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Abstract— The electric power demand in road vehicles in-
creases rapidly and to supply all electric loads efficiently, energy
management (EM) turns out to be a necessity. In general,
EM exploits the storage capacity of a buffer connected to the
vehicle’s power net, such that energy is stored or retrieved at
moments that the production of electric power is relative cheap
or expensive, respectively. This paper adds an extra degree of
freedom, by considering electric loads with a flexible power
demand. A strategy based on optimization techniques as well
as a rule-based strategy are developed. Simulations illustrate
the benefits of applying these flexible loads, as they offer more
freedom for EM and moreover, reduce the activity of the storage
buffer significantly.

I. INTRODUCTION

The electric power consumption in road vehicles is in-
creasing rapidly, due to high standards on safety and com-
fort. Moreover, the introduction of Hybrid Electric Vehicles
(HEV), where the propulsion power is partly delivered by an
electric machine, contributes to even higher electric power
demands. To limit the associated fuel consumption, re-
searchers have proposed smart strategies on how to generate
the required electric power [5–8]. Typically, these strategies
utilize the storage capacity of a battery at moments when
the power requested by the electric loads versus the power
of the electric machine is not balanced. This concept has
two disadvantages: first, temporarily storing energy always
brings additional losses and second, the storage device wears
out much faster.

To overcome both problems, this paper considers electric
loads with a flexible power demand, such that the requested
load power can be adapted to the generated power. Loads
with a flexible power demand are characterized by the fact
that they accept, up to a certain level, more or less power,
without serious performance degradation for the driver. Es-
pecially heating and cooling functions are suited for this
purpose. The value of this concept is already shown in [1]
for an HEV, where the focus is on extra improvements in fuel
economy. The aim of this paper is to introduce an Energy
Management (EM) strategy for vehicles with a conventional
drive train and where the design procedure offers freedom in
selecting a trade-off between extra profits on fuel economy
versus a reduction in battery wear.

This paper is organized as follows. Section II presents
the vehicle model that is used for analyzing strategies. The

actual control problem is formulated in Section III. By means
of optimization techniques, Section IV presents an analytic
control law. Also a rule-based strategy is derived and is
explained in Section V. Simulation results are shown in
Section VI and the conclusions are given in Section VII.

II. VEHICLE MODEL

The scope of this paper is limited to road vehicles with
a conventional drive train and a transmission with fixed
gear ratios. Modifications are done for the electric power
net, where the alternator and parts of the electric loads are
replaced by power controlled components. An overview of all
relevant power flow signals is given in Fig. 1. In this diagram,
the combustion engine converts fuel into mechanical power
Pm. This power is used by the drive train for vehicle
propulsion (Pd), whereas a smaller amount of power is used
by the alternator (Pg). The electric power Pe that comes out
of the alternator flows directly to the electric loads (PL) or
is stored in the battery (Pb).

fuel
Engine

Pm
Drive Train

Alternator

Pd

Pg Pe

Electric
Load

Battery
Efficiency

PL

Pb Ps
Es

Fig. 1. Overview of vehicle power flow

It is demanded that the driver experiences identical vehicle
behavior whether EM is applied or not. Given a driving cycle
with a predefined speed profile, one can calculate the power
to the drive train as well as the engine speed ω. Consequently,
the assumption that the drivability of the vehicle remains
unaffected, reduces the complexity of the vehicle model
significantly.

An EM strategy exploits the characteristics of the engine,
alternator, battery, and electric loads. Except for the bat-
tery, quasi-static models have been used for these compo-
nents. The engine model is described by a nonlinear static
map which specifies the relation between fuel consumption
fuelrate, engine power Pm, and engine speed ω:

fuelrate = f(Pm, ω) where Pm = Pd + Pg (1)
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In literature, fuel maps are often presented as a function of
engine torque and engine speed. However, the engine torque
can be derived from the engine power if the engine speed is
known, so these maps represent identical information.

Using a similar approach, the alternator model is captured
by a nonlinear static map, expressing the mechanical power
Pg as a function of the electric power Pe:

Pg = g(Pe, ω) where Pe = PL + Pb (2)

Obtaining an accurate model of the battery is part of
ongoing research. In this paper, the battery model consists
of two blocks. The first block introduces the energy losses
between the power Pb at the battery terminals and the net
stored/retrieved power Ps:

Pb = Ploss(Ps) (3)

For simplicity, the losses in the battery depend only on the
actual battery power, but it is very well possible to extend this
model with additional parameters such as the actual energy
level in the battery or its temperature. More details about
the function Ploss(Ps) will be given in Section IV, as this
function directly influences the control actions of a strategy.
The second block in the battery model keeps track of the
energy level Es by means of a simple integrator:

Es(t) = Es(0) +
∫ t

0

Ps(τ)dτ (4)

It is assumed that the energy capacity Ecap of the battery is
fixed. Consequently, the relative energy level in the battery
can be denoted by the quantity State of Charge:

SOC(t) =
Es(t)
Ecap

· 100% (5)

III. PROBLEM DEFINITION

The key idea behind EM is to increase the energy
efficiency in the vehicle such that the fuel consumption
(and/or tail-pipe emission) is reduced. In this research, this is
achieved by moving the operating point of the alternator and
hence, the combustion engine to an area where less energy
losses are induced. Consequently, the power delivered by
the alternator and the power requested by the electric loads
might be unbalanced. In that situation, one can either use the
storage capacity of the battery or change the power demand
of the electric loads. It is clear that rescheduling of the load
demand is more profitable than temporarily storing energy in
the battery. However, freedom to assign more or less power
to the loads is limited.

A. Control objective and constraints

Following the approach of Tate and Boyd in [9], the con-
cept of EM can be formulated as a (non-linear) optimization
problem:

min
x

J(x) subject to G(x) ≤ 0 (6)

The cost function J is selected such that it represents the
vehicle’s fuel use over a predefined driving cycle or random
trajectory with time interval t = [0, te]:

J = fuel(Ps, PL) =
∫ te

0

fuelrate(Ps, PL)dt (7)

Note that the design variables are the internal battery power
Ps and the power to the electric loads PL. Using the relations
(2) and (3) results in the corresponding setpoint for the
alternator power Pe.

Constraints on the design variables are caused by physical
limitations of components as well as requirements with
respect to energy conservation. The operating ranges of
the engine, alternator, and battery are limited, so inequality
constraints are introduced on the minimum and maximum
power flow of these components:

Pm min ≤ Pm ≤ Pm max ∀ t ∈ [0, te] (8)

Pe min ≤ Pe ≤ Pe max ∀ t ∈ [0, te] (9)

Pb min ≤ Pb ≤ Pb max ∀ t ∈ [0, te] (10)

Furthermore, battery draining has to be prevented. A charge-
sustaining strategy is obtained by including an end-point
constraint on the energy level of the battery:

Es(0) +
∫ te

0

Ps(τ)dτ ≥ Es ref (11)

where Es ref is an arbitrarily selected reference value that
should be satisfied at t = te, e.g. Es(0).

Finally, constraints on PL are used to characterize the
energy and power demand of the electric loads. It is assumed
that all individual loads can be aggregated and result in
separate power and energy constraints:

PL min ≤ PL ≤ PL max ∀ t ∈ [0, te] (12)∫ t

0

PL(τ)dτ ≥ EL min(t) ∀ t ∈ [0, te] (13)

IV. QUADRATIC PROGRAMMING

Finding the optimal solution for the problem defined in
the previous section will be computationally demanding. To
come to a solution close to the global optimal solution, the
original problem is approximated with a Quadratic Program-
ming (QP) problem. Such a QP-structure is characterized by
a quadratic cost function, subject to linear constraints:

min
x

1
2x

�Hx + h�x subject to Ax ≤ b (14)

A. Model reduction

To derive a quadratic description for the cost function (7),
the models of the individual components need to be reduced.
For the engine map, a linear approximation will be used:

fuelrate(Pm) ≈ α1Pm + α0 (15)

The parameters α1 and α0 are state dependent and are
selected such that they represent a local fit of the fuel map
in the area Pm = [Pd, Pd + Pg max] and engine speed ω. In
practical situations, the fuel map of an engine is obtained

1505



P
b

P
s

Discharging

Charging

b+P
s

b-P
s

�P
s
+b

+
P

s

2

�P
s
+b-P

s

2

Fig. 2. Parameter selection in battery efficiency model

by measuring its fuel consumption at a finite number of grid
points. These grid points cover the entire operating area of
the engine. Compared to the power range of the alternator,
this is a relative coarse grid and therefore it is acceptable to
approximate the fuel consumption by a local linear fit.

Measurement data of the alternator show that energy losses
are more than proportional at higher power levels. For that
reason, the alternator map is approximated by a quadratic fit:

Pg(Pe) ≈ γ2P
2
e + γ1Pe + γ0 (16)

Again, the parameters γ2, γ1 and γ0 are state dependent.
They approximate the alternator map over its entire power
range Pe = [Pe min, Pe max] at a certain engine speed ω.

The dynamic behavior of a battery is rather complex and
it is inconvenient to model this accurately in a QP-structure.
From a physical point of view, it is reasonable to assume that
losses in the battery will increase for higher power flows.
Consequently, there has been decided to use a battery model
incorporating linear and quadratic losses:

Pb(Ps) ≈ βP 2
s + max(b−Ps , b+Ps) (17)

In Fig. 2 the contribution of each individual term is shown.
The parameter β > 0 represents the quadratic losses whereas
b+ > 1 and 0 < b− < 1 indicate the piece-wise linear
losses during charging and discharging, respectively. Al-
though these losses might not be exact as in reality, they also
serve as a tuning parameter to limit the actual battery usage
of an EM strategy. That is, incorporating more losses in the
battery model than actually present in reality, will discourage
any strategy to use the battery as an energy storage buffer.
Because battery usage is directly connected to battery wear,
the parameters β, b+ and b− turn out to be a trade-off
between performance of the strategy versus battery wear.

B. QP formulation

The battery model described in (17) cannot be directly
included in the QP-framework of (14). Fortunately, the
restrictions on β , b+ and b− guarantee that (17) is always a
convex function. As shown in [3], it is possible to reformulate
the expression max(b−Ps , b+Ps) as follows:

min
Pa

Pa subject to

{
Pa ≥ b−Ps

Pa ≥ b+Ps
(18)

Now the substitution of (16)-(18) into (15) results in a 4th-
order expression between fuel use and battery power Ps.
Because a quadratic relation is needed for a QP-structure,
a second order Taylor approximation has been applied,
leaving out the higher order terms. To that end, the design
variable PL has changed into the zero-mean variable ∆PL,
representing the deviation from the average load power P̃L:

PL := P̃L + ∆PL (19)

The cost criterion in (7) is written in discrete time with
sampling interval ∆T over Np periods:

J =
Np∑
k=1

fuelrate(Ps(k),∆PL(k), Pa(k))∆T (20)

The selected design-variable x = [Ps ∆PL Pa]� ∈ R
3Np

covers all periods k = 1, .., Np and results in the following
description for H and h in (14):

H =

⎡
⎣

2α1γ1β + 4α1γ2βP̃L 0 0
0 2α1γ2 2α1γ2

0 2α1γ2 2α1γ2

⎤
⎦ (21)

h =

⎡
⎣

0
α1γ1 + 2α1γ2P̃L

α1γ1 + 2α1γ2P̃L

⎤
⎦ (22)

All constraints given in (8)-(10) will be written as linear
constraints on Ps and ∆PL. By using the inverse relation of
(16) and selecting the correct solution, it is possible to write
(8) as a constraint on Pe = Pb + PL. Also (9) appears as
a constraint on Pb + PL. Unfortunately, the selected battery
model in (17) gives no opportunity to write both constraints
as a linear combination of Ps and ∆PL. To circumvent this
problem, the energy losses in the battery are neglected during
constraint handling and Pb becomes equivalent to Ps. A
feasible solution for the original constraints in (8)-(10) is
guaranteed by slightly reducing the power limits Pm max,
Pe max and Pb max. Finally, the three new constraints are
combined into one constraint for every period k = 1, .., Np:

P ∗
e min ≤ Ps + P̃L + ∆PL ≤ P ∗

e max (23)

The end-point constraint in (11) on the energy level in the
battery becomes in discrete time:

Es(0) +
Np∑
k=1

Ps(k)∆T ≥ Es ref (24)

The requirements on load power and energy to the loads are
written in terms of P̃L +∆PL. For the constraint in (12) this
is rather straight forward:

PL min ≤ P̃L + ∆PL ≤ PL max (25)

The energy constraint in (13) needs to be evaluated in all
periods k = 1, .., Np, resulting in Np constraints:

k∑
i=1

(P̃L + ∆PL)∆T ≥ EL min(k) (26)

1506



C. Model Predictive Control

The optimization problem formulated above requires that
the entire driving cycle is known in advance. In real-
world driving situations, this will be practically impossible.
However, the idea that the vehicle speed can be predicted
in the near future is certainly realistic. With only minor
changes, it is possible to put the QP-problem into a Model
Predictive Control (MPC) framework, see [2] and [5]. Instead
of performing the optimization in (20) over the entire driving
cycle, it will be limited to a prediction horizon of Np periods.
Only the first value of the resulting control sequence is
implemented, whereas the calculations are repeated each
time instant with updated state and prediction information.

V. RULE-BASED STRATEGY

The presented MPC-strategy is a feasible solution for on-
line implementation in a vehicle. Nevertheless, the actual
performance of this strategy heavily depends on the qual-
ity and length of the prediction information. This section
presents a rule-based control strategy, with the control law
derived in an intuitive way. Robustness is guaranteed, as this
strategy does not rely on prediction information.

A. Strategy concept

Suppose that the generation of ∆Pe electric power results
in ∆fuelrate extra fuel consumption. From this information,
the incremental cost λ can be defined as the slope of the
joined fuel map (1) and alternator map (2):

λ(Pe) =
∂fuelrate(Pe)

∂Pe
in [gr/J] (27)

Intuitively, it is clear that a possible strategy should generate
(extra) electric power when λ is small and generate less
when λ is large. If there exists no freedom in supplying
temporarily more or less power to the electric loads, the
battery will be used to store or retrieve this electric power.
Due to energy losses in the battery, there will be a trade-
off when the profits obtained from generating at a lower
incremental cost are higher than the losses induced in the
battery. Two parameters will be introduced that characterize
this trade-off. The first parameter is the average incremental
cost λav , that represents the average value of (27) for a given
driving cycle and EM strategy. Secondly, the efficiency of the
battery is defined by parameter η and expresses the losses
that occur during a complete micro-cycle of charging and
discharging the battery:

Pretrieved = ηPstored (28)

The parameters λav and η will be used to divide the operating
range of the alternator in four areas with each their own
control law. On average, it is beneficial to store additional
energy in the battery if λ(Pe) ≤ √

ηλav and retrieval of
energy will be beneficial if λ(Pe) ≥ λav/

√
η. The area in

between denotes the operating range where the battery should
not be used. Nevertheless, supplying power to the electric
loads is profitable as long as λ(Pe) < λav , as they accept
energy without additional losses.

Similar to the battery parameters in the optimization
strategy, the parameter η can be used as tuning parameter
between strategy performance versus battery wear. Different
from the optimization strategy, loads with a flexible power
demand are now characterized by the power constraint in
(12) and not by the energy constraint in (13).

B. Strategy implementation

Three switching levels Pe,l, Pe,av and Pe,u are calculated
that characterize the four operating areas of the alternator. To
that end, the complete power range Pe ∈ [Pe min, Pe max]
is mapped onto a dense grid. For each grid point, the
incremental cost will be calculated and from this set, three
power levels are selected:

Pe,l := arg {Pe | λ(Pe) =
√

ηλav} (29)

Pe,av := arg {Pe | λ(Pe) = λav} (30)

Pe,u := arg {Pe | λ(Pe) =
1√
η
λav} (31)

The implementation of the final strategy boils down to the
following two control-laws:

PL = max [PL min , min[PL max , Pe,av]] (32)

Pb = max [min[Pe,l − PL , Pe max − PL] , 0]
−max [PL − Pe,u , PL − Pe max , 0] (33)

Limitations on the battery power as specified in (10) are
not covered in (33) but will be respected afterwards through
saturation. To keep the energy level of the battery between
certain boundaries, parameter λav needs to be carefully
selected such that the battery is never overcharged or com-
pletely drained. In practice, this requires online adaptation
of λav but for a predefined driving cycle, one can rely on
a constant value. Typically, a higher value for λav results
in more energy in the battery as there are more situations
where it is assumed that power can be generated cheaply. In
simulations, this knowledge is used to select a fixed value
for λav that keeps the final energy level of the battery close
to the initial energy level. An arbitrarily small deviation can
be achieved by selecting λav through linear regression on
simulation results that achieve already a small error for the
final energy level. This approach is further discussed in [6].
The corresponding fuel consumption is also found through
this method and will be used to compare the performance of
this strategy with the optimization strategy.

VI. SIMULATION ENVIRONMENT

A. Simulation model

Simulations are carried out for a mid-sized vehicle with a
2.0L spark-ignition engine and manual transmission, driving
the New European Driving Cycle (NEDC). The engine speed
ω and the drive train torque τd for this driving cycle are
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TABLE I

PARAMETERS FOR THE DRIVE TRAIN MODEL

Quantity Symbol Value Unit
Mass m 1400 kg
Frontal area Ad 2 m2

Air drag coefficient Cd 0.3 -
Rolling resistance Cr 0.015 -
Air density ρ 1.2 kg/m3

Gravity g 9.8 m/s2

Wheel radius wr 0.3 m
Final drive ratio fr 4.0 -
Gear ratio gr 3.4 - 2.1 - 1.4 - 1.0 - 0.77 -

calculated using the following formulas:

ω(t) =
fr

wr
gr(t) v(t) (34)

τd(t) =
wr

fr

1
gr(t)

Fd(t) (35)

Fd(t) = mv̇(t) + 1
2 ρCd Ad v(t)2 + mg Cr (36)

The actual parameter values and their physical meaning are
given in Table I. At moments that the drive train requests
negative torque, this is provided by the engine (which has a
negative drag-torque) and the alternator (by recovering free
kinetic energy). The mechanical brakes are only used when
the engine and the alternator together do not achieve the
requested vehicle deceleration. The alternator can provide
electric power up to 1.6kW and the 12V battery has a
capacity of 50Ah. The effective capacity is assumed to be
Ecap = 106 J with the efficiency parameters η = 0.9,
b− = b+ =

√
η and β = 5 × 10−5. Simulations always

start at 70% SOC.

B. Evaluated strategies

Simulation results of the following three strategies will
be analyzed:

BLx Baseline strategy where the alternator always pro-
vides the requested power for the electric loads.

MPCx Optimization strategy in MPC-framework; Exact
prediction with horizon length Np is assumed.

RBx Rule-based strategy as defined in (32) and (33).

The index term x behind each strategy name indicates the
selected electric load profile, see Table II. The second and
third column in Table II represent the constraint in (12). The
fourth column defines the function EL min(k) from (26). To
be able to compare different strategies, an average electric
load of 250W is selected in BL1, MPC0, MPC1 and RB1.
The profiles BL2, MPC2 and RB2 supply 500W to the loads.

C. Simulation results

The influence of the prediction horizon length is evaluated
for MPC0 and MPC1. Fig. 3a shows the reduction in fuel
consumption whereas Fig. 3b visualizes the total amount of
energy stored in the battery. Both strategies are simulated
for a receding horizon with Np = 1, .., 1181 and ∆T = 1s.
When the prediction horizon reaches the end of the driving
cycle, all remaining control actions are directly taken from

TABLE II

SPECIFICATION OF ELECTRIC LOAD PROFILES

Profile PL min [W] PL max [W] EL min [J]
BL1 250 250 -
BL2 500 500 -
MPC0 250 250 250 × k
MPC1 0 500 250 × k
MPC2 250 750 500 × k
RB1 0 if EL(t) ≥ 250t 500 -

250 if EL(t) < 250t
RB2 250 if EL(t) ≥ 500t 750 -

500 if EL(t) < 500t

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Fuel reduction [%]

MPC0
MPC1

0 200 400 600 800 1000 1200
0

0.05

0.1

0.15

0.2

Prediction length Np [sec]

E
stored

 [−]

MPC0
MPC1

Fig. 3. Influence of prediction horizon on (a) fuel use and (b) battery use

that time instant. The results in Fig. 3b are normalized with
respect to the capacity of the battery:

Estored =

∫ te

0
Pb(t)dt

Ecap
for Pb(t) ≥ 0 (37)

Fig. 4 visualizes the control sequence for the MPC1 profile
with Np = 1181 (dashed curve) as well as for the RB1 profile
(solid curve) over the last 600s of the NEDC driving cycle.
Especially during regenerative braking phases, corresponding
control actions for Pb and PL can be observed.

Table III summarizes the main characteristics of each
strategy. Again, MPCx uses Np = 1181. The second column
considers the relative amount of fuel necessary for only
supplying the electric loads. The third column compares
the overall fuel consumption of the MPC and RB profile
to the corresponding BL profile. Finally, the fourth column
indicates the total amount of energy stored in the battery, as
calculated with (37).

D. Evaluation

Although the profits in fuel reduction are limited, they
increase rapidly until Np = 200 and remain almost constant
for a higher prediction length, see Fig. 3a. This behavior
can be explained as follows. The end-point constraint in
(24) is very dominant for short predictions, resulting in a
very small operating window for the battery. Moreover, the
desired vehicle speed has a large influence on the operating
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TABLE III

STRATEGY RESULTS

Profile Relative costs Overall reduction Normalized
electr. power [%] in fuel usage [%] bat. usage [-]

BL1 100 0.00 0.000
MPC0 74.3 0.87 0.122
MPC1 69.7 1.02 0.088
RB1 70.3 1.00 0.091
BL2 100 0.00 0.000
MPC2 90.1 0.65 0.086
RB2 89.1 0.71 0.113

point of the combustion engine and consequently also the
incremental cost λ as defined in (27). As shown in [4], the
frequency spectrum of λ gives insight into the minimum
length of the prediction horizon, so the speed profile of the
NEDC is closely related to the required prediction length.

From the results in Fig. 3a and Fig. 3b, one can deduce
that the loads with a flexible power demand in MPC1 (solid
curve) contribute to a reduction in fuel use of 18%, whereas
the battery activity decreases at least 28%. Therefore, it is
recommended to apply loads with a flexible power demand
if possible.

Considering Fig. 4b and Fig. 4c, the MPC1 strategy shows
smooth switching behavior for the battery power Pb, whereas
the load power PL can switch at high frequencies. Such
behavior for PL was expected because this variable has
only been included in the constraints and not in the cost
criterion. Smooth switching behavior by the RB1 strategy can
be seen for PL but not for Pb. For this strategy, the alternator
power Pe is calculated by considering the incremental cost
at the present moment. This quantity changes rapidly during
vehicle acceleration or braking moments, so for a given PL

the battery will have to follow the alternator power.
The performance of each strategy is summarized in Table

III. The second column shows that the costs for generating
electric power can be reduced significantly, although profits
are lower for higher load power. There are two reasons for
this. First, free energy from regenerative braking is captured
by the MPC and RB strategy. Also the BL strategy captures

some of this energy and this is more for higher load powers.
Second, the power limitations of the alternator become more
dominant for higher load powers. This means that the feasible
area of the MPC and RB strategy reduces when the load
power increases. Note that RB2 performs slightly better
than MPC2. This is explained by the fact that the MPC
strategy assumes signals to remain constant within each
sample interval ∆T , whereas the RB2 strategy continuously
updates its control law. Column three in Table III presents the
actual benefits in fuel consumption from EM. The profits are
limited because the selected vehicle configuration requires
relatively less power for the electric loads, compared to the
propulsion power. Better performance can be expected from
other vehicle configurations (e.g. an HEV), where the electric
power demand represents a large part of the total energy
consumption. The fourth column again emphasizes that the
application of loads with a flexible power demand reduces
the battery activity in combination with an EM strategy. Note
that RB2 causes relatively much battery activity, compared
to MPC2.

VII. CONCLUSIONS AND DISCUSSION

This paper presents two EM strategies to control the
power flow at the electric power net in road vehicles. In
the analytical MPC approach, a prediction of the future
driving cycle is required, whereas the rule-based strategy
only relies on vehicle information up to the present moment.
Simulations showed that both concepts can yield almost the
same performance. Nevertheless, fuel savings are limited
here due to the selected vehicle configuration.

More freedom in control is achieved by introducing elec-
tric loads with a flexible power demand. This extra freedom
results in a further reduction in fuel consumption. Moreover,
a significant decrease in battery activity can be noticed,
making these flexible loads perfectly suitable for EM.

REFERENCES
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