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Abstract: 

NORMAL FORMS FOR A CLASS OF FORMULAS 

H.M.M. TEN EIKELDER 

J.C.F. WILMONT 

Department of Mathematics and Computing Science 

Eindhoven University of Technology 

P.O. Box 513 

Eindhoven, The Netherlands 

A class of formulas which consist of real functions al, ... ,aN, their 

derivati~es and integration operators I is considered. Formulas of this 

type arise in same parts of mathematical physics. Due to partial integra

tion, various formulas can have the same meaning. A normal form and a 

normalizing algorithm are given. 



1. INTRODUCTION 

Formula manipulation techniques are used nowadays in varl0US parts of 

science~ In this paper, we shall discuss a formula manipulation problem 

which arises in a part of mathematical physics. In that field the work on 

partial differential equations considered as Hamiltonian systems has 

evolved rapidly the last decennium. The verification of several properties 

of a class of these equations (in particular computations which are related 
--- ----

to the recursion operator and its Nijenhuis tensor) leads to the class of 

formulas considered in this paper. 

Loosely speaking, these formulas consist of polynomials in smooth 

functions a1, ••• ,aN: ffi +ffi and their derivatives, and integration opera-

tors I. Different expressions of this type can have the same meaning. For 

instance, if differentiation is denoted by a subscript x, the expressions 

I(a1 a2 ) + I(a1 a2) and a1 a2 have the same meaning (under appropriate 
x x 

boundary conditions and definition of I). This means that to verify if 

some sum of formulas vanishes, it is not sufficient to see if the coeffi

cients of all appearing formulas cancel out. The problem can be solved by 

introducing normal forms for the considered type of formulas. Then a sum 

of different formulas in normal form should only vanish if all the coeffi

cients vanish. In this paper such a normal form is given. We also describe 

an algorithm t~at transforms a formula to its normal form. Explicit exam

ples of the computation mentioned above can be found in for instance Ten 

Eikelder (1986) or Fuchssteiner et al. (1987). The latter paper also gives 

some heuristic considerations on normal forms. However, the normal form and 

normalizing algorithm presented in this paper are not given. 

The organization of this paper is as follows. In Section 2 we give the 

syntax and semantics of the considered class I om- formulas. Some introduc

tory contemplations on the problem of finding a normal form will be glven 

in Section 3. We shall formulate a hypothesis which is a sufficient condi

tion for constructing normal forms. In Sections 4 and 5 we assume that 

this hypothesis ;holds. In Section 4 we describe the class of formulas in 

normal form and give a normalizing algorithm. The property that two formu

las ln normal form have the same meaning (semantics) if and only if they 

are equal (syntax) is proved in Section 5. Then, in Section 6 we return to 
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the hypothesis and show that it can be satisfied. Finally, some concluding 

remarks are given in Section 7. 

2. THE CLASS OF FORMULAS 

Let T be a set of syntactic representations of monomials. in al, ... ,aN and 

their (higher) derivatives. We shall adopt the usual notation in mathemat

ical analysis to write these monomials, i.e. elements of T are, for in

stance, the following 'strings': 

1 (empty product) , a 1 a2 a3 2 
xx x 

a 1 a4 3 
xx 

Elements of T will be called terms. The set of formulas F 1S generated by 

the following grammar: 

f ::= t 

f ::= 1(f) 

f :: = f f • 

(t E T) 

(not I (1)) 

So, F consists of all well-form~d_e_x2re~sions which can be constructed 

uS1ng terms and the symbols I, ( and ), except expressions which contain 

1(1). Elements of F are, for instance, 

3 
a1 a4 xx a1 a2 1(a1 1(a2

2
)1(1(a2 a3))) x x x 

The set of sumformulas SF is defined by 

SF = {~ A. f. I m ~ 
i=l ~ 1 

0, (Vi: 1;i i;i m: A. E Q, f. E F)} 
1 1 

where the metasymbol I has the usual meaning. So, a sumformula is a sum 

of formulas with rational coefficients, for instance 

1(a1 1(a2a2 )1(a2 a3)) - -3
1 

a1 a23 a3 + 1(a1 a2a2 1(a2 a3)) + 
x x x x x 

(2.1) 
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Of course, more formal syntactic definitions of terms, formulas and sum

formulas can be given. However, for our purpose the informal description 

given here is sufficient. 

Next, we describe the semantics or meaning of terms, formulas and sum

formulas. Let C be a set of infinitely differentiable functions JR ->- JR, 

which together with their derivatives vanish sufficiently fast if the 

independent variable x ->- -00. The precise structure of C is not important 

here. If a1, ••• ,aN E C and I(h)(x) = JX h(y)dy, then an element of T, F 
-00 

or SF can be considered as a function lR +IR, written in the usual notation 

in mathematical analysis. So, the semantics of an element T, F or SF is a 
N - -mapping C ->- C, where C is also a set of functions JR ->- JR. (Since 1 E T, 

the set C must contain all constant functions.) 

Clearly different terms or (sum)formulas can have the same meaning. 
1 Z 

For instance, "3 a1 a1 x I(a2) has the same meaning as "3 a1 I(a2)a1 x 1 I(a2)a1 a1 x ' From now on, we shall identify all formulas which can be 

transformed into each other by the usual algebraic operations (i.e. inter

changing elements of terms or formulas, interchanging formulas in a Sum

formula, summing coefficients of identical formulas, etc.). So, every term 

or (sum)formula represents in fact an equivalence class of terms or (sum) 

formulas and gl = g2 means that gl and g2 'belong to the same equivalence 

class. By introducing an ordering on T, F and SF, it is always possible to 

compute a unique representative for each equivalence class. We shall 

always assume that, if ~m 
Li=1 A. f. 

~ ~ 
is a (representative of a class of) sum-

formula(s), the number m is as small as possible. This is equivalent to 

saying that the coefficients A. do not vanish and that f. F f. for i F j. 
--- ------ ~ ~ J 

If two (sum)formulas g1 and g2 have the same meaning we shall write 

g1 m g2. Clearly, m is an equivalence relation. For instance, I(a1 ) m a1, _ ___ _ ___________ x _____ _ 

but I(a1 ) F a1. More complicated different sumformulas with the same 
x 

mean~ng can easily be found using partial integration. 

Let V: SF ->- SF be the 'syntactic differential operator'. A formal 

inductive definition of V can easily be given (V(fI(g» = fg+V(f)I(g), 

etc.), but we shall not do that here. The well-known partial integration 

formula from mathematical analysis now yields 

I(fV(g» 1)) fg - I(gV(f» , (2.2) 
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or equivalently 

I(f)I(g) ~ I(fI(g)) + I(gI(f)) • (2.3) 

An elementary computation using these relations shows that (2.1) has the 

same meaning as O. Hence, there exist different sumformulas which have 

the same meaning. This raises the need for a normal form for sumformulas. 

In the sequel we shall describe a subset SN of the set of sumformulas SF 

such that 

i) every sumformula in SF can be transformed to a sumformula in SN with 

the same meaning, 

ii) two sumformulas 1n SN have the same meaning if and only if they are 

equal. 

Algebraically SN is isomorphic wi th SF / ID, but, S1nce we do not yet have 

an algorithm that verifies if two sumformulas have the same meaning, this 

observation is not of much .practical use. 

Finally, we introduce some additional notations and conventions. The 

set of sumterms ST is defined by 

ST { 

m 

j 
1=1 

A.t·1 m '" 0, (\7i: l",i",m: A. E Q, t. E T)} 
1 1 1 1 

Then, TeST c SF (also T c Fe SF). In the sequel we shall also be a 

little less formal in the notation, for 

sumfornlura;- theri-I(ff) stands for L~=l 

instance, if ff = ~~ 1 A.f. 1S a L1 = 1 1 

A. I(f.), etc. For the types of 
1 1 

variables we always use the following conventions: 

t t , t t 1 ' t t 2' .•• , s s , S s 1 ' S s 2 ' •• • , Ull EST , 

ff E SF , 



- 5 -

3. NECESSARY CONDITIONS FOR NORMAL FORMS 

We first study normal forms for sumterms and for sumformulas of the form 

I(tt). The following elementary theorem shows that sumterms can be con

sidered as being in normal forms. 

Theorem 3. 1 : 

For all tt EST: tt 

Proof: 

Any sumterm can be considered as a polynomial in a number of variables 

which is a finite subset of {al,al ,al , ••• ,aN,aN , •.. }. Moreover, every x xx x 
set of values for these variables can be obtained as the corresponding 

derivatives of functions al,a2, ••• ,aN E C in an arbitrary point x E IR. 

The theorem now follows from the standard result in algebra that a poly

nomial that vanishes for all values of its arguments is the zero poly

nomial, see for instance Lang (1965). 

An equivalent formulation of this theorem is that two sumterms are equal 

if and only if they have the same meaning. 

Next, consider normal forms for a sumformula of the form l(tt). A 

simple computation shows that 

I (a 1 a2 + a 1 a2 ) mal a2 - a 1 a2 + 21 (a 1 a2 ) • 
xxxx xx xx xxx x xx xx xx 

o 

This suggests to try ttl + I(tt2) as normal form for I(tt), where the sum

terms ttl and tt2 possibly must satisfy additional conditions. In particu

lar, tt2 is intended to contain terms which cannot be 'integrated further'_ 

in some way. Let sSl + l(ss2) also be a 'normal form' for tt, then from 

(3.1) 

we must be able to conclude that ttl = sSl and tt2 = ss2. From (3.1) and 

Theorem 3.1 we see that sS2 tt2 implies sSl = ttl. So, it 1S sufficient 

to find additional conditions such that (3.1) implies ss2 = tt2-"- ~hi~_ean 

be obtained in the following way. Suppose NIT (nonintegrable (sum)term) 

is a predicate on ST such that 
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A. t.) = 
1 1 

(Vi:l;;:i;;:m: NIT( t.)) 
1 

and for uu '" 0 

m 
NIT(uu) ~ (Vss: ss EST: I(uu) ~ ss) • 

(3. Z) 

(3.3) 

So, if NIT(uu) holds and uu '" 0, then uu cannot be the derivative of a sum

term. Clearly, if 1n (3.1) NIT(ssZ) and NIT(tt Z) hold, then also 

NIT(ssZ- ttZ) and (3.3) yields ssz = ttZ. So ttl + I(ttZ) can be con

sidered as a normal form of I(tt) if NIT(tt Z) holds. In Sections 4 and 5, 

we shall assume that it is always possible to construct this type of 

'normal form' for I(tt). Formally, in Sections 4 and 5 we assume the 

Hypothesis H: 

There exists a predicate NIT on ST that satisfies (3.Z) and (3.3) and 

there exist mappings Int: ST + ST and RC6~: ST + ST such that 

I(tt) ~ In~(tt) + I(RC6~(tt)) 

and 

NIT(RC6~(tt)) • 

(3.4) 

(3.5) 
D 

It turns out that, if this hypothesis holds, normal forms for sumformulas 

with an arbitrary number of l's can easily be constructed. 

In Section 6 we shall construct a predicate NIT and mappings In~ and 

RC6~ which satisfy the hypothesis H. Note that V, Int, RC6~ (and the map-

pings MI , M
Z 

and M of Section 4) are mappings from sumformulas or sumterms 

to sumformulas or sumterms while I is a symbol which actually appears in 

(sum)formulas. 

4. THE NORMALIZING ALGORITHM 

We shall now describe a subset SN of the set of ,'Sl'lmE<l>lIlffiu,JIa.s; SF. The main 

result of this section is Theorem 4.1, which states that for every sum

formula in SF a sumformula in SN can be constructed which has the same 

meaning. 
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First we introduce basis formulas in normal form. For each k E IN the 

set Bk of basis formulas in normal form with order k is recursively defined 

by 

Bk+1 = {l(tb) I t E T. b E Bk • NIT(t)} . 

The set of basis formulas B ~s then given by 

The set N of formulas ~n normal form is defined by 

N = {tb I t E T. b E B} 

So. a formula in normal form consists of the product of a term and a basis 

formula. Clearly. TIN I F. The order 0 of a formula in N is defined by: 

O(tb) k if b E Bk . 

So. O(n) is nothing but the number of l's in n E N. A formula n E N with 

order k can be written as 

with t. E T for i = D •...• k and NIT(t.) for i = 1 •••.• k. 
~ - -~~O-----c-----c 

The set SN of sumformulas in normal form is defined by 

SN = {I A.n·1 m;;; D. (Vi: 1;'; i;';m: Ai E Q. n i EN)}. "'1\-
i=1 ~ ~ 

Then ST I SN I SF. _We generalize the notion of order to SN by 

m D if m D 
O(I A.n.)={ 

i=1 ~ ~ (MAX i: 1;'; i;'; m: O(ni » if m ;;; 
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By gathering formulas which have the same basis formula, every s.iiinformuVi-C:;-~

nn E SN can be written as 

m 

nn = I 
i=l 

tt. b. 
1 1 

tt. EST, b. E B for i = 1, ••• ,m , 
1 1 

where the basis formulas b. are mutually different and tt. # a for 
~ _____ 1____ __ 

i = 1, .•. ,m. If in the sequel of this paper a sumformula nn E SN is 

(4.1) 

written in the form (4.1), we shall always assume that these restrictions 

on the tti and b i hold. 

In addition to the convention given in Section 2, we agree that always 

-

In the remaining part of this section we construct a mapping M, SF + SN, 

which maps every sumformula to its normal form. 

Suppose ttb is a sumformula in normal form. Then, since not necessar

ily NIT(tt) holds, I(ttb) may not be in normal form. We first describe a 

mapping which gives a normal form for I(ttb). A simple calculation using 

the derivative of (3.4) and partial integration (2.2) yields 

I(ttb) m I«V(Im:(tt) + Re.6.:1:(tt))b) 

m Im:(tt)b - I(Im:(tt)V(b)) + I(Re.6.:1:(tt)b) (4.2) 

The first and, since NIT(Re.6.:1:(tt)) holds, the last expression in (4.2) 

consists of formulas in normal form. If b E BO' then V(b) = V(l) = a and 

(4.2) yields a normal form for lett). If b E Bk with k ~ 1, a normal form 

for l(ttb) can be computed fr()ffi_(4.~) if a normal form for I(Im:(tt)_V(bl) 

is known. Since O(Im:(tt)V(b)) = k-l and O(ttb) = k, we can use recursion 

to compute the normal form of I(ttb). Define 14/, SN + SN by 
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M) (tt) In):(tt) + I(Re6~(tt» , 

M) (tt b) = In):(tt)b + I(ReM:(tt»b) 
(4.3) 

M) (? tti bi) = 
1 

- M)(In):(tt)V(b» 

LM) (tt. b.) 
. 1 1 
1 

The proof of the following lemma 1S now almost trivial. 

Lemma 4.1: 

For all nn E SN: 

M) (nn) l!l I (nn) • 

So, if nn 1S in normal form, M)(nn) is the normal form of I(nn). 

o 

Next, we discuss how a normal form of the product of two formulas in 

normal form can be computed. Consider two basis formulas. If (at least) 

one of them is element of BO' then their product is trivially in normal 

form. Now consider the basis formulas I(tb) and I(sc). Partial integration 

(2.3) yields 

m I(tb)I(sc) = I(tbI(sc» + I(scI(tb» . (4.4) 

Suppose that normal forms for the products of basis formulas bI(sc), 

respectively cI(tb) are known. Then, using the mapping M) ~"a 'flo1:mal "fO-r;" 

for the product I(tb)I(sc) can easily be computed from (4.4). Since 

O(b) + O(I(sc» = O(c) + O(I(tb» < O(I(tb» + O(I(sc» , 

a normal form of the product of two basis functions can be computed recur-

sively. Define M
Z

: SN x SN 7 SN by 

(4.5) 

Mn(L. tt.b·,Lss.c.) 
L 11. JJ 

1 J 
L tt.ss·Mn(b.,c.). 
•. 1 J L 1 J 
1,J 
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Using induction with respect to the structure of nnl and nn2 the following 

lemma can easily be proved. 

Lemma 4.2: 

For all nnl,nn2 E SN: 

m MZ(nnl,nn2) = nnl nn2 . 

So, the mapp1ng M
Z 

yields a normal form lior the product of two sumformulas 

in normal form. 

Using the mapp1ngs Mj andMtit_is--=as~to construct a mapping M: 

SF + SN which transforms a sumformula from SF to its normal form. Recall 

that every formula f E F is of the form t, l(f
l
) or fl f2 with t E T, 

f
l
,f2 EF. 

Define M: SF + SN by 

M( t) t 

M(I(f» 

o 

(4.6) 

M(I A.f.) = 
i=l 1 1 

m 

1: 
i=l 

A. MCf.) • 
1 1 

Since every argument of M in a right-hand side of (4.6) is shorter than 

the corresponding argument in the left-hand side, this is a correct defini

tion (i.e. M is defined by structure induction). 

The ma1n result of this section is the following 

Theorem 4.1: 

For all ff E SF: 

M(ff) 111 ff 

Proof: 

Using induction on the structure of ff and the Lemmas 4.1 and 4.2, the 

proof is almost trivial. o 



- 11 -

So, for every sumformula ff in SF a sumformula in SN with the same mean

ing is given by M(ff). Note that the definitions of the mappings MI , MZ 
and M are recursive; these mappings can easily be implemented by (recur

sive) functions. 

5. UNIQUENESS OF NORMAL FORMS 

In the preceding section we have described a subset SN of the set of sum-

formulas SF. We have shown that for every sumformula ff E SF a sumformula 

M(ff), the normal form of ff, can be computed such that ff and M(ff) have 

the same meaning. It remains to be shown that M(ff) is the only element of 

SN which has the same meaning as ff. That will be done ~n Theorem 5.1. 

First, we introduce some notation and give three lemmas. 

As explained in Section 4, every sumformula in normal form nn can be 

written as 

m 
nn I 

i=l 
tt. b. 

~ ~ 
(5.1) 

with m minimal. For each k E ill the mapping Ilk: SN ~ SN is defined in the 

following way. If nn is given by (5.1), then 

m 
I1 k (nn) = L tt. b. 

i=l ~ ~ 

O(b. )=k 
~ 

So, Ilk (nn) is the sum of all formulas in nn 

width W(nn) of nn given by 

m 

W(nn) = I 
i=l 

O(b. )=O(nn) 
~ 

(5.1) is defined 

with order k (if any). The 

as 

This means that W(nn) is the number of basis formulas in nn which have 

maximal order. Clearly, nn F 0 ~ W(nn) ~ 1 and O(nn) = 0 ~ W(nn) = 0 v 

W(nn) = 1 (since BO has only one element). 
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Lemma 5.1: 

Let ss,tt E ST with tt F 0. If ss F \tt for all \ E Q, then 

ttV(ss) - ssV(tt) F ° . 
Proof: 

Suppose tt V(ss) - ss V(tt) = 0, which implies tt V(ss) - ss V(tt) 11) 0. 

Elementary differential calculus now yields the existence of a constant \ 

such that ss 11) \tt. By Theorem 3.1, this contradicts with the assumption 

of the lemma. 

Lemma 5.2: 

Let ss,tt,uu E ST with tt F 0, uu F ° and NIT(uu). Then 

2 tt uu + ttV(ss) - ssV(tt) F 0 • 

Proof: 

Suppose the converse holds, then also tt2 uu + ttV(ss) - ssV(tt) 11) 0. By 
--il-ss----s-s---- -

elementary differential calculus we obtain uu 11) - dx (tt)' If tt can be 

o 

reduced to a sumformula, this yields a contradiction since uu F ° and 

NIT(uu) holds. Next, consider the case that ~~ cannot be reduced to a sum

formula, i.e. tt has factors which do not appear in ss. Using the unique 

factorization of 55 and tt in prime factors, it is easily shown that in 

this case dd (~) also cannot be written as a sumformula. 0 
x tt 

Re.call that the lexicographical order on pairs of integers 1S defined by 

(i,j) ;:; (k,9,) .. i < k V (i = k A j < 9,) • 

Moreover, the set {(k,t) [ (k,t) ~ (O,O)} is a well-founded set on which 

the principle of induction holds, see for instance Barwise (1977). 

Lemma 5.3: 

For every nn E SN with (O(nn),W(nn)) > (0,1) there exists a nn 1 E SN with 

(5.2) 

and 

(5.3) 
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Proof: 

Let nn E SN with (O(nn),W(nn» > (0,1). Since O(nn) 

impossible, this means (O(nn),W(nn» ~ (1,1). Set k 

Then we can write 

° and W(nn) > 1 is 

O(nn) and 9- W(nn) . 

9-

I 
i=l 

Define 

tt. b. 
1 1 

1, ... ,£' . 

Then nn
1 

E SN and (5.3) holds trivially. A simple calculation yields. 

9-

.I 1=1 
(ttl V(tt.) - tt. V(tt

1
»b .• 

~ - - ~ 1 
(5.4) 

Clearly, this expression does not contain the basis formula b
1

• To prove 

(5.2) we consider two cases: 

------- .~~-~.-

i) Suppose that for some j with 1 ~ j ~ 9- the sumterm tt. is not a multi
J 

pIe of ttl. Then Lemma 5.1 yields immediately that IT k (nn 1) contains the 

basis formula b
j

• Hence 0(nn 1) = k and 1 ~ W(nn 1) < 9-. 

ii) Suppose there exist constants A. such that tt. = A.tt
1 

for j = 1, ••• ,9-. 
J J J 

From (5.4) we now conclude that IT k (nn1) 0, so 0(nn 1) < k. We shall now 

show that 0(nn 1) = k-l and W(nn 1) ~ 1. Note that, since ttj f 0, also 

Aj f ° for j = 1, •.. ,9-. Let IT k_ 1(nn) be given by 

m 

IT k - 1 (nn) = I 
i=l 

S8.C. 
1 1 

1, ... ,m. 

Of course, nn does not necessarily contain formulas with order k - 1, in 

that case m = 0. A straightforward calculation yields 

2 9- m 
ITk- 1 (nn1) ttl I A. V(b.) + I (ttl V(ss.) - ss. V(tt

1
»c. 

i=l 1 1 i=l 
111 

2 9- m 
ttl I A. t. e. + I (ttl V(ss.) - ss. V(tt 1»c. , 

i=l 1 1 1 i=l 1 1 1 
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can be written as b. = let. e.) with t. E T, 
1 1. 1 1 

1, •.. ,£). We prove that this expression always 

contains the basis formula e
1

• Define 

£ 
uu I A. t. 

~ ~ 
(5.5) 

i=l 
e

i
=e

1 

and 

m 

ss = I ss. (5.6) 
i=l ~ 

c
i

=e
1 

Since all basis formulas b. (i = 1, ... ,£) are mutually different, the same 
~ 

must hold for the 

Hence, uu F 0 and 

terms t. which 
~ 

NIT(uu) holds. 

actually appear in the summation (5.5). 

Note that, because aU basis formulas c. 
~ 

are different, the summation (5.6) takes place over at most one value of i. 

The 'coefficient' of e
1 

in I1
k

-
1 

(nn
1

) can now be written as 

Lemma 5.2 yields that this sumterm does·· not cancel out, so I1k-
1 

(nn
1

) 

always contains the basis formula e
1

• Hence O(nn
1

) = k - 1 and W(nn 1) i"; 1. 

Now the un~queness of the normal forms ~s easily shown. 

Theorem 5.1: 

For all swnformuZas nn E SN: 

nn = 0 <=> nn W 0 

Proof: 

Of course, we only have to show nn W 0 _ nn = 0, or equivalently nn F 0 ~ 

nn f O. From the definitions of order and width we see that this corre-
m 

sponds to proving that nn F 0 for all nn E SN with (O(nn),W(nn)) i"; (0,1). 

o 

This is easily shown using induction with respect to the pair (O(nn),W(nn)) 

under the lexicographical order. The induction basis (O(nn),W(nn)) = (0,1) 
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follows from Theorem 3.1, while the induction step 1S obtained from Lemma 

5.3. 

Several equivalent formulations of this theorem can'Jbe g1ven. For instance 

for all nn 1,nn2 E SN. Also, if for i = 1, ••. ,m the n i E N are mutually 

different and Ai E Q (possibly Ai = 0), then 

m 

I 
i=l 

A. n. 111 0 => (V i: 1:> i:> m: A. 111 0) • 

6. THE PREDICATE NIT AND THE MAPPINGS Int'AND Rest 

o 

The results given 1n Sections 4 and 5, i.e. the normalizing mapp1ng M and 

the uniqueness of the normal forms, have been derived under the assumption 

that the hypothesis H (Section 3) holds. In this section we shall show that 

this is indeed the case, i.e. we shall construct a predicate NIT on ST and 

mappings Int, R~~: ST ~ ST such that (3.2)-(3.5) hold. The construction of 

NIT, In~ and R~~ may look technical, but it is in fact only a matter of 

partial integration. First we describe the predicate NIT. Consider a term 

t, i.e. a product of functions a1, ... ,aN and their derivatives. 

be the highest derivative of a1 which occurs in t and let~p~(t) 
1 

Let it .. ( t) 
11 

be the 

power of this derivative. If ai and its derivatives do not occur in t, then 

h.(t) 
1 

and 

-1 and p.( t) = O. Further we define 
1 

H(t) (MAX 1: 1 :> i :> N: it. (t» 1 

N 
pet) I p.( t) 

i=l 1 

Idt)=H(t) 
1 

J(t) (MIN i: :> i :> N 1\ Idt) = 1 
H(t): i) . 
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So H(t) is the highest derivative, pet) is the number of factors which have 

this derivative and J(t) is the lowest function number which has derivative 

H(t) in the term t. For instance, if 

pet) = 4 and J(t) = 2. The predicate 

2 3 
t = a1 a2 a3 a3 ,then 

x xx x xx H(t) = 2, 

NIT(t) is now defined by 

NIT(t) _ t = 1 v H(t) = 0 ~P(t) ~ 2 v 

(3i: 1::; i < J(t): JI1.(t) = H(t) - 1) 
.~ 

So NIT(t) holds if i) t = 1 or ii) t does not contain derivatives 

(6.1) 

or iii) the number of factors in t which have the highest derivative is at 

least 2 or iv) there exists a factor in t with derivative H(t)- 1 and a 

function number less than J(t). For instance, the predicates NIT(l), 

NIT(a1 a2 3 a4), NIT(a1 a2
2 

a3 ), NIT(a1 a2 3 a3 ) and NIT(a1 a2 ) hold, 
xxx xx xxxxX x 

but NIT(a1 a2) does not hold. 
x 

For sumterms we define 

NIT( I A. t.) " (Vi: 1::; Um: NIT(t i » , 
i=l 1 1 

so (3.2) trivially holds. Next we prove (3.3). Let uu = ~~ 1 A. t. be a non
L1= 1 1 

vanishing sumterm such that NIT(uu) holds and suppose there exists a sum-

( ) m • 1 term S8 such that I uu = SS, or equ1va ently 

uu = V(ss) • (6.2) 

Let d be the highest derivative which occurs in ss and let £ be the lowest 

function number ~n ss for which this derivative occurs. Then by considering 

all terms 1ll S8 1n which the d-th derivative of a2 occurs, it is easily 

seen that (6.2) leads to a contradiction with NIT(uu). Hence (3.3) holds. 

The mappings I~ and RC6t are defined by giving an algorithm that, for 

a sumterm tt, computes re = RC6t(tt) and in = Int(tt). Informally the algo

rithm works as follows. Terms in tt for which NIT holds are transferred to 

reo For terms in tt for which NIT does not hold, a partial integration can 

be performed. More precisely, if NIT(t) does not hold, then (6.1) implies 

that t can be written as 

t 
.m . 

aJ(h_1)x aJ hx s (6.3) 
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where h = H(t), j = J(t), m ~ 0 and s is a term with H(s) < h and if 

Vk(aj». Partial integration (2.2) H(s) = h - 1, then J(s) > j 

yields 

I(t) m .m+l 
= m + 1 aJ (h-1)x 

(aj = 
kx 

s - (
1 .m+ 1 ) 

I m+ 1 aJ(h-l)x V(s) • 

now 

The first term in the right-hand side is now added to in, while the terms 
. 1 1. m+ 1 V ( ). (. . 1n tt = - m+l aJ(h-l)x s are aga1n added to tt all w1th appropr1ate 

coefficie;t~~ From the properties of s mentioned above, it is easily seen 

that each term in ttl has i) a highest derivative less than h or ii) a 

highest derivative equal to h, but then this derivative can only appear for 

functions ai with i > j. Hence, by removing t from tt and (in case of 

,NIT(t» adding the terms in ttl to tt, the highest derivatives in tt 

decrease or stay equal and shift to functions with higher numbers. So it is 

possible to repeat the steps above until tt = O. We now give the formal 

description of the algorithm. Its correctness follows from the loop invari

ant 

P: I(TT) m I(tt) + in + I(re) A NIT(re) . 

tt := TT; re := 0; in := 0; 

{invariant P} 

while tt ,;, 0 do 

let t be a term in tt with coefficient A; 

tt := tt - At; 

if NIT(t) then re := re + At {P} 

else 

compute s such that (6.3) holds; 

in 
A .m+l 

:= 1n +-- a J (h_l)x s . 
m + 1 , 

tt := tt - A 
m + 1 

.m+l V() 
aJ (h-l)x s {p} 

fi 

{P} 

od {p A tt = 0, so I(TT) 1n + I(re) A NIT(re)} 
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It is possible to replace the informal arguments for the termination of the 

repetition given above by a more formal termination pr-oof using a variant 

function, but we shall not work out that here. Clearly the mappings Int and 

RC6Z, defined by Int(TT) = in and RC6Z(TT) = re satisfy (3.4) and (3.5). 

Thus we have shown that the hypothesis H can be satisfied. 
• 

Note that in this section we used in fact an order on the functions 

a1, ••• ,aN. Of course, any other order could also be used. Hence for sum

formulas which consist of N functions there exist in fact N! different 

normal forms. 

7. CONCLUDING REMARKS 

The normalizing algorithm described in Sections 4 and 6 can easily be 

implemented in a suitable formula manipulation system. An implementation ~n 

the MUS IMP system is straightforward and can be used to perform the calcula

tions mentioned in the introduction. One of us (J.C.F.W.) constructed a 

PASCAL implementation for the case N = 1. However, the resulting program 

turned out to be too slow for practical computations. 

In the process of computing a normal form only the relations (2.2), 

(2.3) and (3.4) are used. Moreover, the left-hand side of these relations 

is always replaced by the right-hand side. Hence we can consider the set of 

sumformulas as a term rewriting system with reduction rules (2.2), (2.3) 

and (3.4). In this approach the mapping M describes a reduction strategy 

which always leads to a sumformula in normal form. Note the similarity with 

the probably most well-known term rewriting system, the Lambda calculus. 

Possibly there exist reduction strategies which lead to the normal form in 

less steps than the strategy used here. This question is investigated at 

the moment. 

Acknowledgement: We thank I.J.M. Canjels for the formulation of the predi

cate NIT and for implementing the mappings Int and RC6Z in the MUS IMP 

system. Moreover, we thank J.M. Kloosterman for writing a MUSIMP implemen

tation of the normalizing mapping M. 
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