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MARKOV DECISION PROCESSES WITH
UNBOUNDED REWARDS

JAEE. van Nunen
Graduate School of Management, Delft, The Netherlands

J.Wessels

Eindhoven University of Technology, Eindhoven, The Netherlands

1. INTRODUCTION

We consider a Markov decision system with a countable state space S.
So the states in S may be labelled by the natural numbers § := {1,2,3,...}.
The system can be controlled at discrete peints in time t = 0,1,2,... by
choosing an action a from an arbitrary nonempty action space A. Let A be
a o-field on A, such that {a} ¢ A for all a € A.

The chosen action a € A and the current state 1 ¢ S at time t exclu-
sively determine the probability of occurence of state j € § at time t + 1.
This probability is denoted by pa(i,j). If state 1 has been observed at
time t and action a € A has been chosen, the {(expected) reward r{i,a) is
earned. The objective is to find a decision rule for which the total ex-
pected reward over an infinite time horizon is maximal. For the deter-
mination of such a decision rule and for the computation of the total ex-
pected reward we have in fact to solve a functional equation of the follow-

ing form

. . a,.. . . :
vi{i) = sup {r(i,a) + ) p (i, 9)v(N}, ie 8.
aeh 5
The more sophisticated methods for solving these functional equations,
if they have a unigue solution, are linear programming (D'EPENOUX [3],

DE GHELLINCK & EPPEN [4]) and policy iteration (HOWARD [13]), which is a



very beautiful and elegant method. Actually, linear programming and policy
iteration are in a sense equivalent (MINE & OSAKI [18], WESSELS & VAN NUNEN
£290).

However, for large scaled problems, successive approximation methods
tend to be more efficient than the known sophisticated methods (e.g. VAN
NUNEN [19]) .

It appears that successive approximation methods allow for elegant and
relatively good extrapolation and error analysis. Moreover, the incorxpora-
tion of suboptimality tests can improve those methods considerably.
Finally, it appears that policy iteration methods {there are many versions
with differences in the policy improvement procedures, see e.g. HASTINGS
[6], van NUNEN [21]) are essentially successive approximation methods.
These methods happen to converge in finitely many iterations if state and
action space are finite.

For these reasons it is still interesting teo investigate successive
approximation methods for Markov decision processes and likewise for Markov
games {(see VAN DER WAL [27]). Here we will mainly be concerned with the
conditions which allow successive approximations with guaranteed conver-
gence in some strong sense allowing the construction of upper and lower
bounds. For convergence in a weaker sense, of course, weaker conditions
can be used we refer to SCHAL [25] and VAN HEE& VAN DER WAL [12].

After the introduction of the model and the underlying assumptions we
will develop some properties.

Moreover, we will indicate the specific successive appproximation
algorithm. Finally we will analyse the assumptions and compare them with
those in literature.

Most of the assertions can be extended to nondenumerable state spaces

in the obvious way.
2. THE MODEL AND THE ASSUMPTIONS

We will first introduce our assumptions on the transition probabili-
ties and the rewards. The assumptions will be somewhat weaker than those

proposed in [21],

a) 2,9 20, | pMa, ) <4, for all i,3 ¢ 5 and ail a € A.
i



b) pa(i,j) is measurable for all i,j € 8 as a function of a.
(s3] r{i,a) is measurable for all 1 ¢S as a function of a.

REMARK 2.1, We allow substochastic behaviour. Defectiveness of transition
probabilities may be interpreted as a positive probability of leaving the
system, which results in the stopping of all earnings. In a more formal
set-up this may be handled by introducing an extra state which is absorbing
for all actions and does not give any earnings. This has been executed
e.g. in [21] by VAN NUNEN and in [11] by HINDERER. Without such a device
quite a lot can be achieved in a correct formal way as has been done by
WESSELS [28]. Actually, as long as the outcomes in which one is interested
may be expressed in terms of bounded order histories, there is no serious
problem. In this paper we will suppose that there is such an extra state,
without giving it a name or mentioning it explicitly. Compare section 5

for the meaning of substochasticity.

DEFINITION 2.1.

(1) A decision rule ® is a sequence of transition probabilities
T (qoiqiiwaa), where 9 is a transition probability of
(8, M) into (a,A), with B 2= 8 x A X8 X ... x5 (t+l times S) and

Ht is the corresponding product o-field.
The class of all decision rules is denoted by V.
(ii} A decision rule 7 will be called nonrandomized or a strategy if a,

is degenerated for all t and all ht € H_. So a strategy is a non-

randomized decision rule. :
(1ii)} A decision rule 7 is called Markov if = only depends on the last
component of ht € Ht.
The class of (randomized) Markov decision rules is denoted by RM.
(iv) A Markov decision rule is called stationary if qt does not depend
on t.
A policy £ is a function of § into A. By F we denote the set of all
policies. Stationary strategies correspond (one to one) to policies
and Markov strategies correspond to sequences of policies. We will
apply these correspondences deliberately.

The class of Markov strategies is denoted by M.
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In an obvious way -~ see e.g. VAN NUNEN [21] ~ any starting state
i € S and any decision rule 7 ¢ U determine a stochastic process
{{Xtyzt)} t:Oon.sx A, where Xt denotes the state of the system at time t,
and Z_ denotes the action at time t. The relevant probability measure on
(SXA)oo will be denoted by PI. Expectations with respect to this measure
will be denoted by mz, By Enx we denote the columnvector with i-th
component EZX, where X is any random variable.
ASSUMPTION 2.Z. We assume a positive function u on § to be given. Let W be

the Banach space of vectors w (real valued functions on $) which satisfy

-1
su (i) < =,

fwl o= sup |w(i)
ies

Por matrices (real valued functions on S x S) we introduce the operator-

noxm
I8l = sup }IBw|.
Hwll =1
Nete that - . .
Bl = sup u () JIBGE. D uld.
ieS j
ASSUMPTION 2.3.
. e T P + .
(i) sup E, Z r (¥ ,2 ) < » for all i ¢ S,
meM  * p=p non

where r+(a,b) := max{0,r(a,b)}.

(ii) sup WP(E}l =: p < 1
fs% * !
. . . oL £(1),, .
where P(f) is the matrix with P(£}{i,3) :=p (i,3) -
(1ii) sup IP(E)r ~ prl =: My < for some p with 0 < p < 1,
fer ’

and ¢ is the vector with i-th component r(i) = sup r{i,a).
ach

REMARK 2.3. Note that P(f)§+<t»(componentwise) since sug P(f)r+(g) < o,
Moreover, P(f)r < ® as is implicitly stated in assumgiion 2.2, iii. The
<model in fact combines the main features of the models introduced by
HARRISON [5], wESsELS [28] and vaN HEE [9], and yields a slight extension
with respect to the model considered by VAN NUKEN [21].



Since we will prove similar results as HARRISON [ 5], WESSELS [287], vaN

NUNEN [ 211, this paper generalizes their results.

We will first show that under assumption 2,3.1i the restriction to
Markov strategies is allowed 1if one is interested in the criterion of total
expected rewards,

Given that assumption 2.3.1 is satisfied it will be clear that for

any 1 € M
-
7
7)) = I ¥ {2 %
v(m) Lor(x .z

n=0

is properly defined and that all manipulations with integration and sum-
mation are allowed. However, Vi(ﬂ) may be -« for some i € S. Furthermore
sup v, (v) < =, In [9] VAN HEE shows that under assumption 2.3.1 Vi(ﬂ) is

e =
properly defined for all v ¢ RM since

©0 fes)
w N + w +
s%? mi Z r (Xn'zn) = sup B, z ¥ (Xn’zn)”
reKM n=0 meM n=0

Moreover, he proves that

sup Vi(ﬂ) = sup v_{m)

e RM el

It then follows straightforwardly from the generalisation of a result of
DERMAN and STRAUCH [2] that v, (m) is defined properly for all w ¢ ¥ and

b4
i€ 8, viz. for any 1 € S and any w ¢ ¥ there exists a m ¢ RM, such that

*

™ . - T . -

iz E A < = 4 = & e B

Li[Xn 5, zn € Aoj L [hn Je 2 AO,]

for all j§ € 8, Ay € Arn=0,1,...
Hence
o E ¥
¢ + ki
g ) £(x,z2) = E, ] r (X_,Z) <,
i s n'"n i n'n
n=0 n=0

S0 Vi(ﬂ) is properly defined and equal to vi(ﬂ”).
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This implies

sup v, (n) = sup Vi(ﬂ’),,,

rel * reM

This actually means that one can restrict oneself to strategies which
only depend on the starting state, on the time instant t and on the state at
that time. Such strategies are sometimes called semi-Markov strategies.

The starting state and the time instant will be proved tc ba superfluous

later on.
3. SOME PROPERTIES

Let IR denote the set of real numbers with +» and -« included.
Let W contain those w € E;w, such that w = WG for some Vg € W, (wO is
not fixed, but may depend on w, so W « Wm)u P(f) is properly defined as an
cperator on W and on W as well, P(F) maps each of these sets into itself,
Here "properly defined" means that (P(£)w) (i) is independent of the order
of summations. It is straightforward that P(f) is monotone on W and W,
Moreover P(f) is contracting on W with contraction radius IP(£f) Il < o, < 1.
The set V is defined as the set of vectors v in R such that
v - (1~p)“1; ¢ W, Since W is a Banach space the set V is a complete metric

o

space with respect to the metric vimv . The set V contains those v ¢ R

2
such that for some vO € V we have v £ voa

IEMMA 3,.1.°

L B8 n-1
|l}?(fn);.HP(i:,i)r~p rf< noy o M,

with p, = max{p,p ).

PRCOF .

?(fz)?(fi)z < P(£,) (or + M, u)

in

Dm
o r + leu + Q*Mlp

2w
+ 20 M
pr 90 1u

in

similarly



P(fz)?(fl)r > P(fz)(pr - M1U)

Do
Z 07 - pM M - p M

2
2p r - 290M1

The proof proceeds further in an inductive way. 0

Corollary 3.1.

o

(i} =" X E(Xn) €V for all m ¢ M
n=0 !
fes) . (=] 1
T ) - fo D~
(ii) B ) v,z £ (1-0) £+ ) nop MU
- n' n 0 1
n=0 nsl

g -2 )
= {1 - p} "x 4+ {] - QO) Mlu e vV

for all nw ¢ U,

PROOF., For 7 ¢ M part (ii) follows straightforwardly from the foregoing

lemma, Because of the results of section 2 this may be extended to 1 € 0.0

DEFINITION 3.1. L(f) is a mapping of V  into V  defined by L{f)v := r(f) +
+ P(£)v where r(f) is the vector with i-th component equal to r(i,£(i}).

L(f) maps v into V. viz. r(£) = ;; v S Y4 for some VO e V,; therefore

2y

i

M, < o,

{lvo - {1~p} 2

hence

+B(E) (1-p) ' 4 B(E)M

i
[al}

r(£) + P(fiv = zu

< ¥4 (1-p) Tor + M)+ oML

1 1

= (1-p) ¥+ <M1<1«p>“ + M Ju e V.



LEMMA 3,2,

(i) IfF x{f) - r e W, then L(f) maps V into V and L(f} is contracting on V
with contraction radius P (£) ) < e, < 1. The fixed point of L(f) in V
is v{(£} = E{(E£,£,£,...)).

(i1) L{f) is monotone on Vms

{(1ii} If v € V, then Ln(f)v -~ v{f} for n > o,

PROOF. Part (i) cen be found in [281, part (ii) of the lemma is trivial.
The final part is straightforward if x(f) - T e W, since in that case the

assertion is implied by the Banach fixed point theorem and the convergence

is in norm. If r(f) - ¥ ¢ W we have
n ncl k
ey = ) PYEI(E) + PN (E)v.
k=0

Since v can be written as
. P
vo= (i-p) Tr +w with w € W

we have PM(£)v = (1-p) B(E)T + PP (D)w.

However, Pn(f)w tends to zerxo for n - ® since P(f) is contracting on

W (assumption 2.3 ii) and Pn(f)g tends to mere for n + « as follows from
lemma 3.1. This implies

lim 1%(f)v = pX () x(£) = viE). 0

n-reo k=0

18

DEFINITION 3.2. U is a mapping of V into V defined by
Uv = sup L{(f)v (componentwise) .
fefF

U maps V into V, viz.

Uv = sug {x(f) + P(f)[(1~p)—lf +wl}
fe

¥ + sup {(1—p)"1P(f)f} + sup P(f)w
feF feF

in



e -1
< {1-p) "xr + (1-p) Mou + pkllwilu Y

and

Uv 2 ¢ + inf (1—D)W1P(f)g + inf P{f)w
feF feF

v

- -1 = ~1
r + {l=p)} "pr = Mlu(lmp) - p*ﬂwﬂu

- -1
{(1-p)} "x leumM Mo Hwlbpe v,

LEMMA 3.3.

(i) U is monotone on V;
-y -1 -1
(i) U maps B := {v ¢ VIHV - {1-p) "zl =< Ml (1~p) (1wp*) } into itselfy

(1ii) U is contracting on V with contraction radius v: v < o, < 1,

The proof proceeds in a similar way as the proof of theorem 4.3.3, in

VAN NUNEN [217. 0

REMARK 3.1, Suppose the supremum in Uv for v ¢ V is attained for certain £

then

r{f) + P(f}v € ¥
hence

£(E) + P(E) (1-p) F + P(E)w € v
and

...l -

(£} + (i-p} rev

SO

e{f) - ¢ + ¥ + (1-9)"1 r=x(f) -1 + (1—p)“1£ e v

consequently x{f) - T & W,
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The same holds if L(f)v approximates Uv in norm. Then L(f}v ¢ V as well,
Hence r(f) - r € W so the use of a successive approximation method (even
without computing the supremum exactly) leads to a sequence of policies

f e Fwith x{f ) - ¥ ¢ W.
n n

%
Since U is contracting in V there exists a unigue fixed point v of
U in V. This fixed point is the unique solution of the optimality eguation

in v

v = sup {r(£f) + P(fiv}.
feF

w
Furthermore U™ - v'1 + 0 for n + » and any v € V. In the sequel we
will prove that
[22]
¥
v = sup If‘ z r{¥X ,2 )} = sup v{m).
wel a=0 & " e
THEOREM 3.1.

(i) v{r) < v for all we D

(ii) For any € » O there exists a policy £ such that

*
lv(e) - vl ¢
hence
%
sup v(m} = sup v(f) = v .
wE fe

Moreover, if for some £ holds that
* *
v = r{f) + P(f)v

Then

&
v(f) = v

PROOF. The proof of this theorem proceeds exactly along the same lines as

the proof of theorem 4.3.4 in [21]. In [21] part (i) has been proved by
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showing first that the assertion is true for 7 ¢ M and then using the re-
sults of section 2. Part (ii) follows directly if we choose f ¢ F such that

ke *
v o~ 8fu £ L(flv £ v

*

then

LA - ol < 2o < v

hence
v S(leply < LBy < v

iterating this inequality gives

*

. I < (f) « *
v i U =vw s v

so by choosing 8§ = £(l-p) the statement will be clear. 0
4, SUCCESSIVE APPROXIMATIONS

*
In the previous section we showed that the unique fixed point v of
the contraction operator U in V is the optimal value vector of the Markov

*
decision problem. Hence, v can be approximated by
v_oo= Uy (v, eV and n= 1,2,...).

Furthermore, we proved the existence of stationary Markowv strateglies with
value functions that approximate v* {(in noxm),

Usually one not only wishes to find v* but one is also interested in
good (stationary Markov) strategies. It may occur that the supremum in Uv
cannot be computed exactly. Nevertheless, there are several successive
approximation methods for the computation of v* and the determination of
an {e-) optimal stationary Markov strategy. We refer to [22] in this
4volume. Here, as an example, we describe a method which uses monotonicity
of the Vo Consequently the convergence of the algorithm can be shown by

relatively simple proofs.



&E@ﬂéngif Let § > 0, suppose v , v' € V, such that Uv' - 8y £ v then
f 8+p Hv-v'l
v S v -y n

PROOF. The proof can also be found in [28] and proceeds as follows.
Uv = U(vi+v-v'),
Hence, since v’ € v + 8u we have

Uv S Uv' + p*“v - vy v+ Su o+ P, lv - vily

Uv € v + gp with e = 8 + p_ by -~ vl
Similarly
2 < vy 8 K
U'v £ U{vtey}) = U{vi+v-viteu)

UV o+, v - vily + T

A

v+ §p + p*"v - vily + PLEM = v + e(l4p Jp.

Iterating in the same way gives

n-1
v 5 v o+ E(1+p%+,,,p* u s v +

This implies

X n *
lim U'v = v £ wv +
Tperee
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and
pf“ V7 i p_ki[ vyl I
LY S — TR 6 BT A T — 1,
1~pf -,
where
; -1, . .
To—vil = inf u " (1) (v{i)=v?(i))
- ies
and

..._1 4 el
= inf v ) Y et P @9 w .
ieS 3

Pe
PROOF. The proof of this lemma proceeds along the same lines as the proof

of the foregoing lemma. O

The convergence of the following successive approximation algorithm

will be clear as a consequence of the foregoing two lemmas.

ALGORITHM 4.1.

-1
STEP 0. Choose o > 0; choose 8 > 0 such that 6(1wp?) < o; choose Yo ev

such that v, < Uy

0 o n o= 1;

gTEP 1. Determine fn such that

v o= L(E v
n

> - -
o Vg 2 max{vn_i,Uvn_1 Sul;

STEngr If
bv —v_ I Pelly —v |
6+p# vn vn«i tn vn vn-l -
- < @
I-p i-pg
n
then go to step 3 else go to step 1 with n := n + 1;

_8TEP 3. End of the algorithm.

Lemma 4.1 and 4.2 provide that the algorithm stops after a finite

number of iterations and that in the n-th iteration step of the algorxrithm,
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we have

If the algorithm ends at iteration step n, with policy fn then the

0
. 0
distance between v* - v(fn ) is at most o and the distance between upper
-l
and lowerbound for v(fn) ig legs than o - 5(1—p*) .

Note that the choice of vO and the way in which vn is computed assure

*
that v, converges monotonically from below to v i.e.

*

W swv Swv(f) sv
n-1 n n
and
. *
lim v = v .,
nyeo I

For proofs we refer to [21], [28].

If we release the monctonicity assumptions and chocse v, € V arbitrary

0
it remains possible to give adequate successive approximation algorithms,
see [22] in this volume.

In all these metheds a main role is played by the concept of upper
and lowerbound. In fact the fast convergence of the algorithms is causedby
the use of this concept, see e.g. MACQUEEN [16], PORTEUS [23], VAN NUNEN
[11]. Moreover, upper and lowerbounds can be used to formulate sub~
optimality tests which may even improve the efficiency of the algorithms
considerably, see e.g. MACQUEEN [17], HASTINGS and VAN NUNEN [8],

HASTINGS and MELLO [7]1, HOBNER [14].

5. ANALYSIS OF THE ASSUMPTIONS

Let us first make some remarks on the assumptions.

'REMARK 5.1.

(i) ¥ may be replaced by any vector b with b - r € W, so it is not
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necessary teo compute v exactly. Such an approach is applied in

vAN NUNEN [21].

(ii} In the model semi-Markov decision processes, discounted Markov
decision processes and discounted semi-Markov decision processes are
contained as well.

{(a)} Semi-Markov decision processes (without discounting) are covered
by taking the number of the decision instant as decision time and
the expected reward until the next decision instant as reward.
Alternatively spoken one considers the embedded process, see e.g.
MINE and OSAKI [18],

(b) Discounted Markov decision processes ave included by incorporating

the decision factor B (if # = 1) in the transition probabilities

i.e. 5a(i,j) 1= Bpa(i,j)~ Lf B > 1 the theory should be slightly
adapted.
However
..}.‘
suﬁ o Z B'r (Xn'zn) < e
we =0

remains a sufficient condition for restriction to stationary
Markov strategies. (See VAN HEE [2]),
{¢) Por discounted semi-Markov decision processes with discount rate
-

o 2 0 again incorporation in the transition probabilities is

appropriate, for o < 0 the theory needs slight modifications.

We now relate the use of the translation function (lmp)mlf; as intro-
duced in a slightly different way by HARRISON [5], to an approach of
PORTEUS [24 1.

PORTEUS proposed, for the finite state-finite action case, that the
use of a translation function might be replaced by a transformation of the
data.

He therefore introduced the return transformation

Fli,a) = r{i,a) - (1mp)wl{f(i) - z pa(i,j)g(jﬂ
jes

5%i,9) = 500,
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For the transformed problem we have

T < ED - (-9 EW 4 o TeE® ¢ (e i)
= (1“"53)_1M1L1(i) for all i e S
similarly
F@ 2 2@ - (-0 2@ - (1-p) o u(i)
= - (1_p)“1mlu(i) for all i ¢ S.
Hence, we have
(1) % € W
(2 1Byl = bee)l <o < 1.

This implies that the transformed problem can be handled without using
a translation and fits into the model in WESSELS [28] (see also VAN NUNEN
[21]). The guestion remains whether for all i ¢ 8 and 7 ¢ D one has
Vi(w) = Vi(ﬂ) + u(i) for some function u on S which is independent of w.

As a consequence of (1) and (2) we have that

oo w

~ I . _ T o

Vi(IT) ]Ei } r(Xn,Z,n) = ): JEix(Xn,Zn),
n=0 n=0

and that any 7 may be replaced by a randomized Markov decision rule,

without any effect on ?i'i(n)°

co Z
o~ ~i- -1 T
v () = nzo B [x(x ,2) - (1-p) T(X) + (1-p) }j’,p Hx G ]

I B B [rix ,2) - (1-p) TE(x) + (1-p)”
=0 X 1 n n n

i

it

r(Xn+1)IXn'Zn]

N
, . e 1=
ﬁ;ﬁf nzo (B, (x(x_,2) ~ (1=p)  T(x) + (1-p) z(x_ )}

i



N
can 1Y B e,z - (o) R+ (e BT Rk
Now o b n'"n i
i
= v (m) -~ (I-p} "x(i),
3

where the third equality is allowed since

S ) _ - N _ -1 4
ﬁEA{r (Xn,zn) + (1-p) “r (Xn) + (1-p) “x (Xn+

and the final equality is achieved since

lim B r{X_ .} = O.
i -+

[\add t

We will illustrate now how the results of LIPPMAN [15] can be em~

N+1

)}

pedded in our theory (see also VAN NUNEN and WESSELS [201]). Lippman proves

the convergence of successive approximations at a geometric rate under

the following conditions which are given in our notations.

CONDITIONS OF LIPPMAN. There exists a function u : 8 + [i,%), an integer

m 2z 1, and constants 0 £ 8 < 1, b > 0 such that for all i ¢ 3, a € A

lr(i,a) [u ™) €™

z un(j)pa(i,j) < glu(i) + pI™® for n = 1,
je8

Howeveyr, we then have for any P, 2 § and any

Py 1/m -1
c = b[("“é"“) - 11,

that for u(i) := [u(i) + 1"
the following holds:

a) eyl < o

R
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and

b} fredd < M,

So we can use for Markov decision processes as described by Lippman

the latter simpler and more general conditions a and b.

The assumption 2.3.ii requires some transient behaviour of the

processes involved. This may be characterized as strong excessiveness, i.e.
P(fiy < o y, for all £ ¢ F
ks

with 0, < 1 and Y a positive function on S.

For strong excessiveness several sufficient and necessary conditions
can be given. In order to make assumption 2.3.1ii more transparent and to
relate the latter assumption to the assumptions of other authors we will

give those conditions.

LEMMA 5.1. (VAN HEE and WESSELS [101]). The process is strongly excessive
with (i) 2§ » 0 if and only if the lifetimes of the process are ex-
ponentially bounded, i.e.

7w n
H 4 < 3
Fi Gﬂfs) < a(i)y

for all i € S, m € M, where Yy < 1 and a is a positive function on S.

o

. m . -1
PROOF. "if" choose u{i) := sup Z VT (x ES,X“+1¢S) with 1 < v < vy
; reM p=0 +on ¥
and p, = v T, now it is straightforwardly verified that P(£f)u < pLM.
*only if" Note that for m := (fO’fl“'”>

m _ - . - b
P2 P(fo) .,M?(.anl)_u P SP{fO)“”P(fn-—i)e SP (xnes)

with e = {i,1,...}. l

LEMMA 5.2. (VAN HEE and WESSELS [10]). The process is strongly excessive
“with A = u{i) 2 8 > 0 for some constants, if and only if the lifetimes of

the process are exponentially bounded, uniformly in i € 8, i.e.

P (X es) < ay” (witha >0, 0 <y < 1).
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PROOF. The "if" part of the lemma follows straightforward, the “only if"
1

part can be achieved by choosing e.g. a(i) = A8 O

LEMMA 5.3. (See VEINOTT [26], DENARDO [1], VAN HEE and WESSELS [10]).

The process is strongly excessive with A 2z u(i) = § > 0 for some constants
A28 > 0 if and only if the maximum expected lifetime is uniformly bounded

in i€ 8, i.e.

o

m

Sua z P, (X €8) <M for some M >0, and all i € S.

e ot i n
n=0

PROOF. Let u{i) be the maximum expected lifetime if the process starts in

state 1 ¢ 8. 3o

#

. L.
uii) sup Z iPi(kneS).

weM n=0
Clearly
uze+ pP{flu,
and

B+ P(fu.

Z e

This yields

N

i
P(E)u S (1-2) u.
So for P, = (1»5?, § := 1 and A := M the "if"-part will be clear. On
the other hand if the process is strongly excessive with 6 £ p(i) £ A, then
the lifetimes are uniformly exponentially bounded and hence the maximum

expected lifetimes are bounded. 0

COROLLARY 5.1. The following three assertions are equivalent.

“1) The process is strongly excessive with 0 < § £ u(i) < A.

2) The lifetimes of the process are uniformly exponentially bounded.

3} The maximum expected lifetimes of the process are bounded as function

of the starting state.
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Note that the maximum expected lifetime L(i} if the process starts in

state 1 ¢ S can be found as the smallest positive sclution to
4 = su% [e + P(£)e].
fe

There is a close relation between strong excessivity and so called

"N-stage"” contraction. This relation is given in the following lemma.

LEMMA 5.4. (See VAN HEE and WESSELS [10]). Let u be a positive function on
S such that P(f)u £ Mu for some M > 0 and all f ¢ F and suppose
P(fo)“u»P(me Ju < p*u, with 0 < p* < 1 (N-stage contraction) for all

£

1

O""’mei € F, then there exists a positive function p on 8 and o, with

0 < o, < i, such that
P(E)u < p_u for all f e F.

N
PROO¥. Choose o, such that p! < o, < 1 and choose

yoi= sup ) L E u(x ). D

As a consequence of the foregoing lemma we see that "N-stage" contrac-
tion in one norm {(the u-norm) implies one-stage contraction in another
norm (the up-norm). A final characterization of strongly excessive processes
is given in the following lemma which can again be found in VAN HEE and
WESSELS [10]. This lemma gives a probabilistic characterization of the

transient behaviour of the process.

LEMMA 5.5. A process is strongly excessive if and only if there exists a
partition {Sk{k integer} of 8 and numbers o > 1, B 2 1, such that for all
7 e M

Z PT(x €S ) £ 8 min{l,ag—k} for ie 8. .
- i "n Tk L

PROOF. First note that the lemma states that there is necessarily a drift

to lower S, or a drift out of the system.

The "if" part follows by defining
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oo
U o= sup " Z u(Xn)
el ()
where u(i) := (ae)" if i ¢ Sy with 0 < ¢ < 1 and ae > 1. The *only if*

part follows since
1A -1
i€ Sﬁ < < uii) £ o with 1 < « < p, - il

We conclude this section on the analysis of the basic assumptions by giving
the relation between the use of weighted supremum norms (u-norm} and the

use of the "similarity transformation” as described by PORTEUS [24]. For
the finite state space~finite action space situation Porteus proposed the
following transformation of the orxiginal process. Let Q be a diagonal

matyrix with positive diagonal elements

’ ~
~
N
e’ S

Define

Y(E) = Qrlf) ,
and

56 := op(e1g L.

~%
Then the optimal return vector v of the transformed problem is just egual

*
to Qv .
viz.
i PP v VDU N |
v o= sup {I-P(£)) "x(£f) = sup (I-QP(E)Q ") "Qr(f)
feF feF
= sup [o(1- ()07 17 0 = r(£) = sup Q(1-p(£)) x(£)
feF fefF
-~ 0 sup (1-P(E) tr(e) = ov.
feF
So the assumptions 2.3 can be replaced by the same assumptions with p{(i) = 1

for the transformed problem.
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