

Systems engineering : a formal approach. Part III. Modeling
methods
Citation for published version (APA):
Hee, van, K. M. (1993). Systems engineering : a formal approach. Part III. Modeling methods. (Computing
science notes; Vol. 9311), (Systems engineering : a formal approach; Vol. 3). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/4412c4fd-2caa-466e-9370-80071d3a4856

Eindhoven University of Technology

Department of Mathematics and Computing Science

Systems Engineering: a Formal Approach

Part ill: Modeling Methods

by

K.M. van Hee

Computing Science Note 93/11
Eindhoven, April 1993

93111

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Information Systems Engineering:

a Formal Approach

by

K.M. Van Hee

March 30, 1993

This report is part of a preliminary version of a book that will
be published.

Contents

I System concepts

1 Introd uction

2 Application domains

3 Transition systems

4 Objects

5 Actors

6 Specification language
6.1 Values, types and functions
6.2 Value and function construction.
6.3 Predicates
6.4 Schemas and scripts

II Frameworks

7 Introduction

8 Transition systems framework

9 Object framework

10 Actor framework

III Modeling Methods

11 Introduction

12 Actor modeling
12.1 Making an actor model after reality
12.2 Characteristic modeling problems .
12.3 Structured networks
12.4 Net transformations ..

1

9

11

15

23

33

47

63
63
68
71
72

81

83

85

93

103

129

131

135
135
146
162
167

13 Object Modeling
13.1 Making an object model after reality
13.2 Characteristic modeling problems ..
13.3 Transformations to other object frameworks

14 Object oriented Modeling

IV Analysis Methods

15 Introduction

16 Invariants
16.1 Place invariants.
16.2 Computational aspects .
16.3 Transition invariants

17 Occurrence graph

18 Time analysis

19 Simulation

V Specification Language

20 Introduction

21 Semantic concepts
21.1 Values and types
21.2 Functions

22 Constructive part of the language

23 Declarative part of the language
23.1 Predicates and function declarations
23.2 Schemas and scripts

24 Methods for function construction
24.1 Correctness of recursive constructions
24.2 Derivation of recursive constructions

25 Specification methods
25.1 Value types for complex classes
25.2 Specification of processors

A Mathematical notions

B Syntax summary

C Toolkit

2

173
175
188
199

217

231

233

235
238
252
260

263

271

283

295

297

301
301
309

313

329
329
333

339
339
344

351
351
357

365

371

375

Part III

Modeling Methods

129

Chapter 11

Introduction

In this book a method is a set of guidelines and techniques that can be
used for the following tasks:

• Construction of a model for a system. We distinguish two cases:

Making a model after reality, i.e. the systems engineer has
an informal description of the system, or he formed an idea
of the system in mind base on observations of the system,
and out of this he makes a model in terms of the formalisms
given in the preceding part.

Transforming a given model into another one, in which case
the second model is formulated in another formalism or in the
same formalism but with more structure, (i.e. has properties
the first model does not have) or formulated differently .

• Analysis of a model. Again we distinguish two cases:

Verifying properties of a model by means of a formal proof.

Validating a model by means of simulation of the behavior of
the model, i.e. testing hypotheses or calculating characteristic
values of a model based on the simulation experiments.

Making a model from scratch is one of the most difficult tasks because
the input for this task is "sloppy". Therefore methods for these tasks
are not very rigorous. However, every analysis in practice starts with
this task, so it is very important.

Transformation of a model can be done for several reasons. One rea
son to transform a model into another one could be that for the second
model better analysis tools or techniques are available. Another reason
could be that the second model is better suited for construction of the
real system. This is the case if the second model is regarded as the
blue print for the real system. Consider for example an object model,
made in our formalism, in which the real system should be constructed
with a relational database management system. We can transform our
first model into a second one that satisfies requirements of the database

131

method

model making

model transformation

verification

validation

management system. The reason why we do not start with the sec
ond model immediately, is that the first model is more concise, better
understandable and may be better to analyze. Another example is an
actor model where stores are shared by several processors. If we have
to realize the system on a computer network without shared memory,
we can transform our model into a model that has only private stores,
i.e. stores used only by one processor.

Of course the systems engineer has to prove that the transformed
model is enough "similar" to the original one. Here the similarity rela
tions of part II are useful.

The possibilities to verify properties of realistic models are limited.
There are two kinds of properties that can be verified:

• internal consistency,

• requirements formulated for the system to be constructed.

Internal consistency means that there are no "logical" errors in the
model, for instance that the syntax of the model is correct, that the
used types are consistent or that the system does not have any dead
locks. For some of these questions methods are available. Internal
consistency of a model is no guarantee that the model describes the
system that the systems engineer or his principal has in mind! To make
sure the model describes what we want, we have to verify the proper
ties formulated in the requirements specification. Often these properties
are written down informaJIy and the systems engineer has to translate
them into some formal language first, for instance some form of logic.
This translation is also a source of errors. A good strategy is to start
with an informal description, then a translation to a formal one and
finaJIy a translation of the formal one into an informal description. The
two informal descriptions should be consistent which can be checked by
non-specialists.

This kind of verification is a hot research topic and there are not
many results yet that can be applied to practical cases. Therefore in
many cases the systems engineer has to use experimentation by simula
tion (validation) with the model in order to obtain confidence instead of
certainty: experiments can only give counter examples for a property,
but no proof in case a property holds. However if a model passes many
tests, we get confidence that can be quantified with probability theory.

Methods are no algorithms, so they are no sequences of unambigu
ous instructions to make or analyze a model. The distinction between
guidelines and techniques is not very sharp. One could say that a tech
nique is more rigorous, or "closer" to an algorithm than a guideline.
In a technique the final result as well as intermediate resnlts are pre
cisely specified, however not the way to go from one step to another. As
examples of techniques, we mention techniques for:

• the representation of the history of a system in an object model
that only considers the actual state of that system,

132

• transformation of an object model in our framework to a relational
model,

• verifying an invariance property in an actor model.

Examples of guidelines are:

• hints to represent a practical situation as a model,

• a checklist to perform a modeling task, in fact a systems develop
ment life cycle may be considered as a checklist too,

• conventions to be followed during a modeling task, for instance
conventions for notations to keep models readable, or conven
tions for the use of specific constructions to keep models "well
structured" .

For a complex system we cannot make a complete actor model at once,
we have to construct it in steps. There are three well-known guidelines
to develop a model. They have traditional names, that we will use here:

• The process oriented approoch. In this approach the steps are as
follows:

1. Design a hierarchical actor model up to the processor level.
Neither the processor relations for the processors, nor the
object classes for the places (including stores) are defined in
this step in a formal way, but they are described informally.
Give for all processors their properties and give, if necessary,
constraints of the delays of produced tokens. This activity
will be called actor modeling and we will call the result of
this activity an incomplete actor model, because term "actor
model" is used for a complete formal description of a system.
In the information systems community the activity is called
process modeling. We, however, use the term "process" for an
element of the behavior of a system. Instead of "incomplete"
actor model, we will use the term "actor model" in case no
confusion is possible.

2. Design an object model for the total system. In this object
model all complex classes that playa role within the system
or in the communication with the environment have to be
defined. The object model should include all relevant con
straints, either expressed graphically or in predicate calculus
and natural language. This activity is usually called data
modeling. However, we will use the term object modeling,
because we are not modeling information objects only, but
also physical and conceptual objects. Complex classes are
defined as in chapter 9, so no sophisticated value type is de
fined here.

3. Assign complex classes to places. These first three steps are
called modeling.

133

guidelines

process oriented

data oriented

object oriented

4. Specify for each complex class a value type.

5. Specify for each processor a processor relation. The last two
steps are called specification.

• The data oriented approach. Here the same steps are performed,
but in a different order:

1. Design an object model, including constraints.

2. Design an incomplete actor model in the sense explained
above.

3. Assign complex classes to the places.

4. Specify value types for complex classes.

5. Specify processor relations.

• The object oriented approach. This approach is different from the
preceding ones in the sense that the three steps are performed
simultaneously, however for each complex class separately. So the
modeling task is not divided according to the different aspects of
the actor model, but according to the different complex classes.
Note that in the terminology of the object oriented approach, the
concept of an object is used differently: a token is there an actor
or a combination of an actor and tokens.

In the following chapters we first consider methods for making and trans
forming models. We distinguish methods for:

• actor modeling,

• object modeling,

• specification of value types and processor relations, with as final
result a complete actor model,

• object oriented modeling.

We often mention properties of a (type of) model, but we do not give
proofs here, because we concentrate on modeling issues first.

In this part we consider methods for construction of models and in
the next part methods for analyzing models.

134

Chapter 12

Actor modeling

Actor modeling is the activity of making an incomplete actor model. In
this chapter we will only consider incomplete actor models and therefore
we use the term "actor model" as an abbreviation. Remember that the
possible processor characteristics are totality, functionality and com
pleteness. Further the timing of tokens is considered in the process
model, if this is relevant. Note that we do not consider verification of
properties of models in this chapter.

We distinguish making an actor model after reality, i.e. without any
formal description to start with, and transforming a given actor model
into another one which has structural properties the first one does not
have.

12.1 Making an actor model after reality

There are two cases: the systems engineer has to make a model of an
existing system, or he has to model a system he has (partly) in mind. In
the first case he can observe the existing system and check if his model
has the same properties as the real system, in the second case he can
only check whether the system he has in mind, fits in the environment
in which it should operate. From a modeling point of view these cases
are not different: only the source of information is different.

We will consider several modeling problems. To illustrate these prob
lems we regard two examples: order processing in the sales department
of a company that delivers items from stock to customers, and traffic
control at a railroad station.

In the order processing system customers send a request a to the
sales department to make an offer for delivery of items. (The characters
refer to places in figure 12.1). Then the sales department produces an
offer b, taking into account the inventory information which is shared
with the environments. Now the customer decides to send an order
c, which starts several activities in the sales department, and which
resnlts in an order confirmation d. Now the sales department sends
a delivery order g to the distribution department. If the distribution
department is ready to deliver it sends a message to the sales department

135

order processing example

railroad station example

a

b

c

d

"
f

II

sales environment
h

Figure 12.1: Order processing, context diagram.

h and the sales department notifies the customer and sends an invoice
e. At the same time the sales department sends a copy of the invoice
f to the finance department, which ends this transaction for the sales
department. Of course there might be a lot of communication between
the customer and the finance department concerning the payment of
the invoice but that does not bother us here. We also neglect that
the customer might be unhappy with the received items and that he
contacts the sales department again about this order.

North

c B

South

Figure 12.2: Railroad station, physical lay out.

The railroad station has a layout displayed in figure 12.2. Trains
are riding in one direction (from left to right). One track is divided
into two tracks at the entrance of the station. It is possible to load and
unload passengers from both tracks at the platform. It is possible that
one train is passing another one at the station. This system needs an
information system that controls the use of the tracks at the station
safely. The station master may decide when a train is able to leave
the station, but the information system should not allow the station

136
o

master to give two tfluns a green light at the same time. Sensors along
the railroad produce information objects that are sent to the railroad
station to notify that a train has passed the sensor. Sensors C, D and
G produce an information object in case a train has completely passed
one of these points. Further there are semaphores along the tracks: A,
E and F. If a semaphore is red a train has to wait, if it is green a train
may pass. There is one switch B before the station and one join H
after the station. Only B is important because it can be switched, H is
always pushed into the right position by the trains.

Using the above examples, we will now show how to make an actor
model of a discrete dynamic system. We always consider systems at
the highest level closed; top is the actor at the highest level. The first
step is to decompose (split, refine) top into a network of two actors,
one representing the discrete dynamic system we are interested in and
another one representing the environment. The latter is called a context
actor. So the first question to be answered is: what is the boundary of
the system we are studying? To answer this question we have to define
the places through which the system of interest communicates with the
context actor.

In figure 12.1 we see the first decomposition of top for the order pro
cessing example. The only interesting thing on this diagram is the com
munication with the environment, here by means of four input places,
four output places and one store s. We often decompose the context
actor once because it allows us to structure the communication with
the environment. In figure 12.3 we have decomposed it. Here we see
some new actors: finance, customers and distribution. They belong to
the environment, we call them also context actors. We left out all com
munication between the context actors because it is not interesting for
us.

The second step, i.e. the first decomposition of the discrete dynamic
system we study, (often) gives two actors: one representing the target
system and one representing its information system. The target system
is the system for which the information system works.

An actor model showing the target system and the information sys
tem as one actor each and some context actors as well, is called a context
diagram, so figure 12.1 and figure 12.3 are both context diagrams. In
practice we start immediately with one of these diagrams.

If we want to simulate the system we study, we have to simulate
the environment as well. However, it is impossible to do this exactly
because we should specify the environment in detail. Instead of doing
this we make models of the context actors as if they would operate in
isolation. This means that we design a consumption/production be
havior for them that is an approximation of the behavior of the real
environment in the sense that the context actors are behaving like the
real environment. Sometimes we may model a context actor by means
of a random generator, which may imply that the context actor behaves
more unpredictable than the real environment. This means that we test
the system under circumstances that are more difficult than the real

137

actor modeling steps

step 1: decompose top

context actor

step 2: decompose discrete
dynamic system

target system

information system

context diagram

1----------,
1

I+------{ a 1+----'---1

~---~b}-----'--+l

~-------{e~-----7~

~------~dr-----~~

I----+{ f }-----'--+l

sales I+-------{ h }+----'---l

1
1

customer

inane

distributio

L _________ _

Figure 12.3: Order processing, first decomposition of the environment.

system will encounter.
Often we are modeling only an information system, as in the order

processing example. In this case the system we want to model is an
information system, exchanging information objects only with the con
text actors. Actor customers represents all customers of the companYi
only the exchange of information objects with the sales department is
relevant. Of course, we could have modeled all customers separately
by a context actor, but this would make the model vulnerable: if there
would be a change in the customers population, our model would not
be correct any more. (How the customers are modeled by one actor is
discussed later.)

In the rallroad example the object of study is a discrete dynamic sys
tem involving physical systems (the tralns, the tracks, the semaphores).
We distinguish the information system and the target system (which is
a discrete dynamic system itself). The information system has two char
acteristic properties: all tokens are information objects and many tokens
in the target system have a "counter part" in the information system,
since the information system maintains an image of the state or history
of the target system. The context diagram for the railroad example is
displayed in figure 12.4. Here we see three actors: the station, which
is the target system, the traincontrol, which is the information system
and a context actor called trains. Context actor trains has a simple
behavior: it will produce trains for place k and it will consume trains
from place I (trains will have a direction). So there remain two actors

138

I----+{ k 1---+1

trains I----+{ d }--.j

i+--; e I+---j

tation i+--; f I+---j traincontro

I--{II)--+j

Figure 12.4: Railroad station, context diagram.

that we will detail to some extent. Channel a gives control tokens to
semaphore A, b to the switch B, c and d pass sensor information from C
and D respectively, e and f give control tokens to F and G respectively
and by 9 the sensor information of G is passed.

Besides the target system, its information system and the context
actors we often introduce some other actors in the context diagram:
measurement actors. These actors are used to obtain statistical infor
mation from the simulation of the behavior of the other actors. So
these measurement actors only consume tokens from the other actors
and they have no influence on their behavior. Often a systems engineer
has a "library" of measurement actors at his disposal with which he can
collect information of the actors he studies. Note that the measurement
actors only playa role in the model and not in the real system.

Summarizing we may find the following actors in a context diagram:

• target system,

• information system,

• con text actors,

• measurement actors.

In the next modeling steps the target system and the information
system are further decomposed. It is sensible to start with the target
system, because the information system has to fit to it. In case the
information system is our focus point, we do not model the target system
into much detail. It is difficult to give a general rule how far to go.
Often we encounter actors we are not able to describe completely. For
instance, we may have to model human beings. This is, at least for
systems engineers, an impossible task. Human beings may also be part
of the information system if we decompose it. This kind of actors is not
further decomposed. We regard them as black boxes and we call them
context actors as well. So if we need their external behavior we replace

139

measurement actors

actors in context diagram

step 3 ... : stepwise refinement

decomposition guidelines

end of decomposition

them by some simple actor with a behavior that is at least as "rich" as
that of the black box actor.

In general it is not wise to have many levels of decomposition because
this makes a system difficult to understand. Ten levels seems to be a
maximum while two to five levels seems to be "normal". There is also
a guideline for the size of the network into which we decompose an
actor: this should not contain more than ten actors, while five is a good
size. (Combining these two limits would imply that models with a few
hundred processors are "normal" and that models should never be larger
than 1010!) Making a model is more an art than trade, there are no
"hard" techniques. Some guidelines to do the decomposition are:

• in case of modeling an existing system, use the functional de
composition that is already there, for instance the partitioning in
departments, business units or task forces;

• if the system is delivering different products or services, follow
their path through the system to find tasks that can be performed
by one actor;

• do not consider the task of an actor in detail, but only its in
put/output behavior; draw a "boundary line" and see what kind
of tokens are passing the line;

• let the task of an actor be easy to understand and to describe in
natural language; if the task is too complex it might be divided
into several tasks, in this case the so called cohesion of the actor
was too low;

• avoid many connections between two actors, which is called the
coupling of actors; if there are many connections the partitioning
of tasks over the actors might probably be improved;

• often it is useful to work bottom-up: first make a detailed model
and then cluster actors into higher level actors.

When we are refining actors we often discover that we made errors
at higher levels in the actor model, mostly because we forgot some
communication between actors or because we have considered different
types of tokens as one type. This is not a problem although systems
engineers hate to modify already made diagrams. However, it is very
important to keep the diagrams consistent, which is often called balanced
and which means that the diagrams together form one hierarchical actor
model.

At a certain point the actors become elementary, which means that
they are processors and will not be decomposed further. A good check
to see if an actor can be considered as elementary is that it should
operate memoryless and it should be able to perform its operation(s)
in one event. Hence the tokens it will produce may only depend on the
tokens consumed and we must be able to consider its operation as one

140

transition of the system. Note that it is often possible to consider the
stepwise processing of a task as one event. For instance, the execution of
a computer program can be described as the evaluation of one function
application. In a functional model it is sufficient to represent such a
program by one processor. If we want to make a construction model
it is necessary to model a program by a processor network in which
the processors correspond to elementary program constructs. In actor
modeling we do not determine types of tokens and the functionality of
processors in detail, we only specify the processor characteristics. In
case a processor relation is total and complete (Le. input and output
complete) the actor behaves as a classical Petri net (cf. chapter 5) if
we discard the values of the tokens. So, even without completing our
model we are able to do some analysis. In many cases it is possible to
model systems as classical Petri nets, but these networks become very
large and confusing. So we should avoid refining too far and stop at a
level where we discover memoryless actors that perform operations in
one event.

For the two examples we considered above, we will give a decompo
sition to the processor level. For each processor we will determine the
processor characteristics.

e

~ale;;-
1

I
I
L ___ _

Figure 12.5: Order processing, "final decomposition" of sales.

First we consider the order processing example. In figure 12.5 we
show the decomposition of the sales actor. Here we see processors
only, so we are already at the lowest level of decomposition. Proces
sor infoservice answers questions a of customers by sending them an
offer b. Processor ordering consumes orders c and produces a delivery
order g for the distribution department, a confirmation d for the cus
tomer and the necessary data for delivery and invoicing. This is an
information object sent to place m. Processor ordering uses also the
inventory information s (which is shared with the distribution depart
ment), the customer information in store I and the price list in store k.
In fact ordering is updating 8 and I as well as retrieving information
from them. Processor invoicing is triggered by a delivery notice h from
the distribution department saying when the ordered products will be

141

_I

order processing (continued)

railroad station (continued)

delivered. It selects the right order information object from m in the
same event. So invoicing will not be total, since it is only able to process
combinations of tokens from hand m for which the order identifications
match. Note that the distribution department may have very little in·
formation about the order, for instance it may not know the prices the
products are delivered for or who is paying for them. Processor invoicing
also produces a booking for the finance department. All processors are
complete; invoicing is functional and infoservice too. However, ordering
may be non·deterministic and therefore non-functional. This is the case
if there is some flexibility in the determination of volume reductions.

This is our functional model of the sales department. Note that it
is not known yet if persons playa role in this system. For instance, if
the communication with the context actors is realized by means of elec
tronic data interchange there is no need for persons. However in todays
practice persons will be involved. Maybe each processor is realized by
several persons or all the processors by one person. Here we are only
interested in a functional model. If we consider a construction model
of this system it should be consistent with this functional model. Note
that there are several ways to decompose the higher level of the actor
model. The decomposition is adding information. The original informal
description of the system was not detailed enough to validate the model.
The model is what the systems engineer thinks the system is. Finally
we remark that this model is far from complete, for instance there are
no facilities modeled to update the price list.

Figure 12.6: Railroad station, functional model of actor station.

Now we will look at the railroad station. In figure 12.6 we give a
functional model of the target system, the station. Here we see that the
semaphores (A,E,F), switch (B) and sensors (C,D,G) are modeled as
processors. The join H appears as a place n. As we have seen in figure
12.4 the places a through 9 model the exchange of information between
station and train control. Of these places, only place b has a type that
has at least two values, namely the strings "north" and "south", while
the values of the others are not relevant (only the fact that there is

142

a token is relevant here). The other places (k, I, n and the unnamed
places) are used by trains. So their type is "train". Note that the proces
sors consume or produce physical objects as well as information objects.
This often occurs in models, because transformations or translations of
physical objects require information. Only the switch processor B will
use the value of the token of b to determine if the switch should go to
the north track or to the south track. Only processor B has incomplete
output: it allows a train to go to only one of the tracks. Furthermore
B is total, input complete and functional. All other processors are very
simple here: they have all the processor characteristics and their func
tion is the identity function for all the places of the train-type, so they
reproduce the train they consume. In the initial state there are only
tokens in k.

Next we consider the functional model of the information system of
the target system: the train control, see figure 12.7. This model looks

c

I~rdnc~t;;l- - - --
1

1 r--r----~.r--r--------~--_,

'W--j
1----(r}---l •

.,
w}+-----j

I----(v}---l

• l-----~.r--+----------~~

1
1
1

- - - - - __ I

•
Figure 12.7: Railroad station, actor traincontrol.

very similar to the model of the target system! Places with the same
names in figure 12.6 and figure 12.7 are supposed to be the same.

This is often the case: the information system should maintain all
relevant details of the state of the target system, so from the state of the
information system we should be able to derive the state of the target
system.

Now we will study the model of figure 12.7 in more detail. The
names of the processors in the model correspond to the names of the
processors in the model of the target system. Only processor B of
the target system, the switch, is divided into two processors here: BI
and B2 • That was not necessary but it makes it possible to model the

143

place invariant

information system as a classical Petri net here: all processors satisfy
the three properties and all token values are irrelevant except for the
tokens produced by Bl and B2, that give their token the value "north"
and "south" respectively. (This can be done in many cases.) We also
see the places for the exchange of information objects with the target
system. The places x and y are used by the station master, so they have
to be connected to a context actor representing this person. The places
p and q are used for feed back, only if processor E has fired, processor
Bl can be enabled again to allow a train into the north track.

We assume that in the initial state there are tokens in 8, p, q, wand
k only. In k the number is arbitrary and in the other places the number
is equal to one. This means that Bl and B2 are enabled and that there
are no trains in the station. It is decided by the Demon which track will
be opened for a new train, i.e. whether Bl or B2 will fire. It is easy to
modify the model such that the station master can make this decision.
(This is an exercise.)

It is easy to see that the amount of tokens in the places p, rand u
together is equal to one in any reachable state. The same applies to t,
v and q. Such a property is called an invariant, to be precise a place
invariant.

If there is a token in p then the north track is free and if there is
a token in r then a train is entering the north track and it has not yet
passed the switch completely (i.e. the train has past sensor C). If there
is a token in u there is a train at platform north and switci1 B can be
used by a train that goes to the south track. In this case the invariants
are easy to verify. In part IV we will see a method to find and prove
them. Another invariant is that places r, 8 and t have exactly one token
in total (if the initial state has this property), which means that at most
one of the processors Bl and B2 is enabled in each event. If there is a
token in r then the switch is open for a train to go into the north track
and only after this train passes the sensor C there will be a token in 8

again which allows to set the switch to the south track (if this track is
free, which is indicated by the existence of a token in q). Note that Bl
and B2 enable the switch and the semaphore A in the same event, when
it is safe to enter the station.

The station master may decide which train will leave the station
first by putting a token in x or y. If he erroneously puts a token both
in x and y no harm has been done: there is at most one token in w,
so E and F cannot fire both. Furthermore, the semaphores E and F
are only enabled if sensor G has given a signal which means that the
preceding train has passed the intersection, i.e. switch H. To prove that
the whole system works correctly requires more arguments, we do give
them in part IV. However, it is easy to simulate the system by hand to
get a feeling for it and to detect mistakes.

Note that there are other ways to represent the state of the target
system: for instance with one store containing one complex object, as
displayed in figure 12.8. Here the store i represents the contents of the
places p, r, u, w, t, v, q and 8 of figure 12.7. The processors P, Q,

144

a }+--'-----f

I
I
I
I

b }+--'--l
I
I
L

c

p Q

I+---'--{ "

R s

d

Figure 12.8: Train control with a store.

R, Sand T of figure 12.8 are only triggered by external places, i.e.
by the sensors of the railroad or by the station master. Although this
actor model is much more simple than the one displayed in figure 12.7,
the processors are more complicated here, and the verification of the
correctness is more difficult.

In the examples so far we have not considered the timing of to
kens. In many cases this aspect is also important in an early stage.
For instance there could be an actor representing a clock, that creates
triggers (tokens) for processors that have to be activated at particular
times. In general it is "dangerous" if the time aspects of the tokens play
an essential role in an information system, i.e. if the functionality of an
information system depends on the processing speed of its components.
In real time systems this is sometimes the case. There is a trend in
designing information systems that are delay insensitive which means
that their functionality is independent of processing speed.

We conclude with some other guidelines:

• give actors a name that reflects action, for instance: "updating"
or "painting", while places get names representing a state of rest,
for instance "waiting for shipment";

• in case there is only one connection from a place to an actor, we
may use the name of the place for the connector;

• it makes sense to give actors a number in such a way that their
descent can be traced;

145

token time

more guidelines

object roles

• it is always important to have an informal description of a model
in every stage of development and this description should be up
dated after further refinement or formalization; always list the
assumptions made;

• check whether in a model every place has at least one input and
one output actor; if not this place might become empty or the
number of tokens in it might grow unlimited, which is seldom
what we want;

• check if actors have input and output connectors, if not it are
probably context actors;

• in refining a model only use stores that are shared by more than
one actor, only on the lowest level, where we have only processors,
we use stores that are private for one processor;

• try to make simple couplings between actors, i.e. the knowledge
one actor has to have of another one with which it communicates,
is as little as possible;

• make as much as possible reusable actors, by keeping interfaces
simple and by using polymorphic functions and type variables in
the specifications of places and processors (cf. chapter 6).

12.2 Characteristic modeling problems

We will now consider several problems that occur in many modeling
situations. We will illustrate these problems as much as possible with
the two examples given above.

1. The role of objects and actors.
Objects or tokens can play different roles in a model. They may

represent:

• physical objects, like the trains;

• clusters of physical objects, like a set of cars in a garage;

• messages, like the order confirmations;

• databases, i.e. a complex object that represents (a part of) a state
of a system, like the customer file; often these objects reside in a
store, but not necessarily;

• stage indicators that represent the stage or state of some "entity",
like the objects (tokens) in the places of the train control system
(see figure 12.7); in these cases the places may contain at most
one token and its type is irrelevant;

146

• signals like the signals exchanged by the station and the train
control system; only the processors Bl and B2 produce messages
and all other interface places contain signals; a signal is like a stage
indicator, its value is irrelevant but there may be several signals
in one place.

The role of actors and processors in particular, is one of the following:

• complete systems that consume and produce tokens, with or with
out memory and self-triggering (self-triggering means that the
processors produce their own input tokens); in particular human
beings can be modeled as actors;

• transformers or transporters of tokens;

• markers of activities in networks where places represent stages
and tokens stage indicators.

It is important to indicate in an early stage of the development of a
model what the role of an actor, a token (type) or the place it resides
is. Thls may already determine properties of the actor model that can
be verified at later stages in the development.

2_ Modeling an entity as a token or as an actor_
Often we have the choice to model a real-world entity as a token or

as an actor. We start with an example.
In a production system it is quite natural to model the products as

tokens, but for resources this is not so clear. Consider for instance a
simple production system in which a product is made in one production
step from raw material to the final product by one machine as illus
trated in figure 12.9. Here A denotes a context actor that produces
raw material and C a context actor that consumes final products, while
B represents the machine. It is clear that the quantities of raw ma
terial needed for one product are modeled as tokens and the products
too. The machine is one processor here. A disadvantage of modeling
machines as actors is that the model is vulnerable for changes in the
number of machines, like we have seen in the order processing example
above with the modeling of customers. Consider the same production
system but with three machines instead of one, as displayed in figure
12.10. In figure 12.11 we find a model with arbitrary many machines.
Note that B now represents a machine operation instead of a machine.
In place q the machines reside. Now the machines are tokens too. Thls
model is only interesting if the manufacturing of products takes time
since otherwise there is not much difference between this model and the
first one.

Now we modify the problem a little: we assume that there are two
types of operations, Band E and that the production process first
requires the use of a machine of type B, then one of type E and finally
one of type B again. We can model this in two ways: there is still only
one actor for each machine operation (see figure 12.12) or there is an

147

actor roles

token or actor

Figure 12.9: A simple production system.

B1

A ~ r- B2 V-- C

B3

Figure 12.10: The same production system with three machines.

A B c

Figure 12.11: The same production system with arbitrary many ma
chines.

actor for each step in the production process (see figure 12.13). In the
model of figure 12.12 processors Band E must decide if the produced
token is ready or that it needs another production step. So the tokens
should contain this information. In the model of figure 12.13 the tokens
do not need to contain any processing information at all. Note that
in these models places q, and q2 represent the machines of type Band
E respectively. It is always a trade off between a complex network
with simple object types and simple processor relations for processors,
and a simple network with complex object types and complex processor
relations.

The construction presented here can be applied in general. If a
processor represents an entity that operates on objects, then we can
modify the model such that the processor becomes the activity of the
entity instead of the resource itself. Then we have to add a place that
is connected bidirectional to the processor and which contains a token
that represents the entity. If we do this systematically, we obtain a
model in which all entities that live for a time period are represented as
token and in which all processors represent instantaneous activities.

148

A

A B c

Figure 12.12: One processor per machine operation.

I--..{m B1 1-_..{p1 B Ba

q1

Figure 12.13: One processor per type of production step.

3. Modeling a file as one token or a set of tokens.
Consider a file of items. The same model can be used for a warehouse

with one type of physical objects. We can model this file as a place
containing a token for every item in the file, or we use a store with one
complex object representing the whole file. Often we need to inspect
all the items in the file and this is quite difficult due to the fact that
processors have no means to check whether a place is empty or not.

In figure 12.14 we see a simple file management system. Processor
p adds a token of type IN from place a to the file stored as one token
in store k. The type of this store is IN". Processor q inspects this store
and computes the sum of the values of the items, whenever it receives
a signal in place b. The processor relation for both processors is quite

a

r

p

b

c

I
..J

Figure 12.14: File maintenance with a store.

149

c

file as one token

a b

ql

.-------~j~------,

d

p

k

q2

c

Figure 12.15: File maintenance without a store (1).

p ~==:::;:(:jT------+l q

k }-----+----...., f

r h 8

c

Figure 12.16: File maintenance without a store (2).

150

easy.
However, if we want to avoid the use of a store to model the file, we

may replace the store by a channel where each "stored" item is modeled
by a token. Using preconditions we may select the right token for an
operation. However, if we want to perform an operation on all items,
we need a more complicated solution, like the one displayed in figure
12.15. We assume that each query token on b has as value some unique
number Q. Store k has been replaced by a place k containing a token for
each "stored" item. Place j has a token in the initial state with a value
indicating the number of items in the file (i.e. tokens in place k). Each
token in k has a value that represents the stored item and the stage in
the inspection process ("inspected by query Q", where Q denotes the
last query in progress). Processor q, consumes a token from place band
the token from j and produces a token for d. The value of the token
in d is a row (m,n,o,z), where m denotes the total amount of items,
n the amount of items already inspected, ° their sum and z the query
identification (Q). Then processor q2 consumes all tokens from place k
and puts them back with status changed into "inspected by query Q".
When all tokens have been treated the answer is produced at place c
and the token for place j is restored.

If we do not want to add processing information to the "stored" items
we need an even more complicated solution like displayed in figure 12.16.
Again place k contains the file in the initial state as individual tokens,
one for each item. Also place j has a token in the initial state with a
value indicating the number of items in the file. No other place has a
token in the initial state. Processors p and q are complete, while s and
r are only input complete. All processors are total and functional. As
long as no request appears in place b, processor p may add items to k,
while updating the token in j. When a request arrives in b a rather
complex process is started. First the token of j is transferred to f and
then processor s transfers all items from k to d, while inspecting their
values and adding these values in the token in f. The value of the token
in f is a row (m, n, 0), where m is total amount of items, n the number
of items seen so far and ° is their sum. As soon as the items are counted,
i.e. m equals n, processor 8 produces the accumulated file value in place
c and it puts a token in place h with the number of items in the file
as value (which is known from g). Further it does not return the token
in f as was done in the preceding firings. Now processor r starts and
carries out a process similar to 8: it returns the items to place e, while
counting the items seen so far and it ends with the return of a token to
place j.

This example shows that it is very convenient to use a store to
represent a file and that rather complicated constructions are needed
otherwise.

4. Knowledge in a processor or in a store.
The processor relation of a processor often uses constants, such as a

number or a finite binary relation. Consider for example a processor

151

file as set of tokens (1)

file as set of tokens (2)

processor or store

direct addressing

broadcasting

"real" broadcasting

that produces the amount of taxes to be paid when an income tax
return is "consumed". The tax table will be used. The question is,
should we put this tax table in the processor specification or should we
define a store from which the processor reads the table. If there will
be no updates of the tax table it makes sense to put the table in the
processor specification, because it simplifies the actor model. However,
if updates of the tax table are possible we have to introduce a store
and also an actor (maybe a context actor) that updates the store. It
is useful to check whether stores in an actor model are updated or not.
If not there is probably something wrong: either the updating actor is
missing or the store could be incorporated in all the processors that are
using the constant. Note that in practice very little constants occur, in
most cases the "constants" turn out to be variables. However, we may
consider them as constants: changing them would then be understood
as a change of the system, which is called second order dynamics.

5. Direct addressing or broadcasting.
We try to make models as modular as possible in order to be able to

reuse parts of them for other models or to be able to adapt a model
easily. Therefore actors have connectors that can be attached to places
in a later stage, without changing the actor itself. If we have an actor
that sends messages to other actors, in fact to their input places, then
we have to know precisely which actors will get messages, in order to
specify the connectors of the sending actor. This might be cumbersome
because we do not know the number of addressees yet, or the number
might change in the future. This solution is called direct addressing.

A better solution is to send all the messages to one place (so we
just need one output connector in the actor) and only let the receiving
actors consume messages that are addressed to them. Of course this
requires the use of a precondition in the receiving actors. This solution
is called broadcasting. The messages have to carry an address and each
receiving actor has to know its own address, which is not the case if we
use direct addressing.

In figure 12.17 the two cases are displayed: left direct addressing,
right broadcasting. Actor p is the sender and q, rand s are the receivers.

In the second solution the sender still has to know all addressees. If
we want a more realistic model of broadcasting the sender should not
have to know the addressees nor their amount. There are two possible
solutions to this problem: either add an actor between the sender and
receivers that performs the addressing task (Le. split p), or use a solution
like the one displayed in figure 12.18. In figure 12.18 a message in dis
"read" (consumed) by a receiver and then put back. Each receiver has a
precondition saying that he should not read the same message twice: for
this the type of d is now enhanced with a set indicating which receivers
have already read the message. Initially this set is empty. When the size
of this set is equal to the number of receivers, the message is discarded
by a special processor t.

152

p p

~ .

a,) b c) (4"\

\I r B \I r B

Figure 12.17: Direct addressing versus broadcasting.

P

4 t

\I r s

Figure 12.18: "Real" broadcasting.

6. Sequential processes.
A sequential process, like the execution of a computer program or a

production process in a factory, can be modeled as a network in which
every processor represents a processing step and every place a stage in
the process. A characteristic of these networks is that every processor
(except for the first and the last) has exactly one input place and one
output place. (This is the property of a state machine, a kind of actor
discussed later.) One of the characteristic features of an actor model
representing a sequential process is the fact that the total number of
tokens in the network is constant and equal to the number of processes
that might be active simultaneously. This number is equal to the number
of resources that can work simultaneously. (In traditional computer
systems this number is equal to one.) In figure 12.19 a sequential process
is displayed. We may interpret this example as a computer program

153

sequential process

state machine

object life cycle

synchronization

r-------------------{.>-----------------------~

•

Figure 12.19: A sequential process.

with the well· known constructs: selection, iteration and assignment.
In fact we may consider this actor model to be a flow chart. (Although
flow charts are not used in software engineering any more, they still are
used in other engineering disciplines). Processor p represents the buffer
control of the process: only if places a and g have a token it may fire.
The tokens in g denote the number offree resources that may perform a
sequential process. Processors rand s represent an iteration. They have
preconditions to determine if the iteration is ready or not. So only one of
them will be enabled to consume the token in place c. Processors t and
u form a selection. Their preconditions form the if then else construct.
Processor q represents an assignment. All processors are complete and
functional. Processors p, q and v are total. Processor v marks the end
of the process and returns the resource to place g to allow processor p to
start a new job. So the process itself is the network between processors
p and v. In the initial state there are only tokens in g. We may replace
all processors, except for p and v by an actor that satisfies the property
that it has exactly one input and one output connector and that it will
produce one token if and only if it has consumed one token.

Sequential processes can be used to model object life cycles in the
object oriented modeling approach. Then there is for each complex class
one sequential process. They can also be used to model transaction
processing: for instance in a database system each transaction can be
considered as an object having a life cycle.

7. Synchronization.
Here we consider two sequential processes that may communicate. If

one process needs the processing of another it will send its "job" to the
other process and waits till its returns. This is called synchronization of
sequential processes. In figure 12.20 we see two sequential processes. All
processors are complete and total. In the first process actor b produces
a token that needs further processing in the second process, which is
also a sequential process. Processor g of this process waits till the token
to be processed arrives in place p and the result is delivered in place
q by processor h. The first process waits, which is expressed by the
completeness of processor c. Since the two sequential processes have
almost the same structure, we can give a similar description for the

154

,--------{ r }+-------,

a b c d

f II h j

L-______ -{ t }4-------...J

Figure 12.20: Synchronization.

second process. Note that processors b, c, 9 and h have exactly one
input and output place within their sequential processes.

8. Mutual exclusion.
Mutual exclusion is a frequently occurring form of communication of

processes, which share a resource that can be used by only one processor
in one event. In the train control system (d. figure 12.7), we already
find such a situation: the token in place s represents the "tongue" of
switch B that can be used for the north or the south track, but not for
both in the same event. Another form of mutual exclusion is the use of
a store by two processors: only one of them can use it in one event or
during a time period. Here the network takes care of the problem! A
more general case of mutual exclusion is displayed in figure 12.21. All
processors are complete and total in this example. In the initial state
there are tokens in r, t and s only. Here both sequential processes need
the (single) token in place s. Processors band 9 are waiting for this
token and d and j return it after c or h have used it. Note there is no
guarantee that a system that needs the resource will get it: the other
system could take it always just before the first one. Using the time
mechanism it is easy to obtain fairness, i.e. to guarantee that every
request is satisfied. We only have to require that the tokens produced
for rand t get a positive delay and that the resource has no delay in
place s.

155

mutual exclusion

fairness

processing time

r------------------{r~----------------~

• b c d •

•

h j k

L-______________ -{t~----------------~

Figure 12.21: Mutual exclusion.

a}--..j p I--+{b

Figure 12.22: Modeling processing time (1).

Figure 12.23: Modeling processing time (2).

9. Processing time and time-out.
We have already seen in part I how we may represent the fact that

processors need time to perform their operations. In figure 12.22 and
figure 12.23 we show two constructions. In the first one processor p
produces a token for place b with a delay t which is equal to the delay
of the produced token for place b. This delay represents the processing
time. Although the token in b is immediately there, it is only available
to other processors after the delay. In the second solution (figure 12.23)
we see two processors q and r. Firing of q represents th~ start of the
processing and the firing of r the end of it. Only the token in place d
gets a delay equal to the processing time.

The processing time can be used to solve a problem we encountered
before: when we modeled a file as a set of tokens, we found that it
was impossible to test if a place was empty. So we had to use another

156

r

a)--r--l
p \I

Figure 12.24: Inspecting a place using a time-out.

solution to see if we had inspected all tokens (see page 151 where we
"stored" the amount of tokens in a separate place). With a time-out
construction it is possible to determine whether a place is empty or not
without counting the number of tokens in the place. A time-out is a
way to decide whether a processor is enabled to fire or not, based on the
time that has passed since its last firing. In figure 12.24 we consider a
part of the file maintenance problem. All processors are total and input
complete, only processor q is not output complete however the others
are. The delays the processors give to their output are: tokens in c and
e are delayed three time units, by processors p and r respectively and
the tokens in d will be four time units behind. Channel a contains the
file with items and after inspection the items are put into place b. The
intermediate result of the inspection of the file is put into place c by
processor p and the final result, if the whole file is inspected is put into
place f by processor q. The initial state of this system is important: in
a is the file, in c is a token with delay zero, in d a token with delay one,
in e a token with delay two and the other places are empty. Processor p
inspects an item every three time units, and processor q cannot take the
token from place c before place a is empty because this token is "stolen"
by processor p before q is enabled.

To verify this statement, we show by induction the existence of to
kens in places c, d and e that become available at time points 3k, 3k + 1
and 3k + 2 for k E {a, 1,2, ... } respectively, as long as place a is not
empty. For k = a this is guaranteed by the initial state. Suppose the
statement is true for k. Then processor p will fire at 3k and it will pro
duce tokens for c and d that are available at 3(k + 1) and 3(k + 1) + 1
respectively. Note that there is still in d a token that is available at
3k + 1. At 3k + 2 processor r is enabled because of the token in e and
it will consume the token in d and reproduce a token for place e that is
available at 3(k + 1) + 2. Now there is again only one token in d. So
the statement holds for k + 1. Only if processor p consumes the last
token from a, say at time 3k, then processor q will be enabled at 3k + 4,
because there is a token available in cat 3k + 3 and in d at 3k + 4, while
processor r has to wait till 3k + 5 to be enabled. So if q is enabled we
know that a is empty, because the time for processor p has expired.

This example shows how powerful the time mechanism is, but one
should be careful with it because realization of systems when the func
tionality of the model is using time aspects is difficult: systems become

157

time-out

cancellation token

real-time systems!

x I---+{ p }---+j y

w I---o{r

v

z

Figure 12.25: Token cancellation.

10_ Token cancellation.
Sometimes the following situation occurs: a token is put into a place

with a delay by some actor X to be consumed by some processor Y and
before the delay has expired another actor Z wants to prevent that the
token will be consumed by Y. Then Z sends a cancellation token that
should activate some other processors to consume the token. However,
these processors are of course not able to consume the token before the
delay has expired. In figure 12.25 a solution is displayed. We introduced
two new processors V and Wand some extra places q, rand s. As soon
as Z puts a token in s processor V consumes the (only) token from r
and puts a token in q. Now Y is not able to execute because there is no
token in r. (We assume that all processors are complete.) As soon as
the delay of the token in p expires, W will consume the token in p and
W will reset the system by putting a token in r. (So in the initial state
there is one token in r and tokens in r will have no delay.) Note that we
had to modify processor Y by connecting it to r. It is easy to modify
the model in order to avoid modifications of Y. This construction only
works for cases where Z wants to cancel an arbitrary token in p. In case
Z is more selective in the sense that it will only cancel a token in p with

158

a particular value, then the construction has to be adapted. (This is an
exercise.)

(P) q

X Y

Figure 12.26: Token selection.

q

!
X z I----'l>{ a }---~ y

Figure 12.27: Priority in selection.

11. Priority in token selection.
Consider the situation displayed in figure 12.26. If there is one token

in p and one in q such that the time stamp of the token in p is greater
than the time stamp of the token in q, then the Demon will decide if X
or Y will execute. If we want to give Y priority over X, we can modify
the model as displayed in figure 12.27. All processors are complete. In
the initial state there is one token in r. As soon as the token in q is
available, Z will consume it, together with the token in T. Then X is not
enabled if the token arrives in p. Processor Z also duplicates the token
in q to a token in s. Now Y is enabled and after its execution there is
again a token in r so that the system returned to its initial state. Note
that if the tokens in p and q arrive at exactly the same time the Demon
still decides between executing X or Y. (It is easy to modify the model
such that X and Y do not have to be modified.)

12. Continuous processes.
Sometimes we want to model a process that is typically continuous.

In part I we said that we restrict ourselves to discrete systems, how
ever we are able to model some continuous systems as well. Consider
for example the chemical process displayed in figure 12.28 we see the
production of salt from NaOH and Hel. We modeled every reservoir

159

token priority

continuous processes

HCl.H.O

p

(HsO)+ OH-

r •

NaCI

Figure 12.28: A continuous process: salt production.

p

Figure 12.29: An arbitrary continuous process.

160

by a store, the value of the token in the store represents the amount of
the chemical in that reservoir. All processors are using self· triggering
and the tokens in the self-triggering places have delays that represent
the time necessary to perform the chemical reactions. In figure 12.29
an arbitrary continuous process is displayed. Stores a and b contain the
raw material that is transformed into the material in c. Note that we
cannot see the direction of the process in the diagram because we use
stores. Let us consider the processor relation of processor p. Suppose
a fraction a of a unit of c is made of the material of a and a fraction
1 - a of a unit of c is made of the material of b. Further suppose that
the processing time of 1 unit of c is (3 time units. Then the processor
relation satisfies the following equations:

h = . {a b} mzn -,--
a 1-a

c' = c+h

a' = a-axh

b' = b-(1-a)xh

delaYed) = (3xh

Note that h is the maximal amount of c that can be produced and that
we may break up the process into more steps, by not producing the
maximal amount of the token in c.

13. Communication with an environment.
As we have remarked before, we have to replace an environment of

a (model of) system by approximations of context actors, in order to
be able to simulate the behavior of the system. The approximations of
the context actors should have a behavior that is at least as "rich" or
"wild" as the behavior of the real environment in order to be able to
test the system. There are in principal three different ways to model
the context actors as displayed in the three cases of figure 12.30:

• without feed back as displayed in the first case

• with memoryless feed back, as in the second case

• feed back with memory, as in the last case.

In all three cases p represents the system for which we have to create
an environment. The processors q and r are both total and complete.
In the initial states we assume tokens in places a and 8 only.

In the first case processor r just consumes the output of the system
and processor q produces input without any concern of the output of
p. Note that q fires because of self-triggering via place 8. In 8 may be
one or more tokens, and q produces a new one in every firing. A slight
variation of this solution is one in which processor q does not produce
tokens for 8. In that case the environment at some point in time stops
producing new input. This case can also be modeled by putting all the
input tokens immediately in place a with an appropriate time stamp.

161

environment

val ueless actor models

r - - - --
q

S

P

r

I

- - - -- ..J

I -,

I' ,~. : .1 q J
I

p I
I

L ____ I

r - - - -- -,

I' ,~'
I

.1 } p q ,®
I

L.... ------- ..J
Figure 12.30: Three ways to model an environment.

In the second case we see that the environment only produces input
after it has received output from the system: the communication follows
a simple protocol. In this case the new input may depend on the last
output but not on the history of outputs of the system.

In the last case the new input is allowed to depend on the whole
history of the output of system p. Note that the last solution has a
store t, which may of course be changed into a place like in the first
case. However, in the first case we may not replace place s by a store
since we do not want processors to be triggered by stores.

12.3 Structured networks

The actor framework describes a very large class of models. It is useful
to distinguish types of actor models, i.e. subsets of the set of all actor
models having some common properties. Such a type division may be
based on:

• class model: an important type is formed by the valueless actor
models; these actor models only have one object class, which con
tains only one object;

162

• delay structure: an important type is formed by the timeless ac
tor models; in these actor models the tokens in the initial state
should have a time stamp equal to zero and all delays assigned by
processors should be zero too;

• processor characteristics: an important type is the one in which
all processors are complete, total and functional;

• network structure: this subdivision is based on the structure of the
graph only, there are several important types based on different
graph structures;

• state structure: this subdivision is based on the maximum number
of tokens per place.

We will describe several types and we will consider transformations of
actor models belonging to one type into another type.

The first type we will consider is the type of classical Petri nets
(also called place/transition nets). Recall that a classical Petri net is a
timeless and valueless actor model, i.e. all tokens have time stamp 0 and
there is only one complex class with only one complex in it. Furthermore
all processors are complete and total. Note that for valueless actor mod
els the functionality of the processor relation is not important. For this
type of actor models nice and useful analysis techniques are avrulable, as
studied later, but we give already some intuitive ideas of some of these
properties. However, the expressive power and comfort are very little.
Nevertheless it is sometimes possible to transform actor models where
tokens have values to classical Petri nets, which allows analysis of these
actor models by the techniques for classical Petri nets. The intersection
of the actor model types we define below and classical Petri nets are
well-studied in literature. They have interesting behavioral properties.

The definition of a (flat) actor model is given in part II. Here we
only need to know that L denotes the set of places, P is the set of
processors, I(p) is the set of input connectors of processor p, O(p) is the
set of output connectors of processor p and Mp is a function assigning
the connectors of p to places.

Let LI denote the set of all channels in a flat actor model (so L\L1 is
the set of all stores). We exclude stores from the structural properties,
because they do not influence the enabling of processors: they are always
avrulable. In order to define properties of actor models we need some
definitions. For pEP the symbol p. is the set of output channels:

p. = {I E L/I 3x E O(p): Mp(x) = I}

and .p is the set of input channels:

.p = {I ELI I 3x E I(p) : Mp(x) = I}.

For I E LI the symbol I. is the set of processors for which I is an input
place:

I. = {p E P 13x E I(p): Mp(x) = I}

163

timeless actor models

classical Petri nets

free choice nets

conflict free net

and .1 is the set of processors for which I is an output place:

.1 = {p E P I 3x E O(p) : Mp(x) = I}.

The actor models we will consider now are called free choice nets.
We assume the processors are total and complete when we are dealing
with free choice nets. A free choice net is an actor model such that:

'<Ip E P,I E L': #{x E J(p) I Mp(x) = I} ~ 1

and
'<II E L' : (#(1.) ~ 1 V '<Ip E P: pEl.:} .p = {I}).

In words, in a free choice net every processor is connected to a place
with at most one connector and every place is either input place for only
one processor, or it is input place for more processors, but then these
processors have only this place as input place.

a b c

pl p2

Figure 12.31: A "non-free choice" net.

r-- ...
pl p2

Figure 12.32: A free choice net.

In figure 12.31 an example of a "non-free choice" net is displayed. In
a free choice net (that has by definition complete and total processors)
the Demon is free to choose the processor that will consume a token if
there is more than one possibility on base of the network. This is not
the case in the example of figure 12.31, in which the token in place b
cannot be consumed by processor P2, but only by Pl in the state where
a and b have both one token and c is empty.

Next we consider three subtypes of free choice nets: conflict free
nets, state machine nets and activity networks.

A conflict free net is an actor model satisfying

'<lIE L': #(1.) ~ 1.

In words, each place is an input place for at most one processor. It is
easy to verify that a conflict free net is a free choice net.

164

In a conflict free net processors never have to compete for a token:
there is no choice to which processor a token of a place will go. So a nice
property of conflict free nets is that all processors that are enabled at
some point in time, may fire at the same time, and if they do not share
stores they may even fire simultaneously. Compare this property to the
serializability property (cf. theorem 10.5): this theorem states that if two
or more processors may fire at the same moment, they may also do this
in an arbitrary order. However, for conflict free nets we do not have to
determine which combinations of processors may fire simultaneously, we
just have to find all processors that may fire in isolation at some moment
and we know that they may fire all at that moment! An example of a
conflict free net is a sequential process as studied above.

A state machine net is an actor model with the property

'VEP: #(op) = #(po) = 1.

In words, each processor is connected to exactly one input and one
output place. It is easy to prove that a state machine net is a free
choice net.

State machine nets can be used to model finite state machines. Fi
nite state machines are often used in theoretical computer science and
in software engineering. In software engineering they are for instance
used to specify the functionality of actors, protocols and user interfaces.
Since fiillte state machines are a special type of actor models we may
apply our framework in all cases in which finite state machines are used.
A fiillte state machine is a state machine net with an initial state that
only has one token and no stores. All processors are complete and total.
Each place represents a state of the machine and each processor repre
sents a possible transition of the machine to another state. The token
indicates the state the machine is in. It is easy to see that in all states
of the actor model (not to be mixed up with the state of the finite state
machine) the number of tokens is one, if it starts so.

An example of a finite state machine is modeled in figure 12.33.
Note that a state machine net can be regarded as a graph with one
kind of nodes, namely places, and that the processors are considered to
be arc labels. Here we see an actor model that "counts" the number
of 1 's in a binary sequence, i.e. it counts up to three and if it has
counted three 1 's it remains in its state, in case it gets a 0 it jumps
to its initial state a. Channel a denotes the state of the machine after
having seen a 0, b after one 1, c after two 1's and d after three or
more 1 'so If a 1 is received processor p fires and the machine will move
to state b and if a 0 is received processor m will move the machine
to a again. Similarly processors q and r move the state to places b
and c respectively. Processor n moves the state to place d when a 1 is
received. The other processors move the state in case a 0 is received. To
understand this model we need a lot of extra information, such as the
process of receiving the binary sequence, not displayed in the diagram.
In our framework it is easy to extend the model with an environment
modeling the extra information. In figure 12.34 the augmented model

165

state machine net

finite state machine

II f=(a) p T q ~ r ~

"

y

•

Figure 12.33: A finite state machine .

•
r-------- ----------,
I

L...

activity network

f

Figure 12.34: The finite state machine in an environment.

is displayed. Here places e and f get the 1 's and D's respectively from
an actor w. The processors p, q , r and n consume the 1 's while the
other processors consume the O's if they are enabled. We assume actor
w does the appropriate selection of the elements of the binary sequence
and we assume that w produces the tokens for e and f with a delay
that is larger than the time the finite state machine needs to perform
the transitions.

An activity network is an actor model with the property

VI E L': #(01) = #(10) = 1.

In words, each place is an input place for exactly one processor and
an output place for exactly one processor. It is easy to prove that an
activity network is a conflict free net.

166

D

q

p •

t

r

Figure 12.35: A PERT network.

An activity network is also known under the name marked graph
or PERT network. (PERT is an acronym for Program Evaluation and
Review Technique.) The last name is used only if the network is a-cyclic
and if there are extra two places, say begin and end, such that .begin =
o and end. = 0. (Formally a PERT network is no activity network,
due to the extra places.) Each processor represents the start or the end
of an activity while each place represents the execution of an activity.
Activity nets can be used to model parallel processes with precedence
constraints. When we give each token a delay that corresponds to the
time an activity takes, the simulation of the model gives us the earliest
possible completion time of the set of activities, also called the "project".
In figure 12.35 an example is displayed. Note that an activity network
can be seen as a graph with processors as nodes and arcs labeled with
places. In this network the initial state is one token in begin. Then
processor p marks the start of the activities a, band c in parallel. Only
if a and b are ready processor q can start activity d. Finally all activities
are done if processor t produces a token for end.

Another important type of actor models, based on the state struc
ture, is called bounded nets. These actor models are characterized by
properties of the maximal number of tokens per place.

A k-bounded net is an actor model where each place has at most k
tokens in each state, provided the initial state has this property. A safe
net is a 1-bounded net.

We have already seen example of safe nets: a state machine net is
safe, because there is at most one token in the network; an activity net
is also safe. If the number of values the tokens may get in a k-bounded
net is finite, then the number of states if finite too and it will be possible
to model the network as a finite state machine.

12.4 Net transformations

We will now consider several ways to transform an actor model into one
with another structure.

167

exit

bounded nets

k·bounded net

safe net

self-triggering only

polling

Figure 12.36: Transforming an actor model into one with only self
triggering.

Transforming actor models into models with only self-triggering.
Suppose we have an arbitrary actor model and we want to get rid of

communication by means of places. A reason for this could be that it
might be easier to realize a system in which processors inspect memory
at their own time instead of having synchronization problems. Then we
can transform such a network into a network with only one place per
processor that is used exclusively by this processor, both as input and
output place. The transformation proceeds along the following lines:

1. Replace each place by a store.

2. Give the store a complex class such that tokens of the original
place can be clustered into a complex of this class and that the
complex can be decomposed into the original components. I.e.
if the complex class is represented by a value type T, then the
complex in the store can be represented by IF(T) or T*.

3. Introduce for every processor a place which contains in the initial
state only one object, which is a valueless complex.

4. Modify the processors by adding a pre-processing phase in which
they select one token from the complex in each of their stores
that was an input place and a post-processing phase in which they
pack the objects they produce into the complexes of the stores
that where output places.

In case time plays a role it is necessary to represent the time stamps of
the original tokens in the complexes of the stores in order to be able to
pick them in the right order. The new network should be similar to the
original one, see definition 8.8. The new network inspects its stores by
means of self-triggering or polling. The tokens in the new private places
may get a delay to model the polling intervals. An example is given in
figure 12.36.

In a similar way we can transform an actor model to have only one
input place that is either a self-triggering place as above or an output
place of some other processor, which means that some processors are
only activated by others and some by self-triggering.

Transforming actor models into models without shared stores.
N ow we consider a situation that is almost the complement of the

former one: we have a network in which processors share stores and we

168

would like to transform this net into a net in which stores are private
for a processor. A store can be accessed by only one processor in an
event, so we should incorporate in the transformed network a mutual
exclusion mechanism.

p q

Figure 12.37: Network with shared store.

c

pi

p2

Figure 12.38: Network without shared store.

In figure 12.37 and figure 12.38 we see an example. In the network
of figure 12.37 processors P and q share a store 8. We assume both pro
cessors are complete. The transformed network should keep the values
of the two tokens in 81 and 82 the same, as much as possible. In figure
12.38 we see the transformed network in which processor P is replaced
by two processors: PI that takes care of the access control and P2 that
performs the update of the store SI, which has the same type as s. For
processor q we see a similar transformation. In the initial state place
m contains two valueless tokens that are needed both by PI or ql if
they want to initiate an update. After P2 and q2 have done the updates
they return one (valueless) token to place m. Further we see two new
places d and e that are needed to transfer the update of one processor
to the other. (Note that P and q may perform totally different kinds

169

no shared stores

complete processors

of updates). Processors P1 and q1 are complete but P2 and q2 are not
input complete: P2 is either consuming a token from place k or from
e. The same counts for q2. However they always give a token to place
m. So if the two tokens of m are consumed by, for instance P1, then
one token is returned after the update of 81 by P2 and the other one
by q2 after the update of 82' Processors P1 and q1 have a very simple
processor relation: they pass the tokens they consume from a, b and c
to k, I and n respectively. For processors P2 and q2 there are several
transformations possible, depending on what the original processors P
and q do. A trivial, but in many cases not practical solution is to let P2
give the new value of the token in store 81 to q2 and vice versa. This
modification of P2 and q2 is easy. In case the token in the stores is a
set and the update is just the addition or deletion of an element of that
set, processors P2 and q2 only have to exchange their updates and not
the new value of the stored token.

The solution we have considered here can easily be generalized to
three or more processors sharing one store. Another generalization is
the case in which we have three processors that share two different stores
pairwise. We can use a similar transformation here.

r-----~·fr====~~b~----_.

•

L-____ ~.)L----~:.} __ ----~

Figure 12.39: Transforming an incomplete processor.

Transforming incomplete processors into complete ones.
Sometimes it is nice to have an actor model with complete processors,

for instance to analyze behavioral properties of a classical Petri net after
discarding the values of tokens. If we start with a net with incomplete
processors we can transform it into one with only complete processors.
Consider the processor relation Rp of a processor p. (In definition 10.3
Rp is defined as a set of firing rules; each firing rule describes a possible
firing of processor p, i.e. a possible combination of consumed and pro
duced tokens and the corresponding input and output connectors.) For
all different combinations of input and output connectors involved in a
transition we define a new processor.

In figure 12.39 we see on the left-hand side that P has two input and
two output places. Assume its processor relation prescribes that it may
fire for the following combinations of connectors: {a, c}, {a, b, c, d}, {a,b, d}
and {b, d}. This results in the net on the right-hand side in a processor

170

for each combination of connectors.
In general, let

K = {dom(J)lf E Rp}

denote the sets of combinations of connectors for which P is able to fire,
then we have to create a processor Pk for each element k E K with
processor relation

Note that K is always finite, even if Rp is infinite. Processor Pk has k
as its connectors. The following property is easy to verify.

Theorem 12.1 If processor P is functional then for all k E K processor
Pk is functional.
o

If P is total, then Pk is not necessarily total too. Instead of decomposing
a processor like we did here, we may also cluster processors by taking
the union of their processor relations in order to reduce the number of
processors! In fact we can transform each net into a net with only one
processor.

• .0

~~----~======~------~

Figure 12.40: Transforming a net into a valueless net.

Theorem 12.2 n actor model with incomplete processors and the trans·
formed complete actor model are bisilimar with respect to the identity
relation over St x T.

Proof. First note that both systems have the same state spaces. Every
transition of one system can also be made by the other.
o

Transforming nets into valueless nets.
As said before, there are some useful analysis methods for classical

Petri nets. If we want to apply them to nets in which tokens have values
we may discard their values. However, then we loose information. In
case the number of values that playa role in the transition relations is
finite, we may transform the actor model into another actor model with
only valueless tokens, without loss of information. The transformation is

171

valueless nets

active domains

analogous to the one above. In figure 12.40 an example is displayed: left
the original net and right the transformed one. The processor relation
of this net is given in the following table:

f a b
1 0 0
2 1 1
3 2 0
4 2 1

From this table we see that place a only gets values from {O, 1, 2} and
b from {0,1} (we assume that the environment gives no other values).
We call these sets the active domains of the places, i.e. the subsets of
their types that are actively used. In the transformed net each place
is "copied" as many times as the size of its active domain. Further we
create a new processor PI for each function f E Rp and we connect it to
the places according the domain of p. In cases where the object universe
is finite we can apply this transformation.

Theorem 12.3 et an actor model A with a finite object universe QUA
be given and let B be the transformed actor model, according to the
rules above. Then:

• QUB is a singleton,

• A and Bare bisimilar with respect to
C = {«s, t), (s', t')) I s E StA II s' E StB II t E T II dom(s) =
dom(s') II

Vi E dom(s) : 1I"2(s(i)) = 1I"2(s'(i)) 1I11"3(S(i)) = (1I"3(s(i)), 1I"1(s(i)))}.

Proof. The state spaces are isomorphic and each transition of one
system can be made by the other (to the corresponding state).
o

172

Chapter 13

Object Modeling

Object modeling is the activity of making an object model, including
value types for simplex classes and constraints and without definition of
"clever" value types for complex classes. Assignment of complex classes
to places is done when the actor model is available and the value types
of complex classes are determined in the specification phase; both ac
tivities are studied in the next chapter. In this chapter we consider
the process of making an object model after reality, some characteristic
modeling problems and methods to transform an object model from one
framework into another. We start with some techniques for specifying
constraints.

Constraint specification
Constraints are very important because an object model without con
straints is often not sophisticated enough to express the structure of
the real world state space. Constraints are either expressed graphically
or in the specification language. We distinguish local and global con
straints. The local constraints concern all complexes of a complex class,
while the global constraints concern all states. Each state determines
one universal complex in the following way. Let d and e be two arbitrary
complexes of complex classes m and n respectively. Then we define a
universal complex c as the union of d and e, hence

"Ix E SN uRN: c(x) = d(x) U e(x)

where we define d(x) = 0 if x rt CB(n) U CR(n) and e(x) is defined
similarly. (Note that the union of two complexes of the same class
is itself a complex of the same class, although constraints might be
forced.) So for a state 8 we define a universal complex c as the union of
all complexes in s:

c = U 11"1 (8(i»
iEdom(s)

An important global constraint is that this universal complex satisfies
the graphical constraints for the universal complex class. We call this
the universal constraint. This global constraint can be treated as a
local constraint, although the universal complex class does not have to
be assigned to a place.

173

local constraint
global constraint

universal constraint

A local constraint for a complex class n is a predicate over that
class, which means that the predicate should be evaluated in the context
of each complex that has to be verified. To specify constraints for a
complex class n in the specification language we fix a complex c and we
use the following conventions.

• We associate with every simplex class name a E GB(n) a type Ta
such that the type of the simplexes in sim(a) are represented by
values in Ta, and we use the symbol a for the representations of
simplexes in c(a). In most cases the choice for Ta is free because
we do not apply any particular function to the values of Ta. In a
few cases we need that Ta is a quantity (for instance represented
by iN) or that it is a set of time slots (for instance represented by
iN X iN) .

• We associate with every relationship class r E GR(n) with
DM(r) = a and RG(r) = b, a binary relation R that is obtained
from c(r) by replacing the elements of the pairs in c(r) by their
representations. Further we associate four functions with r and we
call them temporary rI, r2, r3 and r4. We distinguish two cases:
one where r is total and functional and one where r is not total or
not functional. In the first case we can use the relationship as a
single· valued function (because it always has one value). The four
functions are defined by:

- let r be functional, the rl is defined by:

rI(x):= apply(R,x): Ta => Tb,

let T does not be total and not functional, then TI is:

rI(x) := setapply(R, x): Ta => IF(Tb)'

- r2 is derived from rI, because it is the set-version of rI:
let r be functional, then:
T2(X):= if x = {} then {} else

ins(rI(pick(x»,r2(rest(x))): IF(Ta) => lFm)

let r be not total and not functional:
r2(x) := if x = {} then {} else

rI(pick(x))Ur2(rest(x)): IF(Ta) => IF(n)

r3 is defined by:

r3(Y) := inverse(R, y) : Tb => IF(Ta)

- T 4 is the set· version of r3:
r4(Y) := if y = {} then {} else

r3(pick(y)) U r4(rest(y)) : IF(n) => IF(Ta)

174

Note that the functions apply, setapply and inverse are defined in
the toolkit. We will use the overloading facility of the specification
language by renanting these functions as follows: rl and r2 are
called r, and r3 and r4 are called r-l.

Note that the type of an argument determines the signature of the
function r or r-1 , so there will be no confusion. This overloading is
very useful because now we do not have to distinguish between applying
a function to an element or to a set. Now we may write, for example
for (not functional) relationships rand q with DM(r) = a, RG(r) = d,
DM(q) = band RG(q) = d:

"Ix: a 0 3y: boy E q-l(r(x))

which means in the meta language:
Vc E com(n) :

"Ix E c(a) : 3y E c(b): 3z E c(d): y E Dq,c(z) 1\ Z E Rr,c(x).

Note that this constraint should hold for all the complexes in the com
plex class n.

The functions for relationships can be derived (also by a tool) from
the class model. Therefore we assume they exist as soon as we have
defined the class model.

The types we use for the simplex classes is not important here. In
a few cases we will assume that a simplex class is a set of time slots, in
which case we assume the type (Q X (Q. Each pair of rationals will be
interpreted as an interval. Sometimes we assume the simplex class is a
set of amounts, in which case the type will be (Q. Further we only use
set-theoretical functions in constraints (such as C and E).

The relationship constraints, the inheritance constraints and the tree
constraints can be expressed in the specification language for each spe
cific object model, however these predicates may be quite complex and
they have a standard structure. In principle it is possible to generate
these predicates automatically.

There are more frequently occurring constraints and they will be
discussed in the next section as "characteristic modeling problems".
We will not specify global constraints that cannot be treated as a local
constraint. (If we want to do so, we have to define a type for a state
space.)

13.1 Making an object model after reality

We will start with the description of two examples. They are related
to the order processing and the railway station examples of chapter 12.
These two descriptions determine the complex classes of the state spaces
of two different systems.

175

Example: Factory
Consider a factory that only produces products if there is an order for
it. Each product requires several construction tasks and in each task
one or more components have to be assembled. The tasks for a product
have a partial ordering. Each task requires some resources for some
time, called the duration, to perform the task. Examples of resources
are machines, vehicles and human beings. It is assumed that these reo
sources have to be available for the whole duration of the task. There
are several resources that may perform the same function. So in fact a
task is specified by some functions instead of resources. A resource can
be used for one task at a time, so there is no resource sharing. Com
ponents are bought from suppliers. Several suppliers may sell the same
component for their own price. The factory keeps components in stock.
The production schedule is just a set of operations. An operation is the
execution of a task for some particular order with some particular set
of resources in a particular time slot. There are two kinds of orders:
customer orders and supply orders. Each order has a delivery date. An
order may concern several items of several products. For components
we distinguish the total number of items in stock at some day, and the
number of free items, Le. the number of items that is not assigned to
an operation yet. Components ofthe same kind are not distinguishable,
only their number counts.

Example: Railway system
Consider a railway network where track segments are defined between
nodes. A node is a crossing, a switch or a semaphore. (Track segments
are simply called tracks.) They are directed, Le. trains can only use
tracks in one direction. A switch connects three tracks: one fixed track,
one straight track and one branching track. The fixed track is always
part of the route, and from the others only one. The straight track and
the fixed track form a straight line in the neighborhood of the switch,
while the branching track and the fixed track form a curve. (cf. figure
13.5.) Fnrther there are trains. A train is a temporary "cluster" of a
locomotive and a sequence of wagons. A switch has at each moment
one of the two positions: "straight" or "branching", and a semaphore
has one of three status values: "green", "orange" or "red". A train also
has a position at each moment: the track where it resides, and only one
train is allowed per track.

Stepwise development
The development of an object model proceeds upon the following steps:

Step 1: Determine relevant entities.
All entities, that can be named by a noun are either objects or actors.
If they are objects, they can be either simplexes or complexes. In fact
the nouns indicate classes. So the noun "horse" refers to the class (or
set) of all horses. In a sentence we use it as "Runner is a horse" or "the
horse that win the race". In the last case the sub·sentence determines

176

a unique element in the set of all horses. Entities have an identity (like
the name "Runner" for a horse). A way to find the relevant classes is
to collect all nouns that appear in documentation over the system to be
modeled, Le. in forms, instructions, reports etc. This is a syntactical
analysis of written or spoken text. Of course, if the systems engineer
has already some knowledge of the type of systems to which the system
he has to model belongs, he probably knows most of the relevant nouns
already. The first step ends with the exclusion of actors. An entity is
regarded as an actor in one of the following cases:

• it is in the system during the whole life of the system, so the set
of actors of a certain class is fixed,

• it is active, Le. if it consumes and produces other entities (in fact
objects),

• it is an event, Le. it occurs at some point in time and it does not
"live" for a time interval,

• it does not have relationships with other entities, that may change
over time.

All other entities are objects. Remember from chapter 12 that proces
sors that represent some physical entity can be split into a processor
that represents the activity of the entity and a place in which the to
ken represents the physical entity itself. (The token is consumed and
(re-)produced in every execution of the processor.) So the all "things"
can be modeled as objects, in which case all processors represent activ
ities. We distinguish compound or molecular objects, called complexes
and atomic objects, called simplexes. Actors are further studied in ac
tor modeling.

Step 2: Determine the simplex classes.
We distinguish concrete simplexes, like the resources and the locomo
tives in the examples above and abstract simplexes, like a task, an oper
ation, a time slot or a train position. A third category of simplexes are
information simplexes. They refer to either concrete or abstract enti
ties. Concrete simplexes are physical entities, while abstract simplexes
are activities, events, qualifications, quantities, agreements, instructions
or concepts.

To decide which objects are simplexes we give the following rules:

• simplexes have a unique value that is independent of other objects
and that can be used to identify them,

• simplexes are atomic, Le. we can not "look inside" them to dis
cover other objects, so we do not allow functions that produce
values of other simplexes if applied to the value of a simplex,

• in different states of the system the set of simplexes of the same
class may be different, may contain more than one simplex and
must be finite.

177

compound object

molecular object

concrete simplex

abstract simplex

information simplex

attribute simplex class

association simplex class

entity simplex class

Even if an object consists of parts that are considered as well as objects,
it can be considered aB a simplex if it can be given an independent,
atomic value ("train" is an example of this). In that CaBe we model
its components aB simplexes aB well and we use relationships to express
that one is part of another.
We may classify simplex claBses into three groups.

• Attribute simplex claBses.
A simplex claBS n is an attribute simplex class if n is not a domain
claBS of any relationship claBs, Le. '1r E RN : n i' DM(r). At
tribute simplex classes do not play an important role because their
simplexes have no properties of their own. Therefore we neglect
them sometimes in the first stages of development of an object
model.

• Association simplex claBses.
A simplex class n is an association simplex class, if all relation
ship classes with n aB domain class, together form a minimal key.
Further it is required that n is not the range simplex claBS of some
relationship. Simplexes of these classes have only one role: the
coupling of other simplexes. They usually are found in a later
stage of the development process.

• Entity simplex class.
A simplex class n is an entity simplex claBS if it is not an attribute
simplex class or an association simplex class. Simplexes of these
classes are the important simplexes, they represent the entities
we see in the real world. The attribute simplex classes are often
defined in a late stage. (It is useful to distinguish these differ
ent types of simplex claBses by different graphical symbols; for
attributes often circles are chosen and for associations diamonds.)

This classification is useful in the design process: start with the entity
simplex classes.

Step 3: Determine relationship classes.
Relationships connect simplexes. If a simplex is connected to another
simplex we consider this as a property of these simplexes. Relation
ships are labeled with a verb, often in two forms: active and paBsive (cf
chapter 4). Relationships express a status quo, for instance "is made
of", "belongs to" or "located at". Relationships belong to classes, like
simplexes and all relationships of one class connect only simplexes of
one simplex class to simplexes of one (not necessarily different) other
simplex. Relationships have a direction, we choose the verb such that
the sentence made of the noun at the domain of the relationship, fol
lowed by the verb and the noun at the range of the relationship, form
a sentence in active form. There is some freedom in the choice of the
direction of a relationship class. (Remember that the inverse of a func
tional relationship is an injective relationship.) The choice is based on

178

the intuitive meaning of the relationship: it is a property of the domain
class of the relationship class. Further the choice may be influenced by
the use of the relationship in key, exclusion and tree constraints.

Step 4: Determine complex classes.
A complex is a cluster of simplexes and relationships. The relationships
should connect only simplexes that belong to the complex as well. Com
plexes are usually defined if an actor model is already avallable, because
the complex classes partition the simplex and relationship classes over
the places.

Often a set of simplexes forms a complex, for example a set of trains
can be a complex in the railway system. Many complex classes satisfy
a tree constraint, which means that complexes of such a class have one
root simplex that identifies the complex and that gives "access" to all
other simplexes in the complex. In the railway system for instance,
there is a complex class called "train cluster" the complexes of which
have a train simplex as root and a locomotive and a set (in fact a
sequence) of wagons in the body. So here we distinguish the locomotive
connected to the wagons as different from the train itself, which implies
that there might be different trains with the same locomotive and the
same set of wagons. (Of course these different trains will not exist at
the same time, but that is not relevant here). It was also possible to
use the noun "train" only for the cluster consisting of wagons with a
locomotive as root, however then two trains are identical if they have the
same locomotive and the same set of wagons. So we have the freedom
to introduce a simplex class to identify a cluster of simplexes connected
by relationships. We distinguish concrete, abstract and information
complexes as well as combinations.

All simplex classes and all relationship classes should occur in at
least one complex class, since only complex classes are considered in a
state. So if for instance a relationship class does not appear in a com
plex class, then either the relationship class is irrelevant or the complex
classes are not defined completely. This requirement provides a check
point for the systems engineer.

Step 5: Determine value types for simplex classes.
This activity may occur immediately after the definition of simplex
classes, however we only need these value types sometimes in constraints.
Note that the value types for simplex classes define the function sim of
the instance model of an object model (cf. 9.2).

Many constraints do not refer to the values of simplexes at all, but
sometimes we need some properties of the values of the simplexes. For
instance if the simplex class denotes quantities or time slots we may need
a value type to express constraints because we have to apply functions to
the simplexes. The values of the simplexes are the only things we know
of the simplexes, so the simplexes are identified by there values. If we do
not give value types for simplex classes in examples, they are irrelevant
for constraints. We avoid the use of simplex values in constraints as

179

minimal key constraint

maximal exclusion constraints

much as possible for the same reasons why we avoid parameters hard
coded in programs. Note that complex classes are completely defined
if the value types of the simplex classes are known. In fact we have a
"default" value type for them. However in specifications we might want
to use another, more sophisticated representation for complexes. (This
will be clarified in the next chapter.) In object modeling we need no
other representations of complex classes.

Step 6: Determine constraints.
First we start the relationship constraints, which have a graphical rep
resentation. They are supposed to hold for all relevant complex classes,
i.e. complex classes that contain the relationships involved. If we dis
cover a key constraint we always look for a minimal key constraint, i.e.
if n is a simplex class then a E DK(n) is a minimal domain key if

I/bE DK(n) :bC a =? a = b

For range keys the definition is similar. In the same way we search for
maximal exclusion constraints, i.e. for exclusion constraints that are
not contained in larger exclusion constraints.

Next we determine inheritance constraints. We use inheritance to
distinguish different subclasses of a simplex class in case simplexes of
a sub class have special relationships the first simplex class does not
have. For complex classes we determine the tree constraints as discussed
above.

N ext we search for constraints that can not be expressed as one
of the above mentioned constraints; for these we use predicates in the
specification language. We mention four ways to find (some of) them.

• Search for cycles.
If there is a cycle in the class model, then we can start with a sim
plex in one of the simplex classes and we can follow two different
routes to a simplex or a set of simplexes in another simplex class
(in the cycle). Are these simplexes the same or should these (sets
of) simplexes be disjoint? One cycle gives rise to many of these
questions. Here the direction of the relationships is irrelevant.

• Search for time orders.
If "time" or "time slot" is a simplex class, then often the simplex
classes related with them have constraints with respect to time.
For instance if two operations have a same time slot then the
resources connected to them should not be the same, because a
resource can be involved in only one operation at the same time.

• Search for balances.
If quantities are simplex classes then there is often some balance
required. For instance if there is a simplex class "order", which is
related to a simplex class "quan~ity" and if there is a simplex class
"order item" which is also related to "quantity", then there might

180

be a constraint that requires that the quantity of an order is the
sum of the quantities of the related order items. (Note that an
order consists of order items.) Note that such constraints can be
avoided if there was no relationship between order and quantity.
This relationship is indeed superfluous because the sum can be
computed. However if not all order items have a quantity (yet)
we have to keep both relationships with "quantity".

• Search for temporal inconsistency.
Often we consider a complex in several stages of development. For
instance an order is already defined but not all of its order items.
In such cases we have to drop constraints because we allow also
complexes that will be correct after some modifications. (We use
inheritance to solve this problem (cf. section 13.2.)

Finally we look for global constraints, such as the universal con
straints and constraints which require that simplexes representing
physical entities are unique in a state (i.e. a physical entity cannot
be in two different places in the same state).

We will illustrate tlUs development process for the two examples de
scribed above.

Example: Factory (continued)
We start with listing the relevant nouns of the description: product,
order, task, component, resource, function, supplier, price, stock, sched
ule, operation, time slot, duration and delivery date. Note that "fac
tory" is not a relevant noun because there is only one factory that stays
the same during the whole life time of the system. The factory may be
considered as the top-level actor. We decide that a "schedule" is just
a set of "operations" so we will not define a simplex class for it. In
figure 13.1 we see all the other nouns as simplex classes. Two simplex
classes require some elucidation: "customer order item" and "supply
order item". At first sight they seem to be superfluous because we have
already "customer order" and "supply order". However an order is in
fact a complex object and it contains for each product or component
a "sub-order", wlUch is an object itself. Further we see a number of
relationship classes labeled with characters. It is not difficult to find
suitable verbs for each relationship class, for instance: a gets "intended
for", b gets "belongs to", d gets "concerns" and e gets "executed for".
Only relationship k requires some clarification; it is called "predeces
sors" and it assigns to a task the set of all tasks that are immediate
predecessors of the task. With relationships we should be as thrifty as
possible; we could for instance define a relationship between "product"
and "component" that denotes the components from which the prod
uct is made off. However that relationship is derivable from h and I
because h is giving all the tasks to be performed for the product and
I gives all the components needed for these tasks, so it is redundant.
There is a lot of freedom in the choice of relationship classes. However

181

Figure 13.1: Simplex diagram for the factory.

if we introduce redundant relationships we also introduce constraints!
For instance if we would have introduced a relationship class hi from
"product" to "component" then we should have defined the constraint

Vp: product. I(h(p)) = hl(p)

Instead of introducing the relationship hi and this constraint, we may
consider this constraint as the specification of the function hI and we
can use this function in other constraints or in processor specifications.
So we do not need the relationship hi in the object model.

The next step is the determination of complex classes. The may
be indicated in the simplex diagram, however the diagram becomes
very crowded. Therefore we list them in the table of figure figure 13.2.
The choices of the complexes may dependent on the actor model, in
fact on the "processing". So in general it is not possible to fix the
complex classes in the data modeling phase if the actor model is not
ready. However some useful complex classes are listed in the following
below. These complex classes have straightforward interpretations. A
"BillOfMaterial" complex for instance, gives for a specific product all
the tasks needed to construct the product and also the required func
tions and components per step. It looks like we do not need the simplex

182

classes "customer order" and "supply order" any more, because we have
complex classes that contain all relevant information. This is not true
because an order has a unique identity that is a property of all the or
der items in the order. This unique identity is given by the "order"
simplex classes. Now it is for instance possible to have two different
"CustomerOrder" complexes with the same "delivery date", the same
"amount" the same "customer order item"'s etc.

It is easy to verify that all relationship and simplex classes are cov
ered by complexes. The value types for simplex classes are easy to
define. Simplex classes with names like "amount", "price", "free stock"
and "total stock" get the rationals or integers as type. Simplex class
"date" could get a product IN X IN X IN as value type, denoting the
day, the month and the year respectively. Similarly "time slot" gets the
value type ~ X ~ denoting the interval bounds of the time slot.

The final step is to determine constraints. The relationship con
straints speak for themselves. We did not require that relationships are
surjective. This may be added. At least for the complex class "Sched
ule" this would avoid for instance dangling "tasks" in a "Schedule"
complex. There are no key, exclusion or inheritance constraints here
and the tree constraints are already indicated in the table above. So we
are only looking for additional constraints. We start looking for cycles.
Consider for instance the cycle formed by the relationships (01, j, i, g).
If we follow two paths from "operation" to "function", one via (g, i)
and one via (01, j) then we should get the same set of functions in both
cases. The specification of this constraint is

'Ix: operation. i(g(x)) = j(OI(x))

This constraint is defined for the universal complex class. Another cycle
is (e, d, h, 01). This cycle gives:

'Ix: operation. OI(X) E h(d(e(x)))

Yet another cycle is caused by relationship k. Indeed we find two new
constraints here. The first constraint says that for each task of a product
all predecessor tasks should be tasks of the same product.
'Ix : product. '1y : tash

Y E h(x) =? k(y) c h(x)

The second one is more complicated. It concerns the transitive closure
of the relationship ·k: a task can never be preceded by itself.
trans(x) := if x = {} then x else

x u trans(k(x)) fi : IF(task) =? IF(task)

This function computes the transitive closure of the relationship k. The
correctness of this definition follows from the fact that iterated appli
cation of the right-hand side of the equation (cf. chapter 24) gives a
non-decreasing sequence x, xU k(x), xU k(x) U k 2(x) ... and there is

183

I Complex class Simplex classes I Relationship classes I Root class I
CustomerOrder customerorder •

customer a
customerorderitem b
deliverydate c
amount n
product d

Schedule operation
timeslot f
resource 9
task A
customerorderitem e

BillOfMaterial product •
task h,k
component I
function j
price m
duration B

SupplyOrder supplyorder •
supp/yorderitem s
supplier r

listitem u
deliverydate 0

amount p
price q
component v

PriceList supplier *
listitem t
component v
price q

Stockltem stockitem *
date z
component w
freestock x
totalstock y

Resource resource •
function i

Figure 13.2: Complex classes for the factory

184

an n such that kn (x) = 0 (note that we use superscript n to denote the
n-th iteration).
The constraint becomes:

'Ix: task. x f. trans(k(x))

This kind of constraints occurs frequently if there is a cyclic relationship
path. Not all cycles give constraints, for instance the cycle (c, 0, s,p, n, b)
does not give a constraint. As a last constraint we compare the duration
of a task and the time slot of an operation:

'Ix: operation. ,8(o(x)) = 1r2(1(X)) - 1r1(1(X))

Note that we used pick here because we work with set-valued functions
although we sometimes know that their value is a singleton. We are
never sure that we have formulated all constraints, because we are in
fact defining the laws states or complexes have to fulfill.

Example: Railway system (continued)
Again we start with listing all relevant nouns in the description. So
we find: (railway) network, track (segments), node, crossing, switch,
semaphore, train, locomotive, (sequence of) wagon(s), switch position,
semaphore status, route and train position. We decide to consider "rail-

track

1

p

Figure 13.3: Simplex diagram for the railway system.

way network" as a set of tracks and nodes and we will not introduce
a simplex class for it. The noun "route" is only used to explain the
function of a switch and is considered to be irrelevant. All other nouns
appear in the simplex diagram of figure 13.3, except for "switch posi
tion" and "train position". It turns out that it is possible to express the
positions of trains and switches by means of relationships! However it is

185

Complex class Simplex classes Relationship classes Root class

TrainCluster train *
wagon m,p
locomotive n

Network track b
node e
crossing h
semaphore i
switch j

SwitchPos switch *
node j,g

SemaphorePos semaphore *
node i
semaphorestatus k

TrainPosition train *
track I

Figure 13.4: Complex classes for the railway system.

still possible to introduce simplex classes for them (as will be seen later)
but it makes the model unnecessary complicated. In this object model
we assume that in different states the sets of tracks and nodes may be
different. We have chosen to represent in this model only the actual
state of the railway system and not the history or the future. (Later
we will see how to transform this model to express also the history and
future). The relationship classes require some clarification in this case.
On a crossing four track segments come together and they are part of
two tracks. Each track (segment) has a direction and b indicates the
begin node of a track while e denotes the end node of the segment. Re
lationship class I denotes the position of the train and a suitable verb
for it is " is at". Similarly the switch position is expressed by g. Re
lationship class p determines the predecessor of each wagon, only the
first wagon does not have a predecessor (or in fact the locomotive is its
predecessor). The next step is the definition of the complex classes. In
figure figure 13.4 the table of complex classes is given.

These complex classes have a straightforward interpretation. The
value types can be chosen arbitrary except for "semaphore status" which
will get a basic type with values "green" and "red". The final step is the
determination of the constraints. All "standard" constraints are already
given in the diagram or the complex table. Note that no two trains may
reside on the same track due to the injectivity of relationship I. The
injectivity of m and n implies that no two trains share locomotives or
wagons. The tree constraints are already given by the table. Next we
consider additional constraints. First we look for cycles. One cycle is
caused by p. This gives the constraint that if a wagon is a predecessor

186

of another wagon then they have to belong to the same train:

Vt : train. Vv : wagon.

v E m(t) => p(v) E m(t)

The next constraint due to p is that there is only one wagon per train
without a predecessor:

Vt: train. size({w: m(t) I p(w) = {}}) = 1

Finally we observe that p should give an ordering so no wagon is preced
ing itself, i.e. the transitive closure of p does not encloses the identity
function. This can be expressed in the same way as for the "task"
precedence in the example above.

The next set of cycles we observe are formed by the simplex classes
"track", "node" and "switch". A node is connecting two tracks if it is a
semaphore, three tracks if it is a switch and four tracks if it is a crossing:

Vx: semaphore. size(b-1(i(x))) = 1 " size(e-1(i(x))) = 1

Vx: switch. (size(b- 1(j(x») = 2 " size(e-1(j(x))) = 1)

V

(size(b- 1(j(x))) = 1 " size(e-1(j(x))) = 2)

Vx : crossing. size(b-1(h(x))) = 2 " size(e-1(h(x))) = 2

For a switch there are two different situations displayed in figure 13.5.
In the case on the left the switch is begin point of two tracks and end

•)) •
a b a b

Figure 13.5: Two different switches.

point of one and in the right case the opposite. This is expressed above.
We also obtain a constraint for g: it is always pointing to one of the
two tracks that are either ending (right case) or beginning at the switch
(left case). This is expressed by:

Vx: switch. j(x) = e(g(x» V j(x) = b(g(x»

Vx : switch. e(g(x» = j(x) => 3t: track. t io g(x) " e(t) = j(x)

Vx: switch. f(g(x» = j(x) => 3t: track. t io g(x) " b(t) = j(x)

187

Finally we have to require that are no loops:

'It: track 0 b{t) # e{t)

Note that we have excluded that a track comes to a dead end.
These two examples show how to perform the steps given before.

They are representative for the kind of problems that appear in making
an object model.

13.2 Characteristic modeling problems

Next we will consider several problems that occur in many modeling
situations. Some of them appeared already in the examples above.

1. Relationships with properties
Often we have defined a relationship r between simplex classes a and b
and afterwards we discover that it is not sufficient to express that there
is to each simplex of a an associated set of simplexes of b, but we have
to indicate also some property of the associated simplexes. An exam
ple of this situation can be found in the factory example. A simplified
case is displayed in figure 13.6. At first sight an "order" is associated
to a set of products. Later we see that each associated product has its
own amount of items. A solution is to introduce a new simplex class
to replace the relationship class and connect this simplex class to both
original simplex classes. In figure 13.6 we introduced the simplex class
"order item". This simplex class can be related to the simplex class
"amount" which was not possible with the relationship b in the left
hand picture. Often we introduce immediately a key constraint, in the
example a and b could form a key constraint.

order order

~a
i order c amount

item
product

,',P

product

Figure 13.6: A relationship with properties.

2. Items and kinds
Sometimes we have to distinguish simplexes that represent a kind (or
type) of objects in stead ofthe instances (called items here) themselves.
In fact in the factory example the object class "product" represents

188

kinds of products and not the product items. Examples of product kinds
are chair, car, bicycle or brand names. Examples of items of these kinds
are specific chairs, cars and bicycles identified by their unique value (for
instance there serial number). In figure 13.7 the general structure is dis
played. The "item" simplex class always refers to the "kind" class with
a total and functional relationship. A way to discover the difference

I kind of ~~(,---+l entity
. entity. I item

Figure 13.7: Items and kinds.

between items and kinds is to consider the value types of the simplex
classes: if it is a noun, a brand name or a trade mark it is probably
a kind, and if it is a proper name or a serial number it is probably an
item.

3. Graphs and recursive structures
In the railway system example we modeled already a geographical net
work (although we did not mentioned the coordinates of the nodes).
In many examples we encounter recursive structures such as the tree
of tasks in the factory example. Here we will study these structures
in isolation. In figure 13.8 we see a general graph structure and two
specializations for trees and sequences. The graph is the general case

~~~ 
~edge ~edge ~edge 

Figure 13.8: Graphs, trees and sequences. 

(left most figure). Here no relationship constraints apply. The "edge" 
relationship determines the predecessors of a node. This choice is arbi
trary; we could have decided that "edge" determines the successors of a 
node. The only constraint we could add is that each node is connected 
to at least one other (not necessarily different) node: 

"Ix: node. 3y : node. x E edge(y) V y E edge(x) 

A subtype of the graphs is the set of acyclic graphs. To constrain the 
set of instances to acyclic graphs we introduce auxiliary functions as we 
have seen in the factory example. 
Trans( x) := if edge( x) = {} then x else 

x U Trans( edge( x )) fi : iF( node) => iF( node) 

The constraint to acyclic graphs is: 

"In : node. n ~ Trans( edge( n)) 

189 



Trees are acyclic graphs with the property that the relationship "edge" 
is functional and assigns to every node a unique parent node. Further 
there is one root: the common ancestor. This is expressed by means of 
auxiliary function f. 

f(x):= if edge(x) = {} then x elsef(pick(edge(x»): node:} node 

So for x E node, f( x) denotes its oldest ancestor. Note that this function 
is correctly defined since we know that the graph is acyclic and therefore 
repeated application of edge results in the empty set. Also note that we 
used pick because edge is not total, so the function value might be the 
empty set. The constraint becomes: 

'Ix: node 0 'Vy: node 0 f(x) = fey) 

The specialization of trees to sequences is simply obtained by adding the 
injectivity constraint to edge and the constraint that only one simplex 
does not have a predecessor (we have seen this constraint before). When 
the edges of graphs have properties on their own we have to introduce 
simplex classes as demonstrated above. (This was in fact the case in the 
railway system example, where "track" was the class of edges). Then 
the constraints have to be reformulated for the particular cases. 

Trees play important roles in many practical cases. A bill of material 
is for instance a tree structure. Often a message in electronic data 
interchange is a tree. Since tree structures occur frequently we have 
introduced (in part II) the standard tree constraint for complex classes. 
With this constraint we can define a tree structure without additional 
constraints. To see how we could use this standard constraint, consider 
the example of figure 13.9. Here the simplex class "root" forms the 

root 

a 

node 
s 

Figure 13.9: Tree constraint. 

root simplex class. Further s determines all successors of a node. The 
injectivity constraint for s and the constraint that the root is not a 
successor of any node: 

'Ix: root 0 'Vy: node 0 a(x) ¢ sty) 

guarantee that there are no cycles, not even if we discard the direction 
of the edges. The fact that there is one root (of class "root") and the 

190 



fact that each simplex is reachable from this root constrains the complex 
class to trees. (The proof of this statement is an exercise.) 

We consider an example of a recursive structure involving trees. In 
this example a complex class represents a syntax definition for arith
metical terms: 

term ::= constant 1 variable 1 {term binop term 21 unop{ term 2 

where binop is a binary operator and unop a unary operator. An exam
ple of a term is 

(f(v) + (g(w) X (x -;- g(y)))) 

This term should correspond to one complex of the class. In figure 
13.10 the object model is displayed. Each "node" represents a node in 

un node leafnode 

d e f 

bin op un op constant variable 

Figure 13.10: Syntax as complex class. 

the parse tree of a term and relationship class p points to the predecessor 
of a node in the tree. In figure 13.11 the parse tree for the term above 
is displayed. A node has two branches, one branch or no branch which 

-----+------f X 

/\ 
v g 

/ \ 
w x y 

Figure 13.11: Parse tree. 

corresponds to the different specializations of "node": "bin node" , "unn
ode" and "leaf node" respectively. This is expressed by the following 

191 



history 

planning 

time dependent 

additional constraints. (Note the range exclusion constraint.) 

'In: node 0 a-1(n) # {} * size(p-l(n)) = 2 

'In: node 0 b-1(n) # {} * size(p-l(n)) = 1 

'In: node 0 c-1(n) # {} * size(p-l(n)) = 0 

Further we have to require that "node" and p form a tree as shown 
above. Finally we want to exclude that there are dangling nodes so 

4. Representing history and future 
We often start with an object model in which we represent the actual 
situation of a system, i.e. the simplexes represent the entities that are 
in the system and the relationships represent their actual properties. In 
the railway system for example the actual positions of the train and the 
switch were represented. In information systems we often consider the 
history of a process, which means that we store information objects that 
represent a part of a state of a target system in the past. Instead of 
information objects that refer to the past information systems have often 
information objects that refer to the future. These information objects 
are used for a planning for the future of the system. The future does not 
have to behave as planned, however the information objects represent 
what we think or wish to be the future. To transform an object model 
for an actual situation to one for the history or the future, we have 
to determine all the time dependent simplex classes, i.e. the simplex 
classes for which the simplexes may come and go during the course of 
the system. (Most simplex classes have this property). For all these 
simplex classes we introduce a new functional relationship connecting 
the simplexes to simplexes of a class called "time slot". The meaning 
of this relationship is that for each simplex the corresponding time slot 
indicates when the simplex was, is or will be "alive". If the time the 
simplex will die is not known then the upper bound of the time slot is not 
specified or is set to some sufficiently large number. Further we look 
for time dependent relationships. i.e. relationships that may mange 
during the course of the system, independent of the life time of the 
simplexes they connect. For instance relationship I in figure 13.3 is time 
dependent because it may connect a "train" to different "tracks" during 
the life time of a "train". The way to solve the problem for the time 
dependent relationships is in fact the way to deal with relationships with 
properties: we introduce a new simplex class for these relationships and 
we connect it to the simplex classes that were connected by the original 
relationship. Further we connect the new simplex class to the "time 
slot" class. In figure 13.12 an example of this construction is displayed. 
Note that the time slots may refer to the history as well as to the future. 
If the original time-dependent relationship was functional, we obtain a 

192 



track track 

1'1 a 

• position+-+-IH 
train 

b 
<---

(A) train 

Figure 13.12: Time dependency. 

constraint which states that the simplexes that replace the relationship 
may not be connected to more than one simplex of the domain simplex 
class of the original relationship at the same time. A second constraint 
states that the time slot of a "relationship" simplex is contained in the 
time slots of the original simplexes that are connected by the relationship 
simplex. In the example of figure 13.12 this means that the time slot 
of a "position" should be contained in the time slots of the "track" and 
the "train" to which it is connected by a and b respectively. To express 
these constraints formally we have to define a value type for time slots: 
~ x ~, denoting the left and right bound of the time slot. Further we 
need two auxiliary functions: 

intersect(x, y) := max(1!'l(x),1!'l(Y)) :5; min(1!'2(x),1!'2(Y)): ~ x ~ => IE 

contain(x,y):= 1!'l(X)::>: 1!'l(Y) /I 1!'2(X) :5;1!'2(Y): ~ x ~ => IE 

The first constraint becomes: 
'Ix : position. '1y : position. 

(x i y /I b(x) = b(y)) => ,intersect(c(x),c(y)) 

And the second one: 
'Ix: position econtain(c(x),e(b(x))) /I contain(c(x),d(a(x))) 
To guarantee that no two trains are on the same track, which is ex
pressed by the injectivity of I in the first model, we require: 
'Ix, y : position. 

a(x) = a(y) /I intersect(c(x), c(y)) => x = y. 

5. Properties as values or relationships 
Sometimes we have to choose between representing a property of a sim
plex in the representation of the simplex, i.e. in the value of the simplex, 
or as a relationship to another simplex class. Consider the example dis
played in figure 13.13. Here we see that there are two total and bijective 

193 



aggregate 

person ~ name , 

I; b 

soc!ie secur y 

Figure 13.13: Properties as relationships. 

relationships a and b. We could decide to delete for instance relationship 
a and give "person" the set of "names" as value type. If a would not 
have been total and bijective this was not possible (because if it was not 
total then there would have been persons without (known) names, if it 
was not functional a person could have more than one name and if it was 
not injective there could have been two persons with the same name). 
As a guideline we recommend to use the value of simplexes as less as 
possible, since this gives us most freedom in the specification stage. So 
it is recommended to use the construction as displayed in figure 13.13. 
In particular if there are more total bijective relationships (as in this 
case), it would be difficult to decide which one to incorporate in the 
value. 

6. Aggregates 
Sometimes a simplex is just an aggregate of other simplexes. Consider 
the example displayed in figure 13.14. Here we see a simplex class "ad-

~ 
street 

a 
person address IJ---;.... number 

e 
b c 

~ 

zipcode state 
d 

city 

Figure 13.14: Aggregates. 

dress" and intuitively we feel that an address is just a combination of 
a street, a number, a city and a state. So we could consider to define 
a complex class "address" which would have "street", "number" , "city" 
and "state" as its body. With the constraint that there is only one of 
each simplex class in the complex, we would have been ready. However 
then we were neither be able to define relationships for "address" such as 
to the "zip code" , nor we could relate other simplexes such as "person" 
to "address". Besides that "address" is a distinct concept and for these 
reasons we introduce a simplex class "address". The value type of this 
simplex class is irrelevant because we can always identify an address by 

194 



its key constraint. Note that there is another domain key constraint for 
"address", not displayed in figure 13.14: the relationships {b, e}. 

It is still useful to define a complex class, say "Address" which sat
isfies a tree constraint with "address" as root. 

7. Use of inheritance constraints 
Inheritance gives us the possibility to differentiate simplex classes into 
several simplex classes each with its own relationships. Consider for 
instance the example displayed in figure 13.15. Each vehicle has an 

bed e 

kind 
r 

(B) 
g h i 

Figure 13.15: Use of inheritance. 

"owner" and a "license number" however cars have other properties as 
airplanes or vans (displayed by relationships a-i). In solution (B) there 
is a simplex class "kind" that has a value type that represents the set 

{car, truck, van, airplane, boat} 

Further "vehicle" has all the relationships a-i. Although the diagram 
of (B) is more simple than the diagram of (A) there are much more 
constraints in the solution (B). Besides this, these constraints use values! 
For instance we would have to require that if a "vehicle" is not a "truck" 
then it should not have simplexes connected to it via relationship d: 

'Ix: vehicle. 'truck' to r(x) * d(x) = {} 

So inheritance can be used to avoid non-total relationships (which is 
important for the relational data model as explained in the next section) 
and to avoid constraints that refer to simplex values. Note that we can 
easily use the relationships p and q for the specialized simplex classes 

195 



Figure 13.16: Temporal inconsistent orders 

"car" ... "boat" by defining some auxiliary functions pj, qj, ... , pn, qn 
as follows: 

pj(x):= p(j(x)): car => IF(owner) 

Another example of the use of inheritance is the treatment of tempo
ral inconsistency. For example consider the class model of figure 13.16. 
Complete orders should satisfy the balance constraint 

"10: order 0 p(o) = sum(r(q(o)). 

(Here sum is the function that adds the values in a set.) However not all 
orders are completely defined and therefore we require this for the com
plete ones only. For that reason we introduced the two simplex classes 
complete_order and incomplete_order and we require the constraint only 
for the complete ones: 

"10: complete_order 0 p(t(o)) = sum(r(q(t(o))). 

8. Derivable relationships 
Sometimes we discover that a constraint is so strong that a relationship 
can be derived from the constraint. Consider the example displayed in 
figure 13.17. The example speaks for itself. The constraint that should 

trans- , , balance 
action 'b 

account 
~ 

va 

amount 

Figure 13.17: A derivable relationship. 

hold is expressed using an auxiliary function: 

s(t):= if t = {} then 0 else a(pick(t)) + s(rest(t))fi: 

1F( transaction) => IQ 

It is assumed that the value types of "amount" and "balance" are equal 

196 



rice-liBt--r+-__ ~ 
item 

price 

Figure 13.18: Price list 

to lQ. The constraint becomes: 

'1y: account 0 s(b-1(y)) = c(y) 

So the question is if it is not better to delete relationship c and to define 
an other auxiliary function: 

balance(x):= s(b-1(x)): account => lQ 

If there are no other relationships connected to the simplex class "bal
ance" we could delete it too. Avoiding constraints means that we have 
less proof obligations in the specification phase! 

9. Representing a finite function 
Often we have to represent a finite function in an object model. For 
example a price list of a hotel is a function that lists the prices of ho
tel rooms depending on the season, the number of persons in the room 
and the number of days the room will be rented. The price is uniquely 
defined by these variables. In figure 13.18 we display a solution to this 
problem. In general there will be one simplex class for the (elements 
of) function and one for every argument of the function and one for 
the result. The simplex class that represent the function is related to 
the other simplex classes by means of total and functional relationships. 
The relationships with the variables as range simplex classes, form a 
(minimal) domain key. (In case the result of the function is compound, 
there may be more than one simplex class to represent the result.) 

10. Object model of an actor model 
Let an actor model be given. Now we will construct an object model 
that represents the actual state and the history of the actor model. This 
is useful in the context of the modeling of monitoring information sys
terns. When we make a model of such an information system, we often 
start with a (complete) actor model of the target system and then we 
make an object model for the event history of this actor model. This 
object model may serve as a design for a database system in which the 
events of the actor model will be stored. 

The method to construct an object model from an actor model pro
ceeds along the following steps: 

1. create for every processor a simplex class (with the same name), 

197 

monitoring information systems 



2. create for every place two simplex class (one with the same name 
and one with the name decorated by'), 

3. create a place called Id and a place called Time, 

4. create for every connector a relationship (with the same name 
as the connector, if no name clash occurs) between the simplex 
class of the processor and the (undecorated) simplex class of the 
place that are connected by the connector (independent of the 
direction of the connector); the domain class of this relationship is 
the simplex class that represents the processor and the relationship 
is always functional and it is total if the processor will always 
consume or produce a token via this connector (in case of a name 
clash suitable names have to be chosen), 

5. create for every (undecorated) place simplex class two total and 
functional relationships to the places Id and Time, 

6. create a total and functional relationship from each undecorated 
place simplex class to the corresponding decorated simplex class, 

7. for each simplex class n' that represents a place n we define: 

sim(n') = com( CA(n)), 

8. for the simplex classes Id and Time we define: 

sim(Id) = ID 1\ sim( Time) = T, 

where ID is the set of identities and T the time domain, 

9. for each other simplex class n define an arbitrary set for sim( n), 

10. create a complex class for each simplex class that represents a 
processor and let this complex class include all the simplex classes 
that are connected by a directed path of functional relationships; 
let the complex class satisfy a tree constraint with the processor 
simplex class as root. 

The relationship between the actor model and the object model is as 
follows: whenever in the actor model a processor p executes, there will be 
a complex created (with simplex class p as root) and with four simplexes 
(belonging to a place) for every token that is consumed or produced 
during the execution of the processor: one simplex (of the undecorated 
simplex class) that denotes the token, one simplex (of the decorated 
simplex class) that denotes the complex of the token, one that denotes 
the identity and one that denotes the time stamp of the token. 

Note that it is always possible to reconstruct the transition times: 
it is the maximum of the time stamps of the consumed tokens. To 
distinguish the consumed and produced tokens we have to inspect the 
actor model. (It is easy to modify the object model to incorporate the 

198 



x z 
p 

y 

a b c 

v 

u w 
q 

Figure 13.19: Actor model 

necessary information as well.) We will illustrate this method by an ex
ample. The actor model represents a resource sharing system. In figure 
13.19 the actor model is displayed and in figure 13.20 the corresponding 
object model. Note that the object model does not contain information 
about the way processors execute, so it cannot be used for forecasting 
or simulation, but only for monitoring the actor model. To derive the 
actual state of the actor net, we have to determine all the simplexes 
that represent tokens that do not occur as input tokens. 

If we want to construct such a monitoring information system we 
have to modify the processors in the target system to enable them to 
produce the complexes defined above. 

13.3 Transformations to other object frame
works 

In this section we study methods to transform object models in our 
framework into object models in other frameworks and vice versa. The 
transformations are often only partial because some frameworks have 
specific requirements or lack some notions (for instance the notion of 
a complex). In the usual database terminology a framework defines a 
schema and a set of instances that belong to the schema. (Note that 
the term "schema" is used here in a different way as in the specification 
language.) In our framework, which we simply call the object framework, 
a schema is a class model plus the function sim that assigns a value type 
to each simplex class. The set of instances of a schema in the object 
framework, is the set of instances of the universal complex class. 
For an arbitrary framework a schema plus its instances is called a model 
and is almost what we called an object mode/. 

Formally these transformations proceed along the following lines: 

• first construct a (partial) function F from schemas in one frame
work into schemas of another framework, 

199 

schema 
instance 

object framework 

model 

object model 



information preservation 

relational data model 

object oriented frameworks 

Id Tillie 

.-l -+--

a b c 

.: ~ - f-
~ f-

a' >-- b' '-- c' 

~ ~ r! u, ~ /w -
p q 

Figure 13.20: The corresponding object model 

• next construct a (partial) injective function f that transforms an 
arbitrary instance a of a schema A in the first framework into an 
instance f(a) of a schema F(A) in the other framework. 

The fact that function f should be injective is very important: it means 
that f is information preserving because it has a (partial) inverse. So if 
it is possible to transform an instance a of framework A into an instance 
b of framework B we can reconstruct a from b. Note that in general the 
function f will depend on F and that there are several choices for F 
and f. 

We only consider the cardinality and key constraints in these trans
formations, however it is possible to transform some other constraints 
as well. 

Transformations of object frameworks are important for a number of 
reasons. First of all it is important to be able to communicate an object 
model to other persons who are more used to another object framework. 
Secondly it might be the case that an object model is already available 
in an other framework. Last but not least it might be necessary to 
implement an object model by means of a database management system 
that is based on an other object framework. Most database management 
systems used in practice are based on the relational data model, so 
this will be one of the frameworks we consider. Other frameworks are 
the functional data model, the entity-relationship data model and the 
nested relational data model, which is an extension of the relational data 
model. (Note that we called the entity-relationship data model "entity
relationship model" in part 1.) There are several versions of each of these 
frameworks however we have chosen only one of them. There are some 
other object frameworks, but except for the object oriented fmmeworks, 
the ones presented here are the most important in practice. 

200 



The strategy we follow in this section is displayed in figure 13.21. 
Here "ERM", "OM", "FOM" ,"RM" and "NRM" denote object models 

Figure 13.21: Strategy of transformations. 

in the entity· relationship data model, (our) object framework, the func
tional data model, the relational data model and the nested relational 
data model, respectively. A double arrow head means that we consider 
a transformation in both directions. Since we are not expressing speci
fications but framework transformations we use here meta language. 

1. Functional data model 
The version of the functional data model we consider here is just a re
striction of our framework in which only functional relationships are 
allowed. So the only problem is to get rid of the non-functional re
lationships. In practice most relationships are already functional (cf. 
for instance the examples in this chapter). However if there is a non
functional relationship then we can transform the schema as follows. In 
fact we define the function F from schemas in our object framework 
into schemas of the functional data model. We call an object model of 
the functional data model a functional object model. 

• if there is a non-functional, non-injective relationship use the "trick" 
we used to model relationships with properties, i.e. introduce a 
simplex class for every relationship that is non-functional and con
nect it to the domain and range class of the original relationship by 
total and functional relationships, having the new simplex class as 
their domain class, and these relationships have to form a domain 
key for the new simplex class, 

• if a relationship is non-functional but injective, we may exchange 
the domain and range classes of this relationship and then we 
obtain a functional one (the proof of this statement is an exercise), 

• the new simplex classes should have a value type, i.e. the function 
sim has to be defined for these classes; since there is a domain 
key constraint it does not really matter how we define these value 
types, because the simplexes are uniquely determined by their re
lationships, however we will use the next definition: 

201 

functional object model 



let r be a relationship in the functional object model that is re
placed by simplex class d, then 

sim(d) = sim(DM(r)) X sim(RG(r)). 

In figure 13.22 we see examples of these transformations. Note that p is 

e f 
r 

~ p 

c 
(A) 

e d f 

l~ ;Jm , 
k ~ 

c (B) 

Figure 13.22: Transformation to a functional model. 

replaced by k and r by I, d and m. Now we have seen how to transform 
the schema. However we also have to transform instances of our schema 
into instances of a schema of the functional data model. We only con
sider universal complex classes, because the functional data model does 
not have the notion of complex classes. So we consider an arbitrary 
universal complex a of an object model in the object framework and 
we will transform it into a universal complex b of the functional data 
model. We will call the schemas respectively A and B, so B = F(A). 
The transformation (I) proceeds along the following lines: 

1. for each simplex class n of schema A we have b(n) = a(n), 

2. for each functional relationship r of model A the same relationship 
occurs in schema Band b( r) = a( r) and it has to satisfy the same 
cardinality constraints, 

3. for each non-functional but injective relationship p of schema A 
there is a relationship k of schema B with: 

b(k) = ((x,y) I (y,x) E a(p)} 

if p is total then k is surjective and if p is surjective then k should 
be total, 

202 



4. for each non-functional, non-injective relationship r of schema A 
there is a simplex class d and two relationship classes I and m 

such that DM B(I) = DM B(m) = d, RGB(I) = DM A(r) and 
RGB(m) = RGA(r); 
b(d) = a(r) II b(l) = (((x,y),x) I (x,y) E a(r)} II 

b(m) = {((x,y),y) I (x,y) E a(r)}. 

Note that b(d) = a(r) is justified by the choice of sim(d). It is clear that 
F is not injective. To verify this note that models (A) and (B) of figure 
13.22 are mapped both to model (B). However f is injective. (The proof 
of this assertion is an exercise.) In fact we may consider the function 
F as a reduction to a normal form of the object framework. Therefore 
this framework is sometimes called the irreducible data model, while 
our object framework is sometimes called in literature, the functional 
data model, because the binary relationships may be considered as (set
valued) functions. 

To transform an object model defined as a functional data model 
into one in our framework, we have to do nothing because it is already 
an object model in the object framework i.e. the functions F and fare 
the identities. 

2. Relational data model 
In order to describe the transformations we need a definition of the 
relation data model. We call an object model of the relational data 
model a relational model. A relational model is defined by a relational 
schema and the set of instances of this schema. 

Definition 13.1 A relational schema is a 5-tuple: 

(T, A, 0, (3, 1') 

where T and A are mutually disjoint sets and: 

• T is the set of relation names, 

• A is the set of attribute names, 

• 0 : T --> lP(A) assigns to every relation name a set of attributes; 
we require that: 

• (3 is a function that assigns to every attribute a set called an 
attribute domain (note that dom((3) = A), 

• 1': T --> lP(A) assigns to every relation one primary key, which is 
a subset of the attributes assigned by 0, such that 

'<It E T: 1'(t) C o(t) II 1'(t) # 0. 

203 

normal form 

irreducible data model 

relational model 

relational instance 

relational schema 

attribute domain 

primary key 



instance 

relation 
tuple 

functional dependencies 
multi-valued dependencies 

referential integrity 

o 

(The terminology used here is the usual one for the relational data 
model, however note that some of the terms have a slightly different 
meaning in the rest of this book.) Note that if the attribute names of 
two relations are not disjoint we can make them disjoint by combining 
their names with the names of the relations in which they occur. In 
the following table we display a relational schema. The code "y" means 
that the attribute is part of the primary key of the relation and "n" 
means that it is not part of it the primary key. 

relation attribute domain key 
TI aI Al n 

a2 Al y 
a3 A2 y 

T2 a4 A2 y 
as A3 y 
as A3 n 

T3 a7 A3 y 
as A4 y 
ag A4 n 

Next we have to define instances of a relational schema, which are com
parable to our universal complex class (cf. 9.2). The set of instances is 
defined by: . 

Definition 13.2 Let a relational schema be given. An instance of a 
relation database schema is a function b with dom( b) = T and 

'It E T : b(t) c II(.B t a(t)) " ('Ix, y E b(t) : x t "(t) = y t "(t) =} x = y). 

o 

For t E T and an instance b the set b( t) is a set of functions, called a 
relation, with a common domain aCt). These functions are called tuples. 
The primary key identifies a tuple in an instance. (Note that it is a min
imal key, because we have no other keys defined.) The relational data 
model has several standard constraints: functional dependencies, multi
valued dependencies and referential integrity. Referential integrity is 
equivalent with our surjectivity constraint. A key constraint is the most 
important example of a functional dependency and the multi-valued de
pendencies do not have an equivalent in our framework; therefore we do 
not consider them. 

Note that the concept of a complex is not existent in the relational 
data model so we have to restrict the transformation to the universal 
complex class. For the relational data model exist two query languages: 
the relational algebra and the tuple calculus. In the next part we show 
how the relational algebra can be expressed in the specification language. 

First we consider transformations from relational models and object 
models. In figure 13.23 we see the corresponding object model of the 

204 



A1 

A2 

A3 

A4 

a9 

Figure 13.23: Transformation of a relational schema. 

relational schema in the table above. First we define the function F that 
maps a relational schema A into a schema for the object framework, 
called B. 

1. SN = T U rng({3), so every relation and every attribute domain 
become simplex classes 

2. RN = A, so all attributes become relationships, 

3. Va ERN, t E T : DM(a) = t ¢} a E a(t) (note that t is uniquely 
determined), 

4. Va E RN : RG(a) = {3(a), 

5. 'It E T : DK(t) = {-y(t)}, 

6. 'It E T: sim(t) = II({3 f ")'(t», 

7. '1r E rng({3) : sim(r) = {3(r). 

Next we consider the transformations on the instance level. The 
transformation f maps an instance a of A into a universal complex b of 
F(A). 

1. 'It E T : b(t) = {x f")'(t) I x E a(t)}, so all primary keys of a 
relation form a set of simplexes of a simplex class with the same 
name as the relation, 

2. '1d E rng(f3): b(d) = {x fr 13t E T: x E a(t) ArE a(t) A {3(r) = 
d}, so all attribute values of an attribute domain that occur in 

205 



a form the simplexes of a simplex class with the name of the 
attribute domain, 

3. Vr ERN: b(r) = {(x, y) 13z E a(DM(r)): x = z r-y(DM(r)) AyE 
x(rn, note that b(r) is total and functional because of the prop
erty of the' primary keys of the relational data model 

It is clear that these rules define a function. However we still have to 
prove that this function f is injective. 

Lemma 13.1 The function f defined by the three rules above is injec
tive. 

Proof. Let al and a2 be two instances of the relational schema A and 
suppose f(ail = f(a2) = b. We have to prove that al = a2. Take an 
arbitrary t E T. We have (by rule 1): 

{x r-y(t) I x E al(tn = {x h(t) I x E a2(tn· 

Let Xl E al(t) and X2 E a2(t) such that Xl r-y(t) = X2 r-y(t). (Note 
that this does not imply Xl = X2, since Xl and X2 belong to different 
instances.) Then, for all r E o(t) (by rule 3): 

However r (as relationship) is functional and therefore Xl (r) = X2( r). 
This proves that Xl = X2. SO we have proven that al = a2' 
o 

We continue with the transformation the other way round. So we start 
with a schema A of an object model and we first transform its schema 
into the schema B of a relational model (function F) and afterwards 
we define the transformation f that maps an instance of a universal 
complex class into an instance of the relational schema. However we first 
transform the object model into a functional model a seen before. So 
we assume that A is a functional model and in addition we assume that 
all relationships are total, because this avoids the problem of nil values 
in the relational model. Note that F is partial now! Transformation F 
is defined by: 

1. T = rng(DM), so only simplex classes with "properties" become 
relations, 

2. A = RN U {t' I t E T}, so all relationships become attributes and 
for each relation t there is one new attribute t' (assume primes 
where not used in names of A), 

3. 'It E T: o(t) = it'} U DM-l(t), 

4. Vr E RN : f3(r) = sim(RG(r)), 

5. 'It E T : f3(t') = sim(t), 

206 



P 
81 82 

q 
~ 

t r 

83 ~ 84 
'z 

U' ~ 
v 

85 w' 86 

Figure 13.24: Transformation of a functional model into a relational 
model. 

6. 'It E T: ')'(t) = it'}, so the new attributes form the primary keys. 

In figure 13.24 we see a schema of a functional model and in the following 
table we see its transformation into a relational model. 

relation attribute domain key 
SI s' 1 sim(st} y 

P sim(S2) n 
q sim(S2) n 
r sim(S3) n 

S2 s~ sim(S2) y 
t sim(S4) n 

S3 s' 3 sim(S3) y 
u sim(ss) n 
z sim(S4) n 

s6 s' 6 sim(s6) y 
v sim(S4) n 
w sim(ss) n 

The next step is the definition of f. Let a universal complex a be given, 
instance b = f( a) should satisfy: 

• 'It E T: {x(t') I x E b(t)} = a(t), 

• 'It E T : Vr E a(t) :, 

((x(t'),x(r)) I x E b(t)} = a(r). 

It is not a priori evident that these rules determine b uniquely. 

Lemma 13.2 The two rules above define a function. 

Proof. Let a be given. We have to show that a determines only one 
b. Suppose that bl and b2 satisfy the rules above. We will show that 

207 



entity-relationship schema 

primary key 

bt = b2. Choose atE T. Let Xt E bt(t). Then Xt(t') E aCt) which 
implies 

3X2 E b2(t) : X2(t') = Xt(t'). 

Further Vr E o(t) : (Xt(t'), Xt(r)) E aCt) :} 

3X3 E b2 : (x3(t'),xk)) = (Xt(t'),xt(r)). 

The fact that t' is a primary key for b2(t) implies that 

This implies that Xt = X2 and so Xt E b2( t). Therefore bt = b2. 
o 

Finally we have to show that I is injective. 

Lemma 13.3 The function I defined by the rules above is injective. 

Proof. The proof is an immediate consequence of the specification of 
I: if at and a2 are two universal complexes with I(ad = l(a2) then 
the specifications for at and a2 by the rules above are identical (namely 
b = I(at) = l(a2) and so at = a2. 
o 

Note that if we transform a relational schema into an object schema 
and afterwards this object schema into a relational schema, then the 
last schema is identical to the first one except that each relation has one 
extra attribute. 

3. Entity-relationship data model 
As in the case of the relational data model we start with a definition of 
this framework. 

Definition 13.3 A entity-relationship schema is a 7-tuple (E, R, A, 0,(3", 8) 
where: 

• E is the set of entities, 

• R is the set of relationships, 

• A is the set of attributes, 

• a: E -> ./P( A) assigns to every entity a set of attributes, 

• (3 is a function that assigns to every attribute a set called the 
attribute domain, 

• ,: E ---+ ./P( A) assigns to every entity a primary key, such that 

"Ie E E: ,(e) C o(e), 

• 8: R -> ./P(E), which assigns to every relationship a set of entities. 

208 



o 

This framework does not have the notion of complex classes either so 
we restrict ourselves to the universal complex class as before. Nor· 
mally the entity-relationship data model is used as an aid to define 
a relational schema and in that case one does not have to define in
stances of entity-relationship schemas. However we transform an entity
relationship schema into a schema of an object model and so we define 
indirectly instances for entity-relationship schemas as instances of the 
universal complex class of the corresponding object model! Therefore 
we do not have to specify the function f that transforms instances. 
Note that the term "relationship" is used here different, and therefore 
we will call it an "er-relationship". The transformation proceeds along 
the following lines: 

1. SN = E U R U A, 

2. RN = U.ed(e,a) I a E aCe)} U UreR{(r,e) leE oCr)}, 

3. Vex, y) E RN : DM((x, y)) = x A RG((x, y)) = y, 

4. "Ie E SN n E: DK(e) = {{(e,a) I a E ')'(e)}}, 

5. Vr ERN n R: DK(r) = {{(r,e) leE oCr)}}, 

6. all relationships of the object model are total and functional. 

In figure 13.25 we display an entity-relationship schema and its trans
formation into an object model. 

It is also possible to transform schemas of object models into entity
relationship schemas. An isomorphic transformation is possible if the 
object model has some structural properties. In this case the graphs 
of the object model and the entity-relationship schema are isomorph, 
i.e. there is bijective mapping between the nodes and edges and in fact 
this is the classification of simplex classes introduced in section ?? The 
structural properties can be expressed using the concept of level. A 
simplex class n has level 0 if and only if n ¢ rng(DM), i.e. n has no 
properties. A simplex class n has level k if and only if it all simplexes 
in {RG(r) I DM(r) = n} have level k - 1. (Note that in an arbitrary 
object model not all simplex classes have a level.) We will use the 
notation level(n) for the level of a simplex class n. The conditions for 
an isomorphic transformation are: 

• all simplex classes have level 0, 1 or 2, 

• all relationship classes are total and functional, 

• no two relationship classes have the same domain and range classes. 

The simplex classes oflevel 2 become er-relationships, the simplex classes 
of level 1 become entities and the simplex classes of level 0 become at
tributes. (We call the last ones attribute simplex classes.) 

209 



c 

e2 

e1 e3 

(Al 

a b c 

el e3 

(B) 
r 

Figure 13.25: Transformation of an entity-relationship schema. 

Further we require that every simplex class has one domain key 
constraint consisting of relationship classes that have attribute simplex 
classes as their range classes. Let such an object model be given, then 
the corresponding entity-relationship schema is: 

1. A = {r E RN Ilevel(RG(r)) = O}, so the relationship classes that 
have "attributes" as range class become attributes themselves 

2. E = SN\{n E SN Ilevel(n) = O}, so the attribute simplex classes 
disappear 

3. R= RN\A, 

4. "Ve E E: aCe) = {r E A I DM(r) = e}, 

5. "Va E A: ,B(a) = sim(RG(a)), 

6. "Vr E R: ,s(r) = {DM(r), RG(r)} , 

7. "Ve E E : 'l'(e) E DK(e). 

Note that er-relationships have no direction, which causes no problem 
because an er-relationship is never connected to the same entity twice. 

210 



In the general case, where some simplex classes do not have to have 
such a domain key constraint, we have to create an extra attribute for 
each entity with the same value domain as the value type of the simplex 
class. (This construction is an exercise.) As stated in part I, the object 
framework may be considered as an extension of the binary version of 
the entity·relationship model, which means that "'Ir E R: #(R(r)) = 2. 
This is what we have shown here. 

4. Nested relational data model 
The nested relational data model is a generalization of the relational 
data model. This framework enables us to model "non-atomic" at
tributes in a more easy way. We start with an example in the following 
table. 

Order Item Total Supplier Price Quantity 

°1 i1 100 A 3 50 
B 5 30 
C 4 20 

'2 50 B 7 20 
D 6 30 

°2 '3 60 B 8 40 
E 10 20 

'4 80 A 10 50 
D 12 30 

To indicate that a "nest" (in fact a row) of attributes may be repeated 
we use curly brackets, so the attributes of the table above can be coded 
by: 

{(Order, {(Item, Total, {(Supplier, Price, Quantity)})})} 

In this table we see only one nested relation. There is no need for more 
than one nested relation because we can combine two of them to form 
one. For instance two non-nested relations T1 and T2 with attribute sets 
{A, B, C} and {D, E, F} respectively, can be combined into one nested 
relation, coded by: 

{( {(A, B, C)}, {(D, E F)})} 

So a relational model can be transformed in an information preserving 
way, into a nested relational model (the proof is an exercise). We start 
with the definition of a nested relational schema and afterwards we give 
the definition of an instance of such a schema. 

211 



nested relational schema Definition 13.4 A nested relational schema is a 3-tuple: 

(A, (3, T) 

where: 

o 

• A is a finite set of attributes, 

• (3 is s function that assigns to every attribute a set, called attribute 
domain, 

• T is an attribute nest; attribute nests are defined using a syntax, 
by: 

- AttributeNest ::= i Nestl, 

- Nest ::= Attribute I ~NestlNest21 iNestl, 
- Attribute E A, 

- no attribute may occur twice in an attribute nest. 

An attribute nest is a set that can be represented by an AttributeNest. 

Next the set of instances of a nested relation schema is defined. 

Definition 13.5 Let a nested relation schema be given. A instance of 
such a schema is defined recursively using the set X of all sub-attribute 
nests of T: X is the set of all attribute nests that are represented by a 
sub-string of T. The set of all instances of x, where x EX, is denoted 
by I(x). The function I is (recursively) defined by: 

• 'Ix EX n A: I(x) = (3(t), 

• VX,Xl, ... ,Xn EX: x = (xt, ... ,xn ):} I(x) = I(xt)x ... xI(xn ), 

• Vx,y EX: x = {y}:} I(x) = IF(I(y)). 

o 
So in the table above the instance 
{(Ol, {( it, 100, {(A, 3, 50), (B, 5,30), (C,4, 20)}), 
(i2 , 50, {(B, 7, 20), (D, 6, 30)})}), 
(02, {( i3 , 60, {(B, 8, 40), (E, 10, 20)}), 
(i4, 80, {(A, 10,50), (D, 12, 30)})})} 
is displayed. 

As noted before, the relation data model can be transformed into 
the nested relational data model. We have seen how to transform an 
object model of our framework into the relational data model. The 
final step to close the circle is to show how a model in the nested re
lational data model can be transformed into our framework. Then we 
have also shown that a nested relational model can be transformed into 
a relational model. (Of course it is possible to give a more direct trans
formation than we present here.) 

We first consider the transformation of a nested relational schema 
into a schema of an object model. It proceeds along the following lines: 

212 



1. create a simplex class for every sub-attribute nest in X, including 
the attributes themselves, and give them a suitable name (use for 
example the elements of X as names), 

2. create for every simplex class with a name of the form {x}, a 
relationship class r that is total, functional and that satisfies: 

DM(r) = {x} II RG(r) = x 

3. create for every simplex class with a name of the form (Xl, ... , xn) 
relationship classes rIo"', rn which are total and functional and 
that satisfy: 

'Vi E {i,oo.,n}: DM(ri) = (XIooo.,Xn) II RG(ri) = Xi, 

4. "In E SN : DK(n) = {DM-I(n)}, 

5. for each simplex class n that represents attributes: sim( n) = f3( n), 
for the others we may chose the value types arbitrarily. 

In figure 13.26 the transformation of the example above is displayed. 
(Note that we have shortened the names of attributes.) In fact the 
simplex classes with numbers 3 and 5 are redundant. In figure 13.27 
we transformed (injective) the object model in order to obtain a more 
simple one with the same information. (The proof of this statement is 
an exercise.) 

On the instance level we can define an injective function f that 
transforms an instance of a nested relational schema into a universal 
complex that satisfies a tree constraint (with the simplex class that 
represents the whole attribute nest as root). This construction proceeds 
along the same lines as the schema transformation. (The specification 
of this function is an exercise.) 

213 



1 {(O,{(I,T,{(S,P,Q)})})} 

+ 
2 (O,{(I,T,{(S,P,Q)})}) 

/ 'f...... 

° 3 {(I,T,{(S,P,Q)})} 

~ 
4 (I,T, {(S,P,Q)}) 

/- ~ 
I T 5 { (S,P,Q)} 

~ 
6 (S,P,Q) 

/- ~ 
S p Q 

Figure 13.26: Transformation of a nested relational schema. 

214 



1 

,~ 

2 

/ ~ 
0 3 

~ 'i' ~ 
I T , 

L r ~ 
s p Q 

Figure 13.27: Reduction of the object model of a nested relational 
schema. 

215 



216 



Chapter 14 

Object oriented Modeling 

As said before, we consider object oriented modeling as a method to 
construct a complete actor model in an integrated way. The method 
uses a specific paradigm of a system (the object oriented paradigm), 
which can easily be mapped onto our frameworks. This paradigm is 
quite informal, and so there are many ways to formalize it. We will start 
with the main ideas of the object oriented paradigm and afterwards we 
will show how these ideas can be incorporated in our frameworks. 

The basic idea of the object oriented paradigm is that there are 
classes of active objects. (Note that we use the term "object" a bit 
different here.) Each object has a (structured) value and it may have 
knowledge of other objects. Each object has a life cycle that starts with 
its birth and that ends with its death, also called creation and deletion 
of the object. During its life an object can change its value, and it can 
exchange messages with other objects of the same or different classes. 
The structure of the life cycle is the same for all objects of a specific 
class and the type of communication to other objects is also determined 
by the class of the object. A system is considered as a "dynamic set" 
of objects, which means that at each moment in time there is for each 
object class a finite number of objects, each with a particular value and 
some particular knowledge of other objects, and that there are pending 
messages destined for specific objects. This "dynamic set" changes over 
time because the objects may change their values, receive messages and 
send messages. A change of value of an object may be triggered by a 
message but this is not necessarily the case, it may also change its value 
autonomously. The operations that change the value and the knowledge 
of an object are usually called methods, they are specific for an object 
class. The value of an object and the knowledge it has of other objects 
at a particular time can be considered as the state of the object. There 
are several situations that should be avoided, such as that there exist 
messages for objects that died already or that two or more objects are 
waiting for messages of each other (dead lock). 

The idea of object oriented modeling is that a systems engineer can 
define an object class completely in isolation, i.e. without knowledge 
of other object classes. Object oriented languages have facilities to use 

217 

object oriented modeling 

active objects 

knowledge 
life cycle 

message 

method 



o-complex class 

o-actor 

state machine 

m-complex class 

knowledge simplexes 

value simplexes 

inheritance relationships between object classes, which may decrease the 
modeling effort of a system. 

If we compare the object oriented paradigm with our three frame
works we see an important difference: objects in our framework are 
passive components of a system and actors are active components but 
actors are fixed, i.e. there are no births and deaths of actors! So it is 
not immediately clear if we should identify the "object oriented" objects 
with our objects or with our actors. To distinguish the object oriented 
objects from ours, we will call them o-objects. It turns out that we have 
for each o-object class a complex class and an actor. 
Object oriented modeling proceeds along the following lines: 

• For each o-object class there is a complex class that satisfies a tree 
constraint and the root simplex identifies the o·object ( the type 
is ID), we call it an o-complex class. 

• For each o-object class there is one actor that represents the life 
cycle of the o-object, we call it an o-actor. 

• Every o-actor has internally the structure of a state machine, i.e. 
each processor is connected to at most one input and one output 
place within the actor. A processor may have other input and 
output connectors that are connected to the connectors of the 0-

actor. 

• The input and output connectors of an o-actor are used for the 
exchange of messages with context actors or with o-actors. 

• For each connector of an actor there is a complex class that rep
resents a message type. We call it an m-complex class. 

• A life cycle of an o-object can only start with a message from 
outside. There may be live o-objects in the initial state, so an 
o-actor does not have to have an input connector for life cycle 
creation. A message that starts the life of an o-object may be 
sent by a context actor or by an o-actor. In the last case it may 
be the same o-actor, which means that o-objects of one class may 
create new ones from the same class. A life cycle may end or may 
continue for ever. 

• The o-complexes have two kinds of simplex classes: simplex classes 
that are root simplex classes of other o-complex classes and other 
simplex classes. The first kind of simplexes represent the knowl
edge of another o-object: if an o-complex contains a root simplex 
of another o-complex it means that it knows of the existence of the 
other o-complex. We call them knowledge simplexes (k-simplex for 
short). The other simplexes in an o-complex denote the value of 
the o-object. We call them value simplexes (v-simplex for short). 
In many cases the k-simplexes will only have relationships with 
the root simplex in an o-complex. 

218 



• Newly created o-complexes obtain their identity ( in the root sim
plex) from the token containing the message that initiated their 
life. So at the start the identity of the o-object and the iden
tity of the token that contains it, are equal. During the life of 
the o-object the identity of the containing token changes but the 
identity of the o-object remains the same. 

• An m-object contains the identity of the sending o-object (the re
turn address) , and in some cases also of the receiving o-object. 
There are however cases in which the receiving object is not known 
because the message may be handled by any o-object of the ad
dressed class. 

• The state of an o-object is determined by the value in the 0-

complex plus the place in the o-actor where the o-complex resides. 
So in fact the token that carries the o-complex represents the state 
of the o-object, since a token contains the place information. (Note 
that the places in an o-actor are stages in the life cycle of the 0-

object.) 

• The processors inside an o-actor perform the state changes. They 
may be triggered by an incoming message and they may produce 
an outgoing message. They may be considered as the methods of 
an o-object. 

• The communication between two o-objects needs a protocol, i.e. a 
token exchange pattern. There are two kinds of communication. 
The first kind of communication concerns the creation of an 0-

object by some other o-object. The second kind concerns a client
server behavior. Here one o-object (the client) asks a service of 
another o-object (the server). The server may ask another 0-

object to perform a part of this service. So the server may behave 
as a client as well and one request for service may create a cascade 
of requests. 

In most cases a message is answered by an other message. A simple 
protocol is that an o-object has at most one message pending at 
a time. So after it has sent a message it may perform internal 
steps (i.e. steps without sending messages) only until it receives 
an answer from the receiving o-object. 

Note that what is called an o-object here, can also be considered as 
a transaction. A transaction in a database system for instance, also 
has a life cycle and it may initiate other transactions and it may wait 
for reactions of other transactions. So the object oriented paradigm is 
applicable to transaction processing systems in a natural way. 

As mentioned before the object oriented modeling method develops 
a model by considering one o-object class at a time. This means that 
for each class the following activities have to be carried out: 

1. Define an o-complex class, i.e. an object model. 

219 

state 

stage 

Q-oobject method 

protocol 

client-server 

transaction 



2. Define an o-actor, i.e. an incomplete actor model. The places 
inside the o-actor mark the stages in the o-objects life cycle. 

3. For each connector of this o-actor an m-complex has to be defined, 
if it was not defined before for another class. 

4. Specify suitable value types for the complex classes involved. 

5. Specify the processor relations for the o-actor. Usually these will 
be functional and the corresponding functions are called methods. 

Note that we did not use hierarchy of actors in this method. Of course 
it can be used to "hide" a part of the life cycle in an actor. This actor 
has internally also the state machine structure and has one input and 
one output connector. So it can be considered as a processor, because 
it behaves as such. 

Stores can be used as well, but they do not fit very well in the 
object oriented paradigm. In practice it is good to start with an overall 
actor model of the system in which the context actors and o-actors are 
displayed. The use of inheritance that is supported by most object 
oriented languages is not directly translatable to our framework. Of 
course we have polymorphic functions, and type variables that give us 
the possibility of reusing already defined constructions, but we have no 
inheritance relationships between actors or complex classes. 

The question that remains is: how to find the o-object classes? There 
is no "waterproof" answer to this question. If the paradigm is carried 
through too far, every "thing" is considered as an o-object and this 
means that we get many o-object classes with a simple structure but 
with many complicated interactions between objects of these classes. 
For example if we consider a library system and we consider each simplex 
of an object model in our framework as an o-object then we have o-object 
classes for books, for authors, for publishers, for dates etc. This would 
mean that if a library user wants to ask a question about a book, he has 
to send a message to the book and then the book has to send a message 
to the author(s) and to the publisher and to the date (of publication). 
Of course this can be modeled in this way, but it is not a natural way 
of modeling and certainly not a simple model. A good approach is to 
consider ouly those entities in the real world as o-objects that behave 
as o-objects, i.e. they have their own life cycle and they commuuicate 
with other entities. These entities should belong to classes, which means 
that there could be more instances of the class at the same time. So 
in fact there is a simple answer to the question: if real world items 
can be identified as o-objects in a natural way, then they should be 
modeled in this way, otherwise they should be modeled as simplexes 
and be incorporated in o-complexes or m-complexes. 

We will illustrate the object oriented modeling method by a small 
example. Consider a jobshop, i.e. a factory that has resources that can 
be used to perform tasks and clients send jobs consisting of one or more 
tasks to the factory. (Note that this model is a simplification of the 

220 



Clients Job 
Resource 

Resource Management 

Figure 14.1: Jobshop: top level 

client job 

Figure 14.2: o-complex class for Job: 5hopOrder 

factory example considered in chapter 13.) In figure 14.1 we show the 
top level of the system. There are two context actors, called Clients 
and ResourceManagement. The first one is sending jobs to the jobshop 
and the second one is adding new resources, taking resources out and is 
reserving time for maintenance of resources. We have connected them 
by channels, however in this early stage of development it is not sure 
via how many connectors the o-objects will communicate. The context 
actors are not considered in detail so we concentrate on the two o-object 
classes: Job and Resource. We start with Job. The o-complex class for 
Job is displayed in figure 14.2. The simplex class job is the root of the 
complex. Tasks have an ordering, which is expressed by the functional 
relationship s that assigns to a task its successor. It needs a constraint 
as we have seen in section 13.2. We call this complex class: ShopOrder. 
The next step is the o-actor for Job. It is displayed in figure 14.3. 
Processor tl creates a new job from a message of a client and t4 deletes 
a job. All processors are functional and complete, but only tl and t2 are 
total. The other processors have preconditions: t3 selects pairs of input 
tokens that belong to the same job and t4 and t5 select on the existence 
of unfinished tasks in the jobs. Note that from each job only one task 
at a time can be executed. However several jobs may be processed 
concurrently. The m-complex classes for the connectors are displayed 
in figure 14.4. All of them satisfy a tree constraint with client or job 
as root. The m-complex class for connector Cl is almost the same as 
the o-complex class. The only difference is the job identification that is 
attached to an incoming message. We call it ClientOrder. The root of 
ClientOrder is client. 50 a client may send as many jobs as he likes and 

221 



c1 

c4 

1--------, 
1 
1 

Figure 14.3: o-actor for Job 

c2 

c3 

they will obtain their own identification internally. The m-complexes 
for C2 have job as root. The complexes for connector C3 consist of one 
simplex job that is also the root simplex. We call them TaskOut and 
TaskIn respectively. Finally the m-complex for C4 has client as root. We 
call it Product. Note that all internal places have ShopOrder as complex 
class. It is assumed that the client gets the product symbolically in the 
form of the job identity. Note that job and client are k-simplexes, while 
all the others are v-simplexes. 

The next step is the definition of appropriate value types for the 
complex classes. This is straightforward in this case: 

• ClientOrder:= [c: ID, t: (RT x DUt], 

• ShopOrder:= [j: ID, c: ID, t : (RT x DU)"], 

• TaskOut:= [j: ID, t : RT x DU], 

• TaskIn := ID, 

• Product:= [c: ID, j : ID]. 

Here RT is a type that denotes the resource types and D U is the type 
for the durations of tasks. We may choose here en or a restricted form 
of it that allows only non-negative values. Note that attribute t denotes 
the set of tasks. Since a task is identified by its successor task (except 
for the last one), we may use this representation. Now we are ready to 
specify the processor relations. They are straightforward as well. 

tl 
x?: ClientOrder 
y!: Shop Order 
ll'j(Y!) = New II ll'c(Y!) = ll'c(x?) II ll't(Y!) = ll't( x?) 

222 



duration 

client 

task 

resource 
type 

ClientOrder: cl 

job 

/ ." 
task duration 

TaskOut: c2 

Figure 14.4: m-complex classes for Job 

t2 
x?: ShopOrder 
y! : TaskOut 
z!: ShopOrder 

Taskln: c3 

client 

job 

Product: c4 

1I"j(z!) - 1I"j(x?) 1\ 1I"c(z!) - 1I"c(x?) 1\ 1I",(z!) - tail(1I",(x?)) 
1I"j(Y!) = 1I"j(x?) 1\ 1I",(y!) = head(1I",(x?)) 

t3 
x? : Shop Order 
y? : TaskIn 
z! : ShopOrder 
y? = 1I"j(x?) 1\ z! = x? 

x? : ShopOrder 
y!: Product 
1I",(X?) = () 
1I"c(Y!) = 1I"c(x?) 1\ 1I"j(Y!) = 1I"j(x?) 

ts 
X?: ShopOrder 
y!: Shop Order 
1I",(x?) # () 
y! = x? 

Note that we only displayed the main schemas for these processors. 
The time does not playa role in this part of the system. 

The next o-object we are considering is Resource. The o-complex 
class for Resource is displayed in figure 14.5. We call this class: Machine. 
It satisfies a tree constraint with resource as root. The simplex class job 
is needed to memorize which for which job the resource is working, if 

223 



resource 
type 

client 

times lot job 

Figure 14.5: o-complex class for Resource: Machine 

1-----------, 

cl 
Iy? x?1 

c3 
1 tl x? yl t3 1 

1 

1 

1 z 1 yl x? 
c2 

1 t2 t4 y? 

L_ ------ _I 

Figure 14.6: o-actor for Resource 

it is not idle. The simplex class timeS/ots represents free time slots for 
the resource to work for tasks. A time slot is a pair of rational numbers. 
The o-actor for Resource is displayed in figure 14.6. All processors are 
functional and complete. Only t2 and t3 are total. The others have to 
find a right resource, which is their precondition. Processor t3 creates 
a new machine by sending a message that has the same format as the 
machine data. Processor t4 deletes a machine with an identity given by 
ResourceManagement. (Note that ResourceManagement should be able 
to remember the machines it has created.) 

The m-complex classes for the connectors Cl and C2 are TaskOut 
and TaskIn respectively. The m-complex classes for connectors C3 and 
C4 are the same as the o-complex class for Resource, because we assume 
that ResourceManagement puts and takes complete resources. The m
complex class for connector Cs is trivial: only the identity of the resource 
is in the message. We call this class: Retrieve. The value types for the 
complex classes are: 

• Machine:= [r: [D, k: RT, j: ID, s: IF(~ X ~)l 

• Retrieve:= ID 

Now we are ready to specify the four processors of Resource. They are 
very simple in this case. Processor tl selects a suitable resource for a 
task and determines the delay of it (by means of Zt!). 

224 



tl 
X?: Machine 
y? : TaskOut 
z!: Machine 
11"l(11",(y?)) - 11"k(X?) 
3t : ~ X ~ • t E 11".( x?) 1\ 

11"l(t) ::; TransTime 1\ 11"2(t) 2: TransTime + 11"2(11",(y?)) 
z! = x? Ell {j ..... 11"j(Y?)} 
z,! = TransTime + 11"2(11",(y?)) 

t2 
x? : Machine 
y! : Machine 
z! : TaskIn 
y! - EIl{j ..... 1.} 
z! = 11"j(x?) 

t3 
x?: Machine 
y! : Machine 
y!=x? 

t4 
x? : Machine 
y! : Retrieve 
z! : Machine 
11",(x?) = y? 
z! = x? 

This example was very simple however it demonstrates the object ori
ented method well. Note that we have seen different models for al
most the same real-world systems in which jobs are asking for resources. 
Sometimes we modeled it such that the resource is "carrying" the job 
(like we did here) and sometimes we defined a new object class operation 
(like we did in chapter 13). The last solution has the advantage that 
the choice to add the job to the resource instead of the resource to the 
job, is avoided. This example shows that there are many ways to model 
reality. 

225 



References and Further Reading 

There is not much literature on methods for making a model; most liter
ature is about frameworks for modeling and about phasing the modeling 
process (the development life cycle). The reason that there is so little 
theory on the modeling methods is that modeling is an art rather than a 
science. For actor modeling [Genrich and Lautenbach, 1981J, [Peterson, 
1981J and [Jensen, 1990] are good references. Further there are many 
modeling examples published, for example [Brauer, 1980]. 

A special modeling method based on Petri nets is found in [David 
and Alla, 1989J. The modeling of time aspects can be found in [van der 
Aalst, 1992J and the modeling of continuous processes in [David and 
Alla, 1990J. In [van der Aalst, 1992J a modeling approach for logistic 
systems is presented. Structured actor models (such as free choice nets) 
are in fact Petri nets and [Reisig, 1985J and [Peterson, 1980] are good 
references. The transformation to valueless models, often called unfold
ing, is due to K. Jensen, see [Jensen, 1992J. In the Springer-Verlag 
Series Advances in Petri Nets 19XX and in the Proceedings of the XX
th International Conference on Applications and Theory of petri Nets 
many applications are recorded. 

For object modeling there is a method based on a slightly different 
binary data framework, called NIAM, see [Nijssen and Halpin, 1989]. 
Another approach is offered in [Rishe, 1988J. In most books on data 
models the transformation to the relational data model is considered. 
In [Spaccapietra, 1987; Teorey et al., 1986] many aspects of modeling 
with the entity-relationship data model are studied. In [Brodie et al., 
1984] several different approaches of object modeling and in particular 
constraint specification are given. For the transformation of the (our 
version of) the functional data model to the relational data model see 
[Aerts et al., 1992J. The transformation of the nested relational data 
model to the relational data model can be found in [Paredaens et al., 
1989]. 

Object oriented modeling is a popular topic. In [Sibertin-Blanc, 1991] 
an approach for object oriented modeling with Petri nets is given. In 
[Coad and Yourdon, 1990] and [Rumbaugh et ai., 1991) two approaches 
are offered based on informal frameworks, however many ideas can be 
translated to our frameworks. In [Sernadas et ai., 1991) and [van Assche 
et at., 1991] several ideas for object oriented modeling of information 
systems are given. For database systems to be object oriented there is 
a set of requirements formulated in [Atkinson et al., 1989). Many ideas 
of object oriented programming can be applied to modeling, see [Meyer, 
1988; Booch, 1991]. There is an object oriented method that has some 
similarity with ours, called HOOD, see [Di Giovanni and Iachini, 1990J. 

In [Jackson, 1983J a different but "complete" modeling method (for 
actor and object modeling) is given. In [Ward and Mellor, 1985] a mod
eling method for an (informal) framework based on data flow diagrams, 
the entity-relationship model and time is treated. In [Sol and van Hee, 
1991] different modeling methods for complete systems are given, among 

226 



which the approach given in this book. 

227 



Exercises 

1. Model a flip-flop as a classical Petri net. 

2. Model a machine that can count objects that are coming from 
some generator in the p-ary number system up to n digits, as a 
classical Petri net. 

3. Consider a teller machine, i.e. a machine with the following func
tions: 

• to get money a person has to put his card into the machine, 
and then he has to enter his personal code, 

• if his code is correct he may enter the amount he wants, 

• if his balance is larger or equal than the amount, he gets 
the money and the amount is subtracted from his account, 
otherwise he gets no money. 

Assume the machine has infinite capacity for money and that en
tering a wrong code or amount can not be corrected by the user. 

(a) Model this system as an actor model. 

(b) Extend the functionality by allowing people to put money in 
the machine, which will result in an update of the account. 
Answer (a) again. 

( c) Extend the machine by allowing people to transfer money to 
the account of somebody else. Answer (a) again. 

4. Consider a simple railroad system with one track that consists of 
a closed curve without intersections. The track is divided into 5 
sections, each ending with a semaphore that is either red or green. 
Each semaphore has a sensor that tells if a train has (completely) 
passed the semaphore. There are two trains riding in the same 
direction. The information system has to guarantee that: 

• no two trains are allowed to be in the same section, 

• if the section after a semaphore is empty the semaphore 
should be green, 

• there is no deadlock. 

Assume these requirements hold in the starting state. 

( a) Model the railroad system including its information system 
as a classical Petri net. Explain what the objects, places and 
processes represent in reality. 

(b) Modify the system in the sense that the track intersects with 
itself and add the requirement that collisions should be ex
cluded. 

228 



5. Consider a medical care system in which ill persons see a family 
physician first. The family physician can take one of the following 
decisions: 

• he can give the patient a medicine and after a while he wants 
to see the patient again, 

• he can decide that the patient cannot be treated (then the 
patient leaves the system), 

• he sends the patient to a consulting physician. 

The consulting physician can make the first two decisions the fam
ily physician can make, but in addition he can do some further 
medical examination: a blood test or X-ray photographs or both. 
He only wants to see the patient back, if all examinations have 
been done. An extra decision he can make is that he can send the 
patient back to the family physician. The physicians base their de
cisions on the number of visits, the used medicines and the blood 
tests and X-rays of the patients. 

a Make an (incomplete) actor model for this system. 

b Modify the model in such a way that there is an arbitrary num
ber (of both types) of physicians and that each patient has 
to be seen by the same physician at each successive visit. 

6. The Car Rental Company (CRC) has many stations in the country, 
where they store and maintain cars. Customers make a reserva
tion for a type of car at some station for a specific period of time. 
When the customer arrives at the station on the first day of the 
rental period, a car of the right type is assigned to the client. The 
client may also cancel a reservation, however before the rental pe
riod starts. 
A client may return a car to another station at the end of his 
rental period (this will be charged). If a client wants to extend his 
rental period, this will be considered as a new rental. 
Cars can be in service, rented or shipped from one station to an
other (by CRC). 
The information system must be able to keep track of the cars and 
the reservations and it must support the process of car assignment 
and invoicing. 

(a) Make an object model for CRC, including graphical con
straints and (if necessary) additional constraints in natural 
language and predicate calculus. 

(b) Make an (incomplete) actor model. 

7. Make an actor model for the following Resource Reservation Sys
tem (RRS). The system receives requests from clients for an ar
bitrary resource on a particular date. (Resources are for instance 

229 



seats in a concert hall or in an airplane.) The client receives an 
acknowledgement of his request. If there is a resource free for 
that particular date, a reservation is made and the client receives 
a confirmation telling the number of the resource. If no resource 
is available the request will wait until somebody else cancels his 
reservation. Clients may cancel their requests or their reserva
tions. The systems administrator should have facilities to delete 
all the reservations and requests if the date has expired. Consider 
two cases: one where the unsatisfied requests are assigned to a 
resource in an arbitrary way and one in which they are served in 
a first-come-first-served order. 

8. Make an object model for the Resource Reservation System of 
the former exercise that can be used to define the database of a 
monitoring information system for the system (Le. the universal 
complex class belongs to the store of the monitoring information 
system). 

9. Make a (complete) actor model in the object oriented style of a 
university. Consider the following o-classes: student, instructor 
and course. Choose appropriate o-complex classes and life cycles. 

10. Modify the actor model of the railroad station (see text) such that 
the station master will be able to decide to which track a new train 
will go. 

11. Modify the construction for token cancellation (see text) such that 
actor Z can select tokens to be cancelled. 

12. Make an object model for the store of the train control system 
displayed in figure 12.8. 

230 



Index 

! decoration, 49, 73 
I decoration, 49, 73 
( ; ),85 
=,65 
? decoration, 49, 73 
An, A', Aoo, A+, 85 
X -similar ~ x, 89 
II",,66 
1., 65 
,,69 
U,66 
€, 24, 85 
Ell,67 
7rl, 66 
0', 88 
T,88 
k-bounded net, 167 

A,104 
absolute time, 272 
abstract simplex, 177 
Ackermann function, 346 
active domains, 172 
active objects, 217 
activity network, 166 
actor, 15, 47 
actor framework, 84 
actor model, 107 
actor model properties, ll2 
actor modeling steps, 137 
actor roles, 147 
aggregate, 194 
antithetic variates technique, 290 
applicable firing assignment, llO 
applicative order reduction, 321 
association simplex class, 178 
attribute domain, 203 
attribute simplex class, 178 
automated systems, 21 
autonomous behavior, 25, 86 

395 

autonomous trace, 86 

base, 253 
basic type, 63, 301 
bisimilar, 89 
bounded nets, 167 
bounded occurrence, 317 
breadth-first search, 264 
broadcasting, 152 
business systems, 16 

C, 103, 104 
CA,107 
cancellation token, 158 
canonical form, 247 
cardinality constraint, 41, 97 
cat, 67 
CB,94 
channel, 47, 122 
class diagram, 37 
class model, 93 
classical Petri nets, 47, 163 
client-server, 219 
closed actor, 54, 104, 106 
CM,101 
CN,93 
com, 95 
complex class, 35 
components, 302 
composition of actor models, ll9 
composition of object models, ll8 
compound object, 177 
concrete simplex, 177 
conflict free, 164, 279 
congruential method, 287 
connector, 47 
constants, 301 
constraint, 96 
constraints, 28, 40 
construction model, II 



consumption function, 237 
cont, 100 
context actor, 137, 139 
continuous processes, 159 
control variates technique, 289 
CR,94 
critical path method, 279 
CT,107 

Dr ,c,96 
data oriented, 134 
dead set, 242 
deadlock, 25, 87, 242 
decomposition guidelines, 140, 145 
defined predicate, 72 
delay, 272, 277 
depth-first search, 264 
deterministic transition law, 26 
deterministic transition system, 

87 
direct addressing, 152 
discrete dynamic systems, 12 
DK,97 
DM,94 
domain class, 39 
domain exclusion constraint, 97 
domain key constraint, 43, 97, 

353 
domain type, 310 
DX,97 
dynamic programming, 345 

E,86 
eager autonomous behavior, 27, 

88 
earliest arrival time, 278 
empty row, 302 
empty sequence, 302 
empty set, 302 
empty tuple, 302 
entity simplex class, 178 
entity-relationship schema, 208 
environment, 161 
evaluation function, 315, 321 
event, 24, 86 
exclusion constraint, 43, 97, 354 
executable specifications, 297, 298 
expressive comfort, 297 

396 

expressive power, 297 
extendible language, 298 
external events, 27, 118 

F, 107, 108 
j,110 
FA, 110 
factorial function, 349 
fairness, 155 
FC,97 
file as one token, 149 
file as set of tokens, 151 
filter, 236 
finite mathematical value, 298 
finite state machine, 165 
firing assignment, 110 
firing rules, 108 
firing variable, 248 
flat net model, 103 
flow balance, 238 
flow function, 237 
flow matrix, 235, 238 
FN,107 
formalism, 13, 83 
framework, 83 
free choice nets, 164 
free constraint, 101 
free value universe, 303 
free variable occurrence, 318 
function application, 68 
function declaration syntax, 331 
function definition syntax, 323 
function graph, 325 
function signature, 310 
function universe, 309 
functional dependencies, 204 
functional equation, 249 
functional model, 11 
functional object model, 201 
functionality, 43,51,97, 122 
functions, 65 

global constraint, 46, 101, 173 
graph of function, 90 
graphical representation, 52 
guidelines, 133 

HA,104 
head, 67 



hierarchical net model, 104 
history, 192 
HL,105 

I, 103, 104 
i subscript, 73 
Ie, 100 
ID, 107 
identity filter, 237 
if then else fl, 66 
1M, 101 
independent place invariants, 244 
induced transition system, III 
information preservation, 200 
information simplex, 177 
information system, 18, 137 
inheritance constraint, 43, 100, 

354 
initial event, 24 
injectivity, 43, 97 
input completeness, 51, 121 
ins, 67 
instance, 38, 94, 95, 199, 204 
intelligent information systems, 

20 
inter-organizational information 

systems, 20 
interval-timed actor model, 271 
invariance properties, 61 
invariant place property, 240 
inverse transformation method, 

287 
irreducible data model, 203 
isomorph, 91, 209 
iterated application, 342 

join ~, 64 

key constraint, 43, 97 
knowledge, 217, 218 

.c, 86 
L, 103, 104 
l(p),87 
lambda calculus, 298 
latest arrival time, 278 
lazy function, 311 
lexicographical ordering, 306 
life cycle, 28, 217 

397 

limit of a monotonous sequence, 
341 

linear recursive functions, 342 
live processor, 241 
livelock, 25, 89, 117,280 
local constraint, 173 

M, 104, 105 
m-complex class, 218 
map construction, 69 
map term, 316 
marking, 236 
maximal autonomous behavior, 

86 
maximal autonomous trace, 86 
maximal exclusion constraints, 180 
measurement actors, 139 
memoryless transition system, 87 
message, 217 
meta syntax, 313 
method, 131, 217 
method of successive approxima-

tions, 342 
minimal key constraint, 180 
minimal support invariant, 254 
model, 83, 199 
model making, 61, 131 
model transformation, 131 
modeling language, 298 
molecular object, 177 
monitoring information systems, 

19, 197 
monomorphic function, 65, 310 
monotonous function, 341 
monotonous sequence, 341 
monotonous transition system, 88, 

114 
multi-valued dependencies, 204 
mutual exclusion, 155 

N, 85 
negative correlation, 289 
nested relational schema, 212 
New, 60, 73 
N ewton-Raphson method, 346 
non-deterministic transition law, 

26 
non-elementary actor, 47 



non-negative place invariant, 242 
non-strict function, 311 
normal form, 203 
normal form of a set, 307 

0, 103, 104 
o-actor, 218 
o-complex class, 218 
o-object method, 219 
object, 15 
object framework, 84, 199 
object life cycle, 154 
object model, 35, 101, 199 
object oriented, 134 
object oriented frameworks, 200 
object oriented modeling, 217 
object roles, 146 
object universe, 96 
occurrence graph, 263 
office information systems, 20 
OM,107 
open actor, 53, 104, 106 
OU,96 
output completeness, 51, 121 
overloading, 68, 309 

P, 103, 104 
pair, 302 
parent function, 107 
partial functions, 68 
path, 24,89 
PC, 101 
Petri filter, 237 
pick, 67 

place invariant, 144, 234, 238 
planning, 192 
polling, 168 
polymorphic function, 65, 310 
positive place invariant, 243 
predicate, 71 
predicate syntax, 330 
prefix pi, 85 
prefix of a trace, 24 
prefix-closed, 85 
primary key, 203, 208 
primitive recursive function con

struction, 344 
process oriented, 133 

398 

processing time, 156 
processor, 47 
processor characteristics, 51, 121 
processor execution rules, 54 
processor relation, 49, 108 
product type, 304 
product type constructor, 304 
production function, 237 
protocol, 219, 263 
prototype, 283 

Q<licoverability tree, 264 

Rp , 108, 109 
Rr.c, 96 
range class, 39 
range exclusion constraint, 97 
range key constraint, 43, 97 
range type, 310 
reachability, 263 
reachable states, 25 
realizable, 261 
recursion, 322 
recursion operator, 340 
recursive functions, 70 
referential integrity, 204 
regression analysis, 286 
regular values, 308 
relation, 204 
relational data model, 200 
relational data modi, 203 
relational instance, 203 
relational schema, 203 
relationship constraint, 97 
relationship path, 98 
relative time, 272 
representation function, 96 
rest, 67 
RG,94 
RK,97 
RN,93 
root simplex class, 101 
root simplex class, 101 
row, 64 
row constructor, 302 
RX,97 

safe net, 167 
SC,101 



schema, 50, 72, 73, 199 
schema definition semantics, 336 
schema definition syntax, 334 
schema equality, 336 
schema expression syntax, 333, 

334 
schema operator, 74 
schema universe, 333 
scope, 317 
script, 75, 337 
sequence, 64, 85, 302 
sequence constructor, 302, 304 
sequential process, 153 
serializability, 116 
set, 64 
set constructor, 302 
set restriction, 68 
set theory, 298 
set type, 304 
signature, 66, 323 
sim, 94 
similarity, 89, 274, 275 
simple singular value, 308 
simplex class, 34 
simulation, 233 
singular value, 308 
SN,93 
specification, 61 
specification language, 298 
St, 109 
stable function, 341 
stage, 219 
standard constraint, 97 
standard term, 318 
standardizing, 318 
state, 23, 39, 109, 219 
state machine, 153, 165, 218 
state space, 23, 88, 109 
static type system, 297 
store, 47,106,122 
strict function, 311 
strongly memoryless transition law, 

28, 88 
successive approximations, 341 
suffix-closed, 85 
support, 254 
surjectivity, 43, 97 
synchronization, 154 

399 

syntactical transformation func
tion 6, 335 

syntax base, 313 
system composition, 30, 118 

T, 88, 107 
t subscript, 73 
tail,67 
target system, 137 
TC,100 
terms, 69, 317 
time, 111 
time dependent, 192 
time domain, 24, 88, 107 
time-out, 157 
timed colored Petri nets, 49 
timeless actor models, 163 
Tl,87 
token, 15, 35, 109 
token identification, 55 
token priority, 159 
token time, 54, 145 
top, 104 
totality, 43, 51, 97, 121 
tr, 110 
trace, 24, 86 
transaction, 219 
transition balance, 260 
transition invariant, 234, 260 
transition law, 25, 86, 111 
transition relation, 87, 110 
transition system, 86 
transition systems framework, 84 
transition time, 55, 111 
TransTime, 60, 73 
trap, 242 
tree constraint, 45, 100, 353 
tuple, 64, 204, 302 
tuple compatibility, 307 
tuple equivalence, 307 
tuple join, 307 
tuple type constructor, 304 
type, 39 
type and value constructors, 64 
type checking, 233 
type definition syntax, 314 
type definitions, 68 
type function, 318 



type universe, 304 
type variable, 65 
typed lambda expression, 316 
typed set theory, 298 

universal complex class, 37, 93 
universal constraint, 173 

validation, 132 
value, 39 
value simplexes, 218 
value universe, 305 
valueless actor models, 162 
verification, 61, 132 

Wp,89 
weights, 238 
well-typed function declaration, 

332 
well-typed function definition, 324 
well-typed predicates, 330 
well- typed schema, 334 

400 



In this series appeared: 

91/01 D. Alstein 

91/02 R.P. Nederpelt 
H.C.M. de Swart 

91/03 J.P. Katoen 
L.AM. Schoenmakers 

91/04 E. v.d. Sluis 
A.F. v.d. Stappen 

91/05 D. de Reus 

91/06 K.M. van Hee 

91/07 E.PoU 

91/08 H. Schepers 

91/09 W.M.P.v.d.Aalst 

91/10 R.C.Backhouse 
PJ. de Bruin 
P. Hoogendijk 
G. Malcolm 
E. Voennans 
J. v.d. Woude 

91/11 R.C. Backhouse 
PJ. de Bruin 
G.Malcolm 
E.Voennans 
J. van der Woude 

91/12 E. van der Sluis 

91/13 F. Rietman 

91/14 P. Lemmens 

91/15 A.T.M. Aerts 
K.M. van Hee 

91/16 A.J.J .M. Marcelis 

91117 A.T.M. Aerts 
P.M.E. de Bra 
K.M. van Hee 

Dynamic Reconfiguration in Distributed Hard Real-Time 
Systems, p. 14. 

Implication. A survey of the different logical analyses 
"if .. "tben ... ", p. 26. 

Parallel Programs for the Recognition of P-invariant 
Segments, p. 16. 

Perfonnance Analysis of VLSI Programs, p. 31. 

An Implementation Model for GOOD, p. 18. 

SPECIFICATIEMETHODEN, een overzicht, p. 20. 

CPO-models for second order lambda calculus with 
recursive types and subtyping, p. 49. 

Tenninology and Paradigms for Fault Tolerance, p. 25. 

Interval Timed Petri Nets and their analysis, p.53. 

POLYNOMIAL RELATORS, p. 52. 

Relational Catamorphism, p. 31. 

A parallel local search algorithm for the travelling 
salesman problem, p. 12. 

A note on Extensionality, p. 21. 

The PDB Hypennedia Package. Why and how it was 
built, p. 63. 

Eldorado: Architecture of a Functional Database 
Management System, p. 19. 

An example of proving attribute grammars correct: 
the representation of arithmetical expressions by DAGs, 
p.25. 

Transforming Functional Database Schemes to Relational 
Representations, p. 21. 



91118 Rik van Geldrop 

91119 Erik Poll 

91120 A.E. Eiben 
R.V. Schuwer 

91121 J. Coenen 
W.-P. de Roever 
J.Zwiers 

91122 G. Wolf 

91123 K.M. van Hee 
LJ. Somers 
M. Voorhoeve 

91/24 A.T.M. Aerts 
D. de Reus 

91125 P. Zhou 
J. Hooman 
R. Kuiper 

91126 P. de Bra 
G.J. Houben 
J. Paredaens 

91127 F. de Boer 
c. Palamidessi 

91128 F. de Boer 

91129 H. Ten Eikelder 
R. van Geldrop 

91130 J.C.M. Baeten 
F.W. Vaandrager 

91131 H. ten Eikelder 

91/32 P. Stmik 

91133 W. v.d. Aalst 

91134 J. Coenen 

91135 F.S. de Boer 
J.W. Klop 
C. Palamidessi 

Transformational Query Solving, p. 35. 

Some categorical properties for a model for second order 
lambda calculus with subtyping, p. 21. 

Knowledge Base Systems, a Formal Model, p. 21. 

Assertional Data Reification Proofs: Survey and 
Perspective, p. 18. 

Schedule Management: an Object Oriented Approach, p. 
26. 

Z and high level Petri nets, p. 16. 

Formal semantics for BRM with examples, p. 25. 

A compositional proof system for real-time systems based 
on explicit clock temporal logic: soundness and complete 
ness, p. 52. 

The GOOD based hypertext reference model, p. 12. 

Embedding as a tool for language comparison: On the 
CSP hierarchy, p. 17. 

A compositional proof system for dynamic proces 
creation, p. 24. 

Correctness of Acceptor Schemes for Regular Languages, 
p. 31. 

An Algebra for Process Creation, p. 29. 

Some algorithms to decide the equivalence of recursive 
types, p. 26. 

Techniques for designing efficient parallel programs, p. 
14. 

The modelling and analysis of queueing systems with 
QNM-ExSpect, p. 23. 

Specifying fault tolerant programs in deontic logic, 
p. 15. 

Asynchronous communication in process algebra, p. 20. 



92101 J. Coenen 
J. Zwiers 
W.-P. de Roever 

92102 J. Coenen 
J. Hooman 

92103 J.C.M. Baeten 
J.A. Bergstra 

92104 J.P.H.W.v.d.Eijnde 

92105 J.P.H.W. v.d.Eijnde 

92106 J.C.M. Baeten 
J .A. Bergstra 

92107 R.P. Nederpelt 

92108 R.P. Nederpelt 
F. Kamareddine 

92109 R.C. Backhouse 

92110 P.M.P. Rambags 

92111 R.C. Backhouse 
J.S.C.P.v.d.Woude 

92112 F. Kamareddine 

92113 F. Kamareddine 

92114 J.C.M. Baeten 

92115 F. Kamareddine 

92116 R.R. Seljee 

92117 W.M.P. van der Aalst 

92118 R.Nederpelt 
F. Kamareddine 

92119 J.C.M.Baeten 
J .A.Bergstra 
S.A.SmoJka 

92120 F.Kamareddine 

92121 F.Kamareddine 

A note on compositional refinement, p. 27. 

A compositional semantics for fault tolerant real-time 
systems, p. 18. 

Real space process algebra, p. 42. 

Program derivation in acyclic graphs and related 
problems, p. 90. 

Conservative fixpoint functions on a graph, p. 25. 

Discrete time process algebra, p.45. 

The fine-structure of lambda calculus, p. 11 O. 

On stepwise explicit substitution, p. 30. 

Calculating the Warshal1lF10yd path algorithm, p. 14. 

Composition and decomposition in a CPN model, p. 55. 

Demonic operators and monotype factors, p. 29. 

Set theory and nominalisation, Part I, p.26. 

Set theory and nominalisation, Part II, p.22. 

The total order assumption, p. 10. 

A system at the cross-roads of functional and logic 
programming, p.36. 

Integrity checking in deductive databases; an exposition, 
p.32. 

Interval timed coloured Petri nets and their analysis, p. 
20. 

A unified approach to Type Theory through a rermed 
lambda-calculus, p. 30. 

Axiomatizing Probabilistic Processes: 
ACP with Generative Probabilities, p. 36. 

Are Types for Natural Language? P. 32. 

Non well-foundedness and type freeness can unify the 
interpretation of functional application, p. 16. 



92122 R. Nederpelt 
F.Kamareddine 

92123 F.Kamareddine 
E.Klein 

92124 M.Codish 
D.Dams 
Eyal Yardeni 

92125 E.Poll 

92126 T.H.W.Beelen 
W.J.J.stut 
P.A.C.Verkoulen 

92127 B. Watson 
G.Zwaan 

93/01 R. van Geldrop 

93/02 T. Verhoeff 

93/03 T. Verhoeff 

93/04 E.H.L. Aarts 
J.H.M. Korst 
P.J. Zwietering 

93/05 J.C.M. Baeten 
C. Verhoef 

93/06 J.P. Veltkamp 

93/07 P.D. Moerland 

93/08 J. Verhoosel 

93/09 K.M. van Hee 

93/10 K.M. van Hee 

93/11 K.M. van Hee 

A useful lambda notation, p. 17. 

Nominalization, Predication and Type Containment, p. 40. 

Bottum-up Abstract Interpretation of Logic Programs, 
p.33. 

A Programming Logic for Fro, p. IS. 

A modelling method using MOYlE and SimConlExSpect, 
p. 15. 

A taxonomy of keyword pattern matching algorithms, 
p.50. 

Deriving the Aho-Corasick algorithms: a case study into 
the synergy of programming methods, p. 36. 

A continuous version of the Prisoner's Dilemma, p. 17 

Quicksort for linked lists, p. 8. 

Deterministic and randomized local search, p. 78. 

A congruence theorem for structured operational 
semantics with predicates, p. 18. 

On the unavoidability of metastable behaviour, p. 29 

Exercises in Multiprogramming, p. 97 

A Fonnal Deterministic Scheduling Model for Hard Real
Time Executions in DEDOS, p. 32. 

Systems Engineering: a Fonnal Approach 
Part I: System Concepts, p. 72. 

Systems Engineering: a Fonnal Approach 
Part II: Frameworks, p. 44. 

Systems Engineering: a Fonnal Approach 
Part III: Modeling Methods, p. 101. 


	Contents
	11. Introduction
	12. Actor modeling
	12.1 Making an actor after reality
	12.2 Characteristic modeling problems
	12.3 Structured networks
	12.4 Net transformations
	13. Object Modeling
	13.1 Making an object model after reality
	13.2 Characteristic modeling problems
	13.3 Transformation to other object frameworks
	14. Object oriented modeling
	References and further Reading
	Exercises
	Index

