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Anisotropy effects in phonon-assisted charge-carrier transport in organic molecular crystals
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The Netherlands
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We present a theoretical description of polaron dc conductivities in organic molecular crystals. Our approach
is based on a rigorous evaluation of the Kubo formula for electrical conductivity within a mixed Holstein-
Peierls model. It generalizes the result of Holstein's local-coupling theory by treating both local and nonlocal
electron-phonon interactions nonperturbatively. The general theory is supplemented by an application to a
simplified model crystal in order to emphasize the essential physics. Accompanied by an illustrative numerical
example, special emphasis is put on the emergence of anisotropy effects in the temperature dependence of the
conductivity tensor. These anisotropy effects are shown to originate from phonon-assisted currents due to the
nonlocal electron-lattice interaction which demonstrates the importance to go beyond local-coupling theories in
order to describe the experimental observations.

DOI: 10.1103/PhysRevB.69.075212 PACS nunider71.38—k, 72.10-d, 63.20.Kr, 72.80.Le

[. INTRODUCTION is the dominant interaction between electronic excitations
and lattice vibrations. However, it is well known, e.g., from
During the last decade, research on organic semicondud¢he work of Su, Schrieffer, and Heed@érthat in organic
tors has regained considerable interest as these materiasmiconductors also theonlocal electron-phonon coupling,
have become very promising candidates for low-cost andle., the influence of lattice vibrations on the electron transfer
easy-to-process electronic and optoelectronic applicationsetween different sites, may be very important. Conse-
such as organic light-emitting devices and solar celfs. quently, a number of theoretical studies on different aspects
Apart from semiconducting polymers, a particularly interest-of nonlocal coupling have been performed in the past®in
ing class of organic semiconductors are high-purity crystalshis paper, we extend those ideas and develop a theoretical
of organic molecules. Not only do they have a large technoéescription of polaron dc conductivities in organic molecular
logical potential as materials for thin-film transistéré®or-  crystals, including both local and nonlocal electron-phonon
ganic molecular crystals are also considered ideal candidatesupling.
for fundamental studies of optical and transport properties of Our approach is based on a rigorous evaluation of the
organic semiconductors. In comparison to polymersKubo formula for electrical conductivity and incorporates
disorder-related effects are strongly reduced in these crystalsth local and nonlocal electron-phonon couplings in a non-
which makes it possible to study directly their intrinsic exci- perturbative manner. It generalizes both the result of Hol-
tations and charge-carrier transport mechanisms. Consstein’s local-coupling theof§ as well as previous evalua-
quently, several fundamental experimental and theoreticalons of the Kubo formula based either oad hoc
studies have been performed in recent years, e.g., on olig@ssumptiorfs or Fermi's golden rulé® Our method can be
acene crystals such as pentactné’ best compared to Munn and Silbey’s nonperturbative calcu-
An important contribution towards the understanding oflation of polaron diffusion coefficiemt§ but it is difficult to
the intrinsic charge-carrier transport mechanisms in organiestablish a direct connection between both approaches due to
molecular crystals has been made by Holsfeivho studied  the different formalisms used and the overall complexity of
the influence of the electron-lattice interaction on bandwidthghe problem. As already recognized by the authors of Refs.
and mobilities for a one-dimensional model system. In com25-27, charge-carrier transport in the presence of nonlocal
parison to covalently bonded inorganic semiconductors, oreoupling may exhibit qualitatively new properties due to
ganic molecular crystals exhibit weak intermolecular van dephonon-assisted currents absent in local-coupling theories.
Waals bonds and, hence, narrower electron bands and stroBy means of our theory, we will demonstrate explicitly how
ger electron-phonon interaction. As a consequence, polardahese additional nonlocal contributions give rise to anisot-
effects become important which led Holstein to predict aropy effects in the temperature dependence of polaron dc
temperature-dependent band narrowing as well as a crossenductivities, as commonly observed in experimént?
over from bandlike conduction into phonon-assisted hoppind-urthermore, the explicit expression we shall derive for the
transport at elevated temperatures. Twenty years later, thionductivity tensor may, in principle, also be utilized to
interplay between band and hopping transport in organic solmake quantitative statements about the polaron conductivi-
ids was, indeed, observed in naphthalene cryst#fSand ties once all the material-specific parameters are determined.
some experimental data could be fitted to Holstein'sAs these parameters can be obtained fr@n initio
theory?!%2 calculations—as recently demonstrated for oligoacene
From the theoretical point of view, it is important to stresscrystal$®>*2—our theory does also represent an important
that Holstein’s molecular crystal model is based on the asstep towards a fully microscopic description of charge-
sumption that théocal (or on-sitg electron-phonon coupling carrier conductivities in organic molecular crystals.
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The paper is organized as follows. In Sec. Il, we introduce
a mixed Holstein-Peierls model used in this paper for the Con= > JomnBo, Bo=by—b_g, ()
description of localand nonlocal interactions between elec- Q
trons and phonons. In Sec. IlI, we briefly review some of ourwhereA is an arbitrary operator. This transformation may be
previous results on the polaron band structure within thigooked upon as a generalization of the local transformation
model. This serves mainly as a preparation for the actuab=y c_ a'a  used for the solution of the original Hol-
calculation of the polaron dc conductivity in Sec. IV. Starting stein model of purely local coupling. Due to the ident8Y
from the basic definitions and equations of charge-carrieL _ g the transformed operatofd) can be calculated ex-
transport(Sec. IVA), we derive in Sec. IVB an explicit pjicitly by means of the Baker-Campbell-Hausdorff theorem
expression for the polaron dc conductivity by evaluating the
Kubo formula for the Holstein-Peierls model. In Sec. IV C, 1
this general result is applied to a simplified model crystal in A=eSAe 5= E —'[S,[S,- -L[8,A]-- 1] (6)
order to emphasize the basic physics contained in our theory. o ks g
Especially, we will demonstrate that our solution of the
Holstein-Peierls model can be used to explain anisotropy ef- Especially, it turns out to be useful to introduce the trans-
fects in the temperature dependence of the polaron Condu?drmed operatorag):esag)eg andﬁg)zesbg)eg which

Phonon-assisted cLrrents de to e nonlocal leciron 32 De Inerpreted as annihlatidareation operators of a
b olaron and a phonon of the distorted lattice, respectively.

interaction which demonstrates the importance to go beyon or the explicit evaluation via the Baker-Campbell

B o s o b et pBUSo herer).we ol Ref. 29 and assume ience-
' P Ptorth [90.9g' Imn=0 for all pairs Q and Q" which was

proach. Finally, a summary is given in Sec. V. shown to yield reliable results despite its approximative

nature®® Then, the transformed operators are straightfor-
Il. THE HOLSTEIN-PEIERLS MODEL wardly found as

k commutators

We consider a mixed Holstein-Peierls model for the inter-
action between electrons and phonons. Using a tight-binding 3 => (e %) a,, BQ:bQ_E ngnaTmam (7
description, this corresponds to a Hamiltonian of the form n mn

H=2, Endndnt 2 hog(bgbo*3), (1) al=> al(e)m bh=bL—> g omdlas. ©
n mn

R where we introduced a compact matrix notation for the ex-
Ernn=emnt > fiwodomnBS . B&=bh+b_g, (2)  ponential operators involved. Again, these relations may be
Q looked upon as generalizations of the local transformations

where electron-electron interaction has been neglected whichm=€“mma,, and bo=bgo—=Gommanam corresponding
is justified for the case of low charge-carrier densities conio the Holstein model, see also Ref. 27.

sidered in this work. The operatoas]’ andb’:=b{}) anni-

hilate (create an electron at sit®,, with energye,,,, and a Ill. POLARON BAND STRUCTURE

phonon with wave vectag in the mode\, respectively. Due

to Hermiticity and symmetry requirements, the parameters of Prior to calculating the polaron dc conductivity within the
the above Hamiltonian fulfill the relations Holstein-Peierls model, it is instructive to discuss the polaron

band structure, as both calculations proceed in a similar way
and involve comparable approximations. Therefore, we sum-
marize our findings from Ref. 29 and make the reader famil-
where wg, gomn. and e, are the phonon frequencies, iar with the basic ideas and our slightly revised notation.
electron-phonon coupling values, and transfer integrals, re- If the electron-lattice interaction is neglected, the electron
spectively. Furthermore, we will henceforth assume all onband structure is solely determined by the on-site energies
site energies,, to be equal, i.e., all molecules of the crystal ¢,,, and transfer integrale,,,. In order to calculate the
are equivalent. modifications induced by the electron-phonon interaction,

The electron-phonon interaction described by the seconthe Hamiltonian(1) has to be diagonalized which requires a
term in Eq.(2) contains, in general, coupling terms of both disentangling of the electron and phonon operators in Eq.
local (m=n, Holstein model and nonlocal naturenf#n, (2). This can be achieved approximately by applying the
Peierls model In order to treat these coupling terms in a nonlocal canonical transformatidd) to the HamiltonianH
nonperturbative manner, we will often make use of nonlocalwhich (at low carrier densitigs yields the transformed
canonical transformations of the type Hamiltonian

ﬁwQ:ﬁwaa ngn:anm:thnm’ emn=&nm, (3)

A—A=eSAes, S= C.ala,, (4) H:;n EmnaTman—k%: hwg(bhbo+3), (9)

mn
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#m

(10) (16)

Expanding the quantitie€,,,=S;_,(1k)EWX into a where we have introduced an effective coupling constigpt
power series of the transformation matric@s,, from Eq. N order to emphasize the analogy with Holstein’s result
(5), we find by means of the Baker-Campbell-Hausdorff9iven by

theorem(6)

~ _ ~ 2 1
Emn:(eCEe C)mm Emnzsmn_% ﬁwQ(gngQ)mn- <Emn>:Emne gEﬂ(1+2Nph)- ggﬁ::gg+§; (gmk)zu

~ .2
(Emn)=emne Gl 2Nph) (17

EW= > [9q,. - - - [9q.E]-- ']mnBal' -Bgq,- By comparison of the solutions for both models it can be
1 11 seen immediately that the difference between them is only of
(1) quantitative nature, namely, the replacements— E,,, and
Following the original work of Holstei® we replace the gy«>ges. This explains why the much simpler Holstein
quantitiesE(¥) by their thermal average&(€)). This implies model combined with a phenomenologidair fitted cou-
that bandlike conduction prevails over hopping conductionPling constant can work reasonably well in practice. How-
which is a reasonable approximation for the calculation ofever, for quantitativeab initio predictions of the polaron
the polaron band structure. As a result, we obtain the desire@@nd structure as a function of temperature, the solution of

approximate diagonalization of the Hamiltonigin The non- the full Holstein-Peierls model has to be used, as demon-

- =(2l) . strated in Ref. 29.
vanishing ordersEy,;) are calculated by means of Wick's A specific qualitative feature of the polaron transfer inte-

theorem and utilizingBoB_ )= —(1+2Ng) dqqr » Where  grals(16) and (17) in the presence of nonlocal and/or local
No=(bhbg) are the phonon occupation numbers, and thecoupling is that the exponents do not depend on the actual

result can be expressed as values ofm and n.®® Consequently, if the transfer integrals
were used directly to mimic the charge-carrier conductivities,
By _ (—1)'20)! 2 142N 142N the temperature ere.nden_ce would be independent of the
( mn>——2|II 0. o ( Q) ( Q) crystallographic direction, in contrast to the experimental

observations®=?2Thus, in order to describe the anisotropic
X[9q,[9-q,s - - - [9q;[9-q, . EIl - - T]mn- temperature dependence of polaron mobilities, the bandlike-
conduction picture employed in this section is apparently not
(12 sufficient and one should include hopping processes as well.
As demonstrated in Ref. 29, the right-hand side) of Eq.  This will be done in the foIqux_/ing ;ections where we calcu-
(12) can be significantly simplified by taking into account late the polaron dc conductivity directly from the Kubo for-
only its most important contributions which are the termsmula. Most importantly, it will turn out that this approach
proportional toE;; and Emn. St As a consequence, the evalu- Yields qualitatively different results for the Holstein model
ation of the commutators in Eq12) becomes analytically and the Holstein-Peierls model. Especially, phonon-assisted

tractable, and one obtains the compact results currents due to nonlocal electron-lattice interaction are
shown to play a crucial role for the anisotropic temperature
(Ernm =Emm, (13)  dependence of polaron transport in organic molecular crys-
tals.
~ 1
(Emn) = EmneXP( 5 % Gomn(1+2Ng) |, (14 IV. POLARON dc CONDUCTIVITY

where we have introduced for brevity the quantities A. Charge-carrier transport: Basic equations

The electrical conductivity of charge carriers in solids can
be described by the conductivity tensey,s(w) which re-
lates the electric fiel&(w) present in a sample to the current
J(w) that is induced by this field,

Compared to the Holstein model, the exponential renor-
malization of the transfer integrals is now determined by
both local and nonlocal coupling. Qualitatively, however, the Ja(“’)zzﬁ: Tap(@)Ep(0).
solution(14) for the full Holstein-Peierls model is very simi-

lar to Holstein’s result for purely local coupling. This is es-  Here, the indices correspond to the components afd
pecially evident in the case of a single dispersionless phonog in the real-space directiores, ;=e, , . In this paper, we
mode. Then, we can repladéo—Nyy= ("’ eT=1)"* 510 only interested in the dc conductivity which is obtained
and gomn— (1/2/N)gpq(e "9 Rmt+-e 4Ry where N de-  from Eq.(18) as the zero-frequency limit,

notes the number of sitémolecule$.>? Assuming all on-site

coupling valuesy,,m=:go to be equal, the above expression affﬁ:: lim o, 5(w). (19
(14) for the polaron transfer integrals becomes 0—0

Gan:|ngm_ann|2+2 |ngk|2+E |ank|2- (15)
k#m k#n

(18)
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In thermal equilibrium, this quantity can be evaluated by We conclude this section by introducing the transformed
means of the Kubo formalism for linear-response theory, agyrrent operatorg, = e5j aeST, in accordance with Eq4). In
described, e.g., in the textbook of Matiéfs a result, one  the limit of low charge-carrier densities, the explicit evalua-
obtains a general relation between the dc conductivity angion via the Baker-Campbell-Hausdorff theordB) can be
the microscopic current-current correlation function, namelyeas"y performed using the relations[etc,bQ]mn
1 o =7 (e*Cgg)mn=[e*,b" glmn Which can be proven using
02‘222'( T"m dte‘“’%ja(t)jB(O)}. (20) our app_roximation from Sec. Il that all matricgs,, com-
B!lw—o)— mute with each other. As a result, the transformed currents
adopt the form

This relation is usually referred to as the Kubo formula for
electrical conductivity. Note that the rhs does not contain the ~ & R

experimentally measured macroscopic curréntrom Eq. j“:ﬁ > (%R, ,Ele O)matan, (25
(18) but the quantum-mechanical current operajét) mn

=el/MHtj = (MMHt wherej is obtained from the polariza- in close analogy to relatio22) for the original currents.
tion operatorP via

4P 1 B. Evaluation of the Kubo formula

1= g 7P HL (21) In this section, we calculate the dc conductivity of po-
larons within the Holstein-Peierls model. Our approach is
and H denotes the Holstein-Peierls Hamiltonian from Eqg.based on the evaluation of the Kubo form(29) and gen-
(1). Within the tight-binding formalism from the previous eralizes the results of Holstein’s theory of purely local
sections, the polarization can be expressed Rs coupling?® In fact, our derivation is in close analogy to the
= eoEmRma;am, wheree, equals the negativgositive) el-  one presented in Mahan's textbd8kvho evaluates the Kubo
ementary charge in case of electr@mle) conduction. If  formula for the Holstein model following an original work of
inserted into Eq(21), the componeni, of the current in  Lang and Firsov®
directione, is found to be In order to calculatericﬁ, we must determine the current-
current correlation function on the rhs of E0). The evalu-
. € = _+. _©o o + ation of this quantity is quite complicated but can be consid-
T % (Ram™ Ran) Emman =77 % [Ra,Elmraman erably simplified if one employs the canonical
(220  transformations introduced in the previous sections, and in

where we introduced the shorthand matrix notatiep,  Particular, Eqs(9) and(25) for the HamiltonianH and the

=Ry 6mn- currentj, respectively. The use of the transformed operators
At this point, it is important to stress that the current in is favorable since it provides a convenient way to include the

Eq. (22) consists of two different contributiong,,:=j(" electron-phonon interaction nonperturbatively and, hence, al-

+ -gl) , originating from the two terms in the definitid@) of lows us to go b_eyond pr_evious evalu_ations of the current-
A current correlation function based either on an educated

Enn- The first contribution gues&® or Fermi's golden rul@®
€ In technical terms, we rewrite the current-current correla-
'('):m > (Rum=Ran)emndhan, (23)  tion function according to
mn

i i ./ alilf)Ht; o= (i/R)Ht;
which contains only electron operators is often used asdan (1a()ip(0)):=(e la® ipH

hoc starting point in transport theories. However, this choice :<e(i/ﬁ)ﬁq ef(i/h)ﬁfj" Vi
can only be justified if the electron-lattice interaction is ei- e ~ A
ther completely neglected or assumed to be purely local as in %<e(i/ﬁ)H'qae—(i/h)H’qu, , (26)

the original Holstein model. In contrast, if also the nonlocal S . o
e|ectron_phonon Coup]ing is taken into account, the SeconWhere the bracket indices indicate which Hamiltonian is used

contribution in the thermal average, e.g., (A
:=Tr(e”"*eTA)/Tr(e "/keT). The first equality in Eq(26)

_ay_ €0 S (R.—R.)i B+l (24) is just the definition from Sec. IV A whereas the second
« i & (Rem™ Ran)t@qdomnBgaman equality follows after insertion of several factors=&~ SeS

] ] ) ] = eS'eSand using the cyclic properties of the trace. The third

is nonzero and gives rise to phonon-assisted currents Wh'%tep involves the replacement

have no counterpart in local-coupling theories, as already

pointed out in previous literatuf&:?® While the terms;j " - ) ) 1

significantly complicate the actual evaluation of the Kubo H—H'=2> Ennanamt > ﬁwQ( bobot 5

formula (20), we will show in the following sections that " Q

they are the essential ingredient to understand the anisotropis discussed by MahafhWhile this approximation partially

behavior of charge-carrier transport in organic moleculameglects effects due to the finite polaron bandwidges also

crystals. our discussion in Sec. IV)Eit has the major advantage that

., (27)
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H’ is diagonal in both the electron and phonon operators

: ; o — c(t) = —C()
which allows us to perform their thermal averages separately, Xap(t) % 1e"V[R, E(D)]e Ymn
as shown in the following paragraph.
Inserting the transformed curren5) into Eq. (26) and x{ec(o)[Rﬁ,E(O)]e‘C(O)}nm. (34)

using the identity
Compared to the electronic part, the thermal average

ih)H’ t t —(irn)R’ - . . ep
et (af,,a, b, bg)e (MH (X5(t)) over the phononic part is much more difficult and
=f(aT el/MEmt 5 o= (I1)Endt pT gt b e gty very technical. For its evaluation, we follow a strategy that is
m 1“n 1 Q ) Q’ [l . . . ~ .
very similar to the calculation ofE,,, in Sec. lll, Egs.

(28)  (10-(16).

First, we note that the two terms on the rhs of E84)
allow the application of the Baker-Campbell-Hausdorff theo-
rem (6). While all operatorsB,(t) do commute with each

other, the nonvanishing commutator[ng(t),B:Q,(t)]

which is easily proven for any functiohby means of the
Baker-Campbell-Hausdorff theoref®), the current-current
correlation function acquires the form

o2 =20qqr Make the explicit evaluation somewhat compli-
; ; __ 0 T, 4t cated. Nonetheless, after some algebra and appropriate re-
o1 0))= anand. ., an . ' . .
(1a(D14(0) 72 m%n/ (@m@nan an) grouping, one ends up with the expansions

*({eCO[R,, E(t)]eCO A
<{ [ 43 ()] }mn {eC(t)[Ra,E(t)]efc(t)}mn
X{eC(O)[RBié(o)]e_C(O)}m’n’>' (29) 3
1 Y
For convenience, we have now dropped again the bracket _Z() ir le'z“in [9q,: - - - [9g VD]~ Tnn
indices(- - - )5, on the rhs and introduced the definitions
XBg, (1) -Bg (1), (35)

IAEmn(t)z"f‘:mn"'z‘z ﬁnganBS(t), R
? {eCOR,,E(0)]e O,

B (t)=blewat+b_oeiwat, (30) o1 B B
e ¢ =2 & 2 Bg(0)Bg(0)
=01t o7y j
Cmn(t)zg gomBo(l), Bg(t)=bhe'“d!—b_qe odt, X[go, - - - 190, WAO)] - Tom. (36)
(3D

Here, we have introduced the operators
which may be regarded as the time-dependent generaliza-

tions of Egs.(2) and(5), respectively. In Eq(29), the elec- ~ . N

tronic and phononic parts of the thermal average are now, V() =[Ry . E() Jmn=vmn, (37)

indeed, completely separated. First, we evaluate the elec-

tronic part which is easily done applying Wick’s theorem A N

W2n(0)=[Rg,E(0) Jnm— Wiy, (38)
to o1

a-apd a5 )=CCOmnOmn +C(1—0C)Smpy Omns (32

(@m@any an) mom mmm where v =255(9-o[Ru.iwol0)mn  and  wh

where c=N_/N is the charge-carrier concentration in the =22q([Rg,h©q9ql9-o)nm- NOt; that tge definitior(38)

sample (\, is the number of charge carriefdjs the number 1S actually redundant sincewn,=—vp, and, hence,

of molecules. The first term on the rhs of Eq32) can be W (0)=—V?% (0). However, the interchange in indices

straightforwardly shown to give no contribution in EQ9) due to the different orders of operators in E@5) and(36)

whereas the second term which contains the familiar Paulisimplifies both the notation and systematics in the following

blocking factorc (1—c) does always contribute unless the analysis.

band is completely emptyc&0) or completely filled ¢ After the above preparatory considerations, we insert the
regroup all terms into a single power series according to

2 S 3 . .
esc(1—c) too X, 5() =37 o(1Kk) XX(t) wherek=i+j. The lowest or-
dc _ 0 H wt af k=0 af
Tap™ 2k Th? J)'Lnof dte”(Xap(t)), (33 ders are easily evaluated and give

— o0

where the phonon-related terms are condensed into the quan- X(Oﬁ)(t) — 2 Vﬁ]n(t)wﬁm(o) (39)
tity “« mn '

075212-5
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+ + g
XB0=3 3 190,90 Ind Bo(t)~ Bg(0)1Wiy(0), (Bo(UB_/(0))=Pq(t) dqq- (48

40 . - .
(40 Furthermore, for technical reasons it is helpful to rewrite the

where the latter formula is obtained by rearranging all com-2°0ve definitiong37) and (38) according to

mutators so that they appear in front of tBe€ operators.
This procedure can be generalized to the higher-order terms, .~ O N
and, as a result, we obtain for arbitrarghe expression an(t):an+% [Ra:hwqBolmnBo(t),  (47)

..... ' Wﬁm(0>=W2‘§n+§ [Rg.hiwoQolnmBa(0), (48

XT{ABQl(t'O)‘ ’ 'ABQk(t'O)}Wﬁm(O)' (4D where we have split off the time-independent and operator-

free terms V2i=[R,,e]lmn— v, and WO =[Rg,e]nm

where we definedABq(1,0)=Bo(1) =Bo(0) and intro- A By this, the zeroth-order thermal averagél)(t))

duced a time-ordering symbdl which moves operators at s readily obtained by application of Eqg6)—(48) to Eq.

time t to the left of those with time 0. This time-ordering (3g),

procedure does not only simplify the notation but provides

also a more systematic way to perform the thermal averages

as outlined below. Note also that expressidf) is the anal- .

ogon to Eq.(11) in our theory for the polaron band structure <X20;3(t)>:% Varwor,

from Sec. lll.
In order to perform the thermal average in E4l), we .
define the auxiliary functions +%Q [Ra iwgdolmil R iwgd-qlnm®Pqo(t).
Do(t)=(1+Ng)(1—e "“a") + No(1—€'“d"), (42 (49)
P5(1)=(1+Ng)e '“e'+Nge'“d, (43

, ) . . The evaluation of the higher-order thermal averages by
which appear in the basic thermal averages of the followingneans of Wick’s theorem is more complicated, especially
two-operator products due to the “mixed-operator” terms originating from E@5).

B For methodical reasons, it is therefore advantageous to ne-
(T{ABq(t,0AB_/(t,0})=—2Pq(t) g, (44 glect those terms first and to include them later on. Follow-
ing this strategy, it is sufficient to consider first exclusively

(BS(t)AB:Q,(t,0)>=(ABé(t,O)BfQ,(O)) the thermal averages of the even orders since the odd orders
B always contain such a “mixed-operator” factor. By doing
=[1-Dq(t)]6q0 (45 this, we find in generalization of E¢49),
o 20) ((21)! ou WO8
(XB) =(-1) TQl;_ o Pl Pq )X 2 [90,/[9-0,++-[90 190, V1L, TlmaWif
+n§Q [90,[9-q, - -:[90,[9-q[Ra FiwadQ]]l- - - Tlmd Rg ,thg_Q]nmcbg(t)). (50)
|

Note here again the similarity between this result and its e2c(1—c) to
pendant in the band structure theory, EtR). As in Sec. Il ggcﬁz - O—Zlim dtelt
we proceed by taking into account only the most important 2KgThe y—0J —=
contributions in Eq(50), namely, terms proportional t¢%%
and terms proportional t4R, ,iwgJqlmn AS a conse- x> exg =2, GanCDQ(t)){Vﬂﬁ]\/\/ﬂﬁ
guence, the evaluation of the commutators in Ef) be- mn Q

comes analytically tractable, and the dc conducti can
be expressg,/d asy e +[Rqy i 0dolmil Rp iwod-qlam®Po (D}, (51)
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where the exponent contains the same qua@iy,, as de-  independent ofn andn and allows us to renamnié,,(t) into

fined previously in Eq(15) for the band-structure theory.  I';(t). Furthermore, we defined the time-dependent auxil-
So far, we have neglected the “mixed-operator” termsiary function

originating from Eq.(45). If these terms are taken into ac- ' _

count, the above calculation becomes much more lengthy D (1) =(1+Npp)e ' pi+ Npe' ot (58

and tedious, and we skip the detailed presentation of it. Ye

the final result can be put into the same form as in &4)

but with the replacement

t\}vhich basically describes the hopping contribution to the dc
conductivity. In fact, if the terms containin@ ,(t) are ne-
glected in Eqs(56) and (57), the integrand in Eq(53) be-

0w < Om - comes| E,,, e~ %1 +2N 12 and we recover our previous re-
an—>an+§ [9-:[Rafiwqdollmd 1~ Po(1)] sult (16) from the bandlike-conduction picture of Sec. lIl.
Finally, we incorporate line-broadening effects which are
always present to some extent in a real system, e.g., due to
=~ Ra,s—g hwgled-q| =[Ra:Elmn (52 the presence of static disorder. Here, these effects are ac-

mn . . 7F2t2 .
counted for by the introduction of an extra facer in
and analogously fow?°2 = — V2 . Here, in the second line Eq.(53) which corresponds to an inhomogeneous line broad-
of Eqg. (52), we simplified the expression by taking into ac- ening characterized by the phenomenological paraniéter
count only the dominant band structure term, in accordance
with the definition(10) given above® C. Anisotropy effects
If the substitutiong52) are applied to Eq(51), we see

that the summations ovenandn can be replaced by a single ' this section, we apply the general theory from the pre-
summation according t&,,,—N=,. . Furthermore, in the ceding section to a simplified model system in order to un-

limit of low charge-carrier concentrationg€1), we may derstand the basic physics contained in our approach. Ac-
simplify Nc(1—c)~Nc=NL . If finally the remaining com- compan!eq by an illustrative numencgl example, spgmal
mutators are evaluated and the limit-0 is taken, we ob- emphasis is put on the emergence of anisotropy effects in the

tain our primary result for the dc conductivity of polarons terr\}seratur(_e ddependerr:cehof tg.e polaroln ?f condqctlzjlltg/. h
within the Holstein-Peierls model, e consider an orthorhombic crystal characterized by the

three lattice vectors, b, andc. Then, the basis vectofg,}

N.e2 corresponding to the definitiof18) of the conductivity ten-
U‘i‘};: €70 E (Ram—Ran) (Ram—Rgn) sor coincide with the crystal axes, or strictly speaking, with
2kgTH? nzm the normalized lattice vectors, and we can identigy,}
i ={e..e ,e={ala,b/b,c/c}. Furthermore, we assume that
xf dtF,(t)e Tmn®, (53  in the tight-binding Hamiltoniar(1) only one transfer inte-
—o gral per crystallographic direction is nonvanishing, namely,

{emnt ={€a,ep,ec={e,} corresponding tR,,—R,=*a,

+b, and=*c, respectively. The same holds true for the quan-

tities E,, and gy, in EQ. (56).

Frn(H)=(Epn) 2+ >, [ wqQomnl @ 4(1), (54) For the above model crystal, the dc conductivity tensor
Q (53) becomes diagonatrd%,=c%°,z, and we can identify

{09 ={055 ¢} with the dc conductivities in the three crys-

Here we have introduced the abbreviations

Con(H)=2 Gomn®o(t), (55 tallographic directions. As a result, we obtain by means of
Q Egs.(53) and (56),
whered(t) and @, (t) are defined in Eqs42) and (43), 2 i

: : ; N B de, & 2, 1 2 ~Tp) -T2
respectively. While the above equations can, in principle, be ¢%%«— dt| E;+ E(hwphga) Dt) e e

a

used to calculate the polaron dc conductivity for arbitrary -
phonon dispersions and coupling matrix elements, the essen-

tial physics can already be learned if one considers the (a=a,b,c), (59
?r:;?g(lji Cn;ccj)dienl %fe? SIIITQI.?.hiﬁ p(—\}l\rlse,loggissre[:)fllggg nag'a?ge' avSvhere we dropped all prefactors which neither depend on the

temperature nor on the crystallographic direction.

From Eq.(59), we see that the directionally dependent
quantitiese, E,, andg, contribute differently to the anisot-
ropy of the conductivities®. While the prefactor? causes

Fon(t)=(Ep)?+ %(ﬁwphgmn)z(bph(t)v (56) an anisotropy in the overall magnitude;, it does not influence

the actual temperature dependence itself. In contrast, the

T (1) =202 1+ 2N — & (t)]= T (1), 5 terms in the square brackets may influence both the overall
e )= 2Gerl i~ Pon(D1=:Lpr(t) ®7 values as well as the temperature dependence’df The
where we used again the concept of an effective couplindatter effect is due to the extra factdr,(t) in the second
constant, cf. Eq(16). This, in turn, makes the rhs of ER7)  term and explains how anisotropy effects in thedepen-

—Npy=(€"“neT— 1)~ and gomn— (1/2/N)gma(e "% Fm
+e '9°Rn) and the above quantiti€s,(t) andl",(t) sim-
plify into
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1000 —— r — for real crystals, it does serve the purpose to provide insight
into some general phenomena described by our theory.
From Fig. 1, it can be seen at first glance that the different

S 6 ¢ i choice of parameters leads also to significant differences in
| e | the polaron dc conductivities for the three directions. In the
. T g, low temperature region, these differences are of puyabn-
- — e 1 titative nature. Here, all conductivity curves scale like?
) ¢ and only the overall values exhibit an anisotropy which is

i ] mainly determined by the value&in. In contrast, for
) higher temperatures we observe atpalitative differences

between the three curves. This is a consequence of the sig-
nificantly different ratios ,=E, /4wy, introduced above.
If this ratio is smaller than unity, the phonon-assisted hop-
ping termecd (t) in Eq. (59) becomes increasingly impor-
tant for higher temperatures. As a result, the dc conductivity
exhibits the typical temperature dependence expected for
thermally activated charge-carrier transport. Here, this is
nicely seen in the direction (.=0.50) forT~100 K where
the conductivity increases with rising temperature. Forlzthe
direction, the ratior,=1.11 is close to unity which makes
the termec @ () less important. Correspondingly, we do not
observe anymore a temperature region where the conductiv-
ity rises with increasing temperature. Yet, the influence of the
hopping term is still visible as a change from fhie! power
law at low temperatures into B %° dependence at elevated
e . L temperatures. Finally, in tha direction, the large ratia,
20 100 500 =3.33 makes the term Eg the dominant contribution in Eq.
(59) and aT ! behavior is observed in almost the entire
range of relevant temperatures. Nevertheless, even in this

FIG. 1. Polaron dc conductivitias®, , along the three principal ¢@S€ there is still an interplay between band and hopping
axes of an orthorhombic model crystal, calculated as a function oferMs due to the fact@™ " in Eq. (59). However, for our
temperature by means of E¢59) using # wp,=15.0 meV, g ch0|_ce ofges= 1.0 this factc_)r does not play a significant role
=1.0, andA'=0.1 meV. The directionally dependent parametersbut it may become more important for larger valuesgef
are a=7 A, E,=10.0 meV, g,=0.2 (dotted ling; b=8A, E,  (not shown.
=5.0 meV, g,=0.3 (dashed ling andc=9 A, E.=3.0 meV, g,
=0.4 (solid line).

100

Polaron DC conductivity (arbitrary units)

Temperature (K)

D. Importance of phonon-assisted currents

In the preceding section, we have shown that our theory
—of polaron dc conductivities can, in principle, describe an-
) _ : o I%sotropy effects in the temperature dependencefﬁ; as
basically determined by the ratiog:=E, /h wpng, Which, in - geered in experiments. In this section, we proceed with a

general, may be different for different directions. more detailed physical analysis of the origin of this anisot-
In order to visualize the anisotropy effects arising fromropy.

the solution(59), we present in Fig. 1 an illustrative numeri-  puch insight is gained if we compare the full theory de-
cal example. For the phonon frequency and the effective cowzeloped above to a simplified version where the phonon-
pling constant, we choose values &i;,=15.0 meV and  assisted currents defined in Eq.(24) are not taken into
Jerr= 1.0, respectively, which correspond to the typical val-account. Then, the evaluation of the Kubo form(@9) is

ues found in organic molecular crystals. Furthermore, wenuch easier and, compared to the full theory, nothing but a
assume a very small value d&fl'=0.1 meV for the line nice exercise. Here, we will not repeat all the details of this
broadening since we are primarily interested in the conducealculation but rather focus on the most important changes.
tivity of charge carriers in high-purity crystals. The values OfFirst, we can replacémn—wmn in Eqs.(22) and(25) for the

the directionally dependent quantities E,, andg, are current operatorgandj, respectively. As a consequence, the
chosen intentionally in such a way that distinct anisotropy P Fandj, P Y- q '

effects in the dc conductivities become visible. Here, this isdefinition of X,(t) in Eq. (34) is changed accordingly and
achieved by assuming that increasing lattice constaats (ItS subs_equent evaluation becomes significantly simpler due
=7A, b=8A, c=9A4) go along with decreasing transfer t0 the disappearance of the extra operﬁér. The result of
integrals €,=10.0 meV,E,=5.0 meV,E.=3.0 meV) and this evaluation can beAexpressed jn the same way a§iHfQ.
rising electron-phonon coupling strengtty,& 0.2, g,=0.3,  but with the operator&/% (t) and W~ (0) replaced by the
g.=0.4). While this might not always be fulfilled so ideally operator-free expressiof®,, ,&]|m, and[Rg,e],m, respec-

dence of polaron dc conductivities can arise within the
Holstein-Peierls model. The strength of this anisotropy
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tiv.ely,. Then, the therm_al average is readily performed usingvhere Zpn= 4g§ﬁ\/Nph(1+ Npn) and O ph= wpit
Wick's theorem since just one type of average apppacs  +i(fiw,/2kgT). Then, in the limitl'—0, the remaining
(44] and only the even orderéX{%)(t)) contribute. The time integrations * dte™"'“» result in 5 functions at mul-
result reads like Eq(50) but without the termed(t) and  tiple integerd of the phonon frequenay,, corresponding to
including the replacementw%ﬁ[Ra,s]mn and Wgﬁm the effective emission|0) or absorption ((<0) of ||
—[Rg,&]nm. Taking into account only the dominant terms phonons® As a result, the dc conductivities can be written as
proportional t R, ,& |mn, We can readily sum up the whole

power series(X,4(t)) =22 o[ 1/(2)1(XZY (1)) and insert

+ oo
o 2
g-dcoc ?efzgeﬁ(lJrZNph) 2 fg)emeHZKBTZ')Té‘(' wph),

the result into Eq(33). From this, we obtain the polaron dc * ==
conductivity tensor without the phonon-assisted currents, (63
) where the quantitiesf!) are defined either asf()
N.€e imn? i g M,—g2

gc _ Nc€o =gl (zy) if j5,” is neglectedEq. (61)] or f,/:=E*l,(z,p)
Oon= Rom— Ran)(Rgm—R a 1P @ a___—at P
b g7 o (Rem ™ Ren) (Ryn=Ryn) 43 (hop@) 21 (2 + 1112 WNp( L+ N i 10 i

taken into accounfEq. (59)]. From the latter formula, the

« erwdt(smn)ze*an(t), (60) funda_mental importance of the phonlo.n-assisted curtjéjlits

— is strikingly visible due to the explicit appearance of the

. _ phonon occupation numbers via the facmﬂph(lJr Npn -
which equals the solutiofb3) of the full theory except for  Therefore, the corresponding term f,(i) gains weight at
the replacement ,(t)— (smn)*. Note that in Eq(60) the  higher T which eventually causes the temperature depen-
electron-phonon coupling enters only via the quarifiph(t)  dence ofod° to become anisotropic as discussed above.
which we can replace bl (t) = 2geq 1+ 2Npn— P p(t) ] in In practice, the singularities arising from ti#efunctions
the case of a single dispersionless phonon mode. By this, E¢y Eq. (63) are removed by the inhomogeneous line broad-
stein’s Fheory of p_urely IocaI_coupllng which is obtained by2775(I © h)*)(\/;/F)e_ﬁw;r{zrzi in accordance with the fac-
simply interchangin@es«go in T'pr(t). i) o , . ,

In order to visualize the important qualitative differenceor € ~ * used in time domain. For crystals of high purity,
between the theories with and without the phonon-assistet€-, ittle static disorder, it holds thdt<wp, and the term
current'g“) , we apply Eq.(60) to the model crystal of Sec. Wl_th [=0 bgcomes the dominant contnbunor_w_t@_ . W|th|n
IV C, namely, an orthorhombic crystal with just one nonzerothis approximation, the polaron dc conductivitiég) sim-
transfer integral per crystallographic direction, i.geyn, PNy into
={e,,&p,ec={e,}. As a result, the dc conductivities in the )
three directions are given by o9 @ ge—zggﬁ(1+zmp0f(0) (64)

(23 T a !

2 e
%% & J " dte2e "ol " (a=ab,c), (6 Where, additionally in the full theory including(}’ the
T)-= above-defined quantitf\”) can be transformed into

which corresponds to E¢59) in the full theory. In contrast  {(O=g2| (z )+ (hwpg,) 2 1(Zop) VN 1+ Nyyp) (65)
to Eq.(59), the simplified result61) does not give rise toan ~ *  “ O " P 1P e Ph

anisotropic temperature dependence of the conductivitiey means of the identity_;(z,) =1,(z,1). Here, it is worth-
o%. The only anisotropy in Eq61) arises from the factors While to note that the simplified expressio(4) and (65)
a2si which determine the absolute valuesaﬁc but not the  €xhibit some similarities to results on polaron diffusion co-
actual T dependence itself. In other words, the additionalefficients obtained by Munn and Silbybut it is difficult to
term «®(t) in Eq. (59 which stems from the phonon- establish a direct relation to our findings due to the different
assisted currents! is, indeed, the essential contribution to formalisms involved and the overall complexity of the prob-
the anisotropy in theT dependence of polaron dc !€m. These authors also pointed out the importance of
conductivities’” Since the currents” originate solely from phqnon—assistgd currents arising frpr_n nonlocal electron-
the nonlocal electron-lattice interaction, this means also thalfm'ce_ Interaction but could ot exp_I|C|tIy dgmonstrate _the
local-coupling theories can, in general, not be expected t6esult|ng anisotropy effects since their analysis was restricted
yield completely satisfying results. to a_one—dmensmnal _system._ I

The above analysis can be further deepened if the tim% Finally, it is interesting to discuss some limiting cases of
integrals in Eqs(59) and (61) are explicitly evaluated. This 1€ above formulags4) and (65). The low-temperature limit

is achieved by means of the following expansion into modi-S €asily performed. US'”_QO(ZPhgj 1Zagd5f0,(zph)ﬂo for
fied Bessel functions; of order|, Z,n—0, we obtain immediately, > «“E; T, in agreement
with our numerical findings from Fig. 1. In this limit, the
oo second term in Eq65) approaches zero and, apart from the
e+2g§ﬁ<pph(t):e+zphcos(~)ph: E I (z)e 'O (62) small change in the transfer integrals—E_,, the current
E=Sla ’ i does not contribute to the conductivity, as expected for

a
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phonon-assisted transport. We note that the divergence fanethod to calculate the electronic part of the thermal aver-
zero temperature is an unphysical artifact originating fromage. In fact, the use of Eq&8) and(32) strongly simplifies
the approximation made in Eq&6) and(27) which will be  oyr derivation but relies on the diagonality Bf with re-
discussed in more detail in Sec. IV E. spect to the electron operators. In this way, effects due to the

The high-temperature limit is somewhat more compli-finite polaron bandwidths are partially neglected. In a first
cated but can be performed using the asymptotic expansiongep, this drawback may be overcome if instead of the sub-
for the modified Bessel functions(z,,— <) ~e’ 27z, stitution ~Emn—><~Emm> Sny corresponding tdd—H’ just the
for arbitrary orderl as well as 1 2Np~2kgT/hwpnand 1= oo o oni —(Emn is made, in accordance with our
+ 2Ny — 2 N (14 Ny ~fi o, /4kgT for large T. If in- b mn—{ =mn '
serte(pjhinto Eahs(64) a?nd (65 pthe conductivity can be writ- polaron band-structure theory of Sec. Ill, B@i4). Yet, even

’ this improvement would take into account only the real part

ten as of the polaron bands whereas effects due to the imaginary
2 T part and here, in particular, the homogeneous line broadening

Ugcoca_ Ei"_(ﬁwphga)z B e~ A/kgT (66) (which may be temperature dependev_\puld still remain
TL5 fiwpp unaddressed. Obviously, the latter deficiency could only be

overcome by calculating the thermal average with respect to

where we dropped all irrelevant prefactors and introduced e full Hamiltonian B without further approximations.

“ . H wA 1 2 H H
faCt'\éa.t'OE eneeégy 4_ 2 OprGer- Thﬁ asymptotlc_ belhawolr However, to our knowledge, this has not even been achieved
ound in Eq.(66) is in agreement with our numerical results so far for the much simpler Holstein model.

in Fig. 1 and supports our discussion at the end of Sec. IV C. In any case, once the diagonality in the electron operators

Espec[ally, we Obta"f] a factag MTBT which causes thermal ;¢ lifted, the use of the real-space representation for the ther-
activation as seen in the direction, and we recover the mal averaging of the electronic part(i,(t)] 4(0)) becomes
ﬁisadvantageous. In principle, this problem could be solved
by switching to the reciprocal space but then, in turn, the
thermal average over the phononic part becomes more com-
licated, and to our knowledge, the only attempt for a rigor-
s solution has been made by Munn and Sifféyecently,

seen in theb direction. However, for large ratios,

=E,/fwpd,, this T-%° dependence will be established
only for extremely highT, and in the relevant temperature
range one may instead observe just a gradual change fro

"1 : 15
the T™ power law at low temperatures intoTa = depen- ¢4 5c4| coupling, arad hocsolution has been proposed by
dence at elevated temperatures as seen imttiieection in ankre and co-worker®4! Even though their treatment of
Fig. 1. At this stage, it is important to note that the exponentgpe nrohlem is quite simplistic, it allowed them to capture an
obtained within our model of a single dispersionless opticajyhortant modification due to the finite bandwidths, namely,
phonon mode may be subject to changes due to effects bgse gisappearance of the unphysical singularityl at0 K.
yond this mo_del, in particular, due to additional optical 115 is achieved by taking into account the therrtieérmi
and/or acoustical modes as well as temperature-dependefjkyihytion of the charge carriers within the band whiah
homogeneous line broadening. However, as far as the anisqp,, jensities and low temperatuyesasically introduces an
ropy effects are concerned, the general picture presented Nelgiiona) factor=ksT corresponding to the spectral width
will remain valid. of the distribution.
o On the other hand, from the practical point of view, the
E. Limitations of the present approach region of very low temperatures is anyway more difficult to

In the previous sections, we have presented a theoreticgescribe sinc_e there are further effe_cts beyond_our model that
description of polaron dc conductivities in organic molecularMay Play an important role, especially acoustic-phonon and
crystals based on the evaluation of the Kubo formula withinfMPurity scattering. Only if these effects are included micro-
a mixed Holstein-Peierls model. Due to the inclusion of bothScopically as well can one expect to make expentitative
local and nonlocal electron-phonon interactions, our apPredictions for lowd conductivities. We hope that our
proach may be looked upon as the generalization of Ho|present.theory will st!mulate further.research into this dlr_ec—
stein’s original theory of purely local coupling. As a key tion vyhlph would qumate!y result in a .fuIIy. microscopic
result, we found that the Holstein-Peierls model can accourfiéscription of charge-carrier conductivities in organic mo-
for anisotropy effects in the temperature dependence of thigcular crystals.
conductivities whereas they are absent in local-coupling
theories. Yet, despite this significant improvement, there are
still some limitations of the present approach. In this section,
we conclude our analysis by a brief discussion of these limi-  |n summary, we have presented a theoretical description
tations and how they might be overcome. of polaron dc conductivities in organic molecular crystals

As far as the physics is concerned, the most importanfyithin a mixed Holstein-Peierls model. Our approach is
approximation of our derivation is made in Eq26) and  pased on a rigorous evaluation of the Kubo formula for elec-
(27) by the replacementl—H’ for the calculation of the trical conductivity and incorporates both the local and non-
thermal averages. As discussed in Mahan's textti8akjs  local electron-lattice interactions nonperturbatively. As a key
approximation is also made in the corresponding solution foresult, we have derived an explicit expression for the dc con-
the pure Holstein model and basically serves as a conveniedtictivity tensor that generalizes both the result of Holstein's

V. SUMMARY
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local-coupling theory as well as previous evaluations of theout to be rather complicated, our final expressions for the
Kubo formula including nonlocal coupling. polaron dc conductivity, Eqs(53)—(58), are comparably
The general theory has been applied to a simplified modetasy to comprehend. As all the material-specific input param-
crystal, namely, an orthorhombic crystal with one nonzeroeters can be obtained froaf initio calculations—as recently
transfer integral per crystallographic direction. Accompanieddemonstrated for oligoacene crystaf€—our theory does
by an illustrative numerical example, we have demonstratedlso represent a significant step towards quantitative calcula-
that the Holstein-Peierls model can account for anisotropyions of polaron conductivities and may pave the way for a
effects in the temperature dependence of polaron conductivfully microscopic description of charge-carrier transport in
ties. These anisotropy effects are solely caused by phonomrganic molecular crystals.
assisted currents arising from the nonlocal electron-phonon
coupling. This proves the importance to go beyond local-
coupling theories in order to describe the experimentally ob-
served anisotropy of charge-carrier conductivities in organic Financial support by the Dutch Foundation for Funda-
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molecular crystals.
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