EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

A general phase-l method in linear programming

Citation for published version (APA):
Maros, |. (1983). A general phase-I method in linear programming. (Memorandum COSOR; Vol. 8301).
Technische Hogeschool Eindhoven.

Document status and date:
Published: 01/01/1983

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/1eb61f03-1581-4a56-b6bd-4cbcb9c1c030

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics and Computing Science

Memorandum COSOR 83 -01

A general Phase~I method in linear

programming

by

Istvan Maros

Eindhoven, the Netherlands

January 1983

A GENERAL PHASE-I METHOD IN LINEAR PROGRAMMING*

* %
Istvan Maros

. Introduction

The basic technique for solving LPiproblems is still the simplex method [2].
It has many variants but in practice the primal simplex methods are con-
sidered the most important. Phase I of the primal methods serves for finding
a basic feasible solution but the same procedure can also be used for gene-
rating feasible points of other problems with linear constraints, or even
for checking the comsistency of a system of linear equalities/inequalities.
Since in Phase I the objective function is not or only slightly considered
it usually does not moveltowards optimality. It would be advantageous if
Phase I were as short as possible or if it could better take into account

the real objective function. In this paper we try to contribute to both of

these aspects positively.

This paper is based on a contributed paper of the author at the Interna-
tional Workshop on Advances in Linear Optimization Algorithms and Soft-
ware, Pisa, July 1980. At the meeting the author's attention was brought
to an early publication [10] of Philip Wolfe where he first proposed the
idea of dropping condition 1.2,

* Computer Application Company, P.0. Box 146, H-1502 Budapest, Hungary;
presently at Dept. of Mathematics and Computing Science, Eindhoven

University of Techmology, P.0. Box 513, 5600MB Eindhoven, the Netherlands.

The traditional Phase I methods work under the following conditions:

1.1 The incoming variable takes a feasible value.

1.2 The feasible basic variables remain feasible after a transformation
(the number of infeasibilities does not increase).

1.3 The outgoing variable leaves the basis at a feasible level (lower or

upper bound).

These three conditions still do not determine the outgoing variable unique-
ly for a given incoming variable. If we relax condition 1.2 further possi-
bilities arise. One of them is presented in this paper. At each iteration
this algorithm maximizes the progress towards feasibility with the selected
incoming variable simply by a new rule for determining the outgoing variable

at the expense of very little extra computational work.

The idea of determining the outgoing variable is combined with an adaptive
column selection strategy for determining the incoming variable. The tech-
nique is able dynamically to take into account the objective function. This
special composite Phase I procedure requires extra computational work but
this appears to be acceétable because of the significant reduction in the
number of iterations and in the overall computational effort necessary to

obtain the answer to an LP problem.

The described procedure has been implemented in the LP package LIPROS (this
is an LP package of the R-10 small computers produced in Hungary). The com~
putational experiences are favourable but the algorithm still requires

further testing and validatiom.

The improvement in the performance is due to

- a sharper reduction of the sum of the infeasibilities
- efficient steps in the presence of degeneracy

-~ improved numerical stability.

As a result of the adaptive composite Phase I strategy usually very few
iterations are required for Phase II, in other words the search for feasi-
bility and optimization are done simultaneously. In Section 10 a generali-

zation of the procedure is presented.

Problem statement

The present day LP packages generally use the upper bounding technique. For

easy reference in the sequel we shall consider the following LP problem.
— n — —
(2.1) v; * Z a,.x, = b, i=1,...,m

or in matrix form

(2.2) Ax = b , where A = (I ,K) X

Wi <t

and any one of the rows of A can be defined as the objective function. The
gj—s are called structural variables and the ;i—s are called logical varia-
bles. The logical variable of the objective row is maximized. In addition

to constraint (2.2) variables have individual bounds of their feasibility

ranges on the basis of which they are divided into 4 types:

type feasibility range
0 x. =0
J
(2.3) 1 0<x.5u. #0
]]
2 0 £ x. £ 4=
]
3 -0 £ X, £ 4o
J

It can be seen that by simple transformations any LP problem can be brought
into this form. The transformations can be carried out during the input of

the problem.

Let us denote by B a basis to the (2.2) system and by B the corresponding

solution:
(2.4) BB =b or B=3B b.

Here b is the right-hand-side adjusted to account for the non-basic vari-

ables at upper bound:

where J is the index of such variables and aj is the j=th column of (2.2).

We need further notation:

I_ is the index set of basic variables,

B

I0 - " - of type O,

I1 - " - of type 1,

12 -" - of type 2,
and I - " - ~ of type 3.

Consequently:

(2.5) IB = IO U II U 12 U 13.

1f xj is of type O then its upper bound is defined as uj = 0., The index

set of upper bounded variables will be denoted by Iu:

We divide the basic variables into three classes according to their feasi-

bility status:

M={i:1}¢{ 13 A Bi < 0}
P={i:1ieI AB, >u.}

u i i
F—

= IB\(M u P).

M is the index set of those variables which are infeasible in the minus
direction, P is the index set of the variables infeasible in the plus
direction and F is the index set of the feasible variables. A type 3 basic

variable is always feasible and therefore belongs to F.

The measure of infeasibility of a basic solution is defined as
(2.6) w = .Z 8, - .z (8, —up).
ieM 1eP
This definition is similar to that of Orchard-Hays [9] and can be interpreted
as the negative of the sum of the violations. It is evident that w < 0. If

w = 0 then both M and P are void and the solution is feasible. Therefore

Phase I of the simplex method is to

maximize w
(W)
subject to (2.2) and (2.3).

To solve p}oblem W the basic technique of the simplex method can be used,
though it is not a conventional LP problem since the composition of the

objective function changes as the sets M and P change.

. Discussion of problem W

This discussion assumes that condition 1.2 is satisfied. Let us suppose
that a nonbasic variable xj is at level 0. We try to increase its value to
t > 0 and want to know its effect on w. To maintain the basic equalities of

(2.4) the values of the basic variables change as a function of t.

This functional relation is denoted by f(t) giving:

3.1 Bf(t) + ta, = b
or
(3.2) £(t) =g - ta,

where o5 is the updated column: aj =B ‘a..

The coordinate form of (3.2) is

(3.3) fl(t) = Bi - taij .

If we are at a basis B for which w < 0 the following lemma holds.

Lemma 3.!. w can be improved by increasing xj only if

(3.4) d. = } oo -] o, <0,
J ieM iep *J

Proof. The proof is straightforward. Let us suppose that t > 0 is small
enough so that sets M and P remain unchanged. In this case the change of

w is given by

Aw

L OlE () - £.(01 - | ([£(0) - u) - [£,0) - ud}=

ieM ieP

ieM J ieP 3
= —t(z A, . = 2 a..) = -td. .
iem *J iep I J

Hence dj < 0 is necessary for Aw > 0.

If sets M and P remain unchanged only for t = O then the basis is degenerate

and - because of condition 1.2 = xj could only enter basis at the level zero.

If a nonbasic variable moves in a negative direction (a type | variable
coming in from upper bound or a type 3 variable entering with negative

value) then dj > 0 is necessary for Aw > 0. a

Step one of an iteration in Phase I is checking the dj values of the non-
basic variables. There may be many candidates with the correct sign of dj
and a decision must bé made to select one of them. This selection heavily
influences the mumber of iterations needed to obtain a solution to the LP
problem (2.1). Some details of the selection tcalled pricing) are discussed

in section 8.

Now we suppose that the incoming variable has been selected and we want
to investigate the movements of the basic variables as a function of the
magnitude of the incoming variable. For simplicity we drop index j from

(3.3) and use the form
(3.5) fi(t) = Bi - tai .

We are interested in the changes of the feasibility status of each of the
basic variables and therefore exclude type 3 variables from further consi-

derations and restrict ourselves to the set
= I .
I IB\ 3

A variable in I is negative-infeasible if its value is negative and a va-
riable in Iu is positive-infeasible if its value is greater than its upper

bound. Using the following notation

_ 0 ifZ=20
7 = .
Z if 2 <0
+ z 1if Z >0
zZ =
0 1£Z2=0, '

the measure of infeasibility as a function of t can be expressed in the

following way:

(3.6) w(t) =) [£.(0]1 - 7 [f(0 - “i]+ -
iel * iel
u
- +
=] (B, -ta]7 - 7 8 -te,-ul.

iel iel
u

Fig. !
Fig. 2

From this form it is clear that w(t) 1s a continuous and pieceﬁise linear
function. It has break pqints at the t values where the feasibility status
of a least one of the variables changes. It is also evident, that for

t = O,W(t) gives the w of (2.6). In this sense w(t) can be considered as a

function-wise extension of w.

In (3.6) fi(t) contributes to the first sum while fi(t) < 0, that is while
i e M. Similarly for i ¢ Iu, fi(t) - ug contributes to the second sum of
(3.6) while i € P. The feasibility status of a variable changes when it

crosses a boundary of its feasibility range. We denote by TZ- the value of
i

t at which the variable i reaches its lower bound (equal to zero) and by
Tui the value of t at which the variable i reaches its upper bound in the
case of_i € Iu.

Since we are interested in non-negative values of t (the incoming variable

moves in a positive direction) the break points are defined by

3.7) ili = Si/ai >0 (ai # 0)
1 €1l
or T, =0 if B. =0 Aqa, >0
Q.i 1 1
and
(3'8) Tu. = (Bi - ui)/ai >0 (a]-. # O) /
i ,
1 el
u
or T =0 if B, =0 Aa, <O
u. i i
b
If u, = 0 then TQ‘ = Tu-' Of course there are many cases when some of the
i i

Tg. and Tu- values may be identical, that is the break points may have
i i
"multiplicity". Figures 1 and 2 give examples of how the break points are

defined.

- 9.1 -

£ (t)

di<0

fig.2.

fig.

fig.

3
4

- 10 -

4, Discussion of w(t)

Now we relax condition 1.2 and allow feasible basic variables to become
infeasible. We want to determine a value for the incoming variable which
maximizes w(t). It ﬁill be shown that the function w(t) has some desirable
properties so that such a maximization can easily be carried out. This

maximization is achieved by a simplex~type basis change.

Recall that the value of the i~th basic variable as a function of t is

expressed by

fi(t) = Bi - tui

and therefore the feasibility of the i-th basis variable depends on its

type, the value of Bi and the sign of @ . The contribution of fi(t)

to w(t) is illgstrated in Figures 3 (where o, > 0) and &4 (where a, < 0).
The function fi(t) is represented by a thin line and its contribution to

w(t) by a thick line. The values Tz. and Tu- are those defined in (3.7)
i i

and (3.8).

All other cases can be derived as special cases of one of these figures.

The contribution of fi(t) to w(t) is in all cases a concave function. Since

w(t) is the sum’ of these contributions it is also - as a sum of concave

functions - a concave function.

Now we are ready to discuss w(t), and consider how it behaves at the break
points. The first change in the feasibility status of one of the basic va-
riables occurs when the value of t reaches the smallest value among those

defined by (3.7) and (3.8). For use later these values are sorted into as-—

- 10.1 -

type~ 0

BJ type-1
Ui\ | /

—~

- 11 -

cending order:

(4.1) YO

1A
(nd
A
A
L

where Q denotes the number of the defined values.

Since we are in Phase I it is true that w(0) < 0. Increasing the value of

t from O to tl means that w(t) increases at a rate of

(4.2) r, =< (1 oa, -) ai>

. i .
1eM 1P

giving an increase of r

151 1 1

the feasibility status of at least one of the variables changes. Let the

> 0 because r, = —dj, see Lemma 3.1. At t = ¢t

variable which defines £t be denoted by il. If a, < 0 then fi (v)
1 1

reaches one of its bounds from below thus index i1 moves either from M

to F or (if il € Iu NnF) from F to P. In both cases, from t, onwards, the

1

slope of w(t) will be r, = r, + a. as can be seen from (4.2). Since a,
2771 i T 1
is negative this means that the slope of w(t) decreases by ‘ai | that is
1
Y, =1, - la. . If . > 0 then f. (t) reaches one of its bounds from
2 1 i i iq
above thus index il moves either from P to F of from F to M. In both cases

- as can be seen also from (4.2) - the slope of w(t) will be T, =71, ~ di
‘ 1

which can be rewritten as r, =r; - |ai |. Thus we have obtained that in
1

any case the slope of w(t) decreases by |ai |. Since the same arguments are
valid for any t k =2,...,Q) it is true that at any break point the slope
of w(t) decreases by \aikl giving Tpep = T T laik|. Thus we have proved
the following: ‘

ig. 5
ig. 6
ig.7

- 12 -

Theorem 4.1. w(t) is a piecewise linear concave function with break points

tk (k = 1,...,Q) as defined in (4.1) and the slope of its (k+ 1) st inter-

val 1s
T =r - ’a. I k=1,...,Q.

In the case of coinciding points the length of an interval may be zero.

Note that in the course of the proof the uniqueness of the t, values was

not exploited.

Some characteristic shapes of w(t) can be seen in Figures 5, 6 and 7.

Figure 5 shows a typical curve. In Figure 6 w(t) reaches its theoretical

maximum. Figure 7 shows an interesting phenomenon. A value of £, = 0 means
that we are at a degenerate basis (since either £ = Bi /o:i =0 or

1 "1
£, = (Bil - uil)/mi1 = 0) and the value \aili is such that r, =, - laill <

< 0, giving that w(t) < w(0) for any t > 0, that is degeneracy and the
magnitude of Iai I prevent an increase in w(t). This case will be generally
1

analysed in Section 5.

When attempting to maximize w(t) we have to take condition 1.1 into account.
It requires that the incoming variable has to be feasible. If the incoming
xj variable is of type-l it may happen that for the & point which maximizes
w(t), t, 2 uj will hold. This can be considered as a favourable special case
from the viewpoint of the iterations since now we don't go to the maximum
of w(t) but stop at t = uj and make an iteration without changing the basis
simply by putting xj to its upper bound. At such an iteration no new eta
vector [9] is generated which is computationally very favourable and there-
fore such steps - called type—~l iterations -~ are preferred. Keeping in mind

this situation the following theorem can be stated:

wit) |

wi(t)

-12.1 -

ty

fig.5.

~

(9%
.

fig.7.

Theorem 4.2. If we are not faced with a type—1 iteration then w(t) attains

its global maximum at a break point t

tq and this defines such a change
of the basis where the outgoing iq*th variable leaves the basis at a fea-

sible level and the incoming variable enters at a feasible value.

The first part of the theorem follows from the fact that w(t) is a piece~
wise linear concave function (Theorem 4.1) while the second part is true
because each e defines a change of the basis and the outgoing variable has

a feasible value at e since tk is identical with either a TQ. or a Tu

i i
value and at these points the corresponding basic variable is always at a

~

feasible level [see (3.7) and (3.8)1].

Having determined points & and the corresponding values we easily can find
the global maximum of w(t), since it is reached at a point where the sign

of the slope of w(t) changes. This can be formulated by the following lemma:

Lemma 4.1. Set r, = —dj > 0 and compute the following recursion:

(4.3) T =r - la, | k=1,2,...

iy
The maximum of w(t) is defined by index q for which

r > 0
(4.4) 4

rq+] <0

holds.

From now on q will be used to index that t value which defines the maximum

of w(t) in the sense of Lemma 4.1.

- 14 -

For use later we still need the optimum value of w(t). This also can be

computed by a simple recursion.

Lemma 4.2. Set ty = 0 and compute

(4.5) . w(tk) = W(tk-l) + (tk - tk-l)rk k=1,...,q9.

w(tq) will be the required value as can easily be verified on the basis
of Theorem 4.1 and the definition of £ and T -
Note that if we take q = | we obtain the traditional method for determining
the outgoing variable. In this respect the described method really can be

condidered a generalization of the traditional one. This means that at any

time when we have q > | we make a locally stronger iterationm.

If the incoming variable enters the basis moving in a negative direction
then we simply substitute o, instead of a; in the previous discussion and

everything remains valid.

Since from this procedure DEcent Leaps can be expected in PHase I, for

further reference we shall call it DELPHI.

. Degeneracy

A basis is degenerate if at least one of the basic variables is at ome of
its bounds. The danger of a degenerate basis is that the basic variables

at bound with the "wrong" sign for a; may block the incoming variable which
can hence only enter the basis a; level zero so making no progress towards
feasibility/optimality and creating the possibility of cycling. Such a
blocking can particularly easily occur with the traditional Phase I methods

which satisfy condition 1.2.

- 15 -

The situation may be different if we relax this condition and use DELPHI.

Now degeneracy is reflected by :

(5.1) O0=¢t, = ... =¢t, <t £ ... =5 ¢t

(5.2)

r =r, - % la, | =0 (
q+li 1 p=1 1p ?

taking into account that r, = -dj, (5.2) can be rewritten as

(5.3)

% Ia. l 2 -d, .

p=l p
If for this q, it is true that q > %, then tq > 0 as can be seen from (5.1)
and despite of the presence of degeneracy a positive step can be made thus
making a definite improvement in the measure of infeasibility. At the same
time the number of infeasibilities may increase. This is however not con-
sidered an unfavourable situation because now - as a result of the trans-
formation - some of the feasible zeroes may be replaced by infeasible non-
-zeroes thus decreasing the degree of degeneracy and promoting the sub-

sequent non-degenerate iterations.

If q £ £ then tq = 0 and degeneracy prevents an increase in w(t) so the
incoming variable enters the basis at zero. A simple case of this phenomenon

was displayed in Fig. 7.

- 16 -

The above discussion can be summarised as:

2
Theorem 5.1. If) |ai | < Idj‘, where £ is as used in (5.1), then by
p=1 P
changing the basis as defined in Theorem 4.2 the measure of infeasibility

—~ despite of the presence of degeneracy - will be improved by
(5.4) D = w(tq) - q(0) > 0.

In any other case the progress will be zero.

It should be noted that while the number of infeasibilities may increase
in certain cases the measure of infeasibility behaves monotonically while
maximizing Y(t) at each iteration. It is also true that the number of in-
feasibilities méy drastically decrease in one iteration which is quite often
the case though type-0 variébles can usually be made feasible only one by
one. In other words: there is no danger in allowing the free movement of

the basic variables.

Computational experiences with DELPHI were especially favourable in the

case of degenerate problems as is shown in Sectiom 7.

Computational aspects

As it has already been explained the algorithm DELPHI determines the outgoing

variable for a given incoming variable by maximizing w(t). Some additional

features and requirements of this method are also to be noted.

- 17 -

6.1. Numerical stability

One of the reasons for occasional numerical troubles in the simplex method

is the improper size of the pivot elements. Using the traditional pivot

selection criterion this can hardly be overcome: if the minimum of the
_computed quotients is unique then there is no choice, if it is not unique

then the quotient with a better-sized pivot element can be chosen,

Using DELPHI we are given a much greater flexibility in this respect. If
the pivot corresponding to tq is unacceptable because of its size then =
usually losing optimality of w(t) - we can go one step back if q¢ > | and
consider the pivot for q := q- 1. This procedure can be repeated if neces-
sary until q=1. On the other hand q can also be exceeded in the course of
the search for a proper pivot element giving q := q+ 1 until q £ Q and
while w(tq) 2 w(to). In some cases it is‘worth losing optimality in w(t)
for the sake of finding "good" pivots.

6.2. Multiple pricing

Multiple pricing is a frequently used technique in LP packages for its
economy in reducing the number of accesses to the baékground storage. Sub-
optimization is usually carried out using the principle of greatest change

of the objective function.

The procedure DELPHI can easily be adjusted to this framework. Since the
updated candidate columns are now available, DELPHI can be applied to each
column. This determines not only the outgoing variable but also the progress

- by Lemma 4.2 - that can be achieved enabling us to select the most fa-

vourable candidate.

6.3.

6.4.

- 18 -

Memory requirements

DELPHI requires the storage of the calculated Ti_ and Tu- values. The
i i

maximum number of these values is 2(m- 1) because. for each row, except
for the objective row, at most both Tli and Tui are defined. At the same
time a permutation vector is also to be stored to register the correspon-
dence between € =S of (4.1) and the Tzi and T : values.

Arrays of this size are available in the so-called I region which is active

during pricing but inactive when DELPHI works.

Computational effort

Compu ting the Tl and Tu values according to formulae (3.7) and (3.8)
i i
doesn't mean much extra computation since most of these quantities are

computed when the traditional method is used. Computationally the only

difference is that now these values are stored.

The next step is sorting the stored values as required by (4.1). The pur-
pose of this step is to enable the direct performance of recursions (4.3)
and (4.5) to determine the maximum of w(t). Sorting all the Q items may be

quite expensive if Q is large. Fortunately, it is not necessary to do that

. all the time. From observation usually only a few of the sorted t; values

are used to find the maximum of w(t). Therefore it is best to use a sorting
scheme which in step i ‘gives a correct ordering for the first i items. Si-
multaneously with step i of the sorting, step i of the recursioms (4.3)

and (4.5) can also be computed and when the stopping rule (4.4) is satis-
fied the maximum of w(t) is found and there is no need to sort the remainder

of the t:i (i =q+1,...,Q values. H.J. Greenberg has proposed a one-pass

-19 -

scheme [4] for the reduction of the computational effort of finding the
maximum of w(t). Both methods are only heuristic remedies since they don't

give any saving when the worst case occurs (when we need all the Q items).

Experiences with DELPHI

DELPHI has been implemented in LP package LIPROS in such a way that the old
subroutine PIVOT 1 has been replaced by DELPHI. (This was slightly disadvan-
tageous for DELPHI because it was obliged to work with candidate columms
that had been selected by an algorithm tuned for PIVOT 1.) LIPROS is an LP
package for the R-10 computers produced in Hungary. These computers are
small (main store is up to 64 Kbyte) but their processor is relatively fast.
Therefore procedures which work mostly in memory and require little commu-
nication with the background storage are to be preferred. This is the case
with DELPHI which doesn't require extra I/0 operations but can save many

of them by a sharp reduction in the number of iteratioms.

In the course of the comparative runs we found that the average time per
iteration was practically the same for PIVOT | and DELPHI (the actual dif-
ferences were within a 6% range). In Table | we present some of the run
statistics which we found typical. The runs were carried out under identical
circumstances (run parameters, etc.) for both PIVOT | and DELPHI. In each
case the starting basis was the all-logical basis. The tableau shows the
number of iterations in Phase I. The size of each problem is expressed by

m*n, DOD = degree of degeneracy of the starting basis as a percentage.

- 20 -

Problem
PIVOT 1 DELPHI Remark
o .
N size
1. 62%70 43 34 25 equalities among
constraints
2. 61x10 42 12 The all-logical basis
was infeasible in every
variable
3. 100x130 97 74 50 equalities among
constraints
4, 170%120 unsolvable 278 60 upper bounded
variables
DOD = 967
5. 237x184 not solved 107 55 upper bounded
variables
DOD = 99.57

Table 1.

- 21 -

In Problem 2 all the constraints were of "2" type. The measure of infea-
sibility rapidly improved while the number of infeasibilities increased a
little in two cases,however in other cases it decreased drastically (as
much as 10~ 20 infeasibilities were removed in one iteratiom). In general
it seemed that the potential advantages of DELPHI were really effective in

this example more than for the average problems.

Problem 4 was unsolvable with PIVOT | due to the unfavourable accumulation
of round-off errors (with 4~byte floating point arithmetic) as was de-
clared by LIPROS at about iteration 500. DELPHI also had troubles with

this very degenerate problem (the phenomenon of Fig. 5) but at itefation
205 it could find a positive step forwards at the "expense' of increasing
the number of infeasibilities from 1 to 5. After that it was a straight-
forward progress until the termination at step 278. Numerical inaccuracies
didn't disturb the process (see 6.1 Numerical stability) and the result was

accurate.

Problem 5 was solved only by DELPHI. It gave an interesting and character-
istic experience. Even after applying a CRASH pass the new basis was
highly degenerate. DELPHI could considerably reduce both the-measure and
the number of infeasibilities within few steps. Then came an "idleness':
for 60 iterations only degenerate steps were made without any progress.

At iteration 90 the number of infeasibilitiesvsuddenly soared from 1 to

97 while w(t) made a positive step ahead. The zero structure of the right-
-hand-side was practically destroyed and after that very efficient steps

were made until iteration 107 when Phase I terminated.

8.

-22 =

ADACOMP, an adaptive composite Phase 1 procedure

DELPHI has proved to be a powerful tool for determining the outgoing va-
riable in Phase I of the simplex method. Its power is first of all in the
significant reduction of the number of iterations in Phase I. It has long
been known that the prope; selection of the incoming variable also heavily
influences the total number of iterations required for obtaining a solu-
tion to an LP problem. There are several approaches which attempt to make
good column selection: [1], [5] and others. These methods supply extra
information at extra computational effért. One of the possible ways of
reducing the total number of iterations is by considering the real objec—
tive function in Phase I. The purpose of this approach is that the first
feasible point is as good as possible in the sense of optimality thus

possibly reducing the number of steps required in Phase II. The usual

way of doing this can be described as follows.

T . . . oy . ..
Let z = c'x be the true objective function which is to be maximized, and
w be the negative of the sum of infeasibilities. Then the composite sum of

(8.1) s = w +)z

is formed with some A > 0 value and s is maximized. This means that matrix
A is priced for s. When no column can be selected the solution is s—optimal.

If in the s-optimal solution w is zero then we are at an optimal solution

of the original problem (the solution is z-optimal). If w < O then feasibi-

lity of the problem is still to be decided. To do this X is set to zero and
A is priced for w resulting in a pure Phase I procedure. If the problem has

no feasible solution then an unlucky choice of A and the effort to work with

T v o e e o+ e o+ s o v rp————— e~ e e

- 23 -

s of (8.1) as long as possible may delay the detection of infeasibility
because there may be columns for which there is no improvement in w but
due to the relative magnitudes of w, A and z these columns will be can-
didates if we price A for s (since s = w + Az). If the problem is feasi-
ble then in the course of the pure Phase I procedure the gain in the true
objective function may be lost. Without further analysing the possible
disadvantages of this procedure we simply refer to the fact that in the
literature only very limited information is available on the success of
this approach though most of the large LP systems are equipped with this

composite facility.

We obtained quite favourable experiences with an adaptive composite pro-
cedure which has certain similarity with the method just described. How-

ever there are two points in which our method is different:

i) we allow a column to be a candidate if it shows improvement
both for w and s of (8.1)
ii) we change the) weight factor dynamically in accordance with

the actual situation.

Let us denote by zj the relative cost of column j if A is priced for z (the
true objective function) and by dj the relative cost if A is priced for w

which is the same as defined in (3.4).

We describe the adaptive composite procedure - called ADACéMP - in a mul-
tiple pricing environment. Now NS will denote the maximum number of columns
to be selected in multiple pricing. At the beginning of the iteratioms A
will be given a non-negative initial value. During a major iteration (column

selection) if there are more than Ns candidates with respect to w then a

- 2 -

secondary selection rule is entered. This gives preference to those columns
for which dj + Azj is more negative. The suboptimization can be performed

using any of the known principles.
In the course of a major iteration two counters are used: L] counts the

number of negative dj values and L, counts the number of those negative

2
d.-s for which d. + Az, < 0.
J J J

1f Ll = 0 then the problem is infeasible (no repricing is necessary).

For the next major iteration the value of A will be defined in the follow-

ing way. We use p to denote p = L,/L,. Clearly 0 < p < | holds. The inter-

2°7

val [0,1] is divided into three parts (as shown below)

1 2 3

A is denoted by\i and is computed from

such that [0,1] = R, u R, u R, and the R.-s are disjunct. The new value of

1If o e R, then A= gl(l)
(8.2) if peR, then A= g, (1) = A
if o e Ry then A= g3(l).

Here gl(x) and g3(x) are functions for which 0 < X = gl(k) < X and

0< A<= g3(k) hold.

(8.2) can be interpreted so that when most of the candidates with respect
to w are also candidates with respect to s (p € R3) then - in this favour—
able situation - movements in the direction of the true objective function

can be given greater weight and this is achieved by increasing the value of).

- 25 -

In the opposite case optimality becomes less important than feasibility
and this is expressed by decreasing A. The second line of (8.2) means
that the two components of s are well balanced and there is no need for

changing A.

It is easy to see that by (8.2) we created a great deal of flexibility.

The actual choice of the parameters {(sets R R, and R3 and functions g

12 2
and g3) gives the opportunity of tuning the algorithm and adjusting it
to the problem to be solved. The initial value of X\ is also a run para-

meter,

It should be noted that ADACOMP requires some extra computations. In addi-

tion to dj’ zj may also be needed; this can be computed by the inner product

~

(8.3) 2, = Ta

where II is the simplex-multiplier of the true objective function. I can be

obtained from

T -1
(8.4) n = eVB .

Here e, denotes that m dimensional unit vector which corresponds to the

true oéjective function. In computer implementations (8.4) is usually
computed by a BTRAN [9] operation. This can be done concurrently with

the determination of the simplex multipliers of w as a BTRAN on two vectors
thus requiring'no extra pass of the eta~file. (The eta-file is the mathepat-
ical equivalent of B_] and is usually stored on a secondary storage). The
(8.3) inner product is only computed for those non-basic variables which

require the composite evaluation.

- 26 -

. Experiences with ADACOMP + DELPHI

In the LP package LIPROS we have combined DELPHI with ADACOMP. In this way
all the favourable features of DELPHI can be effective. As was mentioned

earlier LIPROS is not very sensitive to some extra computations.

DELPHI tends to sharply reduce the number of steps in Phase I. ADACOMP was
expected to increase the number of iterations in Phase I but to considera-
bly decrease the number of iterations in Phase II so that the total number

of iterations and also the total computational effort would be decreased.

We made comparative run of LIPROS with DELPHI and LIPROS with ADACOMP +

DELPHI. In addition, we solved one problem with different large LP packages.

Tests were carried out in a multiprogramming environment under different
loading circumstances and therefore the CPU times do not express perfectly
the total computational work of the LP solution but give a good indication

of the tendencies.

During the test runs the free parameters of ADACOMP were fixed as follows:

- starting value for X was set X = 0.5

]

- R, = [0,1/3); R, = [1/3,2/3); Ry = [2/3,1]

- g, (V) =1/2 g3 () = 2).

In Table 2 we present the run statistics of 3 problems solved with 3 dif-
ferent values for Ns. The problems are identified by their sizes, row by
column (m by n). IT denotes the total number of iterations, IT (PH-I)
denotes the number of iterations in Phase I and CPU denotes the CPU time.
The unusually large execution times are due to the computer. Its processor
is. fast relative to its communication with the background but not relative

to the processors of other well-known small computers.

- 27 -

N 4 N =6 N 8
S s S
DELPHI DELPHI DELPHI DELPHI N DELPHI DELPHI
+ +
ADACOMP ADACOMP ADACOMP
Problem
41 x 60
1T 76 64 79 54 66 37
IT (PH~-I) 49 57 36 47 42 34
CPU 3'28.9" 3'03.8" 3'33.1" 2'16.3" 2'37.7" 1'37.5"
Problem
62 x 70
IT 55 30 45 31 35 31
IT (PH-I) 34 29 37 29 31 29
CpPU 1'33.8" | -1'07.0" 1'09.6" 1'08.3" 0'59.8" 1'04.3"
—
Problem
100 x 130
1T 136 83 145 84 125 88
IT (PH-I) 74 75 75 62 76 76
CPU 7'29.0" 3'36.9" 6'55.5" 4'12.1" 5'46.8" 4'15.9"
1

Table 2.

10.

- 28 -

It is noteworthy that when ADACOMP was used only very few steps-were

left for Phase II. Other test runs with larger problems also support this
observation, sometimes with much larger savings in the number of iterations.
Since those problems were only occasionally solved we do not have much

systematic experience with them. In fig. 8 we show a tipical behavior of

the trueobjective function in Phase I.

We are not in the position of having easy access to different compucers.
However, with the kind assistance of colleagues at other inst’tutes, problem
62 x 70 was solved with different packages under identical run parameters
with NS = 4., Since the computers were different we give only the total num~

ber of iterations in Table 3.

It would be incorrect to conclude that LIPROS is so powerful compared with
other packages. We simply consider it a fortunate case. Still further

experimentation would be necessary to be able to make a stronger statement

in this respect.

A generalization of DELPHI

DELPHI is based on the relaxation of Condition 1.2. An even more general
case can be obtained if both of the Conditions 1.1 and 1.2 are relaxed.
This means that we allow not only the old basic variables but also the

incoming variable to take an infeasible value.
The incoming variable can be infeasible in two ways:

- with a value greater than its upper bound,

- with a negative value while it is not a type-3 variable.

Type—3 variables are excluded from the further discussion because they

enter the basis always at a feasible level.

- 28.1 -

o—e D
opﬁn\uf& O D +A

~200 T T T T T T T ~— 2 " -y ™ —— T + T
M 21 31 4 St 61 7t 81 9t 101 W 121 131 %l 15 16T

fig. 8

Movements of the true objective function in Phase I. D denotes the run
with DELPHI, D + A is the run with DELPHI + ADACOMP.
At SF solution becomes feasible. (The first feasible solution of D + A

is much closer to the optimum). Problem size is : 150 x 200.

- 29 -

LPS

MPS

LIPROS

LP-400

LIPROS

(IBM/DOS)
(IBM/0S)
with DELPHI
(ICL)

with DELPHI + ADACOMP

81

56

55

42

30

Table 3.

- 30 -

Let us suppose that a non-basic variable is at level zero and we want to
change its value. Let us denote by Wj(t) the corresponding infeasibility
function in a similar sense as in Section 3. It can easily be seen that

the measure of infeasibility has the following form now:

- +
(10.1) W.(t) = . - ta..) - ., - ta.. - u.) + G.(v)
] iZI €1 7 i) iZI Bi ™5 J
u
where
t if £< 0
(10.2) G.(t) =< u.-t if £t > u.
J] J
0 otherwise .

(10.1) can be written as

(10.12) W) = w(®) + Gj(t);

where w(t) is as defined in (3.6).

Lemma 10.1. Let us suppose that Xj is a non-basic variable and is at level
zero. Wj(t) can be improved by changing the value of Xj if

I. moving Xj in a positive direction, then

(10.3) d. =) a,.=-) a.,.<0,
] ieM ieP H

IT. moving xj in a negative direction, then

(10.4) d, =) a..-) a,,>1
I iem M jep M

holds.

- 31 -

Proof. In case I Xj moves in a positive direction that is t > Q in (10.1).
Since Gj(t) =0 for £t >0 (and t small enough), Wj(t) of (10.1a) reduces

to w(t) of (3.6) and so (10.3) to Lemma 3.1.

If‘xj moves in a negative direction then the change of Wj(t) is given by
(10.5) AW, = W.(t) - W.(0) = -td. + AG, = -td. + G.(t)
] J(J()]]]] ’

since Gj(O) = 0. Taking into account that Gj(t) =t if t < 0, (10.5) can

be rewritten as

AW. = -td. + ¢,
] J

Here dj > 1 is necessary for ij > 0. This completes the proof.

From (10.2) it is easy to verify that Gj(t) is a concave function for

—o < t < +o,

If xj moves .away from O then the values of the basic variables change ac-
cording to (3.2). In the course of this their feasibility status can also
change (namely when they cross the boundary of their feasibility range).
The thresholdvalues for t can be determined from (3.5). We investigate

the two cases, when t 2 0 and t < 0, separately.

t z0.

The values of t at which the basic variables reach their respective boun-

daries are those defined by (3.7) and (3.8). In addition, there is one more

t value, namely that one at which the incoming variable reaches its upper

bound (if such exists):

This defines a break point with a = 1 (since uj = uj/l).

- 32 -

II. t < 0.

In this case the break points - as can easily be seen - are defined by

TZi =8,/a; <0 (a; #0)
(10.6) iel
~ or T =0, 1if B, =0 Aa. <0
'Q’i 1
and
T = (8. —u.)/a. <0 (a. # 0)
A ui 1 1 1 l .
(10.7) ie Iu
or T =0, if B, =u, Ao, >0
u]-_ 1 1
Here also appears an additional break point: T2 =0, with a, = 1, because

of the lower bound of the incoming variable. Remarks made at (3.7) and

(3.8) apply too.
The break points of case I and case II are sorted into the following order

(10.8) 0<st, € ... ¢t
and

(10.9) t < ... ¢t, =0,

Now the analogue statement of Theorem 4.1 is the following:

Theorem 10.1. Wj(t) is a piecewise linear concave function with break points

(10.8) and (10.9). If we denote T

]

—dj then the slope of the (k+ 1)st

interval of Wj(t) is in case I

(10.10) Yol T T T |ai | k=1,...,q »
k

and in case II

(10.11) Tl =T ¥ |ai | k= 1,...,Q, -

- 33 -

Proof. The proof of the theorem can be reconstructed by using arguments

similar to those at Theorem 4.1. g

The shape of Wj(t) is in case I similar to the basic patterns of w(t)
in Figures 5, 6 en 7, while in case II Wj(t) is the reflection of w(t)

to the vertical axis with the remark that £, = 0 holds always.

The analogues of Lemma 4.1 and Lemma 4.2 can also be stated for finding

the mximum of Wj(t). Details of them are not given here.

Theorem 4.2 - without the remark concerning the type~l! iterations - is

also valid here.

It may be instructive to see how the search for the maximum of Wj(t) can

g0 beyond the break §oint defined by the upper bound t, = uj of the in-

k

coming variable. The k-th break point is preceded by the k-th linear in-

terval with a slope T - The slope after this point is

(10.12) LT 1

since @, = 1. If Tepr > 0 then the (4.4) stoppingrule isstillnotsatisfied
k

and the maximum of Wj(t) is not achieved. From (10.12) T > 0 means that

(10.13) r > 1.

In other words: if the slope of wj(t) till t = uj doesn't fall below |,
then the maximum of Wj(t) is achieved at an infeasible value of the in-

coming variable.

It is worth seeing the analogy between (10.4) and (10.13), that is the

conditions for the incoming variable to enter the basis at an infeasible

level.

- 34 -

The Phase I procedure, based on the maximization of Wj(t), is a genera-

lization of the procedure DELPHI and is called DELPHI-A.

There are no computational experiences with DELPHI-A available since

DELPHI-A has not been implemented yet.

Acknowledgement

The author wishes to thank A. Heppes for his attention and helpful sugges-
tions throughout the preparation of this paper, and Susan Powell for im-

proving the readibility of it.

£3]

4]

€53

(6]

L7

£el

L9l

(10]

- 35 -

References

[1] Benichou et al.: "The efficient solution of large-scale linear
programming problems'. Mathematical Programming Vol. 13
(1977) No. 3.

[2] Dantzig, G.B.: Linear programming and extensions. Princeton Univ.

Press, 1963.

Greenberg, H.J.: "Pivot selection tactics"”, in Greenberg, H.J. ed.
Design and implementation of optimization software. Sijthoff

and Nordhoff, 1978.

Greenberg H.J.: Private communications. Pisa, July 1980.

Harris, P.M.J.: "Pivot selection methods of the devex LP code",

Mathematical Programming. Vol. 5 (1973) No. 1.

Maros, I.: "Adaptivity in linear programming' (in Hungarian), Alkal-

mazott Mathematikai Lapok 2 (1976).

Maros, I.: "A non-standard Phase I method", SZAMKI Tanulmanyok,

Budapest, 1980/7.

Maros, I.: "On determining the outgoing variable in Pase I of the

simplex method'" (in Hungarian). Alkalmazott Mathematikai Lapok,

6 (1980).

Orchard-Hays, W.: Advanced linear programming computing techniques,

McGraw, 1968.

Wolfe, P.: "An extended composite algorithm for linear programming',

The RAND Corporation, P-2373, 1961.

- 36 -

SUMMARY
A GENERAL PHASE-I METHOD IN LINEAR PROGRAMMING

I. Maros

Phase I of the simplex method finds a basic feasible solution to linear
programming (LP) problems. Phase I procedures can also be used for gene-
rating feasible points of other problems with linear constraints, or even

for checking the consistency of a system of linear equalities/inequalities.

The traditional Phase I methods work under the following conditions:

1.1 The incoming variable takes a feasible value.

1.2 The feasible basic variables remain feasible after a trans-
formation (the number of infeasibilities does not increase).

1.3 The outgoing variable leaves the basis at a feasible level

(lower or upper bound).

By relaxing condition 1.2 new possibilities arise though still within the
frame of the simplex method. This paper presents a procedure based on this
relaxation from which more efficient iterations can be expected in Phase I
- especially in the presence of degeneracy - simply owing to thé new way

of determining the outgoing variable. This procedure - called DELPHI - is
then combined with an adaptive composite column selection strategy - called

ADACOMP - for determining the incoming variable. Though some extra compu-

- 37 -

tational effort is required this seems to be outweighed by the more fa-
vourable overall performance of the program based on the described method.

This improved performance is partly due to the theoretically better nu-

merical stability.
Some computational experiences are also reported.

In the last section DELPHI is further generalized by relaxing condition

1.1 too.

