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Abstract

We consider a Jackson network with two nodes, with no exogenous input, but instead
an infinite supply of work at each of the nodes: whenever a node is empty, it processes a job
from this infinite supply. We obtain an explicit expression for the steady state distribution
of this system, as an infinite sum of product forms.

Keywords: Queueing, manufacturing, communication networks, Jackson networks, Markovian mul
ticlass queueing networks, infinite virtual buffers, steady state, distributions, compensation approach.

1 Introduction

We consider a Jackson network with two nodes, numbered i = 1,2. Processing times at
the nodes are independent and exponentially distributed with rates /-li, and jobs completing
processing at node i move to node 3 - i with probability Pi and leave the system otherwise.
There is no exogenous input to the system. However, whenever one of the nodes is empty,
it will process a job from an infinite supply of jobs. This system can be described by a two
dimensional Markov jump process, X(t) = (X I (t),X2(t)), the state space of which consists of
the pairs of nonnegative integers (nl' n2) where nl indicates the number of jobs at node 1, and
n2 indicates the number of jobs at node 2. Whenever ni > 0 node i will process one of the
jobs at the node. This introduces the transitions:
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(ni,n2) ---+ (ni -1,n2) at rate J.Li(1- Pi), ni > 0,

(ni, n2) ---+ (ni + 1, n2 - 1) at rate J.L2P2, n2 > 0,

(ni, n2) ---+ (ni, n2 - 1) at rate J.L2(1 - P2), n2 > 0.

(1.1)

Whenever node i is empty, it will process a job from its infinite supply, at the same rate J.Li,
and upon completion this job will move to the other node with probability Pi, and leave the
system with probability 1 - Pi. This introduces the additional transitions:

(0, n2) ---+ (0, n2 + 1) at rate J.LiPi,

(ni,O) ---+ (ni+1,0)atrateJ.L2P2, (1.2)

Note that jobs from the infinite supply of each buffer are indistinguishable from jobs queued
at the nodes, but queued jobs have preemptive priority over jobs in the infinite supply. The
transitions (1.2) constitute arrivals into the system.

Figure 1: A two node Jackson network with infinite supply of work

The two nodes in this system are processing jobs all the time. Hence there are four inde
pendent Poisson streams in this system: Jobs depart the system in two Poisson streams with
rates J.L1(1- Pi), J.L2(1 - P2), and jobs arrive at the two nodes in two Poisson streams, with
rates f..liPi, J.L2P2. The queue at node i therefore behaves as an MIM/1 queue, with arrival rate
J.L3-iP3-i and service rate J.Li. The system is stable if

J.L3-iP3-i
Pi = < 1,

J.Li

with marginal steady state distributions

i = 1,2,

n ~ 0, i = 1,2. (1.3)

However, the queue lengths at the two nodes in steady state are not independent; the joint
steady state distribution is not product form:

In this note we derive explicit expressions for the joint steady state distribution of the two
node system. We use the compensation approach, developed by Adan et al. [2] to obtain an
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expression which is an infinite sum of product forms.

This two node Jackson network with infinite supply of work describes quite a useful model
of cooperative service by two servers: Consider jobs which require a sequence of tasks, the
first task is performed by one of the servers, the remaining tasks are performed by alternating
servers. Server i performs tasks at rate /Li, and the job then requires an additional task with
probability Pi, or else it is complete and leaves the system. We assume that each of these
servers has an infinite supply of jobs to start. However, each server gives preemptive priority
to tasks which it received from the other server. Each server then has a queue of jobs which
are 'in process' and the analysis of these queues tells us how much storage for WIP (work in
process) is needed, and what is the cycle time of a job from first task to completion.

The concept of infinite supply of work, in contrast to the usual queueing assumption that
jobs arrive randomly, is in fact very common in many systems: Whenever a server is expensive
and it is desired not to keep it idle, one tries to monitor the server, and control the inputs, so
that the server never runs out of work. This is the case for an expensive machine, a highly
trained server, or a high performance communication link. In each case work is shunted to
such servers to prevent them from idling.

As we shall see in Section 3, infinite supply Jackson nodes provide much better performance
than standard Jackson nodes.

Multi-class queueing networks with infinite supplies of jobs in some of the classes, also
called infinite virtual queues, were introduced by Weiss et ai. [1, 9, 10, 12, 13, 14]' see also
Levy and Yechiali [11]. They represent monitored control over job arrivals, as it often exists
in manufacturing and communication systems. Jackson networks are described by Jackson [7]
and Kelly [8]. Weiss [14] has discussed Jackson networks with virtual infinite buffers: He has
derived flow rates and stability conditions, and partial steady state distributions. This work
is also closely related to the results of Goodman and Massey [5]. The analysis in the current
paper provides one example of such networks, which is highly tractable.

2 Main theorem

The two node Jackson network with infinite supply of work is described by a Markov jump
process moving on the two dimensional non-negative integer grid. The Markov process per
forms a two dimensional simple random walk on the positive integer grid, with transitions
only to neighboring states, and with reflecting barriers on the horizontal and vertical axes.
Furthermore, in the interior of the positive quadrant the random walk has no transitions to
the north, the north- east, and the east directions. The transition rates for this random walk
are described in Figure 2.

For such Markov jump processes it is possible to obtain a closed form expression of the
steady state distribution, by the compensation method developed in the paper of Adan et al.
[2]. The random walk in Figure 2 has the property that the transition rates at the vertical
boundary nl = 0, n2 > °and the horizontal boundary nl > 0, n2 = 0 are projections of the
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Figure 2: Transition rates for the two node system

ones in the interior nl, n2 > O. Boxma and van Houtum [3] showed that this property consid
erably simplifies the expression of the steady-state distribution. See also [6].

The main steps in the derivation of the steady state probabilities are as follows: The bal
ance equations for the interior are satisfied by product form expressions an! j3n2 where a,j3
are solutions of a quadratic equation Q(a, 13) = O. Solutions of this form do not as a rule
satisfy the equations for the horizontal or vertical boundaries. However, it is possible to find
compensating product forms such that the linear combination anI j3n2 + can! j3n2 satisfies the
balance equations for the interior and the vertical boundary of the quadrant. Similarly, it is
possible to find compensating product forms such that an! j3n2 + dan! 1:Jn2 satisfies the balance
equations for the interior and the horizontal boundary of the quadrant. Then, starting with
a product form anl j3n2 with a,j3 satisfying Q(a, 13) = 0 one can construct an infinite linear
combination by adding product forms to alternately compensate for the horizontal and vertical
boundary. The resulting solution formally satisfies all the balance equations. One then needs
to choose the parameters of the product forms and their coefficients such that the solution is
absolutely convergent. This method does indeed work for our system.

In Section 4 we will present the detailed derivation of the steady state distribution, without
invoking the results in [2, 3]. In the derivation we make use of the steady state marginal
distributions (1.3). This yields a particularly elegant and simple expression:

Theorem 2.1 The steady state distribution of the two node Jackson network with infinite
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supply of work, when PI, P2 < 1, is given, for all (nl, n2) #- (0,0), by:

00

P(nl,n2) =I)-I)k+1 [(1- ak)a~l(l-(3k+1)(3~~1+(1- ak+da~~I(I-(3k)(3~2J (2.1)
k=l

where for k 2: 1:

(.1-1
fJk+1

= /L1 + /L2 (3-1 _ a-I _ 1 - P2
/L2P2 k k-l P2'

= /LI+/L2 a - I _(3-1 _I-PI
/LIPI k k-1 PI'

(2.2)

with initially ao = (30 = l,al = PI, (31 = P2. The steady-state probability P(O,O) is equal to:

00

P(O,O) = 1 - PI - P2 +:2)_1)k+1 (ak(3k+1 + ak+1(3k)
k=l

(2.3)

The closed-form expression in Theorem 2.1 immediately leads to similar expressions for the
distribution of the total number in the system and for the (factorial) moments of the queue
lengths at node 1 and 2. Let Xi denote the queue length of node i in steady-state. Then we
have:

Corollary 2.2 (i) For all n > 0:

nl +n2 =n
nl,n2:;::0

(ii) For all m, n 2:0, m +n > 0:

(2.5)

Note, exact formula for ak, (3k can be obtained from the difference equation (2.2), but are
not particularly illuminating. The asymptotic behavior of ak, (3k is derived in Proposition 4.14.

3 Comparison with standard Jackson network

We compare our two node system with infinite supply of work and a standard Jackson network,
with exogenous random inputs. Throughout this section we label our system as 'oo-supply'
and the Jackson network with random exogenous input as 'standard'. We consider for the
comparison two nodes in a standard Jackson network as shown in Figure 3. Here we have two
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out

I-PI
out

I-P 2

Figure 3: Standard Jackson network nodes

nodes with the same processing rates J.Li, and with the same probabilities 1 - Pi to complete
a job, which then departs the system. The total inputs into the nodes are at rates Ai, and
they consist of both exogenous arrivals and feedback from other nodes. Recall that the input
streams are not Poisson. The outflow in steady sate is also at rate Ai, and includes a Poisson
output stream of departures from the system at rate Ai(l - pi)' As is well known, the steady
state joint distribution of the jobs in the two nodes is product form,

P(nl,n21 standard) = (1- ~:) (~:) nl (1- ~~) (~~) n2

This is only stable if Ai < J.Li, and therefore the output rate of the standard nodes is always
less than the rate (1 - Pi)J.Li achieved by the 00- supply system, and if one tries to approach
this rate, the queue length explodes.

It is interesting to compare the two systems in the case that both have the same traffic
intensities: For the remainder of this section we take Pi = AdJ.Li = J.L3-iP3-d J.Li· We compare
the total number in the two nodes for the two systems. The marginal steady state distributions
in the nodes of the two systems are the same, namely Geometric, with P(Xi 2: n) = pf. In
particular it follows that the mean number in the system is the same for both networks.
However the steady state distribution of the total number in the system is different.

In Figure 4 we show the distribution of the total number in the system for J.LI = 2, J.L2 = 3,
PI = 0.8, P2 = 0.5 (left) and J.LI = J.L2 = 1, PI = P2 = 0.8 (right). We also plot the standard
product form probabilities for comparison.

The correlation between Xl, X2, calculated from the formula (2.5), equal -0.2976 for the
first example of an asymmetric system, and -0.3873 for the second example of a symmetric
system. In fact, it can be shown that the correlation is always negative, see section 4.8. Neg
ative correlation reduces the variance of the total number in system compared to independent
nodes. In Figure 5 we show the correlation between Xl, X2 for the symmetric system J.LI = J.L2
and PI = P2 = p. Clearly, the negative correlation gets stronger as P tends to 1; the limiting
value for P = 1 is equal to ~7r2 - 7 (see section 4.8).

We can also get the asymptotic tail probabilities of Xl + X2, from (2.4). We will show that
the sum is absolutely convergent and that the parameters D:k, 13k monotonously decrease. The
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Figure 4: Probabilities of total number in the system

0.2 0.4 0.6 0.8 1 P=Pl=P2
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-0.25
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Figure 5: Correlation between Xl, X z for the symmetric system PI = pz and PI = pz = P

(3.2)

(3.1)

values for large n therefore behave like the largest geometric term,

{
~Pln PI> pz,

IfD(Xl + X z ;::: nl oo-supply ) ,...., (l-f:}£ ' l-a2 ) n
1-/32/Pl + l-a2/Pl PI , PI = pz·

The corresponding asymptotics for the product form standard Jackson network are

IfD(Xl +X z 2: nl standard) ,...., { l~;t!Pl PIn, n PI > PZ,
n(l - Pl)Pl , PI = pz·

Hence, the asymptotic ratio of the two is:

{

~/ 1-/32 >IfD(Xl + Xz 2: nl standard),...., l-P2/Pl 1-/32/pl' PI Pz,

lP(Xl + Xz 2: nl 00- supply) [(1- Pl)/(1~~2(3lpl + 12::lpl)] n, PI = pz·

In Table 1 we summarize various quantities for the two examples, and the comparison of
the total number in the system for the oo-supply and standard system.

The most interesting part here is the strong form of variance reduction and tail probability
(i.e. overflow probabilities in parctice) which is obtained in the infinite supply network, when
the two nodes are symmetric.
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Table 1: Comparison of Infinite Supply and Standard Jackson Networks

Asymmetric Example symmetric Example

J.lI 2 1

J.l2 3 1
Data PI 0.8 0.8

P2 0.5 0.8

PI 0.75 0.8

P2 0.533 0.8
E(XI) 3 4
E(X2) 1.14 4

Moments V(XI) 12 20
V(X2) 2.45 20

Cov(XI, X2) -1.61 -7.75
Corr(XI, X 2) -0.2976 -0.3873

V(XI +xzlstandard) 1.287 1.633
VIXI +xzloo-sUDDlv)
P(XI+xz>nlstandard) 1.33445 0.07143 n

"" PIXI +Xz>nloo-supplv)

4 Derivation of steady state distribution

In this section we prove Theorem 2.1. We first derive the expression as a formal solution to
the balance equations, and then prove that this solution is absolutely convergent.

4.1 The balance equations

The balance equations for the steady state probabilities in this system are obtained by equating
the flow out and into each state, yielding:

(J.lI + J.l2)P(nl,n2) = J.lIPIP(nl + l,n2 -1) + J.ll(1- PI)P(nl + l,n2) +

+J.l2P2P(nl - 1, n2 + 1) + J.l2(1- P2)P(nl, n2 + 1), (4.1)

nl,n2 > 0,

(J.lI + J.l2P2)P(nl,0) = J.l2P2 P (nl -1,0) + J.lI(I- PI)P(nl + 1,0)

+J.l2P2P(nl - 1,1) + J.l2(1- P2)P(nl> 1), nl > 0, (4.2)

(J.lIPI + J.l2)P(0, n2) = J.lIPIP(O, n2 - 1) + J.l2(1 - P2)P(0, n2 + 1)
+J.lIPIP(I,n2 -1) + J.lI(I- pr)P(I,n2), n2 > 0, (4.3)

(J.lIPI +J.l2P2)P(0, 0) = J.lI (1 - PI)P(I, 0) + J.l2(1 - P2)P(0, 1). (4.4)

In the next section we will characterize the product forms anI f3nz satisfying the balance equa
tions in the interior of the quadrant.
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4.2 Product form trial solutions in the interior of the quadrant

Consider first the equations (4.1) in the interior of the quadrant, and a product form trial
solution anI (3n2. Substituting this trial solution in (4.1) and canceling a nl - l (3n2-I we see
immediately that:

Proposition 4.1 The product form anI (3n2 solves the equation (4.1) for every nl, n2 = 0, ±1, ±2, ... ,
if and only if a, (3 are on the curve:

The curve (4.5) is shown in Figure 6. The pairs of values (a, (3) = (0,0), and (a, (3) = (1,1),
are on this curve. We also illustrate on the curve how the special roots which appear in the
solution (2.1,2.2), ak, (3k, are calculated, for k = 0, 1,2,3.

0.8

0.6

0.4

0.2

0.4 0.6

Figure 6: Curve (4.5) for III = 2, 112 = 3 and PI = 0.8, P2 = 0.5

For every fixed value of 0 < a ::; 1, equation (4.5) yields a quadratic equation for (3:

Proposition 4.2 The quadratic equation (4.6) has two real roots for all 0 < a ::; 1. For a = 1
the roots are 73 = 1) Ii = P2· For 0 < a < 1 the larger root is 7J > a, and the smaller root is
0< Ii < a.
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Proof. For the fixed value a = ao = 1 the quadratic equation (4.6) for (3 is

fl2(32 - (fllPl + fl2)(3 + MPI = 0,

with the two roots 7J = 1 and (3 = (31 = fllpl/ fl2 = P2. For 0 < a < 1, if we substitute (3 = a
in the right-hand side of the quadratic equation (4.6) we get:

a2(a - 1)(fll(l- PI) + fl2(1- P2)) < o.
Hence the quadratic equation (4.6) has two roots, one of them larger and the other smaller
than 0:. The product of the two roots is fllPl/ fl2, hence both are positive. -

Similarly, for every fixed value 0 < (3 ::; 1, equation (4.5) yields a quadratic equation for a:

[fllPl + fll(1- P1)(3] a 2
- [(fll + fl2)(3 - fl2(1 - P2)(32] a + [fl2P2(32] = 0, (4.7)

Proposition 4.3 The quadratic equation (4.7) has two real roots for all 0 < (3 ::; 1. For (3 = 1
the roots are a = 1, Q = PI. For 0 < (3 < 1 the larger root is a > (3 the smaller root is
0< Q < (3.

It is convenient to divide the quadratic equations (4.6, 4.7) by a 2(32, and to consider
quadratic equations for a-I, (3-1:

[fllPl] ((3-1)2 [(fll + J.L2)a-1 - fl1(1- PI)] ((3-1) +
+ [(a-I) (fl2(1- P2) + fl2P2a-1)] = 0

[J.L2P2] (a-1)2 [(J.L1 + fl2)(3-1 - J.L2(1- P2)] (a-I) +
+ [((3-1) (fll(1- P1) + J.LIP1(3-1)] = o.

(4.8)

(4.9)

4.3 Compensating for the vertical and for the horizontal boundary

Let a,(3 satisfy (4.5), so that an1 (3n2 solve the balance equations (4.1), for all nl,n2 =
0, ±1, ±2,.... We want to find a compensating term such that an1 (3n2 + can1 /3n2 will in
addition also solve the horizontal boundary equations (4.2).

We first subtract the equation (4.2) from (4.1), to obtain the equation

fl2(1 - P2)P(nl, 0) + J.L2P2P(n1 - 1,0) = fl1P1P(n1 + 1, -1), nl > O. (4.10)

Since our trial solution a n1 (3n2 +can1 /3n2 solves (4.1), it will solve (4.2) if and only if it solves
(4.10). We substitute the trial solution in (4.10), yielding

[fl2(l- P2) + fl2P2 a - 1 - fl1Pla(3-1janI + C[fl2(1- P2) + fl2P2a-1 - J.L1P1 a /3-1]an1 = O. (4.11)

To satisfy (4.11) for all nl > 0 we are forced to take a = a and thus, to solve (4.1) we need to
take /3 as the second root of the quadratic equation (4.6). Using the quadratic equation (4.8)
we get the second root /3-1 in terms of a and the first root (3-1:

/3-1 = fl1 + fl2 a -1 _ (3-1 _ 1 - PI .
J.L1P1 PI

10



We also get the product of the roots of (4.8):

J.l1Pl!3- 1fj-1 = 0:-1 (J.l2(1- P2) + J.l2P20:- 1) .

By canceling o:nl+1 in (4.11) we obtain an equation for c:

We now use (4.12) to cancel J.l1Pl!3- 1fj-1 on both sides, and obtain:

1-fj
c=---

1-;3

(4.12)

(4.13)

(4.14)

Multiplying the linear combination by the constant (1 - 0:)(1 - ;3), we may conclude that
(1 - 0:)o:n1 (1 - ;3);3n2 - (1 - 0:)o:n1 (1 - fj)fjn2 solves the balance equations (4.1, 4.2). The
procedure to compensate for the vertical boundary equations is symmetric.

Proposition 4.4 Let 0:,;3 satisfy (4.5). Then (1- 0:)o:n1 (1- ;3);3n2 - (1- 0:)o:n1 (1- fj)fjn2

solves the balance equations (4.1, 4.2) in the interior and the horizontal boundary if we take:

fj-1 = J.l1 + J.l20:-1 _ ;3-1 _ 1 - P1
J.l1P1 P1

Similarly, (1- 0:)o:n1 (1- ;3);3n2+ (1- &)&n1 (1_ ;3);3n2 solves the balance equations (4.1, 4.3)
in the interior and the vertical boundary if we take:

&-1 = J.l1 + J.l2 ;3-1 _ 0:-1 _ 1 - P2.
J.l2P2 P2

(4.15)

4.4 Infinite sequences of compensations

Motivated by the marginal distribution (1.3) we start from a product form solution with
0:1 = Pl. The roots of (4.6) are ;30 = 1, and ;32 < Pl. Since we need convergence we start
from the trial solution 0:1nl ;32n2 . To conform with our desired final form we multiply this trial
solution by a constant:

Proposition 4.5 The trial solution (1 - 0:1)0:1 nl (1 - ;32);32n2 with 0:1 = P1 and ;32-1 =
I!~~// P1-1 - 1 - l;fl solves the equations (4.1, 4.2) for all n1 > 0, n2 ;:::: 0.

Proof. In this case the compensating term would have fj = 1, but then 1 - fj = 0, so the
compensating term disappears. _

We next add a compensating term to solve (4.1, 4.3). According to (4.15) we choose

-1 J.l1 + /12 ~ -1 -1 1 - P2
0:3 = 1-'2 - 0:1 - --

/12P2 P2

to obtain a two term trial solution

(4.16)
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In this solution the first term alone solves (4.1, 4.2), and the two terms together solve (4.1,
4.3).

From now on we continue to add compensating terms, to satisfy (4.2) and to satisfy (4.3)
alternately. In the next step we need to compensate the second term of (4.16) to solve (4.2)
again, and we choose (34 according to (4.14). We continue these compensating steps indefinitely.

Proposition 4.6 Let for all k ~ 1,

(3-1 _ f.-ll + f.-l2 -1 (3-1 1 - PI
2k - a 2k- 1 - 2k-2 - --,

f.-llPl PI
-1 _f.-ll+f.-l2(3-1 -1 1-P2

a 2k+1 - 2k - a 2k- 1 - --,
f.-l2P2 P2

with initially (30 = 1, al = PI. Then the following trial solution

00

L [(1 - a2k-l)a~k_l (1 - (32k)(3;~ - (1 - a2k+l)a~k+l (1 - (32k)(3;~]
k=l

(4.17)

(4.18)

solves the balance equations for all (nl' n2) =1= (0,1), (1,0), (0,0).

Proof. We show in section 4.7 that the infinite sum (4.18) is absolutely convergent for every
(nl,n2) =1= (0,0). We will also show that the summation of (4.18) over all the values of
(nl' n2) =1= (0,0) converges absolutely. In the rest of the proof we take this statement as
proved.

The pair (al,(3o) is on the curve (4.5). Hence, using (4.14, 4.15) and induction, so are
all the pairs (a2k-l, (32k) and (a2k+ 1, (32k)' Hence all the terms in (4.18) solve (4.1), and by
absolute convergence so does the infinite sum for nl > 0, n2 > 0.

In the sum (4.18) each negative term compensates the preceding positive term so that their
sum solve (4.3); see Proposition 4.4. Hence, for all K,

K

L [(1 - a2k-da~k_l (1 - (32k)(3;~ - (1 - a2k+da~k+l (1 - (32k)(3;~]
k=1

solves (4.3). By absolute convergence (4.18) solves (4.3), whenever the equations do not involve
(nl,n2) = (0,0). Hence, (4.18) solves (4.3) for all (0,n2),n2 > 1.

We saw that (1- al)a~l(1- (32)(3;2 solves (4.2). Each positive term (1- a2k+l)a~k+l(1
(32k+2)(3;~+2 compensates the preceding negative term -(1 - a2k+l)a~k+1 (1 - (32k)(3;~ in the
sum, so that their sum solves (4.2). Hence, for all K,

(1 - ada~l (1 - (32)(3;2 +
K

L [-(1 - a2k+1)a~k+l (1 - (32k)(3;~ + (1 - a2k+l)a~k+l (1 - (32k+2)(3;~+2]
k=l

solves (4.2). By absolute convergence (4.18) solves (4.2), whenever the equations do not involve
(nl,n2) = (0,0). Hence, (4.18) solves (4.2) for all (nl,O),nl > 1. •

Analogously we can start from the (1, P2) on the curve (4.5), and get another solution:

12



Proposition 4.7 Let for all k ~ 1,

-1_J.ll+J.l2/3-l -1 I-P2
0:2k - 2k-l - 0:2k-2 - --,

J.l2P2 P2
/3-1 =J.ll+J.l20:-l_/3-l _I-Pl.

2k+l J.llPl 2k 2k-l PI

with initially 0:0 = 1, /31 = P2. Then the following trial solution

(4.19)

00

L [(1 - 0:2k)0:~k(1 - /32k-l)/3;~_1 - (1 - 0:2k)0:~k(1 - /32k+l)/3;~+l] (4.20)
k=l

solves the balance equations for all (nl, n2) -I- (0,1), (1,0), (0,0).

4.5 The complete solution

The two solutions in Propositions 4.6, 4.7 were not defined for (nl,n2) = (0,0). The reason is
that for nl = n2 = 0 the sums are not (absolutely) convergent, and so they are meaningless.
As a result we could not check for (nl' n2) = (1,0) or (nl, n2) = (0,1).

To obtain a solution for all (nl, n2) we do the following: For all (nl, n2) -I- (0,0) we take
the sum of the two solutions (4.18, 4.20). This yields:

00

P(nl,n2) = L(-I)k+1 [(1- O:k)o:~l(l- /3k+l)/3Z~l + (1- O:k+l)O:~~l(1-/3k)/3Z2] (4.21)
k=l

For (nl' n2) = (0,0) we take:

00

P(O,O) = 1 - 0:1 - /31 + 2)_1)k+l (O:k/3k+1 + O:k+l/3k).
k=l

(4.22)

Proposition 4.8 The expressions for P(nl' n2) in (4.21, 4.22) solve all the balance equations.

Proof. We shall show in section 4.7 that the sum in P(O, 0) is also absolutely convergent. We
shall take that as well as absolute convergence of all the other P(nl, n2), and their sum over
all nl, n2 as proved.

We already know by the previous two propositions that P(nl,n2) defined by (4.21) satisfy
the balance equations (4.1, 4.2, 4.3) for nl + n2 > 1. It remains to consider the balance
equations for (1,0), (0, 1), (0,0). For all K we have seen in the proof of Proposition 4.6 that
the sum

(1 - o:do:~l (1 - (32)/3~2 +
K

+L [-(1- 0:2k+l)0:~k+l(l-/32k)/3;~ + (1- 0:2k+l)0:~k+l(l-/32k+2)/3;~+2] (4.23)
k=l

13



solves (4.2). Also for all K we have seen in the proof of Proposition 4.7 that the sum

K

L [(1 - Q2k)Q~~(1- (32k-1)(3;f_1 - (1 - Q2k)Q~~(1- (32k+d(3;f+1] (4.24)
k=l

solves (4.2). Hence the sum of (4.23,4.24) also solves (4.2). Consider in particular the balance
equation for (n1,n2) = (1,0):

(f-L1 + f-L2P2)P(I, 0) = f-L2P2P(0, 0) + f-L1 (1- P1)P(2, 0) + f-L2P2P(0, 1) + f-L2(1- P2)P(I, 1). (4.25)

It is satisfied by the sum of (4.23,4.24). We now look at the sum (4.23, 4.24) for n1 = n2 = 0:

(1- Q1)(I- (32) +
K

+ L [-(1- Q2k+d(l- (32k) + (1 - Q2k+1)(I- (32k+2)] +
k=l

K

+ L [(1 - Cl:2k) (1 - (32k-d - (1 ~ Cl:2k)(I- (32k+1)] =
k=l

2K
= L(_1)k+1 [(1- Qk)(1 - (3k+d + (1 - Cl:k+d(l- (3k)] +

k=l
+(1 - Cl:2K+1)(1 - (32K+2) =

2K
= 1 - Q1 - (31 + L(_1)k+1 (Qk(3k+1 + Qk+1(3k) +

k=l
-(32K+2 + Cl:2K+1(32K+2.

As we shall see, Cl:k, (3k ---+ °as k ---+ 00. This property and absolute convergence of the sum
L~1(-I)k+1(Cl:k(3k+1+Qk+1(3k)shows that equation (4.25) is satisfied by P(I,O), P(O,I),
P(I, 1), P(2,0) as defined in (4.21) and P(O,O) as defined by (4.22). The prooffor the balance
equation of (0,1) is symmetric.

Finally, by the absolute convergence of the sum over all nl,n2 of (4.21), we get that the
equation (4.4) is redundant, and is satisfied by (4.21, 4.22) automatically.•

4.6 Normalizing the sum of probabilities

We again take absolute convergence as proved. Based on that we can calculate various quan
tities. We first obtain marginal probabilities, which are consistent with (1.3) .

. Proposition 4.9 For ni > 0,

00

L P(n1, n2) = (1 - Pi)Pti
.

n3-i=O

14



=

Proof. We make heavy use of the absolute convergence to change order of summations and
group sums of positive and negative terms. For nl > 0 the sum is:

,2:~=o P(nl, n2) =
00 00

2:= 2:=(-I)k+l [(1- cxk)a~l(l-13k+l)13~~l+(1- CXk+l)CX~tl(l-13k)13~2J =
n2=O k=1

,~( _1)k+1 [(1- "k)"~' n~o(1- ~k+»~k~'+ (1- "k+l)"k~'.~O(1- ~k)IlI:'] ~
00

2:=( _1)k+l [(1 - CXk)CX~l + (1 - CXk+l)CX~tlJ =
k=1

(1 - CXl)CXlnl - (1 - CX2)CX2n1 +
+(1 - CX2)CX2n1 - (1 - CX3)CX3n1 +

The case of i = 2 is symmetric. _
We next calculate P(nl = 0, n2 > 0) and P(nl > 0, n2 = 0).

Proposition 4.10
00 00

2:= P(O, n2) = P2 + 2:=(_1)k (CX k13k+l + CXk+l13k),
n2=1 k=1

00 00

2:= P(nl,O) = PI + 2:=(-I)k (CX k13k+l + CXk+l13k).
nl=1 k=1

Proof. We again make heavy use of the absolute convergence.

2:~=1 P(O, n2) =
00 00

= 2:= 2:=(-I)k+l [(1- cxk)(I- 13k+d13~~l+(1- ak+l)(I- 13k)13~2J =
n2=1 k=l

00

2:=(-I)k+l [(1 - CXk)13k+l + (1 - CXk+1)13k] =
k=1
00 00

= 2:=(-l)k+l(13k + 13k+d + 2:=(-l)k (ak13k+l + ak+l13k) =
k=l k=1

00

131 + 2:=(_1)k (ak13k+l + CXk+l13k)
k=1
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The other case is symmetric. _
Finally we have:

Proposition 4.11 The probabilities P(nl, n2) in (4.21, 4.22) sum up to 1.

Proof. By the previous two propositions and (4.22),

00 00 00

L P(nl' n2) = L L P(nl, n2) + L P(O, n2) + P(O, 0) = 1.
nl,n2 nl=l n2=O n2=1

-
4.7 Absolute convergence

In the previous sections we made heavy use of the absolute convergence of the sums in (4.21,
4.22). This will be proved below.

Proposition 4.12

00

L L [(1 - C¥k)C¥~l (1 - I'Jk+l)I'J~~l + (1 - C¥k+l)C¥~tl (1 - I'Jk)jJ~2J < 00
(nl,n2);~(O,O) k=l

Proof.

00

L(nl,n2)¥(O,O) L [(1- c¥k)c¥~l(l - l'Jk+l)!3~~l + (1- C¥k+l)C¥~tl(1 - I'Jk)I'J~2J =
k=l

t. [(1 - adn~Y-P'+l )13',;~, + (1 - aw)n~Y-P,)p;:' ] +

+t. n~, [(1 - a,)a,' n~Y-PW)P~, + (1 - a'+1)ak~1 n~o(1 - p,)P,,]
00 00

= L ((1 - C¥k)I'Jk+l + (1 - C¥k+l)jJk) + L (C¥k + C¥k+l) <
k=l k=l

00

< 2 L(C¥k + I'Jk)'
k=l

In the next proposition we show that the sequences C¥k, I'Jk decrease geometrically, and hence
the last sum converges. _

Proposition 4.13 For all k ;::: 0,
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Proof. For k = 0 we have D:o = (30 = 1, D:1 = PI, (31 = P2 and this is the only case of equality.
For k ~ 1, by (4.15):

-1 (-1 -1) (3-1 -1 1 - P2 (-1 -1 1) (3-1 -1 + 1 -1(3-1D:k+1 = P2 + PI k - D:k_1 - -- > P2 + PI - k - P2 > PI k'
P2

where the first inequality follows from (31: 1 > D:1:2 1 and the second from (31:1 > 1. The proof
for (3k+1 is symmetric. -

We can also get the asymptotic rate of decay of D:k, (3k:

Proposition 4.14 As k -t 00,

D:k+1 (3k+1--,
D:k-1 (3k-1

PI + P2 - J(p1 + P2)2 - 4J.L1P2P1P2
-t

PI + P2 + V(P1 + P2)2 - 4P1P2P1P2

Proof. The parameters D:k+1 and D:k-1 are the roots of (4.5) with (3 = (3k· Dividing (4.5) by
(3k we get that D:k+I!(3k and D:k-I!(3k are the roots of

(4.26)

with (3 = (3k. As k -t 00, then (3k -t 0 by Proposition 4.13 and thus

where 0 < 1'1 < 1 < 1'2 are the roots of (4.26) with (3 = O. Hence,

D:k+1 1'1 PI + P2 - J(p1 + P2)2 - 4J.L1P2P1P2
---t-= .

D:k-1 1'2 PI + P2 + J(p1 + P2)2 - 4P1P2P1P2

The proof for (3k+I!(3k is similar. _
From the geometric decay of the sequences D:k, (3k we can further conclude:

Corollary 4.15 (i) The sum which defines P(O,O) in (4.22) is absolutely convergent.

(ii) For all m, n ~ 0, m+n > 0 the sum defining IE ( (~) C:2 )) in (2.5) is absolutely convergent.

4.8 Non-negativity and ergodicity

From Propositions 4.8, 4.11, 4.12 it follows that P(n1, n2) given by (4.21, 4.22) are a nonnull,
absolutely convergent solution of the balance equations, which sums up to 1. From Theorem
1 in Foster [4] we can immediately conclude that:

Corollary 4.16 The Markov jump process X(t) = (X1(t), X2(t)) is ergodic when PI, P2 < 1,
and its equilibrium probabilities are given by the solution P(n1' n2) defined by (4·21).
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4.9 Queue length correlation

In this section we show that the correlation between Xl and X2 is always negative, which is
equivalent to

(4.27)

The terms in the infinite sum (4.27) are alternating and decreasing in magnitude, since Ltl >
132 > Lt3 > ... and 131 > Lt2 > 133 > .. .; Hence, it suffices to show that

Ltl 132 + Lt2 131 <~~
(1 - Ltl) (1 - 132) (1 - Lt2)(1 - 131) 1 - PI 1 - P2'

which can be verified by straightforward calculations. This proves:

Proposition 4.17 If PI, P2 < 1, then Corr(Xl' X 2) < o.

Figure 5 displays the correlation for the symmetric system J.tl = J.t2 = J.t and PI = P2 = p.
To find the limiting value of the correlation as p i 1, note that in the symmetric case,

1 2
Ltk = 13k = 1 - 2k(k + 1)(1 - p) + 0(1 - p) ,

which can be derived from the recursive relations for the sequences Ltk, 13k. Hence, from (4.27)
and using that

we obtain

Note, exactly the same asymptotic correlation value appears in the calculations of Boxma and
van Houtum [3], page 488, which is curious, since the two models are quite different.
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