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Abstract

We consider the sojourn time V' in the M/D/1 processor sharing (PS) queue, and
show that P(V > z) is of the form Ce™"* as x becomes large. The proof involves
a geometric random sum representation of V', and a connection with Yule processes,
which also enables us to simplify Ott’s (1984) derivation of the Laplace transform
of V. Numerical experiments show that the approximation P(V > z) = Ce™"* is
excellent even for moderate values of x.

2000 Mathematics Subject Classification: 60K25.
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traffic, transform inversion

1 Introduction

Queues with the PS service discipline became popular by the work of Kleinrock (16, 17, 18]
and were originally proposed as an idealization of time-sharing (queueing) systems. The
recent rise of interest in PS queues is related to their application in the performance
analysis of bandwidth-sharing protocols in computer communication networks, see e.g.
Nuifiez-Queija [20] and Roberts [24].

Several PS studies have focused on the analysis of the tail of the sojourn time distribution
in a case when the service time distribution is heavy-tailed. The asymptotic tail behavior
of the sojourn time in the M/G/1 PS queue with regularly varying service time distribution
was derived by Zwart and Boxma in [29] and later generalized by Nuiiez-Queija in [20] for
the case of distributions with intermediately regularly varying tails. They established the
following asymptotic relationship between the distributions of the sojourn time V' and the
customer service time B (with p denoting the traffic load):

P(V >z)~P(B> (1-p)), (1.1)

as £ — oo (for any two real functions f(-) and g(-), f(z) ~ g(z) as £ — oo denotes that
f(z)/g(xz) — 1 as £ — o). This equivalence is often called a reduced-load approximation.
In [13], Jelenkovi¢ and Moméilovié extended the equivalence result to the case when the
service time belongs to a class of subexponential distributions with tails heavier than eV,
The equivalence (1.1) was extended to other types of PS queues in [12] and [6]. Overall,
the sojourn time asymptotics are well understood in the heavy-tailed case.



For PS queues with light-tailed service time distributions only few results are available.
The tail asymptotics for the sojourn time of the M/M/1 PS queue are known, and are of
quite remarkable form:

PV >z)~ car_s/fse_o‘””l/se""’:”7 T — 00, (1.2)

for positive constants c,a, 7. Flatto [11] obtained this asymptotic tail behavior of the
waiting time in the M/M/1 Random-Order-of-Service (ROS) queue. Subsequently, Borst
et al. [5] showed that the waiting-time distribution in the M/M/1 ROS queue, conditioned
to be positive, equals the sojourn time distribution in the M/M/1 PS queue. We note
that the proof of Flatto is purely analytical, and a probabilistic proof is still lacking.
Using large-deviation techniques, Mandjes and Zwart [19] analyzed sojourn time asymp-
totics in the GI/GI/1 PS queue. They derived logarithmic asymptotics for a broad class
of light-tailed distributions:

logP(V > z) ~ -z, T — 00. (1.3)

Remark that in the M/M/1 case the decay rate -y in (1.3) coincides with the exponential
decay rate o in expression (1.2).

Apart from the shape of the asymptotics, it is of interest how large sojourn times take
place. In a PS queue, three events may contribute to a large sojourn time: (i) a large
service time of the tagged customer; (ii) a large number of customers present in the system
upon arrival of the tagged customer; (iii) an unusually large number of arrivals after arrival
of the tagged customer. When service times are heavy-tailed, event (i) is responsible for
a large sojourn time. In [19], the authors show that for a broad class of light-tailed
distributions, event (iii) determines the logarithmic asymptotics (1.3). Specifically, V'
becomes large if the traffic load p is increased to 1 during the sojourn time of the tagged
customer. This intuition is valid under two technical conditions which ensure that the
service-time distribution is not too heavy and not too light. The conditions in [19] are
violated for any distribution with bounded support, such as deterministic service times.
This motivated us to take a closer look at the PS queue with deterministic service times.
Specifically, we assume that customers arrive according to a Poisson process with rate A
at a single server. The server operates according to the PS discipline, i.e. when there are n
customers in the system, each of them is served with rate 1/n. The service time is constant
for all customers, denoted by D. Let p be the traffic intensity, p = AD. We assume that
p < 1, so that the system reaches steady state. We investigate the asymptotic behavior of
the sojourn time tail. Our main result is that the tail behavior of the steady-state sojourn
time V is of the following form:

PV > z) ~ae T T — 00, (1.4)

for some explicit constants o and y. Observe that the asymptotic form is fundamentally
different from the one for exponential service times. Moreover, from our analysis in Section
3, one can infer that the most likely way to cause the event {V > z} not only involves
more work feeding into the system between time 0 and z, but also an increased number
of customers at time 0, i.e. the event {V > z} occurs by a combination of the events (ii)
and (iii) mentioned above.

To prove (1.4), we study the sojourn time of a customer by means of branching processes.
The branching process representation and decomposition of the sojourn time into a sum
of independent random variables (called delay elements), conditioned on the number of
customers in the system, was established by Yashkov [27] for the M/G/1 PS queue and
later extended by Ott [21]. This approach was also used by Rege and Sengupta [23] for



the M/G/1 queue with Discriminatory Processor Sharing and by Nufez-Queija [20] for
M/M/1 PS queues with breakdowns. In this paper, we make the additional observation
that the underlying branching process for the M/D/1 PS queue is a Yule process, which
has been treated by Ross [25]. We use this connection to obtain a simplified derivation
of the Laplace-Stieltjes Transform (LST) of the delay elements associated with V', which
also leads to a relatively simple derivation of Ott’s result ([21], formula (5.16)) for the
LST of V. Since the number of customers in the system has a geometric distribution, we
can apply existing theory for tail asymptotics of geometric random sums to obtain the tail
behavior of V.

The remainder of the paper is organized as follows. In Section 2, we give a closed-form
expression for the LST’s of the distribution of the delay elements of the branching process
decomposition. The main result is presented and proven in Section 3. In addition, the
asymptotic behavior under heavy traffic is considered. It is shown that the limits with
respect to time and traffic load are interchangeable. In the last section we present results
from numerical experiments. We compute values of P(V > z) using transform inversion
and compare them with values predicted by (1.4). These experiments demonstrate a
remarkable accuracy of the obtained approximation (1.4).

2 Laplace-Stieltjes transform of the sojourn time distribu-
tion

In this section we derive the sojourn time LST in the M/D/1 PS queue. In fact, the
explicit formula for the LST of V is well known. It was derived by Ott [21] as a special
case of M/G/1/PS:

E(e—sV) =— (1 - p)()‘ + S)ze—(/\+5)D . (21)

2+ Ms+5s(1—p)+ A1 = p))e~(A+s)D

In this section we will give a new simplified proof of this formula using existing results for
Yule processes. The first step in our proof is to represent the sojourn time as a function
of a branching process. By conditioning on the number of customers in the system upon
the arrival of the tagged customer, we will decompose its sojourn time into a number
of independent random variables, called delay elements ([27]). In Section 3, we also use
some intermediate results provided by this decomposition in the derivation of the tail
asymptotics. Thus, our main focus in this section is on the LST of the delay elements.
To perform a branching process decomposition we consider the process on a transformed
time scale. The time-change method is widely used in the analysis of PS queues, cf.
[27], [20]. Throughout the paper, we perform all investigations depending on the amount
of service t attained by the tagged customer, ¢t € [0, D], and not the actual time scale.
Moreover, we introduce the process X (t) as the number of customers (including the tagged
customer) at the server at the epoch when an amount of service ¢ is received by the tagged
customer. We study the sojourn time of the customer in terms of the process X (t). A~
very useful observation is that on the time interval till the first departure (or time interval
during which no departures occur) X (t), ¢ € [0, D], can be considered as a Yule process.
Recall that a Yule process is a pure birth process in which each individual in the population
independently gives birth at constant rate ).
Let us now discuss the time change in more detail. Denote the number of customers in
the system (including the tagged customer) at time z by Q(z). The amount of service
received by the tagged customer during the time interval [0, z] is

t=T(z) = /0 ’ %s)ds. (2.2)




Then, the process X (t) introduced above can be defined as X (t) = Q(T1(¢)).
Evidently, the sojourn time Vj can be expressed in terms of the process X (t) as

Vo = /0 ° X (t)dt. (2.3)

The remainder of this section is organized as follows. First we consider the situation when
the tagged customer enters an empty system. We derive the LST of the sojourn time of
this customer. Then we turn to the general case when there are a number of customers
in the system upon arrival of the tagged customer. We give a detailed description of the
sojourn time decomposition into delay elements and finally we prove Ott’s formula (2.1).

2.1 Sojourn time of the first customer

In this subsection we derive the LST of the sojourn time of the first customer, i.e. the
customer that enters an empty system. Notice that in this situation the above-defined
process {X(t),t € [0, D]}, where ¢ is the amount of service received by the first customer,
is a Yule process. In our model the births correspond to customer arrivals. Until the
service requirement of the first customer is completed, a number of other customers may
arrive but none leave the system before that time, since under the PS discipline with
constant service requirements customers depart from the system in order of their arrival.
The next proposition gives the LST of the first customer’s sojourn time. From now on we
will use variable ¢ as time in the changed time scale.

Proposition 2.1

—sVe At s
8
E(e 0) - A+ se()\-f-s)D :

Proof:
The integral representation (2.3) of Vy can be rewritten as follows:
X(D)-1
Vo=D+ > (D-t),
k=1

where (tg,k > 1) are the arrival times of customers that enter the system during the
service of the first customer.
Since {X(t), t > 0}, is a Yule process, its marginal distribution is known (see e.g. [25], p.

236). At time t the population size is geometrically distributed with parameter e =%
P(X(t)=14)=(1-e M) "e™, ¢€0,D]. (2.5)
Furthermore (see again [25]), the conditional joint probability density of the arrival times
t1, to,..., tn, given the number of customers, X (t) = n + 1, is given by
n
p($1,82, 73n|X(t) =n+ 1) = Hf(sz)a Si S tv (26)
i=1 '
where
}\e—)\(t—»z)
f(x)zfe_y, 0<z<t (2.7)

In order to obtain the expression for the LST of Vj, we condition on the number of
customers in the system upon departure of the first customer,
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X(D)-1

E(e—-sVO) — E(e—s foD X(t)dt) — E(e_S(D+Zk=1 (D—tlc)))

= S B(e P+ (O-t)|X (D) = n+ DP(X(D) = n+1), (28)

n=0
where, due to independence of the tx,k = 1,...,n, the conditional expectation is
n ,
E(e—*P+Til (0~ | X (D) = n+1) = [ Be*P=%)|X(D) = n+ 1)e*2.(2.9)

k=1
Computing the inner term of the above product, we get
D )\e—)\(D—z)
—s(D—t _ _ —s(D—
A 1-— e—(A-}-s)D

= )\+S 1 _e—AD . (210)
Hence,
_ A \" (1 e-O+s)D\"
E(e-—s(D+ZkX=(1D) 1(D—tk))lX(D) =n+ ]_) = ()\ - S) ( - E —55 e-sD. (211)
Substituting (2.11) into (2.8) we obtain the LST of the sojourn time,
oo n —_ n
_ A 1—e (A+s)D B _ 3
E(e sVo) — Z <A+8) ( =30 e sD(l —€ )\D)ne AD
n=0
e—()\+s)D
= gy (2.12)
Ats

Rewriting this gives (2.4).

Remark 2.1 Interestingly, an analog of the above result is given in [15]. The authors
consider an M/G/1 queue with any symmetric queueing discipline (processor sharing is a
special case). Let B be a generic service time, D; the time till the first departure from
the system. Assume that the system is empty at time 0. Then for any positive s,

A

—-sDyy _

(2.13)

The expression is related to the LST of V4 as

A

E(e_SDl) = —)\ n
S

E(e™*%),

which is a natural result, since D, 4 Aj + Vg, where A; is the time till the first arrival.



2.2 Sojourn time of an arbitrary customer

Let us now turn to the derivation of the LST of the sojourn time of a customer who enters
the system and sees a number of customers already in service upon its arrival. Denote its
sojourn time by V. Suppose that the number of customers in the system upon its arrival
is Q. As before, X (2) is the number of customers at the epoch when an amount of service
t is received by the tagged customer, ¢t € [0, D]. Then X(0) = Q, X(0+) = Q + 1.

Proof of Formula (2.1). Conditioning on the number of customers in the system upon
arrival of the tagged customer we can write the LST as

E€*) =Y E@*V|Q=n)P(Q =n). (2.14)

n=0

Due to the PASTA property the probability that the tagged customer sees n other cus-
tomers upon arrival is P(Q = n) = (1 — p)p™, where p is the traffic intensity.

Now we use a special decomposition of the sojourn time given the number of customers
in the system upon arrival, first established by Yashkov [27]. Every customer being in the
system at ¢ = 0 is called a ”progenitor” while the new arrivals occurring after ¢t = 0 are
assumed to be "descendants” of these progenitors. The tagged customer is considered as
a progenitor. If n customers are present in the system then each new arrival is declared
with probability 1/n as a descendant of any of these progenitors. Each branching process
is formed by one progenitor and its descendants (for more details see [27]). Therefore,
the sojourn time is decomposed into a sum of independent delay elements associated with
n + 1 progenitors:

n
Vig=ny=Vo+ > _Ci, | (2.15)
i=1

where Cj, ¢ = 1,2,...,n, are i.i.d. random variables equal to the sum of attained service
of the ith progenitor (customer) and its direct descendants for the time interval during
which the tagged customer will be served till completion (sum of all life times up to epoch
D). Let R; be the remaining service requirement of the ith progenitor at the moment of
the tagged arrival. R; is uniformly distributed on the interval [0, D].

Using representation (2.15) the conditional expectation in (2.14) simplifies to

E(e_SV‘Q =n) = E(e—sVo) (E(e-sci))n- v (2.16)

Let us now derive the transform of the random variable C;. Conditioning on R;, we get
1 D
E(e”sci) = —5/ E(e™*%|R; = t)dt. (2.17)
0

Given R; = t, we can express the conditional expectation E(e™*C:|R; = t) as in the
previous section. However, in this situation we must distinguish between the intervals
[0,%] and [t, D]. Since no departures happen before ¢, on the interval [0,t] we can apply
ordinary Yule process properties as for V. On the interval [t, D], we represent the number
of customers in the system as a Yule process as well: the Yule process Y (s), s € [0, D —t],
that starts from a number of customers at the moment s = 0: Y (0) = X (¢) — 1.
Rewriting the conditional expectation

E(e=*C|R; = t) = E(e~*Tiat (=)~ Thmxopa (1-14)),



and using the memoryless property and (2.5), we have

E(e~*Ci[R; = t) = E((e~*Tat (- t)) (=s(XO-DD-+ T 17707V (D-t-10)y)
= Y B(EEE X () =m+ 1)
m=0

xE(e™*® m(D—)+L 77" Y(O)(D”t‘t’“))lX(t) =m+1)(1 - e_)‘t)me"’\t.

Applying result (2.10) with D replaced by ¢, we can simplify this expression to obtain

oo ~(x
E(e~Ci|R; = t) = Z —(A+s)t (A(l -Ae_*-( +s)t)> E(e—s(m(D—t)Jrz}c’:“f‘t)‘”")(D—t—tk)))_
S
m=0

For the expectation term in the right-hand side we perform a computation using the Yule
process that starts from m individuals [25]. If the population starts from ¢ individuals, the
- population size at epoch t is the sum of 4 i.i.d. geometric random variables with parameter
e *. Hence, the population size at epoch t has a negative binomial distribution with
parameters i and e~ *. As before the distribution of arrival times t; is defined by (2.6).
Using these facts, we obtain:

E(e=smP-0+ Ll ™7 O (0-t-t)y -

E(e~*(MD-t+Zhe O=t=t))|y(D — t) = | + m)P(Y(D — t) = | + m)

p”qg

o~
Il
<)

e l
= Ze—(H/\)m(D—t) (__)‘__) (1 — e~ OF9)(D-D)l (I+m—1)!

P A+s (m — D!
~O+s) (D=t \ ™
_ (Ot s)e _ (2.18)
5+ he— 8D

Thus, substituting this into the expression for E(e™*%|R; = t) we get

—sC; A(l — e_()‘ s)t) ()\ + s)e’(A S)(E-—t)
SR, — — E —~(A+s)t
E(e |R’ B t) B ° ( A+ s s+ Ae—(A+s)(D-t)

m=0

A+ se(A+s)(D-1)

= Ta+seta9D (2.19)
and
—sC —sC; p(A+8) — s 4 seXF8)D
=D = t)dt = : 2.20
e ) D/O € | Ri ) D()\+s)()\+se()‘+s)D) ( ).
Substituting (2.4) and (2.20) into (2.14), we obtain the sojourn time transform
BeV) = Q+9d-0p) f: i [P+ ) — 5+ sed+aD\"
X + se(A+8)D o D(X+ s)(A + se®+9)D)
- 2
(1-p)(A+s) a1

52e0+9D 4 \(s + s(1 — p) + A(1 = p))’

which coincides with Ott’s formula (2.1). O
In the next section, we shall use the equalities (2.19) and (2.20).
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3 Tail behavior of the sojourn time

In this section we investigate the behavior of P(V > z) as z — oo. The following theorem
is our main result. '

Theorem 3.1 As xz — oo,
PV >z)~ae™ ", (3.1)
where v is the real solution of the equation

AD(A =) + 5 —seP=9D 1
D(X\ — s)(A — se®=9)D) — p’

s>0 (3.2)

and

A-pA -7
2A(1=p) =102 - p) (3:3)

Our derivation is based on the results obtained in the previous section. In particular, we
will need the moment generating functions of the decomposition random variables Vj and
C;, appearing in the representation (2.15) of V :
E@%®) = ﬁ(f_w (3.4)
AD() = 5) + s — se3—9)D
D(A - s)(\ — se(r=9)D) ~

O =

E(e’%) (3.5)

This section is organized as follows. In Subsection 3.1 we analyze the singularities of the
above moment generating functions with respect to s. This enables us to prove Theorem
3.1 with a version of the Cramér-Lundberg theorem for geometric random sums. The proof
is given in Subsection 3.2. In Subsection 3.3 we show some implications of the obtained
result.

3.1 Singularities of the delay element LST’s

Let us consider singularities of the moment generating function E(e**?). It is enough to
consider only real values of s, since

[E(e®)] < E(e%),

Let us rewrite the denominator of E(e**?) as a function f(s) = X — se®~*)P. Obviously,

singularities of the moment generating function might be only at zeros of the denominator.
The trivial zero of f(s) is s = A. However, this is a removable singularity of E(e*"?): using
L’Hospital we obtain that

: sVoy 1

lim (") = T | (36)
However, there exists another zero of the function f(s). The derivative of f(s) is de-
termined as f'(s) = (Ds — 1)e*=*)P and f'(s) = 0 at s = 7. Furthermore, f(0) = A,
f(oo0) = A, f(A) = 0 and by stability, A < 4. Since f/(s) < 0 for s < 1/D and f'(s) > 0
for s > 1/D, we can conclude that there is a unique point v > % > A such that
f(y) = 0. An important issue is that this point is a pole of the moment generating
function: E(e"%) = oo.



To analyze the behavior of E(e%%:), let us consider the conditional moment generating

function E(e*%|R; = t), t € [0, D]:

)\ — geA=s)(D-1)
) — se(A=s)D

We already know the zeros of the denominator: A and 7. Similarly, A is a removable
singularity, since

E(e’“|R; =1t) = (3.7)

1—-p+ At

- € [0, DJ. (3.8)

s—A

However, we still have to check if E(e*“s|R; = t) has a singularity when s = ~;. For this
purpose we consider the numerator as a separate function, fi(s) = A — se?=)D=%), Ag a
function of the parameter t, the numerator f;(s) increases for values s < A and decreases
for s > A. Since fo(y0) = f(v0) = 0 and g > A, it follows that fi(vo) is strictly negative
for any ¢t > 0. Hence, 7o is a pole: E(e™%|R; = t) =

Summarizing this subsection we have

Proposition 3.1 There exists a unique value yo > X that satisfies the equation
A —sed=9D = ¢ (3.9)

and that is an abscissa of convergence of both E(e**?) and E(e*%:|R; = t), Vt € [0, D), and
consequently, of E(e%%+).

We are now ready to give a proof of Theorem 3.1.

3.2 Proof of Theorem 3.1

For convenience, denote the sum Zfio C; in representation (2.15) by V7. As before, @ is
the number of customers in the system upon arrival. The probability distribution of V3
can be written as

P(V; >z) = ch >z)= 2(1 —p)p"(1 = Fu(z)), (3.10)
1=0 n==0

where F' denotes the distribution of C;, and F,(z) is the n-fold convolution of F with
itself. The random variable V; is called a geometric random sum and such random sums
are used in many applied probability settings. In particular, it is well known ([10], [2], [14])
that P(V) > z) is asymptotically (z — oco) equivalent to the exponential function

PV > z) ~ kge™ ™, (3.11)

if there exists a v > 0 (the Cramér exponent) such that it satisfies the Cramér condition
- :
p/ e"dF(z) = 1. (3.12)
0 :

Note that the Cramér condition (3.12) can be presented as follows:

E(e%) = %. (3.13)



Since the function E(e*“:) monotonically increases from 1 to oo on the interval [0,7o) (by
Proposition 3.1), for any nonzero value of p there exists a unique real solution v of the
preceding equation, v < 7.

Substituting Expression (2.20) for E(e*“%) into Equation (3.13) we get (cf. Equation (3.2)):

ADA =7) +y—7e P 1
D=7 — 70Dy~ '

E(e?%) =

So we have proved:

Proposition 3.2 There erists a unique solution vy of Equation (3.2), v < 7o, that is an
abscissa of convergence of E(e®"1).

To determine the coefficient k¢ we apply the following theorem.

Theorem 3.2 ([2], [14]) Let the Cramér condition (3.12) hold.
Ifg=p f0°° ze"*dF(z) = padgE(eSCi)| s=y < 00, and F is non-lattice, then the asymptotic
relation (8.11) holds with

ko= 1=P. (3.14)
97

Since the moment generating function E(eSCi) is differentiable in point s = 7, v < ~g, it
follows that g < co and we can determine the coefficient k¢ and asymptotics for P(V; > z).
Determining the derivative of the moment generating function, performing some simplifi-
cation and substituting Condition (3.13) we obtain

d o/ sci p(p —2) +2A(1 — p)
—E(e*")|s=y = . 3.15

Hence, by Theorem 3.2, the coefficient k¢ is

1— - — nelA=MD
ko= — P' — (1= p)(A—~e ) (3.16)
V£ EesCi | vp(p —2) +2M(1 - p)
Finally, F' is non-lattice, since P(C; = R;) > 0, and R; has a density.
Summarizing the above, we obtain the asymptotic behavior of the random variable V7.

Proposition 3.3 Let v be the solution of Equation (3.2). Then

(1=p)A=7eD) .
P(V1>I)N'yp(p—2)+2)\(1—p)e . Z — 00. (3.17)

Knowing the LST of the first customer’s sojourn time Vj and the asymptotic tail behavior
of V1, we can derive an expression for the tail behavior of the sojourn time V.

Since V; has an asymptotically exponential tail and E(e(7*6)%) < oo for any 0 < € < yp—7
we can apply Breiman’s theorem to "0, "1 (see [7]):

P(V >z)=P(Vo+ Vi > z) = P(e"e"l > %) ~ E(e"°)P(V] > 1), = — c0. (3.18)

The above proposition and substitution of ~ in (2.4) imply (3.1). O
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Remark 3.1 An interesting issue, raised in the introduction, is how the number of cus-
tomers in the system is affecting a large sojourn time. Mandjes and Zwart [19] have
shown that, in PS queues with for example phase-type service times, the initial number
of customers is of o(z) when V > z. In this remark, we show that this picture drastically
changes when service times are deterministic.

The proof of Theorem 3.1 indicates that the realizations of the C;’s in the representation

N
V=V+)» C
i=1

are sampled from the exponentially tilted density e?*dP(C; < z)/E(e"%).
Under this density, the expected value of the C; is

E(Cie%)/B(e"%) = pB(Cie"*) = c(3).

Thus, in order for V to be of size z, N should be around z/c(7).

Remark 3.2 When s = )\, the denominator and the numerator of Expression (3.2) are
both equal to zero. Using L’Hospital we get

hm E(esc )= _2=p

21-p)
Solving the equation
2-p 1
2(1-p) o’

we obtain that, for p = 2 — /2, Equation (3.2) has a solution v = X.
Since the asymptotic constant o in (3.1) has a removable singularity at this value the tail
behavior of V' becomes:

1—p Y 1_/\
PV>z)~r ——e " =™, T — 0. 3.19
( ) 2= ) 5 (3.19)

3.3 Implications of Theorem 3.1

In this subsection we treat a number of implications of our main result. First, we take a
look at the relationship between the decay rate in the M/D/1 PS queue and decay rates in
queues with FIFO and LIFO disciplines. Secondly, we consider the behavior of the decay
rate v in heavy traffic.

Other service disciplines

First we consider the FIFO service discipline. Due to a result of Ramanan and Stolyar
[22] it follows that FIFO is optimal among all single-class work-conserving disciplines,
i.e. it maximizes the decay rate. We can easily show that yprpo > 7yps. Recall ([4],
Theorem XII1.5.2) that yrrro is a solution of the equation pE(e*®™) = 1, where B®*
is the remaining service time, which is R; in the notation of Section 2. Usmg Equation
(3.13) and the definition of C; we get:

E(e’YFIFORi) - E(e’YPSCi) > E(e'YPSRi).

The decay rate inequality yrrro > vps follows from monotonicity of the moment gener-
ating functions on the interval [0,~q].

11



The strict inequality was also shown in [19] for the GI/G/1 PS queue for a class of light-
tailed service time distributions excluding deterministic service time. Moreover, in [19] it
was shown that in the M/D/1 queue the decay rate under the LIFO discipline does not
exceed the decay rate in the PS case, v.rr0 < VPs.

Table 1 shows decay rates for the M/D/1 queue with PS, FIFO and LIFO disciplines.
For convenience, we take D = 1. A result in Cox and Smith [8] implies that in this case
Yr1ro = ~logp — (1 — p).

P) 02 | 04 | 06 | 08
PS | 1.9227 | 1.0462 | 0.5578 | 0.2331
FIFO | 2.6604 | 1.6188 | 0.9474 | 0.4308
LIFO | 0.8094 | 0.3163 | 0.1108 | 0.0231

Table 1: Asymptotic decay rates for the M/D/1 queue with PS, FIFO and LIFO disci-
plines.

The small value of v7rpo for p = 0.8 is related to the fact that yzrro = O((1 — p)?) as
p — 1, opposed to yrrro = O((1 — p)). In the next subsection, we show that in heavy
traffic, yps behaves like yrrro.

Heavy traffic
Let us now study the sojourn time of a customer under heavy traffic, i.e. when the traffic
intensity p — 1.

Proposition 3.4 Let v and o be defined as in Theorem 8.1. Then, as p — 1, the decay
rate v ~ A(1 — p) and the coefficient a — 1.

Proof: Obviously, when the traffic intensity p — 1, the decay rate v is converging to zero
(see Equation (3.13)). Let us study the behavior of «y near zero in more detail. We expand
the left-hand side of (3.13) into a two-term Taylor series: E(e'%) = E(1 + 7C; + O(v?)).
The second-order term is O(y2) uniformly in p, since the second moment E(C?) is finite
if p = 1. The smoothness of the moment generating function E(e?%) near zero implies
that all moments of C; are finite. To calculate the first moment EC;, let us take the

derivative of the moment generating function at zero: EC; = 2,,—’)‘3 — %, and hence due to

pE(e7C) = p+ vEC; + O(y?) = 1, we get that
Y(1/A+0(1)) =1~ p,
and v ~ A(1 — p).
Substitution of the expression for v into (3.3) gives the behavior of the asymptotic constant
a:

e A=P=v)  (1-pO-M1-p) (3.20)

201 ~p) = vp(2=p) 2X(1—p)=A1=p)p(2-p)

O

Remark 3.3 The above heavy-traffic behavior is related to a result of Yashkov in [28]. He
derived a heavy-traffic limit result for the sojourn time in the M/G/1 PS queue conditioned
on the service requirement. Replacing s in (2.1) by (1 — p)s and taking the limit when
p — 1 we have:

A

, 21
A+s (321)

lim E(e=(=PsV) =
p—1

12



Since the limiting value is the LST of the exponential distribution with parameter A, we
obtain the heavy-traffic approximation

PV > z) m e N2, (3.22)
Hence, summarizing Proposition 3.4 and Remark 3.3,
P((1 - -
lim lim D=V >2) e, POV D) (3.23)
p—lz—oo  qe—rz/(1-p) g0 p—1  e—78/(1-p)

This suggests that the asymptotics given in Theorem 3.1 provide a good approximation
of the sojourn time tail behavior if p is close to 1. The results in the next section confirm
this.

4 Numerical experiments

In this section we present some numerical results. In particular, we compare the behavior of
the sojourn time tail computed numerically from Ott’s formula (2.1) with the asymptotics
we have obtained. In Ott’s formula the sojourn time distribution is expressed in terms of
its LST.

The inversion of the Laplace transform was considered to be numerically challenging for a
long time. However, nowadays there is a number of reliable and effective inversion methods
that allow for computing probabilities and other quantities without any complication. In
our study we will compute the sojourn time distribution using the inversion algorithm of
Den Iseger [9] and will perform a cross-check with the algorithm proposed by Abate and
Whitt [3]. Both methods are known to perform with high accuracy, and produced similar
results. Since the sojourn time distribution has a jump at point D, we will apply the
modified Den Iseger algorithm for functions with discontinuities.

Table 2 shows computational results for various arrival rates and service requirements
normalized to D = 1. For each value of p, the first column shows, for different values of
z, the approximation (3.1) for P(V > z) based on the asymptotic expansion. The second
column presents the estimates derived with the Den Iseger inversion algorithm.

p=04 p=0.6 p=08
x asympt. LST inv. asympt. LST inv. asympt. LST inv.
5 || 1,09356-02 | 1,09364-02 (| 9,05070-02 | 9,05076-02 || 3,67385-01 | 3,67385-01
10 || 5,84744-05 | 5,84744-05 || 5,56564-03 | 5,56564-03 | 1,14522-01 | 1,14522-01
15 || 3,12671-07 | 3,12671-07 || 3,42253-04 | 3,42253-04 | 3,56993-02 | 3,56993-02
20 || 1,67189-09 | 1,67189-09 | 2,10465-05 | 2,10465-05 | 1,11283-02 | 1,11283-02
25 || 8,93986-12 | 8,93984-12 | 1,29423-06 | 1,29423-06 | 3,46896-03 | 3,46896-03
30 || 4,78027-14 | 4,80726-14 | 7,95876-08 | 7,95876-08 | 1,08135-03 | 1,08135-03
35 || 2,55608-16 | 2,11279-16 || 4,89416-09 | 4,89416-09 | 3,37084-04 | 3,37084-04
40 || 1,36677-18 | 1,21772-18 || 3,00961-10 | 3,00961-10 | 1,05077-04

| 1,05077-04

Table 2: Asymptotic approximation and numerical results.

The result shows a remarkable accuracy of the asymptotic tail approximation. The num-
bers obtained with LST inversion and the asymptotic formula differ sometimes within
1071® which is in fact the maximum accuracy of the inversion algorithm. Moreover, the
asymptotics perform well even for relatively small values of z. Already for z = 10 the
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z || LST inversion asympt.(3.1) || heavy-traffic asympt.(3.22)
10 || 6,17856022E-01 | 6,17856022E-01 6,21885056E-01

30 || 2,19011860E-01 | 2,19011860E-01 2,40508463E-01

50 || 7,76332889E-02 | 7,76332889E-02 9,30144892E-02

70 || 2,75187267E-02 | 2,75187267E-02 3,59725188E-02

90 || 9,75458251E-03 || 9,75458251E-03 1,39120487E-02 ‘

Table 3: Asymptotic approximations and numerical results for p = 0.95.

error is of order 10713, Results with similar accuracy of exponential asymptotics in FIFO
queues are presented in the paper of Abate et al. ([1], Table 1).

Table 3 presents results for the model with high load, p = 0.95. As before, the service
requirement D is equal to 1. We consider two approximations: the asymptotic approxi-
mation from Theorem 3.1 (second column), and the heavy-traffic asymptotics (3.22) (third
column). The first column shows the results from the numerical inversion. Remarkably,
the heavy-traffic asymptotics perform less accurately than Approximation (3.1).
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