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Chapter 1

Introduction

1.1 Background

Queueing theory plays an important role in the design of telecommunication
networks. Simple models, like fluid queues or classical single-server queues,
can often be used to obtain insightful results, e.g., to predict the global traffic
behavior. Traditional queueing models typically assume that the interarrival
and service times have finite variance (e.g., exponential or Erlang distribution).
As a result, the aggregate traffic that is offered by a collection of sources
behaves like white noise.

Recently, it has become clear that delay and buffer content distributions
in modern communication networks often do not exhibit such a behavior like
white noise. Many studies on traffic measurements from a variety of commu-
nication networks, like Ethernet local area networks (LANs) [113], wide area
networks (WANs) [89] and variable bit rate (VBR) video over asynchronous
transfer mode (ATM) [10], etc., have shown a striking difference between ac-
tual network traffic and assumptions in traditional theoretical traffic models.
That is, actual network traffic is often self-similar or long-range dependent in
nature. In other words, the traffic looks statistically the same over a wide
range of time scales, from milliseconds to minutes and even hours. This con-
clusion is supported by statistical analysis of numerous high-quality Ethernet
and Internet traffic measurements, cf. [74]. In contrast, traditional traffic mod-
els focus on a very limited range of time scales and do not have the property
of long-range dependence.

As pointed out in [114], the long-range dependent nature of Ethernet LAN
traffic is caused by the presence of the Noah Effect (high variability) in the
traffic generated by the individual source-destination pairs that make up the
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2 Introduction

aggregate packet stream. Intuitively, the Noah Effect for a fluid queue results
in the activity period and/or silence period of an individual traffic source to
be very large with nonnegligible probability. More precisely, the activity pe-
riod and/or silence period (service time and/or interarrival time in an ordinary
queue) have infinite variance. A typical example is a power-tailed distribution,
like the Pareto distribution: F (t) = 1 − ( θ

θ+t)
ν (θ > 0), if 1 < ν < 2. Many

studies have been devoted to this subject and have established a relationship
between long-range dependent processes and distributions with infinite vari-
ance, see e.g. [93, 94, 106]. It has been pointed out in e.g. [23, 28] that fluid or
ordinary queues with input distributions (like the activity period distribution
in a fluid queue, or the service time distribution in an ordinary queue) which
do not have finite variance are useful and tractable models for analyzing the
effect of self-similar traffic on system performance.

Tail probabilities are particularly helpful in understanding the performance
of queueing systems. There has been a sizable amount of literature which
obtains asymptotic results on queueing models with light-tailed input, but not
much on queueing models with heavy-tailed input. For the definition of “light-
tailed” and “heavy-tailed”, see Chapter 2. Note that the class of regularly
varying distributions belongs to the class of heavy-tailed distributions and
contains the typical example (the Pareto distribution we mentioned above) of
distributions with infinite variance.

The main goal of this thesis is to investigate the effect of regularly varying
(sometimes heavy-tailed) service times on the tail of the waiting time or work-
load distributions for several queueing models. More specifically, we study in
detail the following four queueing models: (i) the M/G/1 queue with priority
classes, (ii) the tandem queueing system with Poisson input processes and iden-
tical service times at both queues, (iii) the cyclic polling system with Poisson
input processes, and (iv) the M/G/2 queue with heterogeneous servers. For
these models, we assume that at least one of the service times has a regularly
varying (sometimes heavy-tailed) distribution. We find, for models (i), (ii)
and (iii), that the service time with the largest tail probability governs the tail
behavior of the waiting time and workload distributions. For the multiserver
queue (the M/G/2 queue with heterogeneous servers), the waiting time tail
behavior depends not only on the service time tail behavior, but also on the
total traffic load. We also develop intuitive arguments which give insight into
the most likely way in which large waiting times or workloads may occur.

The remainder of this introductory chapter is organized as follows. Section
1.2 is devoted to some basic knowledge of queueing theory and the performance
analysis of computer-communication networks. In Section 1.3, we briefly in-
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troduce the concepts of self-similarity and long-range dependence and the cor-
responding stochastic modeling. We describe some results for queueing models
with heavy-tailed distributions in Section 1.4, where we focus on results which
are relevant to this thesis. An overview of this thesis is given in Section 1.5.

1.2 Queueing theory and the performance analysis
of computer-communication systems

Queueing theory

In general, a queueing model describes a system in which customers arrive who
require a certain amount of work to be done by the servers. An important
characteristic of queueing models is the randomness of the interarrival and
service times. We refer to Cooper [38] for an excellent survey paper which
covers many of the most important results in queueing theory till the end of
the eighties.

In the following we describe the most basic queueing model, the G/G/1
queue. Here we use the notational convention introduced by Kendall [66]. To
define the arrival process, it is assumed that customers always arrive indi-
vidually. Let An (n = 2, 3, ...) denote the interarrival time between the nth
customer and the (n− 1)th customer, Bn (n = 1, 2, ...) the amount of service
that the nth customer needs, and Wn (n = 1, 2, ...) the waiting time of the nth
customer. Here interarrival time is defined as the time interval between two
consecutive arrivals, and waiting time is defined as the time interval between
the arrival epoch of a customer and the epoch that the server starts to serve
that customer. In many queueing studies, the waiting time distribution is one
of the important quantities to focus on. If the service policy is First-Come-
First-Served (FCFS), i.e., customers are served in order of arrival, then it is
well-known that the waiting time Wn can be represented as

Wn = max(Wn−1 +Bn−1 −An, 0), n ≥ 2.

The interarrival time sequence {An : n = 2, 3, ...} and service time sequence
{Bn : n = 1, 2, ...} are usually assumed to be sequences of i.i.d. (independent
and identically distributed) random variables. Furthermore, the arrival process
is assumed to be independent of the service process. In order to emphasize
that the interarrival time sequence and service time sequence are i.i.d., this
model is also called GI/GI/1 queue.

The service discipline plays an important role in determining the waiting
time distribution. Various service disciplines have been proposed and studied
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in the queueing literature. The FCFS discipline mentioned above is probably
the most common among them. In multi-class (or multi-queue) systems, how-
ever, customers may be served according to a non-FCFS discipline. We now
mention two such disciplines which are particularly relevant for this thesis: (i)
priority strategy; and (ii) polling strategy. In priority models, there are sev-
eral classes of customers. Each class is assigned a fixed ranking. Waiting cus-
tomers from higher ranking classes always have priority for service over those
from lower ranking classes, while customers from the same class are served in
order of arrival. The service discipline is either nonpreemptive or preemptive
resume. In the nonpreemptive case, the service of customers of lower rank
cannot be interrupted by the arrival of customers of higher rank. In the pre-
emptive resume case, interruptions occur during the service of customers of
lower rank when customers of higher rank arrive, and the server starts serving
the higher ranking customers first. When the server finishes serving all higher
ranking customers, it resumes the interrupted service of the lower ranking cus-
tomers. The second discipline that has a prominent place in this thesis is the
polling strategy. In polling systems, there is one server attending to a number
of queues. Customers arrive at each queue independently. The server visits
the queues in a certain order, e.g., cyclicly. Each queue is served according
to some polling discipline, e.g., the exhaustive service discipline, which means
that the server continues serving a queue until it becomes empty.

There are many variants of the basic G/G/1 queue which have been stud-
ied in the literature. For example, we may consider the G/G/c/c + d queue,
in which there are c servers instead of 1, and d positions for customers waiting
for service. In such a system new customers are blocked and lost from the
system if all waiting positions are occupied. When d = ∞, we omit the last
symbol in the notation. An important class of queueing models is the M/G/c
queue, in which the arrival process is assumed to be a Poisson process. The
symbol M stands for the Markovian (or Memoryless) property of the Poisson
process. Poisson arrival processes occur quite naturally, see [39]. Accordingly,
we restrict ourself to Poisson arrival processes in this thesis.

The performance analysis of computer-communication networks

Queueing theory has always been inspired by new questions occurring in the
performance modeling and analysis of manufacturing systems, computer sys-
tems, and in particular communication networks. The first queueing problems
were formulated and studied by the famous Danish scientist A.K. Erlang dur-
ing the years 1908-1922 in the context of telephone networks. Later it turned
out that problems arising in telephone networks are also relevant for vari-
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ous other fields of research: engineering, economics, manufacturing, computer
communications, etc. In communication networks, there is typically a service
resource (e.g. a transmission link) and tasks (e.g. calls or data packets) requir-
ing service from that resource. This raises the issue of how one should organize
the resource and its buffer to guarantee a particular level of performance. The
basic queueing model described above provides a suitable starting point for
studying that issue.

In general, queueing theoretic data flow analysis in computer systems and
communication networks is presently known as performance evaluation. Per-
formance evaluation methods in data communications were strongly stimulated
by Kleinrock’s pioneering work [70], in which he made a connection between
message switching and packet switching networks and (Jackson) queueing net-
works. For general references in the vast area of performance evaluation of data
communication networks, we refer to the classical text books of Kleinrock [71]
and the methodology of Heidelberger and Lavenberg [62].

The book by Walrand and Varaiya [110] is a good source which provides
a firm background on modern networking technology and explains how ques-
tions in computer-communication networks are related to queueing theory. A
recent landmark in performance modeling of communication networks and the
Internet is the discovery of self-similar traffic by Willinger et al. [113]. This
discovery has stimulated several works that provide mathematical models of
long-range dependent traffic with a view towards facilitating performance anal-
ysis in a queueing theoretic sense, e.g., [47, 75, 83, 88, 108]. These works estab-
lish basic performance limits by investigating queueing models with long-range
dependent input, which exhibit fundamentally different performance charac-
teristics from corresponding systems with Markovian input. The analysis of
such non-Markovian queueing systems is highly nontrivial and provides fun-
damental insight into the performance impact of long-range dependent traffic.

1.3 Long-range dependence phenomena in teletraf-
fic

Concepts of self-similarity and long-range dependence

Self-similarity and fractals are concepts pioneered by Mandelbrot [77]. They
describe the phenomenon where a certain property of an object is preserved
under scaling in space and/or time. Self-similar stochastic processes were
introduced by Cox [40]. LetX = {Xn : n ≥ 1} denote a stochastic process with
finite mean µ = E[Xn] and finite variance σ2 = E[(Xn − µ)2]. Furthermore,
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we assume X to be “stationary” in the sense that its behavior or structure
is invariant with respect to shifts in time. We call X strictly stationary if
(Xt1 , ..., Xti) and (Xt1+k, ..., Xti+k) have the same joint distribution for all
i, t1, ..., ti, k ≥ 1. Since strict stationarity is too restrictive in many cases, we
introduce a weaker form of stationarity — second-order stationarity — which

requires that the autocorrelation function rX(k) :=
1
σ2

Cov(Xn, Xn+k) (k ≥ 0)

does not depend on n. Consider the corresponding aggregated process X(m) =
{X(m)

n : n ≥ 1} which is derived from X by setting X(m)
n = n−1(X(m−1)n+1 +

... + Xmn) for m,n ≥ 1. Following Cox [40] and Park and Willinger [86] we
give the following definitions of self-similarity.

Definition 1.3.1 A stationary stochastic process X is called self-similar with
Hurst parameter 0 < H < 1 if X and m1−HX(m) have the same finite-
dimensional distributions for all m ≥ 1.

Definition 1.3.2 A second-order stationary stochastic process X is said to be
second-order self-similar with Hurst parameter 0 < H < 1 if X and m1−HX(m)

have identical correlation function for all m ≥ 1. X is said to be asymptot-
ically second-order self-similar if the limiting process m1−HX(m) for m → ∞
is second-order self-similar.

The above definitions can easily be extended to continuous-time stochastic
processes. A continuous-time stochastic process Y = {Yt : 0 ≤ t < ∞} is
called self-similar with Hurst parameter 0 < H < 1 if {Yat : 0 ≤ t < ∞}
and {aHYt : 0 ≤ t < ∞} have identical finite-dimensional distributions for
all a > 0. The definitions of (asymptotic) second-order self-similarity for
continuous-time processes can be given in a corresponding way. Note that for
Gaussian processes, self-similarity and second-order self-similarity are equiva-
lent, since their joint finite-dimensional distributions are fully determined by
their first and second moments. Next we introduce the definition of long-range
dependence.

Definition 1.3.3 A second-order stationary stochastic process X is called short-
range dependent if the autocorrelation function is summable, i.e.,∑∞

k=0 r(k) <∞. X is called long-range dependent if the autocorrelation func-
tion decays so slowly that

∑∞
k=0 r(k) = ∞.

The above definition can also be extended to continuous-time stochastic
processes, cf. e.g., [28]. In general, self-similarity and long-range dependence
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are not equivalent. For example, Brownian motion is self-similar in a distri-
butional sense with Hurst parameter H = 1/2, but it is not long-range depen-
dent. However, in the case of asymptotic second-order self-similarity with the
restriction 1/2 < H < 1, self-similarity is essentially equivalent to long-range
dependence. The case H ∈ (0, 1/2) is called antipersistent in the terminology
of [77]. To be antipersistent is to tend to turn back constantly toward to the
point one came from, hence to diffuse more slowly than the Brownian motion.
This case is of minor interest for modeling purposes.

In order to get a better understanding of self-similarity and long-range
dependence, we now show a few examples. A widely used family of self-similar
processes is the class of fractional Brownian motions with Hurst parameter
H ∈ (0, 1), which was introduced in [78]. A normalized fractional Brownian
motion {Ut : 0 ≤ t < ∞} with H ∈ (0, 1) is characterized by the following
properties, cf. e.g. [83].

• Ut has stationary increments;

• U0 = 0, and E[Ut] = 0 for all t;

• E[U2
t ] = t2H for all t;

• Ut has continuous sample paths;

• Ut has a Gaussian distribution for all t.

Next we introduce a self-similar discrete-time stochastic process, for which
we refer to [10]. Take X = {Xn : n ≥ 1} with Xn = Un − Un−1. Then the
corresponding autocorrelation function r(·) is of the form

r(k) =
1
2
[(k + 1)2H − 2k2H + (k − 1)2H ], k ≥ 1,

where H ∈ (0, 1). In [87] the above formula is given as the definition of self-
similar discrete-time processes. It can be checked that r(k) = r(m)(k) for all
m, k ≥ 1, where r(m)(·) stands for the correlation function of X(m). Noticing
that X is a Gaussian process, by Definition 1.2.1, X is self-similar. Note that
for H = 1/2, X is uncorrelated, and for H ∈ (1/2, 1), we have

r(k) ∼ H(2H − 1)k2H−2, k →∞,

which implies that
∑∞

k=1 r(k) = ∞. Therefore, X exhibits long-range depen-
dence. In this thesis we follow the notational convention that f(t) ∼ g(t) as
t→ c (0 ≤ c ≤ ∞) stands for limt→c f(t)/g(t) = 1.
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Stochastic modeling of long-range dependence

We now discuss two ways to model long-range dependence in an input process.
One possibility to introduce long-range dependence in an input process is

to take fractional Brownian motion. This model was originally proposed by
Norros [83], see also [84]. In [83], Norros studies a fluid queue fed by an input
process A(t) = mt +

√
amUt where Ut is a normalized fractional Brownian

motion with Hurst parameter H (1/2 ≤ H < 1). One of his main contributions
is to derive a lower bound for the complementary distribution function of the
workload. Letting V denote the steady-state workload, Norros’ result is as
follows:

P(V > x) ≥ 1− Φ

(
1√
am

(
1−m

H

)H ( x

1−H

)1−H
)
,

where Φ(·) is the distribution function of the standard normal distribution.
For the case H = 1

2 , Φ(·) reduces to the exponential distribution and the lower
bound coincides with the exact asymptotics; see Takács [105]. For the same
model of [83], Massoulié and Simonian [80] prove an upper bound for the tail of
the workload distribution by using extremal properties of Gaussian processes.
Under a few assumptions, Narayan [82] proves that Norros’ lower bound is an
asymptotic expression for the workload distribution.

Another possibility to introduce long-range dependence is to take a single
on/off source with on- and/or off-period distributions which do not have fi-
nite variance (see Roberts, Mocci and Virtamo [93]). They assume that the
distribution of the on-period A has the following tail:

P(A > t) ∼ hat
−a, as t→∞,

and/or the distribution of the off-period S has the following tail:

P(S > t) ∼ hst
−s, as t→∞,

with 1 < a, s < 2 and ha, hs positive constants. As pointed out in [93], the
input process is indeed long-range dependent. Boxma and Dumas [28] establish
a relation between the integrated covariance and the distribution functions of
the on- and off-periods without any assumptions on the tails of the on- and off-
period distributions, thus clarifying how long-range dependence occurs in the
on/off source. The fluid queue with a single on/off source can be generalized
to a system with N identical independent on/off sources, cf. Willinger et al.
[114]. When taking N → ∞, it is shown in [114] that the aggregate traffic,
suitably normalized, is fractional Brownian motion.
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1.4 Heavy tails and queues

The importance of queueing models with heavy-tailed distributions has trig-
gered a large body of literature on this subject in recent years. This thesis
focuses on the tail behavior of the waiting time or workload distributions. It
should be pointed out that another asymptotic regime is to let the number of
sources tend to infinity, see e.g. [46, 79]. In the remainder of this section, we
review some results which are relevant to this thesis. We refer to Chapter 2
for the concepts of subexponential and regularly varying distributions.

In the following, we describe some results for the G/G/1 queue. We intro-
duce some notation first. Denote by λ the arrival rate, by β and β2 the first
and second moment of the service time, and by ρ := λβ the traffic load. Let B
be the service time and Bres the residual service time which has density func-
tion P(B > t)/β. Pakes [85] has proven that, in the G/G/1 queue with FCFS
discipline, if the residual service time Bres has a subexponential distribution,
then the tail of the steady-state waiting time W is related to the tail of the
residual service time in the following way:

P(W > t) ∼ ρ

1− ρ
P(Bres > t), t→∞. (1.4.1)

Cohen [34] proves that the waiting time distribution has a regularly varying
tail of index 1 − ν if and only if the service time distribution has a regularly
varying tail of index −ν (ν > 1). When the service time has a regularly varying
tail, asymptotic results for the waiting time distribution in the GI/GI/1 queue
with other service disciplines are available as well.

As mentioned earlier, different service disciplines result in different queue-
ing performance. In the processor sharing M/G/1 queue, Zwart and Boxma
[116] show that the sojourn time distribution has a regularly varying tail with
the same index as the service time distribution tail. Zwart [115] general-
izes the above result to the processor sharing queue with multiple customer
classes. Boxma and Cohen [23] study the M/G/1 queue with the Last-Come-
First-Served (LCFS) preemptive resume discipline as well as the LCFS nonpre-
emptive discipline. They obtain a similar result, i.e., the sojourn time tail in
the LCFS nonpreemptive queue is regularly varying of index one higher than
the service time (like FCFS) and the sojourn time tail in the LCFS preemp-
tive resume queue is regularly varying of the same index as the service time.
An M/G/1 queue with two priority classes and either the nonpreemptive or
the preemptive resume discipline is considered by Abate and Whitt [3]. They
study the effect of the service time distribution tail (which is light or heavy)
on the tails of the waiting time distributions.
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When both service time and interarrival time distributions have a finite sec-
ond moment, a standard heavy-traffic limit theorem for the stationary waiting
time W in the G/G/1 queue holds (cf. [68]):

lim
ρ↑1

P(∆(ρ)W ≤ t) = 1− e−t,

where ∆(ρ) := 2λ(1− ρ)/[1 + λ2(β2 − β2)]. Boxma and Cohen [22] generalize
the above results to the G/G/1 queue for which the interarrival and service
times may have infinite second moments. One of their results is as follows:
Assume that the tail of the service time distribution is regularly varying of
index −ν (1 < ν < 2) and the tail of the interarrival time distribution is
less heavy than that of the service time distribution. Then the distribution of
the contracted waiting time ∆(ρ)W converges for ρ ↑ 1 to the Mittag-Leffler
distribution Rν−1(t), which is specified by:∫ ∞

0
e−stdRν−1(t) =

1
1 + sν−1

.

The coefficient of contraction ∆(ρ) is the unique solution to a contraction
equation with the property that ∆(ρ) ↓ 0 for ρ ↑ 1. In the case that the
service time distribution is Pareto, the coefficient of contraction is given by
∆(ρ) = C(1 − ρ)

1
ν−1 where C is a constant. Here the terms ‘contracted’,

‘coefficient of contraction’ and ‘contraction equation’ were pioneered by Boxma
and Cohen [22]. The waiting time W tends to infinity as ρ ↑ 1, while the
product of W and ∆(ρ) tends to a finite random variable as ρ ↑ 1. Therefore,
∆(ρ)W is called the ‘contracted’ waiting time. Boxma, Cohen and Deng [24]
prove a similar result as in [22] for the low-priority waiting time distribution
in the M/G/1 queue with priority classes.

A cyclic polling model with gated or exhaustive service is studied by
Boxma, Deng and Resing [26]. They assume that at least one of the service
time distributions is regularly varying of index −ν (ν > 1) and other service
time distributions have a less heavy or similar tail behavior. It is shown that
the waiting time distribution is regularly varying of index 1− ν.

Determining the tail behavior of the waiting time distribution in multi-
server queues with heavy-tailed service time turns out to be a hard problem.
Scheller-Wolf and Sigman [95, 96] attack this problem by studying the effect of
the service time moments on the waiting time moments. For the stable FCFS
G/G/k (k ≥ 2) queue, they show that in order to have a finite kth moment of
the waiting time, it is in general not necessary that the (k+1)th moment of the
service time is finite. Their results weaken some classical conditions of Kiefer
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and Wolfowitz [67] (which stated that a finite (k+ 1)th moment of the service
time is sufficient for a finite kth moment of the waiting time). This suggests
that the tail behavior of the waiting time may be less heavy than that of the
residual service time. Based on previous work, Whitt [112] partly proves and
partly conjectures bounds for the waiting time tail, which vary for different
regimes of the traffic load. Since it is difficult to obtain exact asymptotics of
the waiting time tail for the G/G/k (k ≥ 2) queue, Boxma, Deng and Zwart
[27] consider the M/G/2 queue with one exponential server and one general
server. When the service time distribution at the general server has a regularly
varying tail, they derive exact asymptotics of the waiting time, which indeed
shows different behavior for different regimes of the traffic load. The G/G/2
queue with subexponential service time distributions at both queues is studied
by Foss and Korshunov [53]. They present asymptotics for the waiting time tail
in terms of a complicated expression involving the service time distributions.
In the case of regularly varying service times, the expression can be simplified
and thus exact asymptotics are obtained.

Queueing networks with heavy-tailed service time distributions have re-
cently been studied in several papers. Anantharam [6] and Boxma and Dumas
[29] obtain results regarding the propagation of long-range dependence in net-
works of (fluid) queues. Baccelli, Schlegel and Schmidt [9] consider tandem
queues with a (Palm) stationary arrival process at the first node and indepen-
dent service times at the various nodes, that have a subexponential distribution
in at least one node. They derive lower and upper bounds for the tails of the
sojourn time distributions; in some cases, these bounds coincide and hence
the precise tail behavior is established. Partly building upon [9], Huang and
Sigman [63] show that, in the two-node case, if the service time distribution at
the second node is subexponential and the service time distribution at the first
node has a lighter tail, then the tail behavior of the waiting time at the second
node has the same asymptotics as if it were an ordinary G/G/1 queue in iso-
lation. The same results can be extended to tandem queues with more nodes.
Boxma and Deng [25] is also devoted to a tandem queue with heavy-tailed
service time distributions.

1.5 Overview of the thesis

In the present chapter we have already described the motivation for studying
queueing models with heavy-tailed service time distributions, and we have dis-
cussed some of the main developments in this area. In the remainder of this
thesis, we analyze the following models with regularly varying (or heavy-tailed)
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service times: the M/G/1 priority queue with nonpreemptive or preemptive
resume discipline, the cyclic polling system with Poisson input, the M/G/2
queue with heterogeneous servers and the tandem queueing system with iden-
tical service times at both queues.

In Chapter 2 the basic properties of heavy-tailed distributions are dis-
cussed. We focus on two important subclasses: the class of subexponential
distributions and the class of regularly varying distributions.

We study the M/G/1 queue with two priority classes in Chapter 3. The
service times of the high- and/or low-priority customers are assumed to be
regularly varying of index −ν (1 < ν < 2). Based on an expression for the
Laplace-Stieltjes transforms (LST) of the low-priority waiting time distribution
given by Abate and Whitt [3], we establish relations between the tail behavior
of the waiting time distribution of the low-priority customers and that of the
service time distributions. Furthermore, using similar techniques as in [22],
we derive a heavy-traffic limit theorem for the waiting time distribution of the
low-priority customers when the total traffic load ρ ↑ 1. Chapter 3 builds on
the analysis presented in Boxma, Cohen and Deng [24].

Chapters 4 and 5 are devoted to the cyclic polling system with Poisson
arrival processes. In Chapter 4, we study a two-queue model with 1-limited
service at one queue and exhaustive service at the other queue. Note that
this model reduces to the M/G/1 queue with two priority classes of Chapter 3
if there is no switchover time. For the case in which there are switchover
times and at least one of the service times and/or switchover times has an
infinite variance, we derive a heavy-traffic limit theorem for the waiting time
at the 1-limited-service queue. Finally we numerically test the approximation
of the waiting time distribution at the 1-limited-service queue suggested by
the heavy-traffic limit theorem.

In Chapter 5, we study the cyclic polling system with gated or exhaustive
service at each queue. It is assumed that the service time distribution with
the heaviest tail behavior has a regularly varying tail of index −ν (ν > 1).
Based on an explicit expression for the LST of the waiting time distributions
(cf. [13, 14]), we prove that the waiting time distribution at each queue is
regularly varying of index 1 − ν. The analysis is based on Boxma, Deng and
Resing [26].

Chapter 6 is devoted to the M/G/2 queue with one exponential server and
one general server. Using the supplementary variable technique, we establish
a set of differential equations satisfying some boundary condition. In the case
that the LST of the service time distribution at the general server is rational, we
can explicitly solve the differential equations and thus the LST of the steady-
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state waiting time distribution follows. In the case that the service time at
the general server has a regularly varying tail, we derive the tail behavior of
the waiting time by using analytic methods. Furthermore, we provide intuitive
arguments for the waiting time tail behavior. This chapter presents the results
of Boxma, Deng and Zwart [27].

In Chapter 7, we turn to the tandem queueing system with identical service
times at both queues. We focus on the steady-state sojourn time and workload
at the second queue. Starting from explicit expressions for the distributions of
the sojourn time and workload at the second queue (cf. Boxma [18]), we relate
the tail behavior of the sojourn time distribution and the workload distribu-
tion at the second queue to that of the (residual) service time distribution.
As a by-product, we prove that both the sojourn time distribution and the
workload distribution at the second queue are regularly varying of index 1−ν,
if the service time distribution is regularly varying of index −ν (ν > 1), which
coincides with the results we obtain by using intuitive arguments. Further-
more, in the latter case, we derive a heavy-traffic limit theorem for the sojourn
time at the second queue when the traffic load ρ ↑ 1. Chapter 7 presents the
analysis in Boxma and Deng [25].





Chapter 2

Heavy-tailed distributions

2.1 Introduction

In this chapter we introduce some concepts and notation which we use through-
out this thesis. In particular, we focus on some basic properties of heavy-tailed
distributions.

Heavy-tailed distributions are widely used in the literature at present. We
refer to [99] for a nice and brief introduction to heavy-tailed distributions. In
this chapter we give the definition and discuss an important subclass: subex-
ponential distributions. Furthermore, we shall focus on a subclass of subexpo-
nential distributions - the class of regularly varying distributions, and describe
the main properties of this class which we shall use throughout this thesis. We
assume all random variables in this thesis are nonnegative, unless indicated
otherwise.

Definition 2.1.1 A random variable X, with distribution function F (·), is
called heavy-tailed, if for all real u:

lim
t→∞

1− F (t+ u)
1− F (t)

= 1.

We denote the class of heavy-tailed distributions by L (and use the notation
F ∈ L or X ∈ L). In stark contrast to exponential distributions, heavy-tailed
distributions satisfy the following property which was proved by Chistyakov
[32] and Embrechts et al. [51].

Lemma 2.1.1 If X ∈ L, then for all ε > 0, eεtP(X > t) →∞ as t→∞. In
other words, for any ε > 0, E[eεX ] = ∞.

15
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Because of the above property of heavy-tailed distributions, we refer to any
distribution function F (·) (or random variable X) as light-tailed if E[eεX ] <∞
for some ε > 0. This includes the classical example, exponentially distributed
random variables, as well as all bounded random variables.

2.2 Subexponential distributions

A very important subclass of L is the class of subexponential distributions,
denoted by S. We briefly discuss some properties of S next. For a detailed
discussion and further references, we refer to Embrechts et al. [50] and Goldie
and Klüppelberg [57].

Definition 2.2.1 A random variable X, with distribution function F (·), is
called subexponential, to be denoted by X ∈ S or F ∈ S, if

lim
t→∞

P(X +X ′ > t)
P(X > t)

= 2,

where X and X ′ are i.i.d.

In the following examples, F (·) denotes the distribution function of random
variable X.

Example

1. (Pareto): F (t) = 1− t−α, t ≥ 1, with α > 0. (There are many variations
on this, such as F (t) = 1− ( c

c+t)
α, t ≥ 0, with c > 0 and α > 0).

2. (Lognormal): Density

f(t) =
1

tσ
√

2π
exp

(
−(ln(t)− µ)2

2σ2

)
, t > 0,

with σ > 0 and µ ∈ (−∞,∞). This is the distribution of the random
variable X = eY where Y has a normal distribution with mean µ and
variance σ2.

3. (Heavy-tailed Weibull): F (t) = 1 − exp(−λtα), t ≥ 0, with λ > 0 and
0 < α < 1. Such a random variableX can be derived from an exponential
random variable Y with P (Y > t) = exp(−λt) via the transformation
X = Y 1/α, which immediately yields the interesting fact that the Weibull
distribution possesses finite moments of all orders (i.e., it has infinite
moment generating function).
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4. (Regularly varying tail): With α > 0, the tail of X is said to be regularly
varying with index −α if 1 − F (t) is a regularly varying function, that
is, if

lim
t→∞

1− F (tx)
1− F (t)

= x−α, x > 0.

An alternative definition will be given in Section 2.3. Note that the
Pareto distribution is a special case of the class of regularly varying
distributions.

The class of subexponential distributions has the following nice properties.
For a proof of Lemma 2.2.1, see e.g., Athreya and Ney [8]. For a proof of
Lemma 2.2.2, see Pakes [85].

Lemma 2.2.1 Let {Xn : n ≥ 1} be an i.i.d. sequence. If X1 ∈ S, then
(i) for n ≥ 1: P(X1 + ...+Xn > t)/P(X1 > t) → n as t→∞;
(ii) for any ε > 0, there exists a constant K > 0, such that for any t ≥ 0, n ≥ 1,
we have

P(X1 + ...+Xn > t)
P(X1 > t)

≤ K(1 + ε)n.

Lemma 2.2.2 If X ∈ S and P(Y > t) ∼ KP(X > t) (where K is a positive
constant), then Y ∈ S.

Recall that f(t) ∼ g(t) means limt→∞ f(t)/g(t) = 1.

2.3 Regularly varying distributions

Unfortunately it is in general unknown how to conclude that a distribution is
subexponential from its LST. In the following we discuss a subclass of subex-
ponential distributions, called regularly varying distributions, for which there
does exist a useful relation between the asymptotic behavior of its tail prob-
abilities and the asymptotic behavior of its LST in the neighborhood of the
origin.

Regular variation is an important concept in probability theory and various
other fields. The main reference text is the book [12]. The definition of regular
variation involves the notion of a slowly varying function. So we give the
definition of a slowly varying function first. A measurable positive function
L(t) defined on some interval [a,∞) is called slowly varying if for all x > 0,
limt→∞ L(xt)/L(t) = 1. For example, a constant and a logarithmic function
are both slowly varying functions. In the remainder of this thesis, L(·) denotes
a slowly varying function.
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We explain some notation first. As usual,

f(s) = h(s) + o(g(s)) as s ↓ 0

means that

lim
s↓0

f(s)− h(s)
g(s)

= 0,

and
f(s) = h(s) + O(g(s)) as s ↓ 0

means that

lim sups↓0
f(s)− h(s)

g(s)
<∞.

Definition 2.3.1 A random variable X, with distribution function F (·), is
called regularly varying of index −ν (ν > 0), to be denoted by X ∈ R−ν or
F ∈ R−ν , if

1− F (t) ∼ t−νL(t), t→∞, (2.3.1)

where L(·) is a slowly varying function.

The Pareto distribution is a special case of a regularly varying distribution.
For X ∈ R−ν where m < ν < m + 1 (m ∈ N), the mth moment of X exists
while the (m+ 1)th moment does not exist. Of particular interest to us is the
case that 1 < ν < 2, i.e., X has a finite mean and infinite variance. Recall that
the fluid queue with an activity period that is regularly varying of index in the
interval (−2,−1) exhibits long-range dependence, as mentioned in Section 1.3.

The following lemma (cf. Lemma 7.7 in [28]), which can be derived easily
from Karamata’s Theorem and the Monotone Density Theorem (cf. [12] Sec-
tions 1.5.6 and 1.7.3), shows the equivalence between the tail behavior of X
and the tail behavior of Xres. In this thesis we follow the convention that Xres

stands for the residual lifetime of X which has density function (1−X(t))/EX.

Lemma 2.3.1 For all ν > 0, Xres ∈ R1−ν if and only if X ∈ R−ν , and if
either is the case then:

P(Xres > t) ∼ t

(ν − 1)EX
P(X > t), as t→∞.

The next lemma (see e.g. Kingman and Taylor [69], Theorem 12.6) es-
tablishes a relation between the finite moments of a random variable and the
Taylor expansion of the corresponding LST near the origin.
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Lemma 2.3.2 Let X be a random variable with LST f(s).
(i) If X has finite moments φk := E[Xk] of order k, k = 0, 1, ..., n, then

fn(s) := (−1)n+1

f(s)−
n∑

j=0

φj
(−s)j

j!

 = o(sn), s ↓ 0. (2.3.2)

(ii) If there exist finite constants aj, j = 0, ..., n, such that

f(s)−
n∑

j=0

ajs
j = o(sn), s ↓ 0,

then φj = (−1)jj!aj <∞ for j = 0, 1, ..., n.

To simplify the notation, we introduce f̂n(s) = s−(n+1)fn(s), which we will
use in Chapter 3. Moreover, we have the following lemma, cf. Lemma 2 in [81].

Lemma 2.3.3 If φn <∞ (n ∈ N), then the following two statements hold:
(i) f̂n(s) is decreasing in s;
(ii) sf̂n(s) is increasing in s.

The following lemma (cf. Lemma 2.2 in [28]), which is an extension of
Theorem 8.1.6 (it is a special case of Karamata’s Tauberian Theorem) in [12],
links the regularly varying tail behavior of P(X > t) for t→∞ to the behavior
of its LST f(s). It plays a key role in the proof of our main results.

Lemma 2.3.4 Let X be a random variable with LST f(s), L(·) a slowly vary-
ing function, ν ∈ (n, n + 1) (n ∈ N) and C ≥ 0. Then the following two
statements are equivalent:
(i) P(X > t) = [C + o(1)]L(t)/tν , t→∞.
(ii) E[Xn] <∞ and fn(s) = (−1)nΓ(1− ν)[C + o(1)]L(1/s)sν , s ↓ 0.

Here Γ(·) denotes the Gamma function. The next lemma characterizes a
property of slowly varying functions.

Lemma 2.3.5 Let L(x) be a slowly varying function, and t(x) a positive func-
tion such that limx→∞ t(x)/x = a where 0 < a <∞. Then for any constant ν
(ν ∈ R), we have

lim
x→∞

(t(x))νL(t(x))
xνL(x)

= aν .
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Proof. We only need to prove

lim
x→∞

L(t(x))
L(x)

= 1.

Define λ(x) := t(x)
x , so that λ(x) ∈ [a/2, 2a] for sufficiently large x. Applying

the Uniform Convergence Theorem, cf. Theorem 1.2.1 in [12], we obtain

lim
x→∞

L(λ(x)x)
L(x)

= 1,

and the result follows. 2

Some key formulas of this thesis involve iterated functions. The following
result is useful in this respect; it is a consequence of Lemma 2.3.5.

Lemma 2.3.6 Suppose φ(·), ψ(·) can be written as

φ(x) =
n∑

i=1

φix
i + φνx

νL(1/x) + o(xνL(1/x)), for x ↓ 0, (2.3.3)

ψ(x) =
n∑

i=1

ψix
i + ψνx

νL(1/x) + o(xνL(1/x)), for x ↓ 0, (2.3.4)

where φ1, ψ1 > 0, n < ν < n+ 1 (n ∈ N), φi, ψi <∞ for i = 1, ..., n and L(·)
is a slowly varying function. Then the asymptotic expansion of the function
φ(ψ(x)) at point 0 is given by

φ(ψ((x)) =
n∑

i=1

θix
i + (φ1ψν + φνψ

ν
1 )xνL(1/x) + o(xνL(1/x)), for x ↓ 0,

where θi <∞ for i = 1, ..., n.

Proof. For 1 ≤ i ≤ n, (ψ(x))i can be written as

(ψ(x))i = pi(x) +
i∑

j=1

(xνL(1/x))jqi,j(x) + o(xνL(1/x)),

where

pi(x) =

 n∑
j=1

ψjx
j

i

,
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qi,j(x) =
(
i
j

)
φj

ν(pi(x))i−j , j = 1, ..., i.

Note that qi,1(x) are all equal to 0 if x = 0 for 2 ≤ i ≤ n. Therefore, we have

n∑
i=1

φi(ψ(x))i =
n∑

j=1

ajx
j + φ1ψνx

νL(1/x) + o(xνL(1/x)), (2.3.5)

for some real numbers aj < ∞ (j = 1, ..., n). Since limx↓0 ψ(x)/x = ψ1, it
follows from Lemma 2.3.5 that

lim
x↓0

(ψ(x))νL(1/ψ(x))
xνL(1/x)

= ψν
1 ,

which in combination with (2.3.3) and (2.3.5) leads to the desired statement. 2

Remark 2.3.1 It should be noted that, despite the symmetry in (2.3.3) and
(2.3.4), it is possible that φ(x) refers to a heavier-tailed function than ψ(x) (or
vice versa); for example, ψν might be equal to zero.

Remark 2.3.2 Suppose A1, A1,i (i ≥ 1) are i.i.d. random variables with
distribution function A1(t) and A2, A2,i (i ≥ 1) are i.i.d. random variables
with distribution function A2(t). The tail of A1(t) is regularly varying of
index −ν (ν ≥ 1) and A2(t) has a lighter tail. Denote by αj(s) the LSTs
of Aj(t) for j = 1, 2. Let K(Aj) (j = 1, 2) be the number of arrivals of an
independent Poisson process with parameter λj during a time period of length
Aj . Thus, the generating function of K(Aj) is given by

E[zK(Aj)] =
∫ ∞

0

∞∑
k=0

zk (λjx)k

k!
e−λjxdAj(x)

= αj(λj − λjz), |z| < 1,

for j = 1, 2. Define the following random sums, which naturally arise in several
queueing models (cf. Chapters 3, 4 and 5) ,

A(1) := A1,1 +A1,2 + ...+A1,K(A2),

A(2) := A2,1 +A2,2 + ...+A2,K(A1).

Then we have
E[e−sA(1)

] = α2(λ2 − λ2α1(s)),
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E[e−sA(2)
] = α1(λ1 − λ1α2(s)).

Applying the above lemma and Theorem 8.1.6 of [12] yields that A(1) and A(2)

both have a regularly varying tail at infinity of index −ν. Actually the tail
behavior of K1(A1) is shown to be regularly varying at infinity of index −ν,
cf. Chapter 8 in [58]. More general results on the tail behavior of K1(A1) can
be found in [7] where it is assumed that A1 has a heavy-tailed (subexponen-
tial) distribution. Furthermore, Sigman [99] provides some results on the tail
behavior of a random sum of some random variables with subexponential tail.



Chapter 3

The M/G/1 queue with
priority classes

3.1 Introduction

In communication networks often different traffic types can be distinguished,
with different traffic characteristics and different performance requirements.
One way to implement this is by imposing a priority structure. Abate and
Whitt [3] consider an M/G/1 queue with two priority classes and either the
nonpreemptive or the preemptive resume discipline. They study the effect of
the service time distribution tails on the tails of the waiting time distributions
under the assumption that the service times have finite variance. In this chap-
ter we consider the same model. We are mainly interested in the heavy-tailed
(infinite variance) case, and in particular in the heavy-traffic situation. This
chapter is an extended version of [24].

Let us first describe the model. There is a single server in the system. Two
classes of customers with different priorities arrive according to two indepen-
dent Poisson processes (which may have different rates). Within each class,
customers receive service according to the FCFS discipline. When the server
starts to serve a new customer, it serves the high-priority customers first. For
the preemptive resume discipline, the service of low-priority customers is in-
terrupted by arrivals of high-priority customers. In that case, the low-priority
service is resumed once the server finishes serving the high-priority customers
in the system. For the nonpreemptive discipline, the service of low-priority
customers is not interrupted by arrivals of high-priority customers. For a com-
plete analysis of this model in terms of LSTs, we refer to Cohen [36], Chapter
III.3.

23
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Let us now introduce some notation. The high-priority class is indexed by
1 and the low-priority class by 2. Let Bj(t) denote the service time distribution
function of class-j with mean βj < ∞ and second moment βj2 ≤ ∞, λj the
arrival rate of class-j and ρj := λjβj the traffic load of class-j for j = 1, 2. The
arrival processes of the two classes are independent. We assume the stability
condition holds: ρ := ρ1 + ρ2 < 1.

Let W2 denote the steady-state waiting time of the low-priority customers
until the start of the service (note that it has the same distribution for the
nonpreemptive and the preemptive resume discipline). If βj2 < ∞ for j =
1, 2, i.e., both service times have finite variance, then the distribution of the
contracted low-priority waiting time ζ(ρ2)W2 converges for ρ2 ↑ 1− ρ1 to the
unit exponential distribution where ζ(ρ2) := 2(1−ρ1)(1−ρ)

ρ1β12/β1+ρ2β22/β2
, cf. [3].

Boxma and Cohen [23] deal with the G/G/1 queue where the service time
does not have finite variance. They derive a heavy-traffic limit theorem for the
waiting time distribution (cf. Section 1.4). Their techniques are used in this
chapter.

In the present chapter we consider the above-described M/G/1 queue with
two priority classes, for the case that at least one of the service time distri-
butions is regularly varying of index −ν with 1 < ν < 2, i.e., at least one
of the service times does not have finite variance. It is shown for this heavy-
tailed case that the waiting time distribution of the low-priority customers is
regularly varying of index one degree higher than that of the service time dis-
tribution with the heaviest tail. We also prove a heavy-traffic limit theorem for
the steady-state low-priority waiting time W2. When the low-priority traffic
load ρ2 ↑ 1 − ρ1, the distribution of the contracted low-priority waiting time
∆(ρ2)W2/β1 converges to Rν−1(t) where ∆(ρ2) is a particular function of ρ2

with the property that ∆(ρ2) ↓ 0 for ρ2 ↑ 1 − ρ1. The heavy-traffic limit the-
orem gives rise to an approximation for the steady-state distribution of W2,
which is extensively tested numerically.

This chapter is organized as follows.
In Section 3.2 we characterize the service time distributions Bj(·) for j =

1, 2. We assume that at least one of the service time distributions has a
regularly varying tail of index −ν where 1 < ν < 2. Moreover, we derive the
asymptotic expansions of the LSTs of the service time distributions and the
class-1 busy period distribution.

A representation for ω2(s), the LST of the distribution of the class-2 waiting
time W2, given by Abate and Whitt [3], is used in Section 3.3 to derive the
asymptotic expansion of ω2(s) for s ↓ 0. It is also shown that the class-2
waiting time distribution W2(t) has a regularly varying tail of index 1− ν.
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The aim of Section 3.4 is to show a reverse result; i.e., if W2(t) has a
regularly varying tail with index 1 − ν where ν > 1 and the class-1 service
time distribution B1(t) has a tail which is less heavy than t−ν , then the class-2
service time distribution B2(t) is regularly varying with index −ν.

The asymptotic expansions obtained in Section 3.3 are used in Section 3.5
to derive the main result of this chapter (the heavy-traffic limit theorem) which
is described above.

In Section 3.6 we generalize the heavy-traffic limit theorem for the waiting
time distribution of the lowest priority class to theM/G/1 queue with k (k ≥ 2)
priority classes. We obtain a similar result as the above-mentioned heavy-
traffic limit theorem.

In Section 3.7 we make a comparison with a heavy-traffic limit theorem for
the waiting time distribution in the M/G/1 queue without priority structure.
This suggests approximating P(W2 > t) by P((1− ρ1)W > t), where W is the
steady-state waiting time in the model without priority structure.

In Section 3.8 we propose an approximation for P(W2 > t) based on the
obtained heavy-traffic limit theorem, and we numerically investigate its accu-
racy as well as that of P((1 − ρ1)W > t). Both appear to perform very well
over a wide range of ρ- and t-values.

3.2 On the service time distributions

In this section we describe the classes of distributions B1(·) and B2(·) for
which we analyze the heavy-traffic behavior of the low-priority waiting time
distribution. In this chapter, we assume the variable s is real, unless indi-
cated otherwise. For s ≥ 0 and j = 1, 2, define the LSTs of the service time
distributions and of the residual service time distributions,

βj(s) :=
∫ ∞

0
e−stdBj(t), (3.2.1)

βje(s) :=
∫ ∞

0
e−st 1−Bj(t)

βj
dt =

1− βj(s)
βj

. (3.2.2)

Concerning the service time distributions Bj(·) for j = 1, 2, we only make
assumptions about their tails, i.e. about 1 − Bj(t) for t → ∞. It is assumed
that one of the service time distributions has a regularly varying tail, and the
other one has a less heavy tail, or both of the service time distributions have
a regularly varying tail with the same index.
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Assumption 3.2.1 We assume that one of the following assumptions holds,

(i) 1−B1(t) ∼ − 1
Γ(1− ν)

(t/β1)−νL(t/β1) as t→∞,

M2µ :=
∫ ∞

0
tµdB2(t) <∞ for a µ > ν;

(ii) 1−B2(t) ∼ − 1
Γ(1− ν)

(t/β2)−νL(t/β2) as t→∞,

M1µ :=
∫ ∞

0
tµdB1(t) <∞ for a µ > ν;

(iii) 1−Bj(t) ∼ − 1
Γ(1− ν)

(t/βj)−νLj(t/βj) as t→∞, for j = 1, 2,

L(t) := L1(t) for t ≥ 0,

α := lim
t→∞

L2(t)
L(t)

<∞;

(iv) 1−Bj(t) ∼ − 1
Γ(1− ν)

(t/βj)−νLj(t/βj) as t→∞, for j = 1, 2,

L(t) := L2(t) for t ≥ 0,

lim
t→∞

L(t)
L1(t)

= ∞,

where 1 < ν < 2 and L(·), L1(·) and L2(·) are slowly varying functions.

In order to simplify the notation, we define the function L(·) in (iii) and (iv)
which determines the heaviest service time tail behavior. To obtain our heavy-
traffic limit theorem, we assume that L(t) is continuous for sufficiently large t.
We use the same µ in (i) and (ii), since it does not make any difference if we
use different notation. Without loss of generality, we may assume ν < µ < 2.

The next lemma relates the assumptions on the service time distributions
to the corresponding LSTs.

Lemma 3.2.1 (i) Assumption 3.2.1(i) implies that, as s ↓ 0,

β1(s) = 1− β1s+ (β1s)νL(1/β1s) + o
(
(β1s)νL(1/β1s)

)
, (3.2.3)

β2(s) = 1− β2s+ o
(
(β1s)νL(1/β1s)

)
; (3.2.4)

(ii) Assumption 3.2.1(ii) implies that, as s ↓ 0,

β1(s) = 1− β1s+ o
(
(β1s)µ

)
where ν < µ < 2,
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β2(s) = 1− β2s+ (β2s)νL(1/β2s) + o
(
(β2s)νL(1/β2s)

)
;

(iii) Assumption 3.2.1(iii) implies that, as s ↓ 0,

β1(s) = 1− β1s+ (β1s)νL(1/β1s) + o
(
(β1s)νL(1/β1s)

)
,

β2(s) = 1− β2s+ α(β2s)νL(1/β2s) + o
(
(β2s)νL(1/β2s)

)
;

(iv) Assumption 3.2.1(iv) implies that, as s ↓ 0,

β1(s) = 1− β1s+ (β1s)νL1(1/β1s) + o
(
(β1s)νL1(1/β1s)

)
,

β2(s) = 1− β2s+ (β2s)νL2(1/β2s) + o
(
(β2s)νL2(1/β2s)

)
,

where limt→∞L1(t)/L2(t) = 0.

Proof. We only prove (i), the proof for the rest is similar. Equality (3.2.3)
immediately follows from Assumption 3.2.1(i), by using Lemma 2.3.4. Since∫ ∞

0
tµdB2(t) <∞,

it follows that

1−B2(t) = o

((
t

β2

)−µ
)
.

Applying Lemma 2.3.2 to the above equality, we have for s ↓ 0,

β2(s) = 1− β2s+ o
(
(β2s)µ

)
where µ > ν.

Moreover, it follows from Proposition 1.3.6 (v) in [12] that L(1/s) = o(sν−µ).
Hence, (3.2.4) follows. 2

3.3 The class-2 waiting time distribution

Denote by P1(t) the busy period distribution in an M/G/1 queue with only
class-1 customers and by η1(s) the LST of P1(t). Let W2 be a random variable
with distribution the steady-state waiting time distribution W2(t) of class-2
customers, and ω2(s) the LST of W2(t) where s ≥ 0. In this section we present
the explicit expression for ω2(s) and its asymptotic properties as s ↓ 0, when
one of the assumptions in Section 3.2 is satisfied. From (2.14) in [3] we have

ω2(s) =
1− ρ

1− ρf(s)
, (3.3.1)
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where

f(s) :=
ρ1

ρ1 + ρ2
h

(1)
0 (s) +

ρ2

ρ1 + ρ2
β2e(z(s)), (3.3.2)

h
(1)
0 (s) :=

1− η1(s)
β1s+ ρ1 − ρ1η1(s)

, (3.3.3)

z := z(s) = s+ λ1 − λ1η1(s), (3.3.4)

for β2e(s) in (3.2.2). Note that there are minor differences between the above
formula and the formula which was obtained by Abate and Whitt in [3], caused
by their choice of β1 = 1. Denote by F2(t) the probability distribution function
with LST f2(s) := β2e(z).

As explained in [3], h(1)
0 (s) is the LST of the high-priority server-occupancy

distribution function H(1)
0 (t), which is defined by

H
(1)
0 (t) = (1− P

(1)
00 (t))/ρ,

where P (1)
00 (t) is the high-priority emptiness probability, i.e., the probability

that the system has no class-1 customers at time t given that it had none at
time 0. Actually, an expression for ω2(s) has been known for a long time, cf.
Section III.3.6 of [36], but the representation in (3.3.1) found in [3], which is
similar to the Pollaczek-Khintchine form for the ordinary M/G/1 waiting time
transform, appears to be new and is a suitable starting point for our analysis.

For the sake of simplicity, let us use the convention that βj,n(s), βje,n(s),
ηj,n(s), h(1)

0,n(s) and f2,n(s) stand for the function defined in (2.3.2) with f(s)

replaced by βj(s), βje(s), ηj(s), h
(1)
0 (s) and f2(s) respectively.

The following lemma establishes a relation between β1(s), β1e(s), η1(s) and
h

(1)
0 (s).

Lemma 3.3.1 For n < ν < n + 1 (n ∈ N), C ≥ 0, the following statements
are equivalent,

(i) β1,n(s) = [C + o(1)](−1)nΓ(1− ν)(β1s)νL(1/β1s) for s ↓ 0;

(ii) β1e,n−1(s) = [C + o(1)](−1)n−1Γ(1− ν)(β1s)ν−1L(1/β1s) for s ↓ 0;

(iii) η1,n(s) = [C + o(1)](−1)n Γ(1−ν)
1−ρ1

(
β1s

1−ρ1

)ν
L(1/β1s) for s ↓ 0;

(iv) h
(1)
0,n−1(s) = [C + o(1)](−1)n−1Γ(1− ν)

(
β1s

1−ρ1

)ν−1
L(1/β1s) for s ↓ 0.
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Proof. (i) ⇔ (ii) follows immediately from the fact that β1e(s) = 1−β1(s)
β1s .

(i) ⇔ (iii) follows from the main result of De Meyer and Teugels [81] which
links the busy period distribution tail and the service time distribution tail in
the M/G/1 queue.
(ii) ⇔ (iv). Since η1(s) = β1(z), we have

h
(1)
0 (s) =

1− η1(s)
β1s+ ρ1 − ρ1η1(s)

=
1− β1(z)
β1z

= β1e(z).

Note that s can be represented as s = z − λ1(1 − β1(z)). Applying Lemma
2.3.6 then yields the result. 2

By the above lemma, we may deduce the asymptotic properties of η1(s)
and β2e(s + λ1 − λ1η1(s)) for s ↓ 0, which appear in the expression (3.3.1) of
ω2(s) and completely determine the asymptotic behavior of ω2(s) for s ↓ 0.

Lemma 3.3.2 (i) If Assumption 3.2.1(i) holds, then as s ↓ 0,

η1(s) = 1− β1s

1− ρ1
+

(β1s)νL(1/β1s)
(1− ρ1)ν+1

+ o
(
(β1s)νL(1/β1s)

)
, (3.3.5)

β2e(s+ λ1 − λ1η1(s)) = 1 + o
(
(β1s)ν−1L(1/β1s)

)
; (3.3.6)

(ii) If Assumption 3.2.1(ii) or (iv) holds, then as s ↓ 0,

η1(s) = 1− β1s
1−ρ1

+ o
(
(β1s)νL(1/β1s)

)
, (3.3.7)

β2e(s+ λ1 − λ1η1(s)) = 1−
(

β2s
1−ρ1

)ν−1
L(1/β1s)

+o
(
(β2s)v−1L(1/β1s)

)
; (3.3.8)

(iii) If Assumption 3.2.1(iii) holds, then as s ↓ 0,

η1(s) = 1− β1s

1− ρ1
+ (β1s)νL(1/β1s) + o

(
(β1s)νL(1/β1s)

)
, (3.3.9)

β2e(s+ λ1 − λ1η1(s)) = 1− α

(
β2s

1− ρ1

)ν−1

L(1/β1s)

+o
(
(β2s)ν−1L(1/β1s)

)
. (3.3.10)

Proof. We only prove (i). Statements (ii) and (iii) follow by similar reasoning.
Since (i) in (3.2.1) holds, it follows from the main theorem in [81] that

1− P1(t) ∼ − 1
Γ(1− ν)(1− ρ1)1+ν

(t/β1)−νL(t/β1), t→∞, (3.3.11)
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where P1(t) is the class-1 busy-period distribution function. Using Lemma
2.3.4, (3.3.11) leads to (3.3.5) immediately. From (3.3.4) and (3.3.5), we have
for s ↓ 0,

z(s)
s

=
1

1− ρ1
+ o
(
(β1s)ν−1L(1/β1s)

)
.

By Lemma 3.2.1(i) and Lemma 3.3.1, we have

β2e(s) = 1− o
(
(β2s)ν−1L(1/β2s)

)
, s ↓ 0. (3.3.12)

We write

1− β2e(z(s))
(β2s)ν−1L(1/β2s)

=
1− β2e(z(s))

(z(s))ν−1L(1/z(s))
(z(s))ν−1L(1/z(s))
(β2s)ν−1L(1/β2s)

. (3.3.13)

Taking the limit of the above equality for s ↓ 0, and applying Lemma 2.3.5
and (3.3.12), we get

lim
s↓0

1− β2e(z(s))
(β2s)ν−1L(1/β2s)

= 0.

2

To obtain our heavy-traffic limit theorem, we rewrite ω2(s) into the follow-
ing form.

Lemma 3.3.3 Let β2e(s), h
(1)
0 (s) and z(s) be given by (3.2.2), (3.3.3) and

(3.3.4) respectively.
(i) Assumption 3.2.1(i) implies that ω2(s) can be written as

ω2(s) =
(

1 +
ρ1(β1s)ν−1L(1/β1s)
(1− ρ)(1− ρ1)ν−1

+
H1(s)
1− ρ

)−1

, (3.3.14)

with

H1(s) = ρ1[1− h
(1)
0 (s)] + ρ2[1− β2e(z(s))]−

ρ1(β1s)ν−1L(1/β1s)
(1− ρ1)ν−1

, (3.3.15)

where
lim
s↓0

H1(s)
(β1s)ν−1L(1/β1s)

= 0. (3.3.16)

(ii) Assumption 3.2.1(ii) or (iv) implies that ω2(s) can be written as

ω2(s) =
(

1 +
ρ2(β2s)ν−1L(1/β2s)
(1− ρ)(1− ρ1)ν−1

+
H2(s)
1− ρ

)−1

, (3.3.17)
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where

H2(s) = ρ1[1− h
(1)
0 (s)] + ρ2[1− β2e(z(s))]−

ρ2(β2s)ν−1L(1/β2s)
(1− ρ1)ν−1

(3.3.18)

satisfies (3.3.16) and with H1(s) being replaced by H2(s).
(iii) Assumption 3.2.1(iii) implies that ω2(s) can be written as

ω2(s) =
(

1 +
ρ1(β1s)ν−1L(1/β1s)
(1− ρ)(1− ρ1)ν−1

+
αρ2(β2s)ν−1L(1/β1s)
(1− ρ)(1− ρ1)ν−1

+
H3(s)
1− ρ

)−1

,

(3.3.19)
where

H3(s) = ρ1[1− h
(1)
0 (s)] + ρ2[1− β2e(z(s))]

−ρ1(β1s)ν−1L(1/β1s)
(1− ρ1)ν−1

− αρ2(β2s)ν−1L(1/β1s)
(1− ρ1)ν−1

(3.3.20)

satisfies (3.3.16) and with H1(s) being replaced by H3(s).

Proof. We only prove (i). In a similar way, by using Lemma 3.3.2, we can
show (ii) and (iii). By Lemma 3.3.2(i), Equalities (3.3.5) and (3.3.6) follow.
Substituting (3.3.5) into (3.3.3), we get, as s ↓ 0,

1− h
(1)
0 (s) =

(β1s)ν−1L(1/β1s)
(1− ρ1)ν−1

+ o
(
(β1s)ν−1L(1/β1s)

)
. (3.3.21)

Rewrite (3.3.1) as

ω2(s) =
(

1 +
ρ1

1− ρ
[1− h

(1)
0 (s)] +

ρ2

1− ρ
[1− β2e(z(s))]

)−1

. (3.3.22)

Replacing H1(s) in (3.3.14) with the right-hand side of (3.3.15) gives (3.3.22).
Dividing H1(s) by sν−1L(1/s), substituting (3.3.21) and (3.3.6) into (3.3.15),
and taking the limit for s ↓ 0, we obtain (3.3.16). 2

Note that in Equalities (3.3.14), (3.3.17) and (3.3.19), the factor 1/(1−ρ1)
does not occur in the function Hj(s) for j = 1, 2, 3; this plays a key role in
proving our heavy-traffic limit theorem. Actually, applying Lemmas 2.3.4, it
is easy to derive the tail behavior of class-2 waiting time distribution from
Lemma 3.3.3.
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Theorem 3.3.1 If Assumption 3.2.1 holds, then the stationary class-2 waiting
time distribution W2(t) is regularly varying of index 1− ν, 1 < ν < 2, i.e.,

1−W2(t) ∼Mt1−νL(t), t→∞,

where M can be determined by (3.3.14), (3.3.17) or (3.3.22). E.g., if Assump-
tion 3.2.1(i) holds, then

1−W2(t) ∼ − ρ1(t/β1)1−νL(t/β1)
Γ(1− ν)(1− ρ1)ν−1(1− ρ)

, t→∞.

The above theorem coincides with Corollary 4.3.1 in the next chapter. The
intuitive arguments provided in Section 4.3 are also applicable to the priority
queue, since the priority queue is a special case of the two-queue E/1−L model
which we consider in Chapter 4.

Remark 3.3.1 One can prove similar statements as in Theorem 3.3.1 for the
case ν ≥ 2. In fact, Theorem 9.3 in [3] provides similar results for the case of
a regularly varying service time distribution of the class-2 customers. But the
condition we require in our theorem is weaker than that in Theorem 9.3. There
it is assumed that B2(·) is regularly varying with index ν ≥ 2, and for the LST
of B1(t), there exists an s∗ > 0 such that β1(−s∗) = ∞, and β1(s) < ∞ for
s > −s∗, i.e., the tail behavior of the high-priority class is less heavy than that
of some negative exponential distribution.

3.4 Links between the service time and the waiting
time

As we have proved, if one of the service time distributions has a regularly
varying tail with index −ν, ν > 1, and the other one has a less heavy tail, then
the stationary class-2 waiting time distribution W2(t) has a regularly varying
tail with index 1 − ν. Conversely, if W2(t) has a regularly varying tail with
index 1− ν where ν > 1, and the class-1 service time distribution B1(t) has a
“less heavy tail than t−ν”, then the class-2 service time has a regularly varying
tail with index −ν. We shall prove this in Theorem 3.4.1. If the tail of the
class-1 service time distribution is heavier, then the problem becomes harder.
We will not deal with this problem in this thesis.

We introduce the inverse function of z(s) defined by (3.3.4):

s(z) := z − λ1 + λ1β1(z). (3.4.1)
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This inverse function is unique for s ∈ R since s + λ1 − λ1η1(s) is increasing
for s ≥ 0.

In the following lemma, g1(·) and g2(·) are some arbitrary functions which
later will be given a specific meaning.

Lemma 3.4.1 Assume the nth moment of B1 exists and g1(s) ≡ g2(z) where
z is defined by (3.3.4). Then

(i) for k = 1, · · · , n − 1, the kth derivative of g1(·) at point 0 exists if and
only if the kth derivative of g2(·) at point 0 exists.

(ii) if the kth derivative of g1(·) at point 0 exists or the kth derivative of g2(·)
at point 0 exists, then there exist polynomials Uk and Pk,m (m = 1, · · · , k)
in s such that

s−(k+1)(g1,k(s)− g2,k(z)) = Uk(s) + s−(k+1)
k∑

m=1

(η1,k+1(s))mPk,m(s).

(3.4.2)
Moreover, if η1,k+1(s) = o(sµ) where k + 1 < µ < k + 2, then

s−(k+1)(g1,k(s)− g2,k(z)) = Uk(0) + o(sµ−k−1) for s ↓ 0. (3.4.3)

Proof. First we prove (i). Assume that g1(·) has a kth derivative at point 0.
Hence, there exists a polynomial

∑k
j=0 g1js

j such that

g1(s) =
k∑

j=0

g1js
j + o(sk) for s ↓ 0. (3.4.4)

We may write

s(z) =
k+1∑
j=1

αjz
j + (−1)(k+1)ρ1β1,k+1(z),

which follows from (3.4.1) and the fact that B1 has finite (k + 1)th moment.
In (3.4.4) replace g1(s) by g2(z) and s on the right-hand side by the right-hand
side of the above equation, and rearrange it to obtain

g2(z) =
k∑

j=0

g2jz
j + o(zk),
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which implies the result by using Lemma 2.3.2. The proof for the reverse
direction is similar, by writing

z(s) =
k+1∑
j=0

cjs
j + (−1)k+1ρ1η1,k+1(s), (3.4.5)

where η1,k+1(s) is such that

lim
s↓0

s−(k+2)((1− ρ1)η1,k+1(s)− β1,k+1(z)) = 0,

which follows from Corollary 1 in [81]. We omit the proof.
Next we prove (ii). Since both g1(·) and g2(·) have a kth derivative at 0, we
may write

g1,k(s)− g2,k(z) = (−1)k

 k∑
j=0

g1js
j −

k∑
j=0

g2jz
j

 .

Replace z in the above equation by (3.4.5) and rearrange slightly to obtain

g1,k(s)− g2,k(z) = Qk(s) +
k∑

i=1

(η1,k+1(s))iPi,m(s). (3.4.6)

It follows from (2.3.2) that

lim
s↓0

s−k(g1,k(s)− g2,k(z)) = 0. (3.4.7)

Since lims↓0 s
−kη1,k(s) = 0, it follows from (3.4.6) and (3.4.7) that

lims↓0 s
−kQk(s) = 0, which implies that Uk(s) = s−(k+1)Qk(s) is a polyno-

mial. Multiplying (3.4.6) by s−(k+1) gives the result. From (3.4.2) we can
derive (3.4.3) directly. 2

The next theorem establishes a relation between the asymptotic behavior
of the service time distributions and the class-2 waiting time distribution.

Theorem 3.4.1 If W2(t) has a regularly varying tail with index 1− ν, specif-
ically,

1−W2(t) ∼
ρ2(t/β2)1−νL(t/β2)

(ν − 1)(1− ρ1)ν−1(1− ρ)
for t→∞, (3.4.8)

where ν > 1 and L(t) is a slowly varying function, and B1(t) has a less heavy
tail than t−ν , then

1−B2(t) ∼ (t/β2)−νL(t/β2) for t→∞. (3.4.9)
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Proof. Let F (t) be the distribution function with LST f(s) which is defined
in (3.3.2). Obviously, (3.3.2) implies that

F (t) =
ρ1

ρ1 + ρ2
H

(1)
0 (t) +

ρ2

ρ1 + ρ2
F2(t), (3.4.10)

where F2(t) is the distribution function with LST f2(s) = β2e(z), as introduced
in the first paragraph of Section 3.3. Applying Theorem 1 in [34], we obtain
that (3.4.8) implies that

1− F (t) ∼ (ν − 1)ρ2(t/β2)1−νL(t/β2)
(ρ1 + ρ2)(1− ρ1)ν−1

for t→∞. (3.4.11)

Since B1(t) has a less heavy tail than t−ν , it follows that there exists a µ > ν
such that ∫ ∞

0
tµdB1(t) <∞.

The above relation implies that

1−B1(t) = o
(
(t/β1)−µ

)
for t→∞. (3.4.12)

Applying Lemmas 2.3.4 and 3.3.1 it follows from (3.4.12) that

1−H
(1)
0 (t) = o

(
(t/β1)−µ

)
,

which in combination with (3.4.10) and (3.4.11) yields that

1− F2(t) ∼
(ν − 1)(t/β2)1−νL(t/β2)

(1− ρ1)ν−1
for t→∞. (3.4.13)

We shall show that (3.4.9) holds, first for noninteger ν and subsequently for
integer ν.

(i) ν is not an integer.
Hence, there exists an integer n such that n < ν < n+1 where n ≥ 1. Without
loss of generality, we may assume that ν < µ < n + 1. By Lemma 2.3.4 it
follows from (3.4.12) that for s ↓ 0,

η1,n(s) = o
(
(β1s)µ

)
. (3.4.14)

We shall show that

β2e,n−1(s) = (−1)n−1Γ(1− ν)
(β2s)ν−1L(1/β2s)

(1− ρ1)ν−1
+ o

(
(β2s)ν−1L(1/β2s)

)
.

(3.4.15)
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Since f2(s) is the LST of F2(t), by (3.4.13) and applying Lemma 2.3.4, we
obtain

f2,n−1(s) ∼ (−1)n−1Γ(1− ν)
(β2s)ν−1L(1/β2s)

(1− ρ1)ν−1
. (3.4.16)

Because f2(s) = β2e(z), applying Lemma 3.4.1 leads to (3.4.3) with g1,n−1(s)
and g2,n−1(z) replaced by f2,n−1(s) and β2e,n−1(z), i.e.,

f2,n−1(s) = β2e,n−1(z) + O
(
(β2s)n

)
.

Dividing by (β2z)ν−1L(1/β2z) on both sides of the above equation and noting
that

lim
z↓0

sν−1L(1/s)
zν−1L(1/z)

= (1− ρ1)ν−1,

it follows from (3.4.16) that for z ↓ 0,

β2e,n−1(z) ∼ (−1)n−1Γ(1− ν)(β2z)ν−1L(1/β2z),

which implies that (3.4.9) holds, by the equivalence of (i) and (ii) in Lemma
3.3.1.

(ii) ν is an integer, ν = 2, 3, · · · .
First, we consider the case that ν ≥ 3. Recall that ĝn(s) denotes s−(n+1)gn(s).
As proved, 1−F2(t) ∼ (ν−1)(t/β2)1−νL(t/β2)/(1−ρ1)ν−1 where ν ∈ {3, 4, · · · },
or equivalently, by De Haan’s Theorem (cf. Theorem 3.7.3 in [12]) for x > 1,

lim
s↓0

[a(s)]−1(f̂2,ν−2(s)− f̂2,ν−2(xs)) = log x, (3.4.17)

where we can take a(s) = L(1/β2s)/((1−ρ1)ν−2(ν−2)!). To prove that (3.4.9)
holds, it is sufficient to show that

lim
s↓0

[a(s)]−1[f̂2,ν−2(s)− (1− ρ1)1−ν β̂2e,ν−2(
s

1− ρ1
)− θν−2] = 0, (3.4.18)

for some constant θν−2. If (3.4.18) holds, then we may write for x > 1,

lim
s↓0

[a(s)]−1[f̂2,ν−2(xs)− (1− ρ1)1−ν β̂2e,ν−2(
xs

1− ρ1
)− θν−2] = 0. (3.4.19)

Subtracting (3.4.18) by (3.4.19) and using (3.4.17) yields

lim
s↓0

[a(s)(1− ρ1)ν−1]−1[β2e,ν−2(s)− β2e,ν−2(xs)] = log x.
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Applying the reverse statement of De Haan’s Theorem (cf. Theorem 3.7.3 in
[12]) to the above relation leads to (3.4.9).

To prove (3.4.18) we use the expression (3.4.2) for k = ν−2; the right-hand
side of (3.4.2) will be abbreviated by Aν−2(s) with g1(s) replaced by f2(s) and
g2(z) replaced by β2e(z). Hence,

f̂2,ν−2(s) = β̂2e,ν−2(z)(z/s)ν−1 +Aν−2(s). (3.4.20)

This suggests that we might take θν−2 = Aν−2(0). So define

Jν−2(s) = [a(s)]−1[f̂2,ν−2(s)− (1− ρ1)1−ν β̂2e,ν−2(s/(1− ρ1))−Aν−2(0)].
(3.4.21)

We shall show that lims↓0 Jν−2(s) = 0 in the same way as De Meyer and
Teugels [81], p. 810-811. Since η1,0(s) is decreasing by Lemma 2.3.3(i), we
have

µ̂1,0(s) ≤ lim
s↓0

1− η1(s)
s

=
β1

1− ρ1
,

so that
z = s[1 + λµ̂1,0(s)] ≤

s

1− ρ1
.

Again, by Lemma 2.3.3, it follows that β̂2e,ν−2(s) is decreasing and sβ̂2e,ν−2(s)
is increasing, therefore

β̂2e,ν−2(
s

1− ρ1
) ≤ β̂2e,ν−2(z) ≤

s

(1− ρ1)z
β̂2e,ν−2(

s

1− ρ1
). (3.4.22)

By using (3.4.20) in (3.4.21) and subsequently applying the above relation, we
have

Jν−2(s) = [a(s)]−1(β̂2e,ν−2(z)(z/s)1−ν − (1− ρ1)1−ν β̂2e,ν−2(
s

1− ρ1
)

+[Aν−2(s)−Aν−2(0)])

≥ [a(s)]−1(β̂2e,ν−2(
s

1− ρ1
)[(z/s)ν−1 − (1− ρ1)1−ν ]

+[Aν−2(s)−Aν−2(0)]), (3.4.23)

and

Jν−2(s) ≤ [a(s)]−1((1− ρ1)−1β̂2e,ν−2(
s

1− ρ1
)[(z/s)ν−2 − (1− ρ1)2−ν ]

+[Aν−2(s)−Aν−2(0)]). (3.4.24)
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By (3.3.4) it follows that

z(s)
s

=
1

1− ρ1
+ (β1s)O(1),

thus
(z/s)ν−1 − (1− ρ1)1−ν = (ν − 1)(β1s)O(1). (3.4.25)

Moreover, it follows from the definition of Aν−2(s) and (3.4.3) that

lim
s↓0

[a(s)]−1[Aν−2(s)−Aν−2(0)] = 0. (3.4.26)

Multiplying (3.4.17) by s, it follows that

lim
s↓0

[a(s)]−1[sf̂2,ν−2(s)− sf̂2,ν−2(xs)] = 0,

while on the other hand,

lim
s↓0

[a(s)]−1[sf̂2,ν−2(s)− sf̂2,ν−2(xs)] = (1− 1/x) lim
s↓0

[a(s)]−1sf̂2,ν−2(s).

The above two relations imply that lims↓0[a(s)]−1sf̂2,ν−2(s) = 0. Conse-
quently, it follows from (3.4.20) that lims↓0[a(s)]−1sβ2e,ν−2(z) = 0, or equiva-
lently,

lim
z↓0

[a(z)]−1zβ2e,ν−2(z) = 0. (3.4.27)

Combining (3.4.25), (3.4.26) and (3.4.27), we have

lim
s↓0

[a(s)]−1(β̂2e,ν−2(
s

1− ρ1
)[(z/s)ν−1 − (1− ρ1)1−ν ]

+[Aν−2(s)−Aν−2(0)]) = 0, (3.4.28)

lim
s↓0

[a(s)]−1((1− ρ1)−1β̂2e,ν−2(
s

1− ρ1
)[(z/s)ν−2 − (1− ρ1)2−ν ]

+[Aν−2(s)−Aν−2(0)]) = 0. (3.4.29)

Therefore, combining (3.4.23), (3.4.24), (3.4.28) and (3.4.29) yields that

lim
s↓0

Jν−2(s) = 0.

Secondly, we consider the case that ν = 2. Again we intend to show that
(3.4.18) holds by taking θν−2 = 0. We define

J0(s) := [a(s)]−1[f̂2,0(s)−
1

1− ρ1
β̂2e,0(

s

1− ρ1
)].
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By the fact that f̂2,0(s) = β̂2e,0(z)(z/s) and (3.4.22), it follows that

[a(s)]−1(β̂2e,0(
s

1− ρ1
)(
z

s
− 1

1− ρ1
)) ≤ J0(s) ≤ 0.

It follows from (3.4.25) and (3.4.27) that

lim
s↓0

[a(s)]−1(β̂2e,0(
s

1− ρ1
)(
z

s
− 1

1− ρ1
)) = 0.

The above two relations lead to lims↓0 J0(s) = 0, which implies that (3.4.18)
is satisfied for ν = 2 and thus (3.4.9) follows. 2

3.5 The M/G/1 queue with two priority classes

In [22] Boxma and Cohen obtained heavy-traffic limit theorems for the G/G/1
queue (cf. Section 1.4). In this section we apply a similar method as in [22]
to derive a heavy-traffic limit theorem for the low-priority waiting time in the
queueing model with two types of customers. We assume that ρ2 ↑ 1−ρ1, 0 <
ρ1 < 1 and that Assumption 3.2.1 is satisfied.

Consider the contraction equation

Kxν−1L(1/x)
1− ρ

= 1, x > 0, (3.5.1)

where K is a function of both ρ1 and ρ2 such that K > c for some positive
constant c, L(x) is a slowly varying function, and denote by ∆(ρ2) the unique
root of (3.5.1) such that

∆(ρ2) ↓ 0 for ρ2 ↑ 1− ρ1, (3.5.2)

cf. [22].
We say that the solution ∆(ρ) to the contraction equation is the unique

solution with the property that ∆(ρ) ↓ 0 for ρ ↑ 1, if for two solutions to the
contraction equation ∆j(ρ) (j = 1, 2) such that ∆j(ρ) ↓ 0 for ρ ↑ 1, the limit
of the ratio of the two solutions for ρ ↑ 1 is equal to 1, i.e.,

lim
ρ↑1

∆1(ρ)
∆2(ρ)

= 1.

In the following we provide a lemma which characterizes a property of the
solution to the contraction equation (3.5.1).
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Lemma 3.5.1 If L(t) is continuous, then there exists a unique solution ∆(ρ2)
to the contraction equation (3.5.1) with the property that ∆(ρ2) ↓ 0 for ρ2 ↑
1− ρ1.

Proof. Since
lim
s↓0

sν−1L(1/s) = 0,

by the continuity of L(1/s), it follows that, for ρ2 < 1 − ρ1, there exists at
least one solution ξ(ρ2) to the equation

Kxν−1L(1/x) = 1− ρ. (3.5.3)

Put
∆(ρ2) = inf{ξ(ρ2) : Kξ(ρ2)ν−1L(1/ξ(ρ2)) = 1− ρ}.

By continuity of L(1/x), ∆(ρ2) is also a solution to Equation (3.5.3). Next
we show that ∆(ρ2) ↓ 0 for ρ2 ↑ 1 − ρ1. Assume, to the contrary, that there
exists a sequence (ρ2n) (n = 1, 2, ...) which tends to 1− ρ1 such that, for all n,
∆(ρ2n) > ε for some positive constant ε. If n is large enough, then 1−ρ1−ρ2n

is arbitrarily small. Thus for sufficiently large n, there exists at least one
solution ξ(ρ2n) to Equation (3.5.3) such that ξ(ρ2n) < ε. On the other hand,
by the definition of ∆(ρ2),

ξ(ρ2n) ≥ ∆(ρ2n) > ε,

which contradicts the fact that ξ(ρ2n) < ε. Hence,

lim
ρ2↑1−ρ1

∆(ρ2) = 0.

Now we shall prove the uniqueness of the solution ∆(ρ2) to Equation (3.5.3)
with the property that ∆(ρ2) ↓ 0 for ρ2 ↑ 1−ρ1. Let ∆j(ρ2) be two solutions to
Equation (3.5.3) with the property that ∆j(ρ2) → 0 for ρ2 → 1− ρ1, j = 1, 2.
It is sufficient to show that if

lim
n→∞

ρ2n = 1− ρ1,

lim
n→∞

∆j(ρ2n) = 0, for j = 1, 2,

a = lim
n→∞

∆1(ρ2n)
∆2(ρ2n)

where 0 ≤ a ≤ ∞,

then a = 1. Since ∆j(ρ2) (j = 1, 2) are solutions to Equation (3.5.3), we can
write

K∆j(ρ2)ν−1L(1/∆j(ρ2)) = 1− ρ.
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It follows that
∆1(ρ2)ν−1L(1/∆1(ρ2))
∆2(ρ2)ν−1L(1/∆2(ρ2))

= 1. (3.5.4)

If 0 < a <∞, then it follows from Lemma 2.3.5 that

lim
ρ2→1−ρ1

∆1(ρ2)ν−1L(1/∆1(ρ2))
∆2(ρ2)ν−1L(1/∆2(ρ2))

= aν−1.

Combining the above equality and (3.5.4) gives a = 1. Next we prove that
a 6= 0. Set

bn :=
∆1(ρ2n)
∆2(ρ2n)

.

Assume limn→∞ bn = 0. Choose ε positive and small enough. Applying Theo-
rem 1.5.2 in [12], we have

∆1(ρ2n)ν−1L(1/bn∆2(ρ2n))
∆2(ρ2n)ν−1L(1/∆2(ρ2n))

< bν−1
n + ε

for sufficiently large n, which contradicts (3.5.4). Hence, a 6= 0. Similarly,

lim
n→∞

∆2(ρ2n)
∆1(ρ2n)

6= 0.

Consequently, a 6= ∞. 2

If explicit representations (as in [22], cf. Remark 3.5.2 below) for the service
time distributions are given, i.e., the LSTs βj(s) (j = 1, 2) can be represented
by (3.5.15), then one can prove that there is a unique root with the property
that ∆(ρ2) ↓ 0 for ρ2 ↑ 1− ρ1.

Lemma 3.5.2 If Assumption 3.2.1 is satisfied, then there exists a contraction
coefficient ∆(ρ2) satisfying (3.5.1) such that ∆(ρ2) ↓ 0 for ρ2 ↑ 1− ρ1, and

lim
ρ2↑1−ρ1

ω2(∆(ρ2)s/β1) =
1

1 + sν−1
. (3.5.5)

Proof. We prove the case in which Assumption 3.2.1(i) holds. Let ∆(ρ2) be
the root of the contraction equation

ρ1x
ν−1L(1/x)

(1− ρ)(1− ρ1)ν−1
= 1 (3.5.6)
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for which (3.5.2) holds. It follows from (3.5.2) and (3.5.6) that, for s ≥ 0,

lim
ρ2↑1−ρ1

ρ1(s∆(ρ2))ν−1L(1/∆(ρ2)s
(1− ρ)(1− ρ1)ν−1

= sν−1. (3.5.7)

By Lemma 3.3.2(i) we have

ω2(s) =
(

1 +
ρ1(β1s)ν−1L(1/β1s)
(1− ρ)(1− ρ1)ν−1

+
H1(s)
1− ρ

)−1

, (3.5.8)

where H1(s) is such that

lim
s↓0

H1(s)
(β1s)ν−1L(1/β1s)

= 0.

By (3.5.7) and the above relation,

lim
ρ2↑1−ρ1

H1(∆(ρ2)s/β1)
1− ρ

= 0, (3.5.9)

where H1(s) is given by (3.3.15). Substituting ∆(ρ2)s/β1 in ω2(s) and taking
the limit for ρ2 ↑ 1− ρ1 yields (3.5.5). 2

The analysis given above leads to the following theorem.

Theorem 3.5.1 For the stable M/G/1 queue with two priority classes, the
service time distributions B1(t) and B2(t) satisfying Assumption 3.2.1, the
contracted waiting time ∆(ρ2)W2/β1 converges in distribution for ρ2 ↑ 1− ρ1,
and the limit distribution is given by: for t ≥ 0,

Rν−1(t) = 1−
∞∑

n=0

(−1)n tn(ν−1)

Γ(n(ν − 1) + 1)
. (3.5.10)

The coefficient of contraction ∆(ρ2) is that root of Equation (3.5.1) with the
property that ∆(ρ2) ↓ 0 for ρ2 ↑ 1 − ρ1, and with K = K1, ...,K4 correspond-
ing to Assumption 3.2.1(i),...,(iv) respectively, where K1 = ρ1

(1−ρ1)ν−1 , K2 =
ρ2(β2/β1)ν−1

(1−ρ1)ν−1 , K3 = ρ1+ρ2α(β2/β1)ν−1

(1−ρ1)ν−1 and K4 = K2. Moreover, the LST of
Rν−1(t) is ∫ ∞

0−
e−stdRν−1(t) =

1
1 + sν−1

, s ≥ 0. (3.5.11)
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Proof. By Lemma 3.5.2, the LST of the distribution of the contracted waiting
time ∆(ρ2)W2/β1 converges, for ρ2 ↑ 1− ρ1, and the limit function is given by

lim
ρ2↑1−ρ1

E[e−∆(ρ2)W2s/β1 ] = lim
ρ2↑1−ρ1

ω2(∆(ρ2)s/β1) =
1

1 + sν−1
. (3.5.12)

Since 1/(1 + sν−1) ↑ 1 for s ↓ 0, using the convergence theorem of Feller for
LSTs, cf. [52], it follows that there exists a proper distribution function Rν−1(t)
which has LST 1/(1 + sν−1). Relation (3.5.12) implies that the distribution of
the contracted waiting time of ∆(ρ2)W2/β1 converges to Rν−1(t) for ρ2 ↑ 1−ρ1.
For this distribution Rν−1(t) we have∫ ∞

0
e−st(1−Rν−1(t))dt =

sν−2

1 + sν−1
, s ≥ 0. (3.5.13)

By applying Theorem 2 of [43] , Vol. II, p. 175, it is readily seen that: for
t ≥ 0,

1−Rν−1(t) =
∞∑

n=0

(−1)n tn(ν−1)

Γ(n(ν − 1) + 1)
, (3.5.14)

from which we know that Rν−1(t) is continuous on [0,∞). 2

Remark 3.5.1 Applying Lemma 2.3.4, we obtain the tail behavior of the
distribution Rν−1(t):

1−Rν−1(t) ∼
t1−ν

Γ(2− ν)
for t→∞.

It can also be derived from the asymptotic expansion of ω2(∆(ρ2)s/β1) for
s ↓ 0, and Lemma 2.3.4, that

P(∆(ρ2)W2/β1 ≥ t) ∼ t1−ν

Γ(2− ν)
for t→∞.

Remark 3.5.2 The heavy-traffic limit theorem for the steady-state waiting
time in the G/G/1 queue with heavy-tailed service and/or interarrival time
distribution was obtained by Boxma and Cohen; see [22]. In [22] it is assumed
that the LST of the service time distribution β(s) can be represented as: for
Re s ≥ 0,

1− 1− β(s)
βs

= g(βs) + c0(βs)ν−1L(1/βs), (3.5.15)

where
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(i) c0 > 0 is a constant;

(ii) 1 < ν ≤ 2;

(iii) g(βs) is a regular function of s for Re s > −ε (ε > 0), g(0) = 0;

(iv) L(1/βs) is regular for Re s > 0, and continuous for Re s ≥ 0, except
possibly at s = 0;
L(1/βs) → b > 0 for |s| → 0, Re s ≥ 0, with b = ∞ if ν = 2,

lim
x↓0

L(1/βsx)
L(1/βx)

= 1 for Re s ≥ 0, s 6= 0;

(v) For a µ ∈ (1, ν): ∫ ∞

0
tµdB(t) <∞.

More generally, the LST of the service time distribution can be represented as

1− 1− β(s)
βs

=
∞∑
i=1

ci(βs)νi−1Li(1/βs) + g(βs),

where 1 < ν1 < · · · < νn < · · · , Li(1/s) satisfies (iv) in (3.5.15), ci is a constant
and g(s) satisfies (iii) in (3.5.15).

Remark 3.5.3 For the M/G/1 queue, which is a special case of the G/G/1
queue, the heavy-traffic limit theorem in [22] can simply be obtained from a
theorem formulated in [56], p. 38, concerning geometric sums of i.i.d. random
variables. Using the notation in Remark 3.5.2 and letting ρ denote the traffic
load, notice that the waiting timeW has the same distribution as the geometric
sum

(1− ρ)
∞∑

n=0

ρn(Bres
1 + ...+Bres

n )

withBres
1 , Bres

2 , ... i.i.d. residual service times (hence with LST (1−β(s))/(βs)).

Remark 3.5.4 Resnick and Samorodnitsky [92] prove the same result as in
[22] by directly analyzing the weak convergence of a sequence of negative drift
random walks with heavy right tail and the associated all time maxima of
these random walks. Their result implies Theorem 3.5.1 because it follows
from (3.3.1) that W2 can be viewed as the waiting time in an M/G/1 queue.
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3.6 The M/G/1 queue with k priority classes

In this section we consider the M/G/1 queue with k priority classes where
k ≥ 2. Let the jth priority class be indexed by j for 1 ≤ j ≤ k. Denote by
ρj the traffic load generated by class-j, λj the arrival rate of class-j, Bj(t) the
service time distribution of class-j, Wj the steady-state class-j waiting time
for 1 ≤ j ≤ k. We assume

∑k
j=1 ρj < 1 to ensure that the steady-state class-k

waiting time distribution exists.
Suppose one of the service time distributions has the following heavy tail

behavior:
1−Bi(t) ∼ L(t)t−ν , as t→∞, (3.6.1)

with L(t) a slowly varying function and 1 < ν < 2, the other service time
distributions being such that, for j 6= i, 1 ≤ j ≤ k,∫ ∞

0
tµjdBj(t) <∞ where µj > ν,

or
1−Bj(t) ∼ Lj(t)t−ν

with limt→∞ Lj(t)/L(t) < ∞. Obviously, only class-k customers experience
heavy traffic for ρk ↑ 1−

∑k−1
j=1 ρj . We can solve this problem by viewing this

queueing model with k priority classes as a queueing model with two priority
classes. Subsequently, we use the result in Section 3.5 to get the heavy-traffic
limit theorem for the generalized model. Let the first k − 1 classes be the
high-priority class, class-k the low-priority class in a queueing model with two
priority classes. The service time distributions of the two classes in the new
model are given by

B̃1(t) =

∑k−1
j=1 λjBj(t)∑k−1

j=1 λj

,

B̃2(t) = Bk(t).

The above assumptions imply that Assumption 3.2.1 holds for B̃1(t), B̃2(t).
Hence, the following heavy-traffic limit theorem holds.

Theorem 3.6.1 For the stable M/G/1 queue with k (k ≥ 2) priority classes,
the above assumptions for the service time distributions Bj(t), 1 ≤ j ≤ k,
holding, the contracted waiting time ∆(ρk)Wk/β1 converges in distribution for
ρk ↑ 1 −

∑k−1
j=1 ρj; the limit distribution Rν−1(t) is given by (3.5.10), and

the coefficient of contraction ∆(ρk) is that root of Equation (3.5.1) with the
property that ∆(ρk) ↓ 0 for ρk ↑ 1−

∑k−1
j=1 ρj.
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3.7 The M/G/1 queue without priorities

The heavy-traffic theorem for the waiting time in the ordinary M/G/1 queue
is well-known, cf. [22]. In this section we use Theorem 3.5.1 to derive a heavy-
traffic theorem for the M/G/1 queue without priorities. We compare the
low-priority waiting time W2 in the M/G/1 queueing model with two priority
classes and the waiting time W in the same model without priorities.

For the M/G/1 queueing model without priorities, the traffic load ρ, the
service time distribution B(t), the LST β(s) of B(t) and the mean β of the
service time are given by

ρ = ρ1 + ρ2, (3.7.1)

B(t) =
λ1

λ1 + λ2
B1(t) +

λ2

λ1 + λ2
B2(t), (3.7.2)

β(s) =
λ1

λ1 + λ2
β1(s) +

λ2

λ1 + λ2
β2(s), (3.7.3)

β =
ρ1 + ρ2

λ1 + λ2
, (3.7.4)

from which it follows that

βe(s) =
ρ1β1e(s)
ρ1 + ρ2

+
ρ2β2e(s)
ρ1 + ρ2

. (3.7.5)

To get a heavy-traffic limit theorem for this model, we take ρ̃1 = 0, ρ̃2 = ρ, and
assume that B̃1(t) is exponentially distributed and B̃2(t) = B(t). Applying
Theorem 3.5.1 then yields the following heavy-traffic limit theorem for the
classical M/G/1 queue without priority discipline.

Theorem 3.7.1 For the stable M/G/1 queue with FCFS discipline, the ser-
vice time distribution B(t) being given by (3.7.2) where B1(t) and B2(t) satisfy
Assumption 3.2.1, the contracted waiting time δ(ρ2)W/β1 converges in distri-
bution for ρ2 ↑ 1 − ρ1; the limit distribution Rν−1(t) is given by (3.5.10),
and the coefficient of contraction δ(ρ2) is that root of Equation (3.5.1) with
the property that δ(ρ2) ↓ 0 for ρ2 ↑ 1 − ρ1, and with K = K1, ...,K4 corre-
sponding to Assumption 3.5.1(i),...,(iv) respectively, where K1 = ρ1

ρ1+ρ2
, K2 =

ρ2(β2/β1)ν−1

ρ1+ρ2
, K3 = ρ1+ρ2a(β2/β1)ν−1

ρ1+ρ2
and K4 = K2.

The above result has been proven in [22].
Theorems 3.5.1 and 3.7.1 show that the distributions of both ∆(ρ2)W2/β1

and δ(ρ2)W/β1 converge to Rν−1(t) for ρ2 ↑ 1−ρ1. The following lemma shows
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the relation between ∆(ρ2) and δ(ρ2). One can prove the lemma by applying
a similar method as in the proof of Lemma 3.5.1. We omit the details.

Lemma 3.7.1 If Assumption 3.2.1 is satisfied, then

lim
ρ2↑1−ρ1

∆(ρ2)
δ(ρ2)

= 1− ρ1.

Apparently, the effect of introducing priorities is (cf. the difference in the
constants Ki in Theorems 3.5.1 and 3.7.1): class-1 customers do not experience
heavy traffic and class-2 customers have a similar heavy-traffic waiting time
tail behavior as in the case without priorities, apart from a scaling factor 1−ρ1.
ρ1 is the fraction of time that the server is occupied by class-1 customers and
1− ρ1 is the fraction of time that the server is available for class-2 customers.
Actually, the following approximation seems useful:

1−W2(t) ≈ 1−W ((1− ρ1)t), t ≥ 0.

First of all, this approximation satisfies the heavy-traffic behavior indicated
above. Secondly, it yields the correct mean waiting time E[W2] = E[W ]/(1 −
ρ1); cf. Cohen [36], Formula (II.3.64). Thirdly, it gives the correct behavior
at t = 0 (unlike the heavy-traffic approximation). And finally, it follows from
Theorem 3.3.1 (see also Remark 3.3.1) that, if Assumption 3.2.1 holds, then

1−W2(t) ∼Mt1−νL(t), t→∞, (3.7.6)

where M is a constant. It is well-known (cf. Cohen [34] and Pakes [85]) that,
in the M/G/1 queue with regularly varying (even subexponential) service time
distribution B(·),

1−W (t) ∼ ρ

1− ρ

∫ ∞

t

1−B(x)
β

dx, t→∞.

One can easily verify that this yields exactly the same tail behavior for 1 −
W ((1− ρ1)t) as in (3.7.6).

In fact, even in the M/G/1 queueing model with two priority classes and
the nonpreemptive discipline, only class-2 customers experience heavy traffic.
This is easily seen from the following expression for ω1(s), for ρ1 + ρ2 < 1,

ω1(s) =
1− ρ1 − ρ2 + ρ2β2e(s)

1− ρ1β1e(s)
,
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and for ρ1 + ρ2 ≥ 1 but ρ1 < 1,

ω1(s) =
(1− ρ1)β2e(s)
1− ρ1β1e(s)

,

cf. Section III.3.8 in Cohen [36]. Generally, in the M/G/1 queueing model with
k (k ≥ 2) priority classes, nonpreemptive or preemptive resume discipline, only
the lowest priority class suffers from heavy traffic unless ρk ↓ 0.

3.8 Applications of the heavy-traffic limit theorem

Theorem 3.5.1, the heavy-traffic limit theorem, suggests the following heavy-
traffic approximation for the stationary class-2 waiting time distribution: for
0 < 1−ρ1−ρ2 << 1−ρ1, and with ∆(ρ2) specified by the contraction equation
(3.5.1),

P(
∆(ρ2)W2

β1
> t) ≈ 1−Rν−1(t), t > 0, (3.8.1)

or equivalently,

1−W2(t) = P(W2 > t) ≈ 1−Rν−1(∆(ρ2)t/β1), t > 0. (3.8.2)

According to the heavy-traffic theorem, this approximation should perform
very well when ρ is sufficiently close to 1. In this section we investigate whether
this approximation is still useful when ρ is not very close to 1. We follow a
similar procedure as [21], where such a heavy-traffic approximation is numeri-
cally investigated for the waiting time distribution of the M/G/1 case without
priorities. We suppose that the service time distributions are of the following
form,

Bj(t) = 1− 1
Γ(2− νj)

∫ ∞

0
e−θ θ

(θ + t)νj
dθ, j = 1, 2, (3.8.3)

with 1 < νj < 2. Note that

Bj(0+) = 0,

βj =
∫ ∞

0
tdBj(t) =

2− νj

νj − 1
;

the second moment of Bj is infinite. As shown in [21], the explicit expression
and the LST of Bj(t) as given in (3.8.3) are characterized by: for Re s ≥ 0,

1−Bj(t) =
aj

1− aj

(
1
aj

(1− aj + t)et − taj

Γ(1 + aj)
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−1− aj + t

Γ(1 + aj)
et

∞∑
n=0

(−1)ntaj+n

n!(aj + n)

)
, with aj := 2− νj ,

1− βj(s)
βjs

=
ω

ω − 1

[
1− 1

2− νj

ω2−νj − 1
ω − 1

]
, with ω :=

1
s
,

for j = 1, 2. Thus we have

1− 1− βj(s)
βjs

∼ (βjs)ν−1L(1/βjs).

In determining ∆(·), we have taken L(·) ≡ 1. Put, cf. (3.8.2), for ρ2 ∈ (0, 1−ρ1)
(with HT denoting Heavy Traffic),

1−WHT (t) := 1−Rν−1(∆(ρ2)t/β1).

As proved in Theorem 3.3.1, we have

1−W2(t) ∼
(ν − 1)K

Γ(1− ν)(1− ρ)
(t/β1)1−ν , t→∞,

where K is given in Theorem 3.5.1. Define

1−WRV (t) :=
(ν − 1)K

Γ(1− ν)(1− ρ)
(t/β1)1−νL(t/β1).

From (3.5.1) we obtain that 1−WHT (t) exhibits the same asymptotic behavior:

1−WHT (t) ∼ (ν − 1)K
Γ(1− ν)(1− ρ)

(t/β1)1−νL(t/β1).

As observed in the previous section, we can also use 1 − W ((1 − ρ1)t) to
approximate 1−W2(t) where W (t) is the waiting time distribution in the same
M/G/1 model without priority structure, i.e., the M/G/1 queue with FCFS
discipline. As remarked there, 1−W ((1− ρ1)t) has the same tail behavior as
1−W2(t) in the regularly varying case. Therefore, for 0 < ρ < 1:

1−W ((1− ρ1)t) ∼ 1−W2(t) ∼ 1−WHT (t) ∼ 1−WRV (t), t→∞.

We have tested the approximations 1 − WHT (t), 1 − W ((1 − ρ1)t) and
1 −WRV (t) for three cases: (i) the class-1 service time distribution B1(t) is
specified by (3.8.3) and the class-2 service time distribution B2(t) is exponen-
tially distributed with mean 1; (ii) the class-1 service time distribution B1(t) is
exponentially distributed with mean 1 and the class-2 service time distribution
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B2(t) is specified by (3.8.3); (iii) both of the class-1 and class-2 service time
distributions are specified by (3.8.3) with ν1 = ν2. The exact class-2 waiting
time distribution is calculated by inverting the LST (see [2] for a description
of the algorithm used).

In view of the very large number of parameter combinations, we only in-
dicate maximal relative errors over certain t-regions. We distinguish between
three t-regions: “small” t indicates t-values such that 0.1ρ < 1−W2(t) ≤ 0.5ρ;
“medium” t indicates t-values such that 0.01ρ < 1 −W2(t) ≤ 0.1ρ; “large” t
indicates t-values such that 1 −W2(t) ≤ 0.01ρ. Note that WHT (0) = 0 while
W2(0) = 1 − ρ, so that t-values close to zero always yield large errors. We
compare the errors of 1−WHT (t), 1−WRV (t) and 1−W ((1−ρ1)t); the latter
is referred to as the FCFS case. In the error columns, we consider the absolute
value of the largest relative error in a region. Let “− − −” denote that this
largest error exceeds 20%; “−−” that it is between 10% and 20%; “−” that it
is between 5% and 10%; “+” that it is between 1% and 5%; “++” that it is
between 0.1% and 1%; “+ + +” that it is less than 0.1%. Denote Case (i) by
“exp/RV”, Case (ii) by “RV/exp” and Case (iii) by “RV/RV”.

The numerical results are gathered in Tables 3.1-3.6. Table 3.1 displays
cases with ρ = 0.9 and one of the service time distributions being given by
(3.8.3) and another service time being exponentially distributed with mean 1
or both service time distributions being given by (3.8.3) with ν = 1.25. Table
3.2 does the same except that ν = 1.75. Table 3.3 shows cases with ρ = 0.5
and ν = 1.25; Table 3.4 does the same except that ν = 1.75; Table 3.5 presents
cases with ρ = 0.1 and ν = 1.25; Table 3.6 displays cases with ρ = 0.1 and
ν = 1.75.

The main conclusions from the numerical work are as follows.

1. All the approximations 1 −WHT (t), 1 −WRV (t) and 1 −W ((1 − ρ1)t)
provide extremely accurate approximations for t large.

2. 1 −WHT (t) performs much better for ν = 5/4 (the case with a heavier
tail) than for ν = 7/4.

3. 1 −W ((1 − ρ1)t) provides a very good approximation even for small t,
better than 1 −WHT (t) and 1 −WRV (t); when ρ1 is small, it performs
the best.

4. In heavy traffic (ρ is sufficiently large), 1 −WHT (t) yields much better
results than 1 −WRV (t) does; 1 −WRV (t) is almost useless here (it is
not a heavy-traffic approximation).
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5. In light traffic, 1 −WHT (t) still provides surprisingly accurate results,
when t is not too small and ν is small.

6. In the case of light traffic and ν = 1.75, the accuracy of 1 −WHT (t) is
almost the same as that of 1−WRV (t) or even worse.

Remark 3.8.1 If ρ1 in Case (i) equals ρ2 in Case (ii) and ρ in both Cases (i)
and (ii) are the same, i.e., both cases have the same traffic load for the class
with heavy-tailed service time distribution and the same total traffic load,
then they have the same contraction coefficients and thus the approximation
1−WHT (t) is exactly the same.

Remark 3.8.2 1 −W ((1 − ρ1)t) performs particularly well for ρ1 small, be-
cause limρ1→0(1−W2(t))/(1−W ((1− ρ1)t)) = 1. When ρ1 is small, the busy
period of class-1 customers will not have much effect on the class-2 waiting
time distribution.
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Chapter 4

The two-queue E/1-L polling
model

4.1 Introduction

Cyclic polling systems are queueing systems in which a single server visits
several queues in cyclic order. They have a wide range of applications in, e.g.,
computer communications, manufacturing and road traffic. The abundant
literature on polling systems (see [102, 103]) contains the exact analysis of
polling systems for a large number of service disciplines, like the 1-limited,
exhaustive and gated disciplines.

Both this chapter and the next one are devoted to (the asymptotic analysis
of) polling systems. The basic polling system consists of K queues, Q1, ..., QK ,
attended by a single server S. Customers arrive at Qk, k = 1, ...,K, according
to a Poisson process with rate λk and require a generally distributed ser-
vice time Bk having distribution function Bk(·), finite first moment βk and
LST βk(·). In the sequel, customers arriving at Qk are also referred to as
type-k customers. The server visits the queues in a strictly cyclic order, i.e.,
Q1, ..., QK , Q1, ..., QK , Q1, .... The service policy at each queue is either 1-
limited, gated or exhaustive; we do allow mixtures, like gated service at Q1

and Q3 and exhaustive service at the other queues. In 1-limited service, the
server serves at most one customer at a queue before switching to the next
queue. In gated service, the server serves at a queue exactly those customers
that are present at the start of his visit to the queue. In exhaustive service,
the server continues to work at a queue until it becomes empty.

We consider both the model with and without switchover times. In the
model with switchover times, when moving fromQk toQ(k mod K)+1, the server

59
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incurs a generally distributed switchover time Sk, having distribution function
Sk(·) with finite first moment σk and LST σk(·). The server continues switching
even when the whole system is empty. In the model without switchover times,
when the system becomes empty the server makes a full cycle (i.e. passes all
the queues at least once) and subsequently stops right before Q1. When the
first new customer arrives, S cycles along the queues to that new customer.
The various interarrival, service and switchover times are independent.

Let us denote by λ :=
∑K

k=1 λk the total arrival intensity of customers, by
ρk := λkβk the traffic load at Qk, by ρ :=

∑K
k=1 ρk the total traffic load, and

by σ :=
∑K

k=1 σk the mean of the total switchover time in one cycle.
Tail probabilities, which are especially helpful in understanding the perfor-

mance of different polling disciplines, have received some attention in recent
years, and they are also the main topic of this chapter and the next one. We
now describe some works which are relevant to the present and next chap-
ters. For models with Poisson arrivals, general service and switchover time
distributions, and various service disciplines, Choudhury and Whitt [33] have
developed efficient iterative algorithms to compute the exact tail behavior of,
for example, the steady-state waiting time W , of the form,

P(W > t) ∼ atbe−ct, t→∞, (4.1.1)

with c > 0 and a > 0. Such tail behavior occurs when the service and
switchover time distributions have finite moment generating functions, i.e.,
there is some positive real number s∗ such that βk(−s∗) < ∞ and σk(−s∗) <
∞; here βk(·) and σk(·) are the LSTs of the service and switchover time distri-
butions at the kth queue, respectively. Motivated by [33], and using analytic
methods, Duffield [45] explores the relationship between the exponents b and c
in (4.1.1) and their dependence (and sometimes independence) on the service
and switchover time distributions.

In view of the central role of polling in computer-communication net-
works and the often observed occurrence of heavy-tailed traffic in computer-
communications (see Section 1.2), it is of importance to study the effect of
heavy-tailed service and/or switchover time distributions on the waiting time
tail behavior in polling systems. In this chapter and the next one, we study
the waiting time tail behavior in cyclic polling systems with various service
policies.

In this chapter we consider a polling system as described above with K = 2
queues. The service policy is exhaustive atQ1 and 1-limited atQ2. The present
chapter is based on [42]. Note that the model with zero switchover times coin-
cides with the M/G/1 queue with two priority classes and the nonpreemptive
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discipline which we considered in Chapter 3. That provides some of our moti-
vation for the study in the present chapter. In the next chapter, we consider
general polling systems with gated or exhaustive service. In that sense, the
present chapter can be viewed as a bridge which links Chapters 3 and 5.

It is well-known [59] that the stability condition is: ρ+λ2σ < 1. We assume
this condition to hold in the remainder of this chapter.

The model with nonzero switchover times has been studied by Groenendijk
[59] and Ibe [64]. They derived the explicit LSTs of the waiting time distri-
butions. Based on their results, we investigate (i) the tail asymptotics of the
waiting times at both queues when at least one of the service and/or switchover
times has a regularly varying tail and (ii) the waiting time at Q2 in the heavy-
traffic situation when at least one of the service and/or switchover times does
not have a finite second moment. Finally we show some numerical results to
test the accuracy of the approximation for the waiting time distribution at Q2

suggested by the heavy-traffic limit theorem.

4.2 Preliminaries

In this section we first introduce the expressions for the LSTs of the waiting
time distributions, cf. [59]. Next we make some assumptions on the service
and switchover times.

Let us start with some notation. Denote by η1(·) the LST of the length of
the busy period at Q1 starting with one customer. Let Wk be the steady-state
waiting time at Qk with distribution function Wk(·) and LST ωk(·) for k = 1, 2.
From (6.70) in [59], ωk(s) (k = 1, 2) are, for Re s ≥ 0, given by

ω1(s) =
σ1(s)σ2(s)β2(s)− 1
λ1 − s− λ1β1(s)

1− ρ

σ

+
1− ρ− λ2σ

σ

σ1(λ2 + s)σ2(s)
σ1(λ2)

1− β2(s)
λ1 − s− λ1β1(s)

, (4.2.1)

ω2(s) =
1− ρ− λ2σ

σ
σ1(s)

σ1(λ2 + λ1(1− η1(s)))
σ1(λ2)

σ2(f(s))

λ2 − s− λ2β2(f(s))
λ2 − s− λ2σ1(f(s))σ2(f(s))β2(f(s))

1
λ2 − s

− 1
λ2 − s

1− ρ− λ2σ

σ
, (4.2.2)

where
f(s) := s+ λ1(1− η1(s)).
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Concerning the service and switchover times, we are only interested in the
properties of their tail behavior, i.e., the behavior of 1 − Bk(t) and 1 − Sk(t)
for t → ∞. For future reference, we make assumptions on the service and
switchover time distributions for the general cyclic polling systems with K
(K ∈ N) queues. We assume the following holds:

Assumption 4.2.1 For the service and switchover time distributions, we have:

1−Bk(t) = [bk + o(1)]t−νL(t), t→∞, (4.2.3)

1− Sk(t) = [sk + o(1)]t−νL(t), t→∞, (4.2.4)

where bk, sk ≥ 0, L(·) is a slowly varying function and k = 1, ...,K. Here we
assume

∑K
k=1(sk + bk) > 0, i.e., at least one of the service and/or switchover

times has a regularly varying tail of index −ν.

For ease of presentation, we take the same function L(·) for all distributions,
but one can easily change this into different slowly varying functions for differ-
ent distributions. Note that the possibility that bk = 0 or sk = 0 implies that
we do allow the possibility that some of the service and switchover time distri-
butions have an exponential tail, or regularly varying of index strictly smaller
than −ν. According to Lemma 2.3.4, the tail behavior of the service and
switchover time distributions as given in (4.2.3) and (4.2.4) is equivalent with
the following behavior of their LSTs βk(s) (of the service time distributions)
and σk(s) (of the switchover time distributions):

1− βk(s) =
m∑

j=1

(−1)j+1βk,js
j + (−1)mβk,νs

νL(1/s) + o(sνL(1/s)),

(4.2.5)

1− σk(s) =
m∑

j=1

(−1)j+1σk,js
j + (−1)mσk,νs

νL(1/s) + o(sνL(1/s)),

(4.2.6)

where m < ν < m + 1 (m ∈ N), βk,j > 0 and σk,j > 0 for j = 1, ...,m,
k = 1, ...,K. Note that βk,1 = βk, βk,ν = (−1)mΓ(1 − ν)bk, σk,1 = σk, and
σk,ν = (−1)mΓ(1− ν)sk for k = 1, ...,K.

It follows from the main result of [81] that the asymptotic behavior of
the LST ηk(s) of the length of the busy period in the ‘corresponding’ isolated
M/G/1 queue of Qk is given by

1− ηk(s) =
m∑

j=1

(−1)j+1ηk,js
j + (−1)mηk,νs

νL(1/s) + o(sνL(1/s)), (4.2.7)



4.3 The tail behavior of the waiting time distributions 63

where ηk,1 = βk/(1 − ρk) and ηk,ν = βk,ν/(1 − ρk)ν+1 and ηk,j > 0 for j =
1, ...,m, k = 1, ...,K. Here the ‘corresponding’ isolated M/G/1 queue of Qk

stands for the single-server queue with the same arrival rate and service time
distributions as Qk.

4.3 The tail behavior of the waiting time distribu-
tions

In this section we derive the asymptotic behavior of the waiting times when at
least one of the service and/or switchover times has a regularly varying tail.

Let us first consider the asymptotic expansions of the functions σ1(f(s)),
σ2(f(s)) and β2(f(s)) in the neighborhood of the origin, because these func-
tions appear in (4.2.2). By using Lemma 2.3.6, we immediately get, for
k = 1, 2,

σk(f(s)) = 1 +
m∑

j=1

gk,js
j + (−1)m+1

(
λ1β1,νσk

(1− ρ1)ν+1
+

σk,ν

(1− ρ1)ν

)
sνL(1/s)

+o(sνL(1/s)), s ↓ 0, (4.3.1)

β2(f(s)) = 1 +
m∑

j=1

g3,js
j + (−1)m+1

(
λ1β1,νβ2

(1− ρ1)ν+1
+

β2,ν

(1− ρ1)ν

)
sνL(1/s)

+o(sνL(1/s)), s ↓ 0, (4.3.2)

where gk,j (k = 1, 2, 3, j = 1, ...,m) are some constants. Moreover, for k = 1, 2,

gk,1 = − σk

1− ρ1
and g3,1 = − β2

1− ρ1
.

Again, applying Theorem 2.3.6 to (4.2.1) and (4.2.2), straightforward cal-
culations lead to

ω1(s) = 1 +
m−1∑
j=1

(−1)jω1,js
j

+(−1)m

(
λ1β1,ν + λ2β2,ν

1− ρ1
+

(1− ρ)(σ1,ν + σ2,ν)
σ(1− ρ1)

)
sν−1L(1/s)

+o(sν−1L(1/s)), s ↓ 0, (4.3.3)

ω2(s) = 1 +
m−1∑
j=1

(−1)jω2,js
j
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+(−1)m

[
1− ρ

1− ρ− λ2σ

(
λ1β1,ν(ρ2 + λ2σ)

(1− ρ1)ν+1
+
λ2(σ1,ν + σ2,ν + β2,ν)

(1− ρ1)ν

)
+

λ1β1,νρ2

(1− ρ1)ν+1
+

λ2β2,ν

(1− ρ1)ν

]
sν−1L(1/s)

+o(sν−1L(1/s)), s ↓ 0, (4.3.4)

where j!ωk,j (k = 1, 2, j = 1, ...,m − 1) equals the jth moment of the wait-
ing time Wk. Applying Lemma 2.3.4 to (4.3.3) and (4.3.4), we then get the
following theorem.

Theorem 4.3.1 If Assumption 4.2.1 holds, then the waiting times at both
queues have a regularly varying tail of index which is one higher than the
heaviest of the service and switchover times. In particular, we have

1−W1(t) ∼ 1
ν − 1

(
λ1b1 + λ2b2

1− ρ1
+

(1− ρ)(s1 + s2)
(1− ρ1)σ

)
t1−νL(t), t→∞,

1−W2(t) ∼ 1
ν − 1

(
λ1b1 + λ2(s1 + s2 + b2)

(1− ρ1)ν−1(1− ρ− λ2σ)
+

s1 + s2
(1− ρ1)ν−1σ

)
t1−νL(t),

t→∞.

We now relate the waiting time distribution to the residual service and
switchover time distributions. Applying Lemma 2.3.1 to (4.2.3) and (4.2.4),
we obtain the asymptotic behavior of the residual service times Bres

k and the
residual switchover times Sres

k . For k = 1, 2, if bk, sk > 0, then we have

P(Bres
k > t) ∼ bk

(ν − 1)βk
t1−νL(t), t→∞,

P(Sres
k > t) ∼ sk

(ν − 1)σk
t1−νL(t), t→∞,

which in combination with Theorem 4.3.1 implies the following corollary.

Corollary 4.3.1 If Assumption 4.2.1 holds, then for t→∞,

1−W1(t) ∼
ρ1I{b1>0}

1− ρ1
P(Bres

1 > t) +
ρ2I{b2>0}

1− ρ1
P(Bres

2 > t)

+
(1− ρ)σ1I{s1>0}

(1− ρ1)σ
P(Sres

1 > t)

+
(1− ρ)σ2I{s2>0}

(1− ρ1)σ
P(Sres

2 > t),
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1−W2(t) ∼
ρ1I{b1>0}

1− ρ− λ2σ
P(Bres

1 > (1− ρ1)t)

+
ρ2I{b2>0}

1− ρ− λ2σ
P(Bres

2 > (1− ρ1)t)

+
(1− ρ)σ1I{s1>0}

(1− ρ− λ2σ)σ
P(Sres

1 > (1− ρ1)t)

+
(1− ρ)σ2I{s2>0}

(1− ρ− λ2σ)σ
P(Sres

2 > (1− ρ1)t),

where I{A} is the indicator function of event {A}.

In the following we give a heuristic explanation of the above corollary.
These heuristic arguments are similar to those in [91] for a fluid queue with
M/G/∞ input. We should point out that the heuristic arguments below (and
those in Sections 6.5 and 7.6) are not rigorous in a mathematical sense, and
do not really give a strict proof, but only identify a possible way for the
desired event to occur, and thus provide a lower bound for the corresponding
probability. However, the fact that the lower bound coincides with the formula
we found analytically, implies that the probability of any other scenario is
negligible. Hence, the scenario that we identify must actually represent the
only plausible way in which the event occurs. For more complicated models,
like the M/G/k queue, this technique may be a starting point to find the exact
waiting time tail behavior.

The heuristic arguments below (and those in Sections 6.5 and 7.6) are based
on the following two preliminary observations:

1. At the scale of large t, one may think of the evolution of the workload
as approximately linear.

2. Due to the PASTA property, the waiting time has the same distribution
as the virtual waiting time (which is equal to the workload in some cases)
at any time.

We consider a special case, b1 > 0, b2 = s1 = s2 = 0, i.e., the service
time B1 at Q1 has the heaviest tail. The general case allows a similar intuitive
explanation. We use heuristic arguments to verify

P(W1 > t) ∼ ρ1

1− ρ1
P(Bres

1 > t), t→∞, (4.3.5)

P(W2 > t) ∼ ρ1

1− ρ− λ2σ
P(Bres

1 > (1− ρ1)t), t→∞. (4.3.6)
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Figure 4.1: Evolution of the workload at Q1.
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Figure 4.2: Evolution of the workload at Q2.

Suppose a customer with a large service time B1 enters Q1 in steady state
at time 0. Assume that the total workloads at both queues are very small
compared to B1. So at time 0 the workload at Q1 is roughly B1 and the
workload at Q2 is roughly 0. The workload at Q1 decreases at rate 1− ρ1 > 0
until it becomes 0 at time B1

1−ρ1
, see Figure 4.1.

Now we consider the workload at Q2. During the time interval (0, B1
1−ρ1

),
the server stays at Q1. Therefore, the workload at Q2 increases at rate ρ2.
Notice that: When Q2 is not empty, the long term fraction that the server
stays at Q2 is ρ2

ρ2+λ2σ (1− ρ1) because the server incurs a vacation time (which
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is the sum of the switchover time and the period that the server stays at Q1)
for every service provided at Q2. Hence, after time B1

1−ρ1
, the service speed at

Q2 is ρ2

λ2σ+ρ2
(1− ρ1). The workload decreases at rate ρ2

λ2σ+ρ2
(1− ρ− λ2σ) > 0

until time B1
1−ρ−λ2σ . After time B1

1−ρ−λ2σ , the effect of the customer with the
large service time B1 has disappeared, see Figure 4.2.

Suppose we observe the system at time y (y ≥ 0). The virtual waiting
time at Q1 is large, i.e., W1 > t (t large), because at time 0 a customer with
a large service time B1 entered Q1. The arrival rate of customers at Q1 is
λ1. Consider Figure 4.1. In order to make W1 > t, it is necessary to require
0 < (1− ρ1)y < B1 − t. So,

P(W1 > t) ≈
∫ ∞

y=0
P(B1 > (1− ρ1)y + t)λ1dy

=
λ1

1− ρ1

∫ ∞

y=t
P(B1 > y)dy

=
ρ1

1− ρ1
P(Bres

1 > t),

which coincides with (4.3.5).
Now consider Figure 4.2. For the waiting time at Q2 to become large, there

are two possibilities:

1. 0 < y < B1
1−ρ1

. Note that the service speed is ρ2

ρ2+λ2σ (1− ρ1) instead of 1.
In this case, the waiting time can be represented in terms of y as

W2 =
B1

1− ρ1
− y +

(ρ2 + λ2σ)y
1− ρ1

=
B1

1− ρ1
− 1− ρ− λ2σ

1− ρ1
y.

2. B1
1−ρ1

< y < B1
1−ρ−λ2σ . In this case, the waiting time W2 is related to y as

W2 =
B1

1− ρ1
− 1− ρ− λ2σ

1− ρ1
y.

In both scenarios, note that when the customer arrives dy (here dy stands for
a small positive number) time units later, the waiting time is reduced by

dy − ρ2dy
ρ2

ρ2+λ2σ (1− ρ1)
=

1− ρ− λ2σ

1− ρ1
dy,

which explains why the waiting time behaves the same way in both cases. So
in order to get W2 > t, we need B1 > (1 − ρ1)t + (1 − ρ − λ2σ)y. The tail
behavior of the waiting time distribution is given thus by

P(W2 > t)
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≈
∫ ∞

y=0
P(B1 > (1− ρ− λ2σ)y + (1− ρ1)t)λ1dy

=
λ1

1− ρ− λ2σ

∫ ∞

y=(1−ρ1)t
P(B1 > y)dy

=
ρ1

1− ρ− λ2σ
P(Bres

1 > (1− ρ1)t),

which coincides with (4.3.6).

Remark 4.3.1 Ibe [64] studies a more general model, a K-station mixed
polling system in which station 1 is served exhaustively and stations 2, ...,K
are served according to the 1-limited policy. He indicates a way to calculate
the mean waiting times. Suppose at least one of the service and/or switchover
times is regularly varying. By using the above heuristic arguments, it is not dif-
ficult to obtain the waiting time asymptotics for this K-station polling model.

4.4 A heavy-traffic limit theorem

This section is devoted to a heavy-traffic limit theorem for the waiting time
distribution at Q2 when at least one of the service and/or switchover times
does not have a finite second moment.

In the sequel, we assume 1 < ν < 2, i.e., indeed at least one of the service
and/or switchover times does not have a finite second moment. Then (4.3.1)
and (4.3.2) reduce to, for k = 1, 2,

σk(f(s)) = 1− σk

1− ρ1
s+

(
λ1β1,νσk

(1− ρ1)ν+1
+

σk,ν

(1− ρ1)ν

)
sνL(1/s)

+o(sνL(1/s)), (4.4.1)

β2(f(s)) = 1− β2

1− ρ1
s+

(
λ1β1,νβ2

(1− ρ1)ν+1
+

β2,ν

(1− ρ1)ν

)
sνL(1/s)

+o(sνL(1/s)). (4.4.2)

Just like the priority queue which we discussed in Chapter 3, it is easy to see
that the waiting time W1 at Q1 is not subject to heavy traffic when ρ+λ2σ ↑ 1
unless ρ1 ↑ 1. In the following we derive a heavy-traffic limit theorem for the
waiting time W2 at Q2.

Theorem 4.4.1 If Assumption 4.2.1 holds with 1 < ν < 2, then the con-
tracted waiting time ∆(λ1, λ2)W2 at Q2 converges in distribution for ρ+λ2σ ↑
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1. The limit distribution function Rν−1(t) has the following LST:∫ ∞

0
e−stdRν−1(t) =

1
1 + sν−1

, s > 0, (4.4.3)

and the coefficient of contraction ∆(λ1, λ2) is the unique root of the following
equation

xν−1L(1/x) = − (1− ρ1)ν−1

Γ(1− ν)(λ1b1 + λ2s1 + λ2s2 + λ2b2)
(1− ρ− λ2σ), (4.4.4)

with the property that ∆(λ1, λ2) ↓ 0 for ρ+ λ2σ ↑ 1.

Proof. We have

1− ρ− λ2σ

(λ2 − s)σ

(
λ2 − s− λ2β2(f(s))

λ2 − s− λ2σ1(f(s))σ2(f(s))β2(f(s))
− 1
)

=
λ2β2(f(s))
(λ2 − s)σ

1− σ1(f(s))σ2(f(s))
s

1− ρ− λ2σ

1− λ2
1−σ1(f(s))σ2(f(s))β2(f(s))

s

.

(4.4.5)

For ease of notation, we define

H1(s) := σ1(s)
σ1(λ2 + λ1(1− η1(s)))

σ1(λ2)
σ2(s+ λ1(1− η1(s))), (4.4.6)

H2(s) :=
λ2β2(f(s))
(λ2 − s)σ

1− σ1(f(s))σ2(f(s))
s

, (4.4.7)

H3(s) :=
1− ρ− λ2σ

1− λ2
1−σ1(f(s))σ2(f(s))β2(f(s))

s

. (4.4.8)

Inserting (4.4.5), ..., (4.4.8) into (4.2.2), we may rewrite ω2(s) as

ω2(s) = H1(s)H2(s)H3(s) +
1− ρ− λ2σ

(λ2 − s)σ
(H1(s)− 1). (4.4.9)

Let ∆(λ1, λ2) be the solution of Equation (4.4.4) with the property that
∆(λ1, λ2) ↓ 0 for ρ + λ2σ ↑ 1. As has been proved in Lemma 3.5.1, the
solution ∆(λ1, λ2) with that property exists and is unique. To simplify the
notation, we make the convention that ∆ stands for ∆(λ1, λ2). It is observed
that, for a small number δ > 0, there exists a large number N > 0, such that
for any 0 < s < δ,

|H1(s)− 1| < Ns and
∣∣∣∣H2(s)−

1
1− ρ1

∣∣∣∣ < Ns
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hold uniformly for 0 < ρ+ λ2σ < 1. Therefore, we have

lim
ρ+λ2σ↑1

H1(∆s) = 1, (4.4.10)

lim
ρ+λ2σ↑1

H2(∆s) =
1

1− ρ1
. (4.4.11)

By (4.4.9), (4.4.10) and (4.4.11), in order to show that

lim
ρ+λ2σ↑1

ω2(∆s) =
1

1 + sν−1
, (4.4.12)

it remains to prove that lim
ρ+λ2σ↑1

H3(∆s) =
1− ρ1

1 + sν−1
. From (4.4.1) and (4.4.2),

we may write

1− σ1(f(s))σ2(f(s))β2(f(s))
s

=
σ + β2

1− ρ1

−
(
λ1β1,ν(σ + β2)

(1− ρ1)ν+1
+
σ1,ν + σ2,ν + β2,ν

(1− ρ1)ν

)
sν−1L(1/s) +G(s)s,

(4.4.13)

where G(s) is a function of s. For simplicity, we omit the expression for G(s)
here. One can easily prove that there exist a large number N > 0 and a small
number ε > 0 such that for any 0 < s < ε,

|G(s)| < N.

Note that N is independent of ρ + λ2σ. Thus, inserting (4.4.13) into (4.4.8)
gives

H3(s) = (1− ρ1)
[
1 +

1− ρ1

1− ρ− λ2σ

(
λ1β1,ν(λ2σ + ρ2)

(1− ρ1)ν+1

+
λ2σ1,ν + λ2σ2,ν + λ2β2,ν

(1− ρ1)ν

)
sν−1L(1/s) +

λ2(1− ρ1)
1− ρ− λ2σ

G(s)s
]−1

.

(4.4.14)

Since in the neighborhood of the origin G(s) is uniformly bounded for 0 <
ρ+ λ2σ < 1, it is easy to see that

lim
ρ+λ2σ↑1

1− ρ1

1− ρ− λ2σ
G(∆s)∆s = 0.



4.5 Application of the heavy-traffic limit theorem 71

Therefore, replacing s in (4.4.14) by ∆s, we get

lim
ρ+λ2σ↑1

H3(∆s) =
1− ρ1

1 + sν−1
. (4.4.15)

Let Rν−1(t) denote the distribution which has LST
1

1 + sν−1
. Using the con-

vergence theorem of Feller for Laplace-Stieltjes transforms, cf. [52], it follows
from (4.4.12) that ∆W2 converges in distribution and the limit distribution
Rν−1(t) satisfies (4.4.3). 2

4.5 Application of the heavy-traffic limit theorem

In this section, we numerically test the accuracy of the approximation sug-
gested by the heavy-traffic limit theorem. We conclude that this approxima-
tion is useful in some cases.

Theorem 4.4.1 suggests the following heavy-traffic approximation for the
waiting time distribution W2(t) at Q2: For ρ+ λ2σ < 1,

1−W2(t) = P(W2 > t) ≈ 1−Rν−1(∆(λ1, λ2)t), t > 0,

where ∆(λ1, λ2) is specified by Equation (4.4.4). According to the heavy-traffic
limit theorem, this approximation should perform very well when ρ + λ2σ
is sufficiently close to 1. In the following, we follow the same procedure as
in Section 3.8 to numerically investigate the accuracy of this heavy-traffic
approximation for different values of ν and ρ + λ2σ. Theorem 4.3.1 suggests
the following asymptotic approximation for 1−W2(t):

1−WRV (t) := min{1, CRV t
1−νL(t)}

with

CRV :=
1

ν − 1

(
λ1b1 + λ2(s1 + s2 + b2)

(1− ρ1)ν−1(1− ρ− λ2σ)
+

s1 + s2
(1− ρ1)ν−1σ

)
,

and Theorem 4.4.1 suggests the following heavy-traffic approximation:

1−WHT (t) := 1−Rν−1(∆(λ1, λ2)t), t > 0.

Suppose the service time distributions are of the form (3.8.3) and the switchover
times are exponentially distributed. Hence, we have

1−W2(t) ∼ 1−WHT (t) ∼ 1−WRV (t), t→∞.
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We have tested the approximations 1 −WHT (t) and 1 −WRV (t) for a large
number of parameter combinations. Tables 4.1-4.6 below display numerical
results for the following 6 cases: (i) ν = 1.25, ρ + λ2σ = 0.9, (ii) ν = 1.25,
ρ + λ2σ = 0.5, (iii) ν = 1.5, ρ + λ2σ = 0.9, (iv) ν = 1.5, ρ + λ2σ = 0.5, (v)
ν = 1.75, ρ+ λ2σ = 0.9, and (vi) ν = 1.75, ρ+ λ2σ = 0.5. Again, we use the
Fourier-series method for inverting transforms of probability distributions (cf.
[2]) to compute 1−W2(t). Similar conclusions as in Section 3.8 can be made:

(i) When t is large, e.g., t ≥ 50000, the heavy-traffic approximation 1 −
WHT (t) is very accurate in all cases; while the asymptotic approximation
1−WRV (t) performs much worse when ν is small.

(ii) The larger the value of ρ+λ2σ, the better the heavy-traffic approximation
1−WHT (t) performs.

(iii) When ν is small and ρ + λ2σ is large, e.g., ν ≤ 1.5 and ρ + λ2σ ≥ 0.9,
the heavy-traffic approximation 1−WHT (t) is very good even for small
t.

(iv) When ν is large, e.g., ν ≥ 1.75, the heavy-traffic approximation 1 −
WHT (t) performs poorly for small t; it is not better than the asymptotic
approximation 1−WRV (t).
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Table 4.1: Approximations for the waiting time tails at Q2.

ν = 1.25; ρ+ λ2σ = 0.9

ν1 = ν2 = 1.25; σ1 = σ2 = 0.05; λ1 = λ2 = 0.1475

t 1−W2(t) 1−WHT (t) %errorHT 1−WRV (t) %errorRV

1 0.886 0.925 4.40 1 12.88

2 0.878 0.912 3.89 1 13.94

5 0.863 0.891 3.30 1 15.88

10 0.849 0.873 2.93 1 17.85

20 0.831 0.853 2.60 1 20.33

50 0.803 0.821 2.26 1 24.52

100 0.778 0.794 2.04 1 28.52

200 0.750 0.764 1.86 1 33.38

500 0.707 0.719 1.67 1 41.37

1000 0.672 0.682 1.54 1 48.85

2000 0.634 0.643 1.42 1 57.82

5000 0.580 0.587 1.27 1 72.46

10000 0.537 0.544 1.17 1 57.82

20000 0.494 0.499 1.07 0.937 89.72

50000 0.437 0.441 0.94 0.745 70.68

100000 0.394 0.398 0.84 0.627 59.00

200000 0.353 0.356 0.75 0.527 49.26

500000 0.302 0.304 0.64 0.419 38.81
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Table 4.2: Approximations for the waiting time tails at Q2.

ν = 1.25; ρ+ λ2σ = 0.5

ν1 = ν2 = 1.25; σ1 = σ2 = 0.05; λ1 = λ2 = 0.082

t 1−W2(t) 1−WHT (t) %errorHT 1−WRV (t) %errorRV

1 0.462 0.551 19.34 1 116.50

2 0.441 0.507 14.95 0.966 118.97

5 0.406 0.448 10.34 0.768 88.99

10 0.376 0.405 7.71 0.646 71.80

20 0.343 0.363 5.74 0.543 58.25

50 0.299 0.310 3.92 0.432 44.57

100 0.266 0.274 2.99 0.363 36.64

200 0.234 0.240 2.33 0.305 30.26

500 0.196 0.200 1.73 0.243 23.63

1000 0.171 0.173 1.41 0.204 19.67

2000 0.148 0.149 1.17 0.172 16.41

5000 0.121 0.122 0.92 0.137 12.94

10000 0.104 0.104 0.78 0.115 10.83

20000 0.089 0.089 0.65 0.097 9.07

50000 0.072 0.072 0.52 0.077 7.18

100000 0.061 0.061 0.44 0.065 6.02

200000 0.052 0.052 0.37 0.054 5.05

500000 0.041 0.042 0.37 0.043 4.08
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Table 4.3: Approximations for the waiting time tails at Q2.

ν = 1.5; ρ+ λ2σ = 0.9

ν1 = ν2 = 1.5; σ1 = σ2 = 0.15; λ1 = λ2 = 0.3913

t 1−W2(t) 1−WHT (t) %errorHT 1−WRV (t) %errorRV

1 0.869 0.946 8.90 1 15.10

2 0.846 0.925 9.40 1 18.25

5 0.808 0.886 9.61 1 23.76

10 0.771 0.844 9.53 1 29.73

20 0.724 0.791 9.22 1 38.09

50 0.646 0.700 8.37 1 54.83

100 0.574 0.616 7.38 1 74.19

200 0.494 0.524 6.15 0.800 62.13

500 0.382 0.398 4.32 0.506 32.62

1000 0.300 0.310 3.01 0.358 19.11

2000 0.229 0.233 1.92 0.253 10.74

5000 0.153 0.154 0.95 0.160 4.73

10000 0.110 0.111 0.52 0.113 2.47

20000 0.079 0.079 0.29 0.080 1.28

50000 0.050 0.050 0.12 0.051 0.51

100000 0.036 0.036 0.08 0.036 0.28

200000 0.025 0.025 0.20 0.025 0.30

500000 0.016 0.016 -0.17 0.016 -0.13
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Table 4.4: Approximations for the waiting time tails at Q2.

ν = 1.5; ρ+ λ2σ = 0.5

ν1 = ν2 = 1.5; σ1 = σ2 = 0.15; λ1 = λ2 = 0.2174

t 1−W2(t) 1−WHT (t) %errorHT 1−WRV (t) %errorRV

1 0.420 0.611 45.37 1 138.10

2 0.368 0.518 40.73 0.784 112.90

5 0.301 0.393 30.43 0.496 64.72

10 0.249 0.305 22.35 0.351 40.85

20 0.199 0.229 15.18 0.248 24.79

50 0.140 0.151 8.09 0.157 11.99

100 0.104 0.109 4.64 0.111 6.59

200 0.076 0.078 2.53 0.078 3.50

500 0.049 0.049 1.08 0.050 1.46

1000 0.035 0.035 0.55 0.035 0.74

2000 0.025 0.025 0.28 0.025 0.38

5000 0.016 0.016 0.12 0.016 0.15

10000 0.011 0.011 0.06 0.011 0.08

20000 0.008 0.008 0.03 0.008 0.04

50000 0.005 0.005 0.03 0.005 0.03

100000 0.003 0.004 0.35 0.004 0.36

200000 0.002 0.002 -0.15 0.002 -0.15

500000 0.002 0.002 0.14 0.002 0.14
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Table 4.5: Approximations for the waiting time tails at Q2.

ν = 1.75; ρ+ λ2σ = 0.9

ν1 = ν2 = 1.75; σ1 = σ2 = 0.45; λ1 = λ2 = 0.5745

t 1−W2(t) 1−WHT (t) %errorHT 1−WRV (t) %errorRV

1 0.893 0.942 5.49 1 11.98

2 0.818 0.904 10.50 1 22.25

5 0.691 0.821 18.90 1 44.72

10 0.577 0.723 25.33 0.881 52.85

20 0.452 0.589 30.40 0.524 15.97

50 0.288 0.379 31.56 0.264 -8.53

100 0.184 0.232 25.92 0.157 -15.05

200 0.110 0.128 16.48 0.093 -15.15

500 0.053 0.056 6.47 0.047 -10.93

1000 0.030 0.031 2.89 0.028 -7.49

2000 0.017 0.018 1.29 0.017 -4.86

5000 0.009 0.009 0.47 0.008 -2.62

10000 0.005 0.005 0.55 0.005 -1.29

20000 0.003 0.003 0.01 0.003 -1.09

50000 0.001 0.001 0.00 0.001 -0.34

100000 0.001 0.001 0.00 0.001 -0.03

200000 0.001 0.001 0.00 0.001 0.00

500000 0.000 0.000 0.00 0.000 0.00
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Table 4.6: Approximations for the waiting time tails at Q2.

ν = 1.75; ρ+ λ2σ = 0.5

ν1 = ν2 = 1.75; σ1 = σ2 = 0.45; λ1 = λ2 = 0.3191

t 1−W2(t) 1−WHT (t) %errorHT 1−WRV (t) %errorRV

1 0.538 0.582 8.16 0.511 -5.05

2 0.327 0.423 29.41 0.304 -7.10

5 0.154 0.226 47.01 0.153 -0.64

10 0.092 0.124 34.36 0.091 -1.61

20 0.056 0.066 18.56 0.054 -3.33

50 0.028 0.030 6.86 0.027 -3.67

100 0.017 0.017 3.08 0.016 -3.03

200 0.010 0.010 1.36 0.010 -2.23

500 0.005 0.005 0.44 0.005 -1.35

1000 0.003 0.003 0.18 0.003 -0.88

2000 0.002 0.002 0.07 0.002 -0.56

5000 0.001 0.001 0.02 0.001 -0.29

10000 0.001 0.001 0.00 0.001 -0.15

20000 0.000 0.000 0.00 0.000 0.03

50000 0.000 0.000 0.00 0.000 0.00

100000 0.000 0.000 0.00 0.000 0.00

200000 0.000 0.000 0.00 0.000 0.00

500000 0.000 0.000 0.00 0.000 0.00



Chapter 5

Polling systems with gated or
exhaustive service

5.1 Introduction

In this chapter we consider a cyclic polling system consisting of K (K ≥ 2)
queues. At each queue, the service policy is either gated or exhaustive (for
a detailed model description, and the definitions of ‘gated’ and ‘exhaustive’
service, we refer to Section 4.1). We investigate the tail behavior of the waiting
time distributions at the various queues in the case that at least one of the
service and/or switchover time distributions has a regularly varying tail. This
chapter is based on Boxma, Deng and Resing [26].

As has been stated for example by Eisenberg [49], Fricker and Jaibi [54]
and Resing [90], the condition ρ < 1 is a necessary and sufficient condition for
ergodicity of a cyclic polling system with gated or exhaustive service. From
now on, we assume that this ergodicity condition is satisfied.

We consider the waiting time (and, briefly, workload) tail behavior for
cyclic polling systems with Poisson arrivals, general independent service times,
general independent switchover times, and the gated or exhaustive service
discipline. At each queue, customers are served in the order of arrival. The
main result in this chapter is the following. If at least one of the service and/or
switchover time distributions has a regularly varying tail of index −ν (ν > 1)
and the others have a lighter tail, then the waiting time distribution at each
queue is regularly varying of index 1− ν, i.e.,

P(Wk > t) ∼ αkt
1−νL(t), t→∞,

for αk > 0, where Wk is the steady-state waiting time at the kth queue.

79
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The rest of this chapter is organized as follows. Section 5.2 presents an
explicit formula for the LST of the waiting time distribution given in [13, 14],
which will be the starting point of the tail investigation. This distribution is
expressed in terms of the generating functions of particular queue length dis-
tributions; those are discussed in Section 5.3. The main theorems are provided
in Section 5.4, in which the tail behavior of the waiting time distribution is
given under the assumption that at least one of the service and/or switchover
time distributions is regularly varying. Section 5.5 is devoted to the proof of
Theorem 5.4.1 which describes the tail behavior of the intervisit time distri-
bution in the case of exhaustive service and the tail behavior of the cycle time
distribution in the case of gated service. Section 5.6 summarizes the results
in this chapter and gives some suggestions for further research. Finally, the
Appendix gives some results on the first-moment matrix which play a key role
in the proof of our main result.

5.2 The waiting time distribution

Let Wk denote the stationary waiting time of type-k customers, with distribu-
tion function Wk(·) and LST ωk(·). In this section we give an explicit formula
for ωk(s), as provided by Borst and Boxma [14] (see also [100]). Let Wk|M/G/1,
with LST ωk|M/G/1(·), denote the waiting time of an arbitrary customer in the
‘corresponding’ isolated M/G/1 queue of Qk (see the end of Section 4.2 for
a definition of the ‘corresponding’ queue) and let Nk|I , with pgf (probability
generating function) nk|I(·), denote the queue length at Qk at an arbitrary
epoch in an intervisit period for Qk. The formula for ωk(s) is based on the
following decomposition, cf. Keilson and Servi [65],

ωk(s) = E[e−sWk ] = ωk|M/G/1(s)nk|I(1− s/λk), Re s ≥ 0. (5.2.1)

By the Pollaczek-Khintchine formula, ωk|M/G/1(s) is given by

ωk|M/G/1(s) = E[e−sWk|M/G/1 ] =
1− ρk

1− ρk
1−βk(s)

βks

, Re s ≥ 0.

Introduce Xk, the queue length at Qk at the beginning of a visit to Qk, and
Yk, the queue length at Qk at the end of a visit to Qk. Borst and Boxma [14]
relate nk|I(1− s/λk) to Xk and Yk as follows:

nk|I(1− s/λk) = E[(1− s/λk)Nk|I ] =
yk(s)− xk(s)

s(EXk − EYk)/λk
, (5.2.2)
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with

xk(s) := E[(1− s/λk)Xk ], yk(s) := E[(1− s/λk)Yk ]. (5.2.3)

To get a better understanding of the function nk|I(1− s/λk), we introduce
the following random variables. For k = 1, ...,K, let Ck denote the cycle time
of Qk, i.e. the time between two successive arrivals of the server to Qk, Dk

the station time of Qk, i.e. the time between an arrival of the server to Qk

and the next departure of the server from Qk, and Ik the intervisit time of
Qk, i.e. the time between the departure of the server from Qk and his next
arrival to Qk. The distribution functions of Ck, Dk and Ik are denoted by
Ck(·), Dk(·), Ik(·), respectively. Furthermore, let I∗k be the residual intervisit
time, with probability density function 1−Ik(t)

EIk
. As has been pointed out in [5],

the ergodicity condition implies the stationarity of the cycle times, the station
times and the intervisit times.

In the case of exhaustive service, by definition Yk = 0 and thus E[yYk ]
=1. On the other hand, the customers at the beginning of a visit must have
arrived during the previous intervisit time. Since the arrival process at Qk is
a Poisson process with rate λk, the generating function of the distribution of
the number of arrivals during the previous intervisit time is related to the LST
of the intervisit time distribution function as follows:

E[yXk ] = E[e−λk(1−y)Ik ].

Thus it follows from the above relation and (5.2.3) that xk(s) = E[e−sIk ],
which in combination with (5.2.2) implies that nk|I(1− s/λk) = E[e−sI∗k ], i.e.,
nk|I(1 − s/λk) is in fact the LST of the residual intervisit time. Or equiva-
lently, nk|I(z) = E[e−λk(1−z)I∗k ], which may also easily be seen to hold from the
definition of Nk|I . Furthermore, the following well-known result is implied by

(5.2.1) ( with =d denoting equality in distribution):

Wk =
d
Wk|M/G/1 + I∗k , (5.2.4)

where Wk|M/G/1 and I∗k are independent.
In the case of gated service, using similar arguments as in [37], Xk and

Yk can be considered as the number of type-k arrivals during a time interval
of length Ck and Dk, respectively, and thus xk(s) = E[e−sCk ] and yk(s) =
E[e−sDk ]. It is readily seen that

nk|I(1− s/λk) = E[e−sUk ], (5.2.5)
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for some nonnegative random variable Uk with density function Dk(t)−Ck(t)
ECk−EDk

.
Thus it follows from (5.2.1) that

Wk =
d
Wk|M/G/1 + Uk,

where Wk|M/G/1 and Uk are independent. The probabilistic meaning of Uk is:

Uk =d Dk + I∗k , cf. [11] for the case of nonzero switchover times; it is the sum
of the station time Dk and the subsequent excess intervisit time I∗k (which
depends on Dk).

5.3 Joint queue length distribution

In order to obtain an explicit expression for the LST ωk(s) of the waiting time
distribution, we need an expression for the generating functions of the queue
lengthsXk and Yk at the beginning and end, respectively, of a server visit to Qk

(see (5.2.1) and (5.2.2)). We first concentrate on an expression for Fk(z) and
Gk(z), z = (z1, ..., zK)T , |zj | ≤ 1, j = 1, ...,K, the pgf of the joint queue length
vector at visit beginning and visit completion epochs, respectively. Here, we
follow the approach of Resing [90]. In fact, in [90] a more general class of
service disciplines called Bernoulli-type service is considered, which contains
the gated and exhaustive service disciplines. This class of service disciplines
satisfies the following property.

Property 5.3.1 If the server arrives at Qk to find nk customers there, then
during the course of the server’s visit, each of these nk customers is effectively
replaced in an i.i.d. manner by a random population having pgf hk(z).

The gated and exhaustive service discipline both satisfy this property. In
these cases the functions hk(z) are, respectively, given by

hk(z) = βk(
K∑

j=1

λj(1− zj)),

which is the pgf of the joint distribution of the numbers of arrivals at all queues
during one service time at Qk, and

hk(z) = ηk(
∑
j 6=k

λj(1− zj)), (5.3.1)

where ηk(·) denotes the LST of the length of a busy period in an isolated
M/G/1 queue with arrival rate λk and service time distribution Bk(·). In the



5.3 Joint queue length distribution 83

case of exhaustive service, the function hk(z) represents the pgf of the joint
distribution of the numbers of arrivals at all other queues during a busy period
of Qk when this queue was in isolation.

In the remainder of this section, we consider the queue length pgf for the
class of service disciplines that satisfy Property 5.3.1; in the next section we use
these results for the waiting time asymptotics, then restricting ourself to gated
and exhaustive service. It may be worthwhile to investigate whether/how the
asymptotic results of the present chapter can be generalized to the case of that
general class. For service disciplines satisfying Property 5.3.1, the pgf’s Gk(z)
(queue length at departure epochs of the server from Qk) can be nicely related
to the pgf’s Fk(z) (queue length at arrival epochs of the server at Qk), for
k = 1, ...,K, by

Gk(z) = Fk(z1, ..., zk−1, hk(z), zk+1, ..., zK). (5.3.2)

Next, define for |zj | ≤ 1, j = 1, ...,K, the functions

f(z) := (f1(z), ..., fK(z))T , (5.3.3)

with
fk(z) := hk(z1, ..., zk, fk+1(z), ..., fK(z)), (5.3.4)

and the iterates
f (0)(z) := z,

f (i)(z) := f(f (i−1)(z)), i ≥ 1.

In the following we distinguish between the case with and the case without
switchover times.

Zero switchover times
In the sequel we add a superscript 0 for the case of zero switchover times,
in order to distinguish its quantities from those for the case with switchover
times. The pgf’s F 0

k (·) and G0
k−1(·) are related by

F 0
k (z) = G0

k−1(z), for k = 2, ...,K, (5.3.5)

F 0
1 (z) = G0

K(z)− F 0
1 (0)(

K∑
j=1

λj

λ
(1− zj)), (5.3.6)

where 0 stands for the K-dimensional vector with all components equal to
zero. Equation (5.3.6) is obtained by using the special convention that when
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the system is empty at the start of a visit to Q1, the next visit does not
take place until a customer has arrived. In fact, F 0

1 (z) satisfies the functional
equation

F 0
1 (z) = F 0

1 (f(z))− F 0
1 (0)

K∑
k=1

λk

λ
(1− zk),

the solution of which, after iteration, is given by

F 0
1 (z) = 1− F 0

1 (0)
λ

∞∑
i=1

K∑
k=1

λk(1− f
(i)
k (z)), (5.3.7)

with

F 0
1 (0) =

[
1 +

1
λ

∞∑
i=1

K∑
k=1

λk(1− f
(i)
k (0))

]−1

.

The infinite sum
∑∞

i=1

∑K
k=1 λk(1− f

(i)
k (0)) is convergent when the ergodicity

condition is fulfilled. Once we know F 0
1 (z), we immediately get, by using

(5.3.2) and (5.3.5), the pgf F 0
k (z) of the joint queue length distribution at a

visit beginning epoch,

F 0
k (z) = F 0

k−1(z1, ..., zk−2, hk−1(z), zk, ..., zK), for k = 2, ...,K.

Furthermore, by the Relations (5.3.5) and (5.3.6) we get an expression for
G0

k(z),

G0
k(z) = F 0

k+1(z), for k = 1, ...,K − 1,

G0
K(z) = F 0

1 (z) +
F 0

1 (0)
λ

(
K∑

j=1

λj(1− zj)).

Nonzero switchover times
In the case of nonzero switchover times, the following equations relate Fk(z)
to Gk−1(z):

F(k mod K)+1(z) = Gk(z)σk(
K∑

j=1

λj(1− zj)), for k = 1, ...,K. (5.3.8)

Together with Equation (5.3.2) this leads to the functional equation

F1(z) = F1(f(z))g(z), (5.3.9)
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with

g(z) =
K∏

k=1

σk(
k∑

j=1

λj(1− zj) +
K∑

j=k+1

λj(1− fj(z))).

The solution of (5.3.9) is given by

F1(z) =
∞∏
i=1

g(f (i)(z))

=
∞∏
i=1

K∏
k=1

σk(
k∑

j=1

λj(1− f
(i)
j (z)) +

K∑
j=k+1

λj(1− f
(i+1)
j (z))).

(5.3.10)

Again, the infinite product is convergent when the ergodicity condition is ful-
filled.

To make the obtained queue length pgf expressions suitable for the analysis
of the waiting time tail behavior, we have to slightly rewrite them (we want
to move from pgf asymptotics near 1 to LST asymptotics near 0).
Put r := (r1, ..., rK)T , where 0 ≤ rk ≤ λk, and relate z to r by z(r) = (1 −
r1/λ1, ..., 1− rK/λK)T . If we define F̃k(r) := Fk(z(r)) and G̃k(r) := Gk(z(r)),
then it follows from (5.3.2) that

G̃k(r) = F̃k(r1, ..., rk−1, h̃k(r), rk+1, ..., rK), (5.3.11)

with

h̃k(r) := λk(1− hk(z(r)))

=

{
λk(1− βk(

∑K
j=1 rj)), for gated service,

λk(1− ηk(
∑

j 6=k rj)), for exhaustive service.
(5.3.12)

Furthermore, similarly as in (5.3.3) and (5.3.4) we define the functions

f̃(r) := (f̃1(r), ..., f̃K(r))T ,

with
f̃k(r) := h̃k(r1, ..., rk, f̃k+1(r), ..., f̃K(r)), (5.3.13)

and the iterates

f̃ (0)(r) := r,

f̃ (i)(r) := f̃(f̃ (i−1)(r)), i ≥ 1.
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In the following we distinguish again between the cases of zero switchover
times and nonzero switchover times.

Zero switchover times
The following equations relate F̃ 0

k (r) to G̃0
k−1(r). It follows from (5.3.5) and

(5.3.6) that

F̃ 0
k (r) = G̃0

k−1(r), for k = 2, ...,K, (5.3.14)

F̃ 0
1 (r) = G̃0

K(r)− F̃ 0
1 (Λ)
λ

K∑
j=1

rj , (5.3.15)

where Λ = (λ1, ..., λK). Introduce, for 0 < rk < λk, k = 1, ...,K,

H(r) =
∞∑
i=1

K∑
k=1

f̃
(i)
k (r),

which is well-defined if the ergodicity condition is fulfilled. Then, by (5.3.7),
we can write

F̃ 0
1 (r) := F 0

1 (z) = 1− F̃ 0
1 (Λ)H(r)/λ. (5.3.16)

By using (5.3.11), (5.3.14) and (5.3.15), one can derive expressions for F̃ 0
k (r)

and G̃0
k(r), k = 1, ...,K.

Nonzero switchover times
It follows from (5.3.8) that

F̃(k mod K)+1(r) = G̃k(r)σk(
K∑

j=1

rj), for k = 1, ...,K. (5.3.17)

Put

g̃(r) :=
K∏

k=1

σk(
k∑

j=1

rj +
K∑

j=k+1

f̃j(r)).

Replacing z(r) = (1− r1/λ1, ..., 1− rK/λK) into (5.3.10), we obtain

F̃1(r) =
∞∏
i=1

g̃(f̃ (i)(r))

=
∞∏
i=1

K∏
k=1

σk(
k∑

j=1

f̃
(i)
j (r) +

K∑
j=k+1

f̃
(i+1)
j (r)), (5.3.18)
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the infinite product being convergent for 0 ≤ rk ≤ λk, k = 1, ...,K, when the
ergodicity condition is fulfilled. By using (5.3.11), (5.3.17), one can immedi-
ately derive expressions for G̃1(r), G̃k(r), F̃k(r) (k = 2, ...,K).

Marginal queue length pgf
As a final step towards deriving the waiting time LST (see (5.2.1) and (5.2.2)),
we now obtain the pgf of the marginal distributions of the queue lengthsXk and
Yk at the beginning and end of a server visit to Qk, respectively. For ease of no-
tation, we define e := (1, ..., 1)T and for k = 1, ...,K, ek := (0, ..., 0, 1, 0, ..., 0)T

with the kth component being 1. Taking r = eks in (5.3.16) for the case of zero
switchover times (add a superscript ”0”) or in (5.3.18) for the case of nonzero
switchover times, we get

xk(s) := E[(1− s/λk)Xk ] = F̃k(eks), (5.3.19)

yk(s) := E[(1− s/λk)Yk ] = G̃k(eks). (5.3.20)

5.4 The main result

In this section we present our main result: If at least one of the service and/or
switchover times is regularly varying of index −ν (ν > 1) and the other service
and/or switchover times have a lighter tail, then the waiting time distribution
at each queue is regularly varying of index 1 − ν. As a by-product, we also
show that the intervisit time distribution at Qk (k = 1, ...,K) in the case of
exhaustive service and the cycle time and station time distributions at Qk

(k = 1, ...,K) in the case of gated service are all regularly varying of index −ν.
As pointed out in Section 5.2, Wk can be represented as the sum of two

independent random variables Wk|M/G/1 and Vk where Vk = I∗k is the residual
intervisit time in the case of exhaustive service and Vk = Uk in the case of
gated service where the LST of Uk is given by (5.2.5). The relation between
1−Wk|M/G/1(t) and 1−Bk(t) for t→∞ is already well-known if the residual
service time has a subexponential tail (this contains the case of a regularly
varying tail),

1−Wk|M/G/1(t) ∼
λ

1− ρ

∫ ∞

x=t
(1−Bk(x))dx, t→∞, (5.4.1)

cf. [85]. In the following we first investigate the tail behavior of the distribution
of Vk by analyzing the asymptotic behavior of its LST nk|I(1− s/λk) for s ↓ 0,
and we subsequently derive the tail behavior of 1−Wk(t) for t→∞.
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Without loss of generality, we only analyze the explicit expression (5.2.2)
for nk|I(1− s/λk) for k = 1. Combining (5.3.11), (5.3.19) and (5.3.20) yields

y1(s) = x1(h̃1(e1s)). (5.4.2)

If the asymptotic behavior of x1(s) for s ↓ 0 is known, then we can obtain the
asymptotic behavior of y1(s) for s ↓ 0 immediately by using Lemma 2.3.6.

Concerning the tail behavior of the service and switchover time distribu-
tions, we assume that Assumption 4.2.1 holds. In order to simplify the proof
of Theorem 5.4.1 below in Section 5.5, we assume, without loss of generality,
that sνL(1/s) (for L(·), see Assumption 4.2.1) is a non-decreasing function for
s > 0.

Theorem 5.4.1 If Relations (4.2.5) and (4.2.6) hold, then

x1(s) =
m∑

j=0

(−1)jx1,js
j + (−1)m+1x1,νs

νL(1/s) + o(sνL(1/s)), (5.4.3)

where x1,j ≥ 0 for j = 1, ...,m and x1,ν ≥ 0. Moreover, x1,ν = 0 if and only if∑K
k=1(βk,ν + σk,ν) = 0.

Proof. See Section 5.5. 2

The next corollary, which follows immediately from Theorem 5.4.1 and
Relation (5.4.2) by using Lemma 2.3.6, characterizes the asymptotic behavior
of y1(s) for s ↓ 0 in the gated case. Remember that y1(s) ≡ 1 if the service
discipline at Q1 is exhaustive.

Corollary 5.4.1 In the case of gated service at Q1, if (4.2.5) and (4.2.6) hold,
then

y1(s) =
m∑

j=0

(−1)jy1,js
j + (−1)m+1y1,νs

νL(1/s) + o(sνL(1/s)), (5.4.4)

where y1,j ≥ 0 for j = 1, ...,m and y1,ν ≥ 0. Moreover, y1,ν = x1,1β1,ν +x1,νρ
ν
1.

It is now easy to give the asymptotic expansion of n1|I(1− s/λ1) for s ↓ 0.

Corollary 5.4.2 If (4.2.5) and (4.2.6) hold, then

n1|I(1− s/λ1) =
m−1∑
j=1

(−1)jn1|I,js
j + (−1)mn1|I,νs

νL(1/s)
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+o(sνL(1/s)), (5.4.5)

where n1|I,j > 0 for j = 1, ...,m− 1 and n1|I,ν ≥ 0. Moreover, if
∑K

k=1(βk,ν +
σk,ν) > 0, then n1|I,ν > 0.

Proof. By (5.2.2), (5.4.3) and (5.4.4), (5.4.5) follows. As shown in Section 5.2,
n1|I(1− s/λ1) is the LST of some nonnegative random variable. Thus n1|I,j >
0, n1|I,ν ≥ 0 in (5.4.5). Again by (5.2.2), n1|I,ν = λ1(x1,ν − y1,ν)/(EX1−EY1)
where y1,ν = x1,1β1,ν +x1,νρ

ν
1 . By using Formula (5.5.5) from the next section

for the case of zero switchover time or Formula (5.5.34) for the case of nonzero
switchover time, we can prove that n1|I,ν > 0 if

∑K
k=1(βk,ν + σk,ν) > 0. 2

Applying Lemma 2.3.4, the above results yield the following theorem on
the relation between the tail behavior of the service and switchover time dis-
tribution and that of the intervisit time, cycle time, station time and waiting
time distributions.

Theorem 5.4.2 If Assumption 4.2.1 holds, then in the case of exhaustive
service at Q1, the tail behavior of the intervisit time and waiting time at Q1

satisfies the following relations:

1− I1(t) = [c1 + o(1)]t−νL(t), t→∞, (5.4.6)

1−W1(t) = [c2 + o(1)]t1−νL(t), t→∞; (5.4.7)

in the case of gated service at Q1, the tail behavior of (i) the cycle time, (ii)
the station time, (iii) U1 with LST given by (5.2.5) and (iv) the waiting time
at Q1 is respectively given by

1− C1(t) = [c3 + o(1)]t−νL(t), t→∞, (5.4.8)

1−D1(t) = [c4 + o(1)]t−νL(t), t→∞, (5.4.9)

1− U1(t) = [c5 + o(1)]t1−νL(t), t→∞, (5.4.10)

1−W1(t) = [c6 + o(1)]t1−νL(t), t→∞, (5.4.11)

where the cr are nonnegative constants for r = 1, ..., 6. Moreover, if
∑K

k=1(bk+
sk) = 0, then cr = 0 for r = 1, ..., 6; if

∑K
k=1(bk + sk) > 0, then cr > 0 for

r = 1, ..., 6.

Proof. In the case of exhaustive service at Q1, applying Theorem 5.4.1 and
Lemma 2.3.4, (5.4.6) follows immediately. Combining (5.2.4), (5.4.1), (5.4.6)
and using Lemma 7.7 in [29] yields (5.4.7) where

c2 =
λ1b1

(1− ρ1)(ν − 1)
+

c1
EI1(ν − 1)

.
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In the case of gated service at Q1, Relations (5.4.8) and (5.4.9) follow im-
mediately from Theorem 5.4.1, Corollary 5.4.1 and Lemma 2.3.4. Relation
(5.4.10) follows from Corollary 5.4.2. Combining (5.2.4), (5.4.1), (5.4.6) and
using Lemma 7.7 in [29] yields (5.4.11) where

c6 =
λ1b1

(1− ρ1)(ν − 1)
+

c5
ν − 1

.

It is easy to see that if
∑K

k=1(bk + sk) = 0, then cr = 0 for r = 1, ..., 6; if∑K
k=1(bk + sk) > 0, then cr > 0 for r = 1, ..., 6. 2

By symmetry, Theorem 5.4.1 and Corollaries 5.4.1, 5.4.2 hold for k =
1, ...,K. Thus Theorem 5.4.2 also holds for k = 1, ...,K.

Remark 5.4.1 In order to get explicit expressions for cr in the above theorem
in terms of bk and sk for k = 1, ...,K, one can refer to Relation (5.5.5) below
in the case of zero switchover times or Relation (5.5.34) in the case of nonzero
switchover times.

Remark 5.4.2 Consider the M/G/1 queue with repeated vacations. The
server continues serving until the system has become empty, and then takes
a vacation V . If the system is still empty after this vacation, then he takes
another vacation, etc.; successive vacations are independent and identically dis-
tributed. Fuhrmann and Cooper [55] have proven the following decomposition
result:

Wwith =
d
WM/G/1 + V ∗,

where Wwith (WM/G/1) denotes waiting time in the model with (without) vaca-
tions and V ∗ has the equilibrium (residual lifetime) distribution of V ; WM/G/1

and V ∗ are independent.
This vacation queue is a special case of the polling model with switchover

times and exhaustive service; take K = 1. Asmussen et al. [7] have proven
the following result for the M/G/1 vacation queue with residual vacation or
residual service time distributions that belong to the class S of subexponential
distributions (which contains the class of regularly varying distributions):
(i) If the equilibrium service time S∗ ∈ S and if P(V ∗ > t) = o(P(S∗ > t)) as
t→∞, then

P(Wwith > t) ∼ ρ

1− ρ
P(S∗ > t), t→∞;

(ii) If the equilibrium vacation time V ∗ ∈ S and if P(S∗ > t) = o(P(V ∗ > t))
as t→∞, then

P(Wwith > t) ∼ P(V ∗ > t), t→∞;
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(iii) If the equilibrium service time S∗ ∈ S and if P(V ∗ > t) ∼ cP(S∗ > t) as
t→∞ for some c ≥ 0, then

P(Wwith > t) ∼ (c+
ρ

1− ρ
)P(S∗ > t), t→∞.

In the polling model one might also try to prove that the waiting time distribu-
tion is subexponential in the case of subexponential service and/or switchover
time distributions. However, at least in the case of exhaustive service at some
queue Qk, this requires the solution of the following open problem (cf. [7]): Is
the busy period distribution of M/G/1 queue Qk in isolation subexponential,
when its service time distribution is subexponential? (Notice that the busy
period distribution of Qk appears prominently in hk(z) and f̃k(r), cf. (5.3.1)
and (5.3.13)). Regarding the busy period distribution in the G/G/1 queue
with regularly varying service times, we refer to Zwart [117].

Remark 5.4.3 In the present chapter we have concentrated on the tails of
the waiting time distributions. It is slightly easier to study the tail behavior of
the total workload distribution in a polling system. Boxma and Groenendijk
[30] (cf. also Boxma [20] for generalizations) have proven the following work-
load decomposition for a broad category of multiclass queueing systems with
Poisson arrivals and server vacations – a category which includes cyclic polling
systems with switchover times:

U =
d
UM/G/1 + Z,

UM/G/1 and Z being independent. Here U is the steady-state workload in
the system, UM/G/1 is the steady-state workload in the corresponding M/G/1
queue to which the multiclass system reduces when there are no switchover
times, and Z is the steady-state workload at an arbitrary time during a vaca-
tion. Takagi et al. [104] provide an expression for the LST of the distribution
of Z in the case of either exhaustive or gated service at all queues. Using that
expression and the above decomposition result, one can apply the technique
in Section 5.5 of this chapter to obtain similar tail behavior results for the
workload as for the individual waiting times.

Remark 5.4.4 In the M/G/1 FCFS queue, if the service time distribution is
regularly varying of index −ν (ν > 1), then the waiting time distribution is
regularly varying of index 1− ν. However, the M/G/1 queue with the LCFS
preemptive resume discipline has the attractive feature that the waiting time
distribution is regularly varying of index just −ν [23]. In the polling system
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with a LCFS preemptive resume discipline within a queue visit of the server,
customers may have to wait a residual cycle time (in the case of gated service)
or a residual intervisit time (in the case of exhaustive service), and these are
regularly varying of index 1−ν. Thus one cannot expect to get a ‘better’ index
than 1− ν by providing LCFS preemptive resume service within a queue visit
of the server.

Note that the above discussions are only valid for polling systems with
more than one queue. For the M/G/1 queue with repeated vacations (cf.
Remark 5.4.2), the intervisit time is the vacation time, which is independent
of the service time. From the observation that the customer may have to
wait for a residual vacation time, we conclude that if the vacation time has
a lighter tail than t−ν , then the LCFS preemptive resume discipline implies
that the waiting time distribution has a lighter tail than t1−ν . Otherwise, the
LCFS preemptive resume discipline does not lead to a ‘better’ tail behavior of
the waiting time distribution.

5.5 Proof of Theorem 5.4.1

We treat the cases of zero and nonzero switchover times separately. We re-
strict ourself mainly to the case in which all queues are served according to
the same discipline (either gated or exhaustive); the proofs require only minor
adaptations in the case of mixtures of these disciplines.

1. Zero switchover times
Using (5.3.16) and (5.3.19) we have

x1(s) = F̃ 0
1 (e1s) = 1− F̃ 0

1 (Λ)H(e1s)/λ. (5.5.1)

In the following we concentrate on determining the asymptotic behavior of
H(e1s) for s ↓ 0. We prove that

H(e1s) =
m∑

j=1

H1,js
j + (−1)mH1,νs

νL(1/s) + o(sνL(1/s)), s ↓ 0, (5.5.2)

for some constants H1,j where j = 1, ...,m and H1,ν ≥ 0. The proof of Relation
(5.5.2) is divided into three steps. In the first step, we construct a new function
P (·) which has a similar structure as H(·). In the second step, we show that
the asymptotic expansion of this function is given by

P (e1s) =
m∑

j=1

P1,js
j + O(sm+1), for s ↓ 0. (5.5.3)
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Finally, in the third step we will show that

lim
s↓0

H(e1s)− P (e1s)
sνL(1/s)

= (−1)mH1,ν , (5.5.4)

for some nonnegative constant H1,ν . Clearly, Relation (5.5.2) follows by com-
bining (5.5.3) and (5.5.4). Once we have proven (5.5.2), the proof of Theorem
5.4.1 is almost completed. Substituting (5.5.2) into (5.5.1) and noting that
x1(s) is the LST of some nonnegative random variable (the cycle time if the
service discipline at Q1 is gated or the intervisit time if the service discipline
at Q1 is exhaustive) yields Formula (5.4.3) of Theorem 5.4.1, where

x1,1 = F̃ 0
1 (Λ)P1,1/λ, x1,ν = F̃ 0

1 (Λ)H1,ν/λ, (5.5.5)

P1,1 and H1,ν being given by (5.5.11) and (5.5.27), respectively.

Step 1: Similarly as we constructed the function H(·) in Section 5.3, we now
construct the function P (·). So, define:

ξk(r) :=


λk
∑m

j=1(−1)j+1βk,j(
∑k

i=1 ri)
j , for gated service,

λk
∑m

j=1(−1)j+1ηk,j(
∑

i6=k ri)
j , for exhaustive service,

(5.5.6)

(cf. (5.3.12), and notice that we take the first m terms in the righthand sides
of (4.2.5) and (4.2.7) multiplied by λk). Furthermore, we define:

p(r) := (p1(r), ..., pK(r))T , (5.5.7)

with
pk(r) := ξk(r1, . . . , rk, pk+1(r), . . . , pK(r)),

and the iterates

p(0)(r) := r,

p(i)(r) := p(p(i−1)(r)), i ≥ 1.

The function P (·) is defined by

P (r) :=
∞∑
i=1

K∑
k=1

p
(i)
k (r). (5.5.8)

In Lemma 5.5.2 we prove that the infinite sum in (5.5.8) is well-defined. Before
we can do that, we first need to prove Lemma 5.5.1. In the following we make
the convention that |v| = (|v1|, ..., |vn|)T where v is an n-dimensional vector
and v ≤ u if and only if vk ≤ uk for all k = 1, ..., n. For the definition of M̃,
we refer to the Appendix.
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Lemma 5.5.1 There exists a δ1 > 0 such that p(r) ≤ M̃r for 0 ≤ r ≤ δ1e.

Proof. For k = 1, ...,K, it is easy to check that

d
ds
ξk(e1s) ≤


[

d
dsλk(1− βk(s))

]
s=0

= ρk, for gated service,

[
d
dsλk(1− ηk(s))

]
s=0

=
ρk

1− ρk
, for exhaustive service,

for 0 < s < δ1 where δ1 is some positive constant. Therefore, we have

pk(r) = ξk(r1, ..., rk, pk+1(r), , ..., pK(r))

≤



ρk[r1 + ...+ rk + pk+1(r) + ...+ pK(r)],
for gated service,

ρk

1− ρk
[r1 + ...+ rk−1 + pk+1(r) + ...+ pK(r)],

for exhaustive service.

Rewriting the above inequalities in terms of matrices, we obtain

p(r) ≤ Br + Ap(r),

where the matrices A and B are given by (5.7.4) and (5.7.5) in the Appendix,
respectively. Then it follows from the fact that (I − A)−1 is a nonnegative
matrix that

p(r) ≤ (I−A)−1Br = M̃r.

2

Now we are able to prove that the infinite sum in (5.5.8) is well-defined.

Lemma 5.5.2 There exists a δ1 > 0 such that P (e1s) <∞ for 0 < s < δ1.

Proof. It follows from Lemma 5.5.1 that there exists a δ1 > 0 such that for
0 < s < δ1,

p(e1s) ≤ M̃e1s. (5.5.9)

Iterating (5.5.9) leads to

p(i)(e1s) ≤ M̃ie1s, i = 1, 2, ....

Summing the above relations, we get
∞∑
i=1

p(i)(e1s) ≤ (I− M̃)−1M̃e1s,
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which implies that

P (e1s) =
K∑

k=1

∞∑
i=1

p
(i)
k (e1s) ≤ eT (I− M̃)−1M̃e1s <∞. (5.5.10)

2

Actually, dividing by s in (5.5.9) and taking the limit for s ↓ 0, we obtain[
d
ds

p(e1s)
]

s=0

= M̃e1.

Equality is seen to hold because the first inequality in the proof of Lemma 5.5.1
also reduces to an equality for s ↓ 0. By using similar arguments as in the
proof of Lemma 5.5.2, it is easy to derive from (5.5.10) that

P1,1 = eT (I− M̃)
−1

M̃e1. (5.5.11)

This relation is used in (5.5.5).

Step 2: The asymptotic expansion (5.5.3) is proved in the following lemma.

Lemma 5.5.3 The function P (e1s) defined by (5.5.8) has the following ex-
pansion in the neighborhood of the origin,

P (e1s) =
m∑

j=1

P1,js
j + O(sm+1), for s ↓ 0. (5.5.12)

Proof. First, we observe that for all k = 1, ...,K and all i = 1, 2, ..., the
functions p(i)

k (e1s) are polynomials in s, i.e.,

p
(i)
k (e1s) =

n
(i)
k∑

j=1

p
(i)
k,js

j ,

where n(i)
k = mKi−k+1. It remains to prove that

∞∑
i=1

K∑
k=1

n
(i)
k∑

j=1

|p(i)
k,j |s

j <∞, (5.5.13)
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for 0 ≤ s ≤ δ2. Observe that, if Equation (5.5.13) holds, we can interchange
the order of summation as follows,

P (e1s) =
∞∑
i=1

K∑
k=1

n
(i)
k∑

j=1

p
(i)
k,js

j =
∞∑

j=1

 K∑
k=1

∑
{i:n(i)

k ≥j}

p
(i)
k,j

 sj =
∞∑

j=1

P1,js
j ,

(5.5.14)
for 0 ≤ s ≤ δ2. Therefore, the expansion (5.5.12) immediately follows from
(5.5.14).

In order to prove (5.5.13), we define a function q : RK 7→ RK ,

q(r) := (q1(r), ..., qK(r))T ,

qk(r) := −ξk(−r1, ...,−rk,−qk+1(r), ...,−qK(r)),

and its iterates

q(0)(r) := r,

q(i)(r) := q(q(i−1)(r)), i ≥ 1.

Next we show that the infinite sum
∑∞

i=1

∑K
k=1 q

(i)
k (r) converges in a neigh-

borhood of the origin. From the definition of q(r), using similar arguments as
in the proof of Lemma 5.5.1, it follows that for any ε > 0, there exists a δ1 > 0
such that, for 0 ≤ r ≤ δ1e,

0 ≤ q(r) ≤ (1 + ε)M̃r,

where the entries of M̃ are given by (5.7.1). Let amax < 1 be the maximal
eigenvalue of M̃. If we take ε = (1/amax − 1)/2, then the maximal eigenvalue
of (1 + ε)M̃ is also less than 1. Thus, applying similar arguments as in the
proof of Lemma 5.5.2, it follows that

∞∑
i=1

K∑
k=1

q
(i)
k (r) <∞, (5.5.15)

for 0 ≤ r ≤ δ2e for some δ2 > 0. Similarly as was observed for p(i)
k (e1s), we

see that also the functions q(i)k (e1s), for all k and i, are polynomials in s, i.e.,

q
(i)
k (e1s) =

n
(i)
k∑

j=1

q
(i)
k,js

j .
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Furthermore, from the definition of q(i)k (e1s), it is easy to see that

|p(i)
k,j | ≤ q

(i)
k,j , (5.5.16)

for k = 1, ...,K, i = 1, 2, ... and j = 1, ..., n(i)
k . So, finally, (5.5.13) follows from

(5.5.15) and (5.5.16). 2

Step 3: Having proven (5.5.3), we must now prove (5.5.4). For this we need
the following lemma.

Lemma 5.5.4 For any ε > 0, there exists a δ1 > 0 such that for 0 ≤ r,u ≤
δ1e,

|̃f(u)− p(r)| ≤ (I−A)−1(D + εI)d + M̃|u− r|, (5.5.17)

where A is given by (5.7.4) in the Appendix, and

D =


diag(

λ1β1,ν

ρν
1

, ...,
λKβK,ν

ρν
K

), for gated service,

diag(
λ1β1,ν

(1− ρ1)ρν
1

, ...,
λKβK,ν

(1− ρK)ρν
K

), for exhaustive service,

(5.5.18)

d = ((φ1)νL(1/φ1), ..., (φK)νL(1/φK))T , (5.5.19)

with φk being the kth component of M̃u (k = 1, ...,K).

Proof. We only prove the case of gated service. By similar arguments, one
can obtain the result for exhaustive service. For k = 1, ...,K, recall that h̃k(·)
and ξk(·) are defined by (5.3.12) and (5.5.6), respectively. Then we have, for
0 < u, r < δ1e, where δ1 is some positive constant,

|f̃k(u)− pk(r)|
≤ |h̃k(u1, ..., uk, f̃k+1(u), ..., f̃K(u))− ξk(u1, ..., uk, f̃k+1(u), ..., f̃K(u))|

+|ξk(u1, ..., uk, f̃k+1(u), ..., f̃K(u))− ξk(r1, ..., rk, pk+1(r), ..., pK(r))|

≤ (
λkβk,ν

ρν
k

+ ε)(ρku1 + ...+ ρkuk + ρkf̃k+1(u) + ...+ ρkf̃K(u))ν

L(1/(ρku1 + ...+ ρkuk + ρkf̃k+1(u) + ...+ ρkf̃K(u))) + ρk|u1 − r1|
+...+ ρk|uk − rk|+ ρk|f̃k+1(u)− pk+1(r)|+ ...+ ρk|f̃K(u)− pK(r)|,

(5.5.20)
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where the last inequality in (5.5.20) follows from the fact that, cf. (4.2.5),

|1− βk(s)−
m∑

j=1

(−1)j+1βk,js
j | ≤ βk,νs

νL(1/s), 0 < s < δ,

δ being a positive constant. By similar arguments as in the proof of Lemma
5.5.1, one can easily prove that, for 0 < u < δe,

f̃(u) ≤ M̃u.

Thus, it follows that

Bu + Af̃(u) ≤ Bu + AM̃u = (B + A(I−A)−1B)u

= (I−A)−1Bu = M̃u,

which implies that

ρku1 + ...+ ρkuk + ρkf̃k+1(u) + ...+ ρkf̃K(u) ≤ φk. (5.5.21)

Rewriting the inequality (5.5.20) in terms of matrices and combining with
(5.5.21), we obtain

|̃f(u)− p(r)| ≤ (D + εI)d + B|u− r|+ A|̃f(u)− p(r)|, (5.5.22)

D and d being given by (5.5.18) and (5.5.19) respectively. Since (I−A)−1 is
a nonnegative matrix, (5.5.17) immediately follows from (5.5.22). 2

Lemma 5.5.5 There exists a nonnegative constant H1,ν such that

lim
s↓0

H(e1s)− P (e1s)
sνL(1/s)

= (−1)mH1,ν . (5.5.23)

The constant H1,ν = 0 if and only if
∑K

k=1 βk,ν = 0.

Proof. To simplify the notation, denote by rik the kth component of the
vector M̃ie1, put

vi(s) := ((ri1s)νL(1/ri1s), ..., (riKs)νL(1/riKs))T , (5.5.24)

and let vik(s) denote the kth component of vi(s) where k = 1, ...,K, i = 1, 2, ....
By Lemma 5.5.4 it follows that

|̃f (i)(e1s)− p(i)(e1s)| ≤ (I−A)−1(D + εI)vi(s)
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+M̃|̃f (i−1)(e1s)− p(i−1)(e1s)|,

for i = 1, 2, .... Iterating the above relations, we get for i = 1, 2, ...,

|̃f (i)(e1s)− p(i)(e1s)| ≤
i∑

j=1

M̃i−j(I−A)−1(D + εI)vj(s).

Summing the above inequalities yields∑∞
i=1 |̃f (i)(e1s)− p(i)(e1s)|

sνL(1/s)

≤
∞∑
i=1

i∑
j=1

M̃i−j(I−A)−1(D + εI)
vj(s)

sνL(1/s)

=
∞∑

j=1

∞∑
i=j

M̃i−j(I−A)−1(D + εI)
vj(s)

sνL(1/s)

= (I− M̃)−1(I−A)−1(D + εI)
∞∑

j=1

vj(s)
sνL(1/s)

, (5.5.25)

where the last identity follows from (5.7.6) in the Appendix.
Next we prove that the infinite sum

∑∞
i=1 vi(s)/(sνL(1/s)) converges. By

using Potter’s theorem (cf. Theorem 1.5.6 in [12]), it follows from the fact that

lim
i→∞

rik = 0 for k = 1, ...,K that
rν−1
ik L(1/riks)
L(1/s)

converges to 0 uniformly in s

for s > 0 as i→∞. Thus there exists an N0 such that for i ≥ N0, k = 1, ...,K,

vik(s)
sνL(1/s)

≤ rik.

From the definition of vik(s) and rik, we have for k = 1, ...,K, 0 < s < δ where
δ is some positive constant,

∞∑
i=N0

K∑
k=1

vik(s)
sνL(1/s)

≤
∞∑

i=N0

K∑
k=1

rik ≤
∞∑
i=1

K∑
k=1

rik

=
∞∑
i=1

eTM̃ke1 = eT (I− M̃)−1M̃e1 <∞.

Hence, applying the Dominated Convergence Theorem, it follows that

lim
s↓0

H(e1s)− P (e1s)
sνL(1/s)
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=
∞∑
i=1

lim
s↓0

eT (f̃ (i)(e1s)− p(i)(e1s))
sνL(1/s)

= (−1)meT (I− M̃)−1(I−A)−1D
∞∑
i=1

lim
s↓0

vi(s)
sνL(1/s)

= (−1)meT (I− M̃)−1(I−A)−1D
∞∑
i=1

ui <∞,

where
ui := (rν

i1, ..., r
ν
iK), (5.5.26)

and the last identity follows from Lemma 2.3.5. Put

H1,ν = eT (I− M̃)−1(I−A)−1D
∞∑
i=1

ui, (5.5.27)

and subsequently (5.5.23) follows. Noticing that D = 0 if and only if∑K
k=1 βk,ν = 0, we conclude that H1,ν = 0 if and only if

∑K
k=1 βk,ν = 0.

2

2. Nonzero switchover times
Again we wish to prove (5.4.3) for x1(s). As shown in Section 5.3, x1(s) =
F̃1(e1s) where F̃1(·) is given by (5.3.18). Put

C :=


1 0 ... 0 0
1 1 ... 0 0
...

...
...

...
...

1 1 ... 1 0
1 1 ... 1 1

 , G :=


0 1 ... 1 1
0 0 ... 1 1
...

...
...

...
...

0 0 ... 0 1
0 0 ... 0 0

 ,

and subsequently define

f̂ (i)(r) := Cf̃ (i)(r) + Gf̃ (i+1)(r), i = 1, 2, ...,

F̂ (r) :=
∞∑
i=1

K∑
k=1

ln(σk(f̂
(i)
k (r))), (5.5.28)

with f̂
(i)
k (r) being the kth component of f̂ (i)(r) for k = 1, ...,K. So we may

rewrite (5.3.18) as
F̃ (r) = exp(F̂ (r)), (5.5.29)
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where F̂ (r) is given by (5.5.28). To prove (5.4.3), it is sufficient to show that

F̂ (e1s) =
m∑

j=1

F̂1,js
j + (−1)m+1F̂1,νs

νL(1/s) + o(sνL(1/s)), s ↓ 0. (5.5.30)

We shall use similar arguments as in the proof for zero switchover times to
obtain (5.5.30). We have again divided the proof into three steps. In the first
step, we construct a new function P̂ (r) which has a similar structure as F̂ (r).
In the second step, we shall use similar arguments as in the proof of the results
for zero switchover times to show that

P̂ (e1s) =
m∑

j=1

P̂1,js
j + (−1)m+1P̂1,νs

νL(1/s) + o(sνL(1/s)), (5.5.31)

where P̂1,j are some constants for j = 1, ...,m and P̂1,ν ≥ 0. Moreover, P̂1,ν = 0
if and only if

∑K
k=1 σk,ν = 0. In the third step, we verify that

lim
s↓0

F̂ (e1s)− P̂ (e1s)
sνL(1/s)

= (−1)m+1g1,ν , (5.5.32)

where g1,ν ≥ 0. Moreover, g1,ν = 0 if and only if
∑K

k=1(βk,ν + σk,ν) = 0.
Obviously, combining (5.5.31) and (5.5.32) yields (5.5.30) where

F̂1,ν = P̂1,ν + g1,ν , (5.5.33)

with P̂1,ν and g1,ν being given by (5.5.38) and (5.5.39), respectively. Then
applying Lemma 2.3.6, and noting that x1(s) = F̃1(e1s) is the LST of some
nonnegative random variable, Formula (5.4.3) of Theorem 5.4.1 follows from
(5.5.29) and (5.5.30) with

x1,1 = P̂1,1, x1,ν = F̂1,ν , (5.5.34)

P̂1,1 and F̂1,ν being given by (5.5.36) and (5.5.33), respectively.

Step 1: Define:

p̂(i)(r) := Cp(i)(r) + Gp(i+1)(r), i = 1, 2, ..., (5.5.35)

P̂ (r) :=
∞∑
i=1

K∑
k=1

ln(σk(p̂
(i)
k (r))),
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p(i)(·) being given by (5.5.7) and p̂(i)
k (·) denoting the kth component of p̂(i)(·).

By Lemma 5.5.1, we have

p̂(i)(e1s) = Cp(i)(e1s) + Gp(i+1)(e1s)

≤ CM̃
i
e1s+ GM̃

i+1
e1s

= (C + GM̃)M̃
i
e1s,

where the above inequality follows from (5.5.9). Using the fact that ln(σk(x))
< σkx for small x, one can easily prove that P̂ (r) is well-defined in some
neighborhood of the origin. It is not difficult to see that

lim
s↓0

d
ds

p̂(i)(e1s) = (C + GM̃)M̃
i
e1.

It follows that
P̂1,1 = eTH(C + GM̃)(I− M̃)

−1
M̃e1. (5.5.36)

Step 2: We prove (5.5.31) by using similar arguments as in the proof for the
case with zero switchover times. We omit some of the details here. First, by
using Lemma 2.3.6, we may write

ln(σk(x)) =
m∑

j=1

ak,jx
j + (−1)m+1ak,νx

νL(1/x) + o(xνL(1/x)), x ↓ 0,

with ak,ν = σk,ν . Applying similar arguments as in the proof of Lemma 5.5.3,
one can easily verify that

A(s) :=
∞∑
i=1

K∑
k=1

m∑
j=1

ak,j(p̂
(i)
k (e1s))j =

∞∑
j=1

Ajs
j . (5.5.37)

For any ε > 0, there exists a δ > 0 such that for 0 < s < δ,

|P̂ (e1s)−A(s)|
sνL(1/s)

≤
∞∑
i=1

K∑
k=1

(σk,ν + ε)(p̂(i)
k (e1s))νL(1/(p̂(i)

k (e1s)))
sνL(1/s)

≤
∞∑
i=1

K∑
k=1

(σk,ν + ε)(αiks)νL(1/αiks)
sνL(1/s)

<∞,

αik denoting the kth component of the vector (C + GM̃)M̃
i
e1. By the Dom-

inated Convergence Theorem, it can be shown that

lim
s↓0

P̂ (e1s)−A(s)
sνL(1/s)

= (−1)m+1P̂1,ν , (5.5.38)
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with

P̂1,ν =
∞∑
i=1

K∑
k=1

σk,να
ν
ik.

Notice that P̂1,ν = 0 if and only if
∑K

k=1 σk,ν = 0. Combining (5.5.38) and
(5.5.37) leads to (5.5.31).

Step 3: The proof of (5.5.32) is similar to that of Lemma 5.5.5. Here we omit
some of the details. For ease of notation, define

H := diag(σ1, ..., σK).

By the definitions of F̂ (e1s) and P̂ (e1s), we have

|F̂ (e1s)− P̂ (e1s)|

=
∞∑
i=1

K∑
k=1

| ln(σk(p̂
(i)
k (e1s)))− ln(σk(f̂

(i)
k (e1s)))|

≤
∞∑
i=1

K∑
k=1

σk|p̂
(i)
k (e1s)− f̂

(i)
k (e1s)|

≤
∞∑
i=1

K∑
k=1

(σk

k∑
j=1

|f̃ (i)
k (e1s)− p

(i)
k (e1s)|

+σk

K∑
j=k+1

|f̃ (i+1)
k (e1s)− p

(i+1)
k (e1s)|)

=
∞∑
i=1

eTH(C|̃f (i)(e1s)− p(i)(e1s)|+ G|̃f (i+1)(e1s)− p(i+1)(e1s)|)

≤ eTH(C + G)
∞∑
i=1

|̃f (i)(e1s)− p(i)(e1s)|,

which in combination with (5.5.25) yields

|F̂ (e1s)− P̂ (e1s)|
sνL(1/s)

≤ eTH(C + G)(I− M̃)−1(I−A)−1(D + εI)
∞∑
i=1

vj(s)
sνL(1/s)

<∞,
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where vi(s) is defined by (5.5.24). Again, using the Dominated Convergence
Theorem, we obtain

lim
s↓0

F̂ (e1s)− P̂ (e1s)
sνL(1/s)

= (−1)m+1g1,ν ,

with

g1,ν = eTH(C + GM̃)(I− M̃)
−1

(I−A)−1D
∞∑
i=1

ui, (5.5.39)

where ui is given in (5.5.26). Notice that H = D = 0 if and only if
∑K

k=1(βk,ν+
σk,ν) = 0, thus g1,ν = 0 if and only if

∑K
k=1(βk,ν + σk,ν) = 0.

5.6 Summary

In this chapter we have investigated the tail behavior of the waiting time distri-
butions in cyclic polling systems with gated or exhaustive service. Under the
assumption that at least one of the service and/or switchover time distribu-
tions has a regularly varying tail, the waiting time distributions at all queues
are shown to be regularly varying of index one higher than the heaviest tail
of the service and switchover time distributions. This result gives important
insight into the effect of heavy-tailed service or switchover time distributions
on the performance of a large class of polling systems. We expect the same
result to be true for non-cyclic polling systems, and for a larger class of arrival
processes and service disciplines. For the class of service disciplines satisfying
Property 5.3.1, it may be possible to prove this along similar lines as in the
present chapter. For almost all polling systems in which the service discipline
in at least one queue does not satisfy Property 5.3.1, no explicit expression
for the waiting time LSTs is known, so that the approach via Lemma 2.3.4
does not work. An exception is provided by the 2-queue polling system with
exhaustive service at Q1 and 1-limited service at Q2, as studied in the previous
chapter.

5.7 Appendix: On the first-moment matrix

Consider the mean matrix M = (mkj : k, j = 1, ...,K), where

mkj :=
∂fk

∂zj
(1, ..., 1),
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is the mean number of type-j customers that are direct descendants of a single
type-k customer. As shown in [90], the matrix M plays an essential role in
proving that ρ < 1 is sufficient for ergodicity in the case of gated or exhaustive
service. In this appendix we shall derive some properties of the matrix M̃ =
(m̃kj : k, j = 1, ...,K), where

m̃kj :=
∂f̃k

∂rj
(0, ..., 0). (5.7.1)

The following lemma relates the eigenvalues and eigenvectors of M and M̃.

Lemma 5.7.1 The eigenvalues of M and M̃ are identical. Moreover, if v =
(v1, ..., vK)T is a right eigenvector of M w.r.t. eigenvalue a, then u = (λ1v1, ...,
λkvK)T is a right eigenvector of M̃ w.r.t. a.

Proof. Using the fact that

m̃kj =
λk

λj
mkj , (5.7.2)

which follows from the relation (see (5.3.4), (5.3.12) and (5.3.13)), we obtain

f̃k(r) = λk(1− fk(z)).

2

Furthermore, we can derive an explicit formula for M̃. It follows from
(5.3.13) that

M̃ = B + AM̃, (5.7.3)

where

A =



0 ∂h̃1
∂r2

(0) ... ∂h̃1
∂rK−1

(0) ∂h̃1
∂rK

(0)

0 0 ... ∂h̃2
∂rK−1

(0) ∂h̃2
∂rK

(0)
...

... ...
...

...

0 0 ... 0 ∂h̃K−1

∂rK
(0)

0 0 ... 0 0


, (5.7.4)

B =



∂h̃1
∂r1

(0) 0 ... 0 0
∂h̃2
∂r1

(0) ∂h̃2
∂r2

(0) ... 0 0
...

... ...
...

...
∂h̃K−1

∂r1
(0) ∂h̃K−1

∂r2
(0) ...

∂h̃K−1

∂rK−1
(0) 0

∂h̃K
∂r1

(0) ∂h̃K
∂r2

(0) ... ∂h̃K
∂rK−1

(0) ∂h̃K
∂rK

(0)


. (5.7.5)
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For the case of gated service at all queues, A and B are given by

Agat =


0 ρ1 ... ρ1 ρ1

0 0 ... ρ2 ρ2
...

... ...
...

...
0 0 ... 0 ρK−1

0 0 ... 0 0

 ,

Bgat =


ρ1 0 ... 0 0
ρ2 ρ2 ... 0 0
...

... ...
...

...
ρK−1 ρK−1 ... ρK−1 0
ρK ρK ... ρK ρK

 ,

and for the case of exhaustive service at all queues, A and B are given by

Aexh =


0 ρ1

1−ρ1
... ρ1

1−ρ1

ρ1

1−ρ1

0 0 ... ρ2

1−ρ2

ρ2

1−ρ2

...
... ...

...
...

0 0 ... 0 ρK−1

1−ρK−1

0 0 ... 0 0

 ,

Bexh =


0 0 ... 0 0
ρ2

1−ρ2
0 ... 0 0

...
... ...

...
...

ρK−1

1−ρK−1

ρK−1

1−ρK−1
... 0 0

ρK
1−ρK

ρK
1−ρK

... ρK
1−ρK

0

 .

From Equation (5.7.3) we get that

M̃ = (I−A)−1B.

If ρ < 1 then the largest eigenvalue amax < 1 (see [90]) and it can be readily
shown that limn→∞ M̃n = 0. Thus, applying Lemma B.1 in [97], we have

(I− M̃)−1 =
∞∑
i=0

M̃i, (5.7.6)

which is a nonnegative matrix.



Chapter 6

The M/G/2 queue with
heterogeneous servers

6.1 Introduction

In this chapter we consider a heterogeneous M/G/2 queue. Customers arrive
according to a Poisson process with rate λ. The queueing discipline is FCFS,
where we make the additional convention that when a customer arrives and
there is no other customer in the system, he receives service from server 1
immediately. The service time distribution of a customer depends on the server
who serves him. The service times at server 1 are exponentially distributed
with rate µ, and at server 2 they have a general distribution B(·) with mean β.
It is easily verified that λ < µ+1/β is necessary and sufficient for stability. In
the sequel, we assume this stability condition to hold. In the present chapter,
we are interested in the steady-state waiting time distribution of the above-
describedM/G/2 queue, in particular in its asymptotic behavior. This chapter
is based on Boxma, Deng and Zwart [27].

For the classical G/G/1 queue, it is well-known [34] that the waiting time
tail is regularly varying of index 1 − ν if (and only if) the service time tail is
regularly varying of index −ν. In fact, Pakes [85] establishes Relation (1.4.1)
for the larger class of subexponential residual service times.

The tail behavior of the waiting time in multi-server queues with heavy-
tailed service times is an almost completely open problem. Recent results
suggest that the waiting time tail may not always be as heavy as the tail
of the residual service time. For example, Scheller-Wolf and Sigman [95, 96]
indicate that the tail of waiting time distribution may be less heavy than that
of the residual service time if the offered traffic to the k-server queue is less
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than k− 1. Bounds for the waiting time tail, which were partially proven and
partially conjectured in [112], also point in the direction of different waiting
time tail behavior for different regimes of the traffic load ρ. Foss and Korshunov
[53] derive asymptotic lower and upper bounds for the waiting time distribution
in the G/G/2 queue with heavy-tailed service times at both servers. Again,
the crucial role of the traffic load is striking.

In Chapter 4 of his PhD thesis, Daniëls [41] obtains different tail behavior
(of the buffer content distribution) for different traffic loads in a particular
multi-server queue. He considers a discrete-time DBMAP/D/k queue with a
mix of short-range and long-range dependent traffic. If the mean arrival rate
of the short-range dependent background traffic is less than k − 1, then the
tail probabilities decay exponentially; if that mean arrival rate is larger than
k − 1, then they decay according to a power law. Dumas and Simonian [48]
describe a similar phenomenon for fluid queues. The present study confirms
this kind of behavior for a two-server queue.

For the two-server queue with one exponential server and one server with
regularly varying service time distribution, we are able to prove the following:
The waiting time tail is semi-exponential [3] if the arrival rate λ is less than
the service rate µ of the exponential server (so the exponential server would
be able to handle all offered traffic on his own); and the waiting time tail is
regularly varying of index 1− ν if λ > µ. More precisely, our main asymptotic
results are the following. If the service time at the general server is regularly
varying of index −ν, i.e., (2.3.1) holds, then for t→∞:
(i) if λ > µ:

P(W > t) ∼ C1t
1−νL(t), (6.1.1)

C1 being specified in Theorem 6.5.1;
(ii) if λ < µ:

P(W > t) ∼ C2t
1−νe(λ−µ)t, (6.1.2)

C2 being specified in Theorem 6.5.2.
Besides proving (6.1.1) and (6.1.2), we also provide heuristics in both cases

that explain and interpret the occurrence of each term. These heuristics might
be of independent interest as they suggest ways to generalize the above results
and to generate bounds in more complicated systems.

For the moment it suffices to provide a global interpretation of the two
different asymptotic regimes. In Case (i) the exponential server is not able to
handle all the traffic on its own. The most likely way for a long waiting time
to occur is due to a long service time at server 2 which drives the system into
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temporary instability. Below (6.5.11) we argue that

P(W > t) ∼ C∗
1P
(
Bres >

λt

λ− µ

)
.

In Case (ii) the exponential server is able to handle all the traffic on its own.
The most likely way for a long waiting time to occur is to arrive during a long
service time at server 2 which causes the system to behave as anM/M/1 queue;
moreover, this service time must be long enough for the deviant behavior of
an M/M/1 queue to occur at server 1. Below (6.5.25) we argue that, with
obvious notation,

P(W > t) ∼ C∗
2P
(
Bpast >

λt

µ− λ
,Bres > t

)
P(WM/M/1 > t),

where Bpast and Bres refer to the same B, thus they are dependent.
The remainder of this chapter is organized as follows. In Section 6.2 we de-

rive an expression for the steady-state distribution of the number of customers
in the system. This expression still involves an unknown function Q1(x), which
is related to the probability of having one customer in the system, at server 2.
We express the waiting time distribution in terms of the former distribution
in Section 6.3. In Section 6.4 we show how Q1(x) can be determined in case
the service time distribution at server 2 has a rational LST. Unfortunately,
we are not able to determine Q1(x) in the general case, and regularly varying
distributions do not have a rational LST. However, in Section 6.5 we show
that, in the latter case, the expression for the waiting time LST, which was
obtained in Section 6.2, is still sufficient for determining the tail behavior of
the waiting time distribution. We provide explicit asymptotics for this tail
behavior, distinguishing between λ < µ and λ > µ.

6.2 The number of customers in the system

The goal of this section is to compute the generating function of the steady-
state number of customers in the system. To accomplish this goal, we use
the supplementary variable technique. We refer to Section II.6.2 in [36] for an
application of this technique to the M/G/1 queue. We consider the process
(Xt, ζt)t≥0, with Xt the number of customers at time t and ζt the past service
time of the customer in service at the second server. The second server is idle
at time t if and only if ζt = 0. It is easy to see that (Xt, ζt)t≥0 is a Markov
process. To be able to apply the supplementary variable technique, it will be
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assumed that the service time distribution B(t) is absolutely continuous. Also,
we assume that X0 = 0. Define for t ≥ 0:

R0,t = P(Xt = 0),

R1,t = P(Xt = 1, server 2 idle),

Rj,t(u)du = P(Xt = j, u ≤ ζt < u+ du), u > 0, j = 1, 2, ... .

As stated in Section 6.1, it is assumed that the stability condition λ < µ+1/β
is satisfied.

Before we proceed, we introduce some additional notation. Let β(s) be
the LST of the general service time distribution. We also need the LST of the
residual service time Bres, which is given by

βe(s) :=
1− β(s)
βs

, Re s ≥ 0. (6.2.1)

Denote by X the steady-state number of customers in the system and by ζ
the steady-state past service time of the customer in service at server 2. If the
system is stable, then R0,t, R1,t and Rj,t(u) converge for t→∞ to R0, R1 and
Rj(u), which correspond to the distribution of (X, ζ). It can easily be verified
that R0, R1 and Rj(u) satisfy the following differential equations: For u > 0,

λR0 = µR1 +
∫ ∞

0

R1(x)
1−B(x)

dB(x),

(µ+ λ)R1 = λR0 +
∫ ∞

0

R2(x)
1−B(x)

dB(x),

R′
1(u) = −

(
λ+

B′(u)
1−B(u)

)
R1(u) + µR2(u),

R′
j(u) = −

(
λ+

B′(u)
1−B(u)

)
Rj(u) + λRj−1(u) + µRj+1(u),

j = 2, 3, ...,

R1(0+) = 0,

R2(0+) =
∫ ∞

0

R3(x)
1−B(x)

dB(x) + λR1,

Rj(0+) =
∫ ∞

0

Rj+1(x)
1−B(x)

dB(x), j ≥ 3.

These equations can be derived in the same way as in the ordinary M/G/1
queue, see Section II.6.2 in [36]. We also transform these differential equations
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in a similar way as in [36]: Define Q0 = R0, Q1 = R1, and for j ≥ 1, u > 0,

Qj(u) =
Rj(u)

1−B(u)
.

Q0, Q1 and Qj(u) satisfy

λQ0 = µQ1 +
∫ ∞

0
Q1(x)dB(x),

(µ+ λ)Q1 = λQ0 +
∫ ∞

0
Q2(x)dB(x),

Q′
1(u) = −λQ1(u) + µQ2(u), u > 0,

Q′
j(u) = −(λ+ µ)Qj(u) + λQj−1(u) + µQj+1(u), j ≥ 2, u > 0,

Q1(0+) = 0,

Q2(0+) =
∫ ∞

0
Q3(x)dB(x) + λQ1,

Qj(0+) =
∫ ∞

0
Qj+1(x)dB(x), j ≥ 3.

Define for 0 ≤ p ≤ max(1, µ/λ), u ≥ 0,

G(p, u) :=
∞∑

j=1

Qj(u)pj ,

f(p) := λ(1− p) + µ

(
1− 1

p

)
.

If µ > λ, then it is not difficult to see that G(p, u) is well-defined for 1 ≤ p <
µ/λ by using similar arguments as in the proof of Theorem 6.5.2 below. From
the last set of differential equations we get

∂

∂u
G(p, u) = µ(p− 1)Q1(u)− f(p)G(p, u), (6.2.2)

which satisfies the following boundary condition,

G(p, 0+) =
1
p

∫ ∞

0
G(p, u)dB(u) + λQ1p

2 − [(µ+ λ)Q1 − λQ0]p

−(λQ0 − µQ1). (6.2.3)

The general solution to (6.2.2) is given by

G(p, u) = e−f(p)u

[
c1(p)− µ(1− p)

∫ u

0
ef(p)xQ1(x)dx

]
, (6.2.4)
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where c1(p) is independent of u. It is easy to see that

c1(p) = G(p, 0+) =
∞∑

j=2

Qj(0+)pj . (6.2.5)

We now derive two different expressions for c1(p) which will be used for the
two respective cases in which f(p) < 0 and f(p) ≥ 0. Subsequently we can get
expressions for G(p, u) which do not contain c1(p).

If 0 < p < min(1, µ/λ), then f(p) < 0 and G(p, u) ≤ G(1, u). From
(6.2.2) we know that G(1, u) is a constant which is not related to u (in fact, its
interpretation is: G(1, u) = 1

βP(X ≥ 1, server 2 busy); notice that the density

of ζ is 1−B(u)
β ). Multiplying by ef(p)u on both sides of (6.2.4) and taking the

limit for u→∞, we obtain

lim
u→∞

[
c1(p)− µ(1− p)

∫ u

0
ef(p)xQ1(x)dx

]
= lim

u→∞
[G(p, u)ef(p)u] = 0,

which implies that, for 0 < p < min(1, µ/λ),

c1(p) = µ(1− p)
∫ ∞

0
ef(p)xQ1(x)dx. (6.2.6)

Substitute (6.2.6) into (6.2.4) to get

G(p, u) = µ(1− p)e−f(p)u

∫ ∞

x=u
ef(p)xQ1(x)dx. (6.2.7)

If min(1, µ/λ) ≤ p ≤ max(1, µ/λ), then f(p) ≥ 0. Substituting (6.2.4) into
(6.2.3), we obtain

c1(p) = λQ1p
2 − [(µ+ λ)Q1 − λQ0]p− (λQ0 − µQ1)

+
c1(p)
p

∫ ∞

0
e−f(p)udB(u)

−µ(1− p)
p

∫ ∞

x=0
ef(p)xQ1(x)

∫ ∞

u=x
e−f(p)udB(u)dx,

which implies that

c1(p) =
1

p− β(f(p))

[
p(1− p)[(µ− λp)Q1 − λQ0]

−µ(1− p)
∫ ∞

x=0
ef(p)xQ1(x)

∫ ∞

u=x
e−f(p)udB(u)dx

]
. (6.2.8)



6.2 The number of customers in the system 113

Using (6.2.1) we may rewrite (6.2.8) as: For min(1, µ/λ) ≤ p ≤ max(1, µ/λ),

c1(p) =
1

1− (λp−µ)β
p βe(f(p))

[
p[(λp− µ)Q1 + λQ0]

+µ
∫ ∞

x=0
ef(p)xQ1(x)

∫ ∞

u=x
e−f(p)udB(u)dx

]
. (6.2.9)

We are now ready to calculate the generating function X(p) := E[pX ] of the
steady-state number of customers in the system. We have

X(p) =
∞∑

j=0

pjP(X = j) = R0 +R1p+
∞∑

j=1

pj

∫ ∞

0
Rj(u)du

= Q0 +Q1p+
∫ ∞

0
G(p, u)(1−B(u))du. (6.2.10)

Recalling that G(1, u) is a constant, from (6.2.10) we can derive that G(1, u) =
(1−Q0 −Q1)/β. For the ease of presentation, put

Q̃1 := P(X = 1, server 1 idle) =
∫ ∞

0
Q1(u)(1−B(u))du. (6.2.11)

Taking p = 1 in (6.2.9) and noting that c1(1) = G(1, u) = (1 − Q0 − Q1)/β,
we get the following equation:

1
β

+ µ− λ =
1
β
Q0 + µQ0 +

1
β
Q1 + µQ̃1. (6.2.12)

If 0 < p < min(1, µ/λ), substitute (6.2.7) into (6.2.10) to get

X(p) = Q0 +Q1p+ µ(1− p)
∫ ∞

u=0
(1−B(u))e−f(p)u

∫ ∞

x=u
ef(p)xQ1(x)dxdu

= Q0 +Q1p+ µ(1− p)
∫ ∞

u=0

∫ ∞

t=u

∫ ∞

x=u
ef(p)(x−u)Q1(x)dxdB(t)du

= Q0 +Q1p+ µ(1− p)
[∫ ∞

t=0

∫ t

x=0

∫ x

u=0
ef(p)(x−u)Q1(x)dudxdB(t)

+
∫ ∞

t=0

∫ ∞

x=t

∫ t

u=0
ef(p)(x−u)Q1(x)dudxdB(t)

]
= Q0 +Q1p−

µ(1− p)
f(p)

[∫ ∞

0
Q1(x)(1−B(x))dx
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−
∫ ∞

0
ef(p)xQ1(x)dx+

∫ ∞

x=0
ef(p)xQ1(x)

∫ x

u=0
e−f(p)udB(u)dx

]
,

which in combination with (6.2.11) and (6.2.15) below leads to

X(p) = Q0 +Q1p−
p

λp− µ

[
µQ̃1 + λQ0p− (µ− λp)pQ1

−µ(1− p)
∫ ∞

x=0
ef(p)xQ1(x)dx

]
. (6.2.13)

If min(1, µ/λ) ≤ p ≤ max(1, µ/λ), substitute (6.2.4) and (6.2.9) into (6.2.10)
to get

X(p) = Q0 +Q1p+ c1(p)
1− β(f(p))

f(p)

−µ(1− p)
∫ ∞

u=0
e−f(p)u(1−B(u))

∫ u

x=0
ef(p)xQ1(x)dxdu

= Q0 +Q1p+ c1(p)
1− β(f(p))

f(p)

−µ(1− p)
f(p)

[∫ ∞

0
Q1(x)(1−B(x))dx

−
∫ ∞

0
ef(p)xQ1(x)

∫ ∞

u=x
e−f(p)udB(u)dx

]
= Q0 +Q1p+

p2β[(λp− µ)Q1 + λQ0]βe(f(p))
p− (λp− µ)ββe(f(p))

+
µp

λp− µ

[
p

p− (λp− µ)ββe(f(p))∫ ∞

x=0
ef(p)xQ1(x)

∫ ∞

u=x
e−f(p)udB(u)dx− Q̃1

]
. (6.2.14)

As we can see, the expressions (6.2.13) and (6.2.14) for X(p) contain an un-
known function Q1(x). Replacing G(p, u) in (6.2.3) by (6.2.7), we derive an
equation for Q1(x) which is given by: For 0 < p < min(1, µ/λ),

µ

∫ ∞

0
ef(p)xQ1(x)dx =

µ

p

∫ ∞

x=0
ef(p)xQ1(x)

∫ x

u=0
e−f(p)udB(u)dx

+(µ− λp)Q1 − λQ0. (6.2.15)

Unfortunately, we are not able to obtain Q1(x), and hence X(p), for the case of
a completely general service time distribution. In case B(·) has a rational LST,
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we can determine X(p) completely; this is done in Section 6.4. In Section 6.5,
in the case of regularly varying B(·), we perform an asymptotic analysis of the
waiting time distribution.

6.3 The waiting time distribution

In this section we establish a link between the waiting time distribution and
the queue length generating function X(p). In order to get an explicit formula
for the LST ω(s) of the waiting time distribution, we introduce the queue
length N which is the number of customers who are waiting in the system,
and its probability generating function N(p) := E[pN ]. By the distributional
form of Little’s law (cf. [60]), ω(s) is related to N(p) as follows:

ω(s) = N(1− s/λ), 0 ≤ s ≤ λ. (6.3.1)

Since N = max(X − 2, 0), it follows that

N(p) = Q0 +Q1 + Q̃1 +
1
p2

[
X(p)−Q0 −Q1p− Q̃1p

]
,

which in combination with (6.3.1) implies

ω(s) = Q0 +Q1 + Q̃1 +
1

(1− s/λ)2
[X(1− s/λ)−Q0

−(1− s/λ)Q1 − (1− s/λ)Q̃1]. (6.3.2)

For the ease of notation, put

f̂(s) := f(1− s/λ) =
s(λ− µ− s)

λ− s
. (6.3.3)

If max(0, λ−µ) < s < λ, then 0 < 1−s/λ < min(1, µ/λ). So we can substitute
(6.2.13) into (6.3.2) to get

ω(s) =
(µ+ s)Q0

λ− µ− s
+

(µ+ s)Q̃1

λ− µ− s
− µs

(λ− s)(λ− µ− s)

∫ ∞

0
ef̂(s)xQ1(x)dx.

(6.3.4)
If min(0, λ−µ) ≤ s ≤ max(0, λ−µ), then min(1, µ/λ) ≤ 1−s/λ ≤ max(1, µ/λ).
Substitute (6.2.14) into (6.3.2) to get

ω(s) = Q0 +Q1 −
µ+ s

λ− µ− s
Q̃1 +

β[(λ− µ− s)Q1 + λQ0]βe(f̂(s))

1− s/λ− (λ− µ− s)ββe(f̂(s))



116 The M/G/2 queue with heterogeneous servers

+
µ

(λ− µ− s)[1− s/λ− (λ− µ− s)ββe(f̂(s))]∫ ∞

x=0
ef̂(s)xQ1(x)

∫ ∞

u=x
e−f̂(s)udB(u)dx. (6.3.5)

The above formulas are quite useful in deriving the asymptotic behavior of the
waiting time distribution in the case that B(t) has a regularly varying tail,
even though they contain an unknown function Q1(x).

6.4 Rational service time distribution

In this section we assume that the service time distribution at server 2 has
a rational LST. Notice that distributions with rational LSTs are light-tailed
instead of heavy-tailed. Suppose β(s) can be written as β(s) = β1(s)

β2(s) where
β1(s) and β2(s) are relatively prime polynomials, the degree of β2(s) being
higher than that of β1(s). Without loss of generality we can write

β2(s) =
n∏

j=1

(s− sj)mj ,

where s1, . . . , sn are distinct, mj ∈ {1, 2, . . . } and Re sj < 0, j = 1, . . . , n
(because β(s) is analytic for Re s ≥ 0). We outline how, in this case of a
rational service time LST, one can obtain the Laplace transform, q1(s) :=∫∞
0 e−sxQ1(x)dx, of Q1(x). This enables the calculation of the LST ω(s) of

the waiting time distribution.

Step 1: Obtaining an expression for q1(−f(p)).
Replace Q1(x) in (6.2.15) by the following representation of the inverse of
q1(s):

Q1(x) =
1

2πi

∫ i∞

−i∞
esxq1(s)ds.

Formula (6.2.15) then becomes, after some interchange of integrals and division
by µ: For 0 < p < min(1, µ/λ),

q1(−f(p)) = −1
p

1
2πi

∫ i∞

−i∞

q1(s)
f(p) + s

β(−s)ds + (1− λ

µ
p)Q1 −

λ

µ
Q0. (6.4.1)

The integral in the righthand side can be handled by observing that all the
poles of its integrand are located in the righthalf plane: −s1, . . . ,−sn, and also
−f(p) > 0 since 0 < p < min(1, µ/λ). Consider the semi-circle with center
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in the origin and radius R in the righthalf plane. Choose R so large that all
n+1 above-mentioned poles are inside the semi-circle. Then the integral along
the line segment from −iR to +iR and then along the semi-circle back to −iR
equals minus the sum of the residues of those poles. Since the integral along
the semi-circle disappears when R → ∞ (remember that the degree of β2(s)
is larger than that of β1(s)), we have:

1
2πi

∫ i∞
−i∞

q1(s)
f(p)+sβ(−s)ds = −q1(−f(p))β(f(p)) +∑n

j=1
(−1)mj

(mj−1)!
dmj−1

damj−1 { q1(a)
f(p)+a

β1(−a)∏
i6=j(−a−si)mi

}|a=−sj . (6.4.2)

Formula (6.4.1) thus reduces to: For 0 < p < min(1, µ/λ),

q1(−f(p)) =

[
1
p

n∑
j=1

(−1)mj−1

(mj − 1)!
dmj−1

damj−1 {
q1(a)

f(p) + a

β1(−a)∏
i6=j(−a− si)mi

}|a=−sj

+(1− λ

µ
p)Q1 −

λ

µ
Q0

]
/

[
1− β(f(p))

p

]
. (6.4.3)

The numerator of (6.4.3) contains
∑n

j=1mj + 2 unknown constants: Q0, Q1,
and the

∑n
j=1mj terms relating to the ith derivative of q1(s) at s = −sj ,

i = 0, . . . ,mj − 1, j = 1, . . . , n.

Step 2: Determining the unknown constants.
Noting that q1(−f(p)) = c1(p)

µ(1−p) = G(p,0+)
µ(1−p) (cf. (6.2.5) and (6.2.6)), it follows by

analytic continuation that the righthand side of (6.4.3) is analytic inside the
unit circle. Let us consider the poles of the denominator of (6.4.3). Multiply
numerator and denominator of the righthand side of (6.4.3) by
p

∑n
i=1 miβ2(f(p)). We will prove that

p
∑n

i=1 miβ2(f(p))(1− β(f(p))
p

) (6.4.4)

has
∑n

i=1mi − 1 different roots inside the unit circle. Remember that f(p) =
λ(1−p)+µ(1−1/p). For any ε > 0, one can easily check that Re f(p) ≥ f(|p|)
for 1 ≤ |p| ≤ 1 + ε, and hence |β(f(p))| ≤ |β(Re f(p))| ≤ |β(f(|p|))|. For p
such that |p| = 1 + ε we then have:

|p| > |β(f(|p|))| ≥ |β(f(p))|,

the inequality sign holding because λ < µ+ 1/β (the ergodicity condition).
The resulting inequality |p| > |β(f(p))| is equivalent with: For |p| = 1 + ε,

|p
∑n

i=1 miβ2(f(p))| > |p
∑n

i=1 mi−1β1(f(p))|.
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Notice that the multiplication by suitable powers of p has led to functions that
are analytic inside |p| = 1+ε. Application of Rouché’s theorem (cf. Titchmarsh
[107]) now implies that p

∑n
i=1 miβ2(f(p)) (1− β(f(p))

p ) has the same number of
zeros as p

∑n
i=1 miβ2(f(p)) inside the circle |p| = 1 + ε.

We will prove that the latter number of zeros is
∑n

i=1mi; observe that there
is one zero p = 1, but we need the

∑n
i=1mi − 1 zeros inside the unit circle.

Consider

p
∑n

i=1 miβ2(f(p)) =
n∏

j=1

(λp(1− p) + µ(p− 1)− psj)mj .

Each factor λp(1−p)+µ(p−1)−psj has exactly one zero inside the unit circle,
and one zero outside of it. This can be seen, e.g., by another application of
Rouché’s theorem. In fact, comparison with the expression for the LST of
the busy period P of an M/M/1 queue with arrival rate λ and service rate µ
(λ < µ) reveals that the zero inside the unit circle is E[esjP ].

The analyticity of q1(−f(p)) inside the unit circle implies that the∑n
j=1mj−1 zeros of the denominator of (6.4.3) inside the unit circle should also

be zeros of the numerator. This yields
∑
mi−1 linear equations. As remarked

at the end of Step 1, we have
∑
mi + 2 unknowns. Two additional equations

result from the fact that p = 0 is a double root of the righthand side of (6.4.3)
which follows from the observation that (see (6.2.5)) c1(0) = 0 and c′1(0) = 0.
Noticing that Q̃1 can be represented by a linear combination of the

∑
mi

terms which relate to the ith derivative of q1(s) at s = −sj , i = 0, . . . ,mj − 1,
j = 1, . . . , n, the final equation is provided by (6.2.12). Solution of the resulting∑
mi+2 linear equations yields the

∑
mi+2 unknowns, and finally q1(−f(p)).

Once q1(−f(p)) and hence c1(p) = µ(1− p)q1(−f(p)) have been obtained, the
generating function X(p) of the number of customers follows from (6.2.13) and
(6.2.14) and the waiting time LST follows from (6.3.4). Note that (6.3.4) and
(6.3.5) are equivalent when the service time at server 2 has a rational LST.

The Erlang-n and hyperexponential distributions are examples of distri-
butions with rational LST. In the special case that B(t) = 1 − e−t/β, (6.4.4)
reduces to (p− 1)(µ+ 1/β − λp), which does not have a zero in |p| < 1. The
numerator of the righthand side of (6.4.3) reduces to

− Q̃1/β

pf(p) + p/β
+ (1− λ

µ
p)Q1 −

λ

µ
Q0.

Noting that p = 0 is a double root of this function, it follows that

Q̃1

µβ
+Q1 −

λ

µ
Q0 = 0,
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(λ+ µ+ 1/β)Q̃1

µβ
− λQ1 = 0.

Combining the above two equations and (6.2.12) leads to

Q1 =
λQ0(λ+ µ+ 1/β)
µ(2λ+ µ+ 1/β)

,

Q̃1 =
λ2βQ0

2λ+ µ+ 1/β
,

Q0 =
µ(2λ+ µ+ 1/β)(1− λ

µ+1/β )

λβ[λ(µ+ 1/β) + 1/β2 + µ/β] + µ(1− λ
µ+1/β )(2λ+ µ+ 1/β)

.

Remark 6.4.1 In [73] Knessl et al. also study the M/G/2 queue with hetero-
geneous servers. Using a supplementary variable approach, they derive integral
equations for the joint steady-state distribution of numbers of customers and
elapsed service times. Their integral equations hold for general service time
distributions. But they can only construct the solution of these equations
for several mixtures of exponential, Erlang and hyperexponential service time
distributions.

6.5 Main asymptotic results

In this section we present our main results: the asymptotic behavior of the
waiting time distribution under the assumption that B(t) has a regularly vary-
ing tail. First of all, it is useful to recall that Abate, Choudhury and Whitt
[1] and Abate and Whitt [3] divide probability distributions on the positive
halfline into three classes according to the rightmost singularity of the LST and
the value of the LST at this singularity. Let G(t) be a probability distribution
function with LST γ(s) and let −s∗ be the rightmost singularity of γ(s), with
−s∗ = −∞ if γ(s) is analytic everywhere. In this setting G(t) and its LST
γ(s) are classified as follows:

class I : s∗ > 0 and γ(−s∗) = ∞,
class II : s∗ > 0 and 1 < γ(−s∗) <∞,
class III : s∗ = 0 and γ(−s∗) = 1.

As indicated in [1, 3], class-I distributions are the ‘well behaved’ distributions
and class-III distributions are the long-tailed distributions. Class-II distribu-
tions are called semi-exponential distributions, because they are dominated
by an exponential, i.e., limt→∞ eαt(1 − G(t)) = 0 for all real α < s∗. Since
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γ(−s∗) <∞, the rightmost singularity −s∗ is necessarily a branch point singu-
larity, not a pole (note that −s∗ can still be a branch point when G is in class
I). A typical example is the busy period distribution P (·) in the stationary
M/M/1 queue, which has the following asymptotic behavior:

1− P (t) ∼ a1t
−3/2e−b1t, t→∞,

where a1, b1 > 0, cf. (II.2.33) in [36]. For more discussions of class I, II and
III, see [1, 3].

The results in this section show that, when 1 − B(t) is regularly varying,
the waiting time distribution W (t) can be in all classes considered above. In
particular, we show that W (t) belongs to

• class I if λ < µ and β2 = ∞,

• class II if λ < µ and β2 <∞,

• class III if λ > µ.

Next, we consider the cases λ > µ and λ < µ. In both cases, we analyze the
tail 1 −W (t) of the waiting time distribution, using the expression for ω(s)
developed in Section 6.2 and an appropriate Tauberian theorem. In the case
λ > µ we have s∗ = 0 and apply Lemma 2.3.4. The case λ < µ is more intricate
and here we apply a theorem of Sutton (cf. [101]).

For convenience, we provide the theorem of Sutton [101] in the following
lemma. We need to consider the Laplace transform φ(s) of some positive
function g(t) (t ≥ 0), e.g.,

φ(s) =
∫ ∞

0
e−stg(t)dt, Re s ≥ a,

for s = x + iy in the complex plane. Let φ(s)/s = ψ(s). Then the result in
[101] is as follows.

Lemma 6.5.1 If
(i) ψ(s) is analytic for x ≥ a− δ (δ > 0), except at k points s1, ..., sj , ..., sk on
x = a;
(ii) near each such point sj, we have

(s− sj)ψ(s) =
∞∑

n=0

anj(s− sj)n + (s− sj)αj

∞∑
n=0

bnj(s− sj)n,

where 0 < αj < 1, and the series converges for

|s− sj | < r (r > 0);
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(iii) ψ(s) → 0 as y → ±∞, uniformly in x for a − δ ≤ x ≤ c (c > a), and in
such a manner that

∫
|ψ(s)|dy converges at y = ±∞,

then, for t > 0,

g(t) ∼
k∑

j=1

esjt

(
a0j +

∞∑
n=0

(−1)n bnj

Γ(1− n− αj)
t−αj−n

)
.

The regime λ > µ

When λ > µ, the exponential server alone cannot cope with all the traffic: The
second server is necessary for stability of the system. This makes it plausible
that the heavy-tailed service times at the second server give rise to a heavy-
tailed waiting time. In fact, we have:

Theorem 6.5.1 Suppose that λ > µ and

1−B(t) ∼ t−νL(t), t→∞.

ν ∈ (m,m+ 1) (m ∈ N) and L(t) is a slowly varying function. Then

1−W (t) ∼ 1−Q0 −Q1

(ν − 1)(1− λβ + µβ)β

(
λ− µ

λ

)ν−1

t1−νL(t), t→∞.

Proof. By using Lemma 2.3.4, we have

β(s) = 1 +
m∑

i=1

(−1)i bi
i!
si + (−1)m+1Γ(1− ν)sνL(1/s) + o(sνL(1/s)), (6.5.1)

for s ↓ 0, where bi (i = 1, ...,m) stands for the ith moment of the service time
and Γ(·) is the Gamma function. Remember that b1 = β. Again, by using
Lemma 2.3.4, it is sufficient to prove that ω(s) can be written as

ω(s) = 1 +
m−1∑
i=1

(−1)idis
i

+(−1)m Γ(1− ν)(1−Q0 −Q1)
(1− λβ + µβ)β

(
λ− µ

λ

)ν−1

sν−1L(1/s)

+o(sν−1L(1/s)), s ↓ 0, (6.5.2)
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where di > 0 for i = 1, ...,m − 1. For 0 ≤ s ≤ λ − µ, ω(s) is given by (6.3.5).
The expression (6.3.5) contains the function

q̂1(s) :=
∫ ∞

x=0
ef̂(s)xQ1(x)

∫ ∞

u=x
e−f̂(s)udB(u)dx

of which the asymptotic expansion in the neighborhood of the origin is not
known. From (6.2.9), we observe that q̂1(s) for 0 < s < λ−µ can be expressed

in terms of c1(
µ−f̂(s)+s

λ ) and β(f̂(s)). We will analyze the behavior of the latter
functions in the origin. Taking p = 1− s/λ in (6.2.9), we obtain

c1(1− s/λ) =
(1− s/λ)[(λ− µ− s)Q1 + λQ0] + µq̂1(s)

1− (λ−µ−s)β
1−s/λ βe(f̂(s))

. (6.5.3)

For s ↓ 0, there exists an s1 = s1(s) ↑ λ−µ such that f̂(s) = f̂(s1) where f̂(s)
is given by (6.3.3). It is not difficult to see that s1 = λ− µ+ f̂(s)− s. Using
(6.5.3), we may write, for 0 ≤ s ≤ λ− µ,

q̂1(s) =
1
µ
c1(1− s1/λ)

[
1− (λ− µ− s1)β

1− s1/λ
βe(f̂(s))

]
− 1
µ

(1− s1/λ)[(λ− µ− s1)Q1 + λQ0]

=
1
µ
c1(

µ− f̂(s) + s

λ
)

[
1− βλ(s− f̂(s))βe(f̂(s))

µ+ s− f̂(s)

]

−µ− f̂(s) + s

λµ
[(s− f̂(s))Q1 + λQ0]. (6.5.4)

Then, replacing q̂1(s) in the last term of (6.3.5) by the expression in (6.5.4)
gives, for 0 ≤ s ≤ λ− µ,

ω(s) = Q0 +Q1 −
µ+ s

λ− µ− s
Q̃1 +

β[(λ− µ− s)Q1 + λQ0]βe(f̂(s))

1− s/λ− (λ− µ− s)ββe(f̂(s))

+
1

(λ− µ− s)[1− s/λ− (λ− µ− s)ββe(f̂(s))][
c1(

µ− f̂(s) + s

λ
)

(
1− βλ(s− f̂(s))βe(f̂(s))

µ+ s− f̂(s)

)

− 1
λ

(µ− f̂(s) + s)[(s− f̂(s))Q1 + λQ0]

]
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= Q0 +Q1 −
µ+ s

λ− µ− s
Q̃1

+
1

(λ− µ− s)[1− s/λ− (λ− µ− s)ββe(f̂(s))][
c1(

µ− f̂(s) + s

λ
)− 1

λ
(µ− f̂(s) + s)[(s− f̂(s))Q1 + λQ0]

+
(

(λ− µ− s)[(λ− µ− s)Q1 + λQ0]β

−βλ(s− f̂(s))

µ− f̂(s) + s
c1(

µ− f̂(s) + s

λ
)
)
βe(f̂(s))

]
. (6.5.5)

Letting s = 0 in (6.5.4), the lefthand side is equal to Q̃1. Therefore, we get

c1(
µ

λ
) = µ(Q̃1 +Q0). (6.5.6)

Since c1(p) is well-defined for |p| ≤ 1, the Taylor expansion of c1(p) in the
neighborhood of µ/λ exists which is given as follows:

c1(
µ+ s

λ
) = µ(Q̃1 +Q0) +

∞∑
i=1

cµ/λ,is
i, |s| < λ− µ,

where cµ/λ,i are constants for i = 1, 2, .... Because f̂(s) also has a Taylor
expansion in the neighborhood of the origin and f̂(0) = 0, we may write

c1(
µ+ s− f̂(s)

λ
) = µ(Q̃1 +Q0) +

∞∑
i=1

c̃µ/λ,is
i, for |s| < δ, (6.5.7)

where δ is some positive constant and c̃µ/λ,i are all constants for i = 1, 2, ....
By (6.2.1) and (6.5.1), we have for s ↓ 0:

βe(s) = 1 +
m−1∑
i=1

(−1)i bi+1

(i+ 1)!β
si + (−1)m Γ(1− ν)

β
sν−1L(1/s)

+o(sν−1L(1/s)). (6.5.8)

From (6.5.8) we get

1

(λ− µ− s)[1− s/λ− (λ− µ− s)ββe(f̂(s))]
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=
1

(λ− µ)[1− (λ− µ)β]
+ g1(s)s

+(−1)m Γ(1− ν)
(1 + µβ − λβ)2

(
λ− µ

λ

)ν−1

sν−1L(1/s)

+o(sν−1L(1/s)), s ↓ 0, (6.5.9)

and [
c1(

µ− f̂(s) + s

λ
)− 1

λ
(µ− f̂(s) + s)[(s− f̂(s))Q1 + λQ0]

+
(

(λ− µ− s)[(λ− µ− s)Q1 + λQ0]β

−βλ(s− f̂(s))

µ− f̂(s) + s
c1(

µ− f̂(s) + s

λ
)
)
βe(f̂(s))

]
= µQ̃1 + (λ− µ)(λQ1 − µQ1 + λQ0)β + (−1)mΓ(1− ν)(λ− µ)

(λQ1 − µQ1 + λQ0)
(
λ− µ

λ

)ν−1

sν−1L(1/s)

+g2(s)s+ o(sν−1L(1/s)), s ↓ 0, (6.5.10)

where gi(s) (i = 1, 2) are polynomials of degree m − 1. In combination with
(6.5.5), (6.5.9), (6.5.10) and (6.5.7), this leads to (6.5.2). 2

An alternative characterization of the tail of W (t) is

P(W > t) ∼ 1−Q0 −Q1

1− λβ + µβ
P
(
Bres >

λt

λ− µ

)
, (6.5.11)

when t→∞.
It is possible to give a heuristic explanation of (6.5.11) by identifying a

possible way (which we claim is the most probable way) for W to become
large. The heuristics given in the following are similar to those in Section 4.3.
They are also based on the preliminary observations in Section 4.3.

First, we make the following two observations:

1. The long-term fraction of customers served by server 2 equals 1−Q0−Q1

λβ
(note that the mean number of customers handled by server 2 per time
unit equals 1−Q0−Q1

β ).
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2. If both servers are busy (i.e. if the waiting time is larger than zero),
then the fraction of customers that go to server 1 equals µ

µ+β−1 = βµ
1+βµ .

Hence, the workload then decreases at rate

λ

µ

βµ

1 + βµ
+ λβ

1
1 + βµ

− 2 < 0.
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Figure 6.1: Evolution of the waiting time.

We now start the heuristic explanation of (6.5.11). For ease of notation, we
introduce ρ := λ/µ. Suppose a customer enters the system in steady state at
time 0 and is served by server 2. This happens with probability 1−Q0−Q1

λβ (due
to PASTA and observation 1). Let the service time of this customer be equal
to B. Assume that the total workload in the system is very small compared
to B. Then, the workload at the second server is roughly equal to B and
the workload at server 1 is approximately 0. This means that all incoming
traffic will be allocated to server 1, implying that the workload at server 1 will
increase linearly with rate ρ− 1 = λ/µ− 1 > 0. As no work is allocated to the
second server, the workload of server 2 decreases with rate 1. This continues
until both workloads are the same, which happens at time B/ρ, see Figure 6.1.
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After time B/ρ, the waiting time decreases at rate 1− λ
µ+β−1 , by observation

2. Hence, at time B
(µ−λ)β+1 the effect of the large customer entering the system

at time 0 has vanished, see again Figure 6.1.
Suppose that we observe the system at time y and that W > t, t large. Our

claim is that the waiting time is large because at time 0, a customer entered the
system and got served by server 2. This customer had a large service time B.
Keeping Figure 6.1 in mind, it is necessary to require t/(ρ−1) < y < B−(1+µβ)t

1+(µ−λ)β
to get W > t. This condition can be rewritten into

B > (1 + µβ)t+ (1 + (µ− λ)β)y, y >
t

ρ− 1
.

To summarize, the event W > t occurs at time y > t/(ρ − 1) if at time 0
a customer enters the system which is served by server 2 and has a service
time B > (1 + µβ)t + (1 + (µ − λ)β)y. By observation 1, the probability
that the customer is served by server 2 equals 1−Q0−Q1

λβ . We conclude, after a
straightforward computation, that

P(W > t) ≈
∫ ∞

t
ρ−1

1−Q0 −Q1

λβ
P(B > (1 + µβ)t+ (1 + (µ− λ)β)y)λdy

=
1−Q0 −Q1

1 + (µ− λ)β
1
β

∫ ∞

ρt
ρ−1

P(B > z)dz,

which is equal to (6.5.11).
The heuristic arguments do not depend on the service time distribution of

server 1 (as long as its tail is lighter than that of the service time distribution
of server 2) and can thus be extended to more general multi-server queues.

In addition to the heuristics given above one may try to find a different
way of explaining (6.5.11), namely by relating the M/G/2 queue to an M/G/1
queue with arrival rate µ−λ and service time B. This might lead to some type
of reduced-load equivalence, as is often the case in fluid queues under the FIFO
[4] or GPS [15] discipline: Those studies show that under certain conditions,
in the asymptotic analysis one can ignore exponentially tailed sources, apart
from reducing the outflow rate by the load offered by those exponential sources.

The regime λ < µ

Now we turn to the case λ < µ. This case is more intricate. If one wants
to apply a similar technique as in the proof of Theorem 6.5.1, one needs to
consider the function es

∗t(1−W (t)) (which has LST ω(s− s∗)). However, this
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function need not be monotone, so a standard Tauberian theorem does not
work.

Instead, we shall use Lemma 6.5.1 (cf. Sutton [101]). This lemma does
not need a monotonicity assumption, but requires other regularity conditions.
In order to meet these conditions, we make the following assumptions on the
general service time distribution B(t); these assumptions are similar to the ones
in Section 2 of [22], see also [21]. It is assumed that β(s) can be represented
as: for Re s ≥ 0,

1− 1− β(s)
βs

= h(s) + sν−1l(s), (6.5.12)

where

(i) m < ν < m+ 1 (m ∈ N);

(ii) h(s) is analytic in s for Re s > −ε0 (ε0 > 0), h(0) = 0;

(iii) l(s) is analytic in s ∈ {s : Re s > 0, or |s| < ε0} (ε0 > 0) and continuous
for Re s ≥ 0, l(0) 6= 0.

The conditions above are satisfied by various distributions, like the distribu-
tions considered in Examples (i) and (ii) in Section 3 of [22]. From Lemma
2.3.4, it is easily shown that the assumptions above imply that 1−B(t) is reg-
ularly varying with index −ν. Note that our assumptions are slightly stronger
than those in [22]. For example, a logarithmic function l(·) in [22] does not
satisfy the above condition.

Here is our main result for the case λ < µ:

Theorem 6.5.2 Suppose λ < µ and (6.5.12) holds. Then

1−W (t) ∼ λl(0)(1−Q0 −Q1)
µΓ(2− ν)

(
µ− λ

µ

)ν−1

t1−νe(λ−µ)t, t→∞. (6.5.13)

Proof. Since λ < µ, the ordinary M/M/1 queue with input rate λ and service
rate µ is stable. Denote by WM/M/1 the waiting time in this ordinary M/M/1
queue. It is easy to see that W is stochastically smaller than WM/M/1, i.e.,

1−W (t) ≤ 1−WM/M/1(t) =
λ

µ
e(λ−µ)t, t > 0, (6.5.14)

which implies that the rightmost singularity is −s∗ ≤ λ− µ.
Next, we shall show that ω(s) is analytic in the region {s : Re s ≥ λ −

µ− δ}\{λ− µ} for some δ > 0. By (6.5.14), we know that ω(s) is an analytic
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function in the region {s : Re s ≥ λ−µ+ ε} for any ε > 0. So it is sufficient to
show that ω(s) is an analytic function for s ∈ {s : λ−µ−δ ≤ Re s < 0}\{λ−µ}.
Noting that βe(s) is analytic in the region {s : Re s > 0 or |s| < ε0}\{0},
we may continue ω(s) as given by (6.3.5) analytically into {s : Re f̂(s) ≥
0 or |f̂(s)| < ε0} ∩ {s : Re s > λ− µ− δ}:

ω(s) = Q0 +Q1 −
µ+ s

λ− µ− s
Q̃1 +

β[(λ− µ− s)Q1 + λQ0]βe(f̂(s))

1− s/λ− (λ− µ− s)ββe(f̂(s))

+
µ
∫∞
x=0 e

f̂(s)xQ1(x)
∫∞
u=x e

−f̂(s)udB(u)dx

(λ− µ− s)[1− s/λ− (λ− µ− s)ββe(f̂(s))]
. (6.5.15)

For s ∈ {s : Re f̂(s) > 0 and Re s < 0}, we have

1− s/λ− (λ− µ− s)ββe(f̂(s)) =
λ− s

s
(β(f̂(s))− 1 + s/λ) 6= 0.

Since [
1− s/λ− (λ− µ− s)ββe(f̂(s))

]
s=λ−µ

= µ/λ > 0,

it follows that there exists an ε1 > 0 such that, for |s− λ+ µ| < ε1, we have

Re [1− s/λ− (λ− µ− s)ββe(f̂(s))] > 0.

Hence, from the analytic continuation of ω(s) as given in (6.5.15), we conclude
that ω(s) is analytic in the region {s : Re f̂(s) > 0 and Re s < 0} ∪ {s :
|s− λ+ µ| < ε1}\{λ− µ}. Taking s = x+ yi, we have

f̂(s) =
x(x− λ+ µ)(x− λ) + (x+ µ)y2

(λ− x)2 + y2
+ i

y3 + y((λ− x)2 − λµ)
(λ− x)2 + y2

.

It is easy to check that there exists a δ > 0 such that {s : λ− µ− δ < Re s <
0} ⊆ {s : Re f̂(s) ≥ 0} ∪ {s : |s− λ+ µ| < ε1 and |f̂(s)| < ε0}.

In order to apply Lemma 6.5.1, we define

ω̃(s) :=
1− ω(s)

s
− 1−Q0 −Q1 − Q̃1

s− λ+ µ
. (6.5.16)

We may write, for t > 0 and some real a,

1−W (t) =
1

2πi

∫ a+i∞

a−i∞
ets

1− ω(s)
s

ds (6.5.17)

=
1

2πi

∫ a+i∞

a−i∞
etsω̃(s)ds+ (1−Q0 −Q1 − Q̃1)e(λ−µ)t.
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By (6.3.5) and (6.5.16), we have

ω̃(s) =
(λ− µ)(1−Q0 −Q1) + µQ̃1

s(λ− µ− s)
− β[(λ− µ− s)Q1 + λQ0]βe(f̂(s))

s[1− s/λ− (λ− µ− s)ββe(f̂(s))]

−
µ
∫∞
x=0 e

f̂(s)xQ1(x)
∫∞
u=x e

−f̂(s)udB(u)dx

s(λ− µ− s)[1− s/λ− (λ− µ− s)ββe(f̂(s))]
. (6.5.18)

It is not difficult to check from (6.5.18) that ω̃(s) → 0 as y → ±∞, uniformly
in x for λ− µ− δ ≤ x ≤ λ−µ

2 , and in such a manner that
∫∞
0 |ω̃(s)|dy <∞.

In the following we shall concentrate on the asymptotic behavior of ω(s)
in the neighborhood of λ − µ. We apply similar arguments as in the proof of
Theorem 6.5.1. In order to simplify the notation, we introduce z := s− λ+µ.
There exists

z1(z) = µ− λ− z + f̂(z + λ− µ)

such that f̂(z + λ − µ) = f̂(z1 + λ − µ). Taking p = 1 − s/λ = (µ − z)/λ in
(6.2.9), we obtain, for |z − µ| < µ,

c1(µ/λ− z/λ) =
1

1 + λβz
µ−zβe(f̂(z + λ− µ))

[
(µ− z)(λQ0 −Q1z)/λ

+µ
∫ ∞

x=0
ef̂(z+λ−µ)xQ1(x)

∫ ∞

u=x
e−f̂(z+λ−µ)udB(u)dx

]
.

Using the above relation we may write, for z ∈ {z : |z| ≤ µ−λ, |λ+ z− f̂(z+
λ− µ)| < µ},∫ ∞

x=0
ef̂(z+λ−µ)xQ1(x)

∫ ∞

u=x
e−f̂(z+λ−µ)udB(u)dx (6.5.19)

=
1
µ
c1(µ/λ− z1/λ)

[
1 +

λβz1
µ− z1

βe(f̂(z1 + λ− µ))
]

− 1
λµ

(µ− z1)(λQ0 −Q1z1)

=
1
µ
c1(1 + z/λ− f̂(z + λ− µ)/λ)[
1 +

(µ− λ− z + f̂(z + λ− µ))λβ

λ+ z − f̂(z + λ− µ)
βe(f̂(z + λ− µ))

]

− 1
λµ

(λ+ z − f̂(z + λ− µ))[λQ0 − (µ− λ− z + f̂(z + λ− µ))Q1].
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Noting that c1(p) is analytic in |p| < µ/λ and c1(1) = (1 − Q0 − Q1)/β1, we
may write: for |p− 1| < (µ− λ)/λ,

c1(p) = (1−Q0 −Q1)/β +
∞∑
i=1

c1,i(p− 1)i,

where c1,i (i = 1, 2, ...) are real constants. Again, since f̂(z+λ−µ) is analytic in

the region |z| < µ−λ and f̂(λ−µ) = 0, it follows that c1(
λ+z−f̂(z+λ−µ)

λ ) is also
analytic in the region {z : |z+(µ−λ−z)z/(µ−z)| < min(λ, µ−λ), |z| < µ−λ}.
Thus, c1(

λ+z−f̂(z+λ−µ)
λ ) can be represented as:

c1(
λ+ z − f̂(z + λ− µ)

λ
) = (1−Q0 −Q1)/β + zc̃1(z), (6.5.20)

where c̃1(z) is analytic in the region |z| < δ for some δ > 0. Substituting
(6.5.19) into (6.5.15) yields, for |z| < δ,

ω(s) = ω(z + λ− µ) (6.5.21)

= Q0 +Q1 + Q̃1 +
(λQ0 −Q1z)ββe(f̂(z + λ− µ))

µ/λ− z/λ+ zββe(f̂(z + λ− µ))
+
λ

z
Q̃1

− c1(1 + z/λ− f̂(z + λ− µ)/λ)

z[µ/λ− z/λ+ βzβe(f̂(z + λ− µ))][
1 +

(µ− λ− z + f̂(z + λ− µ))λβ

λ+ z − f̂(z + λ− µ)
βe(f̂(z + λ− µ))

]

+
(1 + z/λ− f̂(z + λ− µ)/λ)[λQ0 − (µ− λ− z + f̂(z + λ− µ))Q1]

z[µ/λ− z/λ+ βzβe(f̂(z + λ− µ))]
.

By using (6.2.12) and (6.5.20), one can easily check that

A(z) :=
1
z

[
µQ̃1 − Q̃1z + λβQ̃1zβe(f̂(z + λ− µ))

+(1 + z/λ− f̂(z + λ− µ)/λ)

[λQ0 − (µ− λ− z + f̂(z + λ− µ))Q1]

−c1(1 + z/λ− f̂(z + λ− µ)/λ)(
1 +

(µ− λ− z + f̂(z + λ− µ))λβ

λ+ z − f̂(z + λ− µ)
βe(f̂(z + λ− µ))

)]
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= h1(z) + h2(z)βe(f̂(z + λ− µ))

+
λ(µ− λ)(1−Q0 −Q1)

λ+ z − f̂(z + λ− µ)

1− βe(f̂(z + λ− µ))
z

, (6.5.22)

where hj(z) (j = 1, 2) are both analytic functions for |z| < δ1 with δ1 some
positive constant. Combining (6.5.21) and (6.5.22), we obtain, for |z| < δ1,

ω(z + λ− µ)

= Q0 +Q1 + Q̃1 +
A(z) + (λβQ0 − βQ1z)βe(f̂(z + λ− µ))

µ/λ− z/λ+ zββe(f̂(z + λ− µ))

= Q0 +Q1 + Q̃1 +
h1(z) + (h2(z) + λβQ0 − βQ1z)βe(f̂(z + λ− µ))

µ/λ− z/λ+ βzβe(f̂(z + λ− µ))

+
λ(µ− λ)(1−Q0 −Q1)

(λ+ z − f̂(z + λ− µ))[µ/λ− z/λ+ βzβe(f̂(z + λ− µ))]

1− βe(f̂(z + λ− µ))
z

. (6.5.23)

From (6.5.12), (6.5.16) and (6.5.23), we conclude that

ω̃(s) =
∞∑

j=−1

dj(s− λ+ µ)rj , (−1 = r−1 < r0 < r1 < ...), |s− λ+ µ| < δ2,

(6.5.24)
where δ2 is some positive constant. If 1 < ν < 2, we have

r−1 = −1, d−1 = −(1−Q0 −Q1 − Q̃1),

r0 = ν − 2, d0 = l(0)(1−Q0 −Q1)
λ

µ

(
µ− λ

µ

)ν−1

,

where l(·) is given in (6.5.12); if m < ν < m+ 1 (m ≥ 2), we have

r−1 = −1, d−1 = −(1−Q0 −Q1 − Q̃1),

rj = j, j = 0, ...,m− 2,

rm−1 = ν − 2, dm−1 = l(0)(1−Q0 −Q1)
λ

µ

(
µ− λ

µ

)ν−1

.

Therefore, applying Lemma 6.5.1, it follows from (6.5.17) that

1−W (t)− (1−Q0 −Q1 − Q̃1)e(λ−µ)t
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≈ −(1−Q0 −Q1 − Q̃1)e(λ−µ)t +
∞∑

j=0

dj

Γ(−rj)
t−rj−1e(λ−µ)t,

(
1

Γ(−rj)
= 0 for rj = 0, 1, 2, ...

)
,

which implies that (6.5.13) holds. 2

Like in the case λ > µ, we may rewrite (6.5.13) in a different form. A straight-
forward computation (using Lemma 2.3.4 to obtain the tail behavior of the
distribution of Bres from (6.5.12)) shows that, for t→∞,

1−W (t) ∼ (1−Q0 −Q1)P
(
Bres >

µt

µ− λ

)
P(WM/M/1 > t). (6.5.25)

This result has the following intuitive interpretation: A large waiting time W
occurs as a consequence of a large service time at server 2, which causes the
system to behave as an M/M/1 queue. It is well-known from standard large
deviations theory that the most probable way for the workload in an M/M/1
queue (WM/M/1) to get large is in a linear fashion, with a positive drift of
µ/λ − 1 (see e.g. p. 276 of [98]). Hence, the time it takes until WM/M/1 > t
(given that this event occurs) is equal to λt/(µ− λ).

In order for the deviant behavior of the M/M/1 queue to occur, server 2
needs to be occupied (which has probability 1−Q0−Q1) and the past service
time Bpast of the customer must be larger than λt/(µ−λ). Finally, the residual
service time Bres of the customer at server 2 must be larger than t. Standard
renewal theory (see e.g. [36], p. 113) gives

P
(
Bpast >

λt

µ− λ
,Bres > t

)
=

1
β

∫ ∞

λt
µ−λ

+t
P(B > u)du

= P
(
Bres >

µt

µ− λ

)
.

Combining all these observations yields (6.5.25). The above interpretation
shows an interesting feature of this model: Most likely, the waiting time be-
comes very large by the simultaneous occurrence of two events: A very long
waiting time at an exponential server (M/M/1 large deviations) and a large
service time of a heavy-tailed server.
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6.6 Conclusions

The main results of our study of the heterogeneous M/G/2 queue with one
exponential and one general server are: (i) an exact analysis of the queue
length and waiting time distribution if the general service time distribution
has a rational LST, and (ii) an asymptotic analysis of the waiting time tail if
the general service time distribution is regularly varying. The analysis of (i)
may be extended to the case of an M/G/k queue with k − 1 ≥ 2 exponential
servers and one general server with rational service time LST. The exact and
heuristic analysis in (ii) should form just the beginning of an investigation
of waiting time asymptotics in multi-server queues with heavy-tailed service
times. In the two-server case, we have not yet been able to handle the intricate
case λ = µ; another line of research would be to generalize the class of service
time distributions for server 1.

It would be interesting to investigate whether the asymptotic behavior that
was observed in the present chapter holds more generally for a related class
of light-tailed single server queues with a heavy-tailed ‘random environment’,
that affects the behavior of the queue and where the queue may in its turn
affect the random environment. Recent examples of such systems for which
similar results have been obtained as in Section 6.5, can be found in [31] and
[16]. Boxma and Kurkova [31] consider the M/G/1 queue with the special
feature that the speed of the server alternates between two constant values,
where the high-speed periods are exponentially distributed and the low-speed
periods have a general distribution. They present an exact analysis for the
case that the distribution of the low-speed periods has a rational LST and an
asymptotic analysis for the case that the distributions of the low-speed periods
and/or the service times are regularly varying. Borst, Boxma and van Uitert
[16] deal with a system with two heterogeneous traffic classes, one having light-
tailed characteristics, the other one exhibiting heavy-tailed properties. When
both classes are backlogged, the two corresponding queues are each served
according to a certain nominal rate. However, when one queue empties, the
service rate for the other class increases. For this model, they obtain the
asymptotic workload behavior of both traffic classes.





Chapter 7

The tandem queueing system

7.1 Introduction

In this chapter we consider a queueing system consisting of two single-server
queues Q1 and Q2 in series with infinite waiting space at each queue. Cus-
tomers arrive at Q1 according to a Poisson process; Q1 is an ordinary M/G/1
queue. The special feature of the model is that the service time experienced by
any customer at Q2 is exactly equal to the one he experienced at Q1. We are
in particular interested in the asymptotic behavior of the steady-state sojourn
time and workload distributions at Q2, paying special attention to the case of
a heavy-tailed service time distribution. This chapter is based on Boxma and
Deng [25].

The tandem system with identical service times at both nodes is interesting
for some practical communication nets, as it reflects the situation in which
a message retains the same length while being transmitted through various
communication channels. The two-node case has been studied in detail in [18].
A nice feature of this model is, that it allows explicit expressions for the sojourn
time and workload distributions at the second node (without taking recourse
to LSTs). These explicit expressions play an important role in proving the
main results of this chapter.

This chapter studies the tail behavior of key performance measures in tan-
dem queues for general service time distributions. More precisely, we establish
direct relations between the tail behavior of the (residual) service time distri-
bution and the sojourn time and workload distributions at the second queue,
see Theorems 7.4.1 and 7.5.1. By using those relations we obtain asymptotic
results for the sojourn time and workload distributions in the case of a service
time distribution with regularly varying tail, see Theorems 7.4.2 and 7.5.2. In
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particular, both the sojourn time distribution and the workload distribution at
Q2 are shown to be regularly varying of index 1− ν, if the service time distri-
bution is regularly varying of index −ν. Finally a heavy-traffic limit theorem,
see Theorem 7.7.1, is provided. It states that if the service time distribution
is regularly varying of index −ν (1 < ν < 2), and the traffic load ρ ↑ 1, then
the contracted sojourn time ∆(ρ)S(2) converges in distribution for an appropri-
ately chosen coefficient of contraction ∆(ρ), and the limit distribution function

is given by H(t) =
exp(−t1−ν)
1 + νt1−ν

.

We now describe some related work. Vinogradov [109] considers a tandem
system consisting of an arbitrary number of queues, with identical service times
at all queues. He studies the joint steady-state distribution of the sojourn time
at the first queue and the total sojourn time at the remaining queues, in the
case of heavy traffic. He assumes that the service time distribution has a finite
third moment. In [76], a tandem queueing system with identical service times
at both nodes is considered for various service disciplines (e.g., FCFS at the
first queue and LCFS preemptive resume at the second queue) in the case
of heavy traffic. It is assumed that the service time distribution has a finite
second moment.

While the tail behavior of the waiting time, sojourn time and workload
distributions with heavy-tailed service time distributions is presently receiv-
ing considerable attention in performance analysis, hardly any network results
have been obtained. Anantharam [6] and Boxma and Dumas [29] obtain re-
sults regarding the propagation of long-range dependence in networks of (fluid)
queues. Baccelli et al. [9] and Huang and Sigman [63] consider tandem queues
with renewal input process at the first node and independent service times at
the various nodes, which have a subexponential distribution in at least one
node. They obtain several tail results (for details, see Section 1.4).

Heavy-traffic limit theorems for the G/G/1 queue with regularly varying
interarrival and/or service time, which has an infinite variance, have been
obtained in [22], and for the M/G/1 queue with priority classes in Chapter 3.
In the present chapter, such a heavy-traffic limit theorem is obtained for the
sojourn time distribution at Q2.

The remainder of this chapter is organized as follows. Section 7.2 summa-
rizes the notation and the main results from [17, 18, 19] that will be used in the
sequel. In Section 7.3 we obtain tail asymptotics for some performance mea-
sures for Q1. These results are used in Sections 7.4 and 7.5 to obtain the tail
behavior of the sojourn time and workload distributions at Q2, respectively.
In Section 7.6 we derive the asymptotic results in Sections 7.4 and 7.5 by using
heuristic arguments. The tail behavior of the total sojourn time distribution
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is also obtained. In Section 7.7 we derive a heavy-traffic limit theorem for the
sojourn time distribution at Q2, in the case of a regularly varying service time
distribution with infinite or finite variance.

7.2 The basic equations

First we introduce some notation. λ denotes the arrival intensity, B the service
time, B(·) the service time distribution and β(·) the LST of B(·). Note that
when an arbitrary customer arrives at Q1, his service time is a random variable
with distribution B(·); when he enters Q2, his service time is identical to his
previous service time at the first queue. We assume that B(·) has a finite
first moment β and that the traffic load ρ := λβ < 1. This ensures [18] that
steady-state distributions of the sojourn time and workload at both queues
exist.

Let S(j) be a random variable with distribution the steady-state distribu-
tion of the sojourn time at Qj , j = 1, 2; the sojourn time distributions are
denoted by S(j)(·) and their LST by s(j)(·), for j = 1, 2. To introduce an ex-
plicit expression for S(2)(·), we need the following distributions. M(·) denotes
the steady-state distribution function of the supremum, M , of the service times
of customers during a busy period of Q1; G(·) denotes the steady-state dis-
tribution function of the supremum, G, of the service times of an arbitrary
customer C and of those customers who have arrived before C and belong to
the same busy period at Q1 as C. As shown in [17, 19], M(t) is the unique
zero inside the unit circle of the following equation,

M(t) =
∫ t

0
exp(−λ(1−M(t))x)dB(x), t > 0, (7.2.1)

and G(t) is given by

G(t) = (1− ρ)
1−M(t)
1−B(t)

B(t), t > 0. (7.2.2)

Let X be the supremum of the service times of those customers who arrived
before an arbitrary customer C and belong to the same busy period at Q1 as
C; X = 0 if C is the first customer during a busy period. Let X(·) be the
distribution function of X. We have

G(t) = X(t)B(t), t > 0, (7.2.3)

which in combination with (7.2.2) implies that

X(t) = (1− ρ)
1−M(t)
1−B(t)

, t > 0. (7.2.4)
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Y (·) denotes the steady-state distribution function of the amount of work, Y ,
at Q2 at the epoch that a busy cycle at Q1 starts. From Theorem 6.1 in [18]
we know that

Y (t) = exp
(
−λ
∫ ∞

t
(1−M(x))dx

)
, t > 0. (7.2.5)

Now we turn to the sojourn time distributions. The LST of the sojourn time
distribution in the M/G/1 queue Q1 follows immediately from the Pollaczek-
Khintchine formula:

s(1)(s) =
(1− ρ)β(s)

1− ρ1−β(s)
βs

.

A probabilistic reasoning, cf. Theorem 6.4 in [18], shows that the steady-state
sojourn time S(2) at Q2 is the maximum of two independent random variables
with distribution G(·) and Y (·), i.e.: for t > 0,

S(2)(t) = G(t)Y (t) = (1− ρ)
1−M(t)
1−B(t)

B(t) exp
(
−λ
∫ ∞

t
(1−M(x))dx

)
.

(7.2.6)

7.3 Preliminaries

In this section we investigate the asymptotic behavior of 1 − X(t), 1 − G(t)
and 1 − Y (t) for t → ∞. These asymptotics will turn out to play a key role
in the asymptotic behavior of the sojourn time and workload distributions at
Q2, cf. Sections 7.4 and 7.5. In this chapter we assume that service time is
unbounded, i.e., 1−B(t) > 0 for t > 0.

Lemma 7.3.1

1−X(t) = P(X > t) ∼ λ

1− ρ

∫ ∞

t
xdB(x) for t→∞. (7.3.1)

Proof. Rewrite (7.2.1) as

1−M(t) = 1−B(t) +
∫ t

0
(1− exp(−λ(1−M(t))x))dB(x). (7.3.2)

It follows from the fact that X(t) is a proper probability distribution that

lim
t→∞

1−M(t)
1−B(t)

=
1

1− ρ
, (7.3.3)
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cf. (7.2.4). This implies that

lim
t→∞

t(1−M(t)) = 0,

since limt→∞ t(1−B(t)) = 0, which follows from the fact that B(·) has a finite
first moment. Hence, for any 0 < ε < 1, if t is sufficiently large, then for
0 < x < t,

λ(1−M(t))x− (1 + ε)
λ2

2
(1−M(t))2x2

< 1− exp(−λ(1−M(t))x)

< λ(1−M(t))x− (1− ε)
λ2

2
(1−M(t))2x2. (7.3.4)

For the ease of presentation, we define

F (t) =
λ2(1−M(t))2

2(1−B(t))

∫ t

0
x2dB(x). (7.3.5)

Dividing both sides of (7.3.2) by 1−B(t) and applying (7.3.4) gives

1 + λ
1−M(t)
1−B(t)

∫ t

0
xdB(x)− (1 + ε)F (t)

<
1−M(t)
1−B(t)

< 1 + λ
1−M(t)
1−B(t)

∫ t

0
xdB(x)− (1− ε)F (t).

Subtract λ1−M(t)
1−B(t)

∫ t
0 xdB(x) and multiply by (1−ρ)/(1−λ

∫ t
0 xdB(x)) on both

sides of the above inequality to obtain

1− (1 + ε)F (t)
1 + λ

1−ρ

∫∞
t xdB(x)

< (1− ρ)
1−M(t)
1−B(t)

<
1− (1− ε)F (t)

1 + λ
1−ρ

∫∞
t xdB(x)

. (7.3.6)

Since (1−ρ)(1−M(t))/(1−B(t)) = X(t), cf. (7.2.4), it follows from the above
equality that

λ
1−ρ

∫∞
t xdB(x) + (1− ε)F (t)

1 + λ
1−ρ

∫∞
t xdB(x)
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< 1−X(t)

<

λ
1−ρ

∫∞
t xdB(x) + (1 + ε)F (t)

1 + λ
1−ρ

∫∞
t xdB(x)

. (7.3.7)

We now investigate the asymptotic behavior of F (t) for t → ∞. We show
that the first term in the numerator of the left- and righthand sides of (7.3.7)
dominates the second term. Since X(t) is a proper probability distribution,
we have from (7.2.4) for every t > 0,

F (t)∫∞
t xdB(x)

=
λ2(1−M(t))2

∫ t
0 x

2dB(x)
2(1−B(t))

∫∞
t xdB(x)

≤
λ2(1−M(t))2

∫ t
0 x

2dB(x)
2(1−B(t))2t

≤
λ2
∫ t
0 x

2dB(x)
2(1− ρ)2t

= λ2−t
2(1−B(t)) + 2

∫ t
0 (1−B(x))xdx

2(1− ρ)2t
. (7.3.8)

Since ∫ ∞

0
(1−B(x))dx <∞,

by the Dominated Convergence Theorem, it follows that

lim
t→∞

1
t

∫ t

0
(1−B(x))xdx = 0.

Combining the above equation and (7.3.8) yields

lim
t→∞

F (t)∫∞
t xdB(x)

= 0. (7.3.9)

The result follows from the above relation and (7.3.7). 2

From (7.2.3) we can immediately derive the asymptotic behavior of 1−G(t)
for t→∞.

Lemma 7.3.2

1−G(t) = P(G > t) ∼ λ

1− ρ

∫ ∞

t
xdB(x) for t→∞. (7.3.10)
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Proof. It follows from (7.2.3) that

1−G(t) = 1−X(t) + 1−B(t)− (1−X(t))(1−B(t)).

By Lemma 7.3.1, we have

lim
t→∞

1−B(t)
1−X(t)

= 0.

Combining the above two relations yields that

1−G(t) ∼ 1−X(t), t→∞,

which in combination with Lemma 7.3.1 implies (7.3.10). 2

It should be noted that the latter relation can also be written as (with
I{B>t} the indicator function of the event {B > t}):

P(G > t) ∼ λ

1− ρ
E[BI{B>t}] for t→∞.

Lemma 7.3.3

1− Y (t) = P(Y > t) ∼ ρ

1− ρ
P(Bres > t) for t→∞,

where Y (t) is given by (7.2.5) and Bres is the residual service time which has
density function (1−B(t))/β.

Proof. As seen in (7.2.4), (1 − ρ)(1 − M(t))/(1 − B(t)) is the probability
distribution of a proper random variable X, the supremum of the service times
of the customers who arrived before an arbitrary customer C in the same busy
period at Q1 as C. Hence, cf. also (7.3.3), with an arbitrary ε > 0 and for t
large enough,(

1
1− ρ

− ε

)
(1−B(t)) ≤ 1−M(t) ≤ 1

1− ρ
(1−B(t)).

Thus (
1

1− ρ
− ε

)∫ ∞

t
(1−B(x))dx ≤

∫ ∞

t
(1−M(x))dx

≤ 1
1− ρ

∫ ∞

t
(1−B(x))dx,
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which implies that

lim
t→∞

∫∞
t (1−M(x))dx∫∞
t (1−B(x))dx

=
1

1− ρ
.

Hence it follows that

lim
t→∞

1− Y (t)∫∞
t (1−B(x))dx

= lim
t→∞

(
1− Y (t)∫∞

t (1−M(x))dx

∫∞
t (1−M(x))dx∫∞
t (1−B(x))dx

)
=

λ

1− ρ
.

2

7.4 Asymptotic behavior of the sojourn time distri-
bution

In this section we apply the lemmas that were obtained in the previous section
to derive the asymptotic behavior of 1−S(2)(t) for t→∞. Moreover, we show
how 1− S(2)(t) behaves for t→∞ if the service time distribution is regularly
varying. In fact, if the service time distribution is regularly varying of index
−ν (ν > 1), then the sojourn time in the second queue is shown to be regularly
varying of index 1−ν, which is one degree higher than that of the service time
distribution.

Theorem 7.4.1 For t→∞,

1− S(2)(t) = P(S(2) > t) ∼ λ

1− ρ
tP(B > t) +

2ρ
1− ρ

P(Bres > t). (7.4.1)

Proof. Since limt→∞ t(1−B(t)) = 0, it follows that∫ ∞

t
xdB(x) = t(1−B(t)) +

∫ ∞

t
(1−B(x))dx. (7.4.2)

By applying Lemmas 7.3.2 and 7.3.3, it follows from (7.2.6) that

1− S(2)(t) ∼ 1−G(t) + 1− Y (t)

∼ λ

1− ρ

∫ ∞

t
xdB(x) +

ρ

1− ρ

∫ ∞

t

1−B(x)
β

dx

=
λt

1− ρ
P(B > t) +

2ρ
1− ρ

P(Bres > t), t→∞,
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where the last equation follows from (7.4.2). 2

Theorem 7.4.1 gives a precise expression for the tail behavior of the sojourn
time distribution at Q2 in terms of the tail of the (residual) service time distri-
bution, for arbitrary service time distributions. Below we specify this sojourn
time tail behavior (and that of M , G, X and Y ) for the case of a regularly
varying service time distribution.

Theorem 7.4.2 Let ν > 1. If P(B > t) is regularly varying of index −ν,
then P(M > t) is regularly varying of index −ν, while P(G > t), P(X > t),
P(Y > t) and P(S(2) > t) are regularly varying of index 1−ν. More precisely,
if

P(B > t) ∼ t−νL(t), t→∞, (7.4.3)

then for t→∞,

P(M > t) ∼ 1
1− ρ

t−νL(t), (7.4.4)

P(X > t) ∼ P(G > t) ∼ λ

1− ρ

ν

ν − 1
t1−νL(t), (7.4.5)

P(Y > t) ∼ λ

1− ρ

1
ν − 1

t1−νL(t), (7.4.6)

P(S(2) > t) ∼ λ

1− ρ

ν + 1
ν − 1

t1−νL(t). (7.4.7)

Proof. It follows from Lemma 2.3.1 that P(Bres > t) ∼ t1−ν

(ν − 1)β
L(t) as t→

∞. The results now follow immediately from (7.3.3), Lemmas 7.3.1, 7.3.2,
7.3.3 and Theorem 7.4.1. 2

Remark 7.4.1 If the residual service time distribution is a Weibull distribu-
tion, i.e., P(Bres > t) = exp(−tδ), 0 < δ < 1, then Theorem 7.4.1 implies
that

P(S(2) > t) ∼ ρ

1− ρ
δtδ exp(−tδ), t→∞. (7.4.8)

In this case, the second term in the righthand side of (7.4.1) becomes negligible
compared to the first one.

Remark 7.4.2 The Weibull distribution of the previous remark is a subex-
ponential distribution, cf. [12]. Pakes [85] has proven for the G/G/1 queue
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that, if the residual service time distribution is subexponential, then the tail
of the sojourn time distribution is asymptotically equivalent to the tail of the
residual service time distribution, up to a multiplicative factor ρ/(1 − ρ). So
in this subexponential case we have, for the M/G/1 queue Q1:

P(S(1) > t) ∼ ρ

1− ρ
P(Bres > t), t→∞.

Hence, in the case of the above-mentioned Weibull distribution, the following
holds for the M/G/1 queue Q1:

P(S(1) > t) ∼ ρ

1− ρ
exp(−tδ), t→∞,

which is less heavy than the tail P(S(2) > t) as given in (7.4.8).
In the case of a regularly varying service time distribution, (7.4.7) implies that

P(S(2) > t) ∼ (ν + 1)P(S(1) > t), t→∞. (7.4.9)

7.5 Asymptotic behavior of the workload distribu-
tion

Let V (2) denote the steady-state workload at Q2. It is shown in [18] that

P(V (2) < t) = (1− ρ)Y (t) + λ

∫ ∞

u=0
(1−B(u))

1−M(t+ u)
1−B(t+ u)

(1− ρ)Y (t+ u)du,

for t > 0, which can be rewritten as (in the sequel, Bres and Bres
1 will denote

independent residual service times):

P(V (2) < t) = (1− ρ)P(Y < t) + ρP(X < Bres
1 + t, Y < Bres

1 + t), t > 0.

Hence,

P(V (2) > t) = (1− ρ)P(Y > t) + ρP(X > Bres
1 + t) + ρP(Y > Bres

1 + t)

−ρP(X > Bres
1 + t, Y > Bres

1 + t), t > 0.

Noting that

P(X > Bres
1 + t, Y > Bres

1 + t) ≤ P(X > t, Y > Bres
1 + t)

= P(X > t)P(Y > Bres
1 + t)

= o(P(Y > Bres
1 + t)), t→∞,
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and using Lemma 7.3.3, we obtain that, as t→∞,

P(V (2) > t) ∼ ρ[P(Bres > t) + P(X > Bres
1 + t) + P(Y > Bres

1 + t)].

Using Lemma 7.3.3 again, for any ε > 0, there exist a T > 0 such that for any
t > T , we have∣∣∣∣P(Y > t)− ρ

1− ρ
P(Bres > t)

∣∣∣∣ ≤ εP(Bres > t).

It follows that, for t > T ,∣∣∣∣∫ ∞

z=0
(P(Y > z + t)− ρ

1− ρ
P(Bres > z + t))dBres

1 (z)
∣∣∣∣

≤ ε

∫ ∞

z=0
P(Bres > z + t)dBres

1 (z),

i.e., as t→∞,

P(Y > Bres
1 + t) ∼ ρ

1− ρ
P(Bres > Bres

1 + t).

Thus we obtain for t→∞,

P(V (2) > t) ∼ ρ
[
P(Bres > t) + P(X > Bres

1 + t)

+
ρ

1− ρ
P(Bres > Bres

1 + t)
]
. (7.5.1)

Applying similar arguments as above and using (7.3.1) and (7.4.2), we can
prove, for t→∞,

P(X > Bres
1 + t) ∼ ρ

1− ρ
P(Bres > Bres

1 + t)

+
λ

1− ρ

∫ ∞

z=0

1−B(z)
β

(t+ z)(1−B(t+ z))dz.

(7.5.2)

Now combining (7.5.1) and (7.5.2), we obtain for t→∞,

P(V (2) > t) ∼ ρ

[
P(Bres > t) +

2ρ
1− ρ

P(Bres > Bres
1 + t)

+
λ

1− ρ

∫ ∞

z=0

1−B(z)
β

(t+ z)(1−B(t+ z))dz
]
.

Slightly rewriting this result, we have proven the following:
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Theorem 7.5.1 For t→∞,

P(V (2) > t) ∼ ρ[P(Bres > t) +
2ρ

1− ρ
P(Bres > Bres

1 + t)

+
λ

1− ρ
tP(B > Bres

1 + t)

+
λ

1− ρ

∫ ∞

z=0

1−B(z)
β

z(1−B(t+ z))dz]. (7.5.3)

For general service time distributions, we have now expressed the tail behavior
of the distribution of the workload at Q2 in terms of the (residual) service
time distribution. It would be easy to specify the workload tail behavior for
specific service time distributions with an exponential tail. Instead, we now
restrict our attention to the case that the service time distribution is heavy-
tailed, cf. Definition 2.1.1. The class of heavy-tailed distributions contains
the class of subexponential distributions, which in turn contains the class
of regularly varying distributions. It is easy to prove that, if P(B > t) is
heavy-tailed and D is any nonnegative random variable that is independent

of B, then
P(B −D > t)

P(B > t)
→ 1 as t → ∞. We can apply this rule to replace

P(B > Bres
1 + t) by P(B > t) in (7.5.3). Actually, the fact that P(B > t)

is heavy-tailed implies that P(Bres > t) is heavy-tailed by using l’Hospital’s
rule (but the reverse is not true in general, cf. [72]). Therefore, the second

term in the righthand side of (7.5.3) can be replaced by
2ρ

1− ρ
P(Bres > t).

If furthermore EB2 < ∞, then the last term in the righthand side of (7.5.3)

can be replaced by
λ

1− ρ

EB2

2β
P(B > t). One can prove this by applying the

Dominated Convergence Theorem,

lim
t→∞

λ

1− ρ

∫ ∞

z=0

1−B(z)
β

1−B(t+ z)
1−B(t)

zdz

=
λ

1− ρ

∫ ∞

z=0

1−B(z)
β

lim
t→∞

(
1−B(t+ z)

1−B(t)

)
zdz

=
λ

1− ρ

EB2

2β
.

Below we restrict ourself to the subclass of regularly varying service time dis-
tributions. It then follows from Theorem 7.4.2 that P(X > t) is regularly
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varying, hence heavy-tailed; therefore,

P(X > Bres
1 + t) ∼ P(X > t), t→∞.

We can now conclude from (7.5.1) that the following result holds.

Theorem 7.5.2 Let ν > 1. If P(B > t) is regularly varying of index −ν,
then P(V (2) > t) is regularly varying of index 1− ν. More precisely, if

P(B > t) ∼ t−νL(t), t→∞, (7.5.4)

then

P(V (2) > t) ∼ 1
ν − 1

λ

1− ρ
(1 + ρν)t1−νL(t), t→∞. (7.5.5)

Remark 7.5.1 Under the conditions of Theorem 7.5.2, the tail of the waiting
time distribution at Q1 is regularly varying of index 1−ν; this tail behavior in
fact coincides with that of the distribution of S(1). Moreover, in the M/G/1
queue Q1, the steady-state workload V (1) has the same distribution as the
steady-state waiting time. Hence:

P(S(1) > t) ∼ P(V (1) > t) ∼ 1
ν − 1

λ

1− ρ
t1−νL(t), t→∞,

which should be compared with (7.4.7) and (7.5.5).

7.6 Heuristics

In this section, we assume the service time B is regularly varying of index
−ν (ν > 1). We first give heuristic explanations of (7.4.9) and (7.5.5) by
identifying two possible ways in which S(2) and V (2) may become large. These
heuristic arguments are similar to those in Section 4.3 and those in Section 6.5
for the regime λ > µ. Using these heuristic arguments, we also derive the
asymptotic behavior of the total sojourn time distribution in the system. Note
that the heuristic arguments are based on the preliminary observations made
in Section 4.3.

Suppose a customer with a large service time B enters Q1 in steady state
at time 0. Assume that the total workloads at both queues are very small
compared to B. So at time 0, the workload at Q1 is roughly B and the
workload at Q2 is roughly 0. The workload at Q1 decreases at rate 1− ρ until
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it becomes 0 at approximately time B
1−ρ when the busy period at Q1 which

started at time 0 ends. At time B, this customer with service time B enters
Q2. During the time interval (B, B

1−ρ), Q1 is still in its busy period. It means
that the departure rate from Q1 is 1/β, which is the same as the service rate
at Q2. Thus, the workload at Q2 stays at approximately the same level B.
After time B

1−ρ , the effect of the large customer which entered Q1 at time 0
has vanished at Q1. Therefore, the workload at Q2 decreases at rate 1− ρ > 0
until it becomes 0 at time 2B

1−ρ , see Figure 7.1.

Q
Q

Q
Q

Q
Q

Q
Q

B
1−ρ

B

B

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

2B
1−ρ0

0

Figure 7.1: Evolution of the workload at Q2.

Let us first consider the tail behavior of S(2). Suppose we observe the
system at time y (y ≥ 0) and a customer arrives at Q1. We claim that the
sojourn time at Q2 of this particular customer is large, i.e., S(2) > t (t large),
because at time 0, a customer with a large service time B entered Q1. The
arrival rate of the customers is λ. Keeping Figure 7.1 in mind, there are two
possibilities:

1. 0 < y < B
1−ρ , and B > t. The sojourn time at Q2 of the customers who

arrive at Q1 in the time interval (0, B
1−ρ) is roughly B. So, we have

P(S(2) > t, possibility 1 happens)

≈
∫ ∞

y=0
P(B > (1− ρ)y,B > t)λdy
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= λ

∫ t
1−ρ

y=0
P(B > t)dy + λ

∫ ∞

y= t
1−ρ

P(B > (1− ρ)y)dy

=
λtP(B > t)

1− ρ
+

λ

1− ρ

∫ ∞

z=t
P(B > z)dz

∼ νρ

1− ρ
P(Bres > t) ∼ νP(S(1) > t), t→∞. (7.6.1)

2. B
1−ρ < y < 2B

1−ρ−
t

1−ρ , and B > t. The customers who arrive at Q1 during
the time interval ( B

1−ρ ,
2B
1−ρ −

t
1−ρ) almost immediately enter Q2. Thus,

the sojourn time of those customers is roughly the same as the workload
at Q2. As can be seen from Figure 7.1, the workload at Q2 during the
time interval ( B

1−ρ ,
2B
1−ρ) is approximately the same as the workload at

Q1 during the time interval (0, B
1−ρ). Thus, we may write

P(S(2) > t, possibility 2 happens)

≈ P(V (1) > t) ∼ P(S(1) > t), t→∞. (7.6.2)

Summing (7.6.1) and (7.6.2), we get the desired result:

P(S(2) > t) ∼ (ν + 1)P(S(1) > t), t→∞,

which coincides with (7.4.9).
Now we turn to the tail behavior of the workload distribution at Q2. Sup-

pose we observe the system at time y (y ≥ 0) and V (2) > t, t large. We claim
that at time y, the workload at Q2 is large because at time 0, a customer with
a large service time B entered Q1. The arrival rate is λ. Keeping Figure 7.1
in mind, there are two possibilities:

1. t < B < y < B
1−ρ . Thus, we may write

P(V (2) > t, possibility 1 happens)

≈
∫ ∞

y=0
P(t < B < y <

B

1− ρ
)λdy

= λ

∫ ∞

y=0
P(B > t, y <

ρB

1− ρ
)dy

= λ

∫ ρt
1−ρ

y=0
P(B > t)dy + λ

∫ ∞

y= ρt
1−ρ

P(B >
(1− ρ)y

ρ
)dy
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=
λρt

1− ρ
P(B > t) +

λρ

1− ρ

∫ ∞

z=t
P(B > z)dz

∼ νρP(V (1) > t), t→∞, (7.6.3)

where the first equality follows since the integral only depends on the
length of the interval for y.

2. B
1−ρ < y < 2B

1−ρ −
t

1−ρ . During this time interval, the workload at Q2 is
roughly the same as the sojourn time at Q2. So, from (7.6.2), we may
write

P(V (2) > t, possibility 2 happens)

≈ P(S(1) > t) ∼ P(V (1) > t), t→∞. (7.6.4)

Summing (7.6.3) and (7.6.4), we get the desired result:

P(V (2) > t) ∼ (νρ+ 1)P(V (1) > t), t→∞,

which coincides with (7.5.5).
The total sojourn time, denoted by Stotal := S(1) +S(2) (note that S(1) and

S(2) are dependent) is also an interesting quantity to study. In the following,
we derive the tail behavior of the total sojourn time distribution Stotal(·) by
applying the above heuristic arguments.

Suppose we observe the system at time y (y ≥ 0) and a customer arrives
at Q1. We claim that the total sojourn time Stotal of this particular customer
exceeds t, t large, because at time 0, a customer with a large service time B
arrived at Q1. The arrival rate is λ. Keeping Figure 7.1 in mind, there are
two possibilities:

1. 0 < y < B
1−ρ . In this case, S(1) is roughly the same as the workload at

Q1 and S(2) is roughly B. Thus, Stotal is related to y as

Stotal = 2B − (1− ρ)y.

We have

P(Stotal > t, possibility 1 happens)

≈
∫ ∞

y=0
P(B > (1− ρ)y, B >

(1− ρ)y
2

+
t

2
)λdy

=
∫ t

1−ρ

y=0
P(B >

(1− ρ)y + t

2
)λdy +

∫ ∞

y= t
1−ρ

P(B > (1− ρ)y)λdy
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=
2ρ

1− ρ
P(Bres > t/2)− ρ

1− ρ
P(Bres > t)

∼ 2P(S(1) > t/2)−P(S(1) > t). (7.6.5)

2. B
1−ρ < y < 2B

1−ρ . In this case, S(1) is roughly 0 and S(2) is roughly the
same as the workload at Q2. By (7.6.2), we have

P(Stotal > t,possibility 2 happens) ≈ P(S(1) > t). (7.6.6)

Summing (7.6.5) and (7.6.6) leads to

P(Stotal > t) ∼ 2P(S(1) > t/2), t→∞. (7.6.7)

It should be pointed out that Relation (7.6.7) is only a conjecture obtained
from the above heuristic arguments. A more rigorous mathematical proof is
needed. Boxma [18] gives the joint distribution of the waiting time distribu-
tions at the first and the second queue, which might be a starting point to
prove (7.6.7). The above arguments can be extended to the tandem system
consisting of k (k ≥ 2) queues, where the service time is identical at each
queue. We refrain from presenting the detailed analysis here.

7.7 The sojourn time distribution in heavy traffic

In [22], Boxma and Cohen have obtained a heavy-traffic limit theorem for
the waiting time distribution in the G/G/1 queue (cf. Section 1.4), when the
variance of the interarrival and/or the service time distribution is infinite.
Exactly the same limit theorem holds at Q1 for the sojourn time S(1) which is
the sum of the waiting time and the (independent) service time. In the present
section, we derive a heavy-traffic limit theorem for the sojourn time S(2) in the
case of a regularly varying service time distribution of index −ν, ν > 1.

Theorem 7.7.1 For the stable tandem queue with Poisson input process and
identical service times at both queues, and with the service time distribution
satisfying the condition of Theorem 7.4.2, i.e.,

P(B > t) ∼ t−νL(t), t→∞, (7.7.1)

where ν > 1, the contracted sojourn time ∆(ρ)S(2) converges in distribution
for ρ ↑ 1. The limit distribution function H(t) is given by:

H(t) =
exp(−t1−ν)
1 + νt1−ν

, t > 0,
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and the coefficient of contraction ∆(ρ) is the unique root (for the uniqueness
concept, we refer to Lemma 3.5.1) of the following equation:

xν−1L(1/x) =
(ν − 1)(1− ρ)

λ
, (7.7.2)

with the property that ∆(ρ) ↓ 0 for ρ ↑ 1.

Proof. Let ∆(ρ) be the solution to Equation (7.7.2) with the property ∆(ρ) ↓ 0
for ρ ↑ 1. As proved in Lemma 3.5.1, the solution ∆(ρ) with such a property
exists and is unique. Using Theorem 1.6.1 in [12], it follows from (7.4.4) that
for t > 0,

λ

∫ ∞

t/δ
(1−M(x))dx ∼ λ

1− ρ

1
ν − 1

t1−ν

δ1−ν
L(t/δ), δ ↓ 0,

which in combination with the definition of ∆(ρ) yields

lim
ρ↑1

λ

∫ ∞

t/∆(ρ)
(1−M(x))dx = t1−ν .

Thus by (7.2.5), for t > 0,

lim
ρ↑1

Y (t/∆(ρ)) = lim
ρ↑1

exp

(
−λ
∫ ∞

t/∆(ρ)
(1−M(x))dx

)
= exp(−t1−ν). (7.7.3)

By (7.7.1), it is easy to get

lim
ρ↑1

B(t/∆(ρ)) = 1. (7.7.4)

Applying Theorem 1.6.5 in [12], (7.4.3) implies that, for t > 0,∫ ∞

t/δ
xdB(x) ∼ ν

ν − 1
t1−ν

δ1−ν
L(t/δ), δ ↓ 0,

which further implies that

lim
ρ↑1

λ

1− ρ

∫ ∞

t/∆(ρ)
xdB(x) = νt1−ν . (7.7.5)

Since (7.3.9) and (7.7.5) imply that limρ↑1 F (t/∆(ρ)) = 0 where F (·) is given
by (7.3.5), it follows from (7.2.4) and (7.3.6) that, for t > 0,

lim
ρ↑1

X(t/∆(ρ)) =
1

1 + νt1−ν
. (7.7.6)
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By (7.2.3) and (7.2.6), we can rewrite S(2)(t) as

S(2)(t) = X(t)Y (t)B(t). (7.7.7)

Combining (7.7.3), (7.7.4), (7.7.6) and (7.7.7) leads to

lim
ρ↑1

S(2)(t/∆(ρ)) =
exp(−t1−ν)
1 + νt1−ν

,

which finally implies that, for t > 0,

lim
ρ↑1

P(∆(ρ)S(2) ≤ t) = lim
ρ↑1

S(2)(t/∆(ρ)) =
exp(−t1−ν)
1 + νt1−ν

.

2

Remark 7.7.1 The limiting distribution function H(t) is easily seen to have
a regularly varying tail of the same index as the tail of S(2)(t). It is interesting
to observe that exp(−t1−ν), t > 0, is a Weibull distribution, cf. Feller [52] p.
52.

Remark 7.7.2 The above heavy-traffic limit theorem may be used to provide
an approximation for S(2)(t); for such an approach to the ordinary M/G/1
queue and the M/G/1 queue with priority classes, see [21] and Section 3.8,
respectively.

Remark 7.7.3 In case both the service time and interarrival time distribu-
tions have a finite second moment, Kingman [68] derives a standard heavy-
traffic limit theorem for the stationary waiting time W in the G/G/1 queue.
In our tandem model, if ν > 2, a similar limit theorem holds for the sojourn
time S(1) at Q1, i.e.,

lim
ρ↑1

P(ζ(ρ)S(1) ≤ t) = 1− e−t, t ≥ 0,

with ζ(ρ) := 2λ(1− ρ)/[1 + λ2(EB2 − β2)] (cf. [68]).

Remark 7.7.4 Taking L(x) = 1 in (7.7.2), one can immediately get ∆(ρ) =
(ν−1

λ )
1

ν−1 (1 − ρ)
1

ν−1 . In fact, it is not surprising that when ν > 2, the con-
traction coefficient ∆(ρ) of S(2) is much larger than the above contraction
coefficient ζ(ρ) of S(1) for ρ ↑ 1. As has been shown in [18], if the third
moment β3 of the service time is finite, then

lim
ρ↑1

ES(2)

ES(1)
= 0, lim

ρ↑1

Var(S(2))
Var(S(1))

= 0.
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In fact, applying the technique used in [18] to derive the above limit results,
one can show that if the (n+ 1)th moment βn+1 is finite (n ≥ 2), then

E[(S(2))n] ≤ c

(1− ρ)
2n+1
n+1

,

for some positive constant c.
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Summary

Queueing theory plays an important role in the design of telecommunication
networks. Simple models, like fluid queues or classical single-server queues,
can often be used to obtain insightful results, e.g., to predict the global traffic
behavior. Traditional queueing models typically assume that the interarrival
and service times have finite variance (e.g., exponential or Erlang distribution).
As a result, the aggregate traffic that is offered by a collection of sources
behaves like white noise. Recently, it has become clear that delay and buffer
content distributions in modern communication networks often do not exhibit
such a behavior like white noise. Many studies on traffic measurements from a
variety of communication networks, have shown a striking difference between
actual network traffic and assumptions in traditional theoretical traffic models.
That is, actual network traffic is often self-similar or long-range dependent in
nature. In other words, the traffic looks statistically the same over a wide range
of time scales, from milliseconds to minutes and even hours. This conclusion
is supported by statistical analysis of numerous high-quality Ethernet and
Internet traffic measurements.

It has been shown that queueing models with regularly varying service
times, with an index of regular variation between −2 and −1, may be very
useful in modelling modern network traffic. This thesis is devoted to the
performance analysis of several fundamental classes of queueing models, with
the special feature of regularly varying service times. Tail probabilities (of the
waiting time or workload) receive special attention.

More specifically, we study in detail the following four queueing models: (i)
the M/G/1 queue with priority classes, (ii) the tandem queueing system with
Poisson input processes and identical service times at both queues, (iii) the
cyclic polling system with Poisson input processes, and (iv) the M/G/2 queue
with heterogeneous servers. For these models, we assume that at least one of
the service times has a regularly varying (sometimes heavy-tailed) distribution.
By analyzing the asymptotic behavior of the corresponding Laplace-Stieltjes
Transforms (LSTs) in the neighborhood of the rightmost singularity and ap-
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plying the Tauberian Theorem, we find, for models (i), (ii) and (iii), the cyclic
polling system), that the service time with the largest tail probability governs
the tail behavior of the waiting time and workload distributions. For the multi-
server queue (the M/G/2 queue with heterogeneous servers), the waiting time
tail behavior depends not only on the service time tail behavior, but also on
the total traffic load. We also developed intuitive arguments which illustrate
how large waiting time (or workload) occurs.

We now briefly discuss the chapters in this thesis. Chapter 1 provides the
background and motivation for this thesis, and presents some basic knowledge
of queueing theory and the performance analysis of computer-communication
networks. Some relevant work on the topic of queues with heavy tails is also
discussed.

Chapter 2 is devoted to the basic properties of heavy-tailed distributions.
Special attention is paid to regularly varying distributions.

We study the M/G/1 queue with two priority classes in Chapter 3. The
service times of the high- and/or low-priority customers are assumed to be
regularly varying of index −ν (1 < ν < 2). Based on an expression for the LST
of the low-priority waiting time distribution, we establish relations between the
tail behavior of the waiting time distribution of the low-priority customers and
that of the service time distributions. Furthermore, we derive a heavy-traffic
limit theorem the waiting time distribution of the low-priority customers when
the total traffic load ρ ↑ 1.

Chapters 4 and 5 are devoted to the cyclic polling system with Poisson
arrival processes. In Chapter 4, we study a two-queue model with exhaustive
service at one queue and 1-limited service at the other queue. Note that this
model reduces to the M/G/1 queue with two priority classes of Chapter 3 if
there is no switchover time. For the case in which there are switchover times
and the service times have an infinite variance, we derive a heavy-traffic limit
theorem for the waiting time at the second queue. Finally we numerically
test the approximation of the waiting time distribution at the second queue
suggested by the heavy-traffic limit theorem.

In Chapter 5, we study the cyclic polling system with gated or exhaustive
service at each queue. It is assumed that the service time distribution with
the heaviest tail behavior has a regularly varying tail of index −ν (ν > 1).
Based on an explicit expression for the LST of the waiting time distributions,
we prove that the waiting time distribution at each queue is regularly varying
of index 1− ν.

Chapter 6 is devoted to the M/G/2 queue with one exponential server and
one general server. Using the supplementary variable technique, we establish
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a set of differential equations satisfying some boundary condition. In the case
that the LST of the service time distribution at the general server is rational, we
can explicitly solve the differential equations and thus the LST of the steady-
state waiting time distribution follows. In the case that the service time at the
general server has a regularly varying tail, we derive the tail behavior of the
waiting time by using analytic methods. Furthermore, we provide intuitive
arguments for the waiting time tail behavior.

In Chapter 7, we turn to the tandem queueing system with identical service
times at both queues. We focus on the steady-state sojourn time and workload
at the second queue. Starting from explicit expressions for the distributions of
the sojourn time and workload at the second queue, we relate the tail behavior
of these distributions to the tail behavior of the (residual) service time distri-
bution. As a by-product, we prove that both the sojourn time distribution and
the workload distribution at the second queue are regularly varying of index
1− ν, if the service time distribution is regularly varying of index −ν (ν > 1),
which coincides with the results we obtain by using intuitive arguments. Fur-
thermore, in the latter case, we derive a heavy-traffic limit theorem for the
sojourn time at the second queue when the traffic load ρ ↑ 1.





Samenvatting (Summary)

Wachtrijtheorie speelt een belangrijke rol bij het ontwerp van telecommu-
nicatienetwerken. Eenvoudige modellen, zoals vloeistofmodellen of klassieke
wachtrijsystemen met één bediende, kunnen dikwijls worden gebruikt om inzicht
te verkrijgen in het globale gedrag van communicatienetwerken en voorspellin-
gen te doen omtrent de kwaliteit van hun dienstverlening. In de klassieke
wachtrijmodellen wordt doorgaans verondersteld dat de aankomst- en bedien-
ingstijden stochastische variabelen zijn met een eindige variantie. Dikwijls wor-
den zij door een verdeling met een exponentiële staart gerepresenteerd, zoals de
exponentiële verdeling of de Erlang verdeling. Het is in recente studies echter
duidelijk geworden, dat zulke veronderstellingen niet altijd opgaan voor het
verkeer in moderne communicatienetwerken. Diverse studies betreffende ver-
keersmetingen aan een groot scala aan communicatienetwerken hebben opval-
lende verschillen aan het licht gebracht tussen echt netwerkverkeer en verkeer
dat is gemodelleerd met traditionele verdelingen met exponentiële staarten.
Echt netwerkverkeer is dikwijls self-similar of long-range dependent. Met an-
dere woorden, het verkeer vertoont hetzelfde patroon over een groot aantal
tijdschalen, van milliseconden tot minuten en zelfs uren. Deze conclusie wordt
ondersteund door statistische analyses van talrijke metingen aan verkeer in
lokale Ethernet netwerken, Internet verkeer, enz.

Wachtrijsystemen met regulier variërende bedieningstijden, met een index
van variatie tussen −2 en −1, zijn onlangs nuttig gebleken bij de modeller-
ing en analyse van modern communicatieverkeer. Dit proefschrift is daarom
gewijd aan de bestudering van verscheidene belangrijke klassen van wachtri-
jsystemen onder de aanname dat de bedieningstijden een regulier variërende
verdeling hebben. We zijn in het bijzonder geinteresseerd in staartkansen van
wachttijden en werklast.

We bestuderen de volgende vier wachtrijsystemen in detail: (i) de M/G/1
wachtrij met prioriteiten, (ii) twee wachtrijen in serie, met een Poisson aankom-
stproces bij de eerste wachtrij en identieke bedieningstijden van klanten bij
de beide wachtrijen; (iii) het cyclische polling systeem met Poisson aankom-
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stprocessen; en (iv) de M/G/2 wachtrij met heterogene bedienden. Bij al
deze modellen veronderstellen we dat minstens één der bedieningstijdverdelin-
gen zwaarstaartig is (doorgaans: regulier variërend). Bestudering van het
asymptotisch gedrag van de Laplace-Stieltjes getransformeerden (LST) van
wachttijd- en werklastverdelingen in de omgeving van de meest rechtse singu-
lariteit, en toepassing van een Tauberstelling, stelt ons in staat de volgende
conclusie te trekken betreffende de wachtrijsystemen (i), (ii) en (iii): de be-
dieningstijdverdeling met de zwaarste staart bepaalt het staartgedrag van de
wachttijd- en werklastverdelingen. In de M/G/2 wachtrij blijkt het staartge-
drag van de wachttijdverdeling echter ook af te hangen van de grootte van
het totale verkeersaanbod. De afleidingen van deze resultaten worden gecom-
plementeerd door intuitieve redeneringen die inzicht verschaffen in de meest
waarschijnlijke wijze waarop grote wachttijden of werklasten op kunnen treden.

We bespreken nu de globale inhoud van elk der zeven hoofdstukken van het
proefschrift. Hoofdstuk 1 verklaart het belang van de bestudering van wachtri-
jmodellen met zware (regulier variërende) staarten. Ook bevat dit hoofd-
stuk basiskennis over wachtrijen en over de prestatie-analyse van computer-
communicatienetwerken. Tevens wordt aandacht geschonken aan de literatuur
betreffende wachtrijsystemen met zwaarstaartige verdelingen.

Hoofdstuk 2 is gewijd aan zwaarstaartige kansverdelingen. We richten ons
daarbij vooral op de klasse van regulier variërende verdelingen.

In hoofdstuk 3 bestuderen we de M/G/1 wachtrij met twee prioriteit-
sklassen. We veronderstellen dat de bedieningstijdverdelingen van de hoge
en/of lage prioriteitsklanten regulier variërend zijn met index −ν (1 < ν < 2).
Uitgaande van een uitdrukking voor de LST van de wachttijdverdeling van
de klanten met lage prioriteit, verkrijgen we relaties tussen het staartgedrag
van de wachttijdverdeling van deze klanten, en het staartgedrag van de beide
bedieningstijdverdelingen. Bovendien leiden we een limietstelling af voor de
wachttijdverdeling van de klanten met lage prioriteit, voor het geval dat de
belasting van het systeem een kritische grens nadert (‘heavy traffic’).

De hoofdstukken 4 en 5 zijn gewijd aan cyclische polling systemen met Pois-
son aankomstprocessen. In hoofdstuk 4 bestuderen we een systeem met twee
wachtrijen. De bedieningsdiscipline bij rij 1 is 1-limited (de bediende bedient
ten hoogste één klant per bezoek), en de bedieningsdiscipline bij rij 2 is ex-
haustive oftewel uitputtend (de bediende bedient de wachtrij tot deze leeg is).
Merk op dat dit model reduceert tot de M/G/1 wachtrij met twee prioriteit-
sklassen uit hoofdstuk 3 als er geen omschakeltijden tussen de rijen zijn. Onder
de veronderstellingen dat er wel omschakeltijden zijn, en dat de bedieningstij-
den een oneindige variantie hebben, leiden we een heavy-traffic limietstelling af
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voor de wachttijdverdeling bij rij 1. Deze limietstelling suggereert een benader-
ing voor de betreffende wachttijdverdeling. Deze benadering wordt numeriek
getest.

In hoofdstuk 5 bestuderen we het cyclische polling model voor het geval de
bedieningsdiscipline bij elke wachtrij exhaustive is of gated (de bediende bedient
bij een bezoek aan de wachtrij precies de klanten die hij bij zijn aankomst
aantreft). We veronderstellen dat de bedieningstijdverdeling met de zwaarste
staart regulier variërend is, met index−ν (ν > 1). Uitgaande van een expliciete
uitdrukking voor de LSTs van de wachttijdverdelingen, bewijzen we dat de
wachttijdverdelingen bij alle rijen regulier variërend zijn met index 1− ν.

Hoofdstuk 6 is gewijd aan de M/G/2 wachtrij met heterogene bedien-
den: bedieningstijden bij bediende 1 zijn negatief exponentieel verdeeld, ter-
wijl bedieningstijden bij bediende 2 een – voorlopig – niet nader gespecificeerde
verdeling hebben. Door gebruik te maken van de techniek van de supplemen-
taire variabele, leiden we een stelsel differentiaalvergelijkingen met randvoor-
waarden af, waaruit de LST van de wachttijdverdeling kan worden bepaald als
de LST van de bedieningstijdverdeling bij bediende 2 een rationele functie is.
Langs analytische weg bepalen we het staartgedrag van de wachttijdverdeling,
voor het geval de betreffende bedieningstijdverdeling regulier variërend is. Ook
geven we een intuitieve verklaring voor dit staartgedrag.

In hoofdstuk 7 wordt een wachtrijsysteem bestudeerd dat bestaat uit twee
wachtrijen in serie, met identieke bedieningstijden van de klanten bij de beide
rijen. Uitgaande van expliciete uitdrukkingen voor de verdelingen van de
verblijftijd en de hoeveelheid werk bij de tweede rij, relateren we het staartge-
drag van deze verdelingen aan het staartgedrag van de (residuele) bedieningsti-
jdverdeling. Voor het geval dat de bedieningstijdverdeling regulier variërend is
met index −ν, leidt dit tot de conclusie dat de verdelingen van de verblijftijd
en de hoeveelheid werk bij de tweede rij regulier variërend zijn met index 1−ν.
We geven een intuitieve verklaring voor dit staartgedrag. Tenslotte bewijzen
we een limietstelling voor de verblijftijdverdeling in de tweede rij voor het geval
dat de belasting van het systeem een kritische grens nadert.
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