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Measures for Pathway Analysis in Brain White
Matter Using Diffusion Tensor Images�

Laura Astola, Luc Florack, and Bart ter Haar Romeny

Eindhoven University of Technology, PO Box 513, NL-5600 MB Eindhoven,
The Netherlands

Abstract. In this paper we discuss new measures for connectivity analy-
sis of brain white matter, using MR diffusion tensor imaging. Our ap-
proach is based on Riemannian geometry, the viability of which has
been demonstrated by various researchers in foregoing work. In the Rie-
mannian framework bundles of axons are represented by geodesics on the
manifold. Here we do not discuss methods to compute these geodesics,
nor do we rely on the availability of geodesics. Instead we propose local
measures which are directly computable from the local DTI data, and
which enable us to preselect viable or exclude uninteresting seed points
for the potentially time consuming extraction of geodesics. If geodesics
are available, our measures can be readily applied to these as well.

We consider two types of geodesic measures. One pertains to the con-
nectivity saliency of a geodesic, the second to its stability with respect
to local spatial perturbations. For the first type of measure we consider
both differential as well as integral measures for characterizing a geodesic’s
saliency either locally or globally. (In the latter case one needs to be in
possession of the geodesic curve, in the former case a single tangent vec-
tor suffices.) The second type of measure is intrinsically local, and turns
out to be related to a well known tensor in Riemannian geometry.

Keywords: DTI, geodesics, brain white matter connectivity, geodesic
deviation, Riemann tensor, Ricci tensor.

1 Introduction

The traditional MR-DTI data matrix gives a Gaussian probabilistic model for
the diffusion of water molecules in six different directions in each volume ele-
ment of a 3D image. If diffusivity is large in a certain direction, then the time
a water molecule travels a given distance in this direction is short. Thus the
positive definite data matrix can be interpreted as reciprocally proportional to a
Riemannian metric tensor as is pointed out by O’Donnell et al. [1] and Lenglet
et al. [2]. Having a metric tensor attached to each point (on a compact mani-
fold), we can solve for the shortest path, i.e. a minimal geodesic between a given
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pair of points. For this purpose, there are various numerical methods ranging
from techniques similar to Dijkstra’s algorithm [3,4,5], level set methods [2,6], to
solving the discretized Hamilton-Jacobi equation of propagating wavefronts [7].

Whatever the method for computing geodesics, one has to appreciate that
although a coherent bundle of axons with resolvable thickness is likely to produce
geodesics in (uncorrupted) DTI data, an arbitrarily chosen geodesic is unlikely to
correspond to a bundle of axons. (Geodesics “run all over the place”, so to speak.)
Therefore, we propose a set of measures for the connection strength of a geodesic,
both locally as well as globally (Section 2), and for its sensitivity to small spatial
perturbations of the initial seed point (Section 3). A large connection strength
implies that a candidate geodesic is more likely to correspond to an actual axon
bundle (or other physical water channel). The stability measure, on the other
hand, quantifies the amount of deviation from nearby geodesics, akin to the
relative acceleration of freely falling particles in an inhomogeneous gravitational
field (metric). One expects this deviation to be small in fibrous tissue in which
the fibres are well aligned, and large in chaotic regions.

In short, we answer the question whether and to which extent a geodesic
can be seen as a representative member of an articulated, coherent bundle of
neighbouring geodesics, and which points are (un)likely to be part of such a
structure.

2 Geodesics Versus DTI Fibres

In white matter microstructures inhibit the free Brownian motion of water mole-
cules. the myelinated neurons in brain white matter favor diffusion along and
impede diffusion across their tangent directions. Therefore, along a meaningful
bundle of axons, the diffusivity is relatively large.

In the following we use Einstein summation convention: aib
i ≡

∑n
i=1 aib

i. On
a compact simply connected manifold, every pair of points can be connected by
a geodesic, i.e. a curve of extremal energy (with affine parameter t)

E(γ) =
1
2

∫ T

0
gij(γ(t))γ̇i(t)γ̇j(t)dt, (1)

or equivalently, of the (parametrization independent) length functional

L(γ) =
∫ T

0

√
gij(γ(t))γ̇i(t)γ̇j(t)dt . (2)

Here we want to measure the quality of a geodesic as a carrier of diffusion, i.e.
how likely it is for the geodesic to actually be generated by a bundle of fibres
(or other physical water channel). As a measure of the relative diffusivity along
a geodesic we take the ratio of lengths or energies given by the Euclidean and
diffusion induced Riemannian metric tensors, respectively. Let g = D−1, where
D is the DTI matrix field, with components gij relative to a coordinate basis:
g(x) = gij(x)dxi ⊗ dxj , and let γ(t) be a parameterized geodesic for the metric
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g, starting at point p = γ(0), with tangent γ̇(t). The proposed measures are then
given by

mE(γ) =

� T

0 δij γ̇
i(t)γ̇j(t)dt

� T

0 gkl(γ(t))γ̇k(t)γ̇l(t)dt
resp. mL(γ) =

� T

0

�
δij γ̇i(t)γ̇j(t)dt

� T

0

�
gkl(γ(t))γ̇k(t)γ̇l(t)dt

.

(3)
It should be stressed that neither equals the so-called validity index, cf. [7].

In the neighbourhood of point p on γ, the limit of each ratio in Eq. (3) for
T → 0 gives us a local measure of the connection strength:

mE(V ) =
δijV

iV j

gkl(p)V kV l
resp. mL(V ) =

√
δijV iV j

√
gkl(p)V kV l

, (4)

where V = γ̇(0).
If we denote by V + ≡ argmax (m(V )) the principal eigenvector of D = g−1

with eigenvalue λ+, say, then

mE(V +) = λ+ resp. mL(V +) =
√

λ+ (5)

are indeed (up to monotonic transformations) the most reasonable a priori local
measures.

Thus locally, in anisotropic voxels, our measure gives maxima in the direction
of the eigenvector that corresponds to the largest eigenvalue of the DTI-tensor,
and coincides with traditional largest eigenvalue fibre tracking. However, by split-
ting up the integrals in (3) over a partitioning of the curve γ into subcurves γα,
we may apply the integral measures to any curve segment γα, and measure possi-
ble variations in diffusivity along the curve to any desired level of discretization.
In this way we obtain a set of integral connectivity measures for an arbitrary
partitioning of a given (not necessarily geodesic) curve. If γ = ∪N

α=1γα is a
partitioning of a curve γ : [0, T ] → IR3 into any number N of curve segments
γα : [tα−1, tα] → IR3 (with t0 = 0, tN = T ), then from Eq. (3) we obtain an
arbitrarily large set of submeasures,

m
(α)
E = mE(γα) resp. m

(α)
L = mL(γα) . (6)

If a curve (segment) γ corresponds to an actual fibre bundle, then both mE(γ)
and mL(γ) will be large, since the denominator will be small. Note also that
the magnitudes of mL,E(γ) are not biased w.r.t. the length of the curve (unlike
numerator and denominator separately, which do scale with curve length, cf. the
similar but non-invariant measure proposed by Prados [8]). This motivates our
choice for Eq. (3).

3 Geodesic Deviation

The concept of geodesic deviation pertains to the relative acceleration by which
two hypothetical test particles in “free fall” along two neighbouring geodesics
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Fig. 1. Left: J̈ = 0 (no geodesic deviation). Right: J̈ > 0 as a result of curvature.

separate. That is, if one moves along two geodesics that start out from the same
seed point at t = 0, say, with initial velocity vectors of equal magnitude, differing
only in relative directions, one naturally observes that their mutual distance
increases. This geodesic separation as such is trivial. In a flat space it is linear in
t, so that the relative acceleration between the two points vanishes identically.
However, in a curved space this is different (just think of the great circles of a
sphere, which are geodesics if one is confined to its curved surface, cf. Fig. 1). In
general there is a deviation from the lowest order linear behaviour, which will
(initially) cause either an acceleration or deceleration in the mutual separation of
the points. One can show that, if J(t) denotes the separation vector1 connecting
any point γ(t) on a fiducial geodesic at time t to a corresponding one on a
neighbouring geodesic indicated by the relative separation vector J(t), then

D2J(t)
dt2

+ R(γ′(t), J(t))γ′(t) = 0 . (7)

The symbol D denotes covariant derivative, and R is the so-called Riemann
curvature. One can show that the magnitude of the relative separation vector
J(t) initially evolves as

|J(t)| = t − 1
6
〈R(V, W )V, W 〉t3 + O(t4) , (8)

in which V = γ′(0) and W = J ′(0). Thus the interesting quantity is the co-
efficient of the O(t3) term, which contains all relevant curvature information
responsible for geodesic deviation.

In a local coordinate system Eq. (7) becomes

D2J i(t)
dt2

+ Ri
jkl(γ(t))

dγj(t)
dt

Jk(t)
dγl(t)

dt
= 0 . (9)

1 Formally J(t) is defined in terms of the exponential map, J(t) = (d expp)tV tW , in
which p is the base point of interest, V is a tangent to a fiducial geodesic, and W
a second tangent which “selects” a neighbouring geodesic. We refer to the literature
for details.
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Following do Carmo’s index convention [9], the Riemann curvature tensor—
second term in Eq. (7)—is defined as

R(X, Y )Z = Rl
ijkX iY jZk ∂

∂xl
, (10)

in terms of its components, which are given by the functions (spatial arguments
x ∈ IR3 are implicit)

Rm
ijk = Γ l

ikΓ m
jl − Γ l

jkΓ m
il +

∂

∂xj
Γ m

ik − ∂

∂xi
Γ m

jk , (11)

in which the Christoffel symbols are defined as

Γ k
ij =

1
2
gkl

{
∂gjl

∂xi
+

∂gli

∂xj
− ∂gij

∂xl

}

. (12)

(Recall that gij(x) are just the entries of the DTI matrix at point x, and gij(x)
the entries of its inverse.)

Although a detailed explanation of this geometric analysis is far beyond the
scope of this paper, it suffices to appreciate the heuristics of our approach. The
interested reader is referred to do Carmo [9] or any other suitable text book on
Riemannian geometry for further details and proofs.

In this section, our next goal is to obtain a measure for geodesic deviation
that (i) is a purely local entity, and (ii) involves only the geodesic direction (i.e.
V = γ′(0)) and does not prefer any extrinsically chosen plane through V , in other
words, does not contain the vector W = J ′(0). To this end we may average the
relevant coefficient of Eq. (8) over all independent vectors Wa, a = 1, . . . , n − 1,
perpendicular to V = γ′(0). In this way one obtains the so-called Ricci curvature:

Ricp(V ) =
1

n − 1

n−1∑

a=1

〈R(V, Wa)V, Wa〉 . (13)

In particular, in the 3-dimensional case at hand, we have two mutually ortho-
normal vectors W1, W2 ⊥ V , and we may obtain the average as:

Ricp(V ) =
1
2π

∫ 2π

0
〈R(V, cos θW1 + sin θW2)V, cos θW1 + sin θW2〉dθ (14)

=
1
2

2∑

a=1

〈R(V, Wa)V, Wa〉 , (15)

which indeed agrees with the general definition, Eq. (13). Although the r.h.s. still
contains the basis {Wa}n−1

a=1 that spans the plane orthogonal to V , the result
must be independent of its actual choice. To see that this is indeed the case,
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substitute the coordinate expressions of all geometric quantities involved into
Eq. (13), using V = V i ∂

∂xi
, Wa = W i

a
∂

∂xi
, and Eq. (10). We obtain

Ricp(V ) =
1

n − 1

n−1∑

a=1

〈Rl
ijkV iW j

aV k ∂

∂xl
, Wm

a

∂

∂xm
〉

=
1

n − 1

n−1∑

a=1

Rl
ijkV iV kWm

a W j
aglm

=
1

n − 1

n−1∑

a=1

RijkmV iV kWm
a W j

a , (16)

in which we have defined Rijkm = glmRl
ijk. In n dimensions {W1, W2, . . . ,

Wn−1, V } constitutes an orthonormal basis, as a result of which we have

n−1∑

a=1

W j
aWm

a = gjm − V jV m. (17)

Substitution into Eq. (16) yields, abbreviating Rik = gmjRijkm,

Ricp(V ) =
1

n − 1
RijkmV iV k(gjm − V jV m)

=
1

n − 1
RikV iV k − 1

n − 1

n−1∑

h=1

RijkmV iV kV jV m

By virtue of the symmetries of the Riemann tensor the last summand vanishes,
and so we end up with

Ricp(V ) =
1

n − 1
RijV

iV j . (18)

Eq. (18) is our main result with respect to geodesic deviation. (In our case, n=3,
but the proportionality factor is immaterial.) Note that it satisfies our previous
requirements, i.e. it depends only on differential DTI properties, and only in-
volves a directional argument. Thus one does not need to know the geodesics in
order to compute geodesic deviation. This greatly facilitates the computation.
In fact, given a unit tangent vector V , Eq. (18) can be obtained by a some-
what lengthy but completely straightforward algebraic combination of partial
derivatives of the DTI image of orders 0, 1, 2. The algorithm is as follows:

1. Compute the metric gij by pointwise inversion of the DTI matrix gij .
2. Compute the Christoffel symbols Γ k

ij , Eq. (12).
3. Compute the components of the Riemann tensor Rl

ijk , Eq. (11).
4. Obtain the Ricci tensor by contraction: Rij = Rk

ijk.
5. Specify the components of a unit tangent V i, and contract onto the Ricci

tensor so as to obtain the proposed measure for geodesic deviation: RijV
iV j .
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The second and third steps require the computation of derivatives up to second
order. This can e.g. be done in the usual way within the framework of scale space
theory, taking into account a scale parameter that admits a sufficiently accurate
extraction of second order derivatives (a Gaussian scale slightly larger than one
voxel may already yield acceptable results depending on noise level, cf. [10,11]).
The algorithm may be augmented with a scale selection procedure for optimal
performance, since the “right” scale for pathway analysis is not known a priori.
This highly interesting but nontrivial option is not further pursued here.

4 Conclusions

We have proposed two different types of differential geometric measures for DTI
pathway analysis, and operational schemes to compute them. The first one, the
connection strength, is a zeroth order differential property that gives information
about the relative diffusivity along a given curve. Curves with large connection
strengths are more likely to correspond to actual elongated structures of axons
or other physical water channels. Our connectivity measure can be applied to
any not necessarily geodesic curve, to an arbitrary segment and, in the limit,
even to any point of such a curve. For the preselection of viable seed points
for geodesics, it is, apart from quantifying their connectivity, likewise useful to
compute their geodesic deviation as a measure for local stability and coherence.
We have argued that the Ricci curvature in the direction of largest diffusion is
an appropriate measure for this. A positive Ricci curvature, which depends on
second order derivatives of the DTI image, indicates the presence of bundles of
geodesics that are well aligned. Combination of the two types of measures can
be used to single out suitable seed points for, and to judge the saliency of, a
fiducial geodesic.
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