

A formal analysis of a dynamic distributed spanning tree
algorithm
Citation for published version (APA):
Mooij, A. J., & Wesselink, J. W. (2003). A formal analysis of a dynamic distributed spanning tree algorithm.
(Computer science reports; Vol. 0316). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/a59d5ba3-2e4c-452b-91a5-0b6f32bbdab3

A Formal Analysis of a Dynamic
Distributed Spanning Tree Algorithm

Arjan J. Mooij and Wieger Wesselink

Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. We analyze the spanning tree algorithm in the IEEE 1394.1
draft standard, which correctness has not previously been proved. This
algorithm is a fully-dynamic distributed graph algorithm, which, in gen-
eral, is hard to develop. The approach we use is to formally develop an
algorithm that is almost equivalent to it: First, based on a formal spec-
ification and an abstraction of the network, we systematically construct
an algorithm including its correctness proof. Afterwards we implement
this algorithm in terms of IEEE 1394 devices under maintenance of its
correctness.

1 Introduction

The IEEE 1394.1 standard is developed on top of the IEEE 1394 Standard for a
High Performance Serial Bus [1], sometimes referred to as FireWire. This IEEE
1394 standard defines a bus as a (non-empty) limited collection of devices that
can communicate with each other by means of messages. Each IEEE 1394 device
is a computational unit that has a unique identity and that belongs to exactly
one bus. The buses are dynamic in the sense that the following topology changes
can occur: creation and removal of a bus with one device, merging two buses
into one bus, and splitting a bus into two (non-empty) buses. Upon a topology
change, all devices on the related buses are notified that changes have occurred.

To lift the limitation on the number of devices that can communicate with
each other (on a single bus), in 1996 the development of the IEEE 1394.1 Stan-
dard for High Performance Serial Bus Bridges was initiated. It introduces bi-
directional bridges to dynamically interconnect pairs of buses. Such a bridge
consists of two portals, which are special devices on the buses that are con-
nected by the bridge. Apart from the usual communication capabilities on the
buses, the two portals of a bridge can also directly communicate with each other.

The IEEE 1394.1 standard, which is still a draft [2] at the moment of writing,
contains a distributed algorithm called net-update1, which maintains a spanning
tree on the network of buses and bridges. Although this algorithm is also involved
in some message routing and bus identification issues, we will not consider these.
Until now the correctness of this algorithm has not been proven.
1 We studied this algorithm as a case study of the project “Improving the Quality of

Protocol Standards”, funded by the NWO under project number 016.023.015.

2

There exist a lot of distributed algorithms for computing spanning trees,
but distributed maintenance of spanning trees under dynamic topology changes
turns out to be far more complicated (see e.g. [3]). Because we consider mainte-
nance under both additions and removals of edges, [4] classifies this problem as
a fully-dynamic graph problem. And since all devices of a bus are notified about
topology changes in which the bus is involved, [5] classifies an IEEE 1394.1
network as a topology-aware network. Because of this topology-awareness, the
algorithm is not required to be self-stabilizing (see e.g. [6,7]) with its inherent
performance drawbacks. Performance is also the reason that we do not simply
apply the transformation of static network protocols as proposed in [8].

Nowadays attempts to analyze and to prove the correctness of such algo-
rithms are frequently based on automated formal verification techniques like
model-checking. A well-known problem in model-checking is the so-called ex-
plosion of the state space of the system, which mainly occurs in systems with
many interacting processes, and systems containing data, see e.g. [9]. Since the
algorithm we want to analyze fits both profiles, model-checking is quite likely
to give rise to problems. Although [9] reports considerable progress in handling
large state spaces, the application of model-checking techniques by [10] to IEEE
1394.1’s net-update algorithm did not result in a complete verification. Never-
theless, some error traces were found for which fixes were proposed.

A typical problem of a-posteriori verifying an algorithm against a specifi-
cation, is that the information about how the algorithm was intended to ful-
fill the specification is usually not available. Instead of traditional a-posteriori
verification, in this paper we will formally reconstruct the algorithm from its
specification. More specifically, we will manually, but systematically, develop an
algorithm that is almost equivalent to net-update, starting from a set of formal
requirements. Our algorithm differs from net-update in some of the details that
are still under discussion. Such a formal development shows how the requirements
influence the algorithm under development; and as an important side-effect it
provides a correctness proof. In order to focus on the essence of the algorithm,
we will not provide a fully-detailed implementation in this paper.

In the current IEEE 1394.1 draft standard, algorithms are described as imple-
mentations for the portals. Attempts to formalize and to analyze such protocols
are often based on such an implementation-level description, see e.g. [10]. How-
ever, we will use another approach since we think that in order to understand
the essence of the algorithm, the portals are not the right entities to start reason-
ing about. Since this algorithm is related to spanning trees, we prefer to reason
about a graph of buses and bridges. We will first abstract from the portals such
that we obtain a proper graph formalization. In this graph context we then de-
velop, and prove the correctness of, a distributed spanning tree algorithm with a
net-update alike behavior. Finally we implement this algorithm on the portals.

This paper is organized as follows: Section 2 presents our graph specification.
Then Section 3 introduces some notations, abbreviations and methodology that
will be used in later sections. In Section 4 we develop an algorithm, which, in
Section 5, is implemented on the portals. Finally, Section 6 gives the conclusions.

3

2 Graph specification

In this section we present a specification in terms of graphs by abstracting from
the portals. An IEEE 1394.1 network can be straightforwardly modelled as a
graph if nodes represent buses and edges represent bridges. Consequently, the
portals are represented by the connections between nodes and edges. However,
in graph algorithms these connections are usually not the computational units.

Therefore we abstract from the portals and assume that the nodes and the
edges are the (potentially parallel) computational units. Furthermore, we assume
that each edge has a unique identity, it can maintain persistent data, and it can
communicate with the nodes it connects; and we assume that each node can
communicate with its incident edges. We return to this abstraction in Section 5,
where we show how to implement an algorithm that is based on this abstraction
using the original portals.

Since the dynamic topology changes can partition the network, we extend
the notion of a spanning tree to a spanning forest. So we have to develop a
distributed algorithm that maintains a spanning forest of the graph, under the
following dynamic topology changes: creating and removing nodes and edges,
and merging and splitting nodes. The spanning forest must be “maintained un-
der dynamic topology changes” in the sense that it will eventually be computed
if (during a sufficiently large period of time) no more topology changes occur.

We define a forest as a directed graph which

A contains for each node at most one outgoing edge; and which
B contains no cycle.

The edges in such a forest are directed towards the roots of the forest, which are
the nodes without outgoing edges. We define a spanning forest of a graph as a
forest that is a subgraph of the graph (with the same set of nodes), where

C each two neighbor nodes in the graph are connected (in the forest).

3 Preliminaries

3.1 Graphs

To avoid confusion between the two graphs we consider, namely an undirected
graph (for the network graph) and a directed subgraph (for a spanning forest of
the graph), we introduce some nomenclature, notations and abbreviations.

An edge (with identity) e between nodes u and v in the undirected graph
is denoted by e : u ∼e v, and an edge e from node u to node v in the directed
subgraph is denoted by e : u →e v. Each edge from the undirected graph occurs
in the directed subgraph in at most one direction. An edge of the undirected
graph that is not contained in the directed subgraph is called a muted edge; for
an edge e : u ∼e v we correspondingly have e.muted ≡ ¬(u →e v ∨ v →e u).

4

Frequently we want to indicate all edges or all self-loops of a node in the
graph, or all outgoing edges, all incoming edges or all muted edges of a node
in the subgraph. To that end, we introduce for each node v the sets2 v.edges
and v.loops, and v.out, v.in and v.muted respectively with e.g. invariants v.in ∪
v.out ∪ v.muted = v.edges and v.in ∩ v.out ⊆ v.loops ⊆ (v.in ∩ v.out) ∪ v.muted.

To avoid always explicitly referring to these sets, we introduce the following
(short-hand) operations for an edge e : v ∼e w:

mute e : v →e w ≡ v.out, v.muted := v.out\{e}, v.muted ∪ {e} ‖
w.in, w.muted := w.in\{e}, w.muted ∪ {e}

unmute e : e.muted as v →e w ≡ v.muted, v.out := v.muted\{e}, v.out ∪ {e} ‖
w.muted, w.in := w.muted\{e}, w.in ∪ {e}

turn e : v →e w ≡ mute e ; unmute e as w →e v

3.2 Programs

In this section we briefly summarize some aspects of parallel programs and their
development. We describe programs using the following constructions:

– skip : the empty statement;
– x, y := E,F : first evaluate expressions E and F , and afterwards assign

their values to variables x and y respectively;
– x: P.x : non-deterministically assign variable x a value X satisfying P.X;
– S; T : first execute statement S and then execute statement T ;
– if B0 → S0 [] B1 → S1 fi : wait until one of the guards B0 or B1 holds, and

then execute one statement S{0,1} for which the corresponding guard holds;
– await (B) : shorthand for if B → skip fi;
– do true → S od : repeat its body, i.e. statement S, infinitely often;
– parallel for x: P.x do S.x : execute statement S.x for all x: P.x in parallel.

We refer to [11] for formal definitions of most of these constructions. For
the sequential composition we sometimes use a new line instead of a semicolon.
Apart from the usual atomic actions like the skip statement, the assignments
and the evaluations of guards, we can create larger atomic actions by placing a
series of statements within atomicity brackets 〈...〉.

We use the programming methodology of [11] to systematically develop algo-
rithms. To that end we annotate our programs with assertions. An assertion is a
predicate on the state space of the system and it is placed at a control point, i.e.
in between two subsequent atomic statements. An assertion at a control point
is correct if the state of the system satisfies the assertion whenever a process is
at the control-point. A queried assertion is an assertion that has not yet been
proven to be correct. A pre-assertion of a statement is an assertion at the con-
trol point preceding the statement. Usually an assertion Q is denoted by {Q}, a
queried assertion Q by {? Q}, and a statement S with pre-assertion Q by {Q}S.

2 Using sets instead of bags is a major modelling decision with respect to self-loops.

5

In practice we use the Owicki-Gries theory [12] (see also [11]) for determining
the correctness of an annotation. It states that an assertion in a process is correct
if

– local correctness is guaranteed, i.e. if it is an initial assertion it is implied
by the precondition of the algorithm, and if it is preceded in the process by
atomic statement {Q}S it is established by this statement; and

– global correctness (sometimes called maintenance or interference freedom)
under each atomic statement {Q}S in the other processes is guaranteed, i.e.
it is maintained by these statements.

A system invariant of a system is an assertion that is placed at each control
point of the system. So a system invariant is correct whenever it is implied by the
precondition of the algorithm, and it is maintained by each atomic statement
in the algorithm. Instead of explicitly mentioning all system invariants at all
control points, we usually record them separately.

A repetition invariant of a repetition is an assertion that is placed at the first
and the last control point of the body of the repetition. For local correctness it
must be established by the statement preceding the repetition, and it must be
(re-)established by the body of the repetition. Usually, we also record repetition
invariants separately.

Programs can be developed by expressing requirements in terms of queried
assertions, and then ensuring that, one-by-one, all queried assertions become cor-
rect assertions. A way to ensure that a queried assertion becomes correct, is to
strengthen the annotation with fresh queried assertions. This is a valid approach,
since such a strengthening cannot endanger the correctness of the current anno-
tation. Other ways are to strengthen a guard, or to insert a statement preceding
that queried assertion. Strengthening guards cannot endanger the annotation,
but inserting a statement can potentially endanger all assertions.

4 Abstract algorithm

In this section we develop an algorithm for the graph abstraction of Section 2. We
start by massaging the specification into a more appropriate shape. Then we will
develop an initial version of our algorithm that is partially correct, i.e. whenever
the algorithm stabilizes all requirements are fulfilled. To ensure that the algo-
rithm stabilizes if (during a sufficiently large period of time) no more topology
changes occur, we will afterwards reduce the possible behavior of the algorithm.
Finally we will prevent that (unwanted) deadlocks occur, again by reducing the
possible behavior. After completing the development of the algorithm, we will
consider its initialization and the dynamic topology changes.

While developing the algorithm, we regularly focus on fragments of the al-
gorithm and its annotation, and temporarily omit the rest. For completeness
reasons, Appendix A contains a fully-annotated version of the whole algorithm.
Since we treat the algorithm in a non-operational way, this section contains no
examples, but one execution scenario has been included in Appendix B.

6

4.1 Specification

Requirements B and C in the specification from Section 2 have a rather global
nature in the sense that they consider a large part of the network. For developing
a distributed algorithm, it is more convenient to have a specification with a more
local nature, like requirements about nodes (or edges) and their direct neighbors.

Therefore we will transform our specification into a more local specification.
Such transformation usually involves the introduction of some variables in the
nodes or edges. Since only the edges can maintain persistent data, we will only
introduce variables in the edges.

Requirement A itself is sufficiently local, so we maintain it as:

A1 for each node v: |v.out| ≤ 1

To make requirement B more local, we associate with each edge e an integer
variable dist.e. If we require that for each outgoing edge f and incoming edge g
of a node, dist.f must be strictly smaller than dist.g (or vice versa), then we can
prove that there is no cycle as follows: assume that there is a cycle containing
edge e, then by transitivity of < we could derive the contradiction dist.e < dist.e;
so there is no cycle. So we transform requirement B into:

B1 for each node v, and edges f, g : f ∈ v.out ∧ g ∈ v.in: dist.f < dist.g

To make requirement C more local, note that two nodes are connected in a
forest if they belong to the same tree. So if each node stores the unique identity
of the tree it belongs to, a local version of requirement C would be that each two
neighbor nodes in the graph store the same tree identity. For a unique identity
of a tree, we could exploit that the tree is rooted by using the unique identity of
its root node.

Since nodes cannot store data, we distribute these stored tree identities to the
edges and require that all incident edges of a node store the same identity (see
C1 below). And since a root node itself has no unique identity and no outgoing
edges, we use the identity of one3 of its incoming edges or self-loops unless it has
no edges (see C2 below). Note that since a muted edge is symmetric with respect
to the nodes it connects, we cannot use the identity of a muted non-self-loop as
a unique identity of a root node. So we associate with each edge e a variable
root.e of type edge identity, and transform requirement C into:

C1 for each node v, and edges f, g : f ∈ v.edges ∧ g ∈ v.edges: root.f = root.g
C2 for each node v: v.edges = ∅∨v.out 6= ∅∨ (∃f : f ∈ v.in∪v.loops : root.f = f)

So requirements A, B and C are fulfilled if the more local requirements A1,
B1, C1 and C2 are fulfilled; and that is what we exploit in order to develop a
distributed algorithm.

3 Net-update jargon: “The prime portal of the tree”

7

4.2 Partial correctness

In this section we define the overall shape of the algorithm by developing an
initial, but partially-correct, version of the algorithm. In general, numerous al-
gorithms can be developed for a given specification, and thus a lot of design
decisions will be made in this section. To stay close to net-update, we include
some short high-level descriptions of the way net-update is supposed to behave
before we actually formally develop the corresponding part of the algorithm.

In net-update each node locally tries to establish the requirements “related”
to the node. However, it turns out that when a node tries is establishing its own
related requirements, some requirements related to its neighbor nodes may be
endangered. Therefore nodes signal4 their neighbor nodes when some of their
related requirements may be violated.

Because at any time a node can be signalled, or a dynamic topology change
can occur in the network, the algorithm may never terminate. Therefore net-
update stabilizes when no node has been signalled anymore and all nodes have
established their related requirements.

To formalize the ideas in this description, we first explicitly associate with
each node v its “related” requirements Q.v. We define Q.v as the conjunction of

Q.v.0 ≡ (∀f, g : f ∈ v.out ∧ g ∈ v.out : f = g)
Q.v.1 ≡ (∀f, g : f ∈ v.out ∧ g ∈ v.in : dist.f < dist.g)
Q.v.2 ≡ (∀f, g : f ∈ v.edges ∧ g ∈ v.edges : root.f = root.g)
Q.v.3 ≡ v.edges = ∅ ∨ (∃f :: f ∈ v.out) ∨ (∃f : f ∈ v.in ∪ v.loops : root.f = f)

Note that we slightly rephrased requirements A1 and C2 (i.e. Q.v.0 and Q.v.3)
to make them more similar to the other requirements (for later use). Note that
if Q.v holds for all nodes v, the original requirements are fulfilled.

For nodes v : v.edges = ∅, related requirements Q.v reduce to true. More-
over, such nodes cannot communicate with other nodes or edges. For simplicity
reasons, we will not further consider these isolated nodes.

To formalize the signals, we could associate with each node a single boolean
variable to indicate whether the node has been signalled. But in order to have
more manipulative freedom, we associate with each combination of a node v and
an edge f : f ∈ v.edges a boolean variable sig.vf to indicate whether node v has
been signalled via edge f . Then we are heading for an algorithm, for each node
v, of the following shape:

{v.edges 6= ∅}
do true →

parallel for f : f ∈ v.edges do sig.vf := false
...
{? Q.v ∨ (∃f : f ∈ v.edges : sig.vf)}

await((∃f : f ∈ v.edges : sig.vf))
od

4 Net-update jargon: “A bus reset is initiated on the neighbor bus.”

8

Observe that this is just a partial algorithm in the sense that we still have to
fill in the gap “...” in such a way that the queried assertion becomes a correct as-
sertion. So each node v starts to reset variable sig.vf for all edges f : f ∈ v.edges,
and then it executes the gap to establish Q.v unless it gets signalled. Afterwards,
when it has been signalled, it starts over again. Upon stabilization of the net-
work, in each node v this (currently queried) assertion holds and the negation
of the await-guard holds. Hence (∀v :: Q.v) holds, which fulfills the specification.

In net-update, the (currently queried) assertion is established in two phases,
which turns out to be related to the internal structure of condition Q.v. Observe
that all terms in Q.v.0, Q.v.1 and Q.v.2 are about pairs of edges, while Q.v.3
can be witnessed by one edge. In net-update, first a witness edge5 is elected for
Q.v.3, and then based on this edge Q.v.0, Q.v.1 and Q.v.2 are established.

The terms in queried assertion {? Q.v ∨ (∃f : f ∈ v.edges : sig.vf)} (as
well as in Q.v) contain variables about multiple edges, which is not a convenient
basis for developing an algorithm in which the data is distributed. Therefore
we strengthen this assertion into a more convenient assertion {R.v} in which
each term refers to the variables about at most one edge. Such a transformation
usually requires the introduction of some variables (like in Section 4.1).

For the parts of the queried assertion that are related to conditions Q.v.2 and
Q.v.0, we will exploit the transitivity and the symmetry of =. We strengthen
these parts into conjuncts R.v.0 and R.v.1 of R.v by introducing in each node v
fresh local variables r and e of type edge identity as follows

R.v.0 ≡ (∀f : f ∈ v.edges : sig.vf ∨ root.f = r)
R.v.1 ≡ (∀f : f ∈ v.out : sig.vf ∨ f = e)

For the parts related to condition Q.v.1, we exploit its asymmetry by distin-
guishing between outgoing and incoming edges. We strengthen these parts into
conjuncts R.v.2 and R.v.3 by introducing in each node v a fresh local integer
variable d as follows

R.v.2 ≡ (∀f : f ∈ v.out : sig.vf ∨ dist.f ≤ d)
R.v.3 ≡ (∀f : f ∈ v.in : sig.vf ∨ d < dist.f) ∨ (∀f : f ∈ v.out : sig.vf)

Analogous to R.v.3, we could also introduce a disjunct (∀f : f ∈ v.in : sig.vf)
in R.v.2. However, this stronger asymmetric combination turns out to simplify
the rest of the development.

What remains are the parts related to condition Q.v.3. For simplicity reasons,
we strengthen these parts into conjunct R.v.4 by using variable e as a witness
of Q.v.3 as follows

R.v.4 ≡ sig.ve ∨ v.edges = ∅ ∨ e ∈ v.out ∨ (e ∈ v.in∪ v.loops ∧ root.e = e)

Because R.v implies the original queried assertion in node v, it is sufficient
to turn queried assertion R.v into a correct assertion.
5 Net-update jargon: “An alpha portal, which leads towards the prime portal”

9

Note that assertion R.v (as well as its predecessor) can be made correct by
inserting an assignment sig.vf := true in a node v for an edge f : f ∈ v.edges.
However, such an assignment can easily endanger stabilization. Later on we will
deal with stabilization in more detail, but for the moment we at least avoid to
introduce assignments in a node v that can reduce to sig.vf := true.

We first consider local correctness of assertion R.v (i.e. that the assertion is
established by its preceding statement in this node). Using that in R.v.0, R.v.1,
R.v.2 and R.v.3 the variables of different edges are fully decoupled by local vari-
ables of node v, these conditions can be established for all edges independently,
e.g. in parallel. Since R.v.4 imposes extra requirements on edge e, we will con-
sider the conditions on edge e separately. More specifically, for local correctness
of assertion R.v we insert a parallel construct that establishes for each edge
f : f 6= e the conjuncts in R.v about edge f , and we require the conjuncts in R.v
about edge e as invariants of the parallel construct. Note that these invariants
must be established as pre-assertion of the parallel construct.

Global correctness of assertion R.v (i.e. that the assertion is maintained by
the statements in the other nodes) will follow (see Appendix E) from the global
correctness of the assertions and invariants that we introduced for local correct-
ness. So we are heading for a program fragment of the following shape:

...
{inv ? sig.ve ∨ root.e = r} {inv ? sig.ve ∨ e 6∈ v.out ∨ dist.e ≤ d}
{inv ? sig.ve ∨ e 6∈ v.out ∨ e 6∈ v.in ∨ d < dist.e}
{inv ? sig.ve ∨ e ∈ v.out ∨ (e ∈ v.in ∪ v.loops ∧ root.e = e)}

parallel for f, u : u ∼f v ∧ f 6= e do
...
{? sig.vf ∨ root.f = r} {? sig.vf ∨ f 6∈ v.out} {? sig.vf ∨ f 6∈ v.in ∨ d < dist.f}

{R.v}

We first deal with the last series of queried assertions. For simplicity reasons,
we will guarantee their local correctness by inserting one large atomic statement
in the parallel construct. We first discuss some straightforward ways to establish
the individual queried assertions, and then we combine them into alternatives
of an alternative construct. We can introduce as many alternatives as we like,
since alternatives can safely (with respect to partial correctness) be eliminated.

Recall that we do not want to establish these assertions using an assign-
ment to sig.vf ; but if sig.vf already holds, a skip is sufficient to fulfill all of
them. Alternatively, we can fulfill the first assertion by inserting an assignment
root.f := r. For the second assertion we can insert a statement {f ∈ v.out}mute
f or {f ∈ v.out ∧ u 6= v} turn f . Note that this second assertion forces that
self-loops must (eventually) become muted edges. To establish the last assertion
we can insert an assignment {f ∈ v.in} dist.f := d + 1. Although for this last
assertion we could also mute incoming edges, this turns out to only complicate
the rest of the development. For reasons that will become clear later, we do
consider the statement {f ∈ v.muted ∧ u 6= v} unmute f as u →f v.

10

For global correctness of these assertions, we consider the statements in node
v and this series of assertions in a node u : u 6= v. We accompany each statement
that affects an edge f : u ∼f v and that can possibly endanger these assertions
with an assignment that evaluates to sig.uf := true. Thus we obtain:

...
{inv ? sig.ve ∨ root.e = r} {inv ? sig.ve ∨ e 6∈ v.out ∨ dist.e ≤ d}
{inv ? sig.ve ∨ e 6∈ v.out ∨ e 6∈ v.in ∨ d < dist.e}
{inv ? sig.ve ∨ e ∈ v.out ∨ (e ∈ v.in ∪ v.loops ∧ root.e = e)}

parallel for f, u : u ∼f v ∧ f 6= e do 〈
if f ∈ v.out →

root.f, sig.uf := r, sig.uf ∨ (root.f 6= r ∧ u 6= v)
mute f

[] f ∈ v.out ∧ u 6= v →
root.f, dist.f, sig.uf := r, d + 1, true
turn f

[] f ∈ v.in ∧ u 6= v →
root.f, dist.f, sig.uf := r, d + 1, sig.uf ∨ root.f 6= r

[] f ∈ v.muted ∧ u 6= v →
root.f, dist.f, sig.uf := r, d + 1, true
unmute f as u →f v

[] f ∈ v.muted →
root.f, sig.uf := r, sig.uf ∨ (root.f 6= r ∧ u 6= v)

[] sig.vf →
skip

fi 〉
{sig.vf ∨ root.f = r} {sig.vf ∨ f 6∈ v.out} {sig.vf ∨ f 6∈ v.in ∨ d < dist.f}

We continue with the remaining queried invariants. Maintenance of these
invariants under the statement in the parallel construct in node v is guaranteed,
thanks to condition f 6= e. Global correctness of these invariants (in a node
u : u 6= v under the statements in node v) is guaranteed for the first and the
third invariant. For the second invariant, we extend the assignment to sig.uf for
an edge f : f ∈ v.in ∧ u 6= v with a disjunct dist.f ≤ d. For the last invariant, we
extend the assignment to sig.uf for muting an edge f : f ∈ v.out with a disjunct
(root.f = f ∧ u 6= v).

What remains is local correctness. Note that using the second invariant the
last disjunct of the third invariant is redundant. For local correctness of the first
two invariants we insert an assignment to r and d that establishes the first two
invariants. Note that such an assignment cannot endanger global correctness
of the current annotation. For local correctness of the other two invariants we
require them as pre-assertions of this assignment:

...
{? sig.ve ∨ e 6∈ v.out ∨ e 6∈ v.in}
{? sig.ve ∨ e ∈ v.out ∨ (e ∈ v.in ∪ v.loops ∧ root.e = e)}

r, d := root.e, dist.e

{inv sig.ve ∨ root.e = r} {inv sig.ve ∨ e 6∈ v.out ∨ dist.e ≤ d}
{inv sig.ve ∨ e 6∈ v.out ∨ e 6∈ v.in}
{inv sig.ve ∨ e ∈ v.out ∨ (e ∈ v.in ∪ v.loops ∧ root.e = e)}

parallel for f, u : u ∼f v ∧ f 6= e do 〈
if f ∈ v.out →

root.f, sig.uf := r, sig.uf ∨ ((root.f 6= r ∨ root.f = f) ∧ u 6= v)
mute f

[] f ∈ v.in ∧ u 6= v →
root.f, dist.f, sig.uf := r, d + 1, sig.uf ∨ root.f 6= r ∨ dist.f ≤ d

...
fi 〉

11

Global correctness of these queried assertions follows from the same argu-
ments as above. For local correctness of the second assertion, we insert a state-
ment that selects an edge e that fulfills it. Such a local selection cannot endanger
global correctness of an annotation. For local correctness of the other assertion,
we require its generalization to all edges of the node as a pre-assertion:

...
{? (∀f : f ∈ v.edges : sig.vf ∨ f 6∈ v.out ∨ f 6∈ v.in)}

e: e ∈ v.out ∨ (e ∈ v.in ∪ v.loops ∧ root.e = e)

Global correctness of the queried assertion is guaranteed by the same ar-
gument as above. Since this assertion is a post-assertion of the assignments
sig.vf := false, we will establish its local correctness by requiring the equivalent
condition v.loops ⊆ v.muted as loop invariant.

This loop invariant is a local condition in the sense that it cannot be endan-
gered by other nodes, so its global correctness is always guaranteed. Its mainte-
nance under a loop-body is also guaranteed, since each atomic statement in node
v maintains it. Initialization of this invariant can be established by inserting the
following straightforward program fragment before the loop:

parallel for f : f ∈ v.loops\v.muted do mute f

{inv v.loops ⊆ v.muted}
do true → ... od

Thus we obtained a partially-correct algorithm, for which we have not yet
guaranteed that it stabilizes nor that it is deadlock-free.

4.3 Stabilization

In this section we will modify the algorithm such that it stabilizes if (during
a sufficiently large period of time) no more topology changes occur. Of course
these modifications must maintain partial correctness, which is guaranteed under
reductions of the possible behavior of the algorithm, e.g. by strengthening the
guards. To guarantee stabilization we will impose a well-founded function on the
state space of the system and adapt the algorithm such that the function is a
variant function for the algorithm, i.e. it (or rather its value) is descending (i.e.
it never increases) and it decreases regularly.

We propose a variant function that consists of three parts. Upon stabilization
we have ¬sig.vf for each edge f : f ∈ v.edges, so we head for a variant function
that decreases under an assignment {sig.vf} sig.vf := false. Since in the spanning
tree setting we need in fact a minimum number of (non-muted) edges, we want
a variant function that decreases under mute-statements. Furthermore, for such
an algorithm it turns out to be (at least) convenient to introduce a total order ≤
on the edge identities, which we use to choose a variant function that decreases if
root.f for an edge f decreases. As a variant function we impose the three-tuple
[(

∑
f :: root.f), (#f :: ¬f.muted), (#v, f :: sig.vf)]6 with the lexicographical

order, in which # is used as “the number of”-quantor.
6 Although we seem to assume that the addition is defined on edge identities, in fact

we use addition as an abbreviation of concatenation with the lexicographical order.

12

We first ensure that this function is well-founded. Using that each edge has
one unique identity and that there is a total order defined on the edge identities,
this function is well-founded if we reasonably assume the network to be finite.

Then we ensure that this function decreases regularly. Note that upon passing
the await statement, guard (∃f : f ∈ v.edges : sig.vf) holds stably up to execu-
tion of the parallel construct with assignments sig.vf := false (see the beginning
of Section 4.2), which then decrease the variant function. So after one execution
of the loop-body, each further execution yields a decrease of the function.

What remains is to ensure that this function is descending under all (other)
atomic statements. The only possibly-endangering statement is the statement
in the large parallel construct. For each assignment root.f := r we must require
pre-assertion r ≤ root.f ; and for unmuting or turning an edge we must even
require pre-assertion r < root.f . For updating an incoming edge we must require
the additional pre-assertion r < root.f ∨ d < dist.f , which can be combined into
pre-assertion (r, d) < (root.f, dist.f). Since this pre-assertion is within an atomic
region, we directly strengthen the guards of the selection with the correspond-
ing required pre-assertions. Furthermore, we use these guards (and invariant
v.loops ⊆ v.muted) to simplify some statements. Thus we obtain:

parallel for f, u : u ∼f v ∧ f 6= e do 〈
if f ∈ v.out ∧ r ≤ root.f →

root.f, sig.uf := r, sig.uf ∨ root.f 6= r ∨ root.f = f
mute f

[] f ∈ v.out ∧ r < root.f →
root.f, dist.f, sig.uf := r, d + 1, true
turn f

[] f ∈ v.in ∧ (r, d) < (root.f, dist.f) →
root.f, dist.f, sig.uf := r, d + 1, sig.uf ∨ root.f 6= r

[] f ∈ v.muted ∧ r < root.f ∧ u 6= v →
root.f, dist.f, sig.uf := r, d + 1, true
unmute f as u →f v

[] f ∈ v.muted ∧ r ≤ root.f →
root.f, sig.uf := r, sig.uf ∨ (root.f 6= r ∧ u 6= v)

[] sig.vf →
skip

fi 〉

We obtained a partially-correct and stabilizing algorithm, which is not yet
guaranteed to be deadlock-free. From this version of the algorithm we have for
each f, u, v : u ∼f v the following three important properties:

Descendence : Both (root.f, dist.f) and root.f are descending in time.
Direction : Every statement in node v that affects f ensures f 6∈ v.out.
Signalling : A decrease of root.f by node u : u 6= v also establishes sig.vf .

4.4 Deadlock freedom

In this section we will ensure that there are no unwanted deadlocks. The only
statements that can cause a deadlock are the possibly-blocking statements,
namely the statement that selects an edge e, the if-statement and the await-
statement. Since stabilization is in fact a “desired deadlock” and it is achieved
by the await-statements, we will not further consider these statements.

13

We will ensure that the other statements are non-blocking. An if-statement
is a blocking statement whenever none of its guards hold. To ensure that in our
algorithm these statements are non-blocking instances, we require them to have
the disjunction of their guards as pre-assertion. Similarly, the selection of an
edge e: P.e is a blocking statement in case ¬(∃f :: P.f) holds. To ensure that in
our algorithm these statements are non-blocking instances, we require them to
have (∃f :: P.f) as pre-assertion.

Dealing with these required pre-assertions turns out to be rather technical:
quite some assertions must be added, and some of the guards must be strength-
ened. In this section we only provide the most important results, but the details
can be found in Appendix C.

We introduce the following system invariants:

P0 (∀v : v.edges 6= ∅ : (∃h : h ∈ v.edges : S.v.h))
P1 (∀f :: root.f ≤ f)

with S.v.h ≡ (h ∈ v.out ∨ (h ∈ v.in ∪ v.loops ∧ root.h = h))
∧ (∀f : f 6= h ∧ f ∈ v.edges : root.h ≤ root.f)
∧ (∀f : f 6= h ∧ f ∈ v.in : (root.h, dist.h) < (root.f, dist.f))
∧ (∀f : f 6= h ∧ f ∈ v.out ∧ root.f = f : root.h < f)

And we obtain the following algorithm (in which we left out the annotation):

{v.edges 6= ∅}
parallel for f : f ∈ v.loops\v.muted do mute f

do true →
parallel for f : f ∈ v.edges do sig.vf := false

e: S.v.e
r, d := root.e, dist.e

parallel for f, u : u ∼f v ∧ f 6= e do 〈
if f ∈ v.out ∧ r = root.f ∧ root.f 6= f →

mute f
[] f ∈ v.out ∧ r < root.f →

root.f, dist.f, sig.uf := r, d + 1, true
turn f

[] f ∈ v.in ∧ (r, d) < (root.f, dist.f) →
root.f, dist.f, sig.uf := r, d + 1, sig.uf ∨ root.f 6= r

[] f ∈ v.muted ∧ r < root.f ∧ u 6= v →
root.f, dist.f, sig.uf := r, d + 1, true
unmute f as u →f v

[] f ∈ v.muted ∧ r ≤ root.f ∧ (r = root.f ∨ u = v) →
root.f := r

[] sig.vf →
skip

fi 〉

await((∃f : f ∈ v.edges : sig.vf))
od

Thus we obtained a partially correct, stabilizing and deadlock-free algorithm.
What remains is the initialization and the dynamic topology changes.

14

4.5 Initialization and dynamic topology changes

In this section we deal with the following two related issues: initialization of
the system invariants and dealing with the dynamic topology changes. Since our
algorithm has to deal with dynamically changing topologies, for initialization we
can simply assume that initially there are no nodes and no edges. All other (pos-
sibly more realistic) “initial” configurations can be obtained using the dynamic
topology changes, which need to be considered anyhow.

Recall that there are two basic building blocks of the network topology, viz. a
node without edges (i.e. a bus without bridge portals), and an edge that connects
two nodes with only one incident edge (i.e. a bridge). To be able to build all
possible network topologies, we consider the following topology changes: creating
and removing such basic building blocks, and merging and splitting nodes.

Also recall that upon a topology change, all nodes that are involved in the
topology change are notified. Since the structure of the main computational unit
of the algorithm (i.e. the node/bus) may be changed by topology changes, we
adopt the net-update proposal to abort and afterwards restart the algorithm in
the nodes that are notified about a topology change. In this way, we can guar-
antee the correctness of the algorithm and its annotation by only ensuring that
the system invariants are maintained by the dynamic topology changes.

Both the creation and the removal of nodes without edges obviously maintain
the invariants. The creation of an edge f that connects two nodes containing only
that edge maintains the invariants if the edge is non-muted and root.f has initial
value f ; removal of such an edge cannot endanger the invariants. Furthermore
invariant P1 is not affected by either merging or splitting nodes.

To ensure that invariant P0 is maintained by merging nodes u and v into a
node w, we study for w.edges 6= ∅ the choice of an edge h : S.w.h by considering
the four conjuncts of S.w.h. To fulfill the first conjunct we can choose an h such
that S.u.h or S.v.h; the second conjunct requires root.h to be minimal. The third
conjunct even requires (root.h, dist.h) to be minimal, while the fourth conjunct
even requires h ∈ v.out ∧ root.h = h if possible. The last requirement follows
from the one but last requirement if we adopt invariant P2 (using invariant P1):

P2 (∀f : f ∈ v.edges ∧ ¬f.muted : f ≤ root.f ≡ dist.f ≤ 0)

To maintain this invariant under creation of an edge f , we require initial
value 0 for dist.f . This invariant is also maintained by the algorithm if we adopt
the following invariant (which is also maintained):

P3 (∀f : f ∈ v.edges : 0 ≤ dist.f)

In general invariant P0 is not maintained under splitting nodes. Since the
algorithm cannot avoid topology changes, it should detect violations of the in-
variant and restore the invariant after such a violation. Since the invariant is of

15

the shape “for each node some locally checkable condition holds”, its violation
can always be locally detected by at least one node. Since the invariant can only
be violated by a topology change, this local condition only needs to be checked
after a notification of a topology change.

What remains is restoring invariant P0 whenever it has been violated. In
general it cannot be locally restored by the nodes that can detect the violation.
So a more global approach is needed, like a network reset7 (see e.g. [8], but
using our more-restricted start criterion) that re-initializes the reachable part
(with respect to the node(s) that detected the violation) of the network under
maintenance of the invariants. This is possible since the invariants hold in an
empty graph, and both adding edges and nodes, and merging nodes maintain
the invariant. We will not further discuss such a network reset.

5 Implementation

In Section 4, we developed an algorithm for the abstraction of IEEE 1394.1 net-
works as described in Section 2. Since we abstracted from the portals, which are
the actual computational units, we have to implement the abstract algorithm on
these portals. To that end both the data and the algorithms for the nodes and
the edges must be distributed over the portals.

The algorithm can be implemented independently from its annotation. But
we make an exception for statement e : S.v.e in which the variables of all inci-
dent edges are involved. A standard implementation requires a snapshot of the
incident edges. However, it turns out that the snapshot is not required to be
consistent, which enables a better performance. This is a real modification of
the algorithm; the technical details can be found in Appendix D.

To formalize this snapshot, we introduce in each node fresh local variables
root′, dist′ and state′. And we precede the selection of an edge e with for each edge
f : f ∈ v.edges an assignment root′.f, dist′.f, state′.f := root.f, dist.f, state.v.f ,
in which state.v.f denotes whether edge f is an incoming edge, an outgoing edge
or a muted edge with respect to node v.

The remaining implementation issues are annotation independent. We will
first transform the current algorithm into a more convenient shape. Using the
snapshot, assignment r, d := root.e, dist.e can be transformed into the local as-
signment r, d := root′.e, dist′.e (see Appendix E). We also make the ranges of the
parallel constructs more homogeneous by extending them to all incident edges
of the node and introducing additional selection statements within the bodies of
the parallel constructs. Furthermore we want to abstract from certain details of
some statements by introducing functions F and G (which we will not explicitly
specify). Thus in the rest of this section we consider the following algorithm:
7 Net-update jargon: “panic”, but it has not been included in draft version [2]. The

proposed start criterion exploits that if a network reset is necessary, then dist.f , for
some edge f , would eventually exceed (no proof yet!) a certain large value (like [13]).

16

{v.edges 6= ∅}
parallel for f : f ∈ v.edges do

if 〈 f ∈ v.loops\v.muted → mute f 〉
[] f 6∈ v.loops\v.muted → skip
fi

do true →
parallel for f : f ∈ v.edges do

sig.vf := false
root′.f, dist′.f, state′.f := root.f, dist.f, state.v.f

e, r, d := F (root′, dist′, state′)

parallel for f, u : u ∼f v do
root.f, dist.f, state.v.f, state.u.f := G(e, r, d, f, root.f, dist.f, state.v.f)

await((∃f : f ∈ v.edges : sig.vf))
od

We implement this algorithm on the portals in two phases: first we make the
parallelism in the nodes more explicit by introducing extra processes, and then
we map these processes and the data to the portals.

For each node v we introduce one process8 C.v and a process B.f.v per edge
f : f ∈ v.edges. Process C.v is a version of the algorithm that delegates the
statements in the parallel constructs with respect to edge f to process B.f.v.

The communication and synchronization between these processes must be via
the bus, so we will have to introduce message communication. In what follows
we briefly describe the implementations of the three constructions that need
to be implemented: Sequential compositions S; T can be replaced by distributed
sequential compositions, i.e. by sending a message upon completion of statement
S, and only starting the execution of statement T after receiving the message.
Assignments x := E can be replaced by distributed assignments, i.e. by sending a
message with value E, and after receiving this value assigning it to local variable
x. And synchronization construct await(E) can be replaced by waiting for a
message that guarantees condition E, and sufficiently often sending the message.

We introduce 6 types of messages, some of which have parameters, with
names that weakly reflect their purpose: “ready”, “request”, “response” (r, d, s),
“update” (e, r, d), “done” and “awake”. Then we obtain for C.v:

{v.edges 6= ∅}
parallel for f : f ∈ v.edges do

receive “ready” from B.f.v

do true →
parallel for f : f ∈ v.edges do

send “request” to B.f.v
receive “response” (root′.f, dist′.f, state′.f) from B.f.v

e, r, d := F (root′, dist′, state′)

parallel for f : f ∈ v.edges do
send “update” (e, r, d) to B.f.v
receive “done” from B.f.v

receive at least one “awake” from B.f.v, for at least one edge f
od

8 Net-update jargon: “The coordinator of the bus”

17

And for B.f.v, with f, v, u : u ∼f v, we obtain:

if 〈 f ∈ v.loops\v.muted → mute f 〉
[] f 6∈ v.loops\v.muted → skip
fi
send “ready” to C.v

do true →
[] ∃ “request” from C.v →

receive “request” from C.v
sig.vf := false
send “response” (root.f, dist.f, state.v.f) to C.v

receive “update” (e, r, d) from C.v
root.f, dist.f, state.v.f, state.u.f := G(e, r, d, f, root.f, dist.f, state.v.f)
send “done” to C.v

[] sig.vf →
send “awake” to C.v

od

Finally we map the processes and the data to the portals like in Figure 1. For
each edge f : u ∼f v, we equip the corresponding bridge with processes B.f.u
and B.f.v, and with the variables of the edge. As the identity of the edge, we use
the identity of one of its portals. Less straightforward is to ensure that on each
bus (i.e. a node) with at least one portal there is exactly one process C. To ensure
that there is at least one process C, we equip each portal with such a process;
and to ensure that there is at most one process C, a leader election protocol can
be used on the bus to activate only one of them. We will not further describe
such a leader election protocol, nor the details of the message communication.

6 Evaluation and conclusions

We analyzed the core of the net-update algorithm in the IEEE 1394.1 draft
standard by formally reconstructing it from its specification. The algorithm we
obtained is almost equivalent to the net-update algorithm, but not completely
identical. Hence, this analysis is not a correctness proof of net-update draft [2],
but it exposes the core ideas of this algorithm. There are mainly two differences:
The first one is that our algorithm uses another condition for starting a network
reset, which is caused by our system invariant P0. The second one is that we

CCC
B B

BB
B B

Bus communication

Bridge

Bus

Fig. 1. Architecture

18

better exploited the potential parallelism on the bus, although we are not sure
about whether this can be maintained for the extra functionality of net-update.

This non-trivial algorithm is in fact distributed on two levels, namely on the
network level and on the portal level. By abstracting from the IEEE 1394.1 net-
work, we were able to first focus on the behavior of the algorithm in the network,
and afterwards we could focus on the local portal-implementation issues.

The way of reconstructing this algorithm was based on ideas of [11], although
we applied them slightly less formal than they were intended to be applied. For
further work we consider verifying the correctness proof using a theorem prover in
order to gain extra confidence in the proof. The reconstruction of the algorithm
was mainly guided by the proof obligations for its correctness, and hence the
algorithm was developed hand-in-hand with its correctness proof. After previous
experiences [14] with inherently highly-parallel non-blocking algorithms, this is
again an example in which the techniques of [11] prove to be valuable.

References

1. The Institute of Electrical and Electronics Engineers, Inc.: IEEE Standard for a
High Performance Serial Bus. (1996) IEEE Std 1394-1995.

2. The Institute of Electrical and Electronics Engineers, Inc.: IEEE P1394.1 Draft
Standard for High Performance Serial Bus Bridges. (2002) Version 1.04.

3. Cheng, C., Cimet, I.A., Kumar, S.P.R.: A protocol to maintain a minimum span-
ning tree in a dynamic topology. In: Symposium proceedings on Communications
architectures and protocols, ACM Press (1988) 330–337

4. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. CRC Handbook
of Algorithms and Theory of Computation, Chapter 8. (1999)

5. Mooij, A.J., Goga, N., Wesselink, W.: A distributed spanning tree algorithm for
topology-aware networks. Computer Science Report 03-09, Technische Universiteit
Eindhoven, Eindhoven (2003)

6. Perlman, R.: An algorithm for distributed computation of a spanning tree in an
extended LAN. ACM SIGCOMM 15 (1985) 44–53

7. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its applications
to self-stabilization. Theoretical Computer Science 186 (1997) 199–229

8. Afek, Y., Awerbuch, B., Gafni, E.: Applying static network protocols to dynamic
networks. In: 28th Annual Symposium on Foundations of Computer Science, IEEE
(1987) 358–370

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)
10. Langevelde, I.v., Romijn, J., Goga, N.: Founding FireWire Bridges through

Promela Prototyping. In: Proceedings Formal Methods for Parallel Programming:
Theory and Applications, IEEE Computer Society Press (2003)

11. Feijen, W.H.J., van Gasteren, A.J.M.: On a method of multiprogramming.
Springer-Verlag (1999)

12. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Informatica 6 (1976) 319–340

13. Arora, A., Gouda, M.G.: Distributed Reset. IEEE Transactions on Computers 43
(1994) 1026–1039

14. Mooij, A.J.: Formal derivations of non-blocking multiprograms. Computer Science
Report 02-13, Technische Universiteit Eindhoven, Eindhoven (2002)

19

A Full annotation

For compactness reasons, we frequently leave out parts of the algorithm and its
annotation in Section 4 and Appendix C. In this appendix we provide the full
algorithm for each node v and its annotation:

{v.edges 6= ∅}
parallel for f : f ∈ v.loops\v.muted do

mute f

{inv v.loops ⊆ v.muted}
do true →

parallel for f : f ∈ v.edges do
sig.vf := false

{v.loops ⊆ v.muted}
e: S.v.e

{v.loops ⊆ v.muted} {e ∈ v.out ∨ (e ∈ v.in ∪ v.loops ∧ root.e = e)}
{(∀f : f 6= e ∧ f ∈ v.edges : sig.vf ∨ root.e ≤ root.f)}
{(∀f : f 6= e ∧ f ∈ v.in : (root.e, dist.e) < (root.f, dist.f))}
{(∀f : f 6= e ∧ f ∈ v.out ∧ root.f = f : root.e < f)}

r, d := root.e, dist.e

{inv sig.ve ∨ root.e = r} {inv sig.ve ∨ e 6∈ v.out ∨ dist.e ≤ d}
{inv v.loops ⊆ v.muted} {inv e ∈ v.out ∨ (e ∈ v.in ∪ v.loops ∧ root.e = e)}

parallel for f, u : u ∼f v ∧ f 6= e do 〈

{sig.vf ∨ r ≤ root.f} {(∀f : f 6= e ∧ f ∈ v.in : (r, d) < (root.f, dist.f))}
{(root.e, dist.e) ≤ (r, d)} {(∀f : f 6= e ∧ f ∈ v.out ∧ root.f = f : r < f)}

if f ∈ v.out ∧ r = root.f ∧ root.f 6= f →
mute f

[] f ∈ v.out ∧ r < root.f →
root.f, dist.f, sig.uf := r, d + 1, true
turn f

[] f ∈ v.in ∧ (r, d) < (root.f, dist.f) →
root.f, dist.f, sig.uf := r, d + 1, sig.uf ∨ root.f 6= r

[] f ∈ v.muted ∧ r < root.f ∧ u 6= v →
root.f, dist.f, sig.uf := r, d + 1, true
unmute f as u →f v

[] f ∈ v.muted ∧ r ≤ root.f ∧ (r = root.f ∨ u = v) →
root.f := r

[] sig.vf →
skip

fi 〉
{sig.vf ∨ root.f = r} {sig.vf ∨ f 6∈ v.out} {sig.vf ∨ f 6∈ v.in ∨ d < dist.f}

{R.v} {v.loops ⊆ v.muted}
await((∃f : f ∈ v.edges : sig.vf))

od
Invariants:

P0: (∀v : v.edges 6= ∅ : (∃h : h ∈ v.edges : S.v.h))
P1: (∀f :: root.f ≤ f)
P2: (∀f : f ∈ v.edges ∧ ¬f.muted : f ≤ root.f ≡ dist.f ≤ 0)
P3: (∀f : f ∈ v.edges : 0 ≤ dist.f)

Definitions:
S.v.h ≡ (h ∈ v.out ∨ (h ∈ v.in ∪ v.loops ∧ root.h = h))

∧ (∀f : f 6= h ∧ f ∈ v.edges : root.h ≤ root.f)
∧ (∀f : f 6= h ∧ f ∈ v.in : (root.h, dist.h) < (root.f, dist.f))
∧ (∀f : f 6= h ∧ f ∈ v.out ∧ root.f = f : root.h < f)

R.v ≡ (∀f : f ∈ v.edges : sig.vf ∨ root.f = r)
∧ (∀f : f ∈ v.out : sig.vf ∨ f = e)
∧ (∀f : f ∈ v.out : sig.vf ∨ dist.f ≤ d)
∧ ((∀f : f ∈ v.in : sig.vf ∨ d < dist.f) ∨ (∀f : f ∈ v.out : sig.vf))
∧ sig.ve ∨ v.edges = ∅ ∨ e ∈ v.out ∨ (e ∈ v.in ∪ v.loops ∧ root.e = e)

20

B Example

To get an operational idea of how the algorithm developed in Section 4 can
behave, we included in Figure 2 one possible behavior of the algorithm. It is
coarse-grained in the sense that the steps are executions of a full loop-body of a
node. Furthermore, it does not contain a dynamic topology change.

The figure contains a sequence of seven networks linked by horizontal and
vertical arrows. The upper-left network is a just initialized network, and the
lower-left network is a stabilized network. The networks contain four nodes that
are interconnected by four edges with identities a, b, c, d : a < b < c < d. The
nodes are represented by circles, the edges ∼f are represented by lines labelled
with root.f, dist.f , and the edges → in the spanning forest are represented by
arrows between nodes. For clarity reasons, we did not explicitly include the
identities of the edges, but they can easily be derived from the initial network
since initially for each edge f we have root.f = f . A filled dot near a node v and
an edge f denotes that sig.vf holds. Diagonal arrows indicate the node that is
going to perform the loop body of the algorithm according to this scenario.

a, 2

a, 1

a, 0

a, 1

a, 2

a, 1

a, 0

a, 1 a, 1

b, 1

a, 0

a, 1

a, 1 c, 1

a, 0

b, 1b, 1

b, 0

a, 0

c, 1c, 1

c, 0

a, 0

b, 0d, 0b, 0

a, 0

c, 0

Fig. 2. Example scenario

C Deadlock freedom

This appendix provides the technical details that we omitted in Section 4.4
to improve the accessability of that section. We will ensure that, apart from
the await-statement, all statements are non-blocking. We first consider the if-
statement. To ensure that it is a non-blocking statement, we require it to have
the disjunction of its guards as pre-assertion:

parallel for f, u : u ∼f v ∧ f 6= e do

{? sig.vf ∨ r ≤ root.f} {? sig.vf ∨ f 6∈ v.in ∨ (r, d) < (root.f, dist.f)}
〈 if ... fi 〉

21

To guarantee local correctness of such assertions, they are usually explicitly
required (for all f, u : u ∼f v ∧ f 6= e) as pre-assertion of the parallel construct.
Exploiting that this is straightforward and it introduces no new proof obligations
for global correctness (see Appendix E), we will not explicitly do this. Further-
more, we will not exploit disjunct trig.vf of the last assertion for either local or
global correctness, such that we can safely drop this disjunct later on.

Global correctness of these assertions is guaranteed by the signalling property
and the direction property (f 6∈ v.in) respectively. Since these assertions are
required post-assertions of assignment r, d := root.e, dist.e, their local correctness
is guaranteed by requiring the following pre-assertions for that assignment:

{? (∀f : f 6= e ∧ f ∈ v.edges : sig.vf ∨ root.e ≤ root.f)}
{? (∀f : f 6= e ∧ f ∈ v.in : sig.vf ∨ (root.e, dist.e) < (root.f, dist.f))}

r, d := root.e, dist.e

Global correctness of these assertions is guaranteed by the descendence prop-
erty of edge e, and the signalling and direction properties of edge f respectively.
Since these assertions are required post-assertions of the selection of an edge e,
their local correctness can be established by strengthening the criteria for that
selection as follows:

〈 e: S.v.e 〉
{(∀f : f 6= e ∧ f ∈ v.edges : sig.vf ∨ root.e ≤ root.f)}
{(∀f : f 6= e ∧ f ∈ v.in : sig.vf ∨ (root.e, dist.e) < (root.f, dist.f))}

with S.v.h ≡ (h ∈ v.out ∨ (h ∈ v.in ∪ v.loops ∧ root.h = h))
∧ (∀f : f 6= h ∧ f ∈ v.edges : root.h ≤ root.f)
∧ (∀f : f 6= h ∧ f ∈ v.in : (root.h, dist.h) < (root.f, dist.f))

To guarantee that the selection of an edge e: S.v.e causes no deadlock, we
must require as pre-assertion of the selection that there exists such an edge e.
We do so by requiring the following system invariant:

P0 (∀v : v.edges 6= ∅ : (∃h : h ∈ v.edges : S.v.h))

Maintenance of invariant P0 can only be endangered by the statements in
the large parallel construct. In what follows, we focus on condition (∃h : h ∈
w.edges : S.w.h) for a node w : w.edges 6= ∅, usually in relation with an edge
g : S.w.g and a statement in node v. We use r and d for variables of node v.

We first consider the statements in nodes v : v 6= w that affect an edge
f : v ∼f w with g 6= f . We will ensure that in case S.w.g is violated by such
a statement, S.w.f is established, and hence invariant P0 is maintained. Using
the direction property (f 6∈ w.in), S.w.g can only be violated by an assignment
{r < root.g} root.f := r. Using S.w.g this assignment establishes (∀h : f 6=
h ∧ h ∈ w.edges : root.f < root.h). What remains to establish S.w.f is to
ensure that f ∈ w.out holds. The only possibly-violating statements that do
not guarantee this are muting an outgoing edge and maintaining a muted edge.
Using S.w.g and condition r < root.g (and hence r < root.f), we can exclude
them by strengthening their guards with a conjunct r = root.f (unless u = v).

22

Then we consider the statements in nodes v : v 6= w, that affect an edge
f : v ∼f w with g = f . We will ensure that S.w.g cannot be violated by
such a statement. Since S.w.g implies g 6∈ w.muted, we do not have to consider
statements for muted edges. Fortunately the statements for f ∈ v.in and turning
f ∈ v.out cannot violate S.w.g. So what remains is the statement with guard
f ∈ v.out ∧ r = root.f (see last paragraph) that mutes an outgoing edge. Since
this statement can violate S.w.g, we want to strengthen its guard with a conjunct
that implies ¬S.w.f . Using f ∈ v.out (i.e. f ∈ w.in), a local way to do this is
using a conjunct root.f 6= f .

Finally, we consider the statements in node v : v = w that affect an edge
f : f ∈ v.edges ∧ f 6= e. In case g = e, S.w.g is maintained if we require
pre-assertion (root.e, dist.e) ≤ (r, d). For the case g 6= e we ensure that S.w.g is
maintained in case that ¬S.w.e holds: for the case f = g we require pre-assertion
(∀h : ¬S.v.e ∧ S.v.h : root.h < r), which is also sufficient for the case f 6= g.

Since we strengthened some guards related to f ∈ v.out and f ∈ v.muted, we
must still ensure as a pre-assertion that at least one of the guards evaluates to
true. As a basis we use the two corresponding pre-assertions from the beginning of
this section. Thanks to including the option to unmute a muted edge (in Section
4.2), these assertions are strong enough for the guards related to f ∈ v.muted.
For the guards related to f ∈ v.out we require an extra pre-assertion.

parallel for f, u : u ∼f v ∧ f 6= e do 〈

{? (root.e, dist.e) ≤ (r, d)} {? (∀h : ¬S.v.e ∧ S.v.h : root.h < r)}
{? sig.vf ∨ f 6∈ v.out ∨ r < root.f ∨ root.f 6= f}
{sig.vf ∨ r ≤ root.f} {sig.vf ∨ f 6∈ v.in ∨ (r, d) < (root.f, dist.f)}

if f ∈ v.out ∧ r = root.f ∧ root.f 6= f →
mute f

[] f ∈ v.out ∧ r < root.f →
root.f, dist.f, sig.uf := r, d + 1, true
turn f

[] f ∈ v.in ∧ (r, d) < (root.f, dist.f) →
root.f, dist.f, sig.uf := r, d + 1, sig.uf ∨ root.f 6= r

[] f ∈ v.muted ∧ r < root.f ∧ u 6= v →
root.f, dist.f, sig.uf := r, d + 1, true
unmute f as u →f v

[] f ∈ v.muted ∧ r ≤ root.f ∧ (r = root.f ∨ u = v) →
root.f := r

[] sig.vf →
skip

fi 〉

We first consider assertion (∀h : ¬S.v.e ∧ S.v.h : root.h < r). Although
we could continue with it in its current shape, we will try to eliminate it. First
(see Appendix E) we strengthen it into the more convenient condition (∀f : f ∈
v.edges : r ≤ root.f) ⇒ S.v.e. Using required assertion (root.e, dist.e) ≤ (r, d),
this condition turns out to reduce to true, if we strengthen an invariant and an
assertion by leaving out disjunct sig.vf , and generalize that assertion as follows:

23

{? inv e ∈ v.out ∨ (e ∈ v.in ∪ v.loops ∧ root.e = e)}
parallel for f, u : u ∼f v ∧ f 6= e do 〈

{? (root.e, dist.e) ≤ (r, d)} {? sig.vf ∨ f 6∈ v.out ∨ r < root.f ∨ root.f 6= f}
{? (∀f : f 6= e ∧ f ∈ v.in : (r, d) < (root.f, dist.f))}

if ... fi 〉

Note that the strengthened invariant is indeed maintained by the algorithm;
its local correctness can be achieved by leaving out disjunct sig.vf from the
related assertions. The strengthened assertion is globally correct under the other
nodes using the direction property, and the node itself cannot violate it. Local
correctness is guaranteed, since we already discussed that disjunct sig.vf may
be left out in the related pre-assertion.

{inv e ∈ v.out ∨ (e ∈ v.in ∪ v.loops ∧ root.e = e)}
parallel for f, u : u ∼f v ∧ f 6= e do 〈

{? (root.e, dist.e) ≤ (r, d)} {? sig.vf ∨ f 6∈ v.out ∨ r < root.f ∨ root.f 6= f}
{(∀f : f 6= e ∧ f ∈ v.in : (r, d) < (root.f, dist.f))}

if ... fi 〉

Global correctness of the remaining queried assertions is guaranteed using
the descendence property and the signalling property respectively. Their local
correctness is guaranteed by requiring the following pre-assertion of the preceding
assignment:

{? (∀f : f 6= e ∧ f ∈ v.out ∧ root.f = f : sig.vf ∨ root.e < f)}
r, d := root.e, dist.e

Using the descendence and the signalling property, global correctness of this
queried assertion is guaranteed. For its local correctness, note that it is a post-
assertion of the selection of an edge e : S.v.e. Therefore we strengthen S.v.e with
a conjunct similar to this assertion into

S.v.h ≡ (h ∈ v.out ∨ (h ∈ v.in ∪ v.loops ∧ root.h = h))
∧ (∀f : f 6= h ∧ f ∈ v.edges : root.h ≤ root.f)
∧ (∀f : f 6= h ∧ f ∈ v.in : (root.h, dist.h) < (root.f, dist.f))
∧ (∀f : f 6= h ∧ f ∈ v.out ∧ root.f = f : root.h < f)

By strengthening S.v.h we also strengthen invariant P0; hence we have to
reconsider its correctness. Thanks to the descendence property, the additional
conjunct cannot lead to more violations of S.v.h in P0 if we require the additional
invariant

P1 (∀f :: root.f ≤ f) ,

which itself is maintained by the descendence property. What remains is
to ensure that whenever S.v.h must be established, the additional conjunct is
also established. Recall that each time that S.v.h′ must be established in a
state where S.v.h holds, it is accompanied with an assignment that establishes
root.h′ < root.h. Using S.v.h the new conjunct follows from P1.

What remains is the related assertion (∀h : ¬S.v.e ∧ S.v.h : root.h < r). It
still reduces to true, if we also strengthen assertion sig.vf ∨ f 6∈ v.out ∨ r <
root.f ∨ root.f 6= f into (∀f : f 6= e ∧ f ∈ v.out ∧ root.f = f : r < f).
Local correctness can be achieved by leaving out disjunct sig.vf from the related
assertions. Their global correctness follows from invariant P0.

24

D Buffering values

In Section 5, we claimed that statement e : S.v.e can be implemented using a
snapshot that is not required to be consistent. In this section we provide a cor-
rectness argument for this modification of the algorithm.

As a starting point we use the annotated algorithm from Appendix A. To
formalize this snapshot, we introduce in each node fresh local variables root′,
dist′ and state′. And we precede the selection of an edge e with for each edge
f : f ∈ v.edges an assignment root′.f, dist′.f, state′.f := root.f, dist.f, state.v.f ,
in which state.v.f denotes whether edge f is an incoming edge, an outgoing edge
or a muted edge with respect to node v. To show that an edge e can safely be
selected using these copied values, we propose to replace the corresponding part
of the algorithm of Appendix A by:

{v.loops ⊆ v.muted}
edges′ := ∅

{inv (∃e : e ∈ v.edges : T.v.e)} {inv v.loops ⊆ v.muted}
parallel for f : f ∈ v.edges do

sig.vf := false
root′.f, dist′.f, state′.f, edges′ := root.f, dist.f, state.v.f, edges′ ∪ {f}

{(∃e : e ∈ v.edges : T.v.e)} {edges′ = v.edges}
{(∀f : f ∈ v.in : f ∈ v.in′)} {(∀f : f ∈ v.out ∧ root.f = f : f ∈ v.out′ ∧ root′.f = f)}
{v.loops ⊆ v.muted} {(∀f : f ∈ v.edges : (root.f, dist.f) ≤ (root′.f, dist′.f))}
{(∀f : f ∈ v.edges : (sig.vf ∧ f 6∈ v.in) ∨ (root.f, dist.f) = (root′.f, dist′.f))}
{(∀f : f ∈ v.edges : (f ∈ v.out′ ∨ (f ∈ v.in′ ∪ v.loops ∧ root′.f = f)) ⇒

(f ∈ v.out ∨ (f ∈ v.in ∪ v.loops ∧ root.f = f))}
e: T.v.e

{v.loops ⊆ v.muted} {e ∈ v.out ∨ (e ∈ v.in ∪ v.loops ∧ root.e = e)}
{(∀f : f 6= e ∧ f ∈ v.edges : sig.vf ∨ root.e ≤ root.f)}
{(∀f : f 6= e ∧ f ∈ v.in : (root.e, dist.e) < (root.f, dist.f))}
{(∀f : f 6= e ∧ f ∈ v.out ∧ root.f = f : root.e < f)}

with T.v.e ≡ (root, dist, state.v := troot, tdist, tstate).(S.v.e)
with for f ∈ edges′: troot.f, tdist.f, tstate.f = root′.f, dist′.f, state′.f
and for f 6∈ edges′: troot.f, tdist.f, tstate.f = root.f, dist.f, state.v.f

We did not explicitly include all annotation for the parallel construct. The
skipped parts can straightforwardly be added, and they contain nothing essen-
tially new. Note that we used local variable edges′ only for the annotation; hence
it can be eliminated from an implementation.

We first consider correctness of the last series of assertions. Their global
correctness is maintained under our modification. Their local correctness follows
from two parts: the pre-assertions of the selection of an edge e and the definition
of T.v.e in case edges′ = v.edges:

T.v.e ≡ (e ∈ v.out′ ∨ (e ∈ v.in′ ∪ v.loops ∧ root′.e = e))
∧ (∀f : f 6= e ∧ f ∈ v.edges : root′.e < root′.f)
∧ (∀f : f 6= e ∧ f ∈ v.in′ : (root′.e, dist′.e) < (root′.f, dist′.f))
∧ (∀f : f 6= e ∧ f ∈ v.out′ ∧ root′.f = f : root′.e < f)

25

Then we consider the pre-assertions of the selection of an edge e, apart from
the first assertion. For their global correctness, note that they reflect many global
correctness arguments that we used before, especially the three properties men-
tioned in Section 4. Usually, their local correctness can be established conjunct-
wise, and that is the reason that we did not include the required annotation.

Assertion and invariant (∃e : e ∈ v.edges : T.v.e) deserve special attention.
Their local correctness is guaranteed by construction, but their global correct-
ness could be quite complicated. Fortunately, their global correctness proofs are
analogous to (the first half of) the proof of maintenance of P0 (in Appendix C).

E Lemmas

This appendix contains some lemmas that are used in this paper.

E.1 Proof reduction for parallel constructs

Consider a parallel algorithm with a process in which the following annotated
program fragment occurs:

{A}
parallel for x : P.x do

{B.x}
...
{C.x}

{D}

– If assertion B.x (for all x : P.x) is globally correct, and A ≡ (∀x : P.x : B.x),
then assertion A is globally correct and assertion B.x (for all x : P.x) is
locally correct.

– If assertions A and C.x (for all x : P.x) are globally correct, and assertion D is
locally correct, then assertion D is globally correct. Nevertheless, the global
correctness proof of assertion D may require to strengthen the assertion.

E.2 Program transformation

Consider a parallel algorithm with variables x, y and A that contains a process
in which the following program fragment occurs:

x := A
y := A

Under the assumption that x and y are local variables (not reachable for other
processes), this fragment can be correctly implemented as follows:

x := A
y := x

Note that this reduces the possible execution traces, but it cannot introduce a
deadlock or hinder termination. Furthermore note that in both cases {x = A}
is not guaranteed to be a correct intermediate assertion.

26

E.3 Condition simplification

In this section we show how to rewrite and simplify some conditions. We first
show that assertion (∀h : ¬S.v.e∧S.v.h : root.h < r) can be simplified as follows:

(∀h : ¬S.v.e ∧ S.v.h : root.h < r)
≡ { distribution }

S.v.e ∨ (∀h : S.v.h : root.h < r)
⇐ { use conjunct (∀f : f ∈ v.edges : root.h ≤ root.f) of S.v.h }

S.v.e ∨ (∀h :: (∃f : f ∈ v.edges : root.f < r))
≡ { calculus }

S.v.e ∨ (∃f : f ∈ v.edges : root.f < r)
≡ { calculus }

(∀f : f ∈ v.edges : r ≤ root.f) ⇒ S.v.e

