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Chapter 11 

Introduction 

In this book a method is a set of guidelines and techniques that can be 
used for the following tasks: 

• Construction of a model for a system. We distinguish two cases: 

Making a model after reality, i.e. the systems engineer has 
an informal description of the system, or he formed an idea 
of the system in mind base on observations of the system, 
and out of this he makes a model in terms of the formalisms 
given in the preceding part. 

Transforming a given model into another one, in which case 
the second model is formulated in another formalism or in the 
same formalism but with more structure, (i.e. has properties 
the first model does not have) or formulated differently . 

• Analysis of a model. Again we distinguish two cases: 

Verifying properties of a model by means of a formal proof. 

Validating a model by means of simulation of the behavior of 
the model, i.e. testing hypotheses or calculating characteristic 
values of a model based on the simulation experiments. 

Making a model from scratch is one of the most difficult tasks because 
the input for this task is "sloppy". Therefore methods for these tasks 
are not very rigorous. However, every analysis in practice starts with 
this task, so it is very important. 

Transformation of a model can be done for several reasons. One rea
son to transform a model into another one could be that for the second 
model better analysis tools or techniques are available. Another reason 
could be that the second model is better suited for construction of the 
real system. This is the case if the second model is regarded as the 
blue print for the real system. Consider for example an object model, 
made in our formalism, in which the real system should be constructed 
with a relational database management system. We can transform our 
first model into a second one that satisfies requirements of the database 
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verification 

validation 

management system. The reason why we do not start with the sec
ond model immediately, is that the first model is more concise, better 
understandable and may be better to analyze. Another example is an 
actor model where stores are shared by several processors. If we have 
to realize the system on a computer network without shared memory, 
we can transform our model into a model that has only private stores, 
i.e. stores used only by one processor. 

Of course the systems engineer has to prove that the transformed 
model is enough "similar" to the original one. Here the similarity rela
tions of part II are useful. 

The possibilities to verify properties of realistic models are limited. 
There are two kinds of properties that can be verified: 

• internal consistency, 

• requirements formulated for the system to be constructed. 

Internal consistency means that there are no "logical" errors in the 
model, for instance that the syntax of the model is correct, that the 
used types are consistent or that the system does not have any dead
locks. For some of these questions methods are available. Internal 
consistency of a model is no guarantee that the model describes the 
system that the systems engineer or his principal has in mind! To make 
sure the model describes what we want, we have to verify the proper
ties formulated in the requirements specification. Often these properties 
are written down informaJIy and the systems engineer has to translate 
them into some formal language first, for instance some form of logic. 
This translation is also a source of errors. A good strategy is to start 
with an informal description, then a translation to a formal one and 
finaJIy a translation of the formal one into an informal description. The 
two informal descriptions should be consistent which can be checked by 
non-specialists. 

This kind of verification is a hot research topic and there are not 
many results yet that can be applied to practical cases. Therefore in 
many cases the systems engineer has to use experimentation by simula
tion (validation) with the model in order to obtain confidence instead of 
certainty: experiments can only give counter examples for a property, 
but no proof in case a property holds. However if a model passes many 
tests, we get confidence that can be quantified with probability theory. 

Methods are no algorithms, so they are no sequences of unambigu
ous instructions to make or analyze a model. The distinction between 
guidelines and techniques is not very sharp. One could say that a tech
nique is more rigorous, or "closer" to an algorithm than a guideline. 
In a technique the final result as well as intermediate resnlts are pre
cisely specified, however not the way to go from one step to another. As 
examples of techniques, we mention techniques for: 

• the representation of the history of a system in an object model 
that only considers the actual state of that system, 
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• transformation of an object model in our framework to a relational 
model, 

• verifying an invariance property in an actor model. 

Examples of guidelines are: 

• hints to represent a practical situation as a model, 

• a checklist to perform a modeling task, in fact a systems develop
ment life cycle may be considered as a checklist too, 

• conventions to be followed during a modeling task, for instance 
conventions for notations to keep models readable, or conven
tions for the use of specific constructions to keep models "well
structured" . 

For a complex system we cannot make a complete actor model at once, 
we have to construct it in steps. There are three well-known guidelines 
to develop a model. They have traditional names, that we will use here: 

• The process oriented approoch. In this approach the steps are as 
follows: 

1. Design a hierarchical actor model up to the processor level. 
Neither the processor relations for the processors, nor the 
object classes for the places (including stores) are defined in 
this step in a formal way, but they are described informally. 
Give for all processors their properties and give, if necessary, 
constraints of the delays of produced tokens. This activity 
will be called actor modeling and we will call the result of 
this activity an incomplete actor model, because term "actor 
model" is used for a complete formal description of a system. 
In the information systems community the activity is called 
process modeling. We, however, use the term "process" for an 
element of the behavior of a system. Instead of "incomplete" 
actor model, we will use the term "actor model" in case no 
confusion is possible. 

2. Design an object model for the total system. In this object 
model all complex classes that playa role within the system 
or in the communication with the environment have to be 
defined. The object model should include all relevant con
straints, either expressed graphically or in predicate calculus 
and natural language. This activity is usually called data 
modeling. However, we will use the term object modeling, 
because we are not modeling information objects only, but 
also physical and conceptual objects. Complex classes are 
defined as in chapter 9, so no sophisticated value type is de
fined here. 

3. Assign complex classes to places. These first three steps are 
called modeling. 
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4. Specify for each complex class a value type. 

5. Specify for each processor a processor relation. The last two 
steps are called specification. 

• The data oriented approach. Here the same steps are performed, 
but in a different order: 

1. Design an object model, including constraints. 

2. Design an incomplete actor model in the sense explained 
above. 

3. Assign complex classes to the places. 

4. Specify value types for complex classes. 

5. Specify processor relations. 

• The object oriented approach. This approach is different from the 
preceding ones in the sense that the three steps are performed 
simultaneously, however for each complex class separately. So the 
modeling task is not divided according to the different aspects of 
the actor model, but according to the different complex classes. 
Note that in the terminology of the object oriented approach, the 
concept of an object is used differently: a token is there an actor 
or a combination of an actor and tokens. 

In the following chapters we first consider methods for making and trans
forming models. We distinguish methods for: 

• actor modeling, 

• object modeling, 

• specification of value types and processor relations, with as final 
result a complete actor model, 

• object oriented modeling. 

We often mention properties of a (type of) model, but we do not give 
proofs here, because we concentrate on modeling issues first. 

In this part we consider methods for construction of models and in 
the next part methods for analyzing models. 
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Chapter 12 

Actor modeling 

Actor modeling is the activity of making an incomplete actor model. In 
this chapter we will only consider incomplete actor models and therefore 
we use the term "actor model" as an abbreviation. Remember that the 
possible processor characteristics are totality, functionality and com
pleteness. Further the timing of tokens is considered in the process 
model, if this is relevant. Note that we do not consider verification of 
properties of models in this chapter. 

We distinguish making an actor model after reality, i.e. without any 
formal description to start with, and transforming a given actor model 
into another one which has structural properties the first one does not 
have. 

12.1 Making an actor model after reality 

There are two cases: the systems engineer has to make a model of an 
existing system, or he has to model a system he has (partly) in mind. In 
the first case he can observe the existing system and check if his model 
has the same properties as the real system, in the second case he can 
only check whether the system he has in mind, fits in the environment 
in which it should operate. From a modeling point of view these cases 
are not different: only the source of information is different. 

We will consider several modeling problems. To illustrate these prob
lems we regard two examples: order processing in the sales department 
of a company that delivers items from stock to customers, and traffic 
control at a railroad station. 

In the order processing system customers send a request a to the 
sales department to make an offer for delivery of items. (The characters 
refer to places in figure 12.1). Then the sales department produces an 
offer b, taking into account the inventory information which is shared 
with the environments. Now the customer decides to send an order 
c, which starts several activities in the sales department, and which 
resnlts in an order confirmation d. Now the sales department sends 
a delivery order g to the distribution department. If the distribution 
department is ready to deliver it sends a message to the sales department 
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a 

b 

c 

d 

" 
f 

II 

sales environment 
h 

Figure 12.1: Order processing, context diagram. 

h and the sales department notifies the customer and sends an invoice 
e. At the same time the sales department sends a copy of the invoice 
f to the finance department, which ends this transaction for the sales 
department. Of course there might be a lot of communication between 
the customer and the finance department concerning the payment of 
the invoice but that does not bother us here. We also neglect that 
the customer might be unhappy with the received items and that he 
contacts the sales department again about this order. 

North 

c B 

South 

Figure 12.2: Railroad station, physical lay out. 

The railroad station has a layout displayed in figure 12.2. Trains 
are riding in one direction (from left to right). One track is divided 
into two tracks at the entrance of the station. It is possible to load and 
unload passengers from both tracks at the platform. It is possible that 
one train is passing another one at the station. This system needs an 
information system that controls the use of the tracks at the station 
safely. The station master may decide when a train is able to leave 
the station, but the information system should not allow the station 
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master to give two tfluns a green light at the same time. Sensors along 
the railroad produce information objects that are sent to the railroad 
station to notify that a train has passed the sensor. Sensors C, D and 
G produce an information object in case a train has completely passed 
one of these points. Further there are semaphores along the tracks: A, 
E and F. If a semaphore is red a train has to wait, if it is green a train 
may pass. There is one switch B before the station and one join H 
after the station. Only B is important because it can be switched, H is 
always pushed into the right position by the trains. 

Using the above examples, we will now show how to make an actor 
model of a discrete dynamic system. We always consider systems at 
the highest level closed; top is the actor at the highest level. The first 
step is to decompose (split, refine) top into a network of two actors, 
one representing the discrete dynamic system we are interested in and 
another one representing the environment. The latter is called a context 
actor. So the first question to be answered is: what is the boundary of 
the system we are studying? To answer this question we have to define 
the places through which the system of interest communicates with the 
context actor. 

In figure 12.1 we see the first decomposition of top for the order pro
cessing example. The only interesting thing on this diagram is the com
munication with the environment, here by means of four input places, 
four output places and one store s. We often decompose the context 
actor once because it allows us to structure the communication with 
the environment. In figure 12.3 we have decomposed it. Here we see 
some new actors: finance, customers and distribution. They belong to 
the environment, we call them also context actors. We left out all com
munication between the context actors because it is not interesting for 
us. 

The second step, i.e. the first decomposition of the discrete dynamic 
system we study, (often) gives two actors: one representing the target 
system and one representing its information system. The target system 
is the system for which the information system works. 

An actor model showing the target system and the information sys
tem as one actor each and some context actors as well, is called a context 
diagram, so figure 12.1 and figure 12.3 are both context diagrams. In 
practice we start immediately with one of these diagrams. 

If we want to simulate the system we study, we have to simulate 
the environment as well. However, it is impossible to do this exactly 
because we should specify the environment in detail. Instead of doing 
this we make models of the context actors as if they would operate in 
isolation. This means that we design a consumption/production be
havior for them that is an approximation of the behavior of the real 
environment in the sense that the context actors are behaving like the 
real environment. Sometimes we may model a context actor by means 
of a random generator, which may imply that the context actor behaves 
more unpredictable than the real environment. This means that we test 
the system under circumstances that are more difficult than the real 
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Figure 12.3: Order processing, first decomposition of the environment. 

system will encounter. 
Often we are modeling only an information system, as in the order 

processing example. In this case the system we want to model is an 
information system, exchanging information objects only with the con
text actors. Actor customers represents all customers of the companYi 
only the exchange of information objects with the sales department is 
relevant. Of course, we could have modeled all customers separately 
by a context actor, but this would make the model vulnerable: if there 
would be a change in the customers population, our model would not 
be correct any more. (How the customers are modeled by one actor is 
discussed later.) 

In the rallroad example the object of study is a discrete dynamic sys
tem involving physical systems (the tralns, the tracks, the semaphores). 
We distinguish the information system and the target system (which is 
a discrete dynamic system itself). The information system has two char
acteristic properties: all tokens are information objects and many tokens 
in the target system have a "counter part" in the information system, 
since the information system maintains an image of the state or history 
of the target system. The context diagram for the railroad example is 
displayed in figure 12.4. Here we see three actors: the station, which 
is the target system, the traincontrol, which is the information system 
and a context actor called trains. Context actor trains has a simple 
behavior: it will produce trains for place k and it will consume trains 
from place I (trains will have a direction). So there remain two actors 
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trains I----+{ d }--.j 

i+--; e I+---j 
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Figure 12.4: Railroad station, context diagram. 

that we will detail to some extent. Channel a gives control tokens to 
semaphore A, b to the switch B, c and d pass sensor information from C 
and D respectively, e and f give control tokens to F and G respectively 
and by 9 the sensor information of G is passed. 

Besides the target system, its information system and the context 
actors we often introduce some other actors in the context diagram: 
measurement actors. These actors are used to obtain statistical infor
mation from the simulation of the behavior of the other actors. So 
these measurement actors only consume tokens from the other actors 
and they have no influence on their behavior. Often a systems engineer 
has a "library" of measurement actors at his disposal with which he can 
collect information of the actors he studies. Note that the measurement 
actors only playa role in the model and not in the real system. 

Summarizing we may find the following actors in a context diagram: 

• target system, 

• information system, 

• con text actors, 

• measurement actors. 

In the next modeling steps the target system and the information 
system are further decomposed. It is sensible to start with the target 
system, because the information system has to fit to it. In case the 
information system is our focus point, we do not model the target system 
into much detail. It is difficult to give a general rule how far to go. 
Often we encounter actors we are not able to describe completely. For 
instance, we may have to model human beings. This is, at least for 
systems engineers, an impossible task. Human beings may also be part 
of the information system if we decompose it. This kind of actors is not 
further decomposed. We regard them as black boxes and we call them 
context actors as well. So if we need their external behavior we replace 
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decomposition guidelines 

end of decomposition 

them by some simple actor with a behavior that is at least as "rich" as 
that of the black box actor. 

In general it is not wise to have many levels of decomposition because 
this makes a system difficult to understand. Ten levels seems to be a 
maximum while two to five levels seems to be "normal". There is also 
a guideline for the size of the network into which we decompose an 
actor: this should not contain more than ten actors, while five is a good 
size. (Combining these two limits would imply that models with a few 
hundred processors are "normal" and that models should never be larger 
than 1010!) Making a model is more an art than trade, there are no 
"hard" techniques. Some guidelines to do the decomposition are: 

• in case of modeling an existing system, use the functional de
composition that is already there, for instance the partitioning in 
departments, business units or task forces; 

• if the system is delivering different products or services, follow 
their path through the system to find tasks that can be performed 
by one actor; 

• do not consider the task of an actor in detail, but only its in
put/output behavior; draw a "boundary line" and see what kind 
of tokens are passing the line; 

• let the task of an actor be easy to understand and to describe in 
natural language; if the task is too complex it might be divided 
into several tasks, in this case the so called cohesion of the actor 
was too low; 

• avoid many connections between two actors, which is called the 
coupling of actors; if there are many connections the partitioning 
of tasks over the actors might probably be improved; 

• often it is useful to work bottom-up: first make a detailed model 
and then cluster actors into higher level actors. 

When we are refining actors we often discover that we made errors 
at higher levels in the actor model, mostly because we forgot some 
communication between actors or because we have considered different 
types of tokens as one type. This is not a problem although systems 
engineers hate to modify already made diagrams. However, it is very 
important to keep the diagrams consistent, which is often called balanced 
and which means that the diagrams together form one hierarchical actor 
model. 

At a certain point the actors become elementary, which means that 
they are processors and will not be decomposed further. A good check 
to see if an actor can be considered as elementary is that it should 
operate memoryless and it should be able to perform its operation( s) 
in one event. Hence the tokens it will produce may only depend on the 
tokens consumed and we must be able to consider its operation as one 
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transition of the system. Note that it is often possible to consider the 
stepwise processing of a task as one event. For instance, the execution of 
a computer program can be described as the evaluation of one function 
application. In a functional model it is sufficient to represent such a 
program by one processor. If we want to make a construction model 
it is necessary to model a program by a processor network in which 
the processors correspond to elementary program constructs. In actor 
modeling we do not determine types of tokens and the functionality of 
processors in detail, we only specify the processor characteristics. In 
case a processor relation is total and complete (Le. input and output 
complete) the actor behaves as a classical Petri net (cf. chapter 5) if 
we discard the values of the tokens. So, even without completing our 
model we are able to do some analysis. In many cases it is possible to 
model systems as classical Petri nets, but these networks become very 
large and confusing. So we should avoid refining too far and stop at a 
level where we discover memoryless actors that perform operations in 
one event. 

For the two examples we considered above, we will give a decompo
sition to the processor level. For each processor we will determine the 
processor characteristics. 

e 

~ale;;-
1 

I 
I 
L ___ _ 

Figure 12.5: Order processing, "final decomposition" of sales. 

First we consider the order processing example. In figure 12.5 we 
show the decomposition of the sales actor. Here we see processors 
only, so we are already at the lowest level of decomposition. Proces
sor infoservice answers questions a of customers by sending them an 
offer b. Processor ordering consumes orders c and produces a delivery 
order g for the distribution department, a confirmation d for the cus
tomer and the necessary data for delivery and invoicing. This is an 
information object sent to place m. Processor ordering uses also the 
inventory information s (which is shared with the distribution depart
ment), the customer information in store I and the price list in store k. 
In fact ordering is updating 8 and I as well as retrieving information 
from them. Processor invoicing is triggered by a delivery notice h from 
the distribution department saying when the ordered products will be 
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railroad station (continued) 

delivered. It selects the right order information object from m in the 
same event. So invoicing will not be total, since it is only able to process 
combinations of tokens from hand m for which the order identifications 
match. Note that the distribution department may have very little in· 
formation about the order, for instance it may not know the prices the 
products are delivered for or who is paying for them. Processor invoicing 
also produces a booking for the finance department. All processors are 
complete; invoicing is functional and infoservice too. However, ordering 
may be non·deterministic and therefore non-functional. This is the case 
if there is some flexibility in the determination of volume reductions. 

This is our functional model of the sales department. Note that it 
is not known yet if persons playa role in this system. For instance, if 
the communication with the context actors is realized by means of elec
tronic data interchange there is no need for persons. However in todays 
practice persons will be involved. Maybe each processor is realized by 
several persons or all the processors by one person. Here we are only 
interested in a functional model. If we consider a construction model 
of this system it should be consistent with this functional model. Note 
that there are several ways to decompose the higher level of the actor 
model. The decomposition is adding information. The original informal 
description of the system was not detailed enough to validate the model. 
The model is what the systems engineer thinks the system is. Finally 
we remark that this model is far from complete, for instance there are 
no facilities modeled to update the price list. 

Figure 12.6: Railroad station, functional model of actor station. 

Now we will look at the railroad station. In figure 12.6 we give a 
functional model of the target system, the station. Here we see that the 
semaphores (A,E,F), switch (B) and sensors (C,D,G) are modeled as 
processors. The join H appears as a place n. As we have seen in figure 
12.4 the places a through 9 model the exchange of information between 
station and train control. Of these places, only place b has a type that 
has at least two values, namely the strings "north" and "south", while 
the values of the others are not relevant (only the fact that there is 
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a token is relevant here). The other places (k, I, n and the unnamed 
places) are used by trains. So their type is "train". Note that the proces
sors consume or produce physical objects as well as information objects. 
This often occurs in models, because transformations or translations of 
physical objects require information. Only the switch processor B will 
use the value of the token of b to determine if the switch should go to 
the north track or to the south track. Only processor B has incomplete 
output: it allows a train to go to only one of the tracks. Furthermore 
B is total, input complete and functional. All other processors are very 
simple here: they have all the processor characteristics and their func
tion is the identity function for all the places of the train-type, so they 
reproduce the train they consume. In the initial state there are only 
tokens in k. 

Next we consider the functional model of the information system of 
the target system: the train control, see figure 12.7. This model looks 

c 

I~rdnc~t;;l- - - --
1 

1 r--r----~.r--r--------~--_, 

'W--j 
1----( r}---l • 

., 
w}+-----j 

I----(v}---l 

• l-----~.r--+----------~~ 

1 
1 
1 

- - - - - __ I 
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Figure 12.7: Railroad station, actor traincontrol. 

very similar to the model of the target system! Places with the same 
names in figure 12.6 and figure 12.7 are supposed to be the same. 

This is often the case: the information system should maintain all 
relevant details of the state of the target system, so from the state of the 
information system we should be able to derive the state of the target 
system. 

Now we will study the model of figure 12.7 in more detail. The 
names of the processors in the model correspond to the names of the 
processors in the model of the target system. Only processor B of 
the target system, the switch, is divided into two processors here: BI 
and B2 • That was not necessary but it makes it possible to model the 
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information system as a classical Petri net here: all processors satisfy 
the three properties and all token values are irrelevant except for the 
tokens produced by Bl and B2, that give their token the value "north" 
and "south" respectively. (This can be done in many cases.) We also 
see the places for the exchange of information objects with the target 
system. The places x and y are used by the station master, so they have 
to be connected to a context actor representing this person. The places 
p and q are used for feed back, only if processor E has fired, processor 
Bl can be enabled again to allow a train into the north track. 

We assume that in the initial state there are tokens in 8, p, q, wand 
k only. In k the number is arbitrary and in the other places the number 
is equal to one. This means that Bl and B2 are enabled and that there 
are no trains in the station. It is decided by the Demon which track will 
be opened for a new train, i.e. whether Bl or B2 will fire. It is easy to 
modify the model such that the station master can make this decision. 
(This is an exercise.) 

It is easy to see that the amount of tokens in the places p, rand u 
together is equal to one in any reachable state. The same applies to t, 
v and q. Such a property is called an invariant, to be precise a place 
invariant. 

If there is a token in p then the north track is free and if there is 
a token in r then a train is entering the north track and it has not yet 
passed the switch completely (i.e. the train has past sensor C). If there 
is a token in u there is a train at platform north and switci1 B can be 
used by a train that goes to the south track. In this case the invariants 
are easy to verify. In part IV we will see a method to find and prove 
them. Another invariant is that places r, 8 and t have exactly one token 
in total (if the initial state has this property), which means that at most 
one of the processors Bl and B2 is enabled in each event. If there is a 
token in r then the switch is open for a train to go into the north track 
and only after this train passes the sensor C there will be a token in 8 

again which allows to set the switch to the south track (if this track is 
free, which is indicated by the existence of a token in q). Note that Bl 
and B2 enable the switch and the semaphore A in the same event, when 
it is safe to enter the station. 

The station master may decide which train will leave the station 
first by putting a token in x or y. If he erroneously puts a token both 
in x and y no harm has been done: there is at most one token in w, 
so E and F cannot fire both. Furthermore, the semaphores E and F 
are only enabled if sensor G has given a signal which means that the 
preceding train has passed the intersection, i.e. switch H. To prove that 
the whole system works correctly requires more arguments, we do give 
them in part IV. However, it is easy to simulate the system by hand to 
get a feeling for it and to detect mistakes. 

Note that there are other ways to represent the state of the target 
system: for instance with one store containing one complex object, as 
displayed in figure 12.8. Here the store i represents the contents of the 
places p, r, u, w, t, v, q and 8 of figure 12.7. The processors P, Q, 
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Figure 12.8: Train control with a store. 

R, Sand T of figure 12.8 are only triggered by external places, i.e. 
by the sensors of the railroad or by the station master. Although this 
actor model is much more simple than the one displayed in figure 12.7, 
the processors are more complicated here, and the verification of the 
correctness is more difficult. 

In the examples so far we have not considered the timing of to
kens. In many cases this aspect is also important in an early stage. 
For instance there could be an actor representing a clock, that creates 
triggers (tokens) for processors that have to be activated at particular 
times. In general it is "dangerous" if the time aspects of the tokens play 
an essential role in an information system, i.e. if the functionality of an 
information system depends on the processing speed of its components. 
In real time systems this is sometimes the case. There is a trend in 
designing information systems that are delay insensitive which means 
that their functionality is independent of processing speed. 

We conclude with some other guidelines: 

• give actors a name that reflects action, for instance: "updating" 
or "painting", while places get names representing a state of rest, 
for instance "waiting for shipment"; 

• in case there is only one connection from a place to an actor, we 
may use the name of the place for the connector; 

• it makes sense to give actors a number in such a way that their 
descent can be traced; 
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• it is always important to have an informal description of a model 
in every stage of development and this description should be up
dated after further refinement or formalization; always list the 
assumptions made; 

• check whether in a model every place has at least one input and 
one output actor; if not this place might become empty or the 
number of tokens in it might grow unlimited, which is seldom 
what we want; 

• check if actors have input and output connectors, if not it are 
probably context actors; 

• in refining a model only use stores that are shared by more than 
one actor, only on the lowest level, where we have only processors, 
we use stores that are private for one processor; 

• try to make simple couplings between actors, i.e. the knowledge 
one actor has to have of another one with which it communicates, 
is as little as possible; 

• make as much as possible reusable actors, by keeping interfaces 
simple and by using polymorphic functions and type variables in 
the specifications of places and processors (cf. chapter 6). 

12.2 Characteristic modeling problems 

We will now consider several problems that occur in many modeling 
situations. We will illustrate these problems as much as possible with 
the two examples given above. 

1. The role of objects and actors. 
Objects or tokens can play different roles in a model. They may 

represent: 

• physical objects, like the trains; 

• clusters of physical objects, like a set of cars in a garage; 

• messages, like the order confirmations; 

• databases, i.e. a complex object that represents (a part of) a state 
of a system, like the customer file; often these objects reside in a 
store, but not necessarily; 

• stage indicators that represent the stage or state of some "entity", 
like the objects (tokens) in the places of the train control system 
(see figure 12.7); in these cases the places may contain at most 
one token and its type is irrelevant; 
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• signals like the signals exchanged by the station and the train 
control system; only the processors Bl and B2 produce messages 
and all other interface places contain signals; a signal is like a stage 
indicator, its value is irrelevant but there may be several signals 
in one place. 

The role of actors and processors in particular, is one of the following: 

• complete systems that consume and produce tokens, with or with
out memory and self-triggering (self-triggering means that the 
processors produce their own input tokens); in particular human 
beings can be modeled as actors; 

• transformers or transporters of tokens; 

• markers of activities in networks where places represent stages 
and tokens stage indicators. 

It is important to indicate in an early stage of the development of a 
model what the role of an actor, a token (type) or the place it resides 
is. Thls may already determine properties of the actor model that can 
be verified at later stages in the development. 

2_ Modeling an entity as a token or as an actor_ 
Often we have the choice to model a real-world entity as a token or 

as an actor. We start with an example. 
In a production system it is quite natural to model the products as 

tokens, but for resources this is not so clear. Consider for instance a 
simple production system in which a product is made in one production 
step from raw material to the final product by one machine as illus
trated in figure 12.9. Here A denotes a context actor that produces 
raw material and C a context actor that consumes final products, while 
B represents the machine. It is clear that the quantities of raw ma
terial needed for one product are modeled as tokens and the products 
too. The machine is one processor here. A disadvantage of modeling 
machines as actors is that the model is vulnerable for changes in the 
number of machines, like we have seen in the order processing example 
above with the modeling of customers. Consider the same production 
system but with three machines instead of one, as displayed in figure 
12.10. In figure 12.11 we find a model with arbitrary many machines. 
Note that B now represents a machine operation instead of a machine. 
In place q the machines reside. Now the machines are tokens too. Thls 
model is only interesting if the manufacturing of products takes time 
since otherwise there is not much difference between this model and the 
first one. 

Now we modify the problem a little: we assume that there are two 
types of operations, Band E and that the production process first 
requires the use of a machine of type B, then one of type E and finally 
one of type B again. We can model this in two ways: there is still only 
one actor for each machine operation (see figure 12.12) or there is an 
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Figure 12.9: A simple production system. 
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Figure 12.10: The same production system with three machines. 

A B c 

Figure 12.11: The same production system with arbitrary many ma
chines. 

actor for each step in the production process (see figure 12.13). In the 
model of figure 12.12 processors Band E must decide if the produced 
token is ready or that it needs another production step. So the tokens 
should contain this information. In the model of figure 12.13 the tokens 
do not need to contain any processing information at all. Note that 
in these models places q, and q2 represent the machines of type Band 
E respectively. It is always a trade off between a complex network 
with simple object types and simple processor relations for processors, 
and a simple network with complex object types and complex processor 
relations. 

The construction presented here can be applied in general. If a 
processor represents an entity that operates on objects, then we can 
modify the model such that the processor becomes the activity of the 
entity instead of the resource itself. Then we have to add a place that 
is connected bidirectional to the processor and which contains a token 
that represents the entity. If we do this systematically, we obtain a 
model in which all entities that live for a time period are represented as 
token and in which all processors represent instantaneous activities. 
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Figure 12.12: One processor per machine operation. 

I--..{m B1 1-_..{p1 B Ba 

q1 

Figure 12.13: One processor per type of production step. 

3. Modeling a file as one token or a set of tokens. 
Consider a file of items. The same model can be used for a warehouse 

with one type of physical objects. We can model this file as a place 
containing a token for every item in the file, or we use a store with one 
complex object representing the whole file. Often we need to inspect 
all the items in the file and this is quite difficult due to the fact that 
processors have no means to check whether a place is empty or not. 

In figure 12.14 we see a simple file management system. Processor 
p adds a token of type IN from place a to the file stored as one token 
in store k. The type of this store is IN". Processor q inspects this store 
and computes the sum of the values of the items, whenever it receives 
a signal in place b. The processor relation for both processors is quite 
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Figure 12.14: File maintenance with a store. 
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Figure 12.15: File maintenance without a store (1). 
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Figure 12.16: File maintenance without a store (2). 
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easy. 
However, if we want to avoid the use of a store to model the file, we 

may replace the store by a channel where each "stored" item is modeled 
by a token. Using preconditions we may select the right token for an 
operation. However, if we want to perform an operation on all items, 
we need a more complicated solution, like the one displayed in figure 
12.15. We assume that each query token on b has as value some unique 
number Q. Store k has been replaced by a place k containing a token for 
each "stored" item. Place j has a token in the initial state with a value 
indicating the number of items in the file (i.e. tokens in place k). Each 
token in k has a value that represents the stored item and the stage in 
the inspection process ("inspected by query Q", where Q denotes the 
last query in progress). Processor q, consumes a token from place band 
the token from j and produces a token for d. The value of the token 
in d is a row (m,n,o,z), where m denotes the total amount of items, 
n the amount of items already inspected, ° their sum and z the query 
identification (Q). Then processor q2 consumes all tokens from place k 
and puts them back with status changed into "inspected by query Q". 
When all tokens have been treated the answer is produced at place c 
and the token for place j is restored. 

If we do not want to add processing information to the "stored" items 
we need an even more complicated solution like displayed in figure 12.16. 
Again place k contains the file in the initial state as individual tokens, 
one for each item. Also place j has a token in the initial state with a 
value indicating the number of items in the file. No other place has a 
token in the initial state. Processors p and q are complete, while s and 
r are only input complete. All processors are total and functional. As 
long as no request appears in place b, processor p may add items to k, 
while updating the token in j. When a request arrives in b a rather 
complex process is started. First the token of j is transferred to f and 
then processor s transfers all items from k to d, while inspecting their 
values and adding these values in the token in f. The value of the token 
in f is a row (m, n, 0), where m is total amount of items, n the number 
of items seen so far and ° is their sum. As soon as the items are counted, 
i.e. m equals n, processor 8 produces the accumulated file value in place 
c and it puts a token in place h with the number of items in the file 
as value (which is known from g). Further it does not return the token 
in f as was done in the preceding firings. Now processor r starts and 
carries out a process similar to 8: it returns the items to place e, while 
counting the items seen so far and it ends with the return of a token to 
place j. 

This example shows that it is very convenient to use a store to 
represent a file and that rather complicated constructions are needed 
otherwise. 

4. Knowledge in a processor or in a store. 
The processor relation of a processor often uses constants, such as a 

number or a finite binary relation. Consider for example a processor 
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that produces the amount of taxes to be paid when an income tax 
return is "consumed". The tax table will be used. The question is, 
should we put this tax table in the processor specification or should we 
define a store from which the processor reads the table. If there will 
be no updates of the tax table it makes sense to put the table in the 
processor specification, because it simplifies the actor model. However, 
if updates of the tax table are possible we have to introduce a store 
and also an actor (maybe a context actor) that updates the store. It 
is useful to check whether stores in an actor model are updated or not. 
If not there is probably something wrong: either the updating actor is 
missing or the store could be incorporated in all the processors that are 
using the constant. Note that in practice very little constants occur, in 
most cases the "constants" turn out to be variables. However, we may 
consider them as constants: changing them would then be understood 
as a change of the system, which is called second order dynamics. 

5. Direct addressing or broadcasting. 
We try to make models as modular as possible in order to be able to 

reuse parts of them for other models or to be able to adapt a model 
easily. Therefore actors have connectors that can be attached to places 
in a later stage, without changing the actor itself. If we have an actor 
that sends messages to other actors, in fact to their input places, then 
we have to know precisely which actors will get messages, in order to 
specify the connectors of the sending actor. This might be cumbersome 
because we do not know the number of addressees yet, or the number 
might change in the future. This solution is called direct addressing. 

A better solution is to send all the messages to one place (so we 
just need one output connector in the actor) and only let the receiving 
actors consume messages that are addressed to them. Of course this 
requires the use of a precondition in the receiving actors. This solution 
is called broadcasting. The messages have to carry an address and each 
receiving actor has to know its own address, which is not the case if we 
use direct addressing. 

In figure 12.17 the two cases are displayed: left direct addressing, 
right broadcasting. Actor p is the sender and q, rand s are the receivers. 

In the second solution the sender still has to know all addressees. If 
we want a more realistic model of broadcasting the sender should not 
have to know the addressees nor their amount. There are two possible 
solutions to this problem: either add an actor between the sender and 
receivers that performs the addressing task (Le. split p), or use a solution 
like the one displayed in figure 12.18. In figure 12.18 a message in dis 
"read" (consumed) by a receiver and then put back. Each receiver has a 
precondition saying that he should not read the same message twice: for 
this the type of d is now enhanced with a set indicating which receivers 
have already read the message. Initially this set is empty. When the size 
of this set is equal to the number of receivers, the message is discarded 
by a special processor t. 
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Figure 12.17: Direct addressing versus broadcasting. 
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Figure 12.18: "Real" broadcasting. 

6. Sequential processes. 
A sequential process, like the execution of a computer program or a 

production process in a factory, can be modeled as a network in which 
every processor represents a processing step and every place a stage in 
the process. A characteristic of these networks is that every processor 
(except for the first and the last) has exactly one input place and one 
output place. (This is the property of a state machine, a kind of actor 
discussed later.) One of the characteristic features of an actor model 
representing a sequential process is the fact that the total number of 
tokens in the network is constant and equal to the number of processes 
that might be active simultaneously. This number is equal to the number 
of resources that can work simultaneously. (In traditional computer 
systems this number is equal to one.) In figure 12.19 a sequential process 
is displayed. We may interpret this example as a computer program 
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Figure 12.19: A sequential process. 

with the well· known constructs: selection, iteration and assignment. 
In fact we may consider this actor model to be a flow chart. (Although 
flow charts are not used in software engineering any more, they still are 
used in other engineering disciplines). Processor p represents the buffer 
control of the process: only if places a and g have a token it may fire. 
The tokens in g denote the number offree resources that may perform a 
sequential process. Processors rand s represent an iteration. They have 
preconditions to determine if the iteration is ready or not. So only one of 
them will be enabled to consume the token in place c. Processors t and 
u form a selection. Their preconditions form the if then else construct. 
Processor q represents an assignment. All processors are complete and 
functional. Processors p, q and v are total. Processor v marks the end 
of the process and returns the resource to place g to allow processor p to 
start a new job. So the process itself is the network between processors 
p and v. In the initial state there are only tokens in g. We may replace 
all processors, except for p and v by an actor that satisfies the property 
that it has exactly one input and one output connector and that it will 
produce one token if and only if it has consumed one token. 

Sequential processes can be used to model object life cycles in the 
object oriented modeling approach. Then there is for each complex class 
one sequential process. They can also be used to model transaction 
processing: for instance in a database system each transaction can be 
considered as an object having a life cycle. 

7. Synchronization. 
Here we consider two sequential processes that may communicate. If 

one process needs the processing of another it will send its "job" to the 
other process and waits till its returns. This is called synchronization of 
sequential processes. In figure 12.20 we see two sequential processes. All 
processors are complete and total. In the first process actor b produces 
a token that needs further processing in the second process, which is 
also a sequential process. Processor g of this process waits till the token 
to be processed arrives in place p and the result is delivered in place 
q by processor h. The first process waits, which is expressed by the 
completeness of processor c. Since the two sequential processes have 
almost the same structure, we can give a similar description for the 

154 



,--------{ r }+-------, 

a b c d 

f II h j 

L-______ -{ t }4-------...J 

Figure 12.20: Synchronization. 

second process. Note that processors b, c, 9 and h have exactly one 
input and output place within their sequential processes. 

8. Mutual exclusion. 
Mutual exclusion is a frequently occurring form of communication of 

processes, which share a resource that can be used by only one processor 
in one event. In the train control system (d. figure 12.7), we already 
find such a situation: the token in place s represents the "tongue" of 
switch B that can be used for the north or the south track, but not for 
both in the same event. Another form of mutual exclusion is the use of 
a store by two processors: only one of them can use it in one event or 
during a time period. Here the network takes care of the problem! A 
more general case of mutual exclusion is displayed in figure 12.21. All 
processors are complete and total in this example. In the initial state 
there are tokens in r, t and s only. Here both sequential processes need 
the (single) token in place s. Processors band 9 are waiting for this 
token and d and j return it after c or h have used it. Note there is no 
guarantee that a system that needs the resource will get it: the other 
system could take it always just before the first one. Using the time 
mechanism it is easy to obtain fairness, i.e. to guarantee that every 
request is satisfied. We only have to require that the tokens produced 
for rand t get a positive delay and that the resource has no delay in 
place s. 
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Figure 12.21: Mutual exclusion. 
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Figure 12.22: Modeling processing time (1). 

Figure 12.23: Modeling processing time (2). 

9. Processing time and time-out. 
We have already seen in part I how we may represent the fact that 

processors need time to perform their operations. In figure 12.22 and 
figure 12.23 we show two constructions. In the first one processor p 
produces a token for place b with a delay t which is equal to the delay 
of the produced token for place b. This delay represents the processing 
time. Although the token in b is immediately there, it is only available 
to other processors after the delay. In the second solution (figure 12.23) 
we see two processors q and r. Firing of q represents th~ start of the 
processing and the firing of r the end of it. Only the token in place d 
gets a delay equal to the processing time. 

The processing time can be used to solve a problem we encountered 
before: when we modeled a file as a set of tokens, we found that it 
was impossible to test if a place was empty. So we had to use another 
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Figure 12.24: Inspecting a place using a time-out. 

solution to see if we had inspected all tokens (see page 151 where we 
"stored" the amount of tokens in a separate place). With a time-out 
construction it is possible to determine whether a place is empty or not 
without counting the number of tokens in the place. A time-out is a 
way to decide whether a processor is enabled to fire or not, based on the 
time that has passed since its last firing. In figure 12.24 we consider a 
part of the file maintenance problem. All processors are total and input 
complete, only processor q is not output complete however the others 
are. The delays the processors give to their output are: tokens in c and 
e are delayed three time units, by processors p and r respectively and 
the tokens in d will be four time units behind. Channel a contains the 
file with items and after inspection the items are put into place b. The 
intermediate result of the inspection of the file is put into place c by 
processor p and the final result, if the whole file is inspected is put into 
place f by processor q. The initial state of this system is important: in 
a is the file, in c is a token with delay zero, in d a token with delay one, 
in e a token with delay two and the other places are empty. Processor p 
inspects an item every three time units, and processor q cannot take the 
token from place c before place a is empty because this token is "stolen" 
by processor p before q is enabled. 

To verify this statement, we show by induction the existence of to
kens in places c, d and e that become available at time points 3k, 3k + 1 
and 3k + 2 for k E {a, 1,2, ... } respectively, as long as place a is not 
empty. For k = a this is guaranteed by the initial state. Suppose the 
statement is true for k. Then processor p will fire at 3k and it will pro
duce tokens for c and d that are available at 3(k + 1) and 3(k + 1) + 1 
respectively. Note that there is still in d a token that is available at 
3k + 1. At 3k + 2 processor r is enabled because of the token in e and 
it will consume the token in d and reproduce a token for place e that is 
available at 3( k + 1) + 2. Now there is again only one token in d. So 
the statement holds for k + 1. Only if processor p consumes the last 
token from a, say at time 3k, then processor q will be enabled at 3k + 4, 
because there is a token available in cat 3k + 3 and in d at 3k + 4, while 
processor r has to wait till 3k + 5 to be enabled. So if q is enabled we 
know that a is empty, because the time for processor p has expired. 

This example shows how powerful the time mechanism is, but one 
should be careful with it because realization of systems when the func
tionality of the model is using time aspects is difficult: systems become 
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Figure 12.25: Token cancellation. 

10_ Token cancellation. 
Sometimes the following situation occurs: a token is put into a place 

with a delay by some actor X to be consumed by some processor Y and 
before the delay has expired another actor Z wants to prevent that the 
token will be consumed by Y. Then Z sends a cancellation token that 
should activate some other processors to consume the token. However, 
these processors are of course not able to consume the token before the 
delay has expired. In figure 12.25 a solution is displayed. We introduced 
two new processors V and Wand some extra places q, rand s. As soon 
as Z puts a token in s processor V consumes the (only) token from r 
and puts a token in q. Now Y is not able to execute because there is no 
token in r. (We assume that all processors are complete.) As soon as 
the delay of the token in p expires, W will consume the token in p and 
W will reset the system by putting a token in r. (So in the initial state 
there is one token in r and tokens in r will have no delay.) Note that we 
had to modify processor Y by connecting it to r. It is easy to modify 
the model in order to avoid modifications of Y. This construction only 
works for cases where Z wants to cancel an arbitrary token in p. In case 
Z is more selective in the sense that it will only cancel a token in p with 
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a particular value, then the construction has to be adapted. (This is an 
exercise. ) 
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Figure 12.26: Token selection. 
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Figure 12.27: Priority in selection. 

11. Priority in token selection. 
Consider the situation displayed in figure 12.26. If there is one token 

in p and one in q such that the time stamp of the token in p is greater 
than the time stamp of the token in q, then the Demon will decide if X 
or Y will execute. If we want to give Y priority over X, we can modify 
the model as displayed in figure 12.27. All processors are complete. In 
the initial state there is one token in r. As soon as the token in q is 
available, Z will consume it, together with the token in T. Then X is not 
enabled if the token arrives in p. Processor Z also duplicates the token 
in q to a token in s. Now Y is enabled and after its execution there is 
again a token in r so that the system returned to its initial state. Note 
that if the tokens in p and q arrive at exactly the same time the Demon 
still decides between executing X or Y. (It is easy to modify the model 
such that X and Y do not have to be modified.) 

12. Continuous processes. 
Sometimes we want to model a process that is typically continuous. 

In part I we said that we restrict ourselves to discrete systems, how
ever we are able to model some continuous systems as well. Consider 
for example the chemical process displayed in figure 12.28 we see the 
production of salt from NaOH and Hel. We modeled every reservoir 
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Figure 12.28: A continuous process: salt production. 

p 

Figure 12.29: An arbitrary continuous process. 
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by a store, the value of the token in the store represents the amount of 
the chemical in that reservoir. All processors are using self· triggering 
and the tokens in the self-triggering places have delays that represent 
the time necessary to perform the chemical reactions. In figure 12.29 
an arbitrary continuous process is displayed. Stores a and b contain the 
raw material that is transformed into the material in c. Note that we 
cannot see the direction of the process in the diagram because we use 
stores. Let us consider the processor relation of processor p. Suppose 
a fraction a of a unit of c is made of the material of a and a fraction 
1 - a of a unit of c is made of the material of b. Further suppose that 
the processing time of 1 unit of c is (3 time units. Then the processor 
relation satisfies the following equations: 

h = . {a b} mzn -,--
a 1-a 

c' = c+h 

a' = a-axh 

b' = b-(1-a)xh 

delaYed) = (3xh 

Note that h is the maximal amount of c that can be produced and that 
we may break up the process into more steps, by not producing the 
maximal amount of the token in c. 

13. Communication with an environment. 
As we have remarked before, we have to replace an environment of 

a (model of) system by approximations of context actors, in order to 
be able to simulate the behavior of the system. The approximations of 
the context actors should have a behavior that is at least as "rich" or 
"wild" as the behavior of the real environment in order to be able to 
test the system. There are in principal three different ways to model 
the context actors as displayed in the three cases of figure 12.30: 

• without feed back as displayed in the first case 

• with memoryless feed back, as in the second case 

• feed back with memory, as in the last case. 

In all three cases p represents the system for which we have to create 
an environment. The processors q and r are both total and complete. 
In the initial states we assume tokens in places a and 8 only. 

In the first case processor r just consumes the output of the system 
and processor q produces input without any concern of the output of 
p. Note that q fires because of self-triggering via place 8. In 8 may be 
one or more tokens, and q produces a new one in every firing. A slight 
variation of this solution is one in which processor q does not produce 
tokens for 8. In that case the environment at some point in time stops 
producing new input. This case can also be modeled by putting all the 
input tokens immediately in place a with an appropriate time stamp. 
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Figure 12.30: Three ways to model an environment. 

In the second case we see that the environment only produces input 
after it has received output from the system: the communication follows 
a simple protocol. In this case the new input may depend on the last 
output but not on the history of outputs of the system. 

In the last case the new input is allowed to depend on the whole 
history of the output of system p. Note that the last solution has a 
store t, which may of course be changed into a place like in the first 
case. However, in the first case we may not replace place s by a store 
since we do not want processors to be triggered by stores. 

12.3 Structured networks 

The actor framework describes a very large class of models. It is useful 
to distinguish types of actor models, i.e. subsets of the set of all actor 
models having some common properties. Such a type division may be 
based on: 

• class model: an important type is formed by the valueless actor 
models; these actor models only have one object class, which con
tains only one object; 
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• delay structure: an important type is formed by the timeless ac
tor models; in these actor models the tokens in the initial state 
should have a time stamp equal to zero and all delays assigned by 
processors should be zero too; 

• processor characteristics: an important type is the one in which 
all processors are complete, total and functional; 

• network structure: this subdivision is based on the structure of the 
graph only, there are several important types based on different 
graph structures; 

• state structure: this subdivision is based on the maximum number 
of tokens per place. 

We will describe several types and we will consider transformations of 
actor models belonging to one type into another type. 

The first type we will consider is the type of classical Petri nets 
(also called place/transition nets). Recall that a classical Petri net is a 
timeless and valueless actor model, i.e. all tokens have time stamp 0 and 
there is only one complex class with only one complex in it. Furthermore 
all processors are complete and total. Note that for valueless actor mod
els the functionality of the processor relation is not important. For this 
type of actor models nice and useful analysis techniques are avrulable, as 
studied later, but we give already some intuitive ideas of some of these 
properties. However, the expressive power and comfort are very little. 
Nevertheless it is sometimes possible to transform actor models where 
tokens have values to classical Petri nets, which allows analysis of these 
actor models by the techniques for classical Petri nets. The intersection 
of the actor model types we define below and classical Petri nets are 
well-studied in literature. They have interesting behavioral properties. 

The definition of a (flat) actor model is given in part II. Here we 
only need to know that L denotes the set of places, P is the set of 
processors, I(p) is the set of input connectors of processor p, O(p) is the 
set of output connectors of processor p and Mp is a function assigning 
the connectors of p to places. 

Let LI denote the set of all channels in a flat actor model (so L\L1 is 
the set of all stores). We exclude stores from the structural properties, 
because they do not influence the enabling of processors: they are always 
avrulable. In order to define properties of actor models we need some 
definitions. For pEP the symbol p. is the set of output channels: 

p. = {I E L/I 3x E O(p): Mp(x) = I} 

and .p is the set of input channels: 

.p = {I ELI I 3x E I(p) : Mp(x) = I}. 

For I E LI the symbol I. is the set of processors for which I is an input 
place: 

I. = {p E P 13x E I(p): Mp(x) = I} 
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and .1 is the set of processors for which I is an output place: 

.1 = {p E P I 3x E O(p) : Mp(x) = I}. 

The actor models we will consider now are called free choice nets. 
We assume the processors are total and complete when we are dealing 
with free choice nets. A free choice net is an actor model such that: 

'<Ip E P,I E L': #{x E J(p) I Mp(x) = I} ~ 1 

and 
'<II E L' : (#(1.) ~ 1 V '<Ip E P: pEl.:} .p = {I}). 

In words, in a free choice net every processor is connected to a place 
with at most one connector and every place is either input place for only 
one processor, or it is input place for more processors, but then these 
processors have only this place as input place. 

a b c 

pl p2 

Figure 12.31: A "non-free choice" net. 

r-- ... 
pl p2 

Figure 12.32: A free choice net. 

In figure 12.31 an example of a "non-free choice" net is displayed. In 
a free choice net (that has by definition complete and total processors) 
the Demon is free to choose the processor that will consume a token if 
there is more than one possibility on base of the network. This is not 
the case in the example of figure 12.31, in which the token in place b 
cannot be consumed by processor P2, but only by Pl in the state where 
a and b have both one token and c is empty. 

Next we consider three subtypes of free choice nets: conflict free 
nets, state machine nets and activity networks. 

A conflict free net is an actor model satisfying 

'<lIE L': #(1.) ~ 1. 

In words, each place is an input place for at most one processor. It is 
easy to verify that a conflict free net is a free choice net. 
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In a conflict free net processors never have to compete for a token: 
there is no choice to which processor a token of a place will go. So a nice 
property of conflict free nets is that all processors that are enabled at 
some point in time, may fire at the same time, and if they do not share 
stores they may even fire simultaneously. Compare this property to the 
serializability property (cf. theorem 10.5): this theorem states that if two 
or more processors may fire at the same moment, they may also do this 
in an arbitrary order. However, for conflict free nets we do not have to 
determine which combinations of processors may fire simultaneously, we 
just have to find all processors that may fire in isolation at some moment 
and we know that they may fire all at that moment! An example of a 
conflict free net is a sequential process as studied above. 

A state machine net is an actor model with the property 

'VEP: #(op) = #(po) = 1. 

In words, each processor is connected to exactly one input and one 
output place. It is easy to prove that a state machine net is a free 
choice net. 

State machine nets can be used to model finite state machines. Fi
nite state machines are often used in theoretical computer science and 
in software engineering. In software engineering they are for instance 
used to specify the functionality of actors, protocols and user interfaces. 
Since fiillte state machines are a special type of actor models we may 
apply our framework in all cases in which finite state machines are used. 
A fiillte state machine is a state machine net with an initial state that 
only has one token and no stores. All processors are complete and total. 
Each place represents a state of the machine and each processor repre
sents a possible transition of the machine to another state. The token 
indicates the state the machine is in. It is easy to see that in all states 
of the actor model (not to be mixed up with the state of the finite state 
machine) the number of tokens is one, if it starts so. 

An example of a finite state machine is modeled in figure 12.33. 
Note that a state machine net can be regarded as a graph with one 
kind of nodes, namely places, and that the processors are considered to 
be arc labels. Here we see an actor model that "counts" the number 
of 1 's in a binary sequence, i.e. it counts up to three and if it has 
counted three 1 's it remains in its state, in case it gets a 0 it jumps 
to its initial state a. Channel a denotes the state of the machine after 
having seen a 0, b after one 1, c after two 1's and d after three or 
more 1 'so If a 1 is received processor p fires and the machine will move 
to state b and if a 0 is received processor m will move the machine 
to a again. Similarly processors q and r move the state to places b 
and c respectively. Processor n moves the state to place d when a 1 is 
received. The other processors move the state in case a 0 is received. To 
understand this model we need a lot of extra information, such as the 
process of receiving the binary sequence, not displayed in the diagram. 
In our framework it is easy to extend the model with an environment 
modeling the extra information. In figure 12.34 the augmented model 
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Figure 12.33: A finite state machine . 

• 
r-------- ----------, 
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L... 

activity network 

f 

Figure 12.34: The finite state machine in an environment. 

is displayed. Here places e and f get the 1 's and D's respectively from 
an actor w. The processors p, q , r and n consume the 1 's while the 
other processors consume the O's if they are enabled. We assume actor 
w does the appropriate selection of the elements of the binary sequence 
and we assume that w produces the tokens for e and f with a delay 
that is larger than the time the finite state machine needs to perform 
the transitions. 

An activity network is an actor model with the property 

VI E L': #(01) = #(10) = 1. 

In words, each place is an input place for exactly one processor and 
an output place for exactly one processor. It is easy to prove that an 
activity network is a conflict free net. 
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Figure 12.35: A PERT network. 

An activity network is also known under the name marked graph 
or PERT network. (PERT is an acronym for Program Evaluation and 
Review Technique.) The last name is used only if the network is a-cyclic 
and if there are extra two places, say begin and end, such that .begin = 
o and end. = 0. (Formally a PERT network is no activity network, 
due to the extra places.) Each processor represents the start or the end 
of an activity while each place represents the execution of an activity. 
Activity nets can be used to model parallel processes with precedence 
constraints. When we give each token a delay that corresponds to the 
time an activity takes, the simulation of the model gives us the earliest 
possible completion time of the set of activities, also called the "project". 
In figure 12.35 an example is displayed. Note that an activity network 
can be seen as a graph with processors as nodes and arcs labeled with 
places. In this network the initial state is one token in begin. Then 
processor p marks the start of the activities a, band c in parallel. Only 
if a and b are ready processor q can start activity d. Finally all activities 
are done if processor t produces a token for end. 

Another important type of actor models, based on the state struc
ture, is called bounded nets. These actor models are characterized by 
properties of the maximal number of tokens per place. 

A k-bounded net is an actor model where each place has at most k 
tokens in each state, provided the initial state has this property. A safe 
net is a 1-bounded net. 

We have already seen example of safe nets: a state machine net is 
safe, because there is at most one token in the network; an activity net 
is also safe. If the number of values the tokens may get in a k-bounded 
net is finite, then the number of states if finite too and it will be possible 
to model the network as a finite state machine. 

12.4 Net transformations 

We will now consider several ways to transform an actor model into one 
with another structure. 
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self-triggering only 

polling 

Figure 12.36: Transforming an actor model into one with only self
triggering. 

Transforming actor models into models with only self-triggering. 
Suppose we have an arbitrary actor model and we want to get rid of 

communication by means of places. A reason for this could be that it 
might be easier to realize a system in which processors inspect memory 
at their own time instead of having synchronization problems. Then we 
can transform such a network into a network with only one place per 
processor that is used exclusively by this processor, both as input and 
output place. The transformation proceeds along the following lines: 

1. Replace each place by a store. 

2. Give the store a complex class such that tokens of the original 
place can be clustered into a complex of this class and that the 
complex can be decomposed into the original components. I.e. 
if the complex class is represented by a value type T, then the 
complex in the store can be represented by IF(T) or T*. 

3. Introduce for every processor a place which contains in the initial 
state only one object, which is a valueless complex. 

4. Modify the processors by adding a pre-processing phase in which 
they select one token from the complex in each of their stores 
that was an input place and a post-processing phase in which they 
pack the objects they produce into the complexes of the stores 
that where output places. 

In case time plays a role it is necessary to represent the time stamps of 
the original tokens in the complexes of the stores in order to be able to 
pick them in the right order. The new network should be similar to the 
original one, see definition 8.8. The new network inspects its stores by 
means of self-triggering or polling. The tokens in the new private places 
may get a delay to model the polling intervals. An example is given in 
figure 12.36. 

In a similar way we can transform an actor model to have only one 
input place that is either a self-triggering place as above or an output 
place of some other processor, which means that some processors are 
only activated by others and some by self-triggering. 

Transforming actor models into models without shared stores. 
N ow we consider a situation that is almost the complement of the 

former one: we have a network in which processors share stores and we 
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would like to transform this net into a net in which stores are private 
for a processor. A store can be accessed by only one processor in an 
event, so we should incorporate in the transformed network a mutual 
exclusion mechanism. 

p q 

Figure 12.37: Network with shared store. 

c 

pi 

p2 

Figure 12.38: Network without shared store. 

In figure 12.37 and figure 12.38 we see an example. In the network 
of figure 12.37 processors P and q share a store 8. We assume both pro
cessors are complete. The transformed network should keep the values 
of the two tokens in 81 and 82 the same, as much as possible. In figure 
12.38 we see the transformed network in which processor P is replaced 
by two processors: PI that takes care of the access control and P2 that 
performs the update of the store SI, which has the same type as s. For 
processor q we see a similar transformation. In the initial state place 
m contains two valueless tokens that are needed both by PI or ql if 
they want to initiate an update. After P2 and q2 have done the updates 
they return one (valueless) token to place m. Further we see two new 
places d and e that are needed to transfer the update of one processor 
to the other. (Note that P and q may perform totally different kinds 
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of updates). Processors P1 and q1 are complete but P2 and q2 are not 
input complete: P2 is either consuming a token from place k or from 
e. The same counts for q2. However they always give a token to place 
m. So if the two tokens of m are consumed by, for instance P1, then 
one token is returned after the update of 81 by P2 and the other one 
by q2 after the update of 82' Processors P1 and q1 have a very simple 
processor relation: they pass the tokens they consume from a, b and c 
to k, I and n respectively. For processors P2 and q2 there are several 
transformations possible, depending on what the original processors P 
and q do. A trivial, but in many cases not practical solution is to let P2 
give the new value of the token in store 81 to q2 and vice versa. This 
modification of P2 and q2 is easy. In case the token in the stores is a 
set and the update is just the addition or deletion of an element of that 
set, processors P2 and q2 only have to exchange their updates and not 
the new value of the stored token. 

The solution we have considered here can easily be generalized to 
three or more processors sharing one store. Another generalization is 
the case in which we have three processors that share two different stores 
pairwise. We can use a similar transformation here. 

r-----~·fr====~~b~----_. 

• 

L-____ ~.)L----~:.} __ ----~ 

Figure 12.39: Transforming an incomplete processor. 

Transforming incomplete processors into complete ones. 
Sometimes it is nice to have an actor model with complete processors, 

for instance to analyze behavioral properties of a classical Petri net after 
discarding the values of tokens. If we start with a net with incomplete 
processors we can transform it into one with only complete processors. 
Consider the processor relation Rp of a processor p. (In definition 10.3 
Rp is defined as a set of firing rules; each firing rule describes a possible 
firing of processor p, i.e. a possible combination of consumed and pro
duced tokens and the corresponding input and output connectors.) For 
all different combinations of input and output connectors involved in a 
transition we define a new processor. 

In figure 12.39 we see on the left-hand side that P has two input and 
two output places. Assume its processor relation prescribes that it may 
fire for the following combinations of connectors: {a, c}, {a, b, c, d}, {a,b, d} 
and {b, d}. This results in the net on the right-hand side in a processor 
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for each combination of connectors. 
In general, let 

K = {dom(J)lf E Rp} 

denote the sets of combinations of connectors for which P is able to fire, 
then we have to create a processor Pk for each element k E K with 
processor relation 

Note that K is always finite, even if Rp is infinite. Processor Pk has k 
as its connectors. The following property is easy to verify. 

Theorem 12.1 If processor P is functional then for all k E K processor 
Pk is functional. 
o 

If P is total, then Pk is not necessarily total too. Instead of decomposing 
a processor like we did here, we may also cluster processors by taking 
the union of their processor relations in order to reduce the number of 
processors! In fact we can transform each net into a net with only one 
processor. 

• .0 

~~----~======~------~ 

Figure 12.40: Transforming a net into a valueless net. 

Theorem 12.2 n actor model with incomplete processors and the trans· 
formed complete actor model are bisilimar with respect to the identity 
relation over St x T. 

Proof. First note that both systems have the same state spaces. Every 
transition of one system can also be made by the other. 
o 

Transforming nets into valueless nets. 
As said before, there are some useful analysis methods for classical 

Petri nets. If we want to apply them to nets in which tokens have values 
we may discard their values. However, then we loose information. In 
case the number of values that playa role in the transition relations is 
finite, we may transform the actor model into another actor model with 
only valueless tokens, without loss of information. The transformation is 
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analogous to the one above. In figure 12.40 an example is displayed: left 
the original net and right the transformed one. The processor relation 
of this net is given in the following table: 

f a b 
1 0 0 
2 1 1 
3 2 0 
4 2 1 

From this table we see that place a only gets values from {O, 1, 2} and 
b from {0,1} (we assume that the environment gives no other values). 
We call these sets the active domains of the places, i.e. the subsets of 
their types that are actively used. In the transformed net each place 
is "copied" as many times as the size of its active domain. Further we 
create a new processor PI for each function f E Rp and we connect it to 
the places according the domain of p. In cases where the object universe 
is finite we can apply this transformation. 

Theorem 12.3 et an actor model A with a finite object universe QUA 
be given and let B be the transformed actor model, according to the 
rules above. Then: 

• QUB is a singleton, 

• A and Bare bisimilar with respect to 
C = {«s, t), (s', t')) I s E StA II s' E StB II t E T II dom(s) = 
dom(s') II 

Vi E dom(s) : 1I"2(s(i)) = 1I"2(s'(i)) 1I11"3(S(i)) = (1I"3(s(i)), 1I"1(s(i)))}. 

Proof. The state spaces are isomorphic and each transition of one 
system can be made by the other (to the corresponding state). 
o 
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Chapter 13 

Object Modeling 

Object modeling is the activity of making an object model, including 
value types for simplex classes and constraints and without definition of 
"clever" value types for complex classes. Assignment of complex classes 
to places is done when the actor model is available and the value types 
of complex classes are determined in the specification phase; both ac
tivities are studied in the next chapter. In this chapter we consider 
the process of making an object model after reality, some characteristic 
modeling problems and methods to transform an object model from one 
framework into another. We start with some techniques for specifying 
constraints. 

Constraint specification 
Constraints are very important because an object model without con
straints is often not sophisticated enough to express the structure of 
the real world state space. Constraints are either expressed graphically 
or in the specification language. We distinguish local and global con
straints. The local constraints concern all complexes of a complex class, 
while the global constraints concern all states. Each state determines 
one universal complex in the following way. Let d and e be two arbitrary 
complexes of complex classes m and n respectively. Then we define a 
universal complex c as the union of d and e, hence 

"Ix E SN uRN: c(x) = d(x) U e(x) 

where we define d(x) = 0 if x rt CB(n) U CR(n) and e(x) is defined 
similarly. (Note that the union of two complexes of the same class 
is itself a complex of the same class, although constraints might be 
forced.) So for a state 8 we define a universal complex c as the union of 
all complexes in s: 

c = U 11"1 (8(i» 
iEdom(s) 

An important global constraint is that this universal complex satisfies 
the graphical constraints for the universal complex class. We call this 
the universal constraint. This global constraint can be treated as a 
local constraint, although the universal complex class does not have to 
be assigned to a place. 
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A local constraint for a complex class n is a predicate over that 
class, which means that the predicate should be evaluated in the context 
of each complex that has to be verified. To specify constraints for a 
complex class n in the specification language we fix a complex c and we 
use the following conventions. 

• We associate with every simplex class name a E GB( n) a type Ta 
such that the type of the simplexes in sim( a) are represented by 
values in Ta, and we use the symbol a for the representations of 
simplexes in c(a). In most cases the choice for Ta is free because 
we do not apply any particular function to the values of Ta. In a 
few cases we need that Ta is a quantity ( for instance represented 
by iN) or that it is a set of time slots (for instance represented by 
iN X iN) . 

• We associate with every relationship class r E GR(n) with 
DM(r) = a and RG(r) = b, a binary relation R that is obtained 
from c( r) by replacing the elements of the pairs in c( r) by their 
representations. Further we associate four functions with r and we 
call them temporary rI, r2, r3 and r4. We distinguish two cases: 
one where r is total and functional and one where r is not total or 
not functional. In the first case we can use the relationship as a 
single· valued function (because it always has one value). The four 
functions are defined by: 

- let r be functional, the rl is defined by: 

rI(x):= apply(R,x): Ta => Tb, 

let T does not be total and not functional, then TI is: 

rI(x) := setapply(R, x): Ta => IF(Tb)' 

- r2 is derived from rI, because it is the set-version of rI: 
let r be functional, then: 
T2(X):= if x = {} then {} else 

ins(rI(pick(x»,r2(rest(x))): IF(Ta) => lFm) 

let r be not total and not functional: 
r2( x) := if x = {} then {} else 

rI(pick(x))Ur2(rest(x)): IF(Ta) => IF(n) 

r3 is defined by: 

r3(Y) := inverse(R, y) : Tb => IF(Ta) 

- T 4 is the set· version of r3: 
r4(Y) := if y = {} then {} else 

r3(pick(y)) U r4(rest(y)) : IF(n) => IF(Ta) 
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Note that the functions apply, setapply and inverse are defined in 
the toolkit. We will use the overloading facility of the specification 
language by renanting these functions as follows: rl and r2 are 
called r, and r3 and r4 are called r-l. 

Note that the type of an argument determines the signature of the 
function r or r-1 , so there will be no confusion. This overloading is 
very useful because now we do not have to distinguish between applying 
a function to an element or to a set. Now we may write, for example 
for (not functional) relationships rand q with DM(r) = a, RG(r) = d, 
DM(q) = band RG(q) = d: 

"Ix: a 0 3y: boy E q-l(r(x)) 

which means in the meta language: 
Vc E com(n) : 

"Ix E c(a) : 3y E c(b): 3z E c(d): y E Dq,c(z) 1\ Z E Rr,c(x). 

Note that this constraint should hold for all the complexes in the com
plex class n. 

The functions for relationships can be derived (also by a tool) from 
the class model. Therefore we assume they exist as soon as we have 
defined the class model. 

The types we use for the simplex classes is not important here. In 
a few cases we will assume that a simplex class is a set of time slots, in 
which case we assume the type (Q X (Q. Each pair of rationals will be 
interpreted as an interval. Sometimes we assume the simplex class is a 
set of amounts, in which case the type will be (Q. Further we only use 
set-theoretical functions in constraints (such as C and E). 

The relationship constraints, the inheritance constraints and the tree 
constraints can be expressed in the specification language for each spe
cific object model, however these predicates may be quite complex and 
they have a standard structure. In principle it is possible to generate 
these predicates automatically. 

There are more frequently occurring constraints and they will be 
discussed in the next section as "characteristic modeling problems". 
We will not specify global constraints that cannot be treated as a local 
constraint. (If we want to do so, we have to define a type for a state 
space.) 

13.1 Making an object model after reality 

We will start with the description of two examples. They are related 
to the order processing and the railway station examples of chapter 12. 
These two descriptions determine the complex classes of the state spaces 
of two different systems. 
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Example: Factory 
Consider a factory that only produces products if there is an order for 
it. Each product requires several construction tasks and in each task 
one or more components have to be assembled. The tasks for a product 
have a partial ordering. Each task requires some resources for some 
time, called the duration, to perform the task. Examples of resources 
are machines, vehicles and human beings. It is assumed that these reo 
sources have to be available for the whole duration of the task. There 
are several resources that may perform the same function. So in fact a 
task is specified by some functions instead of resources. A resource can 
be used for one task at a time, so there is no resource sharing. Com
ponents are bought from suppliers. Several suppliers may sell the same 
component for their own price. The factory keeps components in stock. 
The production schedule is just a set of operations. An operation is the 
execution of a task for some particular order with some particular set 
of resources in a particular time slot. There are two kinds of orders: 
customer orders and supply orders. Each order has a delivery date. An 
order may concern several items of several products. For components 
we distinguish the total number of items in stock at some day, and the 
number of free items, Le. the number of items that is not assigned to 
an operation yet. Components ofthe same kind are not distinguishable, 
only their number counts. 

Example: Railway system 
Consider a railway network where track segments are defined between 
nodes. A node is a crossing, a switch or a semaphore. (Track segments 
are simply called tracks.) They are directed, Le. trains can only use 
tracks in one direction. A switch connects three tracks: one fixed track, 
one straight track and one branching track. The fixed track is always 
part of the route, and from the others only one. The straight track and 
the fixed track form a straight line in the neighborhood of the switch, 
while the branching track and the fixed track form a curve. (cf. figure 
13.5.) Fnrther there are trains. A train is a temporary "cluster" of a 
locomotive and a sequence of wagons. A switch has at each moment 
one of the two positions: "straight" or "branching", and a semaphore 
has one of three status values: "green", "orange" or "red". A train also 
has a position at each moment: the track where it resides, and only one 
train is allowed per track. 

Stepwise development 
The development of an object model proceeds upon the following steps: 

Step 1: Determine relevant entities. 
All entities, that can be named by a noun are either objects or actors. 
If they are objects, they can be either simplexes or complexes. In fact 
the nouns indicate classes. So the noun "horse" refers to the class (or 
set) of all horses. In a sentence we use it as "Runner is a horse" or "the 
horse that win the race". In the last case the sub·sentence determines 
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a unique element in the set of all horses. Entities have an identity (like 
the name "Runner" for a horse). A way to find the relevant classes is 
to collect all nouns that appear in documentation over the system to be 
modeled, Le. in forms, instructions, reports etc. This is a syntactical 
analysis of written or spoken text. Of course, if the systems engineer 
has already some knowledge of the type of systems to which the system 
he has to model belongs, he probably knows most of the relevant nouns 
already. The first step ends with the exclusion of actors. An entity is 
regarded as an actor in one of the following cases: 

• it is in the system during the whole life of the system, so the set 
of actors of a certain class is fixed, 

• it is active, Le. if it consumes and produces other entities (in fact 
objects ), 

• it is an event, Le. it occurs at some point in time and it does not 
"live" for a time interval, 

• it does not have relationships with other entities, that may change 
over time. 

All other entities are objects. Remember from chapter 12 that proces
sors that represent some physical entity can be split into a processor 
that represents the activity of the entity and a place in which the to
ken represents the physical entity itself. (The token is consumed and 
(re-)produced in every execution of the processor.) So the all "things" 
can be modeled as objects, in which case all processors represent activ
ities. We distinguish compound or molecular objects, called complexes 
and atomic objects, called simplexes. Actors are further studied in ac
tor modeling. 

Step 2: Determine the simplex classes. 
We distinguish concrete simplexes, like the resources and the locomo
tives in the examples above and abstract simplexes, like a task, an oper
ation, a time slot or a train position. A third category of simplexes are 
information simplexes. They refer to either concrete or abstract enti
ties. Concrete simplexes are physical entities, while abstract simplexes 
are activities, events, qualifications, quantities, agreements, instructions 
or concepts. 

To decide which objects are simplexes we give the following rules: 

• simplexes have a unique value that is independent of other objects 
and that can be used to identify them, 

• simplexes are atomic, Le. we can not "look inside" them to dis
cover other objects, so we do not allow functions that produce 
values of other simplexes if applied to the value of a simplex, 

• in different states of the system the set of simplexes of the same 
class may be different, may contain more than one simplex and 
must be finite. 
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attribute simplex class 

association simplex class 

entity simplex class 

Even if an object consists of parts that are considered as well as objects, 
it can be considered aB a simplex if it can be given an independent, 
atomic value ("train" is an example of this). In that CaBe we model 
its components aB simplexes aB well and we use relationships to express 
that one is part of another. 
We may classify simplex claBses into three groups. 

• Attribute simplex claBses. 
A simplex claBS n is an attribute simplex class if n is not a domain 
claBS of any relationship claBs, Le. '1r E RN : n i' DM(r). At
tribute simplex classes do not play an important role because their 
simplexes have no properties of their own. Therefore we neglect 
them sometimes in the first stages of development of an object 
model. 

• Association simplex claBses. 
A simplex class n is an association simplex class, if all relation
ship classes with n aB domain class, together form a minimal key. 
Further it is required that n is not the range simplex claBS of some 
relationship. Simplexes of these classes have only one role: the 
coupling of other simplexes. They usually are found in a later 
stage of the development process. 

• Entity simplex class. 
A simplex class n is an entity simplex claBS if it is not an attribute 
simplex class or an association simplex class. Simplexes of these 
classes are the important simplexes, they represent the entities 
we see in the real world. The attribute simplex classes are often 
defined in a late stage. (It is useful to distinguish these differ
ent types of simplex claBses by different graphical symbols; for 
attributes often circles are chosen and for associations diamonds.) 

This classification is useful in the design process: start with the entity 
simplex classes. 

Step 3: Determine relationship classes. 
Relationships connect simplexes. If a simplex is connected to another 
simplex we consider this as a property of these simplexes. Relation
ships are labeled with a verb, often in two forms: active and paBsive (cf 
chapter 4). Relationships express a status quo, for instance "is made 
of", "belongs to" or "located at". Relationships belong to classes, like 
simplexes and all relationships of one class connect only simplexes of 
one simplex class to simplexes of one (not necessarily different) other 
simplex. Relationships have a direction, we choose the verb such that 
the sentence made of the noun at the domain of the relationship, fol
lowed by the verb and the noun at the range of the relationship, form 
a sentence in active form. There is some freedom in the choice of the 
direction of a relationship class. (Remember that the inverse of a func
tional relationship is an injective relationship.) The choice is based on 
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the intuitive meaning of the relationship: it is a property of the domain 
class of the relationship class. Further the choice may be influenced by 
the use of the relationship in key, exclusion and tree constraints. 

Step 4: Determine complex classes. 
A complex is a cluster of simplexes and relationships. The relationships 
should connect only simplexes that belong to the complex as well. Com
plexes are usually defined if an actor model is already avallable, because 
the complex classes partition the simplex and relationship classes over 
the places. 

Often a set of simplexes forms a complex, for example a set of trains 
can be a complex in the railway system. Many complex classes satisfy 
a tree constraint, which means that complexes of such a class have one 
root simplex that identifies the complex and that gives "access" to all 
other simplexes in the complex. In the railway system for instance, 
there is a complex class called "train cluster" the complexes of which 
have a train simplex as root and a locomotive and a set (in fact a 
sequence) of wagons in the body. So here we distinguish the locomotive 
connected to the wagons as different from the train itself, which implies 
that there might be different trains with the same locomotive and the 
same set of wagons. (Of course these different trains will not exist at 
the same time, but that is not relevant here). It was also possible to 
use the noun "train" only for the cluster consisting of wagons with a 
locomotive as root, however then two trains are identical if they have the 
same locomotive and the same set of wagons. So we have the freedom 
to introduce a simplex class to identify a cluster of simplexes connected 
by relationships. We distinguish concrete, abstract and information 
complexes as well as combinations. 

All simplex classes and all relationship classes should occur in at 
least one complex class, since only complex classes are considered in a 
state. So if for instance a relationship class does not appear in a com
plex class, then either the relationship class is irrelevant or the complex 
classes are not defined completely. This requirement provides a check 
point for the systems engineer. 

Step 5: Determine value types for simplex classes. 
This activity may occur immediately after the definition of simplex 
classes, however we only need these value types sometimes in constraints. 
Note that the value types for simplex classes define the function sim of 
the instance model of an object model (cf. 9.2). 

Many constraints do not refer to the values of simplexes at all, but 
sometimes we need some properties of the values of the simplexes. For 
instance if the simplex class denotes quantities or time slots we may need 
a value type to express constraints because we have to apply functions to 
the simplexes. The values of the simplexes are the only things we know 
of the simplexes, so the simplexes are identified by there values. If we do 
not give value types for simplex classes in examples, they are irrelevant 
for constraints. We avoid the use of simplex values in constraints as 

179 



minimal key constraint 

maximal exclusion constraints 

much as possible for the same reasons why we avoid parameters hard
coded in programs. Note that complex classes are completely defined 
if the value types of the simplex classes are known. In fact we have a 
"default" value type for them. However in specifications we might want 
to use another, more sophisticated representation for complexes. (This 
will be clarified in the next chapter.) In object modeling we need no 
other representations of complex classes. 

Step 6: Determine constraints. 
First we start the relationship constraints, which have a graphical rep
resentation. They are supposed to hold for all relevant complex classes, 
i.e. complex classes that contain the relationships involved. If we dis
cover a key constraint we always look for a minimal key constraint, i.e. 
if n is a simplex class then a E DK(n) is a minimal domain key if 

I/bE DK(n) :bC a =? a = b 

For range keys the definition is similar. In the same way we search for 
maximal exclusion constraints, i.e. for exclusion constraints that are 
not contained in larger exclusion constraints. 

Next we determine inheritance constraints. We use inheritance to 
distinguish different subclasses of a simplex class in case simplexes of 
a sub class have special relationships the first simplex class does not 
have. For complex classes we determine the tree constraints as discussed 
above. 

N ext we search for constraints that can not be expressed as one 
of the above mentioned constraints; for these we use predicates in the 
specification language. We mention four ways to find (some of) them. 

• Search for cycles. 
If there is a cycle in the class model, then we can start with a sim
plex in one of the simplex classes and we can follow two different 
routes to a simplex or a set of simplexes in another simplex class 
(in the cycle). Are these simplexes the same or should these (sets 
of) simplexes be disjoint? One cycle gives rise to many of these 
questions. Here the direction of the relationships is irrelevant. 

• Search for time orders. 
If "time" or "time slot" is a simplex class, then often the simplex 
classes related with them have constraints with respect to time. 
For instance if two operations have a same time slot then the 
resources connected to them should not be the same, because a 
resource can be involved in only one operation at the same time. 

• Search for balances. 
If quantities are simplex classes then there is often some balance 
required. For instance if there is a simplex class "order", which is 
related to a simplex class "quan~ity" and if there is a simplex class 
"order item" which is also related to "quantity", then there might 
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be a constraint that requires that the quantity of an order is the 
sum of the quantities of the related order items. (Note that an 
order consists of order items.) Note that such constraints can be 
avoided if there was no relationship between order and quantity. 
This relationship is indeed superfluous because the sum can be 
computed. However if not all order items have a quantity (yet) 
we have to keep both relationships with "quantity". 

• Search for temporal inconsistency. 
Often we consider a complex in several stages of development. For 
instance an order is already defined but not all of its order items. 
In such cases we have to drop constraints because we allow also 
complexes that will be correct after some modifications. (We use 
inheritance to solve this problem (cf. section 13.2.) 

Finally we look for global constraints, such as the universal con
straints and constraints which require that simplexes representing 
physical entities are unique in a state (i.e. a physical entity cannot 
be in two different places in the same state). 

We will illustrate tlUs development process for the two examples de
scribed above. 

Example: Factory (continued) 
We start with listing the relevant nouns of the description: product, 
order, task, component, resource, function, supplier, price, stock, sched
ule, operation, time slot, duration and delivery date. Note that "fac
tory" is not a relevant noun because there is only one factory that stays 
the same during the whole life time of the system. The factory may be 
considered as the top-level actor. We decide that a "schedule" is just 
a set of "operations" so we will not define a simplex class for it. In 
figure 13.1 we see all the other nouns as simplex classes. Two simplex 
classes require some elucidation: "customer order item" and "supply 
order item". At first sight they seem to be superfluous because we have 
already "customer order" and "supply order". However an order is in 
fact a complex object and it contains for each product or component 
a "sub-order", wlUch is an object itself. Further we see a number of 
relationship classes labeled with characters. It is not difficult to find 
suitable verbs for each relationship class, for instance: a gets "intended 
for", b gets "belongs to", d gets "concerns" and e gets "executed for". 
Only relationship k requires some clarification; it is called "predeces
sors" and it assigns to a task the set of all tasks that are immediate 
predecessors of the task. With relationships we should be as thrifty as 
possible; we could for instance define a relationship between "product" 
and "component" that denotes the components from which the prod
uct is made off. However that relationship is derivable from h and I 
because h is giving all the tasks to be performed for the product and 
I gives all the components needed for these tasks, so it is redundant. 
There is a lot of freedom in the choice of relationship classes. However 
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Figure 13.1: Simplex diagram for the factory. 

if we introduce redundant relationships we also introduce constraints! 
For instance if we would have introduced a relationship class hi from 
"product" to "component" then we should have defined the constraint 

Vp: product. I(h(p)) = hl(p) 

Instead of introducing the relationship hi and this constraint, we may 
consider this constraint as the specification of the function hI and we 
can use this function in other constraints or in processor specifications. 
So we do not need the relationship hi in the object model. 

The next step is the determination of complex classes. The may 
be indicated in the simplex diagram, however the diagram becomes 
very crowded. Therefore we list them in the table of figure figure 13.2. 
The choices of the complexes may dependent on the actor model, in 
fact on the "processing". So in general it is not possible to fix the 
complex classes in the data modeling phase if the actor model is not 
ready. However some useful complex classes are listed in the following 
below. These complex classes have straightforward interpretations. A 
"BillOfMaterial" complex for instance, gives for a specific product all 
the tasks needed to construct the product and also the required func
tions and components per step. It looks like we do not need the simplex 
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classes "customer order" and "supply order" any more, because we have 
complex classes that contain all relevant information. This is not true 
because an order has a unique identity that is a property of all the or
der items in the order. This unique identity is given by the "order" 
simplex classes. Now it is for instance possible to have two different 
"CustomerOrder" complexes with the same "delivery date", the same 
"amount" the same "customer order item"'s etc. 

It is easy to verify that all relationship and simplex classes are cov
ered by complexes. The value types for simplex classes are easy to 
define. Simplex classes with names like "amount", "price", "free stock" 
and "total stock" get the rationals or integers as type. Simplex class 
"date" could get a product IN X IN X IN as value type, denoting the 
day, the month and the year respectively. Similarly "time slot" gets the 
value type ~ X ~ denoting the interval bounds of the time slot. 

The final step is to determine constraints. The relationship con
straints speak for themselves. We did not require that relationships are 
surjective. This may be added. At least for the complex class "Sched
ule" this would avoid for instance dangling "tasks" in a "Schedule" 
complex. There are no key, exclusion or inheritance constraints here 
and the tree constraints are already indicated in the table above. So we 
are only looking for additional constraints. We start looking for cycles. 
Consider for instance the cycle formed by the relationships (01, j, i, g). 
If we follow two paths from "operation" to "function", one via (g, i) 
and one via (01, j) then we should get the same set of functions in both 
cases. The specification of this constraint is 

'Ix: operation. i(g(x)) = j(OI(x)) 

This constraint is defined for the universal complex class. Another cycle 
is (e, d, h, 01). This cycle gives: 

'Ix: operation. OI(X) E h(d(e(x))) 

Yet another cycle is caused by relationship k. Indeed we find two new 
constraints here. The first constraint says that for each task of a product 
all predecessor tasks should be tasks of the same product. 
'Ix : product. '1y : tash 

Y E h(x) =? k(y) c h(x) 

The second one is more complicated. It concerns the transitive closure 
of the relationship ·k: a task can never be preceded by itself. 
trans( x) := if x = {} then x else 

x u trans( k( x )) fi : IF( task) =? IF( task) 

This function computes the transitive closure of the relationship k. The 
correctness of this definition follows from the fact that iterated appli
cation of the right-hand side of the equation (cf. chapter 24) gives a 
non-decreasing sequence x, xU k(x), xU k(x) U k 2(x) ... and there is 
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I Complex class Simplex classes I Relationship classes I Root class I 
CustomerOrder customerorder • 

customer a 
customerorderitem b 
deliverydate c 
amount n 
product d 

Schedule operation 
timeslot f 
resource 9 
task A 
customerorderitem e 

BillOfMaterial product • 
task h,k 
component I 
function j 
price m 
duration B 

SupplyOrder supplyorder • 
supp/yorderitem s 
supplier r 

listitem u 
deliverydate 0 

amount p 
price q 
component v 

PriceList supplier * 
listitem t 
component v 
price q 

Stockltem stockitem * 
date z 
component w 
freestock x 
totalstock y 

Resource resource • 
function i 

Figure 13.2: Complex classes for the factory 
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an n such that kn (x) = 0 (note that we use superscript n to denote the 
n-th iteration). 
The constraint becomes: 

'Ix: task. x f. trans(k(x)) 

This kind of constraints occurs frequently if there is a cyclic relationship 
path. Not all cycles give constraints, for instance the cycle (c, 0, s,p, n, b) 
does not give a constraint. As a last constraint we compare the duration 
of a task and the time slot of an operation: 

'Ix: operation. ,8(o(x)) = 1r2(1(X)) - 1r1(1(X)) 

Note that we used pick here because we work with set-valued functions 
although we sometimes know that their value is a singleton. We are 
never sure that we have formulated all constraints, because we are in 
fact defining the laws states or complexes have to fulfill. 

Example: Railway system (continued) 
Again we start with listing all relevant nouns in the description. So 
we find: (railway) network, track (segments), node, crossing, switch, 
semaphore, train, locomotive, (sequence of) wagon(s), switch position, 
semaphore status, route and train position. We decide to consider "rail-

track 

1 

p 

Figure 13.3: Simplex diagram for the railway system. 

way network" as a set of tracks and nodes and we will not introduce 
a simplex class for it. The noun "route" is only used to explain the 
function of a switch and is considered to be irrelevant. All other nouns 
appear in the simplex diagram of figure 13.3, except for "switch posi
tion" and "train position". It turns out that it is possible to express the 
positions of trains and switches by means of relationships! However it is 
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Complex class Simplex classes Relationship classes Root class 

TrainCluster train * 
wagon m,p 
locomotive n 

Network track b 
node e 
crossing h 
semaphore i 
switch j 

SwitchPos switch * 
node j,g 

SemaphorePos semaphore * 
node i 
semaphorestatus k 

TrainPosition train * 
track I 

Figure 13.4: Complex classes for the railway system. 

still possible to introduce simplex classes for them (as will be seen later) 
but it makes the model unnecessary complicated. In this object model 
we assume that in different states the sets of tracks and nodes may be 
different. We have chosen to represent in this model only the actual 
state of the railway system and not the history or the future. (Later 
we will see how to transform this model to express also the history and 
future). The relationship classes require some clarification in this case. 
On a crossing four track segments come together and they are part of 
two tracks. Each track (segment) has a direction and b indicates the 
begin node of a track while e denotes the end node of the segment. Re
lationship class I denotes the position of the train and a suitable verb 
for it is " is at". Similarly the switch position is expressed by g. Re
lationship class p determines the predecessor of each wagon, only the 
first wagon does not have a predecessor (or in fact the locomotive is its 
predecessor). The next step is the definition of the complex classes. In 
figure figure 13.4 the table of complex classes is given. 

These complex classes have a straightforward interpretation. The 
value types can be chosen arbitrary except for "semaphore status" which 
will get a basic type with values "green" and "red". The final step is the 
determination of the constraints. All "standard" constraints are already 
given in the diagram or the complex table. Note that no two trains may 
reside on the same track due to the injectivity of relationship I. The 
injectivity of m and n implies that no two trains share locomotives or 
wagons. The tree constraints are already given by the table. Next we 
consider additional constraints. First we look for cycles. One cycle is 
caused by p. This gives the constraint that if a wagon is a predecessor 
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of another wagon then they have to belong to the same train: 

Vt : train. Vv : wagon. 

v E m(t) => p(v) E m(t) 

The next constraint due to p is that there is only one wagon per train 
without a predecessor: 

Vt: train. size({w: m(t) I p(w) = {}}) = 1 

Finally we observe that p should give an ordering so no wagon is preced
ing itself, i.e. the transitive closure of p does not encloses the identity 
function. This can be expressed in the same way as for the "task" 
precedence in the example above. 

The next set of cycles we observe are formed by the simplex classes 
"track", "node" and "switch". A node is connecting two tracks if it is a 
semaphore, three tracks if it is a switch and four tracks if it is a crossing: 

Vx: semaphore. size(b-1(i(x))) = 1 " size(e-1(i(x))) = 1 

Vx: switch. (size(b- 1(j(x») = 2 " size(e-1(j(x))) = 1) 

V 

(size(b- 1(j(x))) = 1 " size(e-1(j(x))) = 2) 

Vx : crossing. size(b-1(h(x))) = 2 " size(e-1(h(x))) = 2 

For a switch there are two different situations displayed in figure 13.5. 
In the case on the left the switch is begin point of two tracks and end 

• ) ) • 
a b a b 

Figure 13.5: Two different switches. 

point of one and in the right case the opposite. This is expressed above. 
We also obtain a constraint for g: it is always pointing to one of the 
two tracks that are either ending (right case) or beginning at the switch 
(left case). This is expressed by: 

Vx: switch. j(x) = e(g(x» V j(x) = b(g(x» 

Vx : switch. e(g(x» = j(x) => 3t: track. t io g(x) " e(t) = j(x) 

Vx: switch. f(g(x» = j(x) => 3t: track. t io g(x) " b(t) = j(x) 
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Finally we have to require that are no loops: 

'It: track 0 b{t) # e{t) 

Note that we have excluded that a track comes to a dead end. 
These two examples show how to perform the steps given before. 

They are representative for the kind of problems that appear in making 
an object model. 

13.2 Characteristic modeling problems 

Next we will consider several problems that occur in many modeling 
situations. Some of them appeared already in the examples above. 

1. Relationships with properties 
Often we have defined a relationship r between simplex classes a and b 
and afterwards we discover that it is not sufficient to express that there 
is to each simplex of a an associated set of simplexes of b, but we have 
to indicate also some property of the associated simplexes. An exam
ple of this situation can be found in the factory example. A simplified 
case is displayed in figure 13.6. At first sight an "order" is associated 
to a set of products. Later we see that each associated product has its 
own amount of items. A solution is to introduce a new simplex class 
to replace the relationship class and connect this simplex class to both 
original simplex classes. In figure 13.6 we introduced the simplex class 
"order item". This simplex class can be related to the simplex class 
"amount" which was not possible with the relationship b in the left
hand picture. Often we introduce immediately a key constraint, in the 
example a and b could form a key constraint. 

order order 

~a 
i order c amount 

item 
product 

,',P 

product 

Figure 13.6: A relationship with properties. 

2. Items and kinds 
Sometimes we have to distinguish simplexes that represent a kind (or 
type) of objects in stead ofthe instances (called items here) themselves. 
In fact in the factory example the object class "product" represents 
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kinds of products and not the product items. Examples of product kinds 
are chair, car, bicycle or brand names. Examples of items of these kinds 
are specific chairs, cars and bicycles identified by their unique value (for 
instance there serial number). In figure 13.7 the general structure is dis
played. The "item" simplex class always refers to the "kind" class with 
a total and functional relationship. A way to discover the difference 

I kind of ~~(,---+l entity 
. entity. I item 

Figure 13.7: Items and kinds. 

between items and kinds is to consider the value types of the simplex 
classes: if it is a noun, a brand name or a trade mark it is probably 
a kind, and if it is a proper name or a serial number it is probably an 
item. 

3. Graphs and recursive structures 
In the railway system example we modeled already a geographical net
work (although we did not mentioned the coordinates of the nodes). 
In many examples we encounter recursive structures such as the tree 
of tasks in the factory example. Here we will study these structures 
in isolation. In figure 13.8 we see a general graph structure and two 
specializations for trees and sequences. The graph is the general case 

~~~ 
~edge ~edge ~edge 

Figure 13.8: Graphs, trees and sequences. 

(left most figure). Here no relationship constraints apply. The "edge" 
relationship determines the predecessors of a node. This choice is arbi
trary; we could have decided that "edge" determines the successors of a 
node. The only constraint we could add is that each node is connected 
to at least one other (not necessarily different) node: 

"Ix: node. 3y : node. x E edge(y) V y E edge(x) 

A subtype of the graphs is the set of acyclic graphs. To constrain the 
set of instances to acyclic graphs we introduce auxiliary functions as we 
have seen in the factory example. 
Trans( x) := if edge( x) = {} then x else 

x U Trans( edge( x )) fi : iF( node) => iF( node) 

The constraint to acyclic graphs is: 

"In : node. n ~ Trans( edge( n)) 
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Trees are acyclic graphs with the property that the relationship "edge" 
is functional and assigns to every node a unique parent node. Further 
there is one root: the common ancestor. This is expressed by means of 
auxiliary function f. 

f(x):= if edge(x) = {} then x elsef(pick(edge(x»): node:} node 

So for x E node, f( x) denotes its oldest ancestor. Note that this function 
is correctly defined since we know that the graph is acyclic and therefore 
repeated application of edge results in the empty set. Also note that we 
used pick because edge is not total, so the function value might be the 
empty set. The constraint becomes: 

'Ix: node 0 'Vy: node 0 f(x) = fey) 

The specialization of trees to sequences is simply obtained by adding the 
injectivity constraint to edge and the constraint that only one simplex 
does not have a predecessor (we have seen this constraint before). When 
the edges of graphs have properties on their own we have to introduce 
simplex classes as demonstrated above. (This was in fact the case in the 
railway system example, where "track" was the class of edges). Then 
the constraints have to be reformulated for the particular cases. 

Trees play important roles in many practical cases. A bill of material 
is for instance a tree structure. Often a message in electronic data 
interchange is a tree. Since tree structures occur frequently we have 
introduced (in part II) the standard tree constraint for complex classes. 
With this constraint we can define a tree structure without additional 
constraints. To see how we could use this standard constraint, consider 
the example of figure 13.9. Here the simplex class "root" forms the 

root 

a 

node 
s 

Figure 13.9: Tree constraint. 

root simplex class. Further s determines all successors of a node. The 
injectivity constraint for s and the constraint that the root is not a 
successor of any node: 

'Ix: root 0 'Vy: node 0 a(x) ¢ sty) 

guarantee that there are no cycles, not even if we discard the direction 
of the edges. The fact that there is one root (of class "root") and the 
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fact that each simplex is reachable from this root constrains the complex 
class to trees. (The proof of this statement is an exercise.) 

We consider an example of a recursive structure involving trees. In 
this example a complex class represents a syntax definition for arith
metical terms: 

term ::= constant 1 variable 1 {term binop term 21 unop{ term 2 

where binop is a binary operator and unop a unary operator. An exam
ple of a term is 

(f(v) + (g(w) X (x -;- g(y)))) 

This term should correspond to one complex of the class. In figure 
13.10 the object model is displayed. Each "node" represents a node in 

un node leafnode 

d e f 

bin op un op constant variable 

Figure 13.10: Syntax as complex class. 

the parse tree of a term and relationship class p points to the predecessor 
of a node in the tree. In figure 13.11 the parse tree for the term above 
is displayed. A node has two branches, one branch or no branch which 

-----+------f X 

/\ 
v g 

/ \ 
w x y 

Figure 13.11: Parse tree. 

corresponds to the different specializations of "node": "bin node" , "unn
ode" and "leaf node" respectively. This is expressed by the following 
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additional constraints. (Note the range exclusion constraint.) 

'In: node 0 a-1(n) # {} * size(p-l(n)) = 2 

'In: node 0 b-1(n) # {} * size(p-l(n)) = 1 

'In: node 0 c-1(n) # {} * size(p-l(n)) = 0 

Further we have to require that "node" and p form a tree as shown 
above. Finally we want to exclude that there are dangling nodes so 

4. Representing history and future 
We often start with an object model in which we represent the actual 
situation of a system, i.e. the simplexes represent the entities that are 
in the system and the relationships represent their actual properties. In 
the railway system for example the actual positions of the train and the 
switch were represented. In information systems we often consider the 
history of a process, which means that we store information objects that 
represent a part of a state of a target system in the past. Instead of 
information objects that refer to the past information systems have often 
information objects that refer to the future. These information objects 
are used for a planning for the future of the system. The future does not 
have to behave as planned, however the information objects represent 
what we think or wish to be the future. To transform an object model 
for an actual situation to one for the history or the future, we have 
to determine all the time dependent simplex classes, i.e. the simplex 
classes for which the simplexes may come and go during the course of 
the system. (Most simplex classes have this property). For all these 
simplex classes we introduce a new functional relationship connecting 
the simplexes to simplexes of a class called "time slot". The meaning 
of this relationship is that for each simplex the corresponding time slot 
indicates when the simplex was, is or will be "alive". If the time the 
simplex will die is not known then the upper bound of the time slot is not 
specified or is set to some sufficiently large number. Further we look 
for time dependent relationships. i.e. relationships that may mange 
during the course of the system, independent of the life time of the 
simplexes they connect. For instance relationship I in figure 13.3 is time 
dependent because it may connect a "train" to different "tracks" during 
the life time of a "train". The way to solve the problem for the time 
dependent relationships is in fact the way to deal with relationships with 
properties: we introduce a new simplex class for these relationships and 
we connect it to the simplex classes that were connected by the original 
relationship. Further we connect the new simplex class to the "time 
slot" class. In figure 13.12 an example of this construction is displayed. 
Note that the time slots may refer to the history as well as to the future. 
If the original time-dependent relationship was functional, we obtain a 
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Figure 13.12: Time dependency. 

constraint which states that the simplexes that replace the relationship 
may not be connected to more than one simplex of the domain simplex 
class of the original relationship at the same time. A second constraint 
states that the time slot of a "relationship" simplex is contained in the 
time slots of the original simplexes that are connected by the relationship 
simplex. In the example of figure 13.12 this means that the time slot 
of a "position" should be contained in the time slots of the "track" and 
the "train" to which it is connected by a and b respectively. To express 
these constraints formally we have to define a value type for time slots: 
~ x ~, denoting the left and right bound of the time slot. Further we 
need two auxiliary functions: 

intersect(x, y) := max(1!'l(x),1!'l(Y)) :5; min(1!'2(x),1!'2(Y)): ~ x ~ => IE 

contain(x,y):= 1!'l(X)::>: 1!'l(Y) /I 1!'2(X) :5;1!'2(Y): ~ x ~ => IE 

The first constraint becomes: 
'Ix : position. '1y : position. 

(x i y /I b(x) = b(y)) => ,intersect(c(x),c(y)) 

And the second one: 
'Ix: position econtain(c(x),e(b(x))) /I contain(c(x),d(a(x))) 
To guarantee that no two trains are on the same track, which is ex
pressed by the injectivity of I in the first model, we require: 
'Ix, y : position. 

a(x) = a(y) /I intersect(c(x), c(y)) => x = y. 

5. Properties as values or relationships 
Sometimes we have to choose between representing a property of a sim
plex in the representation of the simplex, i.e. in the value of the simplex, 
or as a relationship to another simplex class. Consider the example dis
played in figure 13.13. Here we see that there are two total and bijective 
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Figure 13.13: Properties as relationships. 

relationships a and b. We could decide to delete for instance relationship 
a and give "person" the set of "names" as value type. If a would not 
have been total and bijective this was not possible (because if it was not 
total then there would have been persons without (known) names, if it 
was not functional a person could have more than one name and if it was 
not injective there could have been two persons with the same name). 
As a guideline we recommend to use the value of simplexes as less as 
possible, since this gives us most freedom in the specification stage. So 
it is recommended to use the construction as displayed in figure 13.13. 
In particular if there are more total bijective relationships (as in this 
case), it would be difficult to decide which one to incorporate in the 
value. 

6. Aggregates 
Sometimes a simplex is just an aggregate of other simplexes. Consider 
the example displayed in figure 13.14. Here we see a simplex class "ad-

~ 
street 

a 
person address IJ---;.... number 

e 
b c 

~ 

zipcode state 
d 

city 

Figure 13.14: Aggregates. 

dress" and intuitively we feel that an address is just a combination of 
a street, a number, a city and a state. So we could consider to define 
a complex class "address" which would have "street", "number" , "city" 
and "state" as its body. With the constraint that there is only one of 
each simplex class in the complex, we would have been ready. However 
then we were neither be able to define relationships for "address" such as 
to the "zip code" , nor we could relate other simplexes such as "person" 
to "address". Besides that "address" is a distinct concept and for these 
reasons we introduce a simplex class "address". The value type of this 
simplex class is irrelevant because we can always identify an address by 
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its key constraint. Note that there is another domain key constraint for 
"address", not displayed in figure 13.14: the relationships {b, e}. 

It is still useful to define a complex class, say "Address" which sat
isfies a tree constraint with "address" as root. 

7. Use of inheritance constraints 
Inheritance gives us the possibility to differentiate simplex classes into 
several simplex classes each with its own relationships. Consider for 
instance the example displayed in figure 13.15. Each vehicle has an 

bed e 

kind 
r 

(B) 
g h i 

Figure 13.15: Use of inheritance. 

"owner" and a "license number" however cars have other properties as 
airplanes or vans (displayed by relationships a-i). In solution (B) there 
is a simplex class "kind" that has a value type that represents the set 

{car, truck, van, airplane, boat} 

Further "vehicle" has all the relationships a-i. Although the diagram 
of (B) is more simple than the diagram of (A) there are much more 
constraints in the solution (B). Besides this, these constraints use values! 
For instance we would have to require that if a "vehicle" is not a "truck" 
then it should not have simplexes connected to it via relationship d: 

'Ix: vehicle. 'truck' to r(x) * d(x) = {} 

So inheritance can be used to avoid non-total relationships (which is 
important for the relational data model as explained in the next section) 
and to avoid constraints that refer to simplex values. Note that we can 
easily use the relationships p and q for the specialized simplex classes 
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Figure 13.16: Temporal inconsistent orders 

"car" ... "boat" by defining some auxiliary functions pj, qj, ... , pn, qn 
as follows: 

pj(x):= p(j(x)): car => IF(owner) 

Another example of the use of inheritance is the treatment of tempo
ral inconsistency. For example consider the class model of figure 13.16. 
Complete orders should satisfy the balance constraint 

"10: order 0 p(o) = sum(r(q(o)). 

(Here sum is the function that adds the values in a set.) However not all 
orders are completely defined and therefore we require this for the com
plete ones only. For that reason we introduced the two simplex classes 
complete_order and incomplete_order and we require the constraint only 
for the complete ones: 

"10: complete_order 0 p(t(o)) = sum(r(q(t(o))). 

8. Derivable relationships 
Sometimes we discover that a constraint is so strong that a relationship 
can be derived from the constraint. Consider the example displayed in 
figure 13.17. The example speaks for itself. The constraint that should 

trans- , , balance 
action 'b 

account 
~ 

va 

amount 

Figure 13.17: A derivable relationship. 

hold is expressed using an auxiliary function: 

s(t):= if t = {} then 0 else a(pick(t)) + s(rest(t))fi: 

1F( transaction) => IQ 

It is assumed that the value types of "amount" and "balance" are equal 
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Figure 13.18: Price list 

to lQ. The constraint becomes: 

'1y: account 0 s(b-1(y)) = c(y) 

So the question is if it is not better to delete relationship c and to define 
an other auxiliary function: 

balance(x):= s(b-1(x)): account => lQ 

If there are no other relationships connected to the simplex class "bal
ance" we could delete it too. Avoiding constraints means that we have 
less proof obligations in the specification phase! 

9. Representing a finite function 
Often we have to represent a finite function in an object model. For 
example a price list of a hotel is a function that lists the prices of ho
tel rooms depending on the season, the number of persons in the room 
and the number of days the room will be rented. The price is uniquely 
defined by these variables. In figure 13.18 we display a solution to this 
problem. In general there will be one simplex class for the (elements 
of) function and one for every argument of the function and one for 
the result. The simplex class that represent the function is related to 
the other simplex classes by means of total and functional relationships. 
The relationships with the variables as range simplex classes, form a 
(minimal) domain key. (In case the result of the function is compound, 
there may be more than one simplex class to represent the result.) 

10. Object model of an actor model 
Let an actor model be given. Now we will construct an object model 
that represents the actual state and the history of the actor model. This 
is useful in the context of the modeling of monitoring information sys
terns. When we make a model of such an information system, we often 
start with a (complete) actor model of the target system and then we 
make an object model for the event history of this actor model. This 
object model may serve as a design for a database system in which the 
events of the actor model will be stored. 

The method to construct an object model from an actor model pro
ceeds along the following steps: 

1. create for every processor a simplex class (with the same name), 
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2. create for every place two simplex class (one with the same name 
and one with the name decorated by'), 

3. create a place called Id and a place called Time, 

4. create for every connector a relationship (with the same name 
as the connector, if no name clash occurs) between the simplex 
class of the processor and the (undecorated) simplex class of the 
place that are connected by the connector (independent of the 
direction of the connector); the domain class of this relationship is 
the simplex class that represents the processor and the relationship 
is always functional and it is total if the processor will always 
consume or produce a token via this connector (in case of a name 
clash suitable names have to be chosen), 

5. create for every (undecorated) place simplex class two total and 
functional relationships to the places Id and Time, 

6. create a total and functional relationship from each undecorated 
place simplex class to the corresponding decorated simplex class, 

7. for each simplex class n' that represents a place n we define: 

sim(n') = com( CA(n)), 

8. for the simplex classes Id and Time we define: 

sim(Id) = ID 1\ sim( Time) = T, 

where ID is the set of identities and T the time domain, 

9. for each other simplex class n define an arbitrary set for sim( n), 

10. create a complex class for each simplex class that represents a 
processor and let this complex class include all the simplex classes 
that are connected by a directed path of functional relationships; 
let the complex class satisfy a tree constraint with the processor 
simplex class as root. 

The relationship between the actor model and the object model is as 
follows: whenever in the actor model a processor p executes, there will be 
a complex created (with simplex class p as root) and with four simplexes 
(belonging to a place) for every token that is consumed or produced 
during the execution of the processor: one simplex (of the undecorated 
simplex class) that denotes the token, one simplex (of the decorated 
simplex class) that denotes the complex of the token, one that denotes 
the identity and one that denotes the time stamp of the token. 

Note that it is always possible to reconstruct the transition times: 
it is the maximum of the time stamps of the consumed tokens. To 
distinguish the consumed and produced tokens we have to inspect the 
actor model. (It is easy to modify the object model to incorporate the 
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Figure 13.19: Actor model 

necessary information as well.) We will illustrate this method by an ex
ample. The actor model represents a resource sharing system. In figure 
13.19 the actor model is displayed and in figure 13.20 the corresponding 
object model. Note that the object model does not contain information 
about the way processors execute, so it cannot be used for forecasting 
or simulation, but only for monitoring the actor model. To derive the 
actual state of the actor net, we have to determine all the simplexes 
that represent tokens that do not occur as input tokens. 

If we want to construct such a monitoring information system we 
have to modify the processors in the target system to enable them to 
produce the complexes defined above. 

13.3 Transformations to other object frame
works 

In this section we study methods to transform object models in our 
framework into object models in other frameworks and vice versa. The 
transformations are often only partial because some frameworks have 
specific requirements or lack some notions (for instance the notion of 
a complex). In the usual database terminology a framework defines a 
schema and a set of instances that belong to the schema. (Note that 
the term "schema" is used here in a different way as in the specification 
language.) In our framework, which we simply call the object framework, 
a schema is a class model plus the function sim that assigns a value type 
to each simplex class. The set of instances of a schema in the object 
framework, is the set of instances of the universal complex class. 
For an arbitrary framework a schema plus its instances is called a model 
and is almost what we called an object mode/. 

Formally these transformations proceed along the following lines: 

• first construct a (partial) function F from schemas in one frame
work into schemas of another framework, 
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Figure 13.20: The corresponding object model 

• next construct a (partial) injective function f that transforms an 
arbitrary instance a of a schema A in the first framework into an 
instance f(a) of a schema F(A) in the other framework. 

The fact that function f should be injective is very important: it means 
that f is information preserving because it has a (partial) inverse. So if 
it is possible to transform an instance a of framework A into an instance 
b of framework B we can reconstruct a from b. Note that in general the 
function f will depend on F and that there are several choices for F 
and f. 

We only consider the cardinality and key constraints in these trans
formations, however it is possible to transform some other constraints 
as well. 

Transformations of object frameworks are important for a number of 
reasons. First of all it is important to be able to communicate an object 
model to other persons who are more used to another object framework. 
Secondly it might be the case that an object model is already available 
in an other framework. Last but not least it might be necessary to 
implement an object model by means of a database management system 
that is based on an other object framework. Most database management 
systems used in practice are based on the relational data model, so 
this will be one of the frameworks we consider. Other frameworks are 
the functional data model, the entity-relationship data model and the 
nested relational data model, which is an extension of the relational data 
model. (Note that we called the entity-relationship data model "entity
relationship model" in part 1.) There are several versions of each of these 
frameworks however we have chosen only one of them. There are some 
other object frameworks, but except for the object oriented fmmeworks, 
the ones presented here are the most important in practice. 
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The strategy we follow in this section is displayed in figure 13.21. 
Here "ERM", "OM", "FOM" ,"RM" and "NRM" denote object models 

Figure 13.21: Strategy of transformations. 

in the entity· relationship data model, (our) object framework, the func
tional data model, the relational data model and the nested relational 
data model, respectively. A double arrow head means that we consider 
a transformation in both directions. Since we are not expressing speci
fications but framework transformations we use here meta language. 

1. Functional data model 
The version of the functional data model we consider here is just a re
striction of our framework in which only functional relationships are 
allowed. So the only problem is to get rid of the non-functional re
lationships. In practice most relationships are already functional (cf. 
for instance the examples in this chapter). However if there is a non
functional relationship then we can transform the schema as follows. In 
fact we define the function F from schemas in our object framework 
into schemas of the functional data model. We call an object model of 
the functional data model a functional object model. 

• if there is a non-functional, non-injective relationship use the "trick" 
we used to model relationships with properties, i.e. introduce a 
simplex class for every relationship that is non-functional and con
nect it to the domain and range class of the original relationship by 
total and functional relationships, having the new simplex class as 
their domain class, and these relationships have to form a domain 
key for the new simplex class, 

• if a relationship is non-functional but injective, we may exchange 
the domain and range classes of this relationship and then we 
obtain a functional one (the proof of this statement is an exercise), 

• the new simplex classes should have a value type, i.e. the function 
sim has to be defined for these classes; since there is a domain 
key constraint it does not really matter how we define these value 
types, because the simplexes are uniquely determined by their re
lationships, however we will use the next definition: 
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let r be a relationship in the functional object model that is re
placed by simplex class d, then 

sim(d) = sim(DM(r)) X sim(RG(r)). 

In figure 13.22 we see examples of these transformations. Note that p is 

e f 
r 

~ p 

c 
(A) 

e d f 

l~ ;Jm , 
k ~ 

c (B) 

Figure 13.22: Transformation to a functional model. 

replaced by k and r by I, d and m. Now we have seen how to transform 
the schema. However we also have to transform instances of our schema 
into instances of a schema of the functional data model. We only con
sider universal complex classes, because the functional data model does 
not have the notion of complex classes. So we consider an arbitrary 
universal complex a of an object model in the object framework and 
we will transform it into a universal complex b of the functional data 
model. We will call the schemas respectively A and B, so B = F(A). 
The transformation (I) proceeds along the following lines: 

1. for each simplex class n of schema A we have b(n) = a(n), 

2. for each functional relationship r of model A the same relationship 
occurs in schema Band b( r) = a( r) and it has to satisfy the same 
cardinality constraints, 

3. for each non-functional but injective relationship p of schema A 
there is a relationship k of schema B with: 

b(k) = ((x,y) I (y,x) E a(p)} 

if p is total then k is surjective and if p is surjective then k should 
be total, 
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4. for each non-functional, non-injective relationship r of schema A 
there is a simplex class d and two relationship classes I and m 

such that DM B(I) = DM B(m) = d, RGB(I) = DM A(r) and 
RGB(m) = RGA(r); 
b(d) = a(r) II b(l) = (((x,y),x) I (x,y) E a(r)} II 

b(m) = {((x,y),y) I (x,y) E a(r)}. 

Note that b(d) = a(r) is justified by the choice of sim(d). It is clear that 
F is not injective. To verify this note that models (A) and (B) of figure 
13.22 are mapped both to model (B). However f is injective. (The proof 
of this assertion is an exercise.) In fact we may consider the function 
F as a reduction to a normal form of the object framework. Therefore 
this framework is sometimes called the irreducible data model, while 
our object framework is sometimes called in literature, the functional 
data model, because the binary relationships may be considered as (set
valued) functions. 

To transform an object model defined as a functional data model 
into one in our framework, we have to do nothing because it is already 
an object model in the object framework i.e. the functions F and fare 
the identities. 

2. Relational data model 
In order to describe the transformations we need a definition of the 
relation data model. We call an object model of the relational data 
model a relational model. A relational model is defined by a relational 
schema and the set of instances of this schema. 

Definition 13.1 A relational schema is a 5-tuple: 

(T, A, 0, (3, 1') 

where T and A are mutually disjoint sets and: 

• T is the set of relation names, 

• A is the set of attribute names, 

• 0 : T --> lP(A) assigns to every relation name a set of attributes; 
we require that: 

• (3 is a function that assigns to every attribute a set called an 
attribute domain (note that dom((3) = A), 

• 1': T --> lP(A) assigns to every relation one primary key, which is 
a subset of the attributes assigned by 0, such that 

'<It E T: 1'(t) C o(t) II 1'(t) # 0. 
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instance 

relation 
tuple 

functional dependencies 
multi-valued dependencies 

referential integrity 

o 

(The terminology used here is the usual one for the relational data 
model, however note that some of the terms have a slightly different 
meaning in the rest of this book.) Note that if the attribute names of 
two relations are not disjoint we can make them disjoint by combining 
their names with the names of the relations in which they occur. In 
the following table we display a relational schema. The code "y" means 
that the attribute is part of the primary key of the relation and "n" 
means that it is not part of it the primary key. 

relation attribute domain key 
TI aI Al n 

a2 Al y 
a3 A2 y 

T2 a4 A2 y 
as A3 y 
as A3 n 

T3 a7 A3 y 
as A4 y 
ag A4 n 

Next we have to define instances of a relational schema, which are com
parable to our universal complex class (cf. 9.2). The set of instances is 
defined by: . 

Definition 13.2 Let a relational schema be given. An instance of a 
relation database schema is a function b with dom( b) = T and 

'It E T : b(t) c II(.B t a(t)) " ('Ix, y E b(t) : x t "(t) = y t "(t) =} x = y). 

o 

For t E T and an instance b the set b( t) is a set of functions, called a 
relation, with a common domain aCt). These functions are called tuples. 
The primary key identifies a tuple in an instance. (Note that it is a min
imal key, because we have no other keys defined.) The relational data 
model has several standard constraints: functional dependencies, multi
valued dependencies and referential integrity. Referential integrity is 
equivalent with our surjectivity constraint. A key constraint is the most 
important example of a functional dependency and the multi-valued de
pendencies do not have an equivalent in our framework; therefore we do 
not consider them. 

Note that the concept of a complex is not existent in the relational 
data model so we have to restrict the transformation to the universal 
complex class. For the relational data model exist two query languages: 
the relational algebra and the tuple calculus. In the next part we show 
how the relational algebra can be expressed in the specification language. 

First we consider transformations from relational models and object 
models. In figure 13.23 we see the corresponding object model of the 
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Figure 13.23: Transformation of a relational schema. 

relational schema in the table above. First we define the function F that 
maps a relational schema A into a schema for the object framework, 
called B. 

1. SN = T U rng({3), so every relation and every attribute domain 
become simplex classes 

2. RN = A, so all attributes become relationships, 

3. Va ERN, t E T : DM(a) = t ¢} a E a(t) (note that t is uniquely 
determined), 

4. Va E RN : RG(a) = {3(a), 

5. 'It E T : DK(t) = {-y(t)}, 

6. 'It E T: sim(t) = II({3 f ")'(t», 

7. '1r E rng({3) : sim(r) = {3(r). 

Next we consider the transformations on the instance level. The 
transformation f maps an instance a of A into a universal complex b of 
F(A). 

1. 'It E T : b(t) = {x f")'(t) I x E a(t)}, so all primary keys of a 
relation form a set of simplexes of a simplex class with the same 
name as the relation, 

2. '1d E rng(f3): b(d) = {x fr 13t E T: x E a(t) ArE a(t) A {3(r) = 
d}, so all attribute values of an attribute domain that occur in 
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a form the simplexes of a simplex class with the name of the 
attribute domain, 

3. Vr ERN: b(r) = {(x, y) 13z E a(DM(r)): x = z r-y(DM(r)) AyE 
x(rn, note that b(r) is total and functional because of the prop
erty of the' primary keys of the relational data model 

It is clear that these rules define a function. However we still have to 
prove that this function f is injective. 

Lemma 13.1 The function f defined by the three rules above is injec
tive. 

Proof. Let al and a2 be two instances of the relational schema A and 
suppose f(ail = f(a2) = b. We have to prove that al = a2. Take an 
arbitrary t E T. We have (by rule 1): 

{x r-y(t) I x E al(tn = {x h(t) I x E a2(tn· 

Let Xl E al(t) and X2 E a2(t) such that Xl r-y(t) = X2 r-y(t). (Note 
that this does not imply Xl = X2, since Xl and X2 belong to different 
instances.) Then, for all r E o(t) (by rule 3): 

However r (as relationship) is functional and therefore Xl (r) = X2( r). 
This proves that Xl = X2. SO we have proven that al = a2' 
o 

We continue with the transformation the other way round. So we start 
with a schema A of an object model and we first transform its schema 
into the schema B of a relational model (function F) and afterwards 
we define the transformation f that maps an instance of a universal 
complex class into an instance of the relational schema. However we first 
transform the object model into a functional model a seen before. So 
we assume that A is a functional model and in addition we assume that 
all relationships are total, because this avoids the problem of nil values 
in the relational model. Note that F is partial now! Transformation F 
is defined by: 

1. T = rng(DM), so only simplex classes with "properties" become 
relations, 

2. A = RN U {t' I t E T}, so all relationships become attributes and 
for each relation t there is one new attribute t' (assume primes 
where not used in names of A), 

3. 'It E T: o(t) = it'} U DM-l(t), 

4. Vr E RN : f3(r) = sim(RG(r)), 

5. 'It E T : f3(t') = sim(t), 
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Figure 13.24: Transformation of a functional model into a relational 
model. 

6. 'It E T: ')'(t) = it'}, so the new attributes form the primary keys. 

In figure 13.24 we see a schema of a functional model and in the following 
table we see its transformation into a relational model. 

relation attribute domain key 
SI s' 1 sim(st} y 

P sim(S2) n 
q sim(S2) n 
r sim(S3) n 

S2 s~ sim(S2) y 
t sim(S4) n 

S3 s' 3 sim(S3) y 
u sim(ss) n 
z sim(S4) n 

s6 s' 6 sim(s6) y 
v sim(S4) n 
w sim(ss) n 

The next step is the definition of f. Let a universal complex a be given, 
instance b = f( a) should satisfy: 

• 'It E T: {x(t') I x E b(t)} = a(t), 

• 'It E T : Vr E a(t) :, 

((x(t'),x(r)) I x E b(t)} = a(r). 

It is not a priori evident that these rules determine b uniquely. 

Lemma 13.2 The two rules above define a function. 

Proof. Let a be given. We have to show that a determines only one 
b. Suppose that bl and b2 satisfy the rules above. We will show that 
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entity-relationship schema 

primary key 

bt = b2. Choose atE T. Let Xt E bt(t). Then Xt(t') E aCt) which 
implies 

3X2 E b2(t) : X2(t') = Xt(t'). 

Further Vr E o(t) : (Xt(t'), Xt(r)) E aCt) :} 

3X3 E b2 : (x3(t'),xk)) = (Xt(t'),xt(r)). 

The fact that t' is a primary key for b2(t) implies that 

This implies that Xt = X2 and so Xt E b2( t). Therefore bt = b2. 
o 

Finally we have to show that I is injective. 

Lemma 13.3 The function I defined by the rules above is injective. 

Proof. The proof is an immediate consequence of the specification of 
I: if at and a2 are two universal complexes with I(ad = l(a2) then 
the specifications for at and a2 by the rules above are identical (namely 
b = I(at) = l(a2) and so at = a2. 
o 

Note that if we transform a relational schema into an object schema 
and afterwards this object schema into a relational schema, then the 
last schema is identical to the first one except that each relation has one 
extra attribute. 

3. Entity-relationship data model 
As in the case of the relational data model we start with a definition of 
this framework. 

Definition 13.3 A entity-relationship schema is a 7-tuple (E, R, A, 0,(3", 8) 
where: 

• E is the set of entities, 

• R is the set of relationships, 

• A is the set of attributes, 

• a: E -> ./P( A) assigns to every entity a set of attributes, 

• (3 is a function that assigns to every attribute a set called the 
attribute domain, 

• ,: E ---+ ./P( A) assigns to every entity a primary key, such that 

"Ie E E: ,(e) C o(e), 

• 8: R -> ./P(E), which assigns to every relationship a set of entities. 
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This framework does not have the notion of complex classes either so 
we restrict ourselves to the universal complex class as before. Nor· 
mally the entity-relationship data model is used as an aid to define 
a relational schema and in that case one does not have to define in
stances of entity-relationship schemas. However we transform an entity
relationship schema into a schema of an object model and so we define 
indirectly instances for entity-relationship schemas as instances of the 
universal complex class of the corresponding object model! Therefore 
we do not have to specify the function f that transforms instances. 
Note that the term "relationship" is used here different, and therefore 
we will call it an "er-relationship". The transformation proceeds along 
the following lines: 

1. SN = E U R U A, 

2. RN = U.ed(e,a) I a E aCe)} U UreR{(r,e) leE oCr)}, 

3. Vex, y) E RN : DM((x, y)) = x A RG((x, y)) = y, 

4. "Ie E SN n E: DK(e) = {{(e,a) I a E ')'(e)}}, 

5. Vr ERN n R: DK(r) = {{(r,e) leE oCr)}}, 

6. all relationships of the object model are total and functional. 

In figure 13.25 we display an entity-relationship schema and its trans
formation into an object model. 

It is also possible to transform schemas of object models into entity
relationship schemas. An isomorphic transformation is possible if the 
object model has some structural properties. In this case the graphs 
of the object model and the entity-relationship schema are isomorph, 
i.e. there is bijective mapping between the nodes and edges and in fact 
this is the classification of simplex classes introduced in section ?? The 
structural properties can be expressed using the concept of level. A 
simplex class n has level 0 if and only if n ¢ rng(DM), i.e. n has no 
properties. A simplex class n has level k if and only if it all simplexes 
in {RG(r) I DM(r) = n} have level k - 1. (Note that in an arbitrary 
object model not all simplex classes have a level.) We will use the 
notation level(n) for the level of a simplex class n. The conditions for 
an isomorphic transformation are: 

• all simplex classes have level 0, 1 or 2, 

• all relationship classes are total and functional, 

• no two relationship classes have the same domain and range classes. 

The simplex classes oflevel 2 become er-relationships, the simplex classes 
of level 1 become entities and the simplex classes of level 0 become at
tributes. (We call the last ones attribute simplex classes.) 
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Figure 13.25: Transformation of an entity-relationship schema. 

Further we require that every simplex class has one domain key 
constraint consisting of relationship classes that have attribute simplex 
classes as their range classes. Let such an object model be given, then 
the corresponding entity-relationship schema is: 

1. A = {r E RN Ilevel(RG(r)) = O}, so the relationship classes that 
have "attributes" as range class become attributes themselves 

2. E = SN\{n E SN Ilevel(n) = O}, so the attribute simplex classes 
disappear 

3. R= RN\A, 

4. "Ve E E: aCe) = {r E A I DM(r) = e}, 

5. "Va E A: ,B(a) = sim(RG(a)), 

6. "Vr E R: ,s(r) = {DM(r), RG(r)} , 

7. "Ve E E : 'l'(e) E DK(e). 

Note that er-relationships have no direction, which causes no problem 
because an er-relationship is never connected to the same entity twice. 
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In the general case, where some simplex classes do not have to have 
such a domain key constraint, we have to create an extra attribute for 
each entity with the same value domain as the value type of the simplex 
class. (This construction is an exercise.) As stated in part I, the object 
framework may be considered as an extension of the binary version of 
the entity·relationship model, which means that "'Ir E R: #(R(r)) = 2. 
This is what we have shown here. 

4. Nested relational data model 
The nested relational data model is a generalization of the relational 
data model. This framework enables us to model "non-atomic" at
tributes in a more easy way. We start with an example in the following 
table. 

Order Item Total Supplier Price Quantity 

°1 i1 100 A 3 50 
B 5 30 
C 4 20 

'2 50 B 7 20 
D 6 30 

°2 '3 60 B 8 40 
E 10 20 

'4 80 A 10 50 
D 12 30 

To indicate that a "nest" (in fact a row) of attributes may be repeated 
we use curly brackets, so the attributes of the table above can be coded 
by: 

{(Order, {(Item, Total, {(Supplier, Price, Quantity)})})} 

In this table we see only one nested relation. There is no need for more 
than one nested relation because we can combine two of them to form 
one. For instance two non-nested relations T1 and T2 with attribute sets 
{A, B, C} and {D, E, F} respectively, can be combined into one nested 
relation, coded by: 

{( {(A, B, C)}, {(D, E F)})} 

So a relational model can be transformed in an information preserving 
way, into a nested relational model (the proof is an exercise). We start 
with the definition of a nested relational schema and afterwards we give 
the definition of an instance of such a schema. 
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nested relational schema Definition 13.4 A nested relational schema is a 3-tuple: 

(A, (3, T) 

where: 

o 

• A is a finite set of attributes, 

• (3 is s function that assigns to every attribute a set, called attribute 
domain, 

• T is an attribute nest; attribute nests are defined using a syntax, 
by: 

- AttributeNest ::= i Nestl, 

- Nest ::= Attribute I ~NestlNest21 iNestl, 
- Attribute E A, 

- no attribute may occur twice in an attribute nest. 

An attribute nest is a set that can be represented by an AttributeNest. 

Next the set of instances of a nested relation schema is defined. 

Definition 13.5 Let a nested relation schema be given. A instance of 
such a schema is defined recursively using the set X of all sub-attribute 
nests of T: X is the set of all attribute nests that are represented by a 
sub-string of T. The set of all instances of x, where x EX, is denoted 
by I(x). The function I is (recursively) defined by: 

• 'Ix EX n A: I(x) = (3(t), 

• VX,Xl, ... ,Xn EX: x = (xt, ... ,xn ):} I(x) = I(xt)x ... xI(xn ), 

• Vx,y EX: x = {y}:} I(x) = IF(I(y)). 

o 
So in the table above the instance 
{(Ol, {( it, 100, {(A, 3, 50), (B, 5,30), (C,4, 20)}), 
(i2 , 50, {(B, 7, 20), (D, 6, 30)})}), 
(02, {( i3 , 60, {(B, 8, 40), (E, 10, 20)}), 
(i4, 80, {(A, 10,50), (D, 12, 30)})})} 
is displayed. 

As noted before, the relation data model can be transformed into 
the nested relational data model. We have seen how to transform an 
object model of our framework into the relational data model. The 
final step to close the circle is to show how a model in the nested re
lational data model can be transformed into our framework. Then we 
have also shown that a nested relational model can be transformed into 
a relational model. (Of course it is possible to give a more direct trans
formation than we present here.) 

We first consider the transformation of a nested relational schema 
into a schema of an object model. It proceeds along the following lines: 
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1. create a simplex class for every sub-attribute nest in X, including 
the attributes themselves, and give them a suitable name (use for 
example the elements of X as names), 

2. create for every simplex class with a name of the form {x}, a 
relationship class r that is total, functional and that satisfies: 

DM(r) = {x} II RG(r) = x 

3. create for every simplex class with a name of the form (Xl, ... , xn) 
relationship classes rIo"', rn which are total and functional and 
that satisfy: 

'Vi E {i,oo.,n}: DM(ri) = (XIooo.,Xn) II RG(ri) = Xi, 

4. "In E SN : DK(n) = {DM-I(n)}, 

5. for each simplex class n that represents attributes: sim( n) = f3( n), 
for the others we may chose the value types arbitrarily. 

In figure 13.26 the transformation of the example above is displayed. 
(Note that we have shortened the names of attributes.) In fact the 
simplex classes with numbers 3 and 5 are redundant. In figure 13.27 
we transformed (injective) the object model in order to obtain a more 
simple one with the same information. (The proof of this statement is 
an exercise.) 

On the instance level we can define an injective function f that 
transforms an instance of a nested relational schema into a universal 
complex that satisfies a tree constraint (with the simplex class that 
represents the whole attribute nest as root). This construction proceeds 
along the same lines as the schema transformation. (The specification 
of this function is an exercise.) 
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1 {(O,{(I,T,{(S,P,Q)})})} 

+ 
2 (O,{(I,T,{(S,P,Q)})}) 

/ 'f...... 

° 3 {(I,T,{(S,P,Q)})} 

~ 
4 (I,T, {(S,P,Q)}) 

/- ~ 
I T 5 { (S,P,Q)} 

~ 
6 (S,P,Q) 

/- ~ 
S p Q 

Figure 13.26: Transformation of a nested relational schema. 
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Figure 13.27: Reduction of the object model of a nested relational 
schema. 

215 



216 



Chapter 14 

Object oriented Modeling 

As said before, we consider object oriented modeling as a method to 
construct a complete actor model in an integrated way. The method 
uses a specific paradigm of a system (the object oriented paradigm), 
which can easily be mapped onto our frameworks. This paradigm is 
quite informal, and so there are many ways to formalize it. We will start 
with the main ideas of the object oriented paradigm and afterwards we 
will show how these ideas can be incorporated in our frameworks. 

The basic idea of the object oriented paradigm is that there are 
classes of active objects. (Note that we use the term "object" a bit 
different here.) Each object has a (structured) value and it may have 
knowledge of other objects. Each object has a life cycle that starts with 
its birth and that ends with its death, also called creation and deletion 
of the object. During its life an object can change its value, and it can 
exchange messages with other objects of the same or different classes. 
The structure of the life cycle is the same for all objects of a specific 
class and the type of communication to other objects is also determined 
by the class of the object. A system is considered as a "dynamic set" 
of objects, which means that at each moment in time there is for each 
object class a finite number of objects, each with a particular value and 
some particular knowledge of other objects, and that there are pending 
messages destined for specific objects. This "dynamic set" changes over 
time because the objects may change their values, receive messages and 
send messages. A change of value of an object may be triggered by a 
message but this is not necessarily the case, it may also change its value 
autonomously. The operations that change the value and the knowledge 
of an object are usually called methods, they are specific for an object 
class. The value of an object and the knowledge it has of other objects 
at a particular time can be considered as the state of the object. There 
are several situations that should be avoided, such as that there exist 
messages for objects that died already or that two or more objects are 
waiting for messages of each other (dead lock). 

The idea of object oriented modeling is that a systems engineer can 
define an object class completely in isolation, i.e. without knowledge 
of other object classes. Object oriented languages have facilities to use 
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o-complex class 

o-actor 

state machine 

m-complex class 

knowledge simplexes 

value simplexes 

inheritance relationships between object classes, which may decrease the 
modeling effort of a system. 

If we compare the object oriented paradigm with our three frame
works we see an important difference: objects in our framework are 
passive components of a system and actors are active components but 
actors are fixed, i.e. there are no births and deaths of actors! So it is 
not immediately clear if we should identify the "object oriented" objects 
with our objects or with our actors. To distinguish the object oriented 
objects from ours, we will call them o-objects. It turns out that we have 
for each o-object class a complex class and an actor. 
Object oriented modeling proceeds along the following lines: 

• For each o-object class there is a complex class that satisfies a tree 
constraint and the root simplex identifies the o·object ( the type 
is ID), we call it an o-complex class. 

• For each o-object class there is one actor that represents the life 
cycle of the o-object, we call it an o-actor. 

• Every o-actor has internally the structure of a state machine, i.e. 
each processor is connected to at most one input and one output 
place within the actor. A processor may have other input and 
output connectors that are connected to the connectors of the 0-

actor. 

• The input and output connectors of an o-actor are used for the 
exchange of messages with context actors or with o-actors. 

• For each connector of an actor there is a complex class that rep
resents a message type. We call it an m-complex class. 

• A life cycle of an o-object can only start with a message from 
outside. There may be live o-objects in the initial state, so an 
o-actor does not have to have an input connector for life cycle 
creation. A message that starts the life of an o-object may be 
sent by a context actor or by an o-actor. In the last case it may 
be the same o-actor, which means that o-objects of one class may 
create new ones from the same class. A life cycle may end or may 
continue for ever. 

• The o-complexes have two kinds of simplex classes: simplex classes 
that are root simplex classes of other o-complex classes and other 
simplex classes. The first kind of simplexes represent the knowl
edge of another o-object: if an o-complex contains a root simplex 
of another o-complex it means that it knows of the existence of the 
other o-complex. We call them knowledge simplexes (k-simplex for 
short). The other simplexes in an o-complex denote the value of 
the o-object. We call them value simplexes (v-simplex for short). 
In many cases the k-simplexes will only have relationships with 
the root simplex in an o-complex. 
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• Newly created o-complexes obtain their identity ( in the root sim
plex) from the token containing the message that initiated their 
life. So at the start the identity of the o-object and the iden
tity of the token that contains it, are equal. During the life of 
the o-object the identity of the containing token changes but the 
identity of the o-object remains the same. 

• An m-object contains the identity of the sending o-object (the re
turn address) , and in some cases also of the receiving o-object. 
There are however cases in which the receiving object is not known 
because the message may be handled by any o-object of the ad
dressed class. 

• The state of an o-object is determined by the value in the 0-

complex plus the place in the o-actor where the o-complex resides. 
So in fact the token that carries the o-complex represents the state 
of the o-object, since a token contains the place information. (Note 
that the places in an o-actor are stages in the life cycle of the 0-

object.) 

• The processors inside an o-actor perform the state changes. They 
may be triggered by an incoming message and they may produce 
an outgoing message. They may be considered as the methods of 
an o-object. 

• The communication between two o-objects needs a protocol, i.e. a 
token exchange pattern. There are two kinds of communication. 
The first kind of communication concerns the creation of an 0-

object by some other o-object. The second kind concerns a client
server behavior. Here one o-object (the client) asks a service of 
another o-object (the server). The server may ask another 0-

object to perform a part of this service. So the server may behave 
as a client as well and one request for service may create a cascade 
of requests. 

In most cases a message is answered by an other message. A simple 
protocol is that an o-object has at most one message pending at 
a time. So after it has sent a message it may perform internal 
steps (i.e. steps without sending messages) only until it receives 
an answer from the receiving o-object. 

Note that what is called an o-object here, can also be considered as 
a transaction. A transaction in a database system for instance, also 
has a life cycle and it may initiate other transactions and it may wait 
for reactions of other transactions. So the object oriented paradigm is 
applicable to transaction processing systems in a natural way. 

As mentioned before the object oriented modeling method develops 
a model by considering one o-object class at a time. This means that 
for each class the following activities have to be carried out: 

1. Define an o-complex class, i.e. an object model. 
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2. Define an o-actor, i.e. an incomplete actor model. The places 
inside the o-actor mark the stages in the o-objects life cycle. 

3. For each connector of this o-actor an m-complex has to be defined, 
if it was not defined before for another class. 

4. Specify suitable value types for the complex classes involved. 

5. Specify the processor relations for the o-actor. Usually these will 
be functional and the corresponding functions are called methods. 

Note that we did not use hierarchy of actors in this method. Of course 
it can be used to "hide" a part of the life cycle in an actor. This actor 
has internally also the state machine structure and has one input and 
one output connector. So it can be considered as a processor, because 
it behaves as such. 

Stores can be used as well, but they do not fit very well in the 
object oriented paradigm. In practice it is good to start with an overall 
actor model of the system in which the context actors and o-actors are 
displayed. The use of inheritance that is supported by most object 
oriented languages is not directly translatable to our framework. Of 
course we have polymorphic functions, and type variables that give us 
the possibility of reusing already defined constructions, but we have no 
inheritance relationships between actors or complex classes. 

The question that remains is: how to find the o-object classes? There 
is no "waterproof" answer to this question. If the paradigm is carried 
through too far, every "thing" is considered as an o-object and this 
means that we get many o-object classes with a simple structure but 
with many complicated interactions between objects of these classes. 
For example if we consider a library system and we consider each simplex 
of an object model in our framework as an o-object then we have o-object 
classes for books, for authors, for publishers, for dates etc. This would 
mean that if a library user wants to ask a question about a book, he has 
to send a message to the book and then the book has to send a message 
to the author(s) and to the publisher and to the date (of publication). 
Of course this can be modeled in this way, but it is not a natural way 
of modeling and certainly not a simple model. A good approach is to 
consider ouly those entities in the real world as o-objects that behave 
as o-objects, i.e. they have their own life cycle and they commuuicate 
with other entities. These entities should belong to classes, which means 
that there could be more instances of the class at the same time. So 
in fact there is a simple answer to the question: if real world items 
can be identified as o-objects in a natural way, then they should be 
modeled in this way, otherwise they should be modeled as simplexes 
and be incorporated in o-complexes or m-complexes. 

We will illustrate the object oriented modeling method by a small 
example. Consider a jobshop, i.e. a factory that has resources that can 
be used to perform tasks and clients send jobs consisting of one or more 
tasks to the factory. (Note that this model is a simplification of the 
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Figure 14.1: Jobshop: top level 
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Figure 14.2: o-complex class for Job: 5hopOrder 

factory example considered in chapter 13.) In figure 14.1 we show the 
top level of the system. There are two context actors, called Clients 
and ResourceManagement. The first one is sending jobs to the jobshop 
and the second one is adding new resources, taking resources out and is 
reserving time for maintenance of resources. We have connected them 
by channels, however in this early stage of development it is not sure 
via how many connectors the o-objects will communicate. The context 
actors are not considered in detail so we concentrate on the two o-object 
classes: Job and Resource. We start with Job. The o-complex class for 
Job is displayed in figure 14.2. The simplex class job is the root of the 
complex. Tasks have an ordering, which is expressed by the functional 
relationship s that assigns to a task its successor. It needs a constraint 
as we have seen in section 13.2. We call this complex class: ShopOrder. 
The next step is the o-actor for Job. It is displayed in figure 14.3. 
Processor tl creates a new job from a message of a client and t4 deletes 
a job. All processors are functional and complete, but only tl and t2 are 
total. The other processors have preconditions: t3 selects pairs of input 
tokens that belong to the same job and t4 and t5 select on the existence 
of unfinished tasks in the jobs. Note that from each job only one task 
at a time can be executed. However several jobs may be processed 
concurrently. The m-complex classes for the connectors are displayed 
in figure 14.4. All of them satisfy a tree constraint with client or job 
as root. The m-complex class for connector Cl is almost the same as 
the o-complex class. The only difference is the job identification that is 
attached to an incoming message. We call it ClientOrder. The root of 
ClientOrder is client. 50 a client may send as many jobs as he likes and 
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they will obtain their own identification internally. The m-complexes 
for C2 have job as root. The complexes for connector C3 consist of one 
simplex job that is also the root simplex. We call them TaskOut and 
TaskIn respectively. Finally the m-complex for C4 has client as root. We 
call it Product. Note that all internal places have ShopOrder as complex 
class. It is assumed that the client gets the product symbolically in the 
form of the job identity. Note that job and client are k-simplexes, while 
all the others are v-simplexes. 

The next step is the definition of appropriate value types for the 
complex classes. This is straightforward in this case: 

• ClientOrder:= [c: ID, t: (RT x DUt], 

• ShopOrder:= [j: ID, c: ID, t : (RT x DU)"], 

• TaskOut:= [j: ID, t : RT x DU], 

• TaskIn := ID, 

• Product:= [c: ID, j : ID]. 

Here RT is a type that denotes the resource types and D U is the type 
for the durations of tasks. We may choose here en or a restricted form 
of it that allows only non-negative values. Note that attribute t denotes 
the set of tasks. Since a task is identified by its successor task (except 
for the last one), we may use this representation. Now we are ready to 
specify the processor relations. They are straightforward as well. 

tl 
x?: ClientOrder 
y!: Shop Order 
ll'j(Y!) = New II ll'c(Y!) = ll'c(x?) II ll't(Y!) = ll't( x?) 
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duration 

client 

task 

resource 
type 

ClientOrder: cl 

job 

/ ." 
task duration 

TaskOut: c2 

Figure 14.4: m-complex classes for Job 

t2 
x?: ShopOrder 
y! : TaskOut 
z!: ShopOrder 

Taskln: c3 

client 

job 

Product: c4 

1I"j(z!) - 1I"j(x?) 1\ 1I"c(z!) - 1I"c(x?) 1\ 1I",(z!) - tail(1I",(x?)) 
1I"j(Y!) = 1I"j(x?) 1\ 1I",(y!) = head(1I",(x?)) 

t3 
x? : Shop Order 
y? : TaskIn 
z! : ShopOrder 
y? = 1I"j(x?) 1\ z! = x? 

x? : ShopOrder 
y!: Product 
1I",(X?) = () 
1I"c(Y!) = 1I"c(x?) 1\ 1I"j(Y!) = 1I"j(x?) 

ts 
X?: ShopOrder 
y!: Shop Order 
1I",(x?) # () 
y! = x? 

Note that we only displayed the main schemas for these processors. 
The time does not playa role in this part of the system. 

The next o-object we are considering is Resource. The o-complex 
class for Resource is displayed in figure 14.5. We call this class: Machine. 
It satisfies a tree constraint with resource as root. The simplex class job 
is needed to memorize which for which job the resource is working, if 
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type 
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times lot job 

Figure 14.5: o-complex class for Resource: Machine 
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cl 
Iy? x?1 

c3 
1 tl x? yl t3 1 

1 

1 

1 z 1 yl x? 
c2 

1 t2 t4 y? 

L_ ------ _I 

Figure 14.6: o-actor for Resource 

it is not idle. The simplex class timeS/ots represents free time slots for 
the resource to work for tasks. A time slot is a pair of rational numbers. 
The o-actor for Resource is displayed in figure 14.6. All processors are 
functional and complete. Only t2 and t3 are total. The others have to 
find a right resource, which is their precondition. Processor t3 creates 
a new machine by sending a message that has the same format as the 
machine data. Processor t4 deletes a machine with an identity given by 
ResourceManagement. (Note that ResourceManagement should be able 
to remember the machines it has created.) 

The m-complex classes for the connectors Cl and C2 are TaskOut 
and TaskIn respectively. The m-complex classes for connectors C3 and 
C4 are the same as the o-complex class for Resource, because we assume 
that ResourceManagement puts and takes complete resources. The m
complex class for connector Cs is trivial: only the identity of the resource 
is in the message. We call this class: Retrieve. The value types for the 
complex classes are: 

• Machine:= [r: [D, k: RT, j: ID, s: IF(~ X ~)l 

• Retrieve:= ID 

Now we are ready to specify the four processors of Resource. They are 
very simple in this case. Processor tl selects a suitable resource for a 
task and determines the delay of it (by means of Zt!). 
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tl 
X?: Machine 
y? : TaskOut 
z!: Machine 
11"l(11",(y?)) - 11"k(X?) 
3t : ~ X ~ • t E 11".( x?) 1\ 

11"l(t) ::; TransTime 1\ 11"2(t) 2: TransTime + 11"2(11",(y?)) 
z! = x? Ell {j ..... 11"j(Y?)} 
z,! = TransTime + 11"2(11",(y?)) 

t2 
x? : Machine 
y! : Machine 
z! : TaskIn 
y! - EIl{j ..... 1.} 
z! = 11"j(x?) 

t3 
x?: Machine 
y! : Machine 
y!=x? 

t4 
x? : Machine 
y! : Retrieve 
z! : Machine 
11",(x?) = y? 
z! = x? 

This example was very simple however it demonstrates the object ori
ented method well. Note that we have seen different models for al
most the same real-world systems in which jobs are asking for resources. 
Sometimes we modeled it such that the resource is "carrying" the job 
(like we did here) and sometimes we defined a new object class operation 
(like we did in chapter 13). The last solution has the advantage that 
the choice to add the job to the resource instead of the resource to the 
job, is avoided. This example shows that there are many ways to model 
reality. 
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Exercises 

1. Model a flip-flop as a classical Petri net. 

2. Model a machine that can count objects that are coming from 
some generator in the p-ary number system up to n digits, as a 
classical Petri net. 

3. Consider a teller machine, i.e. a machine with the following func
tions: 

• to get money a person has to put his card into the machine, 
and then he has to enter his personal code, 

• if his code is correct he may enter the amount he wants, 

• if his balance is larger or equal than the amount, he gets 
the money and the amount is subtracted from his account, 
otherwise he gets no money. 

Assume the machine has infinite capacity for money and that en
tering a wrong code or amount can not be corrected by the user. 

(a) Model this system as an actor model. 

(b) Extend the functionality by allowing people to put money in 
the machine, which will result in an update of the account. 
Answer (a) again. 

( c) Extend the machine by allowing people to transfer money to 
the account of somebody else. Answer (a) again. 

4. Consider a simple railroad system with one track that consists of 
a closed curve without intersections. The track is divided into 5 
sections, each ending with a semaphore that is either red or green. 
Each semaphore has a sensor that tells if a train has (completely) 
passed the semaphore. There are two trains riding in the same 
direction. The information system has to guarantee that: 

• no two trains are allowed to be in the same section, 

• if the section after a semaphore is empty the semaphore 
should be green, 

• there is no deadlock. 

Assume these requirements hold in the starting state. 

( a) Model the railroad system including its information system 
as a classical Petri net. Explain what the objects, places and 
processes represent in reality. 

(b) Modify the system in the sense that the track intersects with 
itself and add the requirement that collisions should be ex
cluded. 
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5. Consider a medical care system in which ill persons see a family 
physician first. The family physician can take one of the following 
decisions: 

• he can give the patient a medicine and after a while he wants 
to see the patient again, 

• he can decide that the patient cannot be treated (then the 
patient leaves the system), 

• he sends the patient to a consulting physician. 

The consulting physician can make the first two decisions the fam
ily physician can make, but in addition he can do some further 
medical examination: a blood test or X-ray photographs or both. 
He only wants to see the patient back, if all examinations have 
been done. An extra decision he can make is that he can send the 
patient back to the family physician. The physicians base their de
cisions on the number of visits, the used medicines and the blood 
tests and X-rays of the patients. 

a Make an (incomplete) actor model for this system. 

b Modify the model in such a way that there is an arbitrary num
ber (of both types) of physicians and that each patient has 
to be seen by the same physician at each successive visit. 

6. The Car Rental Company (CRC) has many stations in the country, 
where they store and maintain cars. Customers make a reserva
tion for a type of car at some station for a specific period of time. 
When the customer arrives at the station on the first day of the 
rental period, a car of the right type is assigned to the client. The 
client may also cancel a reservation, however before the rental pe
riod starts. 
A client may return a car to another station at the end of his 
rental period (this will be charged). If a client wants to extend his 
rental period, this will be considered as a new rental. 
Cars can be in service, rented or shipped from one station to an
other (by CRC). 
The information system must be able to keep track of the cars and 
the reservations and it must support the process of car assignment 
and invoicing. 

(a) Make an object model for CRC, including graphical con
straints and (if necessary) additional constraints in natural 
language and predicate calculus. 

(b) Make an (incomplete) actor model. 

7. Make an actor model for the following Resource Reservation Sys
tem (RRS). The system receives requests from clients for an ar
bitrary resource on a particular date. (Resources are for instance 
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seats in a concert hall or in an airplane.) The client receives an 
acknowledgement of his request. If there is a resource free for 
that particular date, a reservation is made and the client receives 
a confirmation telling the number of the resource. If no resource 
is available the request will wait until somebody else cancels his 
reservation. Clients may cancel their requests or their reserva
tions. The systems administrator should have facilities to delete 
all the reservations and requests if the date has expired. Consider 
two cases: one where the unsatisfied requests are assigned to a 
resource in an arbitrary way and one in which they are served in 
a first-come-first-served order. 

8. Make an object model for the Resource Reservation System of 
the former exercise that can be used to define the database of a 
monitoring information system for the system (Le. the universal 
complex class belongs to the store of the monitoring information 
system). 

9. Make a (complete) actor model in the object oriented style of a 
university. Consider the following o-classes: student, instructor 
and course. Choose appropriate o-complex classes and life cycles. 

10. Modify the actor model of the railroad station (see text) such that 
the station master will be able to decide to which track a new train 
will go. 

11. Modify the construction for token cancellation (see text) such that 
actor Z can select tokens to be cancelled. 

12. Make an object model for the store of the train control system 
displayed in figure 12.8. 
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