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Anisotropy effects in phonon-assisted charge-carrier transport in organic molecular crystals
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We present a theoretical description of polaron dc conductivities in organic molecular crystals. Our approach
is based on a rigorous evaluation of the Kubo formula for electrical conductivity within a mixed Holstein-
Peierls model. It generalizes the result of Holstein’s local-coupling theory by treating both local and nonlocal
electron-phonon interactions nonperturbatively. The general theory is supplemented by an application to a
simplified model crystal in order to emphasize the essential physics. Accompanied by an illustrative numerical
example, special emphasis is put on the emergence of anisotropy effects in the temperature dependence of the
conductivity tensor. These anisotropy effects are shown to originate from phonon-assisted currents due to the
nonlocal electron-lattice interaction which demonstrates the importance to go beyond local-coupling theories in
order to describe the experimental observations.
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I. INTRODUCTION

During the last decade, research on organic semicon
tors has regained considerable interest as these mate
have become very promising candidates for low-cost
easy-to-process electronic and optoelectronic applicat
such as organic light-emitting devices and solar cells1–7

Apart from semiconducting polymers, a particularly intere
ing class of organic semiconductors are high-purity crys
of organic molecules. Not only do they have a large tech
logical potential as materials for thin-film transistors,8–10 or-
ganic molecular crystals are also considered ideal candid
for fundamental studies of optical and transport propertie
organic semiconductors. In comparison to polyme
disorder-related effects are strongly reduced in these cry
which makes it possible to study directly their intrinsic ex
tations and charge-carrier transport mechanisms. Co
quently, several fundamental experimental and theoret
studies have been performed in recent years, e.g., on o
acene crystals such as pentacene.11–17

An important contribution towards the understanding
the intrinsic charge-carrier transport mechanisms in orga
molecular crystals has been made by Holstein18 who studied
the influence of the electron-lattice interaction on bandwid
and mobilities for a one-dimensional model system. In co
parison to covalently bonded inorganic semiconductors,
ganic molecular crystals exhibit weak intermolecular van
Waals bonds and, hence, narrower electron bands and s
ger electron-phonon interaction. As a consequence, pol
effects become important which led Holstein to predic
temperature-dependent band narrowing as well as a cr
over from bandlike conduction into phonon-assisted hopp
transport at elevated temperatures. Twenty years later,
interplay between band and hopping transport in organic
ids was, indeed, observed in naphthalene crystals,19,20 and
some experimental data could be fitted to Holstei
theory.21,22

From the theoretical point of view, it is important to stre
that Holstein’s molecular crystal model is based on the
sumption that thelocal ~or on-site! electron-phonon coupling
0163-1829/2004/69~7!/075212~12!/$22.50 69 0752
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is the dominant interaction between electronic excitatio
and lattice vibrations. However, it is well known, e.g., fro
the work of Su, Schrieffer, and Heeger,23 that in organic
semiconductors also thenonlocalelectron-phonon coupling
i.e., the influence of lattice vibrations on the electron trans
between different sites, may be very important. Con
quently, a number of theoretical studies on different aspe
of nonlocal coupling have been performed in the past.24–28In
this paper, we extend those ideas and develop a theore
description of polaron dc conductivities in organic molecu
crystals, including both local and nonlocal electron-phon
coupling.

Our approach is based on a rigorous evaluation of
Kubo formula for electrical conductivity and incorporate
both local and nonlocal electron-phonon couplings in a n
perturbative manner. It generalizes both the result of H
stein’s local-coupling theory18 as well as previous evalua
tions of the Kubo formula based either onad hoc
assumptions25 or Fermi’s golden rule.26 Our method can be
best compared to Munn and Silbey’s nonperturbative ca
lation of polaron diffusion coefficients27 but it is difficult to
establish a direct connection between both approaches d
the different formalisms used and the overall complexity
the problem. As already recognized by the authors of R
25–27, charge-carrier transport in the presence of nonlo
coupling may exhibit qualitatively new properties due
phonon-assisted currents absent in local-coupling theo
By means of our theory, we will demonstrate explicitly ho
these additional nonlocal contributions give rise to anis
ropy effects in the temperature dependence of polaron
conductivities, as commonly observed in experiment.19–22

Furthermore, the explicit expression we shall derive for
conductivity tensor may, in principle, also be utilized
make quantitative statements about the polaron conduc
ties once all the material-specific parameters are determi
As these parameters can be obtained fromab initio
calculations—as recently demonstrated for oligoace
crystals29,30—our theory does also represent an importa
step towards a fully microscopic description of charg
carrier conductivities in organic molecular crystals.
©2004 The American Physical Society12-1
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The paper is organized as follows. In Sec. II, we introdu
a mixed Holstein-Peierls model used in this paper for
description of localand nonlocal interactions between ele
trons and phonons. In Sec. III, we briefly review some of o
previous results on the polaron band structure within t
model. This serves mainly as a preparation for the ac
calculation of the polaron dc conductivity in Sec. IV. Starti
from the basic definitions and equations of charge-car
transport~Sec. IV A!, we derive in Sec. IV B an explici
expression for the polaron dc conductivity by evaluating
Kubo formula for the Holstein-Peierls model. In Sec. IV
this general result is applied to a simplified model crysta
order to emphasize the basic physics contained in our the
Especially, we will demonstrate that our solution of t
Holstein-Peierls model can be used to explain anisotropy
fects in the temperature dependence of the polaron con
tivities. In Sec. IV D, these effects are traced back
phonon-assisted currents due to the nonlocal electron-la
interaction which demonstrates the importance to go bey
local-coupling theories. Our analysis is concluded by a b
discussion in Sec. IV E on the limitations of the present
proach. Finally, a summary is given in Sec. V.

II. THE HOLSTEIN-PEIERLS MODEL

We consider a mixed Holstein-Peierls model for the int
action between electrons and phonons. Using a tight-bind
description, this corresponds to a Hamiltonian of the form

H5(
mn

Êmnam
† an1(

Q
\vQ~bQ

† bQ1 1
2 !, ~1!

Êmn5«mn1(
Q

\vQgQmnBQ
1 , BQ

15bQ
† 1b2Q , ~2!

where electron-electron interaction has been neglected w
is justified for the case of low charge-carrier densities c
sidered in this work. The operatorsam

(†) andbQ
(†)
ªbql

(†) anni-
hilate ~create! an electron at siteRm with energy«mm and a
phonon with wave vectorq in the model, respectively. Due
to Hermiticity and symmetry requirements, the parameter
the above Hamiltonian fulfill the relations

\vQ5\v2Q , gQmn5gQnm5g2Qnm* , «mn5«nm , ~3!

where vQ , gQmn , and «mn are the phonon frequencie
electron-phonon coupling values, and transfer integrals,
spectively. Furthermore, we will henceforth assume all
site energies«mm to be equal, i.e., all molecules of the cryst
are equivalent.

The electron-phonon interaction described by the sec
term in Eq.~2! contains, in general, coupling terms of bo
local (m5n, Holstein model! and nonlocal nature (mÞn,
Peierls model!. In order to treat these coupling terms in
nonperturbative manner, we will often make use of nonlo
canonical transformations of the type

A→Ã5eSAeS†
, S5(

mn
Cmnam

† an , ~4!
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Cmn5(
Q

gQmnBQ
2 , BQ

25bQ
† 2b2Q , ~5!

whereA is an arbitrary operator. This transformation may
looked upon as a generalization of the local transformat
S5(mCmmam

† am used for the solution of the original Hol
stein model of purely local coupling. Due to the identityS†

52S, the transformed operators~4! can be calculated ex
plicitly by means of the Baker-Campbell-Hausdorff theore

~6!

Especially, it turns out to be useful to introduce the tran
formed operatorsãm

(†)5eSam
(†)eS†

and b̃Q
(†)5eSbQ

(†)eS†
which

may be interpreted as annihilation~creation! operators of a
polaron and a phonon of the distorted lattice, respectiv
For the explicit evaluation via the Baker-Campbe
Hausdorff theorem~6!, we follow Ref. 29 and assume henc
forth @gQ ,gQ8#mn50 for all pairs Q and Q8 which was
shown to yield reliable results despite its approximat
nature.30 Then, the transformed operators are straightf
wardly found as

ãm5(
n

~e2C!mnan , b̃Q5bQ2(
mn

gQmnam
† an , ~7!

ãm
† 5(

n
an

†~eC!nm , b̃Q
† 5bQ

† 2(
mn

g2Qmnam
† an , ~8!

where we introduced a compact matrix notation for the
ponential operators involved. Again, these relations may
looked upon as generalizations of the local transformati
ãm5e2Cmmam and b̃Q5bQ2(mgQmmam

† am corresponding
to the Holstein model, see also Ref. 27.

III. POLARON BAND STRUCTURE

Prior to calculating the polaron dc conductivity within th
Holstein-Peierls model, it is instructive to discuss the pola
band structure, as both calculations proceed in a similar w
and involve comparable approximations. Therefore, we su
marize our findings from Ref. 29 and make the reader fam
iar with the basic ideas and our slightly revised notation.

If the electron-lattice interaction is neglected, the electr
band structure is solely determined by the on-site ener
«mm and transfer integrals«mn . In order to calculate the
modifications induced by the electron-phonon interacti
the Hamiltonian~1! has to be diagonalized which requires
disentangling of the electron and phonon operators in
~2!. This can be achieved approximately by applying t
nonlocal canonical transformation~4! to the HamiltonianH
which ~at low carrier densities! yields the transformed
Hamiltonian

H̃5(
mn

Ẽmnam
† an1(

Q
\vQ~bQ

† bQ1 1
2 !, ~9!
2-2
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Ẽmn5~eCEe2C!mn , Emn5«mn2(
Q

\vQ~gQg2Q!mn .

~10!

Expanding the quantitiesẼmn5(k50
` (1/k!) Ẽmn

(k) into a
power series of the transformation matricesCmn from Eq.
~5!, we find by means of the Baker-Campbell-Hausdo
theorem~6!

Ẽmn
(k)5 (

Q1•••Qk

†gQ1
, . . . ,@gQk

,E#•••‡mnBQ1

2
•••BQk

2 .

~11!

Following the original work of Holstein,18 we replace the
quantitiesẼmn

(k) by their thermal averages^Ẽmn
(k)&. This implies

that bandlike conduction prevails over hopping conduct
which is a reasonable approximation for the calculation
the polaron band structure. As a result, we obtain the des
approximate diagonalization of the HamiltonianH̃. The non-
vanishing orderŝ Ẽmn

(2l )& are calculated by means of Wick
theorem and utilizinĝBQ

2B2Q8
2 &52(112NQ)dQQ8 , where

NQ5^bQ
† bQ& are the phonon occupation numbers, and

result can be expressed as

^Ẽmn
(2l )&5

~21! l~2l !!

2l l !
(

Q1 , . . . ,Ql

~112NQ1
!•••~112NQl

!

3†gQ1
,@g2Q1

, . . . ,†gQl
,@g2Ql

,E#‡•••#‡mn .

~12!

As demonstrated in Ref. 29, the right-hand side~rhs! of Eq.
~12! can be significantly simplified by taking into accou
only its most important contributions which are the term
proportional toEj j andEmn .31 As a consequence, the eval
ation of the commutators in Eq.~12! becomes analytically
tractable, and one obtains the compact results

^Ẽmm&5Emm, ~13!

^Ẽmn&5EmnexpS 2
1

2 (
Q

GQmn~112NQ! D , ~14!

where we have introduced for brevity the quantities

GQmn5ugQmm2gQnnu21 (
kÞm

ugQmku21 (
kÞn

ugQnku2. ~15!

Compared to the Holstein model, the exponential ren
malization of the transfer integrals is now determined
both local and nonlocal coupling. Qualitatively, however, t
solution~14! for the full Holstein-Peierls model is very sim
lar to Holstein’s result for purely local coupling. This is e
pecially evident in the case of a single dispersionless pho
mode. Then, we can replaceNQ→Nph5(e\vph /kBT21)21

and gQmn→(1/2AN)gmn(e
2 iq•Rm1e2 iq•Rn) where N de-

notes the number of sites~molecules!.32 Assuming all on-site
coupling valuesgmm5:g0 to be equal, the above expressio
~14! for the polaron transfer integrals becomes
07521
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^Ẽmn&5Emne
2geff

2 (112Nph), geff
2
ªg0

21
1

2 (
kÞm

~gmk!
2,

~16!

where we have introduced an effective coupling constantgeff
in order to emphasize the analogy with Holstein’s res
given by

^Ẽmn&5«mne
2g0

2(112Nph). ~17!

By comparison of the solutions for both models it can
seen immediately that the difference between them is onl
quantitative nature, namely, the replacements«mn↔Emn and
g0↔geff . This explains why the much simpler Holste
model combined with a phenomenological~or fitted! cou-
pling constant can work reasonably well in practice. Ho
ever, for quantitativeab initio predictions of the polaron
band structure as a function of temperature, the solution
the full Holstein-Peierls model has to be used, as dem
strated in Ref. 29.

A specific qualitative feature of the polaron transfer in
grals ~16! and ~17! in the presence of nonlocal and/or loc
coupling is that the exponents do not depend on the ac
values ofm and n.33 Consequently, if the transfer integra
were used directly to mimic the charge-carrier conductiviti
the temperature dependence would be independent of
crystallographic direction, in contrast to the experimen
observations.19–22 Thus, in order to describe the anisotrop
temperature dependence of polaron mobilities, the bandl
conduction picture employed in this section is apparently
sufficient and one should include hopping processes as w
This will be done in the following sections where we calc
late the polaron dc conductivity directly from the Kubo fo
mula. Most importantly, it will turn out that this approac
yields qualitatively different results for the Holstein mod
and the Holstein-Peierls model. Especially, phonon-assi
currents due to nonlocal electron-lattice interaction
shown to play a crucial role for the anisotropic temperat
dependence of polaron transport in organic molecular c
tals.

IV. POLARON dc CONDUCTIVITY

A. Charge-carrier transport: Basic equations

The electrical conductivity of charge carriers in solids c
be described by the conductivity tensorsab(v) which re-
lates the electric fieldE(v) present in a sample to the curre
J(v) that is induced by this field,

Ja~v!5(
b

sab~v!Eb~v!. ~18!

Here, the indices correspond to the components ofJ and
E in the real-space directionsea,b5ex,y,z . In this paper, we
are only interested in the dc conductivity which is obtain
from Eq. ~18! as the zero-frequency limit,

sab
dc
ª lim

v→0
sab~v!. ~19!
2-3
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In thermal equilibrium, this quantity can be evaluated
means of the Kubo formalism for linear-response theory
described, e.g., in the textbook of Mahan.34 As a result, one
obtains a general relation between the dc conductivity
the microscopic current-current correlation function, name

sab
dc 5

1

2kBT
lim
v→0

E
2`

1`

dteivt^ j a~ t ! j b~0!&. ~20!

This relation is usually referred to as the Kubo formula
electrical conductivity. Note that the rhs does not contain
experimentally measured macroscopic currentJ from Eq.
~18! but the quantum-mechanical current operatorj (t)
5e( i /\)Ht j e2( i /\)Ht where j is obtained from the polariza
tion operatorP via

j5
dP

dt
5

1

i\
@P,H#, ~21!

and H denotes the Holstein-Peierls Hamiltonian from E
~1!. Within the tight-binding formalism from the previou
sections, the polarization can be expressed asP
5e0(mRmam

† am , wheree0 equals the negative~positive! el-
ementary charge in case of electron~hole! conduction. If
inserted into Eq.~21!, the componentj a of the current in
directionea is found to be

j a5
e0

i\ (
mn

~Ram2Ran!Êmnam
† an5

e0

i\ (
mn

@Ra ,Ê#mnam
† an ,

~22!

where we introduced the shorthand matrix notationRmn
ªRmdmn .

At this point, it is important to stress that the current
Eq. ~22! consists of two different contributions,j aª j a

(I)

1 j a
(II) , originating from the two terms in the definition~2! of

Êmn . The first contribution

j a
(I)5

e0

i\ (
mn

~Ram2Ran!«mnam
† an , ~23!

which contains only electron operators is often used as aad
hocstarting point in transport theories. However, this cho
can only be justified if the electron-lattice interaction is
ther completely neglected or assumed to be purely local a
the original Holstein model. In contrast, if also the nonloc
electron-phonon coupling is taken into account, the sec
contribution

j a
(II) 5

e0

i\ (
mnQ

~Ram2Ran!\vQgQmnBQ
1am

† an ~24!

is nonzero and gives rise to phonon-assisted currents w
have no counterpart in local-coupling theories, as alre
pointed out in previous literature.25,26 While the termsj a

(II)

significantly complicate the actual evaluation of the Ku
formula ~20!, we will show in the following sections tha
they are the essential ingredient to understand the anisotr
behavior of charge-carrier transport in organic molecu
crystals.
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We conclude this section by introducing the transform
current operatorsj̃ a5eSj aeS†

, in accordance with Eq.~4!. In
the limit of low charge-carrier densities, the explicit evalu
tion via the Baker-Campbell-Hausdorff theorem~6! can be
easily performed using the relations@e6C,bQ#mn

57(e6CgQ)mn5@e6C,b2Q
† #mn which can be proven using

our approximation from Sec. II that all matricesgQmn com-
mute with each other. As a result, the transformed curre
adopt the form

j̃ a5
e0

i\ (
mn

~eC@Ra ,Ê#e2C!mnam
† an , ~25!

in close analogy to relation~22! for the original currents.

B. Evaluation of the Kubo formula

In this section, we calculate the dc conductivity of p
larons within the Holstein-Peierls model. Our approach
based on the evaluation of the Kubo formula~20! and gen-
eralizes the results of Holstein’s theory of purely loc
coupling.18 In fact, our derivation is in close analogy to th
one presented in Mahan’s textbook34 who evaluates the Kubo
formula for the Holstein model following an original work o
Lang and Firsov.35

In order to calculatesab
dc , we must determine the curren

current correlation function on the rhs of Eq.~20!. The evalu-
ation of this quantity is quite complicated but can be cons
erably simplified if one employs the canonic
transformations introduced in the previous sections, and
particular, Eqs.~9! and ~25! for the HamiltonianH̃ and the
current j̃ , respectively. The use of the transformed operat
is favorable since it provides a convenient way to include
electron-phonon interaction nonperturbatively and, hence
lows us to go beyond previous evaluations of the curre
current correlation function based either on an educa
guess25 or Fermi’s golden rule.26

In technical terms, we rewrite the current-current corre
tion function according to

^ j a~ t ! j b~0!&ª^e( i /\)Ht j ae2( i /\)Ht j b&H

5^e( i /\)H̃t j̃ ae2( i /\)H̃t j̃ b&H̃

'^e( i /\)H̃8t j̃ ae2( i /\)H̃8t j̃ b&H̃8 , ~26!

where the bracket indices indicate which Hamiltonian is us
in the thermal average, e.g., ^A&H
ªTr(e2H/kBTA)/Tr(e2H/kBT). The first equality in Eq.~26!
is just the definition from Sec. IV A whereas the seco
equality follows after insertion of several factors 15e2SeS

5eS†
eS and using the cyclic properties of the trace. The th

step involves the replacement

H̃→H̃85(
m

Emmam
† am1(

Q
\vQS bQ

† bQ1
1

2D , ~27!

as discussed by Mahan.34 While this approximation partially
neglects effects due to the finite polaron bandwidths~see also
our discussion in Sec. IV E!, it has the major advantage tha
2-4



or
te

ck

liz

o
le

e

u
e

u

ge
d

t is

o-

li-
e re-

s

ng

the

to

ANISOTROPY EFFECTS IN PHONON-ASSISTED . . . PHYSICAL REVIEW B69, 075212 ~2004!
H̃8 is diagonal in both the electron and phonon operat
which allows us to perform their thermal averages separa
as shown in the following paragraph.

Inserting the transformed currents~25! into Eq. ~26! and
using the identity

e( i /\)H̃8t f ~am
† ,an ,bQ

† ,bQ8!e
2( i /\)H̃8t

5 f ~am
† e( i /\)Emmt,ane2( i /\)Ennt,bQ

† eivQt,bQ8e
2 ivQ8t!,

~28!

which is easily proven for any functionf by means of the
Baker-Campbell-Hausdorff theorem~6!, the current-current
correlation function acquires the form

^ j a~ t ! j b~0!&52
e0

2

\2 (
mnm8n8

^am
† anam8

† an8&

3^$eC(t)@Ra ,Ê~ t !#e2C(t)%mn

3$eC(0)@Rb ,Ê~0!#e2C(0)%m8n8&. ~29!

For convenience, we have now dropped again the bra
indices^•••&H̃8 on the rhs and introduced the definitions

Êmn~ t !5«mn1(
Q

\vQgQmnBQ
1~ t !,

BQ
1~ t !5bQ

† eivQt1b2Qe2 ivQt, ~30!

Cmn~ t !5(
Q

gQmnBQ
2~ t !, BQ

2~ t !5bQ
† eivQt2b2Qe2 ivQt,

~31!

which may be regarded as the time-dependent genera
tions of Eqs.~2! and ~5!, respectively. In Eq.~29!, the elec-
tronic and phononic parts of the thermal average are n
indeed, completely separated. First, we evaluate the e
tronic part which is easily done applying Wick’s theorem

^am
† anam8

† an8&5ccdmndm8n81c~12c!dmn8dm8n , ~32!

where c5Nc /N is the charge-carrier concentration in th
sample (Nc is the number of charge carriers,N is the number
of molecules!. The first term on the rhs of Eq.~32! can be
straightforwardly shown to give no contribution in Eq.~29!
whereas the second term which contains the familiar Pa
blocking factorc (12c) does always contribute unless th
band is completely empty (c50) or completely filled (c
51). As a result, the dc conductivity~20! can be written as

sab
dc 52

e0
2c~12c!

2kBT\2
lim
v→0

E
2`

1`

dteivt^X̂ab~ t !&, ~33!

where the phonon-related terms are condensed into the q
tity
07521
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X̂ab~ t !5(
mn

$eC(t)@Ra ,Ê~ t !#e2C(t)%mn

3$eC(0)@Rb ,Ê~0!#e2C(0)%nm . ~34!

Compared to the electronic part, the thermal avera

^X̂ab(t)& over the phononic part is much more difficult an
very technical. For its evaluation, we follow a strategy tha
very similar to the calculation of̂ Ẽmn& in Sec. III, Eqs.
~10!–~16!.

First, we note that the two terms on the rhs of Eq.~34!
allow the application of the Baker-Campbell-Hausdorff the
rem ~6!. While all operatorsBQ

2(t) do commute with each
other, the nonvanishing commutators@BQ

1(t),B2Q8
2 (t)#

52dQQ8 make the explicit evaluation somewhat comp
cated. Nonetheless, after some algebra and appropriat
grouping, one ends up with the expansions

$eC(t)@Ra ,Ê~ t !#e2C(t)%mn

5(
i 50

`
1

i ! (
Q1 ,•••,Qi

†gQ1
, . . . ,@gQi

,V̂a~ t !#•••‡mn

3BQ1

2 ~ t !•••BQi

2 ~ t !, ~35!

$eC(0)@Rb ,Ê~0!#e2C(0)%nm

5(
j 50

`
1

j ! (
Q1 ,•••,Qj

BQ1

2 ~0!•••BQj

2 ~0!

3†gQ1
, . . . ,@gQj

,Ŵb~0!#•••‡nm . ~36!

Here, we have introduced the operators

V̂mn
a ~ t !5@Ra ,Ê~ t !#mn2vmn

a , ~37!

Ŵnm
b ~0!5@Rb ,Ê~0!#nm2wnm

b , ~38!

where vmn
a 52(Q(g2Q@Ra ,\vQgQ#)mn and wnm

b

52(Q(@Rb ,\vQgQ#g2Q)nm . Note that the definition~38!
is actually redundant sincewnm

b 52vmn
b and, hence,

Ŵnm
b (0)52V̂mn

b (0). However, the interchange in indice
due to the different orders of operators in Eqs.~35! and~36!
simplifies both the notation and systematics in the followi
analysis.

After the above preparatory considerations, we insert
expansions~35! and ~36! into the definition ofX̂ab(t) and
regroup all terms into a single power series according
X̂ab(t)5(k50

` (1/k!) X̂ab
(k)(t) where k5 i 1 j . The lowest or-

ders are easily evaluated and give

X̂ab
(0)~ t !5(

mn
V̂mn

a ~ t !Ŵnm
b ~0!, ~39!
2-5
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X̂ab
(1)~ t !5(

mn
(
Q

@gQ ,V̂a~ t !#mn@BQ
2~ t !2BQ

2~0!#Ŵnm
b ~0!,

~40!

where the latter formula is obtained by rearranging all co
mutators so that they appear in front of theB2 operators.
This procedure can be generalized to the higher-order te
and, as a result, we obtain for arbitraryk the expression

X̂ab
(k)~ t !5(

mn
(

Q1 , . . . ,Qk

†gQ1
, . . . ,@gQk

,V̂a~ t !#•••‡mn

3T$DBQ1

2 ~ t,0!•••DBQk

2 ~ t,0!%Ŵnm
b ~0!, ~41!

where we definedDBQ
2(t,0)5BQ

2(t)2BQ
2(0) and intro-

duced a time-ordering symbolT which moves operators a
time t to the left of those with time 0. This time-orderin
procedure does not only simplify the notation but provid
also a more systematic way to perform the thermal avera
as outlined below. Note also that expression~41! is the anal-
ogon to Eq.~11! in our theory for the polaron band structu
from Sec. III.

In order to perform the thermal average in Eq.~41!, we
define the auxiliary functions

FQ~ t !5~11NQ!~12e2 ivQt!1NQ~12eivQt!, ~42!

FQ
6~ t !5~11NQ!e2 ivQt6NQeivQt, ~43!

which appear in the basic thermal averages of the follow
two-operator products

^T$DBQ
2~ t,0!DB2Q8

2
~ t,0!%&522FQ~ t !dQQ8 , ~44!

^BQ
1~ t !DB2Q8

2
~ t,0!&5^DBQ

2~ t,0!B2Q8
1

~0!&

5@12FQ
2~ t !#dQQ8 , ~45!
it

an
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^BQ
1~ t !B2Q8

1
~0!&5FQ

1~ t !dQQ8 . ~46!

Furthermore, for technical reasons it is helpful to rewrite t
above definitions~37! and ~38! according to

V̂mn
a ~ t !5Vmn

0a 1(
Q

@Ra ,\vQgQ#mnBQ
1~ t !, ~47!

Ŵnm
b ~0!5Wnm

0b 1(
Q

@Rb ,\vQgQ#nmBQ
1~0!, ~48!

where we have split off the time-independent and opera
free terms Vmn

0a 5@Ra ,«#mn2vmn
a and Wnm

0b 5@Rb ,«#nm

2wnm
b . By this, the zeroth-order thermal average^X̂ab

(0)(t)&
is readily obtained by application of Eqs.~46!–~48! to Eq.
~39!,

^X̂ab
(0)~ t !&5(

mn
Vmn

0a Wnm
0b

1 (
mnQ

@Ra ,\vQgQ#mn@Rb ,\vQg2Q#nmFQ
1~ t !.

~49!

The evaluation of the higher-order thermal averages
means of Wick’s theorem is more complicated, especia
due to the ‘‘mixed-operator’’ terms originating from Eq.~45!.
For methodical reasons, it is therefore advantageous to
glect those terms first and to include them later on. Follo
ing this strategy, it is sufficient to consider first exclusive
the thermal averages of the even orders since the odd or
always contain such a ‘‘mixed-operator’’ factor. By doin
this, we find in generalization of Eq.~49!,
^X̂ab
(2l )~ t !& 5~21! l

~2l !!

l ! (
Q1 , . . . ,Ql

FQ1
~ t !•••FQl

~ t !3S(
mn

†gQ1
,@g2Q1

,•••,†gQl
,@g2Ql

,V0a#‡,•••,#‡mnWnm
0b

1 (
mnQ

@gQ1
,†g2Q1

,•••,@gQl
,†g2Ql

,@Ra ,\vQgQ#‡#•••‡#mn@Rb ,\vQg2Q#nmFQ
1~ t ! D . ~50!
Note here again the similarity between this result and
pendant in the band structure theory, Eq.~12!. As in Sec. III,
we proceed by taking into account only the most import
contributions in Eq.~50!, namely, terms proportional toVmn

0a

and terms proportional to@Ra ,\vQgQ#mn. As a conse-
quence, the evaluation of the commutators in Eq.~50! be-
comes analytically tractable, and the dc conductivity~33! can
be expressed as
s

t
sab

dc 52
e0

2c~12c!

2kBT\2
lim
v→0

E
2`

1`

dteivt

3(
mn

expS 2(
Q

GQmnFQ~ t ! D $Vmn
0a Wnm

0b

1@Ra ,\vQgQ#mn@Rb ,\vQg2Q#nmFQ
1~ t !%, ~51!
2-6
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where the exponent contains the same quantityGQmn as de-
fined previously in Eq.~15! for the band-structure theory.

So far, we have neglected the ‘‘mixed-operator’’ term
originating from Eq.~45!. If these terms are taken into ac
count, the above calculation becomes much more leng
and tedious, and we skip the detailed presentation of it.
the final result can be put into the same form as in Eq.~51!
but with the replacement

Vmn
0a →Vmn

0a 1(
Q

†g2Q ,@Ra ,\vQgQ#‡mn@12FQ
2~ t !#

'S Ra ,«2(
Q

\vQgQg2QD
mn

5@Ra ,E#mn ~52!

and analogously forWnm
0b 52Vmn

0b . Here, in the second line
of Eq. ~52!, we simplified the expression by taking into a
count only the dominant band structure term, in accorda
with the definition~10! given above.36

If the substitutions~52! are applied to Eq.~51!, we see
that the summations overm andn can be replaced by a singl
summation according to(mn→N(nÞm . Furthermore, in the
limit of low charge-carrier concentrations (c!1), we may
simplify Nc(12c)'Nc[Nc . If finally the remaining com-
mutators are evaluated and the limitv→0 is taken, we ob-
tain our primary result for the dc conductivity of polaron
within the Holstein-Peierls model,

sab
dc 5

Nce0
2

2kBT\2 (
nÞm

~Ram2Ran!~Rbm2Rbn!

3E
2`

1`

dtFmn~ t !e2Gmn(t). ~53!

Here we have introduced the abbreviations

Fmn~ t !5~Emn!
21(

Q
u\vQgQmnu2FQ

1~ t !, ~54!

Gmn~ t !5(
Q

GQmnFQ~ t !, ~55!

whereFQ(t) and FQ
1(t) are defined in Eqs.~42! and ~43!,

respectively. While the above equations can, in principle,
used to calculate the polaron dc conductivity for arbitra
phonon dispersions and coupling matrix elements, the es
tial physics can already be learned if one considers
simple model of a single dispersionless phonon mode
introduced in Sec. III. Then, we can replace againNQ

→Nph5(e\vph /kBT21)21 and gQmn→(1/2AN)gmn(e
2 iq•Rm

1e2 iq•Rn), and the above quantitiesFmn(t) andGmn(t) sim-
plify into

Fmn~ t !5~Emn!
21 1

2 ~\vphgmn!
2Fph~ t !, ~56!

Gmn~ t !52geff
2 @112Nph2Fph~ t !#5:Gph~ t !, ~57!

where we used again the concept of an effective coup
constant, cf. Eq.~16!. This, in turn, makes the rhs of Eq.~57!
07521
y
t,

e
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independent ofm andn and allows us to renameGmn(t) into
Gph(t). Furthermore, we defined the time-dependent au
iary function

Fph~ t !5~11Nph!e
2 ivpht1Nphe

ivpht, ~58!

which basically describes the hopping contribution to the
conductivity. In fact, if the terms containingFph(t) are ne-
glected in Eqs.~56! and ~57!, the integrand in Eq.~53! be-

comes@Emne
2geff

2 (112Nph)#2 and we recover our previous re
sult ~16! from the bandlike-conduction picture of Sec. III.

Finally, we incorporate line-broadening effects which a
always present to some extent in a real system, e.g., du
the presence of static disorder. Here, these effects are
counted for by the introduction of an extra factore2G2t2 in
Eq. ~53! which corresponds to an inhomogeneous line bro
ening characterized by the phenomenological parameterG.

C. Anisotropy effects

In this section, we apply the general theory from the p
ceding section to a simplified model system in order to u
derstand the basic physics contained in our approach.
companied by an illustrative numerical example, spec
emphasis is put on the emergence of anisotropy effects in
temperature dependence of the polaron dc conductivity.

We consider an orthorhombic crystal characterized by
three lattice vectorsa, b, andc. Then, the basis vectors$ea%
corresponding to the definition~18! of the conductivity ten-
sor coincide with the crystal axes, or strictly speaking, w
the normalized lattice vectors, and we can identify$ea%
5$ex ,ey ,ez%5$a/a,b/b,c/c%. Furthermore, we assume th
in the tight-binding Hamiltonian~1! only one transfer inte-
gral per crystallographic direction is nonvanishing, name
$«mn%5$«a ,«b ,«c%[$«a% corresponding toRm2Rn56a,
6b, and6c, respectively. The same holds true for the qua
tities Emn andgmn in Eq. ~56!.

For the above model crystal, the dc conductivity tens
~53! becomes diagonal,sab

dc 5sa
dcdab , and we can identify

$sa
dc%5$sa,b,c

dc % with the dc conductivities in the three crys
tallographic directions. As a result, we obtain by means
Eqs.~53! and ~56!,

sa
dc}

a2

T E
2`

1`

dtFEa
21

1

2
~\vphga!2Fph~ t !Ge2Gph(t)e2G2t2

~a5a,b,c!, ~59!

where we dropped all prefactors which neither depend on
temperature nor on the crystallographic direction.

From Eq. ~59!, we see that the directionally depende
quantitiesa, Ea , andga contribute differently to the anisot
ropy of the conductivitiessa

dc. While the prefactora2 causes
an anisotropy in the overall magnitudes, it does not influe
the actual temperature dependence itself. In contrast,
terms in the square brackets may influence both the ove
values as well as the temperature dependence ofsa

dc. The
latter effect is due to the extra factorFph(t) in the second
term and explains how anisotropy effects in theT depen-
2-7
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dence of polaron dc conductivities can arise within t
Holstein-Peierls model. The strength of this anisotropy
basically determined by the ratiosr aªEa /\vphga which, in
general, may be different for different directions.

In order to visualize the anisotropy effects arising fro
the solution~59!, we present in Fig. 1 an illustrative numer
cal example. For the phonon frequency and the effective c
pling constant, we choose values of\vph515.0 meV and
geff51.0, respectively, which correspond to the typical v
ues found in organic molecular crystals. Furthermore,
assume a very small value of\G50.1 meV for the line
broadening since we are primarily interested in the cond
tivity of charge carriers in high-purity crystals. The values
the directionally dependent quantitiesa, Ea , and ga are
chosen intentionally in such a way that distinct anisotro
effects in the dc conductivities become visible. Here, this
achieved by assuming that increasing lattice constantsa
57 Å, b58 Å, c59 Å) go along with decreasing transfe
integrals (Ea510.0 meV,Eb55.0 meV,Ec53.0 meV) and
rising electron-phonon coupling strength (ga50.2, gb50.3,
gc50.4). While this might not always be fulfilled so ideal

FIG. 1. Polaron dc conductivitiessa,b,c
dc along the three principa

axes of an orthorhombic model crystal, calculated as a functio
temperature by means of Eq.~59! using \vph515.0 meV, geff

51.0, and\G50.1 meV. The directionally dependent paramet
are a57 Å, Ea510.0 meV, ga50.2 ~dotted line!; b58 Å, Eb

55.0 meV, gb50.3 ~dashed line!; and c59 Å, Ec53.0 meV, gc

50.4 ~solid line!.
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for real crystals, it does serve the purpose to provide ins
into some general phenomena described by our theory.

From Fig. 1, it can be seen at first glance that the differ
choice of parameters leads also to significant difference
the polaron dc conductivities for the three directions. In t
low temperature region, these differences are of purelyquan-
titative nature. Here, all conductivity curves scale likeT21

and only the overall values exhibit an anisotropy which
mainly determined by the valuesa2Ea

2 . In contrast, for
higher temperatures we observe alsoqualitative differences
between the three curves. This is a consequence of the
nificantly different ratiosr a5Ea /\vphga introduced above.
If this ratio is smaller than unity, the phonon-assisted ho
ping term}Fph(t) in Eq. ~59! becomes increasingly impor
tant for higher temperatures. As a result, the dc conducti
exhibits the typical temperature dependence expected
thermally activated charge-carrier transport. Here, this
nicely seen in thec direction (r c50.50) forT'100 K where
the conductivity increases with rising temperature. For thb
direction, the ratior b51.11 is close to unity which make
the term}Fph(t) less important. Correspondingly, we do n
observe anymore a temperature region where the condu
ity rises with increasing temperature. Yet, the influence of
hopping term is still visible as a change from theT21 power
law at low temperatures into aT20.5 dependence at elevate
temperatures. Finally, in thea direction, the large ratior a

53.33 makes the term}Ea
2 the dominant contribution in Eq

~59! and aT21 behavior is observed in almost the enti
range of relevant temperatures. Nevertheless, even in
case there is still an interplay between band and hopp
terms due to the factore2Gph(t) in Eq. ~59!. However, for our
choice ofgeff51.0 this factor does not play a significant ro
but it may become more important for larger values ofgeff
~not shown!.

D. Importance of phonon-assisted currents

In the preceding section, we have shown that our the
of polaron dc conductivities can, in principle, describe a
isotropy effects in the temperature dependence ofsab

dc as
observed in experiments. In this section, we proceed wit
more detailed physical analysis of the origin of this anis
ropy.

Much insight is gained if we compare the full theory d
veloped above to a simplified version where the phon
assisted currentsj a

(II) defined in Eq.~24! are not taken into
account. Then, the evaluation of the Kubo formula~20! is
much easier and, compared to the full theory, nothing bu
nice exercise. Here, we will not repeat all the details of t
calculation but rather focus on the most important chang
First, we can replaceÊmn→«mn in Eqs.~22! and~25! for the
current operatorsj and j̃ , respectively. As a consequence, t
definition of X̂ab(t) in Eq. ~34! is changed accordingly an
its subsequent evaluation becomes significantly simpler
to the disappearance of the extra operatorBQ

1 . The result of
this evaluation can be expressed in the same way as Eq.~41!

but with the operatorsV̂mn
a (t) and Ŵnm

b (0) replaced by the
operator-free expressions@Ra ,«#mn and @Rb ,«#nm , respec-

of

s

2-8
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tively. Then, the thermal average is readily performed us
Wick’s theorem since just one type of average appears@Eq.
~44!# and only the even orderŝX̂ab

(2l )(t)& contribute. The
result reads like Eq.~50! but without the term}FQ

1(t) and
including the replacementsVmn

0a →@Ra ,«#mn and Wnm
0b

→@Rb ,«#nm . Taking into account only the dominant term
proportional to@Ra ,«#mn , we can readily sum up the whol
power serieŝ X̂ab(t)&5( l 50

` @1/(2l )! #^X̂ab
(2l )(t)& and insert

the result into Eq.~33!. From this, we obtain the polaron d
conductivity tensor without the phonon-assisted currents

sab
dc 5

Nce0
2

2kBT\2 (
nÞm

~Ram2Ran!~Rbm2Rbn!

3E
2`

1`

dt~«mn!
2e2Gmn(t), ~60!

which equals the solution~53! of the full theory except for
the replacementFmn(t)→(«mn)

2. Note that in Eq.~60! the
electron-phonon coupling enters only via the quantityGmn(t)
which we can replace byGph(t)52geff

2 @112Nph2Fph(t)# in
the case of a single dispersionless phonon mode. By this
~60! becomes qualitatively equivalent to the result of H
stein’s theory of purely local coupling which is obtained
simply interchanginggeff↔g0 in Gph(t).

In order to visualize the important qualitative differen
between the theories with and without the phonon-assi
current j a

(II) , we apply Eq.~60! to the model crystal of Sec
IV C, namely, an orthorhombic crystal with just one nonze
transfer integral per crystallographic direction, i.e.,$«mn%
5$«a ,«b ,«c%[$«a%. As a result, the dc conductivities in th
three directions are given by

sa
dc}

a2

T E
2`

1`

dt«a
2e2Gph(t)e2G2t2 ~a5a,b,c!, ~61!

which corresponds to Eq.~59! in the full theory. In contrast
to Eq.~59!, the simplified result~61! does not give rise to an
anisotropic temperature dependence of the conductiv
sa

dc. The only anisotropy in Eq.~61! arises from the factors
a2«a

2 which determine the absolute values ofsa
dc but not the

actual T dependence itself. In other words, the addition
term }Fph(t) in Eq. ~59! which stems from the phonon
assisted currentsj a

(II) is, indeed, the essential contribution
the anisotropy in the T dependence of polaron d
conductivities.37 Since the currentsj a

(II) originate solely from
the nonlocal electron-lattice interaction, this means also
local-coupling theories can, in general, not be expected
yield completely satisfying results.38

The above analysis can be further deepened if the t
integrals in Eqs.~59! and ~61! are explicitly evaluated. This
is achieved by means of the following expansion into mo
fied Bessel functionsI l of order l,

e12geff
2 Fph(t)5e1zphcosQph5 (

l 52`

1`

I l~zph!e
2 i l Qph, ~62!
07521
g

q.

d

s

l

at
to

e

-

where zph54geff
2 ANph(11Nph) and Qph5vpht

1 i (\vph/2kBT). Then, in the limit G→0, the remaining
time integrations*2`

1`dte2 i l vpht result ind functions at mul-
tiple integersl of the phonon frequencyvph corresponding to
the effective emission (l .0) or absorption (l ,0) of u l u
phonons.39 As a result, the dc conductivities can be written

sa
dc}

a2

T
e22geff

2 (112Nph) (
l 52`

1`

f a
( l )el\vph/2kBT2pd~ lvph!,

~63!

where the quantities f a
( l ) are defined either asf a

( l )

ª«a
2 I l(zph) if j a

(II) is neglected@Eq. ~61!# or f a
( l )
ªEa

2 I l(zph)
1 1

2 (\vphga)2@ I l 21(zph)1I l 11(zph)#ANph(11Nph) if j a
(II) is

taken into account@Eq. ~59!#. From the latter formula, the
fundamental importance of the phonon-assisted currentsj a

(II)

is strikingly visible due to the explicit appearance of t
phonon occupation numbers via the factorANph(11Nph).
Therefore, the corresponding term inf a

( l ) gains weight at
higher T which eventually causes the temperature dep
dence ofsa

dc to become anisotropic as discussed above.
In practice, the singularities arising from thed functions

in Eq. ~63! are removed by the inhomogeneous line broa
ening G which can be accounted for by the replaceme

2pd( lvph)→(Ap/G)e2 l 2vph
2 /2G2

, in accordance with the fac
tor e2G2t2 used in time domain. For crystals of high purit
i.e., little static disorder, it holds thatG!vph and the term
with l 50 becomes the dominant contribution tosa

dc. Within
this approximation, the polaron dc conductivities~63! sim-
plify into

sa
dc}

a2

T

Ap

G
e22geff

2 (112Nph) f a
(0) , ~64!

where, additionally, in the full theory includingj a
(II) the

above-defined quantityf a
(0) can be transformed into

f a
(0)5Ea

2 I 0~zph!1~\vphga!2I 1~zph!ANph~11Nph! ~65!

by means of the identityI 21(zph)5I 1(zph). Here, it is worth-
while to note that the simplified expressions~64! and ~65!
exhibit some similarities to results on polaron diffusion c
efficients obtained by Munn and Silbey27 but it is difficult to
establish a direct relation to our findings due to the differ
formalisms involved and the overall complexity of the pro
lem. These authors also pointed out the importance
phonon-assisted currents arising from nonlocal electr
lattice interaction but could not explicitly demonstrate t
resulting anisotropy effects since their analysis was restric
to a one-dimensional system.

Finally, it is interesting to discuss some limiting cases
the above formulas~64! and~65!. The low-temperature limit
is easily performed. UsingI 0(zph)→1 andI lÞ0(zph)→0 for
zph→0, we obtain immediatelysa

dc}a2Ea
2T21, in agreement

with our numerical findings from Fig. 1. In this limit, the
second term in Eq.~65! approaches zero and, apart from t
small change in the transfer integrals«a→Ea , the current
j a
(II) does not contribute to the conductivity, as expected
2-9



om

li
io

a
r
ts
C

l
e

a

d
e
fro

n
ca
b

a
d
is
h

tic
la
hi
t

ap
o
y
u
t

lin
a
on
m

a

fo
ie

er-

the
rst
ub-

r

art
ary

ning

be
t to

.
ved

tors
her-

ved
the
om-
or-

y
f
an
ly,

h

he
to
that
nd
o-

r
c-

c
o-

tion
ls
is

ec-
n-
ey
on-
n’s

K. HANNEWALD AND P. A. BOBBERT PHYSICAL REVIEW B69, 075212 ~2004!
phonon-assisted transport. We note that the divergence
zero temperature is an unphysical artifact originating fr
the approximation made in Eqs.~26! and~27! which will be
discussed in more detail in Sec. IV E.

The high-temperature limit is somewhat more comp
cated but can be performed using the asymptotic expans
for the modified Bessel functionsI l(zph→`)'ezph/A2pzph
for arbitrary orderl as well as 112Nph'2kBT/\vph and 1
12Nph22ANph(11Nph)'\vph/4kBT for large T. If in-
serted into Eqs.~64! and ~65!, the conductivity can be writ-
ten as

sa
dc}

a2

T1.5FEa
21~\vphga!2

kBT

\vph
Ge2D/kBT, ~66!

where we dropped all irrelevant prefactors and introduced
‘‘activation energy’’D5 1

2 \vphgeff
2 . The asymptotic behavio

found in Eq.~66! is in agreement with our numerical resul
in Fig. 1 and supports our discussion at the end of Sec. IV
Especially, we obtain a factore2D/kBT which causes therma
activation as seen in thec direction, and we recover th
ultimate T20.5 dependence for high enough temperatures
seen in the b direction. However, for large ratiosr a
5Ea /\vphga , this T20.5 dependence will be establishe
only for extremely highT, and in the relevant temperatur
range one may instead observe just a gradual change
the T21 power law at low temperatures into aT21.5 depen-
dence at elevated temperatures as seen in thea direction in
Fig. 1. At this stage, it is important to note that the expone
obtained within our model of a single dispersionless opti
phonon mode may be subject to changes due to effects
yond this model, in particular, due to additional optic
and/or acoustical modes as well as temperature-depen
homogeneous line broadening. However, as far as the an
ropy effects are concerned, the general picture presented
will remain valid.

E. Limitations of the present approach

In the previous sections, we have presented a theore
description of polaron dc conductivities in organic molecu
crystals based on the evaluation of the Kubo formula wit
a mixed Holstein-Peierls model. Due to the inclusion of bo
local and nonlocal electron-phonon interactions, our
proach may be looked upon as the generalization of H
stein’s original theory of purely local coupling. As a ke
result, we found that the Holstein-Peierls model can acco
for anisotropy effects in the temperature dependence of
conductivities whereas they are absent in local-coup
theories. Yet, despite this significant improvement, there
still some limitations of the present approach. In this secti
we conclude our analysis by a brief discussion of these li
tations and how they might be overcome.

As far as the physics is concerned, the most import
approximation of our derivation is made in Eqs.~26! and
~27! by the replacementH̃→H̃8 for the calculation of the
thermal averages. As discussed in Mahan’s textbook,34 this
approximation is also made in the corresponding solution
the pure Holstein model and basically serves as a conven
07521
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method to calculate the electronic part of the thermal av
age. In fact, the use of Eqs.~28! and~32! strongly simplifies
our derivation but relies on the diagonality ofH̃8 with re-
spect to the electron operators. In this way, effects due to
finite polaron bandwidths are partially neglected. In a fi
step, this drawback may be overcome if instead of the s
stitution Ẽmn→^Ẽmm&dmn corresponding toH̃→H̃8 just the
replacementẼmn→^Ẽmn& is made, in accordance with ou
polaron band-structure theory of Sec. III, Eq.~14!. Yet, even
this improvement would take into account only the real p
of the polaron bands whereas effects due to the imagin
part and here, in particular, the homogeneous line broade
~which may be temperature dependent! would still remain
unaddressed. Obviously, the latter deficiency could only
overcome by calculating the thermal average with respec
the full Hamiltonian H̃ without further approximations
However, to our knowledge, this has not even been achie
so far for the much simpler Holstein model.

In any case, once the diagonality in the electron opera
is lifted, the use of the real-space representation for the t
mal averaging of the electronic part in^ j a(t) j b(0)& becomes
disadvantageous. In principle, this problem could be sol
by switching to the reciprocal space but then, in turn,
thermal average over the phononic part becomes more c
plicated, and to our knowledge, the only attempt for a rig
ous solution has been made by Munn and Silbey.27 Recently,
for local coupling, anad hocsolution has been proposed b
Kenkre and co-workers.40,41 Even though their treatment o
the problem is quite simplistic, it allowed them to capture
important modification due to the finite bandwidths, name
the disappearance of the unphysical singularity atT50 K.
This is achieved by taking into account the thermal~Fermi!
distribution of the charge carriers within the band which~at
low densities and low temperatures! basically introduces an
additional factor}kBT corresponding to the spectral widt
of the distribution.

On the other hand, from the practical point of view, t
region of very low temperatures is anyway more difficult
describe since there are further effects beyond our model
may play an important role, especially acoustic-phonon a
impurity scattering. Only if these effects are included micr
scopically as well can one expect to make exactquantitative
predictions for low-T conductivities. We hope that ou
present theory will stimulate further research into this dire
tion which would ultimately result in a fully microscopi
description of charge-carrier conductivities in organic m
lecular crystals.

V. SUMMARY

In summary, we have presented a theoretical descrip
of polaron dc conductivities in organic molecular crysta
within a mixed Holstein-Peierls model. Our approach
based on a rigorous evaluation of the Kubo formula for el
trical conductivity and incorporates both the local and no
local electron-lattice interactions nonperturbatively. As a k
result, we have derived an explicit expression for the dc c
ductivity tensor that generalizes both the result of Holstei
2-10
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local-coupling theory as well as previous evaluations of
Kubo formula including nonlocal coupling.

The general theory has been applied to a simplified mo
crystal, namely, an orthorhombic crystal with one nonz
transfer integral per crystallographic direction. Accompan
by an illustrative numerical example, we have demonstra
that the Holstein-Peierls model can account for anisotr
effects in the temperature dependence of polaron conduc
ties. These anisotropy effects are solely caused by pho
assisted currents arising from the nonlocal electron-pho
coupling. This proves the importance to go beyond loc
coupling theories in order to describe the experimentally
served anisotropy of charge-carrier conductivities in orga
molecular crystals.

While the actual evaluation of the Kubo formula turn
s,

,

om

pl

a

s.

n,

.

T.
.

ra
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out to be rather complicated, our final expressions for
polaron dc conductivity, Eqs.~53!–~58!, are comparably
easy to comprehend. As all the material-specific input para
eters can be obtained fromab initio calculations—as recently
demonstrated for oligoacene crystals29,30—our theory does
also represent a significant step towards quantitative calc
tions of polaron conductivities and may pave the way fo
fully microscopic description of charge-carrier transport
organic molecular crystals.
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