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Samenvatting

Het onderwerp van dit proefschrift betreft het lange termijn gedrag van complexe dy-
namische systemen met lokale niet-lineariteiten die worden geéxciteerd door een periodieke
externe belasting.

Ter verkrijging van nauwkeurige informatie over verplaatsingen, rekken en spanningen
is het vaak noodzakelijk om m.b.v. de eindige elementen methode grote modellen met
veel vrijheidsgraden op te stellen. Het bepalen van het lange termijn gedrag op basis van
een niet-lineair model met veel vrijheidsgraden is zeer kostbaar. Door toepassing van een
component mode synthese methode gebaseerd op free-interface eigenmodes en residuele
flexibiliteitmodes wordt het aantal vrijheidsgraden van de lineaire componenten van een
systeem met lokale niet-lineariteiten gereduceerd. De nauwkeurigheid van berekeningen
uitgevoerd op basis van het gereduceerde model kan worden gecontroleerd door onder-
zoek van het frequentiespectrum van de externe belasting minus de (interne) belasting
veroorzaakt door de lokale niet-lineariteiten en door onderzoek van de invloed van hogere,
weggelaten eigenmodes op dit frequentiespectrum.

Het lange termijn gedrag van een niet-lineair dynamisch systeem kan periodiek, quasi-
periodiek of chaotisch van aard zijn. Periodieke oplossingen worden efficiént berekend door
het oplossen van een tweezijdig grenswaardeprobleem door toepassing van een tijdsdiscreti-
satiemethode (eindige differentiemethode). Een belangrijk voordeel van deze methode is
dat zowel stabiele als {zeer) instabiele oplossingen probleemloos kunnen worden bepaald.
D.m.v. een vertraagde correctiemethode kan de globale discretisatiefout in de oplossing
worden geschat en kan de nauwkeurigheid van de oplossing worden verbeterd. Hoe de peri-
odieke oplossing wordt beinvloed ten gevolge van een verandering in een ontwerpvariabele
van het systeem kan worden onderzocht door toepassing van een ”"path following” techniek.
De lokale stabiliteit van een periodieke oplossing wordt onderzocht met behulp van Floguet
theorie. Op takken met periodieke oplossingen kunnen een drietal typen lokale bifurcaties
worden aangetroffen en wel de cyclic fold bifurcatie, de flip bifurcatie en de Neimark bi-
furcatie. Lange termijn oplossingen worden tevens geanalyseerd via standaard numerieke
integratie. Door berekening van Lyapunov exponenten en de daarvan afgeleide Lyapunov
dimenste wordt het karakter van de lange termijn oplossing (periodiek, quasi-periodiek of
chaotisch) geidentificeerd.

De gepresenteerde technieken worden toegepast op een harmonisch geéxciteerd balksys-
teem met verschillende niet-lineaire ondersteuningen zoals een verstijvende veer, een eenzij-
dig verstijvende veer en een eenzijdig lineaire veer. Superharmonische, subharmonische en
interne resonanties worden berekend en genoemde bifurcaties worden veelvuldig aangetrof-
fen. In de systemen met een eenzijdig lineaire veer worden drie verschillende transities naar
chaos aangetroffen: een transitie via periodeverdubbeling, een intermitterende transitie en
een "quasi-periodic-locked-chaotic” transitie.
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Summary

The subject of this thesis is the long term behaviour - also called steady-state behaviour
- of complex dynamic systems with local nonlinearities, which are excited by periodic,
external loads.

Accurate information about displacements, strains and stresses often requires finite
element models with many elements and thus many degrees of freedom. The determination
of the steady-state behaviour for a nonlinear model with many degrees of freedom is very
expensive. By applying the component mode synthesis method based on free-interface
eigenmodes and residual flexibility modes the number of degrees of freedom of the linear
components of a system with local nonlinearities is reduced. The accuracy of results
obtained with the reduced model can be checked by investigating the frequency spectrum
of the external loads minus the internal loads caused by the local nonlinearities and by
investigating the influence of the deleted (higher) eigenmodes on this frequency spectrum.

The steady-state behaviour of a nonlinear dynamic system can have a periodic, quasi-
periodic or a chaotic character. Periodic solutions will be calculated efficiently by solving
a two-point boundary value problem by applying a time discretisation method (finite dif-
ference method). An important advantage of this method is the fact that stable as well
as (very) unstable solutions can be determined easily. The global discretisation error in
the solution can be estimated and the accuracy of the solution can be improved by means
of a deferred correction method. How the periodic solution is influenced by a change in
a so-called design variable of the system can be investigated by applying a path following
technique. The local stability of a periodic solution is investigated using Floquet theory.
On the branches of periodic solutions three types of local bifurcations can be found, namely
the cyclic fold bifurcation, the flip bifurcation and the Neimark bifurcation. The steady-
state behaviour also has been investigated by means of standard numerical integration. In
this case the character of the steady-state behaviour (periodic, quasi-periodic or chaotic)
is identified by calculation of the Lyapunov exponents and the Lyapunov dimension.

The methods presented are applied to a harmonically excited beam system with differ-
ent nonlinear supports, such as a stiffening spring, a one-sided stiffening spring, a one-sided
linear spring. Superharmonic, subharmonic and internal resonances are evaluated and the
bifurcations mentioned above are met frequently. In systems with a one-sided linear spring
three transitions to chaos are observed: a transition via period doubling, intermittency
and a quasi-periodic-locked-chaotic transition.



Notation

General notation

a,A Scalar

a Column matrix

3 Scalar on row 1 of column maltrix a

A Matrix

a; Column 1 of matrix A

Ay Scalar on row i and colurnn j of matrix A

TA, Diagonal matrix

Tag. Diagonal matrix "A. with scalar & on row i and column i

Greek lower-case letters represent scalars or column matrices
Greek upper-case letters represent matrices

i Complex unity constant

R(a) Real part of a

F(a) Imaginary part of a

3 Conjugate of a

0 Null column matrix

e Null matrix

I Unit matrix

Q Orthonormal matrix

Uw Upper triangular matrix

ba Infinitesimally small perturbation of a

la| Absolute value of a

el Fuclidian norm of a

at, At Transposed of column matrix a, transposed of matrix A
At Inverse of matrix A

rank A Rank of matrix A

< A> The linear subspace spanned by the columns of matrix A
a First time derivative of a

8 Second time derivative of a

a/ First dimensionless time derivative of a

Second dimensionless time derivative of a
atk) k-th dimensionless time derivative of a



Convergence ratio for dof g

Increment for r in corrector step m of pf-step k

Mean global discretization error for dof g
Cut-off frequency

Frequency of external load

Frequency of periodic solution

Frequency of response

Number of dof of the system

Number of boundary dof of the system
Number of time discretization points
Increment for r in predictor step of pf-step k
Design variable

Time

The time needed for transients to damp out
Area of cross-section

Hausdorff dimension

Lyapunov dimension

Modulus of elasticity

Second moment of area

Number of linear components

Period of external load

Period of periodic solution

Period of response

Path following control parameters
Convergence control parameter

i-th characteristic exponent

i-th Lyapunov exponent

i-th Floquet multiplier

Mass density

Stepsize in the predictor step of pf-step k
Dimensionless time

Time increment between two discretization points

Phase angle of external load

Phase angle of external load at t =0
Phase angle of Poincaré section
Angular frequency

Angular cut-off frequency
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The following scalars are component dependent and have to be provided with the
superscript [cl:

ng Number of deleted elastic free- /fixed-interface eigenmodes of the
component

0y Number of kept elastic free-/fixed-interface eigenmodes of the
component

o, Number of reduced dof of the component

Ny Number of dof of the component

ng Number of boundary dof of the component

ng Rank of the stiffness matrix K of the component

ng Number of non-interface dof of the component

ny Number of interface dof of the component

nr Number of internal dof of the component

IR Number of rigid body modes of the component

& Dimensionless damping factor of free-interface eigenmode i

w; Angular eigenfrequency of free-interface eigenmode i

wi Angular eigenfrequency of fixed-interface eigenmode i
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Column matrices

Calm ((ng*nr) x 1)
j (ng*1)

fin (ng*1)
fa=—fa (ng*1)

Syex (ng* 1)

f (ny* 1)

g (ng*1)

ag ((ng*mn,)*1)
h ((ng * n,) * 1)
Pk ((ng *n,) % 1)
q (ng*1)

bq (ng* 1)

8 (20, % 1)

8s (2ng* 1)

y (ny * 1)
2,72 ((ng*n,)* 1)
Azy ((ng*n;)* 1)
&g (ng*1)

&y (ng 1)

Eq" (ng* 1)

Increment for z in corrector step m of pf-step k
External load acting on the system

Displacement and velocity dependent load

Loads caused by local nonlinearities

External load acting on the boundary dof of the system
Interface loads caused by adjacent local nonlinearities
Equations of motion of the system

0(a7?) local discretization error in the equations of motion
Discretized equations of motion

Increment for z in predictor step of pf-step k

Dof of the system

Perturbation of ¢

State of the system

Perturbation of s

Boundary dof of the system

Discretized periodic solution, 0{Aa7?), 0(aT?)

0(at?) global discretization error in the discretized periodic
solution

Local discretization error in the equations of motion
Local discretization error in the velocities

Local discretization error in the accelerations

The following column matrices are component dependent and have to be provided with the
superscript [c]:

f
fex
fo
i
fa
P
x
;3
4

X

G

(ng* 1)
(ne % 1)
(np* 1)
(nex1)
(ng * 1)
(np % 1)
(ny*1)
(np * 1)
(ne+ 1)
{ng * 1)

Loads acting on the component

External loads acting on the component

Reduced column of loads

Interface loads caused by adjacent linear components
Interface loads caused by local nonlinearities
Reduced dof

Dof referring to a set of local base vectors

Boundary dof referring to a set of global base vectors
Free-interface eigenmode

Fixed-interface eigenmode



Matrices
As

B,
B;
J

K,
Ks

Mq, 1W5

3

=3

»e«»e@@@

m

(2ng * 2n4)

(ng * n,)
(ng * ng)

System matrix, resulting after linearization around a periodic
solution

Damping matrix of linear system, non-negative definite
Damping matrix of the system, resulting after linearization
around a periodic solution

{{ng#*n.)* {ny,*n,)} Jacobian

(ng * ng)
(ng % ny)

Stiffness matrix of linear system, non-negative definite
Stiffness matrix of the system, resulting after linearization
around a periodic solution

Mass matrix of the system, positive definite

Fundamental matrix

Natural matrix logarithm of the monodromy matrix
Monodromy matrix

Matrix with eigenmodes of ©,,

Matrix with eigenmodes of ©,

The following matrices are component dependent and have to be provided with the
superscript [c]:

B
B »
G
Gr
H
K
K,
M
M,

(np % 1p)
(np * ng)
(ng * (np -+ ng))
(ng * ng)

Damping matrix, non-negative definite

Reduced damping matrix, non-negative definite

Flexibility matrix of rank ng

Elastic flexibility matrix of rank ng

Matrix of frequency response functions

Stiffness matrix, non-negative definite

Reduced stiffness matrix of the component, non-negative definite
Mass matrix, positive definite

Reduced mass matrix, positive definite

High frequency residue matrix

Low frequency residue matrix

Component assemblage matrix

Ritz reduction matrix, dynamic component mode set
Dynamic component mode set with free-interface eigenmodes
Dynamic component mode set with fixed-interface eigenmodes
Regular transformation matrix, brings boundary dof explicitly
in reduced dof set

Local-global vector base transformation matrix, regular
Matrix which localizes reduced component dof p in ¢
Statically complete component mode set

Matrix of free-interface eigenmodes



ofx (ng * ng) Matrix of fixed-interface eigenmodes
P4 (ng * ng) Matrix of deleted elastic free-interface eigenmodes
& (ng * n4) Matrix of deleted fixed-interface eigenmodes
By (ng * 1yc) Matrix of kept elastic free-interface eigenmodes
Pfx (ng * ny) Matrix of kept fixed-interface eigenmodes
o4 (0s * (ng ~ ny)) Matrix of attachment modes
o4 (ng * (g ~ n3)) Matrix of (redundant) constraint modes defined for V set
oc? {(n, * ng) Matrix of constraint modes defined for B set
B {(ng, * ng) Matrix of elastic free-interface eigenmodes
oF (ng * np) Matrix of flexibility modes
&S (ng * np) Matrix of residual flexibility modes
oM (ng * ng) Matrix of inertia relief modes
oF (ng * ng) Matrix of rigid body modes
"=, (np * ng) Matrix with dimensionless damping factors of free-interface
component
Q. (Dg * 1) Matrix with angular eigenfrequencies of free-interface component

rQfx, {ng * ng) Matrix with angular eigenfrequencies of fixed-interface component



Chapter 1

Introduction

In many cases the performance of a mechanical system depends on its dynamic behaviour,
which can be defined as the time dependent response of the system caused by internal or
external influences. In this thesis attention is focused on long term dynamic behaviour of
mechanical systems with local nonlinearities excited by periodic loads.

Mechanical systems consisting of linear components and local nonlinearities are fre-
quently met in engineering practice. From a spatial point of view, these local nonlinearities
constitute only a small part of the mechanical systemm. However, their presence can have
important consequences for the overall dynamic behaviour. The local nonlinearities consid-
ered here are assumed to originate from physically and not from geometrically nonlinear
behaviour; examples of these local nonlinearities are nonlinear elastic springs, nonlinear
viscous dampers, dry friction and backlash. Local nonlinearities can be introduced delib-
erately by the designer to avoid excessively high responses or stresses; examples of such
applications are nonlinear springs supporting a piping system in a chemical plant and dry
friction hinges connecting parts of the exhaust system of a road vehicle. On the other hand
local nonlinearities can be undesirable, for example dry friction and backlash phenomena
in certain connections.

The dynamic behaviour of a system can be predicted using mathematical models for
system and excitation. In this thesis spatially discretized models will be used as an idealiza-
tion of continuous models. The behaviour in space and time of such a model is described by
a finite number of degrees of freedom (dof) referring to a fixed co-ordinate system. Basically
there are two approaches by which a discrete model can be obtained:

1. The theoretical approach.
If the physical and geometrical properties of a system are explicitly known, a model
can be derived using Lagrange’s equations of motion. The Finite Element Method
(FEM) in conjunction with the digital computer enables the automatic derivation of
these equations for (almost) any mechanical system.

2. The ezperimental approach.
If the qualitative properties of an existing system are known, but it is not possible to
quantify certain system parameters theoretically, an experimental approach can be

17



18 CHAPTER 1. INTRODUCTION

followed. Experimental data can be used to estimate the unknown system parame-
ters by application of identification techniques. Experiments can be expensive and
dangerous.

Actually both approaches should not be considered separately. In many cases a theoretical
model is analysed to verify if the design of a (new) mechanical system satisfies requirements
with regard to its dynamic behaviour. Usually the design and its model will be modified
several times before the design will be accepted. Then a prototype can be build and
experiments can be carried out to verify, if measured and calculated data match sufficiently
accurate. If this is not the case, the model could be improved using an experimental
approach.

Under the assumptions that no constraints among the system dof g(t) exist, system
properties are independent of time t and local nonlinearities expose only physically nonlin-
ear behaviour, i.e. displacements and rotations are assumed to remain small, so that only
vibrations around a static equilibrium position need to be considered, Lagrange’s equations
of motion will result in:

My(t) + fin(d(t), 9(t)) = fex(8) (1.1)

M, is the positive definite mass matrix, fox is the column matrix with external loads and
Jfin is the column matrix with displacement dependent and velocity dependent forces (a list
of symbols, used in this thesis, is given under the header Notation at the beginning of this
thesis). In a linear model of a mechanical system moreover linearly elastic and linearly
viscous material behaviour is assumed. In case of a linear system the equations of motion
(1.1) simplify to:

Mq&(t) + Bqé(t) + Kq‘l(t) = fex(t) (1.2)

B, and K, are the damping matrix and the stiffness matrix respectively, which are both
non-negative definite. The modal parameters of (1.2) can be estimated experimentally by
the well-developed modal analysis technique (LMS International [1990]). The experimen-
tal identification of parameters in nonlinear systems is a rapidly growing area of research.
Hence it is expected, that the possibilities for an experimental approach of systems, con-
sisting of linear components and local nonlinearities, will grow in the future.

In many applications mechanical systems are loaded by harmonic, or more general,
continuous periodic external loads:

fx(t) = fxlt + 1/) = ao + i[ak cosk(2nft + @) + b sink(2nfet + &) (1.3)
k=1

In this equation f, is the frequency of the external load and ¢, is the phase angle of the
external load at t = 0. Some typical periodic excitation sources are engines, pumps and
rotating mass unbalances. Now the state s(t) of the system is introduced: it is defined by
the position of the system and its first time derivative:
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a(t) ]
t)=1° 14
s(t) [ §(t) (1.4)
The augmented state is formed by s(t} and ¢(t}, the phase angle of the excitation:

¢(t) = 27let + e (1.5)

The state s(t) (also called response, solution, flow or {rajectory), of a system under periodic
excitation {1.1) is fully determined by the initial augmented state of the system, i.e. the
angmented state specified at one point in time. Under the assumption that the response
of a periodically excited nonconservative dynamic system remains bounded, this response
undergoes two stages. In the first transient stage the response will be irregular. After the
transient response has damped out, a regular response will be reached representing long
term behaviour, also called steady-state behaviour.

The long term behaviour or steady-state behaviour of a damped linear system is unique
and periodic with the same period as the excitation. Periodic solutions of (1.2} can easily
be calculated in the frequency domain by means of frequency response functions.

Nonlinear systems, however, exhibit three types of steady-state behaviour:

1. Periodic behaviour.
The system keeps returning to the same state after a full period. However, the period
of the solution does not need to be equal to the period of excitation.

2. Quasi-periodic behaviour.
The solution is a function of two or more periodic signals, which have incommensurate
frequencies. If there is one periodic external excitation, one of the frequencies of the
periodic signals will be forced, whereas the others will be free.

3. Chaotic behaviour.
A solution, which is neither periodic nor quasi-periodic.

In general steady-states coexist. The local stability of a steady-state can be determined by
investigating the evolution in time of an infinitesimally small perturbation of the steady-
state. The local stability of a steady-state can be (asymptotically) stable, marginally stable
or unstable. A steady-state is called asymptotically stable (unstable) if an infinitesimally
small perturbation of this steady-state converges to (diverges from) this steady-state with
exponential rate. A stable (unstable) steady-state is called an attractor (repellor). In
reality the response will always settle to one of the attractors. In the augmented state
space each attractor will have its domain of afiraction. If the initial augmented state of
a trajectory lies in the domain of atiraction of a certain attractor, this trajectory will
converge to this attractor. In case a steady-state is marginally stable, an infinitesimally
small perturbation of this steady-state will neither grow nor damp out with exponential
rate. An infinitesimally small perturbation of one of the system parameters, however, can
change both the quantitative and qualitative steady-state behaviour drastically: the system
is not structurally stable. A system is (not) structurally stable if, for any sufficiently small
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perturbation of the defining equations of motion, the resulting flow is (not) topologically
equivalent to the initial one. In the nonlinear case a marginally stable steady-state is called
a dynamic bifurcation point.

Steady-states of (1.1) can be obtained by solving an initial value problem. Given an
initial augmented state at t = tg:

q(to) %
q(te) | = | do
(o) $o

the equations (1.1) can be integrated numerically. Stable steady-states can be calculated by
integrating forward in time. Conversely, only some unstable steady-states can be calculated
by integrating backwards in time. Information about the domains of attraction of steady-
state attractors can be obtained by solving a large number of initial value problems with
stightly different initial states. If the system is slightly damped, its equations of motion
must be integrated over a long period of time before transients become neglectable and
the steady-state is reached. Moreover, if a system parameter, also called a design variable,
changes in value, the calculations must be repeated. The conclusion is, that a huge amount
of CPU-time will be needed to carry out all these calculations, especially if the model has
many dofs.

Periodic steady-states, however, can be calculated much more efficiently by solving a
two-point boundary value problem. The local stability of the calculated periodic solution
can be evaluated afterwards by examining the so-called Floguet multipliers. This approach
also offers the possibility to follow branches of solutions when a design variable is varied.
On these branches local bifurcation points can be detected. The type of bifurcation can
be determined by examining the Floquet multipliers. Of all three types of steady-state
behaviour mentioned before the periodic behaviour is most frequently met in engineering
practice. This supports the concentration on the solution of two point boundary value
problems in this thesis.

Accurate information about displacements, strains, stresses, etc. often requires finite
element models with many elements and thus many dof. Dynamic analyses based on
large models can lead to excessive high CPU-times, despite the current state of computer
technology.

In linear dynamics, this problem can easily be circumvented through applying the Ritz
reduction method, which is based on the principle of superposition. The displacement field
is approximated by a linear combination of a Iimited number of well chosen displacement
functions or modes, whose coeflicients act as the dof of the reduced system. Usually a
number of eigenmodes with eigenfrequencies lying in a frequency range of interest is chosen.
In this way the decrease in model accuracy due to the reduction is kept to a minimum.
The frequency range of interest is determined by the frequency spectrum of the external
loads, In practice the significant part of this spectrum often ranges from zero to some
cut-off frequency f,. The eigenmodes decouple the system equations. These decoupled
equations can be solved separately and the approximate solution is calculated by adding
all eigenmode contributions. The amount of CPU-time, which is saved by solving the
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reduced system equations instead of the original equations, can be very large. The extra
CPU-time needed to calculate the eigenfrequencies and the corresponding eigenmodes is
quickly regained. In most analyses one wants to know the eigenfrequencies and eigenmodes
of the system anyway.

Component mode synthesis (cms) methods are based on the Ritz reduction technique.
With e¢ms methods the linear system is first subdivided in a number of subsystems, also
called components, substructures or superelements. A subdivision in components can be
advantageous in many situations. These situations will be discussed later on. Subsequently
the Ritz reduction method is carried out at component level. Cms methods distinguish
themselves by the use of different types of component modes. In general a set of component
modes consists of eigenmodes and static correction modes. After reduction, component
models are coupled to obtain a compact system model. If desired, these reduced system
equations can be decoupled again. Obviously, those cms methods are preferred, which
lead to compact system models with eigenfrequencies, which are accurate up to the cut-off
frequency, used to reduce the components.

In general the equations of motion of a nonlinear system cannot be decoupled with
the exception of so-called linearly separable nonlinear systems, see Van der Varst [1982] .
Therefore, in nonlinear dynamics the need to save CPU-time by means of reduction of the
number of dof is even greater than in linear dynamics, because the equations have to be
solved simultaneously. Unfortunately, it is very difficult to formulate a general procedure,
by which a large nonlinear dynamic model can be reduced to a compact model, which is
accurate in a prescribed frequency range. In literature two methods can be found by which
(large) nonlinear models can be reduced using a simple frequency criterion: the pseudo-load
method and the local mode superposition method. They will be evaluated later on. In this
thesis, only the linear components of a system with local nonlinearities will be reduced
by application of cms methods, This approach can be cousidered to be a variant of the
pseudo-load method. The CPU-time profits versus the resulting accuracy and the effect of
the elimination of high frequency eigenmodes on the accuracy of solutions below the cut-off
frequency must be investigated. Usually, the costs involved in this investigation will be
small compared to costs saved. Moreover, a better understanding of system behaviour is
obtained.

This thesis has been arranged as follows. In the next chapter the reduced equations
of motion of dynamic systems with local nonlinearities will be derived. At first the re-
duction of linear components by means of cms methods will be discussed. Then the local
nonlinearities will be taken into account. Conditions for obtaining accurate solutions using
reduced nonlinear models will be discussed. The following three chapters deal with nu-
merical methods for the analysis of the periodic behaviour of nonlinear dynamic systems.
In chapter three periodic solutions are calculated by solving a two-point boundary value
problem using a time discretization method, which actually is a finite difference method.
An important advantage of this method is the fact that stable as well as (very) unstable
solutions can be determined easily. Once a periodic solution is calculated, a path following
method can be applied to investigate how the periodic solution changes, if a design variable
of the system is varied. Crooijmans [1987] successfully used a similar procedure to inves-
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tigate the periodic behaviour of rotor-bearing structures. In this thesis the application of
a deferred correction technigue is added. In this technique local and global discretization
errors of an approximate periodic solution can be estimated. These can be used to increase
the accuracy of the solution. It is a fortunate coincidence that the extra amount of CPU-
time, needed to carry out a deferred correction, is neglectable, if the technique is used in
combination with path following. Another improvement is the development of a more ro-
bust path following method. Chapter four is concerned with the local stability of periodic
solutions. In chapter five three types of local bifurcations, which can be found on branches
of periodic solutions, will be discussed: the eyclic fold bifurcation, the flip bifurcation and
the Neimark bifurcation. Chapter six deals with the calculation of Lyapunov ezponents.
These are used to identify the type of steady-state response (periodic, quasi-periodic or
chaotic} which is reached in a numerical integration analysis. In chapter seven the numer-
ical tools are employed to study the steady-state behaviour of a beam system with local
nonlinear supports. Finally, in chapter eight a number of conclusions are drawn and some
recommendations for further research are given.

All numerical computations made in this thesis were carried out on an Iris 4D /210GTXB
computer of Silicon Graphics.



Chapter 2

System modelling and reduction

2.1 Introduction: component mode synthesis

Component mode synthesis (cms) methods are used for the modelling and analysis of large
linear dynamic systems, which are undamped, proportionally damped or slightly damped.

Their two major features are:

1. The subdivision of the system in a number of components, which can be advantageous

in various situations:

¢ The components originate from different subcontractors. Each of them is re-

sponsible for the dynamic performance of his component. The main contractor,
who is respousible for the total system, has to check if requirements with regard
to system dynamics are satisfied or not.

Some components can be modelled theoretically, Other components have to be
identified experimentally, for example in case of unknown damping characteris-
fics.

A system contains some or many identical components. Only one of these
components needs to be modelled.

Several designs have to be analysed to evaluate which of them gives the best
dynamic performance. In all designs, some components will be identical and
other components will undergo some modifications.

In general a component will have one or more interfaces. An interface will be part of

two or more components and/or local nonlinearities.

2. The number of dof of every component is reduced using the Ritz method. The
displacement field 2 of the component is approximated by a reduced number of

component modes £y;:

Tip
I = zinpi =Tp

i=1
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(2.1)
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The equations of motion of a free component are:
Mi+Bt+Ke=f (2.2)

As stated before, components are assumed to be undamped, proportionally damped or
slightly damped, which imposes restrictions on the damping matrix B. In the formulation
of component modes several sets of dof will be used. These sets and the relations between
themn are shown in tables 2.1 and 2.2. Columus z en f are partitioned as follows:

<[] e
f= [{,f];[§§}1+[§2L=fe;+*fr+f;1 (24)

Sex are external loads, fi* are internal loads caused by adjacent linear components and f3
are internal loads caused by adjacent local nonlinearities. An optimal ¢cms method should
fulfil the following conditions:

1. Each component can be modelled and analysed independently.

2. The reduced system model provides the same (quasi-)static solution as the original,
unreduced system model.

3. The set of dof of the reduced component explicitly contains the set of boundary dof.
Then reduced component models can be coupled by means of the well-known direct
stiffness method. '

4. The reduced system model provides an accurate solution in the frequency range of
interest. The eigenfrequencies of the reduced system model are accurate up to the
cut-off frequency used to reduce components.

8, The costs for calculation of component modes and reduction of matrices can at least
be regained by analysing and calculating the reduced system model instead of the
original system model. :

6. The reduced component models can be derived theoretically (finite element method)
as well as experimentally (modal analysis).

2.2 Component modes
Exarmples in literature show that the accuracy of solutions at system level can not be guar-

anteed by only including component eigenmodes in the component mode set, see Benfield
and Hruda {1971] and Herting [1985] . The accuracy can be improved considerably by
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set | dofs dimension description

Xz (np*1) All physical dof of the component.

B |z (npx1) Boundary dof: dof which are loaded either by internal
loads caused by adjacent linear components and/or local
nonlinearities or by external loads.

T | zr (m*1) Internal dof: dof which are not loaded.

H | zg (og=*l) Interface dof: dof which are loaded by internal loads
caused by adjacent linear components and/or local non-
linearities.

G | z¢ (ng*1) The complement of H in &.

R | zr (ng*1) A minimal set of dof in B capable of suppressing all mo-
tions of the component as a rigid body.

E | zg (ngpx1) The complement of R in X.

YV | ov ((ng—mn1)*1) | The complement of R in B.

S| zs (ng=*1) A minimal set of dof in T capable of suppressing all mo-
tions of the component as a rigid body.

F | ar (ngx1l) The complement of & in X.

W | zw ((ng —ng)*1) | The complement of S in 7.

Table 2.1: Sets of dof of a component

X=BUI n.,=np+n
X=RUE ng,=ng+ng
X=8S8UF
X =HUG n,=ny-+ng
B=RUY
I=8UW
E=TuVy
F=BUW

Table 2.2: Relations between sets of dof of a component
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\\1 componsnt [1] component [2]

N

41

Figure 2.1: Beam system consisting of two components

adding static correction modes for component dof which are loaded by external or internal
loads. Further improvement of accuracy can be obtained by introducing modes, which
account for the inertia loading of a free component moving as a rigid body. In this context
the following types of component modes will be discussed:

1. Rigid body modes

2. Free-interface eigenmodes
3. Flexibility modes

4, Residual flexibility modes

Figure 2.1 shows a 2D linear beam system (p = 7850 kg/m®, E = 2.1 10! N/m? A =
3.73107* m? I = 1.055 10~7 m*), consisting of two components [1] and [2]. These are
coupled at the interface node (or boundary node) corresponding to node 41 of the original
model of the total system. The system is modelled with 85 beam elements (component [1]:
40 elements, component [2]: 45 elements) with a length of 0.1 m. The resulting numbers
of dof of the system and components [1] and [2] are n, = 246, nl) = 117 and nl¥ = 132
respectively. This beam system will be used to illustrate several aspects of the cms method
in the following sections.

- S———
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2.2.1 Rigid body modes

A rigid body mode is defined as a motion with constant elastic energy level. 1t is assumed
that no mechanisms can be distinguished in the component, so that the number of rigid
body modes ng will be six at most in the threedimensional space. This implies for the
rank of the stiffness matrix:

N, — 6 < rank A =n, — np € ng {(2.5)
Rigid body modes, which are stored columnwise in the matrix ®F, are defined by:
Karn K o O
K@R — RR RE RR — RR - O 2.6
[ Kegr Kgr $rr Ogr R ( )
The matrix ®F can be calculated from:
i I
oR — | PRB | _ [nr 2.7
L. ] [ ~KghKen (2.7)

Note that neither component [1] nor component [2] in figure 2.1 has rigid body modes.

2.2.2 Free-interface eigenmodes

Free-interface eigenmodes are calculated by solving the eigenvalue problem of the free
component:

(~wi!M + K)o =0 i=1,...,m (28
The angular eigenfrequency w; is related to the eigenfrequency f; by:
w; = 27t (2.9)

Actually, a solution of (2.8) for w; = 0 is a rigid body mode. So rigid body modes form
a subset of free-interface eigenmodes. The n, angular eigenfrequenties w; and the corre-
sponding free-interface eigenmodes ¢; are stored in "0, and ¢ respectively:

Orr  Ogg

r — r . —_— o o

Q.: = Wjs = [ OER. FQEEJ (54 \<\ Wig1 {210)
o=[ 0" oF| (2.11)

The matrix ®® contains ng = n, — np elastic free-interface eigenmodes with angular

eigenfrequencies greater than zero. Elastic free-interface eigenmodes with eigenfrequen-
cies smaller than some cut-off frequency f; are stored columnwise in the matrix of kept
free-interface eigenmodes @y; the corresponding angular eigenfrequencies are stored on the
diagonal of "5, The remaining elastic free-interface eigenmodes are stored columnwise
in the matrix of deleted free-interface eigenmodes ®4; the corresponding angular eigenfre-
quencies are stored on the diagonal of "§laq.:
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sigenmode 6 eigenmods 7

- -

Figure 2.2: Free-interface eigenmodes 6 (left) and 7 (right) of component [1]

o8 — [ &, 04 ] (2.12)
"Maes Oxa V

"Qpp. = ,_ 2.13

BB [ Ox  "Qaas ] , (2.13)

ng = N + Ng {2.14)

Free-interface eigenmodes are normalized on the mass matrix M:
MO =1 (2.15)
KO ="02 (2.16)

Figure 2.2 shows the free-interface elgenmodes 6 (fg = 331 Hz) and 7 (f; = 619 Hz) of
component [1] (cf. figure 2.1).

2.2.83 Flexibility modes

Flexibility modes are defined for the B set (cf. table 2.1). A flexibility mode is defined as
the (quasi-)static elastic displacement field resulting from a unit load acting on one of the
boundary dof. Moreover a flexibility mode is defined to be orthogonal to the rigid body

modes ®® with respect to the mass matrix M. The set of ng boundary unit loads is given
by:
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Fg = [ IOB; } (2.17)

Every unit load will result in a displacement, which will be a sum of a displacement as a
rigid body X, and an elastic displacement X, (X is used instead of & because the total set
Fg is considered}:

X

X=|Xw|=X+X. (2.18)
Xs

X, = 0" Py (2.19)

Because rigid body modes have been normalized on the mass matrix, substitution of (2.19)
in (2.2), followed by premultiplication with (®R)t, yields:

Py = (0%)Fp (2.20)
Substitution of (2.17) and {2.18) in (2.2), using {2.19) and (2.20), gives:

MX.+BX.+ KX, = RFg (2.21)
with:

R=1— M3®(oR) (2.22)

In general (quasi-)static elastic displacements (X, = X, = O) can be calculated only
relative to S, because in general K is singular:

XBB 1
Xws | = | 2% | | Ker Ors | o opp (2.23)
Osp Osp |, Osr  Oss

The matrix of flexibility modes ®F is found by requiring these elastic displacements to be
orthogonal to ®® with respect to the mass matrix by premultiplation of (2.23) with R*:

oF = GpFy (2.24)
with:
Gy = R'GR (2.25)

An alternative formulation {or the elastic flexibility matrix G follows from premultiplica-
tion of (2.15) with ®~*, followed by postmultiplication with &%

Modt=1 (2.26)
Substitution of this equation in (2.22), using (2.11} and (2.8), gives:

R = M®®' — MOP(oR) = MOP(0®) = KOF "pg, 2 (F)* (2.27)
Finally, substitution of {2.27) in (2.25) results into:

Gg = ® Opp. 72 (07) (2.28)

For component {1] (cf. figure 2.1) three flexibility modes have to be defined. The left
picture of figure 2.3 shows the flexibility mode, which results after application of a unit
force at the boundary node in the direction of the Y-axis,
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flexibility mode residual flexibilty mode

Figure 2.3: Flexibility mode (left) and residual flexibility mode (right) for the displacement
of the boundary node in Y-direction

2.2.4 Residual flexibility modes

Just like flexibility modes residual flexibility modes are defined for the B set. Residual
flexibility modes will always be accompanied by the kept free-interface eigenmodes &y in
the Ritz reduction matrix. In case of a {quasi-)static load, the residual flexibility modes
represent that part of the (quasi-)static response, which originates from the deleted free-
interface eigenmodes ®4 The matrix of residual flexibility modes ®€ is defined by:

% = OF — &, M 20 Fp = B4 Qe 204 F (2.29)

Residual flexibility modes are orthogonal to @ with respect to both the mass matrix and
the stiffness matrix. In appendix A it is shown by means of a simple example that (residual)
flexibility modes are not only necessary for obtaining accurate results with reduced multi-
component systems; they also can have a great positive influence on the accuracy of results
of reduced one-component systems. This especially holds for strains and stresses.

From a numerical point of view, care should be taken in the calculation of residual
flexibility modes, if they are computed by subtracting the kept free-interface eigenmode
contribution from the flexibility modes. In practice this is always done, because it would
be very expensive to compute ®° using deleted free-interface eigenmodes. The fact is
that [|®¢|| becomes very small in comparison with [|®F||, if w2 .. . becomes very large
compared to w?. Since in computers numbers can only be represented with finite precision,
the computed difference of two almost equal matrices will be erroneous if the real difference
is in the order of machine precision.
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The right picture of figure 2.3 shows the residual flexibility mode of component [1],
defined for the displacement of the boundary node in the direction of the Y-axis, in case
f, = 360 Hz, resulting in ng] == 6. The shapes of this mode and the first deleted free-
interface eigenmode (i.e. eigenmode 7, see figure 2.2} show similarity. This is understand-
able, since equation (2.29) shows a decreasing influence on the residual flexibility mode for
deleted eigenmodes with increasing eigenfrequencies.

2.3 Component mode sets

2.3.1 Statically complete component mode sets

The {quasi-)static response of the original component model (2.2), caused by an arbitrary
static load acting on the B set, can exactly be reproduced by a linear combination of the
columns of the matrix of rigid body modes ®® and the matrix of flexibility modes ®F.
Therefore condition 2 on page 24 will be fulfilled if the linear subspace of the statically
complete component mode set 75:

(T%) = ( ®® oF ) (2.30)

will be a part of the linear subspace, spanned by the columns of the Ritz transformation
matrix 7y. So the minimum number of columns of T3 is equal to np + ng.

Three equivalent formulations exist for the statically complete component mode set, in
which different types of component modes are used:

(15) =(@® 2% oM ) =37 oM )=(oR ot oM ) (2.31)

In appendix B the definitions of the redundant constraint modes ®¢! (Hurty [1965] ), the
constraint modes ®°% (Craig and Bampton [1968] ), the attachment modes ®* (Hintz
[1975] ) and inertia relief modes ®M (Hintz [1975] ) are given. It is easy to see that, if
there are no rigid body modes, flexibility modes become equal to attachment modes. For
the proof of:

(o 0o )= (o)
(32 )= (o)
(o 0% )=o)

is referred to Craig and Bampton [1968] , Craig [1985] and Chang [1977] , respectively.
The main reason for using {2.30) as statically complete component mode set in this thesis
is, that this set offers the possibility to determine the resulting reduced component model
by means of experiments in contrast with the sets given in {2.31), see Craig [1985] and
section 2.4.
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2.3.2 Dynamic component mode sets

A dynamic component mode set T3 is a statically complete component mode set supple-
mented with a number of elastic eigenmodes, selected on base of a frequency criterion. The
eigenmodes can be of the type free-interface or fixed-interface. So two dynamic component
mode sets (or Ritz transformation matrices) can be distinguished:

(TP =(T° & )=(0% o* &) (2.32)
(rP%y = (15 o ) (2.33)

A dynamic component mode set contains D, = ng + or + Ny columms.

With respect to the accuracy of reduced, undamped dynamic systems (condition four
on page 24) it is concluded on empirical grounds and based on information from literature
(Hintz [1975] ) that:

o If the same reduced number of dof is used, TP demonstrates a more uniform distri-
bution of the error percentage than T'°? when eigenfrequencies of the original system
model are compared with eigenfrequencies of the reduced system model.

o In contrast with TP?, TP* usually results in a reduced system model which is accurate
ap to the cut-off frequency used to reduce the components; see section 2.5 for an
example.

The columms of a component mode set have to be linearly independent to avoid am-
biguous solutions. Thus a component mode set must be of full column rank, not only
theoretically, but also numerically. This can be checked by a singular value decomposition
of the Ritz transformation matrix T4. A trivial remark is that the number of columns in a
component mode set is not allowed to be greater than the original number of dof. Because
reduction of the number of dof is one of the goals of cms, this condition will never be
violated.

2.4 The reduced component model

After a dynamic component mode set has been determined, the original displacement field
z will be approximated by:

z="Tp (2.34)

with:
zp Tpg Tus 7B
= s Ty = M =
S HEENE S RN

The reduced component model with dof p is derived by substitution of (2.34) in (2.2),
. followed by premultiplication with TH
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Msb + Bop + Hop =1y (2.35)
with:
M, =T{MT, ; B, =T{BTy ; K=T{KTy ; fo=Tif

If free-interface eigenmodes are used, it is trivial that the first ng + ny eigenfrequencies
and eigenmodes of the reduced component are equal to those of the original component.
In general, the np highest "eigenfrequencies” will be inaccurate, because their correspound-
ing eigenmodes will be linear combinations of residual flexibility modes. Therefore, these
eigenfrequencies, referred to as artificial eigenfrequencies, will be greater than or equal
to the lowest deleted genuine eigenfrequency. In linear dynamics, the artificial eigenfre-
quencies will not have a negative influence on the accuracy of the solution, because the
external load signal does not contain these high frequencies. On the contrary, the low
frequency contribution of these eigenfrequencies does improve the accuracy of the solution,
see appendix A and frequency domain considerations below.

A closer investigation learns that only the set TP! = [ ¢ R @, ] leads to a reduced
component model, which can be determined (almost} entirely by means of modal analysis
(condition six on page 24). For this set the matrices in (2.35) become:

Mae Ogr Ocx Bae Ogr Ogxk
M,=| Ore Man Omx ; Bp =1 Org Orr Onx ;
e Or T O Oern 2S00 Thae

Keg Ocr  Ogx .
K,=1] Opre Orr Onrx i = [ o5 oF g ] fa
Oce Oxr "hat?

with:
= (08 MP® = dgy Qua. *®hy
r = (OB MOR
Beg = (9%)'BOC = 204" Naas ¥ Saa.Phy
a = (PNKOC = Bpa Nyq. 20%, = 05,

By transformation of {2.2) to the frequency domain the following matrix of frequency-
response-functions can be derived:

n4

oupt ot Pagh
Hiw + . ; 2.36
(W)= Z Tt Z —w? + 25.00] + Wi dz::l —w? 4 2 gwqwi + wi ( )

=l

If w « w,, the boundary partition of the last term in (2.36) can be approximated by the
following Maclaurin-series expansion up to the order w?
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ng £ ng i 2

©BaYha . 2%~ PRaPha(l — 4£3)
E . ~ Kqg ~wBgg] +w E Rl o L —- 2.37
& T 2+ oo T EReAITY & w (230

If (2.35) is transformed to the frequency domain the matrix of frequency-response-functions
will be identical to (2.36) except for the last term. A Maclaurin-series expansion up to the
order w?® of the boundary partition of this term is given by:

Kgg —wBgaj + wz(MGG - BGGI(aéBcg) (238)

If £4 <« 1, the last terms of (2.37) and (2.38) are approximately equal to Mgg. Under the
assumptions that ®pq is regular and ng = ng , these terms can be shown to be equal.

In the experimental modal analysis the modal parameters wy, & and @i are usually
estimated by a curve fit on the function:

_ Ry | & Pxpk :
Hw) = — +1§1 T T T | (2.39)

In case ng = 1, we have Mpg = 1 and Ry, = ®F(®R)t. In case np > 1, Mpr and ®F must
be obtained using theoretical considerations. The column of the high frequency residue
Ry, which corresponds to the excitation point, can be identified with the same column
of Kgg- So, every boundary dof must be excited once to determine Kgg completely. As
has been shown, it will be possible to determine Maq and Bgq experimentally, once curve
fitting procedures are available for a function with a high frequency residue of the form:
Ryu(w) = Ry + wRnuaj + w?Rys.

A cut-off frequency of 360 Hz resulted in a reduced model of 9 dof (6 free-interface eigen-
modes and 3 residual flexibility modes) for component [1] and a reduced model of 10 dof
(7 free-interface eigenmodes and 3 residual flexibility modes) for component [2]. Table 2.3
shows the eigenfrequencies of the reduced models and the corresponding eigenfrequencies
of the original models.

2.5 Coupling of reduced component models

A reduced linear system model can be assembled by demanding compatibility of inter-
face dof and equilibrium of interface loads of adjacent components. This is realized by
application of the direct stiffness method.

Firstly the generalized dof pp are replaced by the boundary dof zp {condition three on
page 24):

-1 -1
PB| _1 |%B - Ty —TppTes 2.4
[PJ} 2{?1] v [O.m Iy (240)

Subsequently the boundary dof zg, referring to a component dependent set of local basis
vectors, are replaced by the boundary dof yg, referring to a set of global base vectors:
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no. || Original [1] | Reduced [1] | Original [2] | Reduced [2]
1 33.37810 33.37810 21.47194 21.47194
2 74.80584 74.80584 87.23502 87.23502
3 157.2070 157.2070 120.7789 120.7789
4 224.3831 224.3831 163.0176 163.0176
5 267.0763 267.0763 222.0986 222.0986
6 331.4843 331.4843 323.5042 323.5042
7 358.0173 358.0173
7 619.4241 889.9338
8 746.7665 1195.364 577.1514 867.4488
9 790.0817 3616.592 694.9540 1281.066

10 746.9802 3992.297

Table 2.3: Eigenfrequencies [Hz] of original and reduced models for components {1} and [2]

lg
£33 ys | . 4 | Tes Ons ]
=T DTy = ; 2.41
[PJ] 3[?7.1] 3 [OJB Iy (2.41)
If y is defined as the column of all independent boundary dof of the system, a column ¢
can be defined as the column of all independent reduced system dof:

G o t
g=[y A" P ] (242)

The superscript [c] means belonging to component [c]. In fact almost all quantities dis-
cussed so far in this chapter belonged to a component and should have been provided with
this superscript. However, because in the theory a single component has been discussed
so far, this superscript has been omitted to enlarge readability. For every component a
(Boolean) matrix 7, can be formulated, which localizes the positions of the dof of the
reduced component in ¢

e}
)3 -fe]
=7 2.43
{ Py ] ¢ (2.43)

Finally, for every component the matrix T can be calculated, which relates the reduced
system dof to the original component dof:

2l = Tlg (2.44)

with:

7t = T 1

i=1

Now the reduced system model is derived by assembling the reduced component models:
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Mo+ Bog + Kog = fex + fr {2.45)

with:

N
My = Z(TM)t M7l

e=1

Ne
By = Z(g*[cl)t Bl

=1

Ne
Ky = Z(T["l)‘ Kl

ce=l

Ne
oo = (TEA = [ 1 (0F (0. (0 ]

ozl

N,
2Ty =0

ek

N ¢
=TT = [ g oo (0P ]

e=1

Coupling of the reduced models of components [1] and [2] {cf. figure 2.1), which were
described in the previous section, results in a reduced system model of 16 dof (= 9 (reduced
component [1]) + 10 (reduced component [2]) - 3 (constraints)). The eigenfrequencies of
this reduced model are compared with the eigenfrequencies of the original system model in
table 2.4. The relative errors in the eigenfrequencies of the reduced system are very small
up to the cut-off frequency. Note that all relative errors are positive, which means that all
eigenfrequencies of the reduced system are upper-bounds for the exact eigenfrequencies;
this fact is inherent in the use of the Rayleigh-Ritz method. The artificial eigenfrequencies
above the cut-off frequency again have a positive influence on the accuracy in the low
frequency range.

With respect to condition five on page 24 can be said that generally the derivation of a
reduced system model will cost slightly more CPU-time if TP = [ ¢ oF @ ] is used

instead of TP? = [ §C2 M pix ] Table 2.5 gives a somewhat subjective estimate of the
costs.

Considering all conditions on page 24 it can be concluded that 7P may be preferred
to TP?. A process control program has been developed for the commercial finite element
package ASKA (ASKA [1986] },in which the cms method based on the dynamic component
mode set TPt has been implemented. The iterative Lanczos method or the simultaneous
vector iteration method can be used to partially solve the eigenvalue problem (2.8).
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no. | Original [Hz] | Reduced [Hz] | Relative error [%]
1 35.99628 35.99628 -+0.00000
2 43.48293 43.48293 +0.00000
3 89.78558 89.78559 -+0.00001
4 132.6038 132.6038 +0.00000
5 198.6461 198.6495 +0.00171
6 210.4793 210.4803 +0.00048
7 247.8246 247.8434 +0.00759
8 264.7874 264.7895 +0.00079
9 312.5953 312.6369 +0.01331
10 327.7563 327.8017 +0.01385
11 357.9971 357.9975 +0.00011
12 564.9868 652.9783 +15.6
13 606.7133 869.3160 +43.3
14 687.3464 1110.970 +61.5
15 717.5338 1276.873 +178.0
16 731.4784 2558.165 +250.

Table 2.4: Comparison of eigenfrequencies of original and reduced system model
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TPt TP*
calculation of: costs: calculation of: costs:
OF By (2.7),(2.8) | very expensive | & {B.1) very expensive
i (2.22) expensive oL oM (B.7),(B.15) | very expensive
(2.23) very expensive
(2.24) expensive
{2.29) expensive
T, (2.40) cheap/expensive
Ts (2.41) cheap Ty (2.41) cheap
M,B, K (2.45) cheap M,B,K (2.45) cheap

Table 2.5: Comparison of costs in the derivation of a reduced component model
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2.6 Addition of local nonlinearities

By means of the cms method, discussed in the previous sections, it is possible to reduce
the number of dof of a large linear system in such a way, that the decrease in accuracy of
the reduced system model below the cut-off frequency £, is acceptably small. A one-step
reduction technique to reduce a large set of nonlinear system equations using a similar
simple frequency criterion, is not available, because eigenvalues and eigenmodes are state
dependent.

As stated in the introduction, however, two reduction methods are known from liter-
ature by which nonlinear dynamic models have successfully been reduced using a simple
frequency criterion: the pseudo-load method and the local mode superposition method.

In the pseudo-load method (Stricklin and Haisler [1977] , Morris [1977] , Shah et al.
[1979] , Bathe and Gracewski [1981] , Kukreti and Issa [1984] ) nonlinearities are treated as
pseudo-loads: they are placed on the right-hand side in the equations of motion. Reduction
is carried out once on the remaining linear part on the left-hand side. As reduced dof those
dof remain, which correspond to eigenmodes with eigenfrequencies below a chosen cut-off
frequency. In general this cut-off frequency will be chosen higher than a cut-off frequency
based on the frequency spectrum of the external load. _

The local mode superposition method (Nickell [1976] and Remseth [1979] ) is used
in combination with numerical integration. System equations are linearized around the
current state and reduced every time step. The eigenfrequencies and eigenmodes at the
current state can be derived by updating the eigenfrequencies and eigenmodes of the pre-
vious time step using a subspace iteration technique. The cut-off frequency is based on the
frequency spectrum of the external load.

It is clear that, if the same number of reduced dof would be used, the pseudo-load
method will be much cheaper than the local mode superposition method, because no
updating of eigenfrequencies and eigenmodes is required. On the other hand the local
mode superposition method will provide a more accurate solution in this case. Differences
in costs and accuracy will decrease if more dof are used {or put differently: a higher cut-
off frequency is chosen) in the pseudo-load method than in the local mode superposition
mode. Strictly speaking, the above comparison can not be made, because, if the local mode
superposition method is used, the number of reduced dof may change in one numerical
integration analysis.

In section 3.2 periodic solutions will be calculated by solving a two-point boundary
value problem by means of a time discretization technique. In this technique the periodic
solution is calculated for all time discretization points simultaneously. Therefore the local
mode superposition method can not be applied there and a variation on the pseudo-load
method will be used.

The reduced nonlinear system equations are derived by coupling the reduced linear
system equations (2.45) to the local nonlinearities. Demanding compatibility of interface
dof and equilibrium of interface loads f results into:

MaG + Byg + Koq = fex — fu(t,y) (2.46)
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with:

falhy) = ~fa (2.47)

For simplicity, it is assumed that local nonlinearities are only a function of the boundary
dof y and their first time derivatives y.

The reduced system equations (2.46) still provide a static solution which is identical to
the static solution of the unreduced system equations. If the system is dynamically loaded,
however, accurate responses can not be guaranteed using a cut-off frequency based on the
frequency spectrum of the external load alone. In general it can be stated, that an accu-
rate reduced system model has been derived, if additional eigenmodes have a neglectable
influence on the frequency spectrum of fo, — fu(y,y) and if, at the same time, the con-
tribution of this frequency spectrum above the cut-off frequency is neglectable (de Kraker
et al. [1989] ). It is expected that the nature of the local nonlinearity and the amount
of damping in the system will have a great influence on the final cut-off frequency, which
must be used to get an accurate reduced system model. A simple illustration is given in
the next section.

2.7 A beam system with nonlinear support

Consider a 2D pinned-pinned steel beam. In the middle the beam is excited by a harmonic
tranversal load and supported by a linear spring, a linear damper and a nonlinear element.
Because of symmetry it is sufficient to consider the pinned-sliding beam system shown in
figure 2.4. The pinned-sliding beam is modelled with 25 beam elements (pure bending) of
equal size. This beam system will be referred to very often in forthcoming chapters of this
thesis. In all calculations the values of the mass density p, the modulus of elasticity E, the
area of the cross-section A and the second moment of area for the cross-section I are kept
constant:

p = 7850 kg/m®
E =2.110" N/m?
A =1.759310"* m®
[=1.732910"% m*
The length of the beam 1, the harmonic transversal force:
fex = Fay cos(2nf.t)

the stiffness of the linear spring k;, the damping coeflicient of the linear damper b and the
force originating from the nonlinear element f, = {,(y,y) are variable, however, and are
specified at places, where is referred to this beam system. For static loads (fo = 0) the
stiffness of the linear beam is:
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Figure 2.4: Harmonically excited beam system with a local nonlinearity

Fa 31 10917

In the example of this section the variable quantities are: 1 = 1.5 m, k = 0 N/m,
b = 0.117 Ns/m, f, = 4.56 10% y°, {, = 19.69cos(2nf.t), f. = 23 — 27 Hz. If only the
first free-interface eigenmode is taken into account, the three non-zero parameters of the
dimensionless equation of motion derived in appendix C become: ¢ = 0.001, p = 0.05
and ! = 2.57 — 3.01. So in a first approximation the beam system may be identified
with a very slightly damped, weakly nonlinear, 1 dof Duffing system, which is excited in
the first harmonic resonance region. It is well-known (Stoker [1966] ), that this system
exhibits three periodic solutions for one value of {, in this region: two stable solutions with
maximum and minimum amplitude and one unstable solution. For the beam system three
multi-dof models are made: a 3 dof, a 4 dof and a 6 dof model. The cut-off frequencies
used are 100 Hz, 300 Hz and 750 Hz respectively. Note that the frequency range of the
excitation is much lower than the cut-off frequencies. In the n dof model, the displacement
field of the beam is approximated by n-1 free-interface eigenmodes and 1 residual flexibility
mode. The eigenfrequencies of the reduced beam models are shown in table 2.6 (the 8 dof
model is used in chapter 7).

Using the numerical methods (o{A7*) scheme, n, = 800), which will be introduced in
the next chapter, a part of the branch with the maximum amplitude solutions is calculated
for all models. The CPU-times for the 3 dof, 4 dof and 6 dof calculations are 206 s. (42
path following steps), 1095 s. (98 steps) and 2759 s. (98 steps) respectively. As can be
seen in figure 2.5 the 4 dof and the 6 dof model give similar results. For both models the
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No. || 3 dof model | 4 dof model | 6 dof model | 8 dof model |
1 8.9592 8.9592 8.9592 8.9592
2 80.633 80.633 80.633 80.633
3 260.29 223.98 223.98 223.98
4 537.79 439.01 439.01
5 725.75 725.75
6 1416.1 1084.2
7 1514.6
8 2727.9

Table 2.6: Eigenfrequencies [Hz] of reduced beam models
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Figure 2.5: Amplitude-frequency plots for 3 dof, 4 dof and 6 dof model
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Figure 2.6: Absolute maxima of the contributions to y of the first 3 modes for the 6 dof
model ’

calculated solutions are stable, except for a small frequency range near 25.25 Hz (= 3/9),
where multiple solutions and a superharmonic resonance peak, caused by the third free-
interface eigenmode, see figure 2.6, are observed. It must be emphasized, that this peak
will rapidly collapse, if the damping is only slightly enlarged. The (marginally stable)
maximum amplitude (= 0.0956 m) solution of the 6 dof model at {, = 25.22 Hz is given in
figure 2.7, which also shows the contributions of the lowest 3 eigenmodes to that solution.
The contributions of eigenmodes 4 and 5 and of the residual flexibilify mode are low: the
amplitudes are 7.14E-4 m, 1.93E-4 m and 2.00E-4 m respectively. For the most part, the
branch with stable solutions obtained with the 3 dof model is comparative to the branches
obtained with the two larger models. However, the superharmonic resonance obviously
does not occur at 25.22 Hz, because the third free-interface eigenmode has been deleted,
see also Fey et al. {1990] . Instead, a superharmonic resonance occurs near 30 Hz (not
visible), which is about 1/9 of the artificial eigenfrequency corresponding to the residual
flexibility mode. Tables 2.7 and 2.8 give the Fourier coefficients of fo — fy (fy =1, + by)
and y respectively for the maximum amplitude solutions at f, = 25.22 Hz. If CPU-{imes
and accuracy are weighed against each other, it may be concluded that the 4 dof model
may be preferred in the investigated frequency range.

Figure 2.8 shows that the 3 dof model may be preferred in the frequency range of 40-71
Hz, where an anti-resonance is found and the system behaves almost linearly. The results
of the 3 dof model (140 s. CPU-time, 32 steps) and the 6 dof model (746 s. CPU-time,
32 steps) are fully comparative. The residual flexibility mode of the 3 dof model has a
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Figure 2.7: Superharmonic resonance near {5/9, 6 dof model

Frequency [Hz] || 3 dof model | 4 dof model | 6 dof model
2522 | 1.620E-+0 1.544E+40 1.544E+0
75.66 2.245E-1 2.016E-1 2.017E-1

126.10 1.927E-1 1.862E-1 1.872E-1
176.54 3.359E-3 2.569E-1 2.546E-1
226.98 2.735E-3 6.670E-1 6.646k-1
277.42 2.778E-1 2.780E-1
327.86 5.975E-2 5.967E-2
378.30 1.038E-2 1.332E-2
428.74 6.525E-2 5.997E-2
479.18 6.770E-2 6.988E-2
529.62 2.705E-3

580.06 1.510E-3
630.50 1.599E-3
680.94 4.070E-3 3.681E-3
731.38 1.359E-3
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Table 2.7: Fourier coefficients of fo, — (¥, y) for marginally stable high amplitude solution,

fe=25.22 Hz
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Frequency [Hz| [| 3 dof model | 4 dof model | 6 dof model
25.22 6.337E-5 6.040E-5 6.042E-5
75.66 6.264E-6 5.626E-6 5.629E-6

126.10 6.202E-7 5.954E-7 5.986E-7
176.54 6.194E-8 6.107E-8
226.98 1.256E-5 1.252E-5
277.42 3.539E-7 3.504E-7
327.86 3.235E-8 2.975E-8
378.30

428.74 1.032E-8 1.449E.-7
479.18 4.943E-8 6.129E-8
529.62 1.925E-8

Table 2.8: Fourier coefficients of y for marginally stable high amplitude solution, f, = 25.22
Hz

significant positive influence on the accuracy of the response.

The example presented above shows, that superharmonic resonance peaks may be
missed, if the corresponding eigenmode has been deleted and may occur at frequencies
where they do not belong, if they originate from artificial eigenfrequencies. However, the
latter case is easily detected by examining the frequency spectrum of foo— fa(¥,y) or ¢.
Of course, high frequent eigenfrequencies of the unreduced system will be inaccurate due
to finite element discretization and may also cause superharmonic resonances in the low
frequency range of slightly damped systems.

To avoid resonances below the cut-off frequency, caused by artificial eigenfrequencies,
the artificial eigenmodes could be artificially damped or their eigenfrequencies could be
artificially enlarged by diminishing the modal masses of the artificial eigenmodes. Actu-
ally, Macneal [1971] proposed an inconsistent Ritz-reduction method for linear systems, in
which the mass associated with the residual flexibility modes was totally neglected. This
method was used in appendix A to formulate approximation (A.10). The static correction
contribution of the artificial eigenmodes will hardly be influenced by these actions.
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Figure 2.8: Frequency response near anti-resonance; 3 dof and 6 dof model and absolute

maximum of the contribution to y of the residual flexibility mode (3 dof model)



Chapter 3

Periodic solutions

3.1 Introduction

The period Ty = 1/f, of the periodic response ¢ of a nonlinear dynamic system does not
need to be equal to the period T, = 1/, of the external excitation f.,. The period of
the periodic solution T, is defined as the time in which the response and the excitation
together repeat themselves:

T, = epTe = 1pT; (3.1)

er € N and rr € N are the smallest possible integers which fulfil (3.1). The response
is called harmonic if er = rr = 1. The response is called subharmonic of order rr/ep if
rr < ep. According to Thompson and Stewart [1986] the case rr > ep (superharmonic
response) does not normally occur, because this would imply an identical response under
different loading conditions. The term superharmonic response should not be confused
with the term superharmonic resonance. Superharmonic resonance is the phenomenon, in
which one or more higher harmonics cause resonance in a {subjharmonic response.

3.2 Time discretization

It is convenient to replace the real time t by the dimensionless time 7:
T = =t (3.2
The dimensionless time is discretized by n, equidistant points 7 in one period T,
n=iar ez (3.3)
aT=1/n, (3.4)
For a quantity Q(7) the following abbreviation will be used:

47
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Qi =Q(n) (3.5)
In case of a periodic solution a quantity Q(7) will repeat itself every T, seconds:
Qi = Qitn, (3.6)

Therefore it is sufficient to consider the interval 7 € [0,1>, so that i € {0,1,...,n, — 1L}
Differentiation with respect to the dimensionless time 7 is &enoted by a prime (’ d/dr)
or as follows:

o = ¥ 3.7)

drk

Numerical approximations of Qi(k) will be denoted by Qi(k) and ka) The following approx-
imations ¢ and §’ are used for the velocities and accelerations respectively at 7

~F q~x+1 %-1
R 3.8
g 57 (3.8)

§ = Gisr — 26 + G

A ot (3.9)

These relations are known as the central differenice scheme with a consistency of order a7
By means of the formal Taylor—series expansions:

g1 = E( 1)“ (3.10)
===
G = ot (3.11)
k=0 °

the local discretization errors in the velocities and accelerations can be expressed as:

o0 {21!—!-1)

eq = @%_E.f;l _g= ; oF wm”k = 0(ar?) (3.12)
k42 ‘
= ) “A2§:+ Ep é (2;( +2) ar™ = o(ar?) (3.13)
Writing equation {2.46) as:
94,4, ¢, t) = 9(B2¢", 5 4, 7/8,) = 9(¢", ¢, q,7) = 0 (3.14)
the following shorthand notations can be introduced:
gi = g(g', ¢l @,m) = 0 (3.15)

gi = 9(51”? é:a &, Ti) =0 (3-16)
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The local discretization error in the forces e, is given by:

) Gr1—2¢+ g1 G — g1 _(0g dg
Eg = el 2 Ry VG T) = (8_¢g')isq" + (W ifqi" +
1 o*q\ , 8% g\
a ((W)eq:+2 W .Eqil€qill + W ‘€qiu + (317)

Using periodicity of the discretized solution an 0(A7?) approximation of the periodic so-
lution ¢(7) = ¢(7 + 1) can be derived by solving the following algebraic set of equations:

§i=0 i=0,1,...,n,—1 (3.18)
g-1=Gn,-1 (3.19)
Go = Gu, (3.20)

All discretized dof ¢ are collected in a column z, which represents the discretized periodic
solution:

2= (@, G5, - -+ Gop ]’ (3.21)

After elimination of the constraints (3.19) and (3.20), the equations (3.18)-(3.20) can be
reduced to:

h(z) = hi(z) — by = 0 (3.22)

where the column h; only contains the contribution of the external load fey.

It should be noted that it is also possible to calculate periodic solutions of autonomous
systems. However, the period T, of a periodic solution of an autonomous system is un-
known in advance. In this case an extra equation must be added to make the set of
equations solvable. Because the periodic solution of an autonomous system can be shifted
over an arbitrary time interval, an equation can be formulated, which fixes the phase. This
can be achieved by setting one of the components of §' equal to zero at a cerfain time 7.
In this thesis, however, attention will be paid to non-autonomous systems only.

Starting with an initial estimate zp, equation (3.22) is solved using a damped Newton
iteration scheme:

Ze =2+ (1/2)% 8z (3.23)
2 ()an = —h(z) (3.20)

During the iteration process, the norm of the residue is required to decrease monotonically:

Izl < [1A(z)] (3.25)
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The exponent § is the lowest value of the set {0,1,. .., Guex}, which fulfils this requirement.
The column z is accepted as solution z, of (3.22) if the following convergence criterion is
satisfied:

()]l < €| hall (3.26)

where €, is a small number. In calculations ¢, = 10™® unless stated otherwise. z; is an
0(ar?) approximation of the exact periodic solution. The iteration process fails if:

1. (3.25) is not satisfied for § € {0,1,..., Guax}
2. the Jacobian 8h/8z becomes singular
3. the maximum number of iteration steps jnax 1s exceeded

A lot of CPU-time can be saved in the decomposition of the Jacobian 8h/8z, if use is made
of its special structure, see appendix D.

3.3 A deferred correction

By means of a deferred correction technique the 0{A7?) solution z, can be improved to
an 0(a7*) solution 2. Moreover both the local and the global discretization error can be
estimated.

Substitution of (3.12) and (3.13) in (3.17) gives:

& (4)
€q = (gg,) 24 (gi) & + 0(ath) = ngi(z) + 0(at?) (3.27)

Using Taylor-series expansions it can be derived that the difference schemes:

+8) _ Girz — 21 +2Gi1 — Gio

i® = o (3.28)
(4) _ Gi+a — 4G +6G — 441 + G2

g4 = i (3.29)

have a consistency of 0(ar?):
() G2 = 2¢41+ 21 — G2 _ 2
g~ IR = 0(ar?) (3.30)
sz — 41 + 66 — 451 + gie
%(4) _ Git+2 Giq1 + G i1 T+ iz - O(A’l’z) (3.31)

s

By noting that:

0 = 09\ o dg 2
(’8“%7) (3q ) (Qx 1 G52 Gy Ti = a_' (qx ;qxaQi:Ti) + O(AT ) (3‘32)
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9§ 09N - 9\ u
(%‘%) = (Wg,,) (Qi“a q,,, Gis Tx) = (W) (Qilv%) Gy Tx) + O(ATz) (333)

the 0(a7?) term of the local discretization error e; can be estimated by substitution of
(3.28)-(3.33) in (3.27):

AGi(z) = (ﬁ) ﬁmz + (—3) Ni(qmz +0(at?) = ag(z) + 0(ar?)  (3.34)
g}, 6 aq" ), 12
Let Ah(z) be defined as:
Ah(z) = [AF (%), AG (z), - A, 1 (2] (3.35)
Then the solution Az, of the linear set of equations:
gg(zs)a,zs = —nk(z) (3.36)

is an estimate of the 0(ar?) term of the global discretization error. Now an 0(at?)
approximation z of the periodic solution can be obtained by subtracting this deferred
correction from z, {Pereyra [1966] }:

Zp = Zg — A2 (3.371)

Of course an approximation z can also be obtained by the direct application of a central
difference scheme with a consistency of 0(a7?):
o =Gira + 8Giy1 ~ 81 + Gia

- 3.38
4 12A7 (3.38)

o _ — Gz + 164y — 304 + 16Gi—y — Gia
B 12a72

(3.39)

In appendix D a partitioning of the Jacobian J 1= 9h/8z is introduced. It can easily
be seen that for the choice (3.38), (3.39) the bandwidth of the upper left block J,, is ng
larger than the bandwidth of J4 for the choice {3.8), {3.9). Consequently the amount of
CPU-time needed for decomposition of this matrix will approximately increase by a factor
(6n, — 1)?/{4ny — 1)? (~ 2.25 for large ny), see appendix D. Moreover no estimates of local
and global discretization errors are obtained.

The following example illustrates the benefits of the deferred correction procedure.
Consider the beam system presented in section 2.7 (1 = 1m, k = 1000 N/m, b = 2 Ns/m,
fo = 3.010° y%, £, = 15cos{2nft), f, = 8 Hz). If only the first free-interface eigenmode
of the linear undamped system (i.e. the beam and the linear spring} would be taken into
account, the three non-zero parameters in the dimensionless equation of motion in appendix
C would be: ¢ = 0.011, p = 0.38, & = 0.38. So one may call this a slightly damped,
moderate nonlinear system. In the following calculations the linear undamped system
model was reduced to 10 dof including the 9 lowest free-interface eigenmodes plus one
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Figure 3.1: Phage portrait

residual flexibility mode. This reduced model was coupled to the damper and the nonlinear
spring (fy = fin -+ by). Periodic solutions were calculated using the 0(A7?) scheme, the
deferred correction (dc) procedure and the 0(A7*) scheme for several values of n,. Starting
with an initial estimate zo = 0, it took 6 Newton iterations for convergence (&, = 1071%) in
each of the calculations but the deferred correction calculations, which needed one iteration
more, see equations (3.36) and (3.37). Figure 3.1 shows the phase portrait of the stable
harmonic solution for the right end of the beam; this solution (0(ar*), n, = 2560) is
considered to be the exact solution. Figure 3.2 shows the convergence ratio and figure 3.3
the mean global discretization error for the right end of the beam as a function of n,. The
convergence ratio ¢ and the mean global discretization error e, for dof q are defined as:

oo ek — g5
€= TN (3.40)
T *r T
4 i=0 ! Iq;x -4 ‘
cam L3 [ — gt (iar) (3.41)
< N_ ¢ : q .
T

where the superscript Ny in g denotes the number of discretization points. As N, in-
creases, the convergence ratio approaches the theoretical values 1/4 for the 0(a7?) scheme
and 1/16 for the 0(a7*) scheme and the deferred correction procedure. Figure 3.4 shows
that the total amount of CPU-time needed to calculate the solution grows proportionally
with n,. The CPU-time needed for decomposition of J,,, see appendix D), was approx-
imately 2.25 times higher if the 0(A7*) scheme was used instead of the 0{A7?) scheme.
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Figure 3.2: Convergence ratio

Deferred correction calculations with twice as many discretization points needed approx-
imately the same amount of CPU-time as 0(a7*) calculations, but resulted in a mean
global discretization error, which was 5 times lower, see figure 3.3. This means that 1.5
times as many discretization points (1.5* s~z 5) and thus 50% more CPU-time would be
needed to achieve the same accuracy with a direct 0(A7*%) calculation. Moreover, the de-
ferred correction procedure provided an estimate of the global discretization error of the
0(a7?) solution.

3.4 Path following

The designer of a dynamic system often needs to investigate how a periodic solution is
influenced by a change in a design variable r. This amounts to calculating solutions of:

h{z,1) = hy(z,1) ~ ha(z) = 0 (3.42)

The design variable r is assumed to be independent of 7. The number of equations in
(3.42) is one less than the number of unknowns. Therefore solutions of (3.42] in general
will appear as one dimensional branches. These branches can be followed by application of a
path following (pf) method. In pf-step k a neighbouring solution zyy11, Isx4+1 is determined
starting from a known solution 2.y, 1.3 via a predictor-corrector mechanism. This implies
that the first solution 23,11 must be calculated by the Newton process before pl-step 1
can be carried out. The pi-process is stopped if 1) exceeds a user prescribed value.
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In the predictor step the tangent [ply,p:x|® to the solution branch at zx,rsx is deter-
mined as follows:
ok Oh
75 (B TaxIPax = — 3-(Zokes Tok )Pk (3.43)

In pf-step 1 p,x is set to 1, if r must increase initially, and set to ~1, if r must decrease
initially. Now (3.43) can be solved for p,1. The tangent will be scaled by a factor o51 > 0,
which is subject to the elliptical constraint:

Tpk(Phxpex + Phx) = on (3.44)
ok is the stepsize, which lies in a user defined interval:
0< Tmin € Ok € Omax (345)

The prediction [z}, rp x| is given by:

2]+ (] Lz

Tpk Tsk Prk

In following pf-steps, the sign of v,y will be chosen so that the scaled tangents of two
succeeding pf-steps form a sharp angle:

Sign(“p,kﬂ) = Sign(ap,k(pi,kpz,k+1 + PrkPrx+1)) (3-47)

This ensures that the solution path is travelled in the same direction all the time, provided
that oy is not too large, see figure 3.5,

Note that in equations (3.36) and (3.43) the decomposition of the same Jacobian is
required. So the effort required to obtain an #(A7*) approximation z is reduced to calcu-
lating Ak(z), see (3.35).

In general the prediction will not satisfy the convergence criterion:

12(z, D)l < efjhz(r)l] (3.48)

and an iterative correction process will be needed. Correction step m is given by:
Fefometl || Zekam || Czkom {3.49)
Tekm+l Tekm Crkom

In the first correction step (m=1), the first term on the right hand side of {3.49) is set equal
to the prediction (3.46). Corrections (¢} 1, Crim]® are calculated by solving the following
Newton-like equations:

Oh 3h
'a‘;:"(zc,k,ms rc,k,m)cz,k,m = "gr‘(zc,k,mg I'c.k,nfz)c'r,k,m - h(zc,k,m: rc,k,m) (350)

supplemented by the equation (Fried [1984] ):
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4

ok 8k
Celem = ((5(%3,@ rc,k,m)) g(zc,k,m,rc,k,m)) Czkm (3.51)

This last equation forces the correction to be orthogonal to the solution space of:

h(z7 I’) = h(zc,k,xm rc:,lc:,nnu.) ’ (352)

As proposed in Allgower [1981] , the new step size ox4y is determined by the ratio %
between the Euclidian norm of the first and the second correction. If 4 < Ymi the step
size will be increased in the next prediction. If % > Ymax the last prediction will be rejected
and a new prediction will be calculated after decreasing the step size. Ypn a0d Yoy are
user defined values.

Further, during the iterative correction process it is required that the norm of the
residue is decreasing monotonically:

(et el < |A(zegems o)l | (3.53)

If (3.53) is violated, the last prediction will be rejected and a new prediction will be calcu-
lated using a smaller step size ox. [z} 1> Tekmsa]’ 18 accepted as solution [zfy ,y, raxya]’
of {3.42), if the convergence criterion (3.48) is satisfied.

If the step size is too large, the pf-process may return to the part of the solution curve
already passed through, because of (3.47). Often this will occur in areas, where the solution
branch is heavily curved, see figure 3.5. This phenomenon can be prevented by requiring
that the angle 5, between the scaled tangent in pf-step k and the line pointing from the
solution of pf-step k to the solution of pf-step k + 1 is smaller than a user defined angle
Brmex:

{Pi,kspr,k}[(zs.kﬂ — zs3)" (rs,k-i-l - l‘s,k)]t

By = arccos P% s Peal H [(Zedeas — Zag)s (Togers — Tope) |

i é Blmax {354)

Furthermore it is possible that the pf-process accidentally jumps over to another branch
or a remote part of the same branch if the step size is too large. Usually this can be
prevented by requiring that the shape of the increment in the predictor step p,x does not
differ much from the shape of the difference of the two successive solutions zx and zgg43:

Phac(Zskt1 — Zok)
2zl l| zeg 41 — Zegell

Bp = arccos < Poex (3.55)

Note that f, is independent of the design variable in contrast with B, which can be
dominated by the design variable.
Again, if condition (3.54) or (3.55) is not fulfiled, the solution of pf-step k + 1 will be

rejected, and a new prediction will be calculated using a smaller step size oy.
A hard failure of the pf-process occurs if:

1. oy becomes smaller than opn
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Figure 3.5: A too large step size results in returning to the part of the branch already
passed through

2. the iterative correction process does not converge

3. Oh/Oz or Bh/8z+8h[Or((Oh]8z)"18h/0r) becomes singular in a dynamic bifurcation
point

The following example illustrates the positive effect of conditions (3.53), (3.54) and
{3.55). At first a harmonic solution of the beam system introduced at page 51 was cal-
culated using the damped Newton method (n, = 400) for {, = 9.9 Hz. The displacement
field of the linear, undamped system was approximated by a linear combination of four
eigenmodes and one residual flexibility mode. Then a branch of harmonic solutions was
calculated for excitation frequencies decreasing from 9.9 to 3 Hz using the path following
method. Table 3.1 shows the different conditions under which four calculations (C1-C4)
were made. Figure 3.6 shows the amplitude-frequency plot for the right end of the beam.
Calculation C1 failed at point E1 because the excitation frequency jumped from 9.3 to 8.5
Hz in the predictor step of the fourth pf-step; subsequently the correction process did not
converge anymore. In calculation C2 the superharmonic resonance peak at 3.6 Hz (point
E2) was missed. Calculation C3 failed at point E3; the pf-process returned to the already
travelled part of the branch. Calculation C4 succeeded in travelling the whole branch.
Figure 3.7 shows the uncontrolled angles #; in calculation C3 and f, in calculation C2.
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Caleulation | Condition (3.53) | Condition (3.54) | Condition (3.55)
C1 inactive Pimex = 10° Prmax = 10°
C2 active Bimex = 10° inactive
C3 active inactive Bomex = 10°
C4 active Brmax = 10° Bamex = 10°

Table 3.1: Path following under different conditions
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Figure 3.6: Frequency response
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Chapter 4

Local stability of periodic solutions

The local stability of a periodic solution ¢(7) = ¢(7 + 1) is investigated by linearizing the
equations of motion around the periodic solution and examining the evolution in time of

1E]¢

an infinitesimally small perturbation [¢f, §¢ff]* introduced at a certain time 7. If higher
order terms are neglected, substitution of the perturbed solution ¢(7)+6¢(7) in (2.46) using
(3.2) gives the following set of linear differential equations with periodically time-varying

coefficients:

£2M;s(7)8¢"(7) + 1, Bs(7)6¢'(7) + Ks(7)8q(7) = 0
where:

M,s(T) = M5(T + 1) = Mq

Bufr) = Balr +1) = By + T, 34(r)

Ks(r) = Ko(r+1) = K, + %v)

and with initial conditions:
6q (To) = 6qo
6¢'(10) = 8gq

By introducing the perturbed state és(7):

bolr) 1= [ff;q({ﬁ) ]

the equation (4.1) can be reformulated as a first order equation:

65'(1) = TpAs(7)ds(T)

61

(4.1)
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with:

o 7
M) =AU = ] MK M7 Ba()

and with initial conditions:

8s(r9) = 83
The general solution of (4.2) is given by:

8s(r) = ©(r,10)8s0 (4.3)
with:

O{1e,70) =1

The theory for investigating the stability of periodic solutions is called after Floquet. It
is surnmarized briefly here, based on Miiller and Schiehlen [1985] and Seydel [1988] . The
fundamental matrix ©{r, ) of the periodically time-varying system (4.2) satisfies the
equation:

O(r + 1,70) = O(7, 70)0(70 + 1, 70) (4.4)

where O(rp+1,7) = O, is a constant regular matrix, called the monodromy matrix. Using
this property it can easily be shown that:

O(7,70) = O(n + 77, 70)0} (4.5)
where:
*mr—~Tm—-k ; 07 <1 ; kel

It is assumed that all eigenvalues p; {|| 2 |ti41]) of the monodromy matrix ©, have
geometric multiplicity one. This implies that there exists a spectral decomposition:

0, =9, 4,07} (4.8)
Substitution of (4.6) in (4.5) gives:
@(T, 7'0) = (‘)(?’o + ’T*, To)‘]'./,,ruj_‘n‘l‘gl (4.7)

This equation shows that the long term behaviour of éa{r) is predestinated by the eigen-
values g of the monodromy matrix, the so-called Floguet multipliers.
Sometimes the fundamental matrix is written in the form:

O(r,70) = Y()e® ™) (*8)
with:
Y(ro) =1
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Y(r)=T(r+1)
The monodromy matrix follows from (4.8} for 7 = 7o 4 1:

0,= T — e‘I""r"r"“‘I"—;1 (4'9)
A comparison between (4.6) and (4.9) leads to the following relationship between the
eigenvalues n; of ©,,, also called the characteristic exponents, and the Floquet multipliers
Mt

4 = e (4.10)
Note that if (4.10) is used to calculate n;, &(m;) is not uniquely defined.

Now the local stability conditions can be formulated:

o A periodic solution is called (asymptotically) stable, if:
|l <1, Vi & R(p)<0, Wi

e A periodic solution is called marginally stable, if:
lml=1 & R(m)=0

e A periodic solution is called unstable, if:
| >1 & R(m)>0

In order to obtain an approximation of the monodromy matrix, (4.3) is substituted in
(4.2):

O'(1, 1) = TpAs(7)O(7, 70) (4.11)
with:
@(7’0,7‘0) = I

This initial value problem has to be integrated from 7 = 75 to 7 = 79 + 1. If the time
discretization process, discussed in the previous chapter, is applied to calculate a periodic
solution, the system matrix As(7) is only available on discrete times i. It is an obvious
choice to integrate (4.11) with the same time step A7, as was used in the calculation of
the periodic solution.

Actually, in the computer program, which was developed to investigate the local stabil-
ity of periodic solutions, the monodromy matrix was calculated by integrating the equations
(4.1) using the constant-average-acceleration version of the Newmark method, see Bathe
[1982] .

To give an illustrative example, the local stability of the harmonic periodic solutions
shown in figure 3.6 is examined for excitation frequencies in the range 7.0-9.9 Hz. The
branches a-b and d-f turned out to be stable, in contrast with the branch b-d.

In the figures of chapter 7 stable, marginally stable and unstable (branches of ) periodic
solutions will be indicated with the letters s, m and u respectively.
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Figure 4.1: Investigation of the local stability of periodic solutions




Chapter 5

Local bifurcations

5.1 Introduction

In chapter 3 numerical methods have been described, by which branches of periodic so-
lutions can be followed for varying values of a design variable r. In the previous chapter
it has been shown, how the local stability of periodic solutions can be investigated. For
some value 1 = 1y of the design variable a periodic solution can become marginally stable
{lgr] = 1). Sirmultaneously the Jacobian J = 0h/8z becomes singular. For r = npy the
system is not structurally stable, i.e. an infinitesimally small perturbation of the design
variable can have drastic consequences for both the quantitative and qualitative steady-
state behaviour. Bifurcation theory has to be applied to detect, in which way the changes
in the quantitative and qualitative properties of the steady-state behaviour manifest them-
selves.

A value rpy, at which a system is not structurally stable, is called a bifurcation value.
When a bifurcation value is passed, the local stability of a steady-state, the number of
{coexisting) steady-states and the type of steady-state behaviour may change. The bifur-
cation value and the marginally stable periodic solution 2,y together are called a dynamie
bifurcation point of a periodic solution.

Bifurcation points are divided in local and global bifurcation points. In contrast to
a global bifurcation point, a local bifurcation point can be identified by examining the
evolution in time of small perturbations of periodic solntions as has been done in the
previous chapter. In this chapter, we will use some useful parts from the local bifurcation
theory. Global bifurcation points will not be discussed; for a detailed description of some
global bifurcation points the reader is referred to Guckenheimer and Holmes [1983] and
Thompson and Stewart [1986] .

Bifurcations are also divided in continuous and discontinuous bifurcations. A bifur-
cation is called (dis)continuous, if there exists a {dis)continuous path of atiractors in the
[2*, 1]*-space, if the design variable r passes the bifurcation value r. Discontinuous bifur-
cation points can be dangerous in practice, because the amplitude of steady-state solutions
can suddenly change enormously. This explains why continuous (discontinuous) bifurca-

85
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L

Figure 5.1: The cusp: a codimension 2 bifurcation point lying on a branch of codimension
1 cyclic fold bifurcation points ‘

tions are sometimes called safe (dangerous) boundaries. I there exists a continuous version
as well as a discontinuous version of the same type of bifurcation, the continuous version
is called supercritical and the discontinous version is called subcritical.

" The codimension, cod, of a bifurcation point is defined as the minimal number of
design variables r, which is necessary to generically meet this bifurcation point in the
augmented solution space spanned by {2,11,...,Tc0d). As an example figure 5.1 shows
a part of the augmented solution space containing a codimension 2 cusp {or pitchfork)
bifurcation point. Starting at an arbitrary solution, this bifurcation point in general will
not be met by varying only one of the two design variables, in contrast to the codimension 1
cyclic fold bifurcation points on the thick branches. In the pf-method presented in chapter
3 only one design variable is varied at a time, so only codimension 1 bifurcation points will
. generically be met. Three local codimension 1 bifurcation points of periodic solutions are
to be distinguished and will be discussed in the next sections: the cyclic fold bifurcation,
the flip bifurcation and the Neimark bifurcation.

5.2 The cyclic fold bifurcation

The progress of a steady-state solution in the neighbourhcod of a cyclic fold bifurcation
point is sketched in figures 5.2a-5.2¢c. Just before the bifurcation point {(figure 5.2a, r =
o #1 T 1) two very nearby periodic solutions coexist; one of them is stable (thick closed
curve), the other is unstable (thin closed curve). The curves of figure 5.2 have been drawn
in the 2n, + 1 dimensional augmented state space. Time proceeds along the curves. The
dashed curve represents a fransient.

The towel-like planes in figure 5.2 are so-called Poinearé sections. The Poincaré
section is defined as the 2n, dimensional state space, stroboscopically lighted at times
t = (¢p/27f.) + i/f. (i integer). In case the value of the phase angle ¢p is not explicitly
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Figure 5.2: The progress of the cyclic fold bifurcation in the augmented state space

mentioned, its value is zero. As will appear later on, the Poincaré section is a very prac-
tical tool to recognize different types of steady-state behaviour. The Poincaré section of &
(sub)harmonic solution of order 1/n (n € N) will contain n points (in figure 5.2a the black
point belongs to the stable harmonic whereas the white point belongs to the unstable har-
monic). The term Poincaré section will also be used in this thesis for the stroboscopically
lighted twodimensional phase plane, which is actually a subspace of the Poincaré section.

At the bifurcation point (figure 5.2b, r = rii¢, s = 1) the two solutions merge into one
marginally stable periodic solution resulting in a single grey point in the Poincaré section.
A trajectory, obtained via a perturbation of the marginally stable periodic solution in
the direction of 1,4, which is the first column of the matrix with eigenmodes ¥, of the
monodromy matrix (equation (4.6)), will be periodic with the same period as the marginally
stable periodic solution. Just after the bifurcation point (figure 5.2¢, r = iy, 41 | 1) locally
no periodic solution exists anymore. From the local information nothing can be said about
the steady-state behaviour for r = rf;: the steady-state attractor to which a trajectory
will jump for r = rit; can differ much from the original periodic solution. Because of this
jumping behaviour the cyclic fold bifurcation is a discontinuous bifurcation. Cyclic fold
bifurcation points are also called furning points.

At the bifurcation point the Jacobian J = 9h/8z is singular. In general branch points
{25, r.)" will not lie so close to the turning point that the Jacobian becomes numerically
singular; hence a turning point can be passed without difficulty in the path following
process.

Figure 3.6 shows cyclic fold bifurcation points at f = 8.63 Hz (point b) and { = 8.83 Hz
{point d}. Investigation of the Floquet multipliers learns that harmonic solutions on the
branch c-d are unstable and solutions on the branch d-e are stable. Figure 5.3 shows for
15 values of the excitation frequency the changes, which the Floquet multipliers undergo,
in case the branch of figure 3.6 is travelled from point ¢ via point d to point e. Because
the Floguet multipliers occur in complex conjugate pairs, if they have an imaginary part
unequal to zero, only the complex plane for non-negative imaginary values is shown, At



68 CHAPTER 5. LOCAL BIFURCATIONS
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Figure 5.3: Floquet multipliers near the cyclic fold bifurcation point: g, = +1

point ¢ and d six {out of ten) Floquet multipliers lie in this plane: four with non-zero
imaginary parts ([, v, o and <) and two, which are real (both denoted by A). At point
e only five Floquet multipliers with non-zero imaginary parts lie in this plane (one of the
Floquet multipliers denoted by A has disappeared because of its negative imaginary part).
Note that at point d the unit circle in the complex plane is passed at the value +1.

5.3 The flip bifurcation

Figures 5.4a-5.4c show trajectories in the neighbourhood of a supercritical flip bifurcation
point. Thus on both sides of the bifurcation value ryy there exist locally stable steady-
states. Just before the bifurcation point (figure 5.4a, r = rye, 1 | —1) there exists one
stable periodic solution. At the bifurcation péint (figure 5.4b, r = g, gty = —1), the
magnitude of a perturbation in the direction of ¢, will take the same value after every
period of the marginally stable solution. The orientation of the perturbation, however,
will be opposite. So the perturbed solution has a double period and spans a Mébius
strip, the center of which is the marginally stable periodic solution. This explains why
the flip bifurcation is sometimes called a period-doubling bifurcation or a subharmonic
bifurcation. After the bifurcation point (figure 5.4c, r = 1%, 1 T —1) the periodic solution
with single period becomes unstable and two stable periodic solutions with double period,
i.e. two 1/2 subharmonic solutions, arise. Actually the two stable periodic solutions
are identical because they merge into one another if one solution is shifted over a single
period. The stable 1/2 subharmonic solution results in two black points in the Poincaré
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a C

Figure 5.4: The progress of a supercritical flip bifurcation in the augmented state space
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Figure 5.5: The primary and the secondary branch cross at the flip bifurcation point

section. The supercritical flip bifurcation is a continuous bifurcation. There also exist
subcritical flip bifurcations, which are discontinuous. Figure 5.5 shows solution branches
near a supercritical flip bifurcation point. The primary branch consists of solutions with
a single period. This branch is crossed by a secondary branch with solutions with double
period. If one looks for solutions with a single period, the path following process will follow
the primary branch without difficulty, because at the flip bifurcation point the Jacobian is
regular. If one looks for periodic solutions with double period, the solution space expands
and the Jacobian becomes singular at the bifurcation point. I one starts on the primary
branch, most of the time the bifurcation point still is passed without difficulty, if branch
points do not lie too close to the bifurcation point. In general, however, the path following
method will follow the primary branch after the bifurcation point. A numerical method
developed by Rheinboldt [1978] can be applied to find a solution with double period on the
secondary branch, starting from a point [#, fne)® on the primary branch lying close to the
flip bifurcation point [zf;, reir]®. At this bifurcation point, the null-space of [8h/8z, 8h/Or]
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consists of [pz birs Prif)t and [uf, 0]f. The latter is perpendicular to the r-axis because of the
symmetry in the flip blfurcat:on An approximation # of the null vector u of the Jacobian
J can be found by applying the inverse power method to the regular Jacobian J at the
point [#;, fuir]*. Rheinboldt proved that under certain conditions there exists a (small) €
for which the following iterative scheme converges to a point on the secondary branch:

[ % ] _ [ f'bif] Lo [ 32/3r(§bif,f"bif)] + le”pﬁ [ azz/arz((fbifafbif) +

T Toie 2
5] +[¢] -
ERA IR e R =

d is a suitably chosen vector such that %d # 0. If a point on the secondary branch has
been found, this branch with subharmonic solutmons can be travelled again using the path
following method ,

A supercritical flip bifurcation point is met in the beam system introduced at page 51
with {,, and f, modified to:

fex = 200 cos(2#f,t)

(= 0 ify>z
n 10917y iy < 0

The stiffness of the one-sided linear spring, which is active only for negative displacements
of the right end of the beam, is almost equal to the stiffness of the beam. The amplitude
of the external load is just a scaling factor in this bilinear system. The linear, undamped
system (£, = 0) is modelled with four eigenmodes and one residual flexibility mode. Figure
5.6 shows Poincaré sections of harmonic and 1/2 subharmonic solutions for excitation
frequencies {, in the range 54-35 Hz. Investigation of the Floquet multipliers learns, that
harmonic solutions are unstable in the range 54-54.4 Hz (points z-v) and stable in the range
54.5-55 Hz (points g-1}, see figure 5.8. For excitation frequencies below the bifurcation value
fepit % 54.46 Hz there exists a branch with stable subharmonic solutions of order 1/2 {points
a-f). Figure 5.7 shows the stable harmonic and 1/2 subharmonic solutions on both sides of
the flip bifurcation point in the y-y-f, space. The numerical procedure of Rheinboldt was
successfully applied to find a subharmonic solution on this branch.
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Figure 5.6: Poincaré sections on both sides of the flip bifurcation point
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£§(p.) Floquet multipliers near flip bifurcation
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Figure 5.8: Floquet multipliers near the flip bifurcation point: y; = —

Figure 5.9: The progress of a supercritical Neimark bifurcation in the augmented state
space
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5.4 The Neimark bifurcation

The development of a supercritical Neimark bifurcation, also called a secondary Hopf bi-
furcation, is sketched in figures 5.9a-5.9¢c. Just before the bifurcation point {figure 5.9a,
r = ;) there again exists one stable periodic solution. At the bifurcation point (figure
5.9b, T = 1y, = fiz = €™9), a solution, perturbed in the direction of ¢,y + (':?,5“1 will
spiral around the marginally stable periodic solution with a frequency, which is unknown
in advance. The magnitude of the perturbation will take the same value after every period
of the marginally stable periodic solution. The orientation, however, is distorted over a
certain angle. The perturbed solution moves over the surface of a torus, which has the
marginally stable periodic solution as center. This surface will not be filled if ¢ € Q. Then
after the bifurcation point a secondary branch of stable subharmonic periodic solutions will
branch off the original branch of periodic solutions. The period of these periodic solutions
can be very large. In general, however, v € R\ Q and the surface of the torus will be filled.
This means that a branch of stable quasi-periodic solutions arises after the bifurcation
point. The quasi-periodic solution results in a closed curve in the Poincaré section {figure
5.9¢, r = mgt). The primary branch with periodic solutions becomes unstable after the
bifurcation point. There also exist subcritical Neimark bifurcations.

A supercritical Neimark bifurcation point is found in the beam system defined at page 51
with fox and f; modified to:

fex = 1000 cos(27f{.t)

£ = 0 fy>0
"] 76419y iy <O

Again the amplitude of the external excitation is just a scaling factor and again the linear,
undamped system is modelled by four eigenmodes and one residual flexibility mode. The
symbols O in figure 5.10 show the Poincaré section of the stable quasi-periodic solution
for {, = 228 Hz (free frequency ff ~ 39.6 Hz) and symbol A shows the Poincaré section
of the stable harmonic solution for f, = 229 Hz. For f, = 228 Hz, the Poincaré section
will eventually show a closed curve, which is the transection of a torus. In the quasi-
periodic solution the first 7 successive symbols, obtained by integrating over 6 excitation
periods, are connected by straight lines. The line corresponding to the first excitation
period crosses the line corresponding to the sixth excitation period. In this way the free
frequency is visualized: 228/6 < 39.8  228/5. The quasi-periodic solution was calculated
by solving an initial value problem (s(0) = 0). Harmonic solutions were calculated in the
range 228-229 Hz using time discretization and path following. The Floquet multipliers in
figure 5.11 show unstable harmonic solutions below the bifurcation value f,pir ~¢ 228.55 Hz
and stable solutions above this excitation frequency.
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Figure 5.10: Poincaré sections of stable steady-states on both sides of the supercritical
Neimark bifurcation point
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Figure 5.11: Floquet multipliers near the Neimark bifurcation point: gy = fis (not visible)
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Chapter 6

Numerical integration

6.1 Introduction

Sometimes it is not easy to find a periodic attractor for certain values of the design variable
using the time discretization method in combination with the path following method. In
general subharmonic solutions of order 1/n will be more difficult to find using the damped
Newton method (equation (3.24)) as n becomes large. Especially if subharmonic solutions
and harmonic solutions coexist, it can be difficult to formulate an initial estimate zo, which
leads to the subharmonic solution instead of the harmonic solution. Naturally it is also
possible, that for a given value of the design variable there exists no periodic attractor at
all, but a quasi-periodic or chaotic attractor.

In case no periodic attractor can be found using time discretization and path following,
numerical integration is applied to find an attractor. Two numerical integration algorithms
of the NAG-library (NAG [1989] ) have been used in this thesis to solve initial value
problems: one is based on the Runge-Kutta-Merson method and the other on the Adams’
method (Hall and Watt [1976] ). The first is a variable-step method; the second is a
variable-order, variable-step method. The desired accuracy can be given in terms of a
number of correct significant digits or in terms of the number of correct decimal places. If a
steady-state solution is calculated by means of numerical integration, Lyapunov exponents
can be used to identify its character, which may be periodic, quasi-periodic or chaotic.
Lyapunov exponents form the subject of the next section.

If a (sub)harmonic attractor is found from numerical integration and its order is not
too small (say 1/10), the efficient path following method can again be applied to follow a
branch of solutions, starting from the solution found with numerical integration.

6.2 Lyapunov exponents

Consider a solution [s'(t), ¢(t)]* of the augmented system with an initial condition [sf, @[t

at t = tp lying in the domain of attraction of a steady-state solution. Assume that the
transient has died out at t = to = tp, +1t;. Now the equations of motion (2.46) are linearized
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around the steady-state s(t) for t > to
83(t) = As(t)ds(t) (6.1)

The system matrix As(t), which was introduced in chapter 4, does not need to be periodic
now. Given an initial condition §sq = §5(to), the general solution of (6.1) is given by:

8s(t) = ©(t)éso, (6.2)
where:
Ote) =1

In order to compute approximations of Lyapunov exponents, which will be defined at the
end of this section, firstly the following is noted: A direct computation of the fundamental
solution ©(t) would be a numerically unstable affair. Indeed, since (6.1) may be expected
to have solutions of different growth behaviour, all (column) solutions of &(t) will asymp-
totically grow like the most dominantly growing one. This means that the directional
information about the other fundamental modes is blurred (at least numerically). In or-
der to avoid this problem, solutions are computed on smaller time intervals only, thereby
retaining the proper information about the directions of the various fundamental modes
through reorthonormalization. In fact a decomposition of the incremental fundamental
matrix {over such an interval) is performed into an orthonormal matrix and an upper
triangular matrix.
In practice we proceed as follows. Let the time ty be defined as:

ty 1= to + kty, (6.3)

where k € {0,1,2,...} and t, is some constant time increment, for example the period of
the external excitation. Compute the fundamental solution ©4(t;) of (6.1) on [te, t1] with
©,(to) = I. Decompose this result as:

91(1;1) = Q;Ul, | (64)

where () is an orthonormal matrix and U is an :upper triangular matrix. Next compute a
fundamental solution ©5(t;) of (6.1) on [t1, ts] with ©,(t;) = @, and decompose:

O2(t2) = Q20> 1 : ‘ (6.5)
etc.. In general we thus have: »

Ox(tx) = Qulk. | (6.6)
Now for each k there clearly exists an upper triangular matrix Wy such that:

O (1) = B(1), vt (6.7)

- It immediately can be seen that Wi = I since ©4(to) = ©(to). Next we find:
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OtV = QUL = 04(4) = O{t)) = W =T (6.8)

O3(t)Ully = QuUnU; = ©4(t)Uy = B(ty) = Wa = Ul (6.9)
In this way it easily follows that:

We = Uy ... Uy (6.10)

Concluding, we see that the increment over the interval [to, ty] can be obtained in a stable,
factored form as:

Ofty) = Qulk ... Uy (6.11)

Under fairly general, and often prevailing, conditions it can be shown that the matrices Uy
contain asymptotically correct information about the growth of the fundamental modes on
their diagonal in an ordered way, i.e. in nonincreasing modulus from left to right (Matthei]
[1985] ). The exponential growth of fundamental mode i is expressed by Lyapunov exponent
A, which is defined as:

Ai :t)lii-rgo P— logy Ui - - - Uril, i=1,...,2n, (6.12)
A2 Mg (6.13)

In (6.12) Uy is the i-th diagonal element of the upper triangular matrix Uy {Soderlind
and Mattheij [1985] ). A A > 0 (A < 0} can eventually result in an overflow (underfiow)
on a digital computer in the calculation of the product Upg. ..Uy This problem can be
circumvented by calculating an approximation A(ty) in the following way:

1 k
. )\i(tk) = EZlOgg iUJ,u‘ (614)

T =1

For reasons of numerical stability the QU-decompositions above should be performed
through Householder’s reflections or Givens’ rotations (Bathe [1982] ). In lower dimen-
sional cases, however, a Gram-Schmidt reorthonormalization - though numerically less
desirable - can be used in view of the relatively larger tolerances. Note that if the con-
vergence rate of Lyapunov exponents is low, calculations can become very expensive, since
the number of first order differential equations that must be solved simultaneously is equal
t0 2ng(1 + 2n,).

Because the irajectory s(t} is an attractor, the volume of the 2n,-dimensional cube,
spanned by the columns of ©(te} = I must monotonically decrease as time proceeds, which
implies:

2ny

Do <. (6.15)

i=1
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6.3 Characterization of attractors

If the attractor is a periodic solution, an arbitrary perturbation will damp out exponen-
tially, which means that all Lyapunov exponents must be negative:

AN<0, W ‘ (6.16)

By comparing the way, in which Floguet multipliers and Lyapunov exponents are defined,
the following relationship can be derived, if the attractor is periodic:

|| = 2XTe , (6.17)
As an example, consider the harmonic solution of the two-point boundary value problem:

4+ 0.1+ q + 0.7¢° = cos(2t) (6.18)
with:

q(0) = q(7), 4(0) = g(=)

This periodic solution can also be obtained by solving the initial value problem (6.18) with
initial conditions:

q(0) = 4(0) =0

At first an 0(A7*) approximation of the solution of the two-point boundary value problem
was calculated by application of the deferred correction method of chapter 4 (n, = 400);
calculation of the Floquet multipliers showed that the solution was stable: |p] = (2| =
0.855. Subsequently a point on the the harmonic attractor was calculated by solving
the initial value problem using the Runge-Kutta-Merson algorithm (required precision:
7 significant digits). After 1000 excitation periods the transient was assumed to have
damped out (t; = 10007). Then the linearized differential equations needed to calculate
the Lyapunov exponents were added and the integration was continued over 4000 excitation
periods. The time histories of the resulting Lyapunov exponents are shown in figure 6.1.
Both Lyapunov exponents converged to the value -0.0721. In figure 6.1 equation {6.17} is
verified. Note that the Lyapunov exponents and the quotient of the linear viscous damping
coefficient (b = 0.1) and the mass (m = 1) are related by:

Incidentally, this relation shows that the Lyapunov exponents are independent of of the
stiffness. Of course, the transient stage could have been skipped over in the numerical
integration calculation, because a point of the harmonic atiractor could have been taken
from the solution of the two-point boundary value problem.

I the attractor is a quasi-periodic solution of dimension d (d € N\ 1), i.e. the solution
contains d incommensurate frequencies corresponding to d time scales, the first d — 1
Lyapunov exponents will be equal to zero:
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Figure 6.1: Lyapunov exponents of a periodic attractor

=0, ie{l,...,d=1} (6.20)
A <0, ie{d,...,2n} (6.21)

The phase of one time scale will be forced by the external load. The phases of the other
time scales can be chosen freely. This implies that there exist d — 1 directions in the phase
space, which correspond to a phase shift over a free time scale. A perturbation of the
quasi-periodic solution in such a direction peither damps out nor grows and leads to a
Lyapunov exponent equal to zero. The converse is not true; a Lyapunov exponent equal
to zero does not necessarily imply quasi-periodic behaviour, it can also be caused by a
marginally stable periodic solution.

In case of a chaotic attractor, see page 3, at least one Lyapunov exponent will be
positive:

M >0 (6.22)

So a trajectory s(t) + 8s(t) {6s(to)) is an infinitesimally small perturbation), will diverge,
on average of time, from the trajectory s(t} on the chaotic attractor with exponential rate
for t 2 tg. Aud yet the trajectory s(t) + ds(t) will converge to the same chaotic attractor,
i.e. in the limit t — oo the trajectories s(t) and s(t) + és(t) fill the same subspace in the
state space. This seems to be a contradiction, but is possible, however, due to a kind of
stretching and folding process.

In case of a chaotic attractor, the quotient of the level of accuracy (in [bits]), with which
initial conditions are known, and A; [bits/s] gives the mean time, after which nothing can
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Figure 6.2: Poincaré section of a chaotic attractor

be said about the position of the trajectory on the attractor, even if it would be possible

to integrate system equations exactly. This also holds for non-exact integration, as long as

the accuracy of the integration process exceeds the accuracy, with which initial conditions

are known. If the level of accuracy of the initial conditions exceeds the precision level,

with which they can be represented in a digital computer, the latter will be decisive. With

periodic solutions, A; determines the rate of loss of information about the initial conditions.
Now, consider the attractor of the initial value problem:

§+ 0.1 + q + 3600g° = cos(2t) ‘ (6.23)
with: :

q(0) = 4(0) =0

A point on the attractor was determined by integrating very accurately (required precision:
12 decimal places) over 1000 excitation periods, after which the transient was assumed to
be damped out. Then the attractor and the Lyapunov exponents were calculated simulta-
neously by integrating over 9000 excitation periods. Figure 6.2 shows the Poincaré section
of the attractor. In figure 6.3 it can be seen that the first Lyapunov exponent converges
to a positive value (A; = 0.225, A; &~ —0.369), indicating that the attractor has a chaotic
nature. Consequently, the numerical method of section 3.2 will fail in this case. Note that
the rate of convergence of the Lyapunov exponents is much lower than in figure 6.1. Note
further that the Lyapunov exponents still satisfy equation (6.19).

The following state is a point of the Poincaré section shown in figure 6.2 and is thus a
point on the chaotic attractor:
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Figure 6.3: Lyapunov exponents of a chaotic attractor

[ qor ] _ [ 0.108690048277
So1 = o | T | 0.102062238976

It is important to realize that qoy is very close to the maximum displacement (s 0.110)
observed. This means that the first decimal of qg; is the most significant decimal. Now
consider a perturbation of this state:

[z ] _ [ 0.108700000000
02 = | aoa 17 1 0.102082238076

The perturbation (& 107%) must be multiplied by 10* a2 2!3® to affect the most significant
decimal. So if s4; and s¢p are taken as initial conditions, on average the two resulting
trajectories will have little in common after 13.3/0.225 = 59 s, besides the fact that they
are both on the chaotic attractor. Put differently, information about the initial conditions
is totally lost after this time. This is confirmed by figure 6.4, which shows the time histories
of the resulting displacements {required precision during integration: 12 decimal places).
The solid line corresponds to initial condition sg;; the dotted line to initial condition sq,.

Axn attractor can also be characterized by its dimension. One of the concepts of dimen-
sion is the Hausdorff dimension:

(s
Dy = lim V) (6.24)

where N(6) is the number of 2n, 4+ 1 dimensional cubes of side § that are required to
cover the attractor in the augmented state space. According to this definition a static
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Figure 6.4: The most significant decimal is affected after 59 s

equilibrium point has dimension 0, a periodic attractor has dimension 1, a quasi-periodic
attractor has an integer dimension greater than 1 and a chaotic attractor has a non-integer
dimension. In practice it is inconvenient to use this definition to calculate the dimension of
an attractor. Kaplan and Yorke [1978] conjectured that the Hausdorff dimension is equal
to the Lyapunov dimension Dy, which can be calculated from the Lyapunov exponents for
maximal Djjne:

Dsnt

Digree = (2 X)/|ADyt1] 2 0 (6.25)
jz=1

Di = Dot + Diagrac (6.26)

This definition holds for Lyapunov exponents calculated in the 2n, + 1 dimensional aug-
mented state space, which includes the phase angle ¢(t) of the external load, which is
related to time, see (1.5). In this case one of the Lyapunov exponents will always be equal
to zero, see Haken [1983] , because there is no exponential growing or shrinking along the
trajectory. If Lyapunov exponents are calculated in the 2n, dimensional space as is done in
section 6.2, equation (6.26) will give the dimension of the Poincaré section of the attractor.
This dimension increased by 1 is equal to the dimension of the attractor. As an example,
the Lyapunov dimension of the Poincaré section shown in figure 6.2 is equal to 1.61 and
the Lyapunov dimension of the corresponding attractor is 2.62.



Chapter 7

Applications: beam with nonlinear
support

7.1 Introduction

In this chapter the steady-state behaviour of the beamn system with local nonlinear supports
introduced in section 2.7 is investigated using the numerical methods developed in the
previous chapters. The supporting linear spring is absent (k = 0 N/m). The length of the
beam is ] = 1.5 m. The amplitude of the external excitation is Fg, = 19.693 N:

for = 19.693 cos (21t + ¢¢)

The phase angle ¢, is equal to zero in all calculations, unless its value is explicitly men-
tioned. Three types of local nonlinearities are considered: a stiffening spring of Duffing
type (stiffness ks > 0), a stiffening spring of Duffing type, which acts only under pressure
(stiffness ks, 2 0), and a linear spring, which acts only under pressure (stiffness k, > 0):

m (E(;; + kgp)ya -+ kpy if y < 0

Firstly, the effects of these three nonlinear supports on the steady-state behaviour will be
investigated separately, i.e. only one of the variables kg, ks, and k; is unequal to zero.
Then attention will be paid to the combination of the two springs with stiffnesses ks and
ky.

The five design variables of the system are, next to ks, ks, and kg, the excitation
frequency {, of the external load and the damping constant b of the linear damper.

Single dof as well as multi-dof models will be investigated. In the single dof model the
displacernent field of the beam is approximated by the first free-interface eigenmode. In
almost all calculations of the single dof model the same number of discretization points
is used: n, = 600. Exceptions are explicitly mentioned. In the single dof model the five
just mentioned design variables can be expressed in terms of the five dimensionless design
variables g, pp, @, £ and {2 defined in appendix C (m = 1.0358 kg, k = 3282.2 N/m}:

83
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kg =9.1174 10" p

ksp = 9.1174 107 4,

k, = 3282.2
b = 116.61¢
f, = 8.9592 0

Subsequently four dof models will be used to investigate the influences of the higher eigen-
modes on the steady-state behaviour in the low frequency range. In this four dof model
the displacement field of the beam is approximated by three free-interface eigenmodes and
one residual flexibility mode. An eight dof model (seven free-interface eigenmodes plus oue
residual flexibility mode) will be used to verify some of the results obtained with the four
dof model. The eigenfrequencies of the reduced linear beam models are given in table 2.6
on page 41. In the multi-dof models also use will be made of dimensionless quantities of
the single-dof system, in which only the first free interface eigenmode is used to describe
the displacement field of the beam. In comparison with absolute quantities like ka, kgp, kp
and b they give more insight in the extent of nonlinearity and damping for frequencies in
the neighbourhood of the first harmonic resonance peak.

7.2 Support by a stiffening spring

7.2.1 Single dof model: weakly nonlinear, undamped

The undamped case is studied to illustrate the different types of resonances occurring in
a Duffing system. Asymptotically stable steady-state solutions do not exist, because the
system is conservative. For the same reason, bifurcations in the system do not fall under
the three types of local bifurcations, which were discussed in chapter 5. Therefore, in this
subsection bifurcations in the system will be noticed, but they will not be named. Figure
7.1 shows the amplitude-frequency plot of the system (¢ = 0.05, p, = 0, @ = 0, £ = 0).
The branches with harmonic solutions show (super)harmonic resonance peaks, which start
at frequencies slightly above f/n (n € N, f; = 8.9592 Hz). From left to right figure 7.1
shows only the fifth, third and second superharmonic resonance peak (n=5,3,2) and finally
the harmonic resonance peak (n=1). In the figure it is hardly visible, but for n=1,3,5 the
resonance peaks consist of two unconnected branches, which amplitudes grow to infinity.
The upper branch is marginally stable, whereas the lower branch is unstable. In the second
superharmonic resonance peak, the marginally stable upper branch as well as the unstable
lower branch are formed by two solution branches, which have exact the same absolute
amplitudes. So the second resonance peak, which might appear as one branch in figure
7.1, actually consists of four branches. In contrast to the other harmonic solutions shown in
figure 7.1, a periodic solution ¢; of the second superharmonic resonance peak is not point-
symmetric: ¢;(t) # —q{t + T./2). However, two different solutions ¢; and g,, which form
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Figure 7.1: Resonances in the undamped, single dof Duffing system

the same point on the marginally stable curve or the unstable curve of the second harmonic
resonance peak, are point-symmetric with respect to each other: ¢(t) = ~ga(t + T./2).
These symmetry aspects will be illustrated with a figure in the next subsection. From
a geometrical point of view, it is logical that the not point-symmetric solutions occur in
pairs, because the excitation force is point-symmetric (fex(t) = —fex(t + Te/2)) just like
the nonlinearity, which is an uneven function (f,{y) = —fo(~y)). The four branches, which
form the second superharmonic resonance peak, are connected af one bifurcation point,
where they arise from the branch containing the marginally stable harmonic resonance
peak and the unstable third superharmonic resonance peak.

Apart from the branches with harmonic solutions there exist branches with subharmonic
solutions of order 1/n (n € N\ 1), which start at frequencies slightly above nfy. Figure
7.1 shows the subharmonic resonance peaks of order 1/2 and 1/3 only. The amplitudes of
these peaks also grow to infinity. The branches with subharmonic solutions bifurcate from
the marginally stable low amplitude branch with harmonic solutions. Inset 1 of figure 7.1
shows the bifurcation of the 1/2 subharmonic branches and inset 2 the bifurcation of the
1/3 subharmonic branches. Inset 1 shows that the upper branch of the 1/2 subharmonic
resonance peak is marginally stable and the lower branch is unstable. With respect to
the point-symmetry the same holds for the 1/2 subharmonic solutions as for the harmonic
solutions on the second superharmonic resonance peak. So in fact both the marginally
stable curve and the unstable curve again originate from two branches of solutions. Inset 2
shows that for higher values of the excitation frequency the upper 1/3 subharmonic branch
is unstable and the lower 1/3 subharmonic branch is marginally stable.
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Figure 7.2: The second superharmonic resonance peak arises via two pitchfork bifurcations

7.2.2 Single dof model: weakly nonlinear, slightly damped

Addition of damping makes the height of resonance peaks finite. The branches which form
the (superjharmonic resonance peaks are connected by means of cyclic fold bifurcation
points. The upper branches, which were marginally stable in the undamped case, are
stable now. The lower branches remain unstable. The stable and unstable branches, which
form the second superharmonic resonance peak, do not bifurcate from the same point
on the low amplitude harmonic branch as they did in the undamped case, see figure 7.2
(¢ = 0.0002). The two bifurcation points at f, = 4.738 Hz and {, = 4.745 Hz are symmetry-
breaking pitchfork bifurcation points of codimension 2. The left pitchfork bifurcation point
is supercritical; the right pitchfork bifurcation point is subcritical. Although pitchfork
bifurcation points are not generic, if only one design variable (here the excitation frequency)
is varied, they are occasionally seen according to Seydel [1988] due to a perfect symmetry
in the nonlinearity, which is the case in the system under consideration. If the symmetry
in the nonlinearity is only very slightly destroyed, the left pitchfork bifurcation point will
totally disappear and the right pitchfork bifurcation point will change to a codimension 1
cyclic fold bifurcation point; the pitchfork bifurcation points are not structurally stable.
For f, = 5 Hz the time histories of the three stable solutions of figure 7.2 are shown in its
inset. Note that the low amplitude stable solution is point-symmetric with respect to the
origin and the the two stable high amplitude solutions are point-symmetric with respect
to each other.

Due to damping the branches with subharmonic solutions do not bifurcate anymore
from the low amplitude branch with harmonic solutions (Tsuda et al. [1984] ): the sub-
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harmonic branches become closed curves (islands) and only exist in a certain frequency
interval. The boundaries of such an interval are formed by two cyclic fold bifurcation
points, where the stability of the subharmonic solutions changes.

The symbols in figure 7.1 mark the cyclic fold bifurcation points for different values
of damping: £ = 0.0001(0},¢ = 0.0003(A),¢ = 0.001(v) and { = 0.003(<¢). Note that
an increase of damping destroys the second superharmonic resonance peak and 1/2 sub-
harmonic solutions first, subsequently the third superharmonic resonance peak and 1/3
subharmonic solutions and finally the harmeonic resonance peak. Obviously, the reason for
this behaviour is that the nonlinearity is a function with an uneven power.

For weakly nonlinear systems there exist a number of classical analytical methods such
as perturbation methods and averaging methods, which can be used to determine periodic
solutions (Jordan and Smith [1977] and Nayfeh and Mook [1979] ). For strongly nonlinear
systems or in the case of multi-dof these methods become cumbersome. However, in some
recent papers (Burton and Hamdan [1983] , Burton [1984] and Burton and Rahman [1986]
) & variation on the method of multiple scales (a perturbation method) is presented, which
is also able to calculate the harmonic resonances of strong nonlinear single-dof systems. In
appendix E the method of harmonic balance (an averaging method) is used to verify some
of the numerical results of the amplitude-frequency plot for g = 0.05 and £ = 0.003.

7.2.3 Single dof model: strongly nonlinear, slightly damped

Figure 7.3 shows the influence of increasing the cubic stiffness g on the superharmonic
resonances (n uneven) for a fixed value of the damping: ¢ = 0.01. Obviously, in general
the amplitude of the solutions decreases because the system becomes more stiff. The n-
th superharmonic resonance peak, which can be found near frequencies f;/n in a weakly
nonlinear system, moves to a higher frequency. The amplitudes of the higher superharmonic
peaks (n=5,7,9,...) gain in height in comparison with the third superharmonic resonance
peak. For g = 0.05 the amplitude-frequency plot in figure 7.3 shows no bifurcation points;
all solutions are stable. For higher values of x cyclic fold bifurcation points are introduced
and the superharmonic resonance peaks widen. For g = 0.70 cyclic fold bifurcation points
are found at f, &~ 2.306 Hz and f, ~ 2.309 Hz (n=>5 peak) and at f, ~ 3.92 Hz and f, ~ 3.92
Hz (n=3 peak). For g = 7.00 they are found at f, &~ 1,77 Hz and {, &~ 1.80 Hz (n=9 peak},
at f. =~ 2.25 Hz and f. = 2.32 Hz {n=7 peak), at {, =~ 3.11 Hz and {, = 3.26 Hz (n=5 peak)
and at f, =~ 5.18 Hz and {, &~ 5.69 Hz (n=3 peak). In the frequency ranges, where three
periodic solutions exist, the maximum amplitude solution appeared to be unstable.

Figure 7.4 shows the influence of increasing the cubic stiffness on the 1/3 subharmonic
resonances for £ = 0.01. Again the amplitude of the solutions decreases. The frequency
interval, in which subharmonic solutions can be found, grows for increasing pg. The left
boundary of the frequency interval does hardly change in contrast with the right boundary
of the frequency interval.
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Figure 7.3: Influence of cubic stiffness on superharmonic resonances

[Ymad [M]

0.0150 n = 0.25

0.0125
0.0100
0.0075
0.0050
0.0025

1L e AU S S B S S —"
25 50 75 100 f, [Hz]

Figure 7.4: Influence of cubic stiffness on 1/3 subharmonic resonances
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Figure 7.5: Internal resonances on the first harmonic resonance peak in the four dof model
(=005 (&), g =0.7 (O))

7.2.4 Four dof model: slightly damped

Figure 7.5 shows the amplitude-frequency plot of harmonic solutions of the slightly damped
(£ = 0.005) four dof model for the weakly (i = 0.05 (a)) and strongly (g == 0.7 (O)) nonlin-
ear case. In both cases small superharmonic resonance peaks appear near f, = 16.66 & f,/5
and f, = 25.28 = {3/9 in the first harmonic resonance peak. Obviously these resonances,
also called infernal resonances (Chen et al. {1989] ), are lacking in the single dof model.
The weakly nonlinear case is calculated in three ways (n, = 320): using an 0(A7?) scheme
(solid line with A symbols, 1402 s. CPU-time, 450 pi-steps), the deferred correction method
(dotted line, 1502 s. CPU-time, 450 pf-steps) and the 0{a7*) scheme (solid line without
symbols, 2064 5. CPU-time). Differences between the three lines are not visible in figure
7.5, with the exception of regions, where cyclic fold bifurcations occur. The upper left inset
shows a detail of the internal resonance near f, = 16.66 = £,/5 and the lower right inset
shows a further detail. The cyclic fold bifurcation points are slightly shifted to lower fre-
quencies if the 0(A7% branch is compared with the 0(a7?) branch. Because the deferred
correction method only corrects the periodic solution for a constant value of the design
variable f,, erroneous corrections can be expected near cyclic fold bifurcation points.
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Figure 7.6: Amplitude-frequency plot of four dof system with stiffening pressure spring

7.3 Support by a one-sided stiffening spring

This system is investigated using the four dof model for the strongly nonlinear case: p = 0,
#p =1, & = 0. Figure 7.6 shows the amplitude-frequency plot for £ = 0.05. The branch
with harmonic solutions {n, = 400) shows two harmonic resonance peaks at {, = 13.72 Hz
and f, = 14.29 Hz. Two fiip bifurcation points are found at f, = 18.43 Hz and {, = 20.84
Hz, which frequencies form the boundaries of a branch with 1/2 subharmonic solutions.
The flip bifurcation point at f, = 18.43 Hz, from which a stable 1/2 subharmonic branch
sets off {n, = 800), is supercritical. Conversely, the flip bifurcation point at {, = 20.84 Hg,
from which a branch with unstable 1/2 subharmonic solutions deparis, is subcritical. The
stability of the branch with 1/2 subharmonic solutions changes at the cyclic fold bifurcation
point at f, = 24.90 Hz. The damping level (b = 5.8 Ns/m) in the system is too high to
meet subbarmonic solutions of order 1/3. Figure 7.7 shows the amplitude-damping plot of
branches of 1/3 subharmonic solutions for several excitation frequencies. For high values
of the damping, the branches cease to exist via cyclic fold bifurcation points. For each
excitation frequency holds that the high amplitude branch is stable and the low amplitude
branch is unstable.
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Figure 7.7: Amplitude-damping plot of 1/3 subharmonic solutions for several values of the
excitation frequency f.

7.4 Support by a one-sided linear spring

7.4.1 Single dof model: moderately nonlinear

In this bilinear system (u = 0, g, = 0) harmonic resonance occurs near the bilinear
eigenfrequency fy, of the unforced, undamped system (Shaw and Holmes [1983] ):

. 241+« f
T 1+ dFa

In contrast to the Duffing system the amplitude of the external load Fg, is nothing but
a scaling factor and therefore does not appear in the dimensionless quantities involved.
Figure 7.8 shows for two values of damping (£ = 0.01 and £ = 0.1) the amplitude-frequency
plot of the bilinear system for the case that the stiffness of the supporting spring is equal
to the contribution of the first free-interface eigenmode to the stiffness of the beam: a = 1
{f, = 10.49 Hz). For £ = 0.01 two branches of 1/2 subharmonic solutions are found in the
frequency intervals 6.66-7.12 Hz and 17.97-23.58 Hz, which bifurcate from the harmonic
branch via flip bifurcations at the boundaries of the intervals. On the 1/2 subharmonic
branch between the second superharmonic resonance and the harmonic resonance peak
also two cyclic fold bifurcation points are found. Because the nonlinearity is not point-
symmetric, the second superharmonic resonance peak now does not bifurcate from the
low amplitude harmonic branch via a pitchfork bifurcation. A small closed branch with

f,
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Figure 7.8: Amplitude-frequency plot of bilinear single dof system (a = 1)

1/3 subharmonic solutions is found. The frequency interval, in which 1/3 subharmonic
solutions are found, is bounded by two cyclic fold bifurcation points at f, = 31.01 Hz and
fo = 32.37 Hz.

For £ = 0.1 the height of the resonance peaks diminishes. The low frequency interval
with 1/2 subharmonic solutions has disappeared. The high frequency interval with 1/2
subharmonic solutions becomes smaller. A branch with 1/3 subharmonic solutions was
not found.

In table 7.1 flip bifurcation values £F;, obtained with the numerical methods of chapters
3 and 4 (n, = 600, 0(AT?) scheme), are compared for four values of o with bifurcation
values {58 presented by Shaw and Holmes [1983] , who used analytical integration for the
two linear regions y 2> 0 and y < 0 for the determination of periodic solutions. For values
of the damping above the bifurcation value no 1/2 subharmonic solutions exist. There
exists a good agreement between the results.

7.4.2 Single dof model: strongly nonlinear

Figure 7.9 shows for two values of damping (£ = 0.01 and ¢ = 0.1) the amplitude-frequency
plot for the case that @ = 6 (f, = 13.00 Hz). Compared to the case a = 1, the frequency
intervals, in which subharmonic solutions occur, widen. For ¢ = 0.01 the boundaries of the
largest frequency interval with 1/2 subharmonic solutions are formed by the flip bifurcation
values f, = 20.64 Hz and f, = 38.50 Hz; the boundaries of the frequency interval with 1/3
subharmonic solutions are formed by the cyclic fold bifurcation values f. = 36.06 Hz and
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a [ fe = 26 [He] | & [ bir L]

044 | 1935 | 0.063 | 0.066 % 0.002
0.96 | 2090 | 0.129 | 0.128 £ 0.002
1.56 | 2205 | 0.193 | 0.190 = 0.002
2.24 | 23.04 | 0.255 | 0.250 + 0.002

93

Table 7.1: Comparison between flip bifurcation values £ found with present method and
values {58 found by Shaw and Holmes [SH83]
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Figure 7.9: Amplitude-frequency plot of bilinear single dof system {(a = 6)
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Figure 7.10: Poincaré section: period doublings leading to chaos

f, = 48.65 Hz. The sub- and superharmonic resonance peaks become higher, while the
height of the harmonic resonance peak approximately remains the same. Because of the
higher value of the eigenfrequency of the bilinear system, also sub- and superharmonic
resonance peaks occur at higher excitation frequencies: the third superharmonic resonance
peak near 4.35 Hz has entered the investigated frequency range (¢ = 0.01). Investigation
of the stability of the branch with 1/2 subharmonic solutions for the case £ = 0.01 in the
frequency interval f, = 7.55 — 8.69 Hz learns that the branch contains quite a number of
stable and unstable regions: flip bifurcation points as well as cyclic fold bifurcation points
are met. In small frequency intervals also 1/4, 1/8 (n, = 800) and 1/16 (n, = 1600)
subharmonic branches were calculated, see the inset of figure 7.9.

For f, = 8.185 Hz no stable periodic solution could be found. Figure 7.10 shows the
Poincaré sections of steady-state attractors calculated for this excitation frequency and 4
excitation frequencies, which were a fraction higher. These attractors were calculated by
numerical integration using the Runge-Kutta-Merson method requiring a precision of 10
digits. All initial conditions were set to zero at t = 0. All solutions were recorded only
after 6000 excitation periods, to ensure that the transient had damped out. Each solution
contains 4000 points. If {. is decreased from 8.1960 Hz to 8.1890 Hz a sequence of period
doublings is observed from an 1/4 subharmonic solution, via an 1/8 and 1/16 subharmonic
to a 1/32 subharmonic solution. For f, = 8.1850 Hz a chaotic solution was calculated. The
Lyapunov exponents (A; = 0.842, A, = —~2.47) again satisfy equation (6.19) (m = 1.0358
kg, b = 1.1661 Ns/m). The results obtained strongly suggest that the transition to the
chaotic motion is an infinite cascade of period doublings leading to a solution with an
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i | fi reduced [Hz] | f; original [Hz|
1 22.809 22.809
2 83.723 83.723
3 225.07 225.07
4 538.98 439.56

Table 7.2: Eigenfrequencies of reduced and original linear model with linear spring attached
(a=6)

a=6 — | mode 1 | mode 2 | mode 3 | mode 4
a=10]
mode 1 0.824 0.030 0.003 0.001
mode 2 0.138 0.945 0.007 0.001
mode 3 0.027 0.018 0.986 0.002
mode 4 0.011 0.007 0.005 0.996

Table 7.3: Contributions of eigenmodes of system without spring (o = 0) to eigenmodes
of system with spring attached {a = 6)

infinite period (Feigenbaum [1983] ).

If the damping is increased to £ = 0.1 the subharmonic and chaotic solutions in the
frequency interval 7.55-8.69 Hz disappear and the harmonic solution becomes stable.

In agreement with the theoretical results of Shaw and Holmes [1983] and Natsiavas
[1990] no Neimark bifurcation points were observed in the bilinear single dof system.

7.4.3 Four dof model: strongly nonlinear

If the supporting spring (o = 6) is attached to the beam, the bilinear system becomes
linear. In table 7.2 the eigenfrequencies of the reduced linear four dof model are compared
with the four lowest eigenfrequencies of the original model, both models with the supporting
spring attached (o = 6). It is important to realize that the reduced model is derived for
a = 0 (for the eigenfrequencies see table 2.6 on page 41) and coupled with the supporting
spring afterwards. The first three eigenfrequencies agree very well, so in the bilinear case
of the one-sided spring the first three eigenfrequencies and eigenmodes are very accurate
for y 2 0 as well as y < 0. The contributions of the four eigenmodes of the reduced system
for @ = 0 to the four eigenmodes of the reduced system with the spring attached {a = 6)
are given in table 7.3. The contribution of an a = 0 eigenmode is expressed in terms of
the quotient of the Euclidian norm of the contribution of this eigenmode and the sum of
the Euclidian norms of the contributions of the four & = 0 eigenmodes.
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Figure 7.11: Amplitude-frequency plot of bilinear four dof system (o = 6)

Figure 7.11 shows the amplitude-frequency plot for two values of the damping (¢ = 0.01
and £ = 0.1) for the bilinear system (a = 6). The stability indications (s(table) and
u{nstable)) refer to the case £ = 0.01. Globally it is very similar to figure 7.9. A closer
look, however, reveals a number of differences between the two figures.

Firstly, a large number of superharmonic resenance peaks with moderate to small am-
plitudes are found in figure 7.11, which are caused by the higher bilinear eigenfrequencies.
The superharmonic resonance peaks near 1/2 f,,5, 1/3 fi, and 1/4 fi,5 {5 =~ 82 Hz) can be
clearly recognized.

In contrast to the single dof model no cascade of period doublings is found near f, = 8.19
Hz. Investigation of the Floquet multipliers learns, that the branch with 1/2 subharmonic
solutions is stable in the interval f, = 8.165 — 8.332 Hz, where a small superharmonic res-
onance peak occurs on the branch with 1/2 subharmonics (see inset figure 7.11), which is
missing in the one dof model (see inset figure 7.9). Numerical integration calculations for
the excitation frequencies shown in figure 7.10 confirm the stability of the 1/2 subharmonic
solutions in the interval. The branch with 1/2 subharmonics shown in the inset of figure
7.11 exposes many small intervals with stable and unstable solutions and shows not only
cyclic fold and flip bifurcation points, but also Neimark bifurcation points. A more detailed
investigation of this branch is out of the scope of this thesis and is therefore omitted.

Figure 7.12 shows, that near f, = 32.5 Hz there is a small frequency interval, where no
stable periodic solutions could be found using the time discretization method in combina-
tion with the path following method for £ = 0.01. In this interval the branch with 1/2
subharmonic solutions is interrupted in contrast to the single dof model. For higher values
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Figure 7.12: No stable periodic solutions near f, = 32.5 Hz for low values of the damping

of the damping (¢ = 0.05) the interval decreases and eventually disappears (£ = 0.1). In
the latter case the 1/2 subharmonic branch becomes stable. For the case £ = 0.05 nu-
merical integration (Adams’ method, accuracy of 9 significant digits, t, = 60007, initial
conditions zero at t = 0) is applied to investigate the character of the stable steady-state
solutions in this frequency range. Firstly, in figure 7.13 the phase-portrait of the stable
1/2 subharmonic for f, = 32.6 Hz {just outside the frequency interval} calculated with the
time discretization method (n, = 800, 0{A7r?}, black dots) is verified with the numerical
integration (solid line) method. Figure 7.14 shows the Poincaré sections (¢p = ¢, = —7/2)
of steady-states calculated with numerical integration for four different values of f, (4000
points for each caleulation). For f, = 32.6 Hz, f, = 32.58 Hz and {, = 32.56 Hz the Poincaré
section shows two points, i.e. two groups of 2000 coinciding points, indicating a 1/2 sub-
harmonic solution. If the excitation frequency is further reduced, the frequency interval of
interest is entered. This results in a break-down of the stable 1/2 subharmonic solution.
However, for f, = 32.552 Hz, the largest part of the 4000 points still cluster around two
points in the Poincaré section. So, although the steady-state is not periodic anymore, one
could say that the ghost of the 1/2 subharmonic solution is still abroad. Figures 7.15 and
7.16 show the time histories of y for {, = 32.552 Hz and f, = 32.55 Hz respectively in the
time interval t = 60007, — 6500T,. In a large part of this time interval the solution
seems to be a 1/2 subharmonic, see insets 1 (8 excitation periods) of figure 7.15 and 7.16.
Then, suddenly, there appears a burst in the signal for a short period of time, see insets
2 {8 excitation periods), after which the signal recovers again. This behaviour is called
intermitiency (Pomeau and Manneville [1980] ). The Poincaré section in figure 7.14 for
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Figure 7.17: Amplitude-frequency plot near the Neimark bifurcation points

f. = 32.552 Hz shows a weakly chaotic attractor (weakly because the time signal still shows
much regularity). As the chaotic region is entered further, the time intervals between two
subsequent bursts become shorter, compare figures 7.15 and 7.16. Eventually the inter-
vals with almost periodic behaviour will disappear. According to Pomeau and Manneville
(1980) (but see also Schuster [1989] ) there exist three mechanisms, by which intermittency
can be introduced: via a cyclic fold bifurcation, a flip bifurcation or a Neimark bifurcation.
In this case the right branch with 1/2 subharmonic solutions becomes unstable via a cyclic
fold bifurcation (turning point) at f. a2 32.555 Hz. The left branch with 1/2 subharmonic
solutions already becomes unstable at f. &~ 32.48 Hz via a Neimark bifurcation before the
turning point occurs at f, &~ 32.52 Hz.

For f, = 50 Hz there is a large relative difference between the amplitudes of the single
dof model (0.0003 m, figure 7.9) and the four dof model (0.0001 m, figure 7.11). This is
caused by the anti-resonance near f, = 56 Hz in the four-dof model, which of course does
not exist in the single dof model. Before the anti-resonance the branch with harmonic
periodic solutions becomes unstable via Neimark bifurcations in the interval 47.33-49.53
Hz, see figure 7.17 (¢ = 0.05). In this interval a quasi-periodic— locked— chaotic sequence
(Newhouse et al. [1978] , Thompson and Stewart [1986] , Schuster [1989] ) is observed,
which is described below. Again numerical integration is used to investigate the steady-
state behaviour (Adams’ method, accuracy of 9 significant digits, t, = 6000T,, initial
conditions zero at t = 0). The upper picture of figure 7.18 and figure 7.19 show the time
history (50 T.) and the Poincaré section respectively (¢p = @ = —m/2) of the stable,
harmonic solution at f. = 49.58 Hz (all Poincaré sections shown in figures 7.19, 7.20 and
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Figure 7.18: Periodic, quasi-periodic and chaotic time histories

7.21 contain 4000 points per attractor). If the excitation frequency is reduced, the
solution becomes quasi-periodic. The Poincaré sections (figure 7.19) show closed curves
(transections of a 2D torus), which amplitudes grow for decreasing f,. The middle picture of
figure 7.18 shows the time history (100 T,) of the quasi-periodic solution at f, = 49.38 Hz.
Shaw et al. [1989] reported quasi-periodic motion in a two dof system with a cubic stiffening
spring for excitation frequencies f, = (f; + £,)/2 ({1 and {; being the eigenfrequencies of
the system without the nonlinear spring). In fact, this is also the frequency range under
consideration here. A further reduction of the excitation frequency to f, = 49.05 Hz results
in a subharmonic solution of order 1/22, see figure 7.20. This phenomenon, in which the
ratio of the forced frequency and the free frequency becomes rational, is called frequency-
locking or mode-locking. For f. = 48.70 Hz the attractor is quasi-periodic again, but
starts to develop wrinkles, which are most clearly seen in the lower left part of figure 7.20.
Wrinkles arise in the 2D torus if the onset of chaos is approached (Thompson and Stewart
[1986] ). For f, = 48.55 Hz the attractor is weakly chaotic. Figure 7.21 shows that a
further reduction of the excitation frequency again results in a locked state {subharmonic
of order 1/10 for {, = 48.40 Hz) and finally in a truely chaotic attractor for f, = 48.15 Hz.
Using the 1/10 subharmonic solution obtained with the numerical integration method as
starting solution, the path following method is applied to follow a branch of subharmonic
solutions of order 1/10. The result, see figure 7.17, is a very small closed branch in the
frequency range 48.18-48.41 Hz, which boundaries are formed by cyclic fold bifurcation
points. The high amplitude branch is unstable and the low amplitude branch is stable in
the ranges 48.18-48.20 Hz and 48.39-48.41 Hz and unstable in the range 48.20-48.39 Hz via
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Figure 7.21: Poincaré sections showing frequency-locking and chaos

flip bifurcations. The lower picture of figure 7.18 shows the time history (100 T.) of the
chaotic attractor for f, = 48.15 Hz. Figure 7.22 shows the time history of the 8 Lyapunov
exponents of this attractor, which are calculated using the Runge-Kutta-Merson method
(accuracy of 9 significant digits, t, = 6000T,, initial conditions zero at t = 0) in the
interval 6000T,-10000T,. At t = 10000T, all Lyapunov exponents appear to be converged.
The Poincaré section of the chaotic attractor at f. = 48.15 Hz, shown in figure 7.21, was
caiculated using the Adams’ method. The Poincaré section was verified by the Runge-
Kutta-Merson method. Using equations (6.23) and (6.26) the Lyapunov dimension of the
Poincaré section this attractor can be estimated. This dimension increased by 1 gives an
estimate of the Lyapunov dimension of the attractor: Dy = 3.15. This means that this
attractor (rather an approximation of this attractor) can not be found in the one-dof model
of the previous subsection on principle, because the augmented state space of this model
is only threedimensional. It costed 80000 (1) s. of CPU-time to calculate the attractor
and all the Lyapunov exponents simultaneously, whereas the calculation of the attractor
alone costed only 1600 s. of CPU-time. Figure 7.23 shows the frequency spectra of the
harmonic solution at f, = 49.58 Hz, the quasi-periodic solution at f, = 49.38 Hz and the
chaotic solution at f. = 48.15 Hz. In the case of the harmonic solution only peaks are found
at 0 Hz, indicating the off-set in the signal, at the excitation frequency f. and multiples of
it. The spectrum of the quasi-periodic solution shows peaks at combinations of the forced
frequency f. and the free frequency fr. The frequency spectrum of the chaotic signal is
characterized by a broad-band noise. For {, = 47.95 Hz, {, = 47.80 Hz and {, = 47.30 Hz
subharmonics of order 1/7 are caleulated (frequency locking). Again using one of these 1/7



104 CHAPTER 7. APPLICATIONS: BEAM WITH NONLINEAR SUPPORT

A, [bits/s] b =43.65 - Ay~ -5.01
Ay ~ -3.05 A ~ ~10.70
10 Ay = -3.97 A, ~ -10,80
My = ~4.11 Ay = -11.68
5
\ icau ) }v‘
|
0
N
£ ]
-5 A'B
-10 iy s R gy A
L et — 1.: !
125 150 175 200 t [s]

Figure 7.22: Converging Lyapunov exponents of the chaotic attractor at {, = 48.15 Hz
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Figure 7.23: Frequency spectra of a periodic, a quasi-periodic and a chaotic attractor
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Figure 7.24: Amplitude-frequency plot of a beam supported by a stiffening and a one-sided
linear spring

subharmonic solutions as starting solution, the path following method is applied to follow
subharmonic solutions of order 1/7 for varying excitation frequency. There appear to be
two closed branches of subharmonic solutions of order 1/7, see figure 7.17. In the interval
47.36-47.51 Hz, lying inbetween, a chaotic attractor is found for f, = 47.46 Hz.

The numbers of time discretization points n, used in this subsection to calculate the
several branches with periodic solutions are: 400 for the harmonic solutions, 800 for the
1/2 subharmonic solutions, 750 for the 1/3 subharmonic solutions, 1050 for the 1/7 sub-
harmonic solutions and 1500 for the 1/10 subharmonic solutions.

7.5 Support by a stiffening and a one-sided linear
spring

Only the strongly nonlinear (g = 0.7, y, = 0, o = 6) case with moderate damping
(£ = 0.05) is considered. Figure 7.24 shows the amplitude-frequency plot for the four
dof model (solid curves) and the eight dof model (dotted curve). For the latter model
only the branch with harmonic solutions is calculated in the frequency range 11.3-50.0
Hz was calculated. The difference between the results of the four dof and the eight dof
is neglectable. The CPU-times, however, differ very much: 6319 s. for the calculation
of the solutions and 2454 s. for the stability analysis for the four dof model {1197 pf-
steps), against 41898 s. for the calculation of the solutions and 17362 s for the stability
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analysis for the eight dof model (1500 pf-steps) for the same frequency range. Of course, all
calculations were carried out under the same path following conditions {most important
parameters: f1 = fz = 5° Omax = 0.25). The conclusion is that the four dof model
may be preferred in this frequency range. For high amplitude responses the effect of the
cubic stiffening spring is clearly visible: the first harmonic resonance peak and both the
subharmonic resonance peaks bend over to the right. Cyclic fold bifurcation points are
found at f, ~ 18.04 Hz and {. = 25.60 Hz {harmonic resonance peak), f. ~ 30.09 Hz and
f, ~ 28.08 Hz (1/2 subharmonic resonance peak) and f, ~ 39.86 Hz and f. ~ 40.34 Hz
(1/3 subharmonic resonance peak). For low amplitude responses the presence of the cubic
stiffening spring is, as could be expected, hardly noticeable. The frequency intervals, which
showed intermittency and a quasi-periodic—locked— chaotic sequence in subsection 7.4.3,
still exist (Schouten [1991] ). The branch with 1/2 subharmonic solutions before the first
harmonic resonance peak has been shifted to a higher frequency interval (compare the
insets of figures 7.11 and 7.24). The left flip bifurcation point shown in the inset of figure
7.24 at f, = 9.73 Hz is subcritical, whereas the right flip bifurcation point at f, = 11.35 Hz
is supercritical.

The numbers of time discretization points . n, used in this section to calculate the
branches with periodic solutions are: 400 for the harmonic solutions, 800 for the 1/2
subharmonic solutions and 750 for the 1/3 subharmonic solutions.



Chapter 8

Conclusions and recommendations

In this last chapter, some major conclusions are drawn and some recornmendations for
further research are given.

For linear systems the component mode synthesis technique based on free-interface
eigenmodes and residual flexibility modes gives accurate results at system level below the
cut-off frequency, used to reduce the number of dof of the components. For systems,
consisting of linear components and local nonlinearities, this is not true in general. The
accuracy of the solution of a reduced nonlinear system for a certain excitation frequency can
be checked, however, by examining the frequency spectrum of the external loads minus the
internal loads, caused by the local nonlinearities and examining the influence of additional
modes on this spectrum. By using the cms method based on free-interface eigenmodes
and residual flexibility modes, reduced linear component models can (almost) totally be
obtained by experiments, at least in principle.

By application of the time discretization method in combination with the path follow-
ing method branches of periodic solutions can be followed for varying design variable. By
combining these methods with the reduction method the steady-state behaviour of complex
dynamic systems with local nonlinearities can be analyzed very efficiently. By means of a
deferred correction technique an 0(A7?%) solution can be improved to an 0(A7*) solution;
moreover the global error of the ¢{a7?) solution can be estimated. In the example given
in chapter 3, 50% more CPU-time would be needed to obtain the same mean global error
by applying a direct 0{A7*) discretization scheme. However, the deferred correction tech-
nique can give erroneous corrections in the neighbourhood of cyclic fold bifurcation points.
The local stability of the periodic solutions can be investigated by means of the Floquet
multipliers. Moreover, for marginally stable periodic solutions the Floquet multipliers in-
dicate the type of the bifurcation point, which may be a cyclic fold, a flip or a Neimark
bifurcation point. CPU-time consuming numerical integration techniques for calculating
the steady-state behaviour have to be applied only in those regions of the design variable,
where no stable periodic solutions can be found through time discretization. The character
of these atiractors, which may be periodic, quasi-periodic or chaotic, can be determined
by calculating the Lyapunov exponents. These Lyapunov exponents can be used to calcu-
late the Lyapunov dimension of an attractor. The dimension of an attractor determines
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the minimal dimension of the augmented state space, which is neccessary to generally ob-
serve this attractor. In case of multi-dof models the calculation of all Lyapunov exponents
becomes very expensive, whereas only a number of the highest Lyapunov exponents are
needed to calculate the Lyapunov dimension of the attractor. Therefore, if one has an idea
about the dimension of a chaotic attractor, one should use this information by calculating
only the Lyapunov exponents of interest.

In contrast to numerical integration techniques, the time discretization technique gives
no information about the domains of attraction of steady-state attractors. If information
about domains of attraction is required, the cell-to-cell mapping technique (Hsu [1980]
, Hsu and Guttalu [1980] , Hsu [1981] and Tongue [1989] ), which is based on numeri-
cal integration, can be used. However, direct numerical integration is different from the
cell-to-cell mapping technique as it combines the information obtained with the present
numerical integration run with the information obtained from preceding numerical inte-
gration calculations (with different initial conditions). The cell-to-cell mapping technique
is only capable of finding (sub)harmonic solutions of order 1/n with n greater than 1 and
lower than or equal to the total number of cells. Quasi-periodic and chaotic attractors
will in general be identified with subharmonic solutions of very low order. The cell-to-cell
mapping technique is mostly applied to systems with an augmented state-space of dimen-
sion three. Naturally, computational costs quickly rise if the dimension of the augmented
state space increases. The results obtained with the cell-to-cell mapping technique, which
can be found in the literature, are promising and further investigation of the possibilities
of the technique is recommended.

The application of the various numerical tools to the beam system with nonlinear sup-
port leads to the following major conclusions. Super- and subharmonic resonances can be
suppressed by addition of damping. If the power of the nonlinearity is even (uneven), the
damping will destroy the n-th superharmonic and the 1/n subharmonic resonances, where n
is uneven (even), before it destroys the m-th superharmonic and the 1/m subharmonic res-
onances, where m is even (uneven). If damping is increased, subharmonic solutions persist
longer for strongly nonlinear systems than for weakly nonlinear systems. Three different
routes to chaos can be found in the beam system with a supporting one-sided linear spring;:
the period doubling route, the intermittency route and the quasi-periodic—locked— chaotic
route. The Lyapunov dimension of a chaotic solution arising via the latter route pointed out
that (an approximation of) this chaotic attractor cannot be found in a single dof model.
Very probably there will be much more (small} frequency intervals, in which frequency
locking occurs, in the quasi-periodic—locked-schaotic route to chaos than the intervals
detected so far. A detailed investigation of all these intervals could be very expensive.

The beam system, which was investigated in the previous chapter, consisted of one
linear component only. The approach of a system, consisting of several linear components
with local nonlinearities is not substantially different.

The steady-state behaviour of the beam system presented in chapter 7 has not yet been
verified by experiments. Especially to show the relevancy of chaos theory to engineering
practice, it is important that this will be done in the near future. The simple geometry
of the beam system gives the possibility to concentrate specifically on chaos phenomena.
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Because the exitation frequency ranges, where chaotic attractors occur, are rather small
in the beam systems investigated, it is advisable to define such an experiment for values
of the design variables, for which the frequency regions with chaotic attractors are larger.
At present there is not much experience with the experimental determination of Lyapunov
exponents, although Wolf et al. [1983] presented an algorithm for the experimental de-
termination of positive Lyapunov exponents. To distinguish the deterministic chaos from
external noise, a reasonable amount of accurate data should be available. A successful
verification of numerical results of the rather academic beam system by experiments would
be an important step forward in the direction of industrial applications.



Appendix A

The effect of adding residual
flexibility

In this appendix the positive effect of a residual flexibility mode on the accuracy of dis-
placements and strains is shown by a simple example. Consider the 1D continuous system
shown in figure A.1: The equation of motion of this system is given by the following partial
differential equation:

8*q
otz

with boundary conditions:

2
PA— + EA%% = Fé(x — L) cos{wt) (A1)
q{0,t) =0

The angular eigenfrequencies wy, and elgenmodes ¢, the solutions of the homogeneous part
of (A1), are (k= {1,2,3,...,}):

e = (2K — 1)2%\/%7 (A.2)

p,AE —> q(x,t
/ ke F cos(wt)

> X

Figure A.1: Rod
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ul) = sin 2T (A.3)

The static solution of (A.1) (w = 0), which can be identified with the flexibility mode of
the system, is:

a6t = ok (A1)

with:
x=x/L (A.5)

The angular excitation frequency w is expressed in terms of the first angular eigenfrequency
(I

W= 3’2(.‘)1 {A.ﬁ)
Solutions of (A.1) can be written in the form:
o«
=Y @) (A
k=1

For steady-state solutions the functions pi(t) are:
8 (=1 FL
P(t) = —5—(—)2——2
72 {2k - 1)? -~ Q2EA
Naturally, (A.7) is equal to {A.4) for € = 0. Now three different 2-dof approximate

solutions will be introduced. In the first approximation only the first two terms of (A.7)
are kept:

cos(wt) {A.8)

are o 8 [sin(%)  sin(3E)] F
at) =2 [1 T 9—(2 | FA
In the second approximation the second term between the brackets of (A.9) is replaced by

the residual flexibility mode, defined as the flexibility mode (A.4) minus the contribution
of the first eigenmode to the flexibility mode. So the second approximation becomes:

%, Q% | FL
5 )1 — {P] A cos(wt) (A.10)

cos(wt) (A.9)

Q;%,t) = [x + f—sm(

Now the Rayleigh quotient is used to calculate an artificial angular eigenfrequency w* for
the residual flexibility mode. Because the residual flexibility mode is a linear combination
of all eigenmodes but the ﬁrst this artificial eigenfrequency will be greater than wy. The
result is (compare with (A.2))

1272 — 96
\/ —= QL\/—~133»:02 | (A.11)
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Figure A.2: Strains g4(%)

Thus the third approximation is:

arn . 8 ., =X 1 12x% — 96
03(5%,8) = % + Spsin( )

FL
To0 T 127 — 86— (ri =96y BA St (A12)

Strains e(x, t), €3(x, 1), e5(x,t) and e3(x, t) are calculated by differentiation of (A.7), (A.9),
{(A.10) and (A.12) respectively to x. Now the following dimensionless functions are intro-
duced (i=1,2,3):

EA

qo(X) = WQ(% t) (A.13)

4 = pr o U ) (a14)
. BA dq®t)  BA

solX) = FLcos(wt) dx  FL cos(wt)v(x’ ¥ (A.15)

G) = A dEEY _ BA Loy (A.16)

FLcos(wt) d¥  FLcos(wt)

Figure A.2 shows zo(X) (the upper bound for k is set to 100000). The relative errors in the
dimensionless displacements and in the strains are defined as:
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Relative error {%]
s

1 0-5 . . ¥ . 5 1 i i s 1 i i i '3 "
0.00 0.25 0.50 0.75 X [-]

Figure A.3: Relative errors in strains for @ = 0.1

la(%) — qo()]|

e * 100%
LG

and:
|e1(%) — eo(X)]

ea(%)]

One might expect that the three different approximations would give accurate results for
0 € © < 1. Figures A.3-A.5 show the relative errors in the strains as a function of % for
three different values of £2. The relative error in 21 becomes smaller if  approaches 1,
where the contribution of the first eigenmode dominates. However, the relative errors in
€, near the point of application of the external force remain very large. This is due to
the very slow convergence of the series, by which £¢(%) is calculated, for % close to 1. The
relative errors in e, and €g, which are zero for @ = 0, grow for increasing {1, but remain
smaller than the errors in 3, except for X = 0.7. The relative errors in ¢, and €3 are much
lower than the relative error in £; for % close to 1. This can be explained by the fact that in
the calculation of the (residual) flexibility mode the series for eo(%) is calculated for §2 = 0.
The overall conclusion is that approximations £3(%,t) and £3(X,t) give better results than
e3(%,t), with €3(%,t) slightly superior to £3(%,t). Investigation of the relative errors in
the three approximate displacement functions gf(%, t) leads to the same conclusion. For %
approaching to 1, however, no strong growth in the relative errors of the three approximate
displacements is observed.

* 100%
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Figure A.4: Relative errors in strains for 0 = 0.5
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Appendix B

Alternative component modes

In this appendix alternative component mode sets are defined, which can also be used to
compose a dynamic component mode set. For a definition of various sets of dofs one is
referred to table 2.1. :

B.1 Fixed-interface eigenmodes

Fixed-interface eigenmodes are calculated by solving the eigenvalue problem of the com-
ponent with a suppressed H set:

(—(W)’Mac + Kae)od = 0 i=1,...,ng (B.1)

Fixed-interface eigenmodes are normalized on the mass matrix. The ng angular eigenfre-
quencies wf* and corresponding fixed-interface eigenmodes % are stored in "0, and ®ff
respectively. Fixed-interface eigenmodes with eigenfrequencies below the cut-off frequency
f, are stored columnwise in ®{; the corresponding angular eigenfrequencies are stored on
the diagonal of "% .. The remaining fixed-interface eigenmodes are stored columnwise in
®%; the corresponding angular eigenfrequencies are stored on the diagonal of "Qf.:

. o O O §
o= [of oy [ g Cu] (82)
Gk Gd
e erx-J Ok
O, = [ Ozkk rQﬁ%J ] (B.3)

B.2 Constraint modes

Constraint modes are defined for a set C. A constraint mode is defined as the static
displacement field which results as a unit displacement or -rotation is imposed on one of
the dof in C, whereas the other dof in C are suppressed. € will be chosen equal to V or B.
If C is equal to V, R is suppressed and the matrix of (redundant) constraint modes ®°* is

defined by:
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I(RR KRC I{m ORC RRC-‘
Kor Koo Ka Iec | = | Reo (B.4)
KIR KIG I{n (I)IC OIC
Orc Orc
% = | Iec | = Iec (B.5)
Orc — Ky Ko
If C is equal to B the matrix of constraint modes ®°? is defined by:
Koo Ker || loc | _ | Beo
[ Kic Kn } [@IC | O (B.6)
I 1
cz _ | lec | _ ce
v [ orc } - [ - Kif' Ko } (B.7)

B.3 Attachment modes

Attachment modes are defined for a set LA, An attachment mode is defined as the static
displacement field which results, as one of the dof in A is loaded by a unit load, whereas
the other dof in A are not loaded. The R set is suppressed. The A set is chosen equal to
the V set. The matrix of attachment modes ®* is defined by:

Krr Kra Knmr Ora Rry
Karn Kaxn Ka Gaa | = | laa (B.8)
K K Ky Dra O
Ora Ora
Pt = { Daa } = (Kaa — KKy  Kis)™ } (B.9)
N7 —KuKia(Kaa — Kar Ky Kia) ™t

B.4 Inertia relief modes

If, given an initial state s(tg) = 0, constant accelerations Prpang are prescribed for the R
set for t 2 tg, the total displacement of the comiponent will be a linear combination of a
rigid body displacement z, and a quasi-static elastic displacement field z, after transients
have died out. The rigid body displacement will be a linear combination of the rigid body

modes ®F; the quasi-static elastic displacement will be a linear combination of inertia relief
modes ®M:

TR
= | oy | = 2+ T, (B.10)

Eh §
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1
2 =5t - to)*@"apn (B.11)
. tott ptobm M Orm
lim 2, = lim / Eed(Ty — to)d(ry ~ to) = ®Vagpn = | Pym |arr (B.12)
00 L0 Ji, to @IM

The number of independent inertia relief modes is equal to the number of rigid body modes.
If transients are neglected (limy—co e = limy oo . = 0) inertia relief modes ®M can be
calculated by substituting (B.11) and (B.12) in (B.10) and substituting the result of this
in (2.2):

Kan Knv Kwm Onum Mra Mav Mm Rgr
Kyr Kyv Kwi Sym | =—{ Myg Myv My | 9%+ | Rvr (B.13)
Kw Kiv Kn Orv Mr My My Om

Ry are unknown loads necessary to prescribe accelerations ®gr. Inertia relief modes will
always be accompanied by attachment modes or constraint modes in the Ritz reduction
matrix. So an arbitrary choice of loads Ryy will not affect the linear subspace spanned by
®M and ®* or ®°*. The solution of (B.13) is given by:

Svm | _ | ®an —(Kvv — KuiKy' Kiv) 7 Knikyg'
By (DIA (Kn — I(IV,K‘?\]} Kv{)_l
Myr Myy My1 | zr_ | Byr ,
{[ Mg My Mn } et [ O }} ' (B.14)

Ryg is chosen so that &y = Ovym. The reason for this choice is that inertia relief modes
now become orthogonal to ®4 and ®C* with respect to the stiffness matrix. Finally, the
matrix of inertia relief modes ®™ becomes:

ORM Orm i
OVM OVM (B 15)

oM = =
Dv } - Kt [ M My Mg ] R




Appendix C

The dimensionless nonlinear single
dof model

Consider a linear, undamped component with dof z:

.= [ o ] (1)

xp 18 a boundary dof, which is loaded by an external load fex and internal loads fu{%p, x5)
caused by adjacent local nonlinearities. The dof 2 are not loaded. The equations of motion
of the system are:

Mz+ Kz = [ (?Ii, fox — nl()‘(B;XB} }t (0.2)
The displacement field of the linear component is approximated by a single mode -
I ) O I I - w1/
=l e ©3

Using this transformation the equations of motion can be reduced to the following single
dof model based on dof q = xp:

md + kq = fex — fnl(@a Cl) (C-‘i)
with:
WMo
m=—s
B
it
ke ¥ I§ ©
©B

Assume that the local nonlinearities consist of a spring with cubic stiffness ks, a one-sided
linear spring with stiffness k, and a one-sided spring with cubic stiffness ky,. Furthermore
dof q is internally loaded by a linear viscous damper with damping constant b and exter-
nally loaded by a harmonic load with amplitude Fg, and frequency f.. Then the resulting
equation of motion of the single dof system is given by:
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m§ + bg + kq + kaq® + 0(q)(kpq + kapq®) = Fay cos(2nf,t) (C.5)
with:

_J0ifq>0
"@—{1 ifq<0

In this equation ten quantities are involved. Three quantities can be eliminated by making
equation (C.5) dimensionless. Hereto the dimensionless displacement { and the dimen-
sionless time # (not to be confused with the dimensionless time 7 introduced in (3.2)) are
introduced:

q= " (c.6)

t= 9\/%— (€7

Substitution of (C.6) and (C.7) in (C.5) followed by division by Fg, results in the dimen-
sionless equation of motion (* = d/df):

¢4+ 260 + ¢+ u¢ + o) + 1(°) = cos(0) (c8)
and the 5 dimensionless parameters: |
b

= C9

= s (©9)
kgF2
=g (C.10)
o= kf (C.11)
k3I’F3y

Hp = 3 {C.12)
Q = 2nf, [ \ (C.13)



Appendix D

The structure of the Jacobian

After the application of the central difference scheme (3.8), (3.9} with a consistency of
O{aT?), in (3.24),(3.36),(3.43) and {3.50)-(3.51) equations must be solved of the type:

—a=1b (D.1)

z

Equation (D.1) can be solved efficiently using the special structure of the Jacobian J =
8h/3z. I a, b and J are partitioned like z in the following equations:

z =
Zg
Za = [ghy. o qh, 5l

Zﬁ = qn'r—‘l

the upper left block of the Jacobian J,, will have a bandstructure with a bandwidth
by = 2n, — 1 and the solution of (D.1) can be calculated with:

ag = (Jag— Jﬁa‘]&g*]aﬁ)_l(bﬁ - Jﬁaja_jba) (D.2a)
da = Jo(ba~ Japap) (D.2b)

The CPU-time, needed for decomposing Juq, is approximately proportional to (n, — 1} *
ng*(2by - 1)%, whereas the CPU-time, needed for the decomposition of J is approximately
proportional to (n, % n,)?, see the description of routine FOILBF of the NAG library [1989]

If the central difference scheme (3.38), (3.39) is used with a consistency of 0(A7%), z,
and zg must be defined as:

Za = GG+ oy o s’
g = [‘1:1,~2a(1;,-1]t

to realize a bandstructure for J,q. The bandwidth of Jye now becomes by = 3ngy — 1.
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Appendix E

The method of harmonic balance

The method of harmonic balance (Jordan and Smith [1977] ) is an analytical/numerical
method, by which estimates of periodic solutions of nonlinear dynamic systems in closed
form can be obtained. Here the method is applied to estimate the harmonic and 1/3
subharmonic solutions of the single dof Duffing system:

C¥+ 26¢¢ + ¢ + p¢® = cos(06) (E.1)
The harmonic solution is assumed to be of the form:
¢(8) = cy cos(028) + 81 5in(02F) + c3 cos(31210) + 54 5in(3026) (E.2)

Substitution of this expression in (E.1) gives:

Cl(&) Q, K, €1, 815 Ca, 33) COS(QQ) + Sl(fa Qa #,Cy,81,Cs, 33) Sln(Q9)+
Cs({, Q, #,C1,85,C3,4 Ss) COS(3Q€) + Sg({, Q? H, €1, 81, Cs, 83) sm(SQB) = (E3)
#Cu(cy, 84, s, 83, cos(5610), sin(5028), cos( 7628}, sin(7028), cos(9Q8), sin(9048))

This equation must be satisfied for all §. This implies, neglecting the right hand side of
(E.3), that the functions C4, S;, Cs and S5 must be equal to zero:

C: = ¢+ 2608 — %, +

(1/4)(3ci(c1 + ca) + 3s(ca — ca) +6ca(c +55 +s183)) — 1 =0 (E.4a)
Si = s —2800¢; — Q% +

(8/4)(3c3(s1 + s3) + 353 (51 — 83) + 651(c3 + 55 — c1c3)) = 0 (E.4b)
Cg = c¢3+ 6£Q53 — 99203 +

(2/4)(c3 + 3c3 + 6cicy — 3s3cy + Bslcs + 3s2cy) = 0 (E.4c)
Sg = Sg - 6(3“03 — 99283 + ‘

(1/4) (=83 + 353 + 3cls; + Bchsg + 65285 + 3cisg) = 0 (E.4d)

This set of nonlinear, algebraic equations can be solved numerically for ¢y, s,,cs and s3.
For values of 2 far away from resonance (E.4) has one (stable) solution (£ # 0). For appro-
priate values of £ and p equations (E.4) can have three solutions for £} | 1 (near harmonic
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resonance) and §) | 1/3 (near superharmonic resonance}. Two of these solutions are stable
and one is unstable.

In an analogous way an estimate of the 1/3 subharmonic solution can be obtained, which
is assumed to be of the form:

C(8) = c1/3c08(28/3) + 3175 $in(20/3) + ¢1 cos(20) + s, sin(26) (E.5)
This leads to the following set of equations:
Cl = Ci/3 + 26&31/3/3 — 9261/3/9 -+
(1/4)(3} jalcrys + €1) + 38 j5(cays — 1) + Beyya(c] + 8] +51/881)) = 0 (E.6a)
Sl = S1/8— QfQC]./a/g - 9251,’3}[9 +

(1/4)(3cd /(5175 + 81) + 353 (5175 — 51} + 61/a(c] + 57 — c1yeca)) = 0 (E.6D)
Cg = ¢+ 2€Q51 - chl -+

(1/4)(c3 /5 + 3¢ + 6¢ jgcn ~ 3831361/3 + 653 501 + 3s%¢)—1=0 (E.6c)
Sy, = & — 2600, — Q% +
(1/4) (=53 /5 -+ 353 + 3T a81/s + 6 jas1 + 653551 + Bclsy) = 0 (E.6d)

Note that the choice ¢;y3 = s1/3 = 0 solves the first two equations of (E.6), but will lead
to an estimate of a harmonic solution instead of a 1/3 subharmonic solution. Usually
equations (E.68) only have two solutions with ¢;/3 # 0 and/or s1/3 # 0 for Q > 3 (near sub-
harmonic resonance). These solutions have opposite stability. However, it is also possible
that there exist no subharmonic solutions for any §2.

In figure E.1 solutions {E.2) and (E.5) are compared with solutions obtained with the nu-
merical methods described in chapter 3. The results are comparative (u = 0.05, £ = 0.003,
0 =0-6, f, = 8.95920, y = 0.006¢).

In general, the solutions obtained above will be accurate only for 4 <« 1. For g = o(1)
many more superharmonic terms must be added to (E.2) and (E.5) in order to get an
accurate solution. It is clear that in this case, but also in the case of more dof, the method
of harmonic balance becomes cumbersome.
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Figure E.1: Comparison between analytical (dots) and numerical results (lines)
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STELLINGEN
behorende bij het proefschrift

STEADY-STATE BEHAVIOUR OF REDUCED DYNAMIC SYSTEMS WITH LOCAL
NONLINEARITIES

1. Het ontbreken van numerieke algoritmen voor het gedeeltelijk oplossen van eigen-
waardeproblemen, waarbij het imaginaire deel van de eigenwaarde fungeert als selec-
tiecriterium, is een gemis bij de ontwikkeling van reductietechnieken voor lineaire,
algemeen gedempte dynamische systemen met veel vrijheidsgraden.

2. Indien de periodetijd van een periodieke oplossing van een dynamisch systeem gro-
ter is dan de gebruiksduur van het dynamische systeem, kan deze oplossing vanuit
praktisch cogpunt chaotisch genoemd worden.

¢ H.W. Broer en F. Takens. Wegen naar chaos en vreemde aantrekking. In HW.
Broer en F. Verhulst {red.}, Dynamische Systemen en Chaos, cen revolutie uit
de wiskunde, Epsilon Uitgaven, Utrecht 1990,

3. In zijn onderzoek naar subharmonische oplossingen van orde 1/3 van een zwak ge-
dempte, sterk niet-lineaire Duffing vergelijking stelt Riganti dat de tak met de maxi-
male amplifude instabiel en de tak met minimale amplitude stabiel is. Dit is niet
correct voor excitatiefrequenties nabij het linker cyclic fold bifurcatiepunt.

¢ R. Riganti. Subharmonic solutions of the Duffing equation with large non-
linearity. Int. J. Non-Linear Mechanics, Vol. 13, No. 1, pp. 21-31, 1978.

» Dit proefschrift, hoofdstuk 7.

4. Door veel auteurs wordt de term Hopf-bifurcatie oneigenlijk gebruikt voor de bi-
furcatie van een periodieke naar een quasi-periodieke oplossing, terwijl de eigenlijke
betekenis de bifurcatie van een statisch evenwicht naar een periodieke oplossing is.

o E. Hopf. Abzweigung einer periodischen Lésung von einer stationdren Lésung
eines Differentialsystems. Ber. Math.-Phys. Klasse Sachs. Akad. Wiss. Leip-
zig, Vol. 94, pp. 1-22, 1942,

o S. Natsiavas. On the dynamics of oscillators with bi-linear damping and stiffness.
Int. J. Non-Linear Mechanics, Vol. 25, No. 5, pp. 535-554, 1990.



5. De vraag "Kunt u toepassingen geven van de chaos-theorie in de praktijk ?” zal
in de toekomst steeds minder gesteld worden, mede dankzij de multidisciplinaire
toepasbaarheid van deze theorie.

s JM.T. Thompson. Chaotic dynamics and the Newtonian legacy. Appl. Mech.
Rewv., Vol. 42, No. 1, pp. 15-24, 1989.

6. Bij de uitvoering van een naar de plaats gediscretiseerde berekening is het vaak
mogelijk om op basis van fysisch inzicht vooraf te bepalen, waar een meshverfijning
noodzakelijk zal zijn, ter verkrijging van resultaten met een zekere nauwkeurigheid.
Bij de uitvoering van een naar de tijd gediscretiseerde berekening ter bepaling van
periodieke oplossingen is dit veel minder vaak het geval,

7. Hoe hoger de codimensie van sen bifurcatie is, des te lager is zijn praktische relevantie.

8. Deskundigheid op het gebied van onderzochte niet-lineaire dynamische fenomenen
gaat vooraf aan deskundigheid op het gebied van de niet-lineaire dynamica.

9. De numerieke methoden voor het analyseren van het lange termijn gedrag van een
niet-lineair dynamisch systeem vallen slechts ten dele te antomatiseren.

10. Het met een te hoog adrenalinegehalte in het bloed besturen van een auto kan net zo
onverantwoord zijn als het met een te hoog alcoholpromillage in het bloed besturen
van een auto.

11. De taak van de coach van een jeugdig sportteam bestaat niet alleen uit het leren
winnen van wedstrijden, maar ook uit het leren verliezen van wedstrijden.

Bindhoven, oktober 1991 Rob Fey



