FROM 

'Item1' 
'Item1' 
'Item1' 
# Table 

-> Table, 
# Item2 -> 

-> 
-> Item2, 
-> Bool 

Now the local definitions follow. The fust one defines TABLE_INST_SPEC 
which provides the sort Table with FUNC nil: -> Table and PROC create: 
-> Table. The second definition is based on MAP _SPEC which is a parame
terised class description. Reeall from our standard library that it has two 
parameters with parameter restrictions ITEM1 and ITEM2 requiring the pres
enee of sorts Item1 and Item2 respectively. It provides the algebrak data 
type of maps, i.e. all maps that can he constructed by the constructor op
erations empty and add. Before we can employ this MAP _SPEC it must he 
instantiated which we do in this case by taking X and Y as actual parame
ters. Since we are within the scope of the abstractions LAMBDA X: 'SLO 1 ' OF 
LAMBDA Y: ITEM2 OF ... we easily verify that X exports a sort Item! and 
that Y exportsasort Item2. 

LET TABLE_INST_SPEC :• 
RENAME 

SORT Inst TO Table 
IN INST_SPEC; 

LET MAP_FROM_SL01_TO_ITEM2 :• 
APPLY APPLY 

MAP_SPEC 
TO X TO Y; 

The third local definition serves for associating maps with tables. We employ 
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ATTR_SPEC from Section 5.3.3 which is parameterised with respect to the sorts 
of the instances and attributes. In this case the role of instances is played 
by Table whereas the role of attributes is played by Map. Furthermore we 
must get rid of the instance-and-attribute-oriented narnes and replacethem 
by table-and-map-oriented names. As usual the renaming is done in the 
parameterised description and as a result we get a parameterised descrip
tion whose parameter restrictions are renamed versionsof CLASS SORT Inst 
FREE END and ITEM respectively. When suitably renamed, these require the 
presence of a sort Table and a sort Map respectively. This shows that we 
can take TABLE_INST_SPEC and MAP_FROM_SL01_TO_ITEM2 as actual param
eters. In this way we get an 'attribute' function map: Table -> Map and an 
'assignment' procedure set_map: Table # Map -> . 

LET TABLE_MAP_SPEC := 

APPLY APPLY 
RENAME 

SORT Inst TO Table, 
SORT Item TO Map, 
FUNC attr Inst -> Item TO map, 
PROC set_attr: Inst # Item -> TO set_map 

IN ATTR_SPEC 
TO TABLE_INST_SPEC TO MAP_FROM_SL01_TO_ITEM2; 

We import the formal parameters X and Y and the locally defined class de
scriptions. The auxiliary operation p corresponds with an arbitrary invoca
tion of one of the table operations. 

IMPORT X INTO 
IMPORT Y INTO 
IMPORT BOOL_SPEC INTO 
IMPORT MAP_FROM_SL01_TO_ITEM2 INTO 
IMPORT TABLE_INST_SPEC 
IMPORT TABLE_MAP_SPEC 
CLASS 

PRED table_inv: VAR 

AXIOM {INVARIANCE} 

INTO 
INTO 

INIT AND iteml_inv z> table_inv; 
iteml_inv AND table_inv => [ p ] table_inv 

PROC p: -> 
DEF ( FLUSH new 

I add(SOME t:Table(),SOME i: 'Iteml'(),SOME j:Item2()) 
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I rem(SOME t:Table(),SOME i:'Iteml'()) 
I FLUSH app(SOME t:Table(),SOME i:'Iteml'()) 
I FLUSH is_in_dom(SOME i: 'Iteml'(),SOME t:Table()) 
) 

Now the actual definitions of the table operations can he given. The pro
cedure new yields a fresh table, denoted as t, which is obtained by t : = 
create. Furthermore this fresh table gets the empty map associated with 
it and this is established by the expression set_map ( t, empty) where we use 
the procedure set_map from T ABLE_MAP _SPEC. 

PROC new: -> Table 
DEF LET t:Table; t := create; 

set_map(t,empty); 
t 

Very much in the same style we model add. As a first approximation we could 
define add(t,i,j) by something like OEF set_map(t,add(map(t) ,i,j)). 
Although this gives the basic idea there is a difficulty because we must take 
into account that the invariant need not hold. When the invariant does not 
hold, it may become true (just by luck) and furthermore the map attribute 
may get any value, as described by USE set_map END. Otherwise the map 
attribute is updated using set_map again. Also some care is needed here 
because this map attribute is a finite mapping from Item1 to Item2 whereas 
our add procedure takes an 'Item1' argument. So we have to use the ah
straction function f, writing set_map(t,add(map(t) ,f(i) ,j)) rather than 
set_map(t,add(map(t),i,j)). 

PROC add: Table # 'Iteml' # Item2 -> 
PAR t:Table,i: 'Item1',j:Item2 
DEF ( NOT table_inv ?; 

) 

MOD table_inv USE set_map END 
table_inv ?; 

set_map(t,add(map(t),f(i),j)) 

PROC rem: Table # 'Iteml' -> 
PAR t:Table,i: 'Item1' 
DEF ( NOT table_inv ?; 

MOD table_inv USE set_map END 
table_inv ?; 

set_map(t,rem(map(t),f(i))) 
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PROC app: Table # 'Iteml' -> Item2 
PAR t:Table,i: 'Iteml' 
DEF ( NOT table_inv ?; 

SOME i : Item2 () 
table_inv ?; 

app(map(t),f(i)) 

PROC is_in_dom: 'Iteml' # Table -> Bool 
PAR i: 'lteml' ,t:Table 
DEF ( NOT. table_inv ?; 

) 

END; 

SOME b: Bool () 
table_inv ?; 

( app(map(t),f(i))l ?; true 
I NOT app(map(t),f(i))l ?; false 
) 

This concludes the specification of tables. 

5.3.5 Specifying Blocks 
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In order to store texts within our editor, weneed a facility that manages an 
unbounded amount of storage and that on request releases finite portions of 
storage in the form of a kind of blocks of storage locations. Below we give 
a specification of such a facility. To keep things simple, we did not include 
possibilities for returning portions of storage that are no longer needed. The 
function cont applied toa block band a natural number n < size(b) yields 
the contents of the n-th location in this block. The procedure store can 
be applied to a block b, a natural number n < size(b) and an item i. lts 
effect is to store the value i in the n-th location in this block. The numbers 
0 ... si ze (b) - 1 serve as addresses. 

In the class description BLOCK_SPEC below we have four axioma descrihing 
the initial state and the procedures alloc, grow and store respectively. The 
first axiom states that initially there are no blocks yet. The second axiom de
scribes both the termination of alloc (n) and its postcondition which defines 
the size of the newly 'allocated' block and which states that precisely one new 
block is created. The third axiom describes the termination of grow(b,n) 
and its postcondition. Formally this axiom must be relativised by the pre-
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miss size (b) ! which of course holds in the states reachable from the initial 
state by using alloc and grow. The last axiom gives the termination and 
the postcondition of store (b, n, i). Again this axiom is relativised and the 
premiss is n < si ze (b). 

LET BLOCK_SPEC := 
LAMBDA X: ITEM OF 
EXPORT 

SORT Block, 
SORT Nat, 
SORT Item, 
FUNC size Block 
FUNC cont Block # Nat 

-> Nat, 
-> Item, 

PROC store Block # Nat # Item ->, 
PROC alloc Nat 
PROC grow Block # Nat 

FROM 
IMPORT X INTO 
IMPORT NAT_SPEC INTO 
CLASS 

SORT Block VAR 
Block 

-> Block, 
-> 

-> Nat VAR FUNC size 
PROC alloc 
PROC grow 

Nat -> Block MOD Block 
Block # Nat -> MOD size 

AXIOM INIT => NOT EXISTS a:Block () 

AXIOM FORALL n:Nat ( 
< alloc(n) > TRUE; 
[ LET b:Block; b :• alloc(n) ] 

size(b) • n AND 
(PREV NOT b!) AND FORALL c:Block 

( (PREV NOT c!) => c = b) ) 

AXIOM FORALL b:Block, n:Nat ( size(b)! => 
( < grow(b,n) > TRUE; 

[ grow(b,n) ] 
( size(b) = add(n,PREV size(b)); 

FORALL c :Block (NOT b • c AND (PREV size(c)l} •> 
( size(c) • PREV size(c) ) ) ) ) ) 

FUNC cont: Block # Nat -> Item VAR 
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PROC store : Block # Nat # Item -> MOD cont 

AXIOM 

END; 

FORALL b:Block,n:Nat,i:Item 
( lss(n,size(b) ) => ( 
< store(b,n,i) > TRUE; 
[ store(b,n,i) ] 
( cont(b,n) .. i; 

FORALL c:Block, m:Nat, j:Item 
( lss(m,size(c)) •> 

( NOT n • m OR NOT b • c => 
cont(c,m) • j <=> PREV cont(c,m) '" j) ) ) ) ) 

5.3.6 The Bottom of the Editor Design 
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We expect the underlying machine on which we have to build our editor to 
provide us with implementations of the following COLD-K class descriptions. 

• Data-types immediately available from a typical programming language 
such as Pascal or C. Let us assume that we have general purpose data 
types BOOL_SPEC, NAT_SPEC, CHAR_SPEC, INST_SPEC, ATTR_SPEC. 

• lmplementable sequences described by 'SEQ_SPEC', modifiable maps, 
described by TABLE_SPEC, and so-called blocks described by BLOCK_SPEC. 

• A display device. Let us assume that this is given by the class descrip
tion DISPLAY_SPEC. Also we assume a simple file system: FILE_SPEC. 

The primitive components from the second group are considered not available 
in the programming language at hand. Therefore we can expect that at 
some point in time we might imptement some of them ourselves. On the 
other hand, these components are of a general-purpose nature and they do 
not refl.ect that we are aiming at an editor. These give rise to the following 
primitive components: 

'SEQ ' imptementing 'SEQ_SPEC', 
TABLE implementing TABLE_SPEC, 
BLOCK imptementing BLOCK_SPEC. 

Now it is time to cast the specifications of all primitive components into the 
shape of a design db. Reeall from Chapter 3 that the bottorn of a design d is 
the design with the empty system and in which only those components are 
retained that have no glass-box description - i.e. implementation module. 
The bottorn of a design d is denoted as bot(d). We must cast the specifi-
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cations of the primitive components into a design d" which is considered as 
the bottom of a design dt<f.itor• which at its turn must be constructed during 
the subsequent development process. The design d" is shown below. We as
sume that at the position of the dots in this design we have a number of LET 
abbreviations, which introduce the names BOOL_SPEC, NAT_SPEC, CHAR_SPEC 
etc. 

DESIGN 

COMP BOOL 
COMP NAT 
COMP CHAR 
COMP INST 
COMP ATTR 

COMP 'SEQ' 
COMP TABLE 
COMP BLOCK 

BOOL_SPEC; 
NAT_SPEC; 
CHAR_SPEC; 
INST_SPEC; 
ATTR_SPEC; 

'SEQ_SPEC' ; 
TABLE_SPEC; 
BLOCK_SPEC; 

COMP DISPLAY: DISPLAY_SPEC; 
COMP FILE FILE_SPEC 

SYSTEM NONE 

This providesus with the following condition which is part of the postcon
dition of the software development process: 

In Appendix A we shall consider a design dh48ic whose system can be plugged 
into d11 and hence also in deditor Of course the contents of this appendix 
are supposed to he outside the scope of our design dt<f.itor· In particular, 
the principle of black-box validation does not allow the use of knowledge of 
implementation details from dhG8fc. 

5.4 Summary of the Top-dow~n Approach 

At this point we have not started the actual construction of our software 
system yet and instead of that we have fixed the boundaries of the design dt<f.itor 

to be created. This was done in Sections 5.2 and 5.3 where we have chosen 
the user-view dt and the machine-view d" respectively. Let us assume that we 
can find a system-user who would like to use the system components specified 
by dt. Let us also assume that somehow we can establish the availability of 
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a machine providing the primitive components specified by db. Under these 
assumptions the validation conditions mentioned in Chapter 3 are fulfilled. 

We shall describe the principles of the top-down approach informally now. 
For the formal treatment we refer to Chapter 3. The top-down approach is 
basedon the so-called top-down invariant which is defined as the conjunction 
of the following conditions. 

1. top(deditor) = dt where the equality on designs is to be considered mod
ulo the relative order of components. Intuitively this means that the 
user-view on the editor design is kept fixed. 

2. deditor is black-box correct. Roughly speaking, this corresponds with the 
situation where all black-box descriptions are true in the sense that the 
corresponding glass-box descriptions (if present) are implementations 
indeed. Formally this is described best by referring to the implemen
tation relation Ç. 

3. All components of deditor are directly or indirectly used in the system of 
deditor - except possibly those occurring also in db, i.e. except possibly 
those which happen to be available anyway. 

A suitable initia! state for the development processcan he established simply 
by assigning dt to deditor· Let us check that this makes the top-down invariant 
hold indeed. First, the top of this design dt equals dt. which is a property of 
top designs. Secondly the design dt is black-box correct since its components 
do not have a glass-box description yet and hence are correct by definition. 
Finally, all components occur in the system. In our particular case these 
components are WITEF A, MOREDOP, KEYBIND. This shows that assigning dt 
todeditor makes the top-down invariant hold. 

After this assignment a top-down development process can really begin and 
this is the subject of Section 5.5. First we add the primitive components 
of db to the editor design. Next, we must select some primitive component 
and make sure that it gets implemented according to the principle of black
box correctness. In our particular case we shall select KEYBIND as the first 
component to he implemented and since its specification is already in algo
rithmic style this is easy. Next we treat MOREDOP which is equally easy and 
after that there is only one component to be selected left which is WITEFA. 
To implement WITEF A is more complicated and it requires the introduetion 
of several new primitive components. After WITEFA has been implemented 
we are done with the system components and this stage will be reached at 
the end of Section 5.5. Although at that stage all system components have 
been implemented, the design is still not finished yet because there are sev
eral newly postulated primitive components which were needed for WITEFA. 
InSection 5.6 these are implemented one after the other. Again this requires 
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the introduetion of new primitive components and in this way the top-down 
development process proceeeds until only those primitive components are left 
that occur in the bottorn design db. This stage will be reached at the end of 
Section 5.6. 

At that stage we can finish the development process. The condition bot( doditor) 
= db serves as the termination condition of the development process. Reeall 
that the clause bot(doditor) refers to the so-called bottorn of the design doditor 
and that intuitively this bottorn is a machine-view, containing information 
about the primitive components. The top-down development process can 
be viewed as the execution of a design program of the form given below, 
where td_step satisfies the assumption that it does not violate the top-down 
invariant. 

technique (db, dt) 
def doditor := dt; 

while not bot(do<iitor) =db do doditor := td....step(do<iitor)i od; 
doditor 

The precise syntax and semantics of such design programs is given in Chapter 
3. Here we restriet ourselves to a short informal explanation. The header 
technique (db, dt) indicates that this is a design program where db and dt 
act as parameters. The definition of the design program follows after the 
keyword def and it consistsof an assigment statement to the variabie design 
doditor and a loop of iterated application of td_step. The final doditor serves as 
the result of this design program. 

5.5 lmplementing the System Components 

5.5.1 Introduetion 

We begin with dt, but we add immediately the primitive components from 
db to it. This yields the design consisting of the keyword DESIGN and the LET 
abbreviations given before foliowed by the following components: 

COMP BOOL BOOL_SPEC; 
COMP NAT NAT_SPEC; 
COMP CHAR CHAR_SPEC; 
COMP INST INST_SPEC; 
COMP ATTR ATTR_SPEC; 

COMP 'SEQ' 'SEQ_SPEC' ; 
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COMP TABLE TABLE_SPEC; 
COMP BLOCK BLOCK_SPEC; 

COMP DISPLAY: DISPLAY_SPEC; 
COMP FILE FILE_SPEC; 

{lil} COMP WITEFA WITEFA_SPEC; 
{lil} COMP MOREDOP: MOREDOP_SPEC; 
{lil} COMP KEYBIND: KEYBIND_SPEC; 

and ha ving as a system WITEFA, MOREDOP, KEYBIND. The black-box descrip
tions ( the xxx_SPECs) of this design will remain unchanged during the the 
development process and so doesits system. However, some of these compo
nents will get a glass-box description later and as a reminder for this, they 
have been marked now by {Ul}. The symbol {ID} should he read as: "this is 
going to he replaced later". Since there are no glass-box descriptions yet, 
the above initia! design is black-box correct. 

5.5.2 lmplementing KEYBIND 

In this section we give the implementation of the component KEYBIND which 
contains a procedure key, taking characters as its argument and invoking 
operations provided by WITEFA and MOREDOP. Furthermore it exports the 
initialisation procedure startup - which we can assume to he provided by 
MOREDOP since MOREDOP _SPEC exports startup. It also exports screen and 
cursor which we can assume to he provided by WITEFA since WITEFA_SPEC 
imparts APP _DOM_SPEC which at its turn imparts DISPLAY _SPEC. 

The KEYBIND_IMPL given below is almost the same as KEYBIND_SPEC. The 
subtie difference is that we use component narnes in the import clauses 
rather than abbreviation names. Note that earlier KEYBIND_SPEC was used 
as a black-box description. Therefore it was necessary to import NAT_SPEC, 
BOOL_SPEC etc. because importing NAT or BOOL would vialate the principle 
of direct specification. Reeall from Chapter 3 definition 3.2.13, that a design 
is directly specified if it is wellformed and no black-box description contains 
the name of a component. Now we are in a different position. We are going 
to construct a glass-box description KEYBIND_IMPL and now we are allowed 
to refer to component names. In order to get an executable implementation, 
we must in fact do so. 

The procedure key is described by one large case-statementand we consider 
this as already executable. The procedure key calls the procedures from 
WITEFA and MOREDOP: insert_character, set_mark, ... , delete_ 
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previous_character. Most procedures called by key come from WITEFA, 
but the following procedures come from MOREDOP: return, search_forward, 
insert_file,write_named_file, delete_to_killbuffer, 
yank_from_killbuffer, escape anddelete_previous_character. 

LET KEYBIND_IMPL := 
EXPORT 

SORT Nat, 
SORT Char, 
SORT Text, 
PROC startup: -> 
PROC key Char -> 
FUNC screen -> Text, 
FUNC cursor -> Nat # Nat 

FROM 
IMPORT NAT INTO 
IMPORT CHAR INTO 
IMPORT WITEFA INTO 
IMPORT MOREDOP INTO 
CLASS 

PROC key: Char -> 
PAR c:Char 
DEF ( printable(c) ? ; 

ord(c) 0 e41} ?; 

ord(c) = 1 eA} ?; 

ord(c) 2 {AB} ?; 

ord(c) 4 {AD} ? : 
ord(c) 6 {AE} ?; 

ord(c) 6 {AF} ? ; 

ord(c) 13 eM} ? : 
ord(c) 14 {AN} ? : 
ord(c) 16 eP} ?; 
ord(c) 19 {AS} ?; 

ord(c) 20 {AT} ?; 
ord(c) 21 {AU} ?; 

ord(c) 23 ew} ?; 

ord(c) 24 eX} ? . .. 
ord(c) • 26 eY} ? ; 
ord(c) 26 eZ} ? ; 
ord(c) 27 {ESC}?; 
ord(c) = 127{DEL}?; 

END; 

insert_character(c) 
set_mark 
beginning_of_line 
backward_character 
delete_next_character 
end_of_line 
forward_character 
return 
next_line 
previous_line 
search_forward 
insert_file 
write_named_file 
delete_to_killbuffer 
beginning_of_buffer 
yank_from_killbuffer 
end_of_buffer 
escape 
delete_previous_character 
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Now we are in a position where the primitive component {«I} COMP KEYBIND: 
KEYBIND_SPEC can be replaced by a component having both a black-box de
scription and a glass-box description, viz. by COMP KEYBIND: KEYBIND_SPEC 
: = KEYBIND_IMPL. 

% COMP KEYBIND : KEYBIND_SPEC := KEYBIND_IMPL; 
% this is to replace an earlier primitive component. 

We must add some explanation to this because we had to solve a techni
ca} complication regarding the presentation of the (dynamic) development 
process in this (statie) chapter. When we were in the specification phase 
(Chapter 4) this was no problem because at each stage we only added forma} 
texts after the texts obtained already. We organise our text in such a way 

· that there is a simple mechanica! operation of separating the formal texts 
from the informal introductions and annotations. Then the concatenation of 
the keyword DESIGN, the LET abbreviations from Chapter 4, Sections 5.3.2 
to 5.3.5 and the remaining formal texts from this chapter (Section 5.5.1 to 
5.6.13) will constitute one design which can be syntax- and type-checked. 
This one design encompasses all the formal texts employed in various stages 
of the top-down development process. The technica} complication is that 
one component may occur initially just as primitive whereas in a later stage 
it is replaced by another component, having both a black-box description 
and a glass-box description. Of course we can nothave a well-formed design 
where one component-name occurs twice and therefore we include such 'sec
ond defining ocurrences' of components in the design, but we only include 
them as comment. Just as above, these situations will be marked by the 
sentence "% this is to replace an aarlier primi ti ve component." 

In fact, we have now carried out our first top-down design-transformation 
step d,ditbr := td...step( deditM); as described in Section 5.4. The resulting design 
reads the same as the one given in Section 5.5.1 but for two modifications: 
first, the "LET KEYBIND_IMPL : = . . . ; "-text is added ~t an appropriate 
place, and second, the line "COMP KEYBIND : KEYBIND_SPEC;" is replaced 
by "COMP KEYBIND : KEYBIND_SPEC := KEYBIND_IMPL;". 

5.5.3 lmplementing MOREDOP 

In this section we give the implementation of the component MOREDOP which 
deals with a few additional operations which are added on top of WITEFA. 
The description given below is the same as MOREDOP _SPEC, except for the fact 
that we use component narnes instead of abbreviation-names. 

LET MOREDOP _IMPL : • 



352 

IMPORT NAT 
IMPORT BOOL 
IMPORT CHAR 
IMPORT WITEFA 
CLASS 

INTO 
INTO 
INTO 
INTO 

PROC mini: -> 'String' 
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DEF cons( 'm' ,cons(' i' ,cons( 'n' ,cons( 'i' ,empty)))) 

PROC main: -> 'String' 
DEF cons( 'm', cons( 'a', cons ('i' ,cons( 'n' ,empty)))) 

PROC kill: -> 'String' 
DEF cons('k',cons('i',cons('l',cons('l',empty)))) 

PROC startup: -> 
DEF init(mini); 

switch_to_butter(kill); 
switch_to_butter(main) 

PROC escape: -> 
DEF ( eq(current_butter_name,mini) ?; switch_to_butter(main) 

I NOT eq(current_butter_name,mini) ?; switch_to_butter(mini) 
) 

PROC return: -> 
DEF ( eq(current_butter_name,mini) ?; switch_to_butter(main) 

I NOT eq(current_butter_name,mini) ?; newline 
) 

PROC delete_to_killbutter: -> 
DEF copy_region_to_butter(kill); 

erase_region 

PROC yank_trom_killbutter: -> 
DEF yank_butter(kill) 

PROC search_torward: -> 
DEF search_torward(butter_to_string(mini)) 

PROC insert_tile: -> 
DEF insert_tile(butter_to_string(mini)) 

PROC write_named_tile: -> 
DEF write_named_tile(butter_to_string(mini)) 
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PROC delete_previous_character: -> 
DEF ( bolp • true ?; SKIP 

END; 

I bolp • false ?; 
backward_character; 
delete_next_character 

) 
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Again we indicate the completion of the second top-down design transforma
tion step by simply writing the following two lines: 

% COMP MOREDOP : MOREDOP_SPEC :• MOREDOP_IMPL; 
% this is to replace an earlier primitive component. 

We implemented two components and we were lucky in the sense that we 
could do so in a rather trivia} way. This was possible because the black-box 
descripions of these components were already in the right form. The next 
component to he dealt with is WITEFA and in view of its complexity and the 
axiomatic style of its description, we can expect that the construction of its 
implementation will he less trivia!. lndeed, almost of the entire rest of this 
chapter concerns the implementation of WITEFA and the implementation of 
components that we shall postulate and that are directly or indirectly used 
by WITEFA. 

5.5.4 Transforming the State space 

We must choose how to repreaent marked texts. This choice is crudal for 
the efficiency of the resulting editor, both in terms of execution time and 
memory usage. Making this choice is also an important point in the software 
development process, since many procedures to he developed later will he 
based on this choice. 

Before presenting our choice, we present a few informal efficiency consider
ations. We assume that there is no a-priori bound on the size of the texts 
that can he edited: neither the number of lines nor the number of charac
ters within one line should he bounded. Of course a real program execution 
environment imposes limits upon the amount of available memory, but this 
is not formally described by the specifications of our primitive components 
and we do not worry about that. Instead of that we want that no 'a priori' 
bounds get built-in into our design. So choosing a fixed-size two-dimensional 
array as a representation with the rows of the array repreaenting lines would 
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be wrong in this respect. 

Better candidate representations are those based upon the use of sequences. 
For example, we might repreaent a text by one or more sequences of line
representations, where a line-representation at its turn is a sequence of char
acters. This certainly is a workable approach, but we do not choose it for the 
following reason. The problem is that the sequences themselves need some 
kind of representation, such as linked lists. The straightforward represen
tation of sequences by linked list would use some form of cells, where each 
cell contains a 'next cell' address. This means that for each character stored 
in the editor, there is an overhead of one address. Even if we assume that 
a character and an address require the same amount of storage, we waste 
50% of the available storage. Of course we could try to improve upon the 
representation of the sequences but then the approach might loose some of 
its elegancy. 

After these considerations we shall present our choice, but we would like 
to add immediately that there is no claim whatsoever that this would be 
the best choice. The amount of possible choices here is enormous and the 
question of which is the best one has many aspects. We just took one which 
seems reasonable. 

We use for each text one block, which is a large extensible one-dimensional 
array, as already introduced in Section 5.3.5. Within this block, the text is 
stored in a way that is related to the string representation of text, viz. by 
using some separator between the lines. For efficiency reasons we shall not 
make the block grow in steps of one location at a time, but instead we shall 
use larger increments. From this it follows that often there is some freespace 
in the block. We decide that this freespace should he contiguons rather than 
scattered over the block and that it will take the shape of a kind of gap which 
may beat any position within the block. Of course we must also somehow 
keep track of the mark and the dot, which simply become natural numbers 
indicating a position in the block. A similar representation has been used 
also in the implementation of the EMACS editor descibed in [4]. 

In order to get elegant algorithms taking care for the window-invariant WI, 
we also want to keep track of the dot, viewed as a co-ordinate pair. Since 
we have operations such as exchange_dot_and_mark and end_of_buffer, 
it is a consequence that we must also keep track of the mark viewed as a 
co-ordinate pair and of the reach of the entire text. Apart from storing a 
marked text as a block-with-positions, we explicitly store the reach of the 
text before dot, the reach of the text before mark and the reach of the entire 
text. 

So we store the text, the dot and the mark as block-with-positions and we 
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redundantly store their homomorphic images under the reach operation as 
well. This means that many edit procedures have to dotheir work twice: first 
of all they operate on the block-with-positions data and then secondly they 
perform the same operation on reaches. For the operations on block-with
positions data we have to he careful with respect to efficiency, but fortunately 
the operations on reaches such as add, split, cut, and paste pose less 
efficiency problems. Actually we just take their definition, which can he 
considered executable already. 

We start the formalisation of our choice now. As discussed before, weneed 
some sort of objects that can represent MText objects. For this purpose we 
introduce a sort Buf, whose objects will he called buffers. Buf is nothing 
but a renamed version of Inst with several attributes. Each buffer has a 
block associated with it. Several Nat attributes are needed as 'pointers' to 
certain positions in the block. 

• block: Buf -t Block VAR 
• dot Buf -t Nat VAR 
• mark Buf -t Nat VAR 
• gapl Buf -t Nat VAR 
• gap2 Buf -t Nat VAR 

Finally we need a number of pair-wise attributes. For example, we need 
an attribute dot: Buf -t Nat2 which keeps track of the dot viewed as a 
co-ordinate pair. 

• dot Buf -t Nat2 VAR 
• mark Buf -t Nat2 VAR 
• reach: Buf -t Nat2 VAR 

Sametimes we use a terminology based on a spatial view of buffers. E.g. we 
shall speak about moving leftwards or going downwards when we mean to 
decrease the value of a variabie that indicates a position. 

5.5.5 Specifying Pair-wise Attributes 

For dealing with co-ordinate pairs it is convenient to have pair-wise at
tributes. 

LET ATTR2_SPEC := 

LAMBDA X CLASS SORT Inst FREE END OF 
LAMBDA Y : CLASS SORT Iteml FREE END OF 
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LAMBDA Z CLASS SORT Item2 FREE END OF 

EXPORT 
SORT Inst, 
SORT Item!, 
SORT Item2, 
FUNC attr Inst -> Item! # Item2, 
PROC set_attr: Inst # Item! # Item2 -> 

FROM 
IMPORT X INTO 
IMPORT Y INTO 
IMPORT Z INTO 
CLASS 

FUNC attr Inst -> Item! # Item2 VAR 
PROC set_attr: Inst # Item! # Item2 -> 

AXIOM 
{ATTR1} 
{ATTR2} 

FORALL i:Inst,v:Item1,w : Item2 ( 
< set_attr(i,v,w) > TRUE; 
[ set_attr(i,v,w) ] 
attr(i) = (v,w) AND 
FORALL j:Inst,x:Item1, y:Item2 (NOT j i=> 

MOD attr 

( attr(j) = (x,y) <=> PREV attr(j) = (x,y) ) ) ) 

END; 

5.5.6 ATTR2: a Postulated Component 

Since we have already a specification ATTR2_SPEC, we can directly postulate 
the following component: 

{~} COMP ATTR2 : ATTR2_SPEC; 

We best employ the meta-operator COPY when using ATTR2. The effect of 
this operator is to make a textual copy of its argument. This will guarantee 
that no undesired aliasing takes place because each copy of ATTR2 can be 
viewed as a fresh programming variable. This is due to the so-called origin 
mechanism of COLD-K. Foradiscussion of the COPY operator we refer to 
[3] and for an explanation of the origin mechanism we refer to [1]. Here 
we only sketch how the use of COPY in combination with the origin mecha
nism works on a simplified example. Let us - by way of example - assume 
that ATTRO is defined by LET ATTRO : = CLASS PRED attr: VAR END which 
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means that it describes a two-valued programming variable. Now to get two 
instances of such variables we can write LET V : = COPY (A.TTRO) ; LET W : = 
COPY(A.TTRO); which is by definition of COPY nothing but LET V := CLA.SS 
PRED attr: V A.R END; LET W : = CLA.SS PRED attr: V A.R END;. Since the 
latter text introducing V and W contains two defining occurrences of attr, 
these have different origins; we can imagine a language implementation at
taching these origins and then we get e.g. attr1 and attr2 respectively which 
means that they act as two different programming variables. When syntax
and type-checking we replace COPY(A.TTR2) by A.TTR2. Similar remarks apply 
for A.TTR. 

5.5.7 Transforming the Statespace (continued) 

Now we are ready to introduce a class description BUF descrihing the sort 
Buf and the associated attributes. We give the formal definition below. 

LET BUF_INST : .. 
RENAME 

SORT Inst TO Buf 
IN INST; 

LET BUF :• 

% local definitions fellow: 

LET CHAR_BLOCK :• 
APPLY RENAME 

SORT Item TO Char 
IN BLOCK TO CHAR; 

LET BUF_BLOCK := 
APPLY APPLY RENAME 

SORT Inst 
SORT Item 
FUNC attr : Inst 

TO Buf, 
TO Bleek, 

-> Item TO bleek, 
PROC set_attr: Inst I Item -> TO set_block 

IN COPY(ATTR) TO BUF_INST TO CHAR_BLOCK; 

LET BUF_DOT :• 
APPLY APPLY RENAME 

SORT Inst 
SORT Item 
FUNC attr Inst 

TO Buf, 
TO Nat, 

-> Item TO dot, 
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PROC set_attr: Inst # Item -> 
IN COPY(ATTR) TO BUF_INST TO NAT; 

LET BUF _MARK : • 
APPLY APPLY RENAME 

SORT Inst 
SORT Item 

TO set_dot 

TO Bu:f, 
TO Nat, 

FUNC attr Inst -> Item TO mark, 
PROC set_attr: Inst # Item -> TO set_mark 

IN COPY(ATTR) TO BUF_INST TO NAT; 

LET BUF_GAP1 :• 
APPLY APPLY RENAME 

SORT Inst TO Bu:f, 
SORT Item TO Nat, 
FUNC attr Inst -> Item TO gap1, 
PROC set_attr: Inst # Item -> TO set_gap1 

IN COPY(ATTR) TO BUF_INST TO NAT; 

LET BUF_GAP2 :• 
APPLY APPLY RENAME 

SORT Inst TO Bu:f, 
SORT Item TO Nat, 
FUNC attr Inst -> Item TO gap2, 
PROC set_attr: Inst # Item -> TO set_gap2 

IN COPY(ATTR) TO BUF_INST TO NAT; 

r. Now the pair-wise attributes :follow: 

LET BUF_DOT_2 :• 
APPLY APPLY APPLY RENAME 

SORT Inst 
SORT Item1 
SORT Item2 
FUNC attr : Inst -> Item1 # 

PROC set_attr: Inst # Item1 # Item2 -> 
IN COPY(ATTR2) TO BUF_INST TO NAT TO NAT; 

LET BUF_MARK_2 := 

APPLY APPLY APPLY RENAME 
SORT Inst 
SORT Item1 
SORT Item2 
FUNC attr Inst -> Item1 # 

PROC set_attr: Inst # Item1 # Item2 -> 

TO Bu:f, 
TO Nat, 
TO Nat, 

Item2 TO dot, 
TO set_ dot 

TO Bu:f, 
TO Nat, 
TO Nat, 

Item2 TO mark, 
TO set_mark 
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IN COPY(ATTR2) TO BUF_INST TO NAT TO NAT; 

LET BUF_REACH_2 := 
APPLY APPLY APPLY RENAME 

SORT Inst 
SORT Iteml 
SORT Item2 
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TO Bu!, 
TO Nat, 
TO Nat, 

FUNC attr : Inst -> Iteml I Item2 TO reach, 
PROC set_attr: Inst I Iteml I Item2 -> 

IN COPY(ATTR2) TO BUF_INST TO NAT TO NAT; 

~ end o! local de!initions 

IMPORT NAT INTO 
IMPORT CHAR_BLOCK INTO 
IMPORT BUF_INST INTO 
IMPORT BUF_BLOCK INTO 
IMPORT BUF_DOT INTO 
IMPORT BUF _MARK INTO 
IMPORT BUF_GAPl INTO 
IMPORT BUF_GAP2 INTO 

IMPORT BUF_DOT_2 INTO 
IMPORT BUF_MARK_2 INTO 

BUF_REACH_2; 

TO set_reach 

As already indicated, the basic idea behind this representation is as follows. 
An object Buf has a block associated with it, which contains all characters of 
the text represented by b. Within this blockthere is aso-called gap. The gap 
ofb corresponds with the positions gapl(b) (inclusive) to gap2(b) (exclusive). 
The gap contains the free space in the block and when the dot is near the 
gap, it is possible to do insertions easily and efficiently. The characters in 
the block correspond with the string representation, but the positions in the 
gap are not used. The following picture sketches a buffer with its gap. 

I•P1 pp2 

Fig 5.1. Buffer with gap. 

Reeall the following variables spanning the statespace ofWITEFA, introduced 
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in Chapter 4. 

• FUNC mtexts __......Map VAR 
• FUNC current: ........ String VAR 

These are going to be replaced by other 'new' variables. We want to intro
duce a table from strings (sort 'String') to buffers. Therefore we want to 
instantiate TABLE with an implementation of 'STRING_SPEC' and with BUF 
thereby getting the possibility to create tables. Actually we need only one 
table, but that does not matter. We introduce new variables, which serve for 
taking over the role of the original ones; these are the following: 

• FUNC table __...... Table VAR 
• FUNC current: ........ 'String' VAR 

For purposes such as searching in a text or copying texts, we introduce a 
simple programming variabie of sort Nat. We call it mover, since it is not 
a relatively static pointer, such as mark or dot, but it is supposed to move 
during the execution of a search operation, or when it is used as a loop
counter. We also need a pair-wiseversion of mover. 

• mover: ........ Nat VAR 
• mover: ........ Nat2 VAR 

Finally it will turn out to be convenient if we have one more simple program
mingvariabie of sort Nat. We intend to use it as a loop-counter in operations 
such as yank_buffer and copy_region_to_buffer. There is noneedfora 
pair-wiseversion of counter. 

• FUNC counter: __...... Nat VAR 

As soon as we try to provide these new variables, we discover the need for 
two new components: SVAR providing simple programrning variables and 
'STRING' providing an implementation of the sort • String •. Therefore we 
have an intermezzo introducing two new components. 

5.5.8 Specifying Simple Programming Variables 

Weneed a class description specifying a simple programming variable. With 
a simple programming variabie we mean a variabie nullary function of type 
........ Item. Of course there must be an update procedure. We do not include 
some form of variabie creation. 
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LET SVAR_SPEC :• 

LAMBDA X : ITEM OF 
EXPORT 

SORT Item, 
FUNC val: -> Item, 
PROC upd: Item -> 

FROM 
IMPORT X INTO 
CLASS 

FUNC val : -> Item VAR 
PROC upd: Item -> MOD val 

AXIOM FORALL i:Item 
( < upd(i) > TRUE; 

[ upd(i) ] val • i ) 

END; 

5.5.9 SVAR: a Postulated Component 
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We postulate a new component SVAR with black-box description SVAR_SPEC. 
Justas for ATTR2 and AT:rR, we best employ the meta-operator COPY for using 
SVAR. When syntax- and type-checking we replace this COPY(SVAR) by SVAR. 

{=} COMP SVAR : SVAR_SPEC; 

5.5.10 'STRING': another Postulated Component 

Since we have al ready a specification 'STRING_SPEC', we can directly pos
tulate the following component: 

{=} COMP 'STRING' : 'STRING_SPEC'; 

. 5.5.11 Transferming the Statespace (continued} 

After this intermezzo we can give the formal definition of the new variables 
which are added to the state space of WITEFA. First of all we instantiate 
TABLE. 
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LET TABLE_STRING_BUF := 
APPLY APPLY RENAME 

SORT Map 
SORT Iteml 

TO Buf_Map, 
TO String, 

SORT 'Iteml' TO 'String', 
PRED iteml_inv: TO string_inv, 
SORT Item2 TO But 

IN TABLE TO 'STRING' TO BUF; 

This instantiation of TABLE provides us with operations such as PROC new: 
-> Table, PROC add:Table # 'String' # Buf -> and PROC app: Table 
# 'String' -> Buf. 

Now we introduce our new variables which is achieved by renaming and 
instantiating SVAR. This use of SVAR can be viewed as the COLD-K way of 
declaring variables. 

Since these variables will serve as representations of (marked) texts, we col
lect them in a class description called TEXT_ VARS. We import the application 
domain specific notational framework of APP _DOM_SPEC. We also import the 
data type of maps from strings to marked texts, but this need not be exe
cutable; we only use it for reasoning purposes. 

LET TEXT_VARS := 

IMPORT BUF 
IMPORT CHAR 
IMPORT BOOL 

INTO 
INTO 
INTO 

IMPORT 'STRING' INTO 
IMPORT APP_DOM_SPEC INTO 

IMPORT APPLY APPLY RENAME 
SORT Iteml TO String, 
SORT Item2 TO MText 

IN MAP_SPEC TO STRING_SPEC TO MTEXT_SPEC INTO 

IMPORT APPLY RENAME 
SORT Item TO String, 
SORT Set TO Setl 

IN SET_SPEC TO STRING_SPEC INTO 

IMPORT APPLY RENAME 
SORT Item TO Table, 
FUNC val: -> Item TO table, 
PROC upd: Item -> TO upd_table 

IN COPY(SVAR) TO TABLE_STRING_BUF INTO 
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IMPORT APPLY RENAME 
SORT Item TO 'String' , 
FUNC val: -> Item TO current, 
PROC upd: Item -> TO upd_current 

IN COPY(SVAR) TO 'STRING' INTO 

IMPORT APPLY RENAME 
SORT Item TO Nat, 
FUNC val: -> Item TO mover, 
PROC upd: Item -> TO set_mover 

IN COPY(SVAR) TO NAT INTO 

IMPORT APPLY RENAME 
SORT Item TO Nat, 
FUNC val: -> Item TO moverl, 
PROC upd: Item -> TO set_moverl 

IN COPY(SVAR) TO NAT INTO 

IMPORT APPLY RENAME 
SORT Item TO Nat, 
FUNC val: -> Item TO mover2, 
PROC upd: Item -> TO set_mover2 

IN COPY(SVAR) TO NAT INTO 

IMPORT 
CLASS 

FUNC mover: -> Nat # Nat 
DEF (moverl,mover2) 

PROC set_mover: Nat # Nat -> 
PAR i:Nat,j:Nat 
DEF set_moverl(i); 

set_mover2(j) 

END INTO 

IMPORT APPLY RENAME 
SORT Item TO Nat, 
FUNC val: -> Item TO counter, 
PROC upd : Item -> TO set_counter 

IN COPY(SVAR) TO NAT INTO 

IMPORT TABLE_STRING_BUF INTO 

363 
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CLASS 

Note that we have two alternative ways of dealing with the pair-wiseversion 
of the mover. The first approach is to write directly in termsof moverl and 
mover2 and alternatively we could use mover: -t Nat2• 

Our next task is to describe precisely the relation between the old variables 
and the newly introduced ones. Therefore we aim at the definition of an 
abstraction function f: Buf -+ MText. We introduce the abstraction in 
two phases, using the algebra of strings as an intermediate level. This is 
natural since the linear structure of blocks is closely related to the structure 
of strings. We shall have several abstraction functions which are called f - by 
overloading. The functions f taking a Block argument take all characters 
into account, including those in the gap. The functions f taking a Buf 
argument skip the characters in the gap. 

FUNC f: Block # Nat # Nat -> String 
PAR b:Block,m:Nat,n:Nat 
~ the string obtained from cont(b,m) .. cont(b,n-1) 
DEF ( m • n ?; empty 

I NOT m 2 n ?; cons(cont(b,m),f(b,succ(m),n)) 
) 

PRED in_gap: Buf # Nat 
PAR b:Buf,n:Nat 
~ n is a position in the gap of b 
DEF geq(n,gapl(b)) AND lss(n,gap2(b)) 

The next function f is meant for arguments b, m and n such that m ~ n 
where m and n are not in the gap of b. This f is defined by a case analysis 
where we distinguish two cases. Assume the above restrietion on b, m, n. 
The fust case is characterised by lss (n, gapl (b)) OR geq (m. gap2 (b)) and 
thus either m ~ n < gapl (b) (both parameters are to the left of the gap) 
or gap2(b) ~ m ~ n (both parameters are to the right of the gap). The 
second case is characterised by NOT(lss(n,gapl(b)) OR geq(m,gap2(b))) 
and thus m < gapl (b) ~ gap2 (b) ~ n which means that the positions 
m, ... , n - 1 encompass the gap. 

FUNC f: Buf # Nat #Nat -> String 
PAR b:Buf,m:Nat,n:Nat 
% for leq(m,n) and not in_gap(b,m) and not in_gap(b,n): 
Y. string from positions m ... n-1 except for those in the gap 
DEF ( (lss(n,gapl(b)) OR ~eq(m,gap2(b))) ?; 

f(block(b),m,n) 
NOT( lss(n,gapl(b)) OR geq(m,gap2(b))) ?; 
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) 

LET sl:String; sl :• t(block(b),m,gapl(b)); 
LET s2:String; s2 :• t(block(b),gap2(b),n); 
cat(sl,s2) 

FUNC t: Buf # Nat -> String 
PAR b:But,n:Nat 
% string trom positions 0 .. n-1 except tor those in gap 
DEF t(b,O,n) 

FUNC t: But -> String 
PAR b:But 
% string obtained from the entire block, skipping the gap 
DEF t(b,size(block(b))) 
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These functions f enable us to view a part of a buffer or an entire buffer as 
a string. As a next step we shall push the overloading somewhat further and 
we introduce another collection of functions f which enable us to view a part 
of a buffer or an entire buffer as a text. 

FUNC t: Block # Nat # Nat -> Text 
PAR b:Block,m:Nat,n:Nat 
DEF text(f(b,m,n)) 

FUNC t: Buf # Nat #Nat -> Text 
PAR b:But,m:Nat,n:Nat 
DEF text(t(b,m,n)) 

FUNC t: But # Nat -> Text 
PAR b:But,n:Nat 
DEF text(f(b,n)) 

In the defining expression of the following function we need a type-cast be
cause otherwise the Text expression text(f (b)) would become ambiguous 
(assuming b:Buf). The intended interpretation is that f(b) is a string; the 
other interpretation is that f refers to a function f: Buf -> MText to be 
introduced later, which would correspond with f (b) being a MText. The 
guideline of where to use these type-casts and where not to is very simple: 
use no type-casts except where a real ambiguity arises. When it turns out 
that many type-casts are needed, one may conclude that the usefulness of 
overloading has reached its limit. 

FUNC f: Buf -> Text 
PAR b:But 
DEF text((t(b)):String) 
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FUNC f: Bu:f -> MText 
PAR b:Buf 
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DEF LET do: Nat I Nat; do :• reach(f(b,(dot(b)):Nat)); 
LET ma: Nat I Nat; ma :• reach(f(b,(mark(b)):Nat)); 
mtext(f(b),copa(do),copa(ma)) 

If we would just aim at the definition of the last function f: Buf --+ MText, 
then some of the other functions could easily he eliminated. However we 
prefer this step-by-step approach, because some of the functions which now 
seem to he auxiliaries, might turn out useful intheir own right later, e.g. for 
formulating loop-invariants. The last function f is our abstraction function 
showing how Buf objects represent marked texts. 

We must extend the abstraction described by f: Buf --+ MText to maps. 
Reeall that Buf_Map is the sort of maps from strings to buffers. Map is the 
sort of maps from strings to marked texts. 

FUNC f: Buf_Map -> Map 
PAR bm:BuLMap 
DEF SOME m:Map 

( FORALL s :String, mt:MText 
( app(m,s) = mt <z> f(app(bm,s)) • mt ) ) 

We define the variables required by the specification (Chapter 4) in terms 
of newly introduced variables. Reeall that by means of the imports of 
TEXT_VARS we have a variabie function current which is of type 'String'; 
it is used below to get the String expression f (current). 

FUNC current: -> String 
DEF f(current) 

FUNC mtexts: -> Map 
DEF f(map(table)) 

Using these newly defined variables, we can easily define the functions text 
and dot which are formally required here because they occur (as auxiliaries) 
in the specification of Chapter 4. 

FUNC text: -> Text DEF text(app(mtexts,current)) 
FUNC dot: -> Nat I Nat DEF dot(app(mtexts,current)) 

Now we turn our attention to formulating a suitable invariant assertion. The 
assertions table_inv and string_inv do not require special attention since 
they will hold automatically. Still we must formally have them as conjuncts 
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of our invariant. This is condition {1} below. The value of the 'String' 
variabie current must be an entry in table. This is condition {2} below. 
Furthermore we must regulate the relative positions of dot, mark, gapl, 
gap2 and block-size. This is condition {3} below. Finally the co-ordinate 
pair representations of dot and mark should correspond with their natural 
number representations and the reach attribute should contain the reach of 
the text represented by the buffer. This is condition {4} below. 

All these conditions are collected in a predicate called TI'. We can view it 
as a transformed version of the text-invariant TI from our specifi.cation. At 
the sametime it is the representation invariant forthe chosen representation 
of marked texts. We repeat Til, TI2 etc. here as well because formally the 
principle of signature incusion requires us to have them 'somewhere' in the 
implementation of WITEFA. 

PRED Til: %as inSection 4.6.6 
PRED TI2: % as in Section 4.6.6 
PRED TI: %as inSection 4.6.6 
PROC witefa_op: -> ~ as in Section 4.6.6 

PRED TI': 
DEF {1} string_inv; 

table_inv; 
{2} app(map(table),current)l; 
{3} FORALL s:String( app(mtexts,s)! •> 

(LET b:Buf; b :• app(map(table),s); 
leq(dot(b),size(block(b))); 
leq(mark(b),size(block(b))); 
leq(gapl(b),size(block(b))); 
leq(gap2(b),size(block(b))); 
leq(gap1(b),gap2(b)); 
NOT in_gap(b,dot(b)); 
NOT in_gap(b,mark(b)))); 

{4} FORALL s:String( app(mtexts,s)! •> 
(LET b:Buf; b : = app(map(table),s); 

(dot(b)) Nat t Nat • reach(f(b,(dot(b)):Nat)); 
(mark(b)) : Nat t Nat • reach(f(b,(mark(b)):Nat)); 
(reach(b)): Nat t Nat • reach(f(b)) ) ) 

It should be possible to show that 

TI' =>TI. 

Reeall from Chapter 4 that TI <:? Til A TI2 and that Til requires that for 
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every strings in the domain of mtexts with corresponding marked text mt 
the following holds: 

intext(text(mt),d) A intext(text(mt),m) A ok(text(mt)) 
where d and m denote the dot and the mark of mt respectively. 

TI2 requires that app(mtexts, current)!. We shall ,show that TI' => TI 
now. 

Assume TI' and let s he an arbitrary string in the domain of mtexts. Then 
app(mtexts,s) = f(app(map(table) ,s)). Ifwe denote the buffer 
app(map(table) ,s) by b, then TI' gives us the following facts about b. 

• dot (b) ~ si ze (block(b)) 
• mark(b) ~ size (block(b)) 
• gapl (b) ~ si ze (block(b)) 
• gap2(b) ~ size (block(b)) 
• gapl(b) ~ gap2(b) 
• dot (b) f/_ gap(b) 
• mark(b) f/_ gap(b) 

where we used some obvious shorthand. Therefore f(b,dot(b) :Nat) is a 
prefix text of f(b) so its reach is an existing position in f(b). This shows 
intext(text(mt) ,d) where dis the dot of mt. The same can be done for 
mark. Furthermore notice that f(b) is ok since it is defined by means of the 
conversion function text: String --t Text. This shows TI 1. Finally TI2 
follows from app(map(table) ,current)!. Hence we have shown that TI' 
=>TI. 

We also add a few simple operations and predicates which are directly con
nected with the chosen representation. The narnes of the operations eobp, 
eolp etc. abbreviate end-of-buffer-predicate, end-of-line-predicate etc. We 
write {C}OR for conditional OR as a hint related to the executability of certain 
assertions. 

We shall use some informal terminology but we show by means of a few exam
ples how this can be formalised when needed. Let b be a given buffer. Then 
the phrase "i is a position at end-of-buffer" means f(b, i): Text = f(b). The 
phrase "i is a position at end-of-line" means i2 = sel(profile(f(b)) ,i1) 
where (i1,i2) = reach(f(b,i)). The phrase "i is a position at beginning
of-line" means i2 = 0 where (il> i2) = reach(f (b, i)). The phrase "i is a 
position at beginning-of-buffer" means reach(f(b,i)) = (0,0). 

FUNC right: Buf # Nat -> Nat 
PAR b:Buf,i:Nat 
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7. next position (going rightwards), skipping gap if necessary 
DEF ( succ(i) • gapl(b) ?; gap2(b) 

I NOT succ(i) = gapl(b) ?; succ(i) 
) 

PRED eobp: Buf # Nat 
PAR b:Buf,i:Nat 
% i is is a position at end-of-buffer 
DEF i = size(block(b)) 

PRED eolp: Buf # Nat 
PAR b:Buf,i:Nat 
% i is a position at end-of-line 
DEF eobp(b,i) {C}OR cont(block(b),i) • ctr_j 

PRED eobp : Buf 
PAR b:Buf 
1. dot is at end-of-buffer 
DEF eobp(b,dot(b)) 

PRED eolp: Buf 
PAR b:Buf 
% dot is at end-of-line 
DEF eolp(b,dot(b)) 

FUNC left: Buf # Nat -> Nat 
% next position (going leftwards), skipping gap if necessary 
PAR b:Buf,i:Nat 
DEF ( i • gap2(b) ?; pred(gapl(b)) 

I NOT i = gap2(b) ?; pred(i) 
) 

PRED bobp: Buf # Nat 
PAR b:Buf,i:Nat 
Y. i is a position at beginning-of-buffer 
DEF i = 0 OR gapl(b) = 0 AND i ~ gap2(b) 

PRED bobp: Buf 
PAR b:Buf 
% dot is at beginning-of-buffer 
DEF bobp(b,dot(b)) 

PRED bolp : Buf # Nat 
PAR b:Buf,i:Nat 
Y. i is a position at beginning-of-line 
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DEF bobp(b,i) {C}OR cont(block(b),lett(b,i)) • ctr_j 

PRED bolp: Bu:f 

PAR b:But 
% dot is at beginning-ot-line 
DEF bolp(b,dot(b)) 

END; {ot TEXT_VARS} 

We must make one remark about the use of the attributes called mover. 
When we use both mover: Nat and mover: Nat2

, then we want for a given 
buffer b the following assertion to hold. 

reach(f(b,mover:Nat)) = mover:Nat2
, 

and we shall refer to this situation by saying that the pair-wise version of 
mover precisely follows the mover. 

We would like to start programming the WITEFA operations, but first we 
need another intermezzo. Just as in the specification phase (Chapter 4) we 
prefer to postpone dealing with the fact that the physical display device must 
mirror the contentsof the current buffer. We do so by postulating a suitable 
component. This is the subject of the next two sections. 

5.5.12 Specifying a Window-Invariant Package 

We postulate a component which takes care for the window invariant WI 
from Chapter 4. It provides two procedures called mod_text_restore and 
mod_dot_restore. The first procedure is intended for being used in the 
initialisation phase of an editor or after a series of modifications affecting 
the current text and dot; then mod_ text_restore establishes the window 
invariant WI. The second procedure is intended for being used after a series 
of modifications moving the dot alone, but still thereby possibly disturbing 
the window invariant WI. 

Below we give a class description WI_PACKAGE_SPEC, specifying these two 
procedures. Clearly they must operate on the representation of the marked 
texts and therefore we can only expect them to work if the corresponding 
representation invariant TI' holds. Note that TEXT_VARS is the class de
scription containing the definition of TI'. Although at first sight it seems 
natural to import TEXT_VARS into WI_PACKAGE_SPEC, this can not be done 
because of the condition 'directly specified' from Chapter 3. Instead, we em
ploy a class description TEXT_VARS_SPEC. It can be verified that TEXT_VARS 
Ç TEXT_VARS_SPEC. 
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LET TEXT_VARS_SPEC := 
IMPORT APP_DOM_SPEC INTO 
IMPORT APPLY APPLY RENAME 

SORT Item1 TO String, 
SORT Item2 TO MText 

IN MAP_SPEC TO STRING_SPEC TO MTEXT_SPEC INTO 
CLASS 

SORT Table VAR 
FUNC mtexts: -> Map VAR 
FUNC current: -> String VAR 
PROC upd: Table -> MOD mtexts 
PRED Tl': DEP Table, mtexts, current 

END; 
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In WI_PACKAGE_SPEC we havealocal invariant wi_package_inv which is nec
essary in order to allow for additional variables which may he needed for the 
implementation of WLPACKAGE. Such variables might he created dynamically 
and/or need initialisation; hence there must he an initialisation procedure 
which is ini t_ wi_package. We repeat the definition of WI because it is 
employed in the axioms; p_sub, p_add and size at their turn are repeated 
because they occur in WI - and also for reasans of signature inclusion. 

LET WI_PACKAGE_SPEC :• 
IMPORT TEXT_VARS_SPEC INTO 
IMPORT DISPLAY_SPEC INTO 
CLASS 

FUNC p_sub: Nat# Nat# Nat# Nat ->Nat# Nat~ as inSection 4.6.12 
FUNC p_add: Nat #Nat# Nat# Nat ->Nat# Nat~ as inSection 4.6.12 
FUNC size: -> Nat #Nat Y. as inSection 4.6 . 12 
PRED WI: % as inSection 4.6.12 

PRED wi_package_inv: VAR 

PROC init_wi_package: -> 
MOD wi_package_inv 

PROC mod_text_restore : -> 
MOD wi_package_inv 
USE displ_op 

PROC mod_dot_restore : -> 
MOD wi_package_inv 
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USE displ_op 

PROC mod_dot: -> % auxiliary 
DEF LET mt':Map; 

mt' := mtexts; 
USE upd :Table -> END; 
Tl' AND text(app(mtexts,current)) • text(app(mt' ,current)) AND 
(mark(app(mtexts,current))) :Copa • mark(app(mt',current)) AND 
FORALL s :String 
(NOT a • current •> app(mtexts,s) • app(mt',s) ) ? 

AXIOM [ init_wi_package ] wi_package_inv; 
wi_package_inv m) 

[ mod_text_restore I mod_dot_restore ] wi_package_inv 

AXIOM Tl' AND wi_package_inv •> 
[ mod_text_restore ] WI 

AXIOM Tl' AND wi_package_inv => 
WI •> [ mod_dot ] [ mod_dot_restore ] Wl 

AXIOM {TERMINATION} 

< init_wi_package > TRUE; 
TI' AND wi_package_inv •> < mod_text_restore > TRUE; 
Tl' AND wi_package_inv => < mod_dot_restore > TRUE 

We can consider the conjunction of WI and wi_package_inv as a strength
erred version of WI and in view of the similarity with the strengtherring of TI 
to TI' we introduce the notation WI '. 

PRED WI': 
DEF WI AND wi_package_inv 

END; 

One might he tempted to think that wi_package_inv needs not he in the 
modification lists of mod_ text_restore and of mod_dot_restore. Forthese 
procedures are supposed not to vialate wi_package_inv and this is guaran
teed indeed if wi_package_inv cannot he modified. However, this would he 
too strong, hecause it forhids an implementation to change wi_package_inv 
from false to true- just hy luck. 
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5.5.13 WLPACKAGE: a postulated component 

We postulate a component having WI_PACKAGE_SPEC as its black-box descrip
tion. This is an important component in the sense that it hides all probieros 
related to the fact that our editor is display-oriented. Note that in partic
ular mod_ text_restora works as a kind of magie button: just activa te it 
and then the display is completely taken care of. We take a certain risk by 
postulating this component because it is not entirely clear in advance that 
sufficiently efficient algorithms for mod_ taxt_rastora and mod_dot_rastora 
will he found. 

{~} COMP WI_PACKAGE WI_PACKAGE_SPEC; 

5.5.14 Programming the Editing Operations 

Reeall that the specification requires a classica! invariant WTI which should 
logically imply WI and TI. We shall propose such an invariant now. 

LET WITEFA_IMPL := 

IMPORT DISPLAY INTO 
IMPORT TEXT_VARS INTO 
IMPORT WI_PACKAGE INTO 
IMPORT (APPLY FILE TO 'STRING') INTO 
CLASS 

PRED WTI: 
DEF WI' AND TI' 

Since we know already that WI' :::? WI and TI' :::? TI, the fact that WTI 
logically implies WI and TI is immediate from the definition of WTI. Now 
we have this invariant we can already write the ini t procedure and one of 
the wi taf a_ op procedures, viz. switch_ to_buffar, which serves as a kind 
of buffer initialisation. We begin with ini t. By means of the imports of 
TEXT_VARS we have 'assignment' procedures upd_tabla and up_currant re
spectively. These are used in the body of ini t below where upd_ tabla (naw) 
updates the 'COLD variable' tabla, giving it the value naw and where 
upd_currant(s) updates the 'COLD variable' currant, giving it the 'String' 
value s. The procedure craate_buffar serves as an auxiliary for both ini t 
and switch_ to_buffar. Arbitrarily we choose the value 1024 for the initia! 
block-size of newly created buffers. 

PROC init: 'String' -> 
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PAR s: 'String' 
DEF upd_table(new); 

create_buffer(s); 
upd_current(s); 
init_wi_package; 
mod_text_restore 

PRÖC create_buffer: 'String' -> 
PAR s: 'String' 
DEF LET b:Buf; b :• create; 

add(table,s,b); 
set_block(b,alloc(1024)); 
set_gapl(b,O); 
set_gap2(b,1024); 
set_dot (b, 1024) ; 
set_mark(b,1024); 
% pair-wise: 
set_dot(b,O,O); 
set_mark(b,O,O); 
set_reach(b,O,O) 

The specification (Chapter 4) requires that WTI is a classica! invariant. There
fore, among other things we must verify INIT =}\Is: 'String' [ init(s) 
] WTI. We shall briefly show this now and we begin with with TI'. This 
amounts to checking all conjuncts of TI', which are labelled {1}, {2} etc. 

Conjunct {1} requires string_inv and table_inv. Now string_inv holds 
because 'STRING_SPEC' has been obtained from 'SEQ_SPEC' and in the cor
responding instantiation it was defined that i tem_inv :<=> TRUE; therefore 
INIT 1\ i tem_inv =} string_inv applies. We apply this reasoning once more: 
table_inv holds because TABLE_STRING_BUF has been obtained from TABLE 
and in the corresponding instantiation it was defined that i teml_inv :<=> 
string_inv; therefore INIT 1\ iteml_inv => table_inv applies. After hav
ing verified this we need not worry about string_inv and table_inv any 
more, forthereare absolutely no operations that could make them false. 

Conjunct {2} requires the definedness of the current buffer. This is estah
lishad by upd_table(new), create_buffer(s) and upd_current(s). Con
juncts {3} and {4} regulate the various buffer attributes. In this case there 
is just one buffer and create_buffer makes its gap cover the entire block. 
It puts the dot and the mark at the end of the block which is (0, 0) when 
viewed as a co-ordinate pair. This establishes {3} and {4}. 

We must also verify that wi_package_inv holds, which precisely is the effect 
ofinit_wi_package. 
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Finally we must show that WI holds and this is established by the invocation 
ofmod_text_restore. The procedure mod_text_restore only works if both 
TI' and wi_package_inv hold but this is the case indeed thanks to the fact 
that 
mod_ text_restore comes after all other expressionsof ini t. This concludes 
our verification of INIT ::::? V s : 'String' [ ini t (s) ] WTI and we proceed 
with another editor operation. 

PROC switch_to_buffer: 'String' -> 
PAR s: 'String' 
DEF upd_current(s); 

( is_in_dom(s,table) = true ?; SKIP 
I NOT is_in_dom(s,table) ~ true ?; create_buffer(s) 
) ; 

mod_text_restore 

We must verify that swi tch_to_buffer preserves WTI which is 
WTI::::? Vs: 'String' [ switch_to_buffer(s) ] WTI. 

Conjunct {1} of TI' holds since we assumed WTI as a precondition. {2} 
holds because either s is already an entry in table or s is added to table. 
In the former case it holds by the definition of is_in_dom; in the latter case 
create_buffer guarantees that the buffer corresponding to s represents a 
defined text. For {3} and {4} we reason differently for the old buffers (where 
we must refer to the precondition WTI) and for the newly created buffer 
(where we reason justas for init(s) before). 

Finally the invocation of mod_ text_restore preserves wi_package_inv and 
it establishes WI. This shows that swi tch_to_buffer preserves WTI. 

Apart from verifying the preservation of WTI, we must also verify the sat
isfaction of the pre- and postcondition style axioms from the specification 
(Chapter 4). By way of example we show this for switch_to_buffer(s). 
lts postcondition requires current = f(s) which is made true by the ex
pression upd_current(s). The remainder of its postconditionis basedon a 
case-analysis. If s is an existing entry in table already, then mtexts = PREV 
mtexts must hold, which is the effect of SKIP indeed. If s is a new entry, 
then the marked text corresponding with s should he 

mtext(zero,copa(O,O),copa(O,O)) 

which should have been added to PREV mtexts. We easily verify that this is 
the marked text represented by the buffer created and initialised by 
create_buffer. This shows that swi tch_to_buffer satisfies its pre- and 
postcondition style axiom. 



376 CHAPTER 5. DESIGN OF A TEXT EDITOR 

Later we shall program the remaining WITEF A opera ti ons. J ust like 
switch_ to_ buffer these must also have the properties of preserving WTI and 
satisfying their pre- and postcondition style axioms. We shall not treat these 
at the same level of detail as switch_ to_buffer. We postpone a discussion 
of the termination axioms until Section 5.5.15. 

We proceed by implementing the operations for dot and mark control as 
specified in Chapter 4 Section 4.5.6. To this end we first introduce another 
predicate on buffers which is not part of TI', but which should he viewed 
as an additional nice buffer property. This predicate is called ready and 
roughly speaking, it holds fora buffer if the gap is located at the dot, so that 
the buffer is ready for an insert operation at dot. The following buffer is not 
ready: 

dot pp1 s•p:t 

Fig 5.2. Buffer which is not 'ready'. 

But the buffer below is ready: 

sap1 gap:t 
•dot 

Fig 5.3. Buffer which is 'ready'. 

We do not add the requirement that all buffers are ready to TI' because this 
would make dot-movements much more complicated and hence probably also 
slower. 

PRED ready : Buf 
PAR b:Buf 
DEF dot(b) = gap2(b) 

So if a buffer b with non-empty gap is ready, then inserting a character c in 
it, as necessary for the insert_character operation, becomes very simple: 

store(block(b),gapl(b),c); 
set_gapl(b,gapl(b) + 1) 
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where we omittted the necessary updating of the pair-wise mark, dot and 
reach attributes. If we want to do an insert operation in a state in which 
the buffer in question is not ready, then it should he made so. Therefore 
we introduce a procedure make_ready operating on buffers and having use
rights with respect to store, set_dot, set_mark, set_gapl and set_gap2. 
This procedure must have the following properties which of courseneed only 
he guaranteed if TI ' holds: 

1. make_ready(b) only affects attributes of b, 
2. [ make_ready(b) ] ready(b), 
3. [ make_ready(b) ] (f(b)):MText = PREV f(b), 

so essentially the represented marked text does not change. 

We start the development of make_ready now. We must deal with two 
cases depending on the relative position of the gap and the dot. There
fore we use two auxiliaries called make_readyl and make_ready2. The task 
of make_readyl is to move the gap downwards to let it meet the dot. The 
task of make_ready2 is to move the gap upwards until the new gap2 equals 
the dot. Let us give the definition of make_ready now and after that deal 
with the auxiliaries. 

PROC make_ready: Bu! -> 
PAR b:Bu! 
DEF ( dot(b) = gap2(b) ?; SKIP 

I lss(dot(b),gapl(b)) ?; make_readyl(b) 
I gtr(dot(b),gap2(b)) ?; make_ready2(b) 
) 

For make_readyl we use a loop and as a the loop-body we employ a procedure 
gap_down. It must leave the text represented by the buffer unaffected. 

V b:Buf ( TI' 1\ gapl(b) > 0 =* 
[ gap_down(b) ] 
( (f(b)):Text = PREV f(b) 

1\ dot(b):Nat = PREV dot(b) 
1\ mark(b):Nat = PREV mark(b) ) 

After the loop of make_readyl has been executed, the new position of the 
mark must he calculated. This calculation is done by a case-analysis on the 
relative position of the mark. Depending on the position of the mark, it 
may he necessary to move the mark over the gap, which means to increase 
the value of mark by gap2(b) - gapl(b). After execution of the gap_ down 
loop, there are three possible situations: the first situation is characterised 
by mark(b) < dot(b) and since the gap has reached dot(b) by moving 
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downwards, we are certain that the gap has not crossed mark(b). The second 
situation is characterised by mark(b) ~ 'old value of gap2 (b)' which means 
that mark(b) was already at the high end of the buffer compared with the 
gap and since the gap has moved downwards we are certain again that the 
gap has not crossed mark(b). The third situation is when neither mark(b) < 
dot (b) nor mark(b) ~ 'old value of gap2 (b)' holds, which is precisely when 
the assertion dot (b) :::; mark(b) < gapl (b) was valid before moving the gap. 
In this third situation the value of mark must he increased and after that 
the mark will have crossed the gap in the sense that gap2(b) :::; mark(b). 

PROC make_readyl: Buf -> 
PAR b:Buf 
DEF LET old_gap2:Nat; 

old_gap2 := gap2(b); 
( NOT dot(b) = gapl(b) ?; 

gap_down(b) 
) *; dot(b) = gapl(b) ?; 

( lss(mark(b),(dot(b)):Nat) ?; SKIP 
I geq(mark(b),old_gap2) ?; SKIP 
I NOT (lss(mark(b),(dot(b)):Nat) OR geq(mark(b),old_gap2)) ?; 

set_mark(b,add(mark(b),sub(gap2(b),gapl(b)))) 
) ; 

set_dot(b,gap2(b)) 

The task of make_ready2 is to move the gap upwards until the value of gap2 
equals the dot. For make_ready2 we use a loop and in the loop-body we 
employ a procedure gap_up with the property: 

V b:Buf ( TI' 1\ gap2(b) <size(block(b))) => 
[ gap_up(b) ] 
( (f(b)):Text = PREV f(b) 

1\ dot(b):Nat = PREV dot(b) 
1\ mark(b):Nat = PREV mark(b) ) 

Again we have a loop and a calculation of the mark. Depending on the 
position of the mark, it may be necessary to move the mark over the gap, 
which now means to decrease the value of mark by gap2(b) - gapl(b). 
Again we distinguish three situations where the third situation is precisely 
when the assertion gap2 (b) :::; mark(b) < dot (b) was valid before rnaving 
the gap. In this third situation the value of mark must he decreased and 
after that the mark will have crossed the gap in the sense that mark(b) < 
gapl (b). 
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PROC make_ready2: But -> 
PAR b:But 
DEF LET old_gapl : Nat; 

old_gapl := gapl(b); 
(NOT dot(b) = gap2(b) ?; 

gap_up(b) 
) *; dot(b) • gap2(b) ? ; 

( lss(mark(b) ,old_gapl) ?; SKIP 
I geq(mark(b),dot(b)) ?; SKIP 
I NOT (lss(mark(b),old_gapl) OR geq(mark(b),dot(b))) ?; 

set_mark(b,sub(mark(b),sub(gap2(b),gapl(b)))) 

We give the definitions of gap_down and gap_up below. 

PROC gap_down: But -> 
PAR b :But 
% move the gap one position downwards 
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DEF store(block(b),pred(gap2(b)),cont(block(b),pred(gapl(b)))); 
set_gapl(b,pred(gapl(b))); 
set_gap2(b,pred(gap2(b))) 

PROC gap_up: But -> 
PAR b : Bu:f 
% move the gap one position upwards 
DEF store(block(b),gapl(b),cont(block(b),gap2(b))); 

set_gapl(b,succ(gapl(b))); 
set_gap2(b,succ(gap2(b))) 

We add one remark about the algorithm for make_ready as developed above. 
As an alternative, it would have been possible to put the adaptation of dot 
and mark in gap_up and gap_down. This alternative would make the presen
tation of the algorithm somewhat smoother. On the other hand, the current 
algorithm is slightly more efficient, which hopefully is worthwhile when edit
ing large texts. 

This concludes the workon making buffers ready and we proceed with a few 
more editor operations, among which those operations which deal with dot
movements. Actually this turns out to be quite a lot of work, which seems 
of a somewhat ad-hoc nature. We shall have to introduce many auxiliaries. 
In the definition of right_dot below we need a type-cast for the ambiguous 
expression dot (b) ; this is because later there will be another function right : 
Buf # Nat # Nat -> Nat # Nat - which will appear in conneetion with 
search_forward. No function left: Buf # Nat # Nat -> Nat # Nat is 
defi.ned, however. 
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PROC right_dot: Buf -> 
PAR b:Buf 
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~ to be used only if dot is not at end-of-line 
DEF set_dot(b,right(b,(dot(b)):Nat)); 

LET dl:Nat,d2:Nat; dl,d2 := dot(b); set_dot(b,dl,succ(d2)) 

PROC forward_character: -> 
DEF LET b:Buf; b := app(table,current); 

( eolp(b) ?; SKIP 
I NOT eolp(b) ?; 

right_dot(b); 
mod_dot_restore 

) 

PROC left_dot: Buf -> 
PAR b:Buf 
% to be used only if dot is not at beginning-of-line 
DEF set_dot(b,left(b,dot(b))); 

LET dl:Nat,d2:Nat; dl,d2 := dot(b); set_dot(b,dl,pred(d2)) 

PROC backward_character: -> 
DEF LET b:Buf; b := app(table,current); 

( bolp(b) ?; SKIP 
I NOT bolp(b) ?; 

left_dot(b); 
mod_dot_restore 

) 

PROC bolp: -> Bool 
DEF LET b:Buf; b :~ app(table,current); 

( bolp(b) ?; true 
I NOT bolp(b) ?; false 
) 

PROC eolp: -> Bool 
DEF LET b:Buf; b := app(table,current); 

( eolp(b) ?; true 
I NOT eolp(b) ?; false 
) 

Next, we turn our attention to the procedure next_line and the first thing 
to do is introducing an auxiliary function, also called next_line. It serves 
for finding out whether it is possible to move the dot to the samehorizontal 
position in the next line; if so, then it calculates this new position. The 
following picture shows the situation where the dot is neither in the first line 



5.5. IMPLEMENTING THE SYSTEM COMPONENTS 381 

nor in the last line of the text. 

hpoe(b) hpoe(b) 

/,L--/ -r+-lfi-r-h-111--lr+-r-flït-r--ltl ----7'// 
/ dot /1 

ctr ..i we want to fl.nd thie position ctr.j 

Fig 5.4. Operation of next_line. 

This function next_line requires a little bit of searching and stepping through 
the block. There is some searching rightwards for finding the end of the cur
rent line and hence the beginning of the next line. Then some further stepping 
to the right is needed for getting to the position with the appropriate hor
izontal co-ordinate. Essentially this searching and stepping is programmed 
using recursion. This need not be very efficient, but at least the recursion 
depth is limited by the line length. The function next_line yields a pair 
consisting of a Boolean value and a natural number. This pair is (true,the 
'next-line position'), if this exists; it is (false,O) otherwise. We must ex
plain the term 'next-line position'. Fora given buffer b we say that n is the 
'next-line position' if 

n1 = d1 + 1 1\ n2 = d2 
where (nt. n2) = reach(f (b, n)} 

and (d17 ~) = dot(b). 

Actually the value 0 is just arbitrary. We use some auxiliaries which will 
be defined immediately afterwards. In the definition of next_line below we 
employ a function end_of_line yielding two results which are denoted as j 
and k, although kis not needed here. Later we shall encounter another usage 
of end_of_line where its second result (k) is actually used. 

FUNC next_line: Buf -> Bool #Nat 
PAR b:Buf 
DEF LET j:Nat,k:Nat; 

j,k := end_of_line(b,dot(b)); 
( eobp(b,j) ?; (false,O) 
I NOT eobp(b,j) ?; right_stepping(b,right(b,j),hpos(b)) 
) 

We used several auxiliaries which will be defined now. The function 
right_stepping applied to a buffer b and natura} numbers j and h yields 
a pair consisting of a Boolean value and a natural number. This pair is 
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(true,the position obtained by going h steps rightwards within the same line 
starting at position j), if possible; it is (false,O} otherwise. Again we used 
a phrase which is easily formalised; we say that nis the position obtained by 
going h steps rightwards within the same line startingat position j if 

n1 = it 1\ n2 = i2 + h 
where (nt. n 2} = reach(f (b, n)) 

and Ut.J2) = reach(f(b,j)). 

The procedure right_stepping is defined as follows. 

FUNC right_stepping: Bu! # Nat # Nat -> Bool # Nat 
PAR b:Bu!,j:Nat,h:Nat 
DEF ( h = 0 ?; (true,j) 

I NOT h = 0 ?; ( eolp(b,j) ?; 

) 

) 

(!alse,O) 
NOT eolp(b,j) ?; 

right_stepping(b,right(b,j),pred(h)) 

The function hpos simply yields the horizontal co-ordinate of the dot for a 
given buffer. The function end_of_line applied toa bufferband a position i 
yields the next position - going rightwards- for which the 'end-of-line' pred
icate holds and the number of rightward steps needed to reach this position. 
It is defined recursively and both result values play a role in the recursion, 
although this is not the motivation for end_of_line having two results. 

FUNC hpos: Bu! -> Nat 
PAR b :Bu! 
DEF LET d1 : Nat,d2:Nat; d1,d2 := dot(b); 

d2 

FUNC end_o!_line: Bu! # Nat -> Nat # Nat 
PAR b:Bu!,i:Nat 
DEF ( eolp(b,i) ?; (i,O) 

I NOT eolp(b,i) ?; 

) 

LET n:Nat,m:Nat; n,m := end_o!_line(b,right(b,i)); 
(n,succ(m)) 

The following function is called previous_line and it is an auxiliary for the 
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procedure with the same name. Again we give a sketch. 

hpoa(b) bpoa(b) 

/ 1-1 1-1 / /t'---,--t-1 rl-r-1 1----r+-r-lf I t-r-I -----7'/ 
/ <L I ,:.J ... 7 

we want to ftnd thia poaition 

Fig 5.5. Operation of previous_line. 

This function yields a pair consisting of a Boolean value and a natural 
number. This pair is (true,the 'previous-line position'), if this exists; it 
is (false,O) otherwise. 

FUNC previous_line : Buf -> Bool #Nat 
PAR b:Buf 
DEF LET j:Nat; j:= beginning_of_line(b,dot(b)); 

( bobp(b,j) ?; 

) 

(false,O) 
NOT bobp(b,j) ?; 
right_stepping(b,beginning_of_line(b,left(b,j)),hpos(b)) 

We need just one more auxiliary. It serves for finding the next position -
going leftwards - for which the beginning-of-line predicate holds. 

FUNC beginning_of_line: Buf #Nat -> Nat 
PAR b:Buf,i:Nat 
DEF ( bolp(b,i) ?; i 

I NOT bolp(b,i) ?; beginning_of_line(b,left(b,i)) 
) 

We implement the remairring procedures for dot and mark controL In the def
inition of end_ of _line below, we see another usage of the earlier end_ of _line 
function where we do need its second result- which reveals the motivation 
for that end_of_line having two results. 

PROC beginning_of_line: -> 
DEF LET b :Buf; b :• app(table,current); 

set_dot(b,beginning_of_line(b,dot(b))); 
LET dl:Nat,d2:Nat; dl,d2 :• dot(b); set_dot(b,dl,O); 
mod_dot_restore 
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PROC end_of_line: -> 
DEF LET b:Buf; b :• app(table,current); 

LET n:Nat,m:Nat; n,m :m end_of_line(b,dot(b)); 
set_dot(b,n); 
LET dl:Nat,d2 :Nat; dl,d2 := dot(b); 
set_dot(b,dl,add(d2,m)); 
mod_dot_restore 

PROC next_line: -> 
DEF LET b:Buf; b :• app(table,current); 

LET bb:Bool, i:Nat; 
bb,i :s next_line(b); 
( bb = false ?; SKIP 
I NOT bb • false ?; 

) 

set_dot(b,i); 
LET d1:Nat,d2:Nat; d1,d2 :• dot(b); set_dot(b,succ(dl),d2); 
mod_dot_restore 

PROC previous_line: -> 
DEF LET b:Buf; b :~ app(table,current); 

LET bb:Bool, i:Nat; 
bb,i := previous_line(b); 
( bb = false ?; SKIP 
I NOT bb • false ?; 

) 

set_dot(b,i); 
LET dl:Nat,d2:Nat; dl,d2 := dot(b); set_dot(b,pred(dl),d2); 
mod_dot_restore 

FUNC beginning_of_buffer : Buf -> Nat 
PAR b:Buf 
DEF ( gapl(b) = 0 ?; gap2(b) 

I NOT gapl(b) • 0 ?; 0 
) 

PROC beginning_of_buffer : -> 
DEF LET b:Buf; b :• app(table,current); 

set_dot(b,beginning_of_buffer(b)); 
set_dot(b,O,O); 
mod_dot_restore 

FUNC end_of_buffer: Buf -> Nat 
PAR b:Buf 
DEF size(block(b)) 
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PROC end_of_buffer: -> 
DEF LET b:Buf; b := app(table,current); 

set_dot(b,end_of_buffer(b)); 
set_dot(b,reach(b)); 
mod_dot_restore 

PROC set_mark: -> 
DEF LET b : Buf; b := app(table,current); 

set_mark(b,(dot(b)):Nat); 
set_mark(b,(dot(b)):Nat #Nat) 
{no screen updating needed} 

PROC exchange_dot_and_mark: -> 
DEF LET b : Buf; b := app(table,current); 

LET i:Nat; i :~ dot(b); 
LET j:Nat; j :z mark(b); 
LET dl:Nat,d2 :Nat; dl,d2 :• dot(b); 
LET ml:Nat,m2:Nat; ml,m2 := mark(b); 
set_ dot (b , j) ; 
set_mark(b,i); 
set_dot(b,ml,m2); 
set_mark(b,dl,d2); 
mod_dot_restore 
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N ext comes the implementation of the opera ti ons for text modiikation as 
specified in Chapter 4 Section 4.5.7. Again we introduce an additional nice 
buffer property. We shall refer to the value of gap2(b) - gap1 (b) as the 
size of the gap. We shall devote some effort to solving the problem that the 
size of the gap may become 0 which implies that there is no more space for 
insertions. We introduce a simple predicate space which holds for a buffer 
bincase the size of the gap is non-zero. Just as ready, this predicate space 
is not part of TI 1 , although of course it is a desirabie buffer property. 

PRED space : But 
PAR b:Buf 
DEF gtr(gap2(b),gapl(b)) 

Inserting in a buffer that has nospace requires that space should he created 
and for this purpose we introduce a procedure make_space of type Buf # 
Nat-+ and having use-rights with respect to store, set_gap1, set_gap2 and 
grow. This procedure should have the following properties which must hold 
for n > 0 under the assumption TI 1 1\ ready (b) : 
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1. make_space (b, n) only affects attributes of b, 
2. [ make_space(b,n) ] space(b) A ready(b), 
3. [ make_space(b,n) ] (f(b)):MText = PREV f(b). 

The second parameter of make_space describes the space-increment. It 
serves for exploiting estimates of the required amount of space. We ex
peet a typical implementation of BLOCK to show a reasonable performance if 
grow is invoked every now and then for a large increment; we expect it to 
be wastefut and disproportionately slow if it is invoked many times for very 
small increments. We arrange matters such that the procedure make_space 
can also be used in cases where the buffer did notrun out of space yet. 

The introduetion of new space in a buffer takes place at the high end of the 
buffer. We can view this as the introduetion of a second gap, whose size is 
equal to the amount of new space. From the point of view that we want to 
respect TI' this is one gap too many and hence this second gap has to move 
downwards tomeet the other gap. The technique of moving this second gap 
is essentially the same as used in make_ready1. When the two gaps have 
met, which is when mover = gap2(b), the invariant TI' and the readiness 
of the buffer can be restored. This is done by merging the two gaps which 
amounts to making gap2(b) and dot(b) equal to the position immediately 
after the merged gaps. 

PROC make_space: Buf #Nat -> 
PAR b:Buf, n:Nat 
DEF set_mover(size(block(b))); 

grow(block(b),n); 

( NOT mover = gap2(b) ?; 
second_gap_down(b,n) 

) *; mover = gap2(b) ?; 

set_gap2(b ,add(gap2(b),n)); 
set_dot(b,gap2(b)); 

( lss(mark(b),gapl(b)) ?; SKIP 
I NOT lss(mark(b),gapl(b)) ?; set_mark(b,add(mark(b),n)) 
) 

The following picture sketches the situation. 
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~I 
Fig 5.6. Merging two gaps. 

The procedure second_gap_down serves for moving the second gap one p~ 
sition downwards. It has two arguments where the first argument indicates 
a buffer and where the second argument indicates the size of the second gap. 

PROC second_gap_down: Buf # Nat -> 
PAR b:Buf,n:Nat 
DEF store(block(b),pred(add(mover,n)),cont(block(b),pred(mover))); 

set_mover(pred(mover)) 

This concludes the work on making space in buffers. As discussed before, 
it is simple to insert a non-ctr _j character in a ready buffer with space, 
leaving the readiness of the buffer invariant. In order to update the pair-wise 
attributes, we use the natural addition on reaches, which is the function add: 
Nat2 # Nat2 

--t Nat2 and furthermore we use other operations on reaches such 
as paste. The following procedure is meant for inserting a non-ctr_j char
acter in a ready buffer with space. When the dot comes before the mark, the 
new pair-wise mark attribute is calculated as paste(mark(b) ,0,1,dot(b)). 
In such calculations we avoid using the abstraction functions f which are 
meant for reasoning purposes only - some of them would he very inefficient 
in deed. 

PROC insert_character : Buf # Char -> 
PAR b:Buf,c:Char 
% only if space(b) 
DEF store(block(b),gapl(b),c); 

set_gap1(b,succ(gap1(b))); 

( lss((mark(b)) : Nat,dot(b)) ? ; 

SKIP 
NOT lss((mark(b)) : Nat,dot(b)) ? ; 

set_mark(b,paste(mark(b),O,l,dot(b))) 
) ; 

set_reach(b,paste(reach(b),O,l,dot(b))); 
set_dot(b,add(dot(b),0,1)) 

Also the introduetion of a new line in a ready buffer with space can he done 
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in a simple way, leaving the readiness of the buffer invariant. 

PROC newline: But -> 
PAR b:Buf 
% only if space(b) 
DEF store(block(b),gapl(b),ctr_j); 

set_gapl(b,succ(gapl(b))); 

( lss((mark(b)):Nat,dot(b)) 
SKIP 

? • . . 
NOT lss((mark(b)):Nat,dot(b)) ?; 

set_mark(b,paste(mark(b),l,O,dot(b))) 
) ; 

set_reach(b,paste(reach(b),l,O,dot(b))); 
set_dot(b,add(dot(b),l,O)) 

Now we can program some of the insertion procedures. The fust one is 
insert_file and to keep things simple, we use the insert_character and 
newline procedures described above. If it is necessary to insert large files 
frequently, then it might be worthwhile to reconsider this algorithm and to 
remave the pasting from the main loop. 

PROC insert_file: 'String• -> 
PAR s : 'String' 
DEF LET b :Buf; b := app(table,current); 

make_ready(b); 
reset(s); 
( NOT eof?; ( space(b) ? ; SKIP 

I NOT space(b) ?; make_space(b,1024) 
) ; 

LET c:Char; c :a read ; 
( c • ctr_j ?; newline(b) 
I NOT c • ctr_j ?; insert_character(b,c) 
) 

) •; eof?; 
mod_text_restore 

PROC insert_character: Char -> 
PAR c:Char 
DEF LET b:Buf; b :• app(table,current); 

make_ready(b); 
( space(b) ?; SKIP 
I NOT space(b) ?; make_space(b,128) 
) ; 

insert_character(b,c); 
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mod_text_restore 

After this, the newline procedure is easy. 

PROC newline: -> 
DEF LET b:Bu!; b :a app(table,current); 

make_ready(b); 
( space(b) ?; SKIP 
I NOT space(b) ?; make_space(b,128) 
) ; 

newline(b); 
mod_text_restore 
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Now we turn our attention to the procedure yank_buffer. We shall use 
the term yank buffer, by which we mean the buffer corresponding with the 
'String' argument of yank_buffer. All characters in the yank buffer must 
be copied into the current buffer, and as can be expected, a loop will take 
care for this. At fust sight this loop seems rather obvious, but actually its 
construction requires some care in order not to exclude the case b = y, where 
b denotes the current buffer and y denotes the yank-buffer. lf b = y then the 
current buffer is inserted into itself. In order to develop the loop, we shall 
indicate what will he left unaffected by the loop-body and we shall state the 
loop-invariant. 

The loop-body does not affect the marked texts represented by the buffers 
in tabla. The invariant is that an initial fragment of the text in the yank 
buffer is present in the gap of the current buffer b. Both the counter and the 
mover variables indicate the size of this initial fragment albeit in a different 
way; more precisely: 

f(block(b),gapl(b),counter) = f(y,mover) A counter ~ gap2(b) 

Note that two functions f are involved. The fust f takes the characters in 
the gap into account, whereas the second function f is defined to ignore the 
characters in the gap, which in the latter case is the gap of the yank buffer. 
Finally the ready and space properties of the current buffer are part of the 
invariant. 

The initialisation for this loop is done by putting the rnaver at the first non
gap position of y and by making the counter equal to gapl (b). Furthermore 
of course b must be made ready. To make enough space, make_space is 
invoked and its second argument is the amount of freespace needed for the 
contentsof the yank buffer y . The latter amount equals the size of the block 
of y minus the size of its gap. 
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After the contents of the yank buffer has been copied into the gap of b, the 
value of gapl, which is the lower bound of the gap can he increased in order 
to make the copied characters really part of the text represented by b. Note 
that immediately after the contentsof y has been copied, the reach of y has 
not changed yet, even not when b = y. Finally the pair-wise mark, dot and 
reach attributes must he modified by pasting the reach of the yank buffer 
into them. These modifications of pair-wise attributes should he conducted 
as a kind of simultaneous assignment due to the possible aliasing in the sense 
that b = y. 

PROC yank_buf!er: 'String' -> 
PAR s: 'String' 
DEF LET b:Bu!; b := app(table,current); 

LET y:Bu!; y ·s app(table,s); 

make_ready(b); 
make_space(b,sub(size(block(y)), sub((gap2(y),gapl(y))))); 

set_mover((gapl(y) • 0 ?; gap2(y) I NOT gapl(y) = 0 ?; 0)); 
set_counter(gapl(b)); 

NOT mover = size(block(y)) ?; 

store(block(b),counter,cont(block(y),mover)); 
set_mover(right(y,mover:Nat)); 
set_counter(succ(counter)) 

)*; mover s size(block(y)) ?; 

set_gapl(b,counter); 

LET r:Nat #Nat; r := reach(y); 
( lss(mark(b),(dot(b)):Nat) ?; 

SKIP 
NOT lss(mark(b),(dot(b)):Nat) ?; 

set_mark(b,paste(mark(b),r,dot(b))) 
) ; 
set_reach(b,paste(reach(b),r,dot(b))); 
set_dot(b,add(dot(b),r)); 

mod_text_restore 

Now we develop copy_region_to_buffer. Let b denote the current buffer. 
First it must be tested if mark(b) < dot (b) for if not, then no action is 
required. Otherwise, the next thing to he done is to check if the target 
buffer exists already. If it does not exist, then it should he created and 
appropriately initialised. 
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Let c denote the target buffer. The next step is to enter the characters of 
the region of b into the target buffer c. This entering starts at position 0 in 
c. It is possible to calculate the required amount of space in c in advance. 
More precisely, if the region is larger than the block-size of c, then a space
increment of dot(b) - mark(b) - size(block(c)) is needed. 

There is a simple loop for copying the text from the region to the target buffer 
c. The loop-body leaves the value of the following expression unaffected: 

f(block(c) ,O,counter) + f(block(b) ,mover,dot(b)) 

where the + denotes natural addition of texts. The fust summand is the text 
already copied and the second summand is the text to he copied yet. Fur
thermore the loop-body only affects attributes of c. The assertion mark(b) 
::::; mover ::::; dot (b) serves as the loop-invariant. Notice again that some care 
is needed not to exclude the case b = c for in that case we must invoke 
mod_text_restore. 

PROC copy_region_to_buffer: 'String' -> 
PAR s: 'String' 
DEF LET b:Buf; b := app(table,current); 

(NOT lss(mark(b),(dot(b)):Nat) ?; 

SKIP 
lss(mark(b),(dot(b)):Nat) ?; 

( is_in_dom(s,table) • true ?; SKIP 
I NOT is_in_dom(s,table) = true ?; create_buffer(s) 
) ; 

LET c:Buf; c :• app(table,s); 

( leq(sub(dot(b),mark(b)),size(block(c))) ?; SKIP 
I NOT leq(sub(dot(b),mark(b)),size(block(b))) ?; 

grow(block(c),sub(sub(dot(b),mark(b)),size(block(c)))) 
) ; 

set_mover((mark(b)):Nat); 
set_counter(O); 
(NOT mover = (dot(b)):Nat ?; 

store(block(c),counter,cont(block(b),mover)); 
set_mover(right(b,mover:Nat)); 
set_counter(succ(counter)) 

) *; mover = (dot(b)):Nat ?; 

set_gapl(c,counter); 
set_gap2(c,size(block(c))); 
set_dot(c,O); 
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set_mark(c,O); 

LET x:Nat # Nat,y:Nat # Nat; 
x,y :~ cut(reach(b),mark(b),dot(b)); 
set_reach(c,y); 
set_dot(c,O,O); 
set_mark(c,O,O); 

( b = c ?; mod_text_restore I NOT b • c ?; SKIP ) 

Next, we shall proceed with a few operations which are concerned with delet
ing pieces of text. 

PROC delete_next_character: -> 
DEF LET b:But; b := app(table,current); 

LET i:Nat,j:Nat; i,j := dot(b); 

( (cont(block(b),dot(b)) • ctr_j OR 
dot(b) = size(block(b))) ?; 

) 

SKIP 
NOT (cont(block(b),dot(b)) • ctr_j OR 

dot(b) = size(block(b))) ? ; 
make_ready(b); 
( mark(b) = (dot(b)):Nat ?; set_mark(b,succ(dot(b))) 

SKIP I NOT mark(b) • (dot(b)):Nat ?; 
) ; 

set_dot(b,succ(dot(b))); 
set_gap2(b,succ(gap2(b))); 

( leq(mark(b),(dot(b)):Nat) ?; SKIP 
I NOT leq(mark(b),(dot(b)):Nat) ?; 

) ; 

LET x:Nat # Nat, y:Nat # Nat; 
x,y :• cut(mark(b),i,j,i,succ(j)); 
set_mark(b,x) 

LET p:Nat # Nat, q:Nat # Nat; 
p.q := cut(reach(b),i,j,i,succ(j)); 
set_reach(b,p); 

mod_text_restore 



5.5. IMPLEMENTING THE SYSTEM COMPONENTS 

PROC erase_region: -> 
DEF LET b:Buf; b :• app(table,current); 

( geq(mark(b),(dot(b)):Nat) ?; 

) 

SKIP 
NOT geq(mark(b),(dot(b)):Nat) ?; 

make_ready(b); 
set_gapl(b,mark(b)); 
set_mark(b,(dot(b)):Nat); 

LET p:Nat # Nat, q:Nat # Nat; 
p,q := cut(reach(b),mark(b),dot(b)); 
set_reach(b,p); 
set_dot(b,(mark(b)):Nat #Nat); 

mod_text_restore 

PROC erase_buffer: 'String' -> 
PAR s: 'String' 
DEF ( is_in_dom(s,table) • true ?; SKIP 

I NOT is_in_dom(s,table) = true ?; create_buffer(s) 
) ; 

LET b:Buf; b := app(table,s); 
set_gapl(b,O); 
set_gap2(b,size(block(b))); 
set_dot(b,gap2(b)); 
set_mark(b,gap2(b)); 

set_dot(b,O,O); 
set_mark(b,O,O); 
set_reach(b,O,O); 

( eq(s,current) ?; mod_text_restore 
SKIP I NOT eq(s,current) ?; 

) 
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Now we turn to the implementation of the operations for marked-text man
agement as specified in Chapter 4 Section 4.5.8, (with an exception for 
switch_to_buffer which is dealt withalready before). 

PROC current_buffer_name: -> 'String' 
DEF current 
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For the procedure wri te_named_file we employ a loop and the mover serves 
as a kind of loop-counter. The loop-body leaves the value of followirig ex
pression unaffected: 

file(f(s)) + f(b,mover,size(block(b))) 

and also the fact that moveris not within the gap. The loop-body does not 
affect other files than the file indicated by s. 

PROC write_named_file: 'String' -> 
PAR s: 'String' 
DEF LET b:Buf; b : • app(table,current); 

rewrite(s); 
set_mover((gapl(b) • 0 ?; gap2(b) NOT gapl(b) • 0 ?; 0)); 

( NOT mover • size(block(b)) ?; 

write(cont(block(b),mover)); 
set_mover(right(b,mover:Nat)) 

) *; mover • size(block(b)) ? 

Now we turn to the implementation of the operations forsearching as speci
fied in Chapter 4 Section 4.5.9. In the implementation of search_forward, 
we employ a simple loop. We need an auxiliary predicate match. We write 
{C}OR for conditional OR and {C}AND for conditional AND as a hint related to 
the executability of this recursive predicate. 

PRED match : Buf I 'String' I Nat 
PAR b:Buf,s:'String',i :Nat 
DEF eq(s,empty) {C}OR 

( lss(i,size(block(b))) 
{C}AND hd(s) = cont(block(b),i) 
{C}AND match(b,tl(s),right(b,i)) 

The intuition behind this predicate match is that match(b, s, i) holds if the 
text represented by the len(s) non-gap positions in b startingat i equals the 
text represented by s. Of course this definition of match corresponds only 
with the intuition if i is not in the gap of b. To put it more formally: 
i(/. gap(b) => match(b,s,i) <=> match(f(b),f(s),len(f(b,i))) where the sec
ond match is the one from the specification (Chapter 4). 

PRED match': Buf # 'String' I Nat 
PAR b:Buf,s:'String',i :Nat 
DEF i = size(block(b)) {C}OR match(b,s,i) 

For searching a string s in a buffer b, the main assertion of the loop-invariant 
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is 

\li:Nat ( dot(b) ~i< mover 1\ i(/. gap(b) =>NOT match'(b,s,i) ) 

where we used some ohvious shorthand. Furthermore we makesure that the 
pair-wise version of mover precisely follows mover: Nat. This is necessary for 
in case of a successful search the pair-wise dot attrihute must he updated. 
We have the initialisation mover = dot(b) and the termination condition 
match' (b, s, mover). 

PROC search_forward: 'String' -> 
PAR s: 'String' 
DEF LET b:Buf; b := app(table,current); 

set_mover((dot(b)):Nat #Nat); 
set_mover((dot(b)):Nat); 

(NOT match'(b,s,mover) ? ; 

set_mover(right(b,mover:Nat #Nat)); 
set_mover(right(b,mover:Nat)) 

) *; match'(b,s,mover) ?; 

( geq(mover,size(block(b))) ?; 

) 

SKIP 
NOT geq(mover,size(block(b))) ?; 

set_dot(b,mover:Nat #Nat); 
set_dot(b,mover:Nat); 

mod_dot_restore 

where we used a simple auxiliary function right. This function right de
pends on mover: Nat. 

FUNC right: Buf # Nat # Nat -> Nat # Nat 
PAR b:Buf,i:Nat,j:Nat 
DEF ( cont(block(b),mover) = ctr_j ?; (succ(i),O) 

I NOT cont(block(b),mover) • ctr_j ?; (i,succ(j)) 
) 

We expect that improvements could he made with respect to the efficiency of 
this search-algorithm. Especially the use of the Knuth-Morris-Pratt search 
algorithm [5] could he considered. 

Finally we turn to the implementation of the operations for string conversion 
as specified in Chapter 4 Section 4.5.10. We use reenrsion which is accept-
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able if the procedure below is only used for obtaining relatively short strings 
such as words to he searched for or such as file names. 

PROC buffer_to_string: 'String' -> 'String' 
PAR s: 'String' 
DEF LET b:Buf; b :• app(table,s); 

buffer_to_string(b, ( gapl(b) • 0 ?; gap2(b) 
I NOT gapl(b) = 0 ?; 0 
) ) 

FUNC buffer_to_string: Buf # Nat -> 'String' 
PAR b:Buf,i :Nat 
DEF ( i • size(block(b)) ?• .. 

) 

END; 

empty 
NOT i • size(block(b)) ?; 

cons(cont(block(b),i),buffer_to_string(b,right(b,i))) 

5.5.15 Termination 

In the specification (Chapter 4) there is a termination axiom for ini t, re
quiring 

INIT 9 \Is :'String' ( < ini t (s) > TRUE ) 

and furthermore there is one large axiom dealing with the termination of all 
operations from the wi tefa_op group. 

WTI =? ( 

< FLUSH bolp > TRUE; 
< FLUSH eolp > TRUE; 
< FLUSH forward_character > TRUE; 
< FLUSH backward_character > TRUE; 
etc. 

We did not mention the satisfaction of our implementation with respect to 
these axioms yet and we shall by way of example discuss this for ini t now. 
We must unfold the definition of init(s) as presented inSection 5.5.14. This 
yields 

upd_ table (new); 
ere a te_buffer( s); 
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upd_current(s); 
ini t_wi_package; 
mod_text_restore 
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To show that this sequential composition can terminate, we must consecu
tively verify the termination of each of its sub-expressions separately. We 
begin with the first sub-expression which is upd_table (new). We unfold the 
specification of new as given in Section 5.3.4. 

t := create; 
set_map(t,empty); 
t 

The first step to he verified is t : = create which follows from the assertion 

{INST2} < create > TRUE 

given in Section 5.3.2. The next sub-expression is set_map( t, empty) which 
we must analyse, starting with t and empty. This t is defined because it is 
the result of create whereas empty is a defined function from the class de
scription MAP _SPEC which was specified algebraically. So set_map is invoked 
with defined arguments and hence its termination is a consequence (noting 
that set_map is a renamed version of set_attr) of the assertion 

{ATTRl} < set_attr(i,v) > TRUE 

given in Section 5.3.3 where we take t for i and empty for v. This shows that 
the evaluation of new can terminate. A lso upd_ table (new) can terminate; 
to see this, notice that upd_ table is a renamed version of upd, so we can use 
the axiom 

< upd(i) > TRUE 

of Section 5.5.8. In this way we can praeeed until we have checked each 
sub-expression of the sequential composition of ini t. We do not present the 
rest here. 

Similar verification steps as indicated above for ini t apply in fact to all 
WITEFA operations. Some of these operations have been programmed with 
repetition constructs and in these cases the classical technique of variant 
functions applies. We do not present these verification steps in this chapter. 

This concludes WITEF A_IMPL whence we can implement the last system com
ponent WITEFA- just as we did earlier with KEYBIND and MOREDOP. 
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% COMP WITEFA : WITEFA_SPEC :• WITEFA_IMPL; 
% this is to replace an earlier primitive component. 

At this point of the development, deditM equals (apart from lots of LET
constructs) the design sketched below. 

DESIGN 

COMP BOOL 
COMP NAT 
COMP CHAR 
COMP INST 
COMP ATTR 
COMP 'SEQ' 
COMP TABLE 
COMP BLOCK 
COMP DISPLAY 
COMP FILE 

COMP ATTR2 
COMP SVAR 
COMP 'STRING' 
COMP WLPACKAGE 

BOOL..SPEC: 
NAT..SPEC: 
CHAR..SPEC; 
INST_sPEC; 
ATTR..SPEC; 
'SEQ.-SPEC'; 
T ABLE.-SPEC ; 
BLOCK.-SPEC: 
DISPLAY _spEc: 
FILE..SPEC: % from db 

ATTR2_sPEC : 
SVAR.-SPEC; 
'STRING.-SPEC'; 
WLPACKAGE.-SPEC: % newly postulated 

COMP WITEF A WITEF A..SPEC : = WITEF A_IMPL; 
COMP MOREDOP MOREDOP_sPEC := MOREDOP_IMPL: 
COMP KEYBIND KEYBIND..SPEC := KEYBIND_IMPL 

SYSTEM WITEFA,MOREDOP,KEYBIND 

This is a typical point of the top-down development: all system components 
have been implemented, but this was only achieved by introducing a number 
of newly postulated primitive components, to wit: ATTR2, SVAR, 'STRING' 
and WI_PACKAGE. Therefore the development process is by far not finished 
yet: we have toembarkon the implementation of these primitive components 
now. It is characteristic forthetop-down approach that no implementation 
effort has been spent on un-used components: each of the three implemented 
components was actually part of the system and hence was formally part of 
the visible external interface of the design. 
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5.6 lmplementing the Internal Components 

During the implementation of the system components, several new compo
nents have been postulated: ATTR2, SVAR, 'STRING' and WI_PACKAGE. We 
call them internal components, in view of the fact that they are not part 
of the system of the design dtditor· In this section the top-down development 
process is continued; the internal components are implemented which leads 
again to the introduetion of new components etc. This goes on until only 
the primitives of Section 5.3 are left. 

5.6.1 Implementing WLPACKAGE 

We turn our attention to mod_ text_restore and mod_dot_restore, but 
it will take about 10 pages of preparations before arriving at the actual 
definition of these procedures. We adopt the following two-phase approach 
for the execution of mod_text_restore and mod_dot_restore. 

• First phase: decide if a new cursor or a new screen contents is needed. 
If so, then derive from the buffer named current the desired cursor 
value (let us call this the concept cursor) and store the desired screen 
contents in a two-dimensional array variabie (the concept screen). 

• Second phase: if necessary, transfer the contents of the concept screen 
to the actual screen of the physical display device and make the actual 
cursor equal to the concept cursor. 

The main reason for adopting this two-phase approach is that it gives rise 
to a very desirabie separation of concerns. Indeed, the task to be performed 
by mod_ text_restore is rather complex: first of all there is a non-trivia! 
structure-clash between the representation of the text in the buffer named 
current and the two-dimensionallayout of the text to be visualised on the 
screen. Secondly the text must be subject to applications of the look, fill 
and printify operations, as prescribed by WI. Also mod_ text_restore has 
to establish suitable values for cursor and origin. In addition to this we 
assume that we are faced with a physical display device with limited capabil
ities and whose communication link is a potential bottleneck in the execution 
speed of the editor. Although the screen has a two-dimensionallayout, we 
assume that the transfer of text towards the screen is done by so-called se rial 
communication. This amounts to the restrietion that all text transfer goes 
by means of commands such as ce (clear to end-of-line), cm (cursor motion) 
and print (send one single character). Avoiding gross inefficiencies in the 
display-handling is a major complication of the task of mod_ text_restore. 
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We must pay a price for this solution of achieving a separation of concerns. 
The price is the time to be spent on copying characters from the buffer named 
current into the two-dimensional array variabie (the concept screen). Im
mediately after such copying has taken place, one or more of these characters 
is transfered again from the concept screen towards the display and clearly 
it would be a short-cut to take the characters directly from the buffer. 

These considerations heavily depend on the nature of the computing ma
chinery available. When there is enough computing power available whereas 
the conneetion with the display is a classica! and relatively slow serial link 
we need not worry about the price of filling an array. This could be the 
case when a VT102 is connected to a VAX, say. But when the computer 
power is very restricted whereas the display is easily accessible, e.g. because 
it is directly builtinto the computer hardware, then we better adopt another 
solution. This might be the case when using an APPLE-11, say. Since the 
available computing machinery comes from a rapidly evolving technology, it 
is almost impossible to give a timeleas solution. 

The relevant information is passed from the first phase to the second phase 
by two variables. We present them in informal notation first. 

• ccursor: -+ Nat2 VAR 
• cscreen: -+ array !O .. li- 1, O .. co- 1] of Char VAR 

Before proceeding with WI_PACKAGE, we insert an intermezzo which is about 
two-dimensional arrays. 

5.6.2 Specifying Two-dimensional Arrays 

To prepare for the updating of the screen, it is convenient to use a two
dimensional array. In this section we specify two-dimensional arrays. To 
keep things simple, indexing in an array always starts at zero. 

LET DOMAINl : • 
EXPORT 

SORT Nat, 
FUNC sizel : ->Nat 

FROM 
IMPORT NAT_SPEC INTO 
CLASS 

FUNC sizel: -> Nat 
AXIOM sizel! 

END; 
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LET DOMAIN2 :• 
EXPORT 

SORT Nat, 
FUNC size2: -> Nat 

FROM 
IMPORT NAT_SPEC INTO 
CLASS 

FUNC size2: -> Nat 
AXIOM size2! 

END; 

LET ARRAY2_SPEC := 

LAMBDA X: DOMAINl OF 
LAMBDA Y: DOMAIN2 OF 
LAMBDA Z: ITEM OF 

EXPORT 
SORT Nat, 
SORT Item, 
SORT Array2, 
FUNC sizel : 
FUNC size2 : 
PROC create: 

-> Nat, 
-> Nat, 
-.> Array2, 

FUNC val 
PROC upd 

Array2 # Nat # Nat -> Item, 

FROM 

IMPORT X 
IMPORT Y 

Array2 # Nat # Nat # Item -> 

INTO 
INTO 

IMPORT Z INTO 
IMPORT NAT_SPEC INTO 

CLASS 

SORT Array2 VAR 
PROC create: -> Array2 MOD Array2 

AXIOM 
{ARRAY!} < create > TRUE; 
{ARRAY2} INIT ~>NOT EXISTS a:Array2 (); 
{ARRAY3} [ LET a:Array2; a :• create ] 

al AND (PREV NOT a!) AND 
FORALL b:Array2 ( (PREV NOT bi) •> b • a ) 

FUNC val: Array2 # Nat # Nat-> Item VAR 

401 
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PROC upd: Array2 I Nat I Nat I Item -> MOD val 

AXIOM FORALL a:Array2,m:Nat,n:Nat,i:Item 
( lss(m,sizel) AND lss(n,size2) •> ( 

{ARRAY4} < upd(a,m,n,i) > TRUE; 
{ARRAY5} [ upd(a,m,n,i) ] 

( val(a,m,n) = i; 
FORALL b:Array2,k:Nat,l:Nat,j:Item 
( lss(k,sizel) AND lss(l,size2) •> 

( NOT k = m OR NOT 1 = n OR NOT a = b •> 
val(b,k,l) z j <=> PREV val(b,k,l) z j) ) ) ) ) 

END; 

5.6.3 ARRA Y2: a Postulated Component 

We postulate the following component: 

{~} COMP ARRAY2: ARRAY2_SPEC; 

5.6.4 Implementing WJ_pACKAGE (continued) 

After this intermezzo we can introduce the necessary variables. 

LET CCURSOR :a 
IMPORT APPLY RENAME 

SORT Item TO Nat, 
FUNC val: -> Item TO ccursorl, 
PROC upd: Item -> TO set_ccursorl 

IN COPY(SVAR) TO NAT INTO 

IMPORT APPLY RENAME 
SORT Item TO Nat, 
FUNC val: -> Item TO ccursor2, 
PROC upd: Item -> TO set_ccursor2 

IN COPY(SVAR) TO NAT INTO 

CLASS 

FUNC ccursor: -> Nat I Nat 
DEF (ccursor1,ccursor2) 

PROC set_ccursor: Nat I Nat -> 
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PAR i:Nat,j :Nat 
DEF set_ccursorl(i); 

set_ccursor2(j) 

END; 
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We introduce a class description called CSCREEN which at its turn contains a 
local definition CS_ARRAY which providesus with arrays of dimensions li and 
co. It is interesting to have a look at the application expression below where 
a renamed version of ARRAY2 is applied to its three actual parameters; these 
are DISPLAY, DISPLAY (again) and CHAR. Let us check that this application 
expression is correct: the renamed version of ARRA Y2 has three LAMBDA pa
rameters, each with its associated parameter restriction. The first parameter 
restrietion requires the presence of a sort Nat and a defined function li; the 
second parameter restrietion requires again Nat and a defined co whereas the 
third parameter restrietion only mentions a sort Char. Now we verify that 
indeed, DISPLAY provides both li and co - whence it can appear twice. In 
fact DISPLAY provides much more than just Nat, li and co, but that does 
not matter. Finally, of courseCHAR provides Char. To put it somewhat more 
formally: DISPLAY Ç 'renamed DOMAINi' (i = 1, 2) where Ç refers to the 
formal implementation relation. 

LET CSCREEN := 

LET CS_ARRAY := 
APPLY APPLY APPLY RENAME 

SORT Item TO Char, 
FUNC sizel: -> Nat TO li, 
FUNC size2: -> Nat TO co 

IN ARRAY2 TO DISPLAY TO DISPLAY TO CHAR; 

IMPORT CS_ARRAY INTO 
APPLY RENAME 

SORT Item TO Array2, 
FUNC val: -> Item TO cscreen, 
PROC upd: Item -> TO upd_cscreen 

IN COPY(SVAR) TO CS_ARRAY; 

The purpose of using SVAR in conneetion with ARRAY2 is to provide for pre
cisely one array. This yields a specialisation of the somewhat more general 
ARRAY2, since ARRAY2 allows for a multitude of arrays, all having the same 
dimensions. In genera!, these arrays can he created dynamically, e.g. by 
LET a: Array2; a : = create but because weneed only one array, we shall 
use create just once and keep the Array2 object returned by create in the 
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simple programming variabie FUNC cscreen: -> Array2. So we have a two
dimensional variabie array csereen and we can index with i, j: Nat by writ
ing val(cscreen,i, j) and an assignment is denoted as upd(cscreen,i ,j ,c). 
This notation for indexing should be compared with the conventional 
cscreen[i, j] or csereen [i] [j] of Pascal and C respectively. The notation 
for assignment should be compared with the conventional cscreen[i, j] : = 
c of Pascal or cscreen[i] [j] = c; of C. Of course the module CSCREEN 
needs initialisation, which is upd_cscreen(create: Array2) (cf. the code of 
init_wi_package inSection 5.6.7). 

We collect the variables for interfacing the two phases as sketched before 
in a class description called CONCEPT_VARS. We add to this an abstraction 
function f: Array2 ._ Text which serves for reasoning purposes. In order 
to define this abstraction function, we need auxiliaries denoted as f and 
g; since this g is useful in its own right, we export it as well. In the def
inition of CONCEPT_ VARS below we employ two auxiliary class descriptions 
CSCREEN_SPEC and ABSTRACT_CSCREEN. The latter class description actually 
contains the definitions of the functions f and g. The reader easily recog
nises that a generalisation-specialisation approach is used in conneetion with 
ABSTRACT_CSCREEN; the precise reason for this will become clear in the next 
section. At this point it is sufficient to to notice that in CONCEPT_VARS 
the generalisation-specialisation approach does no harm, since the associ
ated LAMBDA can he eliminated easily. It can he verified that CSCREEN Ç 
CSCREEN_SPEC. 

LET CSCREEN_SPEC ·= 
CLASS 

SORT Nat 
SORT Char 
FUNC li: -> Nat 
FUNC co: -> Nat 
SORT Array2 VAR 
FUNC cscreen: -> Array2 VAR 
PROC create: -> Array2 MOD Array2 
PROC upd_cscreen: Array2 -> MOD csereen 
FUNC val: Array2 # Nat # Nat -> Char VAR 
PROC upd : Array2 # Nat # Nat # Char -> MOD val 

END; 

LET ABSTRACT_CSCREEN :~ 

LAMBDA CS:CSCREEN_SPEC OF 
EXPORT 
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SORT Nat, 
SORT Line, 
SORT Text, 
SORT Array2, 
FUNC !: Array2 -> Text, 
FUNC g: Array2 # Nat -> Line 

FROM 

IMPORT NAT_SPEC INTO 
IMPORT LINE_SPEC INTO 
IMPORT TEXT_SPEC INTO 
IMPORT CS INTO 

CLASS 

FUNC g: Array2 # Nat # Nat -> Line 
PAR a:Array2,n:Nat,i:Nat 
% the line !rom characters i .. co-1 in the n-th line of a 
DEF ( i = co ?; empty 

I NOT i= co?; cons(val(a,n,i),g(a,n,succ(i))) 
) 

FUNC g: Array2 # Nat -> Line 
PAR a:Array2,n:Nat 
% the n-th line in a 
DEF g(a,n,O) 

FUNC !: Array2 #Nat -> Text 
PAR a:Array2,n:Nat 
% the text !rom lines n .. li-1 in a 
DEF ( n • li ?; niltext 

I NOT n = li ?; cons(g(a,n),!(a,succ(n))) 
) 

FUNC !: Array2 -> Text 
PAR a:Array2 
% the text represented by a 
DEF !(a,O) 

END; 

LET CONCEPT_VARS ; a 

IMPORT CCURSOR INTO 
IMPORT CSCREEN INTO 
APPLY ABSTRACT_CSCREEN TO CSCREEN; 

405 
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Note that CONCEPT_VARS is an abbreviation at component level, rather than 
local within WI_PACKAGE_IMPL. Laterit will appear that we happen to have 
an opportuni ty for re-using CONCEPT_ VARS. 

Now we turn our attention to the first phase of the WI_PACKAGE procedures. 
We present some considerations which are still independent from the repre
sentation of marked texts. We start by having another look at the window 
invariant which was defined as a predicate WI and which was specified to 
he an observational invariant, i.e. it must he a consequence of the classica! 
invariant WTI. We use + and - as shorthand for the pair-wise addition and 
subtraction operations on co-ordinate pairs. Let us write .,P as a shorthand 
for each of the printify functions. WI is given as: 

LET origin: Nat2 ; origin :=dot - cursor; 
LET filled: Text; filled:= fill(text,origin+ size); 
screen= '1/J(look(filled,origin,origin+ size)) 

We note that for a given dot and text, there is a certain degree of freedom 
in choosing cursor and origin. Although the clause origin :=dot -cursor 
suggests that the cursor must he chosen first, and that after that the origin 
can he calculated, it can also he done the other way around. Actually we 
prefer the latter approach for our implementation. Therefore we introduce 
the origin by a quantifier. We rewrite origin = dot - cursor into cursor = 
dot - origin and in this way we get an alternative but equivalent definition 
of WI. 

3 origin: Nat2 

( cursor = dot - origin; 
LET filled: Text; filled:= fill(text,origin+ size); 
screen= '1/J(look(filled,origin,origin + size)) ) 

Our screen-update strategy will he based on the idea of not moving the origin 
unless this is really necessary. Therefore the editor must have a mechanism 
for recalling the previous origin value. More precisely, the editor will keep 
track of the previous origin value for each buffer separately. This is achieved 
by introducing a variabie function origin: Buf - Na t 2 • 

If we want to argue that WI holds then we we may do so by showing that 
the value of this variabie origin for the current buffer makes the body of 
the quantified assertion within WI true. In this way we get another predicate 
which we shall name WI' '. 

cursor = dot - origin(b) ; 
LET filled: Text; filled:= fill(text,origin(b) + size); 
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screen= ~(look(filled,origin(b) ,origin(b) + size)) 

where b denotes the current buffer. Clearly WI'' => WI. We also give the 
precise definition in COLD-K: 

PRED WI' ': 
DEF LET b:Buf; b :• app(table,current); 

cursor= p_sub(dot(b),origin(b)); 
LET filled: Text; tilled := fill(f(b),p_add(origin(b),size)); 
screen= printify(look(filled,origin(b),p_add(origin(b),size))) 

So now WI has been transformed into WI'' which essentially consists of two 
conditions of the following form: 

cursor = dot(b) - origin{b) cl) 
screen= ~(look(filled,origin(b) ,origin(b) + size)) c2) 

We introduce the notations <pand ~P for pair-wise comparison of co-ordinates 
with the meaning 

(ob o2) <p (s1, s2) :<::> o1 < s1 1\ o2 < s2 

(ob o2) ~P (s1, s2) :<:> 01 ~ s1 1\ 02 ~ s2 

We consider WI'' in conjunction with the display invariant which among 
other things states that cursor <p size. If we combine this with cl, we 
obtain dot(b) <p origin(b) + size. Furthermore, when the subtraction 
dot(b) - origin(b) is to yield a defined value, we must have origin(b) ~P 
dot(b). In this way we get another condition, to he named c3, with the 
property that cl => c3. This c3 depends on dot(b) and origin(b). The 
important observation regarding this c3 is that once c3 holds, it is always 
possible to make WI'' hold by 'assignments' to screen and cursor. 

c3 :<::> origin(b) ~P dot(b) <p origin(b) + size 

Both mod_dot_restore and mod_text_restore have to deal with two possi
bie situations: either c3 holds, which means that the old origin(b) value 
is still usable, or c3 does not hold, which means that a modification of 
origin(b) is inevitable. 

Now we can give a first attempt in formulating our screen-update strategy. 
We must get two procedures which serve for establishing WI' • aftera modifi
cation of the dot and/or the text. The first procedure serves for establishing 
WI'' after a modification of the dot. We expect that updating the screen 
will move the cursor, so we first adjust the screen and after that try to get 
the cursor right. The definition below still is far from complete, and an ex-
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pression such as MOD origin(b): c3 ? is meant as shorthand for "modify 
origin(b) such that c3 holds". 

% PROC mod_dot_restore: -> 
% DEF ( c3 ?; 
1. MOD cursor cursor dot(b) - origin(b) {cl} ?; 

% NOT c3 ? ; 
% MOD origin(b); c3 ? ; 
% MOD screen, cursor screen= printify( ... ) {c2} ?; 

% MOD cursor cursor = dot(b) - origin(b) {cl} ? 
% ) 

So now, after dot has been modified, we can restore WI'' by invoking 
mod_dot_restore. 

The second procedure serves for establishing WI' ' after a modification of 
both the dot and the text or of just the text alone. In general, we expect 
that both the screen and the cursor must he updated, even in case the old 
origin is still usable. Note that it is reasonable to expect that the cursor 
needs updating, for even if it can essentially stay the same, then it probably 
still will get messed-up by the screen updating. 

% 
% 
% 
% 
% 
% 

PROC 
DEF 

mod_text_restore: 
( c3 ?; 

SKIP 
NOT c3 ? ; 

MOD origin(b); 
) ; 

-> 

c3 ?; 

% MOD screen, cursor; screen= printfy( . . . ) {c2} ?; 

% MOD cursor cursor = dot(b) - origin(b) {cl} ? 

Before we program mod_dot_restore and mod_text_restore, we have an 
intermezzo for postulating a component dealing with display handling, by 
which we mean updating the cursor and the screen of the physical device for 
given desired cursor value and desired screen contents. 

5.6.5 Specifying Display Handling 

We introduce two procedures which take data from CONCEPT_VARS, or more 
precisely, which take data from the concept cursor and the concept screen; 
they transfer these data to the physical display device. The procedure 
update_cursor makes the cursor equal to the concept cursor without af
fecting the screen. The procedure update_screen makes the screen equal to 
the text represented by the concept screen, thereby possibly disturbing the 
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cursor. There is also an initialisation procedure and an invariant . The latter 
is called display_handling_inv. 

We would like to add a remark about the module structure of the speci
fication given below. DISPLAY_HANDLING_SPEC is constructed in terms of 
specification modules only (such as NAT_SPEC, DISPLAY_SPEC, and in fact 
also CCURSOR_SPEC, CSCREEN_SPEC) and no reference is made to component 
narnes (where we mean to those with COMP). To achieve this, we exploit the 
fact that ABSTRACT _CSCREEN is parameterised. This is the reason for the 
parameterisation: in the previous section ABSTRACT_CSCREEN was applied to 
CSCREEN whereas here it is applied to CSCREEN_SPEC. In the next section 
DISPLAY_HANDLING_SPEC will be used as a black-box description; the fact 
that it is constructed in terros of specification modules only, guarantees that 
the condition 'directly specified' of Chapter 3 is satisfied. 

LET CCURSOR_SPEC := 
CLASS 

SORT Nat 
FUNC ccursor : -> Nat # Nat VAR 
PROC set_ccursor: Nat # Nat -> MOD ccursor 

END; 

LET CONCEPT_VARS_SPEC := 
IMPORT CCURSOR_SPEC INTO 
IMPORT CSCREEN_SPEC INTO 
APPLY ABSTRACT_CSCREEN TO CSCREEN_SPEC; 

LET DISPLAY_HANDLING_SPEC · • 
IMPORT NAT_SPEC INTO 
IMPORT DISPLAY_SPEC INTO 
IMPORT CONCEPT_VARS_SPEC INTO 
CLASS 

PRED display_handling_inv: VAR 

PROC init_display_handling: -> 
MOD display_handling_inv 

PROC update_cursor : -> 
MOD display_handling_inv USE displ_op 

PROC update_screen: -> 
MOD display_handling_inv USE displ_op 
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PRED pre: 
DEF LET i:Nat, j:Nat; i,j :• ccursor; 

lss(i,li) AND lss(j,co) AND f(cscreen)l 

AXIOM [ init_display_handling ] display_handling_inv 

AXIOM display_handling_inv AND pre •> 
[ update_cursor I update_screen ] display_handling_inv 

AXIOM display_handling_inv AND pre => 
[ update_cursor ] cursor = ccursor AND screen = PREV screen 

AXIOM display_handling_inv AND pre => 
[ update_screen ] screen • f(cscreen) 

AXIOM {TERMINATION} 

END; 

< init_display_handling > TRUE; 
display_handling_inv AND pre => < update_cursor > TRUE; 
display_handling_inv AND pre => < update_screen > TRUE 

One might he tempted tothink that display_handling_inv needs not to he 
in the modification listsof update_cursor and ofupdate_screen. Forthese 
procedures are supposed not to viola te display _handling_inv and this is 
guaranteed indeed if display_handling_inv cannot he modified. However, 
this would he too strong, because it forbids an implementation of the proce
dures to change display_handling_inv from false to true. 

5.6.6 DISPLAY ..HANDLING: a Postulated Component 

After having specified display handling, we formally introduce a component 
for it. 

{~} COMP DISPLAY_HANDLING DISPLAY_HANDLING_SPEC; 

5.6.7 lmplementing WLPACKAGE (continued) 

As argued before, our screen-update strategy requires a variabie function 
origin: Buf -t Nat2• We formally introduce this below. 
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LET ORIGIN := 

APPLY APPLY APPLY RENAME 
SORT Inst 
SORT Iteml 
SORT Item2 
FUNC attr : Inst -> Iteml # Item2 TO origin, 
PROC set_attr: Inst # Iteml # Item2 -> TO set_origin 

IN COPY(ATTR2) TO BUF_INST TO NAT TO NAT; 
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TO Bu!, 
TO Nat, 
TO Nat, 

We shall need two simple programming variables of sort Nat. They will he 
used as loop-counters for processing two-dimensional arrays. 

LET XX := 

APPLY RENAME 
SORT Item TO Nat, 
FUNC val: -> Item TO xx, . 
PROC upd: Item -> TO upd_xx 

IN COPY(SVAR) TO NAT; 

LET YY := 
APPLY RENAME 

SORT Item TO Nat, 
FUNC val: -> Item TO yy, 
PROC upd: Item -> TO upd_yy 

IN COPY(SVAR) TO NAT; 

After these preparations we can present the import structure of the imple
mentation of WI_PACKAGE. 

We use TEXT_ VARS of Section 5.5.11, DISPLAY_HANDLING of Section 5.6.6, 
ORIGIN of Section 5.6.7, XX, YY defined above and finally CONCEPT_VARS of 
Section 5.6.4. 

LET WI_PACKAGE_IMPL := 

IMPORT TEXT_VARS INTO 
IMPORT DISPLAY_HANDLING INTO 
IMPORT ORIGIN INTO 
IMPORT XX INTO 
IMPORT YY INTO 
IMPORT CONCEPT_VARS INTO 

CLASS 

At some point in the execution of mod_ text_restore and mod_dot_restore 
it will he necessary to build-up the contents of the concept-screen. Clearly 
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this contents must he derived from the buffer named current. We shall 
develop a procedure cscreen_build taking care for this. This procedure 
can he viewed as the heart of a display-oriented editor, because it must 
transform the 'block-with-positions' representation of a text into the desired 
two-dimensional, fixed-size screen-contents. Furthermore it may not he too 
inefficient because it will he invoked after every insert- or delete-command 
during execution of an editor. It will take a few pages of work before we shall 
have completed a detailed definition of this procedure. 

We plan to make this cscreen_build such that it modifles cscreen,xx, yy, 
mover, but nothing else and such that 

cscreen! 1\ c3 1\ TI' => 
[ cscreen_build ] 

f(cscreen) 
=~(look(fill(t,origin(b)+size),origin(b),origin(b)+size)) 

where t = f (b, si ze (block(b))) 

and where b denotes app(table (current)). We shall use a loop for copying 
the relevant characters from the current buffer one by one into the csereen 
array. We get a loop-invariant replacing the sub-term si ze (block(b)) in 
the postcondition given above by mover: Nat. So this loop-invariant says 
that the concept-screen contains printified and 'Procrustesed' version of an 
initial fragment of the text in the current buffer. Furthermore we add the 
assertion that mover: Nat2 corresponds tomover: Nat to the loop-invariant. 

We could initially establish this loop-invariant by making f (cscreen) equal 
toa text with blanks only and putting mover = 0. We adopt the idea of filling 
the csereen array with blanks indeed, but we can improve with respect to 
idea of putting mover = 0. The point is that everything before the origin 
becomes irrelevant due to the application of the look operator. Therefore we 
make the mover point initially to the position in the buffer which corresponds 
with the beginning of the line containing the origin. The initialisation for 
establishing this loop-invariant uses two procedures: 

• clear_cscreen which puts blanks at all positions of cscreen, 
• mover _ to_origin_line which puts the mover to the beginning of the 

line containing the origin. 

Let usalso discuss the termination condition for the loop of cscreen_build 
already. Obviously the condition mover ~ size (block(b)) would do the 
job, but again it is easy to do better than that. The point is that everything 
after origin(b) + size becomes irrelevant due to the application of the look 
operator. Therefore we adopt the following termination condition 
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mover ~ size(block(b)) V 
vertical co-ordinate of mover ~ vertical co-ordinate of (origin(b) + si ze) 

where b denotes app(table (current)). The procedure clear_cscreen serves 
for putting blanks at all positions of cscreen. It uses xx and yy as loop
counters. 

PROC clear_cscreen: -> 
DEF upd_xx(O); 

( NOT xx = li ? ; 
upd_yy(O); 
( NOT yy .. co ?; 

upd(cscreen,xx,yy,blank); 
upd_yy(succ(yy)) 

) *; yy - co ? ; 
upd_xx(succ(xx)) 

)*; xx=li? 

The procedure mover _ to_origin_line should make the mover move towards 
the beginning of the line containing the origin. We use an auxiliary v _eq to he 
used in formulating the stop-criterion of the loop of mover _ to_origin_line: 

PRED v_eq: Nat # Nat # Nat # Nat 
PAR ml:Nat,m2:Nat,ol:Nat,o2:Nat 
DEF ml = ol 

Now we program mover_to_origin_line and we begin with an efficiency 
consideration. We exploit that, for large texts, the origin is likely to he 
much closer to the position of the dot than to the begin of the text. Note 
that the dot, due to our invariant WI'' (implying c3), never precedes the 
origin. Therefore we always have to carry out a backward scan, starting 
from the dot. For this scan we shall employ several 'assignments', where 
set_mover(left(b,mover)) changes mover: Nat whereas 
set_mover1(pred(mover1)) affects mover: Nat # Nat. Note that we have 
moverl: Nat which is the same as the vertical coordinate of mover: Nat # 

Nat. For the introduetion of these movers we refer to TEXT_VARS inSection 
5.5.11. 

For mover _ to_origin_line we employ a loop, whose invariant includes the 
assertion that the vertical co-ordinate of mover:Nat2 (i.e. moverl) corre
sponds to mover:Nat. Formally this is moverl = m 1 where (m1,m2 ) = 
reach(f (b ,mover: Nat)) and where b is the relevant buffer. The horizontal 
co-ordinate mover2 is irrelevant during execution of the loop and afterwards 
it will he made equal to 0. Furthermore the assertion that the mover does 
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not preeede the origin is part of the invariant as well. More precisely, we 
have the assertion o1 ~ m 1 where (oh o2) = origin(b) and where (m1 , m 2) 

= reach(f (b ,mover: Nat)). When the beginning of thé line containing the 
origin has not been reached yet, it is easy to maintain the invariant by letting 
mover: Nat go one position leftwards and adapting moverl correspondingly. 
For adapting moverl, two situations arise: either the leftward step crossed a 
line-boundary line, in which case moverl must he decremented, or the left
ward step took place within the same line, in which case moverl must keep 
its value. 

PROC mover_to_origin_line: But -> 
PAR b:But 
DEF set_mover((dot(b)):Nat); 

set_mover((dot(b)):Nat #Nat); 
( NOT ( v_eq(mover,origin(b)) AND bolp(b,mover) )?; 

set_mover(lett(b,mover)); 
( eolp(b,mover) ?; set_moverl(pred(moverl)) 
I NOT eolp(b,mover) ?; SKIP 
) 

) *: ( v_eq(mover,origin(b)) AND bolp(b,mover) )?; 
set_mover2(0) 

We introducesome more simple auxiliaries for camparing co-ordinate pairs. 

PRED v_geq: Nat # Nat # Nat # Nat 
PAR ml:Nat,m2:Nat,ol:Nat,o2:Nat 
DEF geq(ml,ol) 

PRED h_geq: Nat # Nat # Nat # Nat 
PAR ml:Nat,m2:Nat,ol:Nat,o2:Nat 
DEF geq(m2,o2) 

PRED h_lss: Nat # Nat # Nat # Nat 
PAR ml:Nat,m2:Nat,ol:Nat,o2:Nat 
DEF lss(m2,o2) 

To keep the actual definition of cscreen_build readable, weneed two more 
auxiliaries. The first is a predicate called built and it describes the termi
nation condition as discussed before. 

PRED built : But 
PAR b:But 
DEF geq(mover,size(block(b))) OR v_geq(mover,p_add(origin(b),size)) 

FUNC size: -> Nat # Nat 
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DEF li,co 

The predicate in_window serves for finding out if the moveris at a position 
which contributes to the term 
1/J(look(fill(t ,origin(b) + size) ,origin(b) ,origin(b) + size)) from 
the postcondition of cscreen_build. In fact in_window only tests the hor
izontal co-ordinate of mover, which is safe if we know that the vertical co
ordinate of mover is within the limits given by origin(b) and origin(b) 
+ size. For this reason we must formally add one more conjunct to the 
loop-invariant of cscreen_build, viz. 

vertical co-ordinate of origin(b) ~ vertical co-ordinate of mover 

We easily define in_window using h_geq and h_lss. 

PRED in_window: Buf 
PAR b:Buf 
DEF h_geq(mover,origin(b)) AND h_lss(mover,p_add(origin(b),size)) 

This concludes the preparations for cscreen_build. lts outline is 

"initialisation" 
( NOT built(b) ?; 

( NOT in_window(b) ?; SKIP 
I in_window(b) ?; "copy char unless it is ctr_j" 
) ; 

"increment mover" 
) *: built(b) ? 

Finally we fill all the details. 

PROC cscreen_build: Buf -> 
PAR b:Bu:f 
DEF clear_cscreen; 

mover_to_origin_line(b); 
( NOT built(b) ?; 

( NOT in_window(b) ?; SKIP 
I in_window(b) ?; 

LET c:Char; c := cont(block(b),mover); 
( c = ctr_j ?; 

) 

) ; 

SKIP 
NOT c • ctr_j ?; 

upd(cscreen,p_sub(mover,origin(b)),printify(c)) 



416 CHAPTER 5. DESIGN OF A TEXT EDITOR 

( cont(block(b),mover) • ctr_j ?; 

set_moverl(succ(moverl)); 
set_mover2(0) 
NOT cont(block(b),mover) = ctr_j ?; 

set_mover2(succ(mover2)) 
) ; 
set_mover(right(b,mover:Nat)) 

) *; built(b) ? 

We introduce predicates p_lss and p_leq for the pair-wise comparison of 
co-ordinates ( <p and ~P) and the operations p_add and p_sub for pair-wise 
addition and subtraction. We also introduce the condition c3 as discussed 
before in Section 5.6.4. 

PRED p_lss: Nat # Nat # Nat # Nat 
PAR ol:Nat, o2:Nat, sl : Nat, s2:Nat 
DEF lss(ol,sl) AND lss(o2,s2) 

PRED p_leq: Nat # Nat # Nat # Nat 
PAR ol:Nat, o2:Nat, sl:Nat, s2:Nat 
DEF leq(ol,sl) AND leq(o2,s2) 

FUNC p_sub : Nat # Nat # Nat # Nat -> Nat # Nat 
PAR dl:Nat, d2:Nat, ol:Nat, o2 :Nat 
DEF sub(dl,ol), sub(d2,o2) 

FUNC p_add: Nat # Nat # Nat # Nat -> Nat # Nat 
PAR ol:Nat, o2:Nat, sl:Nat, s2 :Nat 
DEF add(ol,sl), add(o2,s2) 

PRED c3: Buf 
PAR b:Buf 
DEF p_leq(origin(b),dot(b)) AND 

p_lss(dot(b),p_add(origin(b),size)) 

The following detailed version of mod_dot_restore uses the old origin value, 
if possible. If this is not possible, then it applies the following strategy both 
for the vertical and horizontal co-ordinate of the origin: first try zero, but if 
zero is not acceptable, then choose the origin co-ordinate such that the cursor 
gets centeredon the screen. In order to implement this idea of eentering we 
need two auxiliaries: 

FUNC half_li: -> Nat 
DEF di v(li, 2) 
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FUNC half_co: -> Nat 
DEF di v(co, 2) 

PROC mod_dot_restore: -> 
DEF LET b:Buf; b : = app(table,current); 

( c3(b) ?; 

SKIP 
NOT c3(b) ?; 

LET dl:Nat,d2:Nat; dl,d2 :• dot(b); 
set_origin(b,( lss(dl,li) ?; 0 

I NOT lss(dl,li) ?; sub(dl,half_li) 
). 

( lss(d2,co) ?; 0 
I NOT lss(d2,co) ?; sub(d2,half_co) 
) ) ; 

cscreen_build(b); 
update_screen 

) ; 
set_ccursor(p_sub(dot(b),origin(b))); 
update_cursor 
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This mod_dot_restore has the property to restore WI in the sense that TI • 1\ 

wi_package_inv => WI => [ mod_dot ] [ mod_dot_restore ] WI. Just for 
completeness we also show what it means to 'modify dot' at the representation 
level. 

PROC mod_dot: -> 
DEF LET t:Text; 

t :• f(app(table,current)); 
USE set_dot: Buf # Nat ->, set_dot: Buf # Nat # Nat ->, 

set_mover: Nat ->, set_mover: Nat # Nat ->, 
set_gapl, set_gap2 

END; 
f(app(table,current)) • t AND TI' ? 

Along the same lines we obtain a detailed version of mod_ text_restore. 

PROC mod_text_restore: -> 
DEF LET b:Buf; b := app(table,current); 

( c3(b) ?; 

SKIP 
NOT c3(b) ?; 

LET dl:Nat,d2:Nat; d1,d2 := dot(b); 
set_origin(b,( lss(dl,li) ?; 0 

I NOT lss(dl,li) ?; sub(dl,half_li) 
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) . 
( lss(d2,co) ?; 0 
I NOT lss(d2,co) ?; sub(d2,half_co) 
) ) 

cscreen_build(b); 
update_screen; 
set_ccursor(p_sub(dot(b),origin(b))); 
update_cursor 

To complete WI_PACKAGE_IMPL, we must give the definitions ofwi_package_inv 
and the initialisation procedure ini t_wi_package, and repeat the definitions 
of WI and WI '. 

PRED wi_package_inv: 
DEF cscreen! AND display_handling_inv 

PROC init_wi_package: -> 
DEF upd_cscreen(create:Array2); 

init_display_handling 

PRED WI : %as inSection 4.6.12 
PRED WI': % as inSection 6.6.12 

END; 

% COMP WI_PACKAGE : WI_PACKAGE_SPEC :• WI_PACKAGE_IMPL; 
% this is to replace an earlier primitive component. 

5.6.8 lmplementing DISPLAY _HANDLING 

Now it is time to develop algorithms for the procedures update_cursor and 
update_screen. Updating the cursor poses no problem, but updating the 
screen is not trivia! at all. The development of update_ screen will be guided 
by efficiency considerations. 

We assume that thesending of command-messages to the display is relatively 
slowand that it is a possible bottleneck in the execution speed of the editor. 
Of course this assumption depends on the precise nature of the communi
cation mechanism between the computer which executes the editor program 
and the display device. If we consider a VT102 type terminal and a 1200 
Baud serial communication link our assumption is quite right. 

The simplest algorithm, of rewriting the entire screen every time when 
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update_screen is called, is considered prohibitively expensive in termsof the 
number of display cammand-messages issued. Therefore it seems worthwhile 
trying to economize on the use of these messages. The key observation is that 
duringa typical edit session, most keystroke-command invocations require in 
fact only a modification of a small fragment of the contentsof the screen. In 
such situations the editor only needs to direct the cursor towards the place 
where the modifications must take place and then overwrite the old screen 
contents there. 

In order to do so, the editor needs keep track of the contents of the ac
tual screen and of the actual cursor position. For this purpose we introduce 
a so-called shadow-administration of the screen and the cursor. This ad
ministration takes the shape of a two-dimensional array of characters for 
the shadow-screen and a programming variabie of type Nat2 for the shadow
cursor. In view of the similarity with the variables of CONCEPT_ VARS, it seems 
appropriate to do a re-use at textual level. 

LET SHADOW_VARS := 
RENAME 

FUNC ccursor1 -> Nat TO scursor1, 
FUNC ccursor2 -> Nat TO scursor2, 
FUNC ccursor -> Nat # Nat TO scursor, 
PROC set_ccursor1 : Nat -> TO set_scursor1, 
PROC set_ccursor2 : Nat -> TO set_scurs.or2, 
PROC set_ccursor Nat # Nat -> TO set_scursor, 
FUNC csereen -> Array2 TO sscreen, 
PROC upd_cscreen Array2 -> TO upd_sscreen 

IN COPY(CONCEPT_VARS); 

We shall need two simple programming variables of sort Nat. They will he 
used as loop-counters for processing two-dimensional arrays. 

LET II := 

APPLY RENAME 
SORT Item TO Nat, 
FUNC val: -> Item TO ii, 
PROC upd: Item -> TO upd_ii 

IN COPY(SVAR) TO NAT; 

LET JJ := 

APPLY RENAME 
SORT Item TO Nat, 
FUNC val: -> Item TO j j • 
PROC upd: Item -> TO upd_j j 

IN COPY(SVAR) TO NAT; 
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The definition of display_handling_inv is nothing but a formalisation of 
the idea of maintaining a shadow-administration. We also immediately give 
the corresponding initialisation procedure ini t_display_handling for es
tablishing this invariant. The initialisation uses a procedure clear _a screen 
which is invoked by init_display_handling. This procedure clear_sscreen 
serves for putting blanks at all positions of sscreen. It uses ii and j j as 
loop-counters and it is very similar to the procedure clear_cscreen as in
troduced inSection 5.6.7. In init_display_handling we use the procedure 
cl from DISPLAY to clear the entire screen. 

LET DISPLAY_HANDLING_IMPL := 

IMPORT NAT INTO 
IMPORT CHAR INTO 
IMPORT DISPLAY INTO 
IMPORT TEXT_OPS2_SPEC INTO 
IMPORT CONCEPT_VARS INTO 
IMPORT SHADOW_VARS INTO 
IMPORT II INTO 
IMPORT JJ INTO 

CLASS 

PRED pre: %as inSection 6.6.6 

PRED display_handling_inv: 
DEF cursor • scursor AND screen = !(sscreen) 

PROC init_display_handling: -> 
DEF cl; 

upd_sscreen(create:Array2); 
clear_sscreen; 
set_scursor(O,O) 

PROC clear_sscreen: -> 
DEF upd_ii(O); 

( NOT ii = li ?; 

upd_jj(O); 
( NOT jj "' co ?; 

upd(sscreen,ii,jj,blank); 
upd_j j (succ (j j)) 

) *; j j - co ? ; 
upd_ii(succ(ii)) 

) *; ii = li ? 
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The procedure update_cursor is easy. We use the procedure cm from DISPLAY 
for moving the cursor. 

PROC update_cursor : -> 
DEF ( scursor • ccursor ?; SKIP 

I NOT scursor = ccursor ?; 

cm(ccursor); 
set_scursor(ccursor) 

) 

The procedure update_screen is more complicated. The complication comes 
from the fact that we want to avoid rewriting the entire screen when certain 
parts of it are in fact still right. We decompose this procedure in a kind of 
top-down approach (at procedure level rather than at component level). The 
procedure update_screen contains a loop with ii serving as a loop-counter. 
lts invariant is given by 

display _handling_inv 1\ ii ~ li 1\ 

V i: Nat ( i< ii => ( sel(screen,i) = g(cscreen,i) ) ) 

So the relation between screen and its shadow-administration asereen is 
always maintained and so is the relation between cursor and scursor. The 
correspondence between the real screen and the concept screen ( cscreen) is 
enforced line after line. 

PROC update_screen: -> 
DEF upd_ii(O); 

( NOT ii = li ? ; 
update_line; 
upd_ii(succ(ii)) 

) *: i i = 1i ? 

where the procedure update_line is to be detailed bèlow. 
This update_line should enforce the relation 

sel(screen,ii) = g(cscreen,ii) = g(sscreen,ii) 

I.e. it should make sure that the ii-th line arrives both on the screen and in 
the shadow-administration. Furthermore scursor must be kept up-to-date 
and neither ii nor the contentsof the other lines may be affected. We use a 
loop with j j serving as a loop-counter. lts invariant is given by 

display _handling_inv 1\ j j ~ co 1\ 

Vj:Nat ( j<jj => 
( sel(sel(screen,ii),j) = val(cscreen,ii,j))) 
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to which we should add that neither ii nor the contents of the other lines 
may be affected. 

PROC update_line: -> 
DEF upd_jj(O); 

( NOT jj = co ?; 

update_character; 
upd_jj(succ(jj)) 

) *; j j = co 1 

where the procedure update_character is to be detailed below. 
This update_character should enforce the relation 

sel(sel(screen,ii),jj) 
= val(cscreen,ii,jj) 
= val(sscreen,ii,jj) 

whereby it should keep scursor up-to-date and where all positions with co
ordinates (i,j) for i # ii V j < j j remain unchanged. We do not require 
that only position (i i, j j) is affected. This is because we issue ce commands 
insteadof writing blanks, as will be explained below. 

We briefiy explain update_character. First it is tested if the contents of 
the screen at position (ii, j j) happens to have the desired value already, 
for in that case no action is required. We expect it to have the desired value 
often, but if it has not, then the next step is to make sure that the cursor 
gets at position (i i, j j). 

When a blank must be written, a "clear to end-of-line" command is issued 
and the corresponding modifications in the shadow-administration are made. 
Note that when this happens, everything on the screen with co-ordinates in 
{ (i, j) I i = ii 1\ j ~ j j} might change. The motivation for using "clear 
to end-of-line" commands is is that we hope to gain efficiency because we 
expect many lines in csereen to have trailing blanks. 

When a non-blank character must be written, the shadow-administration 
must be kept up-to-date again. We have to be careful with the updating of 
scursor, because when a character is written, the horizontal co-ordinate of 
the cursor is incremented by one, except when it is already at co- 1. In the 
latter case the horizontal co-ordinate keeps its old value. 

PROC update_character: -> 
DEF ( val(sscreen,ii,jj) = val(cscreen,ii,jj) ?; 

SKIP 
NOT val(sscreen,ii,jj) = val(cscreen,ii,jj) ?; 

% if the cursor is not at (ii,jj) then put it there: 



5.6. IMPLEMENTING THE INTERNAL COMPONENTS 

) 

) ; 

scursor = (ii,jj) ?; SKIP 
NOT scursor = (ii,jj) ?; 

cm(ii,jj); 
set_scursor(ii,jj) 

( val(cscreen,ii,jj) blank ?; 

ce; 
sce 
NOT val(cscreen,ii,jj) • blank ?; 

print(val(cscreen,ii,jj)); 
upd(sscreen,ii,jj,val(cscreen,ii,jj)); 
( jj = pred(co) ?; set_scursor(ii,jj) 
I NOT jj = pred(co) ?; set_scursor(ii,succ(jj)) 
) 

423 

Weusedan auxiliary sce to he given below. It serves for modifying asereen 
corresponding to the effect of a "clear to end-of-line" ( ce) operation on the 
real screen. It has been programmed using recursion, which has the ad
vantage that we do not need another programming variable. We could also 
use this sce to simplify clear_sscreen, but this would disturb the analogy 
between clear_sscreen and clear_cscreen; of course we could redesign 
clear_cscreen, but we prefer to avoid such unnecessary backtraking in the 
development process. After all, the true reason for introducing sce lies here, 
where weneed it as a 'shadow'-version of ce. 

PROC sce: -> 
DEF sce(scursor) 

PROC sce: Nat # Nat -> 
PAR i:Nat,j:Nat 
DEF ( j • co ?; SKIP 

END; 

I NOT j = co ?; 
upd(sscreen,i,j,blank); 
sce(i,succ(j)) 

) 

% COMP DISPLAY_HANDLING :DISPLAY_HANDLING_SPEC:•DISPLAY_HANDLING_IMPL; 
% this is to replace an earlier primitive component. 

We conclude this section whith a remark. Although we tried to do better 
than the simplest algorithm of rewriting the entire screen every time when 
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update_screen is called, the resulting solution certainly is not optimal yet. 
One reason for this lies in the relatively restricted set of terminal capabilities 
which we assumed by adopting DISPLAY. Another reason is that we consider 
the search for highly sophisticated screen updating-algorithms outside the 
scope of this case study. 

5.6.9 lmplementing ATTR2 

It is not hard to give an implementation of ATTR2_SPEC using ATTR. 

LET ATTR2_IMPL :m 
LAMBDA X 
LAMBDA Y 
LAMBDA Z 

EXPORT 

CLASS SORT Inst FREE END OF 
CLASS SORT Iteml FREE END OF 
CLASS SORT Item2 FREE END OF 

SORT Inst, 
SORT Iteml, 
SORT Item2, 
FUNC attr Inst -> Iteml # Item2, 
PROC set_attr : Inst # Iteml # Item2 -> 

FROM 
IMPORT X INTO 
IMPORT Y INTO 
IMPORT Z INTO 

IMPORT 
APPLY APPLY RENAME SORT Item TO Iteml IN COPY(ATTR) TO X TO Y 

INTO 

IMPORT 
APPLY APPLY RENAME SORT Item TO Item2 IN COPY(ATTR) TO X TO Z 

INTO 

CLASS 

FUNC attr: Inst -> Iteml # Item2 
PAR i:Inst 
DEF (attr(i),attr(i)) 

PROC set_attr: Inst # Iteml # Item2 -> 
PAR i : Inst,v:Item1,w:Item2 
DEF set_attr(i,v); 

set_attr(i,w) 
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END; 

% COMP ATTR2 : ATTR2_SPEC := COPY(ATTR2_IMPL); 
% this is to replace an earlier primitive component. 

5.6.10 lmplementing SVAR 

We give an implementation of SVAR_SPEC where the procedure upd has 
been transformed into an algorithmic definition. We need not import any 
other components. The definitions below are considered executable be
cause it is very obvious how they could he mapped onto classica! imperative 
programming-language constructs. We could translate FUNC val: -> Item 
VAR into a declaration var val: Item; in Pascal or just Item val; in C. An 
assignment upd(i) would he translated into val := i in Pascal or val = 
i; in C. 

LET SVAR_IMPL := 
LAMBDA X : ITEM OF 

IMPORT X INTO 
CLASS 

FUNC val: -> Item VAR 

PROC upd: Item -> 
PAR i:Item 
DEF MOD val END; val = i 1 

AXIOM FORALL i:Item ( < upd(i) > TRUE ) 

END; 

% COMP SVAR : SVAR_SPEC :• COPY(SVAR_IMPL); 
% this is to replace an earlier postulated component. 

5.6.11 lmplementing 'STRING' 

We give an implementation using 'SEQ'. 

LET 'STRING_IMPL' :• 

IMPORT CHAR INTO 
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IMPORT 
APPLY RENAME 

SORT Seq 
SORT Item 
SORT 'Seq' 
SORT 'Item' 

TO String, 
TO Char, 
TO 'String' , 
TO Char, 

PRED seq_inv: TO string_inv 
IN 'SEQ' TO 

IMPORT CHAR INTO 
CLASS 

FUNC f: Char -> Char PAR c:Char DEF c 
PRED eq: Char # Char PAR c :Char,d :Char DEF c = d 
PRED i tem_inv: PAR NONE DEF TRUE 

END 

INTO 

and the only thing we must program explicitly here is the operation less. 
The definition for leas given below is derived from its specification (leas: 
'String' # 'String') and the definition of leas: String # String given 
in Chapter 4. The main goal of the transformation is to avoid evaluating sul>
expressions such as hd(s) and tl(s) when sis empty. 

CLASS 

PRED less: 'String' # 'String' 
PAR s: 'String', t: 'String' 
DEF eq(s,empty) {C}AND NOT eq(t,empty) 

END ; 

{C}OR ( NOT eq(s,empty) {C}AND NOT eq(t,empty) 
{C}AND ( lss(ord(hd(s)),ord(hd(t))) {C}OR 

hd(s) = hd(t) {C}AND less(tl(s),tl(t)) ) ) 

% COMP 'STRING' : 'STRING_SPEC' := 'STRING_IMPL'; 
% this is to replace an earlier primitive component . 

5.6.12 lmplementing ARRAY2 

We can give an implementation using BLOCK. 

LET ARRAY2_IMPL :z 
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LAMBDA X: DOMAIN1 OF 
LAMBDA Y: DOMAIN2 OF 
LAMBDA Z: ITEM OF 

IMPORT X INTO 
IMPORT Y INTO 
IMPORT Z INTO 
IMPORT NAT INTO 

IMPORT APPLY RENAME 
SORT Block TO Array2 

IN COPY(BLOCK) TO Z INTO 

CLASS 

PROC create: -> Array2 
DEF alloc(mul(sizel,size2)) 

FUNC val: Array2 # Nat # Nat -> Item 
PAR a:Array2,i :Nat,j:Nat 
DEF cont(a,add(mul(i,sizel),j)) 

PROC upd: Array2 # Nat # Nat # Item -> 
PAR a:Array2,i:Nat,j:Nat,x:Item 
DEF store(a,add(mul(i,sizel),j),x) 

END 

% COMP ARRAY2 : ARRAY2_SPEC : • COPY(ARRAY2_IMPL); 
% this is to replace an earlier primitive component. 
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Af ter this last design-transformation step deditor := td_step( deditor); we have 
arrived at the situation that bot( deditor) = db, i.e. no further steps are required 
and the top-down development process is completed. 

5.6.13 Arriving at an Editor Design 

This concludes our top-down development process and we formally state the 
system of the design deditor· 

SYSTEM WITEFA,MOREDOP,KEYBIND 

A rough sketch of the design obtained in this way is given in Appendix D. 
In a separate document [12], a number of diagrams are given which display 
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the structure of the resulting design in detail. 

5.7 Related work 

Partsch [7] describes the specification and transformation process of a line
oriented editor using a sugared version of CIP-1. It is interesting to compare 
this with the specification and implementation described before. 

A text is considered as a sequence of lines, just as in our formalisation. In 
the formal model of the editor, the text being edited is called the "current 
text file" and it is modelled as a triple (t1 , l, t2), where t1 is the text before 
the current line, l is the current line and t 2 is the text after the current line. 

This conceptual model is in fact not changed during the subsequent trans
formation process. This should be contrasted with our design, where there is 
more difference between the conceptual model of the text being edited (viz. 
an ok sequence of lines with two co-ordinate pairs) and the chosen repre
sentation (viz. an array with a gap and a bunch of pointers and co-ordinate 
pairs). We feel that, with our choice, we were in a better position for studying 
issues of data reification, modularisation and information hiding. 

It is interesting to compare our approach to data reification with Jones' ap
proach presented in [11]. As an example we take 'SEQ_SPEC' and 'SEQ_IMPL' 
from Chapter 4 and Appendix A respectively. The specification introduces 
the sort 'Seq' and an abstraction function f: 'Seq' -> Seq. Jones pro
poses similar functions, but calls them retrieve functions ( usually denoted 
as retr). In Jones' approach there are standardised proof obligations as
sociated with each abstraction function. The main difference with our ap
proach lies in the formal status of the proof obligations; in 'SEQ_SPEC' the 
proof obligations are written down explicitly as a part of the specification. 
These are the axioms labelled {ABSTRACTION}, e.g. containing the assertion 
item_inv AND seq_inv => Vs,t:'Seq', i,j:'Item' ( [LET u:'Seq'; 
u:= cons(i,s) ] f(u) = cons(f(i),f(s)) ). In Jones' approach one 
would have simHar assertions being part of the proof obligation. When 
these obligations are fullfilled, i.e. when the proof is given, this shows in 
Jones' terminology that cons: 'Item' # 'Seq' -> 'Seq' models cons: 
Item # Seq -> Seq, where strictly, this statement is with respect to the 
given abstraction function (f: 'Seq' -> Seq). In our approach, the prin
ciple of black-box correctness gives rise to the statement f f- 'SEQ_IMPL' Ç 
'SEQ_SPEC' where f provides information about BOOL, NAT, INST, ATTR etc. 
Showing this statement amounts to proving the axioms in 'SEQ_SPEC' from 
the definitions in 'SEQ_IMPL'. So essentially the same specification tech
niques and proof obligations are used, but the difference lies in the formal 
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status of the abstraction functions and the proof obligations. 

Let us also compare our work with the EMACS editor [4]. We maintained 
a kind of compatibility with EMACS at the level of procedure names. Also 
the chosen representation of texts is somewhat simHar to the representation 
chosen in EMACS. Without doubt, from the viewpoint of its amount of 
features and also of its efficiency the EMACS editor is superior to the editor 
constructed in this chapter. However, no attempts have been made to give a 
formal specification of it and as a consequence many features are of an ad-hoc 
nature. In this context we like to point out that our approach has by no means 
been pushed to its limits by this case study, and that certainly extensions 
and improvements to the current design can he made. The documentation of 
this EMACS takes the shape of comments in the C program text; but here we 
touch the weak spot of the EMACS design. For example, its so-called ultra
hot screen management package contains an explicit warning which suggests 
that the reader should not even try to understand this module, let alone 
make a modification in it. This is quite unacceptable from a methodological 
point of view and we feel that in this respect we did a better job. 

5.8 Looking Back 

In this section, we shall in restrospeet summarise the main lines of the work 
presented in this chapter. For an evaluation and conclusions we refer to 
the next section (5.9). One of the main purposes of constructing the design 
presented in this chapter was to illustrate the notions of component, black
box description and design as described in Chapter 2 and the correctness 
preserving transformations studied in Chapter 3. Furthermore we wanted to 
show how the language COLD-K can heusedas a tool for developing complex 
systems. Therefore, let us explicitly point out some of the interesting points 
encountered during this casestudy. 

In Section 5.2 we established the top dt of the editor design which was easy 
in view of the preparatory work of Chapter 4. This lead to the following 
conjunct of the post-condition of the development process: 

top{ d•ditor) = dt 

InSection 5.3 we established the bottorn of the editor design. We had toenter 
a kind of specification phase in order to descri he the available primitives. This 
lead to another conjunct of the post-condition of the development process: 
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In Section 5.5 we began a top-down development process, starting with 
the system components KEYBIND, MOREDOP and WITEF A. When implement
ing KEYBIND and MOREDOP we were lucky in the sense that we could do so in 
a rather trivial way. This was possible because the black-box descripions of 
these components were already in the right form. 

The next component tobedealt with was WITEFA and due to its complexity 
and the axiomatic style of its description, it was far less trivial to imple
ment. Another complication was the fact that we aimed at a high efficiency 
in terms of memory usage. Implementation of WITEF A began with choosing a 
suitable representation of marked texts. This was a crudal step in the devel
opment process and it was guided by efficiency considerations, both in terms 
of execution time and memory usage. Making this representation choice can 
be viewed as a data reification step. Programming of the various editing 
operations of the window-and-text facility had to be postponed in order to 
introduce the basic machinery of abstraction functions and representation 
invariants which was needed for this data reification. 

The knowledge of the algebraic systems related to the concept of text as 
investigated in Chapter 4 turned out useful. We decided to store texts as 
block-with-positions which was introduced as a variant of the string repre
sentation of texts. We decided to the store dot and mark in two ways. First 
of all they were stored as natural numbers and secondly their homomorphic 
images under the reach operation were stored as well - redundantly. The 
collection of algebraic systems studied in Chapter 4 immediately provided a 
collection of alternative ideas for this representation: we could have adopted 
the string representation or we could have added profiles redundantly. 

Insection 5.6 the top-down development process was continued. The newly 
postulated components were implemented which lead again to the introdue
tion of new components etc. This went on until at the end of Section 5.6 
only the primitives given in Section 5.3 were left. 

Let us discuss the well-known advantages and disadvantages of top-down 
development in the context of this Section 5.6. The main advantage is the 
possibility of having a separation of concerns. When implementing WITEFA 
we needed not worry about the problems of satisfying the window-invariant 
WI, except for the simple fact that at the end of every buffer modification 
we inserted a mod_dot_restore or mod_ text_restore invocation. The fact 
that at that phase of the development process there was no implementation of 
mod_dot_restore or mod_text_restore available made it impossible to use 
hidden implementation details. This is an illustration of Chapter 3 remark 
3.4.9. (ii). The disadvantage of top-down development is that one has to take 
a certain risk by postulating components; for WI_PACKAGE it was not entirely 
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clear in advance that sufficiently efficient algorithms for mod_text_restore 
and mod_dot_restore could he found. 

The next component to he implemented was WI_PACKAGE and again we found 
a workable decomposition of its functionality by adopting a two-phase ap
proach for the execution of its procedures. The interface was given by the 
data structures of CONCEPT_VARS which includes a two-dimensional array. 
We had to postulate a component 
DISPLAY _HANDLING thereby getting the possibility of not worrying (yet) about 
the actual screen-updating. Later, when implementing DISPLAY_HANDLING 
we were able to demonstrate how the postcondition specification and the 
efficiency requirements guided us quite elegantly to an algorithm which per
farms much better than the simplest algorithm, of rewriting the entire screen 
every time. 

Furthermore we had to implement some data type components such as ATTR2, 
SVAR etc. Finally at the end of Section 5.6 we arrived at the situation 

where furthermore the black-box correctnessof dtditor could he assumed. 

Our approach with respect to the degree of formalisation was based on the 
so-called rigorous approach; the black-box descriptions and the glass-box 
descriptions are in a formallanguage, but there are no forma! proof objects 
as such. This means that there is no absolute certainty about the black
box correctness of deditor but the degree of formalisation allows for a fast 
and convincing analysis of the correctness of a certain component when the 
suspicion arises that there is a weak spot. 

In the Appendix A we give a design dbtuic such that the composition of dtditor 

and dbtuic is black-box valid. This means that we can construct the design 

dtditor 0 dbtuic 

whose black-box correctness follows from the black-box correctness of deditor 

and dbtuic and the black-box validation of their composition by Chapter 3 
lemma 3.3.14 (ii). Very much in the same way one could conceive another 
design, dtop-l4yer say, where we could add more sophisticated features to the 
editor, such as dynamic keybinding and programmability. Such a layer would 
yield another example of the o operator when we would construct dtop-l4yer o 
dtditor· We had to restriet ourselves, and we undertook the construction of 
dba.oic but we spent no effort on dtop-layer· 

The design deditor o dbtuic was the starting point for an activity of system in
tegration and code generation. This was performed manually, which was 
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doable, but which in fact also can be automated. In Appendix C we give 
the C program resulting from the composition of the editor design and the 
design of Appendix A. In Appendix C we briefly discuss some of the technica} 
points which arose during this manual process of code generation. 

5.9 Evaluation 

After all the effort spent on the editor case-study, it is time to evaluate the 
entire approach and to drawsome conclusions. 

lt is interesting to compare the relative sizes of the specification part of the 
editor (Chapter 4) and the implementation part (this chapter), which do not 
differ very much. At first sight this might seem strange, for one might expect 
specifications to be abstract and hence compact, whereas implementations 
tend to be complicated by efficiency considerations and executability con
straints. So, we seem to have the situation I spec I ~ I impll whereas one 
might expect I spec I ~ I impll. In order to explain this, let us analyse the 
situation in more detail. First of all, the chapter on the specification part 
of the editor (Chapter 4) is more than just the specification of one editor: 
it also contains a general-purpose library of standard modules (BOOL_SPEC, 
NAT_SPEC, CHAR_SPEC etc.), a formalisation of the application domain which 
is text editing and also models of the interfaces of the editor with its envi
ronment, viz. the display and the file-system. If we consider these things as 
a vocabulary which is not a part of the actual editor-specification, we get a 
much more restricted notion of 'specification'. Assuming the latter notion 
of specification, we have that I spec I ~ tl (Chapter 4) I· But it would not be 
fair to conclude that thus the specification is much smaller than the imple
mentation indeed, because when we have a closer look to the structure of 
this chapter, we see that it contains much more than just 'implementations'. 
First of all we have again the phenomenon that the interfaces of the im
plementations are made explicit (INST_SPEC, ATTR_SPEC, BLOCK_SPEC etc.). 
Secondly this chapter contains much more than one monolithic implementa
tion, but a large part of it consists of intermediate specifications, i.e. black
box descriptions of internal components (ATTR2_SPEC, WI_PACKAGE_SPEC, 
DISPLAY_HANDLING_SPEC etc.). It is also worth noting that formally all texts 
from Chapter 4 are part of the final composite design deditor o dbiUic· Certain 
operations from the specification are already executable and are used in that 
way indeed (e.g. cut and paste operations on reaches). To give some fig-

. ures: I deditor I ~ 4000 lines whereas the C translation of the final composite 
design I C(deditor o dba.tc) I~ 2000 lines. Many partsof the COLD texts which 
are translated yield, roughly speaking, one line C text for each line of COLD 



5.9. EVALUATION 433 

text. In terms of 'number of lines', db<uic does not contri hu te much to the total 
composite design. To conclude our analysis, we see that I spec I ~ I impll is a 
rather imprecise statement, due to the presence of general-purpose descrip
tions and intermediate-level descriptions. Our designs contain much more 
than just a top-level specification of the product and its implementation: 
they contain much additional descriptions, making various notions and in
terfaces explicit, which is necessary for reasoning about program-correctness 
and for making the resulting product maintainable. 

Now we turn our attention to the evaluation of the usefulness of COLD-K 
for the development of a complex system - as this editor is. The fact that 
COLD-K is a wide-spectrum language turned out very useful: we used both 
axiomatic descriptions (e.g. in the library) and algori thmic definitions (cut 
and paste operations on texts, implementation of the editor operations etc.). 
Furthermore we used both static descriptions (e.g. in the library and for 
all opera ti ons on texts) and state-based descriptions (e.g. for the display, 
the file-system, the editor operations, blocks, buffers etc.). In this way we 
were able to choose among several styles of descriptions, depending on the 
partienlar problem at hand, and also depending on matters of naturalness 
and even of taste. This can he considered as an advantage of COLD-K over 
more restricted formalisros such as algebraic specification languages. 

We were able to mimiek both the algorithmic constructs and the data-types of 
languages such as Pascal and C very well, although of course a code-generator 
would have been of help. The task of translating COLD-K texts to C did 
not take much time (5% of the total timespent on this casestudy, say) but 
there are additional advantages of having an automatic code-generator, viz. 
the standardisation of the translation and the possibility to do prototyping. 
There are no fundamental technical obstacles for the construction of such 
a code-generator for a reasanabie subset of COLD-K (or some other COLD 
version). This should he viewed as an advantage, which in the future could 
leadtoa further increase in attractiveness of the approach where the theory 
of Chapter 2 and Chapter 3 is instantiated by COLD-K. A weak point of the 
current manual approach is that maintaining the consistency of the COLD-K 
text and the C text must he done manually as well. When making design 
modifications or when correcting design errors (yes, we made some), a very 
error-prone situation arises. 

Let us have a look at the syntax of COLD-K, which at some points is not 
optimal with respect to user-friendliness. For example insteadof add(p,q) 
one would like to write p + q and also one would like to have short notations 
for the frequently occurring renaming and application expressions of param
eterised data types, writing SEQ [Nat] instead of APPL Y REN AME SORT Item 
TO Nat IN SEQ TO NAT. Language versionsof COLDareon their way where 
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this will be remedied but at the time this casestudy was done, no such ver
sion was available yet. Anyway it was worthwhile to undertake one or more 
serious applications with COLD-K before embarking on the construction of 
yet another language version. Furthermore, as this case study shows, the fact 
that certain syntactic sugar is missing is not essential for the applicability of 
the language. It might lead to writing 50% more text, say, and some clumsy 
notations but that is no serious obstacle for applicability, of course. The 
availability of powerful abstraction mechanisms and structuring mechanisms 
is much more essential. 

As a next topic we shall review the resulting editor, viewed as a product plus 
its documentation. The editor design takes reasonable efficiency considera
tions into account, based on the assumptions that display communication is 
expensive and that any a-priori restrietion to the size of the texts would be 
unacceptable. Furthermore we assumed that the ratio 
I text stared I/ I memory used I should be close to 1 rather than Î• and this has 
been achieved by using dynamic memory allocation primitives and the tech
nique of having a movable gap in each buffer. Also the implementations of 
strings and tables are quite efficient; in fact the tables even could have been 
simpler for the restricted use made of them when employing the editor via 
KEYBIND {there are only 3 names) . Ifwe would undertake the construction of 
a higher-level design dwp-1411." the complications of our table implementation 
could turn out worthwhile. There are also certain operations which have 
a relatively poor performance, but in these cases it is also easy to see why 
this is the case and how to improve it when needed. An example of this is 
the insert_file operation which takes 43 seconds to insert a lOOK text-file 
on a SUN 3/50. As it turns out, this operation spends 70% of its time to 
paste {0, 1) reaches in the pair-wise mark and reach attributes. But there 
is an obvious black-box correctness preserving glass-box modification {bbc
preserving gb-mod in the terminology of Chapter 2) to remedy this: modify 
WITEFA_IMPL to make insert_file operate on the buffer directly insteadof 
via insert_character and use two auxiliary counters of sort Nat to keep 
track of the reach of the inserted text; in this way the new mark and the new 
reach can be found by just one application of paste for each. 

Let us have a look at the efficiency of some typical editor operations: to 
insert a character at the end of a short (i.e. < co - 1) line takes 58 ms, 
which is fast enough to respond to manual typing. To insert a character 
at the beginning of a typical text line ( = 40 characters, say) takes about 
100 ms; the 100 ms is when using a VTlOO emulation on a SUN whereas 
this time is three or more times higher when using a 1200 Bd terminal con
nection. In the latter case the terminal conneetion has become the bot
tleneck. To perfarm a wri te_named_file operation takes 2.5 seconds for 
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a lOOK text-file. We 'profiled' the editor during a short typical edit ses
sion where a 70 lines document was updated by addition of a few lines of 
text and several other small modifications. As it tumed out, the editor 
spent 87% of time on mod_text_restore and 1.5% on mod_dot_restore. 
These mod_ .. . _re a tore's invoke cscreen_build and update_screen and 
the editor spent 61% and 25% of its time on the latter two procedures re
spectively. The execution speed of most typical editor operations depends 
neither on the number of lines in the text being edited nor on the posi
tion of the dot - obvious exceptions being search_forward, insert_file 
and wri te_named_file. So when inserting characters, it does not matter 
whether the dot is at the begining of a short text or in the middle of a lOOK . 
text. This advantage is due to our choice of the buffer data structures and 
the mover _ to_origin_line algorithm. The resulting editor has been used 
on several occasions and it turns out to he usable, though of course it is not 
the fastest and most sophisticated editor currently available. We conclude 
that theeditoris quite usabiefroman efficiency point of view, but this does 
not mean that it is a true product which is ready forsales and distribution 
- this was not the purpose of the case study after all. Especially when con
siclering the moderate assumptions on the display-capabilities and the fact 
that wetook no special efforts to push the execution speed to its limits, we 
can from an efficiency viewpoint regard the editor experiment as relatively 
successful. 

We must also review the documentation of the editor, which consistsof Chap
ter 4 and this chapter. It provides for a formal description of all functional 
aspectsof the editor design as wellas for informal explanations. The strong 
point of our approach is that all interfaces with the environment of the editor 
have been made explicit and that there are specifications at several levels. 
This documentation (Chapter 4 and this chapter) is quite voluminous and 
maybe it is hard work fora reader to get completely through it, but it is im
portant to realise that these chapters contain a complete description of the 
editor design, including all details of its interfaces and with very accurate 
specifications of all data-types involved; furthermore we dealt with various 
exceptional cases which tend to complicate the design, such as the case of 
the cursor reaching the end of a line or the bottorn of the screen, the case of 
trying to move the dot rightwards when at the end of a text line etc. Alto
gether, this editor is a relatively large and complex software system. It can 
be expected that due to its completeness and its component structure, the 
editor design will be 'robust' for various farms of design evolution and effi
ciency improvements. The theory of correctness-preserving transformations 
on designs from Chapter 2 and Chapter 3 is applicable here: in particular, 
since the principle of black-box correctness has been adopted, many effi
ciency improvements can take the shape of black-box correctness preserving 
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glass-box modifications - meaning that there is a 'locality principle' which 
can yield a significant reduction of the verification task. It can he expected 
that this editor provides an excellent starting point for further optimisations 
and extensions. By way of example we mention two such extensions: to add 
multi-window features to the editor and to add a layer of dynamic keybinding 
and programmability. 

We shall now explicitly point out two places in the entire documentation 
which can he considered as successul and elegant. These are the following: 

• the formalisation of 'text', which lead to a rich colledion of algebraic 
operations on texts and to the 'discovery' of elegant algebraic laws and 
of several important homomorphic mappings, 

• the description of the buffer data-structure which we could describe 
completely formally together with its invariant properties ( gapl(b) ~ 
gap2(b), dot(b) fl. gap(b) etc.) and several more subtie buffer properties 
such as ready and space. 

They show how forma! descriptions and efficiency considerations can go hand 
in hand. Note how the ready and space properties play a central role in the 
efficiency of dot-movements and text-modifications. 

We must admit that the current documentation includes neither a user
manual nor diagrams showing some hierarchical decomposition of the editor; 
but this should not he viewed as a weak point of our approach. On the 
contrary, the forma! specification of the editor provides an excellent starting 
point for writing a user manual - which is something different from the de
sign documentation. The fact that the entire design is available as a formal 
text, makes it possible to have certain types of diagrams generated automat
ically, and indeed this has been done using van den Bos en van Ommering's 
graphicallanguage POLAR. The reader is refered to [12] for the actual dia
grams- which are quite helpful. These diagrams show how the various bits 
and pieces are put together, by means of a compact presentation-in-the-large 
of both deditcr and dbanc. This should he compared with the situation often 
encountered in current industrial practice, where the diagrams come instead 
of essential design documentation. 

To conclude, let us once more explicitly reeall the main achlevement of the 
editor casestudy which is that it providesus with a large and realistic exam
ple of the notion of design developed in Chapter 2 and several applications 
of the theory concerning design transformations from Chapter 3. 
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Appendix A 

A Lower Design Layer 

A.l.l Introduetion 

In this appendix we descri he the development of a design d/Huic which provides 
for a few basic data types. In the context of the development of an editor, 
it can he viewed as a design-layer below the editor design. It provides for 
implementations of 'SEQ' and TABLE. The 'interfaces' of d/Huic have been 
chosen such that its system fits into the primitive components of dedit<>r· In 
the terminology of Chapter 3 this can he stated more formally as: "the pair 
( d~;tcr1 d!Huic) is black-box valid". 

A.1.2 The Top of the Lower Design Layer 

The design top(d!Huic), is shown below. At the position of the dotsin this de
sign we assume LET-constructs introducing the narnes BOOL_SPEC, NAT_SPEC, 
CHAR_SPEC etc. This top design contains all essential information for check
ing the (black-box) validation of d/Huic with respect to d.ditor· Therefore, this 
top design should match the bottorn design given in Section 5.3.6. 

DESIGN 

COMP BOOL 
COMP NAT 
COMP CHAR 
COMP INST 
COMP ATTR 

BOOL_SPEC; 
NAT_SPEC; 
CHAR_SPEC; 
INST_SPEC; 
ATTR_SPEC; 

COMP BLOCK BLOCK_SPEC ; 
COMP DISPLAY: DISPLAY_SPEC; 
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COMP FILE 

COMP 'SEQ' 
COMP TABLE 

FILE_SPEC; 

'SEQ_SPEC' ; 
TABLE_SPEC 

SYSTEM BOOL,NAT,CHAR,INST,ATTR,'SEQ' ,TABLE,BLOCK,DISPLAY,FILE 

A.1.3 The Bottom of the Lower Design Layer 
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The design bot(dbcuic), i.e. the bottorn of our lower design layer is given 
below. At the position of the dots in the bottorn design below we assurne a 
number of LET abbreviations, introducing the narnes BOOL_SPEC, NAT_SPEC, 
CHAR_SPEC etc. This bottorn design also includes the cornponents BLOCK, 
DISPLAY, and FILE which play no role in this design except forthefact that 
they are sirnply passed on to next higher design layer. This bottorn does not 

include cornponents 1 SEQ 1
, and T ABLE because it is precisely the purpose of 

the design dbcuic to provide irnplernentations for these. 

DESIGN 

COMP BOOL 
COMP NAT 
COMP CHAR 
COMP INST 
COMP ATTR 

COMP BLOCK 

BOOL_SPEC; 
NAT_SPEC; 
CHAR_SPEC; 
INST_SPEC; 
ATTR_SPEC; 

BLOCK_SPEC; 
COMP DISPLAY: DISPLAY_SPEC; 
COMP FILE FILE_SPEC 

SYSTEM NONE 

A.1.4 Implementing the System Components 

A.l.4.1 Introduetion 

We begin a simple developrnent process and we start with the top design given 
in Section A.1.2. This yields the design consisting of the keyword DESIGN 
and a large nurnber of LET abbreviations including those for BOOL_SPEC, 
NAT_SPEC, CHAR_SPEC, INST_SPEC,ATTR_SPEC, BLOCK_SPEC, DISPLAY_SPEC, 
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FILE_SPEC, 'SEQ_SPEC', and TABLE_SPEC given before, foliowed by the fol
lowing components: 

COMP BOOL BOOL_SPEC; 
COMP NAT NAT_SPEC; 
COMP CHAR CHAR_SPEC; 
COMP INST INST_SPEC; 
COMP ATTR ATTR_SPEC; 

COMP BLOCK BLOCK_SPEC; 
COMP DISPLAY: DISPLAl_SPEC; 
COMP FILE FILE_SPEC; 

{(!!} COMP 'SEQ' 'SEQ_SPEC ' ; 
{(!!} COMP TABLE TABLE_SPEC; 

and ha ving as a system BOOL, NAT, CHAR, INST, ATTR, 'SEQ ' , T ABLE, BLOCK, 
DISPLAY, FILE. The black-box descriptions of this design remain unchanged 
from now on. Again the symbol {«!} means "this is going to he replaced 
later". Just as we did with dedüor, we have mixed the formal texts with 
informal descriptions such that we can present the various stages of the de
velopment process in an incremental fashion and such that there is a me
chanica} operation of extracting all formal texts to get one design which can 
he syntax- and type-checked. Trivially, the above initial design is black-box 
correct. For this simple design there will he no difference between a top-down 
and a bottorn-up development process. Note that we just have to implement 
'SEQ' and TABLE and these can he independent. When TABLE would use 
'SEQ ', or conversely, there would he a difference, but as it happens, this will 
not he the case. 

A.1.4.2 lmplementing Sequences 

Reeall the data type of implementable sequences whose specification was 
given already in Chapter 4. Below an implementation of these sequences is 
given. It is based on the idea of linked lists and we use an attribute-oriented 
approach. The application of the export operator below is not strictly re
quired, but the reader may appreciate it here because the export signature 
serves as a summary of what is required by the specification. 

LET 'SEQ_IMPL' := 

LAMBDA X : 'ITEM' OF 
EXPORT 
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SORT Seq, 
PRED seq_inv : , 
FUNC t : 'Seq' -> Seq. 

SORT 'Seq', 
SORT Nat, 
SORT 'Item', 
FUNC empty -> 'Seq', 
PROC cons 'Item' # 'Seq' -> 'Seq', 
FUNC hd 'Seq' -> 'Item', 
FUNC tl 'Seq' -> 'Seq', 
PRED eq 'Seq' # 'Seq' 
FUNC sel 'Seq' # Nat -> 'Item', 
PROC cat 'Seq' # 'Seq' -> 'Seq', 
PROC rev 'Seq' -> 'Seq' 

FROM 

Next we shall introduce several local definitions. 'S_INST' introduces the 
sort 'Seq' as a renamed version of Inst. SEQ_ITEM introduces sequences of 
items. More precisely, it exports the sorts Item, Nat, Bag, Seq, the predicate 
empty and the operations cons, hd, tl, len, sel, cat, rev and bag. 

LET 'S_INST' := 

RENAME 
SORT Inst TO 'Seq' 

IN INST; 

LET SEQ_ITEM := 
APPLY 

SEQ_SPEC 
TO X; 

'S_INST_ITEM' and 'S_INST_NEXT' serve for associating item and next 
attributes to 'Seq' objects respectively. Let us analyse the structure of 
'S_INST_ITEM' below in detail. It consists of a renamed version of ATTR 
which is applied to two actual parameters, viz. 'S_INST' and X. This 
renamed version of ATTR is a parameterised description which requires a 
sort 'Seq' for its first parameter and a sort 'Item' for its second param
eter; it exports the sorts 'Seq' and 'Item', the function i tem: 'Seq' - > 
'Item' and the procedure set_item: 'Seq' # 'Item' -> . The definition 
of 'S_INST_NEXT' is very similar to that of 'S_INST_ITEM'. 

LET 'S_INST_ITEM' :~ 
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APPLY APPLY 
RENAME 

SORT Inst 
SORT Item 
FUNC attr 
PROC set_attr: 

IN COPY(ATTR) 
TO 'S_INST' TO X; 

LET 'S_INST_NEXT' :• 
APPLY APPLY 

RENAME 
SORT Inst 
SORT Item 
FUNC attr 

Inst 
Inst 

Inst 

# Item 

5. DESIGN OF A TEXT EDITOR 

TO 'Seq', 
TO 'Item', 

-> Item TO item, 
-> TO set_item 

TO 'Seq', 
TO 'Seq', 

-> Item TO next, 
PROC set_attr : Inst # Item -> 

IN COPY(ATTR) 
TO set_next 

TO 'S_INST' TO 'S_INST'; 

% end o! local de!initions 

IMPORT X INTO 
IMPORT NAT INTO 
IMPORT 'S_INST' INTO 
IMPORT SEQ_ITEM INTO 
IMPORT 'S_INST_ITEM' INTO 
IMPORT 'S_INST_NEXT' INTO 

CLASS 

The invariant seq_inv presented below states that each 'Seq' object rep
resents a defined sequence; in view of the given abstraction function f this 
implies that the graph of the next attribute is cycle-free. 

PRED seq_inv: 
DEF FORALL s : 'Seq' ( !(s)! ) 

FUNC ! : 'Seq' -> Seq 
PAR n: 'Seq' 
DEF ( n • nil ?; empty 

I NOT n = nil ?; cons(!(item(n)),!(next(n))) 
) 

FUNC empty: -> 'Seq' 
DEF nil 
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PROC con8: 'Item' # 'Seq' -> 'Seq' 
PAR c: 'Item' ,8: 'Seq' 
DEF LET t : 'Seq'; t := create; 

8et_item(t,c); 
8et_next(t,8); 
t 

FUNC hd: 'Seq' -> 'Item' 
PAR 8 : 'Seq' 
DEF item(8) 

FUNC tl: 'Seq' -> 'Seq' 
PAR 8: 'Seq' 
DEF next(8) 

PRED eq: 'Seq' # 'Seq' 
PAR 8: 'Seq', t: 'Seq' 
DEF 8 = t {C}OR 

NOT(8 = nil) AND NOT(t = nil) 
{C}AND eq(hd(s),hd(t)) {C}AND eq(tl(8),tl(t)) 

FUNC 8el: 'Seq' # Nat -> 'Item' 
PAR 8: 'Seq', n:Nat 
DEF ( n = 0 ?; hd(8) 

I NOT n = 0 ?; sel(tl(8),pred(n)) 
) 

PROC cat: 'Seq' # 'Seq' -> 'Seq' 
PAR 8: 'Seq', t : 'Seq' 
DEF ( 8 = nil ?; t 

I NOT s = nil ?; con8(hd(s),cat(tl(8),t)) 
) 

% If both 8 and t are sequence8, then revap(8,t) 
% appends "the rever8e of s" to t. 

PROC revap: 'Seq' # 'Seq' -> 'Seq' 
PAR 8: 'Seq', t: 'Seq' 
DEF ( 8 = nil ?; t 

I NOT 8 = nil ?; revap(tl(8),cons(hd(8),t)) 
) 

PROC rev: 'Seq' -> 'Seq' 
PAR 8: 'Seq' 
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DEF revap(s,empty) 

END; 

% COMP 1 SEQ 1 
: 

1 SEQ_SPEC 1 
:• 

1 SEQ_IMPL 1 

% this is to replace an earlier primitive component. 

A.1.4.3 lmplementing Tables 

Below an implementation of tables is given. It is based on the use of bi
nary trees. We rep/ace the original Map attribute {function map: Tabla -> 
Map from TABLE_SPEC) by a Node attribute, where each Node object at its 
turn is attributed by 1 Item1', Item2 attributes and two Node attributes. 
Our implementation should he compared with [6] Algorithm 4.52. We shall 
easily avoid Wirth's var parameters by using procedures with one or more 
result parameters. We considered Jonkers' four-step transformation tech
nique [3] which would mean to {1) add new attributes andrelate them to the 
old attributes, {2) add assignments to the new attributes, {3) use the new 
attributes and ( 4) to remove the original attributes. This would he a nat
ural continuation of the attribute-oriented approach adopted already in the 
specification TABLE_SPEC. We did not employ this transformation technique 
however, because the last step of removing the original Map attribute could 
not be justified in terms of the formal implementation relation mentioned in 
Section 5.1 - although from a practical point of view it seems acceptable. 
Again the export operator below is not strictly needed. 

LET TABLE_IMPL := 

LAMBDA X 
LAMBDA Y 

EXPORT 

1 SL01' OF 
ITEM2 OF 

SORT Map, 
SORT Item!, 
FUNC map: Table -> Map, 
FUNC app : Map # Item! -> Item2, 

SORT Bool, 
SORT Table, 
SORT Item2, 
SORT 'Item! 1 

, 

PRED table_inv : , 
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PROC new -> Table, 
PROC add Table # 'Item!' # Item2 -> 
PROC rem Table # 'Item!' -> 
PROC app Table # 'Item!' -> Item2, 
PROC is_in_dom: 'Item!' # Table -> Bool 

FROM 

Now we get severallocal definitions. T_INST below introduces the sart Table. 
MAP _FROM_SL01_TO_ITEM2 introduces the sart Map of finite maps from Item1 
to Item2. NODE_INST introduces the sart of Node of so-called nodes. 
SET_OF _NODE introduces sets of thesenodes- with associated set operations 
ins, is_in, union etc. We introduce SET_OF _NODE because when formulating 
the representation invariant table_inv, we need to speak about the set of 
nodesin a (sub)tree. NODE_SL01, NODE_ITEM2, NODE_LEFT, and NODE_RIGHT 
associate various attributes with thesenodes and as a result, every node has 
the following attributes: i tem1, i tem2, leftand right. Finally TABLE_ROOT 
associates a so-called root-node with every table. 

LET T_INST := 
RENAME 

SORT lnst TO Table 
IN INST; 

LET MAP_FROM_SL01_TO_ITEM2 ·= 
APPLY APPLY 

MAP_SPEC 
TO X TO Y; 

LET NODE_INST ·= 
RÉNAME 

SORT Inst TO Node 
IN INST; 

LET SET_OF_NODE:= 
APPLY 

RENAME 
SORT Item TO Node, 
SORT Set TO Nodeset 

IN SET_SPEC 
TO NODE_INST; 

LET NODE_SL01 := 
APPLY APPLY 
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RENAME 
SORT Inst TO Node, 
SORT Item TO 'Iteml', 
FUNC attr Inst -> Item TO iteml, 
PROC set_attr: Inst # Item -> TO set_iteml 

IN COPY(ATTR) 
TO NODE_INST TO X; 

LET NODE_ITEM2 : = 

APPLY APPLY 
RENAME 

SORT Inst TO Node, 
SORT Item TO Item2, 
FUNC attr Inst -> Item TO item2, 
PROC set_attr : Inst # Item -> TO set_item2 

IN COPY(ATTR) 
TO NODE_INST TO Y; 

LET NODE_LEFT := 
APPLY APPLY 

RENAME 
SORT Inst TO Node, 
SORT Item TO Node, 
FUNC attr Inst -> Item TO left, 
PROC set_attr: Inst # Item -> TO set_left 

IN COPY(ATTR) 
TO NODE_INST TO NODE_INST; 

LET NODE_RIGHT:s 
APPLY APPLY 

RENAME 
SORT Inst TO Node, 
SORT Item TO Node, 
FUNC attr Inst -> Item TO right, 
PROC set_attr: In st # Item -> TO set_right 

IN COPY(ATTR) 
TO NODE_INST TO NODE_INST; 

LET TABLE_ROOT 
APPLY APPLY 

RENAME 
SORT Inst TO Table, 
SORT Item TO Node, 
FUNC attr Inst -> Item TO root, 
PROC set_attr: Inst # Item -> TO set_root 
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IN COPY(ATTR) 
TO T_INST TO NODE_INST; 

% end of local definitions 

IMPORT X 
IMPORT Y 
IMPORT BOOL 
IMPORT T_INST 
IMPORT MAP_FROM_SL01_TO_ITEM2 
IMPORT NODE_INST 
IMPORT SET_OF_NODE 
IMPORT NODE_SLOl 
IMPORT NODE_ITEM2 
IMPORT NODE_LEFT 
IMPORT NODE_RIGHT 
IMPORT TABLE_ROOT 
CLASS 

FUNC nodes: Table -> Nodeset 
PAR t:Table 
DEF nodes(root(t)) 

FUNC nodes: Node -> Nodeset 
PAR n:Node 
DEF ( n • nil ?; empty 
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INTO 
INTO 
INTO 
INTO 
INTO 
INTO 
INTO 
INTO 
INTO 
INTO 
INTO 
INTO 

I NOT n • nil ?; ins(n,union(nodes(left(n)),nodes(right(n)))) 
) 

PRED table_inv: DEF 

{1} FORALL t:Table,u:Table 
(NOT t =u=> isect(nodes(t),nodes(u)) empty ); 

{2} FORALL m:Node,n:Node 
( NOT n = nil => 

( is_in(m,nodes(left(n))) => less(iteml(m),iteml(n)); 
is_in(m,nodes(right(n))) => less(iteml(n),iteml(m)) ) ) 

FUNC map: Table -> Map 
PAR t:Table 
DEF SOME p :Map 

( FORALL i : Iteml, j:Item2 
( app(p,i) = j <=> 

EXISTS n:Node 
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( is_in(n,nodes(root(t))); 
:f(iteml(n)) • i; 
item2(n) z j ) ) ) 
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Now we can implement the procedure new which was specified by LET t: Table; 
t := create; set_map(t,empty); t. Wepreservethesequentialstructure 
of this definition, but the assignment set_map(t,empty) is replaced by an 
assignment of nil to the root-node attribute. Because we defined the map at
tribute in termsof the root-node attribute, this replacement is justified when 
we can show that assigning nil to the root-node makes the map attribute 
empty indeed. The map of a table is the map of its root-node and because 
nodes (nil) is the empty set, we get (by definition of map: Node -> Map) a 
map p with the property Vi, j (app(p, f(i)) = j # 3n : Node (n E 0 1\ .• . )). 

This is the empty map. 

PROC new: -> Table 
DEF LET t:Table; t :• create; 

set_root(t,nil); 
t 

The remairring procedures are dealt with in a very similar way. Some of 
these were specified by a case-analysis on the invariant table_inv, such that 
here we need not worry about what happens when the invariant does not 
hold: an arbitrary modification of all attributes is allowed in that case. In 
the other case, the specification prescribes that a certain assignment to the 
map attribute must take place. E.g. for add(t, i, j) this is 
set_map(t,add(map(t) ,f(i) ,j)). Again this is established by an assign
ment to the root-node. 

PRDC add: Table # 'lteml' # Item2 -> 
PAR t:Table,i: 'ltem1',j:Item2 
DEF set_root(t,add(root(t),i,j)) 

PROC add: Node # 'lteml' # Item2 ->Node 
PAR n:Node,i: 'lteml',j :Item2 
DEF ( n = nil?; 

LET m:Node; m :• create; 
set_iteml(m,i); 
set_item2(m, j); 
set_le:ft(m,nil); 
set_right(m,nil); 
m 

NOT n ~ nil AND eq(i,iteml(n)) ?; 
set_i tem2 (n, j) ; 
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) 

n 

NOT n = nil AND less(i,iteml(n)) ?; 

set_lett(n,add(lett(n),i,j)); 
n 

NOT n = nil AND less(iteml(n),i) ?; 
set_right(n,add(right(n),i,j)); 
n 

PROC rem: Table # 'Iteml' -> 
PAR t:Table,i: 'Iteml' 
DEF set_root(t,delete(root(t),i)) 

PROC delete: Node # 'lteml' -> Node 
PAR n:Node, i: 'Iteml' 
DEF ( n = nil ?; 

n 
NOT n = nil AND less(i,iteml(n)) ?; 

set_lett(n,delete(lett(n),i)); 
n 

NOT n = nil AND less(iteml(n),i) ?; 

set_right(n,delete(right(n),i)); 
n 
NOT n = nil AND eq(i,iteml(n)) ? ; 

( lett(n) = nil ?; 

right(n) 

) 

right(n) = nil ?; 

lett(n) 
NOT lett(n) = nil AND NOT right(n) = nil ?; 

LET m: Node, j : 'Iteml', k : Item2; · 
m,j ,k := del(lett(n)); 
set_lett(n,m); set_iteml(n,j); set_item2(n,k); 
n 
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We used an auxiliary function del to delete the right-most node in a tree, i.e. 
the one with the largest i tem1 value; its result consistsof (1} the modified tree 
and (2} the i teml, i tem2 valnes of the deleted node. Somewhat more for
mally, del (n) could be specified as follows LET i: 'Iteml' , j : Item2; i, j 
:= rightmost(n); set_map(n,rem(map(n) ,f(i))); n,i,j. The function 
rightmost is defined recursively below. 
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FUNC rightmost: Node -> 'Iteml' t Item2 
PAR n:Node 
DEF NOT n • nil ?; 

( right(n) • nil ?; iteml(n), item2(n) 
I NOT right(n) • nil ?; rightmost(right(n)) 
) 

PROC del: Node ->Node# 'lteml' t Item2 
PAR n :Node 
DEF ( NOT right(n) • nil ? ; 

) 

LET m:Node,i : 'Iteml',j:Item2; 
m,i,j := del(right(n)); 
set_right(n,m); 
n,i ,j 
right(n) m nil ? ; 

left(n), iteml(n), item2(n) 

PROC app: Node # 'lteml' -> Item2 
PAR n : Node,i : 'lteml' 
DEF ( eq(i,iteml(n)) ? ; 

item2(n) 
less(i,iteml(n)) ?; 

app(left(n),i) 
less(iteml(n),i) ?; 

app(right(n),i) 

PROC app: Table # 'lteml ' -> Item2 
PAR t :Table,i : 'Iteml' 
DEF app(root(t),i) 

PROC is_in_dom : 'lteml' #Node-> Bool 
PAR i : 'Iteml' ,n:Node 
DEF ( n = nil ?; 

) 

false 
NOT n = nil AND eq(i,iteml(n)) ? ; 

true 
NOT n = nil AND less(i,iteml(n)) ?; 
is_in_dom(i,left(n)) 
NOT n = nil AND less(iteml(n),i) ? ; 
is_in_dom(i,right(n)) 
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PROC is_in_dom: 'Iteml' # Table -> Bool 
PAR i: 'Iteml' ,t:Table 
DEF is_in_dom(i,root(t)) 

END 
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The above implementation contains several functions and predicates which 
need not he executable but which are needed for reasoning purposes: both 
nodes and both map functions, rightmost and of course table_inv. 

% COMP TABLE : TABLE_SPEC := TABLE_IMPL 
% this is to replace an earlier primitive component. 

The structure of the lower design layer db<uic is given by its initial design 
{Section A.1.4.1) and the two replacements discussed in Sectiens A.1.4.2 and 
A.1.4.3. We coneinde by mentioning its system. 

SYSTEM BOOL,NAT,CHAR,INST,ATTR, 'SEQ',TABLE,BLOCK,DISPLAY,FILE 
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Appendix B 

List of Symbols 

In this appendix we give a list of the sorts, functions, predicates and proce
dures used. The list does not include symbols from the C program of the 
editor, nor does it include the symbols introduced already in Chapter 4. The 
symbols from Appendix A arealso not mentioned unless they are introduced 
in Section 5.3. If a symbol occurs both in a black-box description and in a 
glass-box description, then it is mentioned only once and its place in the list 
is derived from its black-box description. 

For each symbol the list contains a very short informal description. The list 
has been subdivided into a number of sub-lists. The fust sub-list contains 
the symbols that are introduced in Section 5.3. The second sub-list contains 
the symbols that are introduced in Section 5.5. The third sub-list contains 
the symbols that are introduced in Section 5.6. 

Symbols concerning the bottorn of the editor design 

Inst, 
nil: ~ Inst, 
PROC create : ~ Inst 

attr : Inst ~ Item, 
PROC set_attr: Inst # Item ~ 

Table, 
table_inv: , 
map: Table ~ Map, 
PROC set_attr: Table # Map ~ 
PROC p: ~ 
PROC new: ~ Table 

instances (atoms) 
instanee constant 
creation of a new instanee 

attribute 
attribute modification 

modfiable tables 
table invariant 
Map attribute of table 
modification of Map attribute 
arbitrary table operation 
empty table creation 
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PROC add: Table # 'Item!' # Item2 -+ 
PROC rem: Table # 'Item!' -+ 
PROC app: Table # 'Item!' -+ Item2 
PROC is_in_dom: 'Item!' # Table -+ 

Block, 
size: Block -+ Nat, 
cont: Block # Nat -+ Item, 
PROC store: Block # Nat # Item -+, 
PROC alloc: Nat-+ Block, 
PROC grow: Block # Nat -+ 

attr: Inst -+ Item! # Item2 

Bool 

PROC set_attr: Inst # Item! # Item2 -+ 

Symbols concerning system components 

Buf 
block: Buf -+ Block 
PROC set_block: Buf # Block -+ 
dot: Buf -+ Nat 
PROC set_dot: Buf # Nat -+ 
mark: Buf -+ Nat 
PROC set_mark: Buf # Nat -+ 
gap!: Buf -+ Nat 
PROC set_gap1: Buf #Nat -+ 
gap2: Buf -+ Nat 
PROC set_gap2 : Buf # Nat -+ 
dot: Buf -+ Nat2 

PROC set_dot: Buf # Nat2 -+ 
mark: Buf -+ Nat2 

PROC set_mark: Buf # Nat2 -+ 
reach: Buf -+ Nat2 

PROC set_reach: Buf # Nat2 -+ 

val: -+ Item, 
PROC upd : Item -+ 

Buf_Map 
table: -+ Table 
PROC upd_Table: Table -+ 
current: -+ 'String' 
PROC upd_current: 'String'-+ 
mover: -+ Nat 
PROC set_mover : Nat -+ 

addition of a.n entry 
remova.l of a.n entry 
ta.ble look-up 
'is in domain' test 

memory blocks 
number of locations 
contents of a. location 
storing a. va.lue in a loca.tion 
creation of a new block 
iocrement of block size 

pair-wise a.ttribute 
pair-wise modification 

(marked text) buffers 
block attribute 
block attribute modification 
dot attribute 
dot attribute modification 
mark attribute 
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mark attribute modification 
lower bound of ga.p 
modification of lower bound 
upper bound of gap 
modification of upper bound 
pair-wise dot attribute 
modification of pa.ir-wise dot 
ma.rk attribute 
modification of pair-wise mark 
reach attribute 
modification of reach attribute 

value of programming variabie 
assignment 

maps from strings to buffers 
ta.ble from 'String' to buffers 
assignment 
name of current buffer 
a.ssignment 
general purpose 'loop-counter' 
assignment 
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moverl, : -+ Nat 
PROC set_moverl,: Nat-+ 
mover2: -+ Nat 
PROC set_mover2: Nat -+ 
mover: -+ Nat2 

PROC set_mover: Nat2 -+ 
counter: -+ Nat 
PROC set_counter: Nat -+ 

f: Block # Nat2 -+ String 
in_gap: Buf # Nat 
f: Buf # Nat2 -+ String 
f: Buf # Nat -+ String 
f : Buf -+ String 
f: Block # Nat2 -+ Text 
f: Buf # Nat2 -+ Text 
f: Buf # Nat -+ Text 
f: Buf -+ Text 
f : Buf -+ MText 
f: Buf_Map -+ Map 
TI': 

right: Buf # Nat 
eobp: Buf # Nat 
eolp: Buf # Nat 
eobp: Buf 
eolp: Buf 
left: Buf # Nat 
bobp: Buf # Nat 
bobp: Buf 
bolp: Buf # Nat 
bolp: Buf 

WI': 
wi_package_inv: 

-+ Nat 

-+ Nat 

PROC init_wi_package: -+ 
PROC mod_text_restore: -+ 

PROC mod_dot_restore : -+ 
PROC mod_dot: -+ 

ready: Buf 
PROC make_ready: Buf -+ 
PROC make_ready1: Buf-+ 
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mover (vertical co-ordinate) 
assignment 
mover (horizontal co-ordinate) 
assignment 
the pair (moverl,mover2) 
pair-wise assignment 
general purpose loop-counter 
assignment 

abstraction function 
test if position is in gap 
abstraction function 
abstraction function 
abstraction function 
abstraction function 
abstraction function 
abstraction function 
abstraction function 
abstraction function 
abstraction function 
strengthened text-invariant 

next position (rightwards) 
end-of-buffer predicate 
end-of-line predicate 
dot is at end-of-buffer 
dot is at end-of-line 
next position (Ieftwards) 
beginning-of-buffer predicate 
dot is at beginning-of-buffer 
beginning-of-line predicate 
dot is at beginning-of-line 

strengthened window-invariant 
invariant of wi_package 
initialisation procedure 
restore WI ( text modified) 
restore WI (dot modified) 
arbitrary dot modification 

buffer is ready for insert 
make buffer ready 
auxiliary for make_ready 
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PROC make_ready2: Buf -+ 
PROC gap_ down: Buf-+ 
PROC gap_ up: Buf-+ 
PROC right_dot: Buf-+ 
PROC left_dot: Buf-+ 
next_line: Buf -+ Bool #Nat 
right_stepping: Buf # Nat2 -+ Bool # Nat 
hpos: Buf -+ Nat 
end_of_line: Buf # Nat -+ Nat2 

previous_line: Buf -+ Bool #Nat 
beginning_of_line: Buf # Nat -+ Nat 
end_of_buffer: Buf -+ Nat 

space: Buf 
PROC make_space : Buf #Nat -+ 

PROC second_gap_down: Buf # Nat -+ 
PROC insert_character: Buf # Char -+ 
PROC newline: Buf -+ 
match: Buf # 'String' # Nat 
match': Buf # 'String'# Nat 
right: Buf # Nat2 -+ Nat2 

_buffer_to_string: Buf # Nat -+ 'String' 
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auxiliary for make_ready 
move gap one position down 
move gap one position up 
move dot one position right 
move dot one position left 
auxiliary for next_line 
going rightwards (if possible) 
horizontal position 
auxiliary for end_of_line 
auxiliary for previous_line 
auxiliary for beginning_of_line 
auxiliary for end_of_buffer 

test for free space 
introduetion of morefreespace 
move free space down 
auxiliary for insert_character 
auxiliary for newline 
search-string matching 
match with sentinel 
pair-wise rightward move 
aux. buffer_to_string 

Symbols concerning internal components 

Array2, 
PROC create: -+ Array2, 
val : Array2 # Nat2 -+ Item, 
PROC upd : Array2 # Nat2 # Item -+ 
ccursorl: -+Nat 
PROC set_ccursorl: Nat-+ 
ccursor2: -+ Nat 
PROC set_ccursor2: Nat -+ 

ccursor: -+ Nat2 

PROC set_ccursor: Nat2 -+ 

cscreen: -+ Array2 
PROC upd_cscreen: Array2 -+ 
g: Array2 # Nat2 -+ Line 
g: Array2 # Nat -+ Line 
f: Array2 # Nat -+ Text 
f: Array2-+ Text 
WI'' 

display_handling_inv: 
PROC init_display_handling: -+ 

two-dimensional arrays 
array creation 
indexing in an array 
assignment 
concept cursor ( vertical) 
assignment 
concept cursor (horizontal) 
assignment 
concept cursor 
assignment 
concept screen 
assignment 
abstraction function 
abstraction function 
abstraction function 
abstraction function 
transformed window-invariant 

display handling invariant 
initialisation procedure 
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PROC update_cursor: ~ 
PROC update_screen: ~ 
origin: But ~ Nat # Nat 
PROC set_origin: But # Nat # Nat ~ 
xx: ~Nat 
PROC upd_xx: Nat ~ 
yy: ~Nat 
PROC upd_yy: Nat ~ 
PROC clear_cscreen: ~ 
v_eq: Nat2 # Nat2 

PROC mover_to_origin_line : But ~ 
v_geq: Nat2 # Nat2 

h_geq: Nat2 # Nat2 

h_lss: Nat2 # Nat2 

built: But 
size: ~ Nat2 

in_window: But 
PROC cscreen_build: But ~ 
p_lss: Nat2 # Nat2 

p_leq: Nat2 # Nat2 

p_sub: Nat2 # Nat2 ~ Nat2 

p_add: Nat2 # Nat2 ~ Nat2 

c3: But 
halt_li: ~ Nat 
halt_co: ~ Nat 

ii: ~Nat 
PROC upd_ii: Nat ~ 
j j : ~Nat 
PROC upd_jj : Nat ~ 
scursor1 : ~ Nat 
scursor2 : ~ Nat 
scursor: ~ Nat2 

PROC set_scursor1: Nat ~ 
PROC set_scursor2 : Nat ~ 
PROC set_scursor : Nat2 ~ 
sscreen: ~ Array2 
PROC upd_cscreen: Array2 ~ 
PROC clear_sscreen: ~ 
PROC update_line: ~ 
PROC update_character: ~ 
PROC sce : ~ 
PROC sce : Nat2 ~ 
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transfer of concept to display 
transfer of concept to display 
leftmost uppermost corner 
assignment 
simple programming variabie 
assignment 
simple programming variabie 
assignment 
fill concept screen with blanks 
equaiity on verticai co-ordinate 
put mover at Iine with origin 
comparison ( verticai) 
comparison (horizontal) 
comparison (horizontai) 
buiid-up of csereen done 
the pair (Ii,co) 
test if position is in window 
buiid-up concept screen 
comparison of co-ordinate pairs 
comparison of co-ordinate pairs 
comparison of co-ordinate pairs 
addition of co-ordinate pairs 
'necessary condition' 
Ii divided by two 
co divided by two 

simpie programming variabie 
assignment 
simpie programming variabie 
assignment 
shadow cursor ( verticai) 
shadow cursor (horizontai) 
shadow cursor 
assignment 
assignment 
assignment 
shadow administration screen 
assignment 
fill shadow screen with bianks 
update line on screen 
update character on screen 
'shadow' clear to end of Iine 
'shadow' clear to end of line 
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Appendix C 

The C Program of the Editor 

After the development processes of theeditorand the lower design layer have 
been finished, the resulting glass-box descriptions have been translated into 
the C programming language [8] manually. Let us devote a few pages of 
explanation to this translation. First we explain the translation of the data 
structures. We assumed the data types of BOOL, NAT, and CHAR as built-in 
into C, and we dealt with them by a few simple macro definitions. E.g. for 
BOOL we only needed the following. 

#define Bool int 
#define true 1 
#define false 0 

We employed a straightforward technique for dealing with the attribute
oriented approach based on INST and ATTR. This was done by collecting 
all attributes of a given object sort and deelare that sort as a pointer to a 
structure. The latter structure contains one field for each attribute function. 
By introducing macro definitions - one for each attribute function- it be
comes possible to use the same functional notation as in COLD-K again. We 
show this for the object sort Node (from Appendix A) having four attribute 
functions: i teml: Node -t Iteml, i tem2: Node -t Item2 etc. 

#define Node struct attrs_Node * 
struct attrs_Node { 

}; 

Item1 attr_item1; 
Item2 attr_item2; 
Node attr_left; 
Node attr_right; 
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#define item1(N) 
#define item2(N) 
#define left(N) 
#define right(N) 
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((N)->attr_item1) 
((N)->attr_item2) 
((N)->attr_left ) 
((N)->attr_right) 

Next we explain the translation of the algorithms. Whenever possible we 
sticked to a straightforward line-by-line translation, although we did no at
tempt to devise a completely standardised translation scheme yet. We show 
a simple example and for that purpose we reeall the procedure make_space 
from WITEFA_IMPL: 

PROC make_space: Buf # Nat -> 
PAR b:Buf, n:Nat 
DEF set_mover(size(block(b))); 

grow(block(b),n); 

( NOT mover = gap2(b) ?; 
second_gap_down(b,n) 

) *; mover = gap2(b) ?; 

set_gap2(b,add(gap2(b),n)) ; 
set_dot(b,gap2(b)); 

( lss(mark(b),gap1(b)) ?; SKIP 
I NOT lss(mark(b),gap1(b)) ?; set_mark(b,add(mark(b),n)) 
) 

We show its C translation below. It refers to obvious rnacros NOT and SKIP. 
Reeall that in C the symbol = denotes assignment whereas == denotes equal
ity! 

void make_space(b,n) 
Buf b; 
Nat n; 
{ 

mover = (size(block(b))); 
grow(block(b),n); 
while ( NOT (mover == gap2(b)) ) { 

second_gap_down(b,n); 
} 

gap2(b) = add(gap2(b),n); 
dot(b) = gap2(b); 
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} 

if ( lss(mark(b),gapl(b)) ) { 
SKIP 

} 

else { 
mark(b) = add(mark(b),n); 

} 
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The above example is rather unproblematic. At other places we faced tech
nica! complications such as operations yielding composite results 
(e.g. next_line: Buf -> Bool # Nat and right_stepping: Buf # Nat 
# Nat -> Bool # Nat from WITEFA_IMPL). For the latter complication we 
employed two different solutions, depending on the question whether the op
eration is defined recursively- which is not the case for next_line but which 
is the case for right_stepping. Fora non-recursive operation we made sev
eral copies of its direct translation, viz. one for each element of the result. 
For a recursive operation, this technique of making copies could lead to gross 
inefficiencies so we had to simulate a call-by-reference mechanism using the 
C operators * (indirection) and & ( address-of). Other complications are re
lated to (1) name clashes due to overloading, (2) using rnacros for efficiency 
reasons, (3) COLD-K renamings and (4) modularisation of the C program 
text. Although it might he somewhat more work to devise universa! solutions 
for these problems, we easily solved them for the particular cases at hand. 

We had to provide small C modules providing implementations of BLOCK, 
DISPLAY and FILE. These components have no COLD-K glass-box descrip
tions and the C modules should he viewed as reasonable approximations of 
BLOCK_SPEC, DISPLAY_SPEC and FILE_SPEC. For BLOCK we had to use the 
C library functions malloc and reaHoc [9]. For DISPLAY we adopted the 
command sequences of a VT102 terminal [10], which can also he emulated 
on SUN 3/50 or Philips P2000-C computer systems. For FILE we had to 
use the so-called standard I/0 library as partially described in [8] and which 
becomes available by inclusion of the line 

#include <stdio.h> 

For each instanee of SVAR we declared a simple programming variabie in C. 
We by-passed the implementation of ARRAY2, just using C arrays. We inserted 
a fflush(outfile); instruction in the translation of write_named_file. 
We added a top-level initialisation and rnain-loop to conneet the key proce
dure with the standard input. This is done by means of the C function called 
main which has a local variabie c of sort Char and which has the program 
text given below. The user must type a control-e character to terminate an 
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edit session- whence the termination condition of the loop, ord(c) != 3. 

MOREDOP_startup(); 
c = getcharO; 
while (ord(c) != 3) { 

key(c); 
c = getcharO; 

} 

The translation process took several days, but the time needed to do this was 
only a small fraction of the total timespent on the editor (5%, say). In the 
C program texts, we inserted small comments related to the translation; we 
did not insert camment to explain the program as such, because after all we 
have the designs deditM and dlxuic for that. Although the manual translation 
process introduced several small mistakes, we did not spend much time in 
debugging. Of course an automatic code-generator would he useful, but the 
current manual aproach was already very satisfactory. The choice of the 
target-language (e.g. C versus Pascal) is a relatively unimportant detail 
of the editor case study and in fact the choice for C was only made when 
most of the design work was already done. We could have chosen Pascal 
as well, although in retrospect, we learned to appreciate several pragmatic 
issues related to C such as the cpp macro preprocessor and the powerfut 
malloc/realloc memory-management functions. The decisive point in favor 
of C was its growing popularity in industrial contexts. 

The complete C program texts are provided in [12]. Since the above dis
cussion contains already an overview of most relevant technica! issues, we 
do not include all C program texts here; it is always possible to look-up 
details in [12]. Compilation of these C program texts by cc -0 yields an 
executable editor. Just by way of example, we include the C program text of 
one component and we have chosen to show the translation of TABLE_IMPL. 



C. The C PROGRAM OF THE EDITOR 461 

I* table_impl.c *I 

#de:fine guard(N) i:f (!(N)) { print:f("FATAL ERROR (guard :false)"); } 
#de:fine Nat int 

I* TABLE_IMPL 
'lteml' --> Iteml, 
eq: 'Iteml' # 'lteml' --> eq_Iteml, 
add : Table # 'lteml' # 'ltem2' -> --> add_Table, 
add: Node # 'Iteml' # 'ltem2' -> --> add_Node, 

#de:fine Node struct attrs_Node * 
struct attrs_Node { 

}; 

Iteml attr_iteml; 
Item2 attr_item2; 
Node attr_le:ft; 
Node attr_right; 

#de:fine iteml(N) ((N)->attr_iteml) 
#de:fine item2(N) ((N)->attr_item2) 
#de:fine le:ft(N) ((N)->attr_le:ft ) 
#de:fine right(N) ((N)->attr_right) 
Node create_Node() { 

} 

char * malloc 0 ; 
return((Node)malloc(sizeo:f(struct attrs_Node))); 

#de:fine Table struct attrs_Table * 
struct attrs_Table { 

Node attr_root; 
} ; 

#de:fine root(N) ((N)->attr_root) 
Table create_Table() { 

char * malloc 0 ; 
return((Table)malloc(sizeo:f(struct attrs_Table))) ; 

} 

Table new() 
{ 

Table t; 

t = create_Table(); 
root(t) = nil; 
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return(t); 
} 

Node add_Node(n,i,j) 
Node n; 
Iteml i; 
Item2 j ; 
{ 

Node m; 

i:f (n == nil) { 

} 

m = create_Node(); 
iteml(m) i; 
item2(m) j; 

left(m) nil; 
right(m) nil; 
return(m); 
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else if (eq_Iteml(i,iteml(n))) { 
item2(n) = j; 
return(n) ; 

} 

else if (less(i,iteml(n))) { 

} 

left(n) = add_Node(left(n),i,j); 
return(n); 

else if (less(iteml(n),i)) { 

' } 

} 

right(n) = add_Node(right(n),i,j); 
return(n); 

void add_Table(t,i,j) 
Table t ; 
Iteml i; 
Item2 j ; 
{ 

root(t) • add_Node(root(t),i,j); 
} 

del(n,return1,return2,return3) 
Node n; 
Node *return!; 
Iteml *return2; 
Item2 *return3; 
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{ 

} 

if (right(n) != nil) { 

} 

Node m; Iteml i; Item2 j; 
del(right(n),km,ki,kj); 
right(n) = m; 
*returnl = n; *return2 =i; *return3 = j; 
return; 

else if (right(n) z= nil) { 
*returnl • left(n); 
*return2 = iteml(n); 
*return3 item2(n); 
return; 

} 

Node delete(n,i) 
Node n; 
Iteml i; 
{ 

it (n == nil) { 

return(n); 
} 

else if (less(i,iteml(n))) { 

} 

left(n) 2 delete(left(n),i); 
return(n); 

else if (less(iteml(n),i)) { 

} 

right(n) • delete(right(n),i); 
return(n); 

else if (eq_Iteml(i,iteml(n))) { 

if (left(n) =• nil) { 
return(right(n)); 

} 

else if (right(n) == nil) { 
return(left(n)); 

} 

else if (left(n) != nil AND right(n) I= nil) { 
Node m; Iteml j; Item2 k; 
del(left(n),km,tj,tk); 

} 

left(n) = m; iteml(n) = j; item2(n) k; 
return(n); 
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} 

} 

void rem(t,i) 
Table t; 
Item! i; 
{ 

root(t) delete(root(t),i); 
} 

rightmost(n,returnl,return2) 
Node n; 
Iteml *returnl; 
Item2 *return2; 
{ 

guard(n I= nil) ; 
if (right(n) == nil) { 

5. DESIGN OF A TEXT EDITOR 

*returnl • iteml(n); *return2 • item2(n); 
return; 

} 

} 

else if (right(n) !• nil) { 
rightmost(right(n),returnl,return2); 
return; 

} 

Item2 app_Node(n,i) 
Node n; 
Iteml i; 
{ 

} 

if (eq_Iteml(i,iteml(n))) { 
return(item2(n)); 

} 

else if (less(i,iteml(n))) { 
return(app_Node(left(n),i)); 

} 

else if (less(iteml(n),i)) { 
return(app_Node(right(n),i)); 

} 

Item2 app(t,i) 
Table t; 
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Iteml i; 
{ 

} 

return(app_Node(root(t),i)) 

Bool isindom_Node(i,n) 
Iteml i; 
Node n; 
{ 

} 

if (n ="' nil) { 

return(:t:alse); 
} 

else if (eq_Iteml(i,iteml(n))) { 
return(true); 

} 

else i:t: (less(i,iteml(n))) { 
return(isindom_Node(i,le:t:t(n))); 

} 

else i:t: (less(iteml(n),i)) { 
return(isindom_Node(i,right(n))); 

} 

Bool is_in_dom(i,t) 
Iteml i; 
Table t; 
{ 

return(isindom_Node(i,root(t))); 
} 
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Appendix D: Reference Chart 

For each component of dedittw its most important sorts and operations are given below. 

DESIGN 

COMP BOOL 

COMP NAT 

COMP CHAR 

COMP INST 

COMP ATTR 

COMP 'SEQ' 

COMP TABLE 

COMP BLOCK 

BOOL_SPEC ; { Bool, true, false, not, and, or 

NAT_SPEC ; { Nat, zero, succ, !ss, leq, add, sub, 0, 1, etc. 

CHAR_SPEC; { Char, ord, chr, 'a', 'i', etc. 

INST_SPEC; { Inst, nil, create 

ATTR_SPEC; { attr, set..attr 

'SEQ_SPEC 1 
; { 'Seq', empty, cons, hd, ti, eq, se!, cat, rev 

TABLE_SPEC; { Table, new, add, rem, app, is_jn_dom 

BLOCK_SPEC ; { Bleek, size, cont, store, allee, grow 

COMP DISPLAY: DISPLAY_SPEC; {!i, co, er, nl, bc, ce, cl, nd, up, cm, print 

COMP FILE FILE_SPEC { valid, file, pos, rewrite, reset, read, write, eof 

COMP ARRAY2 ARRAY2_SPEC := ARRAY2_IMPL; 
{ Array2, create, val, upd 

COMP 'STRING' : 'STRING_SPEC' := 'STRING_IMPL'; 
{ 'String', empty, cons, hd, ti, eq, se!, cat, rev, less 

COMP SVAR : SVAR_SPEC := SVAR_IMPL; 
{val, upd 

COMP ATTR2 : ATTR2_SPEC := ATTR2_IMPL; 
{ attr, set..attr 

COMP DISPLAY_HANDLING:DISPLAY_HANDLING_SPEC:=DISPLAY_HANDLING_IMPL; 
{ iniLdisplayJlandling, update..cursor, update..screen, 

COMP WI_PACKAGE : WI_PACKAGE_SPEC := WI_PACKAGE_IMPL; 
{ iniLwLpackage, mod_text..restore, mod..dot..restore 

COMP WITEFA : WITEFA_SPEC := WITEFA_IMPL; 

{ 

bolp, eolp, forward..character, backward..character, nextJine, previouaJine, 
beginning_ofJine, end..ofJine, beginning..of..buffer, end_of_buffer, set.rnark, 
exchange_dot..and.rnark, insertJile, inserLcharader, newline, yank..buffer, 
delete_next_character, erase..region, erase..buffer, copy ..region_to..buffer, current..buffer _name, 
write_namedJile, switch_to..buffer, search.Jorward, buffer J:o..string, buffer _to..string 

COMP MOREDOP: MOREDOP_SPEC := MOREDOP_IMPL; 

{ 
mini, main, kill, startup, escape, return, delete_to..killbuffer, yankJrom..killbuffer, 
searchJorward, insertJile, write_namedJile, delete..previous..character 

COMP KEYBIND: KEYBIND_SPEC :• KEYBIND_IMPL 
{ key 

SYSTEM WITEFA,MOREDOP,KEYBIND 
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Curriculum vitae 

De schrijver van dit proefschrift werd op 4 augustus 1954 geboren te Sit
tard. In 1972 behaalde hij aan het St.-Miehiellyceum te Geleen het diploma 
Gymnasium-,8. Hij studeerde vervolgens electratechniek aan de Technische 
Hogeschool Eindhoven, alwaar hij in 1979 het ingenieursexamen aflegde. Af
studeerhoogleraar was prof.dr.ir. J.P.M. Schalkwijk. In de tweede helft van 
1979 was hij verbonden aan CSELT in Turijn als wetenschappelijk onder
zoeker op het gebied van video-codering. Na het vervullen van de militaire 
dienstplicht trad hij in 1981 in dienst van PhilipsTelecommunicatie Industrie 
te Hilversum, later APT. Hier heeft hij gewerkt als software-ontwikkelaar, 
onder andere in de context van het TCP-16 project betreffende een gedis
tribueerd computer-systeem voor de besturing van telefooncentrales. Sinds 1 
april1984 is hij werkzaam bij het Philips Natuurkundig Laboratorium, meer 
in het bijzonder in de sector Technische Informatica, als wetenschappelijk 
onderzoeker op het gebied van software-ontwerptechnieken. 



468 SAMENVATTING 

Samenvatting 

Het onderzoek dat in het proefschrift beschreven wordt, heeft formalisering 
van ontwerpmethoden voor complexe systemen als onderwerp. Het bestaat 
uit twee delen: een eerste deel met een theoretisch karakter en een tweede 
deel waarin een aantal van de resultaten van het eerste deel aan een complex 
ontwerpprobleem worden getoetst. 

Centraal in het eerste deel staat het begrip 'ontwerp van een systeem'. In het 
algemeen is een systeem opgebouwd uit modules, en bestaan er relaties tussen 
die modules onderling (meestal in de vorm van een hiërarchische opbouw) en 
tussen modules en specificaties daarvan - een relatie die wij implementatie
relatie noemen. Daarbij staan wij binnen één ontwerp toe dat modules en hun 
specificaties naast elkaar bestaan met een verschillende graad van detaille
ring. Het begrip ontwerp (design) blijkt gefundeerd te kunnen worden op een 
speciale versie van À-calculus, de À1r-calculus, die in het proefschrift wordt 
ontwikkeld. Op basis daarvan is het tevens mogelijk diverse methodologisch 
inzichtelijke correctheidsbegrippen voor ontwerpen te introduceren. Deze be
grippen, die betrekkig hebben op 'information hiding', worden op deze wijze 
van een wiskundig-logische grondslag voorzien. Aangetoond wordt dat er 
verbanden bestaan tussen correctheidsbegrippen voor ontwerpen enerzijds 
en reductiestrategiën voor À1r-calculus anderzijds. 

Uitgaande van het formele ontwerpbegrip kunnen correctheidsbehoudende 
transformaties op ontwerpen gedefiniëerd worden. Een belangrijke rol speelt 
het feit dat ontwerpen in het algemeen samengesteld worden uit componen
ten en dat, onder zekere voorwaarden, correctheid van het geheel uit die 
van de delen kan worden afgeleid. Diverse ontwerpstrategieën, waaronder 
de welbekende 'top-down' methode, blijken strikt formeel gekarakteriseerd 
te kunnen worden met de in het proefschrift geïntroduceerde begrippen. 
Met behulp van deze aanpak kan een zeer duidelijk onderscheid gemaakt 
worden tussen de statische en de dynamische aspecten van het proces van 
software-ontwikkeling, hetgeen bijdraagt tot een beter inzicht in het proces 
van software-ontwikkeling. 

Het tweede gedeelte is een case-study. Het omvat de specificatie en een 
daaruit met de top-down methode ontwikkelde realistische implementatie 
van een tekst-verwerker. Beide zijn uitgevoerd met behulp van de ontwerp
taal COLD die mede op de resultaten uit het eerste deel is gebaseerd. Bij de 
implementatie van de tekst-verwerker worden enerzijds de abstracte speci
ficaties getransformeerd tot algoritmen en worden anderzijds de data-typen 
verfijnd door het kiezen van geschikte representaties via meerdere nivo's van 
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verfijning. Deze studie laat zien dat de gebruikte technieken leiden tot een 
systematische aanpak, een goed gestructureerd en tevens efficiënt product en 
een redelijk toegankelijke documentatie. Tevens toont ze aan dat er nog mo
gelijkheden te over zijn voor verdere uithouwing van theorie, gereedschappen 
en door toepassing verkregen ervaringen. 
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1. Het idee van N assi-Schneidermann diagrammen, n.l. dat doosjes-in
doosjes tekeningen gebruikt kunnen worden om met 'flow-of-contra!' 
operatoren opgebouwde programma's weer te geven, kan mutatis mu
tandis van nut zijn om met 'module-composition' operatoren opge
bouwde modules als tekeningen weer te geven. 
[ R.D. van den Bos, L.M.G. Feijo en R.C. van Omroering, PO LAR, a Picture-oriented language for 

abstract representations, gepresenteerd op de 2• Meteor workshop, Mierlo, 11·13 Sept 1989. ) 

2. De met IN GRES geassocieerde vraagtaal QUEL kan geduid worden met 
technieken uit de denotationele semantiek, waarbij elke deel-betekenis
functie een extra argument heeft, te weten een bedeling van tuples aan 
tuple-variabelen. In het bijzonder, voor een relatie geïntroduceerd met 
create A (naam= string, adres= string) en een tuple-variabele geïn
troduceerd met range oft is A, kan de semantiek van een vraag als 

[retrieve (t.naam) where not t.adres = 'geldrop' J 
op compositionele wijze beschreven worden door 

{ ü E string1 I ::lr,v-string' dom(r) = { t} A 
[(t.naam)!(r) = üA 
[not t.adres = 'geldrop' jj(r) A lftEdom(r) r(t) E A} 

waarbij V de verzameling van tuple-variabelen voorstelt en waarbij 
de beide deel-betekenisfuncties [ ~ op voor de hand liggende wijze 
gedefiniëerd zijn. 
[ W.E. Baats, L.M.G. Feije, J.H.A. Gelissen, A forma! specification of!NGRES, in: M. Wirsing, J.A. 

BerJ!lltra (Eds.). Algebraic Methods: Theory, Toolo and Applications, LNCS 394, Springer· Verlag 

blz. 207-245 (1989).) 

3. De gedachte dat typecorrectheid van expressies in programmeertalen 
en specificatietalen iets te maken heeft met dimensiecontrole zoals die 
bij natuurkundige vergelijkingen gebruikelijk is, leeft wel op latente 
wijze maar wordt slechts zelden uitgewerkt. Nochtans is dit zeer wel 
mogelijk. 
Zo kunnen in een programmaspecificatie die gedeeltelijk in de mechanica geïnterpreteerd kan worden, 

types L en T gebruikt worden voor lengte en tijd respectievelijk en L/T voor snelheid; een en ander 

kan zo ingericht worden da.t er wel operaties als + : L x L - L, + : T x T - T, f : L x T -+ L/T 

en • : L/T x T - L .r.ijn, maar bijvoorbeeld geen • : L >< L - L. 
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4. Een 'Spartaans' maar krachtig formaiisme verdient vaak de voorkeur 
boven formalismen waarvan de schijnbare uitdrukkingskracht steunt op 
een ad hoc collectie van elk op zichzelf aantrekkelijke handigheden. 

5. Het verdient aanbeveling dat software-ontwikkelaars tenminste een der
de deel van hun werktijd aan studie en opleiding besteden - ook, en 
zelfs juist, wanneer de werkdruk dit bij voortduring niet lijkt toe te 
laten. 

6. De volgende gereedschappen vormen een minimale maar tevens zeer 
nuttige collectie ter ondersteuning van een als 'breed-spectrumtaal' 
aangeduid formalisme zoals COLD: controleprogramma's voor syntax
en typecorrectheid, een modulebibliotheek, een codegenerator voor 
een onproblematische deeltaal alsmede gereedschap voor het maken en 
hanteren van grafische representaties. 

7. Voor de ontwerper van electronische schakelingen is er in de loop der 
jaren een omgangstaal opgebouwd met veel woorden die doelmatig zijn 
door hun compactheid of in de zin dat ze niet op storende wijze over
belast zijn. Voor de 'software engineering' is een passende omgangstaal 
ook gewenst maar nog slechts in mindere mate opgebouwd. 
In de eerste categorie vinden we b.v. trafo voor transformator, elco voor electrolytisché condensator, 

super voor super· heterodyne ontvanger, modem voor modulator-demodulator, mux voor multiplexe~. 

pf (lees: puf) voor picoFarBd, tor voor transistor, R voor weerstand, C voor condensator etc. en in 

de tweede b.v. k.angoeroeschakeling, varkensneusje, Eurokaart en totempaal-uitgang. 

8. Bron-coderingstechnieken gebaseerd op een twee-componentenstrategie 
waarbij een signaal S(t) wordt gesplitst in twee signalen S1 (t) and S2 (t) 
zodat S1 ( t) + S2 ( t) = S( t), dragen steeds het risico met zich mee dat de 
splitsing niet leidt tot twee geheel onafhankelijke signalen en dat dus 
de som van de bit-rates gebruikt voor de codering van S1 en S2 groter 
is dan strikt noodzakelijk voor S. 
[ L. Feijs, L. Chiariglione. Image coding by means of a two-component souree-coding scheme. CSELT 

Rapporti tecnici • VoL VIII - N. 2, June 1980. ] 
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9. Zolang bij het ontwerpen van computer beeldschermen nog uitgegaan 
wordt van beeldherhalingsfrequenties die voor het menselijk oog waar
neembaar zijn (knipperend beeld), verdient het aanbeveling om gebruik 
te maken van heldere tekens op een zwarte achtergrond. 

10. Het in de context van technische systemen vaak gebruikte begrip ' up
ward-compatibility' heeft zonder nadere toelichting geen preciese beteke
nis. Een uitstekend voorbeeld is te verkrijgen door te stellen dat er een 
upward-compatibility relatie bestaat tussen de systemen van DUPLO 
en LEGO bouwblokken en dan details van het hiermede opgeroepen 
beeld te toetsen aan de werkelijkheid. 
I H. Wieneck, The world of LEGO toyo, Harry N. Abrams, Inc., Publishen , New York. ISBN 

0-8109-2362-9., 

11. De constatering dat een van de voornaamste toepassingen van het spel 
'LIFE' betrekking heeft op het genereren van een bewegend patroon om 
beeldschermen van werkstations voor inbranden te behoeden, is leerrijk 
vanuit de optiek van wetenschapsmethodologie. 
I What is Life ?, in: E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning ways, Vol. 2, Chapter 25, 

pp. 817-SSO.J 
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